Science.gov

Sample records for catalytic biomass gasification

  1. Catalytic Hydrothermal Gasification of Biomass

    SciTech Connect

    Elliott, Douglas C.

    2008-05-06

    A recent development in biomass gasification is the use of a pressurized water processing environment in order that drying of the biomass can be avoided. This paper reviews the research undertaken developing this new option for biomass gasification. This review does not cover wet oxidation or near-atmospheric-pressure steam-gasification of biomass. Laboratory research on hydrothermal gasification of biomass focusing on the use of catalysts is reviewed here, and a companion review focuses on non-catalytic processing. Research includes liquid-phase, sub-critical processing as well as super-critical water processing. The use of heterogeneous catalysts in such a system allows effective operation at lower temperatures, and the issues around the use of catalysts are presented. This review attempts to show the potential of this new processing concept by comparing the various options under development and the results of the research.

  2. Methods and apparatus for catalytic hydrothermal gasification of biomass

    SciTech Connect

    Elliott, Douglas C.; Butner, Robert Scott; Neuenschwander, Gary G.; Zacher, Alan H.; Hart, Todd R.

    2012-08-14

    Continuous processing of wet biomass feedstock by catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent separation of sulfur contaminants, or combinations thereof. Treatment further includes separating the precipitates out of the wet feedstock, removing sulfur contaminants, or both using a solids separation unit and a sulfur separation unit, respectively. Having removed much of the inorganic wastes and the sulfur that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogeneous catalyst for gasification.

  3. Methane or methanol via catalytic gasification of biomass

    SciTech Connect

    Mitchell, D.H.; Mudge, L.K.; Robertus, R.J.; Weber, S.L.; Sealock, L.J. Jr.

    1980-03-01

    Methane and methanol synthesis gas can be produced by steam gasification of biomass in the presence of appropriate catalysts. A 5 cm diameter reactor has been used to determine the desired catalysts and operating temperature. A process development unit (PDU) has demonstrated steam gasification of biomass with catalysts at rates up to 35 kg per hour. Methane yields of 0.28 nm/sup 3/ per kg of dry wood were produced in the small laboratory reactor. Further methanation of the product gas mixture can increase methane yields to 0.33 nm/sup 3//kg. The catalyst system is nickel and silica-alumina. The preferred reactor operating temperature is 500 to 550/sup 0/C. Tests have been at atmospheric pressure. The PDU performance has confirmed results obtained in the laboratory. Methanol synthesis gas can be produced in a single stage reactor at 750 to 850/sup 0/C by steam gasification of wood with silica-alumina and nickel catalysts present. From this gas, up to 0.6 kg of methanol can be produced per kg of wood. Gasification of the wood to produce synthesis gas has been demonstrated in the laboratory scale reactor, but remains to be successfully done using the PDU. Catalyst deactivation rates and regeneration schemes must be determined in order to determine the economic feasibility of wood to methane or methanol processes. Some advantages of catalytic steam gasification of biomass over steam-oxygen gasification are: no oxygen is required for methane or methanol synthesis gas, therefore, no oxygen plant is needed; little or no tar is produced resulting in simpler gas cleaning equipment; no shift reactor is required for methanol synthesis; methanation requirements are low resulting in high conversion efficiency; and yields and efficiencies are greater than obtained by conventional gasification.

  4. Catalytic Hydrothermal Gasification of Wet Biomass Feedstock

    SciTech Connect

    2006-04-01

    Industries and municipalities generate substantial amounts of biomass as high-moisture waste streams, such as animal manure, food processing sludge, stillage from ethanol production, and municipal wastewater sludge.

  5. Development of a catalytic system for gasification of wet biomass

    SciTech Connect

    Elliott, D.C.; Sealock, L.J.; Phelps, M.R.; Neuenschwander, G.G.; Hart, T.R.

    1993-08-01

    A gasification system is under development at Pacific Northwest Laboratory that can be used with high-moisture biomass feedstocks. The system operates at 350 C and 205 atm using a liquid water phase as the processing medium. Since a pressurized system is used, the wet biomass can be fed as a slurry to the reactor without drying. Through the development of catalysts, a useful processing system has been produced. This paper includes assessment of processing test results of different catalysts. Reactor system results including batch, bench-scale continuous, and engineering-scale processing results are presented to demonstrate the applicability of this catalytic gasification system to biomass. The system has utility both for direct conversion of biomass to fuel gas or as a wastewater cleanup system for treatment of unconverted biomass from bioconversion processes. By the use of this system high conversion of biomass to fuel gas can be achieved. Medium-Btu is the primary product. Potential exists for recovery/recycle of some of the unreacted inorganic components from the biomass in the aqueous byproduct stream.

  6. Development of a catalytic system for gasification of wet biomass

    NASA Astrophysics Data System (ADS)

    Elliott, D. C.; Sealock, L. J.; Phelps, M. R.; Neuenschwander, G. G.; Hart, T. R.

    1993-08-01

    A gasification system is under development at Pacific Northwest Laboratory that can be used with high-moisture biomass feedstocks. The system operates at 350 C and 205 atm using a liquid water phase as the processing medium. Since a pressurized system is used, the wet biomass can be fed as a slurry to the reactor without drying. Through the development of catalysts, a useful processing system has been produced. This paper includes assessment of processing test results of different catalysts. Reactor system results including batch, bench-scale continuous, and engineering-scale processing results are presented to demonstrate the applicability of this catalytic gasification system to biomass. The system has utility both for direct conversion of biomass to fuel gas or as a wastewater cleanup system for treatment of unconverted biomass from bioconversion processes. By the use of this system, high conversion of biomass to fuel gas can be achieved. Medium-Btu is the primary product. Potential exists for recovery/recycle of some of the unreacted inorganic components from the biomass in the aqueous byproduct stream.

  7. Catalytic gasification of wet biomass in supercritical water

    SciTech Connect

    Antal, M.J. Jr.; Matsumura, Yukihiko; Xu, Xiaodong

    1995-12-31

    Wet biomass (water hyacinth, banana trees, cattails, green algae, kelp, etc.) grows rapidly and abundantly around the world. As a biomass crop, aquatic species are particularly attractive because their cultivation does not compete with land-based agricultural activities designed to produce food for consumption or export. However, wet biomass is not regarded as a promising feed for conventional thermochemical conversion processes because the cost associated with drying it is too high. This research seeks to address this problem by employing water as the gasification medium. Prior work has shown that low concentrations of glucose (a model compound for whole biomass) can be completely gasified in supercritical water at 600{degrees}C and 34.5 Wa after a 30 s reaction time. Higher concentrations of glucose (up to 22% by weight in water) resulted in incomplete conversion under these conditions. The gas contained hydrogen, carbon dioxide, carbon monoxide, methane, ethane, propane, and traces of other hydrocarbons. The carbon monoxide and hydrocarbons are easily converted to hydrogen by commercial technology available in most refineries. This prior work utilized capillary tube reactors with no catalyst. A larger reactor system was fabricated and the heterogeneous catalytic gasification of glucose and wet biomass slurry of higher concentration was studied to attain higher conversions.

  8. Catalytic gasification of oil-extracted residue biomass of Botryococcus braunii.

    PubMed

    Watanabe, Hideo; Li, Dalin; Nakagawa, Yoshinao; Tomishige, Keiichi; Watanabe, Makoto M

    2015-09-01

    Catalytic gasification of the oil-extracted residue biomass of Botryococcus braunii was demonstrated in a laboratory-scale continuous feeding dual bed reactor. Steam gasification at 1023 K over Ni-Fe/Mg/Al catalyst can completely reform tar derived from pyrolysis of the residue biomass into C1 gases and hydrogen, and has achieved 91%-C conversion to gaseous product (CO+CO2+CH4). Composition of product gas has higher contents of CO and H2 with their ratio (H2/CO) of around 2.4 which is slightly H2-rich syngas. Maximum hydrogen yield of 74.7 mmol g-biomass(-1) obtained in this work is much higher than that from gasification of other algal biomass reported in literature. The residue biomass of B. braunii can be a superior renewable source of syngas or hydrogen. PMID:25817421

  9. Integrated Biomass Gasification with Catalytic Partial Oxidation for Selective Tar Conversion

    SciTech Connect

    Zhang, Lingzhi; Wei, Wei; Manke, Jeff; Vazquez, Arturo; Thompson, Jeff; Thompson, Mark

    2011-05-28

    Biomass gasification is a flexible and efficient way of utilizing widely available domestic renewable resources. Syngas from biomass has the potential for biofuels production, which will enhance energy security and environmental benefits. Additionally, with the successful development of low Btu fuel engines (e.g. GE Jenbacher engines), syngas from biomass can be efficiently used for power/heat co-generation. However, biomass gasification has not been widely commercialized because of a number of technical/economic issues related to gasifier design and syngas cleanup. Biomass gasification, due to its scale limitation, cannot afford to use pure oxygen as the gasification agent that used in coal gasification. Because, it uses air instead of oxygen, the biomass gasification temperature is much lower than well-understood coal gasification. The low temperature leads to a lot of tar formation and the tar can gum up the downstream equipment. Thus, the biomass gasification tar removal is a critical technology challenge for all types of biomass gasifiers. This USDA/DOE funded program (award number: DE-FG36-O8GO18085) aims to develop an advanced catalytic tar conversion system that can economically and efficiently convert tar into useful light gases (such as syngas) for downstream fuel synthesis or power generation. This program has been executed by GE Global Research in Irvine, CA, in collaboration with Professor Lanny Schmidt's group at the University of Minnesota (UoMn). Biomass gasification produces a raw syngas stream containing H2, CO, CO2, H2O, CH4 and other hydrocarbons, tars, char, and ash. Tars are defined as organic compounds that are condensable at room temperature and are assumed to be largely aromatic. Downstream units in biomass gasification such as gas engine, turbine or fuel synthesis reactors require stringent control in syngas quality, especially tar content to avoid plugging (gum) of downstream equipment. Tar- and ash-free syngas streams are a critical

  10. Methods for sulfate removal in liquid-phase catalytic hydrothermal gasification of biomass

    DOEpatents

    Elliott, Douglas C; Oyler, James R

    2014-11-04

    Processing of wet biomass feedstock by liquid-phase catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a pre-treatment temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent removal of soluble sulfate contaminants, or combinations thereof. Processing further includes reacting the soluble sulfate contaminants with cations present in the feedstock material to yield a sulfate-containing precipitate and separating the inorganic precipitates and/or the sulfate-containing precipitates out of the wet feedstock. Having removed much of the inorganic wastes and the sulfate contaminants that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogeneous catalyst for gasification.

  11. Methods for sulfate removal in liquid-phase catalytic hydrothermal gasification of biomass

    DOEpatents

    Elliott, Douglas C; Oyler, James

    2013-12-17

    Processing of wet biomass feedstock by liquid-phase catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a pre-treatment temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent removal of soluble sulfate contaminants, or combinations thereof. Processing further includes reacting the soluble sulfate contaminants with cations present in the feedstock material to yield a sulfate-containing precipitate and separating the inorganic precipitates and/or the sulfate-containing precipitates out of the wet feedstock. Having removed much of the inorganic wastes and the sulfate contaminants that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogenous catalyst for gasification.

  12. Improvement of Sulphur Resistance of a Nickel-modified Catalytic Filter for Tar Removal from Biomass Gasification Gas

    SciTech Connect

    Zhang, Y.; Draelants, D.J.; Engelen, K.; Baron, G.V.

    2002-09-19

    This work focuses on the development of catalytic candle filters for the simultaneous removal of tars and particles from the biomass gasification gas at high temperature. An improvement of sulphur resistance of the nickel-activated catalytic filter was developed by the addition of CaO. The influences of preparation procedure of catalytic filter, the ratio of Ni/CaO and the loading of Ni and CaO on the performance of the catalytic filter were investigated.

  13. Syngas production by two-stage method of biomass catalytic pyrolysis and gasification.

    PubMed

    Xie, Qinglong; Kong, Sifang; Liu, Yangsheng; Zeng, Hui

    2012-04-01

    A two-stage technology integrated with biomass catalytic pyrolysis and gasification processes was utilized to produce syngas (H(2)+CO). In the presence of different nickel based catalysts, effects of pyrolysis temperature and gasification temperature on gas production were investigated. Experimental results showed that more syngas and char of high quality could be obtained at a temperature of 750°C in the stage of pyrolysis, and in the stage of gasification, pyrolysis char (produced at 750°C) reacted with steam and the maximum yield of syngas was obtained at 850°C. Syngas yield in this study was greatly increased compared with previous studies, up to 3.29Nm(3)/kg biomass. The pyrolysis process could be well explained by Arrhenius kinetic first-order rate equation. XRD analyses suggested that formation of Mg(0.4)Ni(0.6)O and increase of Ni(0) crystallite size were two main reasons for the deactivation of nickel based catalysts at higher temperature. PMID:22342084

  14. Catalysis in biomass gasification

    SciTech Connect

    Baker, E.G.; Mudge, L.K.

    1984-06-01

    The objective of these studies is to evaluate the technical and economic feasibility of producing specific gas products by catalytic gasification of biomass. Catalyst performance is a key factor in the feasibility of catalytic gasification processes. The results of studies designed to gain a fundamental understanding of catalytic mechanisms and causes of deactivation, and discussion of the state-of-the-art of related catalytic processes are presented. Experiments with primary and secondary catalysts were conducted in a 5-cm-diameter, continuous-wood-feed, fixed-catalyst-bed reactor. The primary catalysts used in the experiments were alkali carbonates mixed with the biomass feed; the secondary catalysts included nickel or other transition metals on supports such as alumina, silica, or silica-alumina. The primary catalysts were found to influence wood pyrolysis as well as the char/steam reaction. Secondary catalysts were used in a fixed-bed configuration to direct gas phase reactions. Results of the performance of these catalysts are presented. Secondary catalysts were found to be highly effective for conversion of biomass to specific gas products: synthesis gases and methane-rich gas. With an active catalyst, equilibrium gas composition are obtained, and all liquid pyrolysis products are converted to gases. The major cause of catalyst deactivation was carbon deposition, or coking. Loss of surface area by sintering was also inportant. Catalyst deactivation by sulfur poisoning was observed when bagasse was used as the feedstock for catalytic gasification. Mechanisms of catalyst activity and deactivation are discussed. Model compounds (methane, ethylene, and phenol) were used to determine coking behavior of catalysts. Carbon deposition is more prevalent with ethylene and phenol than with methane. Catalyst formulations that are resistant to carbon deposition are presented. 60 references, 10 figures, 21 tables.

  15. Gasification of Woody Biomass.

    PubMed

    Dai, Jianjun; Saayman, Jean; Grace, John R; Ellis, Naoko

    2015-01-01

    Interest in biomass to produce heat, power, liquid fuels, hydrogen, and value-added chemicals with reduced greenhouse gas emissions is increasing worldwide. Gasification is becoming a promising technology for biomass utilization with a positive environmental impact. This review focuses specifically on woody biomass gasification and recent advances in the field. The physical properties, chemical structure, and composition of biomass greatly affect gasification performance, pretreatment, and handling. Primary and secondary catalysts are of key importance to improve the conversion and cracking of tars, and lime-enhanced gasification advantageously combines CO2 capture with gasification. These topics are covered here, including the reaction mechanisms and biomass characterization. Experimental research and industrial experience are investigated to elucidate concepts, processes, and characteristics of woody biomass gasification and to identify challenges. PMID:26247289

  16. Gasification-based biomass

    SciTech Connect

    None, None

    2009-01-18

    The gasification-based biomass section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  17. Fast microwave-assisted catalytic gasification of biomass for syngas production and tar removal.

    PubMed

    Xie, Qinglong; Borges, Fernanda Cabral; Cheng, Yanling; Wan, Yiqin; Li, Yun; Lin, Xiangyang; Liu, Yuhuan; Hussain, Fida; Chen, Paul; Ruan, Roger

    2014-03-01

    In the present study, a microwave-assisted biomass gasification system was developed for syngas production. Three catalysts including Fe, Co and Ni with Al2O3 support were examined and compared for their effects on syngas production and tar removal. Experimental results showed that microwave is an effective heating method for biomass gasification. Ni/Al2O3 was found to be the most effective catalyst for syngas production and tar removal. The gas yield reached above 80% and the composition of tar was the simplest when Ni/Al2O3 catalyst was used. The optimal ratio of catalyst to biomass was determined to be 1:5-1:3. The addition of steam was found to be able to improve the gas production and syngas quality. Results of XRD analyses demonstrated that Ni/Al2O3 catalyst has good stability during gasification process. Finally, a new concept of microwave-assisted dual fluidized bed gasifier was put forward for the first time in this study. PMID:24508907

  18. Catalytic hydrothermal gasification of biomass for the production of hydrogen-containing feedstock (methane)

    SciTech Connect

    Elliott, Douglas C; Hart, Todd R; Neuenschwander, Gary G

    2008-04-07

    Hydrothermal processing can be used to treat wet biomass by converting the organic contaminants to gases. When the system is operated as a metal catalyzed process at nominally 350°C and 21 MPa (so-called low-temperature gasification), it can produce a methane/carbon dioxide product gas from water slurries of biomass. This process can be utilized for both waste disposal and energy recovery. Catalyst stability in an aqueous processing environment is a major hurdle for use of such a system. Development of useful catalyst formulations has been achieved through bench-scale process development work. Catalyst lifetimes in excess of 5000h have been shown. Protection of the catalyst from feedstock impurities is a second major issue, which is more prominent in the biomass applications. Systems are under development to address mineral matter and sulfur contaminants.

  19. Biothermal gasification of biomass

    SciTech Connect

    Chynoweth, D.P.; Srivastava, V.J.; Henry, M.P.; Tarman, P.B.

    1980-01-01

    The BIOTHERMGAS Process is described for conversion of biomass, organic residues, and peat to substitute natural gas (SNG). This new process, under development at IGT, combines biological and thermal processes for total conversion of a broad variety of organic feeds (regardless of water or nutrient content). The process employs thermal gasification for conversion of refractory digester residues. Ammonia and other inorganic nutrients are recycled from the thermal process effluent to the bioconversion unit. Biomethanation and catalytic methanation are presented as alternative processes for methanation of thermal conversion product gases. Waste heat from the thermal component is used to supply the digester heat requirements of the bioconversion component. The results of a preliminary systems analysis of three possible applications of this process are presented: (1) 10,000 ton/day Bermuda grass plant with catalytic methanation; (2) 10,000 ton/day Bermuda grass plant with biomethanation; and (3) 1000 ton/day municipal solid waste (MSW) sewage sludge plant with biomethanation. The results indicate that for these examples, performance is superior to that expected for biological or thermal processes used separately. The results of laboratory studies presented suggest that effective conversion of thermal product gases can be accomplished by biomethanation.

  20. Biomass to hydrogen-rich syngas via catalytic steam gasification of bio-oil/biochar slurry.

    PubMed

    Chen, Guanyi; Yao, Jingang; Liu, Jing; Yan, Beibei; Shan, Rui

    2015-12-01

    The catalytic steam gasification of bio-oil/biochar slurry (bioslurry) for hydrogen-rich syngas production was investigated in a fixed-bed reactor using LaXFeO3 (X=Ce, Mg, K) perovskite-type catalysts. The effects of elemental substitution in LaFeO3, temperature, water to carbon molar ratio (WCMR) and bioslurry weight hourly space velocity (WbHSV) were examined. The results showed that La0.8Ce0.2FeO3 gave the best performance among the prepared catalysts and had better catalytic activity and stability than the commercial 14 wt.% Ni/Al2O3. The deactivation caused by carbon deposition and sintering was significantly depressed in the case of La0.8Ce0.2FeO3 catalyst. Both higher temperature and lower WbHSV contributed to more H2 yield. The optimal WCMR was found to be 2, and excessive introducing of steam reduced hydrogen yield. The La0.8Ce0.2FeO3 catalyst gave a maximum H2 yield of 82.01% with carbon conversion of 65.57% under the optimum operating conditions (temperature=800°C, WCMR=2 and WbHSV=15.36h(-1)). PMID:26378962

  1. Catalytic Hydrothermal Gasification

    SciTech Connect

    Elliott, Douglas C.

    2015-05-31

    The term “hydrothermal” used here refers to the processing of biomass in water slurries at elevated temperature and pressure to facilitate the chemical conversion of the organic structures in biomass into useful fuels. The process is meant to provide a means for treating wet biomass materials without drying and to access ionic reaction conditions by maintaining a liquid water processing medium. Typical hydrothermal processing conditions are 523-647K of temperature and operating pressures from 4-22 MPa of pressure. The temperature is sufficient to initiate pyrolytic mechanisms in the biopolymers while the pressure is sufficient to maintain a liquid water processing phase. Hydrothermal gasification is accomplished at the upper end of the process temperature range. It can be considered an extension of the hydrothermal liquefaction mechanisms that begin at the lowest hydrothermal conditions with subsequent decomposition of biopolymer fragments formed in liquefaction to smaller molecules and eventually to gas. Typically, hydrothermal gasification requires an active catalyst to accomplish reasonable rates of gas formation from biomass.

  2. Energy efficient production of hydrogen and syngas from biomass: development of low-temperature catalytic process for cellulose gasification.

    PubMed

    Asadullah, Mohammad; Ito, Shin-ichi; Kunimori, Kimio; Yamada, Muneyoshi; Tomishige, Keiichi

    2002-10-15

    The Rh/CeO2/M (M = SiO2, Al2O3, and ZrO2) type catalysts with various compositions have been prepared and investigated in the gasification of cellulose, a model compound of biomass, in a fluidized bed reactor at 500-700 degrees C. The conventional nickel and dolomite catalysts have also been investigated. Among the catalysts, Rh/CeO2/SiO2 with 35% CeO2 has been found to be the best catalyst with respect to the carbon conversion to gas and product distribution. The steam addition contributed to the complete conversion of cellulose to gas even at 600 degrees C. Lower steam supply gave the syngas and higher steam supply gave the hydrogen as the major product. Hydrogen and syngas from cellulose or cellulosic biomass gasification are environmentally super clean gaseous fuels for power generation. Moreover, the syngas derived liquid fuels such as methanol, dimethyl ether, and synthetic diesels are also super clean transportation fuels. However, the use of cellulose or cellulosic biomass for energy source through the gasification is challenging because of the formation of tar and char during the gasification process. It is interesting that no tar or char was finally formed in the effluent gas at as low as 500-600 degrees C using Rh/CeO2/SiO2(35) catalyst in this process. PMID:12387426

  3. Gasification reactivities of solid biomass fuels

    SciTech Connect

    Moilanen, A.; Kurkela, E.

    1995-12-31

    The design and operation of the biomass based gasification processes require knowledge about the biomass feedstocks characteristics and their typical gasification behaviour in the process. In this study, the gasification reactivities of various biomasses were investigated in laboratory scale Pressurized Thermogravimetric apparatus (PTG) and in the PDU-scale (Process Development Unit) Pressurized Fluidized-Bed (PFB) gasification test facility of VTT.

  4. Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass via Integrated Pyrolysis and Catalytic Hydroconversion - Wastewater Cleanup by Catalytic Hydrothermal Gasification

    SciTech Connect

    Elliott, Douglas C.; Olarte, Mariefel V.; Hart, Todd R.

    2015-06-19

    DOE-EE Bioenergy Technologies Office has set forth several goals to increase the use of bioenergy and bioproducts derived from renewable resources. One of these goals is to facilitate the implementation of the biorefinery. The biorefinery will include the production of liquid fuels, power and, in some cases, products. The integrated biorefinery should stand-alone from an economic perspective with fuels and power driving the economy of scale while the economics/profitability of the facility will be dependent on existing market conditions. UOP LLC proposed to demonstrate a fast pyrolysis based integrated biorefinery. Pacific Northwest National Laboratory (PNNL) has expertise in an important technology area of interest to UOP for use in their pyrolysis-based biorefinery. This CRADA project provides the supporting technology development and demonstration to allow incorporation of this technology into the biorefinery. PNNL developed catalytic hydrothermal gasification (CHG) for use with aqueous streams within the pyrolysis biorefinery. These aqueous streams included the aqueous phase separated from the fast pyrolysis bio-oil and the aqueous byproduct streams formed in the hydroprocessing of the bio-oil to finished products. The purpose of this project was to demonstrate a technically and economically viable technology for converting renewable biomass feedstocks to sustainable and fungible transportation fuels. To demonstrate the technology, UOP constructed and operated a pilot-scale biorefinery that processed one dry ton per day of biomass using fast pyrolysis. Specific objectives of the project were to: The anticipated outcomes of the project were a validated process technology, a range of validated feedstocks, product property and Life Cycle data, and technical and operating data upon which to base the design of a full-scale biorefinery. The anticipated long-term outcomes from successful commercialization of the technology were: (1) the replacement of a significant

  5. Biomass Gasification Combined Cycle

    SciTech Connect

    Judith A. Kieffer

    2000-07-01

    Gasification combined cycle continues to represent an important defining technology area for the forest products industry. The ''Forest Products Gasification Initiative'', organized under the Industry's Agenda 2020 technology vision and supported by the DOE ''Industries of the Future'' program, is well positioned to guide these technologies to commercial success within a five-to ten-year timeframe given supportive federal budgets and public policy. Commercial success will result in significant environmental and renewable energy goals that are shared by the Industry and the Nation. The Battelle/FERCO LIVG technology, which is the technology of choice for the application reported here, remains of high interest due to characteristics that make it well suited for integration with the infrastructure of a pulp production facility. The capital cost, operating economics and long-term demonstration of this technology area key input to future economically sustainable projects and must be verified by the 200 BDT/day demonstration facility currently operating in Burlington, Vermont. The New Bern application that was the initial objective of this project is not currently economically viable and will not be implemented at this time due to several changes at and around the mill which have occurred since the inception of the project in 1995. The analysis shows that for this technology, and likely other gasification technologies as well, the first few installations will require unique circumstances, or supportive public policies, or both to attract host sites and investors.

  6. Investigations on catalyzed steam gasification of biomass. Appendix B: feasibility study of methanol production via catalytic gasification of 2000 tons of wood per day

    SciTech Connect

    Mudge, L.K.; Weber, S.L.; Mitchell, D.H.; Sealock, L.J. Jr.; Robertus, R.J.

    1981-01-01

    A study has been made of the economic feasibility of producing fuel grade methanol from wood via catalytic gasification with steam. The plant design in this study was developed from information on gasifier operation supplied by the Pacific Northwest Laboratory (PNL), operated by Battelle. PNL obtained this information from laboratory and process development unit testing. The plant is designed to process 2000 tons per day of dry wood to methanol. Plant production is 997 tons per day of methanol with a HHV of 9784 Btu per pound. All process and support facilities necessary to convert wood to methanol are included in this study. The plant location is Newport, Oregon. The capital cost for the plant is $120,830,000 - September 1980 basis. Methanol production costs which allow for return on capital have been calculated for various wood prices for both utility and private investor financing. These wood costs include delivery to the plant. For utility financing, the methanol production costs are respectively $.45, $.48, $.55, and $.69 per gallon for wood costs of $5, $10, $20, and $40 per dry ton. For private investor financing, the corresponding product costs are $.59, $.62, $.69, and $.83 per gallon for the corresponding wood costs. Both calculation methods include a return on equity capital in the costs. The thermal efficiency of the plant is 52.9%.

  7. Investigations on catalyzed steam gasification of biomass: feasibility study of methanol production via catalytic gasification of 200 tons of wood per day

    SciTech Connect

    Mudge, L.K.; Weber, S.L.; Mitchell, D.H.; Sealock, L.J. Jr.; Robertus, R.J.

    1981-01-01

    This report is a result of an additional study made of the economic feasibility of producing fuel grade methanol from wood via catalytic gasification with steam. The report has as its basis the original 2000 tons of wood per day study generated from process development unit testing performed by the Pacific Northwest Laboratory (PNL). The goal of this additional work was to determine the feasibility of a smaller scale plant one tenth the size of the original or 200 tons of dry wood feed per day. Plant production based on this wood feed is 100 tons per day of methanol with a HHV of 9784 Btu per pound. All process and support facilities necessary to convert wood to methanol are included in this study. The plant location is Newport, Oregon. The capital cost for the plant is $34,830,000 - September 1980 basis. Methanol production costs which allow for return on capital have been calculated for various wood prices for both utility and private investor financing. These wood costs include delivery to the plant. For utility financing, the methanol production costs are, respectively, $1.20, $1.23, $1.30, and $1.44 per gallon for wood costs of $5, $10, $20, and $40 per dry ton. For private investor financing, the corresponding product costs are $1.60, $1.63, $1.70, and $1.84 per gallon for the corresponding wood costs. The costs calculated by the utility financing method include a return on equity of 15% and an interest rate of 10% on the debt. The private investor financing method, which is 100% equity financing, incorporates a discounted cash flow (DCF) return on equity of 12%. The thermal efficiency of the plant is 52.0%.

  8. Investigations on catalyzed steam gasification of biomass: feasibility study of methane production via catalytic gasification of 200 tons of wood per day

    SciTech Connect

    Mudge, L.K.; Weber, S.L.; Mitchell, D.H.; Sealock, L.J. Jr.; Robertus, R.J.

    1981-01-01

    This report is a result of an additional study made of the economic feasibility of producing substitute natural gas (SNG) from wood via catalytic gasification with steam. The report has as its basis the original 2000 tons of wood per day study generated from process development unit testing performed by the Pacific Northwest Laboratory. The goal of this additional work was to determine the feasibility of a smaller scale plant one-tenth the size of the original or 200 tons of dry wood feed per day. Plant production based on this wood feed is 2.16 MM Scfd of SNG with a HHV of 956 Btu per Scf. All process and support facilities necessary to convert wood to SNG are included in this study. The plant location is Newport, Oregon. The capital cost for the plant is $26,680,000 - September 1980 basis. Gas production costs which allow for return on capital have been calculated for various wood prices for both utility and private investor financing. These wood prices represent the cost of unchipped wood delivered to the plant site. For utility financing, the gas production costs are, respectively, $14.34, $14.83, $15.86, and $17.84 per MM Btu for wood costs of $5, $10, $20, and $40 per dry ton. For private investor financing, the corresponding product costs are $18.76, $19.26, $20.28, and $22.31 per MM Btu for the corresponding wood costs. The costs calculated by the utility financing method includes a return on equity of 15% and an interest rate of 10% on the debt. The private investor financing method, which is 100% equity financing, incorporates a discounted cash flow (DCF) return on equity of 12%. The thermal efficiency without taking an energy credit for char is 57.4%.

  9. Investigations on catalyzed steam gasification of biomass. Appendix A. Feasibility study of methane production via catalytic gasification of 2000 tons of wood per day

    SciTech Connect

    Mudge, L.K.; Weber, S.L.; Mitchell, D.H.; Sealock, L.J. Jr.; Robertus, R.J.

    1981-01-01

    A study has been made of the economic feasibility of producing substitute natural gas (SNG) from wood via catalytic gasification with steam. The plant design in this study was developed from information on gasifier operation supplied by the Pacific Northwest Laboratory (PNL). The plant is designed to process 2000 tons per day of dry wood to SNG. Plant production is 21.6 MM scfd of SNG with a HHV of 956 Btu per scf. All process and support facilities necessary to convert wood to SNG are included. The plant location is Newport, Oregon. The capital cost for the plant is $95,115,000 - September, 1980 basis. Gas production costs which allow for return on capital have been calculated for various wood prices for both utility and private investor financing. For utility financing, the gas production costs are respectively $5.09, $5.56, $6.50, and $8.34 per MM Btu for wood costs of $5, $10, $20, and $40 per dry ton delivered to the plant at a moisture content of 49.50 wt %. For private investor financing, the corresponding product costs are $6.62, $7.11, $8.10, and $10.06 per MM Btu. The cost calculated by the utility financing method includes a return on equity of 15% and an interest rate of 10% on the debt. The private investor financing method, which is 100% equity financing, incorporates a discounted cash flow (DCF) return on equity of 12%. The thermal efficiency without taking an energy credit for by-product char is 58.3%.

  10. Plasma Treatments and Biomass Gasification

    NASA Astrophysics Data System (ADS)

    Luche, J.; Falcoz, Q.; Bastien, T.; Leninger, J. P.; Arabi, K.; Aubry, O.; Khacef, A.; Cormier, J. M.; Lédé, J.

    2012-02-01

    Exploitation of forest resources for energy production includes various methods of biomass processing. Gasification is one of the ways to recover energy from biomass. Syngas produced from biomass can be used to power internal combustion engines or, after purification, to supply fuel cells. Recent studies have shown the potential to improve conventional biomass processing by coupling a plasma reactor to a pyrolysis cyclone reactor. The role of the plasma is twofold: it acts as a purification stage by reducing production of tars and aerosols, and simultaneously produces a rich hydrogen syngas. In a first part of the paper we present results obtained from plasma treatment of pyrolysis oils. The outlet gas composition is given for various types of oils obtained at different experimental conditions with a pyrolysis reactor. Given the complexity of the mixtures from processing of biomass, we present a study with methanol considered as a model molecule. This experimental method allows a first modeling approach based on a combustion kinetic model suitable to validate the coupling of plasma with conventional biomass process. The second part of the paper is summarizing results obtained through a plasma-pyrolysis reactor arrangement. The goal is to show the feasibility of this plasma-pyrolysis coupling and emphasize more fundamental studies to understand the role of the plasma in the biomass treatment processes.

  11. CO2 gasification reactivity of biomass char: catalytic influence of alkali, alkaline earth and transition metal salts.

    PubMed

    Lahijani, Pooya; Zainal, Zainal Alimuddin; Mohamed, Abdul Rahman; Mohammadi, Maedeh

    2013-09-01

    This study investigates the influence of alkali (Na, K), alkaline earth (Ca, Mg) and transition (Fe) metal nitrates on CO2 gasification reactivity of pistachio nut shell (PNS) char. The preliminary gasification experiments were performed in thermogravimetric analyzer (TGA) and the results showed considerable improvement in carbon conversion; Na-char>Ca-char>Fe-char>K-char>Mg-char>raw char. Based on TGA studies, NaNO3 (with loadings of 3-7 wt%) was selected as the superior catalyst for further gasification studies in bench-scale reactor; the highest reactivity was devoted to 5 wt% Na loaded char. The data acquired for gasification rate of catalyzed char were fitted with several kinetic models, among which, random pore model was adopted as the best model. Based on obtained gasification rate constant and using the Arrhenius plot, activation energy of 5 wt% Na loaded char was calculated as 151.46 kJ/mol which was 53 kJ/mol lower than that of un-catalyzed char. PMID:23880130

  12. EMERY BIOMASS GASIFICATION POWER SYSTEM

    SciTech Connect

    Benjamin Phillips; Scott Hassett; Harry Gatley

    2002-11-27

    Emery Recycling Corporation (now Emery Energy Company, LLC) evaluated the technical and economical feasibility of the Emery Biomass Gasification Power System (EBGPS). The gasifier technology is owned and being developed by Emery. The Emery Gasifier for this project was an oxygen-blown, pressurized, non-slagging gasification process that novelly integrates both fixed-bed and entrained-flow gasification processes into a single vessel. This unique internal geometry of the gasifier vessel will allow for tar and oil destruction within the gasifier. Additionally, the use of novel syngas cleaning processes using sorbents is proposed with the potential to displace traditional amine-based and other syngas cleaning processes. The work scope within this project included: one-dimensional gasifier modeling, overall plant process modeling (ASPEN), feedstock assessment, additional analyses on the proposed syngas cleaning process, plant cost estimating, and, market analysis to determine overall feasibility and applicability of the technology for further development and commercial deployment opportunities. Additionally, the project included the development of a detailed technology development roadmap necessary to commercialize the Emery Gasification technology. Process modeling was used to evaluate both combined cycle and solid oxide fuel cell power configurations. Ten (10) cases were evaluated in an ASPEN model wherein nine (9) cases were IGCC configurations with fuel-to-electricity efficiencies ranging from 38-42% and one (1) case was an IGFC solid oxide case where 53.5% overall plant efficiency was projected. The cost of electricity was determined to be very competitive at scales from 35-71 MWe. Market analysis of feedstock availability showed numerous market opportunities for commercial deployment of the technology with modular capabilities for various plant sizes based on feedstock availability and power demand.

  13. Dual Fluidized Bed Biomass Gasification

    SciTech Connect

    2005-09-30

    The dual fluidized bed reactor is a recirculating system in which one half of the unit operates as a steam pyrolysis device for biomass. The pyrolysis occurs by introducing biomass and steam to a hot fluidized bed of inert material such as coarse sand. Syngas is produced during the pyrolysis and exits the top of the reactor with the steam. A crossover arm, fed by gravity, moves sand and char from the pyrolyzer to the second fluidized bed. This sand bed uses blown air to combust the char. The exit stream from this side of the reactor is carbon dioxide, water and ash. There is a second gravity fed crossover arm to return sand to the pyrolysis side. The recirculating action of the sand and the char is the key to the operation of the dual fluidized bed reactor. The objective of the project was to design and construct a dual fluidized bed prototype reactor from literature information and in discussion with established experts in the field. That would be appropriate in scale and operation to measure the relative performance of the gasification of biomass and low ranked coals to produce a high quality synthesis gas with no dilution from nitrogen or combustion products.

  14. BIOMASS GASIFICATION PILOT STUDY PLANT STUDY

    EPA Science Inventory

    The report gives results of a gasification pilot program using two biomass feedstocks: bagasse pellets and wood chips. he object of the program was to determine the properties of biomass product gas and its suitability as a fuel for gas-turbine-based power generation cycles. he f...

  15. Catalytic gasification: Isotopic labeling and transient reaction

    SciTech Connect

    Saber, J.M.; Falconer, J.L.; Brown, L.F.

    1985-01-01

    Temperature-programmed reaction was used with labeled isotopes (/sup 13/C and /sup 18/O) to study interactions between carbon black and potassium carbonate in pure He and 10% CO/sub 2//90% He atmospheres. Catalytic gasification precursor complexes were observed. Carbon and oxygen-bearing carbon surface groups interacted with the carbonate above 500 K to form surface complexes. Between 500 K and 950 K, and in the presence of gaseous carbon dioxide, the complexes promoted carbon and oxygen exchange between the gas-phase CO/sub 2/ and the surface. Oxygen exchanged between the surface complexes; but carbon did not exchange between the carbonate and the carbon black. As the temperature rose, the complexes decomposed to produce carbon dioxide, and catalytic gasification then began. Elemental potassium formed, and the active catalyst appears to alternate between potassium metal and a potassium-oxygen-carbon complex.

  16. Modeling heat and mass transfer in catalytic wood gasification

    SciTech Connect

    Brown, M.D.; Robertus, R.J.; Baker, E.G.; Mudge, L.K.

    1986-03-01

    Current research in the gasification of biomass materials includes production of a methanol synthesis gas catalytically. Previous experiments have indicated early deactivation of catalysts due primarily to carbon deposition. This study presents the results of efforts to model the heat and mass transfer within a spherical catalyst pellet using orthogonal collocation. Solutions are presented which predict temperature and concentration distributions and pellet effectiveness factors. These solutions are compared to a thermodynamic equilibrium model to predict regimes of carbon deposition and subsequent deactivation. Experimental data are presented which support conclusions drawn above. 11 refs., 3 figs., 1 tab.

  17. Experimental investigations of biomass gasification with carbon-dioxide

    NASA Astrophysics Data System (ADS)

    Sircar, Indraneel

    with product gas sampling for tracking the reaction progress, supported by independent gravimetric measurements of mass loss, is described. The effects of pressure and temperature on the char-CO2 reaction are investigated at elevated pressures up to 10 atm. Measurements of reaction rates at multiple temperatures and pressures for a low-ash pinewood char are presented. Kinetic rate parameters for the char-CO2 reaction are reported with detailed uncertainty calculations and discussed in the context of the structural changes of the char with mass loss. The effects of pressure and temperature on the internal mass transfer processes and the intrinsic reaction rates are assessed using Thiele analysis for non-isothermal particles with the nth order and the Langmuir-Hinshelwood kinetic rate models. The effects of potassium, calcium and iron catalysts on the CO2 gasification rates of an activated coconut char are investigated. A catalyst treatment method for obtaining high catalyst loadings (~12 wt. %) is described. The effects of the catalysts on the surface reaction rates and the activation energies are reported. The results of this study are encouraging in the context of potential future discovery of a viable low-temperature catalytic gasification process for sustainable use of biomass as a renewable energy resource. Utilization of plant based substances such as citric acid to provide higher catalytic activity and the potential for utilizing the high initial activity of iron by using rust proofing compounds for maintaining high reactivity are recommended for further development.

  18. Combustion, pyrolysis, gasification, and liquefaction of biomass

    SciTech Connect

    Reed, T.B.

    1980-09-01

    All the products now obtained from oil can be provided by thermal conversion of the solid fuels biomass and coal. As a feedstock, biomass has many advantages over coal and has the potential to supply up to 20% of US energy by the year 2000 and significant amounts of energy for other countries. However, it is imperative that in producing biomass for energy we practice careful land use. Combustion is the simplest method of producing heat from biomass, using either the traditional fixed-bed combustion on a grate or the fluidized-bed and suspended combustion techniques now being developed. Pyrolysis of biomass is a particularly attractive process if all three products - gas, wood tars, and charcoal - can be used. Gasification of biomass with air is perhaps the most flexible and best-developed process for conversion of biomass to fuel today, yielding a low energy gas that can be burned in existing gas/oil boilers or in engines. Oxygen gasification yields a gas with higher energy content that can be used in pipelines or to fire turbines. In addition, this gas can be used for producing methanol, ammonia, or gasoline by indirect liquefaction. Fast pyrolysis of biomass produces a gas rich in ethylene that can be used to make alcohols or gasoline. Finally, treatment of biomass with high pressure hydrogen can yield liquid fuels through direct liquefaction.

  19. Advanced gasification-based biomass power generation

    SciTech Connect

    Williams, R.H.; Larson, E.D.

    1993-12-31

    A promising strategy for modernizing bioenergy is the production of electricity or the cogeneration of electricity and heat using gasified biomass with advanced conversion technologies. Major advances that have been made in coal gasification technology, to marry the gas turbine to coal, are readily adaptable to biomass applications. Integrating biomass gasifiers with aeroderivative gas turbines in particular makes it possible to achieve high efficiencies and low unit capital costs at the modest scales required for bioenergy systems. Electricity produced with biomass-integrated gasifier/gas turbine (BIG/GT) power systems not only offers major environmental benefits but also would be competitive with electricity produced from fossil fuels and nuclear energy under a wide range of circumstances. Initial applications will be with biomass residues generated in the sugarcane, pulp and paper, and other agro- and forest-product industries. Eventually, biomass grown for energy purposes on dedicated energy farms will also be used to fuel these gas turbine systems. Continuing improvements in jet engine and biomass gasification technologies will lead to further gains in the performance of BIG/GT systems over the next couple of decades. Fuel cells operated on gasified biomass offer the promise of even higher performance levels in the period beyond the turn of the century. 79 refs., 21 figs., 11 tabs.

  20. Biomass thermochemical gasification: Experimental studies and modeling

    NASA Astrophysics Data System (ADS)

    Kumar, Ajay

    The overall goals of this research were to study the biomass thermochemical gasification using experimental and modeling techniques, and to evaluate the cost of industrial gas production and combined heat and power generation. This dissertation includes an extensive review of progresses in biomass thermochemical gasification. Product gases from biomass gasification can be converted to biopower, biofuels and chemicals. However, for its viable commercial applications, the study summarizes the technical challenges in the gasification and downstream processing of product gas. Corn stover and dried distillers grains with solubles (DDGS), a non-fermentable byproduct of ethanol production, were used as the biomass feedstocks. One of the objectives was to determine selected physical and chemical properties of corn stover related to thermochemical conversion. The parameters of the reaction kinetics for weight loss were obtained. The next objective was to investigate the effects of temperature, steam to biomass ratio and equivalence ratio on gas composition and efficiencies. DDGS gasification was performed on a lab-scale fluidized-bed gasifier with steam and air as fluidizing and oxidizing agents. Increasing the temperature resulted in increases in hydrogen and methane contents and efficiencies. A model was developed to simulate the performance of a lab-scale gasifier using Aspen Plus(TM) software. Mass balance, energy balance and minimization of Gibbs free energy were applied for the gasification to determine the product gas composition. The final objective was to optimize the process by maximizing the net energy efficiency, and to estimate the cost of industrial gas, and combined heat and power (CHP) at a biomass feedrate of 2000 kg/h. The selling price of gas was estimated to be 11.49/GJ for corn stover, and 13.08/GJ for DDGS. For CHP generation, the electrical and net efficiencies were 37 and 86%, respectively for corn stover, and 34 and 78%, respectively for DDGS. For

  1. GASIFICATION BASED BIOMASS CO-FIRING

    SciTech Connect

    Babul Patel; Kevin McQuigg; Robert Toerne; John Bick

    2003-01-01

    Biomass gasification offers a practical way to use this widespread fuel source for co-firing traditional large utility boilers. The gasification process converts biomass into a low Btu producer gas that can be used as a supplemental fuel in an existing utility boiler. This strategy of co-firing is compatible with a variety of conventional boilers including natural gas and oil fired boilers, pulverized coal fired conventional and cyclone boilers. Gasification has the potential to address all problems associated with the other types of co-firing with minimum modifications to the existing boiler systems. Gasification can also utilize biomass sources that have been previously unsuitable due to size or processing requirements, facilitating a wider selection of biomass as fuel and providing opportunity in reduction of carbon dioxide emissions to the atmosphere through the commercialization of this technology. This study evaluated two plants: Wester Kentucky Energy Corporation's (WKE's) Reid Plant and TXU Energy's Monticello Plant for technical and economical feasibility. These plants were selected for their proximity to large supply of poultry litter in the area. The Reid plant is located in Henderson County in southwest Kentucky, with a large poultry processing facility nearby. Within a fifty-mile radius of the Reid plant, there are large-scale poultry farms that generate over 75,000 tons/year of poultry litter. The local poultry farmers are actively seeking environmentally more benign alternatives to the current use of the litter as landfill or as a farm spread as fertilizer. The Monticello plant is located in Titus County, TX near the town of Pittsburgh, TX, where again a large poultry processor and poultry farmers in the area generate over 110,000 tons/year of poultry litter. Disposal of this litter in the area is also a concern. This project offers a model opportunity to demonstrate the feasibility of biomass co-firing and at the same time eliminate poultry litter

  2. Effect of fuel origin on synergy during co-gasification of biomass and coal in CO2.

    PubMed

    Zhang, Yan; Zheng, Yan; Yang, Mingjun; Song, Yongchen

    2016-01-01

    The effect of fuel origin on synergy in coal/biomass blends during co-gasification has been assessed using a congruent-mass thermogravimetry analysis (TGA) method. Results revealed that synergy occurs when ash residuals are formed, followed by an almost complete gasification of biomass. Potassium species in biomass ash play a catalytic role in promoting gasification reactivity of coal char, which is a direct consequence of synergy during co-gasification. The SEM-EDS spectra provided conclusive evidence that the transfer of potassium from biomass to the surface of coal char occurs during co-pyrolysis/gasification. Biomass ash rich in silica eliminated synergy in coal/biomass blends but not to the extent of inhibiting the reaction rate of the blended chars to make it slower than that of separated ones. The best result in terms of synergy was concluded to be the combination of low-ash coal and K-rich biomass. PMID:26580896

  3. Co-gasification of tire and biomass for enhancement of tire-char reactivity in CO2 gasification process.

    PubMed

    Lahijani, Pooya; Zainal, Zainal Alimuddin; Mohamed, Abdul Rahman; Mohammadi, Maedeh

    2013-06-01

    In this investigation, palm empty fruit bunch (EFB) and almond shell (AS) were implemented as two natural catalysts rich in alkali metals, especially potassium, to enhance the reactivity of tire-char through co-gasification process. Co-gasification experiments were conducted at several blending ratios using isothermal Thermogravimetric analysis (TGA) under CO2. The pronounced effect of inherent alkali content of biomass-chars on promoting the reactivity of tire-char was proven when acid-treated biomass-chars did not exert any catalytic effect on improving the reactivity of tire-char in co-gasification experiments. In kinetic studies of the co-gasified samples in chemically-controlled regime, modified random pore model (M-RPM) was adopted to describe the reactive behavior of the tire-char/biomass-char blends. By virtue of the catalytic effect of biomass, the activation energy for tire-char gasification was lowered from 250 kJ/mol in pure form 203 to 187 kJ/mol for AS-char and EFB-char co-gasified samples, respectively. PMID:23612170

  4. Low-temperature catalytic gasification of food processing wastes. 1995 topical report

    SciTech Connect

    Elliott, D.C.; Hart, T.R.

    1996-08-01

    The catalytic gasification system described in this report has undergone continuing development and refining work at Pacific Northwest National Laboratory (PNNL) for over 16 years. The original experiments, performed for the Gas Research Institute, were aimed at developing kinetics information for steam gasification of biomass in the presence of catalysts. From the fundamental research evolved the concept of a pressurized, catalytic gasification system for converting wet biomass feedstocks to fuel gas. Extensive batch reactor testing and limited continuous stirred-tank reactor tests provided useful design information for evaluating the preliminary economics of the process. This report is a follow-on to previous interim reports which reviewed the results of the studies conducted with batch and continuous-feed reactor systems from 1989 to 1994, including much work with food processing wastes. The discussion here provides details of experiments on food processing waste feedstock materials, exclusively, that were conducted in batch and continuous- flow reactors.

  5. Catalytic gasification studies in a pressurized fluid-bed unit

    SciTech Connect

    Mudge, L.K.; Baker, E.G.; Mitchell, D.H.; Robertus, R.J.; Brown, M.D.

    1983-07-01

    The purpose of the project is to evaluate the technical and economic feasibility of producing specific gas products via the catalytic gasification of biomass. This report presents the results of research conducted from October 1980 to November 1982. In the laboratory scale studis, active catalysts were developed for generation of synthesis gases from wood by steam gasification. A trimetallic catalyst, Ni-Co-Mo on silica-alumina doped with 2 wt % Na, was found to retain activity indefinitely for generation of a methanol synthesis gas from wood at 1380/sup 0/F (750/sup 0/C) and 1 atm (100 kPa) absolute pressure. Catalysts for generation of a methane-rich gas were deactivated rapidly and could not be regenerated as required for economic application. Sodium carbonate and potassium carbonate were effective as catalysts for conversion of wood to synthesis gases and methane-rich gas and should be economically viable. Catalytic gasification conditions were found to be suitable for processing of alternative feedstocks: bagasse, alfalfa, rice hulls, and almond hulls. The PDU was operated successfully at absolute pressures of up to 10 atm (1000 kPa) and temperatures of up to 1380/sup 0/F (750/sup 0/C). Yields of synthesis gases at elevated pressure were greater than those used for previous economic evaluations. A trimetallic catalyst, Ni-Cu-Mo on silica-alumina, did not display a long life as did the doped trimetallic catalyst used in laboratory studies. A computer program for a Radio Shack TRS-80 Model I microcomputer was developed to evaluate rapidly the economics of producing either methane or methanol from wood. The program is based on economic evaluations reported in previous studies. Improved yields from the PDU studies were found to result in a reduction of about 9 cents/gal in methanol cost.

  6. Preparation of gasification feedstock from leafy biomass.

    PubMed

    Shone, C M; Jothi, T J S

    2016-05-01

    Dried leaves are a potential source of energy although these are not commonly used beside to satisfy daily energy demands in rural areas. This paper aims at preparing a leafy biomass feedstock in the form of briquettes which can be directly used for combustion or to extract the combustible gas using a gasifier. Teak (Tectona grandis) and rubber (Hevea brasiliensis) leaves are considered for the present study. A binder-assisted briquetting technique with tapioca starch as binder is adopted. Properties of these leafy biomass briquettes such as moisture content, calorific value, compressive strength, and shatter index are determined. From the study, briquettes with biomass-to-binder ratio of 3:5 are found to be stable. Higher mass percentage of binder is considered for preparation of briquettes due to the fact that leafy biomasses do not adhere well on densification with lower binder content. Ultimate analysis test is conducted to analyze the gasification potential of the briquettes. Results show that the leafy biomass prepared from teak and rubber leaves has calorific values of 17.5 and 17.8 MJ/kg, respectively, which are comparable with those of existing biomass feedstock made of sawdust, rice husk, and rice straw. PMID:26289326

  7. Modeling biomass gasification in circulating fluidized beds

    NASA Astrophysics Data System (ADS)

    Miao, Qi

    In this thesis, the modeling of biomass gasification in circulating fluidized beds was studied. The hydrodynamics of a circulating fluidized bed operating on biomass particles were first investigated, both experimentally and numerically. Then a comprehensive mathematical model was presented to predict the overall performance of a 1.2 MWe biomass gasification and power generation plant. A sensitivity analysis was conducted to test its response to several gasifier operating conditions. The model was validated using the experimental results obtained from the plant and two other circulating fluidized bed biomass gasifiers (CFBBGs). Finally, an ASPEN PLUS simulation model of biomass gasification was presented based on minimization of the Gibbs free energy of the reaction system at chemical equilibrium. Hydrodynamics plays a crucial role in defining the performance of gas-solid circulating fluidized beds (CFBs). A 2-dimensional mathematical model was developed considering the hydrodynamic behavior of CFB gasifiers. In the modeling, the CFB riser was divided into two regions: a dense region at the bottom and a dilute region at the top of the riser. Kunii and Levenspiel (1991)'s model was adopted to express the vertical solids distribution with some other assumptions. Radial distributions of bed voidage were taken into account in the upper zone by using Zhang et al. (1991)'s correlation. For model validation purposes, a cold model CFB was employed, in which sawdust was transported with air as the fluidizing agent. A comprehensive mathematical model was developed to predict the overall performance of a 1.2 MWe biomass gasification and power generation demonstration plant in China. Hydrodynamics as well as chemical reaction kinetics were considered. The fluidized bed riser was divided into two distinct sections: (a) a dense region at the bottom of the bed where biomass undergoes mainly heterogeneous reactions and (b) a dilute region at the top where most of homogeneous

  8. Methane Production from Catalytic Wet Gasification of Animal Manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This research investigates the technical and economical viability of a proprietary catalytic wet gasification process in treating animal wastewater, capturing nutrients, destroying pharmaceutically active compounds (PACs) and estrogens, and producing methane. This study reviews and analyzes physicoc...

  9. Woody biomass and RPF gasification using reforming catalyst and calcium oxide.

    PubMed

    Kobayashi, Jun; Kawamoto, Katsuya; Fukushima, Ryutaro; Tanaka, Shingo

    2011-05-01

    This study focused on steam gasification and reforming of waste biomass using a reforming catalyst. The purpose of the study was to evaluate the durability of a commercial Ni reforming catalyst and the effect of CaO on the reforming behavior, and to clarify detailed factors of catalytic performance, as well as the effect of operating parameters on the characteristics of produced gas composition. Moreover, catalyst regeneration was carried out and the behavior of catalytic activity based on gas composition was investigated. Using a fluidized bed gasifier and a fixed bed reformer, gasification and reforming of waste biomass were carried out. Commercial Ni-based catalyst and calcined limestone (CaO) were applied to the reforming reaction. Temperature of the gasifier and reformer was almost 1023K. Ratio of steam to carbon in the feedstock [molmol(-1)] and equivalence ratio (i.e., ratio of actual to theoretical amount of oxygen) [-] were set at about 2 and 0.3, respectively. The feed rate of the feedstock into the bench-scale gasifier was almost 15kgh(-1). The results of waste biomass gasification confirmed the improvement in H(2) composition by the CO(2) absorption reaction using the reforming catalyst and CaO. In addition, CaO proved to be especially effective in decreasing the tar concentration in the case of woody biomass gasification. Catalytic activity was maintained by means of catalyst regeneration processing by hydrogen reduction after air oxidation when woody biomass was used as feedstock. PMID:21459406

  10. Metal catalysts for steam reforming of tar derived from the gasification of lignocellulosic biomass.

    PubMed

    Li, Dalin; Tamura, Masazumi; Nakagawa, Yoshinao; Tomishige, Keiichi

    2015-02-01

    Biomass gasification is one of the most important technologies for the conversion of biomass to electricity, fuels, and chemicals. The main obstacle preventing the commercial application of this technology is the presence of tar in the product gas. Catalytic reforming of tar appears a promising approach to remove tar and supported metal catalysts are among the most effective catalysts. Nevertheless, improvement of catalytic performances including activity, stability, resistance to coke deposition and aggregation of metal particles, as well as catalyst regenerability is greatly needed. This review focuses on the design and catalysis of supported metal catalysts for the removal of tar in the gasification of biomass. The recent development of metal catalysts including Rh, Ni, Co, and their alloys for steam reforming of biomass tar and tar model compounds is introduced. The role of metal species, support materials, promoters, and their interfaces is described. PMID:25455089

  11. Biomass Gasification Research Facility Final Report

    SciTech Connect

    Snyder, Todd R.; Bush, Vann; Felix, Larry G.; Farthing, William E.; Irvin, James H.

    2007-09-30

    While thermochemical syngas production facilities for biomass utilization are already employed worldwide, exploitation of their potential has been inhibited by technical limitations encountered when attempting to obtain real-time syngas compositional data required for process optimization, reliability, and syngas quality assurance. To address these limitations, the Gas Technology Institute (GTI) carried out two companion projects (under US DOE Cooperative Agreements DE-FC36-03GO13175 and DE-FC36-02GO12024) to develop and demonstrate the equipment and methods required to reliably and continuously obtain accurate and representative on-line syngas compositional data. These objectives were proven through a stepwise series of field tests of biomass and coal gasification process streams. GTI developed the methods and hardware for extractive syngas sample stream delivery and distribution, necessary to make use of state-of-the-art on-line analyzers to evaluate and optimize syngas cleanup and conditioning. This multi-year effort to develop methods to effectively monitor gaseous species produced in thermochemical process streams resulted in a sampling and analysis approach that is continuous, sensitive, comprehensive, accurate, reliable, economical, and safe. The improved approach for sampling thermochemical processes that GTI developed and demonstrated in its series of field demonstrations successfully provides continuous transport of vapor-phase syngas streams extracted from the main gasification process stream to multiple, commercially available analyzers. The syngas stream is carefully managed through multiple steps to successfully convey it to the analyzers, while at the same time bringing the stream to temperature and pressure conditions that are compatible with the analyzers. The primary principle that guides the sample transport is that throughout the entire sampling train, the temperature of the syngas stream is maintained above the maximum condensation temperature

  12. BIOMASS REACTIVITY IN GASIFICATION BY THE HYNOL PROCESS

    EPA Science Inventory

    A thermobalance reactor was used to evaluate the reactivity of poplar wood in gasification under the operating conditions specific for the Hynol process where biomass is gasified at 30 atm and 800E C with a hydrogen-rich gas recycled from methane synthesis. The gasification invol...

  13. Fluidized bed catalytic coal gasification process

    DOEpatents

    Euker, Jr., Charles A.; Wesselhoft, Robert D.; Dunkleman, John J.; Aquino, Dolores C.; Gouker, Toby R.

    1984-01-01

    Coal or similar carbonaceous solids impregnated with gasification catalyst constituents (16) are oxidized by contact with a gas containing between 2 volume percent and 21 volume percent oxygen at a temperature between 50.degree. C. and 250.degree. C. in an oxidation zone (24) and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone (44) at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.

  14. GASIFICATION BASED BIOMASS CO-FIRING - PHASE I

    SciTech Connect

    Babul Patel; Kevin McQuigg; Robert F. Toerne

    2001-12-01

    Biomass gasification offers a practical way to use this locally available fuel source for co-firing traditional large utility boilers. The gasification process converts biomass into a low Btu producer gas that can be fed directly into the boiler. This strategy of co-firing is compatible with variety of conventional boilers including natural gas fired boilers as well as pulverized coal fired and cyclone boilers. Gasification has the potential to address all problems associated with the other types of co-firing with minimum modifications to the existing boiler systems. Gasification can also utilize biomass sources that have been previously unsuitable due to size or processing requirements, facilitating a reduction in the primary fossil fuel consumption in the boiler and thereby reducing the greenhouse gas emissions to the atmosphere.

  15. Release of fuel-bound nitrogen during biomass gasification

    SciTech Connect

    Zhou, J.; Masutani, S.M.; Ishimura, D.M.; Turn, S.Q.; Kinoshita, C.M.

    2000-03-01

    Gasification of four biomass feedstocks (leucaena, sawdust, bagasse, and banagrass) with significantly different fuel-bound nitrogen (FBN) content was investigated to determine the effects of operational parameters and nitrogen content of biomass on the partitioning of FBN among nitrogenous gas species. Experiments were performed using a bench-scale, indirectly heated, fluidized-bed gasifier. Data were obtained over a range of temperatures and equivalence ratios representative of commercial biomass gasification processes. An assay of all major nitrogenous components in the gasification products was performed for the first time, providing a clear accounting of the evolution of FBN. Important findings of this research include the following: (1) NH{sub 3} and N{sub 2} are the dominant species evolved from fuel nitrogen during biomass gasification; >90% of FBN in feedstock is converted to NH{sub 3} and N{sub 2}; (2) relative levels of NH{sub 3} and N{sub 2} are determined by thermochemical reactions in the gasifier; these reactions are affected strongly by temperature; (3) N{sub 2} appears to be primarily produced through the conversion of NH{sub 3} in the gas phase; (4) the structural formula and content of fuel nitrogen in biomass feedstock significantly affect the formation and evolution of nitrogen species during biomass gasification.

  16. CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES

    SciTech Connect

    Dr. Yaw D. Yeboah; Dr. Yong Xu; Dr. Atul Sheth; Dr. Pradeep Agrawal

    2001-12-01

    The Gas Research Institute (GRI) estimates that by the year 2010, 40% or more of U.S. gas supply will be provided by supplements including substitute natural gas (SNG) from coal. These supplements must be cost competitive with other energy sources. The first generation technologies for coal gasification e.g. the Lurgi Pressure Gasification Process and the relatively newer technologies e.g. the KBW (Westinghouse) Ash Agglomerating Fluidized-Bed, U-Gas Ash Agglomerating Fluidized-Bed, British Gas Corporation/Lurgi Slagging Gasifier, Texaco Moving-Bed Gasifier, and Dow and Shell Gasification Processes, have several disadvantages. These disadvantages include high severities of gasification conditions, low methane production, high oxygen consumption, inability to handle caking coals, and unattractive economics. Another problem encountered in catalytic coal gasification is deactivation of hydroxide forms of alkali and alkaline earth metal catalysts by oxides of carbon (CO{sub x}). To seek solutions to these problems, a team consisting of Clark Atlanta University (CAU, a Historically Black College and University, HBCU), the University of Tennessee Space Institute (UTSI) and Georgia Institute of Technology (Georgia Tech) proposed to identify suitable low melting eutectic salt mixtures for improved coal gasification. The research objectives of this project were to: Identify appropriate eutectic salt mixture catalysts for coal gasification; Assess agglomeration tendency of catalyzed coal; Evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; Determine catalyst dispersion at high carbon conversion levels; Evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; Evaluate the recovery, regeneration and recycle of the spent catalysts; and Conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process.

  17. Catalytic steam gasification of bagasse for the production of methanol

    SciTech Connect

    Baker, E.G.; Brown, M.D.

    1983-12-01

    Pacific Northwest Laboratory (PNL) tested the catalytic gasification of bagasse for the production of methanol synthesis gas. The process uses steam, indirect heat, and a catalyst to produce synthesis gas in one step in fluidized bed gasifier. Both laboratory and process development scale (nominal 1 ton/day) gasifiers were used to test two different catalyst systems: (1) supported nickel catalysts and (2) alkali carbonates doped on the bagasse. This paper presents the results of laboratory and process development unit gasification tests and includes an economic evaluation of the process. 20 references, 6 figures, 9 tables.

  18. Low-temperature catalytic gasification of wet industrial wastes. FY 1991--1992 interim report

    SciTech Connect

    Elliott, D.C.; Neuenschwander, G.G.; Hart, T.R.; Phelps, M.R.; Sealock, L.J. Jr.

    1993-07-01

    A catalytic gasification system operating in a pressurized water environment has been developed and refined at Pacific Northwest Laboratory (PNL) for over 12 years. Initial experiments were aimed at developing kinetics information for steam gasification of biomass in the presence of catalysts. The combined use of alkali and metal catalysts was reported for gasification of biomass and its components at low temperatures (350{degrees}C to 450{degrees}C). From the fundamental research evolved the concept of a pressurized, catalytic gasification system for converting wet biomass feedstocks to fuel gas. Extensive batch reactor testing and limited continuous reactor system (CRS) testing were undertaken in the development of this system under sponsorship of the US Department of Energy. A wide range of biomass feedstocks were tested, and the importance of the nickel metal catalyst was identified. Specific use of this process for treating food processing wastes was also studied. The concept application was further expanded to encompass cleanup of hazardous wastewater streams, and results were reported for batch reactor tests and continuous reactor tests. Ongoing work at PNL focuses on refining the catalyst and scaling the system to long-term industrial needs. The process is licensed as the Thermochemical Environmental Energy System (TEES{reg_sign}) to Onsite*Ofsite, Inc., of Duarte, California. This report is a follow-on to the 1989--90 interim report [Elliott et al. 1991], which reviewed the results of the studies conducted with a fixed-bed, continuous-feed, tubular reactor. The discussion here provides an overview of experiments on the wide range of potential feedstock materials conducted in a batch reactor; development of new catalyst materials; and tests performed in continuous-flow reactors at three scales. The appendices contain the history and background of the process development, as well as more detailed descriptions and results of the recent studies.

  19. Gasification of pelletized biomass in a pilot scale downdraft gasifier.

    PubMed

    Simone, Marco; Barontini, Federica; Nicolella, Cristiano; Tognotti, Leonardo

    2012-07-01

    This work presents a pilot-scale investigation aimed at assessing the feasibility and reliability of biomass pellet gasification. Wood sawdust and sunflower seeds pellets were tested in a 200 kW downdraft gasifier operating with air as gasifying agent. The gasification of pelletized biomass led to rather high and unstable pressure drops, reducing the gasifier productivity and stability. Furthermore the generation of fine residues compromised the operation of wet ash removal systems. On the other hand, good syngas compositions (H(2) 17.2%, N(2) 46.0%, CH(4) 2.5%, CO 21.2%, CO(2) 12.6%, and C(2)H(4) 0.4%), specific gas production (2.2-2.4 N m(3) kg(-1)) and cold gas efficiency (67.7-70.0%) were achieved. For these reasons pelletized biomass should be considered only as complementary fuel in co-gasification with other feedstock. PMID:22537399

  20. Biomass Gasification Research Facility Final Report

    SciTech Connect

    Snyder, Todd R.; Bush, Vann; Felix, Larry G.; Farthing, William E.; Irvin, James H.

    2007-09-30

    While thermochemical syngas production facilities for biomass utilization are already employed worldwide, exploitation of their potential has been inhibited by technical limitations encountered when attempting to obtain real-time syngas compositional data required for process optimization, reliability, and syngas quality assurance. To address these limitations, the Gas Technology Institute (GTI) carried out two companion projects (under US DOE Cooperative Agreements DE-FC36-02GO12024 and DE-FC36-03GO13175) to develop and demonstrate the equipment and methods required to reliably and continuously obtain accurate and representative on-line syngas compositional data. These objectives were proven through a stepwise series of field tests of biomass and coal gasification process streams. GTI developed the methods and hardware for extractive syngas sample stream delivery and distribution, necessary to make use of state-of-the-art on-line analyzers to evaluate and optimize syngas cleanup and conditioning. The primary objectives of Cooperative Agreement DE-FC36-02GO12024 were the selection, acquisition, and application of a suite of gas analyzers capable of providing near real-time gas analyses to suitably conditioned syngas streams. A review was conducted of sampling options, available analysis technologies, and commercially available analyzers, that could be successfully applied to the challenging task of on-line syngas characterization. The majority of thermochemical process streams comprise multicomponent gas mixtures that, prior to crucial, sequential cleanup procedures, include high concentrations of condensable species, multiple contaminants, and are often produced at high temperatures and pressures. Consequently, GTI engaged in a concurrent effort under Cooperative Agreement DE-FC36-03GO13175 to develop the means to deliver suitably prepared, continuous streams of extracted syngas to a variety of on-line gas analyzers. The review of candidate analysis technology

  1. Gasification of agricultural residues (biomass): Influence of inorganic constituents

    SciTech Connect

    DeGroot, W.F.; Kannan, M.P.; Richards, G.N. ); Theander, O. )

    1990-01-01

    Four different biomass samples are included in this study, viz., sphagnum peat, wheat straw, sugar beet pulp, and potato pulp. They were chosen to represent a wide range of plant origin and inorganic content. This paper represents a preliminary investigation of an approach based on pyrolysis of biomass to produce volatile products and chars, followed by gasification of the chars. The particular interest lies in the investigation of the influence of the indigenous metal ions on the rate of gasification. Carbon dioxide has been used for the gasification, and the biomass was analyzed for nine metals, uronic acids (which are implicated in the binding of inorganic counterions), protein, and Klason lignin. The highest individual metal ion content was 13,964 ppm of potassium in potato pulp, and the gasification rates, under constant conditions, covered up to a 20-fold range, with char from potato pulp being the most readily gasified and char from peat the most resistant. The correlation of gasification rates with content of the major metal ions (alkali metals and alkaline earths) was poor. However, a high level of correlation was observed when wheat straw was omitted. It is speculated that the latter biomass may be anomalous with respect to the other three because of its high silica content.

  2. Stability and Regeneration of Catalysts for the Destruction of Tars from Bio-mass Black Liquor Gasification

    SciTech Connect

    Pradeep Agrawal

    2004-09-07

    The goal of this project was to develop catalytic materials and processes that would be effective in the destruction of tars formed during the gasification of black liquor and biomass. We report here the significant results obtained at the conclusion of this two year project.

  3. Hydrogen Production Cost Estimate Using Biomass Gasification: Independent Review

    SciTech Connect

    Ruth, M.

    2011-10-01

    This independent review is the conclusion arrived at from data collection, document reviews, interviews and deliberation from December 2010 through April 2011 and the technical potential of Hydrogen Production Cost Estimate Using Biomass Gasification. The Panel reviewed the current H2A case (Version 2.12, Case 01D) for hydrogen production via biomass gasification and identified four principal components of hydrogen levelized cost: CapEx; feedstock costs; project financing structure; efficiency/hydrogen yield. The panel reexamined the assumptions around these components and arrived at new estimates and approaches that better reflect the current technology and business environments.

  4. Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels.

    PubMed

    Zhou, Chun-Hui; Xia, Xi; Lin, Chun-Xiang; Tong, Dong-Shen; Beltramini, Jorge

    2011-11-01

    Lignocellulosic biomass is the most abundant and bio-renewable resource with great potential for sustainable production of chemicals and fuels. This critical review provides insights into the state-of the-art accomplishments in the chemocatalytic technologies to generate fuels and value-added chemicals from lignocellulosic biomass, with an emphasis on its major component, cellulose. Catalytic hydrolysis, solvolysis, liquefaction, pyrolysis, gasification, hydrogenolysis and hydrogenation are the major processes presently studied. Regarding catalytic hydrolysis, the acid catalysts cover inorganic or organic acids and various solid acids such as sulfonated carbon, zeolites, heteropolyacids and oxides. Liquefaction and fast pyrolysis of cellulose are primarily conducted over catalysts with proper acidity/basicity. Gasification is typically conducted over supported noble metal catalysts. Reaction conditions, solvents and catalysts are the prime factors that affect the yield and composition of the target products. Most of processes yield a complex mixture, leading to problematic upgrading and separation. An emerging technique is to integrate hydrolysis, liquefaction or pyrolysis with hydrogenation over multifunctional solid catalysts to convert lignocellulosic biomass to value-added fine chemicals and bio-hydrocarbon fuels. And the promising catalysts might be supported transition metal catalysts and zeolite-related materials. There still exist technological barriers that need to be overcome (229 references). PMID:21863197

  5. Survey of biomass gasification. Volume III. Current technology and research

    SciTech Connect

    1980-04-01

    This survey of biomass gasification was written to aid the Department of Energy and the Solar Energy Research Institute Biological and Chemical Conversion Branch in determining the areas of gasification that are ready for commercialization now and those areas in which further research and development will be most productive. Chapter 8 is a survey of gasifier types. Chapter 9 consists of a directory of current manufacturers of gasifiers and gasifier development programs. Chapter 10 is a sampling of current gasification R and D programs and their unique features. Chapter 11 compares air gasification for the conversion of existing gas/oil boiler systems to biomass feedstocks with the price of installing new biomass combustion equipment. Chapter 12 treats gas conditioning as a necessary adjunct to all but close-coupled gasifiers, in which the product is promptly burned. Chapter 13 evaluates, technically and economically, synthesis-gas processes for conversion to methanol, ammonia, gasoline, or methane. Chapter 14 compiles a number of comments that have been assembled from various members of the gasifier community as to possible roles of the government in accelerating the development of gasifier technology and commercialization. Chapter 15 includes recommendations for future gasification research and development.

  6. Biomass Gasification Technology Assessment: Consolidated Report

    SciTech Connect

    Worley, M.; Yale, J.

    2012-11-01

    Harris Group Inc. (HGI) was commissioned by the National Renewable Energy Laboratory to assess gasification and tar reforming technologies. Specifically, the assessments focused on gasification and tar reforming technologies that are capable of producing a syngas suitable for further treatment and conversion to liquid fuels. HGI gathered sufficient information to analyze three gasification and tar reforming systems. This report summarizes the equipment, general arrangement of the equipment, operating characteristics, and operating severity for each technology. The order of magnitude capital cost estimates are supported by a basis-of-estimate write-up, which is also included in this report. The report also includes Microsoft Excel workbook models, which can be used to design and price the systems. The models can be used to analyze various operating capacities and pressures. Each model produces a material balance, equipment list, capital cost estimate, equipment drawings and preliminary general arrangement drawings. Example outputs of each model are included in the Appendices.

  7. BIOMASS GASIFICATION FOR AGRICULTURAL ENERGY SOURCES AND SOIL ENRICHMENT

    EPA Science Inventory

    Phase I of the Biomass Gasification Project gave birth to many success stories and demonstrated enormous potential for members of the local agricultural community and for students within the university.

    Community-building

    Watauga County Cooperative Ext...

  8. Techno Economic Analysis of Hydrogen Production by gasification of biomass

    SciTech Connect

    Francis Lau

    2002-12-01

    Biomass represents a large potential feedstock resource for environmentally clean processes that produce power or chemicals. It lends itself to both biological and thermal conversion processes and both options are currently being explored. Hydrogen can be produced in a variety of ways. The majority of the hydrogen produced in this country is produced through natural gas reforming and is used as chemical feedstock in refinery operations. In this report we will examine the production of hydrogen by gasification of biomass. Biomass is defined as organic matter that is available on a renewable basis through natural processes or as a by-product of processes that use renewable resources. The majority of biomass is used in combustion processes, in mills that use the renewable resources, to produce electricity for end-use product generation. This report will explore the use of hydrogen as a fuel derived from gasification of three candidate biomass feedstocks: bagasse, switchgrass, and a nutshell mix that consists of 40% almond nutshell, 40% almond prunings, and 20% walnut shell. In this report, an assessment of the technical and economic potential of producing hydrogen from biomass gasification is analyzed. The resource base was assessed to determine a process scale from feedstock costs and availability. Solids handling systems were researched. A GTI proprietary gasifier model was used in combination with a Hysys(reg. sign) design and simulation program to determine the amount of hydrogen that can be produced from each candidate biomass feed. Cost estimations were developed and government programs and incentives were analyzed. Finally, the barriers to the production and commercialization of hydrogen from biomass were determined. The end-use of the hydrogen produced from this system is small PEM fuel cells for automobiles. Pyrolysis of biomass was also considered. Pyrolysis is a reaction in which biomass or coal is partially vaporized by heating. Gasification is a more

  9. Tar Management and Recycling in Biomass Gasification and Syngas Purification

    NASA Astrophysics Data System (ADS)

    McCaffrey, Zach

    Removal of tars is critical to the design and operation of biomass gasification systems as most syngas utilization processing equipment (e.g. internal combustion engines, gas turbines, fuel cells, and liquid fuel synthesis reactors) have a low tolerance for tar. Capturing and disposal of tar is expensive due to equipment costs, high hazardous waste disposal costs where direct uses cannot be found, and system energy losses incurred. Water scrubbing is an existing technique commonly used in gasification plants to remove contaminants and tar; however using water as the absorbent is non-ideal as tar compounds have low or no water solubility. Hydrophobic solvents can improve scrubber performance and this study evaluated tar solubility in selected solvents using slip-streams of untreated syngas from a laboratory fluidized bed reactor operated on almond composite feedstock using both air and steam gasification. Tar solubility was compared with Hansen's solubility theory to examine the extent to which the tar removal can be predicted. As collection of tar without utilization leads to a hazardous waste problem, the study investigated the effects of recycling tars back into the gasifier for destruction. Prior to experiments conducted on tar capture and recycle, characterizations of the air and steam gasification of the almond composite mix were made. This work aims to provide a better understanding of tar collection and solvent selection for wet scrubbers, and to provide information for designing improved tar management systems for biomass gasification.

  10. Countercurrent fixed-bed gasification of biomass at laboratory scale

    SciTech Connect

    Di Blasi, C.; Signorelli, G.; Portoricco, G.

    1999-07-01

    A laboratory-scale countercurrent fixed-bed gasification plant has been designed and constructed to produce data for process modeling and to compare the gasification characteristics of several biomasses (beechwood, nutshells, olive husks, and grape residues). The composition of producer gas and spatial temperature profiles have been measured for biomass gasification at different air flow rates. The gas-heating value always attains a maximum as a function of this operating variable, associated with a decrease of the air-to-fuel ratio. Optical gasification conditions of wood and agricultural residues give rise to comparable gas-heating values, comprised in the range 5--5.5 MJ/Nm{sup 3} with 28--30% CO, 5--7% CO{sub 2}, 6--8% H{sub 2}, 1--2% CH{sub 4}, and small amounts of C{sub 2}- hydrocarbons (apart from nitrogen). However, gasification of agricultural residues is more difficult because of bed transport, partial ash sintering, nonuniform flow distribution, and the presence of a muddy phase in the effluents, so that proper pretreatments are needed for largescale applications.

  11. From waste to energy -- Catalytic steam gasification of broiler litter

    SciTech Connect

    Jones, J.A.; Sheth, A.C.

    1999-07-01

    In 1996, the production of broiler chickens in the US was approximately 7.60 billion head. The quantity of litter generated is enormous. In 1992, the Southeast region alone produced over five million tons of broiler litter. The litter removed from the broiler houses is rich in nutrients and often spread over land as a fertilizer. Without careful management, the associated agricultural runoff can cause severe environmental damage. With increasing broiler litter production, the implementation of alternative disposal technologies is essential to the sustainable development of the poultry industry. A process originally developed for the conversion of coals to clean gaseous fuel may provide an answer. Catalytic steam gasification utilities an alkali salt catalyst and steam to convert a carbonaceous feedstock to a gas mixture composed primarily of carbon monoxide, carbon dioxide, hydrogen, and methane. The low to medium energy content gas produced may be utilized as an energy source or chemical feedstock. Broiler litter is an attractive candidate for catalytic steam gasification due to its high potassium content. Experiments conducted in UTSI's bench-scale high-pressure fixed bed gasifier have provided data for technical and economic feasibility studies of the process. Experiments have also been performed to examine the effects of temperature, pressure, and additional catalysts on the gasification rate.

  12. Development of biomass gasification to produce substitute fuels

    SciTech Connect

    Evans, R.J.; Knight, R.A.; Onischak, M.; Babu, S.P.

    1988-03-01

    The development of an efficient pressurized, medium-Btu steam-oxygen-blown fluidized-bed biomass gasification process was conducted. The overall program included initial stages of design-support research before the 12-ton-per-day (TPD) process research unit (PRU) was built. These stages involved the characterization of test-specific biomass species and the characteristics and limits of fluidization control. Also obtained for the design of the adiabatic PRU was information from studies with bench-scale equipment on the rapid rates of biomass devolatilization and on kinetics of the rate-controlling step of biomass char and steam gasification. The development program culminated with the sucessful operation of the PRU through 19 parametric-variation tests and extended steady-state process-proving tests. the program investigated the effect of gasifier temperature, pressure, biomass throughput rate, steam-to-biomass ratio, type of feedstock, feedstock moisture, and fludized-bed height on gasification performance. A long-duration gasification test of 3 days steady-state operation was conducted with the whole tree chips to indentify long-term effects of fluidized process conditions; to establish gasifier material and energy balances; to determine the possible breakthrough of low concentration organic species; and to evaluate the mechanical performance of the system components. Results indicate that the pressurized fludizied-bed process, can achieve carbon conversions of about 95% with cold gas thermal efficiences about 75% and with low and tar production. New information was collected on the oil and tar fraction, which relate to the process operating conditions and feedstock type. The different feedstocks studied were very similar in elemental compositions, and produced similar product gas compositions, but each has a different distribution and character of the oil and tar fractions. 11 refs., 45 figs., 18 tabs.

  13. NETL, USDA design coal-stabilized biomass gasification unit

    SciTech Connect

    2008-09-30

    Coal, poultry litter, contaminated corn, rice hulls, moldly hay, manure sludge - these are representative materials that could be tested as fuel feedstocks in a hybrid gasification/combustion concept studied in a recent US Department of Energy (DOE) design project. DOE's National Energy Technology Laboratory (NETL) and the US Department of Agriculture (USDA) collaborated to develop a design concept of a power system that incorporates Hybrid Biomass Gasification. This system would explore the use of a wide range of biomass and agricultural waste products as gasifier feedstocks. The plant, if built, would supply one-third of electrical and steam heating needs at the USDA's Beltsville (Maryland) Agricultural Research Center. 1 fig., 1 photo.

  14. Valorization of horse manure through catalytic supercritical water gasification.

    PubMed

    Nanda, Sonil; Dalai, Ajay K; Gökalp, Iskender; Kozinski, Janusz A

    2016-06-01

    The organic wastes such as lignocellulosic biomass, municipal solid waste, sewage sludge and livestock manure have attracted attention as alternative sources of energy. Cattle manure, a waste generated in surplus amounts from the feedlot, has always been a chief environmental concern. This study is focused on identifying the candidacy of horse manure as a next generation feedstock for biofuel production through supercritical water gasification. The horse manure was gasified in supercritical water to examine the effects of temperature (400-600°C), biomass-to-water ratio (1:5 and 1:10) and reaction time (15-45min) at a pressure range of 23-25MPa. The horse manure and resulting biochar were characterized through carbon-hydrogen-nitrogen-sulfur (CHNS), inductively coupled plasma-mass spectrometry (ICP-MS), thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy and scanning electron microscopy (SEM). The effects of alkali catalysts such as NaOH, Na2CO3 and K2CO3 at variable concentrations (1-2wt%) were investigated to maximize the hydrogen yields. Supercritical water gasification of horse manure with 2wt% Na2CO3 at 600°C and 1:10 biomass-to-water ratio for 45min revealed maximum hydrogen yields (5.31mmol/g), total gas yields (20.8mmol/g) with greater carbon conversion efficiency (43.1%) and enhanced lower heating value of gas products (2920kJ/Nm(3)). The manure-derived biochars generated at temperatures higher than 500°C also demonstrated higher thermal stability (weight loss <34%) and larger carbon content (>70wt%) suggesting their application in enhancing soil fertility and carbon sequestration. The results propose that supercritical water gasification could be a proficient remediation technology for horse manure to generate hydrogen-rich gas products. PMID:27067100

  15. Reactors for Catalytic Methanation in the Conversion of Biomass to Synthetic Natural Gas (SNG).

    PubMed

    Schildhauer, Tilman J; Biollaz, Serge M A

    2015-01-01

    Production of Synthetic Natural Gas (SNG) from biomass is an important step to decouple the use of bioenergy from the biomass production with respect to both time and place. While anaerobic digestion of wet biomass is a state-of-the art process, wood gasification to producer gas followed by gas cleaning and methanation has only just entered the demonstration scale. Power-to-Gas applications using biogas from biomass fermentation or producer gas from wood gasification as carbon oxide source are under development. Due to the importance of the (catalytic) methanation step in the production of SNG from dry biomass or within Power-to-Gas applications, the specific challenges of this step and the developed reactor types are discussed in this review. PMID:26598404

  16. Kinetic modelling of steam gasification of various woody biomass chars: influence of inorganic elements.

    PubMed

    Dupont, Capucine; Nocquet, Timothée; Da Costa, José Augusto; Verne-Tournon, Christèle

    2011-10-01

    A study was performed on the influence of wood variability on char steam gasification kinetics. Isothermal experiments were carried out in a thermobalance in chemical regime on various wood chars produced under the same conditions. The samples exhibited large differences of average reaction rate. These differences were linked neither with the biomass species nor age and may be related to the biomass inorganic elements. A modelling approach was developed to give a quantitative insight to these observations. The grain model was used on one biomass of reference for temperatures between 750 and 900 °C and steam partial pressures between 0 and 0.27 bar. The model was applied to the other samples through the addition of an integral parameter specific to each sample. A satisfactory correlation was found between this parameter and the ratio potassium/silicium. This result highlighted the catalytic effect of potassium and inhibitor effect of silicium on the reaction. PMID:21862327

  17. Solar gasification of biomass: design and characterization of a molten salt gasification reactor

    NASA Astrophysics Data System (ADS)

    Hathaway, Brandon Jay

    The design and implementation of a prototype molten salt solar reactor for gasification of biomass is a significant milestone in the development of a solar gasification process. The reactor developed in this work allows for 3 kWth operation with an average aperture flux of 1530 suns at salt temperatures of 1200 K with pneumatic injection of ground or powdered dry biomass feedstocks directly into the salt melt. Laboratory scale experiments in an electrically heated reactor demonstrate the benefits of molten salt and the data was evaluated to determine the kinetics of pyrolysis and gasification of biomass or carbon in molten salt. In the presence of molten salt overall gas yields are increased by up to 22%; pyrolysis rates double due to improved heat transfer, while carbon gasification rates increase by an order of magnitude. Existing kinetic models for cellulose pyrolysis fit the data well, while carbon gasification in molten salt follows kinetics modeled with a 2/3 order shrinking-grain model with a pre-exponential factor of 1.5*106 min-1 and activation energy of 158 kJ/mol. A reactor concept is developed based around a concentric cylinder geometry with a cavity-style solar receiver immersed within a volume of molten carbonate salt. Concentrated radiation delivered to the cavity is absorbed in the cavity walls and transferred via convection to the salt volume. Feedstock is delivered into the molten salt volume where biomass gasification reactions will be carried out producing the desired product gas. The features of the cavity receiver/reactor concept are optimized based on modeling of the key physical processes. The cavity absorber geometry is optimized according to a parametric survey of radiative exchange using a Monte Carlo ray tracing model, resulting in a cavity design that achieves absorption efficiencies of 80%-90%. A parametric survey coupling the radiative exchange simulations to a CFD model of molten salt natural convection is used to size the annulus

  18. Hydrogen production from algal biomass via steam gasification.

    PubMed

    Duman, Gozde; Uddin, Md Azhar; Yanik, Jale

    2014-08-01

    Algal biomasses were tested as feedstock for steam gasification in a dual-bed microreactor in a two-stage process. Gasification experiments were carried out in absence and presence of catalyst. The catalysts used were 10% Fe₂O₃-90% CeO₂ and red mud (activated and natural forms). Effects of catalysts on tar formation and gasification efficiencies were comparatively investigated. It was observed that the characteristic of algae gasification was dependent on its components and the catalysts used. The main role of the catalyst was reforming of the tar derived from algae pyrolysis, besides enhancing water gas shift reaction. The tar reduction levels were in the range of 80-100% for seaweeds and of 53-70% for microalgae. Fe₂O₃-CeO₂ was found to be the most effective catalyst. The maximum hydrogen yields obtained were 1036 cc/g algae for Fucus serratus, 937 cc/g algae for Laminaria digitata and 413 cc/g algae for Nannochloropsis oculata. PMID:24880809

  19. Biomass gasification for liquid fuel production

    SciTech Connect

    Najser, Jan E-mail: vaclav.peer@vsb.cz; Peer, Václav E-mail: vaclav.peer@vsb.cz

    2014-08-06

    In our old fix-bed autothermal gasifier we tested wood chips and wood pellets. We make experiments for Czech company producing agro pellets - pellets made from agricultural waste and fastrenewable natural resources. We tested pellets from wheat and rice straw and hay. These materials can be very perspective, because they dońt compete with food production, they were formed in sufficient quantity and in the place of their treatment. New installation is composed of allothermal biomass fixed bed gasifier with conditioning and using produced syngas for Fischer - Tropsch synthesis. As a gasifying agent will be used steam. Gas purification will have two parts - separation of dust particles using a hot filter and dolomite reactor for decomposition of tars. In next steps, gas will be cooled, compressed and removed of sulphur and chlorine compounds and carbon dioxide. This syngas will be used for liquid fuel synthesis.

  20. Biomass gasification for liquid fuel production

    NASA Astrophysics Data System (ADS)

    Najser, Jan; Peer, Václav; Vantuch, Martin

    2014-08-01

    In our old fix-bed autothermal gasifier we tested wood chips and wood pellets. We make experiments for Czech company producing agro pellets - pellets made from agricultural waste and fastrenewable natural resources. We tested pellets from wheat and rice straw and hay. These materials can be very perspective, because they dońt compete with food production, they were formed in sufficient quantity and in the place of their treatment. New installation is composed of allothermal biomass fixed bed gasifier with conditioning and using produced syngas for Fischer - Tropsch synthesis. As a gasifying agent will be used steam. Gas purification will have two parts - separation of dust particles using a hot filter and dolomite reactor for decomposition of tars. In next steps, gas will be cooled, compressed and removed of sulphur and chlorine compounds and carbon dioxide. This syngas will be used for liquid fuel synthesis.

  1. Thermal decomposition and gasification of biomass pyrolysis gases using a hot bed of waste derived pyrolysis char.

    PubMed

    Al-Rahbi, Amal S; Onwudili, Jude A; Williams, Paul T

    2016-03-01

    Chars produced from the pyrolysis of different waste materials have been investigated in terms of their use as a catalyst for the catalytic cracking of biomass pyrolysis gases during the two-stage pyrolysis-gasification of biomass. The chars were produced from the pyrolysis of waste tyres, refused derived fuel and biomass in the form of date stones. The results showed that the hydrocarbon tar yields decreased significantly with all the char materials used in comparison to the non-char catalytic experiments. For example, at a cracking temperature of 800°C, the total product hydrocarbon tar yield decreased by 70% with tyre char, 50% with RDF char and 9% with biomass date stones char compared to that without char. There was a consequent increase in total gas yield. Analysis of the tar composition showed that the content of phenolic compounds decreased and polycyclic aromatic hydrocarbons increased in the product tar at higher char temperatures. PMID:26773946

  2. H₂-rich syngas production by fluidized bed gasification of biomass and plastic fuel.

    PubMed

    Ruoppolo, G; Ammendola, P; Chirone, R; Miccio, F

    2012-04-01

    This paper reports the results of gasification tests using a catalytic fluidized bed gasifier to obtain a H(2)-rich stream by feeding different pellets made of wood, biomass/plastic and olive husks to the gasifier. The effects of both the steam supply and an in-bed catalyst on gasifier performance have been investigated. In general, pelletization was an effective pre-treatment for improving the homogeneity of the fuel and the reliability of the feeding devices. The use of biomass/plastic pellets in a catalyst bed yielded good results in terms of the hydrogen concentration (up to 32%vol.), even if an increase in tar production and in the fine/carbon elutriation rate was observed in comparison with wood pellets. PMID:22248676

  3. Catalytic gasification of bagasse for the production of methanol

    SciTech Connect

    Baker, E.G.; Brown, M.D.; Robertus, R.J.

    1985-10-01

    The purpose of the study was to evaluate the technical and economic feasibility of catalytic gasification of bagasse to produce methanol. In previous studies, a catalytic steam gasification process was developed which converted wood to methanol synthesis gas in one step using nickel based catalysts in a fluid-bed gasifier. Tests in a nominal 1 ton/day process development unit (PDU) gasifier with these same catalysts showed bagasse to be a good feedstock for fluid-bed gasifiers, but the catalysts deactivated quite rapidly in the presence of bagasse. Laboratory catalyst screening tests showed K/sub 2/CO/sub 3/ doped on the bagasse to be a promising catalyst for converting bagasse to methanol synthesis gas. PDU tests with 10 wt % K/sub 2/CO/sub 3/ doped on bagasse showed the technical feasibility of this type of catalyst on a larger scale. A high quality synthesis gas was produced and carbon conversion to gas was high. The gasifier was successfully operated without forming agglomerates of catalyst, ash, and char in the gasifier. There was no loss of activity throughout the runs because catalysts is continually added with the bagasse. Laboratory tests showed about 80% of the potassium carbonate could be recovered and recycled with a simple water wash. An economic evaluation of the process for converting bagasse to methanol showed the required selling price of methanol to be significantly higher than the current market price of methanol. Several factors make this current evaluaton using bagasse as a feedstock less favorable: (1) capital costs are higher due to inflation and some extra costs required to use bagasse, (2) smaller plant sizes were considered so economies of scale are lost, and (3) the market price of methanol in the US has fallen 44% in the last six months. 24 refs., 14 figs., 16 tabs.

  4. Catalytic fast pyrolysis of lignocellulosic biomass.

    PubMed

    Liu, Changjun; Wang, Huamin; Karim, Ayman M; Sun, Junming; Wang, Yong

    2014-11-21

    Increasing energy demand, especially in the transportation sector, and soaring CO2 emissions necessitate the exploitation of renewable sources of energy. Despite the large variety of new energy carriers, liquid hydrocarbon still appears to be the most attractive and feasible form of transportation fuel taking into account the energy density, stability and existing infrastructure. Biomass is an abundant, renewable source of energy; however, utilizing it in a cost-effective way is still a substantial challenge. Lignocellulose is composed of three major biopolymers, namely cellulose, hemicellulose and lignin. Fast pyrolysis of biomass is recognized as an efficient and feasible process to selectively convert lignocellulose into a liquid fuel-bio-oil. However bio-oil from fast pyrolysis contains a large amount of oxygen, distributed in hundreds of oxygenates. These oxygenates are the cause of many negative properties, such as low heating value, high corrosiveness, high viscosity, and instability; they also greatly limit the application of bio-oil particularly as transportation fuel. Hydrocarbons derived from biomass are most attractive because of their high energy density and compatibility with the existing infrastructure. Thus, converting lignocellulose into transportation fuels via catalytic fast pyrolysis has attracted much attention. Many studies related to catalytic fast pyrolysis of biomass have been published. The main challenge of this process is the development of active and stable catalysts that can deal with a large variety of decomposition intermediates from lignocellulose. This review starts with the current understanding of the chemistry in fast pyrolysis of lignocellulose and focuses on the development of catalysts in catalytic fast pyrolysis. Recent progress in the experimental studies on catalytic fast pyrolysis of biomass is also summarized with the emphasis on bio-oil yields and quality. PMID:24801125

  5. Catalytic fast pyrolysis of lignocellulosic biomass

    SciTech Connect

    Liu, Changjun; Wang, Huamin; Karim, Ayman M.; Sun, Junming; Wang, Yong

    2014-11-21

    Increasing energy demand, especially in the transportation sector, and soaring CO2 emissions necessitate the exploitation of renewable sources of energy. Despite the large variety of new energy Q3 carriers, liquid hydrocarbon still appears to be the most attractive and feasible form of transportation fuel taking into account the energy density, stability and existing infrastructure. Biomass is an abundant, renewable source of energy; however, utilizing it in a cost-effective way is still a substantial challenge. Lignocellulose is composed of three major biopolymers, namely cellulose, hemicellulose and lignin. Fast pyrolysis of biomass is recognized as an efficient and feasible process to selectively convert lignocellulose into a liquid fuel—bio-oil. However bio-oil from fast pyrolysis contains a large amount of oxygen, distributed in hundreds of oxygenates. These oxygenates are the cause of many negative properties, such as low heating values, high corrosiveness, high viscosity, and instability; they also greatly Q4 limit the application of bio-oil particularly as transportation fuel. Hydrocarbons derived from biomass are most attractive because of their high energy density and compatibility with the existing infrastructure. Thus, converting lignocellulose into transportation fuels via catalytic fast pyrolysis has attracted much attention. Many studies related to catalytic fast pyrolysis of biomass have been published. The main challenge of this process is the development of active and stable catalysts that can deal with a large variety of decomposition intermediates from lignocellulose. This review starts with the current understanding of the chemistry in fast pyrolysis of lignocellulose and focuses on the development of catalysts in catalytic fast pyrolysis. Recent progress in the experimental studies on catalytic fast pyrolysis of biomass is also summarized with the emphasis on bio-oil yields and quality.

  6. Catalytic combustor for integrated gasification combined cycle power plant

    DOEpatents

    Bachovchin, Dennis M.; Lippert, Thomas E.

    2008-12-16

    A gasification power plant 10 includes a compressor 32 producing a compressed air flow 36, an air separation unit 22 producing a nitrogen flow 44, a gasifier 14 producing a primary fuel flow 28 and a secondary fuel source 60 providing a secondary fuel flow 62 The plant also includes a catalytic combustor 12 combining the nitrogen flow and a combustor portion 38 of the compressed air flow to form a diluted air flow 39 and combining at least one of the primary fuel flow and secondary fuel flow and a mixer portion 78 of the diluted air flow to produce a combustible mixture 80. A catalytic element 64 of the combustor 12 separately receives the combustible mixture and a backside cooling portion 84 of the diluted air flow and allows the mixture and the heated flow to produce a hot combustion gas 46 provided to a turbine 48. When fueled with the secondary fuel flow, nitrogen is not combined with the combustor portion.

  7. Wind Generator & Biomass No-draft Gasification Hybrid

    NASA Astrophysics Data System (ADS)

    Hein, Matthew R.

    The premise of this research is that underutilized but vast intermittent renewable energy resources, such as wind, can become more market competitive by coupling with storable renewable energy sources, like biomass; thereby creating a firm capacity resource. Specifically, the Midwest state of South Dakota has immense wind energy potential that is not used because of economic and logistic barriers of electrical transmission or storage. Coupling the state's intermittent wind resource with another of the state's energy resources, cellulosic non-food biomass, by using a wind generator and no-draft biomass gasification hybrid system will result in a energy source that is both firm and storable. The average energy content of common biomass feedstock was determined, 14.8 MJ/kg (7.153 Btu/lb), along with the assumed typical biomass conversion efficiency of the no-draft gasifier, 65%, so that an average electrical energy round trip efficiency (RTE) of 214% can be expected (i.e. One unit of wind electrical energy can produce 2.14 kWh of electrical energy stored as syngas.) from a wind generator and no-draft biomass gasification system. Wind characteristics are site specific so this analysis utilizes a synthetic wind resource to represent a statistically sound gross representation of South Dakota's wind regime based on data from the Wind Resource Assessment Network (WRAN) locations. A synthetic wind turbine generated from common wind turbine power curves and scaled to 1-MW rated capacity was utilized for this analysis in order to remove equipment bias from the results. A standard 8,760-hour BIN Analysis model was constructed within HOMER, powerful simulation software developed by the National Renewable Energy Laboratory (NREL) to model the performance of renewable power systems. It was found that the optimum configuration on a per-megawatt-transmitted basis required a wind generator (wind farm) rated capacity of 3-MW with an anticipated annual biomass feedstock of 26,132 GJ

  8. Demonstration plant for pressurized gasification of biomass feedstocks

    SciTech Connect

    Trenka, A.R. ); Kinoshita, C.M.; Takahashi, P.K.; Phillips, V.D. ); Caldwell, C. Co., Pasadena, CA ); Kwok, R. ); Onischak, M.; Babu, S.P. (Institute of Gas Technology

    1991-01-01

    A project to design, construct, and operate a pressurized biomass gasification plant in Hawaii will begin in 1991. Negotiations are underway with the United States Department of Energy (DOE) which is co-funding the project with the state of Hawaii and industry. The gasifier is a scale-up of the pressurized fluidized-bed RENUGAS process developed by the Institute of Gas Technology (IGT). The project team consists of Pacific International Center for High Technology Research (PICHTR), Hawaii Natural Energy Institute (HNEI) of the University of Hawaii, Hawaiian Commercial and Sugar Company (HC S), The Ralph M. Parsons Company, and IGT. The gasifier will be designed for 70 tons per day of sugarcane fiber (bagasse) and will be located at the Paia factory of HC S on the island of Maui. In addition to bagasse, other feedstocks such as wood, biomass wastes, and refuse-derived-fuel may be evaluated. The demonstration plant will ultimately supply part of the process energy needs for the sugar factory. The operation and testing phase will provide process information for both air- and oxygen-blown gasification, and at both low and high pressures. The process will be evaluated for both fuel gas and synthesis gas production, and for electrical power production with advanced power generation schemes. 6 refs., 3 figs., 1 tab.

  9. Study on CO2 gasification reactivity and physical characteristics of biomass, petroleum coke and coal chars.

    PubMed

    Huo, Wei; Zhou, Zhijie; Chen, Xueli; Dai, Zhenghua; Yu, Guangsuo

    2014-05-01

    Gasification reactivities of six different carbonaceous material chars with CO2 were determined by a Thermogravimetric Analyzer (TGA). Gasification reactivities of biomass chars are higher than those of coke and coal chars. In addition, physical structures and chemical components of these chars were systematically tested. It is found that the crystalline structure is an important factor to evaluate gasification reactivities of different chars and the crystalline structures of biomass chars are less order than those of coke and coal chars. Moreover, initial gasification rates of these chars were measured at high temperatures and with relatively large particle sizes. The method of calculating the effectiveness factor η was used to quantify the effect of pore diffusion on gasification. The results show that differences in pore diffusion effects among gasification with various chars are prominent and can be attributed to different intrinsic gasification reactivities and physical characteristics of different chars. PMID:24642484

  10. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOEpatents

    Cortright, Randy D.; Dumesic, James A.

    2011-01-18

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  11. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOEpatents

    Cortright, Randy D.; Dumesic, James A.

    2012-04-10

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  12. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOEpatents

    Cortright, Randy D.; Dumesic, James A.

    2013-04-02

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  13. Synergetic and inhibition effects in carbon dioxide gasification of blends of coals and biomass fuels of Indian origin.

    PubMed

    Satyam Naidu, V; Aghalayam, P; Jayanti, S

    2016-06-01

    The present study investigates the enhancement of CO2 gasification reactivity of coals due to the presence of catalytic elements in biomass such as K2O, CaO, Na2O and MgO. Co-gasification of three Indian coal chars with two biomass chars has been studied using isothermal thermogravimetric analysis (TGA) in CO2 environment at 900, 1000 and 1100°C. The conversion profiles have been used to establish synergetic or inhibitory effect on coal char reactivity by the presence of catalytic elements in biomass char by comparing the 90% conversion time with and without biomass. It is concluded that both biomasses exhibit synergistic behavior when blended with the three coals with casuarina being more synergetic than empty fruit bunch. Some inhibitory effect has been noted for the high ash coal at the highest temperature with higher 90% conversion time for the blend over pure coal, presumably due to diffusional control of the conversion rate. PMID:26967339

  14. Advanced power systems featuring a closely coupled catalytic gasification carbonate fuel cell plant

    SciTech Connect

    Steinfeld, G.; Wilson, W.G.

    1993-01-01

    Pursuing the key national goal of clean and efficient uulization of the abundant domestic coal resources for power generation, a study was conducted with DOE/METC support to evaluate the potential of integrated gasification/carbonate fuel cell power generation systems. By closely coupling the fuel cell with the operation of a catalytic gasifier, the advantages of both the catalytic gasification and the high efficiency fuel cell complement each other, resulting in a power plant system with unsurpassed efficiencies approaching 55% (HHV). Low temperature catalytic gasification producing a high methane fuel gas offers the potential for high gas efficiencies by operating with minimal or no combustion. Heat required for gasification is provided by combination of recycle from the fuel cell and exothermic methanation and shift reactions. Air can be supplemented if required. In combination with internally reforming carbonate fuel cells, low temperature catalytic gasification can achieve very attractive system efficiencies while producing extremely low emissions compared to conventional plants utilizing coal. Three system configurations based on recoverable and disposable gasification catalysts were studied. Experimental tests were conducted to evaluate these gasification catalysts. The recoverable catalyst studied was potassium carbonate, and the disposable catalysts were calcium in the form of limestone and iron in the form of taconite. Reactivities of limestone and iron were lower than that of potassium, but were improved by using the catalyst in solution form. Promising results were obtained in the system evaluations as well as the experimental testing of the gasification catalysts. To realize the potential of these high efficiency power plant systems more effort is required to develop catalytic gasification systems and their integration with carbonate fuel cells.

  15. Advanced power systems featuring a closely coupled catalytic gasification carbonate fuel cell plant

    SciTech Connect

    Steinfeld, G.; Wilson, W.G.

    1993-06-01

    Pursuing the key national goal of clean and efficient uulization of the abundant domestic coal resources for power generation, a study was conducted with DOE/METC support to evaluate the potential of integrated gasification/carbonate fuel cell power generation systems. By closely coupling the fuel cell with the operation of a catalytic gasifier, the advantages of both the catalytic gasification and the high efficiency fuel cell complement each other, resulting in a power plant system with unsurpassed efficiencies approaching 55% (HHV). Low temperature catalytic gasification producing a high methane fuel gas offers the potential for high gas efficiencies by operating with minimal or no combustion. Heat required for gasification is provided by combination of recycle from the fuel cell and exothermic methanation and shift reactions. Air can be supplemented if required. In combination with internally reforming carbonate fuel cells, low temperature catalytic gasification can achieve very attractive system efficiencies while producing extremely low emissions compared to conventional plants utilizing coal. Three system configurations based on recoverable and disposable gasification catalysts were studied. Experimental tests were conducted to evaluate these gasification catalysts. The recoverable catalyst studied was potassium carbonate, and the disposable catalysts were calcium in the form of limestone and iron in the form of taconite. Reactivities of limestone and iron were lower than that of potassium, but were improved by using the catalyst in solution form. Promising results were obtained in the system evaluations as well as the experimental testing of the gasification catalysts. To realize the potential of these high efficiency power plant systems more effort is required to develop catalytic gasification systems and their integration with carbonate fuel cells.

  16. BIOMASS GASIFICATION AND POWER GENERATION USING ADVANCED GAS TURBINE SYSTEMS

    SciTech Connect

    David Liscinsky

    2002-10-20

    A multidisciplined team led by the United Technologies Research Center (UTRC) and consisting of Pratt & Whitney Power Systems (PWPS), the University of North Dakota Energy & Environmental Research Center (EERC), KraftWork Systems, Inc. (kWS), and the Connecticut Resource Recovery Authority (CRRA) has evaluated a variety of gasified biomass fuels, integrated into advanced gas turbine-based power systems. The team has concluded that a biomass integrated gasification combined-cycle (BIGCC) plant with an overall integrated system efficiency of 45% (HHV) at emission levels of less than half of New Source Performance Standards (NSPS) is technically and economically feasible. The higher process efficiency in itself reduces consumption of premium fuels currently used for power generation including those from foreign sources. In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low-cost hydrogen and syngas for chemical synthesis, as well as baseload power. The conceptual design of the plant consists of an air-blown circulating fluidized-bed Advanced Transport Gasifier and a PWPS FT8 TwinPac{trademark} aeroderivative gas turbine operated in combined cycle to produce {approx}80 MWe. This system uses advanced technology commercial products in combination with components in advanced development or demonstration stages, thereby maximizing the opportunity for early implementation. The biofueled power system was found to have a levelized cost of electricity competitive with other new power system alternatives including larger scale natural gas combined cycles. The key elements are: (1) An Advanced Transport Gasifier (ATG) circulating fluid-bed gasifier having wide fuel flexibility and high gasification efficiency; (2) An FT8 TwinPac{trademark}-based combined cycle of approximately 80 MWe; (3) Sustainable biomass primary fuel source at low cost and potentially widespread availability-refuse-derived fuel (RDF); (4) An overall integrated

  17. Low-temperature catalytic gasification of wet industrial wastes

    SciTech Connect

    Elliott, D C; Neuenschwander, G G; Baker, E G; Sealock, Jr, L J; Butner, R S

    1991-04-01

    Bench-scale reactor tests are in progress at Pacific Northwest Laboratory to develop a low-temperature, catalytic gasification system. The system, licensed under the trade name Thermochemical Environmental Energy System (TEES{reg sign}), is designed for treating a wide variety of feedstocks ranging from dilute organics in water to waste sludges from food processing. This report describes a test program which used a continuous-feed tubular reactor. This test program is an intermediate stage in the process development. The reactor is a laboratory-scale version of the commercial concept as currently envisioned by the process developers. An energy benefit and economic analysis was also completed on the process. Four conceptual commercial installations of the TEES process were evaluated for three food processing applications and one organic chemical manufacturing application. Net energy production (medium-Btu gas) was achieved in all four cases. The organic chemical application was found to be economically attractive in the present situation. Based on sensitivity studies included in the analysis, the three food processing cases will likely become attractive in the near future as waste disposal regulations tighten and disposal costs increase. 21 refs., 2 figs., 9 tabs.

  18. Coke gasification: the influence and behavior of inherent catalytic mineral matter

    SciTech Connect

    Mihaela Grigore; Richard Sakurovs; David French; Veena Sahajwalla

    2009-04-15

    Gasification of coke contributes to its degradation in the blast furnace. In this study, the effect of gasification on the inherent catalytic minerals in cokes and their reciprocal influence on gasification are investigated. The catalytic mineral phases identified in the cokes used in this study were metallic iron, iron sulfides, and iron oxides. Metallic iron and pyrrhotite were rapidly oxidized during gasification to iron oxide. The catalysts had a strong influence on the apparent rates at the initial stages of reaction. As gasification proceeds, their effect on the reaction rate diminishes as a result of reducing the surface contact between catalyst and carbon matrix because of carbon consumption around the catalyst particles; with extended burnout the reactivity of the coke becomes increasingly dependent on surface area. The reaction rate in the initial stages was also influenced by the particle size of the catalytic minerals; for a given catalytic iron level, the cokes whose catalytic minerals were more finely dispersed had a higher apparent reaction rate than cokes containing larger catalytic particles. Iron, sodium, and potassium in the amorphous phase did not appear to affect the reaction rate. 40 refs., 16 figs., 6 tabs.

  19. Preliminary studies on the treatment of wastewater from biomass gasification.

    PubMed

    Muzyka, Roksana; Chrubasik, Maciej; Stelmach, Sławomir; Sajdak, Marcin

    2015-10-01

    This paper presents completed research on the purification of undiluted raw water and organic condensates obtained in biomass thermal conversion processes such as gasification, which are rarely addressed in published studies. However, similar studies involving the characterization and purification of aqueous solutions obtained from process gas treatment after the gasification of biomass are available. Condensation of water-organic condensate from process gas helps to reduce the amount of water required by the purification process and the cost of the process technology and water consumption. Oil scrubbers can be used in this case instead of water scrubbers. In this case, the obtained condensate must be subjected to purification processes. This paper presents the results of our research, possible methods of treatment (chemical and biological methods), and the approximate cost of the reagents required for the purification of condensate for specific assumed degrees of purification. The best results from the chemical purification using the Fenton method were obtained with the ratio V(H2O2)/V(cond.) = 6.0 and the ratio V(H2O2)/Fe = 0.0375. To prevent precipitation of ferric hydroxide, this value can be reduced 20-fold, which reduces the total degree of purification to 90%. The cost of almost complete cleaning of tested condensates was calculated to be approximately 2000 USD per/m(3). This cost can be reduced by a factor of approximately four assuming 100% cleaning for 2-furaldehyde, furfuryl alcohol and phenol; acetaldehyde, propane-2-one (acetone), methanol and acetic acid are oxidized by 50%. PMID:26184898

  20. Catalytic Wet Gasification of Municipal and Animal Wastes

    SciTech Connect

    Ro, Kyoung S.; Cantrell, Keri; Elliott, Douglas C.; Hunt, Patrick G.

    2007-02-21

    Applicability of wet gasification technology for various animal and municipal wastes was examined. Wet gasification of swine manure and raw sewage sludge generated high number of net energies. Furthermore, the moisture content of these wastes is ideal for current wet gasification technology. Significant quantities of water must be added to dry feedstock wastes such as poultry litter, feedlot manures and MSW to make the feedstock pumpable. Because of their high ash contents, MSW and unpaved feedlot manure would not generate positive energy return from wet gasification. The costs of a conceptual wet gasification manure management system for a model swine farm were significantly higher than that of the anaerobic lagoon system. However, many environmental advantages of the wet gasification system were identified, which might reduce the costs significantly. Due to high sulfur content of the wastes, pretreatment to prevent the poisoning of catalysts is critically needed.

  1. Evaluation of Biomass Gasification to Produce Reburning Fuel for Coal-Fired Boilers

    EPA Science Inventory

    Gasification and reburning testing with biomass and other wastes is of interest to both the U.S. EPA and the Italian Ministry of the Environment & Territory. Gasification systems that use biofuels or wastes as feedstock can provide a clean, efficient source of synthesis gas and p...

  2. Gasification Characteristics of Coal/Biomass Mixed Fuels

    SciTech Connect

    Mitchell, Reginald

    2013-09-30

    A research project was undertaken that had the overall objective of developing the models needed to accurately predict conversion rates of coal/biomass mixtures to synthesis gas under conditions relevant to a commercially-available coal gasification system configured to co- produce electric power as well as chemicals and liquid fuels. In our efforts to accomplish this goal, experiments were performed in an entrained flow reactor in order to produce coal and biomass chars at high heating rates and temperatures, typical of the heating rates and temperatures fuel particles experience in real systems. Mixed chars derived from coal/biomass mixtures containing up to 50% biomass and the chars of the pure coal and biomass components were subjected to a matrix of reactivity tests in a pressurized thermogravimetric analyzer (TGA) in order to obtain data on mass loss rates as functions of gas temperature, pressure and composition as well as to obtain information on the variations in mass specific surface area during char conversion under kinetically-limited conditions. The experimental data were used as targets when determining the unknown parameters in the chemical reactivity and specific surface area models developed. These parameters included rate coefficients for the reactions in the reaction mechanism, enthalpies of formation and absolute entropies of adsorbed species formed on the carbonaceous surfaces, and pore structure coefficients in the model used to describe how the mass specific surface area of the char varies with conversion. So that the reactivity models can be used at high temperatures when mass transport processes impact char conversion rates, Thiele modulus – effectiveness factor relations were also derived for the reaction mechanisms developed. In addition, the reactivity model and a mode of conversion model were combined in a char-particle gasification model that includes the effects of chemical reaction and diffusion of reactive gases through particle

  3. Catalytic wet gasification of municipal and animal wastes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Currently, there is worldwide interest in deriving energy from bio-based materials via gasification. Our objective was to assess the feasibility of wet gasification for treatment/energy conversion of both animal and municipal wastes. Wet wastes such as swine manure and raw sewage sludge could be pro...

  4. Treatment of biomass gasification wastewaters using reverse osmosis

    SciTech Connect

    Petty, S.E.; Eliason, S.D.; Laegreid, M.M.

    1981-09-01

    Reverse osmosis (RO) was evaluated as a treatment technology for the removal of organics from biomass gasification wastewaters (BGW) generated from an experimental biomass gasifier at Texas Tech University. Wastewaters were characteristically high in chemical oxygen demand (COD) with initial values ranging from 32,000 to 68,000 mg/1. Since RO is normally considered a complementary treatment technology, wastewaters were pretreated by biological or wet air oxidation (WAO) processes. One set of experiments were run using untreated wastewaters to compare membrane performance with those experiments using pretreated wastewaters. Experiments were run for 8 to 10 hrs using UOP's TFC-85 membrane operating at 700 psig and 18 to 20/sup 0/C. This membrane is similar to the NS-100, a membrane known for being effective in the separation of organics from solution. Separation of organics from solution was determined by COD removal. Removal percentages for biologically pretreated wastewaters averaged 98% except for one group of runs averaging 69% removal. This exception was probably due to the presence of milk solids in the feed. Use of RO on WAO pretreated wastewaters and unpretreated feeds resulted in 90% COD removal. Membrane degradation was observed when using full-strength and WAO pretreated feeds, but not when using feeds that had undergone biological pretreatment. Color removal was computed for the majority of experiments completed. Overall, 99 to 100% of the total color was removed from BGW feeds, values which coincide with those reported in the literature for other wastewaters.

  5. Considerations Based on Reaction Rate on Char Gasification Behavior in Two-stage Gasifier for Biomass

    NASA Astrophysics Data System (ADS)

    Taniguchi, Miki; Nishiyama, Akio; Sasauchi, Kenichi; Ito, Yusuke; Akamatsu, Fumiteru

    In order to develop a small-scale gasifier in which biomass can be converted to energy with high efficiency, we planned a gasification process that consists of two parts: pyrolysis part (rotary kiln) and gasification part (downdraft gasifier). We performed fundamental experiments on gasification part and discussed the appropriate conditions such as air supply location, air ratio, air temperature and hearth load. We considered the results by calculating reaction rates of representative reactions on char gasification part and found that water gas reaction is dominant in the reduction area and its behavior gives important information to decide the adequate length of the char layer.

  6. Thermochemical gasification of high-moisture biomass feedstocks

    SciTech Connect

    Sealock, L.J. Jr.; Elliott, D.C.

    1984-05-01

    A new project was initiated at Pacific Northwest Laboratory (PNL) in January 1984 which has the potential for significant advantages over conventional thermochemical and biological conversion technologies. The objective of this project is to investigate the feasibility of using a low-temperature (250 to 450/sup 0/C), high pressure (up to 5000 psi) slurry reactor system for converting high-moisture biomass to gaseous (methane and synthesis gas) and liquid fuels. Emphasis will be placed on conditions favoring gasification and methane formation. However, some conditions being studied may favor liquid production and are required to develop a full understanding of the process chemistry. Catalysts and reactants to be employed singularly or in combination in the investigations include sodium carbonate, nickel or other metals, and CO. Feedstocks selected for investigation are those not previously attractive for thermochemical conversion and would require dewatering before they could be converted in ore typical thermochemical conversion systems. Several candidate feedstocks have been identified and two feedstocks (water-hyacinths and potato processing waste) have been obtained and characterized. Procurement of additional samples is in progress. Installation of the 1.0 liter autoclave and experimental system began in April. Feedstock screening tests are scheduled for June 1984. 3 references, 3 figures, 1 table.

  7. Treatment of biomass gasification wastewaters using liquid-liquid extraction

    SciTech Connect

    Bell, N.E.

    1981-09-01

    Pacific Northwest Laboratory (PNL) investigated liquid-liquid extraction as a treatment method for biomass gasification wastewaters (BGW). Distribution coefficients for chemical oxygen demand (COD) removal were determined for the following solvents: methylisobutyl ketone (MIBK), n-butyl acetate, n-butanol, MIBK/n-butyl acetate (50:50 vol), MIBK/n-butanol (50:50 vol), tri-butyl phosphate, tri-n-octyl phosphine oxide (TOPO)/MIBK (10:90 wt), TOPO/kerosene (10:90 wt), kerosene, and toluene. The best distribution coefficient of 1.3 was given by n-butanol. Chemical analysis of the wastewater by gas chromatography (GC) showed acetic acid and propionic acid concentrations of about 4000 mg/1. Methanol, ethanol, and acetone were identified in trace amounts. These five compounds accounted for 45% of the measured COD of 29,000 mg/1. Because of the presence of carboxylic acids, pH was expected to affect extraction of the wastewater. At low pH the acids should be in the acidic form, which increased extraction by MIBK. Extraction by n-butanol was increased at high pH, where the acids should be in the ionic form.

  8. Interaction and its induced inhibiting or synergistic effects during co-gasification of coal char and biomass char.

    PubMed

    Ding, Liang; Zhang, Yongqi; Wang, Zhiqing; Huang, Jiejie; Fang, Yitian

    2014-12-01

    Co-gasification of coal char and biomass char was conducted to investigate the interactions between them. And random pore model (RPM) and modified random pore model (MRPM) were applied to describe the gasification behaviors of the samples. The results show that inhibiting effect was observed during co-gasification of corn stalk char with Hulunbeier lignite coal char, while synergistic effects were observed during co-gasification of corn stalk char with Shenmu bituminous coal char and Jincheng anthracite coal char. The inhibiting effect was attributed to the intimate contact and comparable gasification rate between biomass char and coal char, and the loss of the active form of potassium caused by the formation of KAlSiO4, which was proved to be inactive during gasification. While the synergistic effect was caused by the high potassium content of biomass char and the significant difference of reaction rate between coal char and biomass char during gasification. PMID:25280109

  9. Solid-gaseous phase transformation of elemental contaminants during the gasification of biomass.

    PubMed

    Jiang, Ying; Ameh, Abiba; Lei, Mei; Duan, Lunbo; Longhurst, Philip

    2016-09-01

    Disposal of plant biomass removed from heavy metal contaminated land via gasification achieves significant volume reduction and can recover energy. However, these biomass often contain high concentrations of heavy metals leading to hot-corrosion of gasification facilities and toxic gaseous emissions. Therefore, it is of significant interest to gain a further understanding of the solid-gas phase transition of metal(loid)s during gasification. Detailed elemental analyses (C, H, O, N and key metal/metalloid elements) were performed on five plant species collected from a contaminated site. Using multi-phase equilibria modelling software (MTDATA), the analytical data allows modelling of the solid/gas transformation of metal(loid)s during gasification. Thermodynamic modelling based on chemical equilibrium calculations was carried out in this study to predict the fate of metal(loid) elements during typical gasification conditions and to show how these are influenced by metal(loid) composition in the biomass and operational conditions. As, Cd, Zn and Pb tend to transform to their gaseous forms at relatively low temperatures (<1000°C). Ni, Cu, Mn and Co converts to gaseous forms within the typical gasification temperature range of 1000-1200°C. Whereas Cr, Al, Fe and Mg remain in solid phase at higher temperatures (>1200°C). Simulation of pressurised gasification conditions shows that higher pressures increase the temperature at which solid-to-gaseous phase transformations takes place. PMID:26603198

  10. Market Assessment of Biomass Gasification and Combustion Technology for Small- and Medium-Scale Applications

    SciTech Connect

    Peterson, D.; Haase, S.

    2009-07-01

    This report provides a market assessment of gasification and direct combustion technologies that use wood and agricultural resources to generate heat, power, or combined heat and power (CHP) for small- to medium-scale applications. It contains a brief overview of wood and agricultural resources in the U.S.; a description and discussion of gasification and combustion conversion technologies that utilize solid biomass to generate heat, power, and CHP; an assessment of the commercial status of gasification and combustion technologies; a summary of gasification and combustion system economics; a discussion of the market potential for small- to medium-scale gasification and combustion systems; and an inventory of direct combustion system suppliers and gasification technology companies. The report indicates that while direct combustion and close-coupled gasification boiler systems used to generate heat, power, or CHP are commercially available from a number of manufacturers, two-stage gasification systems are largely in development, with a number of technologies currently in demonstration. The report also cites the need for a searchable, comprehensive database of operating combustion and gasification systems that generate heat, power, or CHP built in the U.S., as well as a national assessment of the market potential for the systems.

  11. Production of hydrogen from biomass by catalytic steam reforming of fast pyrolysis oil

    SciTech Connect

    Czernik, S.; Wang, D.; Chornet, E.

    1998-08-01

    Hydrogen is the prototype of the environmentally cleanest fuel of interest for power generation using fuel cells and for transportation. The thermochemical conversion of biomass to hydrogen can be carried out through two distinct strategies: (a) gasification followed by water-gas shift conversion, and (b) catalytic steam reforming of specific fractions derived from fast pyrolysis and aqueous/steam processes of biomass. This paper presents the latter route that begins with fast pyrolysis of biomass to produce bio-oil. This oil (as a whole or its selected fractions) can be converted to hydrogen via catalytic steam reforming followed by a water-gas shift conversion step. Such a process has been demonstrated at the bench scale using model compounds, poplar oil aqueous fraction, and the whole pyrolysis oil with commercial Ni-based steam reforming catalysts. Hydrogen yields as high as 85% have been obtained. Catalyst initial activity can be recovered through regeneration cycles by steam or CO{sub 2} gasification of carbonaceous deposits.

  12. Catalytic Gasification of Coal using Eutectic Salt Mixtures

    SciTech Connect

    Atul Sheth; Pradeep Agrawal; Yaw D. Yeboah

    1998-12-04

    The objectives of this study are to: identify appropriate eutectic salt mixture catalysts for coal gasification; assess agglomeration tendency of catalyzed coal; evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; evaluate the recovery, regeneration and recycle of the spent catalysts; and conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process. A review of the collected literature was carried out. The catalysts which have been used for gasification can be roughly classified under the following five groups: alkali metal salts; alkaline earth metal oxides and salts; mineral substances or ash in coal; transition metals and their oxides and salts; and eutectic salt mixtures. Studies involving the use of gasification catalysts have been conducted. However, most of the studies focused on the application of individual catalysts. Only two publications have reported the study of gasification of coal char in CO2 and steam catalyzed by eutectic salt mixture catalysts. By using the eutectic mixtures of salts that show good activity as individual compounds, the gasification temperature can be reduced possibly with still better activity and gasification rates due to improved dispersion of the molten catalyst on the coal particles. For similar metal/carbon atomic ratios, eutectic catalysts were found to be consistently more active than their respective single salts. But the exact roles that the eutectic salt mixtures play in these are not well understood and details of the mechanisms remain unclear. The effects of the surface property of coals and the application methods of eutectic salt mixture catalysts with coal chars on the reactivity of gasification will be studied. Based on our preliminary evaluation of the literature, a ternary

  13. Behavior of chars from Bursa Mustafa Kemal Pasa Alpagut and Balkesir Dursunbey Cakiirca Lignite (Turkey) during non-catalytic and catalytic gasification

    SciTech Connect

    Bozkurt, Y.; Misirlioglu, Z.; Sinag, A.; Tekes, A.T.; Canel, M.

    2008-07-01

    The reactivities of chars obtained by pyrolysis of Bursa Mustafa Kemal Pasa Alpagut lignite and Balkesir Dursunbey Cakiirca lignite (Turkey) at different temperatures were determined by CO{sub 2} gasification and by combustion with O{sub 2}. Catalytic effect of Na{sub 2}CO{sub 3} on the CO{sub 2} and O{sub 2} gasification reactivity of chars was investigated. Gasification tests were performed in the fixed bed reactors operating at ambient pressure. Reactivity of chars during the CO{sub 2} gasification reactions was determined by calculating the reaction rate constants and reactivity of chars during the O{sub 2} gasification was determined by using ignition temperatures of the samples. Activation energies and Arrhenius constants of the chars on the CO{sub 2} gasification reactions were also calculated by the help of Arrhenius curves. The activation energy for CO{sub 2} gasification was generally decreased with pyrolysis temperature, due to the different surface characteristics and different nature of carbon atoms gasified as the gasification reactions proceed. Generally, the increase in pyrolysis temperature leads to an increase in gasification reactivity with CO{sub 2}. The reactivity of chars in catalytic gasification was higher than the corresponding non-catalytic reactivity of the same chars. Ignition temperature increased with increasing pyrolysis temperature.

  14. Characterization of Scots pine stump-root biomass as feed-stock for gasification.

    PubMed

    Eriksson, Daniel; Weiland, Fredrik; Hedman, Henry; Stenberg, Martin; Öhrman, Olov; Lestander, Torbjörn A; Bergsten, Urban; Öhman, Marcus

    2012-01-01

    The main objective was to explore the potential for gasifying Scots pine stump-root biomass (SRB). Washed thin roots, coarse roots, stump heartwood and stump sapwood were characterized (solid wood, milling and powder characteristics) before and during industrial processing. Non-slagging gasification of the SRB fuels and a reference stem wood was successful, and the gasification parameters (synthesis gas and bottom ash characteristics) were similar. However, the heartwood fuel had high levels of extractives (≈19%) compared to the other fuels (2-8%) and thereby ≈16% higher energy contents but caused disturbances during milling, storage, feeding and gasification. SRB fuels could be sorted automatically according to their extractives and moisture contents using near-infrared spectroscopy, and their amounts and quality in forests can be predicted using routinely collected stand data, biomass functions and drill core analyses. Thus, SRB gasification has great potential and the proposed characterizations exploit it. PMID:22130078

  15. Integrated Process Configuration for High-Temperature Sulfur Mitigation during Biomass Conversion via Indirect Gasification

    SciTech Connect

    Dutta. A.; Cheah, S.; Bain, R.; Feik, C.; Magrini-Bair, K.; Phillips, S.

    2012-06-20

    Sulfur present in biomass often causes catalyst deactivation during downstream operations after gasification. Early removal of sulfur from the syngas stream post-gasification is possible via process rearrangements and can be beneficial for maintaining a low-sulfur environment for all downstream operations. High-temperature sulfur sorbents have superior performance and capacity under drier syngas conditions. The reconfigured process discussed in this paper is comprised of indirect biomass gasification using dry recycled gas from downstream operations, which produces a drier syngas stream and, consequently, more-efficient sulfur removal at high temperatures using regenerable sorbents. A combination of experimental results from NREL's fluidizable Ni-based reforming catalyst, fluidizable Mn-based sulfur sorbent, and process modeling information show that using a coupled process of dry gasification with high-temperature sulfur removal can improve the performance of Ni-based reforming catalysts significantly.

  16. Biomass-oxygen gasification in a high-temperature entrained-flow gasifier.

    PubMed

    Zhou, Jinsong; Chen, Qing; Zhao, Hui; Cao, Xiaowei; Mei, Qinfeng; Luo, Zhongyang; Cen, Kefa

    2009-01-01

    The technology associated with indirect biomass liquefaction is currently arousing increased attention, as it could ensure a supply of transportation fuels and reduce the use of petroleum. The characteristics of biomass-oxygen gasification in a bench-scale laminar entrained-flow gasifier were studied in the paper. Experiments were carried out to investigate the influence of some key factors, including reaction temperature, residence time and oxygen/biomass ratio, on the gasification. The results indicated that higher temperature favored H2 and CO production. Cold gas efficiency was improved by N10% when the temperature was increased from 1000 to 1400 degrees C. The carbon conversion increased and the syngas quality was improved with increasing residence time. A shorter residence resulted in incomplete gasification. An optimal residence time of 1.6 s was identified in this study. The introduction of oxygen to the gasifier strengthened the gasification and improved the carbon conversion, but lowered the lower heating value and the H2/CO ratio of the syngas. The optimal oxygen/biomass ratio in this study was 0.4. The results of this study will help to improve our understanding of syngas production by biomass high-temperature gasification. PMID:19393735

  17. Hydrogen production from biomass gasification using biochar as a catalyst/support.

    PubMed

    Yao, Dingding; Hu, Qiang; Wang, Daqian; Yang, Haiping; Wu, Chunfei; Wang, Xianhua; Chen, Hanping

    2016-09-01

    Biochar is a promising catalyst/support for biomass gasification. Hydrogen production from biomass steam gasification with biochar or Ni-based biochar has been investigated using a two stage fixed bed reactor. Commercial activated carbon was also studied as a comparison. Catalyst was prepared with an impregnation method and characterized by X-ray diffraction, specific surface and porosity analysis, X-ray fluorescence and scanning electron micrograph. The effects of gasification temperature, steam to biomass ratio, Ni loading and bio-char properties on catalyst activity in terms of hydrogen production were explored. The Ni/AC catalyst showed the best performance at gasification temperature of 800°C, S/B=4, Ni loading of 15wt.%. Texture and composition characterization of the catalysts suggested the interaction between volatiles and biochar promoted the reforming of pyrolysis volatiles. Cotton-char supported Ni exhibited the highest activity of H2 production (64.02vol.%, 92.08mgg(-1) biomass) from biomass gasification, while rice-char showed the lowest H2 production. PMID:27240230

  18. Biomass gasification with air in fluidized bed: Reforming of the gas composition with commercial steam reforming catalysts

    SciTech Connect

    Corella, J.; Orio, A.; Aznar, P.

    1998-12-01

    Four commercial catalysts for steam reforming of higher hydrocarbons (naphthas) and three for steam reforming of light hydrocarbons are tested for hot gas clean up and upgrading in biomass gasification with air in fluidized bed. The catalysts used originate from four manufacturers: BASF, AG, ICI-Katalco, Haldor Topsoe a/s, and United Catalysts Inc. The work is performed in a small pilot plant (1--2 kg of biomass fed/h) with three reactors in series: gasifier, guard bed of dolomite, and full flow catalytic bed. Samples of gas are taken before and after the catalytic bed at different times-on-stream. It is shown how the H{sub 2}, CO, CO{sub 2}, CH{sub 4} and steam contents in the flue gas change because of the catalytic bed approaching contents near to the ones corresponding to the equilibrium state. Variations in the heating value of the gas and gas yield as a result of the catalytic bed are also reported.

  19. Techno-Economics for Conversion of Lignocellulosic Biomass to Ethanol by Indirect Gasification and Mixed Alcohol Synthesis

    SciTech Connect

    Abhijit Dutta; Michael Talmadge; Jesse Hensley; Matt Worley; Doug Dudgeon; David Barton; Peter Groenendijk; Daniela Ferrari; Brien Stears; Erin Searcy; Christopher Wright; J. Richard Hess

    2012-07-01

    This techno-economic study investigates the production of ethanol and a higher alcohols coproduct by conversion of lignocelluosic biomass to syngas via indirect gasification followed by gas-to-liquids synthesis over a precommercial heterogeneous catalyst. The design specifies a processing capacity of 2,205 dry U.S. tons (2,000 dry metric tonnes) of woody biomass per day and incorporates 2012 research targets from NREL and other sources for technologies that will facilitate the future commercial production of cost-competitive ethanol. Major processes include indirect steam gasification, syngas cleanup, and catalytic synthesis of mixed alcohols, and ancillary processes include feed handling and drying, alcohol separation, steam and power generation, cooling water, and other operations support utilities. The design and analysis is based on research at NREL, other national laboratories, and The Dow Chemical Company, and it incorporates commercial technologies, process modeling using Aspen Plus software, equipment cost estimation, and discounted cash flow analysis. The design considers the economics of ethanol production assuming successful achievement of internal research targets and nth-plant costs and financing. The design yields 83.8 gallons of ethanol and 10.1 gallons of higher-molecular-weight alcohols per U.S. ton of biomass feedstock. A rigorous sensitivity analysis captures uncertainties in costs and plant performance.

  20. ECONOMIC EVALUATION OF CO2 SEQUESTRATION TECHNOLOGIES TASK 4, BIOMASS GASIFICATION-BASED PROCESSING

    SciTech Connect

    Martha L. Rollins; Les Reardon; David Nichols; Patrick Lee; Millicent Moore; Mike Crim; Robert Luttrell; Evan Hughes

    2002-06-01

    Biomass derived energy currently accounts for about 3 quads of total primary energy use in the United States. Of this amount, about 0.8 quads are used for power generation. Several biomass energy production technologies exist today which contribute to this energy mix. Biomass combustion technologies have been the dominant source of biomass energy production, both historically and during the past two decades of expansion of modern biomass energy in the U. S. and Europe. As a research and development activity, biomass gasification has usually been the major emphasis as a method of more efficiently utilizing the energy potential of biomass, particularly wood. Numerous biomass gasification technologies exist today in various stages of development. Some are simple systems, while others employ a high degree of integration for maximum energy utilization. The purpose of this study is to conduct a technical and economic comparison of up to three biomass gasification technologies, including the carbon dioxide emissions reduction potential of each. To accomplish this, a literature search was first conducted to determine which technologies were most promising based on a specific set of criteria. The technical and economic performances of the selected processes were evaluated using computer models and available literature. Using these results, the carbon sequestration potential of the three technologies was then evaluated. The results of these evaluations are given in this final report.

  1. ECONOMIC EVALUATION OF CO2 SEQUESTRATION TECHNOLOGIES TASK 4, BIOMASS GASIFICATION-BASED PROCESSING

    SciTech Connect

    Martha L. Rollins; Les Reardon; David Nichols; Patrick Lee; Millicent Moore; Mike Crim; Robert Luttrell; Evan Hughes

    2002-04-01

    Biomass derived energy currently accounts for about 3 quads of total primary energy use in the United States. Of this amount, about 0.8 quads are used for power generation. Several biomass energy production technologies exist today which contribute to this energy mix. Biomass combustion technologies have been the dominant source of biomass energy production, both historically and during the past two decades of expansion of modern biomass energy in the U. S. and Europe. As a research and development activity, biomass gasification has usually been the major emphasis as a method of more efficiently utilizing the energy potential of biomass, particularly wood. Numerous biomass gasification technologies exist today in various stages of development. Some are simple systems, while others employ a high degree of integration for maximum energy utilization. The purpose of this study is to conduct a technical and economic comparison of up to three biomass gasification technologies, including the carbon dioxide emissions reduction potential of each. To accomplish this, a literature search was first conducted to determine which technologies were most promising based on a specific set of criteria. During this reporting period, the technical and economic performances of the selected processes were evaluated using computer models and available literature. The results of these evaluations are summarized in this report.

  2. A model approach to highly dispersing catalytic materials in coal for gasification

    SciTech Connect

    Abotsi, G.M.K.; Bota, K.B.

    1992-01-01

    This project seeks to develop a technique, based on coal surface properties, for highly dispersing catalysts in coal for gasification and to investigate the potential of using potassium carbonate and calcium acetate mixtures as catalysts for coal gasification. The lower cost and higher catalytic activity of the latter compound will produce economic benefits by reducing the amount of K[sub 2]CO[sub 3] required for high coal char reactivities. As was shown in previous reports, coal loading with potassium or calcium at different pHs produced CO[sub 2] gasification activities which increased in the order pH 6 > pH 10 >>pH 1. A similar trend was obtained when calcium and potassium were simultaneously loaded and char reaction times were less than about 75 min. In the last quarter, the potential application of ammonia as a reactive medium for coal gasification has been investigated. This gas has not been previously applied to coal gasification. However, related work suggests that the potential chemical feedstock base can be broadened by using ammonia to generate hydrogen cyanide and cyanogen from coal. The current report shows that the reactivity of a demineralized lignite in ammonia is significantly higher in the presence of calcium or potassium catalyst than that for the char without added catalyst and suggests that ammonia is a potentially reactive gas for catalyzed coal gasification.

  3. Transient kinetics study of catalytic char gasification in carbon dioxide

    SciTech Connect

    Lizzio, A.A.; Radovic, L.R. . Dept. of Materials Science and Engineering)

    1991-08-01

    In this paper, the deactivation behavior of K, Ca, and Ni catalysts during carbon (char) gasification in CO{sub 2} is investigated. Correlations were sought between gasification rates and reactive surface areas (RSA) of the chars. In addition, the results allowed some speculation on recently proposed mechanisms of catalysis. An excellent correlation was found in the case of K catalysis, suggesting the rate-determining step in the overall mechanism to be the same as in the uncatalyzed reaction, i.e., desorption of the reactive C(O) intermediate. For the Ca-catalyzed reaction, the quality of the correlation depended on catalyst dispersion, suggesting that an additional process, besides the direct decomposition of the reactive C(O) intermediate, contributed to the transient evolution of CO (e.g., oxygen spillover). No correlation was found for Ni-catalyzed gasification; an oxygen-transfer mechanism is proposed to explain these findings. Mixed catalyst systems (Ca/K, K/Ni, Ca/Ni) were also studied. An excellent correlation between reactivity and RSA was observed in cases where the K-catalyzed reaction was dominant.

  4. Taguchi approach for co-gasification optimization of torrefied biomass and coal.

    PubMed

    Chen, Wei-Hsin; Chen, Chih-Jung; Hung, Chen-I

    2013-09-01

    This study employs the Taguchi method to approach the optimum co-gasification operation of torrefied biomass (eucalyptus) and coal in an entrained flow gasifier. The cold gas efficiency is adopted as the performance index of co-gasification. The influences of six parameters, namely, the biomass blending ratio, oxygen-to-fuel mass ratio (O/F ratio), biomass torrefaction temperature, gasification pressure, steam-to-fuel mass ratio (S/F ratio), and inlet temperature of the carrier gas, on the performance of co-gasification are considered. The analysis of the signal-to-noise ratio suggests that the O/F ratio is the most important factor in determining the performance and the appropriate O/F ratio is 0.7. The performance is also significantly affected by biomass along with torrefaction, where a torrefaction temperature of 300°C is sufficient to upgrade eucalyptus. According to the recommended operating conditions, the values of cold gas efficiency and carbon conversion at the optimum co-gasification are 80.99% and 94.51%, respectively. PMID:23907063

  5. Biomass waste gasification - Can be the two stage process suitable for tar reduction and power generation?

    SciTech Connect

    Sulc, Jindrich; Stojdl, Jiri; Richter, Miroslav; Popelka, Jan; Svoboda, Karel; Smetana, Jiri; Vacek, Jiri; Skoblja, Siarhei; Buryan, Petr

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Comparison of one stage (co-current) and two stage gasification of wood pellets. Black-Right-Pointing-Pointer Original arrangement with grate-less reactor and upward moving bed of the pellets. Black-Right-Pointing-Pointer Two stage gasification leads to drastic reduction of tar content in gas. Black-Right-Pointing-Pointer One stage gasification produces gas with higher LHV at lower overall ER. Black-Right-Pointing-Pointer Content of ammonia in gas is lower in two stage moving bed gasification. - Abstract: A pilot scale gasification unit with novel co-current, updraft arrangement in the first stage and counter-current downdraft in the second stage was developed and exploited for studying effects of two stage gasification in comparison with one stage gasification of biomass (wood pellets) on fuel gas composition and attainable gas purity. Significant producer gas parameters (gas composition, heating value, content of tar compounds, content of inorganic gas impurities) were compared for the two stage and the one stage method of the gasification arrangement with only the upward moving bed (co-current updraft). The main novel features of the gasifier conception include grate-less reactor, upward moving bed of biomass particles (e.g. pellets) by means of a screw elevator with changeable rotational speed and gradual expanding diameter of the cylindrical reactor in the part above the upper end of the screw. The gasifier concept and arrangement are considered convenient for thermal power range 100-350 kW{sub th}. The second stage of the gasifier served mainly for tar compounds destruction/reforming by increased temperature (around 950 Degree-Sign C) and for gasification reaction of the fuel gas with char. The second stage used additional combustion of the fuel gas by preheated secondary air for attaining higher temperature and faster gasification of the remaining char from the first stage. The measurements of gas composition and tar

  6. Analysis of energetic and exergetic efficiency, and environmental benefits of biomass integrated gasification combined cycle technology.

    PubMed

    Mínguez, María; Jiménez, Angel; Rodríguez, Javier; González, Celina; López, Ignacio; Nieto, Rafael

    2013-04-01

    The problem of the high carbon dioxide emissions linked to power generation makes necessary active research on the use of biofuels in gas turbine systems as a promising alternative to fossil fuels. Gasification of biomass waste is particularly of interest in obtaining a fuel to be run in gas turbines, as it is an efficient biomass-to-biofuel conversion process, and an integration into a combined cycle power plant leads to a high performance with regard to energetic efficiency. The goal of this study was to carry out an energetic, exergetic and environmental analysis of the behaviour of an integrated gasification combined cycle (IGCC) plant fuelled with different kinds of biomass waste by means of simulations. A preliminary economic study is also included. Although a technological development in gasification technology is necessary, the results of simulations indicate a high technical and environmental interest in the use of biomass integrated gasification combined cycle (BioIGCC) systems for large-scale power generation from biomass waste. PMID:23444152

  7. Behaviors of Char Gasification Based on Two-stage Gasifier of Biomass

    NASA Astrophysics Data System (ADS)

    Taniguchi, Miki; Sasauchi, Kenichi; Ahn, Chulju; Ito, Yusuke; Hayashi, Toshiaki; Akamatsu, Fumiteru

    In order to develop a small-scale gasifier in which biomass can be converted to energy with high efficiency, we planed a gasification process that consists of two parts: pyrolysis part (rotary kiln) and gasification part (downdraft gasifier). We performed fundamental experiments on gasification part and discussed the apropriate conditions such as air supply location, air ratio, air temperature and hearth load. The following results was found: 1) the air supply into the char bed is more effective than that into the gas phase, 2) we can have the maximum cold gas efficiency of 80% on the following conditions: air supply location: char layer, air temperature: 20°C, air ratio: 0.2. 3) As air temperature is higher, the cold gas efficiency is larger. As for the hearth load, the cold gas efficiency becomes higher and reaches the constant level. It is expected from the results that high temperature in the char layer is effective on the char gasification.

  8. Steam gasification of acid-hydrolysis biomass CAHR for clean syngas production.

    PubMed

    Chen, Guanyi; Yao, Jingang; Yang, Huijun; Yan, Beibei; Chen, Hong

    2015-03-01

    Main characteristics of gaseous product from steam gasification of acid-hydrolysis biomass CAHR have been investigated experimentally. The comparison in terms of evolution of syngas flow rate, syngas quality and apparent thermal efficiency was made between steam gasification and pyrolysis in the lab-scale apparatus. The aim of this study was to determine the effects of temperature and steam to CAHR ratio on gas quality, syngas yield and energy conversion. The results showed that syngas and energy yield were better with gasification compared to pyrolysis under identical thermal conditions. Both high gasification temperature and introduction of proper steam led to higher gas quality, higher syngas yield and higher energy conversion efficiency. However, excessive steam reduced hydrogen yield and energy conversion efficiency. The optimal value of S/B was found to be 3.3. The maximum value of energy ratio was 0.855 at 800°C with the optimal S/B value. PMID:25553562

  9. Investigation of Prediction Method and Fundamental Thermo-decomposition Properties on Gasification of Woody Biomass

    NASA Astrophysics Data System (ADS)

    Morita, Akihiro

    Recently, development of energy transfer technology based on woody biomass remarkably has been forwarding accompanied biomass boom for gasification and liquefaction. To elevate on yield of energy into biomass for transportation and exergy is extremely important for essential utilization and production of bio-fuels. Because, conversion to bio-fuel must be discussion in detail thermo-decomposition characteristics for biomass main composition formed on cellulose and hemicelluloses, lignin. In this research, we analyze thermo-decomposition characteristics of each biomass main composition on both active (air) and passive (N2) atmosphere. Especially, we suggest predict model of gasification based on change of atomic carbon ratio with thermo-decomposition. 1) Even if it heat-treats cedar chip by 473K, loss of energy hardly produces it. From this, it acquired that the substance contributed to weight reduction was a low ingredient of energy value. 2) If cedar chip is heated in the 473K around, it can be predicted that the substance with a low energy value like water or acetic acid has arisen by thermal decomposition. It suggested that the transportation performance of the biomass improved by choosing and eliminating these. 3) Each ingredient of hydrogen, nitrogen, and oxygen which dissipated in the gasification process acquired that it was direct proportion to the carbonaceous dissipation rate. 4) The action at the time of thermo-decomposition of (the carbon, hydrogen, nitrogen, oxygen which are) the main constituent factors of the biomass suggested a possibility of being predicted by a statistical method.

  10. Characteristics of Catalytic Gasification of Natural Coke with H2O in a Fluidized Bed

    NASA Astrophysics Data System (ADS)

    Lin, L. S.; Zhao, C. S.; Wang, S.; Zhu, G.; Xiang, W. G.

    The experimental investigation on gasification characteristics of natural coke from Peicheng, Jiangsu with steam were conducted in a fluidized bed gasifier setup. The effects of several parameters, in terms of the catalyst type, the catalyst mixed manner and the dosage of catalyst over coke on the yield, the components, the heating value of fuel gas and the carbon conversion rate were examined. Results indicate that the fluidized bed gasification technology could overcome the shortcomings of natural coke. Ca-, Fe- and Cu-based nitrates could improve the gasification reaction effectively with a little difference, they could be listed in a descending sequence as follows: Cu-based>Fe-based>Ca-based according to their catalytic effect. The influences of Fe/Ca ratio and Cu/Ca ratio on gasification are similar, gas yield, carbon conversion rate and gas heating value per hour increase as Fe/Ca ratio or Cu/Ca ratio increases, but all of them go up first and then drop with decrease in Fe/Cu ratio. When the dosage of Ca-, Fe- and Cu-based nitrates mixed with the ratio of Ca/Fe/Cu= 10/35/55 is 3%, the best catalytic effect is achieved.

  11. THE PRODUCTION OF SYNGAS VIA HIGH TEMPERATURE ELECTROLYSIS AND BIO-MASS GASIFICATION

    SciTech Connect

    M. G. McKellar; G. L. Hawkes; J. E. O'Brien

    2008-11-01

    A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to improve the hydrogen production efficiency of the steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon dioxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K.

  12. Generation of hydrogen rich gas through fluidized bed gasification of biomass.

    PubMed

    Karmakar, M K; Datta, A B

    2011-01-01

    The objective of this study was to investigate the process of generating hydrogen rich syngas through thermo chemical fluidized bed gasification of biomass. The experiments were performed in a laboratory scale externally heated biomass gasifier. Rice husk had been taken as a representative biomass and, steam had been used as the fluidizing and gasifying media. A thermodynamic equilibrium model was used to predict the gasification process. The work included the parametric study of process parameters such as reactor temperature and steam biomass ratio which generally influence the percentage of hydrogen content in the product gas. Steam had been used here to generate nitrogen free product gas and also to increase the hydrogen concentration in syngas with a medium range heating value of around 12 MJ/Nm3. PMID:20797847

  13. Fuzzy Bayesian Network-Bow-Tie Analysis of Gas Leakage during Biomass Gasification.

    PubMed

    Yan, Fang; Xu, Kaili; Yao, Xiwen; Li, Yang

    2016-01-01

    Biomass gasification technology has been rapidly developed recently. But fire and poisoning accidents caused by gas leakage restrict the development and promotion of biomass gasification. Therefore, probabilistic safety assessment (PSA) is necessary for biomass gasification system. Subsequently, Bayesian network-bow-tie (BN-bow-tie) analysis was proposed by mapping bow-tie analysis into Bayesian network (BN). Causes of gas leakage and the accidents triggered by gas leakage can be obtained by bow-tie analysis, and BN was used to confirm the critical nodes of accidents by introducing corresponding three importance measures. Meanwhile, certain occurrence probability of failure was needed in PSA. In view of the insufficient failure data of biomass gasification, the occurrence probability of failure which cannot be obtained from standard reliability data sources was confirmed by fuzzy methods based on expert judgment. An improved approach considered expert weighting to aggregate fuzzy numbers included triangular and trapezoidal numbers was proposed, and the occurrence probability of failure was obtained. Finally, safety measures were indicated based on the obtained critical nodes. The theoretical occurrence probabilities in one year of gas leakage and the accidents caused by it were reduced to 1/10.3 of the original values by these safety measures. PMID:27463975

  14. Fuzzy Bayesian Network-Bow-Tie Analysis of Gas Leakage during Biomass Gasification

    PubMed Central

    Yan, Fang; Xu, Kaili; Yao, Xiwen; Li, Yang

    2016-01-01

    Biomass gasification technology has been rapidly developed recently. But fire and poisoning accidents caused by gas leakage restrict the development and promotion of biomass gasification. Therefore, probabilistic safety assessment (PSA) is necessary for biomass gasification system. Subsequently, Bayesian network-bow-tie (BN-bow-tie) analysis was proposed by mapping bow-tie analysis into Bayesian network (BN). Causes of gas leakage and the accidents triggered by gas leakage can be obtained by bow-tie analysis, and BN was used to confirm the critical nodes of accidents by introducing corresponding three importance measures. Meanwhile, certain occurrence probability of failure was needed in PSA. In view of the insufficient failure data of biomass gasification, the occurrence probability of failure which cannot be obtained from standard reliability data sources was confirmed by fuzzy methods based on expert judgment. An improved approach considered expert weighting to aggregate fuzzy numbers included triangular and trapezoidal numbers was proposed, and the occurrence probability of failure was obtained. Finally, safety measures were indicated based on the obtained critical nodes. The theoretical occurrence probabilities in one year of gas leakage and the accidents caused by it were reduced to 1/10.3 of the original values by these safety measures. PMID:27463975

  15. Interaction and kinetic analysis for coal and biomass co-gasification by TG-FTIR.

    PubMed

    Xu, Chaofen; Hu, Song; Xiang, Jun; Zhang, Liqi; Sun, Lushi; Shuai, Chao; Chen, Qindong; He, Limo; Edreis, Elbager M A

    2014-02-01

    This study aims to investigate the interaction and kinetic behavior of CO2 gasification of coal, biomass and their blends by thermogravimetry analysis (TG). The gas products evolved from gasification were measured online with Fourier Transform Infrared Spectroscopy (FTIR) coupled with TG. Firstly, TG experiments indicated that interaction between the coals and biomasses mainly occurred during co-gasification process. The most significant synergistic interaction occurred for LN with SD at the blending mass ratio 4:1. Furthermore, thermal kinetic analysis indicated that the activation energy involved in co-gasification decreased as the SD content increased until the blending ratio of SD with coal reached 4:1. The rise of the frequency factor indicated that the increase of SD content favored their synergistic interaction. Finally, FTIR analysis of co-gasification of SD with LN indicated that except for CO, most gases including CH3COOH, C6H5OH, H2O, etc., were detected at around 50-700°C. PMID:24412857

  16. Product Characterization for Entrained Flow Coal/Biomass Co-Gasification

    SciTech Connect

    Maghzi, Shawn; Subramanian, Ramanathan; Rizeq, George; Singh, Surinder; McDermott, John; Eiteneer, Boris; Ladd, David; Vazquez, Arturo; Anderson, Denise; Bates, Noel

    2011-09-30

    The U.S. Department of Energy‘s National Energy Technology Laboratory (DOE NETL) is exploring affordable technologies and processes to convert domestic coal and biomass resources to high-quality liquid hydrocarbon fuels. This interest is primarily motivated by the need to increase energy security and reduce greenhouse gas emissions in the United States. Gasification technologies represent clean, flexible and efficient conversion pathways to utilize coal and biomass resources. Substantial experience and knowledge had been developed worldwide on gasification of either coal or biomass. However, reliable data on effects of blending various biomass fuels with coal during gasification process and resulting syngas composition are lacking. In this project, GE Global Research performed a complete characterization of the gas, liquid and solid products that result from the co-gasification of coal/biomass mixtures. This work was performed using a bench-scale gasifier (BSG) and a pilot-scale entrained flow gasifier (EFG). This project focused on comprehensive characterization of the products from gasifying coal/biomass mixtures in a high-temperature, high-pressure entrained flow gasifier. Results from this project provide guidance on appropriate gas clean-up systems and optimization of operating parameters needed to develop and commercialize gasification technologies. GE‘s bench-scale test facility provided the bulk of high-fidelity quantitative data under temperature, heating rate, and residence time conditions closely matching those of commercial oxygen-blown entrained flow gasifiers. Energy and Environmental Research Center (EERC) pilot-scale test facility provided focused high temperature and pressure tests at entrained flow gasifier conditions. Accurate matching of syngas time-temperature history during cooling ensured that complex species interactions including homogeneous and heterogeneous processes such as particle nucleation, coagulation, surface condensation, and

  17. Product Characterization for Entrained Flow Coal/Biomass Co-Gasification

    SciTech Connect

    Maghzi, Shawn; Subramanian, Ramanathan; Rizeq, George; Singh, Surinder; McDermott, John; Eiteneer, Boris; Ladd, David; Vazquez, Arturo; Anderson, Denise; Bates, Noel

    2011-12-11

    The U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) is exploring affordable technologies and processes to convert domestic coal and biomass resources to high-quality liquid hydrocarbon fuels. This interest is primarily motivated by the need to increase energy security and reduce greenhouse gas emissions in the United States. Gasification technologies represent clean, flexible and efficient conversion pathways to utilize coal and biomass resources. Substantial experience and knowledge had been developed worldwide on gasification of either coal or biomass. However, reliable data on effects of blending various biomass fuels with coal during gasification process and resulting syngas composition are lacking. In this project, GE Global Research performed a complete characterization of the gas, liquid and solid products that result from the co-gasification of coal/biomass mixtures. This work was performed using a bench-scale gasifier (BSG) and a pilot-scale entrained flow gasifier (EFG). This project focused on comprehensive characterization of the products from gasifying coal/biomass mixtures in a high-temperature, high-pressure entrained flow gasifier. Results from this project provide guidance on appropriate gas clean-up systems and optimization of operating parameters needed to develop and commercialize gasification technologies. GE's bench-scale test facility provided the bulk of high-fidelity quantitative data under temperature, heating rate, and residence time conditions closely matching those of commercial oxygen-blown entrained flow gasifiers. Energy and Environmental Research Center (EERC) pilot-scale test facility provided focused high temperature and pressure tests at entrained flow gasifier conditions. Accurate matching of syngas time-temperature history during cooling ensured that complex species interactions including homogeneous and heterogeneous processes such as particle nucleation, coagulation, surface condensation, and gas

  18. Biomass gasification with air in fluidized bed. Hot gas cleanup with selected commercial and full-size nickel-based catalysts

    SciTech Connect

    Caballero, M.A.; Corella, J.; Aznar, M.P.; Gil, J.

    2000-05-01

    Three selected commercial, full-size steam-reforming catalysts for naphthas, BASF G1-50, ICI 46-1, and Topsoee R-67, are tested at pilot-scale level for hot gas cleanup in biomass gasification in a fluidized bed. Gas composition and tar content in the flue gas are measured before and after the catalytic bed. Variations of the catalytic bed in H{sub 2}, CO, CO{sub 2}, CH{sub 4}, and H{sub 2}O contents are reported for different operating conditions. Tar conversions and an apparent first-order kinetics constant for the overall tar removal reaction are calculated. Tar contents at the exit of the catalytic reactor as low as 10 mg/m{sub n}{sup 3} are obtained in a test of 50 h-on-stream without noticeable catalyst deactivation. Important variations in tar conversion with space time in the catalytic bed, with H{sub 2}O/C* in the flue gas, and with the equivalence ratio in the upstream gasifier are observed. These results obtained at the pilot-scale level and with the use of full-sized commercial catalysts are an important forward step in demonstrating the technical feasibility of the overall biomass gasification process.

  19. Syngas suitability for solid oxide fuel cells applications produced via biomass steam gasification process: Experimental and modeling analysis

    NASA Astrophysics Data System (ADS)

    Pieratti, Elisa; Baratieri, Marco; Ceschini, Sergio; Tognana, Lorenzo; Baggio, Paolo

    The technologies and the processes for the use of biomass as an energy source are not always environmental friendly. It is worth to develop approaches aimed at a more sustainable exploitation of biomass, avoiding whenever possible direct combustion and rather pursuing fuel upgrade paths, also considering direct conversion to electricity through fuel cells. In this context, it is of particular interest the development of the biomass gasification technology for synthesis gas (i.e., syngas) production, and the utilization of the obtained gas in fuel cells systems, in order to generate energy from renewable resources. Among the different kind of fuel cells, SOFCs (solid oxide fuel cells), which can be fed with different type of fuels, seem to be also suitable for this type of gaseous fuel. In this work, the syngas composition produced by means of a continuous biomass steam gasifier (fixed bed) has been characterized. The hydrogen concentration in the syngas is around 60%. The system is equipped with a catalytic filter for syngas purification and some preliminary tests coupling the system with a SOFCs stack are shown. The data on the syngas composition and temperature profile measured during the experimental activity have been used to calibrate a 2-dimensional thermodynamic equilibrium model.

  20. Catalytic processes towards the production of biofuels in a palm oil and oil palm biomass-based biorefinery.

    PubMed

    Chew, Thiam Leng; Bhatia, Subhash

    2008-11-01

    In Malaysia, there has been interest in the utilization of palm oil and oil palm biomass for the production of environmental friendly biofuels. A biorefinery based on palm oil and oil palm biomass for the production of biofuels has been proposed. The catalytic technology plays major role in the different processing stages in a biorefinery for the production of liquid as well as gaseous biofuels. There are number of challenges to find suitable catalytic technology to be used in a typical biorefinery. These challenges include (1) economic barriers, (2) catalysts that facilitate highly selective conversion of substrate to desired products and (3) the issues related to design, operation and control of catalytic reactor. Therefore, the catalytic technology is one of the critical factors that control the successful operation of biorefinery. There are number of catalytic processes in a biorefinery which convert the renewable feedstocks into the desired biofuels. These include biodiesel production from palm oil, catalytic cracking of palm oil for the production of biofuels, the production of hydrogen as well as syngas from biomass gasification, Fischer-Tropsch synthesis (FTS) for the conversion of syngas into liquid fuels and upgrading of liquid/gas fuels obtained from liquefaction/pyrolysis of biomass. The selection of catalysts for these processes is essential in determining the product distribution (olefins, paraffins and oxygenated products). The integration of catalytic technology with compatible separation processes is a key challenge for biorefinery operation from the economic point of view. This paper focuses on different types of catalysts and their role in the catalytic processes for the production of biofuels in a typical palm oil and oil palm biomass-based biorefinery. PMID:18434141

  1. Bench-scale studies on gasification of biomass in the presence of catalysts

    SciTech Connect

    Mudge, L.K.; Baker, E.G.; Brown, M.D.; Wilcox, W.A.

    1987-11-01

    This report summarizes the results of bench-scale studies on the development of catalysts for conversion of biomass to specific gas products. The primary objective of these studies was to define operating conditions that allow long lifetimes for secondary catalysts used in biomass gasification. Nickel-based catalysts that were found to be active for conversion of wood to synthesis gases in previous studies were evaluated. These catalysts remained active indefinitely in laboratory studies but lost activity rapidly when evaluated in a process research unit. Bench-scale equipment was designed and installed to resolve the differences between laboratory and PRU results. Primary catalysts (alkali carbonates) were also evaluated for their effectiveness in improving conversion yields from biomass gasification. 21 refs., 27 figs., 19 tabs.

  2. Release characteristics of alkali and alkaline earth metallic species during biomass pyrolysis and steam gasification process.

    PubMed

    Long, Jiang; Song, Hu; Jun, Xiang; Sheng, Su; Lun-Shi, Sun; Kai, Xu; Yao, Yao

    2012-07-01

    Investigating the release characteristics of alkali and alkaline earth metallic species (AAEMs) is of potential interest because of AAEM's possible useful service as catalysts in biomass thermal conversion. In this study, three kinds of typical Chinese biomass were selected to pyrolyse and their chars were subsequently steam gasified in a designed quartz fixed-bed reactor to investigate the release characteristics of alkali and alkaline earth metallic species (AAEMs). The results indicate that 53-76% of alkali metal and 27-40% of alkaline earth metal release in pyrolysis process, as well as 12-34% of alkali metal and 12-16% of alkaline earth metal evaporate in char gasification process, and temperature is not the only factor to impact AAEMs emission. The releasing characteristics of AAEMs during pyrolysis and char gasification process of three kinds of biomass were discussed in this paper. PMID:22525260

  3. Experimental and predicted approaches for biomass gasification with enriched air-steam in a fluidised bed.

    PubMed

    Fu, Qirang; Huang, Yaji; Niu, Miaomiao; Yang, Gaoqiang; Shao, Zhiwei

    2014-10-01

    Thermo-chemical gasification of sawdust refuse-derived fuel was performed on a bench-scale fluidised bed gasifier with enriched air and steam as fluidising and oxidising agents. Dolomite as a natural mineral catalyst was used as bed material to reform tars and hydrocarbons. A series of experiments were carried out under typical operating conditions for gasification, as reported in the article. A modified equilibrium model, based on equilibrium constants, was developed to predict the gasification process. The sensitivity analysis of operating parameters, such as the fluidisation velocity, oxygen percentage of the enriched air and steam to biomass ratios on the produced gas composition, lower heating value, carbon conversion and cold gas efficiency was investigated. The results showed that the predicted syngas composition was in better agreement with the experimental data compared with the original equilibrium model. The higher fluidisation velocity enhanced gas-solid mixing, heat and mass transfers, and carbon fines elutriation, simultaneously. With the increase of oxygen percentage from 21% to 45%, the lower heating value of syngas increased from 5.52 MJ m(-3) to 7.75 MJ m(-3) and cold gas efficiency from 49.09% to 61.39%. The introduction of steam improved gas quality, but a higher steam to biomass ratio could decrease carbon conversion and gasification efficiency owing to a low steam temperature. The optimal value of steam to biomass ratio in this work was 1.0. PMID:25265865

  4. Release of fuel-bound nitrogen in biomass during high temperature pyrolysis and gasification

    SciTech Connect

    Zhou, J.; Masutani, S.M.; Ishimura, D.M.; Turn, S.Q.; Kinoshita, C.M.

    1997-12-31

    Pyrolysis and gasification of two biomass feedstocks with significantly different fuel-bound nitrogen (FBN) content were investigated to determine the effect of operating conditions on the partitioning of FBN among gas species. Experiments were performed in a bench-scale, indirectly-heated, fluidized bed reactor. Data were obtained over a range of temperatures and equivalence ratios representative of commercial biomass gasification processes. An assay of all major nitrogenous components of the gasification products was performed for the first time, providing a clear accounting of the evolution of FBN. Results indicate that: (1) NH{sub 3} is the dominant nitrogenous gas species produced during pyrolysis of biomass; (2) the majority of FBN is converted to NH{sub 3} or N{sub 2} during gasification; relative levels of NH{sub 3} and N{sub 2} are determined by thermochemical reactions which are affected strongly by temperature; (3) N{sub 2} appears to be produced from NH{sub 3} in the gas phase.

  5. Study on CO₂ gasification properties and kinetics of biomass chars and anthracite char.

    PubMed

    Wang, Guangwei; Zhang, Jianliang; Hou, Xinmei; Shao, Jiugang; Geng, Weiwei

    2015-02-01

    The CO2 gasification properties and kinetics of three biomass chars (WS-char, RL-char and PS-char) and anthracite char (AC-char) were investigated by thermogravimetric analysis method. Three nth-order representative gas-solid reaction models, random pore model (RPM), volume reaction model (VM) and unreacted core model (URCM) were employed to describe the reactive behavior of chars. Results show that gasification reactivity order of different chars from high to low was WS-char, PS-char, RL-char and AC-char. In addition, the chemical components as well as physical structures of four chars were systematically tested. It was found that gasification properties of char were determined by carbonaceous structure. It was concluded from kinetics analysis that RPM model was the best model for describing the reactivities of biomass chars and VM was the model that best fitted the gasification process of anthracite char. The activation energies obtained for the biomass and anthracite char samples lie in the range of 236.4-284.9 kJ/mol. PMID:25479395

  6. Gasification of biomass as a source of synfuels for developing countries

    NASA Astrophysics Data System (ADS)

    Moreira, J. R.; Antal, M. J., Jr.

    The economic viability of forest biomass gasification in furnishing feedstocks for synfuels production in Brazil is argued, on grounds of high net energy yield (due to minimal use of mechanization in the cultivation of timber such as Eucalyptus) and the high efficiency of acid hydrolysis and fast pyrolysis methods already being used. A thermochemical process still under development promises still-higher efficiency and greater economy than coal gasification and coal-fired electrical generation. Assuming a feedback cost of $1.00 per million Btu, a minimum gasoline precursor cost would be $0.35 a gallon.

  7. High temperature air-blown woody biomass gasification model for the estimation of an entrained down-flow gasifier.

    PubMed

    Kobayashi, Nobusuke; Tanaka, Miku; Piao, Guilin; Kobayashi, Jun; Hatano, Shigenobu; Itaya, Yoshinori; Mori, Shigekatsu

    2009-01-01

    A high temperature air-blown gasification model for woody biomass is developed based on an air-blown gasification experiment. A high temperature air-blown gasification experiment on woody biomass in an entrained down-flow gasifier is carried out, and then the simple gasification model is developed based on the experimental results. In the experiment, air-blown gasification is conducted to demonstrate the behavior of this process. Pulverized wood is used as the gasification fuel, which is injected directly into the entrained down-flow gasifier by the pulverized wood banner. The pulverized wood is sieved through 60 mesh and supplied at rates of 19 and 27kg/h. The oxygen-carbon molar ratio (O/C) is employed as the operational condition instead of the air ratio. The maximum temperature achievable is over 1400K when the O/C is from 1.26 to 1.84. The results show that the gas composition is followed by the CO-shift reaction equilibrium. Therefore, the air-blown gasification model is developed based on the CO-shift reaction equilibrium. The simple gasification model agrees well with the experimental results. From calculations in large-scale units, the cold gas is able to achieve 80% efficiency in the air-blown gasification, when the woody biomass feedrate is over 1000kg/h and input air temperature is 700K. PMID:18653324

  8. CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES

    SciTech Connect

    Atul Sheth; Chandramouli Sastry

    2001-03-31

    Most of the tasks on the project have successfully been completed and reported. A 12 month no-cost extension has been requested to complete the remaining tasks. This report summarizes the accomplishments of the first six months of the no-cost extensions period. The acetic acid extraction showed that acetic acid has more effect on the extraction of the ternary catalyst (LNK) ions than water. Based on the extraction results, the order of the recovery capability of Na{sub 2}CO{sub 3} using acetic acid, sulfuric acid and water extractions is sulfuric acid {ge} acetic acid > water; the order for K{sub 2}CO{sub 3} is sulfuric acid > water >acetic acid; and the order for Li{sub 2}CO{sub 3} is acetic acid > sulfuric acid >water. A process flowsheet for the catalyst recovery process was proposed based on the results. Scanning electron microscopy (SEM) studies showed most of the particles (coal) appear amorphous. Some coal particles are as large as 50-60 {micro}m, but most are smaller. One can also easily see a few crystalline particles (10-20 {micro}m) with sharp facets and corners. The electron micrographs of gasified char samples (reactor-aged) of the LNKcoal mixture showed that a dramatic change is obvious in the morphology and crystallinity of the sample and is consistent with the results obtained from the x-ray diffraction studies. XRD studies of reactor-aged samples showed a substantial increase in the sample crystallinity (due to the gasification of amorphous carbon). The eutectic salt presumably mostly converted to sulfates.

  9. Issues Impacting Refractory Service Life in Biomass/Waste Gasification

    SciTech Connect

    Bennett, J.P.; Kwong, K.-S.; Powell, C.A.

    2007-03-01

    Different carbon sources are used, or are being considered, as feedstock for gasifiers; including natural gas, coal, petroleum coke, and biomass. Biomass has been used with limited success because of issues such as ash impurity interactions with the refractory liner, which will be discussed in this paper.

  10. Biomass waste gasification - can be the two stage process suitable for tar reduction and power generation?

    PubMed

    Sulc, Jindřich; Stojdl, Jiří; Richter, Miroslav; Popelka, Jan; Svoboda, Karel; Smetana, Jiří; Vacek, Jiří; Skoblja, Siarhei; Buryan, Petr

    2012-04-01

    A pilot scale gasification unit with novel co-current, updraft arrangement in the first stage and counter-current downdraft in the second stage was developed and exploited for studying effects of two stage gasification in comparison with one stage gasification of biomass (wood pellets) on fuel gas composition and attainable gas purity. Significant producer gas parameters (gas composition, heating value, content of tar compounds, content of inorganic gas impurities) were compared for the two stage and the one stage method of the gasification arrangement with only the upward moving bed (co-current updraft). The main novel features of the gasifier conception include grate-less reactor, upward moving bed of biomass particles (e.g. pellets) by means of a screw elevator with changeable rotational speed and gradual expanding diameter of the cylindrical reactor in the part above the upper end of the screw. The gasifier concept and arrangement are considered convenient for thermal power range 100-350 kW(th). The second stage of the gasifier served mainly for tar compounds destruction/reforming by increased temperature (around 950°C) and for gasification reaction of the fuel gas with char. The second stage used additional combustion of the fuel gas by preheated secondary air for attaining higher temperature and faster gasification of the remaining char from the first stage. The measurements of gas composition and tar compound contents confirmed superiority of the two stage gasification system, drastic decrease of aromatic compounds with two and higher number of benzene rings by 1-2 orders. On the other hand the two stage gasification (with overall ER=0.71) led to substantial reduction of gas heating value (LHV=3.15 MJ/Nm(3)), elevation of gas volume and increase of nitrogen content in fuel gas. The increased temperature (>950°C) at the entrance to the char bed caused also substantial decrease of ammonia content in fuel gas. The char with higher content of ash leaving the

  11. A Life Cycle Assessment on a Fuel Production Through Distributed Biomass Gasification Process

    NASA Astrophysics Data System (ADS)

    Dowaki, Kiyoshi; Eguchi, Tsutomu; Ohkubo, Rui; Genchi, Yutaka

    In this paper, we estimated life cycle inventories (energy intensities and CO2 emissions) on the biomass gasification CGS, Bio-H2, Bio-MeOH (methanol) and Bio-DME (di-methyl ether), using the bottom-up methodology. CO2 emissions and energy intensities on material's chipping, transportation and dryer operation were estimated. Also, the uncertainties on the moisture content of biomass materials and the transportation distance to the plant were considered by the Monte Carlo simulation. The energy conversion system was built up by gasification through the BLUE Tower process, with either CGS, PSA (Pressure Swing Absorption) system or the liquefaction process. In our estimation, the biomass materials were the waste products from Japanese Cedar. The uncertainties of moisture content and transportation distance were assumed to be 20 to 50 wt.% and 5 to 50 km, respectively. The capability of the biomass gasification plant was 10 t-dry/d, that is, an annual throughput of 3,000 t-dry/yr. The production energy in each case was used as a functional unit. Finally, the energy intensities of 1.12 to 3.09 MJ/MJ and CO2 emissions of 4.79 to 88.0 g-CO2/MJ were obtained. CGS case contributes to the environmental mitigation, and Bio-H2 and/or Bio-DME cases have a potential to reduce CO2 emissions, compared to the conventional ones.

  12. Hydrogen production by high-temperature steam gasification of biomass and coal

    SciTech Connect

    Kriengsak, S.N.; Buczynski, R.; Gmurczyk, J.; Gupta, A.K.

    2009-04-15

    High-temperature steam gasification of paper, yellow pine woodchips, and Pittsburgh bituminous coal was investigated in a batch-type flow reactor at temperatures in the range of 700 to 1,200{sup o}C at two different ratios of steam to feedstock molar ratios. Hydrogen yield of 54.7% for paper, 60.2% for woodchips, and 57.8% for coal was achieved on a dry basis, with a steam flow rate of 6.3 g/min at steam temperature of 1,200{sup o}C. Yield of both the hydrogen and carbon monoxide increased while carbon dioxide and methane decreased with the increase in gasification temperature. A 10-fold reduction in tar residue was obtained at high-temperature steam gasification, compared to low temperatures. Steam and gasification temperature affects the composition of the syngas produced. Higher steam-to-feedstock molar ratio had negligible effect on the amount of hydrogen produced in the syngas in the fixed-batch type of reactor. Gasification temperature can be used to control the amounts of hydrogen or methane produced from the gasification process. This also provides mean to control the ratio of hydrogen to CO in the syngas, which can then be processed to produce liquid hydrocarbon fuel since the liquid fuel production requires an optimum ratio between hydrogen and CO. The syngas produced can be further processed to produce pure hydrogen. Biomass fuels are good source of renewable fuels to produce hydrogen or liquid fuels using controlled steam gasification.

  13. Operational characteristics of a 1.2-MW biomass gasification and power generation plant.

    PubMed

    Wu, Chuang-zhi; Yin, Xiu-li; Ma, Long-long; Zhou, Zhao-qiu; Chen, Han-ping

    2009-01-01

    In this study, we analyzed the operational characteristics of a 1.2-MW rice husk gasification and power generation plant located in Changxing, Zhejiang province, China. The influences of gasification temperature, equivalence ratio (ER), feeding rate and rice husk water content on the gasification characteristics in a fluidized bed gasifier were investigated. The axial temperature profile in the dense phase of the gasifier showed that inadequate fluidization occurred inside the bed, and that the temperature was closely related to changes in ER and feeding rate. The bed temperature increased linearly with increasing ER when the feeding rate was kept constant, while a higher feeding rate corresponded to a lower bed temperature at fixed ER. The gas heating value decreased with increasing temperature, while the feeding rate had little effect. When the gasification temperature was 700-800 degrees C, the gas heating value ranged from 5450-6400 kJ/Nm(3). The water content of the rice husk had an obvious influence on the operation of the gasifier: increases in water content up to 15% resulted in increasing ER and gas yield, while water contents above 15% caused aberrant temperature fluctuations. The problems in this plant are discussed in the light of operational experience of MW-scale biomass gasification and power generation plants. PMID:19397988

  14. Process simulation of biomass gasification integrated with a solid oxide fuel cell stack

    NASA Astrophysics Data System (ADS)

    Doherty, Wayne; Reynolds, Anthony; Kennedy, David

    2015-03-01

    Biomass gasification-solid oxide fuel cell (BG-SOFC) combined heat and power (CHP) systems are of major interest in the context of climate change mitigation, energy security and increasing energy efficiency. Aspen Plus is employed to simulate various BG-SOFC CHP systems. The aim of the research work is to investigate the technical feasibility of these systems and to study the influence of important operating parameters and examine integration options. Systems based on dual fluidised bed steam gasification and tubular SOFC technologies are modelled. The cathode recycle and electric heater integration options are not attractive in comparison to the base case anode recycle system. Thermal integration, i.e. using SOFC flue gas as gasifier oxidant, is desirable. Lowering the syngas preheat temperature (prior to SOFC anodes) is highly recommended and is more practical than lowering the cathode air preheat temperature. Results of the parametric study indicate that: steam to carbon ratio and biomass moisture content should be as low as possible; fuel utilisation factor can change the mode of operation of the plant (focus on electricity or heat); high temperature syngas cleaning is very attractive; gasification air preheating is more attractive than gasification steam superheating. High efficiencies are predicted, proving the technical feasibility of BG-SOFC CHP systems.

  15. A critical view on catalytic pyrolysis of biomass.

    PubMed

    Venderbosch, R H

    2015-04-24

    The rapid heating of biomass in an oxygen-free environment optimizes the yield of fast-pyrolysis liquids. This liquid comprises a mix of acids, (dehydrated) carbohydrates, aldehydes, ketones, lignin fragments, aromatics, and alcohols, limiting its use. Deoxygenation of these liquids to replace hydrocarbons represents significant challenges. Catalytic pyrolysis is seen as a promising route to yield liquids with a higher quality. In this paper, literature data on catalytic fast pyrolysis of biomass are reviewed and deoxygenation results correlated with the overall carbon yield. Evidence is given that in an initial stage of the catalytic process reactive components are converted to coke, gas, and water, and only to a limited extent to a liquid product. Catalysts are not yet good enough, and an appropriate combination of pyrolysis conditions, reactive products formed, and different reactions to take place to yield improved quality liquids may be practically impossible. PMID:25872757

  16. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water.

    PubMed

    Cortright, R D; Davda, R R; Dumesic, J A

    2002-08-29

    Concerns about the depletion of fossil fuel reserves and the pollution caused by continuously increasing energy demands make hydrogen an attractive alternative energy source. Hydrogen is currently derived from nonrenewable natural gas and petroleum, but could in principle be generated from renewable resources such as biomass or water. However, efficient hydrogen production from water remains difficult and technologies for generating hydrogen from biomass, such as enzymatic decomposition of sugars, steam-reforming of bio-oils and gasification, suffer from low hydrogen production rates and/or complex processing requirements. Here we demonstrate that hydrogen can be produced from sugars and alcohols at temperatures near 500 K in a single-reactor aqueous-phase reforming process using a platinum-based catalyst. We are able to convert glucose -- which makes up the major energy reserves in plants and animals -- to hydrogen and gaseous alkanes, with hydrogen constituting 50% of the products. We find that the selectivity for hydrogen production increases when we use molecules that are more reduced than sugars, with ethylene glycol and methanol being almost completely converted into hydrogen and carbon dioxide. These findings suggest that catalytic aqueous-phase reforming might prove useful for the generation of hydrogen-rich fuel gas from carbohydrates extracted from renewable biomass and biomass waste streams. PMID:12198544

  17. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water

    NASA Astrophysics Data System (ADS)

    Cortright, R. D.; Davda, R. R.; Dumesic, J. A.

    2002-08-01

    Concerns about the depletion of fossil fuel reserves and the pollution caused by continuously increasing energy demands make hydrogen an attractive alternative energy source. Hydrogen is currently derived from nonrenewable natural gas and petroleum, but could in principle be generated from renewable resources such as biomass or water. However, efficient hydrogen production from water remains difficult and technologies for generating hydrogen from biomass, such as enzymatic decomposition of sugars, steam-reforming of bio-oils and gasification, suffer from low hydrogen production rates and/or complex processing requirements. Here we demonstrate that hydrogen can be produced from sugars and alcohols at temperatures near 500K in a single-reactor aqueous-phase reforming process using a platinum-based catalyst. We are able to convert glucose-which makes up the major energy reserves in plants and animals-to hydrogen and gaseous alkanes, with hydrogen constituting 50% of the products. We find that the selectivity for hydrogen production increases when we use molecules that are more reduced than sugars, with ethylene glycol and methanol being almost completely converted into hydrogen and carbon dioxide. These findings suggest that catalytic aqueous-phase reforming might prove useful for the generation of hydrogen-rich fuel gas from carbohydrates extracted from renewable biomass and biomass waste streams.

  18. Thermodynamic analyses of a biomass-coal co-gasification power generation system.

    PubMed

    Yan, Linbo; Yue, Guangxi; He, Boshu

    2016-04-01

    A novel chemical looping power generation system is presented based on the biomass-coal co-gasification with steam. The effects of different key operation parameters including biomass mass fraction (Rb), steam to carbon mole ratio (Rsc), gasification temperature (Tg) and iron to fuel mole ratio (Rif) on the system performances like energy efficiency (ηe), total energy efficiency (ηte), exergy efficiency (ηex), total exergy efficiency (ηtex) and carbon capture rate (ηcc) are analyzed. A benchmark condition is set, under which ηte, ηtex and ηcc are found to be 39.9%, 37.6% and 96.0%, respectively. Furthermore, detailed energy Sankey diagram and exergy Grassmann diagram are drawn for the entire system operating under the benchmark condition. The energy and exergy efficiencies of the units composing the system are also predicted. PMID:26826573

  19. Technician's Perspective on an Ever-Changing Research Environment: Catalytic Conversion of Biomass to Fuels

    SciTech Connect

    Thibodeaux, J.; Hensley, J.

    2013-01-01

    The biomass thermochemical conversion platform at the National Renewable Energy Laboratory (NREL) develops and demonstrates processes for the conversion of biomass to fuels and chemicals including gasification, pyrolysis, syngas clean-up, and catalytic synthesis of alcohol and hydrocarbon fuels. In this talk, I will discuss the challenges of being a technician in this type of research environment, including handling and working with catalytic materials and hazardous chemicals, building systems without being given all of the necessary specifications, pushing the limits of the systems through ever-changing experiments, and achieving two-way communication with engineers and supervisors. I will do this by way of two examples from recent research. First, I will describe a unique operate-to-failure experiment in the gasification of chicken litter that resulted in the formation of a solid plug in the gasifier, requiring several technicians to chisel the material out. Second, I will compare and contrast bench scale and pilot scale catalyst research, including instances where both are conducted simultaneously from common upstream equipment. By way of example, I hope to illustrate the importance of researchers 1) understanding the technicians' perspective on tasks, 2) openly communicating among all team members, and 3) knowing when to voice opinions. I believe the examples in this talk will highlight the crucial role of a technical staff: skills attained by years of experience to build and operate research and production systems. The talk will also showcase the responsibilities of NREL technicians and highlight some interesting behind-the-scenes work that makes data generation from NREL's thermochemical process development unit possible.

  20. Catalytic Hydrothermal Gasification of Lignin-Rich Biorefinery Residues and Algae Final Report

    SciTech Connect

    Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.; Rotness, Leslie J.; Zacher, Alan H.; Santosa, Daniel M.; Valkenburt, Corinne; Jones, Susanne B.; Tjokro Rahardjo, Sandra A.

    2009-11-03

    This report describes the results of the work performed by PNNL using feedstock materials provided by the National Renewable Energy Laboratory, KL Energy and Lignol lignocellulosic ethanol pilot plants. Test results with algae feedstocks provided by Genifuel, which provided in-kind cost share to the project, are also included. The work conducted during this project involved developing and demonstrating on the bench-scale process technology at PNNL for catalytic hydrothermal gasification of lignin-rich biorefinery residues and algae. A technoeconomic assessment evaluated the use of the technology for energy recovery in a lignocellulosic ethanol plant.

  1. Process Design and Economics for the Conversion of Lignocellulosic Biomass to High Octane Gasoline: Thermochemical Research Pathway with Indirect Gasification and Methanol Intermediate

    SciTech Connect

    Tan, Eric; Talmadge, M.; Dutta, Abhijit; Hensley, Jesse; Schaidle, Josh; Biddy, Mary J.; Humbird, David; Snowden-Swan, Lesley J.; Ross, Jeff; Sexton, Danielle; Yap, Raymond; Lukas, John

    2015-03-01

    The U.S. Department of Energy (DOE) promotes research for enabling cost-competitive liquid fuels production from lignocellulosic biomass feedstocks. The research is geared to advance the state of technology (SOT) of biomass feedstock supply and logistics, conversion, and overall system sustainability. As part of their involvement in this program, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) investigate the economics of conversion pathways through the development of conceptual biorefinery process models. This report describes in detail one potential conversion process for the production of high octane gasoline blendstock via indirect liquefaction (IDL). The steps involve the conversion of biomass to syngas via indirect gasification followed by gas cleanup and catalytic syngas conversion to a methanol intermediate; methanol is then further catalytically converted to high octane hydrocarbons. The conversion process model leverages technologies previously advanced by research funded by the Bioenergy Technologies Office (BETO) and demonstrated in 2012 with the production of mixed alcohols from biomass. Biomass-derived syngas cleanup via tar and hydrocarbons reforming was one of the key technology advancements as part of that research. The process described in this report evaluates a new technology area with downstream utilization of clean biomass-syngas for the production of high octane hydrocarbon products through a methanol intermediate, i.e., dehydration of methanol to dimethyl ether (DME) which subsequently undergoes homologation to high octane hydrocarbon products.

  2. Biomass gasification chars for mercury capture from a simulated flue gas of coal combustion.

    PubMed

    Fuente-Cuesta, A; Diaz-Somoano, M; Lopez-Anton, M A; Cieplik, M; Fierro, J L G; Martínez-Tarazona, M R

    2012-05-15

    The combustion of coal can result in trace elements, such as mercury, being released from power stations with potentially harmful effects for both human health and the environment. Research is ongoing to develop cost-effective and efficient control technologies for mercury removal from coal-fired power plants, the largest source of anthropogenic mercury emissions. A number of activated carbon sorbents have been demonstrated to be effective for mercury retention in coal combustion power plants. However, more economic alternatives need to be developed. Raw biomass gasification chars could serve as low-cost sorbents for capturing mercury since they are sub-products generated during a thermal conversion process. The aim of this study was to evaluate different biomass gasification chars as mercury sorbents in a simulated coal combustion flue gas. The results were compared with those obtained using a commercial activated carbon. Chars from a mixture of paper and plastic waste showed the highest retention capacity. It was found that not only a high carbon content and a well developed microporosity but also a high chlorine content and a high aluminium content improved the mercury retention capacity of biomass gasification chars. No relationship could be inferred between the surface oxygen functional groups and mercury retention in the char samples evaluated. PMID:22325640

  3. Feasibility study of wood biomass gasification/molten carbonate fuel cell power system—comparative characterization of fuel cell and gas turbine systems

    NASA Astrophysics Data System (ADS)

    Morita, H.; Yoshiba, F.; Woudstra, N.; Hemmes, K.; Spliethoff, H.

    The conversion of biomass by means of gasification into a fuel suitable for a high-temperature fuel cell has recently received more attention as a potential substitute for fossil fuels in electric power production. However, combining biomass gasification with a high-temperature fuel cell raises many questions with regard to efficiency, feasibility and process requirements. In this study, a biomass gasification/molten carbonate fuel cell (MCFC) system is modelled and compared with a relatively well-established biomass gasification/gas turbine (GT), in order to understand the peculiarities of biomass gasification/MCFC power systems and to develop a reference MCFC system as a future biomass gasification/MCFC power station.

  4. Biomass-gasifer steam-injected gas turbine cogeneration

    SciTech Connect

    Larson, E.D.; Williams, R.H. . Center for Energy and Environmental Studies)

    1990-04-01

    Steam injection for power and efficiency augmentation in aeroderivative gas turbines is now commercially established for natural gas-fired cogeneration. Steam-injected gas turbines fired with coal and biomass are being developed. In terms of efficiency, capital cost, and commercial viability, the most promising was to fuel steam-injected gas turbines with biomass is via the biomass-integrated gasifier/steam-injected gas turbine (BIG/STIG). The R and D effort required to commercialize the Big/STIG is modest because it can build on extensive previous coal-integrated gasifier/gas turbine development efforts. An economic analysis of BIG/STIG cogeneration is presented for cane sugar factories, where sugar cane residues would be the fuel. A BIG/STIG investment would be attractive for sugar producers, who could sell large quantities of electricity, or for the local electric utility, as a low-cost generating option. Worldwide, the cane sugar industry could support some 50,000 MW of BIG/STIG capacity, and there are many potential applications in the forest products and other biomass-based industries.

  5. Comparison of steam gasification reactivity of algal and lignocellulosic biomass: influence of inorganic elements.

    PubMed

    Hognon, Céline; Dupont, Capucine; Grateau, Maguelone; Delrue, Florian

    2014-07-01

    This study aims at comparing the steam gasification behaviour of two species of algal biomass (Chlamydomonas reinhardtii and Arthrospira platensis) and three species of lignocellulosic biomass (miscanthus, beech and wheat straw). Isothermal experiments were carried out in a thermobalance under chemical regime. Samples had very different contents in inorganic elements, which resulted in different reactivities, with about a factor of 5 between samples. For biomasses with ratio between potassium content and phosphorus and silicon content K/(Si+P) higher than one, the reaction rate was constant during most of the reaction and then slightly increased at high conversion. On the contrary, for biomasses with ratio K/(Si+P) lower than one, the reaction rate decreased along conversion. A simple kinetic model was proposed to predict these behaviours. PMID:24874875

  6. Thermochemical gasification of high-moisture biomass feedstocks

    SciTech Connect

    Butner, R.S.; Sealock, L.J. Jr.; Elliott, D.C.

    1985-02-14

    A significant energy resource base exists in the Midwest in the form of crop residues and wastes. Estimates have been made that this resource is on the magnitude of 1.5 Quads (1 Quad = 10/sup 15/ Btu's). One obstacle to the full utilization of this resource is the high moisture content of many crop residues. A DOE-funded research program being conducted by Pacific Northwest Laboratory is investigating a low-temperature, mixed catalyst thermochemical system which efficiently converts high-moisture biomass to a medium Btu gas consisting of methane and hydrogen. Experimental data indicates that carbon conversions in excess of 90% may be obtained. Feedstock slurries containing up to 95% moisture have been used successfully in the batch reactor. Feedstocks used in the system include sorghum, sunflowers, napier grass, aquatic plants and food processing wastes. The ability to convert high-moisture biomass to fuels via this thermochemical process may allow greater utilization of the significant biomass resource base which exists in the Mdwest. 6 references, 6 figures, 2 tables.

  7. An economic analysis of biomass gasification and power generation in China.

    PubMed

    Wu, C Z; Huang, H; Zheng, S P; Yin, X L

    2002-05-01

    With vast territory and abundant biomass resources China appears to have suitable conditions to develop biomass utilization technologies. As an important decentralized power technology, biomass gasification and power generation (BGPG) has a potential market in making use of biomass wastes. In spite of the relatively high cost for controlling secondary pollution by wastewater, BGPG is economically feasible and can give a financial return owing to the low price of biomass wastes and insufficient power supply at present in some regions of China. In this work, experimental data from 1 MW-scale circulating fluidized bed (CFB) BGPG plants constructed recently in China were analyzed; and it was found that the unit capital cost of BGPG is only 60-70% of coal power station and its operation cost is much lower than that of conventional power plants. However, due to the relatively low efficiency of small-scale plant, the current BGPG technology will lose its economic attraction when its capacity is smaller than 160 kW or the price of biomass is higher than 200 Yuan RMB/ton. The development of medium-scale BGPG plants, with capacity ranging from 1000 to 5000 kW, is recommended; as is the demonstration of BGPG technology in suitable enterprises (e.g. rice mill and timber mill) in developing countries where large amounts of biomass wastes are available so that biomass collection and transportation can be avoided and the operation cost can be lowered. PMID:12058832

  8. Design of Biomass Gasification and Combined Heat and Power Plant Based on Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Haydary, Juma; Jelemenský, Ľudovít

    Three types of wooden biomass were characterized by calorimetric measurements, proximate and elemental analysis, thermogravimetry, kinetics of thermal decomposition and gas composition. Using the Aspen steady state simulation, a plant with the processing capacity of 18 ton/h of biomass was modelled based on the experimental data obtained under laboratory conditions. The gasification process has been modelled in two steps. The first step of the model describes the thermal decomposition of the biomass based on a kinetic model and in the second step, the equilibrium composition of syngas is calculated by the Gibbs free energy of the expected components. The computer model of the plant besides the reactor model includes also a simulation of other plant facilities such as: feed drying employing the energy from the process, ash and tar separation, gas-steam cycle, and hot water production heat exchangers. The effect of the steam to air ratio on the conversion, syngas composition, and reactor temperature was analyzed. Employment of oxygen and air for partial combustion was compared. The designed computer model using all Aspen simulation facilities can be applied to study different aspects of biomass gasification in a Combined Heat and Power plant.

  9. Allothermal steam gasification of biomass in cyclic multi-compartment bubbling fluidized-bed gasifier/combustor - new reactor concept.

    PubMed

    Iliuta, Ion; Leclerc, Arnaud; Larachi, Faïçal

    2010-05-01

    A new reactor concept of allothermal cyclic multi-compartment fluidized bed steam biomass gasification is proposed and analyzed numerically. The concept combines space and time delocalization to approach an ideal allothermal gasifier. Thermochemical conversion of biomass in periodic time and space sequences of steam biomass gasification and char/biomass combustion is simulated in which the exothermic combustion compartments provide heat into an array of interspersed endothermic steam gasification compartments. This should enhance unit heat integration and thermal efficiency and procure N(2)-free biosyngas with recourse neither to oxygen addition in steam gasification nor contact between flue and syngas. The dynamic, one-dimensional, multi-component, non-isothermal model developed for this concept accounts for detailed solid and gas flow dynamics whereupon gasification/combustion reaction kinetics, thermal effects and freeboard-zone reactions were tied. Simulations suggest that allothermal operation could be achieved with switch periods in the range of a minute supporting practical feasibility for portable small-scale gasification units. PMID:20060289

  10. Catalytic pyrolysis of biomass by novel nanostructured catalysts

    NASA Astrophysics Data System (ADS)

    Dang, Phuong T.; Le, Hy G.; Pham, Giang T. T.; Vu, Hông T. M.; Nguyen, Kien T.; Dao, Canh D.; Le, Giang H.; Hoang, Thuy T. T.; Tran, Hoa T. K.; Nguyen, Quang K.; Vu, Tuan A.

    2013-12-01

    Nanostructured catalysts were successfully prepared by acidification of diatomites and the regeneration of used FCC catalysts. The obtained samples were characterized by IR, XRD, SEM, EDX, MAS-NMR (27Al and 29Si), NH3-TPD and tested in catalytic pyrolysis of biomass (rice straw). The results showed that the similar bio-oil yield of 41,4% can be obtained by pyrolysis in presence of catalysts at 450°C as compared to that of the pyrolysis without catalyst at 550°C. The bio-oil yield reached a maximum of 42,55 % at the pyrolysis temperature of 500°C with catalytic content of 20%. Moreover, by catalytic pyrolysis, bio-oil quality was better as reflected in higher ratio of H/C, lower ratio of O/C. This clearly indicated high application potential of these new nanostructured catalysts in the production of bio-oil with low oxygenated compounds.

  11. Effect of small-scale biomass gasification at the state of refractory lining the fixed bed reactor

    NASA Astrophysics Data System (ADS)

    Janša, Jan; Peer, Vaclav; Pavloková, Petra

    2016-06-01

    The article deals with the influence of biomass gasification on the condition of the refractory lining of a fixed bed reactor. The refractory lining of the gasifier is one part of the device, which significantly affects the operational reliability and durability. After removing the refractory lining of the gasifier from the experimental reactor, there was done an assessment how gasification of different kinds of biomass reflected on its condition in terms of the main factors affecting its life. Gasification of biomass is reflected on the lining, especially through sticking at the bottom of the reactor. Measures for prolonging the life of lining consist in the reduction of temperature in the reactor, in this case, in order to avoid ash fusion biomass which it is difficult for this type of gasifier.

  12. Biomass gasification hot gas cleanup demonstration program status

    SciTech Connect

    Wiant, B.C.; Bachovchin, D.M.; Onischak, M.

    1994-12-31

    In support of the U.S. Department of Energy`s Biomass Power Program, Westinghouse Electric has been conducting research and development of a hot gas cleaning system compatible with a pressurized fluidized bed biomass gasifier and the operation of a gas turbine. The hot gas cleanup system must be capable of filtering out the flyash particulates at gasifier operating conditions, dealing with the feedstock`s inherent tars and oils, and removing excessive levels of alkali. The Westinghouse led team consisting of the Institute of Gas Technology, Gilbert/Commonwealth, and the Pacific International Center for High Technology Research began work in April 1993 on this 30 month program. Status of the program is: hot gas cleanup (HGCU) requirements and system evaluation have been completed; the hot gas cleanup filter system has been designed, fabricated and installed in the 10 ton-per-day process development unit (PDU) at IGT in Chicago, IL; a tar cracker has been designed, fabricated and installed in the PDU; the testing plan has been developed; PDU modifications have been completed along with complete facility shakedown; and testing of the cleanup system is in process. This paper discusses the status of each of the major program elements described above.

  13. Performance evaluation of an integrated small-scale SOFC-biomass gasification power generation system

    NASA Astrophysics Data System (ADS)

    Wongchanapai, Suranat; Iwai, Hiroshi; Saito, Motohiro; Yoshida, Hideo

    2012-10-01

    The combination of biomass gasification and high-temperature solid oxide fuel cells (SOFCs) offers great potential as a future sustainable power generation system. In order to provide insights into an integrated small-scale SOFC-biomass gasification power generation system, system simulation was performed under diverse operating conditions. A detailed anode-supported planar SOFC model under co-flow operation and a thermodynamic equilibrium for biomass gasification model were developed and verified by reliable experimental and simulation data. The other peripheral components include three gas-to-gas heat exchangers (HXs), heat recovery steam generator (HRSG), burner, fuel and air compressors. To determine safe operating conditions with high system efficiency, energy and exergy analysis was performed to investigate the influence through detailed sensitivity analysis of four key parameters, e.g. steam-to-biomass ratio (STBR), SOFC inlet stream temperatures, fuel utilization factor (Uf) and anode off-gas recycle ratio (AGR) on system performance. Due to the fact that SOFC stack is accounted for the most expensive part of the initial investment cost, the number of cells required for SOFC stack is economically optimized as well. Through the detailed sensitivity analysis, it shows that the increase of STBR positively affects SOFC while gasifier performance drops. The most preferable operating STBR is 1.5 when the highest system efficiencies and the smallest number of cells. The increase in SOFC inlet temperature shows negative impact on system and gasifier performances while SOFC efficiencies are slightly increased. The number of cells required for SOFC is reduced with the increase of SOFC inlet temperature. The system performance is optimized for Uf of 0.75 while SOFC and system efficiencies are the highest with the smallest number of cells. The result also shows the optimal anode off-gas recycle ratio of 0.6. Regarding with the increase of anode off-gas recycle ratio

  14. Ash of palm empty fruit bunch as a natural catalyst for promoting the CO₂ gasification reactivity of biomass char.

    PubMed

    Lahijani, Pooya; Zainal, Zainal Alimuddin; Mohamed, Abdul Rahman; Mohammadi, Maedeh

    2013-03-01

    Palm empty fruit bunch ash (EFB-ash) was used as a natural catalyst, rich in potassium to enhance the CO2 gasification reactivity of palm shell char (PS-char). Various EFB-ash loadings (ranging from 0 to 12.5wt.%) were implemented to improve the reactivity of PS-char during CO2 gasification studies using thermogravimetric analysis. The achieved results explored that the highest gasification reactivity was devoted to 10% EFB-ash loaded char. The SEM-EDS and XRD analyses further confirmed the successful loading of EFB-ash on PS-char which contributed to promoting the gasification reactivity of char. Random pore model was applied to determine the kinetic parameters in catalytic gasification of char at various temperatures of 800-900°C. The dependence of char reaction rate on gasification temperature resulted in a straight line in Arrhenius-type plot, from which the activation energy of 158.75kJ/mol was obtained for the catalytic char gasification. PMID:23195653

  15. Analysis of the product gas from biomass gasification by means of laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Karellas, S.; Karl, J.

    2007-09-01

    The use of biomass and waste for decentralised combined heat and power production (CHP) requires highly efficient gasification processes. In the Technische Universität München (TUM), an innovative gasification technology has been developed. This allothermal gasifier is producing a hydrogen- rich, high-calorific gas, that can be further used in a microturbine or a fuel cell producing energy. For the operation of such a system, the online analysis of the composition of the product gas is of high importance, since the efficient working of the machines is linked with the gas quality. For this purpose an optical measurement system based on laser spectroscopy has been applied. This system can measure not only the basic components of the product gas (H 2, CH 4, CO, CO 2, H 2O), but it also gives information concerning the content of high hydrocarbons, the so-called tars, in the product gas.

  16. Catalytic microwave pyrolysis of biomass for renewable phenols and fuels

    NASA Astrophysics Data System (ADS)

    Bu, Quan

    Bio-oil is an unstable intermediate and needs to be upgraded before its use. This study focused on improving the selectivity of bio-oilby catalytic pyrolysis of biomass using activated carbon (AC) catalysts. Firstly, the effects of process conditions on product quality and product yield were investigated by catalytic microwave pyrolysis of biomass using AC as a catalyst. The optimized reaction condition for bio-oil and volatile was determined. Chemical composition analysis by GC/MS showed that phenols rich bio-oils were obtained. Furthermore, the effects of different carbon sources based AC catalysts on products yield and chemical composition selectivity of obtained bio-oils were investigated during microwave pyrolysis of Douglas fir pellet. The catalysts recycling test of the selected catalysts indicated that the AC catalysts can be used for 3-4 times with high concentration of phenolic compounds. The individual surface polar/acidic oxygen functional groups analysis suggested the changes of functional groups in ACs explained the reaction mechanism of this process. In addition, the potential for production of renewable phenols and fuels by catalytic pyrolysis of biomass using lignin as a model compound was explored. The main chemical compounds of the obtained bio-oils were phenols, guaiacols, hydrocarbons and esters. The thermal decomposition behaviors of lignin and kinetics study were investigated by TGA. The change of functional groups of AC catalyst indicated the bio-oil reduction was related to the reaction mechanism of this process. Finally, the effects of Fe-modified AC catalyst on bio-oil upgrading and kintic study of biomass pyrolysis were investigated. The catalytic pyrolysis of biomass using the Fe-modified AC catalyst may promote the occurrence of the fragmentation of cellulose, rather than repolymerization as in the non-catalytic pyrolysis which leads to partial of guaiacols derived from furans. Results showed that the main chemical compounds of bio

  17. The effect of Jatropha torrified biomass and coal preparation on steam co-gasification in a fixed bed reactor

    NASA Astrophysics Data System (ADS)

    Aloqaili, Mashal Mohammed

    Coal fired power stations produce vast amounts of harmful products that may affect our health and environment. Co-gasification of coal and biomass could be a solution to this issue as an emerging technology. Biomass may reduce emissions significantly and it may contribute to reducing capital operational cost while providing high gas yields. This research tests the co-gasification of coal and biomass blended chars. Coal and biomass were both prepared. Coal Illinois No #6 was prepared as coal semi-char and coal-char while Jatropha biomass was torrefied at six different temperatures ranging from [200-300] ºC. The co-gasification experiments was conducted in a fixed-bed reactor. A gasification temperature was 900 ºC and a constant flow rate of 100 mL/min. Carbon conversion, maximum char reactivity, products yield and amount of hydrogen produced were evaluated and studied based on data obtained from the G.C. Additionally, weight of bed material and ash leftover weight from gasification process were significantly contributed in calculating the carbon conversion percentages.

  18. Life cycle assessment of a biomass gasification combined-cycle power system

    SciTech Connect

    Mann, M.K.; Spath, P.L.

    1997-12-01

    The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a technoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

  19. Life cycle assessment of a biomass gasification combined-cycle power system

    SciTech Connect

    Mann, M.K.; Spath, P.L.

    1997-12-01

    The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a t echnoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

  20. Experimental investigation on an entrained flow type biomass gasification system using coconut coir dust as powdery biomass feedstock.

    PubMed

    Senapati, P K; Behera, S

    2012-08-01

    Based on an entrained flow concept, a prototype atmospheric gasification system has been designed and developed in the laboratory for gasification of powdery biomass feedstock such as rice husks, coconut coir dust, saw dust etc. The reactor was developed by adopting L/D (height to diameter) ratio of 10, residence time of about 2s and a turn down ratio (TDR) of 1.5. The experimental investigation was carried out using coconut coir dust as biomass feedstock with a mean operating feed rate of 40 kg/h The effects of equivalence ratio in the range of 0.21-0.3, steam feed at a fixed flow rate of 12 kg/h, preheat on reactor temperature, product gas yield and tar content were investigated. The gasifier could able to attain high temperatures in the range of 976-1100 °C with gas lower heating value (LHV) and peak cold gas efficiency (CGE) of 7.86 MJ/Nm3 and 87.6% respectively. PMID:22613886

  1. 2007 gasification technologies conference papers

    SciTech Connect

    2007-07-01

    Sessions covered: gasification industry roundtable; the gasification market in China; gasification for power generation; the gasification challenge: carbon capture and use storage; industrial and polygeneration applications; gasification advantage in refinery applications; addressing plant performance; reliability and availability; gasification's contribution to supplementing gaseous and liquid fuels supplies; biomass gasification for fuel and power markets; and advances in technology-research and development

  2. Thermochemical conversion of biomass - Gasification by flash pyrolysis study

    NASA Astrophysics Data System (ADS)

    Caubet, S.; Corte, P.; Fahim, C.; Traverse, J. P.

    1982-01-01

    Thermal decomposition of the basic components of dried biomass (cellulose, lignin, wood) is studied in inert atmosphere. Glucose is studied for comparison. The experiments are performed in an alumina porous bed reactor heated at temperatures between 600 and 1000 C. Flash pyrolysis (heating rate 250 C/sec) allows the production of a medium heating value synthetic gas with gas phase conversion thermal efficiency of up to 95 percent. The weight percent of carbon gasified during the pyrolysis reaches 90 percent for cellulose and 70 percent for wood. Light hydrocarbons (CH4, C2H4, C2H2, C2H6) provide about 50 percent of the energy recovered in the gas. Ethylene represents 5 percent (vol) of the pyrolysis gas. The overall ethylene and acetylene yield is markedly increased at high temperatures for short gas residence times. The pyrolysis reactions are endothermic. The total amount of energy required for pyrolysing wood at 850 C roughly corresponds to 20 percent of its heating value.

  3. Analysis and comparison of biomass pyrolysis/gasification condensates: Final report

    SciTech Connect

    Elliott, D.C.

    1986-06-01

    This report provides results of chemical and physical analysis of condensates from eleven biomass gasification and pyrolysis systems. The samples were representative of the various reactor configurations being researched within the Department of Energy, Biomass Thermochemical Conversion program. The condensates included tar phases and aqueous phases. The analyses included gross compositional analysis (elemental analysis, ash, moisture), physical characterization (pour point, viscosity, density, heat of combustion, distillation), specific chemical analysis (gas chromatography/mass spectrometry, infrared spectrophotometry, proton and carbon-13 nuclear magnetic resonance spectrometry) and biological activity (Ames assay and mouse skin tumorigenicity tests). These results are the first step of a longer term program to determine the properties, handling requirements, and utility of the condensates recovered from biomass gasification and pyrolysis. The analytical data demonstrates the wide range of chemical composition of the organics recovered in the condensates and suggests a direct relationship between operating temperature and chemical composition of the condensates. A continuous pathway of thermal degradation of the tar components as a function of temperature is proposed. Variations in the chemical composition of the organic components in the tars are reflected in the physical properties of tars and phase stability in relation to water in the condensate. The biological activity appears to be limited to the tars produced at high temperatures. 56 refs., 25 figs., 21 tabs.

  4. Concentrating-solar biomass gasification process for a 3rd generation biofuel.

    PubMed

    Hertwich, Edgar G; Zhang, Xiangping

    2009-06-01

    A new concept of producing synfuel from biomass using concentrating solar energy as its main energy source is proposed in this paper. The aim of the concept is to obtain an easy to handle fuel with near-zero CO2 emission and reduced land-use requirements compared to first and second generation biofuels. The concept's key feature is the use of high-temperature heat from a solar concentrating tower to drive the chemical process of converting biomassto a biofuel, obtaining a near-complete utilization of carbon atoms in the biomass. H2 from water electrolysis with solar power is used for reverse water gas shift to avoid producing CO2 during the process. In a chemical process simulation, we compare the solar biofuel concept with two other advanced synfuel concepts: second generation biofuel and coal-to-liquid, both using gasification technology and capture and storage of CO2 generated in the fuel production. The solar-driventhird generation biofuel requires only 33% of the biomass input and 38% of total land as the second generation biofuel, while still exhibiting a CO2-neutral fuel cycle. With CO2 capture, second generation biofuel would lead to the removal of 50% of the carbon in the biomass from the atmosphere. There is a trade-off between reduced biomass feed costs and the increased capital requirements for the solar-driven process; it is attractive at intermediate biomass and CO2 prices. PMID:19569353

  5. Biomass gasification project gets funding to solve black liquor safety and landfill problems

    SciTech Connect

    Black, N.P.

    1991-02-01

    This paper reports on biomass gasifications. The main by-product in pulp making is black liquor from virgin fiber; the main by-product in paper recycling is fiber residue. Although the black liquor is recycled for chemical and energy recovery, safety problems plague the boilers currently used to do this. The fiber residue is usually transported to a landfill. The system being developed by MTCI will convert black liquor and fiber residue into a combustible gas, which can then be used for a wide variety of thermal or power generation applications.

  6. High temperature solid oxide fuel cell integrated with novel allothermal biomass gasification. Part I: Modelling and feasibility study

    NASA Astrophysics Data System (ADS)

    Panopoulos, K. D.; Fryda, L. E.; Karl, J.; Poulou, S.; Kakaras, E.

    Biomass gasification derived fuel gas is a renewable fuel that can be used by high temperature fuel cells. In this two-part work an attempt is made to investigate the integration of a near atmospheric pressure solid oxide fuel cell (SOFC) with a novel allothermal biomass steam gasification process into a combined heat and power (CHP) system of less than MW e nominal output range. Heat for steam gasification is supplied from SOFC depleted fuel into a fluidised bed combustor via high temperature sodium heat pipes. The integrated system model was built in Aspen Plus™ simulation software and is described in detail. Part I investigates the feasibility and critical aspects of the system based on modelling results. A low gasification steam to biomass ratio (STBR = 0.6) is used to avoid excess heat demands and to allow effective H 2S high temperature removal. Water vapour is added prior to the anode to avoid carbon deposition. The SOFC off gases adequately provide gasification heat when fuel utilisation factors are <0.75; otherwise extra biomass must be combusted with overall efficiency penalty. For SOFC operation with U f = 0.7 and current density 2500 A m -2 the electrical efficiency is estimated at 36% while thermal efficiency at 14%. An exergy analysis is presented in Part II.

  7. Phenol and phenolics from lignocellulosic biomass by catalytic microwave pyrolysis

    SciTech Connect

    Bu, Quan; Lei, Hanwu; Ren, Shoujie; Wang, Lu; Holladay, Johnathan E.; Zhang, Qin; Tang, Juming; Ruan, Roger

    2011-07-01

    Catalytic microwave pyrolysis of biomass using activated carbon was investigated to determine the effects of pyrolytic conditions on the yields of phenol and phenolics. The high concentrations of phenol (38.9%) and phenolics (66.9%) were obtained at the temperature of 589 K, catalyst-to-biomass ratio of 3:1 and retention time of 8 min. The increase of phenol and its derivatives compared to pyrolysis without catalysts has a close relationship with the decomposition of lignin under the performance of activated carbon. The concentration of esters was also increased using activated carbon as a catalyst. The high content of phenols obtained in this study can be used either directly as fuel after upgrading or as feedstock of biobased phenols for chemical industry.

  8. Development of a bi-equilibrium model for biomass gasification in a downdraft bed reactor.

    PubMed

    Biagini, Enrico; Barontini, Federica; Tognotti, Leonardo

    2016-02-01

    This work proposes a simple and accurate tool for predicting the main parameters of biomass gasification (syngas composition, heating value, flow rate), suitable for process study and system analysis. A multizonal model based on non-stoichiometric equilibrium models and a repartition factor, simulating the bypass of pyrolysis products through the oxidant zone, was developed. The results of tests with different feedstocks (corn cobs, wood pellets, rice husks and vine pruning) in a demonstrative downdraft gasifier (350kW) were used for validation. The average discrepancy between model and experimental results was up to 8 times less than the one with the simple equilibrium model. The repartition factor was successfully related to the operating conditions and characteristics of the biomass to simulate different conditions of the gasifier (variation in potentiality, densification and mixing of feedstock) and analyze the model sensitivity. PMID:26642221

  9. Alkane production from biomass: chemo-, bio- and integrated catalytic approaches.

    PubMed

    Deneyer, Aron; Renders, Tom; Van Aelst, Joost; Van den Bosch, Sander; Gabriëls, Dries; Sels, Bert F

    2015-12-01

    Linear, branched and cyclic alkanes are important intermediates and end products of the chemical industry and are nowadays mainly obtained from fossil resources. In search for alternatives, biomass feedstocks are often presented as a renewable carbon source for the production of fuels, chemicals and materials. However, providing a complete market for all these applications seems unrealistic due to both financial and logistic issues. Despite the very large scale of current alkane-based fuel applications, biomass definitely has the potential to offer a partial solution to the fuel business. For the smaller market of chemicals and materials, a transition to biomass as main carbon source is more realistic and even probably unavoidable in the long term. The appropriate use and further development of integrated chemo- and biotechnological (catalytic) process strategies will be crucial to successfully accomplish this petro-to-bio feedstock transition. Furthermore, a selection of the most promising technologies from the available chemo- and biocatalytic tool box is presented. New opportunities will certainly arise when multidisciplinary approaches are further explored in the future. In an attempt to select the most appropriate biomass sources for each specific alkane-based application, a diagram inspired by van Krevelen is applied, taking into account both the C-number and the relative functionality of the product molecules. PMID:26360875

  10. Effects of impregnated metal ions on air/CO2-gasification of woody biomass.

    PubMed

    Hurley, Scott; Li, Hanning; Xu, Chunbao Charles

    2010-12-01

    Several impregnated metal ions (Fe (III), Co (II), Ni (II), and Ru (IV)) and a raw iron ore (natural limonite) were examined as catalysts for gasification of pine sawdust in air/CO(2) at 700 and 800 degrees C. The yields of char and tar both increased with increasing CO(2) content in the feed gas. All the impregnated metal ions, in particular Ni (II), Co (II) and Ru (IV), were very effective for promoting biomass gasification in CO(2), leading to greatly reduced yields of tar and char accompanied by significantly enhanced formation of CO and H(2). At 800 degrees C, the impregnation of Fe (III), Ni (II), Co (II) or Ru (IV) led to almost complete conversion of the solid biomass into gas/liquid products, producing an extremely low char yield (<1-4 wt.%), and a very high yield of combustible gas (from 51.7 wt.% for Fe to 84 wt.% for Ru). The tar yield reduced from 32.1 wt.% without catalyst to 19-27 wt.% with the impregnated metal ions. PMID:20667716

  11. Combustion and gasification characteristics of chars from raw and torrefied biomass.

    PubMed

    Fisher, E M; Dupont, C; Darvell, L I; Commandré, J-M; Saddawi, A; Jones, J M; Grateau, M; Nocquet, T; Salvador, S

    2012-09-01

    Torrefaction is a mild thermal pretreatment (T<300°C) that improves biomass milling and storage properties. The impact of torrefaction on the gasification and oxidation reactivity of chars from torrefied and raw biomass was investigated. Thermogravimetric analysis was used to study the differences in O(2) and steam reactivity, between chars prepared from torrefied and raw willow, under both high- and low-heating-rate conditions. High-heating-rate chars were prepared at 900°C with a residence time of 2s. Low-heating-rate chars were prepared with a heating rate of 33°C/min, a maximum temperature of 850 or 1000°C, and a residence time of 30 min or 1h, respectively, at the maximum temperature. Pretreatment by torrefaction consistently reduced char reactivity. Torrefaction's impact was greatest for high-heating-rate chars, reducing reactivity by a factor of two to three. The effect of torrefaction on a residence time requirements for char burnout and gasification was estimated. PMID:22728196

  12. Solar gasification of coal, activated carbon, coke and coal and biomass mixtures

    NASA Astrophysics Data System (ADS)

    Gregg, D. W.; Taylor, R. W.; Campbell, J. H.; Taylor, J. R.; Cotton, A.

    1980-01-01

    The gasification of subbituminous coal, activated carbon, coke and a mixture of coal and biomass by direct solar irradiation in a solar furnace is investigated. Sunlight concentrated by a 23-kW solar furnace was focused directly on the fuel being gasified in a gravity-fed gasifier through a window in the reactor, and steam or CO2 was passed through the bed to react with the fuel and form a combustible product gas. Experiments performed with coal and steam resulted in the conversion of more than 40% of the sunlight arriving at the reactor focus into chemical fuel, with production rate increasing with solar power and product gas composition and thus gas heating value remaining constant. A typical moisture-free gas composition obtained consists of 54% H2, 25% CO, 16% CO2, 4% CH4 and 1% higher hydrocarbons. Experiments with activated carbon and a uniform mixture of coal and biomass resulted in similar conversion efficiencies but slightly different product gas compositions, while coke showed a lower efficiency. Advantages of solar gasification over conventional oxygen-blown gasifiers are indicated.

  13. Experiments on torrefied wood pellet: study by gasification and characterization for waste biomass to energy applications

    PubMed Central

    Rollinson, Andrew N.; Williams, Orla

    2016-01-01

    Samples of torrefied wood pellet produced by low-temperature microwave pyrolysis were tested through a series of experiments relevant to present and near future waste to energy conversion technologies. Operational performance was assessed using a modern small-scale downdraft gasifier. Owing to the pellet's shape and surface hardness, excellent flow characteristics were observed. The torrefied pellet had a high energy density, and although a beneficial property, this highlighted the present inflexibility of downdraft gasifiers in respect of feedstock tolerance due to the inability to contain very high temperatures inside the reactor during operation. Analyses indicated that the torrefaction process had not significantly altered inherent kinetic properties to a great extent; however, both activation energy and pre-exponential factor were slightly higher than virgin biomass from which the pellet was derived. Thermogravimetric analysis-derived reaction kinetics (CO2 gasification), bomb calorimetry, proximate and ultimate analyses, and the Bond Work Index grindability test provided a more comprehensive characterization of the torrefied pellet's suitability as a fuel for gasification and also other combustion applications. It exhibited significant improvements in grindability energy demand and particle size control compared to other non-treated and thermally treated biomass pellets, along with a high calorific value, and excellent resistance to water. PMID:27293776

  14. Indirectly heated fluidized bed biomass gasification using a latent heat ballast

    SciTech Connect

    Pletka, R.; Brown, R.; Smeenk, J.

    1998-12-31

    The objective of this study is to improve the heating value of gas produced during gasification of biomass fuels using an indirectly heated gasifier based on latent heat ballasting. The latent heat ballast consists of lithium fluoride salt encased in tubes suspended in the reactor. The lithium fluoride has a melting point that is near the desired gasification temperature. With the ballast a single reactor operating in a cyclic mode stores energy during a combustion phase and releases it during a pyrolysis phase. Tests were carried out in a fluidized bed reactor to evaluate the concept. The time to cool the reactor during the pyrolysis phase from 1,172 K (1,650 F) to 922 K (1,200 F) increased 102% by use of the ballast system. This extended pyrolysis time allowed 33% more biomass to be gasified during a cycle. Additionally, the total fuel fraction pyrolyzed to produce useful gas increased from 74--80%. Higher heating values of 14.2 to 16.6 MJ/Nm{sup 3} (382--445 Btu/scf) on a dry basis were obtained from the ballasted gasifier.

  15. Dairy Biomass-Wyoming Coal Blends Fixed Gasification Using Air-Steam for Partial Oxidation

    DOE PAGESBeta

    Gordillo, Gerardo; Annamalai, Kalyan

    2012-01-01

    Concenmore » trated animal feeding operations such as dairies produce a large amount of manure, termed as dairy biomass (DB), which could serve as renewable feedstock for thermal gasification. DB is a low-quality fuel compared to fossil fuels, and hence the product gases have lower heat content; however, the quality of gases can be improved by blending with coals. This paper deals with air-steam fixed-bed counterflow gasification of dairy biomass-Wyoming coal blend (DBWC). The effects of equivalence ratio ( 1.6 < Φ < 6.4 ) and steam-to-fuel ratio ( 0.4 < S : F < 0.8 ) on peak temperatures, gas composition, gross heating value of the products, and energy recovery are presented. According to experimental results, increasing Φ and ( S : F ) ratios decreases the peak temperature and increases the H 2 and CO 2 production, while CO production decreases. On the other hand, the concentrations of CH 4 and C 2 H 6 were lower compared to those of other gases and almost not affected by Φ.« less

  16. Tar analysis from biomass gasification by means of online fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Baumhakl, Christoph; Karellas, Sotirios

    2011-07-01

    Optical methods in gas analysis are very valuable mainly due to their non-intrusive character. That gives the possibility to use them for in-situ or online measurements with only optical intervention in the measurement volume. In processes like the gasification of biomass, it is of high importance to monitor the gas quality in order to use the product gas in proper machines for energy production following the restrictions in the gas composition but also improving its quality, which leads to high efficient systems. One of the main problems in the biomass gasification process is the formation of tars. These higher hydrocarbons can lead to problems in the operation of the energy system. Up to date, the state of the art method used widely for the determination of tars is a standardized offline measurement system, the so-called "Tar Protocol". The aim of this work is to describe an innovative, online, optical method for determining the tar content of the product gas by means of fluorescence spectroscopy. This method uses optical sources and detectors that can be found in the market at low cost and therefore it is very attractive, especially for industrial applications where cost efficiency followed by medium to high precision are of high importance.

  17. Experiments on torrefied wood pellet: study by gasification and characterization for waste biomass to energy applications.

    PubMed

    Rollinson, Andrew N; Williams, Orla

    2016-05-01

    Samples of torrefied wood pellet produced by low-temperature microwave pyrolysis were tested through a series of experiments relevant to present and near future waste to energy conversion technologies. Operational performance was assessed using a modern small-scale downdraft gasifier. Owing to the pellet's shape and surface hardness, excellent flow characteristics were observed. The torrefied pellet had a high energy density, and although a beneficial property, this highlighted the present inflexibility of downdraft gasifiers in respect of feedstock tolerance due to the inability to contain very high temperatures inside the reactor during operation. Analyses indicated that the torrefaction process had not significantly altered inherent kinetic properties to a great extent; however, both activation energy and pre-exponential factor were slightly higher than virgin biomass from which the pellet was derived. Thermogravimetric analysis-derived reaction kinetics (CO2 gasification), bomb calorimetry, proximate and ultimate analyses, and the Bond Work Index grindability test provided a more comprehensive characterization of the torrefied pellet's suitability as a fuel for gasification and also other combustion applications. It exhibited significant improvements in grindability energy demand and particle size control compared to other non-treated and thermally treated biomass pellets, along with a high calorific value, and excellent resistance to water. PMID:27293776

  18. Effect of support materials on supported platinum catalyst prepared using a supercritical fluid deposition technique and their catalytic performance for hydrogen-rich gas production from lignocellulosic biomass.

    PubMed

    Kaya, Burçak; Irmak, Sibel; Hesenov, Arif; Erbatur, Oktay; Erkey, Can

    2012-11-01

    A number of supported Pt catalysts have been prepared by supercritical carbon dioxide deposition technique using various supports. The reduction of Pt precursor to metal performed by heat treatment under nitrogen flow. The prepared catalysts were evaluated for gasification of wheat straw biomass hydrolysates and glucose solution for hydrogen-rich gas production. The activities of the catalysts were highly affected by distribution, amount and particle sizes of platinum on the support. In general carbon-based supported Pt catalysts exhibited better catalytic activity compared to other supports to be used. Compared to biomass hydrolysate feed, gasification of glucose always resulted in higher volume of gas mixture, however, hydrogen selectivity was decreased in all catalyst except multi-walled carbon nanotube. The deposition of Pt particles inner side of that support makes the large organic substrates inaccessible to reach and react with those metal particles. PMID:22939187

  19. Co-gasification of biosolids with biomass: Thermogravimetric analysis and pilot scale study in a bubbling fluidized bed reactor.

    PubMed

    Yu, Ming Ming; Masnadi, Mohammad S; Grace, John R; Bi, Xiaotao T; Lim, C Jim; Li, Yonghua

    2014-10-17

    This work studied the feasibility of co-gasification of biosolids with biomass as a means of disposal with energy recovery. The kinetics study at 800°C showed that biomass, such as switchgrass, could catalyze the reactions because switchgrass ash contained a high proportion of potassium, an excellent catalyst for gasification. However, biosolids could also inhibit gasification due to interaction between biomass alkali/alkaline earth metals and biosolids clay minerals. In the pilot scale experiments, increasing the proportion of biosolids in the feedstock affected gasification performance negatively. Syngas yield and char conversion decreased from 1.38 to 0.47m(3)/kg and 82-36% respectively as the biosolids proportion in the fuel increased from 0% to 100%. Over the same range, the tar content increased from 10.3 to 200g/m(3), while the ammonia concentration increased from 1660 to 19,200ppmv. No more than 25% biosolids in the fuel feed is recommended to maintain a reasonable gasification. PMID:25459803

  20. Catalytic Tar Reforming for Cleanup and Conditioning of Biomass-derived Syngas

    SciTech Connect

    Dayton, D. C.; Bain, R. L.; Phillips, S. D.; Magrini-Bair, K.; Feik, C. J.

    2006-01-01

    Biomass gasification is being investigated to produce clean syngas from biomass or biorefinery residues as an intermediate that can be used directly as a fuel for integrated heat and power production or further refined and upgraded by various processing technologies. Conditioning of biomass-derived syngas, with an emphasis on tar reforming, to make it a suitable feed for high temperature, pressurized liquid fuels synthesis is the goal of current research efforts.

  1. Leveling Intermittent Renewable Energy Production Through Biomass Gasification-Based Hybrid Systems

    SciTech Connect

    Dean, J.; Braun, R.; Penev, M.; Kinchin, C.; Munoz, D.

    2010-01-01

    The increased use of intermittent renewable power in the United States is forcing utilities to manage increasingly complex supply and demand interactions. This paper evaluates biomass pathways for hydrogen production and how they can be integrated with renewable resources to improve the efficiency, reliability, dispatchability, and cost of other renewable technologies. Two hybrid concepts were analyzed that involve co-production of gaseous hydrogen and electric power from thermochemical biorefineries. Both of the concepts analyzed share the basic idea of combining intermittent wind-generated electricity with a biomass gasification plant. The systems were studied in detail for process feasibility and economic performance. The best performing system was estimated to produce hydrogen at a cost of $1.67/kg. The proposed hybrid systems seek to either fill energy shortfalls by supplying hydrogen to a peaking natural gas turbine or to absorb excess renewable power during low-demand hours. Direct leveling of intermittent renewable electricity production is accomplished with either an indirectly heated biomass gasifier, or a directly heated biomass gasifier. The indirect gasification concepts studied were found to be cost competitive in cases where value is placed on controlling carbon emissions. A carbon tax in the range of $26-40 per metric ton of CO{sub 2} equivalent (CO{sub 2}e) emission makes the systems studied cost competitive with steam methane reforming (SMR) to produce hydrogen. However, some additional value must be placed on energy peaking or sinking for these plants to be economically viable. The direct gasification concept studied replaces the air separation unit (ASU) with an electrolyzer bank and is unlikely to be cost competitive in the near future. High electrolyzer costs and wind power requirements make the hybridization difficult to justify economically without downsizing the system. Based on a direct replacement of the ASU with electrolyzers, hydrogen

  2. Analysis of biomass and waste gasification lean syngases combustion for power generation using spark ignition engines.

    PubMed

    Marculescu, Cosmin; Cenuşă, Victor; Alexe, Florin

    2016-01-01

    The paper presents a study for food processing industry waste to energy conversion using gasification and internal combustion engine for power generation. The biomass we used consisted in bones and meat residues sampled directly from the industrial line, characterised by high water content, about 42% in mass, and potential health risks. Using the feedstock properties, experimentally determined, two air-gasification process configurations were assessed and numerically modelled to quantify the effects on produced syngas properties. The study also focused on drying stage integration within the conversion chain: either external or integrated into the gasifier. To comply with environmental regulations on feedstock to syngas conversion both solutions were developed in a closed system using a modified down-draft gasifier that integrates the pyrolysis, gasification and partial oxidation stages. Good quality syngas with up to 19.1% - CO; 17% - H2; and 1.6% - CH4 can be produced. The syngas lower heating value may vary from 4.0 MJ/Nm(3) to 6.7 MJ/Nm(3) depending on process configuration. The influence of syngas fuel properties on spark ignition engines performances was studied in comparison to the natural gas (methane) and digestion biogas. In order to keep H2 molar quota below the detonation value of ⩽4% for the engines using syngas, characterised by higher hydrogen fraction, the air excess ratio in the combustion process must be increased to [2.2-2.8]. The results in this paper represent valuable data required by the design of waste to energy conversion chains with intermediate gas fuel production. The data is suitable for Otto engines characterised by power output below 1 MW, designed for natural gas consumption and fuelled with low calorific value gas fuels. PMID:26164851

  3. Utilisation of biomass gasification by-products for onsite energy production.

    PubMed

    Vakalis, S; Sotiropoulos, A; Moustakas, K; Malamis, D; Baratieri, M

    2016-06-01

    Small scale biomass gasification is a sector with growth and increasing applications owing to the environmental goals of the European Union and the incentivised policies of most European countries. This study addresses two aspects, which are at the centre of attention concerning the operation and development of small scale gasifiers; reuse of waste and increase of energy efficiency. Several authors have denoted that the low electrical efficiency of these systems is the main barrier for further commercial development. In addition, gasification has several by-products that have no further use and are discarded as waste. In the framework of this manuscript, a secondary reactor is introduced and modelled. The main operating principle is the utilisation of char and flue gases for further energy production. These by-products are reformed into secondary producer gas by means of a secondary reactor. In addition, a set of heat exchangers capture the waste heat and optimise the process. This case study is modelled in a MATLAB-Cantera environment. The model is non-stoichiometric and applies the Gibbs minimisation principle. The simulations show that some of the thermal energy is depleted during the process owing to the preheating of flue gases. Nonetheless, the addition of a secondary reactor results in an increase of the electrical power production efficiency and the combined heat and power (CHP) efficiency. PMID:27118736

  4. Conventional and catalytic pyrolysis of pinyon juniper biomass

    NASA Astrophysics Data System (ADS)

    Yathavan, Bhuvanesh Kumar

    Pinyon and juniper are invasive woody species in Western United States that occupy over 47 million acres of land. The US Bureau of Land Management (BLM) has embarked on harvesting these woody species to make room for range grasses for grazing. The major application of harvested pinyon-juniper (PJ) is low value firewood. Thus, there is a need to develop new high value products from this woody biomass to reduce the cost of harvesting. In this research PJ biomass was processed through pyrolysis technology to produce value added products. The first part of the thesis demonstrates the effect of PJ wood, bark and mixture biomass and temperature on the product yield and on the quality of the bio-oil produced. The second part focuses on the optimization of process parameters for maximum yield and the third part focuses on upgrading the bio-oil with an industrial catalyst (HZSM5) and an industrial waste product (red mud). The results obtained from the first part showed that PJ wood produced maximum bio-oil yield, followed by PJ mixture and bark. The bio-oil yield from PJ wood had low viscosity when compared to PJ mixture and PJ bark. The second part focused on studying the effect of process parameters (temperature, feed rate and the gas flow rate) on the total liquid, organic, water, char and gas yield. The results show that each response is affected by different factor level combinations, and maximum yield for each response was obtained at different factors level. The third part focused on catalytic pyrolysis of PJ biomass using both HZSM-5 catalyst and red mud. The mechanisms of catalysis by the two catalysts were quite different. Whereas the HZSM-5 rejected oxygen mostly as carbon monoxide and water and produced lower amounts of carbon dioxide, on the contrary the red mud produced more carbon dioxide and water and less carbon monoxide. The higher heating value of the red mud catalyzed oil (29.46 MJ/kg) was slightly higher than that catalyzed by HZSM-5 (28.55 MJ/kg). Thus

  5. Catalytic conversion of nonfood woody biomass solids to organic liquids.

    PubMed

    Barta, Katalin; Ford, Peter C

    2014-05-20

    This Account outlines recent efforts in our laboratories addressing a fundamental challenge of sustainability chemistry, the effective utilization of biomass for production of chemicals and fuels. Efficient methods for converting renewable biomass solids to chemicals and liquid fuels would reduce society's dependence on nonrenewable petroleum resources while easing the atmospheric carbon dioxide burden. The major nonfood component of biomass is lignocellulose, a matrix of the biopolymers cellulose, hemicellulose, and lignin. New approaches are needed to effect facile conversion of lignocellulose solids to liquid fuels and to other chemical precursors without the formation of intractable side products and with sufficient specificity to give economically sustainable product streams. We have devised a novel catalytic system whereby the renewable feedstocks cellulose, organosolv lignin, and even lignocellulose composites such as sawdust are transformed into organic liquids. The reaction medium is supercritical methanol (sc-MeOH), while the catalyst is a copper-doped porous metal oxide (PMO) prepared from inexpensive, Earth-abundant starting materials. This transformation occurs in a single stage reactor operating at 300-320 °C and 160-220 bar. The reducing equivalents for these transformations are derived by the reforming of MeOH (to H2 and CO), which thereby serves as a "liquid syngas" in the present case. Water generated by deoxygenation processes is quickly removed by the water-gas shift reaction. The Cu-doped PMO serves multiple purposes, catalyzing substrate hydrogenolysis and hydrogenation as well as the methanol reforming and shift reactions. This one-pot "UCSB process" is quantitative, giving little or no biochar residual. Provided is an overview of these catalysis studies beginning with reactions of the model compound dihydrobenzofuran that help define the key processes occurring. The initial step is phenyl-ether bond hydrogenolysis, and this is followed by

  6. Product Chemistry and Process Efficiency of Biomass Torrefaction, Pyrolysis and Gasification Studied by High-Throughput Techniques and Multivariate Analysis

    NASA Astrophysics Data System (ADS)

    Xiao, Li

    ), fast growing energy crops (switchgrass), and popular forage crop (alfalfa), as well as biochar derived from those materials and their mixtures. It demonstrated that Py-MBMS coupled with MVA could be used as fast analytical tools for the study of not only biomass composition but also its thermal decomposition behaviors. It found that the impact of biomass composition heavily depends on the thermal decomposition temperature because at different temperature, the composition of biomass decomposed and the impact of minerals on the decomposition reaction varies. At low temperature (200-500°C), organic compounds attribute to the majority of variation in thermal decomposition products. At higher temperature, inorganics dramatically changed the pyrolysis pathway of carbohydrates and possibly lignin. In gasification, gasification tar formation is also observed to be impacted by ash content in vapor and char. In real reactor, biochar structure also has interactions with other fractions to make the final pyrolysis and gasification product. Based on the evaluation of process efficiencies during torrefaction, temperature ranging from 275°C to 300°C with short residence time (<10min) are proposed to be optimal torrefaction conditions. 500°C is preferred to 700°C as primary pyrolysis temperature in two stage gasification because higher primary pyrolysis temperature resulted in more tar and less gasification char. Also, in terms of carbon yield, more carbon is lost in tar while less carbon is retained in gas product using 700°C as primary pyrolysis temperature. In addition, pyrolysis char is found to produce less tar and more gas during steam gasification compared with gasification of pyrolysis vapor. Thus it is suggested that torrefaction might be an efficient pretreatment for biomass gasification because it can largely improve the yield of pyrolysis char during the primary pyrolysis step of gasification thus reduce the total tar of the overall gasification products. Future work

  7. Study on biomass circulation and gasification performance in a clapboard-type internal circulating fluidized bed gasifier.

    PubMed

    Zhou, Zhao-qiu; Ma, Long-long; Yin, Xiu-li; Wu, Chuang-zhi; Huang, Li-cheng; Wang, Chu

    2009-01-01

    We investigated the solid particle flow characteristics and biomass gasification in a clapboard-type internal circulating fluidized bed reactor. The effect of fluidization velocity on particle circulation rate and pressure distribution in the bed showed that fluidization velocities in the high and low velocity zones were the main operational parameters controlling particle circulation. The maximum internal circulation rates in the low velocity zone came almost within the range of velocities in the high velocity zone, when u(H)/u(mf)=2.2-2.4 for rice husk and u(H)/u(mf)=3.5-4.5 for quartz sand. In the gasification experiment, the air equivalence ratio (ER) was the main controlling parameter. Rice husk gasification gas had a maximum heating value of around 5000 kJ/m(3) when ER=0.22-0.26, and sawdust gasification gas reached around 6000-6500 kJ/m(3) when ER=0.175-0.24. The gasification efficiency of rice husk reached a maximum of 77% at ER=0.28, while the gasification efficiency of sawdust reached a maximum of 81% at ER=0.25. PMID:19393730

  8. Comparison of kinetic models for isothermal CO2 gasification of coal char-biomass char blended char

    NASA Astrophysics Data System (ADS)

    Zuo, Hai-bin; Geng, Wei-wei; Zhang, Jian-liang; Wang, Guang-wei

    2015-04-01

    This study investigated the isothermal gasification reactivity of biomass char (BC) and coal char (CC) blended at mass ratios of 1:3, 1:1, and 3:1 via isothermal thermogravimetric analysis (TGA) at 900, 950, and 1000°C under CO2. With an increase in BC blending ratio, there were an increase in gasification rate and a shortening of gasification time. This could be attributed to the high specific surface area of BC and the high uniformity of carbon structures in CC when compared to those in BC. Three representative gas-solid kinetic models, namely, the volumetric model (VM), grain model (GM), and random pore model (RPM), were applied to describe the reaction behavior of the char. Among them, the RPM model was considered the best model to describe the reactivity of the char gasification reaction. The activation energy of BC and CC isothermal gasification as determined using the RPM model was found to be 126.7 kJ/mol and 210.2 kJ/mol, respectively. The activation energy was minimum (123.1 kJ/mol) for the BC blending ratio of 75%. Synergistic effect manifested at all mass ratios of the blended char, which increased with the gasification temperature.

  9. Performance of different dolomites on hot raw gas cleaning from biomass gasification with air

    SciTech Connect

    Orio, A.; Corella, J.; Narvaez, I.

    1997-09-01

    Calcined dolomites (CaO-MgO) from four different quarries have been tested for the upgrading of the hot raw gas from a fluidized bed gasifier of biomass with air. These calcined dolomites have big macropores (900--4,000 {angstrom}) and low (3.8--12 m{sup 2}/g) BET surface areas. They have been tested in a fixed bed of 6 cm i.d. downstream from the air-blown biomass gasifier. The change in gas composition (contents in H{sub 2}, CO, CO{sub 2}, CH{sub 4}, {hor_ellipsis}), tar content, gas heating value, etc., has been studied in different temperatures (780--920 C) as well as space-times for the gas in the bed (0.03--0.10 kg{center_dot}h/m{sup 3}) and the type of dolomite. Increasing the equivalence ratio used in the gasifier and decreasing the H/C ratio of the gas increases the refractoriness of the tars to be eliminated by the calcined dolomite. Activation energies (100 {+-} 20 kJ/mol) and preexponential factors for the overall tar elimination reaction have been calculated for the different dolomites under realistic conditions. The activity of the dolomite for tar elimination can increase by 20% on increasing its pore diameter or its Fe{sub 2}O{sub 3} content. Comparison of results with similar ones obtained in biomass gasification with steam is also presented.

  10. Production of high quality syngas from argon/water plasma gasification of biomass and waste.

    PubMed

    Hlina, M; Hrabovsky, M; Kavka, T; Konrad, M

    2014-01-01

    Extremely hot thermal plasma was used for the gasification of biomass (spruce sawdust, wood pellets) and waste (waste plastics, pyrolysis oil). The plasma was produced by a plasma torch with DC electric arc using unique hybrid stabilization. The torch input power of 100-110 kW and the mass flow rate of the gasified materials of tens kg/h was set up during experiments. Produced synthetic gas featured very high content of hydrogen and carbon monoxide (together approximately 90%) that is in a good agreement with theory. High quality of the produced gas is given by extreme parameters of used plasma--composition, very high temperature and low mass flow rate. PMID:24148259

  11. Gasification of biomass/high density polyethylene mixtures in a downdraft gasifier.

    PubMed

    García-Bacaicoa, P; Mastral, J F; Ceamanos, J; Berrueco, C; Serrano, S

    2008-09-01

    In this work, an experimental study of the thermal decomposition of mixtures of wood particles and high density polyethylene in different atmospheres has been carried out in a downdraft gasifier with a nominal processing capacity of 50 kg/h. The main objective was to study the feasibility of the operation of the gasification plant using mixtures and to investigate the characteristics of the gas obtained. In order to do so, experiments with biomass only and with mixtures with up to 15% HDPE have been carried out. The main components of the gas generated are N(2) (50%), H(2) (14%), CO (9-22%) and CO(2) (7-17%) and its relatively high calorific value was adequate for using it in an internal combustion engine generator consisting of a modified diesel engine coupled with a 25 kV A alternator. PMID:18083026

  12. Power generation based on biomass by combined fermentation and gasification--a new concept derived from experiments and modelling.

    PubMed

    Methling, Torsten; Armbrust, Nina; Haitz, Thilo; Speidel, Michael; Poboss, Norman; Braun-Unkhoff, Marina; Dieter, Heiko; Kempter-Regel, Brigitte; Kraaij, Gerard; Schliessmann, Ursula; Sterr, Yasemin; Wörner, Antje; Hirth, Thomas; Riedel, Uwe; Scheffknecht, Günter

    2014-10-01

    A new concept is proposed for combined fermentation (two-stage high-load fermenter) and gasification (two-stage fluidised bed gasifier with CO2 separation) of sewage sludge and wood, and the subsequent utilisation of the biogenic gases in a hybrid power plant, consisting of a solid oxide fuel cell and a gas turbine. The development and optimisation of the important processes of the new concept (fermentation, gasification, utilisation) are reported in detail. For the gas production, process parameters were experimentally and numerically investigated to achieve high conversion rates of biomass. For the product gas utilisation, important combustion properties (laminar flame speed, ignition delay time) were analysed numerically to evaluate machinery operation (reliability, emissions). Furthermore, the coupling of the processes was numerically analysed and optimised by means of integration of heat and mass flows. The high, simulated electrical efficiency of 42% including the conversion of raw biomass is promising for future power generation by biomass. PMID:25086436

  13. Low-temperature catalytic gasification of wet industrial wastes. FY 1993--1994 interim report

    SciTech Connect

    Elliott, D.C.; Hart, T.R.; Neuenschwander, G.G.; Deverman, G.S.; Werpy, T.A.; Phelps, M.R.; Baker, E.G.; Sealock, L.J. Jr.

    1995-03-01

    Process development research is continuing on a low-temperature, catalytic gasification system that has been demonstrated to convert organics in water (dilute or concentrated) to useful and environmentally safe gases. The system, licensed under the trade name Thermochemical Environmental Energy System (TEESO), treats a wide variety of feedstocks ranging from hazardous organics in water to waste sludges from food processing. The current research program is focused on the use of continuous-feed, tubular reactors systems for testing catalysts and feedstocks in the process. A range of catalysts have been tested, including nickel and other base metals, as well as ruthenium and other precious metals. Results of extensive testing show that feedstocks, ranging from 2% para-cresol in water to potato waste and spent grain, can be processed to > 99% reduction of chemical oxygen demand (COD). The product fuel gas contains from 40% up to 75% methane, depending on the feedstock. The balance of the gas is mostly carbon dioxide with < 5% hydrogen and usually < 1% ethane and higher hydrocarbons. The byproduct water stream carries residual organics from 10 to 1,000 mg/l COD, depending on the feedstock. The level of development of TEES has progressed to the initial phases of industrial process demonstration. Testing of industrial waste streams is under way at both the bench scale and engineering scale of development.

  14. Bench-scale reactor tests of low temperature, catalytic gasification of wet industrial wastes

    SciTech Connect

    Elliot, D.C.; Baker, E.G.; Butner, R.S.; Sealock, L.J. Jr. )

    1993-02-01

    Bench-scale reactor tests are under way at Pacific Northwest Laboratory to develop a low temperature, catalytic gasification system. The system, licensed under the trade name Thermochemical Environmental Energy System (TEES[reg sign]), is designed for to a wide variety of feedstocks ranging from dilute organics in water to waste sludges from food processing. The current research program is focused on the use of a continuous feed, tubular reactor. The catalyst is nickel metal on an inert support. Typical results show that feedstocks such as solutions of 2 percent para-cresol or 5 percent and 10 percent lactose in water or cheese whey can be processed to [gt] 99 percent reduction of chemical oxygen demand (COD) at a rate of up to 2 L/hr. The estimated residence lime is less than 5 min at 360C and 3,000 psig, not including 1 to 2 min required in the preheating zone of the reactor. The liquid hourly space velocity has been varied from 1.8 to 2.9 L feedstock/L catalyst/hr depending on the feedstock. The product fuel gas contains 40 percent to 55 percent methane, 35 percent to 50 percent carbon dioxide, and 5 percent to 10 percent hydrogen with as much as 2 percent ethane, but less than 0.1 percent ethylene or carbon monoxide, and small amounts of higher hydrocarbons. The byproduct water stream carries residual organics amounting to less than 500 mg/L COD.

  15. Bench-scale reactor tests of low-temperature, catalytic gasification of wet, industrial wastes

    SciTech Connect

    Elliott, D.C.; Neuenschwander, G.G.; Baker, E.G.; Butner, R.S.; Sealock, L.J.

    1990-04-01

    Bench-scale reactor tests are under way at Pacific Northwest Laboratory to develop a low-temperature, catalytic gasification system. The system, licensed under the trade name Thermochemical Environmental Energy System (TEES{reg sign}), is designed for to a wide variety of feedstocks ranging from dilute organics in water to waste sludges from food processing. The current research program is focused on the use of a continuous-feed, tubular reactor. The catalyst is nickel metal on an inert support. Typical results show that feedstocks such as solutions of 2% para-cresol or 5% and 10% lactose in water or cheese whey can be processed to >99% reduction of chemical oxygen demand (COD) at a rate of up to 2 L/hr. The estimated residence time is less than 5 min at 360{degree}C and 3000 psig, not including 1 to 2 min required in the preheating zone of the reactor. The liquid hourly space velocity has been varied from 1.8 to 2.9 L feedstock/L catalyst/hr depending on the feedstock. The product fuel gas contains 40% to 55% methane, 35% to 50% carbon dioxide, and 5% to 10% hydrogen with as much as 2% ethane, but less than 0.1% ethylene or carbon monoxide, and small amounts of higher hydrocarbons. The byproduct water stream carries residual organics amounting to less than 500 mg/L COD. 9 refs., 1 fig., 4 tabs.

  16. Gas cleaning, gas conditioning and tar abatement by means of a catalytic filter candle in a biomass fluidized-bed gasifier.

    PubMed

    Rapagnà, Sergio; Gallucci, Katia; Di Marcello, Manuela; Matt, Muriel; Nacken, Manfred; Heidenreich, Steffen; Foscolo, Pier Ugo

    2010-09-01

    A bench-scale fluidized-bed biomass gasification plant, operating at atmospheric pressure and temperature within the range 800-820 degrees C, has been used to test an innovative gas cleaning device: a catalytic filter candle fitted into the bed freeboard. This housing of the gas conditioning system within the gasifier itself results in a very compact unit and greatly reduced thermal losses. Long term (22h) tests were performed on the gasifier both with and without the catalytic candle filter, under otherwise identical conditions. Analysis of the product gas for the two cases showed the catalytic filtration to give rise to notable improvements in both gas quality and gas yield: an increase in hydrogen yield of 130% and an overall increase in gas yield of 69% - with corresponding decreases in methane and tar content of 20% and 79%, respectively. HPLC/UV analysis was used to characterize the tar compounds. PMID:20413303

  17. Imperium/Lanzatech Syngas Fermentation Project - Biomass Gasification and Syngas Conditioning for Fermentation Evaluation: Cooperative Research and Development Final Report, CRADA Number CRD-12-474

    SciTech Connect

    Wilcox, E.

    2014-09-01

    LanzaTech and NREL will investigate the integration between biomass gasification and LanzaTech's proprietary gas fermentation process to produce ethanol and 2,3-butanediol. Using three feed materials (woody biomass, agricultural residue and herbaceous grass) NREL will produce syngas via steam indirect gasification and syngas conditioning over a range of process relevant operating conditions. The gasification temperature, steam-to-biomass ratio of the biomass feed into the gasifier, and several levels of syngas conditioning (based on temperature) will be varied to produce multiple syngas streams that will be fed directly to 10 liter seed fermenters operating with the Lanzatech organism. The NREL gasification system will then be integrated with LanzaTech's laboratory pilot unit to produce large-scale samples of ethanol and 2,3-butanediol for conversion to fuels and chemicals.

  18. An integrated approach to energy recovery from biomass and waste: Anaerobic digestion-gasification-water treatment.

    PubMed

    Milani, M; Montorsi, L; Stefani, M

    2014-07-01

    The article investigates the performance of an integrated system for the energy recovery from biomass and waste based on anaerobic digestion, gasification and water treatment. In the proposed system, the organic fraction of waste of the digestible biomass is fed into an anaerobic digester, while a part of the combustible fraction of the municipal solid waste is gasified. Thus, the obtained biogas and syngas are used as a fuel for running a cogeneration system based on an internal combustion engine to produce electric and thermal power. The waste water produced by the integrated plant is recovered by means of both forward and inverse osmosis. The different processes, as well as the main components of the system, are modelled by means of a lumped and distributed parameter approach and the main outputs of the integrated plant such as the electric and thermal power and the amount of purified water are calculated. Finally, the implementation of the proposed system is evaluated for urban areas with a different number of inhabitants and the relating performance is estimated in terms of the main outputs of the system. PMID:24946772

  19. Analysis and comparison of biomass pyrolysis/gasification condensates: an interim report

    SciTech Connect

    Elliott, D.C.

    1985-09-01

    This report provides results of chemical and physical analysis of condensates from eleven biomass gasification and pyrolysis systems. The analyses were performed in order to provide more detailed data concerning these condensates for the different process research groups and to allow a determination of the differences in properties of the condensates as a function of reactor environment. The samples were representative of the various reactor configurations being researched within the Department of Energy, Biomass Thermochemical Conversion program. The condensates included tar phases, aqueous phases and, in some cases, both phases depending on the output of the particular reactor system. The analyses included gross compositional analysis (elemental analysis, ash, moisture), physical characterization (pour point, viscosity, density, heat of combustion, distillation), specific chemical analysis (gas chromatography/mass spectrometry, infrared spectrophotometry, proton and carbon-13 nuclear magnetic resonance spectrometry) and biological activity (Ames assay). The analytical data demonstrate the wide range of chemical composition of the organics recovered in the condensates and suggests a direct relationship between operating temperature and chemical composition of the condensates. A continuous pathway of thermal degradation of the tar components as a function of temperature is proposed. Variations in the chemical composition of the organic components in the tars are reflected in the physical properties of tars and phase stability in relation to water in the condensate. The biological activity appears to be limited to the tars produced at high temperatures as a result of formation of polycyclic aromatic hydrocarbons in high concentrations. 55 refs., 13 figs., 6 tabs.

  20. Experimental and computational investigations of sulfur-resistant bimetallic catalysts for reforming of biomass gasification products

    SciTech Connect

    Rangan, Meghana; Yung, Matthew M.; Medlin, J. William

    2011-11-17

    A combination of density functional theory (DFT) calculations and experimental studies of supported catalysts was used to identify H{sub 2}S-resistant biomass gasification product reforming catalysts. DFT calculations were used to search for bimetallic, nickel-based (1 1 1) surfaces with lower sulfur adsorption energies and enhanced ethylene adsorption energies. These metrics were used as predictors for H{sub 2}S resistance and activity toward steam reforming of ethylene, respectively. Relative to Ni, DFT studies found that the Ni/Sn surface alloy exhibited enhanced sulfur resistance and the Ni/Ru system exhibited an improved ethylene binding energy with a small increase in sulfur binding energy. A series of supported bimetallic nickel catalysts was prepared and screened under model ethylene reforming conditions and simulated biomass tar reforming conditions. The observed experimental trends in activity were consistent with theoretical predictions, with observed reforming activities in the order Ni/Ru > Ni > Ni/Sn. Interestingly, Ni/Ru showed a high level of resistance to sulfur poisoning compared with Ni. This sulfur resistance can be partly explained by trends in sulfur versus ethylene binding energy at different types of sites across the bimetallic surface.

  1. Simulated performance of biomass gasification based combined power and refrigeration plant for community scale application

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, S.; Mondal, P.; Ghosh, S.

    2016-07-01

    Thermal performance analysis and sizing of a biomass gasification based combined power and refrigeration plant (CPR) is reported in this study. The plant is capable of producing 100 kWe of electrical output while simultaneously producing a refrigeration effect, varying from 28-68 ton of refrigeration (TR). The topping gas turbine cycle is an indirectly heated all-air cycle. A combustor heat exchanger duplex (CHX) unit burns producer gas and transfer heat to air. This arrangement avoids complex gas cleaning requirements for the biomass-derived producer gas. The exhaust air of the topping GT is utilized to run a bottoming ammonia absorption refrigeration (AAR) cycle via a heat recovery steam generator (HRSG), steam produced in the HRSG supplying heat to the generator of the refrigeration cycle. Effects of major operating parameters like topping cycle pressure ratio (rp) and turbine inlet temperature (TIT) on the energetic performance of the plant are studied. Energetic performance of the plant is evaluated via energy efficiency, required biomass consumption and fuel energy savings ratio (FESR). The FESR calculation method is significant for indicating the savings in fuel of a combined power and process heat plant instead of separate plants for power and process heat. The study reveals that, topping cycle attains maximum power efficiency of 30%in pressure ratio range of 8-10. Up to a certain value of pressure ratio the required air flow rate through the GT unit decreases with increase in pressure ratio and then increases with further increase in pressure ratio. The capacity of refrigeration of the AAR unit initially decreases up to a certain value of topping GT cycle pressure ratio and then increases with further increase in pressure ratio. The FESR is found to be maximized at a pressure ratio of 9 (when TIT=1100°C), the maximum value being 53%. The FESR is higher for higher TIT. The heat exchanger sizing is also influenced by the topping cycle pressure ratio and GT-TIT.

  2. Effect of reactions in small eddies on biomass gasification with eddy dissipation concept - Sub-grid scale reaction model.

    PubMed

    Chen, Juhui; Yin, Weijie; Wang, Shuai; Meng, Cheng; Li, Jiuru; Qin, Bai; Yu, Guangbin

    2016-07-01

    Large-eddy simulation (LES) approach is used for gas turbulence, and eddy dissipation concept (EDC)-sub-grid scale (SGS) reaction model is employed for reactions in small eddies. The simulated gas molar fractions are in better agreement with experimental data with EDC-SGS reaction model. The effect of reactions in small eddies on biomass gasification is emphatically analyzed with EDC-SGS reaction model. The distributions of the SGS reaction rates which represent the reactions in small eddies with particles concentration and temperature are analyzed. The distributions of SGS reaction rates have the similar trend with those of total reactions rates and the values account for about 15% of the total reactions rates. The heterogeneous reaction rates with EDC-SGS reaction model are also improved during the biomass gasification process in bubbling fluidized bed. PMID:27010338

  3. Biomass to hydrogen via fast pyrolysis and catalytic steam reforming

    SciTech Connect

    Chornet, E.; Wang, D.; Montane, D.

    1995-09-01

    Fast pyrolysis of biomass results in a pyrolytic oil which is a mixture of (a) carbohydrate-derived acids, aldehydes and polyols, (b) lignin-derived substituted phenolics, and (c) extractives-derived terpenoids and fatty acids. The conversion of this pyrolysis oil into H{sub 2} and CO{sub 2} is thermodynamically favored under appropriate steam reforming conditions. Our efforts have focused in understanding the catalysis of steam reforming which will lead to a successful process at reasonable steam/carbon ratios arid process severities. The experimental work, carried out at the laboratory and bench scale levels, has centered on the performance of Ni-based catalysts using model compounds as prototypes of the oxygenates present in the pyrolysis oil. Steam reforming of acetic acid, hydroxyacetaldehyde, furfural and syringol has been proven to proceed rapidly within a reasonable range of severities. Time-on-stream studies are now underway using a fixed bed barometric pressure reactor to ascertain the durability of the catalysts and thus substantiate the scientific and technical feasibility of the catalytic reforming option. Economic analyses are being carried out in parallel to determine the opportunity zones for the combined fast pyrolysis/steam reforming approach. A discussion on the current state of the project is presented.

  4. Characterization of a spent Ru/C catalyst after gasification of biomass in supercritical water.

    PubMed

    Wambach, J; Schubert, M; Döbeli, M; Vogel, F

    2012-01-01

    Carbon-supported ruthenium catalysts promote the gasification of aqueous organic feed with high efficiency to synthetic natural gas in supercritical water. Ruthenium metal was recently identified as the catalytically active species. [1] Occasionally deactivation is observed. To understand the deactivation, the fresh and several spent catalyst samples were investigated by RBS, ERDA, and XPS. The data revealed a massive reduction of the ruthenium concentration in toto and especially of the surface concentration. Of importance is the almost complete disappearance of the spectral features in the valance band region. Coverage of the ruthenium clusters e.g. with a thin 'carbonaceous' layer, i.e. a kind of fouling, or structural modifications of the ruthenium clusters might be the origin. Additionally, leaching of ruthenium might contribute, but is not considered a major effect, because ruthenium was never found in the liquid effluent of the reactor. The influence of additionally detected corrosion products (Ni, Cr, Fe, Ti) from the stainless steel and the titanium alloy walls seems to be small. No evidence for a deactivation by sulphur could be found. PMID:23211730

  5. Fluidized-bed catalytic coal-gasification process. [US patent; pretreatment to minimize agglomeration

    DOEpatents

    Euker, C.A. Jr.; Wesselhoft, R.D.; Dunkleman, J.J.; Aquino, D.C.; Gouker, T.R.

    1981-09-14

    Coal or similar carbonaceous solids impregnated with gasification catalyst constituents are oxidized by contact with a gas containing between 2 vol % and 21 vol % oxygen at a temperature between 50 and 250/sup 0/C in an oxidation zone and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.

  6. Catalytic conversion of cellulosic biomass to ethylene glycol: Effects of inorganic impurities in biomass.

    PubMed

    Pang, Jifeng; Zheng, Mingyuan; Sun, Ruiyan; Song, Lei; Wang, Aiqin; Wang, Xiaodong; Zhang, Tao

    2015-01-01

    The effects of typical inorganic impurities on the catalytic conversion of cellulose to ethylene glycol (EG) were investigated, and the mechanism of catalyst deactivation by certain impurities were clarified. It was found that most impurities did not affect the EG yield, but some non-neutral impurities or Ca and Fe ions greatly decreased the EG yield. Conditional experiments and catalyst characterization showed that some impurities changed the pH of the reaction solution and affected the cellulose hydrolysis rate; Ca and Fe cations reacted with tungstate ions and suppressed the retro-aldol condensation. To obtain a high EG yield, the pH of the reaction solution and the concentration of tungstate ions should be respectively adjusted to 5.0-6.0 and higher than 187ppm. For raw biomass conversion, negative effects were eliminated by suitable pretreatments, and high EG yields comparable to those from pure cellulose were obtained. PMID:25459851

  7. Treatment of biomass gasification wastewater using a combined wet air oxidation/activated sludge process

    SciTech Connect

    English, C.J.; Petty, S.E.; Sklarew, D.S.

    1983-02-01

    A lab-scale treatability study for using thermal and biological oxidation to treat a biomass gasification wastewater (BGW) having a chemical oxygen demand (COD) of 46,000 mg/l is described. Wet air oxidation (WA0) at 300/sup 0/C and 13.8 MPa (2000 psi) was used to initially treat the BGW and resulted in a COD reduction of 74%. This was followed by conventional activated sludge treatment using operating conditions typical of municipal sewage treatment plants. This resulted in an additional 95% COD removal. Overall COD reduction for the combined process was 99%. A detailed chemical analysis of the raw BGW and thermal and biological effluents was performed using gas chromatography/mass spectrometry (GC/MS). These results showed a 97% decrease in total extractable organics with WA0 and a 99.6% decrease for combined WA0 and activated sludge treatment. Components of the treated waters tended to be fewer in number and more highly oxidized. An experiment was conducted to determine the amount of COD reduction caused by volatilization during biological treatment. Unfortunately, this did not yield conclusive results. Treatment of BGW using WA0 followed by activated sludge appears to be very effective and investigations at a larger scale are recommended.

  8. The direct observation of alkali vapor species in biomass combustion and gasification

    SciTech Connect

    French, R J; Dayton, D C; Milne, T A

    1994-01-01

    This report summarizes new data from screening various feedstocks for alkali vapor release under combustion conditions. The successful development of a laboratory flow reactor and molecular beam, mass spectrometer interface is detailed. Its application to several herbaceous and woody feedstocks, as well as a fast-pyrolysis oil, under 800 and 1,100{degrees}C batch combustion, is documented. Chlorine seems to play a large role in the facile mobilization of potassium. Included in the report is a discussion of relevant literature on the alkali problem in combustors and turbines. Highlighted are the phenomena identified in studies on coal and methods that have been applied to alkali speciation. The nature of binding of alkali in coal versus biomass is discussed, together with the implications for the ease of release. Herbaceous species and many agricultural residues appear to pose significant problems in release of alkali species to the vapor at typical combustor temperatures. These problems could be especially acute in direct combustion fired turbines, but may be ameliorated in integrated gasification combined cycles.

  9. Optimization of Biomass Gasification Process for F-T Bio-Diesel Synthesys

    NASA Astrophysics Data System (ADS)

    Song, Jae Hun; Sung, Yeon Kyung; Yu, Tae U.; Choi, Young Tae; Lee, Uen Do

    The characteristics of biomass steam gasification were investigated to make an optimum syngas for Fischer Tropsch (F-T) synthesis of bio-diesel. Korean pine wood chip was used as a fuel and the experiment was conducted in a lab scale bubbling fluidized bed (0.1m LD. x 3.Omheight). Gas composition was evaluated by changing operating parameters such as gasifier temperature, and steam to fuel ratio. Major syngas was monitored by on-line gas analyzer (ND-IR spectroscopy) and gas chromatography (GC). As the temperature of gasifier increases hydrogen in the syngas increases while CO in the product gas decreases. The low concentration of sulfur compound and nitrogen in the product gas shows the potential advantages in the purification process of the syngas for F-T process. Optimum operating condition of the gasifier was found concerning the following gas cleaning and F-T process; H2-CO ratio and total gas yield increase while decreasing methane and CO2 concentrations in the syngas.

  10. Novel Low-Cost Process for the Gasification of Biomass and Low-Rank Coals

    SciTech Connect

    Thomas Barton

    2009-03-05

    Farm Energy envisaged a phased demonstration program, in which a pilot-scale straw gasifier will be installed on a farm. The synthesis gas product will be used to initially (i) generate electricity in a 300 kW diesel generator, and subsequently (ii) used as a feedstock to produce ethanol or mixed alcohols. They were seeking straw gasification and alcohol synthesis technologies that may be implemented on farm-scale. The consortium, along with the USDA ARS station in Corvallis, OR, expressed interest in the dual-bed gasification concept promoted by WRI and Taylor Energy, LLC. This process operated at atmospheric pressure and employed a solids-circulation type oxidation/reduction cycle significantly different from traditional fluidized-bed or up-draft type gasification reactors. The objectives of this project were to perform bench-scale testing to determine technical feasibility of gasifier concept, to characterize the syngas product, and to determine the optimal operating conditions and configuration. We used the bench-scale test data to complete a preliminary design and cost estimate for a 1-2 ton per hour pilot-scale unit that is also appropriate for on-farm scale applications. The gasifier configuration with the 0.375-inch stainless steel balls recirculating media worked consistently and for periods up to six hours of grass feed. The other principle systems like the boiler, the air pump, and feeder device also worked consistently during all feeding operations. Minor hiccups during operation tended to come from secondary systems like the flare or flammable material buildup in the exit piping. Although we did not complete the extended hour tests to 24 or 48 hours due to time and budget constraints, we developed the confidence that the gasifier in its current configuration could handle those tests. At the modest temperatures we operated the gasifier, slagging was not a problem. The solid wastes were dry and low density. The majority of the fixed carbon from the grass

  11. Catalytic effects in coal gasification. Quarterly report, April-June 1980

    SciTech Connect

    Padrick, T D

    1980-11-01

    This quarterly report, for the period April through June 1980, summarizes the activities of Sandia National Laboratories' program on mineral matter effects in coal gasification. The objective is to determine the effects of mineral matter on the devolatilization of coal and on the subsequent char gasification. We have selected a basis set of Eastern bituminous coals whose mineral matter content, as determined by x-ray analysis of low-temperature ash, ranged from less than 5% to more than 20%. Chemical and physical characterization revealed that these coals had similar rank and petrographic content. Baseline thermal gravimetric experiments, in which the coals were heated from ambient to 1000/sup 0/C at 5/sup 0/C/min under nitrogen or hydrogen, have been completed. Work has been initiated to measure the composition of the gas evolved during both the devolatilization regime and the subsequent period of slower char gasification.

  12. A novel approach to highly dispersing catalytic materials in coal for gasification. Final technical report, September 1989--November 1992

    SciTech Connect

    Abotsi, G.M.K.; Bota, K.B.

    1992-12-01

    The objectives of this project were to investigate the effects of coal surface charge on the uptake of aqueous soluble metal catalysts from solution and to determine the influence of the interfacial interaction on char reactivity. Another goal is to assess the potential of using potassium carbonate, potassium acetate or their mixtures as catalysts for char gasification. The lower cost and the high catalytic activity of the latter compound will produce economic benefits by reducing the amount of potassium carbonate required for efficient char reactivities on a commercial scale. To minimize the interference of the coals` inherent inorganic materials with the added calcium or potassium, the gasification studies were restricted to the demineralized coals. In a manner similar to the effect of pH on the surface electrochemistry of the coals, the reactivities of the calcium- or potassium-loaded chars in bon dioxide at 800{degree}C were dependent upon the pH at which the catalysts were ion-exchanged onto the coals. For the calcium-containing chars, the reactivities increased in the order: pH 6 > pH 10 > pH 1. In contrast, the variation of the gasification rates with potassium loading pH was: pH 6 {approximately} pH 10 {much_gt} pH 1. However, simultaneous adsorption of the metals at {approximately} pH 1 enhanced char reactivity relative to metals loading at pH 6 or 10. These findings are attributed to the differences in the extent of electrostatic interaction between the calcium or potassium ions and the charged coal surface during catalyst loading from solution.

  13. Mechanism of catalytic gasification of coal char. Quarterly technical report No. 5, October 1 to December 31, 1981

    SciTech Connect

    Wood, B. J.; Sancier, K. M.; Sheridan, D. R.; Chan, B. L.; Wise, H.

    1982-02-26

    The purpose of this study is to determine the mechanisms involved in the catalytic reactions of coal char and to identify the specific reaction steps and the parameters that control the catalytic process. The mode of action of the catalyst can be viewed in two ways. In one view, the catalyst participates in a reduction/oxidation cycle. The initial reaction between the carbon and the catalyst reduces the KOH to potassium accompanied by the gaseous reactant (H/sub 2/O or CO/sub 2/), producing further gaseous products (CO and H/sub 2/) and regenerating the initial state of the catalyst. In an alternative view, the catalyst initially forms an alkali metal addition compound with the carbon network of the char. The carbon-carbon bonds are altered by the formation of the metal-carbon linkage, possibly by electron transfer from the alkali metal atom to the carbon structure. As a result, the carbon structure is more readily attacked by the gaseous reactant (CO or H/sub 2/O) to produce the products of gasification. The following areas were investigated to provide experimental evidence for these catalytic modes of action: chemical kinetic measurements; thermodynamic measurements; free radicals in reacting carbon; electrical conductivity measurements. A detailed discussion on the catalyst-carbon interaction and on the reaction intermediate is provided.

  14. Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of catalytic ultrasound oxidation and membrane bioreactor.

    PubMed

    Jia, Shengyong; Han, Hongjun; Zhuang, Haifeng; Xu, Peng; Hou, Baolin

    2015-01-01

    Laboratorial scale experiments were conducted to investigate a novel system integrating catalytic ultrasound oxidation (CUO) with membrane bioreactor (CUO-MBR) on advanced treatment of biologically pretreated coal gasification wastewater. Results indicated that CUO with catalyst of FeOx/SBAC (sewage sludge based activated carbon (SBAC) which loaded Fe oxides) represented high efficiencies in eliminating TOC as well as improving the biodegradability. The integrated CUO-MBR system with low energy intensity and high frequency was more effective in eliminating COD, BOD5, TOC and reducing transmembrane pressure than either conventional MBR or ultrasound oxidation integrated MBR. The enhanced hydroxyl radical oxidation, facilitation of substrate diffusion and improvement of cell enzyme secretion were the mechanisms for CUO-MBR performance. Therefore, the integrated CUO-MBR was the promising technology for advanced treatment in engineering applications. PMID:25936898

  15. Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals.

    PubMed

    Chheda, Juben N; Huber, George W; Dumesic, James A

    2007-01-01

    Biomass has the potential to serve as a sustainable source of energy and organic carbon for our industrialized society. The focus of this Review is to present an overview of chemical catalytic transformations of biomass-derived oxygenated feedstocks (primarily sugars and sugar-alcohols) in the liquid phase to value-added chemicals and fuels, with specific examples emphasizing the development of catalytic processes based on an understanding of the fundamental reaction chemistry. The key reactions involved in the processing of biomass are hydrolysis, dehydration, isomerization, aldol condensation, reforming, hydrogenation, and oxidation. Further, it is discussed how ideas based on fundamental chemical and catalytic concepts lead to strategies for the control of reaction pathways and process conditions to produce H(2)/CO(2) or H(2)/CO gas mixtures by aqueous-phase reforming, to produce furan compounds by selective dehydration of carbohydrates, and to produce liquid alkanes by the combination of aldol condensation and dehydration/hydrogenation processes. PMID:17659519

  16. Water-Pd Interface in Catalytic Biomass Conversion: Atomic-Scale Structure and Properties

    NASA Astrophysics Data System (ADS)

    Wang, Yake; Yin, Shuxia; Liu, Xin; Shields, Darwin; Wang, Sanwu

    2012-02-01

    Biomass pyrolysis and other relevant catalytic reactions often occur at the liquid-solid interface. It is therefore of great importance to investigate the interfacial structure and other properties in order to achieve a deep understanding about the catalytic reactions for biomass conversion. We used ab initio molecular dynamics simulations to study the interfaces formed by liquid water and the palladium surfaces. Such interfaces are involved in many catalytic reactions for biomass conversion. We report results about the structural properties of the water/Pd(100) and water/Pd(111) interfaces, the interaction between liquid water and the metal surfaces, and how the interaction affects the structure. We found that while the interaction between water and the metal surface is weak, it could still cause considerable effects. In particular, the interaction promotes the formation of close-packed local clusters of liquid water.

  17. A model approach to highly dispersing catalytic materials in coal for gasification. Eleventh quarterly report, April 1, 1992--June 30, 1992

    SciTech Connect

    Abotsi, G.M.K.; Bota, K.B.

    1992-10-01

    This project seeks to develop a technique, based on coal surface properties, for highly dispersing catalysts in coal for gasification and to investigate the potential of using potassium carbonate and calcium acetate mixtures as catalysts for coal gasification. The lower cost and higher catalytic activity of the latter compound will produce economic benefits by reducing the amount of K{sub 2}CO{sub 3} required for high coal char reactivities. As was shown in previous reports, coal loading with potassium or calcium at different pHs produced CO{sub 2} gasification activities which increased in the order pH 6 > pH 10 >>pH 1. A similar trend was obtained when calcium and potassium were simultaneously loaded and char reaction times were less than about 75 min. In the last quarter, the potential application of ammonia as a reactive medium for coal gasification has been investigated. This gas has not been previously applied to coal gasification. However, related work suggests that the potential chemical feedstock base can be broadened by using ammonia to generate hydrogen cyanide and cyanogen from coal. The current report shows that the reactivity of a demineralized lignite in ammonia is significantly higher in the presence of calcium or potassium catalyst than that for the char without added catalyst and suggests that ammonia is a potentially reactive gas for catalyzed coal gasification.

  18. Dual bed reactor for the study of catalytic biomass tars conversion

    SciTech Connect

    Ammendola, P.; Piriou, B.; Lisi, L.; Ruoppolo, G.; Chirone, R.; Russo, G.

    2010-04-15

    A dual fixed bed laboratory scale set up has been used to compare the activity of a novel Rh/LaCoO{sub 3}/Al{sub 2}O{sub 3} catalyst to that of dolomite, olivine and Ni/Al{sub 2}O{sub 3}, typical catalysts used in fluidized bed biomass gasification, to convert tars produced during biomass devolatilization stage. The experimental apparatus allows the catalyst to be operated under controlled conditions of temperature and with a real gas mixture obtained by the pyrolysis of the biomass carried out in a separate fixed bed reactor operated under a selected and controlled heating up rate. The proposed catalyst exhibits much better performances than conventional catalysts tested. It is able to completely convert tars and also to strongly decrease coke formation due to its good redox properties. (author)

  19. Meeting Vision 21 goals with supercritical water gasification (SCWG) of biomass/coal slurries

    SciTech Connect

    Tolman, R.; Spritzer, M.; Hong, G.T.; Rickman, B.; Parkinson, W.J.

    2000-07-01

    In the Vapor Transmission Cycle (VTC), a special condensing expander turbine is planned to reduce temperature and pressure for low-temperature cleaning and to maintain quality and combustibility of the fuel vapor for a modern gas turbine. The VTC generates clean fuel gas and steam for gas turbines by feeding water slurries or emulsions above about 25% solids, including coal fines, coal water fuels, biomass, composted municipal refuse, sewage sludge, crumb rubber and pulp and paper wastes in patented HRSG tubes. A commercial method of particle scrubbing is used to improve heat transfer and prevent corrosion and deposition on heat transfer surfaces. Tests were conducted to produce clean fuels for gas turbines and fuel cells via supercritical water gasification (SCWG). The study includes lab-scale testing of composted packer truck refuse and sewage sludge made in an aerobic digester without shredding. A computer-based process simulation model has been prepared that includes material and energy balances that simulate commercial-scale operations of the VTC. Funded by DOE, pilot-scale data produced by General Atomics for sewage sludge shows that SCWG above 640 C and low residence time without an oxidizer can produce a gaseous mixture containing over 25 vol. % hydrogen in methane, carbon monoxide, carbon dioxide and higher light hydrocarbons. Excess hydrogen can be separated for use in fuel cells. Carbon can be separated up to the amount of fixed carbon in the proximate analysis of the solids in the feed. This carbon can be burned in an existing combustion system to help provide the heat required for SCWG, or it can be used to remove pollutants and hydrocarbons from water and air. Test and modeling results will be presented. Preliminary life cycle costs analyses will be presented that establish MSW and sludge disposal fees that improve operating economics over higher-cost fuels. Analyses show that the cost and schedule advantages of natural gas-fired combined cycle

  20. Effects of metal catalysts on CO2 gasification reactivity of biomass char.

    PubMed

    Huang, Yanqin; Yin, Xiuli; Wu, Chuangzhi; Wang, Congwei; Xie, Jianjun; Zhou, Zhaoqiu; Ma, Longlong; Li, Haibin

    2009-01-01

    The effects of five metal catalysts (K, Na, Ca, Mg, and Fe) on CO(2) gasification reactivity of fir char were studied using thermal gravimetric analysis. The degree of carbonization, crystal structure and morphology of char samples was characterized by X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The CO(2) gasification reactivity of fir char was improved through the addition of metal catalysts, in the order K>Na>Ca>Fe>Mg. XRD analysis indicated that Na and Ca improved the formation of crystal structure, and that Mg enhanced the degree of carbon structure ordering. SEM analysis showed that spotted activation centers were distributed on the surface of char samples impregnated with catalysts. Moreover, a loose flake structure was observed on the surface of both K-char and Na-char. Finally, the kinetic parameters of CO(2) gasification of char samples were calculated mathematically. PMID:19393736

  1. Effect of biomass containing zinc metal at different operating parameters on gasification efficiency.

    PubMed

    Lin, Chiou-Liang; Chen, Hsien

    2015-01-01

    This paper describes the effect of Zn on the gas production of a fluidized-bed gasifier to determine the relationship between Zn and the gasification process. Different concentrations of Zn were used in the preparation of artificial waste to elucidate the effect on gas product composition, gas product heat value, gas production rate, and H2 yield in the gasification process. Zn served to increase H2 generation during the gasification process. The molar percentage of H2 with more than 0.1 wt% additional Zn increased by 33.02% and the H2 yield was increased by 11.34% compared to that without Zn. However, the gas heat value decreased, and no significant change in the gas production rate was noted. PMID:26510615

  2. Economic and Technical Assessment of Wood Biomass Fuel Gasification for Industrial Gas Production

    SciTech Connect

    Anastasia M. Gribik; Ronald E. Mizia; Harry Gatley; Benjamin Phillips

    2007-09-01

    This project addresses both the technical and economic feasibility of replacing industrial gas in lime kilns with synthesis gas from the gasification of hog fuel. The technical assessment includes a materials evaluation, processing equipment needs, and suitability of the heat content of the synthesis gas as a replacement for industrial gas. The economic assessment includes estimations for capital, construction, operating, maintenance, and management costs for the reference plant. To perform these assessments, detailed models of the gasification and lime kiln processes were developed using Aspen Plus. The material and energy balance outputs from the Aspen Plus model were used as inputs to both the material and economic evaluations.

  3. Fundamental studies of catalytic gasification: Quarterly report, October 1, 1986-December 31, 1986

    SciTech Connect

    Heinemann, H.

    1986-12-01

    This program studies the basic chemistry of the reaction of carbonaceous materials with water in the presence of catalysts to produce hydrogen and/or synthesis gas. Relatively low temperatures are being used. The catalysts under investigation are compounds of potassium and a transition metal oxide. Major objectives are the extension of the work from chars to coke; the effect of H/sub 2/, CO and CO/sub 2/ partial pressure on the gaseous product distribution; and the inhibition of catalyst poisoning by ash components. Some of the highlights are: (1) Activation energies for K/Ni catalyzed steam gasification of graphite and of chars are identical, indicating the same mechanism prevails though rates are much higher for chars. This permits extrapolation of findings in high vacuum equipment from graphite to chars. (2) The CO/CO/sub 2/ ratio of gases produced along with hydrogen varies with different chars. The ratio is 0.8 for Illinois No. 6 char and 0.08 for North Dakota char. Methane production is several orders of magnitude smaller and ceases after about 2 hours. (3) Comparison of K/Ni catalyst for steam gasification of Illinois No. 6 char with K or Ni alone indicates: (a) K alone produces much higher CO/CO/sub 2/ ratios than K/Ni. (b) Ni alone is almost inactive for the steam gasification of Illinois No. 6 except for the short first period of operation. (4) Montana char treated with aqua regia to remove ash components prior to impregnation with K/Ni has 75% of the activity of untreated char but exhibits little deactivation with time so that it gasifies better than untreated char after a few hours. (5) Controlled atmosphere electron microscopy studies have been extended to wet hydrogen and wet oxygen treatments of K/Ni impregnated graphite 3 refs., 8 figs., 2 tabs.

  4. Chicken-Bio Nuggets Gasification process

    SciTech Connect

    Sheth, A.C.

    1996-12-31

    With the cost of landfill disposal skyrocketing and land availability becoming scarce, better options are required for managing our nation`s biomass waste. In response to this need, the University of Tennessee Space Institute (UTSI) is evaluating an innovative idea (described as Chicken-Bio Nuggets Gasification process) to gasify waste products from the poultry industry and industrial wood/biomass-based residues in {open_quotes}as-is{close_quotes} or aggregate form. The presence of potassium salts in the poultry waste as well as in the biomass can act as a catalyst in reducing the severity of the thermal gasification. As a result, the mixture of these waste products can be gasified at a much lower temperature (1,300-1,400{degrees}F versus 1,800-2,000{degrees}F for conventional thermal gasification). Also, these potassium salts act as a catalyst by accelerating the gasification reaction and enhancing the mediation reaction. Hence, the product gas from this UTSI concept can be richer in methane and probably can be used as a source of fuel (to replace propane in hard reach remote places) or as a chemical feed stock. Exxon Research and Engineering Company has tested a similar catalytic gasification concept in a fluid-bed gasifier using coal in a one ton/day pilot plant in Baytown, Texas. If found technically and economically feasible, this concept can be later on extended to include other kinds of waste products such as cow manure and wastes from swine, etc.

  5. Screening acidic zeolites for catalytic fast pyrolysis of biomass and its components

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Zeolites have been shown to effectively promote cracking reactions during pyrolysis resulting in highly deoxygenated and hydrocarbon-rich compounds and stable pyrolysis oil product. Py/GC-MS was employed to study the catalytic fast pyrolysis of lignocellulosic biomass samples comprising oak, corn...

  6. Biofuel production from catalytic thermochemical conversion of animal manure and biomass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of the research is to identify suitable catalysts to convert animal manure-based and biomass-based synthesis gas (syngas) to liquid biofuels such as mixed alcohols and hydrocarbons. Two pathways of catalytically converting syngas are investigated: (1)a two-step process involving the in...

  7. The mathematical description of the gasification process of woody biomass in installations with a plasma heat source for producing synthesis gas

    NASA Astrophysics Data System (ADS)

    Sadrtdinov, A. R.; Safin, R. G.; Gerasimov, M. K.; Petrov, V. I.; Gilfanov, K. K.

    2016-04-01

    The article presents the scheme of processing of plant biomass in the gasification installation with a plasma heat source to produce synthesis gas suitable for chemical industry. The analyzed physical picture of raw materials' recycling process underlies a mathematical description of the process set out in the form of the basic differential equations with boundary conditions. The received mathematical description allows calculating of the main parameters of equipment for biomass recycling and to determine the optimal modes of its operation.

  8. Fundamental studies of catalytic gasification: Quarterly report, April 1, 1987-June 30, 1987

    SciTech Connect

    Heinemann, H.

    1987-07-01

    Our results indicate that there is a strong interaction between nickel and potassium in the steam gasification of carbon solids leading to a ternary oxide compound formation. Nickel and potassium, however, can potentially also interact with other components present in the char, mainly calcium and alumino-silicate compounds. We have previously reported that the nickel/calcium mixed catalysts are much less active than the nickel/potassium mixture for steam gasification of graphite. The nickel/calcium interaction may therefore be a reason for the loss of catalyst activity. Most of the ash components in the char can be extracted by treatment in aqua regia, and this treatment does prevent the loss of catalyst activity with carbon conversion. The same treatment, however, may also affect the char structure and composition, which in turn can be responsible for the results observed. For example, this treatment strongly oxidizes the carbon surface, and the resulting surface oxygen groups may interact with the catalysts, changing their spreading characteristics and thereby the deactivation process. To distinguish between these two possibilities for catalyst deactivation, that is, interaction with the indigenous components of the char, or change of carbon-catalyst contact, further experiments are being performed. First, pretreatment of the char in HF, instead of aqua regia, can extract the mineral content of the char without oxidizing the carbon surface. Comparison of the results obtained after these two pretreatments can distinguish between these two possible explanations for the catalyst deactivation.

  9. Biofuels and biomass-to-liquid fuels in the biorefinery: catalytic conversion of lignocellulosic biomass using porous materials.

    PubMed

    Stöcker, Michael

    2008-01-01

    At a time when the focus is on global warming, CO(2) emission, secure energy supply, and less consumption of fossil-based fuels, the use of renewable energy resources is essential. Various biomass resources are discussed that can deliver fuels, chemicals, and energy products. The focus is on the catalytic conversion of biomass from wood. The challenges involved in the processing of lignocellulose-rich materials will be highlighted, along with the application of porous materials as catalysts for the biomass-to-liquids (BTL) fuels in biorefineries. The mechanistic understanding of the complex reactions that take place, the development of catalysts and processes, and the product spectrum that is envisaged will be discussed, along with a sustainable concept for biorefineries based on lignocellulose. Finally, the current situation with respect to upgrading of the process technology (pilot and commercial units) will be addressed. PMID:18937235

  10. Catalytic biomass liquefaction. Quarterly report, January-March 1980

    SciTech Connect

    Ergun, S.; Djafar, R.; Figueroa, C.; Karatas, C.; Schaleger, L.; Seth, M.; Wrathall, J.; Yaghoubzadeh, N.; Yu, G.

    1980-05-01

    Progress during the quarter in the chemical characterization of the products of wood liquefaction is reported. The liquefaction of hydrolyzed slurries in a tubular reactor bomb system is described. The solvolytic depolymerization of wood is compared to the hydrolysis process. Results of a few illustrative runs are pesented. The characterization and flow properties of concentrated slurries are discussed. Progress on the construction of biomass continuous liquefaction unit is described.

  11. Catalytic Isomerization of Biomass-Derived Aldoses: A Review.

    PubMed

    Delidovich, Irina; Palkovits, Regina

    2016-03-21

    Selected aldohexoses (d-glucose, d-mannose, and d-galactose) and aldopentoses (d-xylose, l-arabinose, and d-ribose) are readily available components of biopolymers. Isomerization reactions of these substances are very attractive as carbon-efficient processes to broaden the portfolio of abundant monosaccharides. This review focuses on the chemocatalytic isomerization of aldoses into the corresponding ketoses as well as epimerization of aldoses at C2. Recent advances in the fields of catalysis by bases and Lewis acids are considered. The emphasis is laid on newly uncovered catalytic systems and mechanisms of carbohydrate transformations. PMID:26948404

  12. Hydrogen production by supercritical water gasification of biomass. Phase 1 -- Technical and business feasibility study, technical progress report

    SciTech Connect

    1997-12-01

    The nine-month Phase 1 feasibility study was directed toward the application of supercritical water gasification (SCWG) for the economical production and end use of hydrogen from renewable energy sources such as sewage sludge, pulp waste, agricultural wastes, and ultimately the combustible portion of municipal solid waste. Unique in comparison to other gasifier systems, the properties of supercritical water (SCW) are ideal for processing biowastes with high moisture content or contain toxic or hazardous contaminants. During Phase I, an end-to-end SCWG system was evaluated. A range of process options was initially considered for each of the key subsystems. This was followed by tests of sewage sludge feed preparation, pumping and gasification in the SCW pilot plant facility. Based on the initial process review and successful pilot-scale testing, engineering evaluations were performed that defined a baseline system for the production, storage and end use of hydrogen. The results compare favorably with alternative biomass gasifiers currently being developed. The results were then discussed with regional wastewater treatment facility operators to gain their perspective on the proposed commercial SCWG systems and to help define the potential market. Finally, the technical and business plans were developed based on perceived market needs and the projected capital and operating costs of SCWG units. The result is a three-year plan for further development, culminating in a follow-on demonstration test of a 5 MT/day system at a local wastewater treatment plant.

  13. Catalytic and non-catalytic pyrolysis of biomass in non-inert environments for production of deoxygenated bio-oil and chemicals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fast pyrolysis processes are among the most effective methods for liquefaction of lignocellulosic biomass. Catalytic fast pyrolysis (CFP) over HZSM-5 or other zeolites and/or utilization of reactive atmospheres such as in the non-catalytic Tail Gas Reactive Pyrolysis (TRGP) process, a recent patent...

  14. Heterogeneous catalytic ozonation of biologically pretreated Lurgi coal gasification wastewater using sewage sludge based activated carbon supported manganese and ferric oxides as catalysts.

    PubMed

    Zhuang, Haifeng; Han, Hongjun; Hou, Baolin; Jia, Shengyong; Zhao, Qian

    2014-08-01

    Sewage sludge of biological wastewater treatment plant was converted into sewage sludge based activated carbon (SBAC) with ZnCl₂ as activation agent, which supported manganese and ferric oxides as catalysts (including SBAC) to improve the performance of ozonation of real biologically pretreated Lurgi coal gasification wastewater. The results indicated catalytic ozonation with the prepared catalysts significantly enhanced performance of pollutants removal and the treated wastewater was more biodegradable and less toxic than that in ozonation alone. On the basis of positive effect of higher pH and significant inhibition of radical scavengers in catalytic ozonation, it was deduced that the enhancement of catalytic activity was responsible for generating hydroxyl radicals and the possible reaction pathway was proposed. Moreover, the prepared catalysts showed superior stability and most of toxic and refractory compounds were eliminated at successive catalytic ozonation runs. Thus, the process with economical, efficient and sustainable advantages was beneficial to engineering application. PMID:24907577

  15. SULFUR TOLERANT CATALYSTS FOR BIOMASS TAR REMOVAL - PHASE I

    EPA Science Inventory

    In this Small Business Innovation Research (SBIR) project, NexTech Materials proposes a catalytic reforming approach to remove waste tar from gasified biomass on nickel-based catalysts. Biomass gasification is a potential renewable route to producing electricity, liquid fue...

  16. Chemical Processing in High-Pressure Aqueous Environments. 9. Process Development for Catalytic Gasification of Algae Feedstocks

    SciTech Connect

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Rotness, Leslie J.; Olarte, Mariefel V.; Zacher, Alan H.

    2012-07-26

    Through the use of a metal catalyst, gasification of wet algae slurries can be accomplished with high levels of carbon conversion to gas at relatively low temperature (350 C). In a pressurized-water environment (20 MPa), near-total conversion of the organic structure of the algae to gases has been achieved in the presence of a supported ruthenium metal catalyst. The process is essentially steam reforming, as there is no added oxidizer or reagent other than water. In addition, the gas produced is a medium-heating value gas due to the synthesis of high levels of methane, as dictated by thermodynamic equilibrium. As opposed to earlier work, biomass trace components were removed by processing steps so that they did not cause processing difficulties in the fixed catalyst bed tubular reactor system. As a result, the algae feedstocks, even those with high ash contents, were much more reliably processed. High conversions were obtained even with high slurry concentrations. Consistent catalyst operation in these short-term tests suggested good stability and minimal poisoning effects. High methane content in the product gas was noted with significant carbon dioxide captured in the aqueous byproduct in combination with alkali constituents and the ammonia byproduct derived from proteins in the algae. High conversion of algae to gas products was found with low levels of byproduct water contamination and low to moderate loss of carbon in the mineral separation step.

  17. Catalytic air oxidation of biomass-derived carbohydrates to formic acid.

    PubMed

    Li, Jiang; Ding, Dao-Jun; Deng, Li; Guo, Qing-Xiang; Fu, Yao

    2012-07-01

    An efficient catalytic system for biomass oxidation to form formic acid was developed. The conversion of glucose to formic acid can reach up to 52% yield within 3 h when catalyzed by 5 mol% of H(5)PV(2)Mo(10)O(40) at only 373 K using air as the oxidant. Furthermore, the heteropolyacid can be used as a bifunctional catalyst in the conversion of cellulose to formic acid (yield=35%) with air as the oxidant. PMID:22499553

  18. Process Design and Economics for Conversion of Lignocellulosic Biomass to Ethanol: Thermochemical Pathway by Indirect Gasification and Mixed Alcohol Synthesis

    SciTech Connect

    Dutta, A.; Talmadge, M.; Hensley, J.; Worley, M.; Dudgeon, D.; Barton, D.; Groendijk, P.; Ferrari, D.; Stears, B.; Searcy, E. M.; Wright, C. T.; Hess, J. R.

    2011-05-01

    This design report describes an up-to-date benchmark thermochemical conversion process that incorporates the latest research from NREL and other sources. Building on a design report published in 2007, NREL and its subcontractor Harris Group Inc. performed a complete review of the process design and economic model for a biomass-to-ethanol process via indirect gasification. The conceptual design presented herein considers the economics of ethanol production, assuming the achievement of internal research targets for 2012 and nth-plant costs and financing. The design features a processing capacity of 2,205 U.S. tons (2,000 metric tonnes) of dry biomass per day and an ethanol yield of 83.8 gallons per dry U.S. ton of feedstock. The ethanol selling price corresponding to this design is $2.05 per gallon in 2007 dollars, assuming a 30-year plant life and 40% equity financing with a 10% internal rate of return and the remaining 60% debt financed at 8% interest. This ethanol selling price corresponds to a gasoline equivalent price of $3.11 per gallon based on the relative volumetric energy contents of ethanol and gasoline.

  19. Kinetic models comparison for steam gasification of coal/biomass blend chars.

    PubMed

    Xu, Chaofen; Hu, Song; Xiang, Jun; Yang, Haiping; Sun, Lushi; Su, Sheng; Wang, Baowen; Chen, Qindong; He, Limo

    2014-11-01

    The non-isothermal thermogravimetric method (TGA) was applied to different chars produced from lignite (LN), sawdust (SD) and their blends at the different mass ratios in order to investigate their thermal reactivity under steam atmosphere. Through TGA analysis, it was determined that the most prominent interaction between sawdust and lignite occurred at the mass ratio of sawdust/lignite as 1:4, but with further dose of more sawdust into its blends with lignite, the positive interaction deteriorated due to the agglomeration and deactivation of the alkali mineral involved in sawdust at high steam gasification temperature. Through systematic comparison, it could be observed that the random pore model was the most suitable among the three gas-solid reaction models adopted in this research. Finally, rational kinetic parameters were reached from these gas-solid reaction models, which provided a basis for design and operation of the realistic system of co-gasification of lignite and sawdust in this research. PMID:25203234

  20. Investigation of an integrated switchgrass gasification/fuel cell power plant. Final report for Phase 1 of the Chariton Valley Biomass Power Project

    SciTech Connect

    Brown, R.C.; Smeenk, J.; Steinfeld, G.

    1998-09-30

    The Chariton Valley Biomass Power Project, sponsored by the US Department of Energy Biomass Power Program, has the goal of converting switchgrass grown on marginal farmland in southern Iowa into electric power. Two energy conversion options are under evaluation: co-firing switchgrass with coal in an existing utility boiler and gasification of switchgrass for use in a carbonate fuel cell. This paper describes the second option under investigation. The gasification study includes both experimental testing in a pilot-scale gasifier and computer simulation of carbonate fuel cell performance when operated on gas derived from switchgrass. Options for comprehensive system integration between a carbonate fuel cell and the gasification system are being evaluated. Use of waste heat from the carbonate fuel cell to maximize overall integrated plant efficiency is being examined. Existing fuel cell power plant design elements will be used, as appropriate, in the integration of the gasifier and fuel cell power plant to minimize cost complexity and risk. The gasification experiments are being performed by Iowa State University and the fuel cell evaluations are being performed by Energy Research Corporation.

  1. Thermodynamic modelling of supercritical water gasification: investigating the effect of biomass composition to aid in the selection of appropriate feedstock material.

    PubMed

    Louw, Jeanne; Schwarz, Cara E; Knoetze, Johannes H; Burger, Andries J

    2014-12-01

    A process model developed in Aspen Plus®, was used for the thermodynamic modelling of supercritical water gasification (SCWG) using a wide variety of biomass materials as feedstock. The influence of the composition of the biomass material (in terms of carbon, hydrogen and oxygen content) on various performance indicators (such as gas yields, cold gas efficiency, calorific value of product gas and heat of reaction), were determined at various temperatures (600, 700 and 800°C) and biomass feed concentrations (5, 15 and 25wt.%). Generalised contour plots, based on the biomass composition, were developed for these performance indicators to provide the thermodynamic limits at various operating conditions. These plots can aid in the selection or screening of potential biomass materials and appropriate operating conditions for SCWG prior to conducting experimental work. PMID:25463777

  2. Catalytic gasification of graphite or carbon. Quarterly report, April 1, 1986-May 31, 1986

    SciTech Connect

    Heinemann, H.

    1986-06-01

    This program is designed to study the basic chemistry of the reaction of carbonaceous materials with water in the presence of catalysts to produce hydrocarbons and/or synthesis gas. Relatively low temperatures are being used. Earlier work has shown that a combination of KOH and a transition metal oxide, such as NiO, constitutes catalysts superior to either component alone. It is an objective of the present task to identify the optimum ratio of the components and to determine the existence and composition of a potential catalytic compound, e.g., a potassium nickelate. The applicability of the reactions thus far studied with graphite to char, coke and possibly coal will be investigated. Improvements in kinetics will be sought and the effect of added gases, such as H/sub 2/S, CO and O/sub 2/ will be researched.

  3. Economic feasibility of ethanol production from biomass and waste resources via catalytic reaction.

    PubMed

    Yeon, Sun-Hwa; Shin, Dae-Hyun; Nho, Nam-Sun; Shin, Kyoung-Hee; Jin, Chang-Soo

    2013-04-01

    An economic evaluation of ethanol (EtOH) production from a thermo-chemical process derived from biomass/waste feedstocks was conducted. The influence of feed amounts, catalytic conversions, and EtOH selling prices was examined as these are the major variables for the economic evaluation of biomass/wastes conversion to EtOH. Among the three feedstock systems of biomass, high-moisture municipal solid waste (MSW), and plastic waste, the plastic waste has far better economic feasibility, with a payback period of 2-5 years at maximum CO conversion (40%) from syngas to ethanol, due to its higher heating value in comparison with biomass and high-moisture MSW. The heating value of the feedstock is a key factor in determining the overall economic efficiency in a thermo-chemical EtOH production system. Furthermore, enhancement of the CO conversion (related to catalytic activity) from syngas to EtOH using a low cost catalyst is necessary to retain economic efficiency because the CO conversion and cost consideration of catalyst are crucial factors to reduce the payback period. PMID:23179512

  4. Thermic and electric power production and use from gasification of biomass and RDF: Experience at CFBG Plant at Greve in Chianti

    SciTech Connect

    Barducci, G.L.; Daddi, P.; Polzinetti, G.C.

    1995-11-01

    With the gasification plant of Greve in Chianti, it is easy to produce electric power, starting from sorghum bagasse and RDF. The experiment demonstrated the possibility of gasifying the biomass sorghum bagasse in CFBG, obtaining a low gas with a sufficiently high heat value. It is possible to use the lean gas, obtained from gasification of sorghum bagasse and RDF, as fuel in the cement production. With the realization of the second line of gas combustion and heat recovery system, the plant will be able to produce electric power of 6,7 MW and thermic treatment about 200 ton/day of RDF or biomass. At the same time the new configuration of the second line will be able to avoid the fouling problems on the boiler section.

  5. Simulation of biomass and/or coal gasification systems integrated with fuel cells

    SciTech Connect

    Ersoz, A.; Ozdogan, S.; Caglayan, E.; Olgun, H.

    2006-11-15

    This paper presents the results of a system simulation study. The HYSYS 3.1 - ASPEN code has been used for simulation. The system consists of a fixed bed gasifier followed by reforming and clean-up units. The produced hydrogen gas is fed to a PEM fuel cell. The gasified hydrocarbons are hazelnut shells, bark, rice straw, animal waste, and two lignites. Hydrocarbon properties, gasification, and reforming process parameters all affect the system efficiency. The effect of the moisture content and oxygen to carbon ratio of the hydrocarbon fees on the fuel processing and overall system efficiencies are presented. The overall efficiency of the system increases with increasing hydrocarbon fees oxygen to carbon ratio; this tendency is more evident at higher moisture levels.

  6. BioCoComb -- Gasification of biomass and co-combustion of the gas in a pulverized-coal-boiler

    SciTech Connect

    Anderl, H.; Zotter, T.; Mory, A.

    1999-07-01

    In a demonstration project supported by an European Community Thermie Fund a biomass gasifier for bark, wood chips, saw dust, etc. has been installed by Austrian Energy and Environment at the 137 MW{sub el} pulverized-coal fired power station in Zeltweg, Austria. The project title BioCoComb is an abbreviation for Preparation of Biofuel for Co-Combustion, where co-combustion means combustion together with coal in existing power plants. According to the thermal capacity of 10 MW the produced gas substitutes approx. 3% of the coal fired in the boiler. Only the coarse fraction of the biomass has to pass a shredder and is then fed together with the fine fraction without any further pretreatment into the gasifier. In the gasification process the biomass will combust in a substoichiometric atmosphere, create the necessary temperature of 820 C and partly gasify due to the lack of oxygen in the combustion chamber (autothermal operation). The gasifier uses circulating fluidized bed technology, which guarantees even relatively low temperatures in all parts of the gasifier to prevent slagging. The intense motion of the bed material also favors attrition of the biomass particles. Via a hot gas duct the produced low calorific value (LCV) gas is directly led into the furnace of the existing pulverized coal fired boiler for combustion. The gas also contains fine wood char particles, that can pass the retention cyclone and burn out in the furnace of the coal boiler. The main advantages of the BioCoComb concept are: low gas quality sufficient for co-firing; no gas cleaning or cooling; no predrying of the biomass; relatively low temperatures in the gasifier to prevent slagging; favorable effects on power plant emissions (CO{sub 2}, NO{sub x}); no severe modifications of the existing coal fired boiler; and high flexibility in arranging and integrating the main components into existing plants. The plant started its trial run in November 1997 and has been in successful commercial

  7. Exxon catalytic coal-gasification process development program. Quarterly technical progress report, October-December 1979

    SciTech Connect

    Euker, Jr, C. A.

    1980-03-01

    Work continued on the catalyst recovery screening studies to evaluate the economic impacts of alternative processing approaches and solid-liquid separation techniques. Equipment specifications have been completed for two cases with countercurrent water washing using rotary-drum filters for the solid-liquid separations. Material and energy balances have been completed for an alternative methane recovery process configuration using low pressure stripping which requires 26% less horsepower than the Study Design system. A study has been initiated to identify trace components which might be present in the CCG gas loop and to assess their potential impacts on the CCG process. This information will be used to assist in planning an appropriate series of analyses for the PDU gasifier effluent. A study has been initiated to evaluate the use of a small conventional steam reformer operating in parallel with a preheat furnace for heat input to the catalytic gasifier which avoids the potential problem of carbon laydown. Preliminary replies from ten manufacturers are being evaluated as part of a study to determine the types and performance of coal crushing equipment appropriate for commercial CCG plants. A material and energy balance computer model for the CCG reactor system has been completed. The new model will provide accurate, consistent and cost-efficient material and energy balances for the extensive laboratory guidance and process definition studies planned under the current program. Other activities are described briefly.

  8. Energy, Environmental, and Economic Analyses of Design Concepts for the Co-Production of Fuels and Chemicals with Electricity via Co-Gasification of Coal and Biomass

    SciTech Connect

    Eric Larson; Robert Williams; Thomas Kreutz; Ilkka Hannula; Andrea Lanzini; Guangjian Liu

    2012-03-11

    The overall objective of this project was to quantify the energy, environmental, and economic performance of industrial facilities that would coproduce electricity and transportation fuels or chemicals from a mixture of coal and biomass via co-gasification in a single pressurized, oxygen-blown, entrained-flow gasifier, with capture and storage of CO{sub 2} (CCS). The work sought to identify plant designs with promising (Nth plant) economics, superior environmental footprints, and the potential to be deployed at scale as a means for simultaneously achieving enhanced energy security and deep reductions in U.S. GHG emissions in the coming decades. Designs included systems using primarily already-commercialized component technologies, which may have the potential for near-term deployment at scale, as well as systems incorporating some advanced technologies at various stages of R&D. All of the coproduction designs have the common attribute of producing some electricity and also of capturing CO{sub 2} for storage. For each of the co-product pairs detailed process mass and energy simulations (using Aspen Plus software) were developed for a set of alternative process configurations, on the basis of which lifecycle greenhouse gas emissions, Nth plant economic performance, and other characteristics were evaluated for each configuration. In developing each set of process configurations, focused attention was given to understanding the influence of biomass input fraction and electricity output fraction. Self-consistent evaluations were also carried out for gasification-based reference systems producing only electricity from coal, including integrated gasification combined cycle (IGCC) and integrated gasification solid-oxide fuel cell (IGFC) systems. The reason biomass is considered as a co-feed with coal in cases when gasoline or olefins are co-produced with electricity is to help reduce lifecycle greenhouse gas (GHG) emissions for these systems. Storing biomass-derived CO

  9. OPTIMIZING SYNTHESIS GAS YIELD FROM THE CROSS DRAFT GASIFICATION OF WOODY BIOMASS

    EPA Science Inventory

    Biomass can be gasified to yield synthesis gas, tars, and ash. The process is governed by a number of parameters such as the temperature of the gasifying medium (in this case air), and the moisture content of the feedstock. Synthesis gas from gasifying wood pellets was collected ...

  10. Biomass catalytic pyrolysis to produce olefins and aromatics with a physically mixed catalyst.

    PubMed

    Zhang, Huiyan; Xiao, Rui; Jin, Baosheng; Xiao, Guomin; Chen, Ran

    2013-07-01

    Zeolite catalysts with micropores present good catalytic characteristics in biomass catalytic pyrolysis process. However, large-molecule oxygenates produced from pyrolysis cannot enter their pores and would form coke on their surfaces, which decreases hydrocarbon yield and deactivates catalyst rapidly. This paper proposed adding some mesoporous and macroporous catalysts (Gamma-Al2O3, CaO and MCM-41) in the microporous catalyst (LOSA-1) for biomass catalytic pyrolysis. The added catalysts were used to crack the large-molecule oxygenates into small-molecule oxygenates, while LOSA-1 was used to convert these small-molecule oxygenates into olefins and aromatics. The results show that all the additives in LOSA-1 enhanced hydrocarbon yield obviously. The maximum aromatic+olefin yield of 25.3% obtained with 10% Gamma-Al2O3/90% LOSA-1, which was boosted by 39.8% compared to that obtained with pure LOSA-1. Besides, all the additives in LOSA-1 improved the selectivities of low-carbon components in olefins and aromatics significantly. PMID:23707913

  11. Atmospheric pressure gasification process for power generation

    SciTech Connect

    Morris, M.

    1996-12-31

    Since 1987 TPS Termiska Processer AB has been working on the development of both a biomass-fueled circulating fluidized bed (CFB) gasification process and a downstream dolomite catalytic tar removal process. The combined process has been developed in a 2 MWth pilot plant which was built originally for investigating the use of the product gas in a diesel motor cogeneration plant. A prototype gasification plant comprising two waste-fueled 15 MWth CFB gasifiers has been installed in Greve-in-Chianti, Italy. Since 1990, TPS has been working on the development of a biomass-fueled integrated gasification combined-cycle scheme utilizing both a CFB gasifier and a CFB tar cracker. In 1992, TPS was contracted by the Global Environmental Facility (GEF) to perform work for Phase II of the Brazilian BIG-GT (Biomass Integrated Gasification-Gas Turbine) project. This stage of the project involved both experimental and engineering studies and the basic engineering for a 30 MWe eucalyptus-fueled power plant in Brazil. The plant is based on the GE LM 2500 gas turbine. During this stage of the project the TPS process was in competition with a process from a pressurized gasification technology vendor. However, in 1995 TPS was selected for participation in Phase III of the project. Phase III of the project includes construction and commissioning of the plant. Involvement in the Brazilian BIG-GT project has served as a springboard for the participation of TPS in similar projects in the Netherlands and the UK. In the UK, ARBRE Energy Limited is constructing a coppice-fueled 8 MWe plant with support from the EU THERMIE program and the UKs NFFO (Non Fossil Fuel Obligation). The design contract will be awarded in late 1996. In the Netherlands, a number of projects for biomass and wastes are being pursued by TPS in cooperation with Royal Schelde of the Netherlands.

  12. Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: Kinetics, isotherms and thermodynamic studies.

    PubMed

    Maneerung, Thawatchai; Liew, Johan; Dai, Yanjun; Kawi, Sibudjing; Chong, Clive; Wang, Chi-Hwa

    2016-01-01

    In this work, activated carbon (AC) as an effective and low-cost adsorbent was successfully prepared from carbon residue (or char, one of the by-products from woody biomass gasification) via physical activation. The surface area of char was significantly increased from 172.24 to 776.46m(2)/g after steam activation at 900°C. The obtained activated carbons were then employed for the adsorption of dye (Rhodamine B) and it was found that activated carbon obtained from steam activation exhibited the highest adsorption capability, which is mainly attributed to the higher surface area and the abundance of hydroxyl (-OH) and carboxyl (-COOH) groups on the activated carbon surface. Moreover, it was also found that the adsorption capability significantly increased under the basic condition, which can be attributed to the increased electrostatic interaction between the deprotonated (negatively charged) activated carbon and dye molecules. Furthermore, the equilibrium data were fitted into different adsorption isotherms and found to fit well with Langmuir model (indicating that dye molecules form monolayer coverage on activated carbon) with a maximum monolayer adsorption capability of 189.83mg/g, whereas the adsorption kinetics followed the pseudo-second-order kinetics. PMID:26512858

  13. High temperature steam gasification of solid wastes: Characteristics and kinetics

    NASA Astrophysics Data System (ADS)

    Gomaa, Islam Ahmed

    Greater use of renewable energy sources is of pinnacle importance especially with the limited reserves of fossil fuels. It is expected that future energy use will have increased utilization of different energy sources, including biomass, municipal solid wastes, industrial wastes, agricultural wastes and other low grade fuels. Gasification is a good practical solution to solve the growing problem of landfills, with simultaneous energy extraction and nonleachable minimum residue. Gasification also provides good solution to the problem of plastics and rubber in to useful fuel. The characteristics and kinetics of syngas evolution from the gasification of different samples is examined here. The characteristics of syngas based on its quality, distribution of chemical species, carbon conversion efficiency, thermal efficiency and hydrogen concentration has been examined. Modeling the kinetics of syngas evolution from the process is also examined. Models are compared with the experimental results. Experimental results on the gasification and pyrolysis of several solid wastes, such as, biomass, plastics and mixture of char based and plastic fuels have been provided. Differences and similarities in the behavior of char based fuel and a plastic sample has been discussed. Global reaction mechanisms of char based fuel as well polystyrene gasification are presented based on the characteristic of syngas evolution. The mixture of polyethylene and woodchips gasification provided superior results in terms of syngas yield, hydrogen yield, total hydrocarbons yield, energy yield and apparent thermal efficiency from polyethylene-woodchips blends as compared to expected weighed average yields from gasification of the individual components. A possible interaction mechanism has been established to explain the synergetic effect of co-gasification of woodchips and polyethylene. Kinetics of char gasification is presented with special consideration of sample temperature, catalytic effect of ash

  14. Gasification of sewage sludge and other biomass for hydrogen production in supercritical water

    SciTech Connect

    Xu, X.; Antal, M.J. Jr.

    1998-12-31

    Digested sewage sludge and other biomass such as wood sawdust can be mixed with a corn starch gel to form a viscous paste. The paste can be delivered to a supercritical flow reactor by means of a cement pump. Different types of feedstocks are used in this work sewage sludge (up to 7.69 wt%) mixed in the corn starch paste. When rapidly heated in a flow reactor at pressures above the critical pressure of water (22 MPa) the paste vaporizes. A packed bed of carbon catalyst in the reactor operating at 650 C causes the tarry vapors to react with water, producing hydrogen, carbon dioxide, and some methane with a trace of carbon monoxide. Thus the authors describe a practical method for the total, supercritical steam reforming of biomass to produce hydrogen at high pressure. The steam reforming process produces effectively no tar. Its only products are a hydrogen rich gas, and a clean water, which can be recycled.

  15. Integrated gasification combined cycle and steam injection gas turbine powered by biomass joint-venture evaluation

    SciTech Connect

    Sterzinger, G J

    1994-05-01

    This report analyzes the economic and environmental potential of biomass integrated gasifier/gas turbine technology including its market applications. The mature technology promises to produce electricity at $55--60/MWh and to be competitive for market applications conservatively estimated at 2000 MW. The report reviews the competitiveness of the technology of a stand-alone, mature basis and finds it to be substantial and recognized by DOE, EPRI, and the World Bank Global Environmental Facility.

  16. Catalytic pyrolysis of wood biomass in an auger reactor using calcium-based catalysts.

    PubMed

    Veses, A; Aznar, M; Martínez, I; Martínez, J D; López, J M; Navarro, M V; Callén, M S; Murillo, R; García, T

    2014-06-01

    Wood catalytic pyrolysis using calcium-based materials was studied in an auger reactor at 450°C. Two different catalysts, CaO and CaO·MgO were evaluated and upgraded bio-oils were obtained in both cases. Whilst acidity and oxygen content remarkable decrease, both pH and calorific value increase with respect to the non-catalytic test. Upgrading process was linked to the fact that calcium-based materials could not only fix the CO2-like compounds but also promoted the dehydration reactions. In addition, process simulation demonstrated that the addition of these catalysts, especially CaO, could favour the energetic integration since a lowest circulation of heat carrier between combustor and auger reactor should be needed. An energy self-sustained system was obtained where thermal energy required for biomass drying and for pyrolysis reaction was supplied by non-condensable gas and char combustion, respectively. PMID:24759640

  17. Catalytic hydrotreating of biomass liquefaction products to produce hydrocarbon fuels: Interim report

    SciTech Connect

    Elliott, D.C.; Baker, E.G.

    1986-03-01

    Research catalytic hydrotreatment of biomass liquefaction products to a gasoline has been technically demonstrated in a bench-scale continuous processing unit. This report describes the development of the chemistry needed for hydrotreatment of both high pressure and pyrolyzate biomass liquefaction products and outlines the important processing knowledge gained by the research. Catalyst identity is important in hydrotreatment of phenolics. Hydrogenation catalysts such as palladium, copper chromite, cobalt and nickel show activity with nickel being the most active. Major products include benzene, cyclohexane, and cyclohexanone. The hydrotreating catalysts cobalt-molybdenum, nickel-molybdenum and nickel-tungsten exhibit some activity when added to the reactor in the oxide form and show a great specificity for hydrodeoxygenation of phenol without saturation of the benzene product. The sulfide form of these catalysts is much more active than the oxide form and, in the case of the cobalt-molybdenum, much of the specificity for hydrodeoxygenation is retained. Substitution on the phenolic ring has only marginal effects on the hydrotreating reaction. However, the methoxy (OCH/sub 3/) substituent on the phenol ring is thermally unstable relative to other phenolics tested. The pyrolysis products dominate the product distribution when cobalt-molybdenum is used as the hydrotreating catalyst for methoxyphenol. The product from catalytic hydrotreatment of high-pressure biomass liquefaction products confirms the model compounds studies. Catalytic processing at 350 to 400/sup 0/C and 2000 psig with the sulfided cobalt-molybdenum or nickel-molybdenum catalyst produced a gasoline-like product composed of cyclic and aromatic compounds. Oxygen contents in products were in the range of 0 to 0.7 wt % and hydrogen to carbon atomic ratios ranged from 1.5 to 2.0. 46 refs., 10 figs., 21 tabs.

  18. Effect of Catalytic Pyrolysis Conditions Using Pulse Current Heating Method on Pyrolysis Products of Wood Biomass

    PubMed Central

    Honma, Sensho; Hata, Toshimitsu; Watanabe, Takashi

    2014-01-01

    The influence of catalysts on the compositions of char and pyrolysis oil obtained by pyrolysis of wood biomass with pulse current heating was studied. The effects of catalysts on product compositions were analyzed using GC-MS and TEM. The compositions of some aromatic compounds changed noticeably when using a metal oxide species as the catalyst. The coexistence or dissolution of amorphous carbon and iron oxide was observed in char pyrolyzed at 800°C with Fe3O4. Pyrolysis oil compositions changed remarkably when formed in the presence of a catalyst compared to that obtained from the uncatalyzed pyrolysis of wood meal. We observed a tendency toward an increase in the ratio of polyaromatic hydrocarbons in the pyrolysis oil composition after catalytic pyrolysis at 800°C. Pyrolysis of biomass using pulse current heating and an adequate amount of catalyst is expected to yield a higher content of specific polyaromatic compounds. PMID:25614894

  19. Vapor Phase Catalytic Upgrading of Model Biomass-Derived Oxygenate Compounds

    SciTech Connect

    Yung, M. M.; Gomez, E.; Kuhn, J. N.

    2012-01-01

    When biomass is converted to a liquid bio-oil through pyrolysis, it has a significantly higher oxygen content compared to petroleum fractions. In order to convert the pyrolysis products into infrastructure-compatible fuels, oxygen removal is required. Oxygen removal can be achieved by both hydrotreating (which requires the addition of hydrogen) and decarboxylation or decarbonylation, whereby oxygen is rejected as CO2 and CO, respectively. In the present contribution, a number of catalysts were tested for their activity and selectivity in deoxygenation of model biomass-derived oxygenated compounds (e.g., acetic acid, phenol). Comparison of catalytic activity of materials for different compounds, as well as material characterization results will be discussed. Materials tested will include modified zeolites and supported transition metal catalysts.

  20. Effect of catalytic pyrolysis conditions using pulse current heating method on pyrolysis products of wood biomass.

    PubMed

    Honma, Sensho; Hata, Toshimitsu; Watanabe, Takashi

    2014-01-01

    The influence of catalysts on the compositions of char and pyrolysis oil obtained by pyrolysis of wood biomass with pulse current heating was studied. The effects of catalysts on product compositions were analyzed using GC-MS and TEM. The compositions of some aromatic compounds changed noticeably when using a metal oxide species as the catalyst. The coexistence or dissolution of amorphous carbon and iron oxide was observed in char pyrolyzed at 800 °C with Fe3O4. Pyrolysis oil compositions changed remarkably when formed in the presence of a catalyst compared to that obtained from the uncatalyzed pyrolysis of wood meal. We observed a tendency toward an increase in the ratio of polyaromatic hydrocarbons in the pyrolysis oil composition after catalytic pyrolysis at 800 °C. Pyrolysis of biomass using pulse current heating and an adequate amount of catalyst is expected to yield a higher content of specific polyaromatic compounds. PMID:25614894

  1. Biomass-to-hydrogen via fast pyrolysis and catalytic steam reforming

    SciTech Connect

    Chornet, E.; Wang, D.; Czernik, S.

    1996-10-01

    Pyrolysis of lignocellulosic biomass and reforming the pyroligneous oils is being studied as a strategy for producing hydrogen. Novel technologies for the rapid pyrolysis of biomass have been developed in the past decade. They provide compact and efficient systems to transform biomass into vapors that are condensed to oils, with yields as high as 75-80 wt.% of the anhydrous biomass. This {open_quotes}bio-oil{close_quotes} is a mixture of aldehydes, alcohols, acids, oligomers from the constitutive carbohydrates and lignin, and some water derived from the dehydration reactions. Hydrogen can be produced by reforming the bio-oil or its fractions with steam. A process of this nature has the potential to be cost competitive with conventional means of producing hydrogen. The reforming facility can be designed to handle alternate feedstocks, such as natural gas and naphtha, if necessary. Thermodynamic modeling of the major constituents of the bio-oil has shown that reforming is possible within a wide range of temperatures and steam-to-carbon ratios. Existing catalytic data on the reforming of oxygenates have been studied to guide catalyst selection. Tests performed on a microreactor interfaced with a molecular beam mass spectrometer showed that, by proper selection of the process variables: temperature, steam-to-carbon ratio, gas hourly space velocity, and contact time, almost total conversion of carbon in the feed to CO and CO{sub 2} could be obtained. These tests also provided possible reaction mechanisms where thermal cracking competes with catalytic processes. Bench-scale, fixed bed reactor tests demonstrated high hydrogen yields from model compounds and carbohydrate-derived pyrolysis oil fractions. Reforming bio-oil or its fractions required proper dispersion of the liquid to avoid vapor-phase carbonization of the feed in the inlet to the reactor. A special spraying nozzle injector was designed and successfully tested with an aqueous fraction of bio-oil.

  2. Techno-Environmental Assessment Of Co-Gasification Of Low-Grade Turkish Lignite With Biomass In A Trigeneration Power Plant

    NASA Astrophysics Data System (ADS)

    Amirabedin, Ehsan; Pooyanfar, Mirparham; Rahim, Murad A.; Topal, Hüseyin

    2014-12-01

    Trigeneration or Combined Cooling, Heat and Power (CCHP) which is based upon combined heat and power (CHP) systems coupled to an absorption chiller can be recognized as one of the best technologies recovering biomass effectively to heat, cooling and power. Co-gasification of the lignite and biomass can provide the possibility for safe and effective disposal of different waste types as well as for sustainable and environmentally-friendly production of energy. In this article, a trigeneration system based on an IC engine and gasifier reactor has been simulated and realized using Thermoflex simulation software. Performance results suggest that utilization of sustainably-grown biomass in a Tri-Generation Power Plant (TGPP) can be a possibility for providing cooling, heat and power demands with local renewable sources and reducing the environmental impacts of the energy conversion systems.

  3. Bench- and Pilot-Scale Studies of Reaction and Regeneration of Ni-Mg-K/Al2O3 for Catalytic Conditioning of Biomass-Derived Syngas

    SciTech Connect

    Magrini-Bair, K. A.; Jablonski, W. S.; Parent, Y. O.; Yung, M. M.

    2012-05-01

    The National Renewable Energy Laboratory (NREL) is collaborating with both industrial and academic partners to develop technologies to help enable commercialization of biofuels produced from lignocellulosic biomass feedstocks. The focus of this paper is to report how various operating processes, utilized in-house and by collaborators, influence the catalytic activity during conditioning of biomass-derived syngas. Efficient cleaning and conditioning of biomass-derived syngas for use in fuel synthesis continues to be a significant technical barrier to commercialization. Multifunctional, fluidizable catalysts are being developed to reform undesired tars and light hydrocarbons, especially methane, to additional syngas, which can improve utilization of biomass carbon. This approach also eliminates both the need for downstream methane reforming and the production of an aqueous waste stream from tar scrubbing. This work was conducted with NiMgK/Al{sub 2}O{sub 3} catalysts. These catalysts were assessed for methane reforming performance in (i) fixed-bed, bench-scale tests with model syngas simulating that produced by oak gasification, and in pilot-scale, (ii) fluidized tests with actual oak-derived syngas, and (iii) recirculating/regenerating tests using model syngas. Bench-scale tests showed that the catalyst could be completely regenerated over several reforming reaction cycles. Pilot-scale tests using raw syngas showed that the catalyst lost activity from cycle to cycle when it was regenerated, though it was shown that bench-scale regeneration by steam oxidation and H{sub 2} reduction did not cause this deactivation. Characterization by TPR indicates that the loss of a low temperature nickel oxide reduction feature is related to the catalyst deactivation, which is ascribed to nickel being incorporated into a spinel nickel aluminate that is not reduced with the given activation protocol. Results for 100 h time-on-stream using a recirculating/regenerating reactor suggest

  4. Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes.

    PubMed

    Kunkes, Edward L; Simonetti, Dante A; West, Ryan M; Serrano-Ruiz, Juan Carlos; Gärtner, Christian A; Dumesic, James A

    2008-10-17

    It is imperative to develop more efficient processes for conversion of biomass to liquid fuels, such that the cost of these fuels would be competitive with the cost of fuels derived from petroleum. We report a catalytic approach for the conversion of carbohydrates to specific classes of hydrocarbons for use as liquid transportation fuels, based on the integration of several flow reactors operated in a cascade mode, where the effluent from the one reactor is simply fed to the next reactor. This approach can be tuned for production of branched hydrocarbons and aromatic compounds in gasoline, or longer-chain, less highly branched hydrocarbons in diesel and jet fuels. The liquid organic effluent from the first flow reactor contains monofunctional compounds, such as alcohols, ketones, carboxylic acids, and heterocycles, that can also be used to provide reactive intermediates for fine chemicals and polymers markets. PMID:18801970

  5. One-pot catalytic conversion of cellulose and of woody biomass solids to liquid fuels.

    PubMed

    Matson, Theodore D; Barta, Katalin; Iretskii, Alexei V; Ford, Peter C

    2011-09-01

    Efficient methodologies for converting biomass solids to liquid fuels have the potential to reduce dependence on imported petroleum while easing the atmospheric carbon dioxide burden. Here, we report quantitative catalytic conversions of wood and cellulosic solids to liquid and gaseous products in a single stage reactor operating at 300-320 °C and 160-220 bar. Little or no char is formed during this process. The reaction medium is supercritical methanol (sc-MeOH) and the catalyst, a copper-doped porous metal oxide, is composed of earth-abundant materials. The major liquid product is a mixture of C(2)-C(6) aliphatic alcohols and methylated derivatives thereof that are, in principle, suitable for applications as liquid fuels. PMID:21806029

  6. Biological mineral range effects on biomass conversion to aromatic hydrocarbons via catalytic fast pyrolysis over HZSM-5

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A set of 20 biomass samples, comprising 10 genotypes of switchgrass, sorghum and miscanthus grown in two different soils with high and low poultry manure input conditions, and having a wide biological range of mineral content, were subjected to catalytic fast pyrolysis (CFP) over HZMS-5 using py-G...

  7. Improving the conversion of biomass in catalytic fast pyrolysis via white-rot fungal pretreatment.

    PubMed

    Yu, Yanqing; Zeng, Yelin; Zuo, Jiane; Ma, Fuying; Yang, Xuewei; Zhang, Xiaoyu; Wang, Yujue

    2013-04-01

    This study investigated the effect of white-rot fungal pretreatment on corn stover conversion in catalytic fast pyrolysis (CFP). Corn stover pretreated by white-rot fungus Irpex lacteus CD2 was fast pyrolyzed alone (non-CFP) and with ZSM-5 zeolite (CFP) in a semi-batch pyroprobe reactor. The fungal pretreatment considerably increased the volatile product yields (predominantly oxygenated compounds) in non-CFP, indicating that fungal pretreatment enhances the corn stover conversion in fast pyrolysis. In the presence of ZSM-5 zeolite, these oxygenated volatiles were further catalytically converted to aromatic hydrocarbons, whose yield increased from 10.03 wt.% for the untreated corn stover to 11.49 wt.% for the pretreated sample. In contrast, the coke yield decreased from 14.29 to 11.93 wt.% in CFP following the fungal pretreatment. These results indicate that fungal pretreatment can enhance the production of valuable aromatics and decrease the amount of undesired coke, and thus has a beneficial effect on biomass conversion in CFP. PMID:23506976

  8. Catalytic Hydroprocessing of Biomass Fast Pyrolysis Bio-oil to Produce Hydrocarbon Products

    SciTech Connect

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Rotness, Leslie J.; Zacher, Alan H.

    2009-10-01

    Catalytic hydroprocessing has been applied to biomass fast pyrolysis liquid product (bio-oil) in a bench-scale continuous-flow fixed-bed reactor system. The intent of the research was to develop process technology to convert the bio-oil into a petroleum refinery feedstock to supplement fossil energy resources and to displace imported feedstock. The project was a cooperative research and development agreement among UOP LLC, the National Renewable Energy Laboratory and the Pacific Northwest National Laboratory (PNNL). This paper is focused on the process experimentation and product analysis undertaken at PNNL. The paper describes the experimental methods used and relates the results of the product analyses. A range of catalyst formulations were tested over a range of operating parameters including temperature, pressure, and flow-rate with bio-oil derived from several different biomass feedstocks. Effects of liquid hourly space velocity and catalyst bed temperature were assessed. Details of the process results were presented including mass and elemental balances. Detailed analysis of the products were provided including elemental composition, chemical functional type determined by mass spectrometry, and product descriptors such as density, viscosity and Total Acid Number (TAN). In summation, the paper provides an understanding of the efficacy of hydroprocessing as applied to bio-oil.

  9. Enhancement of biomass conversion in catalytic fast pyrolysis by microwave-assisted formic acid pretreatment.

    PubMed

    Feng, Yu; Li, Guangyu; Li, Xiangyu; Zhu, Ning; Xiao, Bo; Li, Jian; Wang, Yujue

    2016-08-01

    This study investigated microwave-assisted formic acid (MW-FA) pretreatment as a possible way to improve aromatic production from catalytic fast pyrolysis (CFP) of lignocellulosic biomass. Results showed that short duration of MW-FA pretreatment (5-10min) could effectively disrupt the recalcitrant structure of beech wood and selectively remove its hemicellulose and lignin components. This increased the accessibility of cellulose component of biomass to subsequent thermal conversion in CFP. Consequently, the MW-FA pretreated beech wood produced 14.0-28.3% higher yields (26.4-29.8C%) for valuable aromatic products in CFP than the untreated control (23.2C%). In addition, the yields of undesired solid residue (char/coke) decreased from 33.1C% for the untreated control to 28.6-29.8C% for the MW-FA pretreated samples. These results demonstrate that MW-FA pretreatment can provide an effective way to improve the product distribution from CFP of lignocellulose. PMID:27176672

  10. Co-gasification of biomass and plastics: pyrolysis kinetics studies, experiments on 100 kW dual fluidized bed pilot plant and development of thermodynamic equilibrium model and balances.

    PubMed

    Narobe, M; Golob, J; Klinar, D; Francetič, V; Likozar, B

    2014-06-01

    Thermo-gravimetric analysis (TGA) of volatilization reaction kinetics for 50 wt.% mixtures of plastics (PE) and biomass (wood pellets) as well as for 100 wt.% plastics was conducted to predict decomposition times at 850°C and 900°C using iso-conversional model method. For mixtures, agreement with residence time of dual fluidized bed (DFB) reactor, treated as continuous stirred-tank reactor (CSTR), was obtained at large conversions. Mono-gasification of plastics and its co-gasification with biomass were performed in DFB pilot plant, using olivine as heterogeneous catalyst and heat transfer agent. It was found that co-gasification led to successful thermochemical conversion of plastics as opposed to mono-gasification. Unknown flow rates were determined applying nonlinear regression to energy and mass balances acknowledging combustion fuel, air, steam, feedstock, but also exiting char, tar, steam and other components in DFB gasification unit. Water-gas shift equilibrium and methanol synthesis requirements were incorporated into gasification model, based on measurements. PMID:24736208

  11. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons: Dilute-Acid and Enzymatic Deconstruction of Biomass to Sugars and Catalytic Conversion of Sugars to Hydrocarbons

    SciTech Connect

    Davis, R.; Tao, L.; Scarlata, C.; Tan, E. C. D.; Ross, J.; Lukas, J.; Sexton, D.

    2015-03-01

    This report describes one potential conversion process to hydrocarbon products by way of catalytic conversion of lignocellulosic-derived hydrolysate. This model leverages expertise established over time in biomass deconstruction and process integration research at NREL, while adding in new technology areas for sugar purification and catalysis. The overarching process design converts biomass to die die diesel- and naphtha-range fuels using dilute-acid pretreatment, enzymatic saccharification, purifications, and catalytic conversion focused on deoxygenating and oligomerizing biomass hydrolysates.

  12. Catalytic Conversion of Biomass to Fuels and Chemicals Using Ionic Liquids

    SciTech Connect

    Liu, Wei; Zheng, Richard; Brown, Heather; Li, Joanne; Holladay, John; Cooper, Alan; Rao, Tony

    2012-04-13

    This project provides critical innovations and fundamental understandings that enable development of an economically-viable process for catalytic conversion of biomass (sugar) to 5-hydroxymethylfurfural (HMF). A low-cost ionic liquid (Cyphos 106) is discovered for fast conversion of fructose into HMF under moderate reaction conditions without any catalyst. HMF yield from fructose is almost 100% on the carbon molar basis. Adsorbent materials and adsorption process are invented and demonstrated for separation of 99% pure HMF product and recovery of the ionic liquid from the reaction mixtures. The adsorbent material appears very stable in repeated adsorption/regeneration cycles. Novel membrane-coated adsorbent particles are made and demonstrated to achieve excellent adsorption separation performances at low pressure drops. This is very important for a practical adsorption process because ionic liquids are known of high viscosity. Nearly 100% conversion (or dissolution) of cellulose in the catalytic ionic liquid into small molecules was observed. It is promising to produce HMF, sugars and other fermentable species directly from cellulose feedstock. However, several gaps were identified and could not be resolved in this project. Reaction and separation tests at larger scales are needed to minimize impacts of incidental errors on the mass balance and to show 99.9% ionic liquid recovery. The cellulose reaction tests were troubled with poor reproducibility. Further studies on cellulose conversion in ionic liquids under better controlled conditions are necessary to delineate reaction products, dissolution kinetics, effects of mass and heat transfer in the reactor on conversion, and separation of final reaction mixtures.

  13. Testing of novel catalytic coal-gasification concepts. Task 1. Ultrasound-promoted catalysis. Final report, September 1986-September 1989

    SciTech Connect

    Mensinger, M.C.; Lau, F.S.; Wangerow, J.R.; Punwani, D.V.

    1990-07-01

    Tests were conducted to determine the effects of operating conditions, catalysts, and reactor configurations on ultrasound-promoted coal gasification. The operating conditions tested with lignite-water or lignite-water-salt slurries included temperatures and pressures in the range of 75 to 650 F, and 50 to 1200 psig, respectively. In tests conducted with nonaqueous slurries, the temperatures and pressures tested ranged from 650 to 720 F and 100 to 200 psig. Catalysts tested were KOH, LiOH, K2CO3, hydrogenation, SNOCAT, laterite, CRG-A, and ruthenium. The frequency of the ultrasonic horn was 20 kHz. Overall, at the conditions and with the catalysts and slurry media tested, ultrasound was not effective in sustaining coal gasification reactions. The most favorable results were obtained with a lignite-water slurry irradiated with high intensity ultrasound with KOH catalyst at 550 F and 1050 psig. After 1 hour of sonication, the carbon conversion to gas was about 5%. Analyses of the slurries from tests conducted with and without ultrasound showed that ultrasound significantly increased the types and quantities of components that were solubilized. As expected, ultrasound significantly reduced the particle size of lignite being irradiated.

  14. Catalytic hydrothermal gasification of algae for hydrogen production: composition of reaction products and potential for nutrient recycling.

    PubMed

    Onwudili, Jude A; Lea-Langton, Amanda R; Ross, Andrew B; Williams, Paul T

    2013-01-01

    Chlorella vulgaris, Spirulina platensis and Saccharina latissima were processed under supercritical water gasification conditions at 500 °C, 36 MPa in an Inconel batch reactor for 30 min in the presence/absence of NaOH and/or Ni-Al(2)O(3). Hydrogen gas yields were more than two times higher in the presence of NaOH than in its absence and tar yields were reduced by up to 71%. Saccharina, a carbohydrate-rich macro-alga, gave the highest hydrogen gas yields of 15.1 mol/kg. The tars from all three algae contained aromatic compounds, including phenols, alkyl benzenes and polycyclic aromatic hydrocarbons as well as heterocyclic nitrogen compounds. Tars from Chlorella and Spirulina contained high yields of pyridines, pyrroles, indoles and pyrimidines. Up to 97% TOC removal were achieved in the process waters from the gasification of the algae. Analyses for specific nutrients in the process waters indicated that the process waters from Saccharina could potentially be used for microalgae cultivation. PMID:23131625

  15. A review of catalytic hydrodeoxygenation of lignin-derived phenols from biomass pyrolysis.

    PubMed

    Bu, Quan; Lei, Hanwu; Zacher, Alan H; Wang, Lu; Ren, Shoujie; Liang, Jing; Wei, Yi; Liu, Yupeng; Tang, Juming; Zhang, Qin; Ruan, Roger

    2012-11-01

    Catalytic hydrodeoxygenation (HDO) of lignin-derived phenols which are the lowest reactive chemical compounds in biomass pyrolysis oils has been reviewed. The hydrodeoxygenation (HDO) catalysts have been discussed including traditional HDO catalysts such as CoMo/Al(2)O(3) and NiMo/Al(2)O(3) catalysts and transition metal catalysts (noble metals). The mechanism of HDO of lignin-derived phenols was analyzed on the basis of different model compounds. The kinetics of HDO of different lignin-derived model compounds has been investigated. The diversity of bio-oils leads to the complexities of HDO kinetics. The techno-economic analysis indicates that a series of major technical and economical efforts still have to be investigated in details before scaling up the HDO of lignin-derived phenols in existed refinery infrastructure. Examples of future investigation of HDO include significant challenges of improving catalysts and optimum operation conditions, further understanding of kinetics of complex bio-oils, and the availability of sustainable and cost-effective hydrogen source. PMID:23021958

  16. Catalytic conversion of biomass pyrolysis-derived compounds with chemical liquid deposition (CLD) modified ZSM-5.

    PubMed

    Zhang, Huiyan; Luo, Mengmeng; Xiao, Rui; Shao, Shanshan; Jin, Baosheng; Xiao, Guomin; Zhao, Ming; Liang, Junyu

    2014-03-01

    Chemical liquid deposition (CLD) with KH550, TEOS and methyl silicone oil as the modifiers was used to modify ZSM-5 and deposit its external acid sites. The characteristics of modified catalysts were tested by catalytic conversion of biomass pyrolysis-derived compounds. The effects of different modifying conditions (deposited amount, temperature, and time) on the product yields and selectivities were investigated. The results show KH550 modified ZSM-5 (deposited amount of 4%, temperature of 20°C and time of 6h) produced the maximum yields of aromatics (24.5%) and olefins (16.5%), which are much higher than that obtained with original ZSM-5 catalyst (18.8% aromatics and 9.8% olefins). The coke yield decreased from 44.1% with original ZSM-5 to 26.7% with KH550 modified ZSM-5. The selectivities of low-molecule-weight hydrocarbons (ethylene and benzene) decreased, while that of higher molecule-weight hydrocarbons (propylene, butylene, toluene, and naphthalene) increased comparing with original ZSM-5. PMID:24413482

  17. Comparative life cycle assessment (LCA) of construction and demolition (C&D) derived biomass and U.S. northeast forest residuals gasification for electricity production.

    PubMed

    Nuss, Philip; Gardner, Kevin H; Jambeck, Jenna R

    2013-04-01

    With the goal to move society toward less reliance on fossil fuels and the mitigation of climate change, there is increasing interest and investment in the bioenergy sector. However, current bioenergy growth patterns may, in the long term, only be met through an expansion of global arable land at the expense of natural ecosystems and in competition with the food sector. Increasing thermal energy recovery from solid waste reduces dependence on fossil- and biobased energy production while enhancing landfill diversion. Using inventory data from pilot processes, this work assesses the cradle-to-gate environmental burdens of plasma gasification as a route capable of transforming construction and demolition (C&D) derived biomass (CDDB) and forest residues into electricity. Results indicate that the environmental burdens associated with CDDB and forest residue gasification may be similar to conventional electricity generation. Land occupation is lowest when CDDB is used. Environmental impacts are to a large extent due to coal cogasified, coke used as gasifier bed material, and fuel oil cocombusted in the steam boiler. However, uncertainties associated with preliminary system designs may be large, particularly the heat loss associated with pilot scale data resulting in overall low efficiencies of energy conversion to electricity; a sensitivity analysis assesses these uncertainties in further detail. PMID:23496419

  18. Fundamental studies of the mechanism of catalytic reactions with catalysts effective in the gasification of carbon solids and the oxidative coupling of methane. Quarterly report, 1 January--31 March 1994

    SciTech Connect

    Iglesia, E.; Heinemann, H.; Perry, D.L.

    1994-03-01

    This report describes work in progress on three tasks: (1) Catalytic steam gasification of coals and cokes; (2) Oxidative coupling of methane; and (3) Synthesis and characterization of catalysts. Since Task 1 is complete, a final report has been written. This report describes membrane reactors, cyclic methane conversion reactors, theoretical descriptions of reaction-separation schemes, and time-space relationships in cyclic and membrane reactors, all subtasks of Task 2. Initial studies under Task 3 are briefly described.

  19. Evaluation of wastewater treatment requirements for thermochemical biomass liquefaction

    SciTech Connect

    Elliott, D C

    1992-04-01

    Biomass can provide a substantial energy source. Liquids are preferred for use as transportation fuels because of their high energy density and handling ease and safety. Liquid fuel production from biomass can be accomplished by any of several different processes including hydrolysis and fermentation of the carbohydrates to alcohol fuels, thermal gasification and synthesis of alcohol or hydrocarbon fuels, direct extraction of biologically produced hydrocarbons such as seed oils or algae lipids, or direct thermochemical conversion of the biomass to liquids and catalytic upgrading to hydrocarbon fuels. This report discusses direct thermochemical conversion to achieve biomass liquefaction and the requirements for wastewater treatment inherent in such processing. 21 refs.

  20. Production of light olefins by catalytic conversion of lignocellulosic biomass with HZSM-5 zeolite impregnated with 6wt.% lanthanum.

    PubMed

    Huang, Weiwei; Gong, Feiyan; Fan, Minghui; Zhai, Qi; Hong, Chenggui; Li, Quanxin

    2012-10-01

    Catalytic conversion of rice husk, sawdust, sugarcane bagasse, cellulose, hemicellulose and lignin into olefins was performed with HZSM-5 containing 6 wt.% lanthanum. The olefins yields for different feedstocks decreased in the order: cellulose>hemicellulose>sugarcane bagasse>rice husk>sawdust>lignin. Biomass containing higher content of cellulose or hemicellulose produced more olefins than feedstocks with higher content of lignin. Among the biomass types, sugarcane bagasse provided the highest olefin yield of 0.12 kg olefins/(kg dry biomass) and carbon yield of 21.2C-mol%. Temperature, residence time and the catalyst/feed ratio influenced olefin yield and selectivity. While the HZSM-5 zeolite was catalytically active, the incorporation of lanthanum at 2.9, and 6.0 wt.% increased the production of olefins from rice husk by 15.6% and 26.5%, respectively. The conversion of biomass to light olefins potentially provides an alternative and sustainable route for production of the key petrochemicals. PMID:22858493

  1. Microwave-assisted catalytic pyrolysis of lignocellulosic biomass for production of phenolic-rich bio-oil.

    PubMed

    Mamaeva, Alisa; Tahmasebi, Arash; Tian, Lu; Yu, Jianglong

    2016-07-01

    Catalytic microwave pyrolysis of peanut shell (PT) and pine sawdust (PS) using activated carbon (AC) and lignite char (LC) for production of phenolic-rich bio-oil and nanotubes was investigated in this study. The effects of process parameters such as pyrolysis temperature and biomass/catalyst ratio on the yields and composition of pyrolysis products were investigated. Fast heating rates were achieved under microwave irradiation conditions. Gas chromatography-mass spectrometry (GC-MS) analysis of bio-oil showed that activated carbon significantly enhanced the selectivity of phenolic compounds in bio-oil. The highest phenolics content in the bio-oil (61.19 %(area)) was achieved at 300°C. The selectivity of phenolics in bio-oil was higher for PT sample compared to that of PS. The formation of nanotubes in PT biomass particles was observed for the first time in biomass microwave pyrolysis. PMID:27030958

  2. Catalytic supercritical water gasification of primary paper sludge using a homogeneous and heterogeneous catalyst: Experimental vs thermodynamic equilibrium results.

    PubMed

    Louw, Jeanne; Schwarz, Cara E; Burger, Andries J

    2016-02-01

    H2, CH4, CO and CO2 yields were measured during supercritical water gasification (SCWG) of primary paper waste sludge (PWS) at 450°C. Comparing these yields with calculated thermodynamic equilibrium values offer an improved understanding of conditions required to produce near-equilibrium yields. Experiments were conducted at different catalyst loads (0-1g/gPWS) and different reaction times (15-120min) in a batch reactor, using either K2CO3 or Ni/Al2O3-SiO2 as catalyst. K2CO3 up to 1g/gPWS increased the H2 yield significantly to 7.5mol/kgPWS. However, these yields and composition were far from equilibrium values, with carbon efficiency (CE) and energy recovery (ER) of only 29% and 20%, respectively. Addition of 0.5-1g/gPWS Ni/Al2O3-SiO2 resulted in high H2 and CH4 yields (6.8 and 14.8mol/kgPWS), CE of 84-90%, ER of 83% and a gas composition relatively close to the equilibrium values (at hold times of 60-120min). PMID:26638140

  3. Orange Peel Oxidative Gasification on Ni Catalysts Promoted with CaO, CeO2 or K2O.

    PubMed

    Vargas, G; Zapata, B; Valenzuela, M A; Alfaro, S

    2015-09-01

    Orange peel can be considered as an attractive raw material to be gasified for hydrogen or syngas production. In this work, the catalytic evaluation of several silica-supported nickel catalysts in the oxidative degradation of waste orange peel is reported. It was found that the catalytic gasification with the K2O-Ni/silica catalyst produces more hydrogen than the non-catalytic route at 600 degrees C. Surprisingly, a significant amount of ethene was obtained with the CeO2-Ni/silica catalyst, which was explained in terms of an oxidative dehydrogenation reaction of ethane formed during biomass or tar decomposition. PMID:26716225

  4. Co-gasification of sewage sludge and woody biomass in a fixed-bed downdraft gasifier: toxicity assessment of solid residues.

    PubMed

    Rong, Le; Maneerung, Thawatchai; Ng, Jingwen Charmaine; Neoh, Koon Gee; Bay, Boon Huat; Tong, Yen Wah; Dai, Yanjun; Wang, Chi-Hwa

    2015-02-01

    As the demand for fossil fuels and biofuels increases, the volume of ash generated will correspondingly increase. Even though ash disposal is now strictly regulated in many countries, the increasing volume of ash puts pressure on landfill sites with regard to cost, capacity and maintenance. In addition, the probability of environmental pollution from leakage of bottom ash leachate also increases. The main aim of this research is to investigate the toxicity of bottom ash, which is an unavoidable solid residue arising from biomass gasification, on human cells in vitro. Two human cell lines i.e. HepG2 (liver cell) and MRC-5 (lung fibroblast) were used to study the toxicity of the bottom ash as the toxins in the bottom ash may enter blood circulation by drinking the contaminated water or eating the food grown in bottom ash-contaminated water/soil and the toxic compounds may be carried all over the human body including to important organs such as lung, liver, kidney, and heart. It was found that the bottom ash extract has a high basicity (pH = 9.8-12.2) and a high ionic strength, due to the presence of alkali and alkaline earth metals e.g. K, Na, Ca and Mg. Moreover, it also contains concentrations of heavy metals (e.g. Zn, Co, Cu, Fe, Mn, Ni and Mo) and non-toxic organic compounds. Although human beings require these trace elements, excessive levels can be damaging to the body. From the analyses of cell viability (using MTS assay) and morphology (using fluorescence microscope), the high toxicity of the gasification bottom ash extract could be related to effects of high ionic strength, heavy metals or a combination of these two effects. Therefore, our results suggest that the improper disposal of the bottom ash wastes arising from gasification can create potential risks to human health and, thus, it has become a matter of urgency to find alternative options for the disposal of bottom ash wastes. PMID:25532673

  5. Process Design and Economics for the Conversion of Algal Biomass to Hydrocarbons: Whole Algae Hydrothermal Liquefaction and Upgrading

    SciTech Connect

    Jones, Susanne B.; Zhu, Yunhua; Anderson, Daniel B.; Hallen, Richard T.; Elliott, Douglas C.; Schmidt, Andrew J.; Albrecht, Karl O.; Hart, Todd R.; Butcher, Mark G.; Drennan, Corinne; Snowden-Swan, Lesley J.; Davis, Ryan; Kinchin, Christopher

    2014-03-20

    This report provides a preliminary analysis of the costs associated with converting whole wet algal biomass into primarily diesel fuel. Hydrothermal liquefaction converts the whole algae into an oil that is then hydrotreated and distilled. The secondary aqueous product containing significant organic material is converted to a medium btu gas via catalytic hydrothermal gasification.

  6. Advances in catalytic production of bio-based polyester monomer 2,5-furandicarboxylic acid derived from lignocellulosic biomass.

    PubMed

    Zhang, Junhua; Li, Junke; Tang, Yanjun; Lin, Lu; Long, Minnan

    2015-10-01

    Recently, the production and utilization of 2,5-furandicarboxylic acid (FDCA) have become a hot research topic in catalyst field and polyester industry for its special chemical structure and a wide range of raw material source. FDCA is a potential replacement for the terephthalic acid monomer used in the production of poly(ethylene terephthalate) (PET) and poly(butylene terephthalate) (PBT), which opens up a new pathway for obtaining biomass-based polyester to replace or partially replace petroleum based polyester. Here, we mainly reviewed the catalytic pathway for the synthesis of FDCA derived from lignocellulosic biomass or from the related downstream products, such as glucose, 5-hydroxymethylfurfural (HMF). Moreover, the utilization of oxidation catalysts, the reaction mechanism, the existing limitations and unsolved challenges were also elaborated in detail. Therefore, we hope this mini review provides a helpful overview and insight to readers in this exciting research area. PMID:26076643

  7. Functional carbons and carbon nanohybrids for the catalytic conversion of biomass to renewable chemicals in the condensed phase

    SciTech Connect

    Matthiesen, John; Hoff, Thomas; Liu, Chi; Pueschel, Charles; Rao, Radhika; Tessonnier, Jean-Philippe

    2014-06-01

    The production of chemicals from lignocellulosic biomass provides opportunities to synthesize chemicals with new functionalities and grow a more sustainable chemical industry. However, new challenges emerge as research transitions from petrochemistry to biorenewable chemistry. Compared to petrochemisty, the selective conversion of biomass-derived carbohydrates requires most catalytic reactions to take place at low temperatures (< 300°C) and in the condensed phase to prevent reactants and products from degrading. The stability of heterogeneous catalysts in liquid water above the normal boiling point represents one of the major challenges to overcome. Herein, we review some of the latest advances in the field with an emphasis on the role of carbon materials and carbon nanohybrids in addressing this challenge.

  8. BIMOMASS GASIFICATION PILOT PLANT STUDY

    EPA Science Inventory

    The report gives results of a gasification pilot program using two biomass feedstocks: bagasse pellets and wood chips. he object of the program was to determine the properties of biomass product gas and its suitability as a fuel for gas-turbine-based power generation cycles. he f...

  9. Potential and challenges of zeolite chemistry in the catalytic conversion of biomass.

    PubMed

    Ennaert, Thijs; Van Aelst, Joost; Dijkmans, Jan; De Clercq, Rik; Schutyser, Wouter; Dusselier, Michiel; Verboekend, Danny; Sels, Bert F

    2016-02-01

    Increasing demand for sustainable chemicals and fuels has pushed academia and industry to search for alternative feedstocks replacing crude oil in traditional refineries. As a result, an immense academic attention has focused on the valorisation of biomass (components) and derived intermediates to generate valuable platform chemicals and fuels. Zeolite catalysis plays a distinct role in many of these biomass conversion routes. This contribution emphasizes the progress and potential in zeolite catalysed biomass conversions and relates these to concepts established in existing petrochemical processes. The application of zeolites, equipped with a variety of active sites, in Brønsted acid, Lewis acid, or multifunctional catalysed reactions is discussed and generalised to provide a comprehensive overview. In addition, the feedstock shift from crude oil to biomass involves new challenges in developing fields, like mesoporosity and pore interconnectivity of zeolites and stability of zeolites in liquid phase. Finally, the future challenges and perspectives of zeolites in the processing of biomass conversion are discussed. PMID:26691750

  10. Fluid-Bed Testing of Greatpoint Energy's Direct Oxygen Injection Catalytic Gasification Process for Synthetic Natural Gas and Hydrogen Coproduction Year 6 - Activity 1.14 - Development of a National Center for Hydrogen Technology

    SciTech Connect

    Swanson, Michael; Henderson, Ann

    2012-04-01

    The GreatPoint Energy (GPE) concept for producing synthetic natural gas and hydrogen from coal involves the catalytic gasification of coal and carbon. GPE’s technology “refines” coal by employing a novel catalyst to “crack” the carbon bonds and transform the coal into cleanburning methane (natural gas) and hydrogen. The GPE mild “catalytic” gasifier design and operating conditions result in reactor components that are less expensive and produce pipeline-grade methane and relatively high purity hydrogen. The system operates extremely efficiently on very low cost carbon sources such as lignites, subbituminous coals, tar sands, petcoke, and petroleum residual oil. In addition, GPE’s catalytic coal gasification process eliminates troublesome ash removal and slagging problems, reduces maintenance requirements, and increases thermal efficiency, significantly reducing the size of the air separation plant (a system that alone accounts for 20% of the capital cost of most gasification systems) in the catalytic gasification process. Energy & Environmental Research Center (EERC) pilot-scale gasification facilities were used to demonstrate how coal and catalyst are fed into a fluid-bed reactor with pressurized steam and a small amount of oxygen to “fluidize” the mixture and ensure constant contact between the catalyst and the carbon particles. In this environment, the catalyst facilitates multiple chemical reactions between the carbon and the steam on the surface of the coal. These reactions generate a mixture of predominantly methane, hydrogen, and carbon dioxide. Product gases from the process are sent to a gas-cleaning system where CO{sub 2} and other contaminants are removed. In a full-scale system, catalyst would be recovered from the bottom of the gasifier and recycled back into the fluid-bed reactor. The by-products (such as sulfur, nitrogen, and CO{sub 2}) would be captured and could be sold to the chemicals and petroleum industries, resulting in

  11. Gas-Phase Reactions of Glyceraldehyde and 1,3-Dihydroxyacetone as Models for Levoglucosan Conversion during Biomass Gasification.

    PubMed

    Fukutome, Asuka; Kawamoto, Haruo; Saka, Shiro

    2016-04-01

    Levoglucosan, the major intermediate in wood gasification, is decomposed selectively to C1/C2 fragments at 550-600 °C. Kinetic analyses suggest that radical chain mechanisms with the involvement of short-lived carbonyl intermediates explain the lower production of larger fragments. To address this hypothesis, the gas-phase reactivities of glyceraldehyde (Gald), 1,3-dihydroxyacetone (DHA), and glycerol, as simple C3 model compounds, were compared at 400-800 °C under N2 flow at residence times of 0.9-1.4 s. Retro-aldol fragmentation and dehydration proceeded for the pyrolysis of Gald/DHA at 400 °C, far below the 600 °C decomposition point of glycerol. Pyrolysis of Gald/DHA generated exclusively syngas (CO and H2). On the basis of the results of theoretical calculations, the effects of carbonyl intermediates on reactivity were explained by postulating uni- and bimolecular reactions, although the bimolecular reactions became less effective at elevated temperatures. PMID:26893057

  12. Raney nickel catalytic device

    DOEpatents

    O'Hare, Stephen A.

    1978-01-01

    A catalytic device for use in a conventional coal gasification process which includes a tubular substrate having secured to its inside surface by expansion a catalytic material. The catalytic device is made by inserting a tubular catalytic element, such as a tubular element of a nickel-aluminum alloy, into a tubular substrate and heat-treating the resulting composite to cause the tubular catalytic element to irreversibly expand against the inside surface of the substrate.

  13. Research and development to prepare and characterize robust coal/biomass mixtures for direct co-feeding into gasification systems

    SciTech Connect

    Felix, Larry; Farthing, William; Hoekman, S. Kent

    2014-12-31

    This project was initiated on October 1, 2010 and utilizes equipment and research supported by the Department of Energy, National Energy Technology Laboratory, under Award Number DE- FE0005349. It is also based upon previous work supported by the Department of Energy, National Energy Technology Laboratory, under Award Numbers DOE-DE-FG36-01GOl1082, DE-FG36-02G012011 or DE-EE0000272. The overall goal of the work performed was to demonstrate and assess the economic viability of fast hydrothermal carbonization (HTC) for transforming lignocellulosic biomass into a densified, friable fuel to gasify like coal that can be easily blended with ground coal and coal fines and then be formed into robust, weather-resistant pellets and briquettes. The specific objectives of the project include: • Demonstration of the continuous production of a uniform densified and formed feedstock from loblolly pine (a lignocellulosic, short rotation woody crop) in a hydrothermal carbonization (HTC) process development unit (PDU). • Demonstration that finely divided bituminous coal and HTC loblolly pine can be blended to form 90/10 and 70/30 weight-percent mixtures of coal and HTC biomass for further processing by pelletization and briquetting equipment to form robust weather resistant pellets and/or briquettes suitable for transportation and long term storage. • Characterization of the coal-biomass pellets and briquettes to quantify their physical properties (e.g. flow properties, homogeneity, moisture content, particle size and shape), bulk physical properties (e.g. compressibility, heat transfer and friability) and assess their suitability for use as fuels for commercially-available coal gasifiers. • Perform economic analyses using Aspen-based process simulations to determine the costs for deploying and operating HTC processing facilities for the production of robust coal/biomass fuels suitable for fueling commercially-available coal-fired gasifiers. This Final Project Scientific

  14. JV Task 46 - Development and Testing of a Thermally Integrated SOFC-Gasification System for Biomass Power Generation

    SciTech Connect

    Phillip Hutton; Nikhil Patel; Kyle Martin; Devinder Singh

    2008-02-01

    The Energy & Environmental Research Center has designed a biomass power system using a solid oxide fuel cell (SOFC) thermally integrated with a downdraft gasifier. In this system, the high-temperature effluent from the SOFC enables the operation of a substoichiometric air downdraft gasifier at an elevated temperature (1000 C). At this temperature, moisture in the biomass acts as an essential carbon-gasifying medium, reducing the equivalence ratio at which the gasifier can operate with complete carbon conversion. Calculations show gross conversion efficiencies up to 45% (higher heating value) for biomass moisture levels up to 40% (wt basis). Experimental work on a bench-scale gasifier demonstrated increased tar cracking within the gasifier and increased energy density of the resultant syngas. A series of experiments on wood chips demonstrated tar output in the range of 9.9 and 234 mg/m{sup 3}. Both button cells and a 100-watt stack was tested on syngas from the gasifier. Both achieved steady-state operation with a 22% and 15% drop in performance, respectively, relative to pure hydrogen. In addition, tar tolerance testing on button cells demonstrated an upper limit of tar tolerance of approximately 1%, well above the tar output of the gasifier. The predicted system efficiency was revised down to 33% gross and 27% net system efficiency because of the results of the gasifier and fuel cell experiments. These results demonstrate the feasibility and benefits of thermally integrating a gasifier and a high-temperature fuel cell in small distributed power systems.

  15. Catalytic Control of Typical Particulate Matters and Volatile Organic Compounds Emissions from Simulated Biomass Burning.

    PubMed

    Chen, Yaxin; Tian, Guangkai; Zhou, Meijuan; Huang, Zhiwei; Lu, Chenxi; Hu, Pingping; Gao, Jiayi; Zhang, Zhaoliang; Tang, Xingfu

    2016-06-01

    Emissions of particulate matters (PMs) and volatile organic compounds (VOCs) from open burning of biomass often cause severe air pollution; a viable approach is to allow biomass to burn in a furnace to collectively control these emissions, but practical control technologies for this purpose are lacking. Here, we report a hollandite manganese oxide (HMO) catalyst that can efficiently control both typical PMs and VOCs emissions from biomass burning. The results reveal that typical alkali-rich PMs such as KCl particles are disintegrated and the K(+) ions are trapped in the HMO "single-walled" tunnels with a great trapping capacity. The K(+)-trapping HMO increases the electron density of the lattice oxygen and the redox ability, thus promoting the combustion of soot PMs and the oxidation of typical VOCs such as aldehydes and acetylates. This could pave a way to control emissions from biomass burning concomitant with its utilization for energy or heat generation. PMID:27128185

  16. Improved catalysts for carbon and coal gasification

    DOEpatents

    McKee, D.W.; Spiro, C.L.; Kosky, P.G.

    1984-05-25

    This invention relates to improved catalysts for carbon and coal gasification and improved processes for catalytic coal gasification for the production of methane. The catalyst is composed of at least two alkali metal salts and a particulate carbonaceous substrate or carrier is used. 10 figures, 2 tables.

  17. Bubbling bed catalytic hydropyrolysis process utilizing larger catalyst particles and smaller biomass particles featuring an anti-slugging reactor

    SciTech Connect

    Marker, Terry L; Felix, Larry G; Linck, Martin B; Roberts, Michael J

    2014-09-23

    This invention relates to a process for thermochemically transforming biomass or other oxygenated feedstocks into high quality liquid hydrocarbon fuels. In particular, a catalytic hydropyrolysis reactor, containing a deep bed of fluidized catalyst particles is utilized to accept particles of biomass or other oxygenated feedstocks that are significantly smaller than the particles of catalyst in the fluidized bed. The reactor features an insert or other structure disposed within the reactor vessel that inhibits slugging of the bed and thereby minimizes attrition of the catalyst. Within the bed, the biomass feedstock is converted into a vapor-phase product, containing hydrocarbon molecules and other process vapors, and an entrained solid char product, which is separated from the vapor stream after the vapor stream has been exhausted from the top of the reactor. When the product vapor stream is cooled to ambient temperatures, a significant proportion of the hydrocarbons in the product vapor stream can be recovered as a liquid stream of hydrophobic hydrocarbons, with properties consistent with those of gasoline, kerosene, and diesel fuel. Separate streams of gasoline, kerosene, and diesel fuel may also be obtained, either via selective condensation of each type of fuel, or via later distillation of the combined hydrocarbon liquid.

  18. RESULTS OF THE TECHNICAL AND ECONOMIC FEASIBILITY ANALYSIS FOR A NOVEL BIOMASS GASIFICATION-BASED POWER GENERATION SYSTEM FOR THE FOREST PRODUCTS INDUSTRY

    SciTech Connect

    Bruce Bryan; Joseph Rabovitser; Sunil Ghose; Jim Patel

    2003-11-01

    In 2001, the Gas Technology Institute (GTI) entered into Cooperative Agreement DE-FC26-01NT41108 with the U.S. Department of Energy (DOE) for an Agenda 2020 project to develop an advanced biomass gasification-based power generation system for near-term deployment in the Forest Products Industry (FPI). The advanced power system combines three advanced components, including biomass gasification, 3-stage stoker-fired combustion for biomass conversion, and externally recuperated gas turbines (ERGTs) for power generation. The primary performance goals for the advanced power system are to provide increased self-generated power production for the mill and to increase wastewood utilization while decreasing fossil fuel use. Additional goals are to reduce boiler NOx and CO{sub 2} emissions. The current study was conducted to determine the technical and economic feasibility of an Advanced Power Generation System capable of meeting these goals so that a capital investment decision can be made regarding its implementation at a paper mill demonstration site in DeRidder, LA. Preliminary designs and cost estimates were developed for all major equipment, boiler modifications and balance of plant requirements including all utilities required for the project. A three-step implementation plan was developed to reduce technology risk. The plant design was found to meet the primary objectives of the project for increased bark utilization, decreased fossil fuel use, and increased self-generated power in the mill. Bark utilization for the modified plant is significantly higher (90-130%) than current operation compared to the 50% design goal. For equivalent steam production, the total gas usage for the fully implemented plant is 29% lower than current operation. While the current average steam production from No.2 Boiler is about 213,000 lb/h, the total steam production from the modified plant is 379,000 lb/h. This steam production increase will be accomplished at a grate heat release rate

  19. Olefins from biomass feedstocks: catalytic ester decarbonylation and tandem Heck-type coupling.

    PubMed

    John, Alex; Hogan, Levi T; Hillmyer, Marc A; Tolman, William B

    2015-02-14

    With the goal of avoiding the need for anhydride additives, the catalytic decarbonylation of p-nitrophenylesters of aliphatic carboxylic acids to their corresponding olefins, including commodity monomers like styrene and acrylates, has been developed. The reaction is catalyzed by palladium complexes in the absence of added ligands and is promoted by alkali/alkaline-earth metal halides. Combination of catalytic decarbonylation and Heck-type coupling with aryl esters in a single pot process demonstrates the viability of employing a carboxylic acid as a "masked olefin" in synthetic processes. PMID:25579879

  20. Catalysts for carbon and coal gasification

    DOEpatents

    McKee, Douglas W.; Spiro, Clifford L.; Kosky, Philip G.

    1985-01-01

    Catalyst for the production of methane from carbon and/or coal by means of catalytic gasification. The catalyst compostion containing at least two alkali metal salts. A particulate carbonaceous substrate or carrier is used.

  1. Catalytic ethanolysis and gasification of kraft lignin into aromatic alcohols and H2-rich gas over Rh supported on La2O3/CeO2-ZrO2.

    PubMed

    Yang, Jing; Zhao, Liang; Liu, Chunze; Wang, Yuanyuan; Dai, Liyi

    2016-10-01

    Efficient catalytic ethanolysis and gasification of kraft lignin were conducted over a versatile supported catalyst Rh/La2O3/CeO2-ZrO2 to give high-value aromatic alcohols and H2-rich gas. The removal of phenolic hydroxyl group was the most prevalent reaction, and importantly, almost no phenols, undesired char and saturating the aromatic ring were detected. Meanwhile, the feedstock and solvent both played key roles in H2 generation that contributed to the hydrodeoxygenation of liquid components and made the whole catalytic process out of H2 supply. Reusability tests of catalyst indicated that the crystalline phase transition and agglomeration of support, the loss of noble metal Rh and carbon deposition were the possible reasons for its deactivation in supercritical ethanol. Comparing with water, methanol and isopropanol system, ethanol was the only effective solvent for the depolymerization process. PMID:27441830

  2. Catalyst specificities in high pressure hydroprocessing of pyrolysis and gasification tars

    SciTech Connect

    Soltes, E.J.; Lin, S.C.K.; Sheu, Y.H.E.

    1987-04-01

    Over a period of several years, the Department of Forest Science at Texas A and M University has been conducting studies in the hydroprocessing (catalytic high pressure hydrotreating or hydrodeoxygenation accompanied by hydrocracking) of pyrolytic tars produced in biomass pyrolysis and gasification. Upgrading through hydroprocessing results in good yields of volatile hydrocarbon and phenolic products. This paper compares the performance of twenty different catalysts selected for hydroprocessing of a pine pyrolysis oil, describes the use of noble metal catalysts with tars produced from nine different biomass feedstocks (oil from pine pyrolysis and the tars from pine wood chip, pine plywood trim, pecan shell, peanut shell, sugarcane bagasse, corncob, rice hull, and cottonseed hull gasification), and compares the use of several catalysts in a trickle bed reactor for kinetic studies of the hyroprocessing reaction.

  3. Production of aromatic hydrocarbons via catalytic pyrolysis of biomass over fe-modified HZSM-5 zeolites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Iron modified HZSM-5 catalysts were prepared by partial ion exchange of NH4ZSM-5 with Fe (II) at three different loadings (1.4, 2.8 and 4.2 wt%), and their effectiveness for producing aromatic hydrocarbons from cellulose, cellobiose, lignin and switchgrass by catalytic pyrolysis were screened using ...

  4. Hydrodeoxygenation processes: advances on catalytic transformations of biomass-derived platform chemicals into hydrocarbon fuels.

    PubMed

    De, Sudipta; Saha, Basudeb; Luque, Rafael

    2015-02-01

    Lignocellulosic biomass provides an attractive source of renewable carbon that can be sustainably converted into chemicals and fuels. Hydrodeoxygenation (HDO) processes have recently received considerable attention to upgrade biomass-derived feedstocks into liquid transportation fuels. The selection and design of HDO catalysts plays an important role to determine the success of the process. This review has been aimed to emphasize recent developments on HDO catalysts in effective transformations of biomass-derived platform molecules into hydrocarbon fuels with reduced oxygen content and improved H/C ratios. Liquid hydrocarbon fuels can be obtained by combining oxygen removal processes (e.g. dehydration, hydrogenation, hydrogenolysis, decarbonylation etc.) as well as by increasing the molecular weight via C-C coupling reactions (e.g. aldol condensation, ketonization, oligomerization, hydroxyalkylation etc.). Fundamentals and mechanistic aspects of the use of HDO catalysts in deoxygenation reactions will also be discussed. PMID:25443804

  5. Sensitivity of Fischer-Tropsch Synthesis and Water-Gas Shift Catalysts to Poisons from High-Temperature High-Pressure Entrained-Flow (EF) Oxygen-Blown Gasifier Gasification of Coal/Biomass Mixtures

    SciTech Connect

    Burtron Davis; Gary Jacobs; Wenping Ma; Khalid Azzam; Dennis Sparks; Wilson Shafer

    2010-09-30

    The successful adaptation of conventional cobalt and iron-based Fischer-Tropsch synthesis catalysts for use in converting biomass-derived syngas hinges in part on understanding their susceptibility to byproducts produced during the biomass gasification process. With the possibility that oil production will peak in the near future, and due to concerns in maintaining energy security, the conversion of biomass-derived syngas and syngas derived from coal/biomass blends to Fischer-Tropsch synthesis products to liquid fuels may provide a sustainable path forward, especially considering if carbon sequestration can be successfully demonstrated. However, one current drawback is that it is unknown whether conventional catalysts based on iron and cobalt will be suitable without proper development because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using an entrained-flow oxygen-blown gasifier) than solely from coal, other byproducts may be present in higher concentrations. The current project examines the impact of a number of potential byproducts of concern from the gasification of biomass process, including compounds containing alkali chemicals like the chlorides of sodium and potassium. In the second year, researchers from the University of Kentucky Center for Applied Energy Research (UK-CAER) continued the project by evaluating the sensitivity of a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to a number of different compounds, including KHCO{sub 3}, NaHCO{sub 3}, HCl, HBr, HF, H{sub 2}S, NH{sub 3}, and a combination of H{sub 2}S and NH{sub 3}. Cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts were also subjected to a number of the same compounds in order to evaluate their sensitivities.

  6. Increased Biomass Yield of Lactococcus lactis by Reduced Overconsumption of Amino Acids and Increased Catalytic Activities of Enzymes

    PubMed Central

    Adamberg, Kaarel; Seiman, Andrus; Vilu, Raivo

    2012-01-01

    Steady state cultivation and multidimensional data analysis (metabolic fluxes, absolute proteome, and transcriptome) are used to identify parameters that control the increase in biomass yield of Lactococcus lactis from 0.10 to 0.12 C-mol C-mol−1 with an increase in specific growth rate by 5 times from 0.1 to 0.5 h−1. Reorganization of amino acid consumption was expressed by the inactivation of the arginine deiminase pathway at a specific growth rate of 0.35 h−1 followed by reduced over-consumption of pyruvate directed amino acids (asparagine, serine, threonine, alanine and cysteine) until almost all consumed amino acids were used only for protein synthesis at maximal specific growth rate. This balanced growth was characterized by a high glycolytic flux carrying up to 87% of the carbon flow and only amino acids that relate to nucleotide synthesis (glutamine, serine and asparagine) were consumed in higher amounts than required for cellular protein synthesis. Changes in the proteome were minor (mainly increase in the translation apparatus). Instead, the apparent catalytic activities of enzymes and ribosomes increased by 3.5 times (0.1 vs 0.5 h−1). The apparent catalytic activities of glycolytic enzymes and ribosomal proteins were seen to follow this regulation pattern while those of enzymes involved in nucleotide metabolism increased more than the specific growth rate (over 5.5 times). Nucleotide synthesis formed the most abundant biomonomer synthetic pathway in the cells with an expenditure of 6% from the total ATP required for biosynthesis. Due to the increase in apparent catalytic activity, ribosome translation was more efficient at higher growth rates as evidenced by a decrease of protein to mRNA ratios. All these effects resulted in a 30% decrease of calculated ATP spilling (0.1 vs 0.5 h−1). Our results show that bioprocesses can be made more efficient (using a balanced metabolism) by varying the growth conditions. PMID:23133574

  7. Catalytic conversion of biomass-derived feedstocks into olefins and aromatics with ZSM-5: the hydrogen to carbon effective ratio

    SciTech Connect

    Zhang, Huiyan; Cheng, Yu-Ting; Vispute, Tushar P.; Xiao, Rui; Huber, George W.

    2011-01-01

    Catalytic conversion of ten biomass-derived feedstocks, i.e.glucose, sorbitol, glycerol, tetrahydrofuran, methanol and different hydrogenated bio-oil fractions, with different hydrogen to carbon effective (H/C{sub eff}) ratios was conducted in a gas-phase flow fixed-bed reactor with a ZSM-5 catalyst. The aromatic + olefin yield increases and the coke yield decreases with increasing H/C{sub eff} ratio of the feed. There is an inflection point at a H/C{sub eff} ratio = 1.2, where the aromatic + olefin yield does not increase as rapidly as it does prior to this point. The ratio of olefins to aromatics also increases with increasing H/C{sub eff} ratio. CO and CO₂ yields go through a maximum with increasing H/C{sub eff} ratio. The deactivation rate of the catalyst decreases significantly with increasing H/C{sub eff} ratio. Coke was formed from both homogeneous and heterogeneous reactions. Thermogravimetric analysis (TGA) for the ten feedstocks showed that the formation of coke from homogeneous reactions decreases with increasing H/C{sub eff} ratio. Feedstocks with a H/C{sub eff} ratio less than 0.15 produce large amounts of undesired coke (more than 12 wt%) from homogeneous decomposition reactions. This paper shows that the conversion of biomass-derived feedstocks into aromatics and olefins using zeolite catalysts can be explained by the H/C{sub eff} ratio of the feed.

  8. Elimination of phenols, ammonia and cyanide in wash water from biomass gasification, and nitrogen recycling using planted trickling filters.

    PubMed

    Graber, Andreas; Skvarc, Robert; Junge-Berberović, Ranka

    2009-01-01

    Trickling filters were used to treat wash water from a wood gasifier. This wash water contained toxic substances such as ammonium, cyanide, phenols, and PAH. The goal was to develop a system that degraded toxic substances, and achieved full nitrification of ammonia. A 1 kW model wood gasifier plant delivered wash water for the experiments, which was standardised to a conductivity of 3 mS/cm by dilution. Toxicity was assessed by bacterial luminescence detection, germination test with cress (Lepidium sativum), and pot plants cultivated in a hydroponic setup irrigated continuously with the wastewater. Treatment experiments were done in both planted and unplanted trickling filters. Plant yield was similar to conventional hydroponic production systems. The trickling filters achieved complete detoxification of phenol, PAH and cyanide as well as full nitrification. The specific elimination rates were 100 g m(-3) Leca d(-1) for phenols and 90 g m(-3) Leca d(-1) for ammonium in planted systems. In unplanted trickling filters circulated for 63 h, phenol concentration decreased from 83.5 mg/L to 2.5 mg/L and cyanide concentration from 0.32 mg/L to 0.02 mg/L. PAH concentrations were reduced from 3,050 microg/L to 0.89 microg/L within 68 days. The assays demonstrated the feasibility of using the technique to construct a treatment system in a partially closed circulation for gasifier wash water. The principal advantage is to convert toxic effluents from biomass gasifiers into a non-toxic, nitrogen-rich fertiliser water, enabling subsequent use in plant production and thus income generation. However, the questions of long-term performance and possible accumulation of phenols and heavy metals in the produce still have to be studied. PMID:19955650

  9. Biomass Thermochemical Conversion Program. 1983 Annual report

    SciTech Connect

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1984-08-01

    Highlights of progress achieved in the program of thermochemical conversion of biomass into clean fuels during 1983 are summarized. Gasification research projects include: production of a medium-Btu gas without using purified oxygen at Battelle-Columbus Laboratories; high pressure (up to 500 psia) steam-oxygen gasification of biomass in a fluidized bed reactor at IGT; producing synthesis gas via catalytic gasification at PNL; indirect reactor heating methods at the Univ. of Missouri-Rolla and Texas Tech Univ.; improving the reliability, performance, and acceptability of small air-blown gasifiers at Univ. of Florida-Gainesville, Rocky Creek Farm Gasogens, and Cal Recovery Systems. Liquefaction projects include: determination of individual sequential pyrolysis mechanisms at SERI; research at SERI on a unique entrained, ablative fast pyrolysis reactor for supplying the heat fluxes required for fast pyrolysis; work at BNL on rapid pyrolysis of biomass in an atmosphere of methane to increase the yields of olefin and BTX products; research at the Georgia Inst. of Tech. on an entrained rapid pyrolysis reactor to produce higher yields of pyrolysis oil; research on an advanced concept to liquefy very concentrated biomass slurries in an integrated extruder/static mixer reactor at the Univ. of Arizona; and research at PNL on the characterization and upgrading of direct liquefaction oils including research to lower oxygen content and viscosity of the product. Combustion projects include: research on a directly fired wood combustor/gas turbine system at Aerospace Research Corp.; adaptation of Stirling engine external combustion systems to biomass fuels at United Stirling, Inc.; and theoretical modeling and experimental verification of biomass combustion behavior at JPL to increase biomass combustion efficiency and examine the effects of additives on combustion rates. 26 figures, 1 table.

  10. Catalytic transformations of biomass substrates using mixed metal oxides derived from substituted hydrotalcites

    NASA Astrophysics Data System (ADS)

    Macala, Gerald Stephen, II

    Fueled by seemingly endless reserves of cheap and easily accessible fossil energy, the industrial age has brought to the developed world tremendous advances in human health and well being. Unfortunately the burning of fossil fuels has also been implicated in increasing atmospheric CO2 concentrations and global climate change. Concerns about short-term and long-term supply further build a case for the need for alternative energy sources. Biomass derived materials are a tantalizing source of fuels and fine chemicals. Unlike petroleum derived hydrocarbons, biomass can be both renewable and carbon neutral. Crops can be regenerated annually or even more often in tropical climates, and since the captured carbon originates as atmospheric CO2, the overall cycle has the potential to be nearly carbon neutral regardless of the final fate of the carbon. In contrast to petroleum derived hydrocarbons, which can often be made more valuable by adding functionality, biomass derived materials are already highly functionalized and can usually be made more valuable by selective removal of functionality. The development of robust catalysts capable of selective defuntionalization of biomass derived substrates remains an important challenge with potentially enormous economic and societal impact. In addition to being robust and selective, catalysts should preferably be heterogeneous to allow for easier removal and regeneration after the reaction is complete. New materials consisting of Mg-Al hydrotalcite-like structures, with a limiting percentage of Mg or Al substituted with other M2+ or M3+ cations, were synthesized by a co-precipitation process in basic aqueous solution with carbonate as counterion. Calcination of these materials at 460 °C resulted in evolution of CO2 and water and yielded high surface area mixed metal oxides with enhanced reactivity. Materials were characterized by ICP for elemental analysis, XRD for structural information, XPS for surface elemental analysis and TEM

  11. Production of aromatic hydrocarbons through catalytic pyrolysis of γ-valerolactone from biomass.

    PubMed

    Zhao, Yan; Fu, Yao; Guo, Qing-Xiang

    2012-06-01

    In the present study, γ-valerolactone (GVL) is firstly reported to be converted into aromatic hydrocarbons through catalytic pyrolysis. The catalysts and reaction conditions are both critical in maximizing the hydrocarbon selectivity. Four zeolites, i.e. MCM-41, β-zeolite, ZSM-5 and HZSM-5 were tested in this work, among which HZSM-5 (Si/Al=25) was found to be the most effective catalyst in both reactivity and selectivity. Under the reaction temperature of 500 °C, the highest carbon yield of 56.71% of aromatics was achieved from GVL with HZSM-5 (Si/Al=25) as catalyst. Moreover, the HZSM-5 catalyst was recycled for five times without significant decrease in product selectivity. PMID:22507905

  12. Process of producing liquid hydrocarbon fuels from biomass

    DOEpatents

    Kuester, James L.

    1987-07-07

    A continuous thermochemical indirect liquefaction process to convert various biomass materials into diesel-type transportation fuels which fuels are compatible with current engine designs and distribution systems comprising feeding said biomass into a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide and thereafter introducing the synthesis gas into a catalytic liquefaction system to convert the synthesis gas into liquid hydrocarbon fuel consisting essentially of C.sub.7 -C.sub.17 paraffinic hydrocarbons having cetane indices of 50+.

  13. Process of producing liquid hydrocarbon fuels from biomass

    DOEpatents

    Kuester, J.L.

    1987-07-07

    A continuous thermochemical indirect liquefaction process is described to convert various biomass materials into diesel-type transportation fuels which fuels are compatible with current engine designs and distribution systems comprising feeding said biomass into a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide and thereafter introducing the synthesis gas into a catalytic liquefaction system to convert the synthesis gas into liquid hydrocarbon fuel consisting essentially of C[sub 7]-C[sub 17] paraffinic hydrocarbons having cetane indices of 50+. 1 fig.

  14. Hydrocarbon Liquid Production from Biomass via Hot-Vapor-Filtered Fast Pyrolysis and Catalytic Hydroprocessing of the Bio-oil

    SciTech Connect

    Elliott, Douglas C.; Wang, Huamin; French, Richard; Deutch, Steve; Iisa, Kristiina

    2014-08-14

    Hot-vapor filtered bio-oils were produced from two different biomass feedstocks, oak and switchgrass, and the oils were evaluated in hydroprocessing tests for production of liquid hydrocarbon products. Hot-vapor filtering reduced bio-oil yields and increased gas yields. The yields of fuel carbon as bio-oil were reduced by ten percentage points by hot-vapor filtering for both feedstocks. The unfiltered bio-oils were evaluated alongside the filtered bio-oils using a fixed bed catalytic hydrotreating test. These tests showed good processing results using a two-stage catalytic hydroprocessing strategy. Equal-sized catalyst beds, a sulfided Ru on carbon catalyst bed operated at 220°C and a sulfided CoMo on alumina catalyst bed operated at 400°C were used with the entire reactor at 100 atm operating pressure. The products from the four tests were similar. The light oil phase product was fully hydrotreated so that nitrogen and sulfur were below the level of detection, while the residual oxygen ranged from 0.3 to 2.0%. The density of the products varied from 0.80 g/ml up to 0.86 g/ml over the period of the test with a correlated change of the hydrogen to carbon atomic ratio from 1.79 down to 1.57, suggesting some loss of catalyst activity through the test. These tests provided the data needed to assess the suite of liquid fuel products from the process and the activity of the catalyst in relationship to the existing catalyst lifetime barrier for the technology.

  15. Biomass energy production. Citations from the International Aerospace Abstracts data base

    NASA Technical Reports Server (NTRS)

    Moore, P. W.

    1980-01-01

    These 210 citations from the international literature describe the production and/or utilization of most forms of biomass as a source of energy, fuel, food, and chemical intermediates or feedstocks. Biomass conversion by incineration, gasification, pyrolysis, hydrolysis, anaerobic digestion, or fermentation, as well as by catalytic, photosynthetic, chemosynthetic, and bio-electrochemical means are among the conversion processes considered. Discussions include biomass plantation and material productivity, transportation and equipment requirements, effects, comparisons of means and efficiencies of utilization and conversion, assessments of limitations, and evaluations of economic potential.

  16. The influence of recycling non-condensable gases in the fractional catalytic pyrolysis of biomass.

    PubMed

    Mante, Ofei D; Agblevor, F A; Oyama, S T; McClung, R

    2012-05-01

    In this study, the effect of recycling the non-condensable gases (NCG) in the catalytic pyrolysis of hybrid poplar using FCC catalyst was investigated. A 50mm bench scale fluidized bed reactor at 475°C with a weight hourly space velocity (WHSV) of 2h(-1) and a gas recycling capability was used for the studies. Model fluidizing gas mixtures of CO/N(2), CO(2)/N(2), CO/CO(2)/N(2) and H(2)/N(2) were used to determine their independent effects. Recycling of the NCG in the process was found to potentially increase the liquid yield and decrease char/coke yield. The model fluidizing gases increased the liquid yield and the CO(2)/N(2) fluidizing gas had the lowest char/coke yield. The (13)C-NMR analysis showed that recycling of NCG increases the aromatic fractions and decreases the methoxy, carboxylic and sugar fractions. Recycling of NCG increased the higher heating value and the pH of the bio-oil as well as decreased the viscosity and density. PMID:22382295

  17. Heterogeneous copper-silica catalyst from agricultural biomass and its catalytic activity

    NASA Astrophysics Data System (ADS)

    Andas, Jeyashelly; Adam, Farook; Rahman, Ismail Ab.

    2013-11-01

    A series of highly mesoporous copper catalysts (5-20 wt.%) supported on silica rice husk were synthesized via sol-gel route at room temperature. The FT-IR and 29Si MAS NMR spectroscopic studies revealed the successful substitution of copper into the silica matrix. Copper in the +2 oxidation state was evidenced from the DR/UV-vis and XPS analyses. Introduction of copper up to 10 wt.% (RH-10Cu) results in a progressive enhancement in the BET surface area. The activity of the copper catalysts was studied in the liquid-phase oxidation of phenol with H2O2 yielding catechol (CAT) and hydroquinone (HQ). Phenol conversion was influenced by various experimental conditions such as temperature, catalyst dosage, molar ratio of reactants, nature of solvent and percentage metal loading. Excellent activity was achieved when 10 wt.% copper was used and decreased with further increase in the copper loading. RH-10Cu could be regenerated several times without significant loss in the catalytic activity.

  18. Catalytic hydrolysis of lignocellulosic biomass into 5-hydroxymethylfurfural in ionic liquid.

    PubMed

    Wang, Pan; Yu, Hongbing; Zhan, Sihui; Wang, Shengqiang

    2011-03-01

    Production of 5-hydroxymethylfurfural (HMF) from cellulose catalyzed by solid acids and metal chlorides was studied in the 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) under microwave irradiation. Among the applied catalysts, the use of CrCl(3)/LiCl resulted in the highest yield of HMF. The effects of catalyst dosage (mole ratio of catalyst to glucose units in the feedstock) and reaction temperature on HMF yields were investigated to obtain optimal process conditions. With the 1:1 mol ratio of catalyst to glucose unit, the HMF yield reached 62.3% at 160°C for 10 min. Untreated wheat straw was also investigated as feedstock to produce HMF for the practical use of raw biomass, in which the HMF yield was comparable to that from pure cellulose. After the extraction of HMF, [BMIM]Cl and CrCl(3)/LiCl could be reused and exhibited no activity loss after three successive runs. PMID:21232942

  19. Catalytic upgrading of biomass-derived methyl ketones to liquid transportation fuel precursors by an organocatalytic approach.

    PubMed

    Sankaranarayanapillai, Shylesh; Sreekumar, Sanil; Gomes, Joseph; Grippo, Adam; Arab, George E; Head-Gordon, Martin; Toste, F Dean; Bell, Alexis T

    2015-04-01

    A highly efficient water-tolerant, solid-base catalyst for the self-condensation of biomass-derived methyl ketones to jet-diesel fuel precursors was developed by grafting site-isolated secondary amines on silica-alumina supports. It is shown that apart from the nature and density of amine groups and the spatial separation of the acidic and basic sites, the acidity of the support material plays a critical role in defining the catalytic activity. It is also found that a combination of weakly acidic silanol/aluminol with secondary amine groups can mimic proline catalysts and are more effective in catalyzing the selective dimerization reaction than the combination of amines with organic acids. In situ FTIR measurements demonstrate that acidic groups activate methyl ketones through their carbonyl groups leading to a favorable CC bond formation step involving an enamine intermediate. DFT analysis of the reaction pathway confirms that CC bond formation is the rate-limiting step. PMID:25704593

  20. Catalytic fast co-pyrolysis of biomass and food waste to produce aromatics: Analytical Py-GC/MS study.

    PubMed

    Zhang, Bo; Zhong, Zhaoping; Min, Min; Ding, Kuan; Xie, Qinglong; Ruan, Roger

    2015-01-01

    In this study, catalytic fast co-pyrolysis (co-CFP) of corn stalk and food waste (FW) was carried out to produce aromatics using quantitative pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS), and ZSM-5 zeolite in the hydrogen form was employed as the catalyst. Co-CFP temperature and a parameter called hydrogen to carbon effective ratio (H/C(eff) ratio) were examined for their effects on the relative content of aromatics. Experimental results showed that co-CFP temperature of 600 °C was optimal for the formation of aromatics and other organic pyrolysis products. Besides, H/C(eff) ratio had an important influence on product distribution. The yield of total organic pyrolysis products and relative content of aromatics increased non-linearly with increasing H/C(eff) ratio. There was an apparent synergistic effect between corn stalk and FW during co-CFP process, which promoted the production of aromatics significantly. Co-CFP of biomass and FW was an effective method to produce aromatics and other petrochemicals. PMID:25864028

  1. Non-catalytic liquefaction of coal with bagasse, a biomass waste

    SciTech Connect

    Rafiqul, I.; Lugang, B.; Yan, Y.; Li, T.

    1999-07-01

    Liquefaction of a Chinese bituminous coal with bagasse, a kind of biomass waste, have been carried out in an autoclave of 300 ml capacity at a temperature range of 350--450 C, reaction time 15--45 min and cool hydrogen pressure 300--700 PSIG (2.04 4.76 MPa). Optimization of the co-liquefaction process was done with respect to oil yield by Factorial Experiment Design Method. Oil yield reached 48% at optimum conditions of temperature: 420 C, cool hydrogen pressure: 500 PSIG and reaction time: 40 min. A polynomial mathematical model, a second order response surface model, has been obtained for correlating the oil yield response factor as well as conversion with the major process variables. The equation derived by the authors holds good in determining the effect of process variables on response factors for any regime conditions in the range of the Planned Experimental Design. Experimental data were also correlated by a kinetic model. The model is based on coal and bagasse, undergoing thermal cracking, is first converted parallel to form preasphaltene and asphaltene and low molecular gaseous products; then consecutively oil is formed from preasphaltene and asphaltene. Activation energies for these three reactions are 32.51 KJ/mol, 75.14 KJ/mol and 44.65 KJ/mol, respectively. These values are lower than that of liquefaction of coal alone. It justifies that the addition of bagasse is effective in enhancing the process of co-liquefaction and giving higher yield of oil than for liquefaction of coal alone. Calculated values from this model fairly agree with the experimental data.

  2. Kinetic study on biomass gasification

    SciTech Connect

    Bingyan, X.; Chuangzhi, W.; Zhengfen, L.; Guang, Z.X. )

    1992-09-01

    An experimental apparatus, with the features of fast heating rate and continuous record of reaction parameters, was developed to study kinetics of fast pyrolysis. The temperature effects, at a range of 400 C to 900 C, on pyrolysis rate, products profile, gas quality and quantity, and so on, were studied and the results are listed and analyzed. The effect of secondary reaction of gas phase at 700 C was tested and the regression result is expressed in an experimental formula. Based on the experimental results, the three-stage-reaction mechanism module is suggested. The kinetic expression to calculate gas formation rate is concluded as: d{alpha}/dt = A exp({minus}E/RT)(1 {minus} {alpha}){sup n}. The kinetic parameters of A, E, and n at different temperatures are given in the paper.

  3. Sensitivity of Fischer-Tropsch Synthesis and Water-Gas Shift Catalystes to Poisons form High-Temperature High-Pressure Entrained-Flow (EF) Oxygen-Blown Gasifier Gasification of Coal/Biomass Mixtures

    SciTech Connect

    Burton Davis; Gary Jacobs; Wenping Ma; Khalid Azzam; Janet ChakkamadathilMohandas; Wilson Shafer

    2009-09-30

    There has been a recent shift in interest in converting not only natural gas and coal derived syngas to Fischer-Tropsch synthesis products, but also converting biomass-derived syngas, as well as syngas derived from coal and biomass mixtures. As such, conventional catalysts based on iron and cobalt may not be suitable without proper development. This is because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using entrained-flow oxygen-blown gasifier gasification gasification) than solely from coal, other compounds may actually be increased. Of particular concern are compounds containing alkali chemicals like the chlorides of sodium and potassium. In the first year, University of Kentucky Center for Applied Energy Research (UK-CAER) researchers completed a number of tasks aimed at evaluating the sensitivity of cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts and a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to alkali halides. This included the preparation of large batches of 0.5%Pt-25%Co/Al{sub 2}O{sub 3} and 100Fe: 5.1Si: 3.0K: 2.0Cu (high alpha) catalysts that were split up among the four different entities participating in the overall project; the testing of the catalysts under clean FT and WGS conditions; the testing of the Fe-Cr WGS catalyst under conditions of co-feeding NaCl and KCl; and the construction and start-up of the continuously stirred tank reactors (CSTRs) for poisoning investigations.

  4. YEAR 2 BIOMASS UTILIZATION

    SciTech Connect

    Christopher J. Zygarlicke

    2004-11-01

    This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from

  5. Biomass energy production. 1975-April, 1980 (citations from the International Aerospace Abstracts Data Base). Report for 1975-Apr 80

    SciTech Connect

    Moore, P.W.

    1980-06-01

    These citations from the international literature describe the production and/or utilization of most forms of biomass as a source of energy, fuel, food, and chemical intermediates or feedstocks. Biomass conversion by incineration, gasification, pyrolysis, hydrolysis, anaerobic digestion, or fermentation, as well as by catalytic, photosynthetic, chemosynthetic, and bio-electrochemical means are among the conversion processes considered. Discussions include biomass plantation and material productivity, transportation and equipment requirements, environmental effects, comparisons of means and efficiencies of utilization and conversion, assessments of limitations, and evaluations of economic potential. (Contains 210 abstracts)

  6. Gasification process

    SciTech Connect

    Woldy, P.N.; Kaufman, H.C.; Dach, M.M.; Beall, J.F.

    1981-02-03

    This version of Texaco's gasification process for high-ash-content solids is not extended to include the production of superheated steam, as described in US Patent 4,247,302. The hot, raw gas stream passes through fewer coolers, producing a high-pressure steam instead of a superheated steam.

  7. Selectively improving the bio-oil quality by catalytic fast pyrolysis of heavy-metal-polluted biomass: take copper (Cu) as an example.

    PubMed

    Liu, Wu-Jun; Tian, Ke; Jiang, Hong; Zhang, Xue-Song; Ding, Hong-Sheng; Yu, Han-Qing

    2012-07-17

    Heavy-metal-polluted biomass derived from phytoremediation or biosorption is widespread and difficult to be disposed of. In this work, simultaneous conversion of the waste woody biomass into bio-oil and recovery of Cu in a fast pyrolysis reactor were investigated. The results show that Cu can effectively catalyze the thermo-decomposition of biomass. Both the yield and high heating value (HHV) of the Cu-polluted fir sawdust biomass (Cu-FSD) derived bio-oil are significantly improved compared with those of the fir sawdust (FSD) derived bio-oil. The results of UV-vis and (1)H NMR spectra of bio-oil indicate pyrolytic lignin is further decomposed into small-molecular aromatic compounds by the catalysis of Cu, which is in agreement with the GC-MS results that the fractions of C7-C10 compounds in the bio-oil significantly increase. Inductively coupled plasma-atomic emission spectrometry, X-ray diffraction, and X-ray photoelectron spectroscopy analyses of the migration and transformation of Cu in the fast pyrolysis process show that more than 91% of the total Cu in the Cu-FSD is enriched in the char in the form of zerovalent Cu with a face-centered cubic crystalline phase. This study gives insight into catalytic fast pyrolysis of heavy metals, and demonstrates the technical feasibility of an eco-friendly process for disposal of heavy-metal-polluted biomass. PMID:22708628

  8. Gasification system

    DOEpatents

    Haldipur, Gaurang B.; Anderson, Richard G.; Cherish, Peter

    1985-01-01

    A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.

  9. Gasification system

    DOEpatents

    Haldipur, Gaurang B.; Anderson, Richard G.; Cherish, Peter

    1983-01-01

    A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.

  10. Catalytic fast pyrolysis of straw biomass in an internally interconnected fluidized bed to produce aromatics and olefins: effect of different catalysts.

    PubMed

    Zhang, Huiyan; Xiao, Rui; Jin, Baosheng; Shen, Dekui; Chen, Ran; Xiao, Guomin

    2013-06-01

    A novel reactor, named internally interconnected fluidized bed (IIFB), was specially designed for catalytic fast pyrolysis (CFP) of straw biomass. Catalytic characteristics of four types of catalysts (ZSM-5, LOSA-1, Gamma-Al2O3 and spent FCC catalysts) for producing aromatics and olefins were investigated in this reactor. The results show that IIFB reactor can realize CFP process. The maximum carbon yields of aromatics (12.8%) and C2-C4 olefins (10.5%) were obtained with ZSM-5. ZSM-5 shows the highest selectivity of naphthalene (12.1%), whereas spent FCC catalyst presents the highest selectivity of benzene (45.5%). The selectivity of ethylene and propylene are equal in the present of ZSM-5 and LOSA-1. Gamma-Al2O3 and spent FCC catalysts show a higher selectivity of ethylene than that of propylene. This paper provides a new reactor for CFP process and some suggestions for choosing catalyst. PMID:23587812

  11. Effect of dry torrefaction on kinetics of catalytic pyrolysis of sugarcane bagasse

    NASA Astrophysics Data System (ADS)

    Daniyanto, Sutijan, Deendarlianto, Budiman, Arief

    2015-12-01

    Decreasing world reserve of fossil resources (i.e. petroleum oil, coal and natural gas) encourage discovery of renewable resources as subtitute for fossil resources. Biomass is one of the main natural renewable resources which is promising resource as alternate resources to meet the world's energy needs and raw material to produce chemical platform. Conversion of biomass, as source of energy, fuel and biochemical, is conducted using thermochemical process such as pyrolysis-gasification process. Pyrolysis step is an important step in the mechanism of pyrolysis - gasification of biomass. The objective of this study is to obtain the kinetic reaction of catalytic pyrolysis of dry torrified sugarcane bagasse which used Ca and Mg as catalysts. The model of kinetic reaction is interpreted using model n-order of single reaction equation of biomass. Rate of catalytic pyrolysis reaction depends on the weight of converted biomass into char and volatile matters. Based on TG/DTA analysis, rate of pyrolysis reaction is influenced by the composition of biomass (i.e. hemicellulose, cellulose and lignin) and inorganic component especially alkali and alkaline earth metallic (AAEM). From this study, it has found two equations rate of reaction of catalytic pyrolysis in sugarcane bagasse using catalysts Ca and Mg. First equation is equation of pyrolysis reaction in rapid zone of decomposition and the second equation is slow zone of decomposition. Value of order reaction for rapid decomposition is n > 1 and for slow decomposition is n<1. Constant and order of reactions for catalytic pyrolysis of dry-torrified sugarcane bagasse with presence of Ca tend to higher than that's of presence of Mg.

  12. Catalytic hydroprocessing of coal-derived gasification residues to fuel blending stocks: effect of reaction variables and catalyst on hydrodeoxygenation (HDO), hydrodenitrogenation (HDN), and hydrodesulfurization (HDS)

    SciTech Connect

    Dieter Leckel

    2006-10-15

    Gas liquors, tar oils, and tar products resulting from the coal gasification of a high-temperature Fischer-Tropsch plant can be successfully refined to fuel blending components by the use of severe hydroprocessing conditions. High operating temperatures and pressures combined with low space velocities ensure the deep hydrogenation of refractory oxygen, sulfur, and nitrogen compounds. Hydrodeoxygenation, particularly the removal of phenolic components, hydrodesulfurization, and hydrodenitrogenation were obtained at greater than 99% levels using the NiMo and NiW on {gamma}-Al{sub 2}O{sub 3} catalysts. Maximum deoxygenation activity was achieved using the NiMo/{gamma}-Al{sub 2}O{sub 3} catalyst having a maximum pore size distribution in the range of 110-220{angstrom}. The NiMo/{gamma}-Al{sub 2}O{sub 3} catalyst, which also has a relatively high proportion of smaller pore sizes (35-60 {angstrom}), displays lower hydrogenation activity. 30 refs., 1 fig. 8 tabs.

  13. Sensitivity of Fischer-Tropsch Synthesis and Water-Gas Shift Catalysts to Poisons from High-Temperature High-Pressure Entrained-Flow (EF) Oxygen-Blown Gasifier Gasification of Coal/Biomass Mixtures

    SciTech Connect

    Burton Davis; Gary Jacobs; Wenping Ma; Dennis Sparks; Khalid Azzam; Janet Chakkamadathil Mohandas; Wilson Shafer; Venkat Ramana Rao Pendyala

    2011-09-30

    There has been a recent shift in interest in converting not only natural gas and coal derived syngas to Fischer-Tropsch synthesis products, but also converting biomass-derived syngas, as well as syngas derived from coal and biomass mixtures. As such, conventional catalysts based on iron and cobalt may not be suitable without proper development. This is because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using entrained-flow oxygen-blown gasifier gasification gasification) than solely from coal, other compounds may actually be increased. Of particular concern are compounds containing alkali chemicals like the chlorides of sodium and potassium. In the first year, University of Kentucky Center for Applied Energy Research (UK-CAER) researchers completed a number of tasks aimed at evaluating the sensitivity of cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts and a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to alkali halides. This included the preparation of large batches of 0.5%Pt-25%Co/Al{sub 2}O{sub 3} and 100Fe: 5.1Si: 3.0K: 2.0Cu (high alpha) catalysts that were split up among the four different entities participating in the overall project; the testing of the catalysts under clean FT and WGS conditions; the testing of the Fe-Cr WGS catalyst under conditions of co-feeding NaCl and KCl; and the construction and start-up of the continuously stirred tank reactors (CSTRs) for poisoning investigations. In the second and third years, researchers from the University of Kentucky Center for Applied Energy Research (UK-CAER) continued the project by evaluating the sensitivity of a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to a number of different compounds, including KHCO{sub 3}, NaHCO{sub 3}, HCl, HBr, HF, H{sub 2}S, NH{sub 3}, and a combination of H

  14. STUDY OF THE STEAM GASIFICATION OF ORGANIC WASTES

    EPA Science Inventory

    Chemical kinetic data describing the pyrolysis/gasification characteristics of organic waste (biomass) materials is needed for the design of improved conversion reactors. Unfortunately, little data is available in the literature on the pyrolysis kinetics of waste materials, and e...

  15. Assessment of advanced coal gasification processes

    NASA Technical Reports Server (NTRS)

    Mccarthy, J.; Ferrall, J.; Charng, T.; Houseman, J.

    1981-01-01

    A technical assessment of the following advanced coal gasification processes is presented: high throughput gasification (HTG) process; single stage high mass flux (HMF) processes; (CS/R) hydrogasification process; and the catalytic coal gasification (CCG) process. Each process is evaluated for its potential to produce synthetic natural gas from a bituminous coal. Key similarities, differences, strengths, weaknesses, and potential improvements to each process are identified. The HTG and the HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging, and syngas as the initial raw product gas. The CS/R hydrogasifier is also SRT, but is nonslagging and produces a raw gas high in methane content. The CCG gasifier is a long residence time, catalytic, fluidbed reactor producing all of the raw product methane in the gasifier.

  16. Steam gasification of wood in the presence of catalysts

    NASA Astrophysics Data System (ADS)

    Mudge, L. K.; Mitchell, D. H.; Baker, E. G.; Robertus, R. J.; Brown, M. D.

    1982-09-01

    Catalytic steam gasification of wood, including sawdust, chipped forest slash, and mill shavings, is investigated. Results of laboratory, process development unit (PDR), and feasibility studies illustrate attractive processes for conversion of wood to methanol and a substitute natural gas (SNG). Recent laboratory studies developed a long-lived alloy catalyst for generation of a methanol synthesis gas by steam gasification of wood. Modification of the PDU for operation at 10 atm (150 psia) is complete and initial tests are completed. The modified PDU will be operated at elevated pressures to confirm yields and design parameters used in process feasibility studies. A computer program for evaluating the effect of yield changes on process economics was completed. The base case was the study on economics of methanol-from-wood using catalytic gasification. It was found that methanol-from-wood by catalytic gasification was competitive with the process for methanol production from natural gas.

  17. Catalytic Upgrading of Biomass-Derived Compounds via C-C Coupling Reactions. Computational and Experimental Studies of Acetaldehyde and Furan Reactions in HZSM-5

    SciTech Connect

    Liu, Cong; Evans, Tabitha J.; Cheng, Lei; Nimlos, Mark R.; Mukarakate, Calvin; Robichaud, David J.; Assary, Rajeev S.; Curtiss, Larry A.

    2015-10-02

    These catalytic C–C coupling and deoxygenation reactions are essential for upgrading of biomass-derived oxygenates to fuel-range hydrocarbons. Detailed understanding of mechanistic and energetic aspects of these reactions is crucial to enabling and improving the catalytic upgrading of small oxygenates to useful chemicals and fuels. Using periodic density functional theory (DFT) calculations, we have investigated the reactions of furan and acetaldehyde in an HZSM-5 zeolite catalyst, a representative system associated with the catalytic upgrading of pyrolysis vapors. Comprehensive energy profiles were computed for self-reactions (i.e., acetaldehyde coupling and furan coupling) and cross-reactions (i.e., acetaldehyde + furan) of this representative mixture. Major products proposed from the computations are further confirmed using temperature controlled mass spectra measurements. Moreover, the computational results show that furan interacts with acetaldehyde in HZSM-5 via an alkylation mechanism, which is more favorable than the self-reactions, indicating that mixing furans with aldehydes could be a promising approach to maximize effective C–C coupling and dehydration while reducing the catalyst deactivation (e.g., coke formation) from aldehyde condensation.

  18. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2: Gas Cleanup Design and Cost Estimates -- Black Liquor Gasification

    SciTech Connect

    Nexant Inc.

    2006-05-01

    As part of Task 2, Gas Cleanup and Cost Estimates, Nexant investigated the appropriate process scheme for removal of acid gases from black liquor-derived syngas for use in both power and liquid fuels synthesis. Two 3,200 metric tonne per day gasification schemes, both low-temperature/low-pressure (1100 deg F, 40 psi) and high-temperature/high-pressure (1800 deg F, 500 psi) were used for syngas production. Initial syngas conditions from each of the gasifiers was provided to the team by the National Renewable Energy Laboratory and Princeton University. Nexant was the prime contractor and principal investigator during this task; technical assistance was provided by both GTI and Emery Energy.

  19. Gasification performance of switchgrass pretreated with torrefaction and densification

    SciTech Connect

    Jaya Shankar Tumuluru; Various

    2014-08-01

    The purpose of this study was to investigate gasification performance of four switchgrass pretreatments (torrefaction at 230 and 270 °C, densification, and combined torrefaction and densification) and three gasification temperatures (700, 800 and 900 °C). Gasification was performed in a fixed-bed externally heated reactor with air as an oxidizing agent. Switchgrass pretreatment and gasification temperature had significant effects on gasification performance such as gas yields, syngas lower heating value (LHV), and carbon conversion and cold gas efficiencies. With an increase in the gasification temperature, yields of H2 and CO, syngas LHV, and gasifier efficiencies increased whereas CH4, CO2 and N2 yields decreased. Among all switchgrass pretreatments, gasification performance of switchgrass with combined torrefaction and densification was the best followed by that of densified, raw and torrefied switchgrass. Gasification of combined torrefied and densified switchgrass resulted in the highest yields of H2 (0.03 kg/kg biomass) and CO (0.72 kg/kg biomass), highest syngas LHV (5.08 MJ m-3), CCE (92.53%), and CGE (68.40%) at the gasification temperature of 900 °C.

  20. Understanding Sulfur Poisoning and Regeneration of Nickel Biomass Conditioning Catalysts using X-Ray Absorption Spectroscopy

    SciTech Connect

    Yung, M. M.; Cheah, S.; Kuhn, J. N.

    2013-01-01

    The production of biofuels can proceed via a biomass gasification to produce syngas, which can then undergo catalytic conditioning and reforming reactions prior to being sent to a fuel synthesis reactor. Catalysts used for biomass conditioning are plagued by short lifetimes which are a result of, among other things, poisoning. Syngas produced from biomass gasification may contain between 30-300 ppm H2S, depending on the feedstock and gasification conditions, and H2S is a key catalyst poison. In order to overcome catalyst poisoning, either an H2S-tolerant catalyst or an efficient regeneration protocol should be employed. In this study, sulfur K-edge X-ray absorption near edge spectroscopy (XANES) was used to monitor sulfur species on spent catalyst samples and the transformation of these species from sulfides to sulfates during steam and air regeneration on a Ni/Mg/K/Al2O3 catalyst used to condition biomass-derived syngas. Additionally, nickel K-edge EXAFS and XANES are used to examine the state of nickel species on the catalysts. Post-reaction samples showed the presence of sulfides on the H2S-poisoned nickel catalyst and although some gaseous sulfur species were observed to leave the catalyst bed during regeneration, sulfur remained on the catalyst and a transformation from sulfides to sulfates was observed. The subsequent H2 reduction led to a partial reduction of sulfates back to sulfides. A proposed reaction sequence is presented and recommended regeneration strategies are discussed.

  1. Catalytic pyrolysis-gc/ms of spirulina: evaluation of a highly proteinaceous biomass source for production of fuels and chemicals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pyrolysis of microalgae offers a pathway towards the production of compounds derived from the thermal decomposition of triglycerides, proteins as well as lignocelluloses and their combinations thereof. When catalytically induced, this could lead to the production of fuels and chemicals including aro...

  2. Purification of biomass-derived 5-hydroxymethylfurfural and its catalytic conversion to 2,5-furandicarboxylic Acid.

    PubMed

    Yi, Guangshun; Teong, Siew Ping; Li, Xiukai; Zhang, Yugen

    2014-08-01

    A simple and effective water extraction method is presented for the purification 5-hydroxylmethylfurfural (HMF) obtained from a biomass dehydration system. Up to 99% of the HMF can be recovered and the HMF in aqueous solution is directly converted to 2,5-furandicarboxylic acid (FDCA) as the sole product. This purification technique allows an integrated process to produce FDCA from fructose via HMF prepared in an isopropanol monophasic system, with an overall FDCA yield of 83% obtained. From Jerusalem raw artichoke biomass to FDCA via HMF prepared in a water/MIBK (methyl isobutyl ketone) biphasic system, an overall FDCA yield of 55% is obtained. PMID:24889713

  3. A review of thermal-chemical conversion of lignocellulosic biomass in China.

    PubMed

    Ma, Longlong; Wang, Tiejun; Liu, Qiying; Zhang, Xinghua; Ma, Wenchao; Zhang, Qi

    2012-01-01

    Biomass, a renewable, sustainable and carbon dioxide neutral resource, has received widespread attention in the energy market as an alternative to fossil fuels. Thermal-chemical conversion of biomass to produce biofuels is a promising technology with many commercial applications. This paper reviewed the state-of-the-art research and development of thermal-chemical conversion of biomass in China with a special focus on gasification, pyrolysis, and catalytic transformation technologies. The advantages and disadvantages, potential of future applications, and challenges related to these technologies are discussed. Conclusively, these transformation technologies for the second-generation biofuels with using non-edible lignocellulosic biomass as feedstocks show prosperous perspective for commercial applications in near future. PMID:22306330

  4. Aspen Process Flowsheet Simulation Model of a Battelle Biomass-Based Gasification, Fischer-Tropsch Liquefaction and Combined-Cycle Power Plant

    SciTech Connect

    1998-10-30

    This study was done to support the research and development program of the National Renewable Energy Laboratory (NREL) in the thermochemical conversion of biomass to liquid transportation fuels using current state-of-the-art technology. The Mitretek study investigated the use of two biomass gasifiers; the RENUGAS gasifier being developed by the Institute of Gas Technology, and the indirectly heated gasifier being developed by Battelle Columbus. The Battelle Memorial Institute of Columbus, Ohio indirectly heated biomass gasifier was selected for this model development because the syngas produced by it is better suited for Fischer-Tropsch synthesis with an iron-based catalyst for which a large amount of experimental data are available. Bechtel with Amoco as a subcontractor developed a conceptual baseline design and several alternative designs for indirect coal liquefaction facilities. In addition, ASPEN Plus process flowsheet simulation models were developed for each of designs. These models were used to perform several parametric studies to investigate various alternatives for improving the economics of indirect coal liquefaction.

  5. Bio-oil deoxygenation by catalytic pyrolysis: new catalysts for the conversion of biomass into densified and deoxygenated bio-oil.

    PubMed

    Sanna, Aimaro; Andrésen, John M

    2012-10-01

    This work proposes an innovative catalytic pyrolysis process that converts bio-refinery residues, such as spent grains, into intermediate bio-oil with improved properties compared to traditional bio-oils, which allows the use of existing crude-oil refinery settings for bio-oil upgrading into fuels. The integration of bio-oil into a crude-oil refinery would decrease the economic disadvantage of biomass compared to fossil fuels. The catalytic pyrolysis was able to produce bio-oil with a lower O and N content and high levels of aliphatics and H by using activated serpentine and olivine at 430-460 °C. The activated materials seem to be beneficial to the bio-oil energy content by increasing it from less than 20 MJ kg(-1) in the original biomass to 26 MJ kg(-1). Approximately 70-74 % of the starting energy remains in the bio-oil using activated olivine (ACOL) and activated serpentine (ACSE) at 430 °C, whereas only 52 % is retained using alumina (ALU) at the same temperature. There was a strong reduction of the O content in the bio-oils, and the deoxygenation power decreased in the following order: ACOL>ACSE>ALU. In particular, ACOL at 430-460 °C was able to reduce the O content of the bio-oil by 40 %. The oxygenated bio-oil macromolecules interact in the catalyst's active sites with the naturally present metallic species and undergo decarboxylation with the formation of C(5)-C(6) O-depleted species. PMID:22899352

  6. Gasification: redefining clean energy

    SciTech Connect

    2008-05-15

    This booklet gives a comprehensive overview of how gasification is redefining clean energy, now and in the future. It informs the general public about gasification in a straight-forward, non-technical manner.

  7. 2010 Worldwide Gasification Database

    DOE Data Explorer

    The 2010 Worldwide Gasification Database describes the current world gasification industry and identifies near-term planned capacity additions. The database lists gasification projects and includes information (e.g., plant location, number and type of gasifiers, syngas capacity, feedstock, and products). The database reveals that the worldwide gasification capacity has continued to grow for the past several decades and is now at 70,817 megawatts thermal (MWth) of syngas output at 144 operating plants with a total of 412 gasifiers.

  8. Characteristics of rice husk gasification in an entrained flow reactor.

    PubMed

    Zhao, Yijun; Sun, Shaozeng; Tian, Hongming; Qian, Juan; Su, Fengming; Ling, Feng

    2009-12-01

    Experiments were performed in an entrained flow reactor to better understand the characteristics of biomass gasification. Rice husk was used in this study. Effects of the gasification temperature (700, 800, 900 and 1000 degrees C) and the equivalence ratio in the range of 0.22-0.34 on the biomass gasification and the axial gas distribution in the reactor were studied. The results showed that reactions of CnHm were less important in the gasification process except cracking reactions which occurred at higher temperature. In the oxidization zone, reactions between char and oxygen had a more prevailing role. The optimal gasification temperature of the rice husk could be above 900 degrees C, and the optimal value of ER was 0.25. The gasification process was finished in 1.42 s when the gasification temperature was above 800 degrees C. A first order kinetic model was developed for describing rice husk air gasification characteristics and the relevant kinetic parameters were determined. PMID:19589673

  9. Considerations on coal gasification

    NASA Technical Reports Server (NTRS)

    Franzen, J. E.

    1978-01-01

    Commercial processes for the gasification of coal with oxygen are discussed. The Koppers-Totzek process for the gasification of coal dust entrained in a stream of gasifying agents is described in particular detail. The outlook for future applications of coal gasification is presented.

  10. Materials of Gasification

    SciTech Connect

    2005-09-15

    The objective of this project was to accumulate and establish a database of construction materials, coatings, refractory liners, and transitional materials that are appropriate for the hardware and scale-up facilities for atmospheric biomass and coal gasification processes. Cost, fabricability, survivability, contamination, modes of corrosion, failure modes, operational temperatures, strength, and compatibility are all areas of materials science for which relevant data would be appropriate. The goal will be an established expertise of materials for the fossil energy area within WRI. This would be an effort to narrow down the overwhelming array of materials information sources to the relevant set which provides current and accurate data for materials selection for fossil fuels processing plant. A significant amount of reference material on materials has been located, examined and compiled. The report that describes these resources is well under way. The reference material is in many forms including texts, periodicals, websites, software and expert systems. The most important part of the labor is to refine the vast array of available resources to information appropriate in content, size and reliability for the tasks conducted by WRI and its clients within the energy field. A significant has been made to collate and capture the best and most up to date references. The resources of the University of Wyoming have been used extensively as a local and assessable location of information. As such, the distribution of materials within the UW library has been added as a portion of the growing document. Literature from recent journals has been combed for all pertinent references to high temperature energy based applications. Several software packages have been examined for relevance and usefulness towards applications in coal gasification and coal fired plant. Collation of the many located resources has been ongoing. Some web-based resources have been examined.

  11. Combustion, pyrolysis, gasification, and liquefaction of biomas

    NASA Astrophysics Data System (ADS)

    Reed, T. B.

    1980-09-01

    The advantages of biomass as a feedstock are examined and biomass conversion techniques are described. Combustion is the simplest method of producing heat from biomass, using either the traditional fixed bed combustion on a grate or the fluidized bed and suspended combustion techniques now being developed. Pyrolysis of biomass is a particularly attractive process if all three products gas, wood tars, and charcoal can be used. Gasification of biomass with air is perhaps the most flexible and best developed process for conversion of biomass to fuel, yielding a low energy gas that can be burned in existing gas/oil boilers or in engines. Oxygen gasification yields a gas with higher energy content that can be used in pipelines or to fire turbines. In addition, this gas can be used for producing methanol, ammonia, or gasoline by indirect liquefaction. Fast pyrolysis of biomass produces a gas rich in ethylene that can be used to make alcohols or gasoline. Finally, treatment of biomass with high pressure hydrogen can yield liquid fuels through direct liquefaction.

  12. Synfuels from biomass grow slowly

    SciTech Connect

    Black, J.; Wedlock, J.C.

    1982-01-01

    Current developments in the manufacture of synfuels are discussed with emphasis on the sources of biomass suitable for synfuels production, processes for converting biomass to synfuels, and the economics of the technology. The sources include wood, nonwood crops, root crops, aquatic biomass, and oils from plants such as soybean, safflower, and peanut. The biomass conversion processes discussed include pyrolysis, gasification, liquefaction, and aerobic and anaerobic digestion.

  13. Coal Gasification (chapter only)

    SciTech Connect

    Shadle, L.J.; Berry, D.A.; Syamlal, Madhava

    2002-11-15

    Coal gasification is presented in terms of the chemistry of coal conversion and the product gas characteristics, the historical development of coal gasifiers, variations in the types and performance of coal gasifiers, the configuration of gasification systems, and the status and economics of coal gasification. In many ways, coal gasification processes have been tailored to adapt to the different types of coal feedstocks available. Gasification technology is presented from a historical perspective considering early uses of coal, the first practical demonstration and utilization of coal gasification, and the evolution of the various processes used for coal gasification. The development of the gasification industry is traced from its inception to its current status in the world economy. Each type of gasifier is considered focusing on the process innovations required to meet the changing market needs. Complete gasification systems are described including typical system configurations, required system attributes, and aspects of the industry's environmental and performance demands. The current status, economics of gasification technology, and future of gasification are also discussed.

  14. Long-term operation of biomass-to-liquid systems coupled to gasification and Fischer-Tropsch processes for biofuel production.

    PubMed

    Kim, Kwangsu; Kim, Youngdoo; Yang, Changwon; Moon, Jihong; Kim, Beomjong; Lee, Jeongwoo; Lee, Uendo; Lee, Seehoon; Kim, Jaeho; Eom, Wonhyun; Lee, Sangbong; Kang, Myungjin; Lee, Yunje

    2013-01-01

    Long-term operation of the biomass-to-liquid (BTL) process was conducted with a focus on the production of bio-syngas that satisfies the purity standards for the Fischer-Tropsch (FT) process. The integrated BTL system consisted of a bubbling fluidized bed (BFB) gasifier (20 kW(th)), gas cleaning unit, syngas compression unit, acid gas removing unit, and an FT reactor. Since the raw syngas from the gasifier contains different types of contaminants, such as particulates, condensable tars, and acid gases, which can cause various mechanical problems or deactivate the FT catalyst, the syngas was purified by passing through cyclones, a gravitational dust collector, a two-stage wet scrubber (packing-type), and a methanol absorption tower. The integrated system was operated for 500 h over several runs, and stable operating conditions for each component were achieved. The cleaned syngas contained no sulfur compounds (under 1 ppmV) and satisfied the requirements for the FT process. PMID:23138062

  15. Conceptual process design and techno-economic assessment of ex situ catalytic fast pyrolysis of biomass: A fixed bed reactor implementation scenario for future feasibility

    SciTech Connect

    Dutta, Abhijit; Schaidle, Joshua A.; Humbird, David; Baddour, Frederick G.; Sahir, Asad

    2015-10-06

    Ex situ catalytic fast pyrolysis of biomass is a promising route for the production of fungible liquid biofuels. There is significant ongoing research on the design and development of catalysts for this process. However, there are a limited number of studies investigating process configurations and their effects on biorefinery economics. Herein we present a conceptual process design with techno-economic assessment; it includes the production of upgraded bio-oil via fixed bed ex situ catalytic fast pyrolysis followed by final hydroprocessing to hydrocarbon fuel blendstocks. This study builds upon previous work using fluidized bed systems, as detailed in a recent design report led by the National Renewable Energy Laboratory (NREL/TP-5100-62455); overall yields are assumed to be similar, and are based on enabling future feasibility. Assuming similar yields provides a basis for easy comparison and for studying the impacts of areas of focus in this study, namely, fixed bed reactor configurations and their catalyst development requirements, and the impacts of an inline hot gas filter. A comparison with the fluidized bed system shows that there is potential for higher capital costs and lower catalyst costs in the fixed bed system, leading to comparable overall costs. The key catalyst requirement is to enable the effective transformation of highly oxygenated biomass into hydrocarbons products with properties suitable for blending into current fuels. Potential catalyst materials are discussed, along with their suitability for deoxygenation, hydrogenation and C–C coupling chemistry. This chemistry is necessary during pyrolysis vapor upgrading for improved bio-oil quality, which enables efficient downstream hydroprocessing; C–C coupling helps increase the proportion of diesel/jet fuel range product. One potential benefit of fixed bed upgrading over fluidized bed upgrading is catalyst flexibility, providing greater control over chemistry and product composition. Since this

  16. Conceptual process design and techno-economic assessment of ex situ catalytic fast pyrolysis of biomass: A fixed bed reactor implementation scenario for future feasibility

    DOE PAGESBeta

    Dutta, Abhijit; Schaidle, Joshua A.; Humbird, David; Baddour, Frederick G.; Sahir, Asad

    2015-10-06

    Ex situ catalytic fast pyrolysis of biomass is a promising route for the production of fungible liquid biofuels. There is significant ongoing research on the design and development of catalysts for this process. However, there are a limited number of studies investigating process configurations and their effects on biorefinery economics. Herein we present a conceptual process design with techno-economic assessment; it includes the production of upgraded bio-oil via fixed bed ex situ catalytic fast pyrolysis followed by final hydroprocessing to hydrocarbon fuel blendstocks. This study builds upon previous work using fluidized bed systems, as detailed in a recent design reportmore » led by the National Renewable Energy Laboratory (NREL/TP-5100-62455); overall yields are assumed to be similar, and are based on enabling future feasibility. Assuming similar yields provides a basis for easy comparison and for studying the impacts of areas of focus in this study, namely, fixed bed reactor configurations and their catalyst development requirements, and the impacts of an inline hot gas filter. A comparison with the fluidized bed system shows that there is potential for higher capital costs and lower catalyst costs in the fixed bed system, leading to comparable overall costs. The key catalyst requirement is to enable the effective transformation of highly oxygenated biomass into hydrocarbons products with properties suitable for blending into current fuels. Potential catalyst materials are discussed, along with their suitability for deoxygenation, hydrogenation and C–C coupling chemistry. This chemistry is necessary during pyrolysis vapor upgrading for improved bio-oil quality, which enables efficient downstream hydroprocessing; C–C coupling helps increase the proportion of diesel/jet fuel range product. One potential benefit of fixed bed upgrading over fluidized bed upgrading is catalyst flexibility, providing greater control over chemistry and product composition

  17. Engine fuels from biomass

    NASA Astrophysics Data System (ADS)

    Parker, H. W.

    1981-01-01

    Sources of biomass fuels for engines are compared to other synfuels. Biomass can be converted to gaseous and liquid engine fuels by the same processes utilized for coal conversion such as gasification, direct liquefaction, and indirect liquefaction. Alternatively, biomass can be converted into liquid fuels by fermentation to methane or ethanol. The quantities of biomass derived engine fuels potentially available in the next decade are relatively small, and the anticipated costs are significantly greater than for liquid engine fuels made from coal or oil shale.

  18. Biomass Production and Soil Carbon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is expanding interest in harvesting crop biomass for energy. Crop biomass such as corn stover, wheat straw, soybean straw or other crop straws can be used as feedstock to support several bioenergy platforms (cellulosic ethanol, gasification or pyrolysis). There are potential benefits for using...

  19. Low-temperature conversion of high-moisture biomass: Topical report, January 1984--January 1988

    SciTech Connect

    Sealock, L.J. Jr.; Elliott, D.C.; Butner, R.S.; Neuenschwander, G.G.

    1988-10-01

    Pacific Northwest Laboratory (PNL) is developing a low-temperature, catalytic process that converts high-moisture biomass feedstocks and other wet organic substances to useful gaseous and liquid fuels. The advantage of this process is that it works without the need for drying or dewatering the feedstock. Conventional thermal gasification processes, which require temperatures above 750/degree/C and air or oxygen for combustion to supply reaction heat, generally cannot utilize feedstocks with moisture contents above 50 wt %, as the conversion efficiency is greatly reduced as a result of the drying step. For this reason, anaerobic digestion or other bioconversion processes traditionally have been used for gasification of high-moisture feedstocks. However, these processes suffer from slow reaction rates and incomplete carbon conversion. 50 refs., 21 figs., 22 tabs.

  20. Gasification. 2nd. ed.

    SciTech Connect

    Christopher Higman; Maarten van der Burgt

    2008-02-15

    This book covers gasification as a comprehensive topic, covering its many uses, from refining, to natural gas, to coal. It provides an overview of commercial processes and covers applications relevant to today's demands. The new edition is expanded and provides more detail on the integration issues for current generation, state-of-the-art Integrated Gasification Combined Cycles (IGCC); CO{sub 2} capture in the IGCC context addressing the issues of pre-investment and retrofitting as well as defining what the term 'CO{sub 2} capture ready' might mean in practice; issues of plant reliability, availability and maintainability (RAM) including as evaluation of feedback from existing plants; implementation of fuel cell technology in IGCC concepts. Contents are: Introduction; The Thermodynamics of Gasification; The Kinetics of Gasification and Reactor Theory; Feedstocks and Feedstock Characteristics; Gasification Processes; Practical Issues; Applications; Auxiliary Technologies; Economics, environmental, and Safety Issues; Gasification and the Future. 5 apps.

  1. Solar coal gasification

    NASA Astrophysics Data System (ADS)

    Gregg, D. W.; Aiman, W. R.; Otsuki, H. H.; Thorsness, C. B.

    1980-01-01

    A preliminary evaluation of the technical and economic feasibility of solar coal gasification has been performed. The analysis indicates that the medium-Btu product gas from a solar coal-gasification plant would not only be less expensive than that from a Lurgi coal-gasification plant but also would need considerably less coal to produce the same amount of gas. A number of possible designs for solar coal-gasification reactors are presented. These designs allow solar energy to be chemically stored while at the same time coal is converted to a clean-burning medium-Btu gas.

  2. Microwave-assisted catalytic fast pyrolysis of biomass for bio-oil production using chemical vapor deposition modified HZSM-5 catalyst.

    PubMed

    Zhang, Bo; Zhong, Zhaoping; Chen, Paul; Ruan, Roger

    2015-12-01

    Chemical vapor deposition with tetra-ethyl-orthosilicate as the modifier was applied to deposit the external acid sites of HZSM-5, and the modified HZSM-5 samples were used for the microwave-assisted catalytic fast pyrolysis (MACFP) of biomass for bio-oil production. The experimental results showed that the external acid sites of HZSM-5 decreased significantly when SiO2 deposited amount increased from 0% to 5.9%. For product distribution, the coke yield decreased, the oil fraction yield decreased at first and then increased, and the yields of water and gas first increased and then decreased over the range of SiO2 deposited amount studied. For chemical compositions in oil fraction, the relative contents of aliphatic hydrocarbons, aromatic hydrocarbons and oxygen-containing aromatic compounds first increased to maximum values and then decreased, while the relative content of oxygen-containing aliphatic compounds first decreased and then increased with increasing SiO2 deposited amount. PMID:26318925

  3. Assessment of advanced coal-gasification processes. [AVCO high throughput gasification in process; Bell High Mass Flux process; CS-R process; and Exxon Gasification process

    SciTech Connect

    McCarthy, J.; Ferrall, J.; Charng, T.; Houseman, J.

    1981-06-01

    This report represents a technical assessment of the following advanced coal gasification processes: AVCO High Throughput Gasification (HTG) Process, Bell Single - Stage High Mass Flux (HMF) Process, Cities Service/Rockwell (CS/R) Hydrogasification Process, and the Exxon Catalytic Coal Gasification (CCG) Process. Each process is evaluated for its potential to produce SNG from a bituminous coal. In addition to identifying the new technology these processes represent, key similarities/differences, strengths/weaknesses, and potential improvements to each process are identified. The AVCO HTG and the Bell HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging and syngas as the initial raw product gas. The CS/R Hydrogasifier is also SRT but is non-slagging and produces a raw gas high in methane content. The Exxon CCG gasifier is a long residence time, catalytic fluidbed reactor producing all of the raw product methane in the gasifier.

  4. Biomass-Derived Hydrogen from a Thermally Ballasted Gasifier

    SciTech Connect

    Brown, Robert C

    2007-04-06

    The goal of this project is to develop an indirectly heated gasification system that converts switchgrass into hydrogen-rich gas suitable for powering fuel cells. The project includes investigations of the indirectly-heated gasifier, development of particulate removal equipment, evaluation of catalytic methods for upgrading producer gas, development of contaminant measurement and control techniques, modeling of the thermal performance of the ballasted gasifier, and estimation of the cost of hydrogen from the proposed gasification system. Specific technologies investigated include a thermally ballasted gasifier, a moving bed granular filter, and catalytic reactors for steam reforming and water-gas shift reaction. The approach to this project was to employ a pilot-scale (5 ton per day) gasifier to evaluate the thermally ballasted gasifier as a means for producing hydrogen from switchgrass. A slipstream from the gasifier was used to evaluate gas cleaning and upgrading options. Other tests were conducted with laboratory-scale equipment using simulated producer gas. The ballasted gasifier operated in conjunction with a steam reformer and two-stage water-gas shift reactor produced gas streams containing 54.5 vol-% H2. If purge gas to the feeder system could be substantially eliminated, hydrogen concentration would reach 61 vol-%, which closely approaches the theoretical maximum of 66 vol-%. Tests with a combined catalyst/sorbent system demonstrated that steam reforming and water-gas shift reaction could be substantially performed in a single reactor and achieve hydrogen concentrations exceeding 90 vol-%. Cold flow trials with a laboratory-scale moving bed granular filter achieved particle removal efficiencies exceeding 99%. Two metal-based sorbents were tested for their ability to remove H2S from biomass-derived producer gas. The ZnO sorbent, tested at 450° C, was effective in reducing H2S from 200 ppm to less than 2 ppm (>99% reduction) while tests with the MnO sorbent

  5. Fundamental studies of the mechanism of catalytic reactions with catalysts effective in the gasification of carbon solids and the oxidative coupling of methane. Quarterly report, July 1, 1994--September 30, 1994

    SciTech Connect

    Iglesia, E.; Perry, D.L.; Heinemann, H.

    1994-09-01

    Research continued on the study of catalysts and membrane materials involved in the oxidative coupling of methane and coal gasification processes. Membranes studied and fabricated included Sr-Zr-Y-O, Sr-Zr-Y, and Sr-Ce-Y-O systems.

  6. Fundamental studies of the mechanism of catalytic reactions with catalysts effective in the gasification of carbon solids and the oxidative coupling of methane. Quarterly report, July 1, 1993--September 30, 1993

    SciTech Connect

    Heinemann, H.; Somorjai, G.A.; Perry, D.L.

    1993-11-01

    During the fourth quarter of FY93, additional studies were undertaken to quantify the effect of adding alkali to coal during charring. Figure 1 shows that the rate of gasification of Ill{number_sign}6 char prepared by charring the coal in the presence of different amounts of NAOH increases with the amount of NAOH used between 0 and 2 wt %. However, most of the improvement occurs with the addition of small amounts of alkali, while doubling the proportion of alkali from 0.9 to 1.7% gives a small additional improvement. In fact it appears that 0.8 to 1% alkali during charring is optimal. This is demonstrated in Figure 2. The chars prepared in the presence of NAOH were water washed and extracted at room temperature until the water was alkali free, dried and then gasified. Figure 2 presents the same data as Figure 1 but additionally shows the gasification rate at 640{degree}C for the water washed chars. The water washed char originally prepared with .85% NAOH had the same gasification rate as before water washing, while the gasification rate of the char originally prepared with 1.7% NAOH dropped to the level of the .85% NAOH containing char after water washing. This may be interpreted as an indication of about 1% alkali being incorporated into the char in a water insoluble form.

  7. Evaluation of wood chip gasification to produce reburn fuel for coal-fired boilers

    EPA Science Inventory

    Gasification/reburn testing with biomass and other wastes is of interest to both the U.S. Environmental Protection Agency (EPA) and the Italian Ministry of the Environment & Territory (IMET). Gasification systems that use wastes as feedstock should provide a clean, efficient sour...

  8. Evaluation of wood chip gasification to produce reburrn fuel for coal-fired boilers: AWMA

    EPA Science Inventory

    Gasification or reburn testing with biomass and other wastes is of interest to both the U.S. Environmental Protection Agency (EPA) and the Italian Ministry of the Environment & Territory (IMET). Gasification systems that use wastes as feedstock should provide a clean, efficient s...

  9. Gasification: A Cornerstone Technology

    ScienceCinema

    Gary Stiegel

    2010-01-08

    NETL is a leader in the science and technology of gasification - a process for the conversion of carbon-based materials such as coal into synthesis gas (syngas) that can be used to produce clean electrical energy, transportation fuels, and chemicals efficiently and cost-effectively using domestic fuel resources. Gasification is a cornerstone technology of 21st century zero emissions powerplants

  10. Gasification: A Cornerstone Technology

    SciTech Connect

    Gary Stiegel

    2008-03-26

    NETL is a leader in the science and technology of gasification - a process for the conversion of carbon-based materials such as coal into synthesis gas (syngas) that can be used to produce clean electrical energy, transportation fuels, and chemicals efficiently and cost-effectively using domestic fuel resources. Gasification is a cornerstone technology of 21st century zero emissions powerplants

  11. 2006 gasification technologies conference papers

    SciTech Connect

    2006-07-01

    Sessions covered: business overview, industry trends and new developments; gasification projects progress reports; industrial applications and opportunities; Canadian oil sands; China/Asia gasification markets - status and projects; carbon management with gasification technologies; gasification economics and performance issues addressed; and research and development, and new technologies initiatives.

  12. Updraft gasification of salmon processing waste.

    PubMed

    Rowland, Sarah; Bower, Cynthia K; Patil, Krushna N; DeWitt, Christina A Mireles

    2009-10-01

    The purpose of this study was to judge the feasibility of gasification for the disposal of waste streams generated through salmon harvesting. Gasification is the process of converting carbonaceous materials into combustible "syngas" in a high temperature (above 700 degrees C), oxygen deficient environment. Syngas can be combusted to generate power, which recycles energy from waste products. At 66% to 79% moisture, raw salmon waste streams are too wet to undergo pyrolysis and combustion. Ground raw or de-oiled salmon whole fish, heads, viscera, or frames were therefore "dried" by mixing with wood pellets to a final moisture content of 20%. Ground whole salmon with moisture reduced to 12% moisture was gasified without a drying agent. Gasification tests were performed in a small-scale, fixed-bed, updraft gasifer. After an initial start-up period, the gasifier was loaded with 1.5 kg of biomass. Temperature was recorded at 6 points in the gasifier. Syngas was collected during the short steady-state period during each gasifier run and analyzed. Percentages of each type of gas in the syngas were used to calculate syngas heating value. High heating value (HHV) ranged from 1.45 to 1.98 MJ/kg. Bomb calorimetry determined maximum heating value for the salmon by-products. Comparing heating values shows the efficiency of gasification. Cold gas efficiencies of 13.6% to 26% were obtained from the various samples gasified. Though research of gasification as a means of salmon waste disposal and energy production is ongoing, it can be concluded that pre-dried salmon or relatively low moisture content mixtures of waste with wood are gasifiable. PMID:19799663

  13. Techno-Economic Analysis of Biofuels Production Based on Gasification

    SciTech Connect

    Swanson, R. M.; Platon, A.; Satrio, J. A.; Brown, R. C.; Hsu, D. D.

    2010-11-01

    This study compares capital and production costs of two biomass-to-liquid production plants based on gasification. The first biorefinery scenario is an oxygen-fed, low-temperature (870?C), non-slagging, fluidized bed gasifier. The second scenario is an oxygen-fed, high-temperature (1,300?C), slagging, entrained flow gasifier. Both are followed by catalytic Fischer-Tropsch synthesis and hydroprocessing to naphtha-range (gasoline blend stock) and distillate-range (diesel blend stock) liquid fractions. Process modeling software (Aspen Plus) is utilized to organize the mass and energy streams and cost estimation software is used to generate equipment costs. Economic analysis is performed to estimate the capital investment and operating costs. Results show that the total capital investment required for nth plant scenarios is $610 million and $500 million for high-temperature and low-temperature scenarios, respectively. Product value (PV) for the high-temperature and low-temperature scenarios is estimated to be $4.30 and $4.80 per gallon of gasoline equivalent (GGE), respectively, based on a feedstock cost of $75 per dry short ton. Sensitivity analysis is also performed on process and economic parameters. This analysis shows that total capital investment and feedstock cost are among the most influential parameters affecting the PV.

  14. Assessment of Advanced Coal Gasification Processes

    NASA Technical Reports Server (NTRS)

    McCarthy, John; Ferrall, Joseph; Charng, Thomas; Houseman, John

    1981-01-01

    This report represents a technical assessment of the following advanced coal gasification processes: AVCO High Throughput Gasification (HTG) Process; Bell Single-Stage High Mass Flux (HMF) Process; Cities Service/Rockwell (CS/R) Hydrogasification Process; Exxon Catalytic Coal Gasification (CCG) Process. Each process is evaluated for its potential to produce SNG from a bituminous coal. In addition to identifying the new technology these processes represent, key similarities/differences, strengths/weaknesses, and potential improvements to each process are identified. The AVCO HTG and the Bell HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging and syngas as the initial raw product gas. The CS/R Hydrogasifier is also SRT but is non-slagging and produces a raw gas high in methane content. The Exxon CCG gasifier is a long residence time, catalytic, fluidbed reactor producing all of the raw product methane in the gasifier. The report makes the following assessments: 1) while each process has significant potential as coal gasifiers, the CS/R and Exxon processes are better suited for SNG production; 2) the Exxon process is the closest to a commercial level for near-term SNG production; and 3) the SRT processes require significant development including scale-up and turndown demonstration, char processing and/or utilization demonstration, and reactor control and safety features development.

  15. Bench-scale gasification of cedar wood--part II: effect of operational conditions on contaminant release.

    PubMed

    Aljbour, Salah H; Kawamoto, Katsuya

    2013-01-01

    Here, we present the evolution profile of tar in the product gas during cedar biomass gasification. We also discuss the evolution of other contaminants (H(2)S, COS, NH(3), HCN, and HCl). The cedar wood was gasified under various operating conditions in a bench-scale externally heated updraft gasifier; this was followed by thermal reforming. Tar levels in the product gas were significantly affected by the operating conditions used. At a gasification temperature of 923 K, there was no clear relation between the evolution of phenolic tar in the product gas as a function of residence time. The evolution of PAH tar at a low gasification temperature was lower than the evolution of phenolic tar. With increasing temperature, the proportion of PAH tar content became significant. At a gasification temperature of 1223 K, increasing the residence time reduced the content of PAH tar owing to a catalytic effect associated with ash generation at high temperatures. Increasing the steam-to-carbon (S/C) ratio under thermal conditions had a slight effect on PAH conversion. However, increasing the equivalence ratio (ER) effectively reduced the tar levels. The conversion of fuel-sulfur and fuel-nitrogen to volatile-sulfur and volatile-nitrogen, respectively, increased with increasing S/C ratio and ER. The evolutions of COS and HCN gases were much smaller than the evolution of H(2)S and NH(3). The evolution of HCl in the product gas decreased slightly with increasing ER. Increasing the S/C ratio decreased the HCl levels in the product gas. The effect of temperature on contaminant levels could not be fully understood due to limited availability of experimental data at various temperatures. We also compare our findings with data in the literature. PMID:22980959

  16. Gasification Technologie: Opportunities & Challenges

    SciTech Connect

    Breault, R.

    2012-01-01

    This course has been put together to provide a single source document that not only reviews the historical development of gasification but also compares the process to combustion. It also provides a short discussion on integrated gasification and combined cycle processes. The major focus of the course is to describe the twelve major gasifiers being developed today. The hydrodynamics and kinetics of each are reviewed along with the most likely gas composition from each of the technologies when using a variety of fuels under different conditions from air blown to oxygen blown and atmospheric pressure to several atmospheres. If time permits, a more detailed discussion of low temperature gasification will be included.

  17. Method for pretreating lignocellulosic biomass

    SciTech Connect

    Kuzhiyil, Najeeb M.; Brown, Robert C.; Dalluge, Dustin Lee

    2015-08-18

    The present invention relates to a method for pretreating lignocellulosic biomass containing alkali and/or alkaline earth metal (AAEM). The method comprises providing a lignocellulosic biomass containing AAEM; determining the amount of the AAEM present in the lignocellulosic biomass; identifying, based on said determining, the amount of a mineral acid sufficient to completely convert the AAEM in the lignocellulosic biomass to thermally-stable, catalytically-inert salts; and treating the lignocellulosic biomass with the identified amount of the mineral acid, wherein the treated lignocellulosic biomass contains thermally-stable, catalytically inert AAEM salts.

  18. Synthesis Gas Production by Rapid Solar Thermal Gasification of Corn Stover

    SciTech Connect

    Perkins, C. M.; Woodruff, B.; Andrews, L.; Lichty, P.; Lancaster, B.; Weimer, A. W.; Bingham, C.

    2008-03-01

    Biomass resources hold great promise as renewable fuel sources for the future, and there exists great interest in thermochemical methods of converting these resources into useful fuels. The novel approach taken by the authors uses concentrated solar energy to efficiently achieve temperatures where conversion and selectivity of gasification are high. Use of solar energy removes the need for a combustion fuel and upgrades the heating value of the biomass products. The syngas product of the gasification can be transformed into a variety of fuels useable with today?s infrastructure. Gasification in an aerosol reactor allows for rapid kinetics, allowing efficient utilization of the incident solar radiation and high solar efficiency.

  19. Biomass conversion processes for energy and fuels

    NASA Astrophysics Data System (ADS)

    Sofer, S. S.; Zaborsky, O. R.

    The book treats biomass sources, promising processes for the conversion of biomass into energy and fuels, and the technical and economic considerations in biomass conversion. Sources of biomass examined include crop residues and municipal, animal and industrial wastes, agricultural and forestry residues, aquatic biomass, marine biomass and silvicultural energy farms. Processes for biomass energy and fuel conversion by direct combustion (the Andco-Torrax system), thermochemical conversion (flash pyrolysis, carboxylolysis, pyrolysis, Purox process, gasification and syngas recycling) and biochemical conversion (anaerobic digestion, methanogenesis and ethanol fermentation) are discussed, and mass and energy balances are presented for each system.

  20. CALLA ENERGY BIOMASS COFIRING PROJECT

    SciTech Connect

    Unknown

    2003-07-01

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. GTI received supplemental authorization A002 from DOE for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI assembles an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1 During this Performance Period work efforts focused on conducting tests of biomass feedstock samples on the 2 inch mini-bench gasifier. The gasification tests were completed. The GTI U-GAS model was used to check some of the early test results against the model predictions. Additional modeling will be completed to further verify the model predictions and actual results.

  1. Catalyst and feedstock effects in the thermochemical conversion of biomass to liquid transportation fuels

    SciTech Connect

    Rejai, B.; Agblevor, F.A.; Evans, R.J.; Wang, D.

    1992-05-01

    The thermochemical conversion of biomass feedstocks to liquid transportation fuels can be accomplished by three processes, namely gasification, high-pressure liquefaction, and pyrolysis. In this study, the pyrolysis option is selected which is followed by the catalytic upgrading of pyrolysis vapors to aromatic and olefinic hydrocarbons (PYROCAT process). The aromatics constitute a high-octane gasoline blend, while the olefins can be utilized as feedstocks for various chemicals. The PYROCAT process has been studied in a laboratory-scale fixed-bed catalytic reactor. Consecutive biomass samples were pyrolyzed rapidly in steam at 550{degree}C and atmospheric pressure, and then the pyrolysis vapors were passed over a zeolite catalyst. The catalytic upgrading products were monitored in real-time using molecular-beam mass-spectrometry (MBMS). The yields of major products were estimated from mass-spectral data. Several zeolite catalysts were screened in the upgrading process and promising catalysts with high yields were identified. Feedstocks studied included: the woody biomass species aspen (Populus tremuloides), basswood (Tilia americana), and willow (Salix alba); the three isolated components of wood lignin, xylan and cellulose; and the herbaceous species bagasse (Saccharum spp. hybrid), wheat straw (Triticum aestivum), and Sericea lespedeza (Lespedeza cuneata). 17 refs.

  2. Coal gasification: Direct applications and syntheses of chemicals and fuels: A research needs assessment

    SciTech Connect

    Penner, S.S.; Alpert, S.B.; Beer, J.M.; Denn, M.; Haag, W.; Magee, R.; Reichl, E.; Rubin, E.S.; Solomon, P.R.; Wender, I.

    1987-06-01

    The DOE Working Group for an Assessment of Coal-Gasification Research Needs (COGARN - coal gasification advanced research needs) has reviewed and evaluated US programs dealing with coal gasification for a variety of applications. Cost evaluations and environmental-impact assessments formed important components of the deliberations. We have examined in some depth each of the following technologies: coal gasification for electricity generation in combined-cycle systems, coal gasification for the production of synthetic natural gas, coal gasifiers for direct electricity generation in fuel cells, and coal gasification for the production of synthesis gas as a first step in the manufacture of a wide variety of chemicals and fuels. Both catalytic and non-catalytic conversion processes were considered. In addition, we have constructed an orderly, long-range research agenda on coal science, pyrolysis, and partial combustion in order to support applied research and development relating to coal gasification over the long term. The COGARN studies were performed in order to provide an independent assessment of research needs in fuel utilization that involves coal gasification as the dominant or an important component. The findings and research recommendations of COGARN are summarized in this publication.

  3. Gasification of cyanobacterial in supercritical water.

    PubMed

    Zhang, Huiwen; Zhu, Wei; Xu, Zhirong; Gong, Miao

    2014-01-01

    Cyanobacterial collected from eutrophic freshwater lakes constituted intractable waste with a rich algae biomass content. Supercritical water gasification (SCWG) was proposed to treat the cyanobacterial and to produce hydrogen for energy. The H 2 yield reached 2.92 mol/kg at reaction conditions of 500 °C, 30 min and 22 MPa; this yield accounted for 26% of the total gaseous products. Abundant ammonia and dissolved reactive phosphorous were concentrated in the liquid product, which could be recovered and used as a liquid fertilizer. Solid residue, which accounted only for about 1% of the wet weight, was mainly composed of coke and ash. The efficiency of H 2 production was better than that from other biomass, because of the abundant organic matter in cyanobacterial. Thus, cyanobacterial are an ideal biomass feedstock for H 2 production from SCWG. PMID:25176482

  4. Low-temperature conversion of high-moisture biomass: Continuous reactor system results

    NASA Astrophysics Data System (ADS)

    Elliott, D. C.; Sealock, L. J., Jr.; Butner, R. S.; Baker, E. G.; Neuenschwander, G. G.

    1989-10-01

    Pacific Northwest Laboratory (PNL) is developing a low temperature, catalytic process for converting high moisture biomass feedstocks and other wet organic substances to useful gaseous fuels. This system, in which thermocatalytic conversion takes place in an aqueous environment, was designed to overcome the problems usually encountered with high water content feedstocks. The process uses a reduced nickel catalyst at temperatures as low as 350 C and pressures ranging from 2000 to 4000 psig; conditions favoring the formation of gas consisting mostly of methane. The results of numerous batch tests showed that the system could convert feedstocks not readily converted by conventional methods. Fifteen tests were conducted in a continuous reactor system to further evaluate the effectiveness of the process for high moisture biomass gasification and to obtain conversion rate data needed for process scaleup. During the tests, the complex gasification reactions were evaluated by several analytical methods. The results of these tests show that the heating value of the gas ranged from 400 to 500 Btu/scf, and if the carbon dioxide is removed, the product gas is pipeline quality. Conversion of the feedstocks was high. Engineering analysis indicates that, based on these results, a tubular reactor can be designed that should convert greater than 99 percent of the carbon fed as high moisture biomass to a gaseous product in a reaction time of less than 11 min.

  5. Low-temperature conversion of high-moisture biomass: Continuous reactor system results

    SciTech Connect

    Elliott, D.C.; Sealock, L.J. Jr.; Butner, R.S.; Baker, E.G.; Neuenschwander, G.G.

    1989-10-01

    Pacific Northwest Laboratory (PNL) is developing a low-temperature, catalytic process for converting high-moisture biomass feedstocks and other wet organic substances to useful gaseous fuels. This system, in which thermocatalytic conversion takes place in an aqueous environment, was designed to overcome the problems usually encountered with high-water-content feedstocks. The process uses a reduced nickel catalyst at temperatures as low as 350{degree}C and pressures ranging from 2000 to 4000 psig -- conditions favoring the formation of gas consisting mostly of methane. The results of numerous batch tests showed that the system could convert feedstocks not readily converted by conventional methods. Fifteen tests were conducted in a continuous reactor system to further evaluate the effectiveness of the process for high-moisture biomass gasification and to obtain conversion rate data needed for process scaleup. During the tests, the complex gasification reactions were evaluated by several analytical methods. The results of these tests show that the heating value of the gas ranged from 400 to 500 Btu/scf, and if the carbon dioxide is removed, the product gas is pipeline quality. Conversion of the feedstocks was high. Engineering analysis indicates that, based on these results, a tubular reactor can be designed that should convert greater than 99% of the carbon fed as high-moisture biomass to a gaseous product in a reaction time of less than 11 min.

  6. Current Research on Thermochemical Conversion of Biomass at the National Renewable Energy Laboratory

    SciTech Connect

    Baldwin, R. M.; Magrini-Bair, K. A.; Nimlos, M. R.; Pepiot, P.; Donohoe, B. S.; Hensley, J. E.; Phillips, S. D.

    2012-04-05

    The thermochemical research platform at the National Bioenergy Center, National Renewable Energy Laboratory (NREL) is primarily focused on conversion of biomass to transportation fuels using non-biological techniques. Research is conducted in three general areas relating to fuels synthesis via thermochemical conversion by gasification: (1) Biomass gasification fundamentals, chemistry and mechanisms of tar formation; (2) Catalytic tar reforming and syngas cleaning; and (3) Syngas conversion to mixed alcohols. In addition, the platform supports activities in both technoeconomic analysis (TEA) and life cycle assessment (LCA) of thermochemical conversion processes. Results from the TEA and LCA are used to inform and guide laboratory research for alternative biomass-to-fuels strategies. Detailed process models are developed using the best available material and energy balance information and unit operations models created at NREL and elsewhere. These models are used to identify cost drivers which then form the basis for research programs aimed at reducing costs and improving process efficiency while maintaining sustainability and an overall net reduction in greenhouse gases.

  7. Vaporization and gasification of hydrocarbon feedstocks

    SciTech Connect

    Davies, H.S.; Garstang, J.H.; Timmins, C.

    1983-08-23

    Heavy hydrocarbon feedstocks, e.g. gas oils, are vaporized and subsequently gasified at high temperatures without pyrolytic degradation by first admixing the hydrocarbon with a hot gaseous reactant, e.g. product gas or steam, to bring the temperature of the mixture above that of the dew point of the hydrocarbon and thereafter raising the temperature of the mixture to above that at which pyrolysis of the hydrocarbon begins to be significant by admixture with further quantities of the reactant which are superheated thereby to bring the temperature of the resultant mixture to that required for effecting a catalytic gasification reaction.

  8. Conversion of biomass to selected chemical products.

    PubMed

    Gallezot, Pierre

    2012-02-21

    This critical review provides a survey illustrated by recent references of different strategies to achieve a sustainable conversion of biomass to bioproducts. Because of the huge number of chemical products that can be potentially manufactured, a selection of starting materials and targeted chemicals has been done. Also, thermochemical conversion processes such as biomass pyrolysis or gasification as well as the synthesis of biofuels were not considered. The synthesis of chemicals by conversion of platform molecules obtained by depolymerisation and fermentation of biopolymers is presently the most widely envisioned approach. Successful catalytic conversion of these building blocks into intermediates, specialties and fine chemicals will be examined. However, the platform molecule value chain is in competition with well-optimised, cost-effective synthesis routes from fossil resources to produce chemicals that have already a market. The literature covering alternative value chains whereby biopolymers are converted in one or few steps to functional materials will be analysed. This approach which does not require the use of isolated, pure chemicals is well adapted to produce high tonnage products, such as paper additives, paints, resins, foams, surfactants, lubricants, and plasticisers. Another objective of the review was to examine critically the green character of conversion processes because using renewables as raw materials does not exempt from abiding by green chemistry principles (368 references). PMID:21909591

  9. Solar coal gasification reactor with pyrolysis gas recycle

    DOEpatents

    Aiman, William R.; Gregg, David W.

    1983-01-01

    Coal (or other carbonaceous matter, such as biomass) is converted into a duct gas that is substantially free from hydrocarbons. The coal is fed into a solar reactor (10), and solar energy (20) is directed into the reactor onto coal char, creating a gasification front (16) and a pyrolysis front (12). A gasification zone (32) is produced well above the coal level within the reactor. A pyrolysis zone (34) is produced immediately above the coal level. Steam (18), injected into the reactor adjacent to the gasification zone (32), reacts with char to generate product gases. Solar energy supplies the energy for the endothermic steam-char reaction. The hot product gases (38) flow from the gasification zone (32) to the pyrolysis zone (34) to generate hot char. Gases (38) are withdrawn from the pyrolysis zone (34) and reinjected into the region of the reactor adjacent the gasification zone (32). This eliminates hydrocarbons in the gas by steam reformation on the hot char. The product gas (14) is withdrawn from a region of the reactor between the gasification zone (32) and the pyrolysis zone (34). The product gas will be free of tar and other hydrocarbons, and thus be suitable for use in many processes.

  10. Biomass thermal conversion research at SERI

    SciTech Connect

    Milne, T. A.; Desrosiers, R. E.; Reed, T. B.

    1980-09-01

    SERI's involvement in the thermochemical conversion of biomass to fuels and chemicals is reviewed. The scope and activities of the Biomass Thermal Conversion and Exploratory Branch are reviewed. The current status and future plans for three tasks are presented: (1) Pyrolysis Mechanisms; (2) High Pressure O/sub 2/ Gasifier; and (3) Gasification Test Facility.

  11. Studies of biomass fuelled MCFC systems

    NASA Astrophysics Data System (ADS)

    Kivisaari, Timo; Björnbom, Pehr; Sylwan, Christopher

    In the present work, the methods, techniques and results obtained during the studies of biomass fuelled molten carbonate fuel cell (MCFC) systems within the Swedish national fuel cell program are presented. The power plants are 60 MW class, utilising biomass (i.e. wood chips) as the primary fuel. The biomass is converted via pressurised gasification into a gaseous form that, after subsequent cleaning, can be used in the fuel cells. An investigation of the effects of gasification pressure, temperature and the influence of internal reforming on the overall system performance is presented. All studies were carried out using the Aspen Plus™ with Model Manager™ simulation package.

  12. Effect of Microwave Pre-Processing of Pelletized Biomass on its Gasification and Combustion / Mikroviļnu Priekšapstrādes Ietekme Uz Granulētas Biomasas Gazifikācijas Un Degšanas Procesiem

    NASA Astrophysics Data System (ADS)

    Barmina, I.; Līckrastiņa, A.; Valdmanis, J.; Valdmanis, R.; Zaķe, M.; Arshanitsa, A.; Telysheva, G.; Solodovnik, V.

    2013-08-01

    To effectively produce clean heat energy from biomass, microwave (mw) pre-processing of its different types - pelletized wood (spruce), herbaceous biomass (reed canary grass) and their mixture (50:50) - was carried out at the 2.45 GHz frequency with different durations of biomass exposure to high-frequency oscillations. To estimate the mw pre-processing effect on the structure, composition and fuel characteristics of biomass, its thermogravimetric (TG), infrared spectroscopy (FTIR) measurements and elemental analysis were made. The pre-processing is shown to enhance the release of moisture and low-calorific volatiles and the partial destruction of biomass constituents (hemicelluloses, cellulose), promoting variations in the elemental composition and heating values of biomass. The field-enhanced variations of biomass characteristics and their influence on its gasification and combustion were studied using an integrated system of a biomass gasifier and a combustor with swirl-enhanced stabilization of the flame reaction zone. The results show that the mw pre-processing of biomass pellets provides a faster weight loss at the gasification, and, therefore, faster ignition and combustion of the activated pellets along with increased output of heat energy at their burnout Veikti kompleksi eksperimentālie pētījumi par mikroviļņu (2,45 GHz) priekšapstrādes ietekmi uz dažādas izcelsmes biomasas granulu (egles, miežabrāļa un to maisījumu 50:50) gazifikācijas un degšanas procesiem. Pētījumi apvieno granulētās biomasas elementārā sastāva un termogravimetriskos mērījumus, kā arī granulētās biomasas gazifikācijas un degšanas procesu kompleksu izpēti, apvienojot biomasas svara izmaiņu kinētiskos mērījumus ar degšanas zonas temperatūras, iekārtas jaudas un degšanas produktu sastāva kinētiskiem mērījumiem. Pētījumiem izmantota mazas jaudas eksperimentālā iekārta (līdz 2,5 kW), kuru veido integrēts gazifikātors un degšanas kamera. P

  13. Biomass-Derived Hydrogen from a Thermally Ballasted Gasifier

    SciTech Connect

    2006-09-01

    Gasification offers an efficient approach for producing fuels and products from a wide variety of biomass. The object of this Congressionally-mandated project is to develop an indirectly-heated gasification system (ballasted gasifier) for converting switch grass into a hydrogen-rich gas suitable for powering fuel cells.

  14. Valorization of humin-based byproducts from biomass processing-a route to sustainable hydrogen.

    PubMed

    Hoang, Thi Minh Chau; Lefferts, Leon; Seshan, K

    2013-09-01

    The synthesis of biomass-based top value-added chemical platforms, for example, 5-hydroxymethyl furfural, furfural, or levulinic acid from the acid-catalyzed dehydration of sugars results in high yields of insoluble by-products, referred to as humin. Valorization of humin by steam reforming for H2 is discussed. Both thermal and catalytic steam gasification were investigated systematically. Humin undergoes drastic changes under thermal pre-treatment to the gasification temperature. Alkali-metal-based catalysts were screened for the reactions. Na2 CO3 showed the highest activity and was selected for further study. The presence of Na2 CO3 enhances the gasification rate drastically, and gas-product analysis shows that the selectivity to CO and CO2 is 75% and 25%, respectively, which is a H2 /CO ratio of 2 (corresponding to 81.3% H2 as compared to the thermodynamic equilibrium). A possible process for the complete, efficient conversion of humin is outlined. PMID:23939662

  15. Biomass -- A new assessment

    SciTech Connect

    Hartung, H.A.

    1999-07-01

    Photo-conversion of atmospheric CO{sub 2} to biomass by plants is the world's basic source of food, fiber, oxygen and fossil fuel; for many people and some industries, biomass combustion supplies a significant amount of the energy they need. Much ingenuity has been applied to developing strategies for recovering energy directly from biomass by cleaning burning, gasification and liquid fuel production; these processes generally have economic or ecological features that keep them out of the main stream of technological development. By contrast, fresh biomass can be digested anaerobically at high conversion, with stimulation, to methane-rich gas and a stabilized organic residue, using technology already at hand. As an example, methane can be produced from sugarcane at a total cost of about $.50/mcf. This process, originally devised to control the level of CO{sub 2} in the atmosphere, provides opportunities to contribute to that goal while supplying clean pipeline gas, electricity or petrochemicals.

  16. GASIFICATION FOR DISTRIBUTED GENERATION

    SciTech Connect

    Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

    2000-05-01

    A recent emphasis in gasification technology development has been directed toward reduced-scale gasifier systems for distributed generation at remote sites. The domestic distributed power generation market over the next decade is expected to be 5-6 gigawatts per year. The global increase is expected at 20 gigawatts over the next decade. The economics of gasification for distributed power generation are significantly improved when fuel transport is minimized. Until recently, gasification technology has been synonymous with coal conversion. Presently, however, interest centers on providing clean-burning fuel to remote sites that are not necessarily near coal supplies but have sufficient alternative carbonaceous material to feed a small gasifier. Gasifiers up to 50 MW are of current interest, with emphasis on those of 5-MW generating capacity. Internal combustion engines offer a more robust system for utilizing the fuel gas, while fuel cells and microturbines offer higher electric conversion efficiencies. The initial focus of this multiyear effort was on internal combustion engines and microturbines as more realistic near-term options for distributed generation. In this project, we studied emerging gasification technologies that can provide gas from regionally available feedstock as fuel to power generators under 30 MW in a distributed generation setting. Larger-scale gasification, primarily coal-fed, has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries. Commercial-scale gasification activities are under way at 113 sites in 22 countries in North and South America, Europe, Asia, Africa, and Australia, according to the Gasification Technologies Council. Gasification studies were carried out on alfalfa, black liquor (a high-sodium waste from the pulp industry), cow manure, and willow on the laboratory scale and on alfalfa, black liquor, and willow on the bench scale. Initial parametric tests

  17. Coal gasification developments in Europe -- A perspective

    SciTech Connect

    Burnard, G.K.; Sharman, P.W.; Alphandary, M.

    1994-12-31

    This survey paper will review the development status of coal gasification in Europe and give a broad perspective of the future uptake of the technology. Three main families of gasifier design are currently being developed or demonstrated world-wide, namely fixed bed (also known as moving bed), fluidized bed and entrained flow. Gasifiers belonging to each of these families have been or are being developed in European countries. Of the three families, entrained flow gasifiers are at the most advanced stage of development, with two demonstration projects currently underway: these projects are based on designs developed by Shell and Krupp Koppers. Fixed bed systems have been developed to operate under either slagging or non-slagging conditions, ie, the British Gas-Lurgi and Tampella U-Gas systems, respectively. Fluid bed systems of various designs have also been developed, eg, the Rheinbraun HTW, British Coal and Ahlstrom systems. Gasification cycles can be based on either total or partial gasification, and the above designs represent both these options. In addition, a wide variety of fuel sources can be used in gasifiers, including bituminous coal, lignite, biomass, petroleum coke, etc or, indeed, any combination of these. The major demonstration projects in Europe are at Buggenum in the Netherlands, where a 250 MWe entrained flow gasifier based on Shell technology first gasified coal in December 1993. A further 335 MWe entrained flow gasifier, located at Puertollano in Spain, based on Krupp Koppers Prenflo technology, is at an advanced stage of construction.

  18. CALLA ENERGY BIOMASS COFIRING PROJECT

    SciTech Connect

    Francis S. Lau

    2003-09-01

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Natural gas and waste coal fines were evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. A design was developed for a cofiring combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures in a power generation boiler, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. Following the preliminary design, GTI evaluated the gasification characteristics of selected feedstocks for the project. To conduct this work, GTI assembled an existing ''mini-bench'' unit to perform the gasification tests. The results of the test were used to confirm the process design completed in Phase Task 1. As a result of the testing and modeling effort, the selected biomass feedstocks gasified very well, with a carbon conversion of over 98% and individual gas component yields that matched the RENUGAS{reg_sign} model. As a result of this work, the facility appears very attractive from a commercial standpoint. Similar facilities can be profitable if they have access to low cost fuels and have attractive wholesale or retail electrical rates for electricity sales. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. Phase II has not been approved for construction at this time.

  19. CALLA ENERGY BIOMASS COFIRING PROJECT

    SciTech Connect

    Unknown

    2002-12-31

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. GTI received supplemental authorization A002 from DOE for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI assembles an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1. During this Performance Period work efforts focused on conducting tests of biomass feedstock samples on the 2 inch mini-bench gasifier.

  20. Economic development through biomass system integration. Volumes 2--4

    SciTech Connect

    DeLong, M.M.

    1995-10-01

    Report documents a feasibility study for an integrated biomass power system, where an energy crop (alfalfa) is the feedstock for a processing plant and a power plant (integrated gasification combined cycle) in a way that benefits the facility owners.

  1. Variable capacity gasification burner

    SciTech Connect

    Saxon, D.I.

    1985-03-05

    A variable capacity burner that may be used in gasification processes, the burner being adjustable when operating in its intended operating environment to operate at two different flow capacities, with the adjustable parts being dynamically sealed within a statically sealed structural arrangement to prevent dangerous blow-outs of the reactants to the atmosphere.

  2. Advanced hybrid gasification facility

    SciTech Connect

    Sadowski, R.S.; Skinner, W.H.; Johnson, S.A.; Dixit, V.B.

    1993-08-01

    The objective of this procurement is to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology for electric power generation applications. The proprietary CRS Sirrine Engineers, Inc. PyGas{trademark} staged gasifier has been selected as the initial gasifier to be developed under this program. The gasifier is expected to avoid agglomeration when used on caking coals. It is also being designed to crack tar vapors and ammonia, and to provide an environment in which volatilized alkali may react with aluminosilicates in the coal ash thereby minimizing their concentration in the hot raw coal gas passing through the system to the gas turbine. This paper describes a novel, staged, airblown, fixed-bed gasifier designed to solve both through the incorporation of pyrolysis (carbonization) with gasification. It employs a pyrolyzer (carbonizer) to avoid sticky coal agglomeration which occurs in a fixed-bed process when coal is gradually heated through the 400{degrees}F to 900{degrees}F range. In a pyrolyzer, the coal is rapidly heated such that coal tar is immediately vaporized. Gaseous tars are then thermally cracked prior to the completion of the gasification process. During the subsequent endothermic gasification reactions, volatilized alkali can be chemically bound to aluminosilicates in (or added to) the ash. To reduce NOx from fuel home nitrogen, moisture is minimized to control ammonia generation, and HCN in the upper gasifier region is partially oxidized to NO which reacts with NH3/HCN to form N2.

  3. Gasification of black liquor

    DOEpatents

    Kohl, Arthur L.

    1987-07-28

    A concentrated aqueous black liquor containing carbonaceous material and alkali metal sulfur compounds is treated in a gasifier vessel containing a relatively shallow molten salt pool at its bottom to form a combustible gas and a sulfide-rich melt. The gasifier vessel, which is preferably pressurized, has a black liquor drying zone at its upper part, a black liquor solids gasification zone located below the drying zone, and a molten salt sulfur reduction zone which comprises the molten salt pool. A first portion of an oxygen-containing gas is introduced into the gas space in the gasification zone immediatley above the molten salt pool. The remainder of the oxygen-containing gas is introduced into the molten salt pool in an amount sufficient to cause gasification of carbonaceous material entering the pool from the gasification zone but not sufficient to create oxidizing conditions in the pool. The total amount of the oxygen-containing gas introduced both above the pool and into the pool constitutes between 25 and 55% of the amount required for complete combustion of the black liquor feed. A combustible gas is withdrawn from an upper portion of the drying zone, and a melt in which the sulfur content is predominantly in the form of alkali metal sulfide is withdrawn from the molten salt sulfur reduction zone.

  4. Gasification of black liquor

    DOEpatents

    Kohl, A.L.

    1987-07-28

    A concentrated aqueous black liquor containing carbonaceous material and alkali metal sulfur compounds is treated in a gasifier vessel containing a relatively shallow molten salt pool at its bottom to form a combustible gas and a sulfide-rich melt. The gasifier vessel, which is preferably pressurized, has a black liquor drying zone at its upper part, a black liquor solids gasification zone located below the drying zone, and a molten salt sulfur reduction zone which comprises the molten salt pool. A first portion of an oxygen-containing gas is introduced into the gas space in the gasification zone immediately above the molten salt pool. The remainder of the oxygen-containing gas is introduced into the molten salt pool in an amount sufficient to cause gasification of carbonaceous material entering the pool from the gasification zone but not sufficient to create oxidizing conditions in the pool. The total amount of the oxygen-containing gas introduced both above the pool and into the pool constitutes between 25 and 55% of the amount required for complete combustion of the black liquor feed. A combustible gas is withdrawn from an upper portion of the drying zone, and a melt in which the sulfur content is predominantly in the form of alkali metal sulfide is withdrawn from the molten salt sulfur reduction zone. 2 figs.

  5. Energy production from biomass (Part 1): Overview of biomass.

    PubMed

    McKendry, Peter

    2002-05-01

    The use of renewable energy sources is becoming increasingly necessary, if we are to achieve the changes required to address the impacts of global warming. Biomass is the most common form of renewable energy, widely used in the third world but until recently, less so in the Western world. Latterly much attention has been focused on identifying suitable biomass species, which can provide high-energy outputs, to replace conventional fossil fuel energy sources. The type of biomass required is largely determined by the energy conversion process and the form in which the energy is required. In the first of three papers, the background to biomass production (in a European climate) and plant properties is examined. In the second paper, energy conversion technologies are reviewed, with emphasis on the production of a gaseous fuel to supplement the gas derived from the landfilling of organic wastes (landfill gas) and used in gas engines to generate electricity. The potential of a restored landfill site to act as a biomass source, providing fuel to supplement landfill gas-fuelled power stations, is examined, together with a comparison of the economics of power production from purpose-grown biomass versus waste-biomass. The third paper considers particular gasification technologies and their potential for biomass gasification. PMID:12058829

  6. Gasification of bio-oil: Effects of equivalence ratio and gasifying agents on product distribution and gasification efficiency.

    PubMed

    Zheng, Ji-Lu; Zhu, Ming-Qiang; Wen, Jia-Long; Sun, Run-Cang

    2016-07-01

    Bio-oil derived from fast pyrolysis of rice husk was gasified for producing gas. The effectiveness of equivalence ratio and gasifying agents on the gas composition, ratio of H2/CO, tar amount, low heating value, degree of oxidation and cold gas efficiency of the gas were comprehensively investigated. Under different equivalence ratios and gasifying agents, the gases can be used as synthesis gas for Fischer-Tropsch synthesis, fuel gas for gas turbines in a power plant and reducing gas for ore reduction, respectively. The H2 concentration, CO level and cold gas efficiency of the resulted gas derived from gasification of bio-oil were significantly higher, while tar content was remarkably lower than those derived from gasification of solid biomass using the same equivalent ratio value and gasifying agent. In short, bio-oil gasification is economically feasible for large scale production of fuels and chemicals. PMID:27017126

  7. Fuels from biomass and wastes

    NASA Astrophysics Data System (ADS)

    Klass, D. L.; Emert, G. H.

    The production, use, and effects of fuels from biomass and waste energy sources are discussed. Biomass procurement from silviculture, including hybrid poplar and sycamore farms, in addition to the growth of mass algal culture and Jerusalem artichokes for fuels are considered. The conversion of biomass and solid waste materials through biological and thermal gasification, hydrolysis and extraction, and fermentation to produce ethanol, along with natural and thermal liquefaction processes involving euphorbia lathyris and cellulosic materials are elaborated. Environmental and health aspects of biomass and waste conversion systems are outlined, noting the large land surface areas needed for significant contributions to total demands from biomass, specific instances and case studies are reviewed for biomass use in Indiana, the Dominican Republic, the southeast U.S., and in small wood stoves.

  8. Thermodynamics analysis of refinery sludge gasification in adiabatic updraft gasifier.

    PubMed

    Ahmed, Reem; Sinnathambi, Chandra M; Eldmerdash, Usama; Subbarao, Duvvuri

    2014-01-01

    Limited information is available about the thermodynamic evaluation for biomass gasification process using updraft gasifier. Therefore, to minimize errors, the gasification of dry refinery sludge (DRS) is carried out in adiabatic system at atmospheric pressure under ambient air conditions. The objectives of this paper are to investigate the physical and chemical energy and exergy of product gas at different equivalent ratios (ER). It will also be used to determine whether the cold gas, exergy, and energy efficiencies of gases may be maximized by using secondary air injected to gasification zone under various ratios (0, 0.5, 1, and 1.5) at optimum ER of 0.195. From the results obtained, it is indicated that the chemical energy and exergy of producer gas are magnified by 5 and 10 times higher than their corresponding physical values, respectively. The cold gas, energy, and exergy efficiencies of DRS gasification are in the ranges of 22.9-55.5%, 43.7-72.4%, and 42.5-50.4%, respectively. Initially, all 3 efficiencies increase until they reach a maximum at the optimum ER of 0.195; thereafter, they decline with further increase in ER values. The injection of secondary air to gasification zone is also found to increase the cold gas, energy, and exergy efficiencies. A ratio of secondary air to primary air of 0.5 is found to be the optimum ratio for all 3 efficiencies to reach the maximum values. PMID:24672368

  9. Thermodynamics Analysis of Refinery Sludge Gasification in Adiabatic Updraft Gasifier

    PubMed Central

    Ahmed, Reem; Sinnathambi, Chandra M.; Eldmerdash, Usama; Subbarao, Duvvuri

    2014-01-01

    Limited information is available about the thermodynamic evaluation for biomass gasification process using updraft gasifier. Therefore, to minimize errors, the gasification of dry refinery sludge (DRS) is carried out in adiabatic system at atmospheric pressure under ambient air conditions. The objectives of this paper are to investigate the physical and chemical energy and exergy of product gas at different equivalent ratios (ER). It will also be used to determine whether the cold gas, exergy, and energy efficiencies of gases may be maximized by using secondary air injected to gasification zone under various ratios (0, 0.5, 1, and 1.5) at optimum ER of 0.195. From the results obtained, it is indicated that the chemical energy and exergy of producer gas are magnified by 5 and 10 times higher than their corresponding physical values, respectively. The cold gas, energy, and exergy efficiencies of DRS gasification are in the ranges of 22.9–55.5%, 43.7–72.4%, and 42.5–50.4%, respectively. Initially, all 3 efficiencies increase until they reach a maximum at the optimum ER of 0.195; thereafter, they decline with further increase in ER values. The injection of secondary air to gasification zone is also found to increase the cold gas, energy, and exergy efficiencies. A ratio of secondary air to primary air of 0.5 is found to be the optimum ratio for all 3 efficiencies to reach the maximum values. PMID:24672368

  10. Wood Gasification in a Lab-Scale Bubbling Fluidized Bed: Experiment and Simulation

    NASA Astrophysics Data System (ADS)

    He, L.; Schotte, E.; Thomas, S.; Schlinkert, A.; Herrmann, A.; Mosch, V.; Rajendran, V.; Heinrich, S.

    In theory, an integrated biomass gasification and fuel cell system has a higher overall plant efficiency when compared to the efficiency of biomass gasification combined with simple combustion systems and gas engines. In order to develop a prototype of this new concept of power plant operating in the range of l50kW to 5MW, several institutes of the Max Planck Society and the Fraunhofer-Gesellschaft in Germany have been working on the ProBio project with focus on the theoretical and experimental investigation of an integrated 1-2kWe system. The paper will firstly describe the gasification unit of the system: a lab-scale atmospheric bubbling fluidized bed gasifier. Wood gasification experiments were conducted and the influence of operation parameters, i.e. gasification agents, equivalence ratio ER and steam to biomass ratio SIB on gas yield and gas composition was analyzed. In parallel with the experimental work, chemical kinetics of wood gasification was studied and simulated. Furthermore, simulation of bubbling fluidized bed hydrodynamics at high temperature, using commercial computational fluid dynamics (CFD) software FLUENT, was also conducted to better understand the phenomenon of fluidization inside the bed.

  11. Field-to-Fuel Performance Testing of Various Biomass Feedstocks: Production and Catalytic Upgrading of Bio-Oil to Refinery Blendstocks (Presentation)

    SciTech Connect

    Carpenter, D.; Westover, T.; Howe, D.; Evans, R.; French, R.; Kutnyakov, I.

    2014-09-01

    Large-scale, cost-competitive deployment of thermochemical technologies to replace petroleum oil with domestic biofuels will require inclusion of high volumes of low-cost, diverse biomass types into the supply chain. However, a comprehensive understanding of the impacts of feedstock thermo-physical and chemical variability, particularly inorganic matter (ash), on the yield and product distribution

  12. Cellulosic Biomass Sugars to Advantage Jet Fuel: Catalytic Conversion of Corn Stover to Energy Dense, Low Freeze Point Paraffins and Naphthenes: Cooperative Research and Development Final Report, CRADA Number CRD-12-462

    SciTech Connect

    Elander, Rick

    2015-08-04

    NREL will provide scientific and engineering support to Virent Energy Systems in three technical areas: Process Development/Biomass Deconstruction; Catalyst Fundamentals; and Technoeconomic Analysis. The overarching objective of this project is to develop the first fully integrated process that can convert a lignocellulosic feedstock (e.g., corn stover) efficiently and cost effectively to a mix of hydrocarbons ideally suited for blending into jet fuel. The proposed project will investigate the integration of Virent Energy System’s novel aqueous phase reforming (APR) catalytic conversion technology (BioForming®) with deconstruction technologies being investigated by NREL at the 1-500L scale. Corn stover was chosen as a representative large volume, sustainable feedstock.

  13. Suitability assessment of a continuous process combining thermo-mechano-chemical and bio-catalytic action in a single pilot-scale twin-screw extruder for six different biomass sources.

    PubMed

    Vandenbossche, Virginie; Brault, Julien; Hernandez-Melendez, Oscar; Evon, Philippe; Barzana, Eduardo; Vilarem, Gérard; Rigal, Luc

    2016-07-01

    A process has been validated for the deconstruction of lignocellulose on a pilot scale installation using six types of biomass selected for their sustainability, accessibility, worldwide availability, and differences of chemical composition and physical structure. The process combines thermo-mechano-chemical and bio-catalytic action in a single twin-screw extruder. Three treatment phases were sequentially performed: an alkaline pretreatment, a neutralization step coupled with an extraction-separation phase and a bioextrusion treatment. Alkaline pretreatment destructured the wall polymers after just a few minutes and allowed the initial extraction of 18-54% of the hemicelluloses and 9-41% of the lignin. The bioextrusion step induced the start of enzymatic hydrolysis and increased the proportion of soluble organic matter. Extension of saccharification for 24h at high consistency (20%) and without the addition of new enzyme resulted in the production of 39-84% of the potential glucose. PMID:27015021

  14. Modeling and comparative assessment of municipal solid waste gasification for energy production.

    PubMed

    Arafat, Hassan A; Jijakli, Kenan

    2013-08-01

    Gasification is the thermochemical conversion of organic feedstocks mainly into combustible syngas (CO and H(2)) along with other constituents. It has been widely used to convert coal into gaseous energy carriers but only has been recently looked at as a process for producing energy from biomass. This study explores the potential of gasification for energy production and treatment of municipal solid waste (MSW). It relies on adapting the theory governing the chemistry and kinetics of the gasification process to the use of MSW as a feedstock to the process. It also relies on an equilibrium kinetics and thermodynamics solver tool (Gasify(®)) in the process of modeling gasification of MSW. The effect of process temperature variation on gasifying MSW was explored and the results were compared to incineration as an alternative to gasification of MSW. Also, the assessment was performed comparatively for gasification of MSW in the United Arab Emirates, USA, and Thailand, presenting a spectrum of socioeconomic settings with varying MSW compositions in order to explore the effect of MSW composition variance on the products of gasification. All in all, this study provides an insight into the potential of gasification for the treatment of MSW and as a waste to energy alternative to incineration. PMID:23726119

  15. Fuel Flexibility in Gasification

    SciTech Connect

    McLendon, T. Robert; Pineault, Richard L.; Richardson, Steven W.; Rockey, John M.; Beer, Stephen K.; Lui, Alain P.; Batton, William A.

    2001-11-06

    In order to increase efficiencies of carbonizers, operation at high pressures is needed. In addition, waste biomass fuels of opportunity can be used to offset fossil fuel use. The National Energy Technology Laboratory (NETL) Fluidized Bed Gasifier/Combustor (FBG/C) was used to gasify coal and mixtures of coal and biomass (sawdust) at 425 psig. The purpose of the testing program was to generate steady state operating data for modeling efforts of carbonizers. A test program was completed with a matrix of parameters varied one at a time in order to avoid second order interactions. Variables were: coal feed rate, pressure, and varying mixtures of sawdust and coal types. Coal types were Montana Rosebud subbituminous and Pittsburgh No. 8 bituminous. The sawdust was sanding waste from a furniture manufacturer in upstate New York. Coal was sieved from -14 to +60 mesh and sawdust was sieved to -14 mesh. The FBG/C operates at a nominal 425 psig, but pressures can be lowered. For the tests reported it was operated as a jetting, fluidized bed, ash-agglomerating gasifier. Preheated air and steam are injected into the center of the bottom along with the solid feed that is conveyed with cool air. Fairly stable reactor internal flow patterns develop and temperatures stabilize (with some fluctuations) when steady state is reached. At nominal conditions the solids residence time in the reactor is on the order of 1.5 to 2 hours, so changes in feed types can require on the order of hours to equilibrate. Changes in operating conditions (e.g. feed rate) usually require much less time. The operating periods of interest for these tests were only the steady state periods, so transient conditions were not monitored as closely. The test matrix first established a base case of operations to which single parameter changes in conditions could be compared. The base case used Montana Rosebud at a coal feed rate of 70 lbm/hr at 425 psig. The coal sawdust mixtures are reported as percent by weight

  16. Catalytic fast pyrolysis of cellulose and biomass to produce levoglucosenone using magnetic SO4(2-)/TiO2-Fe3O4.

    PubMed

    Lu, Qiang; Ye, Xiao-ning; Zhang, Zhi-bo; Dong, Chang-qing; Zhang, Ying

    2014-11-01

    Magnetic superacid (SO4(2-)/TiO2-Fe3O4) was prepared for catalytic fast pyrolysis of cellulose and poplar wood to produce levoglucosenone (LGO). Its catalytic activity was evaluated via pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) experiments, and compared with the non-magnetic SO4(2-)/TiO2, phosphoric acid (H3PO4) and sulfur acid (H2SO4) catalysts. Moreover, the LGO yield was quantitatively determined. The results indicated that the magnetic SO4(2-)/TiO2-Fe3O4 was effective to selectively produce LGO from both cellulose and poplar wood. Its catalytic capability was a little better than the non-magnetic SO4(2-)/TiO2 and H3PO4, and much better than the H2SO4. The maximal LGO yields from both cellulose and poplar wood were obtained at 300 °C with the feedstock/catalyst ratio of 1/1, reaching as high as 15.43 wt% from cellulose and 7.06 wt% from poplar wood, respectively. PMID:25173471

  17. Hydropyrolysis of biomass

    SciTech Connect

    Kobayashi, Atsushi; Steinberg, M.

    1992-01-01

    The pyrolysis and hydropyrolysis of biomass was investigated. Experimental runs using the biomass (Poplar wood sawdust) were performed using a tubular reactor of dimensions 1 inch inside diameter and 8 feet long heated at a temperature of 800 C and pressures between 450 and 750 psig. At low heat-up rate the reaction precedes in two steps. First pyrolysis takes place at temperatures of 300 to 400 c and subsequent hydropyrolysis takes place at 700 C and above. This is also confirmed by pressurized thermogravimetric analysis (PTGA). Under conditions of rapid heat-up at higher temperatures and higher hydrogen pressure gasification and hydrogasification of biomass is especially effective in producing carbon monoxide and methane. An overall conversion of 88 to 90 wt % of biomass was obtained. This value is in agreement with the previous work of flash pyrolysis and hydropyrolysis of biomass for rapid heat-up and short residence time. Initial rates of biomass conversion indicate that the rate increases significantly with increase in hydrogen pressure. At 800 C and 755 psig the initial rate of biomass conversion to gases is 0.92 1/min.

  18. Lignite air-steam gasification in the fluidized bed of iron-containing slag catalysts

    SciTech Connect

    Kuznetsov, B.N.; Shchipko, M.L.; Golovin, Yu.

    1995-12-01

    The influence of fluidized bed of iron-containing slag particles on air-steam gasification of powdered Kansk-Achinsk lignite in entrained flow was studied in pilot installation with productivity about 60 kg per hour. Slag of Martin process and boiler slag were used as catalytic active materials until their complete mechanical attrition. Two following methods of catalytic gasification of lignite were compared: the partial gasification in stationary fluidized bed of slag particles with degree of fuel conversion 40-70% and complete gasification in circulating bed of slag particles. In the first case only the most reactive part of fuel is gasified with the simultaneously formation of porous carbon residue with good sorption ability. It was found the catalytic fluidized bed improves heat transfer from combustion to reduction zone of gas-generator and increases the rate of fuel conversion at the temperature range 900-1000{degrees}C. At these temperatures the degree of conversion is depended considerably on the duration time of fuel particles in the catalytic fluidized bed. The influence of catalytic fluidized bed height and velocity of reaction mixture on the temperature profiles in the gas-generator was studied. The optimal relationship was found between the fluidized bed height and velocity of flow which makes possible to produce the gas with higher calorific value at maximum degree of fuel conversion.

  19. Hydrogen production from high-moisture content biomass in supercritical water

    SciTech Connect

    Antal, M.J. Jr.; Adschiri, T.; Ekbom, T.

    1996-10-01

    Most hydrogen is produced by steam reforming methane at elevated pressures. The goal of this research is to develop commercial processes for the catalytic steam reforming of biomass and other organic wastes at high pressures. This approach avoids the high cost of gas compression and takes advantage of the unique properties of water at high pressures. Prior to this year the authors reported the ability of carbon to catalyze the decomposition of biomass and related model compounds in supercritical water. The product gas consists of hydrogen, carbon dioxide, carbon monoxide, methane, and traces of higher hydrocarbons. During the past year the authors have: (a) developed a method to extend the catalyst life, (b) begun studies of the role of the shift reaction, (c) completed studies of carbon dioxide absorption from the product effluent by high pressure water, (d) measured the rate of carbon catalyst gasification in supercritical water, (e) discovered the pumpability of oil-biomass slurries, and (f) completed the design and begun fabrication of a flow reactor that will steam reform whole biomass feedstocks (i.e. sewage sludge) and produce a hydrogen rich synthesis gas at very high pressure (>22 MPa).

  20. In situ formation of coal gasification catalysts from low cost alkali metal salts

    DOEpatents

    Wood, Bernard J.; Brittain, Robert D.; Sancier, Kenneth M.

    1985-01-01

    A carbonaceous material, such as crushed coal, is admixed or impregnated with an inexpensive alkali metal compound, such as sodium chloride, and then pretreated with a stream containing steam at a temperature of 350.degree. to 650.degree. C. to enhance the catalytic activity of the mixture in a subsequent gasification of the mixture. The treatment may result in the transformation of the alkali metal compound into another, more catalytically active, form.

  1. Underground gasification of coal

    DOEpatents

    Pasini, III, Joseph; Overbey, Jr., William K.; Komar, Charles A.

    1976-01-20

    There is disclosed a method for the gasification of coal in situ which comprises drilling at least one well or borehole from the earth's surface so that the well or borehole enters the coalbed or seam horizontally and intersects the coalbed in a direction normal to its major natural fracture system, initiating burning of the coal with the introduction of a combustion-supporting gas such as air to convert the coal in situ to a heating gas of relatively high calorific value and recovering the gas. In a further embodiment the recovered gas may be used to drive one or more generators for the production of electricity.

  2. PNNL Coal Gasification Research

    SciTech Connect

    Reid, Douglas J.; Cabe, James E.; Bearden, Mark D.

    2010-07-28

    This report explains the goals of PNNL in relation to coal gasification research. The long-term intent of this effort is to produce a syngas product for use by internal Pacific Northwest National Laboratory (PNNL) researchers in materials, catalysts, and instrumentation development. Future work on the project will focus on improving the reliability and performance of the gasifier, with a goal of continuous operation for 4 hours using coal feedstock. In addition, system modifications to increase operational flexibility and reliability or accommodate other fuel sources that can be used for syngas production could be useful.

  3. Assessment of Gasification-Based Biorefining at Kraft Pulp and Paper Mills in the United States, Part A: Background and Assumptions

    SciTech Connect

    Larson, E. D.; Consonni, S.; Katofsky, R. E.; Iisa, K.; Frederick, W. J., Jr.

    2008-11-01

    Commercialization of black liquor and biomass gasification technologies is anticipated in the 2010-2015 time frame, and synthesis gas from gasifiers can be converted into liquid fuels using catalytic synthesis technologies that are already commercially established in the gas-to-liquids or coal-to-liquids industries. This set of two papers describes key results from a major assessment of the prospective energy, environmental, and financial performance of commercial gasification-based biorefineries integrated with kraft pulp and paper mills [1]. Seven detailed biorefinery designs were developed for a reference mill in the southeastern United States, together with the associated mass/energy balances, air emissions estimates, and capital investment requirements. The biorefineries provide chemical recovery services and co-produce process steam for the mill, some electricity, and one of three liquid fuels: a Fischer-Tropsch synthetic crude oil (which could be refined to vehicle fuels at an existing petroleum refinery), dimethyl ether (a diesel engine fuel or propane substitute), or an ethanol-rich mixed-alcohol product. This paper describes the key assumptions that underlie the biorefinery designs. Part B will present analytical results.

  4. Gasification and effect of gasifying temperature on syngas quality and tar generation: A short review

    NASA Astrophysics Data System (ADS)

    Guangul, Fiseha Mekonnen; Sulaiman, Shaharin Anwar; Raghavan, Vijay R.

    2012-06-01

    Corrosion, erosion and plugging of the downstream equipments by tar and ash particle and, low energy content of syngas are the main problems of biomass gasification process. This paper attempts to review the findings of literature on the effect of temperature on syngas quality, and in alleviating the tar and ash problems in the gasification process. The review of literature indicates that as the gasification temperature increases, concentration of the resulting H2 and carbon conversion efficiency increase, the amount of tar in the syngas decreases. For the same condition, CH4 and CO concentration do not show consistent trend when the feedstock and gasification process varies. These necessitate the need for conducting an experiment for a particular gasification process and feedstock to understand fully the benefits of controlling the gasification temperature. This paper also tries to propose a method to improve the syngas quality and to reduce the tar amount by using preheated air and superheated steam as a gasifying media for oil palm fronds (OPF) gasification.

  5. Air blown gasification cycle

    SciTech Connect

    Dawes, S.G.; Mordecai, M.; Brown, D.; Burnard, G.K.

    1995-12-31

    The Air Blown Gasification Cycle (ABGC) is a hybrid partial gasification cycle based on a novel, air blown pressurized fluidized bed gasifier (PFBG) with a circulating fluidized bed combustor (CFBC) to burn the residual char from the PFBG. The ABGC has been developed primarily as a clean coal generation system and embodies a sulfur capture mechanism based on the addition of limestone, or other sorbent, to the PFBG where it is sulfided in the reducing atmosphere, followed by oxidation to a stable sulfate residue in the CFBC. In order to achieve commercialization, certain key technological issues needed to be addressed and an industry-led consortium was established to develop the components of the system through the prototype plant to commercial exploitation. The consortium, known as the Clean Coal Power Generation Group (CCPGG), is undertaking a program of activity aimed at achieving a design specification for a 75 MWe prototype integrated plant by March, 1996. Component development consists of both the establishment of new components, such as the PFBG and the hot gas clean up system, and specific development of already established components, such as the CFBC, raw gas cooler, heat recovery steam generator (HRSG) and gas turbine. This paper discusses the component development activities and indicates the expected performance and economics of both the prototype and commercial plants. In addition, the strategy for component development and achievement of the specification for a 75 MWe prototype integrated plant is described.

  6. Coal gasification cogeneration process

    SciTech Connect

    Marten, J.H.

    1990-10-16

    This patent describes a process for the coproduction of a combustible first gas stream usable as an energy source, a sulfur-dioxide-containing second gas stream usable as a source for oxidant in the gasification of coal and a sulfur-dioxide-containing third gas stream usable as a feedstock for the production of sulfuric acid. It comprises: reacting coal in a coal gasification zone in the presence of an oxidant under partial coal-gasifying conditions to produce carbonaceous char and a crude gas stream; separating sulfur-containing compounds from the crude gas stream in a sulfur recovery zone to produce a combustible first gas stream and elemental sulfur; reacting the carbonaceous char and gypsum in a reaction zone in proportions such that the non-gypsum portion of the carbonaceous char and gypsum mixture contains sufficient reducing potential to reduce sulfur in the gypsum to gaseous compounds of sulfur in a +4 or lower oxidation state under reducing conditions to produce first a sulfur-dioxide-containing second gas stream which contains weaker SO{sub 2} produced in an early stage of the reaction zone and removed from the reaction zone, and then a sulfur-dioxide-containing third gas stream which contains concentrated SO{sub 2} recovered from a later stage of the reaction zone.

  7. Scale-up research in a dual fluidized bed gasification process.

    PubMed

    Narobe, Miha; Golob, Janvit; Mele, Jernej; Sekavčnik, Mihael; Senegačnik, Andrej; Klinar, Dušan

    2015-01-01

    A successful co-gasification of plastics and biomass was achieved on the 100 kW dual fluidized bed (DFB) gasification pilot plant. The results of a pilot plant experiment were used as a sound basis for scale-up prediction to 750 kW semi-industrial DFB plant. By an eightfold increase of mass and heat flows a rather simplified co-gasification process was predicted. Namely, the losses occurring in gasification plants are expected to be relatively smaller in larger plants. The effect of decreased losses was studied with an equilibrium model. Three different situations were simulated with the following fixed values of losses: 70 kW, 115 kW and 160 kW. The model showed an increase in fuel conversion when losses were reduced. PMID:26085423

  8. Dielectric properties of biomass and biochar mixtures for bioenergy applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biomass is an abundant and renewable energy resource, which may be converted into energy-dense products through thermochemical processes such as pyrolysis and gasification. Since microwave heating depends on the dielectric properties of the biomass material, these properties were measured at freque...

  9. Pyrolysis and gasification of typical components in wastes with macro-TGA.

    PubMed

    Meng, Aihong; Chen, Shen; Long, Yanqiu; Zhou, Hui; Zhang, Yanguo; Li, Qinghai

    2015-12-01

    The pyrolysis and gasification of typical components of solid waste, cellulose, hemicellulose, lignin, pectin, starch, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC) and poly(ethylene terephthalate) (PET) were performed and compared in a macro thermogravimetric analyzer (macro-TGA). Three model biomasses, poplar stem, orange peel and Chinese cabbage, were applied to pyrolysis and gasification simulation by their components based on TG curves. Compared to those from TGA, peaks temperature of the differential thermogravimetric (DTG) curves of each samples pyrolysis on macro-TGA delayed 30-55°C due to heat transferring effect. CO2 promoted the thermal decomposition of hemicellulose, lignin, starch, pectin and model biomasses significantly by Boudouard reaction, and enhanced slightly the decomposition of PET. The activation energy (AE) of biomass components pyrolysis on macro-TGA was 167-197 kJ/mol, while that of plastic samples was 185-235 kJ/mol. The activation energy of 351-377 kJ/mol was corresponding to the Boudouard reaction in CO2 gasification. All overlap ratios in pseudo-components simulation were higher than 0.98 to indicate that pseudo-components model could be applied to both pyrolysis and CO2 gasification, and the mass fractions of components derived from pyrolysis and gasification were slightly different but not brought in obvious difference in simulating curves when they were applied across. PMID:26318422

  10. CALLA ENERGY BIOMASS COFIRING PROJECT

    SciTech Connect

    Unknown

    2003-03-31

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. GTI received supplemental authorization A002 from DOE for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI assembles an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1 During this Performance Period work efforts focused on conducting tests of biomass feedstock samples on the 2 inch mini-bench gasifier. GTI determined that the mini-bench feed system could not handle ''raw'' biomass samples. These clogged the fuel feed screw. GTI determined that palletized samples would operate well in the mini-bench unit. Two sources of this material were identified that had

  11. CALLA ENERGY BIOMASS COFIRING PROJECT

    SciTech Connect

    Unknown

    2001-01-01

    This project is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to Design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications.

  12. Biomass-derived Syngas Utilization for Fuels and Chemicals - Final Report

    SciTech Connect

    Dayton, David C

    2010-03-24

    Executive Summary The growing gap between petroleum production and demand, mounting environmental concerns, and increasing fuel prices have stimulated intense interest in research and development (R&D) of alternative fuels, both synthetic and bio-derived. Currently, the most technically defined thermochemical route for producing alternative fuels from lignocellulosic biomass involves gasification/reforming of biomass to produce syngas (carbon monoxide [CO] + hydrogen [H2]), followed by syngas cleaning, Fischer-Tropsch synthesis (FTS) or mixed alcohol synthesis, and some product upgrading via hydroprocessing or separation. A detailed techno-economic analysis of this type of process has recently been published [1] and it highlights the need for technical breakthroughs and technology demonstration for gas cleanup and fuel synthesis. The latter two technical barrier areas contribute 40% of the total thermochemical ethanol cost and 70% of the production cost, if feedstock costs are factored out. Developing and validating technologies that reduce the capital and operating costs of these unit operations will greatly reduce the risk for commercializing integrated biomass gasification/fuel synthesis processes for biofuel production. The objective of this project is to develop and demonstrate new catalysts and catalytic processes that can efficiently convert biomass-derived syngas into diesel fuel and C2-C4 alcohols. The goal is to improve the economics of the processes by improving the catalytic activity and product selectivity, which could lead to commercialization. The project was divided into 4 tasks: Task 1: Reactor Systems: Construction of three reactor systems was a project milestone. Construction of a fixed-bed microreactor (FBR), a continuous stirred tank reactor (CSTR), and a slurry bubble column reactor (SBCR) were completed to meet this milestone. Task 2: Iron Fischer-Tropsch (FT) Catalyst: An attrition resistant iron FT catalyst will be developed and tested

  13. Carbon-catalyzed gasification of organic feedstocks in supercritical water

    SciTech Connect

    Xu, X.; Matsumura, Y.; Stenberg, J.; Antal, M.J. Jr.

    1996-08-01

    Spruce wood charcoal, macadamia shell charcoal, coal activated carbon, and coconut shell activated carbon catalyze the gasification of organic compounds in supercritical water. Feedstocks studied in this paper include glycerol, glucose, cellobiose, whole biomass feedstocks (depithed bagasse liquid extract and sewage sludge), and representative Department of Defense (DoD) wastes (methanol, methyl ethyl ketone, ethylene glycol, acetic acid, and phenol). The effects of temperature, pressure, reactant concentration, weight hourly space velocity, and the type of catalyst on the gasification of glucose are reported. Complete conversion of glucose (22% by weight in water) to a hydrogen-rich synthesis gas was realized at a weight hourly space velocity (WHSV) of 22.2 h{sup {minus}1} in supercritical water at 600 C, 34.5 MPa. Complete conversions of the whole biomass feeds were also achieved at the same temperature and pressure. The destruction efficiencies for the representative DoD wastes were also high. Deactivation of the carbon catalyst was observed after 4 h of operation without swirl in the entrance region of the reactor, but the carbon gasification efficiency remained near 100% for more than 6 h when a swirl generator was employed in the entrance of the reactor.

  14. Hybrid Combustion-Gasification Chemical Looping

    SciTech Connect

    Herbert Andrus; Gregory Burns; John Chiu; Gregory Lijedahl; Peter Stromberg; Paul Thibeault

    2009-01-07

    For the past several years Alstom Power Inc. (Alstom), a leading world-wide power system manufacturer and supplier, has been in the initial stages of developing an entirely new, ultra-clean, low cost, high efficiency power plant for the global power market. This new power plant concept is based on a hybrid combustion-gasification process utilizing high temperature chemical and thermal looping technology The process consists of the oxidation, reduction, carbonation, and calcination of calcium-based compounds, which chemically react with coal, biomass, or opportunity fuels in two chemical loops and one thermal loop. The chemical and thermal looping technology can be alternatively configured as (i) a combustion-based steam power plant with CO{sub 2} capture, (ii) a hybrid combustion-gasification process producing a syngas for gas turbines or fuel cells, or (iii) an integrated hybrid combustion-gasification process producing hydrogen for gas turbines, fuel cells or other hydrogen based applications while also producing a separate stream of CO{sub 2} for use or sequestration. In its most advanced configuration, this new concept offers the promise to become the technology link from today's Rankine cycle steam power plants to tomorrow's advanced energy plants. The objective of this work is to develop and verify the high temperature chemical and thermal looping process concept at a small-scale pilot facility in order to enable AL to design, construct and demonstrate a pre-commercial, prototype version of this advanced system. In support of this objective, Alstom and DOE started a multi-year program, under this contract. Before the contract started, in a preliminary phase (Phase 0) Alstom funded and built the required small-scale pilot facility (Process Development Unit, PDU) at its Power Plant Laboratories in Windsor, Connecticut. Construction was completed in calendar year 2003. The objective for Phase I was to develop the indirect combustion loop with CO{sub 2

  15. An innovative example of herb residues recycling by gasification in a fluidized bed.

    PubMed

    Guo, Feiqiang; Dong, Yuping; Dong, Lei; Jing, Yuanzhuo

    2013-04-01

    A utilization way of herb residues is designed to convert herb residues to gas fuel in industrial-scale by a circulating fluidized bed gasifier in this paper. The product gas is used in the production of Chinese medicine, and the heat of the flue gas from the boiler can be used in herb residues drying to realize the energy recycling and no herb residues discharge. The gasification characteristics of herb residues in the circulating fluidized bed of 300 kg/h were investigated for about 200 h. The results indicated that the gas composition and tar yield were affected by biomass flow rate, equivalence ratio (ER), moisture content and char circulating. The lower heating value of product gas was 4-5 MJ/m(3) using herb residues as feedstock. When mean biomass flow rate was at 5.5 kg m(-2)s(-1) and ER at 0.35, the product gas reached a good condition with lower heating value of 4.89 MJ/m(3) and cold gas efficiency of 62.36%. When the moisture content changed from 12.5% to 18.7%, the concentrations of H2, CO and CO2 changed from 4.66% to 6.92%, 11.23% to 10.15%, and 16.55% to 17.82% respectively, and the tar content in gas decreased from 15.1g/m(3) to 14.4 g/m(3) when the moisture content increased from 12.5% to 15.4%. There are metal oxides in the ash of herb residues, especially CaO, MgO, K2O, Al2O3, and Fe2O3 which have obvious function on tar catalytic decomposition. The ash that attaches to the char particles can decrease the tar yield and improve the quality of gas after returning to the gasifier. PMID:23313058

  16. Coal gasification vessel

    DOEpatents

    Loo, Billy W.

    1982-01-01

    A vessel system (10) comprises an outer shell (14) of carbon fibers held in a binder, a coolant circulation mechanism (16) and control mechanism (42) and an inner shell (46) comprised of a refractory material and is of light weight and capable of withstanding the extreme temperature and pressure environment of, for example, a coal gasification process. The control mechanism (42) can be computer controlled and can be used to monitor and modulate the coolant which is provided through the circulation mechanism (16) for cooling and protecting the carbon fiber and outer shell (14). The control mechanism (42) is also used to locate any isolated hot spots which may occur through the local disintegration of the inner refractory shell (46).

  17. Modeling and comparative assessment of municipal solid waste gasification for energy production

    SciTech Connect

    Arafat, Hassan A. Jijakli, Kenan

    2013-08-15

    Highlights: • Study developed a methodology for the evaluation of gasification for MSW treatment. • Study was conducted comparatively for USA, UAE, and Thailand. • Study applies a thermodynamic model (Gibbs free energy minimization) using the Gasify software. • The energy efficiency of the process and the compatibility with different waste streams was studied. - Abstract: Gasification is the thermochemical conversion of organic feedstocks mainly into combustible syngas (CO and H{sub 2}) along with other constituents. It has been widely used to convert coal into gaseous energy carriers but only has been recently looked at as a process for producing energy from biomass. This study explores the potential of gasification for energy production and treatment of municipal solid waste (MSW). It relies on adapting the theory governing the chemistry and kinetics of the gasification process to the use of MSW as a feedstock to the process. It also relies on an equilibrium kinetics and thermodynamics solver tool (Gasify®) in the process of modeling gasification of MSW. The effect of process temperature variation on gasifying MSW was explored and the results were compared to incineration as an alternative to gasification of MSW. Also, the assessment was performed comparatively for gasification of MSW in the United Arab Emirates, USA, and Thailand, presenting a spectrum of socioeconomic settings with varying MSW compositions in order to explore the effect of MSW composition variance on the products of gasification. All in all, this study provides an insight into the potential of gasification for the treatment of MSW and as a waste to energy alternative to incineration.

  18. Thermo-chemical and biological conversion potential of various biomass feedstocks to ethanol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The goal of this study is to evaluate the potential and the economy of producing ethanol from gasification-fermentation of various biomass feedstocks. The biomass feedstocks include winter cover crops (wheat, rye, clover, hairy betch), summer cover crop (sunhemp), chicken litter, and woody biomass. ...

  19. Microwave-enhanced CO2 gasification of oil palm shell char.

    PubMed

    Lahijani, Pooya; Zainal, Zainal Alimuddin; Mohamed, Abdul Rahman; Mohammadi, Maedeh

    2014-04-01

    CO2 gasification of oil palm shell (OPS) char to produce CO through the Boudouard reaction (C + CO2 ↔ 2CO) was investigated under microwave irradiation. A microwave heating system was developed to carry out the CO2 gasification in a packed bed of OPS char. The influence of char particle size, temperature and gas flow rate on CO2 conversion and CO evolution was considered. It was attempted to improve the reactivity of OPS char in gasification reaction through incorporation of Fe catalyst into the char skeleton. Very promising results were achieved in our experiments, where a CO2 conversion of 99% could be maintained during 60 min microwave-induced gasification of iron-catalyzed char. When similar gasification experiments were performed in conventional electric furnace, the superior performance of microwave over thermal driven reaction was elucidated. The activation energies of 36.0, 74.2 and 247.2 kJ/mol were obtained for catalytic and non-catalytic microwave and thermal heating, respectively. PMID:24607454

  20. Gasification of torrefied Miscanthus × giganteus in an air-blown bubbling fluidized bed gasifier.

    PubMed

    Xue, G; Kwapinska, M; Horvat, A; Kwapinski, W; Rabou, L P L M; Dooley, S; Czajka, K M; Leahy, J J

    2014-05-01

    Torrefaction is suggested to be an effective method to improve the fuel properties of biomass and gasification of torrefied biomass should provide a higher quality product gas than that from unprocessed biomass. In this study, both raw and torrefied Miscanthus × giganteus (M×G) were gasified in an air-blown bubbling fluidized bed (BFB) gasifier using olivine as the bed material. The effects of equivalence ratio (ER) (0.18-0.32) and bed temperature (660-850°C) on the gasification performance were investigated. The results obtained suggest the optimum gasification conditions for the torrefied M × G are ER 0.21 and 800°C. The product gas from these process conditions had a higher heating value (HHV) of 6.70 MJ/m(3), gas yield 2m(3)/kg biomass (H2 8.6%, CO 16.4% and CH4 4.4%) and cold gas efficiency 62.7%. The comparison between raw and torrefied M × G indicates that the torrefied M × G is more suitable BFB gasification. PMID:24681300

  1. Design Case Summary. Production of Mixed Alcohols from Municipal Solid Waste via Gasification

    SciTech Connect

    Valkenburg, C.; Zhu, Y.; Walton, C. W.; Thompson, B. L.; Gerber, M. A.; Jones, S. B.; Stevens, D. J.

    2010-03-01

    The Biomass Program develops design cases to understand the current state of conversion technologies and to determine where improvements need to take place in the future. This design case establishes cost targets for converting MSW to ethanol and other mixed alcohols via gasification.

  2. Selection and performance of Materials for Biomass Gasifiers

    SciTech Connect

    Keiser, James R; Hemrick, James Gordon; Meisner, Roberta A; Blau, Peter J; Pint, Bruce A

    2010-01-01

    Production of syngas through gasification or pyrolysis offers one of the more efficient routes for utilization of biomass resources; however, the containment structures used for many of these thermochemical processes are exposed to severe environments that limit their longevity and reliability. Studies have been conducted for three of these systems, and superior alternative materials have been identified. Improved materials will be of even greater importance in proposed gasification systems, many of which will generate even more extreme operating conditions.

  3. Thermogravimetric characterization and gasification of pecan nut shells.

    PubMed

    Aldana, Hugo; Lozano, Francisco J; Acevedo, Joaquín; Mendoza, Alberto

    2015-12-01

    This study focuses on the evaluation of pecan nut shells as an alternative source of energy through pyrolysis and gasification. The physicochemical characteristics of the selected biomass that can influence the process efficiency, consumption rates, and the product yield, as well as create operational problems, were determined. In addition, the thermal decomposition kinetics necessary for prediction of consumption rates and yields were determined. Finally, the performance of a downdraft gasifier fed with pecan nut shells was analyzed in terms of process efficiency and exit gas characteristics. It was found that the pyrolytic decomposition of the nut shells can be modeled adequately using a single equation considering two independent parallel reactions. The performance of the gasification process can be influenced by the particle size and air flow rate, requiring a proper combination of these parameters for reliable operation and production of a valuable syngas. PMID:26433788

  4. Thermogravimetric analysis of the gasification of microalgae Chlorella vulgaris.

    PubMed

    Figueira, Camila Emilia; Moreira, Paulo Firmino; Giudici, Reinaldo

    2015-12-01

    The gasification of microalgae Chlorella vulgaris under an atmosphere of argon and water vapor was investigated by thermogravimetric analysis. The data were interpreted by using conventional isoconversional methods and also by the independent parallel reaction (IPR) model, in which the degradation is considered to happen individually to each pseudo-component of biomass (lipid, carbohydrate and protein). The IPR model allows obtaining the kinetic parameters of the degradation reaction of each component. Three main stages were observed during the gasification process and the differential thermogravimetric curve was satisfactorily fitted by the IPR model considering three pseudocomponents. The comparison of the activation energy values obtained by the methods and those found in the literature for other microalgae was satisfactory. Quantification of reaction products was performed using online gas chromatography. The major products detected were H2, CO and CH4, indicating the potential for producing fuel gas and syngas from microalgae. PMID:26447558

  5. Nanostructured materials and their role as heterogeneous catalysts in the conversion of biomass to biofuels

    NASA Astrophysics Data System (ADS)

    Cadigan, Chris

    Prior to the discovery of inexpensive and readily available fossil fuels, the world relied heavily on biomass to provide its energy needs. Due to a worldwide growth in demand for fossil fuels coupled with the shrinkage of petroleum resources, and mounting economic, political, and environmental concerns, it has become more pressing to develop sustainable fuels and chemicals from biomass. The present dissertation studies multiple nanostructured catalysts investigated in various processes related to gasification of biomass into synthesis gas, and further upgrading to biofuels and value added chemicals. These reactions include: syngas conditioning, alcohol synthesis from carbon monoxide hydrogenation, and steam reforming ethanol to form higher hydrocarbons. Nanomaterials were synthesized, characterized, studied in given reactions, and then further characterized post-reaction. Overall goals were aimed at determining catalytic activities towards desired products and determining which material properties were most desirable based on experimental results. Strategies to improve material design for second-generation materials are suggested based on promising reaction results coupled with pre and post reaction characterization analysis.

  6. Coal gasification. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search

    SciTech Connect

    Not Available

    1994-03-01

    The bibliography contains citations of selected patents concerning methods and processes for the gasification of coals. Included are patents for a variety of processes, including fluidized beds, alkali-metal catalytic systems, fixed beds, hot inert heat transfer; and in-situ, pressurized, and steam-iron processes. Topics also include catalyst recovery, desulfurization during gasification, heating methods, pretreatment of coals, heat recovery, electrical power generation, byproduct applications, and pollution control. Liquefaction of coal is examined in a related published bibliography. (Contains 250 citations and includes a subject term index and title list.)

  7. Coal gasification. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search

    SciTech Connect

    1997-06-01

    The bibliography contains citations of selected patents concerning methods and processes for the gasification of coals. Included are patents for a variety of processes, including fluidized beds, alkali-metal catalytic systems, fixed beds, hot inert heat transfer; and in-situ, pressurized, and steam-iron processes. Topics also include catalyst recovery, desulfurization during gasification, heating methods, pretreatment of coals, heat recovery, electrical power generation, byproduct applications, and pollution control. Liquefaction of coal is examined in a related published bibliography. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  8. Coal gasification. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search

    SciTech Connect

    1995-01-01

    The bibliography contains citations of selected patents concerning methods and processes for the gasification of coals. Included are patents for a variety of processes, including fluidized beds, alkali-metal catalytic systems, fixed beds, hot inert heat transfer; and in-situ, pressurized, and steam-iron processes. Topics also include catalyst recovery, desulfurization during gasification, heating methods, pretreatment of coals, heat recovery, electrical power generation, byproduct applications, and pollution control. Liquefaction of coal is examined in a related published bibliography. (Contains 250 citations and includes a subject term index and title list.)

  9. GASIFICATION PLANT COST AND PERFORMANCE OPTIMIZATION

    SciTech Connect

    Samuel S. Tam

    2002-05-01

    coal plant and 1,260 $/kW for the coke plant). Therefore, in the near term, a coke IGCC power plant could penetrate the market and provide a foundation for future coal-fueled facilities. Subtask 1.6 generated a design, cost estimate and economics for a multiple train coal-fueled IGCC powerplant, also based on the Subtaks 1.3 cases. The Subtask 1.6 four gasification train plant has a thermal efficiency of 40.6% (HHV) and cost 1,066 $/kW. The single-train advanced Subtask 1.4 plant, which uses an advanced ''G/H-class'' combustion turbine, can have a thermal efficiency of 45.4% (HHV) and a plant cost of 1,096 $/kW. Multi-train plants will further reduce the cost. Again, all these plants have superior emissions performance. Subtask 1.7 developed an optimized design for a coal to hydrogen plant. At current natural gas prices, this facility is not competitive with hydrogen produced from natural gas. The preferred scenario is to coproduce hydrogen in a plant similar to Subtask 1.3, as described above. Subtask 1.8 evaluated the potential merits of warm gas cleanup technology. This study showed that selective catalytic oxidation of hydrogen sulfide (SCOHS) is promising. As gasification technology matures, SCOHS and other improvements identified in this study will lead to further cost reductions and efficiency improvements.

  10. Technology Assessment Report: Aqueous Sludge Gasification Technologies

    EPA Science Inventory

    The study reveals that sludge gasification is a potentially suitable alternative to conventional sludge handling and disposal methods. However, very few commercial operations are in existence. The limited pilot, demonstration or commercial application of gasification technology t...

  11. June 2007 gasification technologies workshop papers

    SciTech Connect

    2007-06-15

    Topics covered in this workshop are fundamentals of gasification, carbon capture and sequestration, reviews of financial and regulatory incentives, co-production, and focus on gasification in the Western US.

  12. Progress in biomass conversion. Vol. 4

    SciTech Connect

    Tillman, D.A.; Jahn, E.C.

    1983-01-01

    This book contains 10 chapters by various authors: Lipid crops for chemicals and fuels; Lignin utilization: potential and challenge; Adhesives from natural resources; Formation of NO and particulates during suspension-phase wood combustion; Wood energy use in the wood products industry: what the data show; Advances in chemical pulping processes; Making the best energy use of wood; A predictive model for stratified downdraft gasification of biomass; Small scale industrial biomass systems; and Biomass augmented ocean thermal energy conversion systems. An index is included.

  13. Beluga Coal Gasification - ISER

    SciTech Connect

    Steve Colt

    2008-12-31

    ISER was requested to conduct an economic analysis of a possible 'Cook Inlet Syngas Pipeline'. The economic analysis was incorporated as section 7.4 of the larger report titled: 'Beluga Coal Gasification Feasibility Study, DOE/NETL-2006/1248, Phase 2 Final Report, October 2006, for Subtask 41817.333.01.01'. The pipeline would carry CO{sub 2} and N{sub 2}-H{sub 2} from a synthetic gas plant on the western side of Cook Inlet to Agrium's facility. The economic analysis determined that the net present value of the total capital and operating lifecycle costs for the pipeline ranges from $318 to $588 million. The greatest contributor to this spread is the cost of electricity, which ranges from $0.05 to $0.10/kWh in this analysis. The financial analysis shows that the delivery cost of gas may range from $0.33 to $0.55/Mcf in the first year depending primarily on the price for electricity.

  14. Environmental benefits of underground coal gasification.

    PubMed

    Liu, Shu-qin; Liu, Jun-hua; Yu, Li

    2002-04-01

    Environmental benefits of underground coal gasification are evaluated. The results showed that through underground coal gasification, gangue discharge is eliminated, sulfur emission is reduced, and the amount of ash, mercury, and tar discharge are decreased. Moreover, effect of underground gasification on underground water is analyzed and CO2 disposal method is put forward. PMID:12046301

  15. The shell coal gasification process

    SciTech Connect

    Koenders, L.O.M.; Zuideveld, P.O.

    1995-12-01

    Future Integrated Coal Gasification Combined Cycle (ICGCC) power plants will have superior environmental performance and efficiency. The Shell Coal Gasification Process (SCGP) is a clean coal technology, which can convert a wide range of coals into clean syngas for high efficiency electricity generation in an ICGCC plant. SCGP flexibility has been demonstrated for high-rank bituminous coals to low rank lignites and petroleum coke, and the process is well suited for combined cycle power generation, resulting in efficiencies of 42 to 46% (LHV), depending on choice of coal and gas turbine efficiency. In the Netherlands, a 250 MWe coal gasification combined cycle plant based on Shell technology has been built by Demkolec, a development partnership of the Dutch Electricity Generating Board (N.V. Sep). The construction of the unit was completed end 1993 and is now followed by start-up and a 3 year demonstration period, after that the plant will be part of the Dutch electricity generating system.

  16. Mild coal gasification: Product separation

    SciTech Connect

    Wallman, P.H.; Singleton, M.F.

    1992-08-04

    Our general objective is to further the development of efficient continuous mild coal gasification processes. The research this year has been focused on product separation problems and particularly the problem of separating entrained ultra-fine particles from the chemically reactive environment of the product gas stream. Specifically, the objective of the present work has been to study candidate barrier filters for application to mild coal gasification processes. Our approach has been to select the most promising existing designs, to develop a design of our own and to test the designs in our bench-scale gasification apparatus. As a first step towards selection of the most promising barrier filter we have determined coking rates on several candidate filter media.

  17. Biomass Burning

    Atmospheric Science Data Center

    2015-07-27

    Projects:  Biomass Burning Definition/Description:  Biomass Burning: This data set represents the geographical and temporal distribution of total amount of biomass burned. These data may be used in general circulation models (GCMs) and ...

  18. Pyrolysis of pine and gasification of pine chars--influence of organically bound metals.

    PubMed

    Aho, A; DeMartini, N; Pranovich, A; Krogell, J; Kumar, N; Eränen, K; Holmbom, B; Salmi, T; Hupa, M; Murzin, D Yu

    2013-01-01

    Pyrolysis of pine and gasification of pine chars was studied in this work, focusing on the influence of organically bound metals. Selective leaching of the major ash-forming elements in pine wood was performed with different acids, namely, nitric, sulfuric, hydrochloric and oxalic acids. No other major changes in the chemical composition of the biomass were observed except the removal of the metals. The effect of organically bound sodium, potassium, magnesium and calcium was studied in both pyrolysis and gasification. Removal of the metals had a positive effect on the pyrolysis, resulting in higher bio-oil, lower char and gas yields. PMID:23196217

  19. Experimental study on temperature profile of fixed - bed gasification of oil-palm fronds

    NASA Astrophysics Data System (ADS)

    Atnaw, Samson M.; Sulaiman, Shaharin A.; Moni, M. Nazmi Z.

    2012-06-01

    Currently the world's second largest palm oil producer Malaysia produces large amount of oil palm biomass each year. The abundance of the biomass introduces a challenge to utilize them as main feedstock for heat and energy generation. Although some oil palm parts and derivatives like empty fruit bunch and fibre have been commercialized as fuel, less attention has been given to oil palm fronds (OPF). Initial feasibility and characterization studies of OPF showed that it is highly feasible as fuel for gasification to produce high value gaseous fuel or syngas. This paper discusses the experimental gasification attempt carried out on OPF using a 50 kW lab scale downdraft gasifier and its results. The conducted study focused on the temperature distributions within the reactor and the characteristics of the dynamic temperature profile for each temperature zones during operation. OPF feedstock of one cubic inch in individual size with 15% average moisture content was utilized. An average pyrolysis zone temperature of 324°Cand an average oxidation zone temperature of 796°Cwere obtained over a total gasification period of 74 minutes. A maximum oxidation zone temperature of 952°Cwas obtained at 486 lpm inlet air flow rate and 10 kg/hr feedstock consumption rate. Stable bluish flare was produced for more than 70% of the total gasification time. The recorded temperature profiles produced closely similar patterns with the temperature profiles recorded from the gasification of woody materials. Similar temperature profile was obtained comparing the results from OPF gasification with that of woody biomass. Furthermore, the successful ignition of the syngas produced from OPF gasification ascertained that OPF indeed has a higher potential as gasification feedstock. Hence, more detailed studies need to be done for better understanding in exploiting the biomass as a high prospect alternative energy solution. In addition, a study of the effect of initial moisture content of OPF

  20. Underground Coal Gasification Program

    Energy Science and Technology Software Center (ESTSC)

    1994-12-01

    CAVSIM is a three-dimensional, axisymmetric model for resource recovery and cavity growth during underground coal gasification (UCG). CAVSIM is capable of following the evolution of the cavity from near startup to exhaustion, and couples explicitly wall and roof surface growth to material and energy balances in the underlying rubble zones. Growth mechanisms are allowed to change smoothly as the system evolves from a small, relatively empty cavity low in the coal seam to a large,more » almost completely rubble-filled cavity extending high into the overburden rock. The model is applicable to nonswelling coals of arbitrary seam thickness and can handle a variety of gas injection flow schedules or compositions. Water influx from the coal aquifer is calculated by a gravity drainage-permeation submodel which is integrated into the general solution. The cavity is considered to consist of up to three distinct rubble zones and a void space at the top. Resistance to gas flow injected from a stationary source at the cavity floor is assumed to be concentrated in the ash pile, which builds up around the source, and also the overburden rubble which accumulates on top of this ash once overburden rock is exposed at the cavity top. Char rubble zones at the cavity side and edges are assumed to be highly permeable. Flow of injected gas through the ash to char rubble piles and the void space is coupled by material and energy balances to cavity growth at the rubble/coal, void/coal and void/rock interfaces. One preprocessor and two postprocessor programs are included - SPALL calculates one-dimensional mean spalling rates of coal or rock surfaces exposed to high temperatures and generates CAVSIM input: TAB reads CAVSIM binary output files and generates ASCII tables of selected data for display; and PLOT produces dot matrix printer or HP printer plots from TAB output.« less

  1. Pyrolysis of coal, biomass and their blends: performance assessment by thermogravimetric analysis.

    PubMed

    Ferrara, Francesca; Orsini, Alessandro; Plaisant, Alberto; Pettinau, Alberto

    2014-11-01

    With the aim to support the experimental tests in a gasification pilot plant, the thermal decomposition of coal, biomass and their mixtures has been carried out through a thermogravimetric analysis (TGA) and a simplified kinetic analysis. The TGA of pure fuels indicates the low reactivity of South African coal and the relatively high reactivity of Sardinian Sulcis coal during pyrolysis. Among the tested fuels, biomass (stone pine wood chips) is the most reactive one. These results fully confirm those obtained during the experimental tests in the gasification pilot plant. As for the fuel blends, the analysis shows that the synergic effects between the considered coals and biomass are negligible when they are co-pyrolyzed. The results of the analysis confirm that TGA could be very useful to generally predict the gasification performance and to optimize the experimental campaigns in pilot-scale gasification plants. PMID:25226060

  2. Coal Gasification for Power Generation, 3. edition

    SciTech Connect

    2007-11-15

    The report provides a concise look at the challenges faced by coal-fired generation, the ability of coal gasification to address these challenges, and the current state of IGCC power generation. Topics covered include: an overview of Coal Generation including its history, the current market environment, and the status of coal gasification; a description of gasification technology including processes and systems; an analysis of the key business factors that are driving increased interest in coal gasification; an analysis of the barriers that are hindering the implementation of coal gasification projects; a discussion of Integrated Gasification Combined Cycle (IGCC) technology; an evaluation of IGCC versus other generation technologies; a discussion of IGCC project development options; a discussion of the key government initiatives supporting IGCC development; profiles of the key gasification technology companies participating in the IGCC market; and, a detailed description of existing and planned coal IGCC projects.

  3. Coal gasification 2006: roadmap to commercialization

    SciTech Connect

    2006-05-15

    Surging oil and gas prices, combined with supply security and environmental concerns, are prompting power generators and industrial firms to further develop coal gasification technologies. Coal gasification, the process of breaking down coal into its constituent chemical components prior to combustion, will permit the US to more effectively utilize its enormous, low cost coal reserves. The process facilitates lower environmental impact power generation and is becoming an increasingly attractive alternative to traditional generation techniques. The study is designed to inform the reader as to this rapidly evolving technology, its market penetration prospects and likely development. Contents include: Clear explanations of different coal gasification technologies; Emissions and efficiency comparisons with other fuels and technologies; Examples of US and global gasification projects - successes and failures; Commercial development and forecast data; Gasification projects by syngas output; Recommendations for greater market penetration and commercialization; Current and projected gasification technology market shares; and Recent developments including proposals for underground gasification process. 1 app.

  4. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons via Indirect Liquefaction. Thermochemical Research Pathway to High-Octane Gasoline Blendstock Through Methanol/Dimethyl Ether Intermediates

    SciTech Connect

    Tan, Eric C. D.; Talmadge, Michael; Dutta, Abhijit; Hensley, Jesse; Schaidle, Josh; Biddy, Mary; Humbird, David; Snowden-Swan, Lesley J.; Ross, Jeff; Sexton, Danielle; Yap, Raymond; Lukas, John

    2015-03-01

    This report was developed as part of the U.S. Department of Energy’s Bioenergy Technologies Office’s (BETO’s) efforts to enable the development of technologies for the production of infrastructure-compatible, cost-competitive liquid hydrocarbon fuels from lignocellulosic biomass feedstocks. The research funded by BETO is designed to advance the state of technology of biomass feedstock supply and logistics, conversion, and overall system sustainability. It is expected that these research improvements will be made within the 2022 timeframe. As part of their involvement in this research and development effort, the National Renewable Energy Laboratory and the Pacific Northwest National Laboratory investigate the economics of conversion pathways through the development of conceptual biorefinery process models and techno-economic analysis models. This report describes in detail one potential conversion process for the production of high-octane gasoline blendstock via indirect liquefaction of biomass. The processing steps of this pathway include the conversion of biomass to synthesis gas or syngas via indirect gasification, gas cleanup, catalytic conversion of syngas to methanol intermediate, methanol dehydration to dimethyl ether (DME), and catalytic conversion of DME to high-octane, gasoline-range hydrocarbon blendstock product. The conversion process configuration leverages technologies previously advanced by research funded by BETO and demonstrated in 2012 with the production of mixed alcohols from biomass. Biomass-derived syngas cleanup via reforming of tars and other hydrocarbons is one of the key technology advancements realized as part of this prior research and 2012 demonstrations. The process described in this report evaluates a new technology area for the downstream utilization of clean biomass-derived syngas for the production of high-octane hydrocarbon products through methanol and DME intermediates. In this process, methanol undergoes dehydration to

  5. Gasification characteristics of an activated carbon catalyst during the decomposition of hazardous waste material in supercritical water

    SciTech Connect

    Matsumura, Yukihiko; Nuessle, F.W.; Antal, M.J. Jr.

    1996-12-31

    Recently, carbonaceous materials including activated carbon were proven to be effective catalysts for hazardous waste gasification in supercritical water. Using coconut shell activated carbon catalyst, complete decomposition of industrial organic wastes including methanol and acetic acid was achieved. During this process, the total mass of the activated carbon catalyst changes by two competing processes: a decrease in weight via gasification of the carbon by supercritical water, or an increase in weight by deposition of carbonaceous materials generated by incomplete gasification of the biomass feedstocks. The deposition of carbonaceous materials does not occur when complete gasification is realized. Gasification of the activated carbon in supercritical water is often favored, resulting in changes in the quality and quantity of the catalyst. To thoroughly understand the hazardous waste decomposition process, a more complete understanding of the behavior of activated carbon in pure supercritical water is needed. The gasification rate of carbon by water vapor at subcritical pressures was studied in relation to coal gasification and generating activated carbon.

  6. Mechanism for sodium oxide catalyzed CO/sub 2/ gasification of carbon

    SciTech Connect

    Saber, J.M.; Kester, K.B.; Falconer, J.L.; Brown, L.F.

    1988-02-01

    Temperature-programmed reaction was used to study sodium oxide catalyzed CO/sub 2/ gasification of /sup 13/C. The stoichiometry of the reaction is CO/sub 2/ + a/sup 13/C equivalent to CO + (1 - a)/sup 13/CO/sub 2/ + (2a - 1)/sup 13/CO, where the factor a is dependent on CO/sub 2/ conversion. This stoichiometry is consistent with a mechanism composed of a reversible catalyst oxidation step and an irreversible catalyst reduction step. On the surface the catalytic surface species is oxidized by CO/sub 2/ and forms CO; during the reduction reaction the oxidized species decomposes. The reversible oxidation step, which incorporates substrate carbon into gas-phase carbon dioxide, is at equilibrium. Carbon monoxide, via the reverse of the oxidation reaction, inhibits gasification of the substrate by decreasing the number of oxidized catalytic sites on the surface. The catalyst appears both to increase the amount of oxygen on the surface and to decrease the activation energy of the reduction reaction. Similar mechanisms describe potassium- and calcium-catalyzed gasification, but Na/sub 2/CO/sub 3/ does not interact with the carbon surface as readily as K/sub 2/CO/sub 3/ does. A similar mechanism is also consistent with steam gasification results reported by others and shows that a separate water-gas shift reaction is not required for CO/sub 2/ production. 44 references.

  7. BIOMASS COGASIFICATION AT POLK POWER STATION

    SciTech Connect

    John McDaniel

    2002-05-01

    Part of a closed loop biomass crop was recently harvested to produce electricity in Tampa Electric's Polk Power Station Unit No.1. No technical impediments to incorporating a small percentage of biomass into Polk Power Station's fuel mix were identified. Appropriate dedicated storage and handling equipment would be required for routine biomass use. Polk Unit No.1 is an integrated gasification combined cycle (IGCC) power plant. IGCC is a new approach to generating electricity cleanly from solid fuels such as coal, petroleum coke, The purpose of this experiment was to demonstrate the Polk Unit No.1 could process biomass as a fraction of its fuel without an adverse impact on availability and plant performance. The biomass chosen for the test was part of a crop of closed loop Eucalyptus trees.

  8. Renewable energy from gasification of manure: an innovative technology in search of fertile policy.

    PubMed

    Buckley, John C; Schwarz, Peter M

    2003-05-01

    After describing an innovative technology, the close-coupled gasification and cyclonic combustor, this article explores the policy issues that inhibit a superior sustainable solution from flourishing. Discussion of technology includes defining biomass, explaining what biomass to energy means, what the advantages of biomass to energy are, and why gasification is a superior biomass to energy technology. Specifically the environmental benefits of alternatives to landspreading of traditional manure management are discussed, as well as the advantages of gasification versus traditional combustion techniques for high nitrogen fuels. The policy environment is explored, particularly regarding sustainability, manure management, and renewable energy. Artificial, non-sustainable barriers to renewable energy, and the impact of wide jurisdictional variability are discussed. North Carolina is identified as a unique jurisdiction to monitor because of its high volume of livestock manure, and laggard position in renewable energy advocacy. The authors contend that these two positions are unsustainable, and that pressures can be expected to force the state to modify its renewable energy policies or risk losing market share in livestock production to more pro-sustainable policy oriented states. PMID:12733813

  9. Technical and economic analyses of hydrogen production via indirectly heated gasification and pyrolysis

    SciTech Connect

    Mann, M.K.

    1995-09-01

    Technoeconomic analyses have been conducted on two processes to produce hydrogen from biomass: indirectly-heated gasification of biomass followed by steam reforming of the syngas, and biomass pyrolysis followed by steam reforming of the pyrolysis oil. The analysis of the gasification-based process was highly detailed, including a process flowsheet, material and energy balances calculated with a process simulation program, equipment cost estimation, and the determination of the necessary selling price of hydrogen. The pyrolysis-based process analysis was of a less detailed nature, as all necessary experimental data have not been obtained; this analysis is a follow-up to the preliminary economic analysis presented at the 1994 Hydrogen Program Review. A coproduct option in which pyrolysis oil is used to produce hydrogen and a commercial adhesive was also studied for economic viability. Based on feedstock availability estimates, three plant sizes were studied: 907 T/day, 272 T/day, and 27 T/day. The necessary selling price of hydrogen produced by steam reforming syngas from the Battelle Columbus Laboratories indirectly heated biomass gasifier falls within current market values for the large and medium size plants within a wide range of feedstock costs. Results show that the small scale plant does not produce hydrogen at economically competitive prices, indicating that if gasification is used as the upstream process to produce hydrogen, local refueling stations similar to current gasoline stations, would probably not be feasible.

  10. Parametric Gasification of Oak and Pine Feedstocks Using the TCPDU and Slipstream Water-Gas Shift Catalysis

    SciTech Connect

    Hrdlicka, J.; Feik, C.; Carpenter, D.; Pomeroy, M.

    2008-12-01

    With oak and pine feedstocks, the Gasification of Biomass to Hydrogen project maximizes hydrogen production using the Full Stream Reformer during water-gas shift fixed-bed reactor testing. Results indicate that higher steam-to-biomass ratio and higher thermal cracker temperature yield higher hydrogen concentration. NREL's techno-economic models and analyses indicate hydrogen production from biomass may be viable at an estimated cost of $1.77/kg (current) and $1.47/kg (advanced in 2015). To verify these estimates, NREL used the Thermochemical Process Development Unit (TCPDU), an integrated system of unit operations that investigates biomass thermochemical conversion to gaseous and liquid fuels and chemicals.

  11. Analysis of Hydrogen Generation through Thermochemical Gasification of Coconut Shell Using Thermodynamic Equilibrium Model Considering Char and Tar

    PubMed Central

    Rupesh, Shanmughom; Muraleedharan, Chandrasekharan; Arun, Palatel

    2014-01-01

    This work investigates the potential of coconut shell for air-steam gasification using thermodynamic equilibrium model. A thermodynamic equilibrium model considering tar and realistic char conversion was developed using MATLAB software to predict the product gas composition. After comparing it with experimental results the prediction capability of the model is enhanced by multiplying equilibrium constants with suitable coefficients. The modified model is used to study the effect of key process parameters like temperature, steam to biomass ratio, and equivalence ratio on product gas yield, composition, and heating value of syngas along with gasification efficiency. For a steam to biomass ratio of unity, the maximum mole fraction of hydrogen in the product gas is found to be 36.14% with a lower heating value of 7.49 MJ/Nm3 at a gasification temperature of 1500 K and equivalence ratio of 0.15. PMID:27433487

  12. Biomass energy analysis for crop dehydration

    SciTech Connect

    Whittier, J.P.; Haase, S.G.; Quinn, M.W.

    1994-12-31

    In 1994, an agricultural processing facility was constructed in southern New Mexico for spice and herb dehydration. Annual operational costs are dominated by energy costs, due primarily to the energy intensity of dehydration. A feasibility study was performed to determine whether the use of biomass resources as a feedstock for a cogeneration system would be an economical option. The project location allowed access to unusual biomass feedstocks including cotton gin trash, pecan shells and in-house residues. A resource assessment of the immediate project area determined that approximately 120,000 bone dry tons of biomass feedstocks are available annually. Technology characterization for the plant energy requirements indicated gasification systems offer fuel flexibility advantages over combustion systems although vendor support and commercial experience are limited. Regulatory siting considerations introduce a level of uncertainty because of a lack of a precedent in New Mexico for gasification technology and because vendors of commercial gasifiers have little experience operating such a facility nor gathering emission data. A public opinion survey indicated considerable support for renewable energy use and biomass energy utilization. However, the public opinion survey also revealed limited knowledge of biomass technologies and concerns regarding siting of a biomass facility within the geographic area. The economic analysis conducted for the study is based on equipment vendor quotations, and indicates there will be difficulty competing with current prices of natural gas.

  13. Potential application of gasification to recycle food waste and rehabilitate acidic soil from secondary forests on degraded land in Southeast Asia.

    PubMed

    Yang, Zhanyu; Koh, Shun Kai; Ng, Wei Cheng; Lim, Reuben C J; Tan, Hugh T W; Tong, Yen Wah; Dai, Yanjun; Chong, Clive; Wang, Chi-Hwa

    2016-05-01

    Gasification is recognized as a green technology as it can harness energy from biomass in the form of syngas without causing severe environmental impacts, yet producing valuable solid residues that can be utilized in other applications. In this study, the feasibility of co-gasification of woody biomass and food waste in different proportions was investigated using a fixed-bed downdraft gasifier. Subsequently, the capability of biochar derived from gasification of woody biomass in the rehabilitation of soil from tropical secondary forests on degraded land (adinandra belukar) was also explored through a water spinach cultivation study using soil-biochar mixtures of different ratios. Gasification of a 60:40 wood waste-food waste mixture (w/w) produced syngas with the highest lower heating value (LHV) 5.29 MJ/m(3)-approximately 0.4-4.0% higher than gasification of 70:30 or 80:20 mixtures, or pure wood waste. Meanwhile, water spinach cultivated in a 2:1 soil-biochar mixture exhibited the best growth performance in terms of height (a 4-fold increment), weight (a 10-fold increment) and leaf surface area (a 5-fold increment) after 8 weeks of cultivation, owing to the high porosity, surface area, nutrient content and alkalinity of biochar. It is concluded that gasification may be an alternative technology to food waste disposal through co-gasification with woody biomass, and that gasification derived biochar is suitable for use as an amendment for the nutrient-poor, acidic soil of adinandra belukar. PMID:26921564

  14. Fluidized-bed gasification of dairy manure by Box-Behnken design.

    PubMed

    Wu, Hanjing; Hanna, Milford A; Jones, David D

    2012-05-01

    Application of excessive animal manure to the land may cause some environmental problems such as eutrophication of surface waters, degradation of ground water quality, and threats to human health. This paper reports an experimental study on the technology of biomass gasification to treat animal waste by analysing the effects of key operating parameters on gasification. In this research, dairy manure from the University of Nebraska dairy farm was first collected and dried, and then gasified in a fluidized-bed, laboratory-scale gasifier to generate syngas. The effects of three parameters, namely temperature, steam to biomass ratio (SBR) and the equivalence ratio (ER), on the gasification were described by a Box-Behnken design (BBD). Results showed that increasing the temperature favoured the formation of all three combustible gases, but the composition of each gas behaved differently according to the changing parameters. The lower heating value of the syngas varied from 2.0 to 4.7 MJ m(-3), indicating gasification could be used as a waste management option to produce bioenergy, and potentially reduce problems associated with the disposal of animal waste. PMID:22071174

  15. Cost assessment of biomass conversion technologies

    SciTech Connect

    Peterson, C.

    1982-06-01

    NYSERDA presents preliminary capital and operations/maintainence cost data from an assessment of the technologies to convert biomass. Moving grates and fluidized bed direct combustion cost data are calculated. The ''waterwall incineration'' is found to be the most economical. Gasification, of air and oxygen type, and pyrolysis, are calculated. Anaerobic digestion uses plug flow and single tank complete mix digesters. The plug flow cost data is derived. Fermentation of starch crops, cheese whey, and cellulose is studied, and cost data determined.

  16. Cryogenic methane separation/catalytic hydrogasification process analysis. Final report

    SciTech Connect

    Cassano, A.A.; Hilton, M.F.; Li, T.C.; Tsao, T.R.

    1980-02-14

    The objective of this program was to recommend the most attractive combinations of acid gas removal methane separation systems for the Exxon Catalytic Coal Gasification (CCG) and the Rockwell Hydrogasification process currently undergoing development supported by DOE. The program was comprised of the following tasks. Screening to define the most promising integration scheme for each gasification process; development of a process flowsheet, heat and material balance, P and ID, equipment specification, utility summary, and plot plan for the process combination selected; and preparation of detailed economic and final report. The results of the study are documented in this report. The evaluations were performed using data supplied by the prime coal gasification contractors and the vendors of proprietary acid gas removal processes. This information, combined with Air Products' in-house capabilities in acid gas and cryogenic separation processses, was used to develop process designs and cost estimates for each integrated system. The design based and economic criteria employed in the study are described.

  17. Development of mild gasification process

    SciTech Connect

    Chu, C.I.C.; Derting, T.M.

    1988-07-01

    Under a previous contract with Morgantown Energy Technology Center (METC), Department of Energy (DOE) Contract No. AC21-84MC21108, UCC Research Corporation (UCCRC) built and tested a 1500 lb/day Mild Gasification Process Development Unit (MGU). The MGU, as tested under the previous contract, is shown in Figure 1. Testing completed under the previous contract showed that good quality hydrocarbon liquids and good quality char can be produced in the MGU. However, the MGU is not optimized. The primary objectives of the current project are to optimize the MGU and determine the suitability of char for several commercial applications. The program consists of four tasks; Task 1 -- Test Plan; Task 2 -- Optimization of Mild Gasification Process; Task 3 -- Evaluation of Char and Char/Coal Blends as a Boiler/Blast Furnace Fuel; and Task 4 -- Analysis of Data and Preparation of Final Report. Task 1 has been completed while work continued on Task 2.

  18. Development of mild gasification process

    SciTech Connect

    Chu, C.I.C.; Gillespie, B.L.

    1988-02-01

    Under a previous contract with Morgantown Energy Technology Center (METC), Department of Energy (DOE) Contract No. DE-AC21-84MC21108, UCC Research Corporation (UCCRC) built and tested a 1500 lb/day Mild Gasification Process Development Unit (MGU). The MGU, as tested under the previous contract, is shown in Figure 1. Testing completed under the previous contract showed that good quality hydrocarbon liquids and good quality char can be produced in the MGU. However, the MGU is not optimized. The primary objectives of the current project are to optimize the MGU and determine the suitability of char for several commercial applications. The program consists of four tasks; Task 1-Test Plan; Task 2-Optimization of Mild Gasification Process; Task 3-Evaluation of Char and Char/Coal Blends as a Boiler/Blast Furnace Fuel; and Task 4-Analysis of Data and Preparation of Final Report. Task 1 has been completed while work continued on Task 2.

  19. Development of mild gasification process

    SciTech Connect

    Chu, C.I.C.; Williams, S.W.

    1989-01-01

    Under a previous contract with Morgantown Energy Technology Center (METC), Department of Energy (DOE) Contract No. AC21-84MC21108, UCC Research Corporation (UCCRC) built and tested a 1500 lb/day Mild Gasification Process Development Unit (MGU). The MGU, as tested under the previous contract, is shown in Figure 1. Testing completed under the previous contract showed that good quality hydrocarbon liquids and good quality char can be produced in the MGU. However, the MGU is not optimized. The primary objectives of the current project are to optimize the MGU and determine the suitability of char for several commercial applications. The program consists of four tasks; Task 1 -- Test Plan; Task 2 -- Optimization of Mild Gasification Process; Task 3 -- Evaluation of Char and Char/Coal Blends as a Boiler/Blast Furnace Fuel; and Task 4 -- Analysis of Data and Preparation of Final Report. Task 1 has been completed while work continued on Task 2.

  20. Development of mild gasification process

    SciTech Connect

    Chu, C.I.C.; Gillespie, B.L.

    1987-11-01

    Under a previous contract with Morgantown Energy Technology Center (METC), Department of Energy (DOE) Contract No. AC21-84MC21108, UCC Research Corporation (UCCRC) built and tested a 1500 lb/day Mild Gasification Process Development Unit (MGU). The MGU, as tested under the previous contract, is shown in Figure 1. Testing completed under the previous contract showed that good quality hydrocarbon liquids and good quality char can be produced in the MGU. However, the MGU is not optimized. The primary objectives of the current project are to optimize the MGU and determine the suitability of char for several commercial applications. The program consists of four tasks; Task 1 -- Test Plan; Task 2 -- Optimization of Mild Gasification Process; Task 3 -- Evaluation of Char and Char/Coal Blends as a Boiler/Blast Furnace Fuel; and Task 4 -- Analysis of Data and Preparation of Final Report. Task 1 has been completed while work continued on Task 2.