Science.gov

Sample records for catalytic ozonation-biological coupled

  1. Direct catalytic cross-coupling of organolithium compounds

    NASA Astrophysics Data System (ADS)

    Giannerini, Massimo; Fañanás-Mastral, Martín; Feringa, Ben L.

    2013-08-01

    Catalytic carbon-carbon bond formation based on cross-coupling reactions plays a central role in the production of natural products, pharmaceuticals, agrochemicals and organic materials. Coupling reactions of a variety of organometallic reagents and organic halides have changed the face of modern synthetic chemistry. However, the high reactivity and poor selectivity of common organolithium reagents have largely prohibited their use as a viable partner in direct catalytic cross-coupling. Here we report that in the presence of a Pd-phosphine catalyst, a wide range of alkyl-, aryl- and heteroaryl-lithium reagents undergo selective cross-coupling with aryl- and alkenyl-bromides. The process proceeds quickly under mild conditions (room temperature) and avoids the notorious lithium halogen exchange and homocoupling. The preparation of key alkyl-, aryl- and heterobiaryl intermediates reported here highlights the potential of these cross-coupling reactions for medicinal chemistry and material science.

  2. A Practical and Catalytic Reductive Olefin Coupling

    PubMed Central

    2015-01-01

    A redox-economic method for the direct coupling of olefins that uses an inexpensive iron catalyst and a silane reducing agent is reported. Thus, unactivated olefins can be joined directly to electron-deficient olefins in both intra- and intermolecular settings to generate hindered bicyclic systems, vicinal quaternary centers, and even cyclopropanes in good yield. The reaction is not sensitive to oxygen or moisture and has been performed on gram-scale. Most importantly, it allows access to many compounds that would be difficult or perhaps impossible to access using other methods. PMID:24428607

  3. Catalytic bismetallative multicomponent coupling reactions: scope, applications, and mechanisms

    PubMed Central

    Cho, Hee Yeon

    2014-01-01

    Catalytic reactions have played an indispensable role in organic chemistry for the last several decades. In particular, catalytic multicomponent reactions have attracted a lot of attention due to their efficiency and expediency towards complex molecule synthesis. The presence of bismetallic reagents (e.g. B–B, Si–Si, B–Si, Si–Sn, etc.) in this process renders the products enriched with various functional groups and multiple stereocenters. For this reason, catalytic bismetallative coupling is considered an effective method to generate the functional and stereochemical complexity of simple hydrocarbon substrates. This review highlights key developments of transition-metal catalyzed bismetallative reactions involving multiple π components. Specifically, it will highlight the scope, synthetic applications, and proposed mechanistic pathways of this process. PMID:24736839

  4. Two-stage, close coupled catalytic liquefaction of coal

    SciTech Connect

    Comolli, A.G.; Johanson, E.S.; Lee, T.L.K.; Popper, G.A.; Stalzer, R.H.

    1992-04-01

    This quarterly report covers activities of the Two-Stage, Close- Coupled Catalytic Liquefaction of Coal program during the period January 1,--March 31,1992, at Hydrocarbon Research, Inc. in Lawrenceville and Princeton, New Jersey. This DOE contract period is from October 1, 1988 to September 30, 1992. The overall purpose of the program is to achieve higher yields of better quality transportation and turbine fuels and to lower the capital and production costs in order to make the products from direct coal liquefaction competitive with other fossil fuel products. The quarterly report covers work on Laboratory Testing, PDU Activities and Administration.

  5. Highly Chemoselective Catalytic Coupling of Substituted Oxetanes and Carbon Dioxide.

    PubMed

    Rintjema, Jeroen; Guo, Wusheng; Martin, Eddy; Escudero-Adán, Eduardo C; Kleij, Arjan W

    2015-07-20

    The chemoselective coupling of oxetanes and carbon dioxide to afford functional, heterocyclic organic compounds known as six-membered cyclic carbonates remains a challenging topic. Here, an effective method for their synthesis relying on the use of Al catalysis is described. The catalytic reactions can be carried out with excellent selectivity for the cyclic carbonate product tolerating various (functional) groups present in the 2- and 3-position(s) of the oxetane ring. The presented methodology is the first general approach towards the formation of six-membered cyclic carbonates (6MCCs) through oxetane/CO2 coupling chemistry. Apart from a series of substituted six-membered cyclic carbonates, also the unprecedented room-temperature coupling of oxetanes and CO2 is disclosed giving, depending on the structural features of the substrate, a variety of five- and six-membered heterocyclic products. A mechanistic rationale is presented for their formation and support for the intermediary presence of a carbonic acid derivative is given. The presented functional carbonates may hold great promise as building blocks in organic synthesis and the development of new, biodegradable polymers. PMID:26095260

  6. Modular, Catalytic Enantioselective Construction of Quaternary Carbon Stereocenters by Sequential Cross-Coupling Reactions.

    PubMed

    Potter, Bowman; Edelstein, Emma K; Morken, James P

    2016-07-01

    The catalytic Suzuki-Miyaura cross-coupling with chiral γ,γ-disubstituted allylboronates in the presence of RuPhos ligand occurs with high regioselectivity and enantiospecificity, furnishing nonracemic compounds with quaternary centers. Mechanistic experiments suggest that the reaction occurs by transmetalation with allyl migration, followed by rapid reductive elimination. PMID:27310927

  7. Olefins from biomass feedstocks: catalytic ester decarbonylation and tandem Heck-type coupling.

    PubMed

    John, Alex; Hogan, Levi T; Hillmyer, Marc A; Tolman, William B

    2015-02-14

    With the goal of avoiding the need for anhydride additives, the catalytic decarbonylation of p-nitrophenylesters of aliphatic carboxylic acids to their corresponding olefins, including commodity monomers like styrene and acrylates, has been developed. The reaction is catalyzed by palladium complexes in the absence of added ligands and is promoted by alkali/alkaline-earth metal halides. Combination of catalytic decarbonylation and Heck-type coupling with aryl esters in a single pot process demonstrates the viability of employing a carboxylic acid as a "masked olefin" in synthetic processes. PMID:25579879

  8. Catalytic Olefin Hydroamidation Enabled by Proton-Coupled Electron Transfer

    PubMed Central

    2015-01-01

    Here we report a ternary catalyst system for the intramolecular hydroamidation of unactivated olefins using simple N-aryl amide derivatives. Amide activation in these reactions occurs via concerted proton-coupled electron transfer (PCET) mediated by an excited state iridium complex and weak phosphate base to furnish a reactive amidyl radical that readily adds to pendant alkenes. A series of H-atom, electron, and proton transfer events with a thiophenol cocatalyst furnish the product and regenerate the active forms of the photocatalyst and base. Mechanistic studies indicate that the amide substrate can be selectively homolyzed via PCET in the presence of the thiophenol, despite a large difference in bond dissociation free energies between these functional groups. PMID:26439818

  9. Quantum chemical study of the catalytic oxidative coupling of methane

    SciTech Connect

    Onal, I.; Senkan, S.

    1997-10-01

    Oxidative coupling of methane reaction pathways on MgO and lithium-modified MgO were theoretically studied using the semiempirical MNDO-PM3 molecular orbital method. The surface of the MgO catalyst was modeled by a Mg{sub 9}O{sub 9} molecular cluster containing structural defects such as edges and corners. Lithium-promoted magnesia was simulated by isomorphic substitution of Mg{sup 2+} by Li{sup +}; the excess negative charge of the cluster was compensated by a proton connected to a neighboring O{sup 2{minus}} site. Heterolytic adsorption of methane was found to be directly related to the coordination number of both the lattice oxygen and the metal sites. Energetically the most favorable site pair was Mg{sub 3c}-O{sub 3c} with a neighboring Li{sub 4c} site present. Various sequential oxygen and methane adsorption pathways were explored resulting in CH{sub 3}OH formation with lower energy barriers for the Li-modified MgO cluster as compared to unmodified MgO.

  10. Spatially coupled catalytic ignition of CO oxidation on Pt: mesoscopic versus nano-scale

    PubMed Central

    Spiel, C.; Vogel, D.; Schlögl, R.; Rupprechter, G.; Suchorski, Y.

    2015-01-01

    Spatial coupling during catalytic ignition of CO oxidation on μm-sized Pt(hkl) domains of a polycrystalline Pt foil has been studied in situ by PEEM (photoemission electron microscopy) in the 10−5 mbar pressure range. The same reaction has been examined under similar conditions by FIM (field ion microscopy) on nm-sized Pt(hkl) facets of a Pt nanotip. Proper orthogonal decomposition (POD) of the digitized FIM images has been employed to analyze spatiotemporal dynamics of catalytic ignition. The results show the essential role of the sample size and of the morphology of the domain (facet) boundary in the spatial coupling in CO oxidation. PMID:26021411

  11. Predicting gold-mediated catalytic oxidative-coupling reactions from single crystal studies.

    PubMed

    Xu, Bingjun; Madix, Robert J; Friend, Cynthia M

    2014-03-18

    Though metallic gold is chemically inert under ambient conditions, its surface is extremely reactive and selective for many key oxidative chemical transformations when activated by atomic oxygen. A molecular-level understanding of the mechanism of these processes could allow researchers to design "green" catalytic processes mediated by gold-based materials. This Account focuses on the mechanistic framework for oxidative-coupling reactions established by fundamental studies on oxygen-activated Au(111) and the application of these principles to steady-state catalytic conditions. We also discuss the importance of the paradigms discovered both for predicting new oxidative-coupling reactions and for understanding existing literature. The mechanistic framework for the oxidative coupling of alcohols on gold surfaces predicts that new oxidative-coupling reactions should occur between amines and aldehydes and amines and alcohols as well as through alcohol carbonylation. Adsorbed atomic oxygen on the gold surface facilitates the activation of the substrates, and nucleophilic attack and β-H elimination are the two fundamental reactions that propagate the versatile chemistry that ensues. In the self-coupling of primary alcohols, adsorbed atomic oxygen first activates the O-H bond in the hydroxyl group at ∼150 K, which forms the corresponding adsorbed alkoxy groups. The rate-limiting step of the self-coupling reaction is the β-H elimination reaction of alkoxy groups to form the corresponding aldehydes and occurs with an activation barrier of approximately 12 kcal/mol. The remaining alkoxy groups nucleophilically attack the electron-deficient aldehyde carbonyl carbon to yield the adsorbed "hemiacetal". This intermediate undergoes facile β-H elimination to produce the final coupling products, esters with twice the number of carbon atoms as the starting alcohols. This mechanistic insight suggests that cross-coupling occurs between alcohols and aldehydes, based on the logic

  12. Advanced power systems featuring a closely coupled catalytic gasification carbonate fuel cell plant

    SciTech Connect

    Steinfeld, G.; Wilson, W.G.

    1993-01-01

    Pursuing the key national goal of clean and efficient uulization of the abundant domestic coal resources for power generation, a study was conducted with DOE/METC support to evaluate the potential of integrated gasification/carbonate fuel cell power generation systems. By closely coupling the fuel cell with the operation of a catalytic gasifier, the advantages of both the catalytic gasification and the high efficiency fuel cell complement each other, resulting in a power plant system with unsurpassed efficiencies approaching 55% (HHV). Low temperature catalytic gasification producing a high methane fuel gas offers the potential for high gas efficiencies by operating with minimal or no combustion. Heat required for gasification is provided by combination of recycle from the fuel cell and exothermic methanation and shift reactions. Air can be supplemented if required. In combination with internally reforming carbonate fuel cells, low temperature catalytic gasification can achieve very attractive system efficiencies while producing extremely low emissions compared to conventional plants utilizing coal. Three system configurations based on recoverable and disposable gasification catalysts were studied. Experimental tests were conducted to evaluate these gasification catalysts. The recoverable catalyst studied was potassium carbonate, and the disposable catalysts were calcium in the form of limestone and iron in the form of taconite. Reactivities of limestone and iron were lower than that of potassium, but were improved by using the catalyst in solution form. Promising results were obtained in the system evaluations as well as the experimental testing of the gasification catalysts. To realize the potential of these high efficiency power plant systems more effort is required to develop catalytic gasification systems and their integration with carbonate fuel cells.

  13. Advanced power systems featuring a closely coupled catalytic gasification carbonate fuel cell plant

    SciTech Connect

    Steinfeld, G.; Wilson, W.G.

    1993-06-01

    Pursuing the key national goal of clean and efficient uulization of the abundant domestic coal resources for power generation, a study was conducted with DOE/METC support to evaluate the potential of integrated gasification/carbonate fuel cell power generation systems. By closely coupling the fuel cell with the operation of a catalytic gasifier, the advantages of both the catalytic gasification and the high efficiency fuel cell complement each other, resulting in a power plant system with unsurpassed efficiencies approaching 55% (HHV). Low temperature catalytic gasification producing a high methane fuel gas offers the potential for high gas efficiencies by operating with minimal or no combustion. Heat required for gasification is provided by combination of recycle from the fuel cell and exothermic methanation and shift reactions. Air can be supplemented if required. In combination with internally reforming carbonate fuel cells, low temperature catalytic gasification can achieve very attractive system efficiencies while producing extremely low emissions compared to conventional plants utilizing coal. Three system configurations based on recoverable and disposable gasification catalysts were studied. Experimental tests were conducted to evaluate these gasification catalysts. The recoverable catalyst studied was potassium carbonate, and the disposable catalysts were calcium in the form of limestone and iron in the form of taconite. Reactivities of limestone and iron were lower than that of potassium, but were improved by using the catalyst in solution form. Promising results were obtained in the system evaluations as well as the experimental testing of the gasification catalysts. To realize the potential of these high efficiency power plant systems more effort is required to develop catalytic gasification systems and their integration with carbonate fuel cells.

  14. Enzyme as catalytic wheel powered by a Markovian engine: conformational coupling and barrier surfing models

    NASA Astrophysics Data System (ADS)

    Tsong, Tian Yow; Chang, Cheng-Hung

    2005-05-01

    We examine a typical Michaelis-Menten Enzyme (MME) and redress it to form a transducer of free energy, and electric, acoustic, or other types of energy. This amendment and extension is necessary in lieu of recent experiments in which enzymes are shown to perform pump, motor, and locomotion functions resembling their macroscopic counterparts. Classical textbook depicts enzyme, or an MME, as biocatalyst which can enhance the rate of a chemical reaction by lowering the activation barrier but cannot shift the thermodynamic equilibrium of the biochemical reaction. An energy transducer, on the other hand, must also be able to harvest, store, or divert energy and in doing so alter the chemical equilibrium, change the energy form, fuel an energy consuming process, or perform all these functions stepwise in one catalytic turnover. The catalytic wheel presented in this communication is both a catalyst and an energy transducer and can perform all these tasks with ease. A Conformational Coupling Model for the rotary motors and a Barrier Surfing Model for the track-guided stepping motors and transporters, are presented and compared. It is shown that the core engine of the catalytic wheel, or a Brownian motor, is a Markovian engine. It remains to be seen if this core engine is the basic mechanism for a wide variety of bio-molecular energy transducers, as well as certain other dynamic systems, for example, the Parrondo's Games.

  15. Coupling of downstream RNA polymerase-promoter interactions with formation of catalytically competent transcription initiation complex

    PubMed Central

    Mekler, Vladimir; Minakhin, Leonid; Borukhov, Sergei; Mustaev, Arkady; Severinov, Konstantin

    2014-01-01

    Bacterial RNA polymerase (RNAP) makes extensive contacts with duplex DNA downstream of the transcription bubble in initiation and elongation complexes. We investigated the role of downstream interactions in formation of catalytically competent transcription initiation complex by measuring initiation activity of stable RNAP complexes with model promoter DNA fragments whose downstream ends extend from +3 to +21 relative to the transcription start site at +1. We found that DNA downstream of position +6 does not play a significant role in transcription initiation when RNAP-promoter interactions upstream of the transcription start site are strong and promoter melting region is AT-rich. Further shortening of downstream DNA dramatically reduces efficiency of transcription initiation. The boundary of minimal downstream DNA duplex needed for efficient transcription initiation shifted further away from the catalytic center upon increasing the GC content of promoter melting region or in the presence of bacterial stringent response regulators DksA and ppGpp. These results indicate that the strength of RNAP-downstream DNA interactions has to reach a certain threshold to retain the catalytically competent conformation of the initiation complex and that establishment of contacts between RNAP and downstream DNA can be coupled with promoter melting. The data further suggest that RNAP interactions with DNA immediately downstream of the transcription bubble are particularly important for initiation of transcription. We hypothesize that these active center-proximal contacts stabilize the DNA template strand in the active center cleft and/or position the RNAP clamp domain to allow RNA synthesis. PMID:25311862

  16. Electronic Coupling and Catalytic Effect on H2 Evolution of MoS2/Graphene Nanocatalyst

    NASA Astrophysics Data System (ADS)

    Liao, Ting; Sun, Ziqi; Sun, Chenghua; Dou, Shi Xue; Searles, Debra J.

    2014-09-01

    Inorganic nano-graphene hybrid materials that are strongly coupled via chemical bonding usually present superior electrochemical performance. However, how the chemical bond forms and the synergistic catalytic mechanism remain fundamental questions. In this study, the chemical bonding of the MoS2 nanolayer supported on vacancy mediated graphene and the hydrogen evolution reaction of this nanocatalyst system were investigated. An obvious reduction of the metallic state of the MoS2 nanolayer is noticed as electrons are transferred to form a strong contact with the reduced graphene support. The missing metallic state associated with the unsaturated atoms at the peripheral sites in turn modifies the hydrogen evolution activity. The easiest evolution path is from the Mo edge sites, with the presence of the graphene resulting in a decrease in the energy barrier from 0.17 to 0.11 eV. Evolution of H2 from the S edge becomes more difficult due to an increase in the energy barrier from 0.43 to 0.84 eV. The clarification of the chemical bonding and catalytic mechanisms for hydrogen evolution using this strongly coupled MoS2/graphene nanocatalyst provide a valuable source of reference and motivation for further investigation for improved hydrogen evolution using chemically active nanocoupled systems.

  17. Rate turnover in mechano-catalytic coupling: A model and its microscopic origin

    SciTech Connect

    Roy, Mahua; Grazioli, Gianmarc; Andricioaei, Ioan

    2015-07-28

    A novel aspect in the area of mechano-chemistry concerns the effect of external forces on enzyme activity, i.e., the existence of mechano-catalytic coupling. Recent experiments on enzyme-catalyzed disulphide bond reduction in proteins under the effect of a force applied on the termini of the protein substrate reveal an unexpected biphasic force dependence for the bond cleavage rate. Here, using atomistic molecular dynamics simulations combined with Smoluchowski theory, we propose a model for this behavior. For a broad range of forces and systems, the model reproduces the experimentally observed rates by solving a reaction-diffusion equation for a “protein coordinate” diffusing in a force-dependent effective potential. The atomistic simulations are used to compute, from first principles, the parameters of the model via a quasiharmonic analysis. Additionally, the simulations are also used to provide details about the microscopic degrees of freedom that are important for the underlying mechano-catalysis.

  18. Catalytic asymmetric reductive coupling of alkynes and aldehydes: enantioselective synthesis of allylic alcohols and alpha-hydroxy ketones.

    PubMed

    Miller, Karen M; Huang, Wei-Sheng; Jamison, Timothy F

    2003-03-26

    A highly enantioselective method for catalytic reductive coupling of alkynes and aldehydes is described. Allylic alcohols are afforded with complete E/Z selectivity, generally >95:5 regioselectivity, and in up to 96% ee. In conjunction with ozonolysis, this process is complementary to existing methods of enantioselective alpha-hydroxy ketone synthesis. PMID:12643701

  19. Mechanistic Studies of Gold and Palladium Cooperative Dual-Catalytic Cross-Coupling Systems

    PubMed Central

    Al-Amin, Mohammad; Roth, Katrina E.; Blum, Suzanne A.

    2014-01-01

    Double-label crossover, modified-substrate, and catalyst comparison experiments in the gold and palladium dual-catalytic rearrangement/cross-coupling of allenoates were performed in order to probe the mechanism of this reaction. The results are consistent with a cooperative catalysis mechanism whereby 1) gold activates the substrate prior to oxidative addition by palladium, 2) gold acts as a carbophilic rather than oxophilic Lewis acid, 3) competing olefin isomerization is avoided, 4) gold participates beyond the first turnover and therefore does not serve simply to generate the active palladium catalyst, and 5) single-electron transfer is not involved. These experiments further demonstrate that the cooperativity of both gold and palladium in the reaction is essential because significantly lower to zero conversion is achieved with either metal alone in comparison studies that examined multiple potential gold, palladium, and silver catalysts and precatalysts. Notably, employment of the optimized cocatalysts, PPh3AuOTf and Pd2dba3, separately (i.e., only Au or only Pd) results in zero conversion to product at all monitored time points compared to quantitative conversion to product when both are present in cocatalytic reactions. PMID:24757581

  20. Ozone-biological activated carbon as a pretreatment process for reverse osmosis brine treatment and recovery.

    PubMed

    Lee, Lai Yoke; Ng, How Yong; Ong, Say Leong; Hu, Jiang Yong; Tao, Guihe; Kekre, Kiran; Viswanath, Balakrishnan; Lay, Winson; Seah, Harry

    2009-09-01

    Ozonation was used in this study to improve biodegradability of RO brine from water reclamation facilities. An ozone dosage ranging from 3 to 10 mg O(3)/L and contact times of 10 and 20 min in batch studies were found to increase the biodegradability (BOD(5)/TOC ratio) of the RO brine by 1.8-3.5 times. At the same time, total organic carbon (TOC) removal was in the range of 5.3-24.5%. The lab-scale ozone-biological activated carbon (BAC) at an ozone dosage of 6.0mg O(3)/L with 20-min contact time was able to achieve 3 times higher TOC removal compared to using BAC alone. Further processing with Capacitive Deionization (CDI) process was able to generate a product water with better water quality than the RO feed water, i.e., with more than 80% ions removal and a lower TOC concentration. The ozone-BAC pretreatment has the potential of reducing fouling in the CDI process. PMID:19580984

  1. Application of integrated ozone biological aerated filters and membrane filtration in water reuse of textile effluents.

    PubMed

    He, Yaozhong; Wang, Xiaojun; Xu, Jinling; Yan, Jinli; Ge, Qilong; Gu, Xiaoyang; Jian, Lei

    2013-04-01

    A combined process including integrated ozone-BAFs (ozone biological aerated filters) and membrane filtration was first applied for recycling textile effluents in a cotton textile mill with capacity of 5000 m(3)/d. Influent COD (chemical oxygen demand) in the range of 82-120 mg/L, BOD5 (5-day biochemical oxygen demand) of 12.6-23.1 mg/L, suspended solids (SSs) of 38-52 mg/L and color of 32-64° were observed during operation. Outflows with COD≤45 mg/L, BOD5≤7.6 mg/L, SS≤15 mg/L, color≤8° were obtained after being decontaminated by ozone-BAF with ozone dosage of 20-25 mg/L. Besides, the average removal rates of PVA (polyvinyl alcohol) and UV254 were 100% and 73.4% respectively. Permeate water produced by RO (reverse osmosis) could be reused in dyeing and finishing processes, while the RO concentrates could be discharged directly under local regulations with COD≤100 mg/L, BOD5≤21 mg/L, SS≤52 mg/L, color≤32°. Results showed that the combined process could guarantee water reuse with high quality, and solve the problem of RO concentrate disposal. PMID:23422307

  2. Two-stage, closed coupled catalytic liquefaction of coal. Sixteenth quarterly report, 1 July 1992--30 September 1992

    SciTech Connect

    Comolli, A.G.; Johanson, E.S.; Karolkiewicz, W.F.; Lee, L.K.; Stalzer, R.H.

    1992-12-01

    This quarterly report covers activities of the Two-Stage, Close-Coupled Catalytic Liquefaction of Coal Program during the period of July 1--September 30, 1992, at Hydrocarbon Research, Inc., in Lawrenceville and Princeton, New Jersey. This DOE contract period is from October 1, 1998 to December 31, 1992. The overall purpose of the program is to achieve higher yields of better quality transportation and turbine fuels and to lower the capital and production costs in order to make the products from direct coal liquefaction competitive with other fossil fuel products. The quarterly report covers work on Laboratory testing, Bench Scale Studies and PDU Activities focusing on scale-up of the Catalytic Two-Stage Liquefaction (CTSL) processing of sub-bituminous Black Thunder Coal.

  3. Metal-Free Oxidation of Primary Amines to Nitriles through Coupled Catalytic Cycles.

    PubMed

    Lambert, Kyle M; Bobbitt, James M; Eldirany, Sherif A; Kissane, Liam E; Sheridan, Rose K; Stempel, Zachary D; Sternberg, Francis H; Bailey, William F

    2016-04-01

    Synergism among several intertwined catalytic cycles allows for selective, room temperature oxidation of primary amines to the corresponding nitriles in 85-98 % isolated yield. This metal-free, scalable, operationally simple method employs a catalytic quantity of 4-acetamido-TEMPO (ACT; TEMPO=2,2,6,6-tetramethylpiperidine N-oxide) radical and the inexpensive, environmentally benign triple salt oxone as the terminal oxidant under mild conditions. Simple filtration of the reaction mixture through silica gel affords pure nitrile products. PMID:26868873

  4. Application of novel catalytic-ceramic-filler in a coupled system for long-chain dicarboxylic acids manufacturing wastewater treatment.

    PubMed

    Wu, Suqing; Qi, Yuanfeng; Fan, Chunzhen; He, Shengbing; Dai, Bibo; Huang, Jungchen; Zhou, Weili; Gao, Lei

    2016-02-01

    To gain systematic technology for long-chain dicarboxylic acids (LDCA) manufacturing wastewater treatment, catalytic micro-electrolysis (CME) coupling with adsorption-biodegradation sludge (AB) process was studied. Firstly, novel catalytic-ceramic-filler was prepared from scrap iron, clay and copper sulfate solution and packed in the CME reactor. To remove residual n-alkane and LDCA, the CME reactor was utilized for LDCA wastewater pretreatment. The results revealed that about 94% of n-alkane, 98% of LDCA and 84% of chemical oxygen demand (COD) were removed by the aerated CME reactor at the optimum hydraulic retention time (HRT) of 3.0 h. In this process, catalysis from Cu and montmorillonites played an important role in improving the contaminants removal. Secondly, to remove residual COD in the wastewater, AB process was designed for the secondary biological treatment, about 90% of the influent COD could be removed by biosorption, bio-flocculation and biodegradation effects. Finally, the effluent COD (about 150 mg L(-1)) discharged from the coupled CME-AB system met the requirement of the national discharged standard (COD ≤ 300 mg L(-1)). All of these results suggest that the coupled CME-AB system is a promising technology due to its high-efficient performance, and has the potential to be applied for the real LDCA wastewater treatment. PMID:26619310

  5. Catalytic Chan–Lam coupling using a ‘tube-in-tube’ reactor to deliver molecular oxygen as an oxidant

    PubMed Central

    Mallia, Carl J; Burton, Paul M; Smith, Alexander M R; Walter, Gary C

    2016-01-01

    Summary A flow system to perform Chan–Lam coupling reactions of various amines and arylboronic acids has been realised employing molecular oxygen as an oxidant for the re-oxidation of the copper catalyst enabling a catalytic process. A tube-in-tube gas reactor has been used to simplify the delivery of the oxygen accelerating the optimisation phase and allowing easy access to elevated pressures. A small exemplification library of heteroaromatic products has been prepared and the process has been shown to be robust over extended reaction times. PMID:27559412

  6. Two-stage, close coupled catalytic liquefaction of coal. Fourteenth quarterly report, 1 January 1992--31 March 1992

    SciTech Connect

    Comolli, A.G.; Johanson, E.S.; Lee, T.L.K.; Popper, G.A.; Stalzer, R.H.

    1992-04-01

    This quarterly report covers activities of the Two-Stage, Close- Coupled Catalytic Liquefaction of Coal program during the period January 1,--March 31,1992, at Hydrocarbon Research, Inc. in Lawrenceville and Princeton, New Jersey. This DOE contract period is from October 1, 1988 to September 30, 1992. The overall purpose of the program is to achieve higher yields of better quality transportation and turbine fuels and to lower the capital and production costs in order to make the products from direct coal liquefaction competitive with other fossil fuel products. The quarterly report covers work on Laboratory Testing, PDU Activities and Administration.

  7. Catalytic Chan-Lam coupling using a 'tube-in-tube' reactor to deliver molecular oxygen as an oxidant.

    PubMed

    Mallia, Carl J; Burton, Paul M; Smith, Alexander M R; Walter, Gary C; Baxendale, Ian R

    2016-01-01

    A flow system to perform Chan-Lam coupling reactions of various amines and arylboronic acids has been realised employing molecular oxygen as an oxidant for the re-oxidation of the copper catalyst enabling a catalytic process. A tube-in-tube gas reactor has been used to simplify the delivery of the oxygen accelerating the optimisation phase and allowing easy access to elevated pressures. A small exemplification library of heteroaromatic products has been prepared and the process has been shown to be robust over extended reaction times. PMID:27559412

  8. Visible to near-infrared plasmon-enhanced catalytic activity of Pd hexagonal nanoplates for the Suzuki coupling reaction.

    PubMed

    Trinh, T Thuy; Sato, Ryota; Sakamoto, Masanori; Fujiyoshi, Yoshifumi; Haruta, Mitsutaka; Kurata, Hiroki; Teranishi, Toshiharu

    2015-08-01

    Photocatalytic conversion of solar energy to chemical energy is an efficient process in green chemistry because it facilitates room temperature chemical transformations by generating electronically excited states in photocatalysts. We report here on the robust synthesis, detailed structural characterization, and especially photocatalytic properties of plasmonic Pd hexagonal nanoplates for chemical reactions. The Pd hexagonal nanoplates are twin crystals, and composed of the top and bottom faces enclosed by the {111} planes with stacking faults and the side surfaces bound by mixed six {111} and six {100} planes. The Pd hexagonal nanoplates with well-defined and tunable longitudinal localized surface plasmon resonance (LSPR) have enabled the direct harvesting of visible to near-infrared light for catalytic cross coupling reactions. Upon plasmon excitation, the catalytic Suzuki coupling reactions of iodobenzene and phenylboronic acid accelerate by a plasmonic photocatalytic effect of plasmon induced hot electrons. The turnover frequency (TOF) of the Pd hexagonal nanoplates in a reaction illuminated with a λ = 300-1000 nm Xenon lamp at 176 mW cm(-2) was 2.5 and 2.7 times higher than that of non-plasmonic {111}-enclosed Pd nanooctahedra and {100}-enclosed Pd nanocubes, respectively, and 1.7 times higher than the TOF obtained when the reaction was thermally heated to the same temperature. PMID:26133744

  9. Visible to near-infrared plasmon-enhanced catalytic activity of Pd hexagonal nanoplates for the Suzuki coupling reaction

    NASA Astrophysics Data System (ADS)

    Trinh, T. Thuy; Sato, Ryota; Sakamoto, Masanori; Fujiyoshi, Yoshifumi; Haruta, Mitsutaka; Kurata, Hiroki; Teranishi, Toshiharu

    2015-07-01

    Photocatalytic conversion of solar energy to chemical energy is an efficient process in green chemistry because it facilitates room temperature chemical transformations by generating electronically excited states in photocatalysts. We report here on the robust synthesis, detailed structural characterization, and especially photocatalytic properties of plasmonic Pd hexagonal nanoplates for chemical reactions. The Pd hexagonal nanoplates are twin crystals, and composed of the top and bottom faces enclosed by the {111} planes with stacking faults and the side surfaces bound by mixed six {111} and six {100} planes. The Pd hexagonal nanoplates with well-defined and tunable longitudinal localized surface plasmon resonance (LSPR) have enabled the direct harvesting of visible to near-infrared light for catalytic cross coupling reactions. Upon plasmon excitation, the catalytic Suzuki coupling reactions of iodobenzene and phenylboronic acid accelerate by a plasmonic photocatalytic effect of plasmon induced hot electrons. The turnover frequency (TOF) of the Pd hexagonal nanoplates in a reaction illuminated with a λ = 300-1000 nm Xenon lamp at 176 mW cm-2 was 2.5 and 2.7 times higher than that of non-plasmonic {111}-enclosed Pd nanooctahedra and {100}-enclosed Pd nanocubes, respectively, and 1.7 times higher than the TOF obtained when the reaction was thermally heated to the same temperature.Photocatalytic conversion of solar energy to chemical energy is an efficient process in green chemistry because it facilitates room temperature chemical transformations by generating electronically excited states in photocatalysts. We report here on the robust synthesis, detailed structural characterization, and especially photocatalytic properties of plasmonic Pd hexagonal nanoplates for chemical reactions. The Pd hexagonal nanoplates are twin crystals, and composed of the top and bottom faces enclosed by the {111} planes with stacking faults and the side surfaces bound by mixed six {111

  10. Thermal reliability and performance improvement of close-coupled catalytic converter

    SciTech Connect

    Hijikata, Toshihiko; Kurachi, Hiroshi; Katsube, Fumio; Honacker, H. van

    1996-09-01

    This paper proposes a high temperature catalytic converter design using a ceramic substrate and intumescent matting. It also describes the improvement of converter performance using an advanced thin wall ceramic substrate. Due to future tightening of emission regulations and improvement of fuel economy, higher exhaust gas temperatures are suggested. Therefore, reduction of thermal reliability of an intumescent mat will be a concern because the catalytic converter will be exposed to high temperatures. For this reason, a new design converter has been developed using a dual cone structure for both the inlet and outlet cones. This minimizes heat conduction through the cone and decreases the temperature affecting the mat area. This design converter, without the use of a heat-shield, reduces the converter surface temperature to 441 C despite a catalyst bed temperature of 1,050 C. The long term durability of the converter is demonstrated by the hot vibration test. Since the new design converter does not need a heat-shield, the catalyst diameter can be enlarged by the width of the air gap used in the current design converter. By using an advanced thin wall ceramic substrate, such as 0.11 mm/620 kcpsm (4 mil/400 cpsi), it is possible to improve emission performance and pressure drop compared with the conventional 0.16 mm/620 kcpsm (6 mil/400 cpsi) ceramic substrate.

  11. Biogenic synthesis of palladium nanoparticles using Pulicaria glutinosa extract and their catalytic activity towards the Suzuki coupling reaction.

    PubMed

    Khan, Mujeeb; Khan, Merajuddin; Kuniyil, Mufsir; Adil, Syed Farooq; Al-Warthan, Abdulrahman; Alkhathlan, Hamad Z; Tremel, Wolfgang; Tahir, Muhammad Nawaz; Siddiqui, Mohammed Rafiq H

    2014-06-28

    Green synthesis of nanomaterials finds the edge over chemical methods due to its environmental compatibility. Herein, we report a facile and eco-friendly method for the synthesis of palladium (Pd) nanoparticles (NPs) using an aqueous solution of Pulicaria glutinosa, a plant widely found in a large region of Saudi Arabia, as a bioreductant. The as-prepared Pd NPs were characterized using ultraviolet-visible (UV-vis) spectroscopy, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier transform-infrared spectroscopy (FT-IR). The hydroxyl groups of the plant extract (PE) molecules were found mainly responsible for the reduction and growth of Pd NPs. FT-IR analysis confirmed the dual role of the PE, both as a bioreductant as well as a capping ligand, which stabilizes the surface of Pd NPs. The crystalline nature of the Pd NPs was identified using XRD analysis which confirmed the formation of a face-centered cubic structure (JCPDS: 87-0641, space group: Fm3m (225)). Furthermore, the as-synthesized Pd NPs demonstrated excellent catalytic activity towards the Suzuki coupling reaction under aqueous and aerobic conditions. Kinetic studies of the catalytic reaction monitored using GC confirmed that the reaction completes in less than 5 minutes. PMID:24619034

  12. Rapid and sensitive detection of HIV-1 p24 antigen by immunomagnetic separation coupled with catalytic fluorescent immunoassay.

    PubMed

    Zhang, Yun; Yang, Hang; Yu, Junping; Wei, Hongping

    2016-09-01

    In this study, a system of magnetic beads (MBs) coupled with catalytic fluorescent immunoassay for rapid and sensitive determination of HIV-1 capsid antigen p24 was developed. p24 was captured by antibody immobilized MBs, and the detection antibody was linked to horseradish peroxidase (HRP) through biotin-streptavidin recognition, catalyzing the oxidation of o-phenylenediamine (OPD) and hydrogen peroxide to produce a fluorescent product. This is the first reported utilization of the fluorescence of OPD oxidation product catalyzed by HRP for immunoassay. Optimization of conditions afforded a low detection limit of 0.5 pg/mL (3σ) for p24 with a linear range of 1.4-90.0 pg/mL. The assay exhibited good reproducibility with a relative standard deviation (RSD) of 4.4 %, 4.7 %, and 5.0 % for detecting 1.4 pg/mL, 22.5 pg/mL, and 45.0 pg/mL p24, respectively. The assay can be completed in less than 90 min. Moreover, the proposed method was successfully applied to detect p24 in spiked serum. This method overcomes the interference of MBs to the fluorescence signal and demonstrated higher sensitivity for detection of p24 than conventional ELISA kits. The system could be applied for detecting other antigens with high sensitivity, rapidity, specificity, and simple operation. Graphical Abstract A rapid and sensitive biosensing method coupling immunomagnetic separation and catalytic fluorescence for determination of HIV-1 p24 has been developed. PMID:27351993

  13. Catalytic Coupling of Carbon Dioxide with Terpene Scaffolds: Access to Challenging Bio-Based Organic Carbonates.

    PubMed

    Fiorani, Giulia; Stuck, Moritz; Martín, Carmen; Belmonte, Marta Martínez; Martin, Eddy; Escudero-Adán, Eduardo C; Kleij, Arjan W

    2016-06-01

    The challenging coupling of highly substituted terpene oxides and carbon dioxide into bio-based cyclic organic carbonates catalyzed by Al(aminotriphenolate) complexes is reported. Both acyclic as well as cyclic terpene oxides were used as coupling partners, showing distinct reactivity/selectivity behavior. Whereas cyclic terpene oxides showed excellent chemoselectivity towards the organic carbonate product, acyclic substrates exhibited poorer selectivities owing to concomitant epoxide rearrangement reactions and the formation of undesired oligo/polyether side products. Considering the challenging nature of these coupling reactions, the isolated yields of the targeted bio-carbonates are reasonable and in most cases in the range 50-60 %. The first crystal structures of tri-substituted terpene based cyclic carbonates are reported and their stereoconnectivity suggests that their formation proceeds through a double inversion pathway. PMID:27159151

  14. Catalytic Chemo- and Regioselective Coupling of 1,3-Dicarbonyls with N-Heterocyclic Nucleophiles.

    PubMed

    Kenny, Miles; Kitson, Daniel J; Franckevičius, Vilius

    2016-06-17

    The development of a decarboxylative palladium-catalyzed coupling of 1,3-dicarbonyl compounds with indole, pyrrole, imidazole, and pyrazole nucleophiles via an allylic linker under neutral conditions is disclosed. This process enables the installation of an all-carbon quaternary center and new C-C and C-N bonds in a single operation. Despite the weakly acidic nature of N-heterocycles, the reactions proceed with good efficiency and complete regio- and chemoselectivity. PMID:27211875

  15. Strongly coupled Pd nanotetrahedron/tungsten oxide nanosheet hybrids with enhanced catalytic activity and stability as oxygen reduction electrocatalysts.

    PubMed

    Lu, Yizhong; Jiang, Yuanyuan; Gao, Xiaohui; Wang, Xiaodan; Chen, Wei

    2014-08-20

    The design and synthesis of highly active oxygen reduction reaction (ORR) catalysts with strong durability at low cost is extremely desirable but still remains a significant challenge. Here we develop an efficient strategy that utilizes organopalladium(I) complexes containing palladium-palladium bonds as precursors for the synthesis of strongly coupled Pd tetrahedron-tungsten oxide nanosheet hybrids (Pd/W18O49) to improve the electrocatalytic activity and stability of Pd nanocrystals. The hybrid materials are synthesized by direct nucleation, growth, and anchoring of Pd tetrahedral nanocrystals on the in situ-synthesized W18O49 nanosheets. Compared to supportless Pd nanocrystals and W18O49, their hybrids exhibited not only surprisingly high activity but also superior stability to Pt for the ORR in alkaline solutions. X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, and electrochemical analyses indicated that the enhanced electrocatalytic activity and durability are associated with the increased number and improved catalytic activity of active sites, which is induced by the strong interaction between the Pd tetrahedrons and W18O49 nanosheet supports. The present study provides a novel strategy for synthesizing hybrid catalysts with strong chemical attachment and electrical coupling between nanocatalysts and supports. The strategy is expected to open up exciting opportunities for developing a novel class of metal-support hybrid nanoelectrocatalysts with improved ORR activity and durability for both fuel cells and metal-air batteries. PMID:25054583

  16. The effect of external magnetic fields on the catalytic activity of Pd nanoparticles in Suzuki cross-coupling reactions.

    PubMed

    Gao, Lei; Wang, Changlai; Li, Ren; Li, Ran; Chen, Qianwang

    2016-04-14

    Pd nanoparticles supported on Co3[Co(CN)6]2 nanoparticles (marked as Pd@Co3[Co(CN)6]2 nanoparticles) were prepared as catalysts for the Suzuki cross-coupling reaction under external magnetic fields (MFs). It is shown that a weak external MF can increase the rate of the Suzuki cross-coupling reaction at room temperature, and with the increase of the strength of external MFs the reaction rate also increased. At 30 °C, the yield was increased by nearly 50% under a 0.5 T external MF after 24 hours compared to that without a MF applied. Theoretical calculations revealed that the adsorption energy changed from -1.07 to -1.12 eV in the presence of MFs, which increased by 5% compared with the absence of MFs, leading to a lower total energy of the adsorption system, which is beneficial to the reaction. From the analysis of the partial density states, it could be seen that the 2p orbital of the carbon atom in bromobenzene and the 4d orbital of the Pd atom overlap more closely in the presence of MFs, which is beneficial for the electron transfer from the Pd substrate to the bromobenzene molecule. This study is helpful in understanding the interaction between MFs and catalysts and regulating the process of catalytic reactions via MFs. PMID:27043428

  17. Ni(II) salts and 2-propanol effect catalytic reductive coupling of epoxides and alkynes.

    PubMed

    Beaver, Matthew G; Jamison, Timothy F

    2011-08-01

    A Ni-catalyzed reductive coupling of alkynes and epoxides using Ni(II) salts and simple alcohol reducing agents is described. Whereas previously reported conditions relied on Ni(cod)(2) and Et(3)B, this system has several advantages including the use of air-stable and inexpensive Ni(II) precatalysts (e.g., NiBr(2)·3H(2)O) as the source of Ni(0) and simple alcohols (e.g., 2-propanol) as the reducing agent. Deuterium-labeling experiments are consistent with oxidative addition of an epoxide C-O bond that occurs with inversion of configuration. PMID:21718038

  18. Simple catalytic mechanism for the direct coupling of α-carbonyls with functionalized amines: a one-step synthesis of Plavix.

    PubMed

    Evans, Ryan W; Zbieg, Jason R; Zhu, Shaolin; Li, Wei; MacMillan, David W C

    2013-10-30

    The direct α-amination of ketones, esters, and aldehydes has been accomplished via copper catalysis. In the presence of catalytic copper(II) bromide, a diverse range of carbonyl and amine substrates undergo fragment coupling to produce synthetically useful α-amino-substituted motifs. The transformation is proposed to proceed via a catalytically generated α-bromo carbonyl species; nucleophilic displacement of the bromide by the amine then delivers the α-amino carbonyl adduct while the catalyst is reconstituted. The practical value of this transformation is highlighted through one-step syntheses of two high-profile pharmaceutical agents, Plavix and amfepramone. PMID:24107144

  19. Catalytic Alkene Carboaminations Enabled by Oxidative Proton-Coupled Electron Transfer

    PubMed Central

    Choi, Gilbert J.; Knowles, Robert R.

    2015-01-01

    Here we describe a dual catalyst system comprised of an iridium photocatalyst and weak phosphate base that is capable of both selectively homolyzing the N–H bonds of N-arylamides (bond dissociation free energies ~ 100 kcal/mol) via concerted proton-coupled electron transfer (PCET) and mediating efficient carboamination reactions of the resulting amidyl radicals. This manner of PCET activation, which finds its basis in numerous biological redox processes, enables the formal homolysis of a stronger amide N–H bond in the presence of weaker allylic C–H bonds, a selectivity that is uncommon in conventional molecular H atom acceptors. Moreover, this transformation affords access to a broad range of structurally complex heterocycles from simple amide starting materials. The design, synthetic scope, and mechanistic evaluation of the PCET process are described. PMID:26166022

  20. Catalytic mechanism of serine proteases: reexamination of the pH dependence of the histidyl 1J13C2-H coupling constant in the catalytic triad of alpha-lytic protease.

    PubMed

    Bachovchin, W W; Kaiser, R; Richards, J H; Roberts, J D

    1981-12-01

    L-Histidine, 90% 13C enriched at the C2 position, was incorporated into the catalytic triad of alpha-lytic protease (EC 3.4.21.12) with the aid of histidine-requiring mutant of Lysobacter enzymogenes (ATC 29487), and the pH dependence of the coupling constant between this carbon atom and its directly bonded proton was reinvestigated. The high degree of specific 13C isotopic enrichment attainable with the auxotroph permits direct observation and measurement of this coupling constant in proton-coupled 13C NMR spectra at 67.89 MHz and at 15.1 MHz. In contrast to the earlier study, the present study indicate that this coupling constant does respond to a microscopic ionization with pKa near 7.0; moreover, the magnitude of the values of 1JC-H observed are in accord with those expected for titration of the histidyl residue. We conclude that the original measurement must be in error and that this coupling constant now also supports a histidyl residue that titrates more or less normally as a component of the catalytic triad of serine proteases. PMID:7038675

  1. The effect of external magnetic fields on the catalytic activity of Pd nanoparticles in Suzuki cross-coupling reactions

    NASA Astrophysics Data System (ADS)

    Gao, Lei; Wang, Changlai; Li, Ren; Li, Ran; Chen, Qianwang

    2016-04-01

    Pd nanoparticles supported on Co3[Co(CN)6]2 nanoparticles (marked as Pd@Co3[Co(CN)6]2 nanoparticles) were prepared as catalysts for the Suzuki cross-coupling reaction under external magnetic fields (MFs). It is shown that a weak external MF can increase the rate of the Suzuki cross-coupling reaction at room temperature, and with the increase of the strength of external MFs the reaction rate also increased. At 30 °C, the yield was increased by nearly 50% under a 0.5 T external MF after 24 hours compared to that without a MF applied. Theoretical calculations revealed that the adsorption energy changed from -1.07 to -1.12 eV in the presence of MFs, which increased by 5% compared with the absence of MFs, leading to a lower total energy of the adsorption system, which is beneficial to the reaction. From the analysis of the partial density states, it could be seen that the 2p orbital of the carbon atom in bromobenzene and the 4d orbital of the Pd atom overlap more closely in the presence of MFs, which is beneficial for the electron transfer from the Pd substrate to the bromobenzene molecule. This study is helpful in understanding the interaction between MFs and catalysts and regulating the process of catalytic reactions via MFs.Pd nanoparticles supported on Co3[Co(CN)6]2 nanoparticles (marked as Pd@Co3[Co(CN)6]2 nanoparticles) were prepared as catalysts for the Suzuki cross-coupling reaction under external magnetic fields (MFs). It is shown that a weak external MF can increase the rate of the Suzuki cross-coupling reaction at room temperature, and with the increase of the strength of external MFs the reaction rate also increased. At 30 °C, the yield was increased by nearly 50% under a 0.5 T external MF after 24 hours compared to that without a MF applied. Theoretical calculations revealed that the adsorption energy changed from -1.07 to -1.12 eV in the presence of MFs, which increased by 5% compared with the absence of MFs, leading to a lower total energy of the

  2. High-temperature catalytic oxidative conversion of propane to propylene and ethylene involving coupling of exothermic and endothermic reactions

    SciTech Connect

    Choudhary, V.R.; Rane, V.H.; Rajput, A.M.

    2000-04-01

    Coupling of the exothermic catalytic oxidative conversion and endothermic thermal cracking (noncatalytic) reactions of propane to propylene and ethylene over the SrO/La{sub 2}O{sub 3}/SA5205 catalyst in the presence of steam and limited oxygen was investigated at different process conditions (temperature, 700--850 C; C{sub 3}H{sub 8}/O{sub 2} ratio in feed, 2.0--8.0; H{sub 2}O/C{sub 3}H{sub 8} ratio, 0.5--2.5; space velocity, 2,000--15,000 cm{sup 3}/g h). In the presence of steam and limited O{sub 2}, the endothermic thermal cracking and exothermic oxidative conversion reactions occur simultaneously and there is no coke formation on the catalyst. Because of the direct coupling of exothermic and endothermic reactions, this process occurs in a most energy efficient and safe manner. The propane conversion, selectivity for propylene, and net heat of reaction ({Delta}H{sub r}) in the process are strongly influenced by the temperature and concentration of O{sub 2} relative to the propane in the feed. The C{sub 3}H{sub 6}/C{sub 2}H{sub 4} product ratio is also strongly influenced by the temperature, C{sub 3}H{sub 8}/O{sub 2} feed ratio, and space velocity. The net heat of reaction can be controlled by manipulating the reaction temperature and C{sub 3}H{sub 8}/O{sub 2} ratio in the feed; the process exothermicity is reduced drastically with increasing the temperature and/or C{sub 3}H{sub 8}/O{sub 2} feed ratio.

  3. Multifunctional phosphine stabilized gold nanoparticles: an active catalytic system for three-component coupling reaction.

    PubMed

    Borah, Bibek Jyoti; Borah, Subrat Jyoti; Dutta, Dipak Kumar

    2013-07-01

    Multifunctional phosphine based ligands, 1,1,1-tris(diphenylphosphinomethyl)ethane [CH3C(CH2 PPh2)3][P3] and 1,1,1-tris(diphenylphosphinomethyl)ethane trisulphide [CH3C(CH2P(S)Ph2)3][P3S3] have been introduced to stabilize Au(o)-nanoparticles having small core diameter and narrow size distribution. The Au(o)-nanoparticles were synthesized by the reduction of HAuCl4 precursor with NaBH4 in the presence of ligand P3 or P3S3 using two phases, one pot reaction at room temperature. The Au(o)-nanoparticles exhibit face centered cubic (fcc) lattice having different crystalline shape i.e., single crystallite stabilized by P3 while P3S3 forms decahedral shapes. Surface plasmon bands at -520 nm and TEM study indicate particle size below 2 and 4 nm for Au(o)-nanoparticles stabilized by P3 and P3S3 respectively, which are attributable to the stronger interaction of Au(o) (Soft) with P (Soft) than Au(o) (Soft) with S (less Softer than P). Au(o)-nanoparticles stabilized by P3S3 shows higher thermal stability than that of P3. The synthesized Au(o)-nanoparticles serve as an efficient catalyst for one-pot, three-component (A3) coupling of an aldehyde, an amine and an alkyne via C-H alkyne-activation to synthesize propargylamines (85-96%) without any additives and precaution to exclude air. PMID:23901533

  4. Catalytic Upgrading of Biomass-Derived Compounds via C-C Coupling Reactions. Computational and Experimental Studies of Acetaldehyde and Furan Reactions in HZSM-5

    SciTech Connect

    Liu, Cong; Evans, Tabitha J.; Cheng, Lei; Nimlos, Mark R.; Mukarakate, Calvin; Robichaud, David J.; Assary, Rajeev S.; Curtiss, Larry A.

    2015-10-02

    These catalytic C–C coupling and deoxygenation reactions are essential for upgrading of biomass-derived oxygenates to fuel-range hydrocarbons. Detailed understanding of mechanistic and energetic aspects of these reactions is crucial to enabling and improving the catalytic upgrading of small oxygenates to useful chemicals and fuels. Using periodic density functional theory (DFT) calculations, we have investigated the reactions of furan and acetaldehyde in an HZSM-5 zeolite catalyst, a representative system associated with the catalytic upgrading of pyrolysis vapors. Comprehensive energy profiles were computed for self-reactions (i.e., acetaldehyde coupling and furan coupling) and cross-reactions (i.e., acetaldehyde + furan) of this representative mixture. Major products proposed from the computations are further confirmed using temperature controlled mass spectra measurements. Moreover, the computational results show that furan interacts with acetaldehyde in HZSM-5 via an alkylation mechanism, which is more favorable than the self-reactions, indicating that mixing furans with aldehydes could be a promising approach to maximize effective C–C coupling and dehydration while reducing the catalyst deactivation (e.g., coke formation) from aldehyde condensation.

  5. [Removal characters of ozone-biological activated carbon process for typical pollutants in southern brooky regions of China].

    PubMed

    Lin, Tao; Chen, Wei; Wang, Lei-Lei

    2009-05-15

    The products of relative molecular weight (Mr) distribution, bromate (BrO3(-)) and trihalomethanes (THMs) were studied by ozone-biological activated carbon (O3-BAC) process for treating organic matters and bromide (Br(-)) in water source of southern brooky regions of China. The experimental results showed that dissolved organic matters (DOC) with Mr lower than 10(3) accounted for 80% of the total. The removal rate of DOC and SUVA (UV254/DOC) were 8% and 14% respectively by traditional treatment process with main removalonly for ones with Mr higher than 100 x 10(3). Only 30% of DOC and 31% of SUVA were decreased by O3-BAC process for the removal of ones with Mr between 10(3) and 5 x 10(3), in which the biotic degradation was certainly restricted by predominant organic matters of hydrophilic and Mr was lower than 1000. An obvious increase of BrO3(-) occurred in the effluent from ozone oxidation process when the dose of ozone beyond 2 mg/L which increased Br(-) concentration. This could increase the product of BrO3(-). A poor and unstable removal effect of BrO3(-) was observed in the effluent of BAC process during the experiment. Each species of THMs, decreasing 40% of total, was reduced by O3-BAC treatment compared with the traditional treatment process. But the products of brominated trihalomethanes, especially CHBr3 would be markedly increased by enhanced chlorine dosage and Br(-) concentration. PMID:19558108

  6. 2D/2D nano-hybrids of γ-MnO₂ on reduced graphene oxide for catalytic ozonation and coupling peroxymonosulfate activation.

    PubMed

    Wang, Yuxian; Xie, Yongbing; Sun, Hongqi; Xiao, Jiadong; Cao, Hongbin; Wang, Shaobin

    2016-01-15

    Two-dimensional reduced graphene oxide (2D rGO) was employed as both a shape-directing medium and support to fabricate 2D γ-MnO2/2D rGO nano-hybrids (MnO2/rGO) via a facile hydrothermal route. For the first time, the 2D/2D hybrid materials were used for catalytic ozonation of 4-nitrophenol. The catalytic efficiency of MnO2/rGO was much higher than either MnO2 or rGO only, and rGO was suggested to play the role for promoting electron transfers. Quenching tests using tert-butanol, p-benzoquinone, and sodium azide suggested that the major radicals responsible for 4-nitrophenol degradation and mineralization are O2(-) and (1)O2, but not ·OH. Reusability tests demonstrated a high stability of the materials in catalytic ozonation with minor Mn leaching below 0.5 ppm. Degradation mechanism, reaction kinetics, reusability and a synergistic effect between catalytic ozonation and coupling peroxymonosulfate (PMS) activation were also discussed. PMID:26342576

  7. N- vs. C-Domain Selectivity of Catalytic Inactivation of Human Angiotensin Converting Enzyme by Lisinopril-Coupled Transition Metal Chelates

    PubMed Central

    Hocharoen, Lalintip; Joyner, Jeff C.; Cowan, J. A.

    2014-01-01

    The N- and C-terminal domains of human somatic Angiotensin I Converting Enzyme (sACE-1) demonstrate distinct physiological functions, with resulting interest in the development of domain-selective inhibitors for specific therapeutic applications. Herein, the activity of lisinopril-coupled transition metal chelates were tested for both reversible binding and irreversible catalytic inactivation of sACE-1. C/N domain binding selectivity ratios ranged from 1 to 350, while rates of irreversible catalytic inactivation of the N- and C-domains were found to be significantly greater for the N-domain, suggesting a more optimal orientation of the M-chelate-lisinopril complexes within the active site of the N-domain of sACE-1. Finally, the combined effect of binding selectivity and inactivation selectivity was assessed for each catalyst (double-filter selectivity factors), and several catalysts were found to cause domain-selective catalytic inactivation. The results of this study demonstrate the ability to optimize the target selectivity of catalytic metallopeptides through both binding and orientation factors (double-filter effect). PMID:24228790

  8. Details in the catalytic mechanism of mammalian thioredoxin reductase 1 revealed using point mutations and juglone-coupled enzyme activities.

    PubMed

    Xu, Jianqiang; Cheng, Qing; Arnér, Elias S J

    2016-05-01

    The mammalian selenoprotein thioredoxin reductase 1 (TrxR1) is a key enzyme in redox regulation, antioxidant defense, and cellular growth. TrxR1 can catalyze efficient reduction of juglone (5-hydroxy-1,4-naphthoquinone; walnut toxin) in a reaction which, in contrast to reduction of most other substrates of TrxR1, is not dependent upon an intact selenocysteine (Sec, U) residue of the enzyme. Using a number of TrxR1 mutant variants, we here found that a sole Cys residue at the C-terminal tail of TrxR1 is required for high-efficiency juglone-coupled NADPH oxidase activity of Sec-deficient enzyme, occurring with mixed one- and two-electron reactions producing superoxide. The activity also utilizes the FAD and the N-terminal redox active disulfide/dithiol motif of TrxR1. If a sole Cys residue at the C-terminal tail of TrxR1, in the absence of Sec, was moved further towards the C-terminal end of the protein compared to its natural position at residue 497, juglone reduction was, surprisingly, further increased. Ala substitutions of Trp407, Asn418 and Asn419 in a previously described "guiding bar", thought to mediate interactions of the C-terminal tail of TrxR1 with the FAD/dithiol site at the N-terminal domain of the other subunit in the dimeric enzyme, lowered turnover with juglone about 4.5-fold. Four residues of Sec-deficient TrxR1 were found to be easily arylated by juglone, including the Cys residue at position 497. Based upon our observations we suggest a model for involvement of the juglone-arylated C-terminal motif of TrxR1 to explain its high activity with juglone. This study thus provides novel insights into the catalytic mechanisms of TrxR1. One-electron juglone reduction by TrxR1 producing superoxide should furthermore contribute to the well-known prooxidant cytotoxicity of juglone. PMID:26898501

  9. Effects of hydrogen sulfide on the heme coordination structure and catalytic activity of the globin-coupled oxygen sensor AfGcHK.

    PubMed

    Fojtikova, Veronika; Bartosova, Martina; Man, Petr; Stranava, Martin; Shimizu, Toru; Martinkova, Marketa

    2016-08-01

    AfGcHK is a globin-coupled histidine kinase that is one component of a two-component signal transduction system. The catalytic activity of this heme-based oxygen sensor is due to its C-terminal kinase domain and is strongly stimulated by the binding of O2 or CO to the heme Fe(II) complex in the N-terminal oxygen sensing domain. Hydrogen sulfide (H2S) is an important gaseous signaling molecule and can serve as a heme axial ligand, but its interactions with heme-based oxygen sensors have not been studied as extensively as those of O2, CO, and NO. To address this knowledge gap, we investigated the effects of H2S binding on the heme coordination structure and catalytic activity of wild-type AfGcHK and mutants in which residues at the putative O2-binding site (Tyr45) or the heme distal side (Leu68) were substituted. Adding Na2S to the initial OH-bound 6-coordinate Fe(III) low-spin complexes transformed them into SH-bound 6-coordinate Fe(III) low-spin complexes. The Leu68 mutants also formed a small proportion of verdoheme under these conditions. Conversely, when the heme-based oxygen sensor EcDOS was treated with Na2S, the initially formed Fe(III)-SH heme complex was quickly converted into Fe(II) and Fe(II)-O2 complexes. Interestingly, the autophosphorylation activity of the heme Fe(III)-SH complex was not significantly different from the maximal enzyme activity of AfGcHK (containing the heme Fe(III)-OH complex), whereas in the case of EcDOS the changes in coordination caused by Na2S treatment led to remarkable increases in catalytic activity. PMID:27395436

  10. Green synthesis, characterization and catalytic activity of the Pd/TiO2 nanoparticles for the ligand-free Suzuki-Miyaura coupling reaction.

    PubMed

    Nasrollahzadeh, Mahmoud; Sajadi, S Mohammad

    2016-03-01

    A green synthesis process was developed for production of the Pd/TiO2 nanoparticles (NPs) without using toxic, hazardous and dangerous materials. Myrtus communis L. leaf extract serves as a mild, renewable and non-toxic reducing agent. The advantages of this biosynthesis method include use of cheap, clean, nontoxic and environmentally benign precursors and simple procedures without time-consuming polymerization and problems with treatment of a highly viscous polymeric resin. More importantly, the synthesized Pd/TiO2 NPs presented excellent catalytic activity for ligand-free Suzuki-Miyaura coupling which could be easily separated from the reaction mixture and reused many times with no loss of activity. Therefore, these properties indicate demonstrative benefits of the catalyst. The Pd/TiO2 NPs was characterized by FESEM, TEM, FT-IR, UV-vis spectroscopy and EDS. PMID:26674227

  11. Determination of trace uranium by resonance fluorescence method coupled with photo-catalytic technology and dual cloud point extraction.

    PubMed

    Li, Jiekang; Li, Guirong; Han, Qian

    2016-12-01

    In this paper, two kinds of salophens (Sal) with different solubilities, Sal1 and Sal2, have been respectively synthesized, and they all can combine with uranyl to form stable complexes: [UO2(2+)-Sal1] and [UO2(2+)-Sal2]. Among them, [UO2(2+)-Sal1] was used as ligand to extract uranium in complex samples by dual cloud point extraction (dCPE), and [UO2(2+)-Sal2] was used as catalyst for the determination of uranium by photocatalytic resonance fluorescence (RF) method. The photocatalytic characteristic of [UO2(2+)-Sal2] on the oxidized pyronine Y (PRY) by potassium bromate which leads to the decrease of RF intensity of PRY were studied. The reduced value of RF intensity of reaction system (ΔF) is in proportional to the concentration of uranium (c), and a novel photo-catalytic RF method was developed for the determination of trace uranium (VI) after dCPE. The combination of photo-catalytic RF techniques and dCPE procedure endows the presented methods with enhanced sensitivity and selectivity. Under optimal conditions, the linear calibration curves range for 0.067 to 6.57ngmL(-1), the linear regression equation was ΔF=438.0 c (ngmL(-1))+175.6 with the correlation coefficient r=0.9981. The limit of detection was 0.066ngmL(-1). The proposed method was successfully applied for the separation and determination of uranium in real samples with the recoveries of 95.0-103.5%. The mechanisms of the indicator reaction and dCPE are discussed. PMID:27380304

  12. Carboxylic acid-grafted mesoporous material and its high catalytic activity in one-pot three-component coupling reaction

    SciTech Connect

    Gomes, Ruth; Bhaumik, Asim; Dutta, Saikat

    2014-11-01

    A new carboxylic acid functionalized mesoporous organic polymer has been synthesized via in situ radical polymerization of divinylbenzene and acrylic acid using a mesoporous silica as a seed during the polymerization process under solvothermal conditions. The mesoporous material MPDVAA-1 has been thoroughly characterized employing powder XRD, solid state {sup 13}C cross polarization magic angle spinning-nuclear magnetic resonance, FT-IR spectroscopy, N{sub 2} sorption, HR-TEM, and NH{sub 3} temperature programmed desorption-thermal conductivity detector (TPD-TCD) analysis to understand its porosity, chemical environment, bonding, and surface properties. The mesoporous polymer was used as a catalyst for a three comp onent Biginelli condensation between various aldehydes, β-keto esters, and urea/thioureas to give 3,4-dihydropyrimidine-2(1H)-ones. The reactions were carried out under conventional heating as well as solvent-free microwave irradiation of solid components, and in both the cases, the mesoporous polymer MPDVAA-1 proved to be a powerful, robust, and reusable catalyst with high catalytic efficiency.

  13. Carboxylic acid-grafted mesoporous material and its high catalytic activity in one-pot three-component coupling reaction

    NASA Astrophysics Data System (ADS)

    Gomes, Ruth; Dutta, Saikat; Bhaumik, Asim

    2014-11-01

    A new carboxylic acid functionalized mesoporous organic polymer has been synthesized via in situ radical polymerization of divinylbenzene and acrylic acid using a mesoporous silica as a seed during the polymerization process under solvothermal conditions. The mesoporous material MPDVAA-1 has been thoroughly characterized employing powder XRD, solid state 13C cross polarization magic angle spinning-nuclear magnetic resonance, FT-IR spectroscopy, N2 sorption, HR-TEM, and NH3 temperature programmed desorption-thermal conductivity detector (TPD-TCD) analysis to understand its porosity, chemical environment, bonding, and surface properties. The mesoporous polymer was used as a catalyst for a three comp onent Biginelli condensation between various aldehydes, β-keto esters, and urea/thioureas to give 3,4-dihydropyrimidine-2(1H)-ones. The reactions were carried out under conventional heating as well as solvent-free microwave irradiation of solid components, and in both the cases, the mesoporous polymer MPDVAA-1 proved to be a powerful, robust, and reusable catalyst with high catalytic efficiency.

  14. Synthesis, characterization, and catalytic activity in Suzuki coupling and catalase-like reactions of new chitosan supported Pd catalyst.

    PubMed

    Baran, Talat; Inanan, Tülden; Menteş, Ayfer

    2016-07-10

    The aim of this study is to analyze the synthesis of a new chitosan supported Pd catalyst and examination of its catalytic activity in: Pd catalyst was synthesized using chitosan as a biomaterial and characterized with FTIR, TG/DTG, XRD, (1)H NMR, (13)C NMR, SEM-EDAX, ICP-OES, Uv-vis spectroscopies, and magnetic moment, along with molar conductivity analysis. Biomaterial supported Pd catalyst indicated high activity and long life time as well as excellent turnover number (TON) and turnover frequency (TOF) values in Suzuki reaction. Biomaterial supported Pd catalyst catalyzed H2O2 decomposition reaction with considerable high activity using comparatively small loading catalyst (10mg). Redox potential of biomaterial supported Pd catalyst was still high without negligible loss (13% decrease) after 10 cycles in reusability tests. As a consequence, eco-friendly biomaterial supported Pd catalyst has superior properties such as high thermal stability, long life time, easy removal from reaction mixture and durability to air, moisture and high temperature. PMID:27106147

  15. Native Electrophoresis-Coupled Activity Assays Reveal Catalytically-Active Protein Aggregates of Escherichia coli β-Glucuronidase

    PubMed Central

    Burchett, Gina G.; Folsom, Charles G.; Lane, Kimberly T.

    2015-01-01

    β-glucuronidase is found as a functional homotetramer in a variety of organisms, including humans and other animals, as well as a number of bacteria. This enzyme is important in these organisms, catalyzing the hydrolytic removal of a glucuronide moiety from substrate molecules. This process serves to break down sugar conjugates in animals and provide sugars for metabolism in bacteria. While β-glucuronidase is primarily found as a homotetramer, previous studies have indicated that the human form of the protein is also catalytically active as a dimer. Here we present evidence for not only an active dimer of the E. coli form of the protein, but also for several larger active complexes, including an octomer and a 16-mer. Additionally, we propose a model for the structures of these large complexes, based on computationally-derived molecular modeling studies. These structures may have application in the study of human disease, as several diseases have been associated with the aggregation of proteins. PMID:26121040

  16. Native functionality in triple catalytic cross-coupling: sp³ C-H bonds as latent nucleophiles.

    PubMed

    Shaw, Megan H; Shurtleff, Valerie W; Terrett, Jack A; Cuthbertson, James D; MacMillan, David W C

    2016-06-10

    The use of sp(3) C-H bonds--which are ubiquitous in organic molecules--as latent nucleophile equivalents for transition metal-catalyzed cross-coupling reactions has the potential to substantially streamline synthetic efforts in organic chemistry while bypassing substrate activation steps. Through the combination of photoredox-mediated hydrogen atom transfer (HAT) and nickel catalysis, we have developed a highly selective and general C-H arylation protocol that activates a wide array of C-H bonds as native functional handles for cross-coupling. This mild approach takes advantage of a tunable HAT catalyst that exhibits predictable reactivity patterns based on enthalpic and bond polarity considerations to selectively functionalize α-amino and α-oxy sp(3) C-H bonds in both cyclic and acyclic systems. PMID:27127237

  17. Palladium-phosphorus/sulfur nanoparticles (NPs) decorated on graphene oxide: synthesis using the same precursor for NPs and catalytic applications in Suzuki-Miyaura coupling

    NASA Astrophysics Data System (ADS)

    Joshi, Hemant; Sharma, Kamal Nayan; Sharma, Alpesh K.; Singh, Ajai Kumar

    2014-04-01

    PdP2 and Pd4S nanoparticles (NPs) (size: ~2-6 and 9-15 nm respectively) have been prepared for the first time from a single source precursor complex [Pd(L)Cl2] (1) by its one pot thermolysis at 200 °C in TOP and OA/ODE (1 : 1) respectively. These NPs were stirred with graphene oxide (GO) at room temperature to prepare NP composites, GO-PdP2 and GO-Pd4S. The GO-PdP2 NPs have been synthesized for the first time. The thioether ligand L prepared by reaction of 1,3-dibromo-2-propanol with the in situ generated PhSNa reacts with [PdCl2(CH3CN)2] in CH3CN at 70 °C resulting in 1. The L and 1 have been characterized by 1H and 13C{1H} NMR and HR-MS. The single crystal structure of 1 determined by X-ray diffraction reveals nearly square planar geometry around the Pd metal centre. The catalytic activities of two palladium nano-phases having phosphorus and sulphur respectively as a co-constituent for Suzuki-Miyaura coupling have been found to be exceptionally different, as PdP2 nanoparticles (NPs) grafted on graphene oxide (GO-PdP2) are significantly more efficient than Pd4S NPs grafted on GO. Without grafting PdP2 and Pd4S both have low efficiency. This is the first report comparing the influence of P and S on the catalytic activity of Pd NPs. TEM, SEM-EDX and powder-XRD have been used to authenticate all NPs. The GO-PdP2 NPs have been found to be efficient catalysts for Suzuki-Miyaura coupling reactions (yield up to 96% in 30 min) at room temperature to 80 °C. Their recyclability has been found up to 6 cycles. In contrast, GO-Pd4S NPs are little active in comparison with GO-PdP2 NPs. The size of NPs and their distribution on GO appear to be key factors affecting the catalytic efficiency of the composite NPs. Leaching of Pd from GO-PdP2 NPs contributes significantly to the catalysis as evidenced by the three phase test, hot-filtration and recycling experiments. The catalysis is almost homogeneous.PdP2 and Pd4S nanoparticles (NPs) (size: ~2-6 and 9-15 nm respectively) have

  18. Green synthesis of Pd/CuO nanoparticles by Theobroma cacao L. seeds extract and their catalytic performance for the reduction of 4-nitrophenol and phosphine-free Heck coupling reaction under aerobic conditions.

    PubMed

    Nasrollahzadeh, Mahmoud; Sajadi, S Mohammad; Rostami-Vartooni, Akbar; Bagherzadeh, Mojtaba

    2015-06-15

    We report the green synthesis of palladium/CuO nanoparticles (Pd/CuO NPs) using Theobroma cacao L. seeds extract and their catalytic activity for the reduction of 4-nitrophenol and Heck coupling reaction under aerobic conditions. The catalyst was characterized using the powder XRD, TEM, EDS, UV-vis and FT-IR. This method has the advantages of high yields, elimination of surfactant, ligand and homogeneous catalysts, simple methodology and easy work up. The catalyst can be recovered from the reaction mixture and reused several times without any significant loss of catalytic activity. PMID:25721860

  19. Catalytic conversion of sugarcane bagasse to cellulosic ethanol: TiO2 coupled nanocellulose as an effective hydrolysis enhancer.

    PubMed

    Jabasingh, S Anuradha; Lalith, D; Prabhu, M Arun; Yimam, Abubekker; Zewdu, Taye

    2016-01-20

    The present study deals with the production of cellulosic ethanol from bagasse using the synthesized TiO2 coupled nanocellulose (NC-TiO2) as catalyst. Aspergillus nidulans AJSU04 cellulase was used for the hydrolysis of bagasse. NC-TiO2 at various concentrations was added to bagasse in order to enhance the yield of reducing sugars. Complex interaction between cellulase, bagasse, NC-TiO2 and the reaction environment is thoroughly studied. A mathematical model was developed to describe the hydrolysis reaction. Ethanol production from enzymatically hydrolyzed sugarcane bagasse catalyzed with NC-TiO2 was carried out using Saccharomyces cerevisiae ATCC 20602. The glucose release rates and ethanol concentrations were determined. Ethanol produced was found to be strongly dependent on pretreatment given, hydrolysis and fermentation conditions. The study confirmed the promising accessibility of NC-TiO2, for enhanced glucose production rates and improved ethanol yield. PMID:26572403

  20. Coupling of kinetic Monte Carlo simulations of surface reactions to transport in a fluid for heterogeneous catalytic reactor modeling

    NASA Astrophysics Data System (ADS)

    Schaefer, C.; Jansen, A. P. J.

    2013-02-01

    We have developed a method to couple kinetic Monte Carlo simulations of surface reactions at a molecular scale to transport equations at a macroscopic scale. This method is applicable to steady state reactors. We use a finite difference upwinding scheme and a gap-tooth scheme to efficiently use a limited amount of kinetic Monte Carlo simulations. In general the stochastic kinetic Monte Carlo results do not obey mass conservation so that unphysical accumulation of mass could occur in the reactor. We have developed a method to perform mass balance corrections that is based on a stoichiometry matrix and a least-squares problem that is reduced to a non-singular set of linear equations that is applicable to any surface catalyzed reaction. The implementation of these methods is validated by comparing numerical results of a reactor simulation with a unimolecular reaction to an analytical solution. Furthermore, the method is applied to two reaction mechanisms. The first is the ZGB model for CO oxidation in which inevitable poisoning of the catalyst limits the performance of the reactor. The second is a model for the oxidation of NO on a Pt(111) surface, which becomes active due to lateral interaction at high coverages of oxygen. This reaction model is based on ab initio density functional theory calculations from literature.

  1. Coupling of kinetic Monte Carlo simulations of surface reactions to transport in a fluid for heterogeneous catalytic reactor modeling.

    PubMed

    Schaefer, C; Jansen, A P J

    2013-02-01

    We have developed a method to couple kinetic Monte Carlo simulations of surface reactions at a molecular scale to transport equations at a macroscopic scale. This method is applicable to steady state reactors. We use a finite difference upwinding scheme and a gap-tooth scheme to efficiently use a limited amount of kinetic Monte Carlo simulations. In general the stochastic kinetic Monte Carlo results do not obey mass conservation so that unphysical accumulation of mass could occur in the reactor. We have developed a method to perform mass balance corrections that is based on a stoichiometry matrix and a least-squares problem that is reduced to a non-singular set of linear equations that is applicable to any surface catalyzed reaction. The implementation of these methods is validated by comparing numerical results of a reactor simulation with a unimolecular reaction to an analytical solution. Furthermore, the method is applied to two reaction mechanisms. The first is the ZGB model for CO oxidation in which inevitable poisoning of the catalyst limits the performance of the reactor. The second is a model for the oxidation of NO on a Pt(111) surface, which becomes active due to lateral interaction at high coverages of oxygen. This reaction model is based on ab initio density functional theory calculations from literature. PMID:23406093

  2. Coupling of kinetic Monte Carlo simulations of surface reactions to transport in a fluid for heterogeneous catalytic reactor modeling

    SciTech Connect

    Schaefer, C.; Jansen, A. P. J.

    2013-02-07

    We have developed a method to couple kinetic Monte Carlo simulations of surface reactions at a molecular scale to transport equations at a macroscopic scale. This method is applicable to steady state reactors. We use a finite difference upwinding scheme and a gap-tooth scheme to efficiently use a limited amount of kinetic Monte Carlo simulations. In general the stochastic kinetic Monte Carlo results do not obey mass conservation so that unphysical accumulation of mass could occur in the reactor. We have developed a method to perform mass balance corrections that is based on a stoichiometry matrix and a least-squares problem that is reduced to a non-singular set of linear equations that is applicable to any surface catalyzed reaction. The implementation of these methods is validated by comparing numerical results of a reactor simulation with a unimolecular reaction to an analytical solution. Furthermore, the method is applied to two reaction mechanisms. The first is the ZGB model for CO oxidation in which inevitable poisoning of the catalyst limits the performance of the reactor. The second is a model for the oxidation of NO on a Pt(111) surface, which becomes active due to lateral interaction at high coverages of oxygen. This reaction model is based on ab initio density functional theory calculations from literature.

  3. Low-temperature catalytic oxidative coupling of methane in an electric field over a Ce-W-O catalyst system.

    PubMed

    Sugiura, Kei; Ogo, Shuhei; Iwasaki, Kousei; Yabe, Tomohiro; Sekine, Yasushi

    2016-01-01

    We examined oxidative coupling of methane (OCM) over various Ce-W-O catalysts at 423 K in an electric field. Ce2(WO4)3/CeO2 catalyst showed high OCM activity. In a periodic operation test over Ce2(WO4)3/CeO2 catalyst, C2 selectivity exceeded 60% during three redox cycles. However, Ce2(WO4)3/CeO2 catalyst without the electric field showed low activity, even at 1073 K: CH4 Conv., 6.0%; C2 Sel., 2.1%. A synergetic effect between the Ce2(WO4)3 structure and electric field created the reactive oxygen species for selective oxidation of methane. Results of XAFS, in-situ Raman and periodic operation tests demonstrated that OCM occurred as the lattice oxygen in Ce2(WO4)3 (short W-O bonds in distorted WO4 unit) was consumed. The consumed oxygen was reproduced by a redox mechanism in the electric field. PMID:27118726

  4. Low-temperature catalytic oxidative coupling of methane in an electric field over a Ce–W–O catalyst system

    PubMed Central

    Sugiura, Kei; Ogo, Shuhei; Iwasaki, Kousei; Yabe, Tomohiro; Sekine, Yasushi

    2016-01-01

    We examined oxidative coupling of methane (OCM) over various Ce–W–O catalysts at 423 K in an electric field. Ce2(WO4)3/CeO2 catalyst showed high OCM activity. In a periodic operation test over Ce2(WO4)3/CeO2 catalyst, C2 selectivity exceeded 60% during three redox cycles. However, Ce2(WO4)3/CeO2 catalyst without the electric field showed low activity, even at 1073 K: CH4 Conv., 6.0%; C2 Sel., 2.1%. A synergetic effect between the Ce2(WO4)3 structure and electric field created the reactive oxygen species for selective oxidation of methane. Results of XAFS, in-situ Raman and periodic operation tests demonstrated that OCM occurred as the lattice oxygen in Ce2(WO4)3 (short W–O bonds in distorted WO4 unit) was consumed. The consumed oxygen was reproduced by a redox mechanism in the electric field. PMID:27118726

  5. Low-temperature catalytic oxidative coupling of methane in an electric field over a Ce–W–O catalyst system

    NASA Astrophysics Data System (ADS)

    Sugiura, Kei; Ogo, Shuhei; Iwasaki, Kousei; Yabe, Tomohiro; Sekine, Yasushi

    2016-04-01

    We examined oxidative coupling of methane (OCM) over various Ce–W–O catalysts at 423 K in an electric field. Ce2(WO4)3/CeO2 catalyst showed high OCM activity. In a periodic operation test over Ce2(WO4)3/CeO2 catalyst, C2 selectivity exceeded 60% during three redox cycles. However, Ce2(WO4)3/CeO2 catalyst without the electric field showed low activity, even at 1073 K: CH4 Conv., 6.0%; C2 Sel., 2.1%. A synergetic effect between the Ce2(WO4)3 structure and electric field created the reactive oxygen species for selective oxidation of methane. Results of XAFS, in-situ Raman and periodic operation tests demonstrated that OCM occurred as the lattice oxygen in Ce2(WO4)3 (short W–O bonds in distorted WO4 unit) was consumed. The consumed oxygen was reproduced by a redox mechanism in the electric field.

  6. Evolution of catalytic function

    NASA Technical Reports Server (NTRS)

    Joyce, G. F.

    1993-01-01

    An RNA-based evolution system was constructed in the laboratory and used to develop RNA enzymes with novel catalytic function. By controlling the nature of the catalytic task that the molecules must perform in order to survive, it is possible to direct the evolving population toward the expression of some desired catalytic behavior. More recently, this system has been coupled to an in vitro translation procedure, raising the possibility of evolving protein enzymes in the laboratory to produce novel proteins with desired catalytic properties. The aim of this line of research is to reduce darwinian evolution, the fundamental process of biology, to a laboratory procedure that can be made to operate in the service of organic synthesis.

  7. COUPLING

    DOEpatents

    Hawke, B.C.

    1963-02-26

    This patent relates to a releasable coupling connecting a control rod to a control rod drive. This remotely operable coupling mechanism can connect two elements which are laterally and angviarly misaligned, and provides a means for sensing the locked condition of the elements. The coupling utilizes a spherical bayonet joint which is locked against rotation by a ball detent lock. (AEC)

  8. Supramolecular Macrocyclic Pd(II) and Pt(II) Squares and Rectangles with Aryldithiolate Ligands and their Excellent Catalytic Activity in Suzuki C-C Coupling Reaction.

    PubMed

    Vivekananda, K V; Dey, S; Maity, D K; Bhuvanesh, N; Jain, V K

    2015-11-01

    Addition of 1,4-benezenedithiol and 4,4'-biphenyldithiol to M(OTf)2 (M = cis-[Pt(PEt3)2](2+) or cis-[Pd(dppe)](2+)) (dppe = 1,2-bis(diphenylphosphino)ethane) gave self-assembled tetranuclear complexes [M2{S(C6H4)nS}]2(OTf)4 (n = 1, 2). The same reaction with 1,4-benezenedimethanethiol yielded octanuclear supramolecular coordination complexes (SCC) [M2{SCH2C6H4CH2S}]4(OTf)8. These complexes were characterized by NMR, mass, and UV-vis spectroscopies, cyclic voltammetry, as well as density functional theory studies and represent the first examples of SCCs constructed by thiolate groups and square-planar metal ions. The rectangular shape of tetranuclear complexes and square shape of octanuclear complex are confirmed by single-crystal structures and computational studies. The palladium complexes showed excellent catalytic activity in Suzuki C-C cross-coupling reactions with high turnover numbers (2 × 10(7)), even with low catalyst loading. PMID:26444245

  9. Fundamental studies of the mechanism of catalytic reactions with catalysts effective in the gasification of carbon solids and the oxidative coupling of methane. Quarterly report, 1 January--31 March 1994

    SciTech Connect

    Iglesia, E.; Heinemann, H.; Perry, D.L.

    1994-03-01

    This report describes work in progress on three tasks: (1) Catalytic steam gasification of coals and cokes; (2) Oxidative coupling of methane; and (3) Synthesis and characterization of catalysts. Since Task 1 is complete, a final report has been written. This report describes membrane reactors, cyclic methane conversion reactors, theoretical descriptions of reaction-separation schemes, and time-space relationships in cyclic and membrane reactors, all subtasks of Task 2. Initial studies under Task 3 are briefly described.

  10. Close-coupled Catalytic Two-Stage Liquefaction (CTSL{trademark}) process bench studies. Final report, [October 1, 1988--July 31, 1993

    SciTech Connect

    Comolli, A.G.; Johanson, E.S.; Karolkiewicz, W.F.; Lee, L.K.; Popper, G.A.; Stalzer, R.H.; Smith, T.O.

    1993-06-01

    This is the final report of a four year and ten month contract starting on October 1, 1988 to July 31, 1993 with the US Department of Energy to study and improve Close-Coupled Catalytic Two-Stage Direct Liquefaction of coal by producing high yields of distillate with improved quality at lower capital and production costs in comparison to existing technologies. Laboratory, Bench and PDU scale studies on sub-bituminous and bituminous coals are summarized and referenced in this volume. Details are presented in the three topical reports of this contract; CTSL Process Bench Studies and PDU Scale-Up with Sub-Bituminous Coal-DE-88818-TOP-1, CTSL Process Bench Studies with Bituminous Coal-DE-88818-TOP-2, and CTSL Process Laboratory Scale Studies, Modelling and Technical Assessment-DE-88818-TOP-3. Results are summarized on experiments and studies covering several process configurations, cleaned coals, solid separation methods, additives and catalysts both dispersed and supported. Laboratory microautoclave scale experiments, economic analysis and modelling studies are also included along with the PDU-Scale-Up of the CTSL processing of sub-bituminous Black Thunder Mine Wyoming coal. During this DOE/HRI effort, high distillate yields were maintained at higher throughput rates while quality was markedly improved using on-line hydrotreating and cleaned coals. Solid separations options of filtration and delayed coking were evaluated on a Bench-Scale with filtration successfully scaled to a PDU demonstration. Directions for future direct coal liquefaction related work are outlined herein based on the results from this and previous programs.

  11. COUPLING

    DOEpatents

    Frisch, E.; Johnson, C.G.

    1962-05-15

    A detachable coupling arrangement is described which provides for varying the length of the handle of a tool used in relatively narrow channels. The arrangement consists of mating the key and keyhole formations in the cooperating handle sections. (AEC)

  12. Catalytic membranes beckon

    SciTech Connect

    Caruana, C.M.

    1994-11-01

    Chemical engineers here and abroad are finding that the marriage of catalysts and membranes holds promise for faster and more specific reactions, although commercialization of this technology is several years away. Catalytic membrane reactors (CMRs) combine a heterogeneous catalyst and a permselective membrane. Reactions performed by CMRs provide higher yields--sometimes as much as 50% higher--because of better reaction selectivity--as opposed to separation selectivity. CMRs also can work at very high temperatures, using ceramic materials that would not be possible with organic membranes. Although the use of CMRs is not widespread presently, the development of new membranes--particularly porous ceramic and zeolite membranes--will increase the potential to improve yields of many catalytic processes. The paper discusses ongoing studies, metal and advanced materials for membranes, the need for continued research, hydrogen recovery from coal-derived gases, catalytic oxidation of sulfides, CMRs for water purification, and oxidative coupling of methane.

  13. Catalytic Coupling of Arene C-H Bonds and Alkynes for the Synthesis of Coumarins: the Substrate Scope and Application to the Development of Neuroimaging Agents

    PubMed Central

    Vadola, Paul A.

    2012-01-01

    C-H bond functionalization offers strategically novel approaches to complex organic compounds, however many C-H functionalization reactions suffer from poor compatibility with Lewis basic functional groups; especially amines, which are often essential for biological activity. This study describes a systematic examination of the substrate scope of catalytic hydroarylation in the context of complex amino coumarin synthesis. The choice of substrates was guided by the design and development of the next generation of Fluorescent False Neurotransmitters (FFNs); neuroimiaging probes we recently introduced for optical imaging of neurotransmission in the brain. Comparison of two mild protocols, using catalytic PtCl4 or Au(PPh3)Cl/AgSbF6, revealed that each method has a broad and mutually complementary substrate scope. The relatively less active platinum system out-performed the gold catalyst with indole substrates lacking substitution at the C-3 position and provided higher regioselectivity in the case of carbazole-based substrates. On the other hand, the more active gold catalyst demonstrated excellent functional group tolerance, and the ability to catalyze the formation of highly strained, helical products. The development of these two protocols offers enhanced substrate scope and provides versatile synthetic tools required for the structure-activity examination of FFN neuroimaging probes as well as for the synthesis of complex coumarins in general. PMID:22768913

  14. Total Synthesis of Macrocarpines D and E via an Enolate-Driven Copper-Mediated Cross-Coupling Process: Replacement of Catalytic Palladium with Copper Iodide.

    PubMed

    Rahman, M Toufiqur; Deschamps, Jeffrey R; Imler, Gregory H; Schwabacher, Alan W; Cook, James M

    2016-09-01

    An enolate driven copper-mediated cross-coupling process enabled cheaper and greener access to the key pentacyclic intermediates required for the enantiospecific total synthesis of a number of C-19 methyl substituted sarpagine/macroline indole alkaloids. Replacement of palladium (60-68%) with copper iodide (82-89%) resulted in much higher yields. The formation of an unusual 7-membered cross-coupling product was completely inhibited by using TEMPO as a radical scavenger. Further functionalization led to the first enantiospecific total synthesis of macrocarpines D and E. PMID:27526647

  15. Catalytic reactor

    DOEpatents

    Aaron, Timothy Mark; Shah, Minish Mahendra; Jibb, Richard John

    2009-03-10

    A catalytic reactor is provided with one or more reaction zones each formed of set(s) of reaction tubes containing a catalyst to promote chemical reaction within a feed stream. The reaction tubes are of helical configuration and are arranged in a substantially coaxial relationship to form a coil-like structure. Heat exchangers and steam generators can be formed by similar tube arrangements. In such manner, the reaction zone(s) and hence, the reactor is compact and the pressure drop through components is minimized. The resultant compact form has improved heat transfer characteristics and is far easier to thermally insulate than prior art compact reactor designs. Various chemical reactions are contemplated within such coil-like structures such that as steam methane reforming followed by water-gas shift. The coil-like structures can be housed within annular chambers of a cylindrical housing that also provide flow paths for various heat exchange fluids to heat and cool components.

  16. Role of Ag2S coupling on enhancing the visible-light-induced catalytic property of TiO2 nanorod arrays

    PubMed Central

    Li, Zhengcao; Xiong, Shan; Wang, Guojing; Xie, Zheng; Zhang, Zhengjun

    2016-01-01

    In order to obtain a better photocatalytic performance under visible light, Ag2S-coupled TiO2 nanorod arrays (NRAs) were prepared through the electron beam deposition with glancing angle deposition (GLAD) technique, annealing in air, followed by the successive ionic layer absorption and reaction (SILAR) method. The properties of the photoelectrochemical and photocatalytic degradation of methyl orange (MO) were thus conducted. The presence of Ag2S on TiO2 NRAs was observed to have a significant improvement on the response to visible light. It’s resulted from that Ag2S coupling can improve the short circuit photocurrent density and enhance the photocatalytic activity remarkably. PMID:26790759

  17. Green synthesis of CuO nanoparticles by aqueous extract of Anthemis nobilis flowers and their catalytic activity for the A³ coupling reaction.

    PubMed

    Nasrollahzadeh, Mahmoud; Sajadi, S Mohammad; Rostami-Vartooni, Akbar

    2015-12-01

    CuO nanoparticles (NPs) were prepared by Anthemis nobilis flowers extract as a reducing and stabilizing agent and employed in catalyzing an aldehyde-amine-alkyne coupling reaction. The synthesized CuO NPs was characterized by SEM, EDS, XRD, FT-IR and UV-visible techniques. A diverse range of propargylamines were obtained in a good to high yield. Furthermore, the separation and reuse of CuO NPs was very simple, effective and economical. PMID:26291574

  18. Surface coordination number and surface redox couples on catalyst oxides, a new approach of the interpretation of activity and selectivity III. Interpretation of chemical and catalytic oxidation reactions on some oxides

    NASA Astrophysics Data System (ADS)

    Arnaud, Y. P.

    The concepts of surface coordination number n, and of surface redox couples MO [ n] /MO ( n+1) presented previously, are exploited to explain experimental results. Two cases are considered: reactions of chemical gaseous species such as CO, CO 2, H 2, H 2O,N 2O, propene and methanol on the surface of the oxides NiO, TiO 2, and Cr 2O 3, in the absence of oxygen: activated catalytic reactions of oxygen on reductive species such as CO, H 2,C 2H 6, and CH 3OH. The knowledge of the potential of surface redox couples permits a rationalization of the study of these reactions. The efficiency of the two concepts is obvious in many cases. For example, the origin of an athermal oxidative process occurring for the oxidations of CO or H 2 on TiO 2 is easily understood, as well as those of the poisoning of the catalysts or of the inactivity of a surface saturated by oxygen. In addition, the study of chemical reactions on the oxides confirms and completes the theoretical approach used. Particularly, the existence of the surface states, which are postulated in the case of Cr 2O 3, is corroborated by experimental observations concerning the number of surface states and the value of the chemical potentials. Even though the theory is based upon thermodynamical and structural data, it also leads to a better understanding of kinetic features.

  19. Selective extraction and release using (EDTA-Ni)-layered double hydroxide coupled with catalytic oxidation of 3,3',5,5'-tetramethylbenzidine for sensitive detection of copper ion.

    PubMed

    Tang, Sheng; Chang, Yuepeng; Chia, Guo Hui; Lee, Hian Kee

    2015-07-23

    Copper is an important heavy metal in various biological processes. Many methods have been developed for detecting of copper ions (Cu(2+)) in aqueous samples. However, an easy, cheap, selective and sensitive method is still desired. In this study, a selective extraction-release-catalysis approach has been developed for sensitive detection of copper ion. Ethylenediaminetetraacetic acid (EDTA) chelated with nickel ion (Ni(2+)) were intercalated in a layered double hydroxide via a co-precipitation reaction. The product was subsequently applied as sorbent in dispersive solid-phase extraction for the enrichment of Cu(2+) at pH 6. Since Cu(2+) has a stronger complex formation constant with EDTA, Ni(2+) exchanged with Cu(2+) selectively. The resulting sorbent containing Cu(2+) was transferred to catalyze the 3,3',5,5'-tetramethylbenzidine oxidation reaction, since Cu(2+) could be released by the sorbent effectively and has high catalytic ability for the reaction. Blue light emitted from the oxidation product was measured by ultraviolet-visible spectrophotometry for the determination of Cu(2+). The extraction temperature, extraction time, and catalysis time were optimized. The results showed that this method provided a low limit of detection of 10nM, a wide linear range (0.05-100μM) and good linearity (r(2)=0.9977). The optimized conditions were applied to environmental water samples. Using Cu(2+) as an example, this work provided a new and interesting approach for the convenient and efficient detection of metal cations in aqueous samples. PMID:26231895

  20. TDLAS-based NH3 mole fraction measurement for exhaust diagnostics during selective catalytic reduction using a fiber-coupled 2.2-µm DFB diode laser

    NASA Astrophysics Data System (ADS)

    Stritzke, Felix; Diemel, Oliver; Wagner, Steven

    2015-04-01

    A new developed tunable diode laser spectrometer for the measurement of ammonia (NH3) mole fractions in exhaust gas matrices with strong CO2 and H2O background at temperatures up to 800 K is presented. In situ diagnostics in harsh exhaust environments during SCR after treatment are enabled by the use of ammonia transitions in the ν2 + ν3 near-infrared band around 2300 nm. Therefore, three lines have been selected, coinciding near 2200.5 nm (4544.5 cm-1) with rather weak temperature dependency and minimal interference with CO2 and H2O. A fiber-coupled 2.2-μm distributed feedback laser diode was used and attached to the hot gas flow utilizing adjustable gas tight high-temperature fiber ports. The spectrometer spans four coplanar optical channels across the measurement plane and simultaneously detects the direct absorption signal via a fiber-coupled detector unit. An exhaust simulation test rig was used to characterize the spectrometer's performance in ammonia-doped hot gas environments. We achieved a temporal resolution of 13 Hz and temperature-dependent precisions of NH3 mole fraction ranging from 50 to 70 ppmV. There the spectrometer achieved normalized ammonia detection limits of 7-10 and 2-3.

  1. Raney nickel catalytic device

    DOEpatents

    O'Hare, Stephen A.

    1978-01-01

    A catalytic device for use in a conventional coal gasification process which includes a tubular substrate having secured to its inside surface by expansion a catalytic material. The catalytic device is made by inserting a tubular catalytic element, such as a tubular element of a nickel-aluminum alloy, into a tubular substrate and heat-treating the resulting composite to cause the tubular catalytic element to irreversibly expand against the inside surface of the substrate.

  2. Half-sandwich nickel complexes with ring-expanded NHC ligands - synthesis, structure and catalytic activity in Kumada-Tamao-Corriu coupling.

    PubMed

    Banach, Ł; Guńka, P A; Buchowicz, W

    2016-06-01

    The general synthesis of [Ni(Cp)(X)(NHC)] complexes from a nickel halide, CpLi, and a carbene solution is reported. This procedure yields unprecedented complexes with ring-expanded NHC ligands (RE-NHC) of six- (1a, 1b), seven- (1c), and eight-membered (1d) heterocycles. The NMR spectra of 1a-1d are consistent with the hindered rotation of Ni-Ccarbene and N-CMes bonds, while X-ray analyses of 1b, 1c, and 1d reveal a pronounced trans influence of the RE-NHC ligands. Complexes 1a-1e are efficient pre-catalysts in Kumada-Tamao-Corriu coupling with the maximum efficiency observed for complexes bearing the six-membered NHC. PMID:26853761

  3. A facile method for the synthesis of copper modified amine-functionalized mesoporous zirconia and its catalytic evaluation in C-S coupling reaction.

    PubMed

    Mallick, Sujata; Rana, Surjyakanta; Parida, Kulamani

    2011-09-28

    A new copper modified amine functionalized zirconia has been synthesized by a co-condensation method using zirconium butoxide and aminopropyltriethoxy-silane (APTES) in the presence of a cationic surfactant CTAB followed by impregnation of copper. Nitrogen adsorption-desorption, X-ray powder diffraction, Fourier-transform infrared spectroscopy (FT-IR), (13)C nuclear magnetic resonance (NMR), scanning electron micrography (SEM), transmittance electron micrography (TEM), thermo gravimetric analysis-differential thermal analysis (TGA-DTA), X-ray photoelectron spectroscopy (XPS) and UV-vis DRS spectroscopic tools are used to characterize the materials. FT-IR and DRS results indicated the incorporation of Cu and amino groups on the surface of zirconia. This Cu-anchored mesoporous material acts as an efficient, reusable catalyst in the aryl-sulfur coupling reaction between aryl iodide and thiophenol for the synthesis of value added diarylsulfides. PMID:21826356

  4. The catalytic effect of sodium and lithium ions on coupled sorption-reduction of chromate at the biotite edge-fluid interface

    SciTech Connect

    Ilton, E.S.; Moses, C.O.; Raeburn, S.P.; Veblen, D.R.

    1997-09-01

    Large single crystals of biotite and near-endmember phlogopite were reacted with aqueous solutions bearing 20 {mu}M Cr(VI) and different concentrations of NaCl, LiCl, RbCl, CsCl, NaClO{sub 4}, and Na{sub 2}SO{sub 4}. Solutions were maintained at 25 {+-} 0.5{degrees}C, 1 atm, and pH = 4.00 {+-} 0.02. Samples were extracted from the reaction chamber at 1, 3, 5, 10, and 20 h. The edges and basal planes of the reacted micas were analyzed by X-ray photoelectron spectroscopy (XPS) for major elements and Cr. XPS analyses of biotite show trivalent chromium on edge surfaces but no detectable chromium on the basal plane. XPS analyses of near-endmember phlogopites and were reacted in the same experiments as biotite showed no detectable Cr on either the basal plane or edge surfaces. Increasing Na and Li salt concentrations increased the rate of coupled sorption-reduction of chromate at the biotite edge-fluid interface, where the order of effectiveness was NaCl {approximately} NaClO{sub 4} > LiCl. In contrast, no Cr was detected on mica edges after reaction in RbCl and CsCl solutions. Comparison of equimolar NaCl and LiCl experiments indicate that the active agent is Na and Li, not ionic strength or the anion. Sulfate tends to block the reaction more so than chloride. We conclude that it is the substitution of hydrated cations for interlayer K in biotite that enhances the heterogeneous reduction of chromate at the biotite edge-fluid interface. 52 refs., 17 figs., 5 tabs.

  5. Cyclometalated iridium complexes of bis(aryl) phosphine ligands: catalytic C-H/C-D exchanges and C-C coupling reactions.

    PubMed

    Campos, Jesús; Espada, María F; López-Serrano, Joaquín; Carmona, Ernesto

    2013-06-01

    This work details the synthesis and structural identification of a series of complexes of the (η(5)-C5Me5)Ir(III) unit coordinated to cyclometalated bis(aryl)phosphine ligands, PR'(Ar)2, for R' = Me and Ar = 2,4,6-Me3C6H2, 1b; 2,6-Me2-4-OMe-C6H2, 1c; 2,6-Me2-4-F-C6H2, 1d; R' = Et, Ar = 2,6-Me2C6H3, 1e. Both chloride- and hydride-containing compounds, 2b-2e and 3b-3e, respectively, are described. Reactions of chlorides 2 with NaBArF (BArF = B(3,5-C6H3(CF3)2)4) in the presence of CO form cationic carbonyl complexes, 4(+), with ν(CO) values in the narrow interval 2030-2040 cm(-1), indicating similar π-basicity of the Ir(III) center of these complexes. In the absence of CO, NaBArF forces κ(4)-P,C,C',C″ coordination of the metalated arm (studied for the selected complexes 5b, 5d, and 5e), a binding mode so far encountered only when the phosphine contains two benzylic groups. A base-catalyzed intramolecular, dehydrogenative, C-C coupling reaction converts the κ(4) species 5d and 5e into the corresponding hydrido phosphepine complexes 6d and 6e. Using CD3OD as the source of deuterium, the chlorides 2 undergo deuteration of their 11 benzylic positions whereas hydrides 3 experience only D incorporation into the Ir-H and Ir-CH2 sites. Mechanistic schemes that explain this diversity have come to light thanks to experimental and theoretical DFT studies that are also reported. PMID:23675910

  6. Switchable catalytic DNA catenanes.

    PubMed

    Hu, Lianzhe; Lu, Chun-Hua; Willner, Itamar

    2015-03-11

    Two-ring interlocked DNA catenanes are synthesized and characterized. The supramolecular catenanes show switchable cyclic catalytic properties. In one system, the catenane structure is switched between a hemin/G-quadruplex catalytic structure and a catalytically inactive state. In the second catenane structure the catenane is switched between a catalytically active Mg(2+)-dependent DNAzyme-containing catenane and an inactive catenane state. In the third system, the interlocked catenane structure is switched between two distinct catalytic structures that include the Mg(2+)- and the Zn(2+)-dependent DNAzymes. PMID:25642796

  7. Si-H bond activation at {(NHC)₂Ni⁰} leading to hydrido silyl and bis(silyl) complexes: a versatile tool for catalytic Si-H/D exchange, acceptorless dehydrogenative coupling of hydrosilanes, and hydrogenation of disilanes to hydrosilanes.

    PubMed

    Schmidt, David; Zell, Thomas; Schaub, Thomas; Radius, Udo

    2014-07-28

    The unique reactivity of the nickel(0) complex [Ni2(iPr2Im)4(COD)] (1) (iPr2Im = 1,3-di-isopropyl-imidazolin-2-ylidene) towards hydrosilanes in stoichiometric and catalytic reactions is reported. A series of nickel hydrido silyl complexes cis-[Ni(iPr2Im)2(H)(SiH(n-1)R(4-n))] (n = 1, 2) and nickel bis(silyl) complexes cis-[Ni(iPr2Im)2(SiH(n-1)R(4-n))2] (n = 1, 2, 3) were synthesized by stoichiometric reactions of 1 with hydrosilanes H(n)SiR(4-n), and fully characterized by X-ray diffraction and spectroscopic methods. These hydrido silyl complexes are examples where the full oxidative addition step is hindered. They have, as a result of the remaining Si-H interactions, remarkably short Si-H distances and feature a unique dynamic behavior in solution. Cis-[Ni(iPr2Im)2(H)(SiMePh2)] (cis-5) shows in solution at room temperature a dynamic site exchange of the NHC ligands, H-D exchange with C6D6 to give the deuteride complex cis-[Ni(iPr2Im)2(D)(SiMePh2)] (cis-5-D), and at elevated temperatures an irreversible isomerization to trans-[Ni(iPr2Im)2(D)(SiMePh2)] (trans-5-D). Reactions with sterically less demanding silanes give cis-configured bis(silyl) complexes accompanied by the release of dihydrogen. These complexes display, similarly to the hydrido silyl complexes, interestingly short Si-Si distances. Complex 1 reacts with 4 eq. HSi(OEt)3, in contrast to all the other silanes used in this study, to give the trans-configured bis(silyl) complex trans-[Ni(iPr2Im)2Ni(Si(OEt)3)2] (trans-12). The addition of two equivalents of Ph2SiH2 to 1 results, at elevated temperatures, in the formation of the dinuclear complex [{(iPr2Im)Ni-μ(2)-(HSiPh2)}2] (6). This diamagnetic, formal Ni(I) complex exhibits a long Ni-Ni bond in the solid state, as established by X-ray diffraction. The capability of the electron rich {Ni(iPr2Im)2} complex fragment to activate Si-H bonds was applied catalytically in the deuteration of Et3Si-H to Et3Si-D employing C6D6 as a convenient deuterium source

  8. Topological entropy of catalytic sets: Hypercycles revisited

    NASA Astrophysics Data System (ADS)

    Sardanyés, Josep; Duarte, Jorge; Januário, Cristina; Martins, Nuno

    2012-02-01

    The dynamics of catalytic networks have been widely studied over the last decades because of their implications in several fields like prebiotic evolution, virology, neural networks, immunology or ecology. One of the most studied mathematical bodies for catalytic networks was initially formulated in the context of prebiotic evolution, by means of the hypercycle theory. The hypercycle is a set of self-replicating species able to catalyze other replicator species within a cyclic architecture. Hypercyclic organization might arise from a quasispecies as a way to increase the informational containt surpassing the so-called error threshold. The catalytic coupling between replicators makes all the species to behave like a single and coherent evolutionary multimolecular unit. The inherent nonlinearities of catalytic interactions are responsible for the emergence of several types of dynamics, among them, chaos. In this article we begin with a brief review of the hypercycle theory focusing on its evolutionary implications as well as on different dynamics associated to different types of small catalytic networks. Then we study the properties of chaotic hypercycles with error-prone replication with symbolic dynamics theory, characterizing, by means of the theory of topological Markov chains, the topological entropy and the periods of the orbits of unimodal-like iterated maps obtained from the strange attractor. We will focus our study on some key parameters responsible for the structure of the catalytic network: mutation rates, autocatalytic and cross-catalytic interactions.

  9. Controlling the catalytic aerobic oxidation of phenols.

    PubMed

    Esguerra, Kenneth Virgel N; Fall, Yacoub; Petitjean, Laurène; Lumb, Jean-Philip

    2014-05-28

    The oxidation of phenols is the subject of extensive investigation, but there are few catalytic aerobic examples that are chemo- and regioselective. Here we describe conditions for the ortho-oxygenation or oxidative coupling of phenols under copper (Cu)-catalyzed aerobic conditions that give rise to ortho-quinones, biphenols or benzoxepines. We demonstrate that each product class can be accessed selectively by the appropriate choice of Cu(I) salt, amine ligand, desiccant and reaction temperature. In addition, we evaluate the effects of substituents on the phenol and demonstrate their influence on selectivity between ortho-oxygenation and oxidative coupling pathways. These results create an important precedent of catalyst control in the catalytic aerobic oxidation of phenols and set the stage for future development of catalytic systems and mechanistic investigations. PMID:24784319

  10. Catalytic Organometallic Reactions of Ammonia

    PubMed Central

    Klinkenberg, Jessica L.

    2012-01-01

    Until recently, ammonia had rarely succumbed to catalytic transformations with homogeneous catalysts, and the development of such reactions that are selective for the formation of single products under mild conditions has encountered numerous challenges. However, recently developed catalysts have allowed several classes of reactions to create products with nitrogen-containing functional groups from ammonia. These reactions include hydroaminomethylation, reductive amination, alkylation, allylic substitution, hydroamination, and cross-coupling. This Minireview describes examples of these processes and the factors that control catalyst activity and selectivity. PMID:20857466

  11. Two stage catalytic combustor

    NASA Technical Reports Server (NTRS)

    Alvin, Mary Anne (Inventor); Bachovchin, Dennis (Inventor); Smeltzer, Eugene E. (Inventor); Lippert, Thomas E. (Inventor); Bruck, Gerald J. (Inventor)

    2010-01-01

    A catalytic combustor (14) includes a first catalytic stage (30), a second catalytic stage (40), and an oxidation completion stage (49). The first catalytic stage receives an oxidizer (e.g., 20) and a fuel (26) and discharges a partially oxidized fuel/oxidizer mixture (36). The second catalytic stage receives the partially oxidized fuel/oxidizer mixture and further oxidizes the mixture. The second catalytic stage may include a passageway (47) for conducting a bypass portion (46) of the mixture past a catalyst (e.g., 41) disposed therein. The second catalytic stage may have an outlet temperature elevated sufficiently to complete oxidation of the mixture without using a separate ignition source. The oxidation completion stage is disposed downstream of the second catalytic stage and may recombine the bypass portion with a catalyst exposed portion (48) of the mixture and complete oxidation of the mixture. The second catalytic stage may also include a reticulated foam support (50), a honeycomb support, a tube support or a plate support.

  12. Catalytic cracking process

    DOEpatents

    Lokhandwala, Kaaeid A.; Baker, Richard W.

    2001-01-01

    Processes and apparatus for providing improved catalytic cracking, specifically improved recovery of olefins, LPG or hydrogen from catalytic crackers. The improvement is achieved by passing part of the wet gas stream across membranes selective in favor of light hydrocarbons over hydrogen.

  13. Catalytic distillation structure

    DOEpatents

    Smith, Jr., Lawrence A.

    1984-01-01

    Catalytic distillation structure for use in reaction distillation columns, a providing reaction sites and distillation structure and consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and being present with the catalyst component in an amount such that the catalytic distillation structure consist of at least 10 volume % open space.

  14. The plausible role of carbonate in photo-catalytic water oxidation processes.

    PubMed

    Kornweitz, Haya; Meyerstein, Dan

    2016-04-20

    DFT calculations point out that the photo-oxidation of water on GaN is energetically considerably facilitated by adsorbed carbonate. As the redox potential of the couple CO3˙(-)/CO3(2-) is considerably lower than that of the couple OH˙/OH(-) but still enables the oxidation of water it is suggested that carbonate should be considered as a catalyst/co-catalyst in a variety of catalytic/photo-catalytic/electro-catalytic oxidation processes. PMID:27045227

  15. Catalytic distillation process

    DOEpatents

    Smith, Jr., Lawrence A.

    1982-01-01

    A method for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C.sub.4 feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  16. Catalytic distillation process

    DOEpatents

    Smith, L.A. Jr.

    1982-06-22

    A method is described for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C[sub 4] feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  17. Catalytic distillation structure

    DOEpatents

    Smith, L.A. Jr.

    1984-04-17

    Catalytic distillation structure is described for use in reaction distillation columns, and provides reaction sites and distillation structure consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and is present with the catalyst component in an amount such that the catalytic distillation structure consists of at least 10 volume % open space. 10 figs.

  18. Clean catalytic combustor program

    NASA Technical Reports Server (NTRS)

    Ekstedt, E. E.; Lyon, T. F.; Sabla, P. E.; Dodds, W. J.

    1983-01-01

    A combustor program was conducted to evolve and to identify the technology needed for, and to establish the credibility of, using combustors with catalytic reactors in modern high-pressure-ratio aircraft turbine engines. Two selected catalytic combustor concepts were designed, fabricated, and evaluated. The combustors were sized for use in the NASA/General Electric Energy Efficient Engine (E3). One of the combustor designs was a basic parallel-staged double-annular combustor. The second design was also a parallel-staged combustor but employed reverse flow cannular catalytic reactors. Subcomponent tests of fuel injection systems and of catalytic reactors for use in the combustion system were also conducted. Very low-level pollutant emissions and excellent combustor performance were achieved. However, it was obvious from these tests that extensive development of fuel/air preparation systems and considerable advancement in the steady-state operating temperature capability of catalytic reactor materials will be required prior to the consideration of catalytic combustion systems for use in high-pressure-ratio aircraft turbine engines.

  19. Catalytic coherence transformations

    NASA Astrophysics Data System (ADS)

    Bu, Kaifeng; Singh, Uttam; Wu, Junde

    2016-04-01

    Catalytic coherence transformations allow the otherwise impossible state transformations using only incoherent operations with the aid of an auxiliary system with finite coherence that is not being consumed in any way. Here we find the necessary and sufficient conditions for the deterministic and stochastic catalytic coherence transformations between a pair of pure quantum states. In particular, we show that the simultaneous decrease of a family of Rényi entropies of the diagonal parts of the states under consideration is a necessary and sufficient condition for the deterministic catalytic coherence transformations. Similarly, for stochastic catalytic coherence transformations we find the necessary and sufficient conditions for achieving a higher optimal probability of conversion. We thus completely characterize the coherence transformations among pure quantum states under incoherent operations. We give numerous examples to elaborate our results. We also explore the possibility of the same system acting as a catalyst for itself and find that indeed self-catalysis is possible. Further, for the cases where no catalytic coherence transformation is possible we provide entanglement-assisted coherence transformations and find the necessary and sufficient conditions for such transformations.

  20. Transient catalytic combustor model

    NASA Technical Reports Server (NTRS)

    Tien, J. S.

    1981-01-01

    A quasi-steady gas phase and thermally thin substrate model is used to analyze the transient behavior of catalytic monolith combustors in fuel lean operation. The combustor response delay is due to the substrate thermal inertia. Fast response is favored by thin substrate, short catalytic bed length, high combustor inlet and final temperatures, and small gas channel diameters. The calculated gas and substrate temperature time history at different axial positions provides an understanding of how the catalytic combustor responds to an upstream condition change. The computed results also suggest that the gas residence times in the catalytic bed in the after bed space are correlatable with the nondimensional combustor response time. The model also performs steady state combustion calculations; and the computed steady state emission characteristics show agreement with available experimental data in the range of parameters covered. A catalytic combustor design for automotive gas turbine engine which has reasonably fast response ( 1 second) and can satisfy the emission goals in an acceptable total combustor length is possible.

  1. Catalytic nanoporous membranes

    DOEpatents

    Pellin, Michael J; Hryn, John N; Elam, Jeffrey W

    2013-08-27

    A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity. Also provided is a method for producing a catalytic membrane having flow-through pores and discreet catalytic clusters adhering to the inside surfaces of the pores.

  2. Catalytic hydrotreating process

    DOEpatents

    Karr, Jr., Clarence; McCaskill, Kenneth B.

    1978-01-01

    Carbonaceous liquids boiling above about 300.degree. C such as tars, petroleum residuals, shale oils and coal-derived liquids are catalytically hydrotreated by introducing the carbonaceous liquid into a reaction zone at a temperature in the range of 300.degree. to 450.degree. C and a pressure in the range of 300 to 4000 psig for effecting contact between the carbonaceous liquid and a catalytic transition metal sulfide in the reaction zone as a layer on a hydrogen permeable transition metal substrate and then introducing hydrogen into the reaction zone by diffusing the hydrogen through the substrate to effect the hydrogenation of the carbonaceous liquid in the presence of the catalytic sulfide layer.

  3. Steam reformer with catalytic combustor

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E. (Inventor)

    1990-01-01

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  4. Steam reformer with catalytic combustor

    DOEpatents

    Voecks, Gerald E.

    1990-03-20

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  5. Catalytic coal liquefaction process

    DOEpatents

    Garg, Diwakar; Sunder, Swaminathan

    1986-01-01

    An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids.

  6. Hollow fiber catalytic membranes

    SciTech Connect

    Ma, Yi Hua; Moser, W.; Shelekhin, A.; Pien, Shyhing

    1993-09-01

    The objective of the present research is to investigate the possibility of the enhancement of the H{sub 2}S thermal decomposition in the IGCC system by employing the hollow fiber catalytic membrane reactor. To accomplish the objective, the following major components in the analysis of the high temperature membrane reactor must be investigated: high-temperature stability of the porous glass membrane; catalytic properties of MoS{sub 2} and of the porous glass membrane; catalytic decomposition of H{sub 2}S in a packed bed reactor; catalytic decomposition of 100%, 8.6%, and 1.1% H{sub 2}S gas mixtures in the membrane reactor. The study has been shown that the conversion of the H{sub 2}S can be increased in the packed bed membrane reactor compared to the equilibrium conversion on the shell side. The development of a mathematical model for the proposed process is in progress. The model will enable optimization of the H{sub 2}S decomposition. These conditions include selectivity factors and pressure drop across the membrane.

  7. Catalytic coal liquefaction process

    DOEpatents

    Garg, D.; Sunder, S.

    1986-12-02

    An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids. 1 fig.

  8. Monolithic catalytic igniters

    NASA Technical Reports Server (NTRS)

    La Ferla, R.; Tuffias, R. H.; Jang, Q.

    1993-01-01

    Catalytic igniters offer the potential for excellent reliability and simplicity for use with the diergolic bipropellant oxygen/hydrogen as well as with the monopropellant hydrazine. State-of-the-art catalyst beds - noble metal/granular pellet carriers - currently used in hydrazine engines are limited by carrier stability, which limits the hot-fire temperature, and by poor thermal response due to the large thermal mass. Moreover, questions remain with regard to longevity and reliability of these catalysts. In this work, Ultramet investigated the feasibility of fabricating monolithic catalyst beds that overcome the limitations of current catalytic igniters via a combination of chemical vapor deposition (CVD) iridium coatings and chemical vapor infiltration (CVI) refractory ceramic foams. It was found that under all flow conditions and O2:H2 mass ratios tested, a high surface area monolithic bed outperformed a Shell 405 bed. Additionally, it was found that monolithic catalytic igniters, specifically porous ceramic foams fabricated by CVD/CVI processing, can be fabricated whose catalytic performance is better than Shell 405 and with significantly lower flow restriction, from materials that can operate at 2000 C or higher.

  9. Mitsunobu Reactions Catalytic in Phosphine and a Fully Catalytic System.

    PubMed

    Buonomo, Joseph A; Aldrich, Courtney C

    2015-10-26

    The Mitsunobu reaction is renowned for its mild reaction conditions and broad substrate tolerance, but has limited utility in process chemistry and industrial applications due to poor atom economy and the generation of stoichiometric phosphine oxide and hydrazine by-products that complicate purification. A catalytic Mitsunobu reaction using innocuous reagents to recycle these by-products would overcome both of these shortcomings. Herein we report a protocol that is catalytic in phosphine (1-phenylphospholane) employing phenylsilane to recycle the catalyst. Integration of this phosphine catalytic cycle with Taniguchi's azocarboxylate catalytic system provided the first fully catalytic Mitsunobu reaction. PMID:26347115

  10. Mitsunobu Reactions Catalytic in Phosphine and a Fully Catalytic System

    PubMed Central

    Buonomo, Joseph A; Aldrich, Courtney C

    2015-01-01

    The Mitsunobu reaction is renowned for its mild reaction conditions and broad substrate tolerance, but has limited utility in process chemistry and industrial applications due to poor atom economy and the generation of stoichiometric phosphine oxide and hydrazine by-products that complicate purification. A catalytic Mitsunobu reaction using innocuous reagents to recycle these by-products would overcome both of these shortcomings. Herein we report a protocol that is catalytic in phosphine (1-phenylphospholane) employing phenylsilane to recycle the catalyst. Integration of this phosphine catalytic cycle with Taniguchi’s azocarboxylate catalytic system provided the first fully catalytic Mitsunobu reaction. PMID:26347115

  11. Catalytic Antioxidants and Neurodegeneration

    PubMed Central

    Golden, Tamara R.

    2009-01-01

    Abstract Oxidative stress, resulting from mitochondrial dysfunction, excitotoxicity, or neuroinflammation, is implicated in numerous neurodegenerative conditions. Damage due to superoxide, hydroxyl radical, and peroxynitrite has been observed in diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, as well as in acute conditions that lead to neuronal death, such as stroke and epilepsy. Antioxidant therapies to remove these toxic compounds have been of great interest in treating these disorders. Catalytic antioxidants mimic the activities of superoxide dismutase or catalase or both, detoxifying superoxide and hydrogen peroxide, and in some cases, peroxynitrite and other toxic species as well. Several compounds have demonstrated efficacy in in vitro and in animal models of neurodegeneration, leading to optimism that catalytic antioxidants may prove to be useful therapies in human disease. Antioxid. Redox Signal. 11, 555–569. PMID:18754709

  12. Catalytic thermal barrier coatings

    DOEpatents

    Kulkarni, Anand A.; Campbell, Christian X.; Subramanian, Ramesh

    2009-06-02

    A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

  13. Catalytic, hollow, refractory spheres

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor); Lee, Mark C. (Inventor); Kendall, Jr., James M. (Inventor)

    1987-01-01

    Improved, heterogeneous, refractory catalysts are in the form of gas-impervious, hollow, thin-walled spheres (10) suitable formed of a shell (12) of refractory such as alumina having a cavity (14) containing a gas at a pressure greater than atmospheric pressure. The wall material may be itself catalytic or a catalytically active material coated onto the sphere as a layer (16), suitably platinum or iron, which may be further coated with a layer (18) of activator or promoter. The density of the spheres (30) can be uniformly controlled to a preselected value within .+-.10 percent of the density of the fluid reactant such that the spheres either remain suspended or slowly fall or rise through the liquid reactant.

  14. Catalytic reforming catalyst

    SciTech Connect

    Buss, W.C.; Kluksdahl, H.E.

    1980-12-09

    An improved catalyst, having a reduced fouling rate when used in a catalytic reforming process, said catalyst comprising platinum disposed on an alumina support wherein the alumina support is obtained by removing water from aluminum hydroxide produced as a by-product from a ziegler higher alcohol synthesis reaction, and wherein the alumina is calcined at a temperature of 1100-1400/sup 0/F so as to have a surface area of 165 to 215 square meters per gram.

  15. Catalytic combustion nears application

    SciTech Connect

    1994-11-01

    This article is a brief review of efforts to develope a catalytic combustion system with emissions levels less than 10 ppm. Two efforts are discussed: (1) tests by General Electric using a GE Frame 7E/9E and 7F/9F gas turbine, and (2) tests by AES using a Kawasaki M1A-13A industrial gas turbine. The latter also employs a heat recovery steam generator and produces 3 MWe and 28,000 lbm/hr of steam.

  16. Catalytic nanoporous membranes

    DOEpatents

    Pellin, Michael J.; Hryn, John N.; Elam, Jeffrey W.

    2009-12-01

    A nanoporous catalytic membrane which displays several unique features including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity.

  17. Fundamental studies of the mechanism of catalytic reactions with catalysts effective in the gasification of carbon solids and the oxidative coupling of methane. Quarterly report, July 1, 1994--September 30, 1994

    SciTech Connect

    Iglesia, E.; Perry, D.L.; Heinemann, H.

    1994-09-01

    Research continued on the study of catalysts and membrane materials involved in the oxidative coupling of methane and coal gasification processes. Membranes studied and fabricated included Sr-Zr-Y-O, Sr-Zr-Y, and Sr-Ce-Y-O systems.

  18. A novel and versatile nanomachine for ultrasensitive and specific detection of microRNAs based on molecular beacon initiated strand displacement amplification coupled with catalytic hairpin assembly with DNAzyme formation.

    PubMed

    Yan, Yurong; Shen, Bo; Wang, Hong; Sun, Xue; Cheng, Wei; Zhao, Hua; Ju, Huangxian; Ding, Shijia

    2015-08-21

    MicroRNAs are small regulatory molecules that can be used as potential biomarkers of clinical diagnosis, and efforts have been directed towards the development of a simple, rapid, and sequence-selective analysis of microRNAs. Here, we report a simple and versatile colorimetric strategy for ultrasensitive and specific determination of microRNAs based on molecular beacon initiated strand displacement amplification (SDA) and catalytic hairpin assembly (CHA) with DNAzyme formation. The presence of target microRNAs triggers strand displacement amplification to release nicking DNA triggers, which initiate CHA to produce large amounts of CHA products. Meanwhile, the numerous CHA products can combine with hemin to form G-quadruplex/hemin DNAzyme, a well-known horseradish peroxidase (HRP) mimic, catalyzing a colorimetric reaction. Moreover, the purification of the SDA mixture has been developed for eliminating matrix interference to decrease nonspecific CHA products. Under the optimal conditions and using the promising amplification strategy, the established colorimetric nanomachine (biosensor) shows high sensitivity and selectivity in a dynamic response range from 5 fM to 5 nM with a detection limit as low as 1.7 fM (S/N = 3). In addition, a versatile colorimetric biosensor has been developed for detection of different miRNAs by only changing the miRNA-recognition domain of molecular beacon. Thus, this colorimetric biosensor may become a potential alternative tool for biomedical research and clinical molecular diagnostics. PMID:26134555

  19. Catalytic hydrogenation of carbon monoxide

    SciTech Connect

    Wayland, B.B.

    1992-12-01

    This project is focused on developing strategies to accomplish the reduction and hydrogenation of carbon monoxide to produce organic oxygenates at mild conditions. Our approaches to this issue are based on the recognition that rhodium macrocycles have unusually favorable thermodynamic values for producing a series of intermediate implicated in the catalytic hydrogenation of CO. Observations of metalloformyl complexes produced by reactions of H{sub 2} and CO, and reductive coupling of CO to form metallo {alpha}-diketone species have suggested a multiplicity of routes to organic oxygenates that utilize these species as intermediates. Thermodynamic and kinetic-mechanistic studies are used in constructing energy profiles for a variety of potential pathways, and these schemes are used in guiding the design of new metallospecies to improve the thermodynamic and kinetic factors for individual steps in the overall process. Variation of the electronic and steric effects associated with the ligand arrays along with the influences of the reaction medium provide the chemical tools for tuning these factors. Emerging knowledge of the factors that contribute to M-H, M-C and M-O bond enthalpies is directing the search for ligand arrays that will expand the range of metal species that have favorable thermodynamic parameters to produce the primary intermediates for CO hydrogenation. Studies of rhodium complexes are being extended to non-macrocyclic ligand complexes that emulate the favorable thermodynamic features associated with rhodium macrocycles, but that also manifest improved reaction kinetics. Multifunctional catalyst systems designed to couple the ability of rhodium complexes to produce formyl and diketone intermediates with a second catalyst that hydrogenates these imtermediates are promising approaches to accomplish CO hydrogenation at mild conditions.

  20. Catalytic reforming methods

    DOEpatents

    Tadd, Andrew R; Schwank, Johannes

    2013-05-14

    A catalytic reforming method is disclosed herein. The method includes sequentially supplying a plurality of feedstocks of variable compositions to a reformer. The method further includes adding a respective predetermined co-reactant to each of the plurality of feedstocks to obtain a substantially constant output from the reformer for the plurality of feedstocks. The respective predetermined co-reactant is based on a C/H/O atomic composition for a respective one of the plurality of feedstocks and a predetermined C/H/O atomic composition for the substantially constant output.

  1. Catalytic considerations in temperature measurement.

    NASA Technical Reports Server (NTRS)

    Ash, R. L.; Crossman, G. R.; Chitnis, R. V.

    1972-01-01

    Literature discussing catalytic activity in platinum group temperature sensors is surveyed. Methods for the determination and/or elimination of catalytic activity are reported. A particular application of the literature is discussed in which it is possible to infer that a shielded platinum total temperature probe does not experience significant catalytic activity in the wake of a supersonic hydrogen burner, while a bare iridium plus rhodium, iridium thermocouple does. It is concluded that catalytic data corrections are restricted and that it is preferable to coat the temperature sensor with a noncatalytic coating. Furthermore, the desirability of transparent coatings is discussed.

  2. Preconversion catalytic deoxygenation of phenolic functional groups

    SciTech Connect

    Kubiak, C.P.

    1991-01-01

    The deoxygenation of phenols is a conceptually simple, but unusually difficult chemical transformation to achieve. Aryl carbon-oxygen bond cleavage is a chemical transformation of importance in coal liquefaction and the upgrading of coal liquids as well as in the synthesis of natural products. This proposed research offers the possibility of effecting the selective catalytic deoxygenation of phenolic functional groups using CO. A program of research for the catalytic deoxygenation of phenols, via a low energy mechanistic pathway that is based on the use of the CO/CO{sub 2} couple to remove phenolic oxygen atoms, is underway. We are focusing on systems which have significant promise as catalysts: Ir(triphos)OPh, (Pt(triphos)OPh){sup +} and Rh(triphos)OPh. Our studies of phenol deoxygenation focus on monitoring the reactions for the elementary processes upon which catalytic activity will depend: CO insertion into M-OPh bonds, CO{sub 2} elimination from aryloxy carbonyls {l brace}M-C(O)-O-Ph{r brace}, followed by formation of a coordinated benzyne intermediate.

  3. Deep catalytic cracking, maximize olefin production

    SciTech Connect

    Chapin, L.; Letzsch, W. )

    1994-01-01

    Recent environmental regulations coupled with lead phase out have shifted the focus of the FCC from that of an octane barrel machine to that of a light olefins generator. The light olefins are the necessary feedstock for premium reformulated gasoline (RFG) blending components such as MTBE, TAME and alkylate. The demand for these light olefins will impact the operation of the FCC and Steam Cracker (SC). There will be a need for economical olefin generating processing alternatives to supplement SC's for C[sub 3]= and FCC's for C[sub 3]= through C[sub 5]= RFG component feedstocks. To this end, Stone Webster has recently entered into an agreement with the Research Institute of Petroleum Processing (RIPP) and Sinopec International, both located in the People's Republic of China, to exclusively license RIPP's Deep Catalytic Cracking (DCC) technology outside of China. DCC is a newly developed catalytic cracking process for producing light olefins (C[sub 3]--C[sub 5]) from heavy feedstocks. DCC is a fluidized bed process for selectively cracking a variety of hydrocarbon feedstocks to light olefins. Unlike s steam cracker, the predominate products are propylenes and butylenes, the direct result of catalytic cracking rather than free radical thermal reactions. There are two distinct modes of DCC operation: maximum propylene (Type 1) and maximum iso-olefin production (Type 2). Each mode of operation employs a unique catalyst as well as reaction conditions.

  4. Catalytic applications of bio-inspired nanomaterials

    NASA Astrophysics Data System (ADS)

    Pacardo, Dennis Kien Balaong

    The biomimetic synthesis of Pd nanoparticles was presented using the Pd4 peptide, TSNAVHPTLRHL, isolated from combinatorial phage display library. Using this approach, nearly monodisperse and spherical Pd nanoparticles were generated with an average diameter of 1.9 +/- 0.4 nm. The peptide-based nanocatalyst were employed in the Stille coupling reaction under energy-efficient and environmentally friendly reaction conditions of aqueous solvent, room temperature and very low catalyst loading. To this end, the Pd nanocatalyst generated high turnover frequency (TOF) value and quantitative yields using ≥ 0.005 mol% Pd as well as catalytic activities with different aryl halides containing electron-withdrawing and electron-donating groups. The Pd4-capped Pd nanoparticles followed the atom-leaching mechanism and were found to be selective with respect to substrate identity. On the other hand, the naturally-occurring R5 peptide (SSKKSGSYSGSKGSKRRIL) was employed in the synthesis of biotemplated Pd nanomaterials which showed morphological changes as a function of Pd:peptide ratio. TOF analysis for hydrogenation of olefinic alcohols showed similar catalytic activity regardless of nanomorphology. Determination of catalytic properties of these bio-inspired nanomaterials are important as they serve as model system for alternative green catalyst with applications in industrially important transformations.

  5. Novel Catalytic Membrane Reactors

    SciTech Connect

    Stuart Nemser, PhD

    2010-10-01

    There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

  6. Catalytic cracking process

    SciTech Connect

    Gladrow, E.M.; Winter, W.E.

    1980-04-29

    The octane number of a cracked naphtha can be significantly improved in a catalytic cracking unit, without significant decrease in naphtha yield, by maintaining certain critical concentrations of metals on the catalyst, suitably by blending or adding a heavy metals-containing component to the gas oil feed. Suitably, in a catalytic cracking process unit wherein a gas oil feed is cracked in a cracking reactor (Zone) at an elevated temperature in the presence of a cracking catalyst, the cracking catalyst is regenerated in a regenerator (Regeneration zone) by burning coke off the catalyst, and catalyst is circulated between the reactor and regenerator, sufficient of a metals-containing heavy feedstock is admixed, intermittantly or continuously, with the gas oil feed to deposit metals on said catalyst and raise the metals-content of said catalyst to a level of from about 1500 to about 6000 parts per million, preferably from about 2500 to about 4000 parts per million expressed as equivalent nickel, base the weight of the catalyst, and said metals level is maintained on the catalyst throughout the operation by withdrawing high metals-containing catalyst and adding low metals-containing catalyst to the regenerator.

  7. Optical activity of catalytic elements of hetero-metallic nanostructures

    NASA Astrophysics Data System (ADS)

    Antosiewicz, Tomasz J.; Apell, S. Peter; Wadell, Carl; Langhammer, Christoph

    2015-05-01

    Interaction of light with metals in the form of surface plasmons is used in a wide range of applications in which the scattering decay channel is important. The absorption channel is usually thought of as unwanted and detrimental to the efficiency of the device. This is true in many applications, however, recent studies have shown that maximization of the decay channel of surface plasmons has potentially significant uses. One of these is the creation of electron-hole pairs or hot electrons which can be used for e.g. catalysis. Here, we study the optical properties of hetero-metallic nanostructures that enhance light interaction with the catalytic elements of the nanostructures. A hybridized LSPR that matches the spectral characteristic of the light source is excited. This LSPR through coupling between the plasmonic elements maximizes light absorption in the catalytic part of the nanostructure. Numerically calculated visible light absorption in the catalytic nanoparticles is enhanced 12-fold for large catalytic disks and by more 30 for small nanoparticles on the order of 5 nm. In experiments we measure a sizable increase in the absorption cross section when small palladium nanoparticles are coupled to a large silver resonator. These observations suggest that heterometallic nanostructures can enhance catalytic reaction rates.

  8. Catalytic reactor with disposable cartridge

    NASA Technical Reports Server (NTRS)

    Mccullough, C. M.

    1973-01-01

    Catalytic reactor, disposable cartridge enclosing iron catalyst, acts as container for solid carbon formed by decomposition of carbon monoxide. Deposition of carbon in other parts of oxygen recovery system does not occur because of lack of catalytic activity; filters trap carbon particles and prevent their being transported outside reaction zone.

  9. ``OPTICAL Catalytic Nanomotors''

    NASA Astrophysics Data System (ADS)

    Rosary-Oyong, Se, Glory

    D. Kagan, et.al, 2009:'' a motion-based chemical sensing involving fuel-driven nanomotors is demonstrated. The new protocol relies on the use of an optical microscope for tracking charge in the speed of nanowire motors in the presence of target analyte''. Synthetic nanomotors are propelled by catalytic decomposition of .. they do not require external electric, magnetic or optical fields as energy... Accompanying Fig 2.6(a) of optical micrograph of a partial monolayer of silica microbeads [J.Gibbs, 2011 ] retrieves WF Paxton:''rods were characterized by transmission electron & dark-field optical microscopy..'' & LF Valadares:''dimer due to the limited resolution of optical microscopy, however the result..'. Acknowledged to HE. Mr. Prof. SEDIONO M.P. TJONDRONEGORO.

  10. Bifunctional catalytic electrode

    NASA Technical Reports Server (NTRS)

    Cisar, Alan (Inventor); Murphy, Oliver J. (Inventor); Clarke, Eric (Inventor)

    2005-01-01

    The present invention relates to an oxygen electrode for a unitized regenerative hydrogen-oxygen fuel cell and the unitized regenerative fuel cell having the oxygen electrode. The oxygen electrode contains components electrocatalytically active for the evolution of oxygen from water and the reduction of oxygen to water, and has a structure that supports the flow of both water and gases between the catalytically active surface and a flow field or electrode chamber for bulk flow of the fluids. The electrode has an electrocatalyst layer and a diffusion backing layer interspersed with hydrophilic and hydrophobic regions. The diffusion backing layer consists of a metal core having gas diffusion structures bonded to the metal core.

  11. Catalytic hollow spheres

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor); Lee, Mark C. (Inventor); Kendall, Jr., James M. (Inventor)

    1986-01-01

    The improved, heterogeneous catalysts are in the form of gas-impervious, hollow, thin-walled spheres (10) suitably formed of a shell (12) of metal such as aluminum having a cavity (14) containing a gas at a pressure greater than atmospheric pressure. The wall material may be, itself, catalytic or the catalyst can be coated onto the sphere as a layer (16), suitably platinum or iron, which may be further coated with a layer (18) of activator or promoter. The density of the spheres (30) can be uniformly controlled to a preselected value within .+-.10 percent of the density of the fluid reactant such that the spheres either remain suspended or slowly fall or rise through the liquid reactant.

  12. Catalytic hollow spheres

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor); Lee, Mark C. (Inventor); Kendall, Jr., James M. (Inventor)

    1989-01-01

    The improved, heterogeneous catalysts are in the form of gas-impervious, hollow, thin-walled spheres (10) suitably formed of a shell (12) of metal such as aluminum having a cavity (14) containing a gas at a pressure greater than atmospheric pressure. The wall material may be, itself, catalytic or the catalyst can be coated onto the sphere as a layer (16), suitably platinum or iron, which may be further coated with a layer (18) of activator or promoter. The density of the spheres (30) can be uniformly controlled to a preselected value within .+-.10 percent of the density of the fluid reactant such that the spheres either remain suspended or slowly fall or rise through the liquid reactant.

  13. Catalytic conversions of chlorodecalin

    SciTech Connect

    Takhistov, U.V.; Kovyazin, V.E.

    1985-10-01

    This paper studies catalytic conversions of chlorinated decahydronaphthalene (chlorodecalin), since the introduction of chlorine into the hydrocarbon molecule would facilitate formation of the original carbonium ion required for conversion to adamantane. Analysis of the fractions obtained showed that two main products are formed: the tricyclic hydrocarbon C/sub 10/H/sub 16/ and the bicyclic hydrocarbon C/sub 10/H/sub 16/. Therefore, the C/sub 10/H/sub 17/ cation formed by removal of chlorine from chlorodecalin, C/sub 10/H/sub 17/CI, undergoes changes in two directions: addition of hydride ions from other chlorodecalin molecules to form Decalin, and loss of a proton to give a tricyclic system of the adamantane weries and its isomer. Introduction of a substituent (chlorine) into the Decalin molecule made it possible to conduct the process at low temperatures.

  14. Unsteady catalytic processes and sorption-catalytic technologies

    NASA Astrophysics Data System (ADS)

    Zagoruiko, A. N.

    2007-07-01

    Catalytic processes that occur under conditions of the targeted unsteady state of the catalyst are considered. The highest efficiency of catalytic processes was found to be ensured by a controlled combination of thermal non-stationarity and unsteady composition of the catalyst surface. The processes based on this principle are analysed, in particular, catalytic selective reduction of nitrogen oxides, deep oxidation of volatile organic impurities, production of sulfur by the Claus process and by hydrogen sulfide decomposition, oxidation of sulfur dioxide, methane steam reforming and anaerobic combustion, selective oxidation of hydrocarbons, etc.

  15. Catalytic Microtube Rocket Igniter

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Deans, Matthew C.

    2011-01-01

    Devices that generate both high energy and high temperature are required to ignite reliably the propellant mixtures in combustion chambers like those present in rockets and other combustion systems. This catalytic microtube rocket igniter generates these conditions with a small, catalysis-based torch. While traditional spark plug systems can require anywhere from 50 W to multiple kW of power in different applications, this system has demonstrated ignition at less than 25 W. Reactants are fed to the igniter from the same tanks that feed the reactants to the rest of the rocket or combustion system. While this specific igniter was originally designed for liquid methane and liquid oxygen rockets, it can be easily operated with gaseous propellants or modified for hydrogen use in commercial combustion devices. For the present cryogenic propellant rocket case, the main propellant tanks liquid oxygen and liquid methane, respectively are regulated and split into different systems for the individual stages of the rocket and igniter. As the catalyst requires a gas phase for reaction, either the stored boil-off of the tanks can be used directly or one stream each of fuel and oxidizer can go through a heat exchanger/vaporizer that turns the liquid propellants into a gaseous form. For commercial applications, where the reactants are stored as gases, the system is simplified. The resulting gas-phase streams of fuel and oxidizer are then further divided for the individual components of the igniter. One stream each of the fuel and oxidizer is introduced to a mixing bottle/apparatus where they are mixed to a fuel-rich composition with an O/F mass-based mixture ratio of under 1.0. This premixed flow then feeds into the catalytic microtube device. The total flow is on the order of 0.01 g/s. The microtube device is composed of a pair of sub-millimeter diameter platinum tubes connected only at the outlet so that the two outlet flows are parallel to each other. The tubes are each

  16. Method for measuring recovery of catalytic elements from fuel cells

    DOEpatents

    Shore, Lawrence; Matlin, Ramail

    2011-03-08

    A method is provided for measuring the concentration of a catalytic clement in a fuel cell powder. The method includes depositing on a porous substrate at least one layer of a powder mixture comprising the fuel cell powder and an internal standard material, ablating a sample of the powder mixture using a laser, and vaporizing the sample using an inductively coupled plasma. A normalized concentration of catalytic element in the sample is determined by quantifying the intensity of a first signal correlated to the amount of catalytic element in the sample, quantifying the intensity of a second signal correlated to the amount of internal standard material in the sample, and using a ratio of the first signal intensity to the second signal intensity to cancel out the effects of sample size.

  17. Catalytic Membrane Sensors

    SciTech Connect

    Boyle, T.J.; Brinker, C.J.; Gardner, T.J.; Hughes, R.C.; Sault, A.G.

    1998-12-01

    The proposed "catalytic membrane sensor" (CMS) was developed to generate a device which would selectively identify a specific reagent in a complex mixture of gases. This was to be accomplished by modifying an existing Hz sensor with a series of thin films. Through selectively sieving the desired component from a complex mixture and identifying it by decomposing it into Hz (and other by-products), a Hz sensor could then be used to detect the presence of the select component. The proposed "sandwich-type" modifications involved the deposition of a catalyst layered between two size selective sol-gel layers on a Pd/Ni resistive Hz sensor. The role of the catalyst was to convert organic materials to Hz and organic by-products. The role of the membraneo was to impart both chemical specificity by molecukir sieving of the analyte and converted product streams, as well as controlling access to the underlying Pd/Ni sensor. Ultimately, an array of these CMS elements encompassing different catalysts and membranes were to be developed which would enable improved selectivity and specificity from a compiex mixture of organic gases via pattern recognition methodologies. We have successfully generated a CMS device by a series of spin-coat deposited methods; however, it was determined that the high temperature required to activate the catalyst, destroys the sensor.

  18. Catalytic Mechanisms for Phosphotriesterases

    PubMed Central

    Bigley, Andrew N.; Raushel, Frank M.

    2012-01-01

    Phosphotriesters are one class of highly toxic synthetic compounds known as organophosphates. Wide spread usage of organophosphates as insecticides as well as nerve agents has lead to numerous efforts to identify enzymes capable of detoxifying them. A wide array of enzymes has been found to have phosphotriesterase activity including phosphotriesterase (PTE), methyl parathion hydrolase (MPH), organophosphorus acid anhydrolase (OPAA), diisopropylfluorophosphatase (DFP), and paraoxonase 1 (PON1). These enzymes differ widely in protein sequence and three-dimensional structure, as well as in catalytic mechanism, but they also share several common features. All of the enzymes identified as phosphotriesterases are metal-dependent hydrolases that contain a hydrophobic active site with three discrete binding pockets to accommodate the substrate ester groups. Activation of the substrate phosphorus center is achieved by a direct interaction between the phosphoryl oxygen and a divalent metal in the active site. The mechanistic details of the hydrolytic reaction differ among the various enzymes with both direct attack of a hydroxide as well as covalent catalysis being found. PMID:22561533

  19. Catalytic Enantioselective Synthesis of Halocyclopropanes.

    PubMed

    Pons, Amandine; Ivashkin, Pavel; Poisson, Thomas; Charette, André B; Pannecoucke, Xavier; Jubault, Philippe

    2016-04-25

    A catalytic asymmetric synthesis of halocyclopropanes is described. The developed method is based on a carbenoid cyclopropanation of 2-haloalkenes with tert-butyl α-cyano-α-diazoacetate using a chiral rhodium catalyst that permits access to a broad range of highly functionalized chiral halocyclopropanes (F, Cl, Br, and I) in good yields, moderate diastereoselectivity, and excellent enantiomeric ratios. The reported methodology represents the first general catalytic enantioselective approach to halocyclopropanes. PMID:26945553

  20. Complex Wall Boundary Conditions for Modeling Combustion in Catalytic Channels

    NASA Astrophysics Data System (ADS)

    Zhu, Huayang; Jackson, Gregory

    2000-11-01

    Monolith catalytic reactors for exothermic oxidation are being used in automobile exhaust clean-up and ultra-low emissions combustion systems. The reactors present a unique coupling between mass, heat, and momentum transport in a channel flow configuration. The use of porous catalytic coatings along the channel wall presents a complex boundary condition when modeled with the two-dimensional channel flow. This current work presents a 2-D transient model for predicting the performance of catalytic combustion systems for methane oxidation on Pd catalysts. The model solves the 2-D compressible transport equations for momentum, species, and energy, which are solved with a porous washcoat model for the wall boundary conditions. A time-splitting algorithm is used to separate the stiff chemical reactions from the convective/diffusive equations for the channel flow. A detailed surface chemistry mechanism is incorporated for the catalytic wall model and is used to predict transient ignition and steady-state conversion of CH4-air flows in the catalytic reactor.

  1. Catalytic combustion with steam injection

    NASA Technical Reports Server (NTRS)

    Anderson, D. N.; Tacina, R. R.

    1982-01-01

    The effects of steam injection on (1) catalytic combustion performance, and (2) the tendency of residual fuel to burn in the premixing duct upstream of the catalytic reactor were determined. A petroleum residual, no. 2 diesel, and a blend of middle and heavy distillate coal derived fuels were tested. Fuel and steam were injected together into the preheated airflow entering a 12 cm diameter catalytic combustion test section. The inlet air velocity and pressure were constant at 10 m/s and 600 kPa, respectively. Steam flow rates were varied from 24 percent to 52 percent of the air flow rate. The resulting steam air mixture temperatures varied from 630 to 740 K. Combustion temperatures were in the range of 1200 to 1400 K. The steam had little effect on combustion efficiency or emissions. It was concluded that the steam acts as a diluent which has no adverse effect on catalytic combustion performance for no. 2 diesel and coal derived liquid fuels. Tests with the residual fuel showed that upstream burning could be eliminated with steam injection rates greater than 30 percent of the air flow rate, but inlet mixture temperatures were too low to permit stable catalytic combustion of this fuel.

  2. Studies of coupled chemical and catalytic coal conversion methods

    SciTech Connect

    Stock, L.M.

    1988-01-01

    Liquefaction of coal by depolymerization in an organic solvent has been studied for several years. The liquefied coal extract which results from such a process is far more suitable for conversion into liquid fuel by hydrogenolysis than is the untreated coal. Investigations on the chemical structure and the reactive sites of coal can help to select useful reactions for the production of liquids from coal. Sternberg et al. demonstrated that the reductive alkylation method transforms bituminous coal into an enormously soluble substance, irrespective of the mild reaction conditions. The effectiveness of newly introduced alkyl groups for the disruption of intermolecular hydrogen bonds and pi-pi interactions between the aromatic sheets in coal macromolecules has been recognized. It has been reported by Ignasiak et al. that a C-alkylabon reaction using sodium or potassium amide in liquid ammonia can be used to introduce alkyl groups at acidic carbon sites. A method has been developed recently in this laboratory for the solubilization of high rank coals. In the previous reports it was shown that n-butyl lithium and potassium t-butoxide in refluxing heptane produced coal anions which could be alkylated with different alkyl halides. Such alkylated coals were soluble up to 92% in solvents like pyridine. Though the solubilization of coal depended very much on the length of the alkyl group, it also depended very much on the nature of the base used. Strong bases like n-butyl lithium (pKa=42) can cause proton abstraction from aromatic structures, if the more acidic benzylic protons are absent. The utility of this procedure, initially developed and used by Miyake and Stock, has now been tested with the high oxygen containing, low rank Illinois No. 6 and Wyodak coals.

  3. Studies of coupled chemical and catalytic coal conversion methods

    SciTech Connect

    Stock, L.M.

    1990-01-01

    During the previous quarter, a new approach for the deploymerization of the coal macromolecule was tried. This was aimed towards carbon-carbon bond cleavage in presence of strong bases. Such bond cleavage reactions are well known with the alkali metals. Electron transfer reactions take place from the metals to the aromatic nuclei resulting in the formation ofanion-radicals (or dianions) which subsequently undergo carbon-carbon bond cleavage. In our work instead of using the alkali metals, we have used strong bases to cleave the carbon-carbon bonds in hydrocarbons, and have suggested that hydrocarbon elimination reactions occur. Such anionic fragmentation reactions involving strong bases are not very well established. However, we have obtained circumstantial evidence that such bond cleavage reactions do take place in some coal systems. For example, when the high rank Lower Kittaming coal, PSOC 1197, was treated with Lochmann's base (equimolar mixture of n-butyllithiun and potassium tert-butoxide) in refluxing heptane and quenched with ammonium chloride and reethanol, the pyridine solubility of the product increased from 5% (raw coal) to 39%. A similar increase in solubility due to base treatment was also observed in a separate study for another high rank coal, Pocahontas No. 3 from the Argonne National Laboratory Premium Sample Program. The solubility of the coal increased frcm 5% to 32% after the base treatment. These results, together with the absence of literature studies on base promoted fragmentation reactions prompted us to perfom reactions on some pure compounds to assess this concept in more detail.

  4. Two-stage, close coupled catalytic liquefaction of coal

    SciTech Connect

    Comolli, A.G.; Johanson, E.S.; Panvelker, S.V.; Popper, G.A.; Smith, T.O.

    1990-09-01

    During the first quarter of 1990, work was carried out in the microautoclave, microreactor, and Bench-Scale units. An economics analysis on sub-bituminous coal processing at two space velocities was also completed. Several supported catalysts and a sample of iron oxide were screened in the microautoclave unsulfided and sulfided with DMDS and TNPS. A second shipment of Black Thunder coal from Wilsonville, oil agglomerated cleaned Illinois {number sign}6 coal from Homer City, OTISCA cleaned coal a New Mexico coal were evaluated for relative conversions with and without catalyst. Results of Bench-Scale developments with cleaned, oil agglomerated, Illinois {number sign}6 coal from Homer City(CC-6), Dispersed Catalyst/Supported Catalyst Two-Stage and reversed sequential operation (CC-7), on Black Thunder Coal (CC-7), and preliminary observations on OTISCA cleaned coal are presented. The oil agglomerated cleaned coal gave higher conversion and distillate production than the OTISCA cleaned coal. The Dispersed/Supported Two-Stage operation yielded higher gas production than the reverse sequence but also showed the higher coal conversion. Economic analysis of sub-bituminous coal processing at two space velocities showed a 3% higher return on investment with a 50% increase in space velocity. 13 tabs.

  5. Studies of coupled chemical and catalytic coal conversion methods

    SciTech Connect

    Stock, L.M.

    1989-01-01

    A new base catalyzed C-alkylation reaction that employs a mixture of n-butyllithium and potassium t-butoxide in refluxing heptane to produce coal anions that are subsequently treated with n-alkyl halides at 0{degree}C has been developed. Almost quantitative pyridine solubilization was achieved by C-octylation of a Lower Kittanning coal, PSOC 1197. C-Octylation was less successful for the solubilization of bituminous Illinois No. 6 coal, APCSP 3, and subbituminous Wyodak coal, APCSP 2, which gave 35 and 33% soluble material, respectively. Their O-methyl derivatives yielded 43 and 20% soluble material in the same reaction. The observations are in accord with the concept of Ouchi and his associates that higher rank coals, although more aromatic in character, have a lower degree of polymerization than low rank coals. Relatively mild chemical reactions, such as Calkylation, that lead to modest changes in molecular dimensions, can disrupt intermolecular forces and accomplish solubilization.

  6. Catalytic distillation water recovery subsystem

    NASA Technical Reports Server (NTRS)

    Budininkas, P.; Rasouli, F.

    1985-01-01

    An integrated engineering breadboard subsystem for the recovery of potable water from untreated urine based on the vapor phase catalytic ammonia removal was designed, fabricated and tested. Unlike other evaporative methods, this process catalytically oxidizes ammonia and volatile hydrocarbons vaporizing with water to innocuous products; therefore, no pretreatment of urine is required. Since the subsystem is fabricated from commercially available components, its volume, weight and power requirements are not optimized; however, it is suitable for zero-g operation. The testing program consists of parametric tests, one month of daily tests and a continuous test of 168 hours duration. The recovered water is clear, odorless, low in ammonia and organic carbon, and requires only an adjustment of its pH to meet potable water standards. The obtained data indicate that the vapor phase catalytic ammonia removal process, if further developed, would also be competitive with other water recovery systems in weight, volume and power requirements.

  7. Influence of physicochemical treatments on iron-based spent catalyst for catalytic oxidation of toluene.

    PubMed

    Kim, Sang Chai; Shim, Wang Geun

    2008-06-15

    The catalytic oxidation of toluene was studied over an iron-based spent and regenerated catalysts. Air, hydrogen, or four different acid solutions (oxalic acid (C2H2O4), citric acid (C6H8O7), acetic acid (CH3COOH), and nitric acid (HNO3)) were employed to regenerate the spent catalyst. The properties of pretreated spent catalyst were characterized by the Brunauer Emmett Teller (BET), inductively coupled plasma (ICP), temperature programmed reduction (TPR), and X-ray diffraction (XRD) analyses. The air pretreatment significantly enhanced the catalytic activity of the spent catalyst in the pretreatment temperature range of 200-400 degrees C, but its catalytic activity diminished at the pretreatment temperature of 600 degrees C. The catalytic activity sequence with respect to the air pretreatment temperatures was 400 degrees C>200 degrees C>parent>600 degrees C. The TPR results indicated that the catalytic activity was correlated with both the oxygen mobility and the amount of available oxygen on the catalyst. In contrast, the hydrogen pretreatment had a negative effect on the catalytic activity, and toluene conversion decreased with increasing pretreatment temperatures (200-600 degrees C). The XRD and TPR results confirmed the formation of metallic iron which had a negative effect on the catalytic activity with increasing pretreatment temperature. The acid pretreatment improved the catalytic activity of the spent catalyst. The catalytic activity sequence with respect to different acids pretreatment was found to be oxalic acid>citric acid>acetic acid>or=nitric acid>parent. The TPR results of acid pretreated samples showed an increased amount of available oxygen which gave a positive effect on the catalytic activity. Accordingly, air or acid pretreatments were more promising methods of regenerating the iron-based spent catalyst. In particular, the oxalic acid pretreatment was found to be most effective in the formation of FeC2O4 species which contributed highly to the

  8. Catalytic Enantioselective Carboannulation with Allylsilanes

    PubMed Central

    Ball-Jones, Nicolas R.; Badillo, Joseph J.; Tran, Ngon T.; Franz, Annaliese K.

    2015-01-01

    The first catalytic asymmetric carboannulation with allylsilanes is presented. The enantioselective [3+2] annulation is catalyzed using a Sc(III)-indapybox complex with tetrakis-[3,5-bis(trifluoromethyl)phenyl]-borate (BArF) to enhance catalytic activity and control stereoselectivity. Functionalized cyclopentanes containing a quaternary carbon are derived from alkylidene oxindole, coumarin, and malonate substrates with high stereoselectivity. The enantioselective 1,4-conjugate addition and enantioselective lactone formation (via trapping of the β-silyl carbocation) is also described. PMID:25045133

  9. Catalytic enantioselective carboannulation with allylsilanes.

    PubMed

    Ball-Jones, Nicolas R; Badillo, Joseph J; Tran, Ngon T; Franz, Annaliese K

    2014-09-01

    The first catalytic asymmetric carboannulation with allylsilanes is presented. The enantioselective [3+2] annulation is catalyzed using a scandium(III)/indapybox complex with tetrakis-[3,5-bis(trifluoromethyl)phenyl]-borate (BArF) to enhance catalytic activity and control stereoselectivity. Functionalized cyclopentanes containing a quaternary carbon center are derived from alkylidene oxindole, coumarin, and malonate substrates with high stereoselectivity. The enantioselective 1,4-conjugate addition and enantioselective lactone formation (by trapping of the β-silyl carbocation) is also described. PMID:25045133

  10. Perfluoropolyalkylether decomposition on catalytic aluminas

    NASA Technical Reports Server (NTRS)

    Morales, Wilfredo

    1994-01-01

    The decomposition of Fomblin Z25, a commercial perfluoropolyalkylether liquid lubricant, was studied using the Penn State Micro-oxidation Test, and a thermal gravimetric/differential scanning calorimetry unit. The micro-oxidation test was conducted using 440C stainless steel and pure iron metal catalyst specimens, whereas the thermal gravimetric/differential scanning calorimetry tests were conducted using catalytic alumina pellets. Analysis of the thermal data, high pressure liquid chromatography data, and x-ray photoelectron spectroscopy data support evidence that there are two different decomposition mechanisms for Fomblin Z25, and that reductive sites on the catalytic surfaces are responsible for the decomposition of Fomblin Z25.

  11. Total Synthesis of Chiral Biaryl Natural Products by Asymmetric Biaryl Coupling

    PubMed Central

    Kozlowski, Marisa C.; Morgan, Barbara J.; Linton, Elizabeth C.

    2010-01-01

    This tutorial review highlights the use of catalytic asymmetric 2-naphthol couplings in total synthesis. The types of chirality, chiral biaryl natural products, prior approaches to chiral biaryl natural products, and other catalytic asymmetric biaryl couplings are outlined. The three main categories of chiral catalysts for 2-naphthol coupling (Cu, V, Fe) are described with discussion of their limitations and advantages. Applications of the copper catalyzed couplings in biomimetic syntheses are discussed including nigerone, hypocrellin, calphostin D, phleichrome, and cercosporin. PMID:19847351

  12. Gold-catalyzed homogeneous oxidative cross-coupling reactions.

    PubMed

    Zhang, Guozhu; Peng, Yu; Cui, Li; Zhang, Liming

    2009-01-01

    Oxidizing gold? A gold(I)/gold(III) catalytic cycle is essential for the first oxidative cross-coupling reaction in gold catalysis. By using Selectfluor for gold(I) oxidation, this chemistry reveals the synthetic potential of incorporating gold(I)/gold(III) catalytic cycles into contemporary gold chemistry and promises a new area of gold research by merging powerful gold catalysis and oxidative metal-catalyzed cross-coupling reactions. PMID:19322869

  13. Catalytically enhanced packed tower scrubbing

    SciTech Connect

    Stitt, E.H.; Taylor, F.J.; Kelly, K.

    1996-12-31

    An enhanced wet scrubbing process for the treatment of gas streams containing odours and low level VOC`s is presented. It comprises essentially a single scrubbing column and a fixed bed catalytic reactor through which the dilute alkaline bleach scrubbing liquor is recirculated. The process has significant cost advantages over conventional chemical scrubbing technology, and copes well with peaks in odour levels. Traditional bleach scrubbing, and the improvements in process chemistry and the flowsheet afforded by inclusion of the catalyst, are discussed. The catalyst enables many of the well known problems associated with bleach scrubbing to be overcome, and facilitates odour removal efficiencies of greater than 99% in a single column. Pilot plant data from trials on sewage treatment works are presented. These show clearly the ability of the catalytically enhanced process to achieve sulphide and odour removals in excess of 99% in the single column. Case studies of some of the existing commercial installations are given, indicating the wide range of applications, industries and scale of the installed units. Comparative data are presented, measured on a commercial unit for the conventional operation of a bleach scrubber, and with the retrofitted catalyst in use. These data show clearly the benefits of the catalytic process in terms of removal efficiencies; and hence by inference also in equipment size and costs. The catalytic process is also shown to achieve very high removal efficiencies of organo-sulphides in a single column. 8 refs., 3 figs., 10 tabs.

  14. Catalytic oxidation of waste materials

    NASA Technical Reports Server (NTRS)

    Jagow, R. B.

    1977-01-01

    Aqueous stream of human waste is mixed with soluble ruthenium salts and is introduced into reactor at temperature where ruthenium black catalyst forms on internal surfaces of reactor. This provides catalytically active surface to convert oxidizable wastes into breakdown products such as water and carbon dioxide.

  15. Social Entrepreneurs and Catalytic Change.

    ERIC Educational Resources Information Center

    Waddock, Sandra A.; Post, James E.

    1991-01-01

    Social entrepreneurs are private citizens who play critical roles in bringing about catalytic changes in the public sector agenda and the perception of social issues. Factors that make their projects--such as the Partnership for a Drug-Free America and Earth Day--successful include problem complexity, credibility, and a commitment to a collective…

  16. CATALYTIC COMBUSTION COMPONENT AND SYSTEM PROTOTYPE DEVELOPMENT

    EPA Science Inventory

    The report gives results of a project to develop the components required for catalytic combustion system operation and evaluation. The systems investigated (firetube boiler, watertube boiler, and gas turbine), when integrated with the catalytic combustor, have potential for both ...

  17. Catalytic two-stage coal hydrogenation and hydroconversion process

    DOEpatents

    MacArthur, James B.; McLean, Joseph B.; Comolli, Alfred G.

    1989-01-01

    A process for two-stage catalytic hydrogenation and liquefaction of coal to produce increased yields of low-boiling hydrocarbon liquid and gas products. In the process, the particulate coal is slurried with a process-derived liquid solvent and fed at temperature below about 650.degree. F. into a first stage catalytic reaction zone operated at conditions which promote controlled rate liquefaction of the coal, while simultaneously hydrogenating the hydrocarbon recycle oils at conditions favoring hydrogenation reactions. The first stage reactor is maintained at 650.degree.-800.degree. F. temperature, 1000-4000 psig hydrogen partial pressure, and 10-60 lb coal/hr/ft.sup.3 reactor space velocity. The partially hydrogenated material from the first stage reaction zone is passed directly to the close-coupled second stage catalytic reaction zone maintained at a temperature at least about 25.degree. F. higher than for the first stage reactor and within a range of 750.degree.-875.degree. F. temperature for further hydrogenation and thermal hydroconversion reactions. By this process, the coal feed is successively catalytically hydrogenated and hydroconverted at selected conditions, which results in significantly increased yields of desirable low-boiling hydrocarbon liquid products and minimal production of undesirable residuum and unconverted coal and hydrocarbon gases, with use of less energy to obtain the low molecular weight products, while catalyst life is substantially increased.

  18. Pair interaction of catalytically active colloids: from assembly to escape

    NASA Astrophysics Data System (ADS)

    Sharifi-Mood, Nima; Mozaffari, Ali; Córdova-Figueroa, Ubaldo M.

    2016-07-01

    The dynamics and pair trajectory of two self-propelled colloids are reported. The autonomous motions of the colloids are due to a catalytic chemical reaction taking place asymmetrically on their surfaces that generates a concentration gradient of interactive solutes around the particles and actuate particle propulsion. We consider two spherical particles with symmetric catalytic caps extending over the local polar angles $\\theta^1_{cap}$ and $\\theta^2_{cap}$ from the centers of active sectors in an otherwise quiescent fluid. A combined analytical-numerical technique was developed to solve the coupled mass transfer equation and the hydrodynamics in the Stokes flow regime. The ensuing pair trajectory of the colloids is controlled by the reacting coverages $\\theta^j_{cap}$ and their initial relative orientation with respect to each other. Our analysis indicates two possible scenarios for pair trajectories of catalytic self-propelled particles: either the particles approach, come into contact and assemble or they interact and move away from each other (escape). For arbitrary motions of the colloids, it is found that the direction of particle rotations is the key factor in determining the escape or assembly scenario. Based on the analysis, a phase diagram is sketched for the pair trajectory of the catalytically active particles as a function of active coverages and their initial relative orientations. We believe this study has important implications in elucidation of collective behaviors of auotophoretically self-propelled colloids.

  19. Catalytic combustion of residual fuels

    NASA Technical Reports Server (NTRS)

    Bulzan, D. L.; Tacina, R. R.

    1981-01-01

    A noble metal catalytic reactor was tested using two grades of petroleum derived residual fuels at specified inlet air temperatures, pressures, and reference velocities. Combustion efficiencies greater than 99.5 percent were obtained. Steady state operation of the catalytic reactor required inlet air temperatures of at least 800 K. At lower inlet air temperatures, upstream burning in the premixing zone occurred which was probably caused by fuel deposition and accumulation on the premixing zone walls. Increasing the inlet air temperature prevented this occurrence. Both residual fuels contained about 0.5 percent nitrogen by weight. NO sub x emissions ranged from 50 to 110 ppm by volume at 15 percent excess O2. Conversion of fuel-bound nitrogen to NO sub x ranged from 25 to 50 percent.

  20. Vapor Phase Catalytic Ammonia Reduction

    NASA Technical Reports Server (NTRS)

    Flynn, Michael T.; Harper, Lynn D. (Technical Monitor)

    1994-01-01

    This paper discusses the development of a Vapor Phase Catalytic Ammonia Reduction (VPCAR) teststand and the results of an experimental program designed to evaluate the potential of the technology as a water purification process. In the experimental program the technology is evaluated based upon product water purity, water recovery rate, and power consumption. The experimental work demonstrates that the technology produces high purity product water and attains high water recovery rates at a relatively high specific power consumption. The experimental program was conducted in 3 phases. In phase I an Igepon(TM) soap and water mixture was used to evaluate the performance of an innovative Wiped-Film Rotating-Disk evaporator and associated demister. In phase II a phenol-water solution was used to evaluate the performance of the high temperature catalytic oxidation reactor. In phase III a urine analog was used to evaluate the performance of the combined distillation/oxidation functions of the processor.

  1. Catalytic asymmetric alkylation of acylsilanes.

    PubMed

    Rong, Jiawei; Oost, Rik; Desmarchelier, Alaric; Minnaard, Adriaan J; Harutyunyan, Syuzanna R

    2015-03-01

    The highly enantioselective addition of Grignard reagents to acylsilanes is catalyzed by copper diphosphine complexes. This transformation affords α-silylated tertiary alcohols in up to 97% yield and 98:2 enantiomeric ratio. The competing Meerwein-Ponndorf-Verley reduction is suppressed by the use of a mixture of Lewis acid additives. The chiral catalyst can be recovered as a copper complex and used repeatedly without any loss of catalytic activity. PMID:25403641

  2. Catalytic nanomotors: challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Gibbs, John; Zhao, Yiping

    2011-06-01

    The fabrication of integrated nanomachinary systems can enable break-through applications in nanoelectronics, photonics, bioengineering, and drug delivery or disease treatment. Naturally occurring nanomotors are biological motor proteins powered by catalytic reactions, which convert the chemical energy from the environment into mechanical energy directly. It has been demonstrated recently that using a simple catalytic reaction and an asymmetric bimetallic nanorod, one can produce catalytic nanomotors that mimic the autonomous motions of bionanomotors. Yet the construction of artificial nanomachines remains a major contemporary challenge due to the lack of a flexible fabrication technique that can design the desired dynamic components. We use a design technique called dynamic shadowing growth that allows for the fabrication of a wide range of various geometries and the asymmetric placement of the catalyst is easily accomplished as well which is necessary for directed propulsion. Programming nanomotor behavior is possible through geometrically-focused design and by incorporating different materials into the nanomotor structure is a simple process as well. A propulsion mechanism based upon bubble ejection from the catalyst surface is introduced to explain the driving force, and the comparison of this driving mechanism with the self-electrophoresis mechanism is also studied. We have also successfully incorporated multiple parts to form complex nanomotor assemblies which exhibit motions not observed from individual parts by using magnetic interactions.

  3. Thermodynamics of catalytic nanoparticle morphology

    NASA Astrophysics Data System (ADS)

    Zwolak, Michael; Sharma, Renu; Lin, Pin Ann

    Metallic nanoparticles are an important class of industrial catalysts. The variability of their properties and the environment in which they act, from their chemical nature & surface modification to their dispersion and support, allows their performance to be optimized for many chemical processes useful in, e.g., energy applications and other areas. Their large surface area to volume ratio, as well as varying sizes and faceting, in particular, makes them an efficient source for catalytically active sites. These characteristics of nanoparticles - i.e., their morphology - can often display intriguing behavior as a catalytic process progresses. We develop a thermodynamic model of nanoparticle morphology, one that captures the competition of surface energy with other interactions, to predict structural changes during catalytic processes. Comparing the model to environmental transmission electron microscope images of nickel nanoparticles during carbon nanotube (and other product) growth demonstrates that nickel deformation in response to the nanotube growth is due to a favorable interaction with carbon. Moreover, this deformation is halted due to insufficient volume of the particles. We will discuss the factors that influence morphology and also how the model can be used to extract interaction strengths from experimental observations.

  4. Enantioselective Synthesis of a PKC Inhibitor via Catalytic C-HBond Activation

    SciTech Connect

    Wilson, Rebecca M.; Thalji, Reema K.; Bergman, Robert G.; Ellman,Jonathan A.

    2006-02-26

    The syntheses of two biologically active molecules possessing dihydropyrroloindole cores (1 and 2) were completed using rhodium-catalyzed imine-directed C-H bond functionalization, with the second of these molecules containing a stereocenter that can be set with 90% ee during cyclization using chiral nonracemic phosphoramidite ligands. Catalytic decarbonylation and direct indole/maleimide coupling provide efficient access to 2.

  5. Oxo-rhenium catalyzed reductive coupling and deoxygenation of alcohols.

    PubMed

    Kasner, Gabrielle R; Boucher-Jacobs, Camille; Michael McClain, J; Nicholas, Kenneth M

    2016-06-01

    Representative benzylic, allylic and α-keto alcohols are deoxygenated to alkanes and/or reductively coupled to alkane dimers by reaction with PPh3 catalyzed by (PPh3)2ReIO2 (1). The newly discovered catalytic reductive coupling reaction is a rare C-C bond-forming transformation of alcohols. PMID:27174412

  6. A sustainable catalytic pyrrole synthesis

    NASA Astrophysics Data System (ADS)

    Michlik, Stefan; Kempe, Rhett

    2013-02-01

    The pyrrole heterocycle is a prominent chemical motif and is found widely in natural products, drugs, catalysts and advanced materials. Here we introduce a sustainable iridium-catalysed pyrrole synthesis in which secondary alcohols and amino alcohols are deoxygenated and linked selectively via the formation of C-N and C-C bonds. Two equivalents of hydrogen gas are eliminated in the course of the reaction, and alcohols based entirely on renewable resources can be used as starting materials. The catalytic synthesis protocol tolerates a large variety of functional groups, which includes olefins, chlorides, bromides, organometallic moieties, amines and hydroxyl groups. We have developed a catalyst that operates efficiently under mild conditions.

  7. Molecular catalytic coal liquid conversion

    SciTech Connect

    Stock, L.M.; Yang, Shiyong

    1995-12-31

    This research, which is relevant to the development of new catalytic systems for the improvement of the quality of coal liquids by the addition of dihydrogen, is divided into two tasks. Task 1 centers on the activation of dihydrogen by molecular basic reagents such as hydroxide ion to convert it into a reactive adduct (OH{center_dot}H{sub 2}){sup {minus}} that can reduce organic molecules. Such species should be robust withstanding severe conditions and chemical poisons. Task 2 is focused on an entirely different approach that exploits molecular catalysts, derived from organometallic compounds that are capable of reducing monocyclic aromatic compounds under very mild conditions. Accomplishments and conclusions are discussed.

  8. Combined Electrolysis Catalytic Exchange (CECE)

    SciTech Connect

    Ellis, R.E.; Mills, T.K.; Rogers, M.L.

    1980-09-30

    Starting from an effort to control airborne emissions, the Mound tritium containment program has evolved to include development of the Combined Electrolysis Catalytic Exchange (CECE) process. This process separates tritiated aqueous streams into detritiated water and an enriched hydrogen stream that is suitable for use by other tritium recovery processes. Experimentation has shown that the process performs as predicted by bench-scale measurements, and that available process components exhibit acceptable resistance to damage by radiation from tritium exposure. Planned future efforts are concentrated on finalizing automatic control of the process and on developing feed treatment methods for the protection of process components.

  9. Modeling a Transient Catalytic Combustor

    NASA Technical Reports Server (NTRS)

    Tien, J. S.

    1985-01-01

    Transient model of monolith catalytic combustor presented in report done under NASA/DOE contract. Model assumes quasi-steady gas phase and thermally "thin" solid. In gas-phase treatment, several quasi-global chemical reactions assumed capable of describing CO and unburnt hydrocarbon emissions in fuel-lean operations. In steady-state computation presented, influence of selected operating and design parameters on minimum combustor length studied. When fast transient responses required, both steady and unsteady studies made to achieve meaningful compromise in design.

  10. CATALYTIC CONVERSION OF HAZARDOUS AND TOXIC CHEMICALS: CATALYTIC HYDRODECHLORINATION OF POLYCHLORINATED PESTICIDES AND RELATED SUBSTANCES

    EPA Science Inventory

    A study has been undertaken of the catalytic conversion of chlorinated pesticides and other environmentally undesirable chlorinated materials into acceptable compounds. The results of this study show that chlorine can be catalytically removed and replaced by hydrogen to produce r...

  11. Hot zones evolution and dynamics in heterogeneous catalytic systems

    NASA Astrophysics Data System (ADS)

    Luss, D.; Marwaha, B.

    2002-03-01

    Stationary and complex moving hot regions formed for temperatures close to the extinction temperature of uniformly ignited states of several catalytic systems, such as thin rings and hollow cylinders, a thin radial flow reactor (RFR) and a shallow packed bed. IR imaging revealed that the hot and cold regions (temperature difference of the order of 100 °C) were separated by a sharp (about 3 mm wide) temperature front. The transition from the branch of uniformly ignited to the states with a hot region was usually supercritical. In some experiments a disjoint branch of states with hot regions existed and two qualitatively different states with hot zones existed under the same operating conditions. A very intricate periodic motion of a hot zone was observed in a shallow packed bed reactor. For example, Fig. 16 shows a hot zone which splits and later coalesces several times during the long (14 h) period. Hot pulse motions were observed on a single catalytic pellet. These were caused by global coupling between the surface reaction rate and the ambient reactant concentration and the inherent nonuniformity of the catalytic activity. It is not yet clear what rate processes generate the transversal hot zones in uniform packed bed reactors.

  12. Catalytic Polymer Multilayer Shell Motors for Separation of Organics.

    PubMed

    Lin, Zhihua; Wu, Zhiguang; Lin, Xiankun; He, Qiang

    2016-01-26

    A catalytic polymer multilayer shell motor has been developed, which effects fast motion-based separation of charged organics in water. The shell motors are fabricated by sputtering platinum onto the exposed surface of silica templates embedded in Parafilm, followed by layer-by-layer assembly of polyelectrolyte multilayers to the templates. The catalytic shell motors display high bubble propulsion with speeds of up to 260 μm s(-1) (13 body lengths per second). Moreover, the polyelectrolyte multilayers assembled at high pH (pH>9.0) adsorb approximately 89% of dye molecules from water, owing to the electrostatic interaction between the positively charged polymers and the anionic dye molecules, and subsequently release them at neutral pH in a microfluidic device. The efficient propulsion coupled with the effective adsorption behavior of the catalytic shell motors in a microfluidic device results in accelerated separation of organics in water and thus holds considerable promise for water analysis. PMID:26632275

  13. Catalytic conversion of light alkanes

    SciTech Connect

    Lyons, J.E.

    1992-06-30

    The second Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between April 1, 1992 and June 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products that can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon uwspomdon fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE I).

  14. Evolution of a Catalytic Mechanism.

    PubMed

    Rauwerdink, Alissa; Lunzer, Mark; Devamani, Titu; Jones, Bryan; Mooney, Joanna; Zhang, Zhi-Jun; Xu, Jian-He; Kazlauskas, Romas J; Dean, Antony M

    2016-04-01

    The means by which superfamilies of specialized enzymes arise by gene duplication and functional divergence are poorly understood. The escape from adaptive conflict hypothesis, which posits multiple copies of a gene encoding a primitive inefficient and highly promiscuous generalist ancestor, receives support from experiments showing that resurrected ancestral enzymes are indeed more substrate-promiscuous than their modern descendants. Here, we provide evidence in support of an alternative model, the innovation-amplification-divergence hypothesis, which posits a single-copied ancestor as efficient and specific as any modern enzyme. We argue that the catalytic mechanisms of plant esterases and descendent acetone cyanohydrin lyases are incompatible with each other (e.g., the reactive substrate carbonyl must bind in opposite orientations in the active site). We then show that resurrected ancestral plant esterases are as catalytically specific as modern esterases, that the ancestor of modern acetone cyanohydrin lyases was itself only very weakly promiscuous, and that improvements in lyase activity came at the expense of esterase activity. These observations support the innovation-amplification-divergence hypothesis, in which an ancestor gains a weak promiscuous activity that is improved by selection at the expense of the ancestral activity, and not the escape from adaptive conflict in which an inefficient generalist ancestral enzyme steadily loses promiscuity throughout the transition to a highly active specialized modern enzyme. PMID:26681154

  15. Metal hybrid nanoparticles for catalytic organic and photochemical transformations.

    PubMed

    Song, Hyunjoon

    2015-03-17

    In order to understand heterogeneous catalytic reactions, model catalysts such as a single crystalline surface have been widely studied for many decades. However, catalytic systems that actually advance the reactions are three-dimensional and commonly have multiple components including active metal nanoparticles and metal oxide supports. On the other hand, as nanochemistry has rapidly been developed and been applied to various fields, many researchers have begun to discuss the impact of nanochemistry on heterogeneous catalysis. Metal hybrid nanoparticles bearing multiple components are structurally very close to the actual catalysts, and their uniform and controllable morphology is suitable for investigating the relationship between the structure and the catalytic properties in detail. In this Account, we introduce four typical structures of metal hybrid nanoparticles that can be used to conduct catalytic organic and photochemical reactions. Metal@silica (or metal oxide) yolk-shell nanoparticles, in which metal cores exist in internal voids surrounded by thin silica (or metal oxide) shells, exhibited extremely high thermal and chemical stability due to the geometrical protection of the silica layers against the metal cores. The morphology of the metal cores and the pore density of the hollow shells were precisely adjusted to optimize the reaction activity and diffusion rates of the reactants. Metal@metal oxide core-shell nanoparticles and inverted structures, where the cores supported the shells serving an active surface, exhibited high activity with no diffusion barriers for the reactants and products. These nanostructures were used as effective catalysts for various organic and gas-phase reactions, including hydrogen transfer, Suzuki coupling, and steam methane reforming. In contrast to the yolk- and core-shell structures, an asymmetric arrangement of distinct domains generated acentric dumbbells and tipped rods. A large domain of each component added multiple

  16. Helix coupling

    DOEpatents

    Ginell, W.S.

    1982-03-17

    A coupling for connecting helix members in series, which consists of a pair of U-shaped elements, one of which is attached to each helix end with the U sections of the elements interlocked. The coupling is particularly beneficial for interconnecting helical Nitinol elements utilized in thermal actuators or engines. Each coupling half is attached to the associated helix at two points, thereby providing axial load while being easily removed from the helix, and reusable.

  17. Helix coupling

    DOEpatents

    Ginell, William S.

    1989-04-25

    A coupling for connecting helix members in series, which consists of a pair of U-shaped elements, one of which is attached to each helix end with the "U" sections of the elements interlocked. The coupling is particularly beneficial for interconnecting helical Nitinol elements utilized in thermal actuators or engines. Each coupling half is attached to the associated helix at two points, thereby providing axial load while being easily removed from the helix, and reusable.

  18. Catalytic and non-catalytic wet air oxidation of sodium dodecylbenzene sulfonate: kinetics and biodegradability enhancement.

    PubMed

    Suárez-Ojeda, María Eugenia; Kim, Jungkwon; Carrera, Julián; Metcalfe, Ian S; Font, Josep

    2007-06-18

    Wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) were investigated as suitable precursors for the biological treatment of industrial wastewater containing sodium dodecylbenzene sulfonate (DBS). Two hours WAO semi-batch experiments were conducted at 15 bar of oxygen partial pressure (P(O2)) and at 180, 200 and 220 degrees C. It was found that the highest temperature provides appreciable total organic carbon (TOC) and chemical oxygen demand (COD) abatement of about 42 and 47%, correspondingly. Based on the main identified intermediates (acetic acid and sulfobenzoic acid) a reaction pathway for DBS and a kinetic model in WAO were proposed. In the case of CWAO experiments, seventy-two hours tests were done in a fixed bed reactor in continuous trickle flow regime, using a commercial activated carbon (AC) as catalyst. The temperature and P(O2) were 140-160 degrees C and 2-9 bar, respectively. The influence of the operating conditions on the DBS oxidation, the occurrence of oxidative coupling reactions over the AC, and the catalytic activity (in terms of substrate removal) were established. The results show that the AC without any supported active metal behaves bi-functional as adsorbent and catalyst, giving TOC conversions up to 52% at 160 degrees C and 2 bar of P(O2), which were comparable to those obtained in WAO experiments. Respirometric tests were completed before and after CWAO and to the main intermediates identified through the WAO and CWAO oxidation route. Then, the readily biodegradable COD (COD(RB)) of the CWAO and WAO effluents were found. Taking into account these results it was possible to compare whether or not the CWAO or WAO effluents were suitable for a conventional activated sludge plant inoculated with non adapted culture. PMID:17363148

  19. Catalytic synthesis of silicon carbide preceramic polymers: Polycarbosilanes

    SciTech Connect

    Berry, D.H.

    1992-10-01

    Polycarbosilanes are the most successful and widely studied class of polymer precursors for silicon carbide, but traditional methods for their synthesis are inefficient and nonselective. This project is focused on developing transition metal catalysts for the synthesis of polycarbosilanes and other preceramic polymers. In recent work we have developed the first homogeneous transition metal catalysts for the dehydrogenative coupling of simple alkyl silanes to oligomeric and polymeric carbosilanes, H-(SiR[sub 2]CR[prime][sub 2])n-SiR[sub 3]. The coupling of alkylgermanes, however, yields the corresponding oligomeric poly(germanes) (Ge-Ge). Future work will help elucidate the mechanisms of these catalytic process, explore the use of hydrogen acceptors as reaction accelerators, and develop new and more active catalysts.

  20. FEASIBILITY OF BURNING COAL IN CATALYTIC COMBUSTORS

    EPA Science Inventory

    The report gives results of a study, showing that pulverized coal can be burned in a catalytic combustor. Pulverized coal combustion in catalytic beds is markedly different from gaseous fuel combustion. Gas combustion gives uniform bed temperatures and reaction rates over the ent...

  1. Acoustics of automotive catalytic converter assemblies

    NASA Astrophysics Data System (ADS)

    Dickey, Nolan S.; Selamet, Ahmet; Parks, Steve J.; Tallio, Kevin V.; Miazgowicz, Keith D.; Radavich, Paul M.

    2003-10-01

    In an automotive exhaust system, the purpose of the catalytic converter is to reduce pollutant emissions. However, catalytic converters also affect the engine and exhaust system breathing characteristics; they increase backpressure, affect exhaust system acoustic characteristics, and contribute to exhaust manifold tuning. Thus, radiated sound models should include catalytic converters since they can affect both the source characteristics and the exhaust system acoustic behavior. A typical catalytic converter assembly employs a ceramic substrate to carry the catalytically active noble metals. The substrate has numerous parallel tubes and is mounted in a housing with swelling mat or wire mesh around its periphery. Seals at the ends of the substrate can be used to help force flow through the substrate and/or protect the mat material. Typically, catalytic converter studies only consider sound propagation in the small capillary tubes of the substrate. Investigations of the acoustic characteristics of entire catalytic converter assemblies (housing, substrate, seals, and mat) do not appear to be available. This work experimentally investigates the acoustic behavior of catalytic converter assemblies and the contributions of the separate components to sound attenuation. Experimental findings are interpreted with respect to available techniques for modeling sound propagation in ceramic substrates.

  2. A Single Aspartate Coordinates Two Catalytic Steps in Hedgehog Autoprocessing.

    PubMed

    Xie, Jian; Owen, Timothy; Xia, Ke; Callahan, Brian; Wang, Chunyu

    2016-08-31

    Hedgehog (Hh) signaling is driven by the cholesterol-modified Hh ligand, generated by autoprocessing of Hh precursor protein. Two steps in Hh autoprocessing, N-S acyl shift and transesterification, must be coupled for efficient Hh cholesteroylation and downstream signal transduction. In the present study, we show that a conserved aspartate residue, D46 of the Hh autoprocessing domain, coordinates these two catalytic steps. Mutagenesis demonstrated that D46 suppresses non-native Hh precursor autoprocessing and is indispensable for transesterification with cholesterol. NMR measurements indicated that D46 has a pKa of 5.6, ∼2 units above the expected pKa of aspartate, due to a hydrogen-bond between protonated D46 and a catalytic cysteine residue. However, the deprotonated form of D46 side chain is also essential, because a D46N mutation cannot mediate cholesteroylation. On the basis of these data, we propose that the proton shuttling of D46 side chain mechanistically couples the two steps of Hh cholesteroylation. PMID:27529645

  3. Catalytic synthesis of silicon carbide preceramic polymers: Polycarbosilanes. Final technical report, March 1, 1991--August 31, 1996

    SciTech Connect

    Berry, D.H.

    1997-02-01

    This effort has focused on the development of new systems for the catalytic formation of organosilicon monomers and polymers. Several new classes of ruthenium phosphine complexes containing one, two, or three silicon ligands have been prepared, and which exhibit unique catalytic reactivity for (1) the dehydrogenative coupling of tertiary alkyl silanes to polycarbonsilanes, (2) dehydrogenative coupling of secondary and primary alkyl and aryl silanes to polysilanes, and (3) the dehydrogenative heterocoupling of silanes with substituted arenes to yield aryl silanes. In addition, germanium analogs of the ruthenium silyl complexes have been found to be effective catalysts for the unprecedented demethanative coupling of alkyl germanes to high molecular weight polygermanes. For each of these new reactions, key mechanistic features of the catalytic processes have been elucidated, and the complexes have been extensively studied in terms of relevant stoichiometric reactivity and structural features.

  4. Catalytic ignition of hydrogen/oxygen

    NASA Technical Reports Server (NTRS)

    Green, James M.; Zurawski, Robert L.

    1988-01-01

    An experimental program was conducted to evaluate the catalytic ignition of gaseous hydrogen and oxygen. Shell 405 granular catalyst and a unique monolithic sponge catalyst were tested. Mixture ratio, mass flow rate, propellant inlet temperature, and back pressure were varied parametrically in testing to determine the operational limits of a catalytic igniter. The test results showed that the gaseous hydrogen/oxygen propellant combination can be ignited catalytically using Shell 405 catalyst over a wide range of mixture ratios, mass flow rates, and propellant injection temperatures. These operating conditions must be optimized to ensure reliable ignition for an extended period of time. The results of the experimental program and the established operational limits for a catalytic igniter using both the granular and monolithic catalysts are presented. The capabilities of a facility constructed to conduct the igniter testing and the advantages of a catalytic igniter over other ignition systems for gaseous hydrogen and oxygen are also discussed.

  5. Catalytic ignition of hydrogen and oxygen propellants

    NASA Technical Reports Server (NTRS)

    Zurawski, Robert L.; Green, James M.

    1988-01-01

    An experimental program was conducted to evaluate the catalytic ignition of gaseous hydrogen and oxygen propellants. Shell 405 granular catalyst and a monolithic sponge catalyst were tested. Mixture ratio, mass flow rate, propellant temperature, and back pressure were varied parametrically in testing to determine the operational limits of the catalytic igniter. The test results show that the gaseous hydrogen and oxygen propellant combination can be ignited catalytically using Shell 405 catalyst over a wide range of mixture ratios, mass flow rates, and propellant injection temperatures. These operating conditions must be optimized to ensure reliable ignition for an extended period of time. A cyclic life of nearly 2000, 2 sec pulses at nominal operating conditions was demonstrated with the catalytic igniter. The results of the experimental program and the established operational limits for a catalytic igniter using the Shell 405 catalysts are presented.

  6. Catalytic ignition of hydrogen and oxygen propellants

    NASA Technical Reports Server (NTRS)

    Zurawski, Robert L.; Green, James M.

    1988-01-01

    An experimental program was conducted to evaluate the catalytic ignition of gaseous hydrogen and oxygen propellants. Shell 405 granular catalyst and a monolithic sponge catalyst were tested. Mixture ratio, mass flow rate, propellant temperature, and back pressure were varied parametrically in testing to determine the operational limits of the catalytic igniter. The test results show that the gaseous hydrogen and oxygen propellant combination can be ignited catalytically using Shell 405 catalyst over a wide range of mixture ratios, mass flow rates, and propellant injection temperatures. These operating conditions must be optimized to ensure reliable ignition for an extended period of time. A cyclic life of nearly 2000, 2 sec pulses at nominal operating conditions was demonstrated with the catalytic igniter. The results of the experimental program and the established operational limits for a catalytic igniter using the Shell 405 catalyst are presented.

  7. Method of fabricating a catalytic structure

    DOEpatents

    Rollins, Harry W.; Petkovic, Lucia M.; Ginosar, Daniel M.

    2009-09-22

    A precursor to a catalytic structure comprising zinc oxide and copper oxide. The zinc oxide has a sheet-like morphology or a spherical morphology and the copper oxide comprises particles of copper oxide. The copper oxide is reduced to copper, producing the catalytic structure. The catalytic structure is fabricated by a hydrothermal process. A reaction mixture comprising a zinc salt, a copper salt, a hydroxyl ion source, and a structure-directing agent is formed. The reaction mixture is heated under confined volume conditions to produce the precursor. The copper oxide in the precursor is reduced to copper. A method of hydrogenating a carbon oxide using the catalytic structure is also disclosed, as is a system that includes the catalytic structure.

  8. Diesel engine catalytic combustor system. [aircraft engines

    NASA Technical Reports Server (NTRS)

    Ream, L. W. (Inventor)

    1984-01-01

    A low compression turbocharged diesel engine is provided in which the turbocharger can be operated independently of the engine to power auxiliary equipment. Fuel and air are burned in a catalytic combustor to drive the turbine wheel of turbine section which is initially caused to rotate by starter motor. By opening a flapper value, compressed air from the blower section is directed to catalytic combustor when it is heated and expanded, serving to drive the turbine wheel and also to heat the catalytic element. To start, engine valve is closed, combustion is terminated in catalytic combustor, and the valve is then opened to utilize air from the blower for the air driven motor. When the engine starts, the constituents in its exhaust gas react in the catalytic element and the heat generated provides additional energy for the turbine section.

  9. Silver nanocluster catalytic microreactors for water purification

    NASA Astrophysics Data System (ADS)

    Da Silva, B.; Habibi, M.; Ognier, S.; Schelcher, G.; Mostafavi-Amjad, J.; Khalesifard, H. R. M.; Tatoulian, M.; Bonn, D.

    2016-07-01

    A new method for the elaboration of a novel type of catalytic microsystem with a high specific area catalyst is developed. A silver nanocluster catalytic microreactor was elaborated by doping a soda-lime glass with a silver salt. By applying a high power laser beam to the glass, silver nanoclusters are obtained at one of the surfaces which were characterized by BET measurements and AFM. A microfluidic chip was obtained by sealing the silver coated glass with a NOA 81 microchannel. The catalytic activity of the silver nanoclusters was then tested for the efficiency of water purification by using catalytic ozonation to oxidize an organic pollutant. The silver nanoclusters were found to be very stable in the microreactor and efficiently oxidized the pollutant, in spite of the very short residence times in the microchannel. This opens the way to study catalytic reactions in microchannels without the need of introducing the catalyst as a powder or manufacturing complex packed bed microreactors.

  10. Catalytic decarbonylation of biosourced substrates.

    PubMed

    Ternel, Jérémy; Lebarbé, Thomas; Monflier, Eric; Hapiot, Frédéric

    2015-05-11

    Linear α-olefins (LAO) are one of the main targets in the field of surfactants, lubricants, and polymers. With the depletion of petroleum resources, the production of LAO from renewable feedstocks has gained increasing interest in recent years. In the present study, we demonstrated that Ir catalysts were suitable to decarbonylate a wide range of biosourced substrates under rather mild conditions (160 °C, 5 h reaction time) in the presence of potassium iodide and acetic anhydride. The resulting LAO were obtained with good conversion and selectivity provided that the purity of the substrate, the nature of the ligand, and the amounts of the additives were controlled accurately. The catalytic system could be recovered efficiently by using a Kugelrohr distillation apparatus and recycled. PMID:25855489

  11. APPARATUS FOR CATALYTICALLY COMBINING GASES

    DOEpatents

    Busey, H.M.

    1958-08-12

    A convection type recombiner is described for catalytically recombining hydrogen and oxygen which have been radiolytically decomposed in an aqueous homogeneous nuclear reactor. The device is so designed that the energy of recombination is used to circulate the gas mixture over the catalyst. The device consists of a vertical cylinder having baffles at its lower enda above these coarse screens having platinum and alumina pellets cemented thereon, and an annular passage for the return of recombined, condensed water to the reactor moderator system. This devicea having no moving parts, provides a simple and efficient means of removing the danger of accumulated hot radioactive, explosive gases, and restoring them to the moderator system for reuse.

  12. Catalytic reactor with improved burner

    DOEpatents

    Faitani, Joseph J.; Austin, George W.; Chase, Terry J.; Suljak, George T.; Misage, Robert J.

    1981-01-01

    To more uniformly distribute heat to the plurality of catalyst tubes in a catalytic reaction furnace, the burner disposed in the furnace above the tops of the tubes includes concentric primary and secondary annular fuel and air outlets. The fuel-air mixture from the primary outlet is directed towards the tubes adjacent the furnace wall, and the burning secondary fuel-air mixture is directed horizontally from the secondary outlet and a portion thereof is deflected downwardly by a slotted baffle toward the tubes in the center of the furnace while the remaining portion passes through the slotted baffle to another baffle disposed radially outwardly therefrom which deflects it downwardly in the vicinity of the tubes between those in the center and those near the wall of the furnace.

  13. Catalytic, enantioselective, vinylogous aldol reactions.

    PubMed

    Denmark, Scott E; Heemstra, John R; Beutner, Gregory L

    2005-07-25

    In 1935, R. C. Fuson formulated the principle of vinylogy to explain how the influence of a functional group may be felt at a distant point in the molecule when this position is connected by conjugated double-bond linkages to the group. In polar reactions, this concept allows the extension of the electrophilic or nucleophilic character of a functional group through the pi system of a carbon-carbon double bond. This vinylogous extension has been applied to the aldol reaction by employing "extended" dienol ethers derived from gamma-enolizable alpha,beta-unsaturated carbonyl compounds. Since 1994, several methods for the catalytic, enantioselective, vinylogous aldol reaction have appeared, with which varying degrees of regio- (site), enantio-, and diastereoselectivity can be attained. In this Review, the current scope and limitations of this transformation, as well as its application in natural product synthesis, are discussed. PMID:15940727

  14. Electrochemical promotion of catalytic reactions

    NASA Astrophysics Data System (ADS)

    Imbihl, R.

    2010-05-01

    The electrochemical promotion of heterogeneously catalyzed reactions (EPOC) became feasible through the use of porous metal electrodes interfaced to a solid electrolyte. With the O 2- conducting yttrium stabilized zirconia (YSZ), the Na + conducting β″-Al 2O 3 (β-alumina), and several other types of solid electrolytes the EPOC effect has been demonstrated for about 100 reaction systems in studies conducted mainly in the mbar range. Surface science investigations showed that the physical basis for the EPOC effect lies in the electrochemically induced spillover of oxygen and alkali metal, respectively, onto the surface of the metal electrodes. For the catalytic promotion effect general concepts and mechanistic schemes were proposed but these concepts and schemes are largely speculative. Applying surface analytical tools to EPOC systems the proposed mechanistic schemes can be verified or invalidated. This report summarizes the progress which has been achieved in the mechanistic understanding of the EPOC effect.

  15. Non-catalytic recuperative reformer

    SciTech Connect

    Khinkis, Mark J.; Kozlov, Aleksandr P.; Kurek, Harry

    2015-12-22

    A non-catalytic recuperative reformer has a flue gas flow path for conducting hot flue gas from a thermal process and a reforming mixture flow path for conducting a reforming mixture. At least a portion of the reforming mixture flow path is embedded in the flue gas flow path to permit heat transfer from the hot flue gas to the reforming mixture. The reforming mixture flow path contains substantially no material commonly used as a catalyst for reforming hydrocarbon fuel (e.g., nickel oxide, platinum group elements or rhenium), but instead the reforming mixture is reformed into a higher calorific fuel via reactions due to the heat transfer and residence time. In a preferred embodiment, extended surfaces of metal material such as stainless steel or metal alloy that are high in nickel content are included within at least a portion of the reforming mixture flow path.

  16. Catalytic Hydrothermal Gasification of Biomass

    SciTech Connect

    Elliott, Douglas C.

    2008-05-06

    A recent development in biomass gasification is the use of a pressurized water processing environment in order that drying of the biomass can be avoided. This paper reviews the research undertaken developing this new option for biomass gasification. This review does not cover wet oxidation or near-atmospheric-pressure steam-gasification of biomass. Laboratory research on hydrothermal gasification of biomass focusing on the use of catalysts is reviewed here, and a companion review focuses on non-catalytic processing. Research includes liquid-phase, sub-critical processing as well as super-critical water processing. The use of heterogeneous catalysts in such a system allows effective operation at lower temperatures, and the issues around the use of catalysts are presented. This review attempts to show the potential of this new processing concept by comparing the various options under development and the results of the research.

  17. Electrochemical fabrication of Cu(OH) 2 and CuO nanostructures and their catalytic property

    NASA Astrophysics Data System (ADS)

    Ming, Hai; Pan, Keming; Liu, Yang; Li, Haitao; He, Xiaodie; Ming, Jun; Ma, Zheng; Kang, Zhenhui

    2011-07-01

    In this paper, we reported an anodization method for the fabrication of novel uniform Cu(OH) 2 nanowires, CuO nanoparticles, and CuO shuttle-like nanoparticles with advanced structures. The possible formation mechanism of Cu(OH) 2 nanowires, CuO nanoparticles, and CuO shuttle-like nanoparticles was proposed. The good catalytic properties of CuO nanoparticles converted from Cu(OH) 2 nanowires and the CuO shuttle-like nanoparticles were confirmed by evaluating their catalytic ability on the C-N cross coupling of amines with iodobenzene.

  18. Revolutionary systems for catalytic combustion and diesel catalytic particulate traps.

    SciTech Connect

    Stuecker, John Nicholas; Witze, Peter O.; Ferrizz, Robert Matthew; Cesarano, Joseph, III; Miller, James Edward

    2004-12-01

    This report is a summary of an LDRD project completed for the development of materials and structures conducive to advancing the state of the art for catalyst supports and diesel particulate traps. An ancillary development for bio-medical bone scaffolding was also realized. Traditionally, a low-pressure drop catalyst support, such as a ceramic honeycomb monolith, is used for catalytic reactions that require high flow rates of gases at high-temperatures. A drawback to the traditional honeycomb monoliths under these operating conditions is poor mass transfer to the catalyst surface in the straight-through channels. ''Robocasting'' is a unique process developed at Sandia National Laboratories that can be used to manufacture ceramic monoliths with alternative 3-dimensional geometries, providing tortuous pathways to increase mass transfer while maintaining low-pressure drops. These alternative 3-dimensional geometries may also provide a foundation for the development of self-regenerating supports capable of trapping and combusting soot particles from a diesel engine exhaust stream. This report describes the structures developed and characterizes the improved catalytic performance that can result. The results show that, relative to honeycomb monolith supports, considerable improvement in mass transfer efficiency is observed for robocast samples synthesized using an FCC-like geometry of alternating rods. Also, there is clearly a trade-off between enhanced mass transfer and increased pressure drop, which can be optimized depending on the particular demands of a given application. Practical applications include the combustion of natural gas for power generation, production of syngas, and hydrogen reforming reactions. The robocast lattice structures also show practicality for diesel particulate trapping. Preliminary results for trapping efficiency are reported as well as the development of electrically resistive lattices that can regenerate the structure by combusting the

  19. The Multiple Facets of Iodine(III) Compounds in an Unprecedented Catalytic Auto-amination for Chiral Amine Synthesis.

    PubMed

    Buendia, Julien; Grelier, Gwendal; Darses, Benjamin; Jarvis, Amanda G; Taran, Frédéric; Dauban, Philippe

    2016-06-20

    Iodine(III) reagents are used in catalytic one-pot reactions, first as both oxidants and substrates, then as cross-coupling partners, to afford chiral polyfunctionalized amines. The strategy relies on an initial catalytic auto C(sp(3) )-H amination of the iodine(III) oxidant, which delivers an amine-derived iodine(I) product that is subsequently used in palladium-catalyzed cross-couplings to afford a variety of useful building blocks with high yields and excellent stereoselectivities. This study demonstrates the concept of self-amination of the hypervalent iodine reagents, which increases the value of the aryl moiety. PMID:27158802

  20. Optical coupling

    NASA Astrophysics Data System (ADS)

    Bock, J. J.; Gundersen, J.; Lee, A. T.; Richards, P. L.; Wollack, E.

    2009-03-01

    This paper describes contributions to the CMBpol Technology Study Workshop concerning optical coupling structures. These are structures in or near the focal plane which convert the free space wave to a superconducting microstrip on a SI wafer, or to the waveguide input to a HEMT receiver. In addition to an introduction and conclusions by the editor, this paper includes independent contributions by Bock on 'Planar Antenna-Coupled Bolometers for CMB Polarimetry', by Gunderson and Wollack on 'Millimeter-Wave Platlet Feeds', and by Lee on 'Multi-band Dual-Polarization Lens-coupled Planar Antennas for Bolometric CMB polarimetry.'

  1. Structure-based identification of catalytic residues

    PubMed Central

    Yahalom, Ran; Reshef, Dan; Wiener, Ayana; Frankel, Sagiv; Kalisman, Nir; Lerner, Boaz; Keasar, Chen

    2011-01-01

    The identification of catalytic residues is an essential step in functional characterization of enzymes. We present a purely structural approach to this problem, which is motivated by the difficulty of evolution-based methods to annotate structural genomics targets that have few or no homologs in the databases. Our approach combines a state-of-the-art support vector machine (SVM) classifier with novel structural features that augment structural clues by spatial averaging and Z-scoring. Special attention is paid to the class imbalance problem that stems from the overwhelming number of non-catalytic residues in enzymes compared to catalytic residues. This problem is tackled by: 1) optimizing the classifier to maximize a performance criterion that considers both type I and type II errors in the classification of catalytic and non-catalytic residues; 2) under-sampling non-catalytic residues before SVM training; and 3) during SVM training, penalizing errors in learning catalytic residues more than errors in learning non-catalytic residues. Tested on four enzyme datasets – one specifically designed by us to mimic the structural genomics scenario and three previously-evaluated datasets – our structure-based classifier is never inferior to similar structure-based classifiers and comparable to classifiers that use both structural and evolutionary features. In addition to evaluation of the performance of catalytic residue identification, we also present detailed case studies on three proteins. This analysis suggests that many false positive predictions may correspond to binding sites and other functional residues. A web server that implements the method, our own-designed database, and the source code of the programs are publicly available at http://www.cs.bgu.ac.il/~meshi/functionPrediction. PMID:21491495

  2. Structure-based identification of catalytic residues.

    PubMed

    Yahalom, Ran; Reshef, Dan; Wiener, Ayana; Frankel, Sagiv; Kalisman, Nir; Lerner, Boaz; Keasar, Chen

    2011-06-01

    The identification of catalytic residues is an essential step in functional characterization of enzymes. We present a purely structural approach to this problem, which is motivated by the difficulty of evolution-based methods to annotate structural genomics targets that have few or no homologs in the databases. Our approach combines a state-of-the-art support vector machine (SVM) classifier with novel structural features that augment structural clues by spatial averaging and Z scoring. Special attention is paid to the class imbalance problem that stems from the overwhelming number of non-catalytic residues in enzymes compared to catalytic residues. This problem is tackled by: (1) optimizing the classifier to maximize a performance criterion that considers both Type I and Type II errors in the classification of catalytic and non-catalytic residues; (2) under-sampling non-catalytic residues before SVM training; and (3) during SVM training, penalizing errors in learning catalytic residues more than errors in learning non-catalytic residues. Tested on four enzyme datasets, one specifically designed by us to mimic the structural genomics scenario and three previously evaluated datasets, our structure-based classifier is never inferior to similar structure-based classifiers and comparable to classifiers that use both structural and evolutionary features. In addition to the evaluation of the performance of catalytic residue identification, we also present detailed case studies on three proteins. This analysis suggests that many false positive predictions may correspond to binding sites and other functional residues. A web server that implements the method, our own-designed database, and the source code of the programs are publicly available at http://www.cs.bgu.ac.il/∼meshi/functionPrediction. PMID:21491495

  3. Effect of Porosity on Surface Catalytic Efficiency

    NASA Technical Reports Server (NTRS)

    Stewart, David A.; Pallix, Joan; Rasky, Daniel J. (Technical Monitor)

    1994-01-01

    This paper describes the effect of surface porosity of thermal protection materials on surface catalytic efficiency using test data taken from both arc-jet and side-arm reactor facilities. Relative surface porosity of the samples varied from 6% to 50%. Surface porosity was measured using a flow apparatus and Bernoulli equation. The surface catalytic efficiency of the materials was calculated using aerothermodynamic, and kinetic theories. The catalytic efficiency of the materials are compared at surface temperatures between room temperature and 2500 F. The data are presented in the form of graphs and tables.

  4. Catalytic reaction in confined flow channel

    DOEpatents

    Van Hassel, Bart A.

    2016-03-29

    A chemical reactor comprises a flow channel, a source, and a destination. The flow channel is configured to house at least one catalytic reaction converting at least a portion of a first nanofluid entering the channel into a second nanofluid exiting the channel. The flow channel includes at least one turbulating flow channel element disposed axially along at least a portion of the flow channel. A plurality of catalytic nanoparticles is dispersed in the first nanofluid and configured to catalytically react the at least one first chemical reactant into the at least one second chemical reaction product in the flow channel.

  5. Catalytic reduction of CN−, CO and CO2 by nitrogenase cofactors in lanthanide-driven reactions**

    PubMed Central

    Lee, Chi Chung

    2014-01-01

    Nitrogenase cofactors can be extracted into an organic solvent and added in an adenosine triphosphate (ATP)-free, organic solvent-based reaction medium to catalyze the reduction of cyanide (CN−), carbon monoxide (CO) and carbon dioxide (CO2) when samarium (II) iodide (SmI2) and 2,6-lutidinium triflate (Lut-H) are supplied as a reductant and a proton source, respectively. Driven by SmI2, the cofactors not only catalytically reduce CN− or CO to C1-C4 hydrocarbons, but also catalytically reduce CO2 to CO and C1-C3 hydrocarbons. The observation of C-C coupling from CO2 reveals a unique, Fischer-Tropsch-like reaction with an atypical carbonaceous substrate; whereas the achievement of catalytic turnover of CN−, CO and CO2 by isolated cofactors suggests the possibility to develop nitrogenase-based electrocatalysts for hydrocarbon production from these carbon-containing compounds. PMID:25420957

  6. A catalytic approach to estimate the redox potential of heme-peroxidases

    SciTech Connect

    Ayala, Marcela . E-mail: maa@ibt.unam.mx; Roman, Rosa; Vazquez-Duhalt, Rafael

    2007-06-08

    The redox potential of heme-peroxidases varies according to a combination of structural components within the active site and its vicinities. For each peroxidase, this redox potential imposes a thermodynamic threshold to the range of oxidizable substrates. However, the instability of enzymatic intermediates during the catalytic cycle precludes the use of direct voltammetry to measure the redox potential of most peroxidases. Here we describe a novel approach to estimate the redox potential of peroxidases, which directly depends on the catalytic performance of the activated enzyme. Selected p-substituted phenols are used as substrates for the estimations. The results obtained with this catalytic approach correlate well with the oxidative capacity predicted by the redox potential of the Fe(III)/Fe(II) couple.

  7. Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles

    PubMed Central

    Wang, Yang-Gang; Mei, Donghai; Glezakou, Vassiliki-Alexandra; Li, Jun; Rousseau, Roger

    2015-01-01

    Catalysis by gold supported on reducible oxides has been extensively studied, yet issues such as the nature of the catalytic site and the role of the reducible support remain fiercely debated topics. Here we present ab initio molecular dynamics simulations of an unprecedented dynamic single-atom catalytic mechanism for the oxidation of carbon monoxide by ceria-supported gold clusters. The reported dynamic single-atom catalytic mechanism results from the ability of the gold cation to strongly couple with the redox properties of the ceria in a synergistic manner, thereby lowering the energy of redox reactions. The gold cation can break away from the gold nanoparticle to catalyse carbon monoxide oxidation, adjacent to the metal/oxide interface and subsequently reintegrate back into the nanoparticle after the reaction is completed. Our study highlights the importance of the dynamic creation of active sites under reaction conditions and their essential role in catalysis. PMID:25735407

  8. The Influence of Elastic Strain on Catalytic Activity in the Hydrogen Evolution Reaction.

    PubMed

    Yan, Kai; Maark, Tuhina Adit; Khorshidi, Alireza; Sethuraman, Vijay A; Peterson, Andrew A; Guduru, Pradeep R

    2016-05-17

    Understanding the role of elastic strain in modifying catalytic reaction rates is crucial for catalyst design, but experimentally, this effect is often coupled with a ligand effect. To isolate the strain effect, we have investigated the influence of externally applied elastic strain on the catalytic activity of metal films in the hydrogen evolution reaction (HER). We show that elastic strain tunes the catalytic activity in a controlled and predictable way. Both theory and experiment show strain controls reactivity in a controlled manner consistent with the qualitative predictions of the HER volcano plot and the d-band theory: Ni and Pt's activities were accelerated by compression, while Cu's activity was accelerated by tension. By isolating the elastic strain effect from the ligand effect, this study provides a greater insight into the role of elastic strain in controlling electrocatalytic activity. PMID:27079940

  9. Halogen Chemistry on Catalytic Surfaces.

    PubMed

    Moser, Maximilian; Pérez-Ramírez, Javier

    2016-01-01

    Halogens are key building blocks for the manufacture of high-value products such as chemicals, plastics, and pharmaceuticals. The catalytic oxidation of HCl and HBr is an attractive route to recover chlorine and bromine in order to ensure the sustainability of the production processes. Very few materials withstand the high corrosiveness and the strong exothermicity of the reactions and among them RuO2 and CeO2-based catalysts have been successfully applied in HCl oxidation. The search for efficient systems for HBr oxidation was initiated by extrapolating the results of HCl oxidation based on the chemical similarity of these reactions. Interestingly, despite its inactivity in HCl oxidation, TiO2 was found to be an outstanding HBr oxidation catalyst, which highlighted that the latter reaction is more complex than previously assumed. Herein, we discuss the results of recent comparative studies of HCl and HBr oxidation on both rutile-type (RuO2, IrO2, and TiO2) and ceria-based catalysts using a combination of advanced experimental and theoretical methods to provide deeper molecular-level understanding of the reactions. This knowledge aids the design of the next-generation catalysts for halogen recycling. PMID:27131113

  10. Vacuum-insulated catalytic converter

    DOEpatents

    Benson, David K.

    2001-01-01

    A catalytic converter has an inner canister that contains catalyst-coated substrates and an outer canister that encloses an annular, variable vacuum insulation chamber surrounding the inner canister. An annular tank containing phase-change material for heat storage and release is positioned in the variable vacuum insulation chamber a distance spaced part from the inner canister. A reversible hydrogen getter in the variable vacuum insulation chamber, preferably on a surface of the heat storage tank, releases hydrogen into the variable vacuum insulation chamber to conduct heat when the phase-change material is hot and absorbs the hydrogen to limit heat transfer to radiation when the phase-change material is cool. A porous zeolite trap in the inner canister absorbs and retains hydrocarbons from the exhaust gases when the catalyst-coated substrates and zeolite trap are cold and releases the hydrocarbons for reaction on the catalyst-coated substrate when the zeolite trap and catalyst-coated substrate get hot.

  11. Catalytic reactions in ionic liquids.

    PubMed

    Sheldon, R

    2001-12-01

    The chemical industry is under considerable pressure to replace many of the volatile organic compounds (VOCs) that are currently used as solvents in organic synthesis. The toxic and/or hazardous properties of many solvents, notably chlorinated hydrocarbons, combined with serious environmental issues, such as atmospheric emissions and contamination of aqueous effluents is making their use prohibitive. This is an important driving force in the quest for novel reaction media. Curzons and coworkers, for example, recently noted that rigorous management of solvent use is likely to result in the greatest improvement towards greener processes for the manufacture of pharmaceutical intermediates. The current emphasis on novel reaction media is also motivated by the need for efficient methods for recycling homogeneous catalysts. The key to waste minimisation in chemicals manufacture is the widespread substitution of classical 'stoichiometric' syntheses by atom efficient, catalytic alternatives. In the context of homogeneous catalysis, efficient recycling of the catalyst is a conditio sine qua non for economically and environmentally attractive processes. Motivated by one or both of the above issues much attention has been devoted to homogeneous catalysis in aqueous biphasic and fluorous biphasic systems as well as in supercritical carbon dioxide. Similarly, the use of ionic liquids as novel reaction media may offer a convenient solution to both the solvent emission and the catalyst recycling problem. PMID:12239988

  12. A review of tin oxide-based catalytic systems: Preparation, characterization and catalytic behavior

    NASA Technical Reports Server (NTRS)

    Hoflund, Gar B.

    1987-01-01

    This paper reviews the important aspects of the preparation, characterization and catalytic behavior of tin oxide-based catalytic systems including doped tin oxide, mixed oxides which contain tin oxide, Pt supported on tin oxide and Pt/Sn supported on alumina. These systems have a broad range of applications and are continually increasing in importance. However, due to their complex nature, much remains to be understood concerning how they function catalytically.

  13. CATALYTIC OXIDATION OF GROUNDWATER STRIPPING EMISSIONS

    EPA Science Inventory

    The paper reviews the applicability of catalytic oxidation to control ground-water air stripping gaseous effluents, with special attention to system designs and case histories. The variety of contaminants and catalyst poisons encountered in stripping operations are also reviewed....

  14. Chemical and catalytic properties of elemental carbon

    SciTech Connect

    Chang, S.G.; Brodzinsky, R.; Gundel, L.A.; Novakov, T.

    1980-10-01

    Elemental carbon particles resulting from incomplete combustion of fossil fuel are one of the major constituents of airborne particulate matter. These particles are a chemically and catalytically active material and can be an effective carrier for other toxic air pollutants through their adsorptive capability. The chemical, adsorptive, and catalytic behaviors of carbon particles depend very much on their crystalline structure, surface composition, and electronic properties. This paper discusses these properties and examines their relevance to atmospheric chemistry.

  15. Catalytic Aminohalogenation of Alkenes and Alkynes

    PubMed Central

    Chemler, Sherry R.; Bovino, Michael T.

    2013-01-01

    Catalytic aminohalogenation methods enable the regio- and stereoselective vicinal difunctionalization of alkynes, allenes and alkenes with amine and halogen moieties. A range of protocols and reaction mechanisms including organometallic, Lewis base, Lewis acid and Brønsted acid catalysis have been disclosed, enabling the regio- and stereoselective synthesis of halogen-functionalized acyclic amines and nitrogen heterocycles. Recent advances including aminofluorination and catalytic enantioselective aminohalogenation reactions are summarized in this review. PMID:23828735

  16. An Iron Reservoir to the Catalytic Metal

    PubMed Central

    Liu, Fange; Geng, Jiafeng; Gumpper, Ryan H.; Barman, Arghya; Davis, Ian; Ozarowski, Andrew; Hamelberg, Donald; Liu, Aimin

    2015-01-01

    The rubredoxin motif is present in over 74,000 protein sequences and 2,000 structures, but few have known functions. A secondary, non-catalytic, rubredoxin-like iron site is conserved in 3-hydroxyanthranilate 3,4-dioxygenase (HAO), from single cellular sources but not multicellular sources. Through the population of the two metal binding sites with various metals in bacterial HAO, the structural and functional relationship of the rubredoxin-like site was investigated using kinetic, spectroscopic, crystallographic, and computational approaches. It is shown that the first metal presented preferentially binds to the catalytic site rather than the rubredoxin-like site, which selectively binds iron when the catalytic site is occupied. Furthermore, an iron ion bound to the rubredoxin-like site is readily delivered to an empty catalytic site of metal-free HAO via an intermolecular transfer mechanism. Through the use of metal analysis and catalytic activity measurements, we show that a downstream metabolic intermediate can selectively remove the catalytic iron. As the prokaryotic HAO is often crucial for cell survival, there is a need for ensuring its activity. These results suggest that the rubredoxin-like site is a possible auxiliary iron source to the catalytic center when it is lost during catalysis in a pathway with metabolic intermediates of metal-chelating properties. A spare tire concept is proposed based on this biochemical study, and this concept opens up a potentially new functional paradigm for iron-sulfur centers in iron-dependent enzymes as transient iron binding and shuttling sites to ensure full metal loading of the catalytic site. PMID:25918158

  17. Correlation of Catalytic Rates With Solubility Parameters

    NASA Technical Reports Server (NTRS)

    Lawson, Daniel D.; England, Christopher

    1987-01-01

    Catalyst maximizes activity when its solubility parameter equals that of reactive species. Catalytic activities of some binary metal alloys at maximum when alloy compositions correspond to Hildebrand solubility parameters equal to those of reactive atomic species on catalyst. If this suggestive correlation proves to be general, applied to formulation of other mixed-metal catalysts. Also used to identify reactive species in certain catalytic reactions.

  18. Catalytic Radical Domino Reactions in Organic Synthesis

    PubMed Central

    Sebren, Leanne J.; Devery, James J.; Stephenson, Corey R.J.

    2014-01-01

    Catalytic radical-based domino reactions represent important advances in synthetic organic chemistry. Their development benefits synthesis by providing atom- and step-economical methods to complex molecules. Intricate combinations of radical, cationic, anionic, oxidative/reductive, and transition metal mechanistic steps result in cyclizations, additions, fragmentations, ring-expansions, and rearrangements. This Perspective summarizes recent developments in the field of catalytic domino processes. PMID:24587964

  19. Thicker is better? Synthesis and evaluation of well-defined polymer brushes with controllable catalytic loadings.

    PubMed

    Fernandes, Antony E; Dirani, Ali; d'Haese, Cécile; Deumer, Gladys; Guo, Weiming; Hensenne, Peter; Nahra, Fady; Laloyaux, Xavier; Haufroid, Vincent; Nysten, Bernard; Riant, Olivier; Jonas, Alain M

    2012-12-01

    Polymer brushes (PBs) have been used as supports for the immobilization of palladium complexes on silicon surfaces. The polymers were grown by surface-initiated atom-transfer radical polymerization (SI-ATRP) and postdecorated with dipyridylamine (dpa) ligands. The pendant dpa units were in turn complexed with [Pd(OAc)(2)] to afford hybrid catalytic surfaces. A series of catalytic samples of various thicknesses (ca. 20-160 nm) and associated palladium loadings (ca. 10-45 nmol  cm(-2)) were obtained by adjusting the SI-ATRP reaction time and characterized by ellipsometry, X-ray reflectivity, X-ray photoelectron spectroscopy, and inductively coupled plasma mass spectrometry (ICP-MS). ICP-MS revealed a near-linear relationship between thickness of the polymer brush and palladium content, which confirmed the robustness of the preparation and postmodification sequence presented herein, rendering possible the creation of functional architectures with predefined catalytic potential. The activities of the catalytic PBs were determined by systematically exploring a full range of substrate-to-catalyst ratios in a model palladium(0)-catalyzed reaction. Quantitative transformations were observed for loadings down to 0.03 mol % and a maximum turnover number (TON) of around 3500 was established for the system. Comparison of the catalytic performances evidenced a singular influence of the thickness on conversions and TONs. The limited recyclability of the hairy catalysts has been attributed to palladium leaching. PMID:23032959

  20. Prosthesis coupling

    NASA Technical Reports Server (NTRS)

    Reswick, J. B.; Mooney, V.; Bright, C. W.; Owens, L. J. (Inventor)

    1979-01-01

    A coupling for use in an apparatus for connecting a prosthesis to the bone of a stump of an amputated limb is described which permits a bio-compatible carbon sleeve forming a part of the prosthesis connector to float so as to prevent disturbing the skin seal around the carbon sleeve. The coupling includes a flexible member interposed between a socket that is inserted within an intermedullary cavity of the bone and the sleeve. A lock pin is carried by the prosthesis and has a stem portion which is adapted to be coaxially disposed and slideably within the tubular female socket for securing the prosthesis to the stump. The skin around the percutaneous carbon sleeve is able to move as a result of the flexing coupling so as to reduce stresses caused by changes in the stump shape and/or movement between the bone and the flesh portion of the stump.

  1. FLEXIBLE COUPLING

    DOEpatents

    Babelay, E.F.

    1962-02-13

    A flexible shaft coupling for operation at speeds in excess of 14,000 rpm is designed which requires no lubrication. A driving sleeve member and a driven sleeve member are placed in concentric spaced relationship. A torque force is transmitted to the driven member from the driving member through a plurality of nylon balls symmetrically disposed between the spaced sleeves. The balls extend into races and recesses within the respective sleeve members. The sleeve members have a suitable clearance therebetween and the balls have a suitable radial clearance during operation of the coupling to provide a relatively loose coupling. These clearances accommodate for both parallel and/or angular misalignments and avoid metal-tometal contact between the sleeve members during operation. Thus, no lubrication is needed, and a minimum of vibrations is transmitted between the sleeve members. (AEC)

  2. Catalytically active single-atom niobium in graphitic layers.

    PubMed

    Zhang, Xuefeng; Guo, Junjie; Guan, Pengfei; Liu, Chunjing; Huang, Hao; Xue, Fanghong; Dong, Xinglong; Pennycook, Stephen J; Chisholm, Matthew F

    2013-01-01

    Carbides of groups IV through VI (Ti, V and Cr groups) have long been proposed as substitutes for noble metal-based electrocatalysts in polymer electrolyte fuel cells. However, their catalytic activity has been extremely limited because of the low density and stability of catalytically active sites. Here we report the excellent performance of a niobium-carbon structure for catalysing the cathodic oxygen reduction reaction. A large number of single niobium atoms and ultra small clusters trapped in graphitic layers are directly identified using state-of-the-art aberration-corrected scanning transmission electron microscopy. This structure not only enhances the overall conductivity for accelerating the exchange of ions and electrons, but it suppresses the chemical/thermal coarsening of the active particles. Experimental results coupled with theory calculations reveal that the single niobium atoms incorporated within the graphitic layers produce a redistribution of d-band electrons and become surprisingly active for O2 adsorption and dissociation, and also exhibit high stability. PMID:23715283

  3. SOFC system with integrated catalytic fuel processing

    NASA Astrophysics Data System (ADS)

    Finnerty, Caine; Tompsett, Geoff. A.; Kendall, Kevin; Ormerod, R. Mark

    In recent years, there has been much interest in the development of solid oxide fuel cell technology operating directly on hydrocarbon fuels. The development of a catalytic fuel processing system, which is integrated with the solid oxide fuel cell (SOFC) power source is outlined here. The catalytic device utilises a novel three-way catalytic system consisting of an in situ pre-reformer catalyst, the fuel cell anode catalyst and a platinum-based combustion catalyst. The three individual catalytic stages have been tested in a model catalytic microreactor. Both temperature-programmed and isothermal reaction techniques have been applied. Results from these experiments were used to design the demonstration SOFC unit. The apparatus used for catalytic characterisation can also perform in situ electrochemical measurements as described in previous papers [C.M. Finnerty, R.H. Cunningham, K. Kendall, R.M. Ormerod, Chem. Commun. (1998) 915-916; C.M. Finnerty, N.J. Coe, R.H. Cunningham, R.M. Ormerod, Catal. Today 46 (1998) 137-145]. This enabled the performance of the SOFC to be determined at a range of temperatures and reaction conditions, with current output of 290 mA cm -2 at 0.5 V, being recorded. Methane and butane have been evaluated as fuels. Thus, optimisation of the in situ partial oxidation pre-reforming catalyst was essential, with catalysts producing high H 2/CO ratios at reaction temperatures between 873 K and 1173 K being chosen. These included Ru and Ni/Mo-based catalysts. Hydrocarbon fuels were directly injected into the catalytic SOFC system. Microreactor measurements revealed the reaction mechanisms as the fuel was transported through the three-catalyst device. The demonstration system showed that the fuel processing could be successfully integrated with the SOFC stack.

  4. VOC Destruction by Catalytic Combustion Microturbine

    SciTech Connect

    Tom Barton

    2009-03-10

    This project concerned the application of a catalytic combustion system that has been married to a micro-turbine device. The catalytic combustion system decomposes the VOC's and transmits these gases to the gas turbine. The turbine has been altered to operate on very low-level BTU fuels equivalent to 1.5% methane in air. The performance of the micro-turbine for VOC elimination has some flexibility with respect to operating conditions, and the system is adaptable to multiple industrial applications. The VOC source that was been chosen for examination was the emissions from coal upgrading operations. The overall goal of the project was to examine the effectiveness of a catalytic combustion based system for elimination of VOCs while simultaneously producing electrical power for local consumption. Project specific objectives included assessment of the feasibility for using a Flex-Microturbine that generates power from natural gas while it consumes VOCs generated from site operations; development of an engineering plan for installation of the Flex-Microturbine system; operation of the micro-turbine through various changes in site and operation conditions; measurement of the VOC destruction quantitatively; and determination of the required improvements for further studies. The micro-turbine with the catalytic bed worked effectively to produce power on levels of fuel much lower than the original turbine design. The ability of the device to add or subtract supplemental fuel to augment the amount of VOC's in the inlet air flow made the device an effective replacement for a traditional flare. Concerns about particulates in the inlet flow and the presence of high sulfur concentrations with the VOC mixtures was identified as a drawback with the current catalytic design. A new microturbine design was developed based on this research that incorporates a thermal oxidizer in place of the catalytic bed for applications where particulates or contamination would limit the lifetime of

  5. Catalytic activity of nuclease P1: Experiment and theory

    SciTech Connect

    Miller, J.H.; Falcone, J.M.; Shibata, M.; Box, H.C.

    1994-10-01

    Nuclease P1 from Penicillium citrinum is a zinc dependent glyco-enzyme that recognizes single stranded DNA and RNA as substrates and hydrolyzes the phosphate ester bond. Nuclease Pl seems to recognize particular conformations of the phosphodiester backbone and shows significant variation in the rate of hydrolytic activity depending upon which nucleosides are coupled by the phosphodiester bond. The efficiency of nuclease Pl in hydrolyzing the phosphodiester bonds of a substrate can be altered by modifications to one of the substrate bases induced by ionizing radiation or oxidative stress. Measurements have been made of the effect of several radiation induced lesions on the catalytic rate of nuclease Pl. A model of the structure of the enzyme has been constructed in order to better understand the binding and activity of this enzyme on various ssDNA substrates.

  6. Catalytic Oxygen Evolution by Cobalt Oxido Thin Films.

    PubMed

    Bediako, D Kwabena; Ullman, Andrew M; Nocera, Daniel G

    2016-01-01

    The contemporary demand to generate fuels from solar energy has stimulated intense effort to develop water splitting catalysts that can be coupled to light-absorbing materials. Cobalt oxido catalyst (Co-OECs) films deposited from buffered Co(II) solutions have emerged as arguably the most studied class of heterogeneous oxygen evolution catalysts. The interest in these materials stems from their formation by self-assembly, their self-healing properties, and their promising catalytic activity under a variety of conditions. The structure and function of these catalysts are reviewed here together with studies of molecular Co-O cluster compounds, which have proven invaluable in elucidating the chemistry of the Co-OECs. PMID:26245626

  7. Kinetically controlled E-selective catalytic olefin metathesis.

    PubMed

    Nguyen, Thach T; Koh, Ming Joo; Shen, Xiao; Romiti, Filippo; Schrock, Richard R; Hoveyda, Amir H

    2016-04-29

    A major shortcoming in olefin metathesis, a chemical process that is central to research in several branches of chemistry, is the lack of efficient methods that kinetically favor E isomers in the product distribution. Here we show that kinetically E-selective cross-metathesis reactions may be designed to generate thermodynamically disfavored alkenyl chlorides and fluorides in high yield and with exceptional stereoselectivity. With 1.0 to 5.0 mole % of a molybdenum-based catalyst, which may be delivered in the form of air- and moisture-stable paraffin pellets, reactions typically proceed to completion within 4 hours at ambient temperature. Many isomerically pure E-alkenyl chlorides, applicable to catalytic cross-coupling transformations and found in biologically active entities, thus become easily and directly accessible. Similarly, E-alkenyl fluorides can be synthesized from simpler compounds or more complex molecules. PMID:27126041

  8. Nitrene Metathesis and Catalytic Nitrene Transfer Promoted by Niobium Bis(imido) Complexes.

    PubMed

    Kriegel, Benjamin M; Bergman, Robert G; Arnold, John

    2016-01-13

    We report a metathesis reaction in which a nitrene fragment from an isocyanide ligand is exchanged with a nitrene fragment of an imido ligand in a series of niobium bis(imido) complexes. One of these bis(imido) complexes also promotes nitrene transfer to catalytically generate asymmetric dialkylcarbodiimides from azides and isocyanides in a process involving the Nb(V)/Nb(III) redox couple. PMID:26698833

  9. Transient and sustained elementary flux mode networks on a catalytic string-based chemical evolution model.

    PubMed

    Pereira, José A

    2014-08-01

    Theoretical models designed to test the metabolism-first hypothesis for prebiotic evolution have yield strong indications about the hypothesis validity but could sometimes use a more extensive identification between model objects and real objects towards a more meaningful interpretation of results. In an attempt to go in that direction, the string-based model SSE ("steady state evolution") was developed, where abstract molecules (strings) and catalytic interaction rules are based on some of the most important features of carbon compounds in biological chemistry. The system is open with a random inflow and outflow of strings but also with a permanent string food source. Although specific catalysis is a key aspect of the model, used to define reaction rules, the focus is on energetics rather than kinetics. Standard energy change tables were constructed and used with standard formation reactions to track energy flows through the interpretation of equilibrium constant values. Detection of metabolic networks on the reaction system was done with elementary flux mode (EFM) analysis. The combination of these model design and analysis options enabled obtaining metabolic and catalytic networks showing several central features of biological metabolism, some more clearly than in previous models: metabolic networks with stepwise synthesis, energy coupling, catalysts regulation, SN2 coupling, redox coupling, intermediate cycling, coupled inverse pathways (metabolic cycling), autocatalytic cycles and catalytic cascades. The results strongly suggest that the main biological metabolism features, including the genotype-phenotype interpretation, are caused by the principles of catalytic systems and are prior to modern genetic systems principles. It also gives further theoretical support to the thesis that the basic features of biologic metabolism are a consequence of the time evolution of a random catalyst search working on an open system with a permanent food source. The importance

  10. Catalytic coal liquefaction. Final report

    SciTech Connect

    Weller, S W

    1981-01-01

    Monolith catalysts of MoO/sub 3/-CoO-Al/sub 2/O/sub 3/ were prepared and tested for coal liquefaction in a stirred autoclave. In general, the monolith catalysts were not as good as particulate catalysts prepared on Corning alumina supports. Measurement of O/sub 2/ chemisorption and BET surface area has been made on a series of Co/Mo/Al/sub 2/O/sub 3/ catalysts obtained from PETC. The catalysts were derived from Cyanamid 1442A and had been tested for coal liquefaction in batch autoclaves and continuous flow units. MoO/sub 3/-Al/sub 2/O/sub 3/ catalysts over the loading range 3.9 to 14.9 wt % MoO/sub 3/ have been studied with respect to BET surface (before and after reduction), O/sub 2/ chemisorption at -78/sup 0/C, redox behavior at 500/sup 0/C, and activity for cyclohexane dehydrogenation at 500/sup 0/C. In connection with the fate of tin catalysts during coal liquefaction, calculations have been made of the relative thermodynamic stability of SnCl/sub 2/, Sn, SnO/sub 2/, and SnS in the presence of H/sub 2/, HCl, H/sub 2/S and H/sub 2/O. Ferrous sulfate dispersed in methylnaphthalene has been shown to be reduced to ferrous sulfide under typical coal hydroliquefaction conditions (1 hour, 450/sup 0/C, 1000 psi initial p/sub H/sub 2//). This suggests that ferrous sulfide may be the common catalytic ingredient when either (a) ferrous sulfate impregnated on powdered coal, or (b) finely divided iron pyrite is used as the catalyst. Old research on impregnated ferrous sulfate, impregnated ferrous halides, and pyrite is consistent with this assumption. Eight Co/Mo/Al/sub 2/O/sub 3/ catalysts from commercial suppliers, along with SnCl/sub 2/, have been studied for the hydrotreating of 1-methylnaphthalene (1-MN) in a stirred autoclave at 450 and 500/sup 0/C.

  11. Simultaneous probing of bulk liquid phase and catalytic gas-liquid-solid interface under working conditions using attenuated total reflection infrared spectroscopy

    SciTech Connect

    Meemken, Fabian; Müller, Philipp; Hungerbühler, Konrad; Baiker, Alfons

    2014-08-15

    Design and performance of a reactor set-up for attenuated total reflection infrared (ATR-IR) spectroscopy suitable for simultaneous reaction monitoring of bulk liquid and catalytic solid-liquid-gas interfaces under working conditions are presented. As advancement of in situ spectroscopy an operando methodology for gas-liquid-solid reaction monitoring was developed that simultaneously combines catalytic activity and molecular level detection at the catalytically active site of the same sample. Semi-batch reactor conditions are achieved with the analytical set-up by implementing the ATR-IR flow-through cell in a recycle reactor system and integrating a specifically designed gas feeding system coupled with a bubble trap. By the use of only one spectrometer the design of the new ATR-IR reactor cell allows for simultaneous detection of the bulk liquid and the catalytic interface during the working reaction. Holding two internal reflection elements (IRE) the sample compartments of the horizontally movable cell are consecutively flushed with reaction solution and pneumatically actuated, rapid switching of the cell (<1 s) enables to quasi simultaneously follow the heterogeneously catalysed reaction at the catalytic interface on a catalyst-coated IRE and in the bulk liquid on a blank IRE. For a complex heterogeneous reaction, the asymmetric hydrogenation of 2,2,2-trifluoroacetophenone on chirally modified Pt catalyst the elucidation of catalytic activity/enantioselectivity coupled with simultaneous monitoring of the catalytic solid-liquid-gas interface is shown. Both catalytic activity and enantioselectivity are strongly dependent on the experimental conditions. The opportunity to gain improved understanding by coupling measurements of catalytic performance and spectroscopic detection is presented. In addition, the applicability of modulation excitation spectroscopy and phase-sensitive detection are demonstrated.

  12. Simultaneous probing of bulk liquid phase and catalytic gas-liquid-solid interface under working conditions using attenuated total reflection infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Meemken, Fabian; Müller, Philipp; Hungerbühler, Konrad; Baiker, Alfons

    2014-08-01

    Design and performance of a reactor set-up for attenuated total reflection infrared (ATR-IR) spectroscopy suitable for simultaneous reaction monitoring of bulk liquid and catalytic solid-liquid-gas interfaces under working conditions are presented. As advancement of in situ spectroscopy an operando methodology for gas-liquid-solid reaction monitoring was developed that simultaneously combines catalytic activity and molecular level detection at the catalytically active site of the same sample. Semi-batch reactor conditions are achieved with the analytical set-up by implementing the ATR-IR flow-through cell in a recycle reactor system and integrating a specifically designed gas feeding system coupled with a bubble trap. By the use of only one spectrometer the design of the new ATR-IR reactor cell allows for simultaneous detection of the bulk liquid and the catalytic interface during the working reaction. Holding two internal reflection elements (IRE) the sample compartments of the horizontally movable cell are consecutively flushed with reaction solution and pneumatically actuated, rapid switching of the cell (<1 s) enables to quasi simultaneously follow the heterogeneously catalysed reaction at the catalytic interface on a catalyst-coated IRE and in the bulk liquid on a blank IRE. For a complex heterogeneous reaction, the asymmetric hydrogenation of 2,2,2-trifluoroacetophenone on chirally modified Pt catalyst the elucidation of catalytic activity/enantioselectivity coupled with simultaneous monitoring of the catalytic solid-liquid-gas interface is shown. Both catalytic activity and enantioselectivity are strongly dependent on the experimental conditions. The opportunity to gain improved understanding by coupling measurements of catalytic performance and spectroscopic detection is presented. In addition, the applicability of modulation excitation spectroscopy and phase-sensitive detection are demonstrated.

  13. Materials for high-temperature catalytic combustion

    SciTech Connect

    Ramesh, K.S.; Cox, J.L.; Parks, W.P. Jr.

    1994-04-01

    Catalytic combustion systems for gas turbines must operate at temperatures of at least 1200{degrees}C. Support structure material must retain its integrity under prolonged exposure to high temperature, thermal cycling, and severe chemical conditions; and the material must be capable of being formed into thin sections. The performance requirements of a high-temperature stable ceramic support must be balanced with reasonable costs of preparation. An increasing number of materials have potential for successful exposure to high-temperature conditions. Two major problems of high-temperature catalyst systems are loss of surface area and catalytic activity. Incorporation of the catalytic component into the host lattice can circumvent this problem. Use of supporting active metal oxides on carrier materials with high thermal resistance appears to be a very promising way to make stable catalysts. The challenge will be to provide sufficient low-temperature activity and high-temperature stability; therefore, there exists a need to engineer catalytic materials for high-temperature combustion environments. Developments in catalytic materials and preparation procedures are reviewed. Future areas of research are discussed.

  14. Catalytic Combustor for Fuel-Flexible Turbine

    SciTech Connect

    W. R. Laster; E. Anoshkina

    2008-01-31

    Under the sponsorship of the U. S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse has conducted a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1 - Implementation Plan, Phase 2 - Validation Testing and Phase 3 - Field Testing. Both Phase 1 and Phase 2 of the program have been completed. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCLTM) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to oxidize a portion of the fuel, increasing the temperature of fuel/air mixture prior to the main combustion zone. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the technology necessary for the application of the catalytic concept to IGCC fuels was developed through detailed design and subscale testing. Phase III (currently not funded) will consist of full-scale combustor basket testing on natural gas and syngas.

  15. Catalytic Combustor for Fuel-Flexible Turbine

    SciTech Connect

    Laster, W. R.; Anoshkina, E.

    2008-01-31

    Under the sponsorship of the U. S. Department of Energy’s National Energy Technology Laboratory, Siemens Westinghouse has conducted a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1- Implementation Plan, Phase 2- Validation Testing and Phase 3 – Field Testing. Both Phase 1 and Phase 2 of the program have been completed. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCLTM) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to oxidize a portion of the fuel, increasing the temperature of fuel/air mixture prior to the main combustion zone. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the technology necessary for the application of the catalytic concept to IGCC fuels was developed through detailed design and subscale testing. Phase III (currently not funded) will consist of full-scale combustor basket testing on natural gas and syngas.

  16. Catalytic Combustor for Fuel-Flexible Turbine

    SciTech Connect

    W. R. Laster; E. Anoshkina; P. Szedlacsek

    2006-03-31

    Under the sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse is conducting a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1-Implementation Plan, Phase 2-Validation Testing and Phase 3-Field Testing. The Phase 1 program has been completed. Phase II was initiated in October 2004. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCL{trademark}) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to react part of the fuel, increasing the fuel/air mixture temperature. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the catalytic concept will be demonstrated through subscale testing. Phase III will consist of full-scale combustor basket testing on natural gas and syngas.

  17. Photoredox Catalysis in Nickel-Catalyzed Cross-Coupling.

    PubMed

    Cavalcanti, Livia N; Molander, Gary A

    2016-08-01

    The traditional transition metal-catalyzed cross-coupling reaction, although well suited for C(sp2)-C(sp2) cross-coupling, has proven less amenable toward coupling of C(sp3)-hybridized centers, particularly using functional group tolerant reagents and reaction conditions. The development of photoredox/Ni dual catalytic methods for cross-coupling has opened new vistas for the construction of carbon-carbon bonds at C(sp3)-hybridized centers. In this chapter, a general outline of the features of such processes is detailed. PMID:27573391

  18. Visible Light Mediated Photoredox Catalytic Arylation Reactions.

    PubMed

    Ghosh, Indrajit; Marzo, Leyre; Das, Amrita; Shaikh, Rizwan; König, Burkhard

    2016-08-16

    Introducing aryl- and heteroaryl moieties into molecular scaffolds are often key steps in the syntheses of natural products, drugs, or functional materials. A variety of cross-coupling methods have been well established, mainly using transition metal mediated reactions between prefunctionalized substrates and arenes or C-H arylations with functionalization in only one coupling partner. Although highly developed, one drawback of the established sp2-sp2 arylations is the required transition metal catalyst, often in combination with specific ligands and additives. Therefore, photoredox mediated arylation methods have been developed as alternative over the past decade. We begin our survey with visible light photo-Meerwein arylation reactions, which allow C-H arylation of heteroarenes, enones, alkenes, and alkynes with organic dyes, such as eosin Y, as the photocatalyst. A good number of examples from different groups illustrate the broad application of the reaction in synthetic transformations. While initially only photo-Meerwein arylation-elimination processes were reported, the reaction was later extended to photo-Meerwein arylation-addition reactions giving access to the photoinduced three component synthesis of amides and esters from alkenes, aryl diazonium salts, nitriles or formamides, respectively. Other substrates with redox-active leaving groups have been explored in photocatalyzed arylation reactions, such as diaryliodonium and triarylsulfonium salts, and arylsulfonyl chlorides. We discus some examples with their scope and limitations. The scope of arylation reagents for photoredox reactions was extended to aryl halides. The challenge here is the extremely negative reduction potential of aryl halides in the initial electron transfer step compared to, e.g., aryl diazonium or diaryliodonium salts. In order to reach reduction potentials over -2.0 V vs SCE two consecutive photoinduced electron transfer steps were used. The intermediary formed colored radical

  19. Convective stability in the presence of a catalytic chemical reaction. I.

    NASA Technical Reports Server (NTRS)

    Wankat, P. C.; Schowalter, W. R.

    1971-01-01

    A linear analysis of hydrodynamic stability has been applied to a problem in which a fluid mixture is contained between two horizontal planes. One species diffuses to the lower plane where it is destroyed by a rapid exothermic or endothermic catalytic reaction. Results show that important coupling takes place between thermal and concentration fields. This coupling gives rise to unusual stabilizing or destabilizing effects, depending upon the value of Lewis number. Several examples are discussed. It is also shown how the results can be applied to other problems involving heat and mass transfer.

  20. Xylan-Degrading Catalytic Flagellar Nanorods.

    PubMed

    Klein, Ágnes; Szabó, Veronika; Kovács, Mátyás; Patkó, Dániel; Tóth, Balázs; Vonderviszt, Ferenc

    2015-09-01

    Flagellin, the main component of flagellar filaments, is a protein possessing polymerization ability. In this work, a novel fusion construct of xylanase A from B. subtilis and Salmonella flagellin was created which is applicable to build xylan-degrading catalytic nanorods of high stability. The FliC-XynA chimera when overexpressed in a flagellin deficient Salmonella host strain was secreted into the culture medium by the flagellum-specific export machinery allowing easy purification. Filamentous assemblies displaying high surface density of catalytic sites were produced by ammonium sulfate-induced polymerization. FliC-XynA nanorods were resistant to proteolytic degradation and preserved their enzymatic activity for a long period of time. Furnishing enzymes with self-assembling ability to build catalytic nanorods offers a promising alternative approach to enzyme immobilization onto nanostructured synthetic scaffolds. PMID:25966869

  1. The catalytic core of RNase P.

    PubMed Central

    Green, C J; Rivera-León, R; Vold, B S

    1996-01-01

    A deletion mutant of the catalytic RNA component of Escherichia coli RNase P missing residues 87-241 retains the ability to interact with the protein component to form a functional catalyst. The deletion of this phylogenetically conserved region significantly increases the Km, indicating that the deleted structures may be important for binding to the precursor tRNA substrate but not for the cleavage reaction. Under some reaction conditions, this RNase P deletion mutant can become a relatively non-specific nuclease, indicating that this RNA's catalytic center may be more exposed. The catalytic core of the RNase P is formed by less than one third of the 377 residues of the RNase P RNA. PMID:8628683

  2. Asymmetric catalytic transformations in supercritical carbon dioxide

    SciTech Connect

    Feng, Shaoguang; Tumas, W.; Gross, M.F.; Burk, M.J.

    1996-12-31

    Supercritical carbon dioxide can be a useful environmentally benign solvent for a wide range of catalytic reactions. We have been exploring the utility of supercritical carbon dioxide as a reaction medium for catalytic asymmetric transformations. We will present results on the asymmetric hydrogenation of prochiral olefins, ketones, and unsaturated acids by Rh and Ru catalysts containing chiral phosphine ligands using hydrogen or hydrogen transfer agents. We have found that asymmetric catalytic hydrogenation reactions of enamide esters work as well or better in CO{sub 2} than in conventional solvents. We have been able to effect high conversions and ee`s using hydrogen transfer systems such as HCOOH/NEt{sub 3}, We will discuss temperature, pressure and solvent density effects on selectivity and reactivity. Kinetic studies will also be presented in order to understand the enhanced enantioselectivity that we observed in SC CO{sub 2}.

  3. ADAR proteins: structure and catalytic mechanism.

    PubMed

    Goodman, Rena A; Macbeth, Mark R; Beal, Peter A

    2012-01-01

    Since the discovery of the adenosine deaminase (ADA) acting on RNA (ADAR) family of proteins in 1988 (Bass and Weintraub, Cell 55:1089-1098, 1988) (Wagner et al. Proc Natl Acad Sci U S A 86:2647-2651, 1989), we have learned much about their structure and catalytic mechanism. However, much about these enzymes is still unknown, particularly regarding the selective recognition and processing of specific adenosines within substrate RNAs. While a crystal structure of the catalytic domain of human ADAR2 has been solved, we still lack structural data for an ADAR catalytic domain bound to RNA, and we lack any structural data for other ADARs. However, by analyzing the structural data that is available along with similarities to other deaminases, mutagenesis and other biochemical experiments, we have been able to advance the understanding of how these fascinating enzymes function. PMID:21769729

  4. Temperature Modulation of a Catalytic Gas Sensor

    PubMed Central

    Brauns, Eike; Morsbach, Eva; Kunz, Sebastian; Baeumer, Marcus; Lang, Walter

    2014-01-01

    The use of catalytic gas sensors usually offers low selectivity, only based on their different sensitivities for various gases due to their different heats of reaction. Furthermore, the identification of the gas present is not possible, which leads to possible misinterpretation of the sensor signals. The use of micro-machined catalytic gas sensors offers great advantages regarding the response time, which allows advanced analysis of the sensor response. By using temperature modulation, additional information about the gas characteristics can be measured and drift effects caused by material shifting or environmental temperature changes can be avoided. In this work a miniaturized catalytic gas sensor which offers a very short response time (<150 ms) was developed. Operation with modulated temperature allows analysis of the signal spectrum with advanced information content, based on the Arrhenius approach. Therefore, a high-precise electronic device was developed, since theory shows that harmonics induced by the electronics must be avoided to generate a comprehensible signal. PMID:25356643

  5. Olefin fractionation and catalytic conversion system

    SciTech Connect

    Owen, H.; Hsia, C.H.; Wright, B.S.

    1989-05-23

    A continuous catalytic system is described for converting a fraction of olefinic feedstock comprising ethylene and C/sub 3/+ olefins to heavier liquid hydrocarbon product comprising: (a) means for prefractionating the olefinic feedstock to obtain a gaseous stream rich in ethylene and a liquid stream containing C/sub 3/+ olefin; (b) means for vaporizing and contacting the liquid stream from the prefractionating step with hydrocarbon conversion oligomerization catalyst in a catalytic reactor system to provide a heavier hydrocarbon effluent stream comprising distillate, gasoline and lighter hydrocarbons; (c) means for fractionating the effluent stream to recover distillate, gasoline and lighter hydrocarbon separately; (d) means for recycling at least a portion of the recovered gasoline as a liquid sorption stream to prefractionating step (a); and (e) means for further reacting the recycled gasoline together with sorbed C/sub 3/+ olefin in the catalytic reactor system of step (b).

  6. Mass transfer in composite catalytic membranes

    SciTech Connect

    Langhendries, G.; Claessens, R.; Baron, G.V.

    1996-12-31

    The partial oxidation of cyclohexane was studied in a composite polymer-zeolite catalytic membrane reactor. In a first step the equilibrium and mass transfer properties (swelling, diffusion and sorption) of dense composite membranes were examined. The swelling behavior of the crosslinked poly(dimethylsiloxane) network was determined for several solvents and related to the differences between the Hildebrand solubility parameters of solvent and polymer. Time lag experiments, which enable us to measure simultaneously diffusion and partition coefficients, were carried out on a dense poly(dimethylsiloxane) membrane. A mathematical model describing the mass transfer behavior of these catalytic membranes was derived and validated with experimental data. Mass transfer through composite catalytic membranes can be predicted using the properties of pure catalyst and polymer material, and a single tortuosity factor. 9 refs., 5 figs., 4 tabs.

  7. Catalytic nanomotors: fabrication, mechanism, and applications

    NASA Astrophysics Data System (ADS)

    Gibbs, John; Zhao, Yiping

    2011-03-01

    Catalytic nanomotors are nano-to-micrometer-sized actuators that carry an on-board catalyst and convert local chemical fuel in solution into mechanical work. The location of this catalyst as well as the geometry of the structure dictate the swimming behaviors exhibited. The nanomotors can occur naturally in organic molecules, combine natural and artificial parts to form hybrid nanomotors or be purely artificial. Fabrication techniques consist of template directed electroplating, lithography, physical vapor deposition, and other advanced growth methods. Various physical and chemical propulsion mechanisms have been proposed to explain the motion behaviors including diffusiophoresis, bubble propulsion, interfacial tension gradients, and self-electrophoresis. The control and manipulation based upon external fields, catalytic alloys, and motion control through thermal modulation are discussed as well. Catalytic nanomotors represent an exciting technological challenge with the end goal being practical functional nanomachines that can perform a variety of tasks at the nanoscale.

  8. Electro Catalytic Oxidation (ECO) Operation

    SciTech Connect

    Morgan Jones

    2011-03-31

    The power industry in the United States is faced with meeting many new regulations to reduce a number of air pollutants including sulfur dioxide, nitrogen oxides, fine particulate matter, and mercury. With over 1,000 power plants in the US, this is a daunting task. In some cases, traditional pollution control technologies such as wet scrubbers and SCRs are not feasible. Powerspan's Electro-Catalytic Oxidation, or ECO{reg_sign} process combines four pollution control devices into a single integrated system that can be installed after a power plant's particulate control device. Besides achieving major reductions in emissions of sulfur dioxide (SO{sub 2}), nitrogen oxides (NOx), fine particulate matter (PM2.5) and mercury (Hg), ECO produces a highly marketable fertilizer, which can help offset the operating costs of the process system. Powerspan has been operating a 50-MW ECO commercial demonstration unit (CDU) at FirstEnergy Corp.'s R.E. Burger Plant near Shadyside, Ohio, since February 2004. In addition to the CDU, a test loop has been constructed beside the CDU to demonstrate higher NOx removal rates and test various scrubber packing types and wet ESP configurations. Furthermore, Powerspan has developed the ECO{reg_sign}{sub 2} technology, a regenerative process that uses a proprietary solvent to capture CO{sub 2} from flue gas. The CO{sub 2} capture takes place after the capture of NOx, SO{sub 2}, mercury, and fine particulate matter. Once the CO{sub 2} is captured, the proprietary solution is regenerated to release CO{sub 2} in a form that is ready for geological storage or beneficial use. Pilot scale testing of ECO{sub 2} began in early 2009 at FirstEnergy's Burger Plant. The ECO{sub 2} pilot unit is designed to process a 1-MW flue gas stream and produce 20 tons of CO{sub 2} per day, achieving a 90% CO{sub 2} capture rate. The ECO{sub 2} pilot program provided the opportunity to confirm process design and cost estimates, and prepare for large scale capture and

  9. Double clicking for site-specific coupling of multiple enzymes.

    PubMed

    Lim, Sung In; Cho, Jinhwan; Kwon, Inchan

    2015-09-14

    A method to site-specifically couple multiple enzymes is reported. The approach is based on the site-specific incorporation of a clickable non-natural amino acid into enzymes and two compatible click reactions. The multi-enzyme reaction system exhibited enhanced catalytic efficiency over the respective free enzymes. PMID:26191550

  10. Atomic-Structural Synergy for Catalytic CO Oxidation over Palladium-Nickel Nanoalloys

    SciTech Connect

    Shan, Shiyao; Petkov, Valeri; Yang, Lefu; Luo, Jin; Joseph, Pharrah; Mayzel, Dina; Prasai, Binay; Wang, Lingyan; Engelhard, Mark; Zhong, Chuan-Jian

    2014-05-05

    Alloying palladium (Pd) with other transition metals at the nanoscale has become an important pathway for preparation of low-cost, highly active and stable catalysts. However, the lack of understanding of how the alloying phase state, chemical composition and atomic-scale structure of the alloys at the nanoscale influence their catalytic activity impedes the rational design of Pd-nanoalloy catalysts. This work addresses this challenge by a novel approach to investigating the catalytic oxidation of carbon monoxide (CO) over palladium–nickel (PdNi) nanoalloys with well-defined bimetallic composition, which reveals a remarkable maximal catalytic activity at Pd:Ni ratio of ~50:50. Key to understanding the structural-catalytic synergy is the use of high-energy synchrotron X-ray diffraction coupled to atomic pair distribution function (HE-XRD/PDF) analysis to probe the atomic structure of PdNi nanoalloys under controlled thermochemical treatments and CO reaction conditions. Three-dimensional (3D) models of the atomic structure of the nanoalloy particles were generated by reverse Monte Carlo simulations (RMC) guided by the experimental HE-XRD/PDF data. Structural details of the PdNi nanoalloys were extracted from the respective 3D models and compared with the measured catalytic properties. The comparison revealed a strong correlation between the phase state, chemical composition and atomic-scale structure of PdNi nanoalloys and their catalytic activity for CO oxidation. This correlation is further substantiated by analyzing the first atomic neighbor distances and coordination numbers inside the nanoalloy particles and at their surfaces. These findings have provided new insights into the structural synergy of nanoalloy catalysts by controlling the phase state, composition and atomic structure, complementing findings of traditional density functional theory studies.