Science.gov

Sample records for catalyzed c-c bond

  1. Ag-catalyzed C-H/C-C bond functionalization.

    PubMed

    Zheng, Qing-Zhong; Jiao, Ning

    2016-08-21

    Silver, known and utilized since ancient times, is a coinage metal, which has been widely used for various organic transformations in the past few decades. Currently, the silver-catalyzed reaction is one of the frontier areas in organic chemistry, and the progress of research in this field is very rapid. Compared with other transition metals, silver has long been believed to have low catalytic efficiency, and most commonly, it is used as either a cocatalyst or a Lewis acid. Interestingly, the discovery of Ag-catalysis has been significantly improved in recent years. Especially, Ag(i) has been demonstrated as an important and versatile catalyst for a variety of organic transformations. However, so far, there has been no systematic review on Ag-catalyzed C-H/C-C bond functionalization. In this review, we will focus on the development of Ag-catalyzed C-H/C-C bond functionalization and the corresponding mechanism. PMID:27056573

  2. Manganese-catalyzed regiospecific sp(3) C-S bond formation through C-C bond cleavage of cyclobutanols.

    PubMed

    Ren, Rongguo; Wu, Zhen; Zhu, Chen

    2016-06-21

    A manganese-catalyzed regioselective sp(3) C-S bond formation through C-C bond cleavage of cyclobutanols is described. A variety of primary and secondary alkyl thioethers are efficiently prepared under mild reaction conditions. The mechanistic pathways involving radical-mediated tandem C-C bond cleavage and C-S bond formation are proposed. PMID:27279018

  3. Rh(I)-Catalyzed Insertion of Allenes into C-C Bonds of Benzocyclobutenols.

    PubMed

    Zhao, Chunliang; Liu, Li-Chuan; Wang, Jing; Jiang, Chenran; Zhang, Qing-Wei; He, Wei

    2016-01-15

    Herein we report a Rh(I)-catalyzed two carbon insertion into C-C bonds of benzocyclobutenols by employing symmetrical and unsymmetrical allenes. This reaction provides rapid access to alkylidene tetralins bearing two adjacent stereogenic centers in good yields and diasteroselectivities. PMID:26727276

  4. Formation of C-C bonds via ruthenium-catalyzed transfer hydrogenation().

    PubMed

    Moran, Joseph; Krische, Michael J

    2012-01-01

    Ruthenium-catalyzed transfer hydrogenation of diverse π-unsaturated reactants in the presence of aldehydes provides products of carbonyl addition. Dehydrogenation of primary alcohols in the presence of the same π-unsaturated reactants provides identical products of carbonyl addition. In this way, carbonyl addition is achieved from the alcohol or aldehyde oxidation level in the absence of stoichiometric organometallic reagents or metallic reductants. In this account, the discovery of ruthenium-catalyzed C-C bond-forming transfer hydrogenations and the recent development of diastereo- and enantioselective variants are discussed. PMID:23430602

  5. Formation of C-C Bonds via Iridium-Catalyzed Hydrogenation and Transfer Hydrogenation.

    PubMed

    Bower, John F; Krische, Michael J

    2011-01-01

    The formation of C-C bonds via catalytic hydrogenation and transfer hydrogenation enables carbonyl and imine addition in the absence of stoichiometric organometallic reagents. In this review, iridium-catalyzed C-C bond-forming hydrogenations and transfer hydrogenations are surveyed. These processes encompass selective, atom-economic methods for the vinylation and allylation of carbonyl compounds and imines. Notably, under transfer hydrogenation conditions, alcohol dehydrogenation drives reductive generation of organoiridium nucleophiles, enabling carbonyl addition from the aldehyde or alcohol oxidation level. In the latter case, hydrogen exchange between alcohols and π-unsaturated reactants generates electrophile-nucleophile pairs en route to products of hydro-hydroxyalkylation, representing a direct method for the functionalization of carbinol C-H bonds. PMID:21822399

  6. Formation of C-C Bonds via Iridium-Catalyzed Hydrogenation and Transfer Hydrogenation

    NASA Astrophysics Data System (ADS)

    Bower, John F.; Krische, Michael J.

    The formation of C-C bonds via catalytic hydrogenation and transfer hydrogenation enables carbonyl and imine addition in the absence of stoichiometric organometallic reagents. In this review, iridium-catalyzed C-C bond-forming hydrogenations and transfer hydrogenations are surveyed. These processes encompass selective, atom-economic methods for the vinylation and allylation of carbonyl compounds and imines. Notably, under transfer hydrogenation conditions, alcohol dehydrogenation drives reductive generation of organoiridium nucleophiles, enabling carbonyl addition from the aldehyde or alcohol oxidation level. In the latter case, hydrogen exchange between alcohols and π-unsaturated reactants generates electrophile-nucleophile pairs en route to products of hydro-hydroxyalkylation, representing a direct method for the functionalization of carbinol C-H bonds.

  7. Rhodium-Catalyzed C-C Bond Formation via Heteroatom-Directed C-H Bond Activation

    SciTech Connect

    Colby, Denise; Bergman, Robert; Ellman, Jonathan

    2010-05-13

    Once considered the 'holy grail' of organometallic chemistry, synthetically useful reactions employing C-H bond activation have increasingly been developed and applied to natural product and drug synthesis over the past decade. The ubiquity and relative low cost of hydrocarbons makes C-H bond functionalization an attractive alternative to classical C-C bond forming reactions such as cross-coupling, which require organohalides and organometallic reagents. In addition to providing an atom economical alternative to standard cross - coupling strategies, C-H bond functionalization also reduces the production of toxic by-products, thereby contributing to the growing field of reactions with decreased environmental impact. In the area of C-C bond forming reactions that proceed via a C-H activation mechanism, rhodium catalysts stand out for their functional group tolerance and wide range of synthetic utility. Over the course of the last decade, many Rh-catalyzed methods for heteroatom-directed C-H bond functionalization have been reported and will be the focus of this review. Material appearing in the literature prior to 2001 has been reviewed previously and will only be introduced as background when necessary. The synthesis of complex molecules from relatively simple precursors has long been a goal for many organic chemists. The ability to selectively functionalize a molecule with minimal pre-activation can streamline syntheses and expand the opportunities to explore the utility of complex molecules in areas ranging from the pharmaceutical industry to materials science. Indeed, the issue of selectivity is paramount in the development of all C-H bond functionalization methods. Several groups have developed elegant approaches towards achieving selectivity in molecules that possess many sterically and electronically similar C-H bonds. Many of these approaches are discussed in detail in the accompanying articles in this special issue of Chemical Reviews. One approach that has

  8. Enantioselective Rh-Catalyzed Carboacylation of C═N Bonds via C-C Activation of Benzocyclobutenones.

    PubMed

    Deng, Lin; Xu, Tao; Li, Hongbo; Dong, Guangbin

    2016-01-13

    Herein we describe the first enantioselective Rh-catalyzed carboacylation of oximes (imines) via C-C activation. In this transformation, the benzocyclobutenone C1-C2 bond is selectively activated by a low valent rhodium catalyst and subsequently the resulting two Rh-C bonds add across a C═N bond, which provides a unique approach to access chiral lactams. A range of polycyclic nitrogen-containing scaffolds were obtained in good yields with excellent enantioselectivity. Further derivatization of the lactam products led to a rapid entry to various novel fused heterocycles. PMID:26674855

  9. Gold-Catalyzed Oxidation of Propargylic Ethers with Internal C-C Triple Bonds: Impressive Regioselectivity Enabled by Inductive Effect

    PubMed Central

    Ji, Kegong; D’Souza, Brendan; Nelson, Jon; Zhang, Liming

    2014-01-01

    Inductive perturbations of C-C triple bonds are shown to dictate the regiochemistry of gold-catalyzed oxidation of internal C-C triple bonds in the cases of propargylic ethers, resulting in highly regioselective formation of β-alkoxy-α,β-unsaturated ketones (up to >50/1 selectivity) via α-oxo gold carbene intermediates. Ethers derived from primary propargylic alcohols can be reliably transformed in good yields, and various functional groups are tolerated. With substrates derived from secondary propargylic alcohols, the development of a new P,N-bidentate ligand enables the minimization of competing alkyl group migration to the gold carbene center over the desired hydride migration; the preferred migration of a phenyl group, however, results in efficient formation of a α-phenyl-β-alkoxy-α,β-unsaturated ketone. These results further advance the surrogacy of a propargyl moiety to synthetically versatile enone function with reliable and readily predictable regioselectivity. PMID:25284890

  10. A Homogeneous, Recyclable Polymer Support for Rh(I)-Catalyzed C-C Bond Formation

    PubMed Central

    Jana, Ranjan; Tunge, Jon A.

    2011-01-01

    A robust and practical polymer-supported, homogeneous, recyclable biphephos rhodium(I) catalyst has been developed for C-C bond formation reactions. Control of polymer molecular weight allowed tuning of the polymer solubility such that the polymer-supported catalyst is soluble in nonpolar solvents and insoluble in polar solvents. Using the supported rhodium catalysts, addition of aryl and vinylboronic acids to the electrophiles such as enones, aldehydes, N-sulfonyl aldimines, and alkynes occurs smoothly to provide products in high yields. Additions of terminal alkynes to enones and industrially relevant hydroformylation reactions have also been successfully carried out. Studies show that the leaching of Rh from the polymer support is low and catalyst recycle can be achieved by simple precipitation and filtration. PMID:21895010

  11. Ceric ammonium nitrate (CAN) catalyzed modification of ketones via two C-C bond cleavages with the retention of the oxo-group.

    PubMed

    Feng, Peng; Sun, Xiang; Su, Yijin; Li, Xinyao; Zhang, Li He; Shi, Xiaodong; Jiao, Ning

    2014-06-20

    A simple ceric ammonium nitrate (CAN) catalyzed functionalization of ketones through double C-C bond cleavage strategy has been disclosed. This reaction provides a mild, practical method toward carbamoyl azides, which are versatile intermediates and building blocks in organic synthesis. Based on relevant mechanistic studies, a unique and plausible C-C bond and N-O bond cleavage process is proposed, where the oxyamination intermediate plays an important role in this reaction. PMID:24906031

  12. Palladium(ii)-catalyzed C-C and C-O bond formation for the synthesis of C1-benzoyl isoquinolines from isoquinoline N-oxides and nitroalkenes.

    PubMed

    Li, Jiu-Ling; Li, Wei-Ze; Wang, Ying-Chun; Ren, Qiu; Wang, Heng-Shan; Pan, Ying-Ming

    2016-08-01

    C1-Benzoyl isoquinolines can be generated via a palladium(ii)-catalyzed C-C and C-O coupling of isoquinoline N-oxides with aromatic nitroalkenes. The reaction proceeds through remote C-H bond activation and subsequent intramolecular oxygen atom transfer (OAT). In this reaction, the N-O bond was designed as a directing group in the C-H bond activation as well as the source of an oxygen atom. PMID:27443150

  13. A Selective Rh(I) -Catalyzed Substrate-Controlled C-C Bond Activation of Benzyl Sulfonamide/Alcohol-Tethered Alkylidenecyclopropanes.

    PubMed

    Chen, Kai; Liu, Jia-Xin; Tang, Xiang-Ying; Shi, Min

    2016-08-01

    Benzyl sulfonamide/alcohol-tethered alkylidenecyclopropanes undergo a rhodium-catalyzed and substrate-controlled selective C-C bond activation, producing three types of common organic structural units: benzo[c]azepine/oxepines, dihydronaphthalen-1-amines, and conjugated dienes. Epoxidation and aromatization of these products to construct two useful compounds have also been achieved. PMID:27305281

  14. Rhodium-catalyzed oxidative coupling of triarylmethanols with internal alkynes via successive C-H and C-C bond cleavages.

    PubMed

    Uto, Toshihiko; Shimizu, Masaki; Ueura, Kenji; Tsurugi, Hayato; Satoh, Tetsuya; Miura, Masahiro

    2008-01-01

    The rhodium-catalyzed oxidative coupling of triarylmethanols with internal alkynes effectively proceeds in a 1:2 manner via cleavage of C-H and C-C bonds to produce the corresponding naphthalene derivatives. Addition of tri- or tetraphenylcyclopentadiene as a ligand is crucial for the reaction to occur efficiently. PMID:18052297

  15. Rh(III)-Catalyzed Synthesis of N-Unprotected Indoles from Imidamides and Diazo Ketoesters via C-H Activation and C-C/C-N Bond Cleavage.

    PubMed

    Qi, Zisong; Yu, Songjie; Li, Xingwei

    2016-02-19

    The synthesis of N-unprotected indoles has been realized via Rh(III)-catalyzed C-H activation/annulation of imidamides with α-diazo β-ketoesters. The reaction occurs with the release of an amide coproduct, which originates from both the imidamide and the diazo as a result of C═N cleavage of the imidamide and C-C(acyl) cleavage of the diazo. A rhodacyclic intermediate has been isolated and a plausible mechanism has been proposed. PMID:26824751

  16. Cuprous Oxide Catalyzed Oxidative C-C Bond Cleavage for C-N Bond Formation: Synthesis of Cyclic Imides from Ketones and Amines.

    PubMed

    Wang, Min; Lu, Jianmin; Ma, Jiping; Zhang, Zhe; Wang, Feng

    2015-11-16

    Selective oxidative cleavage of a C-C bond offers a straightforward method to functionalize organic skeletons. Reported herein is the oxidative C-C bond cleavage of ketone for C-N bond formation over a cuprous oxide catalyst with molecular oxygen as the oxidant. A wide range of ketones and amines are converted into cyclic imides with moderate to excellent yields. In-depth studies show that both α-C-H and β-C-H bonds adjacent to the carbonyl groups are indispensable for the C-C bond cleavage. DFT calculations indicate the reaction is initiated with the oxidation of the α-C-H bond. Amines lower the activation energy of the C-C bond cleavage, and thus promote the reaction. New insight into the C-C bond cleavage mechanism is presented. PMID:26494312

  17. Ruthenium-Catalyzed Transfer Hydrogenation for C-C Bond Formation: Hydrohydroxyalkylation and Hydroaminoalkylation via Reactant Redox Pairs.

    PubMed

    Perez, Felix; Oda, Susumu; Geary, Laina M; Krische, Michael J

    2016-06-01

    Merging the chemistry of transfer hydrogenation and carbonyl or imine addition, a broad new family of redox-neutral or reductive hydrohydroxyalkylations and hydroaminomethylations have been developed. In these processes, hydrogen redistribution between alcohols and π-unsaturated reactants is accompanied by C-C bond formation, enabling direct conversion of lower alcohols to higher alcohols. Similarly, hydrogen redistribution between amines to π-unsaturated reactants results in direct conversion of lower amines to higher amines. Alternatively, equivalent products of hydrohydroxyalkylation and hydroaminomethylation may be generated through the reaction of carbonyl compounds or imines with π-unsaturated reactants under the conditions of 2-propanol-mediated reductive coupling. Finally, using vicinally dioxygenated reactants, that is, diol, ketols, or diones, successive transfer hydrogenative coupling occurs to generate 2 C-C bonds, resulting in products of formal [4+2] cycloaddition. PMID:27573275

  18. Splitting a Substrate into Three Parts: Gold-Catalyzed Nitrogenation of Alkynes by C-C and C≡C Bond Cleavage.

    PubMed

    Qin, Chong; Su, Yijin; Shen, Tao; Shi, Xiaodong; Jiao, Ning

    2016-01-01

    A gold-catalyzed nitrogenation of alkynes for the synthesis of carbamides and amino tetrazoles through C-C and C≡C bond cleavages is described. A diverse set of functionalized carbamide and amino tetrazole derivatives were selectively constructed under mild conditions. The chemoselectivity can be easily switched by the selection of the acid additives. The reaction is characterized by its broad substrate scope, direct construction of high value products, easy operation under air, and mild conditions at room temperature. This chemistry provides a way to transform alkynes by splitting the substrate into three parts. PMID:26494539

  19. An Electron-Poor C64 Nanographene by Palladium-Catalyzed Cascade C-C Bond Formation: One-Pot Synthesis and Single-Crystal Structure Analysis.

    PubMed

    Seifert, Sabine; Shoyama, Kazutaka; Schmidt, David; Würthner, Frank

    2016-05-23

    Herein, we report the one-pot synthesis of an electron-poor nanographene containing dicarboximide groups at the corners. We efficiently combined palladium-catalyzed Suzuki-Miyaura cross-coupling and dehydrohalogenation to synthesize an extended two-dimensional π-scaffold of defined size in a single chemical operation starting from N-(2,6-diisopropylphenyl)-4,5-dibromo-1,8-naphthalimide and a tetrasubstituted pyrene boronic acid ester as readily accessible starting materials. The reaction of these precursors under the conditions commonly used for Suzuki-Miyaura cross-coupling afforded a C64 nanographene through the formation of ten C-C bonds in a one-pot process. Single-crystal X-ray analysis unequivocally confirmed the structure of this unique extended aromatic molecule with a planar geometry. The optical and electrochemical properties of this largest ever synthesized planar electron-poor nanographene skeleton were also analyzed. PMID:27058998

  20. Bronsted-Evans-Polany relationships for C-C bond forming and C-C bond breaking reactions in thiamine-catalyzed decarboxylation of 2-keto acids using density functional theory.

    SciTech Connect

    Assary, R. S.; Broadbelt, L. J.; Curtiss, L. A.

    2012-01-01

    The concept of generalized enzyme reactions suggests that a wide variety of substrates can undergo enzymatic transformations, including those whose biotransformation has not yet been realized. The use of quantum chemistry to evaluate kinetic feasibility is an attractive approach to identify enzymes for the proposed transformation. However, the sheer number of novel transformations that can be generated makes this impractical as a screening approach. Therefore, it is essential to develop structure/activity relationships based on quantities that are more efficient to calculate. In this work, we propose a structure/activity relationship based on the free energy of binding or reaction of non-native substrates to evaluate the catalysis relative to that of native substrates. While Broensted-Evans-Polanyi (BEP) relationships such as that proposed here have found broad application in heterogeneous catalysis, their extension to enzymatic catalysis is limited. We report here on density functional theory (DFT) studies for C-C bond formation and C-C bond cleavage associated with the decarboxylation of six 2-keto acids by a thiamine-containing enzyme (EC 1.2.7.1) and demonstrate a linear relationship between the free energy of reaction and the activation barrier. We then applied this relationship to predict the activation barriers of 17 chemically similar novel reactions. These calculations reveal that there is a clear correlation between the free energy of formation of the transition state and the free energy of the reaction, suggesting that this method can be further extended to predict the kinetics of novel reactions through our computational framework for discovery of novel biochemical transformations.

  1. Rhodium(III)-Catalyzed Directed ortho-C-H Bond Functionalization of Aromatic Ketazines via C-S and C-C Coupling.

    PubMed

    Wen, Jing; Wu, An; Wang, Mingyang; Zhu, Jin

    2015-11-01

    Described herein is a convenient and efficient method for sulfuration and olefination of aromatic ketazines via rhodium-catalyzed oxidative C-H bond activation. A range of substituted substrates are supported, and a possible mechanism is proposed according to experimental results of kinetic isotopic effect, reversibility studies, and catalysis of rhodacycle intermediate c1. PMID:26417874

  2. Metal-catalyzed C-C bond cleavage in alkanes: effects of methyl substitution on transition-state structures and stability.

    PubMed

    Flaherty, David W; Hibbitts, David D; Iglesia, Enrique

    2014-07-01

    Methyl substituents at C-C bonds influence hydrogenolysis rates and selectivities of acyclic and cyclic C2-C8 alkanes on Ir, Rh, Ru, and Pt catalysts. C-C cleavage transition states form via equilibrated dehydrogenation steps that replace several C-H bonds with C-metal bonds, desorb H atoms (H*) from saturated surfaces, and form λ H2(g) molecules. Activation enthalpies (ΔH(‡)) and entropies (ΔS(‡)) and λ values for (3)C-(x)C cleavage are larger than for (2)C-(2)C or (2)C-(1)C bonds, irrespective of the composition of metal clusters or the cyclic/acyclic structure of the reactants. (3)C-(x)C bonds cleave through α,β,γ- or α,β,γ,δ-bound transition states, as indicated by the agreement between measured activation entropies and those estimated for such structures using statistical mechanics. In contrast, less substituted C-C bonds involve α,β-bound species with each C atom bound to several surface atoms. These α,β configurations weaken C-C bonds through back-donation to antibonding orbitals, but such configurations cannot form with (3)C atoms, which have one C-H bond and thus can form only one C-M bond. (3)C-(x)C cleavage involves attachment of other C atoms, which requires endothermic C-H activation and H* desorption steps that lead to larger ΔH(‡) values but also larger ΔS(‡) values (by forming more H2(g)) than for (2)C-(2)C and (2)C-(1)C bonds, irrespective of alkane size (C2-C8) or cyclic/acyclic structure. These data and their mechanistic interpretation indicate that low temperatures and high H2 pressures favor cleavage of less substituted C-C bonds and form more highly branched products from cyclic and acyclic alkanes. Such interpretations and catalytic consequences of substitution seem also relevant to C-X cleavage (X = S, N, O) in desulfurization, denitrogenation, and deoxygenation reactions. PMID:24961991

  3. Metal- and Oxidant-Free Synthesis of Quinazolinones from β-Ketoesters with o-Aminobenzamides via Phosphorous Acid-Catalyzed Cyclocondensation and Selective C-C Bond Cleavage.

    PubMed

    Li, Zhongwen; Dong, Jianyu; Chen, Xiuling; Li, Qiang; Zhou, Yongbo; Yin, Shuang-Feng

    2015-10-01

    A general and efficient phosphorous acid-catalyzed cyclocondensation of β-ketoesters with o-aminobenzamides via selective C-C bond cleavage leading to quinazolinones is developed. This reaction proceeds smoothly under metal- and oxidant-free conditions, giving both 2-alkyl- and 2-aryl-substituted quinazolinones in excellent yields. This strategy can also be applied to the synthesis of other N-heterocycles, such as benzimidazoles and benzothiazoles. PMID:26339716

  4. NAD(P)H-Independent Asymmetric C=C Bond Reduction Catalyzed by Ene Reductases by Using Artificial Co-substrates as the Hydrogen Donor

    PubMed Central

    Winkler, Christoph K; Clay, Dorina; Entner, Marcello; Plank, Markus; Faber, Kurt

    2014-01-01

    To develop a nicotinamide-independent single flavoenzyme system for the asymmetric bioreduction of C=C bonds, four types of hydrogen donor, encompassing more than 50 candidates, were investigated. Six highly potent, cheap, and commercially available co-substrates were identified that (under the optimized conditions) resulted in conversions and enantioselectivities comparable with, or even superior to, those obtained with traditional two-enzyme nicotinamide adenine dinucleotide phosphate (NAD(P)H)-recycling systems. PMID:24382795

  5. Metal-catalyzed alpha-arylation of carbonyl and related molecules: novel trends in C-C bond formation by C-H bond functionalization.

    PubMed

    Johansson, Carin C C; Colacot, Thomas J

    2010-01-01

    Alpha-arylated carbonyl compounds are commonly occurring motifs in biologically interesting molecules and are therefore of high interest to the pharmaceutical industry. Conventional procedures for their synthesis often result in complications in scale-up, such as the use of stoichiometric amounts of toxic reagents and harsh reaction conditions. Over the last decade, significant efforts have been directed towards the development of metal-catalyzed alpha-arylations of carbonyl compounds as an alternative synthetic approach that operates under milder conditions. This Review summarizes the developments in this area to date, with a focus on how the substrate scope has been expanded through selection of the most appropriate synthetic method, such as the careful choice of ligands, precatalysts, bases, and reaction conditions. PMID:20058282

  6. Alkali metal mediated C-C bond coupling reaction

    NASA Astrophysics Data System (ADS)

    Tachikawa, Hiroto

    2015-02-01

    Metal catalyzed carbon-carbon (C-C) bond formation is one of the important reactions in pharmacy and in organic chemistry. In the present study, the electron and hole capture dynamics of a lithium-benzene sandwich complex, expressed by Li(Bz)2, have been investigated by means of direct ab-initio molecular dynamics method. Following the electron capture of Li(Bz)2, the structure of [Li(Bz)2]- was drastically changed: Bz-Bz parallel form was rapidly fluctuated as a function of time, and a new C-C single bond was formed in the C1-C1' position of Bz-Bz interaction system. In the hole capture, the intermolecular vibration between Bz-Bz rings was only enhanced. The mechanism of C-C bond formation in the electron capture was discussed on the basis of theoretical results.

  7. Tailored synthesis of various nanomaterials by using a graphene-oxide-based gel as a nanoreactor and nanohybrid-catalyzed C-C bond formation.

    PubMed

    Biswas, Abhijit; Banerjee, Arindam

    2014-12-01

    New graphene oxide (GO)-based hydrogels that contain vitamin B2/B12 and vitamin C (ascorbic acid) have been synthesized in water (at neutral pH value). These gel-based soft materials have been used to synthesize various metal nanoparticles, including Au, Ag, and Pd nanoparticles, as well as nanoparticle-containing reduced graphene oxide (RGO)-based nanohybrid systems. This result indicates that GO-based gels can be used as versatile reactors for the synthesis of different nanomaterials and hybrid systems on the nanoscale. Moreover, the RGO-based nanohybrid hydrogel with Pd nanoparticles was used as an efficient catalyst for C-C bond-formation reactions with good yields and showed high recyclability in Suzuki-Miyaura coupling reactions. PMID:25224859

  8. Hydroxide-catalyzed bonding

    NASA Technical Reports Server (NTRS)

    Gwo, Dz-Hung (Inventor)

    2003-01-01

    A method of bonding substrates by hydroxide-catalyzed hydration/dehydration involves applying a bonding material to at least one surface to be bonded, and placing the at least one surface sufficiently close to another surface such that a bonding interface is formed between them. A bonding material of the invention comprises a source of hydroxide ions, and may optionally include a silicate component, a particulate filling material, and a property-modifying component. Bonding methods of the invention reliably and reproducibly provide bonds which are strong and precise, and which may be tailored according to a wide range of possible applications. Possible applications for bonding materials of the invention include: forming composite materials, coating substrates, forming laminate structures, assembly of precision optical components, and preparing objects of defined geometry and composition. Bonding materials and methods of preparing the same are also disclosed.

  9. Electronic Structure and Bonding in Iron(II) and Iron(I) Complexes Bearing Bisphosphine Ligands of Relevance to Iron-Catalyzed C-C Cross-Coupling.

    PubMed

    Kneebone, Jared L; Fleischauer, Valerie E; Daifuku, Stephanie L; Shaps, Ari A; Bailey, Joseph M; Iannuzzi, Theresa E; Neidig, Michael L

    2016-01-01

    Chelating phosphines are effective additives and supporting ligands for a wide array of iron-catalyzed cross-coupling reactions. While recent studies have begun to unravel the nature of the in situ-formed iron species in several of these reactions, including the identification of the active iron species, insight into the origin of the differential effectiveness of bisphosphine ligands in catalysis as a function of their backbone and peripheral steric structures remains elusive. Herein, we report a spectroscopic and computational investigation of well-defined FeCl2(bisphosphine) complexes (bisphosphine = SciOPP, dpbz, (tBu)dppe, or Xantphos) and known iron(I) variants to systematically discern the relative effects of bisphosphine backbone character and steric substitution on the overall electronic structure and bonding within their iron complexes across oxidation states implicated to be relevant in catalysis. Magnetic circular dichroism (MCD) and density functional theory (DFT) studies demonstrate that common o-phenylene and saturated ethyl backbone motifs result in small but non-negligible perturbations to 10Dq(Td) and iron-bisphosphine bonding character at the iron(II) level within isostructural tetrahedra as well as in five-coordinate iron(I) complexes FeCl(dpbz)2 and FeCl(dppe)2. Notably, coordination of Xantphos to FeCl2 results in a ligand field significantly reduced relative to those of its iron(II) partners, where a large bite angle and consequent reduced iron-phosphorus Mayer bond orders (MBOs) could play a role in fostering the unique ability of Xantphos to be an effective additive in Kumada and Suzuki-Miyaura alkyl-alkyl cross-couplings. Furthermore, it has been found that the peripheral steric bulk of the SciOPP ligand does little to perturb the electronic structure of FeCl2(SciOPP) relative to that of the analogous FeCl2(dpbz) complex, potentially suggesting that differences in the steric properties of these ligands might be more important in

  10. Enantioselective Ruthenium Catalyzed Carbonyl Allylation via Alkyne-Alcohol C-C Bond Forming Transfer Hydrogenation: Allene Hydrometallation vs. Oxidative Coupling

    PubMed Central

    Liang, Tao; Nguyen, Khoa D.; Zhang, Wandi; Krische, Michael J.

    2015-01-01

    Chiral ruthenium(II) complexes modified by Josiphos ligands catalyze the reaction of alkynes with primary alcohols to form homoallylic alcohols with excellent control of regio-, diastereo- and enantioselectivity. These processes represent the first examples of enantioselective carbonyl allylation using alkynes as allylmetal equivalents. PMID:25734220

  11. A one-pot copper catalyzed biomimetic route to N-heterocyclic amides from methyl ketones via oxidative C-C bond cleavage.

    PubMed

    Subramanian, Parthasarathi; Indu, Satrajit; Kaliappan, Krishna P

    2014-12-01

    A direct one-pot Cu-catalyzed biomimetic oxidation of methyl ketones to pharmaceutically important N-heterocyclic amides is reported. The scope of the method is broad, scalable, and mild, and the reaction is tolerant with various acid, base sensitive functionalities with multiple heteroatoms and aryl halides. The extensive mechanistic studies suggest that this reaction follows the Luciferin-Luciferase-like pathway. PMID:25409417

  12. Ruthenium catalyzed C-C bond formation via transfer hydrogenation: branch-selective reductive coupling of allenes to paraformaldehyde and higher aldehydes.

    PubMed

    Ngai, Ming-Yu; Skucas, Eduardas; Krische, Michael J

    2008-07-01

    Under the conditions of ruthenium-catalyzed transfer hydrogenation employing 2-propanol as the terminal reductant, 1,1-disubstituted allenes 1a- h engage in reductive coupling to paraformaldehyde to furnish homoallylic alcohols 2a- h. Under identical transfer hydrogenation conditions, 1,1-disubstituted allenes engage in reductive coupling to aldehydes 3a- f to furnish homoallylic alcohols 4a- n. In all cases, reductive coupling occurs with branched regioselectivity to deliver homoallylic alcohols bearing all-carbon quaternary centers. PMID:18533665

  13. Ruthenium(0) Catalyzed Endiyne-α-Ketol [4+2] Cycloaddition: Convergent Assembly of Type II Polyketide Substructures via C-C Bond Forming Transfer Hydrogenation

    PubMed Central

    Saxena, Aakarsh; Perez, Felix; Krische, Michael J.

    2015-01-01

    Upon exposure of 3,4-benzannulated 1,5-diynes (benzo-endiynes) to α-ketols (α-hydroxyketones) in the presence of ruthenium(0) catalysts derived from Ru3(CO)12 and RuPhos or CyJohnPhos, successive redox-triggered C-C coupling occurs to generate products of [4+2] cycloaddition. The proposed catalytic mechanism involves consecutive alkyne-carbonyl oxidative couplings to form transient oxaruthana-cycles that suffer α-ketol mediated transfer hydrogenolysis. This process provides a new, convergent means of assembling Type II polyketide substructures. PMID:25938947

  14. Understanding Rotation about a C=C Double Bond

    ERIC Educational Resources Information Center

    Barrows, Susan E.; Eberlein, Thomas H.

    2005-01-01

    The study focuses on the process and energetic cost of twisting around a C=C double bond and provides instructors with a simple vehicle for rectifying the common misrepresentation of C=C double bonds as rigid and inflexible. Discussions of cis and trans isomers of cycloalkenes are a good entry point for introducing students to the idea of a…

  15. Rhodium-catalyzed C-C coupling reactions via double C-H activation.

    PubMed

    Li, Shuai-Shuai; Qin, Liu; Dong, Lin

    2016-05-18

    Various rhodium-catalyzed double C-H activations are reviewed. These powerful strategies have been developed to construct C-C bonds, which might be widely embedded in complex aza-fused heterocycles, polycyclic skeletons and heterocyclic scaffolds. In particular, rhodium(iii) catalysis shows good selectivity and reactivity to functionalize the C-H bond, generating reactive organometallic intermediates in most of the coupling reactions. Generally, intermolecular, intramolecular and multi-component coupling reactions via double C-H activations with or without heteroatom-assisted chelation are discussed in this review. PMID:27099126

  16. Iron-Catalyzed C-C Cross-Couplings Using Organometallics.

    PubMed

    Guérinot, Amandine; Cossy, Janine

    2016-08-01

    Over the last decades, iron-catalyzed cross-couplings have emerged as an important tool for the formation of C-C bonds. A wide variety of alkenyl, aryl, and alkyl (pseudo)halides have been coupled to organometallic reagents, the most currently used being Grignard reagents. Particular attention has been devoted to the development of iron catalysts for the functionalization of alkyl halides that are generally challenging substrates in classical cross-couplings. The high functional group tolerance of iron-catalyzed cross-couplings has encouraged organic chemists to use them in the synthesis of bioactive compounds. Even if some points remain obscure, numerous studies have been carried out to investigate the mechanism of iron-catalyzed cross-coupling and several hypotheses have been proposed. PMID:27573401

  17. Copper-catalyzed domino synthesis of 2-imino-1H-imidazol-5(2H)-ones and quinoxalines involving C-C bond cleavage with a 1,3-dicarbonyl unit as a leaving group.

    PubMed

    Yang, Yan; Ni, Fan; Shu, Wen-Ming; Wu, An-Xin

    2014-09-01

    Although 2-imino-1H-imidazol-5(2H)-ones have important biological activities in metabolism, their synthesis has rarely been investigated. Quinoxalines as "privileged scaffolds" in medicinal chemistry have been extensively investigated, but the development of novel and efficient synthetic methods remains very attractive. Herein, we have developed two copper-catalyzed domino reactions for the synthesis of 2-imino-1H-imidazol-5(2H)-ones and quinoxalines involving CC bond-cleavage with a 1,3-dicarbonyl unit as a leaving group. The domino sequence for the synthesis of 2-imino-1H-imidazol-5(2H)-ones includes aza-Michael addition, intramolecular cyclization, CC bond-cleavage, 1,2-rearrangement, and aerobic dehydrogenation reaction, whereas the domino sequence for the synthesis of quinoxalines includes aza-Michael addition, intramolecular cyclization, elimination reaction, and CC bond-cleavage reaction. The two domino reactions have significant advantages including high efficiency, mild reaction conditions, and high tolerance of various functional groups. PMID:25079446

  18. Ni-Catalyzed C-C Couplings Using Alkyl Electrophiles.

    PubMed

    Iwasaki, Takanori; Kambe, Nobuaki

    2016-10-01

    Much effort has been devoted to developing new methods using Ni catalysts for the cross-coupling reaction of alkyl electrophiles with organometallic reagents, and significant achievements in this area have emerged during the past two decades. Nickel catalysts have enabled the coupling reaction of not only primary alkyl electrophiles, but also sterically hindered secondary and tertiary alkyl electrophiles possessing β-hydrogens with various organometallic reagents to construct carbon skeletons. In addition, Ni catalysts opened a new era of asymmetric cross-coupling reaction using alkyl halides. Recent progress in nickel-catalyzed cross-coupling reaction of alkyl electrophiles with sp(3)-, sp(2)-, and sp-hybridized organometallic reagents including asymmetric variants as well as mechanistic insights of nickel catalysis are reviewed in this chapter. PMID:27580894

  19. Metalloenzyme-Like Zeolites as Lewis Acid Catalysts for C-C Bond Formation.

    PubMed

    Van de Vyver, Stijn; Román-Leshkov, Yuriy

    2015-10-19

    The use of metalloenzyme-like zeolites as Lewis acid catalysts for C-C bond formation reactions has received increasing attention over the past few years. In particular, the observation of direct aldol condensation reactions enabled by hydrophobic zeolites with isolated framework metal sites has encouraged the development of catalytic approaches for producing chemicals from biomass-derived compounds. The discovery of new Diels-Alder cycloaddition/dehydration routes and experimental and computational studies of Lewis acid catalyzed carbonyl-ene reactions have given a further boost to this rapidly evolving field. PMID:26465652

  20. Direct, redox-neutral prenylation and geranylation of secondary carbinol C-H bonds: C4-regioselectivity in ruthenium-catalyzed C-C couplings of dienes to α-hydroxy esters.

    PubMed

    Leung, Joyce C; Geary, Laina M; Chen, Te-Yu; Zbieg, Jason R; Krische, Michael J

    2012-09-26

    The ruthenium catalyst generated in situ from Ru(3)(CO)(12) and tricyclohexylphosphine, PCy(3), promotes the redox-neutral C-C coupling of aryl-substituted α-hydroxy esters to isoprene and myrcene at the diene C4-position, resulting in direct carbinol C-H prenylation and geranylation, respectively. This process enables direct conversion of secondary to tertiary alcohols in the absence of stoichiometric byproducts or premetalated reagents, and is the first example of C4-regioselectivity in catalytic C-C couplings of 2-substituted dienes to carbonyl partners. Mechanistic studies corroborate a catalytic cycle involving diene-carbonyl oxidative coupling. PMID:22985393

  1. Rh(III)-Catalyzed C-C/C-N Coupling of Imidates with α-Diazo Imidamide: Synthesis of Isoquinoline-Fused Indoles.

    PubMed

    Wang, He; Li, Lei; Yu, Songjie; Li, Yunyun; Li, Xingwei

    2016-06-17

    Imidate esters and diazo compounds have been established as bifunctional substrates for the construction of biologically active fused heterocycles via rhodium-catalyzed C-H activation and C-C/C-N coupling. This reaction occurs under mild conditions with high efficiency, step economy, and low catalyst loading. PMID:27280947

  2. Template Catalysis by Metal-Ligand Cooperation. C-C Bond Formation via Conjugate Addition of Non-activated Nitriles under Mild, Base-free Conditions Catalyzed by a Manganese Pincer Complex.

    PubMed

    Nerush, Alexander; Vogt, Matthias; Gellrich, Urs; Leitus, Gregory; Ben-David, Yehoshoa; Milstein, David

    2016-06-01

    The first example of a catalytic Michael addition reaction of non-activated aliphatic nitriles to α,β-unsaturated carbonyl compounds under mild, neutral conditions is reported. A new de-aromatized pyridine-based PNP pincer complex of the Earth-abundant, first-row transition metal manganese serves as the catalyst. The reaction tolerates a variety of nitriles and Michael acceptors with different steric features and acceptor strengths. Mechanistic investigations including temperature-dependent NMR spectroscopy and DFT calculations reveal that the cooperative activation of alkyl nitriles, which leads to the generation of metalated nitrile nucleophile species (α-cyano carbanion analogues), is a key step of the mechanism. The metal center is not directly involved in the catalytic bond formation but rather serves, cooperatively with the ligand, as a template for the substrate activation. This approach of "template catalysis" expands the scope of potential donors for conjugate addition reactions. PMID:27164437

  3. Hydrogen induced C-C, C-N, and C-S bond activation on Pt and Ni surfaces

    SciTech Connect

    Gland, J.L.

    1992-01-01

    The work has focussed on hydrogen induced bond activation in adsorbed organic molecules and intermediates containin C-S and C-N and C-C bonds on Ni(100), Ni(111), and Pt(111) surfaces. Fluorescence Yield Near Edge Spectroscopy (FYNES) above the carbon K edge was used for adsorbed organic reactants and in-situ kinetic studies of bond activation. Results indicate that the activation is enhanced on Ni relative to Pt. Methylthiolate and methylamine adsorbed on Pt(111) were studied.

  4. Hydrogen induced C-C, C-N, and C-S bond activation on Pt and Ni surfaces

    SciTech Connect

    Gland, J.L.

    1992-12-01

    The work has focussed on hydrogen induced bond activation in adsorbed organic molecules and intermediates containin C-S and C-N and C-C bonds on Ni(100), Ni(111), and Pt(111) surfaces. Fluorescence Yield Near Edge Spectroscopy (FYNES) above the carbon K edge was used for adsorbed organic reactants and in-situ kinetic studies of bond activation. Results indicate that the activation is enhanced on Ni relative to Pt. Methylthiolate and methylamine adsorbed on Pt(111) were studied.

  5. Stereochemistry of enzymatic water addition to C=C bonds.

    PubMed

    Chen, Bi-Shuang; Otten, Linda G; Hanefeld, Ulf

    2015-01-01

    Water addition to carbon-carbon double bonds using hydratases is attracting great interest in biochemistry. Most of the known hydratases are involved in primary metabolism and to a lesser extent in secondary metabolism. New hydratases have recently been added to the toolbox, both from natural sources or artificial metalloenzymes. In order to comprehensively understand how the hydratases are able to catalyse the water addition to carbon-carbon double bonds, this review will highlight the mechanistic and stereochemical studies of the enzymatic water addition to carbon-carbon double bonds, focusing on the syn/anti-addition and stereochemistry of the reaction. PMID:25640045

  6. Iterative reactions of transient boronic acids enable sequential C-C bond formation

    NASA Astrophysics Data System (ADS)

    Battilocchio, Claudio; Feist, Florian; Hafner, Andreas; Simon, Meike; Tran, Duc N.; Allwood, Daniel M.; Blakemore, David C.; Ley, Steven V.

    2016-04-01

    The ability to form multiple carbon-carbon bonds in a controlled sequence and thus rapidly build molecular complexity in an iterative fashion is an important goal in modern chemical synthesis. In recent times, transition-metal-catalysed coupling reactions have dominated in the development of C-C bond forming processes. A desire to reduce the reliance on precious metals and a need to obtain products with very low levels of metal impurities has brought a renewed focus on metal-free coupling processes. Here, we report the in situ preparation of reactive allylic and benzylic boronic acids, obtained by reacting flow-generated diazo compounds with boronic acids, and their application in controlled iterative C-C bond forming reactions is described. Thus far we have shown the formation of up to three C-C bonds in a sequence including the final trapping of a reactive boronic acid species with an aldehyde to generate a range of new chemical structures.

  7. Palladium-catalyzed cross-dehydrogenative functionalization of C(sp(2))-H Bonds.

    PubMed

    Wu, Yinuo; Wang, Jun; Mao, Fei; Kwong, Fuk Yee

    2014-01-01

    The catalytic cross-dehydrogenative coupling (CDC) reaction has received intense attention in recent years. The attractive feature of this coupling process is the formation of a C-C bond from two C-H moieties under oxidative conditions. In this Focus Review, recent advances in the palladium-catalyzed CDC reactions of C(sp(2) )-H bond are summarized, with a focus on the period from 2011 to early 2013. PMID:24123795

  8. Palladium-Catalyzed Deaminative Phenanthridinone Synthesis from Aniline via C-H Bond Activation.

    PubMed

    Yedage, Subhash L; Bhanage, Bhalchandra M

    2016-05-20

    This work reports palladium-catalyzed phenanthridinone synthesis using the coupling of aniline and amide by formation of C-C and C-N bonds in a one-pot fashion via dual C-H bond activation. It involves simultaneous cleavage of four bonds and the formation of two new bonds. The present protocol is ligand-free, takes place under mild reaction conditions, and is environmentally benign as nitrogen gas and water are the only side products. This transformation demonstrates a broad range of aniline and amide substrates with different functional groups and has been scaled up to gram level. PMID:27088815

  9. Synthesis of 2-Benzylphenyl Ketones by Aryne Insertion into Unactivated C-C Bonds.

    PubMed

    Rao, Bin; Tang, Jinghua; Zeng, Xiaoming

    2016-04-01

    A transition-metal-free procedure to access to functionalized 2-benzylphenyl ketones is described by direct insertion of arynes into benzylic C-C bonds. This reaction was promoted by cesium fluoride at room temperature, allowing the products to form in high selectivity and achieve good functional group tolerance. PMID:27004731

  10. Facile P-C/C-H Bond-Cleavage Reactivity of Nickel Bis(diphosphine) Complexes.

    PubMed

    Zhang, Shaoguang; Li, Haixia; Appel, Aaron M; Hall, Michael B; Bullock, R Morris

    2016-07-01

    Unusual cleavage of P-C and C-H bonds of the P2 N2 ligand, in heteroleptic [Ni(P2 N2 )(diphosphine)](2+) complexes under mild conditions, results in the formation of an iminium formyl nickelate featuring a C,P,P-tridentate coordination mode. The structures of both the heteroleptic [Ni(P2 N2 )(diphosphine)](2+) complexes and the resulting iminium formyl nickelate have been characterized by NMR spectroscopy and single-crystal X-ray diffraction analysis. Density functional theory (DFT) calculations were employed to investigate the mechanism of the P-C/C-H bond cleavage, which involves C-H bond cleavage, hydride rotation, Ni-C/P-H bond formation, and P-C bond cleavage. PMID:27189413

  11. [Hydrogen induced C-C, C-N, and C-S bond activities on Pi and Ni surfaces]: Summary

    SciTech Connect

    Gland, J.L.

    1994-12-31

    This document summarizes research applied to chemical bond activation studies. Topics summarized include: Carbon nitrogen bonds experimentation with aniline on Ni(111), Mi(100), and Pt(111) surfaces; carbon sulfur bonds experimentation with methanethiol, phenylthiol, and dimethyl disulfide on Pt(111) and Ni(111) surfaces; carbon-carbon bonds experimentation on Ni(100), Ni(111) and Pt(111) surfaces; and in-situ fluorescence yield near edge spectroscopy.

  12. Baeyer-Villiger C-C bond cleavage reaction in gilvocarcin and jadomycin biosynthesis

    PubMed Central

    Tibrewal, Nidhi; Pahari, Pallab; Wang, Guojun; Kharel, Madan K.; Morris, Caleb; Downey, Theresa; Hou, Yanpeng; Bugni, Tim S.; Rohr, Jürgen

    2012-01-01

    GilOII has been unambiguously identified as the key enzyme performing the crucial C-C bond cleavage reaction responsible for the unique rearrangement of a benz[a]anthracene skeleton to the benzo[d]naphthopyranone backbone typical for the gilvocarcin type natural anticancer antibiotics. Further investigations of this enzyme led to the isolation of a hydroxy-oxepinone intermediate which allowed important conclusions regarding the cleavage mechanism. PMID:23102024

  13. Aerobic synthesis of substituted quinoline from aldehyde and aniline: copper-catalyzed intermolecular C-H active and C-C formative cyclization.

    PubMed

    Yan, Rulong; Liu, Xingxing; Pan, Congming; Zhou, Xiaoqiang; Li, Xiaoni; Kang, Xing; Huang, Guosheng

    2013-09-20

    An efficient method for the direct synthesis of substituted quinolines from anilines and aldehydes through C-H functionalization, C-C/C-N bond formation, and C-C bond cleavage has been developed. The method is simple and practical and employs air as an oxidant. PMID:24024912

  14. Palladium-Catalyzed Synthesis of Phenanthridine/Benzoxazine-Fused Quinazolinones by Intramolecular C-H Bond Activation.

    PubMed

    Gupta, Puneet K; Yadav, Nisha; Jaiswal, Subodh; Asad, Mohd; Kant, Ruchir; Hajela, Kanchan

    2015-09-14

    A highly efficient synthesis of phenanthridine/benzoxazine-fused quinazolinones by ligand-free palladium-catalyzed intramolecular C-H bond activation under mild conditions has been developed. The C-C coupling provides the corresponding N-fused polycyclic heterocycles in good to excellent yields and with wide functional group tolerance. PMID:26230355

  15. Cu(II)-catalyzed esterification reaction via aerobic oxidative cleavage of C(CO)-C(alkyl) bonds.

    PubMed

    Ma, Ran; He, Liang-Nian; Liu, An-Hua; Song, Qing-Wen

    2016-02-01

    A novel Cu(II)-catalyzed aerobic oxidative esterification of simple ketones for the synthesis of esters has been developed with wide functional group tolerance. This process is assumed to go through a tandem sequence consisting of α-oxygenation/esterification/nucleophilic addition/C-C bond cleavage and carbon dioxide is released as the only byproduct. PMID:26698150

  16. The computation of C-C and N-N bond dissociation energies for singly, doubly, and triply bonded systems

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.; Taylor, Peter R.

    1989-01-01

    The bond dissociation energies (D sub e) of C2H2, C2H4, C2H6, N2, N2H2, and N2H4 are studied at various levels of correlation treatment. The convergence of D sub e with respect to the one particle basis is studied at the single reference modified coupled-pair functional (MCPF) level. At all levels of correlation treatment, the errors in the bond dissociation energies increase with the degree of multiple bond character. The multireference configuration interaction (MRCI) D sub e values, corrected for an estimate of higher excitations, are in excellent agreement with those determined using the size extensive averaged coupled pair functional (ACPF) method. It was found that the full valence complete active space self consistent field (CASSCF)/MRCI calculations are reproduced very well by MRCI calculations based on a CASSCF calculation that includes in the active space only those electrons involved in the C-C or N-N bonds. To achieve chemical accuracy (1 kcal/mole) for the D sub e values of the doubly bonded species C2H4 and N2H2 requires one particle basis sets including up through h angular momentum functions (l = 5) and a multireference treatment of electron correlation: still higher levels of calculation are required to achieve chemical accuracy for the triply bonded species C2H2 and N2.

  17. Direct construction of 2-alkylbenzo-1,3-azoles via C-H activation of alkanes for C-C and C-X (X = O, S) bond formation.

    PubMed

    Yadav, Arvind K; Yadav, Lal Dhar S

    2015-03-01

    Copper catalyzed straightforward synthesis of 2-alkylbenzoxa(thia)azoles from aryl isocyanates/isothiocyanates and simple alkanes is reported. The protocol utilizes ditertiary butyl peroxide (DTBP) as a radical initiator and involves sequential formation of C-C and C-X (X = O, S) bonds followed by aromatization in a one-pot procedure. PMID:25578954

  18. Comparison of the kinetics and thermodynamics for methyl radical addition to C=C, C=O, and C=S double bonds.

    PubMed

    Henry, David J; Coote, Michelle L; Gómez-Balderas, Rodolfo; Radom, Leo

    2004-02-18

    The barriers, enthalpies, and rate constants for the addition of methyl radical to the double bonds of a selection of alkene, carbonyl, and thiocarbonyl species (CH(2)=Z, CH(3)CH=Z, and (CH(3))(2)C=Z, where Z = CH(2), O, or S) and for the reverse beta-scission reactions have been investigated using high-level ab inito calculations. The results are rationalized with the aid of the curve-crossing model. The addition reactions proceed via early transition structures in all cases. The barriers for addition of methyl radical to C=C bonds are largely determined by the reaction exothermicities. Addition to the unsubstituted carbon center of C=C double bonds is favored over addition to the substituted carbon center, both kinetically (lower barriers) and thermodynamically (greater exothermicities). The barriers for addition to C=O bonds are influenced by both the reaction exothermicity and the singlet-triplet gap of the substrate. Addition to the carbon center is favored over addition to the oxygen, also both thermodynamically and kinetically. For the thiocarbonyl systems, addition to the carbon center is thermodynamically favored over addition to sulfur. However, in this case, the reaction is contrathermodynamic, addition to the sulfur center having a lower barrier due to spin density considerations. Entropic differences among corresponding addition and beta-scission reactions are relatively minor, and the differences in reaction rates are thus dominated by differences in the respective reaction barriers. PMID:14871104

  19. The computation of C-C and N-N bond dissociation energies for singly, doubly, and triply bonded systems

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.; Taylor, Peter R.

    1991-01-01

    The bond dissociation energies (De) of C2H2, C2H4, C2H6, N2, N2H2, and N2H4 are studied at various levels of correlation treatment. The convergence of De with respect to the one-particle basis is studied at the single-reference modified coupled-pair-functional (MCPF)level. At all levels of correlation treatment, the errors in the bond dissociation energies increase with the degree of multiple bond character. The multireference configuration-interaction (MRCI) De values, corrected for an estimate of higher excitations, are in excellent agreement with those determined using the size-extensive averaged-coupled-pair-functional (ACPF) method. The full-valence complete-active-space self-consistent-field (CASSCF)/MRCI calculations are reproduced very well by MRCI calculations based on a CASSCF calculation that includes in the active space only those electrons involved in the C-C or N-N bonds.

  20. Unexpected copper-catalyzed aerobic oxidative cleavage of C(sp3)-C(sp3) bond of glycol ethers.

    PubMed

    Liu, Zhong-Quan; Zhao, Lixing; Shang, Xiaojie; Cui, Zili

    2012-06-15

    An unexpected Cu-catalyzed oxidative cleavage of the C(sp(3))-C(sp(3)) bond in glycol ethers by using air or molecular oxygen as the terminal stoichiometric oxidant is demonstrated. As a result, the corresponding α-acyloxy ethers and formates of 1,2-ethanediol are formed by direct coupling of carboxylic acids and aldehydes with glycol ethers under the reaction conditions. This method represents the first example of Cu-catalyzed aerobic cleavage of saturated C-C bond in ethers. PMID:22668348

  1. Recent Advances in Transition-Metal-Free Oxygenation of Alkene C=C Double Bonds for Carbonyl Generation.

    PubMed

    Wan, Jie-Ping; Gao, Yong; Wei, Li

    2016-08-01

    Carbonyl-forming reactions are a class of fundamental transformations in organic chemistry. Guided by the current importance of environmentally benign metal-free catalysis and synthesis, herein we review recent advances in carbonyl-generation reactions based on alkene C=C double oxygenation as well as related cascade reactions in the synthesis of diverse organic products. The content of this focus review consists of two important but different reaction models: oxygenation based on full C=C double-bond cleavage and oxygenation based on partial C=C double-bond cleavage. PMID:27237866

  2. Silver(I) NHC mediated C-C bond activation of alkyl nitriles and catalytic efficiency in oxazoline synthesis.

    PubMed

    Heath, Rachael; Müller-Bunz, Helge; Albrecht, Martin

    2015-05-21

    Preparation of silver triazolylidene (trz) species from triazolium salts and Ag2O in refluxing MeCN leads to a selective C-C bond cleavage and the formation of complexes of general formula [(trz)Ag(CN)] from Calkyl-CN bond activation. Moreover, these silver carbene complexes are precursors of highly active catalysts for oxazoline formation via aldol condensation. PMID:25913007

  3. Observation of Spontaneous C=C Bond Breaking in the Reaction between Atomic Boron and Ethylene in Solid Neon.

    PubMed

    Jian, Jiwen; Lin, Hailu; Luo, Mingbiao; Chen, Mohua; Zhou, Mingfei

    2016-07-11

    A ground-state boron atom inserts into the C=C bond of ethylene to spontaneously form the allene-like compound H2 CBCH2 on annealing in solid neon. This compound can further isomerize to the propyne-like HCBCH3 isomer under UV light excitation. The observation of this unique spontaneous C=C bond insertion reaction is consistent with theoretical predictions that the reaction is thermodynamically exothermic and kinetically facile. This work demonstrates that the stronger C=C bond, rather than the less inert C-H bond, can be broken to form organoboron species from the reaction of a boron atom with ethylene even at cryogenic temperatures. PMID:27240114

  4. Surface-catalyzed C-C covalent coupling strategies toward the synthesis of low-dimensional carbon-based nanostructures.

    PubMed

    Fan, Qitang; Gottfried, J Michael; Zhu, Junfa

    2015-08-18

    Carbon-based nanostructures have attracted tremendous interest because of their versatile and tunable properties, which depend on the bonding type of the constituting carbon atoms. Graphene, as the most prominent representative of the π-conjugated carbon-based materials, consists entirely of sp(2)-hybridized carbon atoms and exhibits a zero band gap. Recently, countless efforts were made to open and tune the band gap of graphene for its applications in semiconductor devices. One promising method is periodic perforation, resulting in a graphene nanomesh (GNM), which opens the band gap while maintaining the exceptional transport properties. However, the typically employed lithographic approach for graphene perforation is difficult to control at the atomic level. The complementary bottom-up method using surface-assisted carbon-carbon (C-C) covalent coupling between organic molecules has opened up new possibilities for atomically precise fabrication of conjugated nanostructures like GNM and graphene nanoribbons (GNR), although with limited maturity. A general drawback of the bottom-up approach is that the desired structure usually does not represent the global thermodynamic minimum. It is therefore impossible to improve the long-range order by postannealing, because once the C-C bond formation becomes reversible, graphene as the thermodynamically most stable structure will be formed. This means that only carefully chosen precursors and reaction conditions can lead to the desired (non-graphene) material. One of the most popular and frequently used organic reactions for on-surface C-C coupling is the Ullmann reaction of aromatic halides. While experimentally simple to perform, the irreversibility of the C-C bond formation makes it a challenge to obtain long-range ordered nanostructures. With no postreaction structural improvement possible, the assembly process must be optimized to result in defect-free nanostructures during the initial reaction, requiring complete

  5. Alkyne-aldehyde reductive C-C coupling through ruthenium-catalyzed transfer hydrogenation: direct regio- and stereoselective carbonyl vinylation to form trisubstituted allylic alcohols in the absence of premetallated reagents.

    PubMed

    Leung, Joyce C; Patman, Ryan L; Sam, Brannon; Krische, Michael J

    2011-10-24

    Nonsymmetric 1,2-disubstituted alkynes engage in reductive coupling to a variety of aldehydes under the conditions of ruthenium-catalyzed transfer hydrogenation by employing formic acid as the terminal reductant and delivering the products of carbonyl vinylation with good to excellent levels of regioselectivity and with complete control of olefin stereochemistry. As revealed in an assessment of the ruthenium counterion, iodide plays an essential role in directing the regioselectivity of C-C bond formation. Isotopic labeling studies corroborate reversible catalytic propargyl C-H oxidative addition in advance of the C-C coupling, and demonstrate that the C-C coupling products do not experience reversible dehydrogenation by way of enone intermediates. This transfer hydrogenation protocol enables carbonyl vinylation in the absence of stoichiometric metallic reagents. PMID:21953608

  6. Central C-C Bonding Increases Optical and Chemical Stability of NIR Fluorophores

    PubMed Central

    Hyun, Hoon; Owens, Eric A.; Narayana, Lakshminarayana; Wada, Hideyuki; Gravier, Julien; Bao, Kai; Frangioni, John V.; Choi, Hak Soo; Henary, Maged

    2014-01-01

    Functional near-infrared (NIR) fluorophores have played a major role in the recent advances in bioimaging. However, the optical and physicochemical stabilities of NIR fluorophores in the biological and physiological environment are still a challenge. Especially, the ether linkage on the meso carbon of heptamethine core is fragile when exposed to serum proteins or other amine-rich biomolecules. To solve such a structural limitation, a rigid carbon-carbon bond was installed onto the framework of ether-linked NIR fluorophores through the Suzuki coupling. The robust fluorophores replaced as ZW800-1C and ZW800-3C displayed enhanced optical and chemical stability in various solvents and a 100% warm serum environment (> 99%, 24 h). The biodistribution and clearance of C-C coupled ZW800 compounds were almost identical to the previously developed oxygen-substituted ZW800 compounds. When conjugated with a small molecule ligand, ZW800-1C maintained the identical stable form in warm serum (>98%, 24 h), while ZW800-1A hydrolyzed quickly after 4 h incubation (34%, 24 h). PMID:25530846

  7. Spectroscopic Characterization of Lanthanum-Mediated Dehydrogenation and C-C Bond Coupling of Ethylene.

    PubMed

    Kumari, Sudesh; Cao, Wenjin; Zhang, Yuchen; Roudjane, Mourad; Yang, Dong-Sheng

    2016-07-01

    La(C2H2) and La(C4H6) are observed from the reaction of laser-vaporized La atoms with ethylene molecules by photoionization time-of-flight mass spectrometry and characterized by mass-analyzed threshold ionization spectroscopy. La(C2H2) is identified as a metallacyclopropene and La(C4H6) as a metallacyclopentene. The three-membered ring is formed by concerted H2 elimination and the five-membered cycle by dehydrogenation and C-C bond coupling. Both metallacycles prefer a doublet ground state with a La 6s-based unpaired electron. Ionization of the neutral doublet state of either complex produces a singlet ion state by removing the La-based electron. The ionization allows accurate measurements of the adiabatic ionization energy of the neutral doublet state and metal-ligand and ligand-based vibrational frequencies of the neutral and ionic states. Although the La atom is in a formal oxidation state of +2, the ionization energies of these metal-hydrocarbon cycles are lower than that of the neutral La atom. Deuteration has a small effect on the ionization energies of the two cyclic radicals but distinctive effects on their vibrational frequencies. PMID:27322131

  8. Bonding by Hydroxide-Catalyzed Hydration and Dehydration

    NASA Technical Reports Server (NTRS)

    Gwo, Dz-Hung

    2008-01-01

    A simple, inexpensive method for bonding solid objects exploits hydroxide-catalyzed hydration and dehydration to form silicate-like networks in thin surface and interfacial layers between the objects. The method can be practiced at room temperature or over a wide range of temperatures. The method was developed especially to enable the formation of precise, reliable bonds between precise optical components. The bonds thus formed exhibit the precision and transparency of bonds formed by the conventional optical-contact method and the strength and reliability of high-temperature frit bonds. The method also lends itself to numerous non-optical applications in which there are requirements for precise bonds and/or requirements for bonds, whether precise or imprecise, that can reliably withstand severe environmental conditions. Categories of such non-optical applications include forming composite materials, coating substrates, forming laminate structures, and preparing objects of defined geometry and composition. The method is applicable to materials that either (1) can form silicate-like networks in the sense that they have silicate-like molecular structures that are extensible into silicate-like networks or (2) can be chemically linked to silicate-like networks by means of hydroxide-catalyzed hydration and dehydration. When hydrated, a material of either type features surface hydroxyl (-OH) groups. In this method, a silicate-like network that bonds two substrates can be formed either by a bonding material alone or by the bonding material together with material from either or both of the substrates. Typically, an aqueous hydroxide bonding solution is dispensed and allowed to flow between the mating surfaces by capillary action. If the surface figures of the substrates do not match precisely, bonding could be improved by including a filling material in the bonding solution. Preferably, the filling material should include at least one ingredient that can be hydrated to

  9. Access to Structurally Diverse Quinoline-Fused Heterocycles via Rhodium(III)-Catalyzed C-C/C-N Coupling of Bifunctional Substrates.

    PubMed

    Yu, Songjie; Li, Yunyun; Zhou, Xukai; Wang, He; Kong, Lingheng; Li, Xingwei

    2016-06-17

    Rhodium(III)-catalyzed C-H activation of heteroarenes and functionalization with bifunctional substrates such as anthranils allows facile construction of quinoline-fused heterocycles under redox-neutral conditions. The couplings feature broad substrate scope and provide step-economical access to two classes of quinoline-fused condensed heterocycles. PMID:27267178

  10. Acceptorless dehydrogenation of C-C single bonds adjacent to functional groups by metal-ligand cooperation.

    PubMed

    Kusumoto, Shuhei; Akiyama, Midori; Nozaki, Kyoko

    2013-12-18

    Unprecedented direct acceptorless dehydrogenation of C-C single bonds adjacent to functional groups to form α,β-unsaturated compounds has been accomplished by using a new class of group 9 metal complexes. Metal-ligand cooperation operated by the hydroxycyclopentadienyl ligand was proposed to play a major role in the catalytic transformation. PMID:24299029

  11. Transition Metals Catalyzed Element-Cyano Bonds Activations

    PubMed Central

    Wang, Rui; Falck, John R.

    2014-01-01

    Cyano group as a versatile functionalized intermediate has been explored for several decades, as it readily transfers to many useful functionalization groups such as amine, amide, acid, etc., which make it possess high popularization and use value in organic synthesis. Reactions involved with element-cyano bond cleavage can provide not only a new cyano group but also a freshly functionalized skeleton in one-pot, consequently making it of high importance. The highlights reviewed herein include H-CN, Si-CN, C-CN, B-CN, Sn-CN, Ge-CN, S-CN, Halo-CN, N-CN, and O-CN bonds cleavages and will summarize progress in such an important research area. This review article will focus on transition metal catalyzed reactions involving element-cyano bond activation. PMID:25558119

  12. Total synthesis of protosappanin A and its derivatives via palladium catalyzed ortho C-H activation/C-C cyclization under microwave irradiation.

    PubMed

    Liu, Jiaqi; Zhou, Xuan; Wang, Chenglong; Fu, Wanyong; Chu, Wenyi; Sun, Zhizhong

    2016-04-14

    A total synthesis method for protosappanin A, which is a complex natural product with many biological activities, was developed with 6 linear steps. Dibenzo[b,d]oxepinones as the key intermediates of the synthetic route were prepared by a palladium-catalyzed ortho C-H activation/C-C cyclization under microwave irradiation. 25 derivatives of protosappanin A were obtained. PMID:26997503

  13. Metal Nanoparticles Catalyzed Selective Carbon-Carbon Bond Activation in the Liquid Phase.

    PubMed

    Ye, Rong; Yuan, Bing; Zhao, Jie; Ralston, Walter T; Wu, Chung-Yeh; Unel Barin, Ebru; Toste, F Dean; Somorjai, Gabor A

    2016-07-13

    Understanding the C-C bond activation mechanism is essential for developing the selective production of hydrocarbons in the petroleum industry and for selective polymer decomposition. In this work, ring-opening reactions of cyclopropane derivatives under hydrogen catalyzed by metal nanoparticles (NPs) in the liquid phase were studied. 40-atom rhodium (Rh) NPs, encapsulated by dendrimer molecules and supported in mesoporous silica, catalyzed the ring opening of cyclopropylbenzene at room temperature under hydrogen in benzene, and the turnover frequency (TOF) was higher than other metals or the Rh homogeneous catalyst counterparts. Comparison of reactants with various substitution groups showed that electron donation on the three-membered ring boosted the TOF of ring opening. The linear products formed with 100% selectivity for ring opening of all reactants catalyzed by the Rh NP. Surface Rh(0) acted as the active site in the NP. The capping agent played an important role in the ring-opening reaction kinetics. Larger particle size tended to show higher TOF and smaller reaction activation energy for Rh NPs encapsulated in either dendrimer or poly(vinylpyrrolidone). The generation/size of dendrimer and surface group also affected the reaction rate and activation energy. PMID:27322570

  14. The use of ultrasmall iron(0) nanoparticles as catalysts for the selective hydrogenation of unsaturated C-C bonds.

    PubMed

    Kelsen, Vinciane; Wendt, Bianca; Werkmeister, Svenja; Junge, Kathrin; Beller, Matthias; Chaudret, Bruno

    2013-04-28

    The performance of well-defined ultrasmall iron(0) nanoparticles (NPs) as catalysts for the selective hydrogenation of unsaturated C-C and C=X bonds is reported. Monodisperse iron nanoparticles of about 2 nm size are synthesized by the decomposition of {Fe(N[Si(CH3)3]2)2}2 under dihydrogen. They are found to be active for the hydrogenation of various alkenes and alkynes under mild conditions and weakly active for C=O bond hydrogenation. PMID:23505625

  15. A quantum chemical topological analysis of the C-C bond formation in organic reactions involving cationic species.

    PubMed

    Domingo, Luis R; Pérez, Patricia

    2014-07-21

    ELF topological analysis of the ionic Diels-Alder (I-DA) reaction between the N,N-dimethyliminium cation and cyclopentadiene (Cp) has been performed in order to characterise the C-C single bond formation. The C-C bond formation begins in the short range of 2.00-1.96 Åvia a C-to-C pseudoradical coupling between the most electrophilic center of the iminium cation and one of the two most nucleophilic centers of Cp. The electron density of the pseudoradical center generated at the most electrophilic carbon of the iminium cation comes mainly from the global charge transfer which takes place along the reaction. Analysis of the global reactivity indices indicates that the very high electrophilic character of the iminium cation is responsible for the negative activation energy found in the gas phase. On the other hand, the analysis of the radical P(k)(o) Parr functions of the iminium cation, and the nucleophilic P(k)(-) Parr functions of Cp makes the characterisation of the most favourable two-center interaction along the formation of the C-C single bond possible. PMID:24901220

  16. Formation of C-C and C-O bonds and oxygen removal in reactions of alkanediols, alkanols, and alkanals on copper catalysts.

    PubMed

    Sad, María E; Neurock, Matthew; Iglesia, Enrique

    2011-12-21

    This study reports evidence for catalytic deoxygenation of alkanols, alkanals, and alkanediols on dispersed Cu clusters with minimal use of external H(2) and with the concurrent formation of new C-C and C-O bonds. These catalysts selectively remove O-atoms from these oxygenates as CO or CO(2) through decarbonylation or decarboxylation routes, respectively, that use C-atoms present within reactants or as H(2)O using H(2) added or formed in situ from CO/H(2)O mixtures via water-gas shift. Cu catalysts fully convert 1,3-propanediol to equilibrated propanol-propanal intermediates that subsequently form larger oxygenates via aldol-type condensation and esterification routes without detectable involvement of the oxide supports. Propanal-propanol-H(2) equilibration is mediated by their chemisorption and interconversion at surfaces via C-H and O-H activation and propoxide intermediates. The kinetic effects of H(2), propanal, and propanol pressures on turnover rates, taken together with measured selectivities and the established chemical events for base-catalyzed condensation and esterification reactions, indicate that both reactions involve kinetically relevant bimolecular steps in which propoxide species, acting as the base, abstract the α-hydrogen in adsorbed propanal (condensation) or attack the electrophilic C-atom at its carbonyl group (esterification). These weakly held basic alkoxides render Cu surfaces able to mediate C-C and C-O formation reactions typically catalyzed by basic sites inherent in the catalyst, instead of provided by coadsorbed organic moieties. Turnover rates for condensation and esterification reactions decrease with increasing Cu dispersion, because low-coordination corner and edge atoms prevalent on small clusters stabilize adsorbed intermediates and increase the activation barriers for the bimolecular kinetically relevant steps required for both reactions. PMID:22023723

  17. Chemoselective Radical Dehalogenation and C-C Bond Formation on Aryl Halide Substrates Using Organic Photoredox Catalysts.

    PubMed

    Poelma, Saemi O; Burnett, G Leslie; Discekici, Emre H; Mattson, Kaila M; Treat, Nicolas J; Luo, Yingdong; Hudson, Zachary M; Shankel, Shelby L; Clark, Paul G; Kramer, John W; Hawker, Craig J; Read de Alaniz, Javier

    2016-08-19

    Despite the number of methods available for dehalogenation and carbon-carbon bond formation using aryl halides, strategies that provide chemoselectivity for systems bearing multiple carbon-halogen bonds are still needed. Herein, we report the ability to tune the reduction potential of metal-free phenothiazine-based photoredox catalysts and demonstrate the application of these catalysts for chemoselective carbon-halogen bond activation to achieve C-C cross-coupling reactions as well as reductive dehalogenations. This procedure works both for conjugated polyhalides as well as unconjugated substrates. We further illustrate the usefulness of this protocol by intramolecular cyclization of a pyrrole substrate, an advanced building block for a family of natural products known to exhibit biological activity. PMID:27276418

  18. Unlocking Hydrogenation for C-C Bond Formation: A Brief Overview of Enantioselective Methods

    PubMed Central

    Hassan, Abbas; Krische, Michael J.

    2011-01-01

    Hydrogenation of π-unsaturated reactants in the presence of carbonyl compounds or imines promotes reductive C-C coupling, providing a byproduct-free alternative to stoichiometric organometallic reagents in an ever-increasing range of C=X (X = O, NR) additions. Under transfer hydrogenation conditions, hydrogen exchange between alcohols and π-unsaturated reactants triggers generation of electrophile-nucleophile pairs, enabling carbonyl addition directly from the alcohol oxidation level, bypassing discrete alcohol oxidation and generation of stoichiometric byproducts. PMID:22125398

  19. Molecular dynamics simulation of C-C bond scission in polyethylene and linear alkanes: effects of the condensed phase.

    PubMed

    Popov, Konstantin V; Knyazev, Vadim D

    2014-03-27

    The reaction of C-C bond scission in polyethylene chains of various lengths was studied using molecular dynamics under the conditions of vacuum and condensed phase (polymer melt). A method of assigning meaningful rate constant values to condensed-phase bond scission reactions based on a kinetic mechanism accounting for dissociation, reverse recombination, and diffusional separation of fragments was developed. The developed method accounts for such condensed-phase phenomena as cage effects and diffusion of the decay products away from the reaction site. The results of C-C scission simulations indicate that per-bond rate constants decrease by an order of magnitude as the density of the system increases from vacuum to the normal density of a polyethylene melt. Additional calculations were performed to study the dependence of the rate constant on the length of the polymer chain under the conditions of the condensed phase. The calculations demonstrate that the rate constant is independent of the degree of polymerization if polyethylene samples of different lengths are kept at the same pressure. However, if instead molecular systems of different polyethylene chain lengths decompose under the conditions of the same density, shorter chains result in higher pressures and lower rate constants. The observed effect is attributed to a higher degree of molecular crowding (lower fraction of free intermolecular space available for molecular motion) in the case of shorter molecules. PMID:24571517

  20. Rhodium(III)-catalyzed C-C coupling of 7-azaindoles with vinyl acetates and allyl acetates.

    PubMed

    Li, Shuai-Shuai; Wang, Cheng-Qi; Lin, Hui; Zhang, Xiao-Mei; Dong, Lin

    2016-01-01

    The behaviour of electron-rich alkenes with 7-azaindoles in rhodium(III)-catalyzed C-H activation is investigated. Various substituted vinyl acetates and allyl acetates as coupling partners reacted smoothly providing a wide variety of 7-azaindole derivatives, and the selectivity of the coupling reaction is alkene-dependent. In addition, the approaches of rhodium(III)-catalyzed dehydrogenative Heck-type reaction (DHR) and carbonylation reaction were quite novel and simple. PMID:26553424

  1. Ternary Electrocatalysts for Oxidizing Ethanol to Carbon Dioxide: Making Ir Capable of Splitting C-C bond

    SciTech Connect

    Li, Meng; Cullen, David A; Sasaki, Kotaro; Marinkovic, N.; More, Karren Leslie; Adzic, Radoslav R.

    2013-01-01

    Splitting the C-C bond is the main obstacle to electroxidation of ethanol (EOR) to CO2. We recently demonstrated that the ternary PtRhSnO2 electrocatalyst can accomplish that reaction at room temperature with Rh having a unique capability to split the C-C bond. In this article we report the finding that Ir can be induced to split the C-C bond as a component of the ternary catalyst. We synthesized, characterized and compared the properties of several ternary electrocatalysts. Carbon-supported nanoparticle (NP) electrocatalysts comprising a SnO2 NP core decorated with multi-metallic nanoislands (MM = PtIr, PtRh, IrRh, PtIrRh) were prepared using a seeded growth approach. An array of characterization techniques were employed to establish the composition and architecture of the synthesized MM /SnO2 NPs, while electrochemical and in situ infrared reflection absorption spectroscopy studies elucidated trends in activity and the nature of the reaction intermediates and products. Both EOR reactivity and selectivity towards CO2 formation of several of these MM /SnO2/C electrocatalysts are significantly higher compared to conventional Pt/C and Pt/SnO2/C catalysts. We demonstrate that the PtIr/SnO2/C catalyst with high Ir content shows outstanding catalytic property with the most negative EOR onset potential and reasonably good selectivity towards ethanol complete oxidation to CO2. PtRh/SnO2/C catalysts with a moderate Rh content exhibit the highest EOR selectivity, as deduced from infrared studies.

  2. Matching plasmon resonances to the C=C and C-H bonds in estradiol

    NASA Astrophysics Data System (ADS)

    Mbomson, Ifeoma G.; McMeekin, Scott; De La Rue, Richard; Johnson, Nigel P.

    2015-03-01

    We tune nanoantennas to resonate within mid-infrared wavelengths to match the vibrational resonances of C=C and C-H of the hormone estradiol. Modelling and fabrication of the nanoantennas produce plasmon resonances between 2 μm to 7 μm. The hormone estradiol was dissolved in ethanol and evaporated, leaving thickness of a few hundreds of nanometres on top of gold asymmetric split H-like shaped on a fused silica substrate. The reflectance was measured and a red-shift is recorded from the resonators plasmonic peaks. Fourier transform infrared spectroscopy is use to observe enhanced spectra of the stretching modes for the analyte which belongs to alkenyl biochemical group.

  3. Direct Construction of 4-Hydroxybenzils via Para-Selective C-C Bond Coupling of Phenols and Aryl Methyl Ketones.

    PubMed

    Xiang, Jia-Chen; Cheng, Yan; Wang, Miao; Wu, Yan-Dong; Wu, An-Xin

    2016-09-01

    A highly para-selective C-C bond coupling is presented between phenols C(sp(2)) and aryl methyl ketones C(sp(3)), which enables the direct construction of 4-hydroxybenzil derivatives. This practical method exhibits a broad substrate scope and large-scale applicability and represents a general gateway to the hydroxybenzil natural product family. Mechanistic investigations indicated that the combination of HI with DMSO realized the oxidative carbonylation of aryl methyl ketones, while boric acid acted as a dual-functional relay reagent to promote this transformation. PMID:27513164

  4. Lanthanide-Catalyzed Reversible Alkynyl Exchange by Carbon-Carbon Single-Bond Cleavage Assisted by a Secondary Amino Group.

    PubMed

    Shao, Yinlin; Zhang, Fangjun; Zhang, Jie; Zhou, Xigeng

    2016-09-12

    Lanthanide-catalyzed alkynyl exchange through C-C single-bond cleavage assisted by a secondary amino group is reported. A lanthanide amido complex is proposed as a key intermediate, which undergoes unprecedented reversible β-alkynyl elimination followed by alkynyl exchange and imine reinsertion. The in situ homo- and cross-dimerization of the liberated alkyne can serve as an additional driving force to shift the metathesis equilibrium to completion. This reaction is formally complementary to conventional alkyne metathesis and allows the selective transformation of internal propargylamines into those bearing different substituents on the alkyne terminus in moderate to excellent yields under operationally simple reaction conditions. PMID:27510403

  5. Structure sensitivity of hydrogenolytic cleavage of endocyclic and exocyclic C-C bonds in methylcyclohexane over supported iridium particles

    SciTech Connect

    Shi, Hui; Gutierrez, Oliver Y.; Haller, Gary L.; Mei, Donghai; Rousseau, Roger J.; Lercher, Johannes A.

    2013-01-02

    Structure sensitivities, H2 pressure effects and temperature dependencies for rates and selectivities of endo- and exocyclic C–C bond cleavage in methylcyclohexane were studied over supported Ir catalysts. The rate of endocyclic C–C bond cleavage first decreased and then increased with declining Ir dispersion from 0.65 to 0.035. The ring opening (RO) product distribution remained unchanged with varying H2 pressure on small Ir particles, while further shifting to methylhexanes with increasing H2 pressure on large particles. In contrast, the rate and selectivity of exocyclic C–C bond cleavage decreased monotonically with increasing H2 pressure and decreasing Ir particle size. The distinct dependencies of endocyclic and exocyclic C–C bond cleavage pathways on Ir dispersion and H2 pressure suggest that they are mediated by surface species with different ensemble size requirements. DFT calculations were performed on an Ir50 cluster and an Ir(111) surface, with or without pre-adsorbed hydrogen atoms, to provide insight into the observed effects of particle size and H2 pressure on RO pathways. On small Ir particles, the calculated dehydrogenation enthalpies for all endocyclic bonds were similar and affected to similar extents by H2 pressure; on large particles, the selectivity to n-heptane (via substituted C-C bond cleavage) was even lower than on small particles as a result of the least favorable adsorption and dehydrogenation energetics for hindered bonds. This work was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences under Contract DE-AC05-76RL01830. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. The computing time is provided by the user project from EMSL, a national scientific user facility sponsored by the US Department of Energy's Office of Biological and Environmental Research and located at Pacific

  6. Modern Transition-Metal-Catalyzed Carbon-Halogen Bond Formation.

    PubMed

    Petrone, David A; Ye, Juntao; Lautens, Mark

    2016-07-27

    The high utility of halogenated organic compounds has prompted the development of a vast number of transformations which install the carbon-halogen motif. Traditional routes to these building blocks have commonly involved multiple steps, harsh reaction conditions, and the use of stoichiometric and/or toxic reagents. In this regard, using transition metals to catalyze the synthesis of organohalides has become a mature field in itself, and applying these technologies has allowed for a decrease in the production of waste, higher levels of regio- and stereoselectivity, and the ability to produce enantioenriched target compounds. Furthermore, transition metals offer the distinct advantage of possessing a diverse spectrum of mechanistic possibilities which translate to the capability to apply new substrate classes and afford novel and difficult-to-access structures. This Review provides comprehensive coverage of modern transition metal-catalyzed syntheses of organohalides via a diverse array of mechanisms. Attention is given to the seminal stoichiometric organometallic studies which led to the corresponding catalytic processes being realized. By breaking this field down into the synthesis of aryl, vinyl, and alkyl halides, it becomes clear which methods have surfaced as most favored for each individual class. In general, a pronounced shift toward the use of C-H bonds as key functional groups, in addition to methods which proceed by catalytic, radical-based mechanisms has occurred. Although always evolving, this field appears to be heading in the direction of using starting materials with a significantly lower degree of prefunctionalization in addition to less expensive and abundant metal catalysts. PMID:27341176

  7. Formation of C-C bonds by mandelonitrile lyase in organic solvents.

    PubMed

    Wehtje, E; Adlercreutz, P; Mattiasson, B

    1990-06-01

    Mandelonitrile lyase (EC 4.1.2.10) catalyzes the formation of D-mandelonitrile from HCN and benzaldehyde. Mandelonitrile lyase was immobilized by adsorption to support materials, for example, Celite. The enzyme preparations were used in diisopropyl ether for production of D-mandelonitrile. In order to obtain optically pure D-mandelonitrile it was necessary to use reaction conditions which favor the enzymatic reaction and suppress the competing spontaneous reaction, which yields a racemic mixture of D, L-mandelonitrile. The effects of substrate concentrations, water content, and support materials on both the spontaneous and enzymatic reactions were studied. The enzymatic reaction was carried out under conditions where the importance of the spontaneous reaction was negligible and high enantiomeric purity of D-mandelonitrile was achieved (at least 98% enantiomeric excess). The operational stability of the enzyme preparations was studied in batch as well as in continuous systems. It was vital to control the water content in the system to maintain an active preparation. In a packed bed reactor the enzyme preparations were shown to be active and stable. The reactors were run for 50 h with only a small decrease in product yield. PMID:18592607

  8. Cyanoalkylation: Alkylnitriles in Catalytic C-C Bond-Forming Reactions.

    PubMed

    López, Rosa; Palomo, Claudio

    2015-11-01

    Alkylnitriles are one of the most ubiquitous nitrogen-containing chemicals and are widely employed in reactions which result in nitrile-group conversion into other functionalities. Nevertheless, their use as carbon pronucleophiles in carbon-carbon bond-forming reactions has been hampered by difficulties associated mainly with the catalytic generation of active species, that is, α-cyano carbanions or metalated nitriles. Recent investigations have addressed this challenge and have resulted in different modes of alkylnitrile activation. This review illustrates these findings, which have set the foundation for the development of practical and conceptually new catalytic, direct cyanoalkylation methodologies. PMID:26387483

  9. Palladium-Catalyzed Intramolecular Carbene Insertion into C(sp(3) )-H Bonds.

    PubMed

    Solé, Daniel; Mariani, Francesco; Bennasar, M-Lluïsa; Fernández, Israel

    2016-05-23

    A palladium-catalyzed carbene insertion into C(sp(3) )-H bonds leading to pyrrolidines was developed. The coupling reaction can be catalyzed by both Pd(0) and Pd(II) , is regioselective, and shows a broad functional group tolerance. This reaction is the first example of palladium-catalyzed C(sp(3) )-C(sp(3) ) bond assembly starting from diazocarbonyl compounds. DFT calculations revealed that this direct C(sp(3) )-H bond functionalization reaction involves an unprecedented concerted metalation-deprotonation step. PMID:27079473

  10. CYP96T1 of Narcissus sp. aff. pseudonarcissus Catalyzes Formation of the Para-Para' C-C Phenol Couple in the Amaryllidaceae Alkaloids

    PubMed Central

    Kilgore, Matthew B.; Augustin, Megan M.; May, Gregory D.; Crow, John A.; Kutchan, Toni M.

    2016-01-01

    The Amaryllidaceae alkaloids are a family of amino acid derived alkaloids with many biological activities; examples include haemanthamine, haemanthidine, galanthamine, lycorine, and maritidine. Central to the biosynthesis of the majority of these alkaloids is a C-C phenol-coupling reaction that can have para-para', para-ortho', or ortho-para' regiospecificity. Through comparative transcriptomics of Narcissus sp. aff. pseudonarcissus, Galanthus sp., and Galanthus elwesii we have identified a para-para' C-C phenol coupling cytochrome P450, CYP96T1, capable of forming the products (10bR,4aS)-noroxomaritidine and (10bS,4aR)-noroxomaritidine from 4′-O-methylnorbelladine. CYP96T1 was also shown to catalyzed formation of the para-ortho' phenol coupled product, N-demethylnarwedine, as less than 1% of the total product. CYP96T1 co-expresses with the previously characterized norbelladine 4′-O-methyltransferase. The discovery of CYP96T1 is of special interest because it catalyzes the first major branch in Amaryllidaceae alkaloid biosynthesis. CYP96T1 is also the first phenol-coupling enzyme characterized from a monocot. PMID:26941773

  11. Pd-Catalyzed C-H Bond Functionalization on the Indole and Pyrrole Nucleus

    NASA Astrophysics Data System (ADS)

    Beck, Elizabeth M.; Gaunt, Matthew J.

    This review details recent developments in the Pd-catalyzed C-H bond arylation and alkenylation of indoles and pyrroles, aromatic heterocycles that are frequently displayed in natural products and medicinal agents.

  12. Iridium-Catalyzed Branch-Selective Hydroarylation of Vinyl Ethers via C-H Bond Activation.

    PubMed

    Ebe, Yusuke; Nishimura, Takahiro

    2015-05-13

    Iridium-catalyzed hydroarylation of vinyl ethers via a directed C-H bond activation of aromatic compounds gave high yields of the corresponding addition products with high branch selectivity. PMID:25928127

  13. Rhodium-Catalyzed ipso-Borylation of Alkylthioarenes via C-S Bond Cleavage.

    PubMed

    Uetake, Yuta; Niwa, Takashi; Hosoya, Takamitsu

    2016-06-01

    Rhodium-catalyzed transformation of alkyl aryl sulfides into arylboronic acid pinacol esters via C-S bond cleavage is reported. In combination with transition-metal-catalyzed sulfanyl group-guided regioselective C-H borylation reactions of alkylthioarenes, this method allows the synthesis of a diverse range of multisubstituted arenes. PMID:27210907

  14. C-H bond halogenation catalyzed or mediated by copper: an overview.

    PubMed

    Hao, Wenyan; Liu, Yunyun

    2015-01-01

    Carbon-halogen (C-X) bonds are amongst the most fundamental groups in organic synthesis, they are frequently and widely employed in the synthesis of numerous organic products. The generation of a C-X bond, therefore, constitutes an issue of universal interest. Herein, the research advances on the copper-catalyzed and mediated C-X (X = F, Cl, Br, I) bond formation via direct C-H bond transformation is reviewed. PMID:26664634

  15. C–H bond halogenation catalyzed or mediated by copper: an overview

    PubMed Central

    Hao, Wenyan

    2015-01-01

    Summary Carbon–halogen (C–X) bonds are amongst the most fundamental groups in organic synthesis, they are frequently and widely employed in the synthesis of numerous organic products. The generation of a C–X bond, therefore, constitutes an issue of universal interest. Herein, the research advances on the copper-catalyzed and mediated C–X (X = F, Cl, Br, I) bond formation via direct C–H bond transformation is reviewed. PMID:26664634

  16. Transition-Metal-Catalyzed Redox-Neutral and Redox-Green C-H Bond Functionalization.

    PubMed

    Wang, Hongli; Huang, Hanmin

    2016-08-01

    Transition-metal-catalyzed C-H bond functionalization has become one of the most promising strategies to prepare complex molecules from simple precursors. However, the utilization of environmentally unfriendly oxidants in the oxidative C-H bond functionalization reactions reduces their potential applications in organic synthesis. This account describes our recent efforts in the development of a redox-neutral C-H bond functionalization strategy for direct addition of inert C-H bonds to unsaturated double bonds and a redox-green C-H bond functionalization strategy for realization of oxidative C-H functionalization with O2 as the sole oxidant, aiming to circumvent the problems posed by utilizing environmentally unfriendly oxidants. In principle, these redox-neutral and redox-green strategies pave the way for establishing new environmentally benign transition-metal-catalyzed C-H bond functionalization strategies. PMID:27258190

  17. Phenyltrimethylammonium Salts as Methylation Reagents in the Nickel-Catalyzed Methylation of C-H Bonds.

    PubMed

    Uemura, Takeshi; Yamaguchi, Mao; Chatani, Naoto

    2016-02-24

    Methylation of C(sp(2))-H bonds was achieved through the Ni(II)-catalyzed reaction of benzamides with phenyltrimethylammonium bromide or iodide as the source of the methyl group. The reaction has a broad scope and shows high functional-group compatibility. The reaction is also applicable to the methylation of C(sp(3))-H bonds in aliphatic amides. PMID:26821872

  18. Recent advances in the gold-catalyzed additions to C–C multiple bonds

    PubMed Central

    Huang, He; Zhou, Yu

    2011-01-01

    Summary C–O, C–N and C–C bonds are the most widespread types of bonds in nature, and are the cornerstone of most organic compounds, ranging from pharmaceuticals and agrochemicals to advanced materials and polymers. Cationic gold acts as a soft and carbophilic Lewis acid and is considered one of the most powerful activators of C–C multiple bonds. Consequently, gold-catalysis plays an important role in the development of new strategies to form these bonds in more convenient ways. In this review, we highlight recent advances in the gold-catalyzed chemistry of addition of X–H (X = O, N, C) bonds to C–C multiple bonds, tandem reactions, and asymmetric additions. This review covers gold-catalyzed organic reactions published from 2008 to the present. PMID:21804887

  19. Influence of sulfur addition and S-induced wall catalytic effect on C-C bond cleavage and aromatics hydrogenation

    SciTech Connect

    Schmidt, E.; Song, C.; Schobert, H.H.

    1995-12-31

    Catalytic hydrocracking of 4-(-1-naphthylmethyl)bibenzyl NMBB predominately yielded naphthalene and 4-methylbibenzyl. Sulfur addition to most catalyst precursors lead to substantially higher catalyst activity and subsequently higher conversion. In order to clarify the effect of sulfur alone on model compound conversion, NMBB was treated with sulfur in concentrations of 1.2 to 3.4 wt%, corresponding to conditions present in catalytic runs with sulfur. It was found that increasing sulfur concentrations leads to higher NMBB conversion. Furthermore, sulfur had a permanent influence on the reactor walls. It reacted with the transition metals in the steel to form a microscopic black iron sulfide layer on the surface, which could not be removed mechanically. The {open_quotes}non catalytic{close_quotes} runs after experiments with added sulfur yielded higher conversion than normal runs with new reactors. This {open_quotes}wall catalytic effect{close_quotes} can be reduced by treating sulfided reactors with hydrochloric acid for a short period of time and subsequent immersing into a base bath over night. These results demonstrate the significant influence of sulfur addition and S-induced residual wall-effect on C-C bond cleavage and hydrogenation of aromatics in batch reactors.

  20. Influence of sulfur addition and S-induced wall catalytic effects on C-C bond cleavage and aromatics hydrogenation

    SciTech Connect

    Schmidt, E.; Song, Chunshan; Schobert, H.H.

    1995-12-31

    Catalytic hydrocracking of 4-(1-naphthylmethyl)bibenzyl, designated as NMBB, predominately yielded naphthalene and 4-methylbibenzyl. Sulfur addition to most catalyst precursors lead to substantially higher catalyst activity and subsequently higher conversion. NMBB was also treated with sulfur alone in the absence of catalysts in concentrations of 1.2 to 3.4 wt, corresponding to conditions present in catalytic runs with added sulfur to precursors. It was found that increasing sulfur concentrations lead to higher NMBB conversion. Furthermore, sulfur had a permanent influence on the reactor walls. It reacted with the transition metals in the stainless steel to form a microscopic black iron sulfide layer on the surface, which could not be removed mechanically. The {open_quotes}non-catalytic{close_quotes} runs which were done after experiments with added sulfur yielded higher conversions than normal runs done in new reactors. This {open_quotes}wall catalytic effect{close_quotes} can be reduced by treating sulfided reactors with hydrochloric acid for a short period of time and subsequent immersing into a base bath overnight. These results demonstrate the significant influence of sulfur addition and S-induced residual wall-effect on C-C bond cleavage and hydrogenation of aromatics in batch reactors.

  1. C-H Bond activation and C-C bond formation in the reaction of 2,5-dimethylthiophene with TpMe2Ir compounds.

    PubMed

    Paneque, Margarita; Poveda, Manuel L; Carmona, Ernesto; Salazar, Verónica

    2005-04-21

    The bulky 2,5-dimethylthiophene (2,5-Me2T) reacts at 60 degrees C with TpMe2Ir(C2H4)2 to give a mixture of two TpMe2Ir(III) hydride products, 3 and 4, that contain in addition a thienyl (3) or a thienyl-derived ligand (4). For the generation of 3 only sp2 C-H activation is needed, but the formation of 4 requires also the activation of an sp3 C-H bond and the formation of a new C-C bond (between vinyl and thienyl fragments). In the presence of 2,5-Me2T, compound 4 reacts further to produce a complex thiophenic structure (5, characterized by X-ray methods) that derives formally from two molecules of 2,5-Me2T and a vinyl fragment. Compounds 3-5 can be readily protonated by [H(OEt2)2][BAr'4](Ar'= 3,5-C6H3(CF3)2), with initial generation of carbene ligands (in the case of 3 and 5) as a consequence of H+ attack at the beta-carbon of the Ir-thienyl unit. Free, substituted thiophenes, derived from the original 2,5-Me2T, may be isolated in this way. PMID:15824780

  2. A Substrate-Assisted Mechanism of Nucleophile Activation in a Ser-His-Asp Containing C-C Bond Hydrolase

    SciTech Connect

    Ruzzini, Antonio C.; Bhowmik, Shiva; Ghosh, Subhangi; Yam, Katherine C.; Bolin, Jeffrey T.; Eltis, Lindsay D.

    2013-11-12

    The meta-cleavage product (MCP) hydrolases utilize a Ser–His–Asp triad to hydrolyze a carbon–carbon bond. Hydrolysis of the MCP substrate has been proposed to proceed via an enol-to-keto tautomerization followed by a nucleophilic mechanism of catalysis. Ketonization involves an intermediate, ESred, which possesses a remarkable bathochromically shifted absorption spectrum. We investigated the catalytic mechanism of the MCP hydrolases using DxnB2 from Sphingomonas wittichii RW1. Pre-steady-state kinetic and LC ESI/MS evaluation of the DxnB2-mediated hydrolysis of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid to 2-hydroxy-2,4-pentadienoic acid and benzoate support a nucleophilic mechanism catalysis. In DxnB2, the rate of ESred decay and product formation showed a solvent kinetic isotope effect of 2.5, indicating that a proton transfer reaction, assigned here to substrate ketonization, limits the rate of acylation. For a series of substituted MCPs, this rate was linearly dependent on MCP pKa2nuc ~ 1). Structural characterization of DxnB2 S105A:MCP complexes revealed that the catalytic histidine is displaced upon substrate-binding. The results provide evidence for enzyme-catalyzed ketonization in which the catalytic His–Asp pair does not play an essential role. The data further suggest that ESred represents a dianionic intermediate that acts as a general base to activate the serine nucleophile. This substrate-assisted mechanism of nucleophilic catalysis distinguishes MCP hydrolases from other serine hydrolases.

  3. Stereoselective Halogenation of Integral Unsaturated C-C Bonds in Chemically and Mechanically Robust Zr and Hf MOFs.

    PubMed

    Marshall, Ross J; Griffin, Sarah L; Wilson, Claire; Forgan, Ross S

    2016-03-24

    Metal-organic frameworks (MOFs) containing Zr(IV) -based secondary building units (SBUs), as in the UiO-66 series, are receiving widespread research interest due to their enhanced chemical and mechanical stabilities. We report the synthesis and extensive characterisation, as both bulk microcrystalline and single crystal forms, of extended UiO-66 (Zr and Hf) series MOFs containing integral unsaturated alkene, alkyne and butadiyne units, which serve as reactive sites for postsynthetic modification (PSM) by halogenation. The water stability of a Zr-stilbene MOF allows the dual insertion of both -OH and -Br groups in a single, aqueous bromohydrination step. Quantitative bromination of alkyne- and butadiyne-containing MOFs is demonstrated to be stereoselective, as a consequence of the linker geometry when bound in the MOFs, while the inherent change in hybridisation and geometry of integral linker atoms is facilitated by the high mechanical stabilities of the MOFs, allowing bromination to be characterised in a single-crystal to single-crystal (SCSC) manner. The facile addition of bromine across the unsaturated C-C bonds in the MOFs in solution is extended to irreversible iodine sequestration in the vapour phase. A large-pore interpenetrated Zr MOF demonstrates an I2 storage capacity of 279 % w/w, through a combination of chemisorption and physisorption, which is comparable to the highest reported capacities of benchmark iodine storage materials for radioactive I2 sequestration. We expect this facile PSM process to not only allow trapping of toxic vapours, but also modulate the mechanical properties of the MOFs. PMID:26916707

  4. A facile C-C bond cleavage in the epoxides and its use for the synthesis of oxygenated heterocycles by a ring expansion strategy.

    PubMed

    Lakshmipathi, Pandarinathan; Grée, Danielle; Grée, René

    2002-02-01

    The bicyclic epoxy alcohols when treated with DAST gave a new class of rearranged organofluorine compounds, by a ring expansion via C-C bond cleavage of the oxirane ring. The outcome of this reaction with respect to ring size and stereochemical relation between the functionalities is presented here. PMID:11820902

  5. Copper-catalyzed etherification of arene C-H bonds.

    PubMed

    Roane, James; Daugulis, Olafs

    2013-11-15

    A method for direct, auxiliary-assisted alkoxylation and phenoxylation of β-sp(2) C-H bonds of benzoic acid derivatives and γ-sp(2) C-H bonds of amine derivatives is reported. The reaction employs (CuOH)2CO3 catalyst, air as an oxidant, phenol or alcohol coupling partner, DMF, pyridine, or DMPU solvent, and K2CO3, tetramethylguanidine, or K3PO4 base at 70-130 °C. PMID:24180517

  6. Ester-directed Ru-catalyzed C-O activation/C-C coupling reaction of ortho-methoxy naphthoates with organoboroneopentylates.

    PubMed

    Zhao, Yigang; Snieckus, Victor

    2016-01-28

    A new, catalytic and general synthetic methodology for the construction of biaryls and heterobiaryls by the cross-coupling of ortho-methoxy naphthoates with organoboroneopentylates is disclosed. The reaction proceeds under RuH2(CO)(PPh3)3-catalyzed conditions driven by unreactive C-O bond activation of a proximate ester directing group (DG)-catalyst chelation. This one-step synthesis of 2-aryl and -heteroaryl-1-naphthoates has the features of operational simplicity, minimum waste and convenient scale-up. The hierarchy of C(O)Me > CONEt2 > CO2Me coordination-assisted reactivity, of potential value in chemoselective synthesis, is also established. PMID:26661919

  7. Copper(I)-catalyzed alkylation of polyfluoroarenes through Direct C-H bond functionalization.

    PubMed

    Xu, Shuai; Wu, Guojiao; Ye, Fei; Wang, Xi; Li, Huan; Zhao, Xia; Zhang, Yan; Wang, Jianbo

    2015-04-01

    The copper(I)-catalyzed alkylation of electron-deficient polyfluoroarenes with N-tosylhydrazones and diazo compounds has been developed. This reaction uses readily available starting materials and is operationally simple, thus representing a practical method for the construction of C(sp(2) )-C(sp(3) ) bonds with polyfluoroarenes through direct C-H bond functionalization. Mechanistically, copper(I) carbene formation and subsequent migratory insertion are proposed as the key steps in the reaction pathway. PMID:25690761

  8. Cobalt(III)-Catalyzed C–H Bond Amidation with Isocyanates

    PubMed Central

    Hummel, Joshua R.; Ellman, Jonathan A.

    2015-01-01

    The first examples of cobalt(III)-catalyzed C–H bond addition to isocyanates are described, providing a convergent strategy for arene and heteroarene amidation. Using a robust air- and moisture-stable catalyst, this transformation demonstrates broad isocyanate scope, good functional-group compatibility and has been performed on gram scale. PMID:25945401

  9. Direct 2-acetoxylation of quinoline N-oxides via copper catalyzed C-H bond activation.

    PubMed

    Chen, Xuan; Zhu, Chongwei; Cui, Xiuling; Wu, Yangjie

    2013-08-01

    An efficient and direct 2-acetoxylation of quinoline N-oxides via copper(I) catalyzed C-H bond activation has been developed. This transformation was achieved using TBHP as an oxidant in the cross-dehydrogenative coupling (CDC) reaction of quinoline N-oxides with aldehydes, and provided a practical pathway to 2-acyloxyl quinolines. PMID:23793162

  10. Synthesis of sulfonamides via copper-catalyzed oxidative C-N bond cleavage of tertiary amines.

    PubMed

    Ji, Jing; Liu, Zhengyi; Liu, Ping; Sun, Peipei

    2016-08-01

    A copper-catalyzed coupling reaction of sulfonyl chlorides with tertiary amines via the oxidative C-N bond cleavage of tertiary amines was developed. Sulfonamides were synthesized using this strategy in moderate to good yields. The reaction was applicable to various tertiary amines, as well as sulfonyl chlorides. PMID:27356858

  11. Nickel-Catalyzed Intramolecular C-O Bond Formation: Synthesis of Cyclic Enol Ethers.

    PubMed

    Han, Seo-Jung; Doi, Ryohei; Stoltz, Brian M

    2016-06-20

    An efficient and exceptionally mild intramolecular nickel-catalyzed carbon-oxygen bond-forming reaction between vinyl halides and primary, secondary, and tertiary alcohols has been achieved. Zinc powder was found to be an essential additive for obtaining high catalyst turnover and yields. This operationally simple method allows direct access to cyclic vinyl ethers in high yields in a single step. PMID:27159831

  12. Identification of Possible Pathways for C-C Bond Formation during Electrochemical Reduction of CO2: New Theoretical Insights from an Improved Electrochemical Model.

    PubMed

    Goodpaster, Jason D; Bell, Alexis T; Head-Gordon, Martin

    2016-04-21

    We have carried out a periodic Kohn-Sham density functional theory investigation of the pathways by which carbon-carbon bonds could be formed during the electrochemical reduction of CO2 on Cu(100) using a model that includes the effects of the electrochemical potential, solvent, and electrolyte. The electrochemical potential was set by relating the applied potential to the Fermi energy and then calculating the number of electrons required by the simulation cell for that specific Fermi energy. The solvent was included as a continuum dielectric, and the electrolyte was described using a linearized Poisson-Boltzmann model. The calculated potential of zero charge for a variety of surfaces agrees with experiment to within a mean average error of 0.09 V, thereby validating the assumptions of the model. Analysis of the mechanism for C-C bond formation revealed that at low-applied potential, C-C bond formation occurs through a CO dimer. However, at high applied potentials, a large activation barrier blocks this pathway; therefore, C-C bond formation occurs through reaction of adsorbed CHO and CO. Rate parameters determined from our calculations were used to simulate the kinetics of ethene formation during the electrochemical reduction of CO over a Cu(100) surface. An excellent match was observed between previously reported measurements of the partial current for ethene formation as a function of applied voltage and the variation in the partial current for C-C bond formation predicted by our microkinetic model. The electrochemical model reported here is simple, fairly easy to implement, and involves only a small increase in computational cost over calculations neglecting the effects of the electrolyte and the applied field. Therefore, it can be used to study the effects of applied potential and electrolyte composition on the energetics of surface reactions for a wide variety of electrochemical reactions. PMID:27045040

  13. From ketones to esters by a Cu-catalyzed highly selective C(CO)-C(alkyl) bond cleavage: aerobic oxidation and oxygenation with air.

    PubMed

    Huang, Xiaoqiang; Li, Xinyao; Zou, Miancheng; Song, Song; Tang, Conghui; Yuan, Yizhi; Jiao, Ning

    2014-10-22

    The Cu-catalyzed aerobic oxidative esterification of simple ketones via C-C bond cleavage has been developed. Varieties of common ketones, even inactive aryl long-chain alkyl ketones, are selectively converted into esters. The reaction tolerates a wide range of alcohols, including primary and secondary alcohols, chiral alcohols with retention of the configuration, electron-deficient phenols, as well as various natural alcohols. The usage of inexpensive copper catalyst, broad substrate scope, and neutral and open air conditions make this protocol very practical. (18)O labeling experiments reveal that oxygenation occurs during this transformation. Preliminary mechanism studies indicate that two novel pathways are mainly involved in this process. PMID:25251943

  14. Catalytic constructive deoxygenation of lignin-derived phenols: new C-C bond formation processes from imidazole-sulfonates and ether cleavage reactions.

    PubMed

    Leckie, Stuart M; Harkness, Gavin J; Clarke, Matthew L

    2014-10-01

    As part of a programme aimed at exploiting lignin as a chemical feedstock for less oxygenated fine chemicals, several catalytic C-C bond forming reactions utilising guaiacol imidazole sulfonate are demonstrated. These include the cross-coupling of a Grignard, a non-toxic cyanide source, a benzoxazole, and nitromethane. A modified Meyers reaction is used to accomplish a second constructive deoxygenation on a benzoxazole functionalised anisole. PMID:25130565

  15. HC[triple bond]P and H3C-C[triple bond]P as proton acceptors in protonated complexes containing two phosphorus bases: structures, binding energies, and spin-spin coupling constants.

    PubMed

    Alkorta, Ibon; Elguero, José; Bene, Janet E Del

    2007-10-01

    Ab initio calculations at the MP2/aug'-cc-pVTZ level have been carried out to investigate the structures and binding energies of cationic complexes involving protonated sp, sp2, and sp3 phosphorus bases as proton donor ions and the sp-hybridized phosphorus bases H-C[triple bond]P and H3C-C[triple bond]P as proton acceptors. These proton-bound complexes exhibit a variety of structural motifs, but all are stabilized by interactions that occur through the pi cloud of the acceptor base. The binding energies of these complexes range from 6 to 15 kcal/mol. Corresponding complexes with H3C-C[triple bond]P as the proton acceptor are more stable than those with H-C[triple bond]P as the acceptor, a reflection of the greater basicity of H3C-C[triple bond]P. In most complexes with sp2- or sp3-hybridized P-H donor ions, the P-H bond lengthens and the P-H stretching frequency is red-shifted relative to the corresponding monomers. Complex formation also leads to a lengthening of the C[triple bond]P bond and a red shift of the C[triple bond]P stretching vibration. The two-bond coupling constants 2pihJ(P-P) and 2pihJ(P-C) are significantly smaller than 2hJ(P-P) and 2hJ(P-C) for complexes in which hydrogen bonding occurs through lone pairs of electrons on P or C. This reflects the absence of significant s electron density in the hydrogen-bonding regions of these pi complexes. PMID:17760429

  16. Raman spectroscopic determination of the length, strength, compressibility, Debye temperature, elasticity, and force constant of the C-C bond in graphene.

    PubMed

    Yang, X X; Li, J W; Zhou, Z F; Wang, Y; Yang, L W; Zheng, W T; Sun, Chang Q

    2012-01-21

    From the perspective of bond relaxation and bond vibration, we have formulated the Raman phonon relaxation of graphene, under the stimuli of the number-of-layers, the uni-axial strain, the pressure, and the temperature, in terms of the response of the length and strength of the representative bond of the entire specimen to the applied stimuli. Theoretical unification of the measurements clarifies that: (i) the opposite trends of the Raman shifts, which are due to the number-of-layers reduction, of the G-peak shift and arises from the vibration of a pair of atoms, while the D- and the 2D-peak shifts involve the z-neighbor of a specific atom; (ii) the tensile strain-induced phonon softening and phonon-band splitting arise from the asymmetric response of the C(3v) bond geometry to the C(2v) uni-axial bond elongation; (iii) the thermal softening of the phonons originates from bond expansion and weakening; and (iv) the pressure stiffening of the phonons results from bond compression and work hardening. Reproduction of the measurements has led to quantitative information about the referential frequencies from which the Raman frequencies shift as well as the length, energy, force constant, Debye temperature, compressibility and elastic modulus of the C-C bond in graphene, which is of instrumental importance in the understanding of the unusual behavior of graphene. PMID:22105904

  17. Gold-Catalyzed Synthesis of Heterocycles

    NASA Astrophysics Data System (ADS)

    Arcadi, Antonio

    2014-04-01

    The following sections are included: * Introduction * Synthesis of Heterocycles via Gold-Catalyzed Heteroatom Addition to Unsaturated C-C Bonds * Synthesis of Heterocyclic Derivatives through Gold-Catalyzed Cyclization of Polyunsaturated Compounds * Synthesis of Heterocyclic Compounds via α-Oxo Gold Carbenoid * Synthesis of Heterocyclic Derivatives through Gold-Catalyzed Cycloaddition Reactions * Synthesis of Heterocyclic Derivatives through Gold-Catalyzed Activation of Carbonyl Groups and Alcohols * Synthesis of Heterocyclic Compounds through Gold-Mediated C-H Bond Functionalization * Gold-Catalyzed Domino Cyclization/Oxidative Coupling Reactions * Conclusions * References

  18. Formation of C–C bonds via ruthenium-catalyzed transfer hydrogenation*

    PubMed Central

    Moran, Joseph; Krische, Michael J.

    2013-01-01

    Ruthenium-catalyzed transfer hydrogenation of diverse π-unsaturated reactants in the presence of aldehydes provides products of carbonyl addition. Dehydrogenation of primary alcohols in the presence of the same π-unsaturated reactants provides identical products of carbonyl addition. In this way, carbonyl addition is achieved from the alcohol or aldehyde oxidation level in the absence of stoichiometric organometallic reagents or metallic reductants. In this account, the discovery of ruthenium-catalyzed C–C bond-forming transfer hydrogenations and the recent development of diastereo- and enantioselective variants are discussed. PMID:23430602

  19. Selectfluor-Mediated Simultaneous Cleavage of C-O and C-C Bonds in α,β-Epoxy Ketones Under Transition-Metal-Free Conditions: A Route to 1,2-Diketones.

    PubMed

    Wang, Heng; Ren, Shaobo; Zhang, Jian; Zhang, Wei; Liu, Yunkui

    2015-07-01

    Selectfluor-mediated simultaneous cleavage of C-O and C-C bonds in α,β-epoxy ketones has been successfully achieved under transition-metal-free conditions. The reaction gives 1,2-diketone compounds in moderate to good yields involving a ring-opening/benzoyl rearrangement/C-C bond cleavage sequence under oxidative conditions. PMID:26050519

  20. Manganese Porphyrins Catalyze Selective C-H Bond Halogenations

    SciTech Connect

    Liu, Wei; Groves, John T.

    2010-08-31

    We report a manganese porphyrin mediated aliphatic C-H bond chlorination using sodium hypochlorite as the chlorine source. In the presence of catalytic amounts of phase transfer catalyst and manganese porphyrin Mn(TPP)Cl 1, reaction of sodium hypochlorite with different unactivated alkanes afforded alkyl chlorides as the major products with only trace amounts of oxygenation products. Substrates with strong C-H bonds, such as neopentane (BDE =~100 kcal/mol) can be also chlorinated with moderate yield. Chlorination of a diagnostic substrate, norcarane, afforded rearranged products indicating a long-lived carbon radical intermediate. Moreover, regioselective chlorination was achieved by using a hindered catalyst, Mn(TMP)Cl, 2. Chlorination of trans-decalin with 2 provided 95% selectivity for methylene-chlorinated products as well as a preference for the C2 position. This novel chlorination system was also applied to complex substrates. With 5α-cholestane as the substrate, we observed chlorination only at the C2 and C3 positions in a net 55% yield, corresponding to the least sterically hindered methylene positions in the A-ring. Similarly, chlorination of sclareolide afforded the equatorial C2 chloride in a 42% isolated yield. Regarding the mechanism, reaction of sodium hypochlorite with the MnIII porphyrin is expected to afford a reactive MnV=O complex that abstracts a hydrogen atom from the substrate, resulting in a free alkyl radical and a MnIV—OH complex. We suggest that this carbon radical then reacts with a MnIV—OCl species, providing the alkyl chloride and regenerating the reactive MnV=O complex. The regioselectivity and the preference for CH2 groups can be attributed to nonbonded interactions between the alkyl groups on the substrates and the aryl groups of the manganese porphyrin. The results are indicative of a bent [Mnv=O---H---C] geometry due to the C—H approach to the Mn

  1. C-C Bond Formation via Copper-Catalyzed Conjugate Addition Reactions to Enones in Water at Room Temperature

    PubMed Central

    Lipshutz, Bruce H.; Huang, Shenlin; Leong, Wendy Wen Yi; Isley, Nicholas A.

    2013-01-01

    Conjugate addition reactions to enones can now be done in water at room temperature with in situ-generated organocopper reagents. Mixing an enone, zinc powder, TMEDA, and an alkyl halide in a micellar environemnt containing catalytic amounts of Cu(I), Ag(I), and Au(III), leads to 1,4-adducts in good isolated yields: no organometallic precursor is involved. PMID:23190029

  2. Theoretical insights into how the first C-C bond forms in the methanol-to-olefin process catalysed by HSAPO-34.

    PubMed

    Peng, Chao; Wang, Haifeng; Hu, P

    2016-05-25

    We report here a comprehensive understanding of the first C-C coupling during the induction period of the methanol-to-olefin process using density functional theory with the HSE06 hybrid functional. We illustrate the possible routes of formation for the active carbenium ion (CH3OCH2(+)), which has been identified to play an important part in triggering the formation of the first C-C bond and the hydrocarbon pool species. CH3OCH2(+) can be generated not only from dimethyl ether and Z(O)-CH3, but also from the reaction of HCHO and Z(O)-CH3, which has a lower effective barrier. An understanding of the dominance of CH3OCH2(+) over other carbocations and direct C-C coupling pathways is presented and quantitatively analysed. The charge distribution in the formation of CH3OCH2(+) is revealed and it is confirmed that the carbenium ion is thermodynamically more favoured than the radical. The subsequent reaction after the first C-C coupling was investigated, which uncovered some important active C2 species that possibly led to the formation of the active hydrocarbon pool intermediates and may finally realize the catalytic cycle. PMID:27173579

  3. Recent advances in copper-catalyzed C-H bond amidation.

    PubMed

    Wan, Jie-Ping; Jing, Yanfeng

    2015-01-01

    Copper catalysis has been known as a powerful tool for its ubiquitous application in organic synthesis. One of the fundamental utilities of copper catalysis is in the C-N bond formation by using carbon sources and nitrogen functional groups such as amides. In this review, the recent progress in the amidation reactions employing copper-catalyzed C-H amidation is summarized. PMID:26664644

  4. Recent advances in copper-catalyzed C–H bond amidation

    PubMed Central

    Jing, Yanfeng

    2015-01-01

    Summary Copper catalysis has been known as a powerful tool for its ubiquitous application in organic synthesis. One of the fundamental utilities of copper catalysis is in the C–N bond formation by using carbon sources and nitrogen functional groups such as amides. In this review, the recent progress in the amidation reactions employing copper-catalyzed C–H amidation is summarized. PMID:26664644

  5. Cp*Co(III) -Catalyzed C(sp(3) )-H Bond Amidation of 8-Methylquinoline.

    PubMed

    Barsu, Nagaraju; Rahman, Md Atiur; Sen, Malay; Sundararaju, Basker

    2016-06-27

    An efficient and external oxidant-free, Cp*Co(III) -catalyzed C(sp(3) )-H bond amidation of 8-methylquinoline, using oxazolone as an efficient amidating agent, is reported for the first time under mild conditions. The reaction is selective and tolerates a variety of functional groups. Based on previous reports and experimental results, the deprotonation pathway proceeds through an external base-assisted concerted metalation and deprotonation process. PMID:27168249

  6. Silver-catalyzed formal insertion of arynes into Rf-I bonds.

    PubMed

    Zeng, Yuwen; Hu, Jinbo

    2014-06-01

    An unprecedented silver-catalyzed formal insertion of arynes into Rf-I (Rf = CF3, C2F5) bonds has been developed. This protocol provides easy access to various ortho-perfluoroalkyl iodoarenes under mild conditions. In this insertion reaction, an ionic atom-transfer reaction of RfI occurs, and a silver-mediated metathesis process is involved in the efficient transfer of the electropositive iodine atom. PMID:24782445

  7. Transition-Metal-Catalyzed Laboratory-Scale Carbon–Carbon Bond-Forming Reactions of Ethylene

    PubMed Central

    Saini, Vaneet; Stokes, Benjamin J.; Sigman, Matthew S.

    2014-01-01

    Ethylene, the simplest alkene, is the most abundantly synthesized organic molecule by volume. It is readily incorporated into transitionmetal–catalyzed carbon-carbon bond-forming reactions through migratory insertions into alkylmetal intermediates. Because of its D2h symmetry, only one insertion outcome is possible. This limits byproduct formation and greatly simplifies analysis. As described within this Minireview, many carbon–carbon bond-forming reactions incorporate a molecule (or more) of ethylene at ambient pressure and temperature. In many cases, a useful substituted alkene is incorporated into the product. PMID:24105881

  8. Bonding and Integration of C-C Composite to Cu-Clad-Molybdenum for Thermal Management Applications

    NASA Technical Reports Server (NTRS)

    Asthana, R.; Singh, M.; Shpargel, T.P.

    2008-01-01

    Two- and three-dimensional carbon-carbon composites with either resin-derived matrix or CVI matrix were joined to Cu-clad-Mo using active Ag-Cu braze alloys for thermal management applications. The joint microstructure and composition were examined using Field-Emission Scanning Electron Microscopy and Energy-Dispersive Spectroscopy, and the joint hardness was characterized using the Knoop microhardness testing. Observations on the infiltration of the composite with molten braze, dissolution of metal substrate, and solute segregation at the C-C surface have been discussed. The thermal response of the integrated assembly is also briefly discussed.

  9. Active Metal Brazing and Adhesive Bonding of Titanium to C/C Composites for Heat Rejection System

    NASA Technical Reports Server (NTRS)

    Singh, M.; Shpargel, Tarah; Cerny, Jennifer

    2006-01-01

    Robust assembly and integration technologies are critically needed for the manufacturing of heat rejection system (HRS) components for current and future space exploration missions. Active metal brazing and adhesive bonding technologies are being assessed for the bonding of titanium to high conductivity Carbon-Carbon composite sub components in various shapes and sizes. Currently a number of different silver and copper based active metal brazes and adhesive compositions are being evaluated. The joint microstructures were examined using optical microscopy, and scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (EDS). Several mechanical tests have been employed to ascertain the effectiveness of different brazing and adhesive approaches in tension and in shear that are both simple and representative of the actual system and relatively straightforward in analysis. The results of these mechanical tests along with the fractographic analysis will be discussed. In addition, advantages, technical issues and concerns in using different bonding approaches will also be presented.

  10. Labile Cu(I) catalyst/spectator Cu(II) species in copper-catalyzed C-C coupling reaction: operando IR, in situ XANES/EXAFS evidence and kinetic investigations.

    PubMed

    He, Chuan; Zhang, Guanghui; Ke, Jie; Zhang, Heng; Miller, Jeffrey T; Kropf, Arthur J; Lei, Aiwen

    2013-01-01

    Insights toward the Cu-catalyzed C-C coupling reaction were investigated through operando IR and in situ X-ray absorption near-edge structure/extended X-ray absorption fine structure. It was found that the Cu(I) complex formed from the reaction of CuI with β-diketone nucleophile was liable under the cross-coupling conditions, which is usually considered as active catalytic species. This labile Cu(I) complex could rapidly disproportionate to the spectator Cu(II) and Cu(0) species under the reaction conditions, which was an off-cycle process. In this copper-catalyzed C-C coupling reaction, β-diketone might act both as the substrate and the ligand. PMID:23214954

  11. Efficient C-C bond splitting on Pt monolayer and sub-monolayer catalysts during ethanol electro-oxidation: Pt layer strain and morphology effects.

    PubMed

    Loukrakpam, Rameshwori; Yuan, Qiuyi; Petkov, Valeri; Gan, Lin; Rudi, Stefan; Yang, Ruizhi; Huang, Yunhui; Brankovic, Stanko R; Strasser, Peter

    2014-09-21

    Efficient catalytic C-C bond splitting coupled with complete 12-electron oxidation of the ethanol molecule to CO2 is reported on nanoscale electrocatalysts comprised of a Pt monolayer (ML) and sub-monolayer (sML) deposited on Au nanoparticles (Au@Pt ML/sML). The Au@Pt electrocatalysts were synthesized using surface limited redox replacement (SLRR) of an underpotentially deposited (UPD) Cu monolayer in an electrochemical cell reactor. Au@Pt ML showed improved catalytic activity for ethanol oxidation reaction (EOR) and, unlike their Pt bulk and Pt sML counterparts, was able to generate CO2 at very low electrode potentials owing to efficient C-C bond splitting. To explain this, we explore the hypothesis that competing strain effects due to the Pt layer coverage/morphology (compressive) and the Pt-Au lattice mismatch (tensile) control surface chemisorption and overall activity. Control experiments on well-defined model Pt monolayer systems are carried out involving a wide array of methods such as high-energy X-ray diffraction, pair-distribution function (PDF) analysis, in situ electrochemical FTIR spectroscopy, and in situ scanning tunneling microscopy. The vibrational fingerprints of adsorbed CO provide compelling evidence on the relation between surface bond strength, layer strain and morphology, and catalytic activity. PMID:25081353

  12. Synthesis of seco-B-ring bryostatin analogue WN-1 via C-C bond-forming hydrogenation: critical contribution of the B-ring in determining bryostatin-like and phorbol 12-myristate 13-acetate-like properties.

    PubMed

    Andrews, Ian P; Ketcham, John M; Blumberg, Peter M; Kedei, Noemi; Lewin, Nancy E; Peach, Megan L; Krische, Michael J

    2014-09-24

    The seco-B-ring bryostatin analogue, macrodiolide WN-1, was prepared in 17 steps (longest linear sequence) and 30 total steps with three bonds formed via hydrogen-mediated C-C coupling. This synthetic route features a palladium-catalyzed alkoxycarbonylation of a C2-symmetric diol to form the C9-deoxygenated bryostatin A-ring. WN-1 binds to PKCα (Ki = 16.1 nM) and inhibits the growth of multiple leukemia cell lines. Although structural features of the WN-1 A-ring and C-ring are shared by analogues that display bryostatin-like behavior, WN-1 displays PMA-like behavior in U937 cell attachment and proliferation assays, as well as in K562 and MV-4-11 proliferation assays. Molecular modeling studies suggest the pattern of internal hydrogen bonds evident in bryostatin 1 is preserved in WN-1, and that upon docking WN-1 into the crystal structure of the C1b domain of PKCδ, the binding mode of bryostatin 1 is reproduced. The collective data emphasize the critical contribution of the B-ring to the function of the upper portion of the molecule in conferring a bryostatin-like pattern of biological activity. PMID:25207655

  13. The Tautomeric Half-reaction of BphD, a C-C Bond Hydrolase Kinetic and Structural Evidence Supporting a Key Role for Histidine 265 of the Catalytic triad

    SciTech Connect

    Horsman, Geoff P.; Bhowmik, Shiva; Seah, Stephen Y.K.; Kumar, Pravindra; Bolin, Jeffrey T.; Eltis, Lindsay D.

    2010-01-07

    BphD of Burkholderia xenovorans LB400 catalyzes an unusual C-C bond hydrolysis of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA) to afford benzoic acid and 2-hydroxy-2,4-pentadienoic acid (HPD). An enol-keto tautomerization has been proposed to precede hydrolysis via a gem-diol intermediate. The role of the canonical catalytic triad (Ser-112, His-265, Asp-237) in mediating these two half-reactions remains unclear. We previously reported that the BphD-catalyzed hydrolysis of HOPDA ({lambda}{sub max} is 434 nm for the free enolate) proceeds via an unidentified intermediate with a red-shifted absorption spectrum ({lambda}{sub max} is 492 nm) (Horsman, G. P., Ke, J., Dai, S., Seah, S. Y. K., Bolin, J. T., and Eltis, L. D. (2006) Biochemistry 45, 11071-11086). Here we demonstrate that the S112A variant generates and traps a similar intermediate ({lambda}{sub max} is 506 nm) with a similar rate, 1/{tau} {approx} 500 s{sup -1}. The crystal structure of the S112A:HOPDA complex at 1.8-{angstrom} resolution identified this intermediate as the keto tautomer, (E)-2,6-dioxo-6-phenyl-hex-3-enoate. This keto tautomer did not accumulate in either the H265A or the S112A/H265A double variants, indicating that His-265 catalyzes tautomerization. Consistent with this role, the wild type and S112A enzymes catalyzed tautomerization of the product HPD, whereas H265A variants did not. This study thus identifies a keto intermediate, and demonstrates that the catalytic triad histidine catalyzes the tautomerization half-reaction, expanding the role of this residue from its purely hydrolytic function in other serine hydrolases. Finally, the S112A:HOPDA crystal structure is more consistent with hydrolysis occurring via an acyl-enzyme intermediate than a gem-diol intermediate as solvent molecules have poor access to C6, and the closest ordered water is 7{angstrom} away.

  14. Transition Metal Catalyzed Hydroarylation of Multiple Bonds: Exploration of Second Generation Ruthenium Catalysts and Extension to Copper Systems

    SciTech Connect

    T. Brent Gunnoe

    2011-02-17

    Catalysts provide foundational technology for the development of new materials and can enhance the efficiency of routes to known materials. New catalyst technologies offer the possibility of reducing energy and raw material consumption as well as enabling chemical processes with a lower environmental impact. The rising demand and expense of fossil resources has strained national and global economies and has increased the importance of accessing more efficient catalytic processes for the conversion of hydrocarbons to useful products. The goals of the research are to develop and understand single-site homogeneous catalysts for the conversion of readily available hydrocarbons into useful materials. A detailed understanding of these catalytic reactions could lead to the development of catalysts with improved activity, longevity and selectivity. Such transformations could reduce the environmental impact of hydrocarbon functionalization, conserve energy and valuable fossil resources and provide new technologies for the production of liquid fuels. This project is a collaborative effort that incorporates both experimental and computational studies to understand the details of transition metal catalyzed C-H activation and C-C bond forming reactions with olefins. Accomplishments of the current funding period include: (1) We have completed and published studies of C-H activation and catalytic olefin hydroarylation by TpRu{l_brace}P(pyr){sub 3}{r_brace}(NCMe)R (pyr = N-pyrrolyl) complexes. While these systems efficiently initiate stoichiometric benzene C-H activation, catalytic olefin hydroarylation is hindered by inhibition of olefin coordination, which is a result of the steric bulk of the P(pyr){sub 3} ligand. (2) We have extended our studies of catalytic olefin hydroarylation by TpRu(L)(NCMe)Ph systems to L = P(OCH{sub 2}){sub 3}CEt. Thus, we have now completed detailed mechanistic studies of four systems with L = CO, PMe{sub 3}, P(pyr){sub 3} and P(OCH{sub 2}){sub 3}CEt

  15. Toluene derivatives as simple coupling precursors for cascade palladium-catalyzed oxidative C-H bond acylation of acetanilides.

    PubMed

    Wu, Yinuo; Choy, Pui Ying; Mao, Fei; Kwong, Fuk Yee

    2013-01-25

    A palladium-catalyzed cascade cross-coupling of acetanilide and toluene for the synthesis of ortho-acylacetanilide is described. Toluene derivatives can act as effective acyl precursors (upon sp(3)-C-H bond oxidation by a Pd/TBHP system) in the oxidative coupling between two C-H bonds. This dehydrogenative Pd-catalyzed ortho-acylation proceeds under mild reaction conditions. PMID:23230572

  16. Unique properties of C,C'-linked nido-biscarborane tetraanions. Synthesis, structure and bonding of ruthenium monocarbollide via unprecedented cage carbon extrusion.

    PubMed

    Zhao, Da; Zhang, Jiji; Lin, Zhenyang; Xie, Zuowei

    2016-08-21

    Four reaction pathways have been found in the reaction of a C,C'-linked nido-biscarborane tetraanionic salt with [Ru(p-cymene)Cl2]2, leading to the isolation and structural characterization of redox, triple cage B-H oxidative addition, cage expansion and cage carbon extrusion products. Among these, the unprecedented cage carbon extrusion results in the formation of a new 6π-electron carboranyl ligand [C2B10H10](2-). The bonding interactions between this ligand and the Ru(ii) center have also been discussed on the basis of DFT calculations. PMID:27405999

  17. Iron-promoted C-C bond cleavage of 1,3-diketones: a route to 1,2-diketones under mild reaction conditions.

    PubMed

    Huang, Lehao; Cheng, Kai; Yao, Bangben; Xie, Yongju; Zhang, Yuhong

    2011-07-15

    A conceptual method for the preparation of 1,2-diketones is reported. The selective C-C bond cleavage of 1,3-diketones affords the 1,2-diketones in high yields under mild reaction conditions in air by the use of FeCl(3) as the catalyst and tert-butyl nitrite (TBN) as the oxidant without the use of solvent. The possible reaction mechanism is discussed. This protocol provides an expeditious route to the useful 1,2-diketones. PMID:21627329

  18. C-C Bond Formation: Synthesis of C5 Substituted Pyrimidine and C8 Substituted Purine Nucleosides Using Water Soluble Pd-imidate Complex.

    PubMed

    Gayakhe, Vijay; Ardhapure, Ajaykumar V; Kapdi, Anant R; Sanghvi, Yogesh S; Serrano, Jose Luis; Schulzke, Carola

    2016-01-01

    The synthesis of a highly efficient, water soluble [Pd(Sacc)2 (TPA)2 ] complex for C-C bond formation is described. Additionally, application of the [Pd(Sacc)2 (TPA)2 ] complex for Suzuki-Miyaura arylation of all four nucleosides (5-iodo-2'-deoxyuridine [5-IdU], 5-iodo-2'-deoxycytidine [5-IdC], 8-bromo-2'-deoxyadenosine, and 8-bromo-2'-deoxyguanosine) with various aryl/heteroaryl boronic acids in plain water under milder conditions is demonstrated. © 2016 by John Wiley & Sons, Inc. PMID:27248782

  19. Stability of the C-C covalent bonds in fullerenes in the solid body-vapor structure during the thermodynamic action by a quasi-pulsed electron beam

    NASA Astrophysics Data System (ADS)

    Semenov, A. P.; Semenova, I. A.; Churilov, G. N.

    2015-04-01

    The explosive evaporation of a fullerene mixture in a vacuum of ˜10-2 Pa during the contraction of a 1-kW hollow electron beam into a spot on a substrate in a time of 0.1-1 s is considered. A comparative analysis of the Raman spectra and the absorption electron spectra of a starting fullerene mixture powder and the vapor condensates shows that the evaporation of C60 and C70 fullerenes proceeds without breaking C-C covalent bonds.

  20. A free-standing condensation enzyme catalyzing ester bond formation in C-1027 biosynthesis.

    PubMed

    Lin, Shuangjun; Van Lanen, Steven G; Shen, Ben

    2009-03-17

    Nonribosomal peptide synthetases (NRPSs) catalyze the biosynthesis of many biologically active peptides and typically are modular, with each extension module minimally consisting of a condensation, an adenylation, and a peptidyl carrier protein domain responsible for incorporation of an amino acid into the growing peptide chain. C-1027 is a chromoprotein antitumor antibiotic whose enediyne chromophore consists of an enediyne core, a deoxy aminosugar, a benzoxazolinate, and a beta-amino acid moiety. Bioinformatics analysis suggested that the activation and incorporation of the beta-amino acid moiety into C-1027 follows an NRPS mechanism whereby biosynthetic intermediates are tethered to the peptidyl carrier protein SgcC2. Here, we report the biochemical characterization of SgcC5, an NRPS condensation enzyme that catalyzes ester bond formation between the SgcC2-tethered (S)-3-chloro-5-hydroxy-beta-tyrosine and (R)-1-phenyl-1,2-ethanediol, a mimic of the enediyne core. SgcC5 uses (S)-3-chloro-5-hydroxy-beta-tyrosyl-SgcC2 as the donor substrate and exhibits regiospecificity for the C-2 hydroxyl group of the enediyne core mimic as the acceptor substrate. Remarkably, SgcC5 is also capable of catalyzing amide bond formation, albeit with significantly reduced efficiency, between (S)-3-chloro-5-hydroxy-beta-tyrosyl-(S)-SgcC2 and (R)-2-amino-1-phenyl-1-ethanol, an alternative enediyne core mimic bearing an amine at its C-2 position. Thus, SgcC5 is capable of catalyzing both ester and amide bond formation, providing an evolutionary link between amide- and ester-forming condensation enzymes. PMID:19246381

  1. Synthesis of Indolizines through Oxidative Linkage of C-C and C-N Bonds from 2-Pyridylacetates.

    PubMed

    Mohan, Darapaneni Chandra; Ravi, Chitrakar; Pappula, Venkatanarayana; Adimurthy, Subbarayappa

    2015-07-01

    Synthesis of indolizine-1-carboxylates through the Ortoleva-King reaction of 2-pyridylacetate followed by the Aldol condensation under mild reaction conditions has been described. This protocol is compatible with a broad range of functional groups, and it has been also successfully extended to unsaturated ketones, bringing about the regioselective formation of benzoyl-substituted indolizines through Michael addition followed by C-N bond formation, which are difficult to prepare by previous methods in a single step. PMID:26044904

  2. Palladium- and Copper-Catalyzed Arylation of Carbon-Hydrogen Bonds

    PubMed Central

    Daugulis, Olafs; Do, Hien-Quang; Shabashov, Dmitry

    2010-01-01

    The transition-metal-catalyzed functionalization of C-H bonds is a powerful method for generating carbon-carbon bonds. Although significant advances to this field have been reported during the last decade, many challenges remain. First, most of the methods are substrate-specific and thus cannot be generalized. Second, conversions of unactivated (i.e. not benzylic or alpha to heteroatom) sp3 C–H bonds to C–C bonds are rare, with most examples limited to t-butyl groups—a conversion that is inherently simple because there are no β-hydrogens that can be eliminated. Finally, the palladium, rhodium, and ruthenium catalysts routinely used for the conversion of C–H bonds to C–C bonds are expensive. Catalytically active metals that are cheaper and less exotic (e.g. copper, iron, and manganese) are rarely used. This Account describes our attempts to provide solutions to these three problems. We have developed a general method for directing-group-containing arene arylation by aryl iodides. Using palladium acetate as the catalyst, we arylated anilides, benzamides, benzoic acids, benzylamines, and 2-substituted pyridine derivatives under nearly identical conditions. We have also developed a method for the palladium-catalyzed auxiliary-assisted arylation of unactivated sp3 C–H bonds. This procedure allows for the β-arylation of carboxylic acid derivatives and the γ-arylation of amine derivatives. Furthermore, copper catalysis can be used to mediate the arylation of acidic arene C–H bonds (i.e. those with pKa values <35 in DMSO). Using a copper iodide catalyst in combination with a base and a phenanthroline ligand, we successfully arylated electron-rich and electron-deficient heterocycles and electron-poor arenes possessing at least two electron-withdrawing groups. The reaction exhibits unusual regioselectivity: arylation occurs at the most hindered position. This copper-catalyzed method supplements the well-known C–H activation/borylation methodology, in which

  3. Palladium-catalyzed picolinamide-directed iodination of remote ortho-C-H bonds of arenes: Synthesis of tetrahydroquinolines.

    PubMed

    Nack, William A; Wang, Xinmou; Wang, Bo; He, Gang; Chen, Gong

    2016-01-01

    A new palladium-catalyzed picolinamide (PA)-directed ortho-iodination reaction of ε-C(sp(2))-H bonds of γ-arylpropylamine substrates is reported. This reaction proceeds selectively with a variety of γ-arylpropylamines bearing strongly electron-donating or withdrawing substituents, complementing our previously reported PA-directed electrophilic aromatic substitution approach to this transformation. As demonstrated herein, a three step sequence of Pd-catalyzed γ-C(sp(3))-H arylation, Pd-catalyzed ε-C(sp(2))-H iodination, and Cu-catalyzed C-N cyclization enables a streamlined synthesis of tetrahydroquinolines bearing diverse substitution patterns. PMID:27559375

  4. A Novel Strategy for Biomass Upgrade: Cascade Approach to the Synthesis of Useful Compounds via C-C Bond Formation Using Biomass-Derived Sugars as Carbon Nucleophiles.

    PubMed

    Yamaguchi, Sho; Baba, Toshihide

    2016-01-01

    Due to the depletion of fossil fuels, biomass-derived sugars have attracted increasing attention in recent years as an alternative carbon source. Although significant advances have been reported in the development of catalysts for the conversion of carbohydrates into key chemicals (e.g., degradation approaches based on the dehydration of hydroxyl groups or cleavage of C-C bonds via retro-aldol reactions), only a limited range of products can be obtained through such processes. Thus, the development of a novel and efficient strategy targeted towards the preparation of a range of compounds from biomass-derived sugars is required. We herein describe the highly-selective cascade syntheses of a range of useful compounds using biomass-derived sugars as carbon nucleophiles. We focus on the upgrade of C2 and C3 oxygenates generated from glucose to yield useful compounds via C-C bond formation. The establishment of this novel synthetic methodology to generate valuable chemical products from monosaccharides and their decomposed oxygenated materials renders carbohydrates a potential alternative carbon resource to fossil fuels. PMID:27447603

  5. Reactivity of biomimetic iron(II)-2-aminophenolate complexes toward dioxygen: mechanistic investigations on the oxidative C-C bond cleavage of substituted 2-aminophenols.

    PubMed

    Chakraborty, Biswarup; Bhunya, Sourav; Paul, Ankan; Paine, Tapan Kanti

    2014-05-19

    The isolation and characterization of a series of iron(II)-2-aminophenolate complexes [(6-Me3-TPA)Fe(II)(X)](+) (X = 2-amino-4-nitrophenolate (4-NO2-HAP), 1; X = 2-aminophenolate (2-HAP), 2; X = 2-amino-3-methylphenolate (3-Me-HAP), 3; X = 2-amino-4-methylphenolate (4-Me-HAP), 4; X = 2-amino-5-methylphenolate (5-Me-HAP), 5; X = 2-amino-4-tert-butylphenolate (4-(t)Bu-HAP), 6 and X = 2-amino-4,6-di-tert-butylphenolate (4,6-di-(t)Bu-HAP), 7) and an iron(III)-2-amidophenolate complex [(6-Me3-TPA)Fe(III)(4,6-di-(t)Bu-AP)](+) (7(Ox)) supported by a tripodal nitrogen ligand (6-Me3-TPA = tris(6-methyl-2-pyridylmethyl)amine) are reported. Substituted 2-aminophenols were used to prepare the biomimetic iron(II) complexes to understand the effect of electronic and structural properties of aminophenolate rings on the dioxygen reactivity and on the selectivity of C-C bond cleavage reactions. Crystal structures of the cationic parts of 5·ClO4 and 7·BPh4 show six-coordinate iron(II) centers ligated by a neutral tetradentate ligand and a monoanionic 2-aminophenolate in a bidentate fashion. While 1·BPh4 does not react with oxygen, other complexes undergo oxidative transformation in the presence of dioxygen. The reaction of 2·ClO4 with dioxygen affords 2-amino-3H-phenoxazin-3-one, an auto-oxidation product of 2-aminophenol, whereas complexes 3·BPh4, 4·BPh4, 5·ClO4 and 6·ClO4 react with O2 to exhibit C-C bond cleavage of the bound aminophenolates. Complexes 7·ClO4 and 7(Ox)·BPh4 produce a mixture of 4,6-di-tert-butyl-2H-pyran-2-imine and 4,6-di-tert-butyl-2-picolinic acid. Labeling experiments with (18)O2 show the incorporation of one oxygen atom from dioxygen into the cleavage products. The reactivity (and stability) of the intermediate, which directs the course of aromatic ring cleavage reaction, is found to be dependent on the nature of ring substituent. The presence of two tert-butyl groups on the aminophenolate ring in 7·ClO4 makes the complex slow to cleave the C-C

  6. Metal-Catalyzed Azidation of Tertiary C–H Bonds Suitable for Late-Stage Functionalization

    PubMed Central

    Sharma, Ankit

    2014-01-01

    Some enzymes are able to selectively oxidize unactivated aliphatic C-H bonds to form alcohols; however biological systems do not possess enzymes that are able to catalyze the analogous amination of a C-H bond.1,2 The absence of such chemistry is limiting because nitrogen-containing groups are found in therapeutic agents and clinically useful natural products. In one prominent example, the conversion of the ketone of erythromycin to the –N(Me)CH2– group in azithromycin leads to a compound that can be dosed once daily with a shorter length of treatment.3,4 For such reasons, synthetic chemists are very interested in identifying catalysts that can directly convert C-H bonds to C-N bonds. Most currently used catalysts for C-H bond amination are ill suited for the functionalization of complex molecules, because they require excess substrate or directing groups, harsh reaction conditions, weak or acidic C-H bonds, or reagents containing specialized groups on the nitrogen atom.5-14 Among C-H bond amination reactions, those forming a carbon-nitrogen bond at a tertiary alkyl group would be particularly valuable, because this linkage is difficult to generate enzymatically from ketone or alcohol precursors.15 In this manuscript, we report a mild, selective, iron-catalyzed azidation of tertiary C-H bonds with substrate as limiting reagent. The reaction tolerates aqueous environments and is suitable for “late-stage” functionalization of complex structures. Moreover, this azidation creates the ability to install a range of nitrogen functional groups, including those from bio-orthogonal Huisgen “click” cycloadditions and the Staudinger ligation.16-19 For these reasons, we anticipate this methodology will create opportunities to easily modify natural products, their precursors, and their derivatives to analogs that contain distinct polarity and charge from nitrogen-containing groups. It could also be used to help identify targets of biologically active molecules by

  7. C-H activation and C=C double bond formation reactions in iridium ortho-methyl arylphosphane complexes.

    PubMed

    Baratta, Walter; Ballico, Maurizio; Del Zotto, Alessandro; Zangrando, Ennio; Rigo, Pierluigi

    2007-01-01

    The Vaska-type iridium(I) complex [IrCl(CO){PPh(2)(2-MeC(6)H(4))}(2)] (1), characterized by an X-ray diffraction study, was obtained from iridium(III) chloride hydrate and PPh(2)(2,6-MeRC(6)H(3)) with R=H in DMF, whereas for R=Me, activation of two ortho-methyl groups resulted in the biscyclometalated iridium(III) compound [IrCl(CO){PPh(2)(2,6-CH(2)MeC(6)H(3))}(2)] (2). Conversely, for R=Me the iridium(I) compound [IrCl(CO){PPh(2)(2,6-Me(2)C(6)H(3))}(2)] (3) can be obtained by treatment of [IrCl(COE)(2)](2) (COE=cyclooctene) with carbon monoxide and the phosphane in acetonitrile. Compound 3 in CH(2)Cl(2) undergoes intramolecular C-H oxidative addition, affording the cyclometalated hydride iridium(III) species [IrHCl(CO){PPh(2)(2,6-CH(2)MeC(6)H(3))}{PPh(2)(2,6-Me(2)C(6)H(3))}] (4). Treatment of 2 with Na[BAr(f) (4)] (Ar(f)=3,5-C(6)H(3)(CF(3))(2)) gives the fluxional cationic 16-electron complex [Ir(CO){PPh(2)(2,6-CH(2)MeC(6)H(3))}(2)][BAr(f) (4)] (5), which reversibly reacts with dihydrogen to afford the delta-agostic complex [IrH(CO){PPh(2)(2,6-CH(2)MeC(6)H(3))}{PPh(2)(2,6-Me(2)C(6)H(3))}][BAr(f)(4)] (6), through cleavage of an Ir-C bond. This species can also be formed by treatment of 4 with Na[BAr(f)(4)] or of 2 with Na[BAr(f)(4)] through C-H oxidative addition of one ortho-methyl group, via a transient 14-electron iridium(I) complex. Heating of the coordinatively unsaturated biscyclometalated species 5 in toluene gives the trans-dihydride iridium(III) complex [IrH(2)(CO){PPh(2)(2,6-MeC(6)H(3)CH=CHC(6)H(3)Me-2,6)PPh(2)}][BAr(f) (4)] (7), containing a trans-stilbene-type terdentate ligand, as result of a dehydrogenative carbon-carbon double bond coupling reaction, possibly through an iridium carbene species. PMID:17535000

  8. Gold-catalyzed homogeneous oxidative C-O bond formation: efficient synthesis of 1-benzoxyvinyl ketones.

    PubMed

    Peng, Yu; Cui, Li; Zhang, Guozhu; Zhang, Liming

    2009-04-15

    A novel Au-catalyzed homogeneous oxidative C-O bond-forming reaction involving a Au(I)/Au(III) catalytic cycle is developed. Mechanistic studies reveal the involvement of a unique intramolecular carboxy migration. From readily available propargylic benzoates, this chemistry allows efficient access to captodative alkenes and dienones, demonstrating the synthetic potential of incorporating Au(I)/Au(III) catalytic cycles into contemporary Au chemistry. The unique reactivity and the mechanistic insights would help open a new research area in gold catalysis. PMID:19301899

  9. Cobalt-Catalyzed, Aminoquinoline-Directed Coupling of sp2 C–H Bonds with Alkenes

    PubMed Central

    2014-01-01

    A method for cobalt-catalyzed, aminoquinoline-directed ortho-functionalization of sp2 C–H bonds with alkenes has been developed. Reactions proceed at room temperature in trifluoroethanol solvent, use oxygen from air as an oxidant, and require Mn(OAc)3 as a cocatalyst. Benzoic, heteroaromatic, and acrylic acid aminoquinoline amides react with ethylene as well as mono- and disubstituted alkenes affording products in good yields. Excellent functional group tolerance is observed; halogen, nitro, ether, and unprotected alcohol functionalities are compatible with the reaction conditions. PMID:25146300

  10. Activation of Si-Si Bonds for Copper(I)-Catalyzed Conjugate Silylation.

    PubMed

    Iannazzo, Laura; Molander, Gary A

    2012-09-01

    Several alkyl- and vinylsilanes were prepared through the copper(I)-catalyzed conjugate silylation of α,β-unsaturated compounds. Optimal reaction conditions were first investigated to realize the conjugate addition of a nucleophilic silicon species to poorly electrophilic acceptors such as phenylvinyl sulfone by cleavage of the Si-Si bond of a disilane reagent. The scope of this reaction was extended to various electrophiles bearing different electron-withdrawing groups and afforded the desired substituted alkyl- and vinylsilanes. Among the wide range of commercially available disilanes, the reactivities of alkyl-, aryl-, and ethoxydisilane were also examined. PMID:23204924

  11. Activation of Si–Si Bonds for Copper(I)-Catalyzed Conjugate Silylation

    PubMed Central

    Iannazzo, Laura; Molander, Gary A.

    2012-01-01

    Several alkyl- and vinylsilanes were prepared through the copper(I)-catalyzed conjugate silylation of α,β-unsaturated compounds. Optimal reaction conditions were first investigated to realize the conjugate addition of a nucleophilic silicon species to poorly electrophilic acceptors such as phenylvinyl sulfone by cleavage of the Si–Si bond of a disilane reagent. The scope of this reaction was extended to various electrophiles bearing different electron-withdrawing groups and afforded the desired substituted alkyl- and vinylsilanes. Among the wide range of commercially available disilanes, the reactivities of alkyl-, aryl-, and ethoxydisilane were also examined. PMID:23204924

  12. A structural view on the mechanism of the ribosome-catalyzed peptide bond formation

    PubMed Central

    Simonović, Miljan; Steitz, Thomas A.

    2009-01-01

    The ribosome is a large ribonucleoprotein particle that translates zgenetic information encoded in mRNA into specific proteins. Its highly conserved active site, the peptidyl-transferase center (PTC), is located on the large (50S) ribosomal subunit and is comprised solely of rRNA, which makes the ribosome the only natural ribozyme with polymerase activity. The last decade witnessed a rapid accumulation of atomic-resolution structural data on both ribosomal subunits as well as on the entire ribosome. This has allowed studies on the mechanism of peptide bond formation at a level of detail that surpasses that for the classical protein enzymes. A current understanding of the mechanism of the ribosome-catalyzed peptide bond formation is the focus of this review. Implications on the mechanism of peptide release are discussed as well. PMID:19595805

  13. Copper-catalyzed oxaziridine-mediated oxidation of C-H bonds.

    PubMed

    Motiwala, Hashim F; Gülgeze, Belgin; Aubé, Jeffrey

    2012-08-17

    The highly regio- and chemoselective oxidation of activated C-H bonds has been observed via copper-catalyzed reactions of oxaziridines. The oxidation proceeded with a variety of substrates, primarily comprising allylic and benzylic examples, as well as one example of an otherwise unactivated tertiary C-H bond. The mechanism of the reaction is proposed to involve single-electron transfer to the oxaziridines to generate a copper-bound radical anion, followed by hydrogen atom abstraction and collapse to products, with regeneration of the catalyst by a final single-electron transfer event. The involvement of allylic radical intermediates was supported by a radical-trapping experiment with TEMPO. PMID:22830300

  14. Rhodium-catalyzed silylation of aromatic carbon-hydrogen bonds in 2-arylpyridines with disilane.

    PubMed

    Tobisu, Mamoru; Ano, Yusuke; Chatani, Naoto

    2008-09-01

    The rhodium(I)-catalyzed regioselective silylation of the ortho carbon-hydrogen bond in 2-arylpyridines with disilane is described. For example, the reaction of 2-(2-methylphenyl)pyridine with 2 equivalents of hexamethyldisilane in the presence of 5 mol % [RhCl(cod)](2) (cod=1,5-cyclooctadiene) in o-xylene at 130 degrees C for 15 h gave 2-[2-methyl-6-(trimethylsilyl)phenyl]pyridine in 86 % yield. In contrast to silylation with hydrosilanes, hydrogen acceptors are not required to achieve high conversion. A variety of substituents, including alkoxy, amine, ester, and fluorinated groups, are compatible with this catalysis. When substrates containing two ortho C-H bonds are used, monosilylated products are obtained selectively by utilizing the 3-methyl-2-pyridyl group as a directing group. PMID:18494014

  15. Novel dehydrogenase catalyzes oxidative hydrolysis of carbon-nitrogen double bonds for hydrazone degradation.

    PubMed

    Itoh, Hideomi; Suzuta, Tetsuya; Hoshino, Takayuki; Takaya, Naoki

    2008-02-29

    Hydrazines and their derivatives are versatile artificial and natural compounds that are metabolized by elusive biological systems. Here we identified microorganisms that assimilate hydrazones and isolated the yeast, Candida palmioleophila MK883. When cultured with adipic acid bis(ethylidene hydrazide) as the sole source of carbon, C. palmioleophila MK883 degraded hydrazones and accumulated adipic acid dihydrazide. Cytosolic NAD+- or NADP+-dependent hydrazone dehydrogenase (Hdh) activity was detectable under these conditions. The production of Hdh was inducible by adipic acid bis(ethylidene hydrazide) and the hydrazone, varelic acid ethylidene hydrazide, under the control of carbon catabolite repression. Purified Hdh oxidized and hydrated the C=N double bond of acetaldehyde hydrazones by reducing NAD+ or NADP+ to produce relevant hydrazides and acetate, the latter of which the yeast assimilated. The deduced amino acid sequence revealed that Hdh belongs to the aldehyde dehydrogenase (Aldh) superfamily. Kinetic and mutagenesis studies showed that Hdh formed a ternary complex with the substrates and that conserved Cys is essential for the activity. The mechanism of Hdh is similar to that of Aldh, except that it catalyzed oxidative hydrolysis of hydrazones that requires adding a water molecule to the reaction catalyzed by conventional Aldh. Surprisingly, both Hdh and Aldh from baker's yeast (Ald4p) catalyzed the Hdh reaction as well as aldehyde oxidation. Our findings are unique in that we discovered a biological mechanism for hydrazone utilization and a novel function of proteins in the Aldh family that act on C=N compounds. PMID:18096698

  16. Successive C-C Coupling of Dienes to Vicinally Dioxygenated Hydrocarbons: Ruthenium Catalyzed [4+2] Cycloaddition across the Diol, Hydroxycarbonyl or Dione Oxidation Levels

    PubMed Central

    Geary, Laina M.; Glasspoole, Ben W.; Kim, Mary M.; Krische, Michael J.

    2013-01-01

    The ruthenium(0) catalyst generated from Ru3(CO)12 and tricyclohexylphosphine or BIPHEP promotes successive C-C coupling of dienes to vicinally dioxygenated hydrocarbons across the diol, hydroxyketone and dione oxidation levels to form products of [4+2] cycloaddition. A mechanism involving diene-carbonyl oxidative coupling followed by intramolecular carbonyl addition from the resulting allylruthenium intermediate is postulated. PMID:23448269

  17. Photoinduced, Copper-Catalyzed Carbon-Carbon Bond Formation with Alkyl Electrophiles: Cyanation of Unactivated Secondary Alkyl Chlorides at Room Temperature.

    PubMed

    Ratani, Tanvi S; Bachman, Shoshana; Fu, Gregory C; Peters, Jonas C

    2015-11-01

    We have recently reported that, in the presence of light and a copper catalyst, nitrogen nucleophiles such as carbazoles and primary amides undergo C-N coupling with alkyl halides under mild conditions. In the present study, we establish that photoinduced, copper-catalyzed alkylation can also be applied to C-C bond formation, specifically, that the cyanation of unactivated secondary alkyl chlorides can be achieved at room temperature to afford nitriles, an important class of target molecules. Thus, in the presence of an inexpensive copper catalyst (CuI; no ligand coadditive) and a readily available light source (UVC compact fluorescent light bulb), a wide array of alkyl halides undergo cyanation in good yield. Our initial mechanistic studies are consistent with the hypothesis that an excited state of [Cu(CN)2](-) may play a role, via single electron transfer, in this process. This investigation provides a rare example of a transition metal-catalyzed cyanation of an alkyl halide, as well as the first illustrations of photoinduced, copper-catalyzed alkylation with either a carbon nucleophile or a secondary alkyl chloride. PMID:26491957

  18. Bis(trifluoromethyl)methylene addition to vinyl-terminated SAMs: a gas-phase C-C bond-forming reaction on a surface.

    PubMed

    Adamkiewicz, Malgorzata; O'Hagan, David; Hähner, Georg

    2014-05-20

    Vinyl-terminated self-assembled monolayers (SAMs) on silicon oxide substrates were chemically modified by the addition of a bis(trifluoromethyl)methylene group in a rare gas-phase C-C bond-forming reaction to directly generate films carrying terminal CF3 groups. The vinyl-terminated films were treated with hexafluoroacetone azine (HFAA) for modification. The films were characterized with ellipsometry, contact angle measurements, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). In this study, we find that for optimized conditions clean reactions occur on a surface between SAMs with terminal olefins and HFAA, and the product is consistent with bis(trifluoromethyl)cyclopropanation formation after nitrogen extrusion. PMID:24806554

  19. Practical carbon-carbon bond formation from olefins through nickel-catalyzed reductive olefin hydrocarbonation.

    PubMed

    Lu, Xi; Xiao, Bin; Zhang, Zhenqi; Gong, Tianjun; Su, Wei; Yi, Jun; Fu, Yao; Liu, Lei

    2016-01-01

    New carbon-carbon bond formation reactions expand our horizon of retrosynthetic analysis for the synthesis of complex organic molecules. Although many methods are now available for the formation of C(sp(2))-C(sp(3)) and C(sp(3))-C(sp(3)) bonds via transition metal-catalyzed cross-coupling of alkyl organometallic reagents, direct use of readily available olefins in a formal fashion of hydrocarbonation to make C(sp(2))-C(sp(3)) and C(sp(3))-C(sp(3)) bonds remains to be developed. Here we report the discovery of a general process for the intermolecular reductive coupling of unactivated olefins with alkyl or aryl electrophiles under the promotion of a simple nickel catalyst system. This new reaction presents a conceptually unique and practical strategy for the construction of C(sp(2))-C(sp(3)) and C(sp(3))-C(sp(3)) bonds without using any organometallic reagent. The reductive olefin hydrocarbonation also exhibits excellent compatibility with varieties of synthetically important functional groups and therefore, provides a straightforward approach for modification of complex organic molecules containing olefin groups. PMID:27033405

  20. Practical carbon–carbon bond formation from olefins through nickel-catalyzed reductive olefin hydrocarbonation

    PubMed Central

    Lu, Xi; Xiao, Bin; Zhang, Zhenqi; Gong, Tianjun; Su, Wei; Yi, Jun; Fu, Yao; Liu, Lei

    2016-01-01

    New carbon–carbon bond formation reactions expand our horizon of retrosynthetic analysis for the synthesis of complex organic molecules. Although many methods are now available for the formation of C(sp2)–C(sp3) and C(sp3)–C(sp3) bonds via transition metal-catalyzed cross-coupling of alkyl organometallic reagents, direct use of readily available olefins in a formal fashion of hydrocarbonation to make C(sp2)–C(sp3) and C(sp3)–C(sp3) bonds remains to be developed. Here we report the discovery of a general process for the intermolecular reductive coupling of unactivated olefins with alkyl or aryl electrophiles under the promotion of a simple nickel catalyst system. This new reaction presents a conceptually unique and practical strategy for the construction of C(sp2)–C(sp3) and C(sp3)–C(sp3) bonds without using any organometallic reagent. The reductive olefin hydrocarbonation also exhibits excellent compatibility with varieties of synthetically important functional groups and therefore, provides a straightforward approach for modification of complex organic molecules containing olefin groups. PMID:27033405

  1. Reaction Pathways and Energetics of Etheric C–O Bond Cleavage Catalyzed by Lanthanide Triflates

    SciTech Connect

    Assary, Rajeev S.; Atesin, Abdurrahman C.; Li, Zhi; Curtiss, Larry A.; Marks, Tobin J.

    2013-09-06

    Efficient and selective cleavage of etheric C-O bonds is crucial for converting biomass into platform chemicals and liquid transportation fuels. In this contribution, computational methods at the DFT B3LYP level of theory are employed to understand the efficacy of lanthanide triflate catalysts (Ln(OTf)3, Ln = La, Ce, Sm, Gd, Yb, and Lu) in cleaving etheric C-O bonds. In agreement with experiment, the calculations indicate that the reaction pathway for C-O cleavage occurs via a C-H → O-H proton transfer in concert with weakening of the C-O bond of the coordinated ether substrate to ultimately yield a coordinated alkenol. The activation energy for this process falls as the lanthanide ionic radius decreases, reflecting enhanced metal ion electrophilicity. Details of the reaction mechanism for Yb(OTf)3-catalyzed ring opening are explored in depth, and for 1-methyl-d3-butyl phenyl ether, the computed primary kinetic isotope effect of 2.4 is in excellent agreement with experiment (2.7), confirming that etheric ring-opening pathway involves proton transfer from the methyl group alpha to the etheric oxygen atom, which is activated by the electrophilic lanthanide ion. Calculations of the catalytic pathway using eight different ether substrates indicate that the more rapid cleavage of acyclic versus cyclic ethers is largely due to entropic effects, with the former C-O bond scission processes increasing the degrees of freedom/particles as the transition state is approached.

  2. Synthesis of Biaryls through Nickel-Catalyzed Suzuki-Miyaura Coupling of Amides by Carbon-Nitrogen Bond Cleavage.

    PubMed

    Shi, Shicheng; Meng, Guangrong; Szostak, Michal

    2016-06-01

    The first Ni-catalyzed Suzuki-Miyaura coupling of amides for the synthesis of widely occurring biaryl compounds through N-C amide bond activation is reported. The reaction tolerates a wide range of electron-withdrawing, electron-neutral, and electron-donating substituents on both coupling partners. The reaction constitutes the first example of the Ni-catalyzed generation of aryl electrophiles from bench-stable amides with potential applications for a broad range of organometallic reactions. PMID:27101428

  3. Enantioselective Aminomethylamination of Conjugated Dienes with Aminals Enabled by Chiral Palladium Complex-Catalyzed C-N Bond Activation.

    PubMed

    Liu, Yang; Xie, Yinjun; Wang, Hongli; Huang, Hanmin

    2016-04-01

    A novel highly enantioselective aminomethylamination of conjugated dienes with aminals catalyzed by a chiral palladium complex ligated with BINOL-derived chiral diphosphinite has been successfully developed. This reaction proceeds via a Pd-catalyzed cascade C-N bond activation, aminomethylation, and asymmetric allylic amination reaction under mild reaction conditions, providing a unique and efficient strategy for the synthesis of enantiomerically pure allylic 1,3-diamines. PMID:26998813

  4. Silicon-Carbon Bond Formation via Nickel-Catalyzed Cross-Coupling of Silicon Nucleophiles with Unactivated Secondary and Tertiary Alkyl Electrophiles.

    PubMed

    Chu, Crystal K; Liang, Yufan; Fu, Gregory C

    2016-05-25

    A wide array of cross-coupling methods for the formation of C-C bonds from unactivated alkyl electrophiles have been described in recent years. In contrast, progress in the development of methods for the construction of C-heteroatom bonds has lagged; for example, there have been no reports of metal-catalyzed cross-couplings of unactivated secondary or tertiary alkyl halides with silicon nucleophiles to form C-Si bonds. In this study, we address this challenge, establishing that a simple, commercially available nickel catalyst (NiBr2·diglyme) can achieve couplings of alkyl bromides with nucleophilic silicon reagents under unusually mild conditions (e.g., -20 °C); especially noteworthy is our ability to employ unactivated tertiary alkyl halides as electrophilic coupling partners, which is still relatively uncommon in the field of cross-coupling chemistry. Stereochemical, relative reactivity, and radical-trap studies are consistent with a homolytic pathway for C-X bond cleavage. PMID:27187869

  5. Cinchona Urea-Catalyzed Asymmetric Sulfa-Michael Reactions: The Brønsted Acid-Hydrogen Bonding Model.

    PubMed

    Grayson, Matthew N; Houk, K N

    2016-07-27

    The cinchona alkaloid-derived urea-catalyzed asymmetric conjugate addition of aromatic thiols to cycloalkenones was studied using density functional theory (DFT). Deprotonation of the thiol gives a protonated amine that activates the electrophile by Brønsted acid catalysis, while the urea group binds the nucleophilic thiolate by hydrogen bonding. These results demonstrate the generality of the Brønsted acid-hydrogen bonding transition state (TS) model for cinchona alkaloid catalysis that we recently showed to be favored over Wynberg's widely accepted ion pair-hydrogen bonding model and represent the first detailed mechanistic study of a cinchona urea-catalyzed reaction. The conformation of the catalyst methoxy group has a strong effect on the TS, an effect overlooked in previous mechanistic studies of reactions catalyzed by cinchona alkaloids. PMID:27396591

  6. Rhodium catalyzed chelation-assisted C-H bond functionalization reactions

    PubMed Central

    Colby, Denise A.; Tsai, Andy S.; Bergman, Robert G.; Ellman, Jonathan A.

    2011-01-01

    Conspectus Over the last several decades, researchers have achieved remarkable progress in the field of organometallic chemistry. The development of metal-catalyzed cross-coupling reactions represents a paradigm shift in chemical synthesis, and today synthetic chemists can readily access carbon-carbon and carbon-heteroatom bonds from a vast array of starting compounds. Although we cannot understate the importance of these methods, the required pre-functionalization to carry out these reactions adds cost and reduces the availability of the starting reagents. The use of C-H bond activation in lieu of pre-functionalization has presented a tantalizing alternative to classical cross-coupling reactions. Researchers have met the challenges of selectivity and reactivity associated with the development of C-H bond functionalization reactions with an explosion of creative advances in substrate and catalyst design. Literature reports on selectivity based on steric effects, acidity, and electronic and directing group effects are now numerous. Our group has developed an array of C-H bond functionalization reactions that take advantage of a chelating directing group, and this Account surveys our progress in this area. The use of chelation control in C-H bond functionalization offers several advantages with respect to substrate scope and application to total synthesis. The predictability and decreased dependence on the inherent stereoelectronics of the substrate generally result in selective and high yielding transformations with broad applicability. The nature of the chelating moiety can be chosen to serve as a functional handle in subsequent elaborations. Our work began with the use of Rh(I) catalysts in intramolecular aromatic C-H annulations, which we further developed to include enantioselective transformations. The application of this chemistry to the simple olefinic C-H bonds found in α,β-unsaturated imines allowed access to highly substituted olefins, pyridines, and

  7. A mechanistic study of Trichoderma reesei Cel7B catalyzed glycosidic bond cleavage.

    PubMed

    Zhang, Yu; Yan, Shihai; Yao, Lishan

    2013-07-25

    An ONIOM study is performed to illustrate the mechanism of Trichoderma reesei Cel7B catalyzed p-nitrophenyl lactoside hydrolysis. In both the glycosylation and deglycosylation steps, the reaction proceeds in a concerted way, meaning the nucleophilic attack and the glycosidic bond cleavage occur simultaneously. The glycosylation step is rate limiting with a barrier of 18.9 kcal/mol, comparable to the experimental value derived from the kcat measured in this work. The function of four residues R108, Y146, Y170, and D172, which form a hydrogen-bond network involving the substrate, is studied by conservative mutations. The mutants, including R108K, Y146F, Y170F, and D172N, decrease the enzyme activity by about 150-8000-fold. Molecular dynamics simulations show that the mutations disrupt the hydrogen-bond network, cause the substrate to deviate from active binding and hinder either the proton transfer from E201 to O4(+1) or the nucleophilic attack from E196 to C1(-1). PMID:23822607

  8. Recent advances in copper-catalyzed asymmetric coupling reactions.

    PubMed

    Zhou, Fengtao; Cai, Qian

    2015-01-01

    Copper-catalyzed (or -mediated) asymmetric coupling reactions have received significant attention over the past few years. Especially the coupling reactions of aryl or alkyl halides with nucleophiles became a very powerful tool for the formation of C-C, C-N, C-O and other carbon-heteroatom bonds as well as for the construction of heteroatom-containing ring systems. This review summarizes the recent progress in copper-catalyzed asymmetric coupling reactions for the formation of C-C and carbon-heteroatom bonds. PMID:26734106

  9. Palladium-Catalyzed Allylic C-H Bond Functionalization of Olefins

    NASA Astrophysics Data System (ADS)

    Liu, Guosheng; Wu, Yichen

    Transition metal-mediated carbon-hydrogen bond cleavage and functionalization is a mechanistically interesting and synthetically attractive process. One of the important cases is the removal of a allylic hydrogen from an olefin by a PdII salt to yield a π-allylpalladium complex, followed by nucleophilic attack to efficient produce allylic derivatives. In contrast to the well-known allylic acetoxylation of cyclohexene, the reaction of open-chain olefins is fairly poor until recent several years. Some palladium catalytic systems have been reported to achieve allylic C-H functionalization, including acetoxylation, amination and alkylation of terminal alkenes. In the most of cases, ligand is crucial to the success of the transformation. This review surveys the recent development of palladium-catalyzed allylic C-H functionalziation of alkenes. These results promise a significant increase in the scope of olefin transformation.

  10. Acetic Acid Can Catalyze Succinimide Formation from Aspartic Acid Residues by a Concerted Bond Reorganization Mechanism: A Computational Study

    PubMed Central

    Takahashi, Ohgi; Kirikoshi, Ryota; Manabe, Noriyoshi

    2015-01-01

    Succinimide formation from aspartic acid (Asp) residues is a concern in the formulation of protein drugs. Based on density functional theory calculations using Ace-Asp-Nme (Ace = acetyl, Nme = NHMe) as a model compound, we propose the possibility that acetic acid (AA), which is often used in protein drug formulation for mildly acidic buffer solutions, catalyzes the succinimide formation from Asp residues by acting as a proton-transfer mediator. The proposed mechanism comprises two steps: cyclization (intramolecular addition) to form a gem-diol tetrahedral intermediate and dehydration of the intermediate. Both steps are catalyzed by an AA molecule, and the first step was predicted to be rate-determining. The cyclization results from a bond formation between the amide nitrogen on the C-terminal side and the side-chain carboxyl carbon, which is part of an extensive bond reorganization (formation and breaking of single bonds and the interchange of single and double bonds) occurring concertedly in a cyclic structure formed by the amide NH bond, the AA molecule and the side-chain C=O group and involving a double proton transfer. The second step also involves an AA-mediated bond reorganization. Carboxylic acids other than AA are also expected to catalyze the succinimide formation by a similar mechanism. PMID:25588215

  11. Palladium-catalyzed picolinamide-directed iodination of remote ortho-C−H bonds of arenes: Synthesis of tetrahydroquinolines

    PubMed Central

    Nack, William A; Wang, Xinmou; Wang, Bo

    2016-01-01

    Summary A new palladium-catalyzed picolinamide (PA)-directed ortho-iodination reaction of ε-C(sp2)−H bonds of γ-arylpropylamine substrates is reported. This reaction proceeds selectively with a variety of γ-arylpropylamines bearing strongly electron-donating or withdrawing substituents, complementing our previously reported PA-directed electrophilic aromatic substitution approach to this transformation. As demonstrated herein, a three step sequence of Pd-catalyzed γ-C(sp3)−H arylation, Pd-catalyzed ε-C(sp2)−H iodination, and Cu-catalyzed C−N cyclization enables a streamlined synthesis of tetrahydroquinolines bearing diverse substitution patterns. PMID:27559375

  12. Asymmetric Synthesis of (-)-Incarvillateine Employing an Intramolecular Alkylation via Rh-Catalyzed Olefinic C-H Bond Activation

    SciTech Connect

    Tsai, Andy; Bergman, Robert; Ellman, Jonathan

    2008-02-18

    An asymmetric total synthesis of (-)-incarvillateine, a natural product having potent analgesic properties, has been achieved in 11 steps and 15.4% overall yield. The key step is a rhodium-catalyzed intramolecular alkylation of an olefinic C-H bond to set two stereocenters. Additionally, this transformation produces an exocyclic, tetrasubstituted alkene through which the bicyclic piperidine moiety can readily be accessed.

  13. Controlling Site Selectivity in Palladium-Catalyzed C–H Bond Functionalization

    PubMed Central

    Neufeldt, Sharon R.; Sanford, Melanie S.

    2012-01-01

    Conspectus Effective methodology to functionalize C–H bonds requires overcoming the key challenge of differentiating among the multitude of C–H bonds that are present in complex organic molecules. This Account focuses on our work over the past decade toward the development of site-selective Pd-catalyzed C–H functionalization reactions using the following approaches: substrate-based control over selectivity through the use of directing groups (approach 1), substrate control through the use of electronically activated substrates (approach 2), or catalyst-based control (approach 3). In our extensive exploration of the first approach, a number of selectivity trends have emerged for both sp2 and sp3 C–H functionalization reactions that hold true for a variety of transformations involving diverse directing groups. Functionalizations tend to occur at the less-hindered sp2 C–H bond ortho to a directing group, at primary sp3 C–H bonds that are β to a directing group, and, when multiple directing groups are present, at C–H sites proximal to the most basic directing group. Using approach 2, which exploits electronic biases within a substrate, our group has achieved C-2-selective arylation of indoles and pyrroles using diaryliodonium oxidants. The selectivity of these transformations is altered when the C-2 site of the heterocycle is blocked, leading to C–C bond formation at the C-3 position. While approach 3 (catalyst-based control) is still in its early stages of exploration, we have obtained exciting results demonstrating that site selectivity can be tuned by modifying the structure of the supporting ligands on the Pd catalyst. For example, by modulating the structure of N~N bidentate ligands, we have achieved exquisite levels of selectivity for arylation at the α site of naphthalene. Similarly, we have demonstrated that both the rate and site selectivity of arene acetoxylation depend on the ratio of pyridine (ligand) to Pd. Lastly, by switching the ligand

  14. Molecular cloning and characterization of CYP80G2, a cytochrome P450 that catalyzes an intramolecular C-C phenol coupling of (S)-reticuline in magnoflorine biosynthesis, from cultured Coptis japonica cells.

    PubMed

    Ikezawa, Nobuhiro; Iwasa, Kinuko; Sato, Fumihiko

    2008-04-01

    Cytochrome P450s (P450) play a key role in oxidative reactions in plant secondary metabolism. Some of them, which catalyze unique reactions other than the standard hydroxylation, increase the structural diversity of plant secondary metabolites. In isoquinoline alkaloid biosyntheses, several unique P450 reactions have been reported, such as methylenedioxy bridge formation, intramolecular C-C phenol-coupling and intermolecular C-O phenol-coupling reactions. We report here the isolation and characterization of a C-C phenol-coupling P450 cDNA (CYP80G2) from an expressed sequence tag library of cultured Coptis japonica cells. Structural analysis showed that CYP80G2 had high amino acid sequence similarity to Berberis stolonifera CYP80A1, an intermolecular C-O phenol-coupling P450 involved in berbamunine biosynthesis. Heterologous expression in yeast indicated that CYP80G2 had intramolecular C-C phenol-coupling activity to produce (S)-corytuberine (aporphine-type) from (S)-reticuline (benzylisoquinoline type). Despite this intriguing reaction, recombinant CYP80G2 showed typical P450 properties: its C-C phenol-coupling reaction required NADPH and oxygen and was inhibited by a typical P450 inhibitor. Based on a detailed substrate-specificity analysis, this unique reaction mechanism and substrate recognition were discussed. CYP80G2 may be involved in magnoflorine biosynthesis in C. japonica, based on the fact that recombinant C. japonica S-adenosyl-L-methionine:coclaurine N-methyltransferase could convert (S)-corytuberine to magnoflorine. PMID:18230623

  15. Mild and Selective Catalytic Hydrogenation of the C=C Bond in α,β-Unsaturated Carbonyl Compounds Using Supported Palladium Nanoparticles.

    PubMed

    Nagendiran, Anuja; Pascanu, Vlad; Bermejo Gómez, Antonio; González Miera, Greco; Tai, Cheuk-Wai; Verho, Oscar; Martín-Matute, Belén; Bäckvall, Jan-E

    2016-05-17

    Chemoselective reduction of the C=C bond in a variety of α,β-unsaturated carbonyl compounds using supported palladium nanoparticles is reported. Three different heterogeneous catalysts were compared using 1 atm of H2 : 1) nano-Pd on a metal-organic framework (MOF: Pd(0) -MIL-101-NH2 (Cr)), 2) nano-Pd on a siliceous mesocellular foam (MCF: Pd(0) -AmP-MCF), and 3) commercially available palladium on carbon (Pd/C). Initial studies showed that the Pd@MOF and Pd@MCF nanocatalysts were superior in activity and selectivity compared to commercial Pd/C. Both Pd(0) -MIL-101-NH2 (Cr) and Pd(0) -AmP-MCF were capable of delivering the desired products in very short reaction times (10-90 min) with low loadings of Pd (0.5-1 mol %). Additionally, the two catalytic systems exhibited high recyclability and very low levels of metal leaching. PMID:27111403

  16. Acetaldehyde partial oxidation on the Au(111) model catalyst surface: C-C bond activation and formation of methyl acetate as an oxidative coupling product

    NASA Astrophysics Data System (ADS)

    Karatok, Mustafa; Vovk, Evgeny I.; Shah, Asad A.; Turksoy, Abdurrahman; Ozensoy, Emrah

    2015-11-01

    Partial oxidation of acetaldehyde (CH3CHO) on the oxygen pre-covered Au(111) single crystal model catalyst was investigated via Temperature Programmed Desorption (TPD) and Temperature Programmed Reaction Spectroscopy (TPRS) techniques, where ozone (O3) was utilized as the oxygen delivery agent providing atomic oxygen to the reacting surface. We show that for low exposures of O3 and small surface oxygen coverages, two partial oxidation products namely, methyl acetate (CH3COOCH3) and acetic acid (CH3COOH) can be generated without the formation of significant quantities of carbon dioxide. The formation of methyl acetate as the oxidative coupling reaction product implies that oxygen pre-covered Au(111) single crystal model catalyst surface can activate C-C bonds. In addition to the generation of these products; indications of the polymerization of acetaldehyde on the gold surface were also observed as an additional reaction route competing with the partial and total oxidation pathways. The interplay between the partial oxidation, total oxidation and polymerization pathways reveals the complex catalytic chemistry associated with the interaction between the acetaldehyde and atomic oxygen on catalytic gold surfaces.

  17. Intramolecular Interaction, Photoisomerization, and Mechanical C-C Bond Dissociation of 1,2-Di(9-anthryl)benzene and Its Photoisomer: A Fundamental Moiety of Anthracene-Based π-Cluster Molecules.

    PubMed

    Nishiuchi, Tomohiko; Uno, Shin-Ya; Hirao, Yasukazu; Kubo, Takashi

    2016-03-01

    We report variable and unique properties of 1,2-di(9-anthryl)benzene 1 as a fundamental moiety of anthracene-based π-cluster molecules. Due to a through-space π-conjugation between anthracene units, excimer emission at room temperature and charge delocalized state in radical cation state of 1 could be observed. Photoirradiation to 1 afforded an intramolecular [4 + 4] cyclized anthracene dimer 1' having a high strain energy with long C-C bond that exceeded 1.68 Å, resulting in C-C bond dissociation by simple mechanical grinding. PMID:26828776

  18. Copper-Catalyzed Domino Synthesis of 2-Arylthiochromanones through Concomitant C-S Bond Formations Using Xanthate as Sulfur Source.

    PubMed

    Sangeetha, Subramani; Muthupandi, Pandi; Sekar, Govindasamy

    2015-12-18

    An efficient domino process for the synthesis of thioflavanones has been described using a copper catalyst without addition of any external ligand. A variety of thioflavanones have been synthesized from easily accessible 2'-iodochalcones or 2'-bromochalcones in excellent yield through in situ incorporation of sulfur using xanthate as an odorless sulfur source. This domino process proceeds through Cu-catalyzed C(aryl)-S bond formation by the coupling reaction of xanthate with 2'-halochalcones followed by C-S bond cleavage of thioester then S-C bond formation by intramolecular Michael addition. PMID:26642368

  19. Cu-Catalyzed Intramolecular Amidation of Unactivated C(sp(3) )-H Bonds To Synthesize N-Substituted Indolines.

    PubMed

    Pan, Fei; Wu, Bin; Shi, Zhang-Jie

    2016-05-01

    A copper-catalyzed intramolecular amidation of unactivated C(sp(3) )-H bonds to construct indoline derivatives has been developed. Such an amidation proceeded well at primary C-H bonds preferred to secondary C-H bonds. The transformation owned a broad substrate scope. The corresponding indolines were obtained in good to excellent yields. N-Formal and other carbonyl groups were suitable and were easily deprotected and transformed into methyl or long-chained alkyl groups. Preliminary mechanistic studies suggested a radical pathway. PMID:26945702

  20. Rhodium-catalyzed silylation and intramolecular arylation of nitriles via the silicon-assisted cleavage of carbon-cyano bonds.

    PubMed

    Tobisu, Mamoru; Kita, Yusuke; Ano, Yusuke; Chatani, Naoto

    2008-11-26

    A rhodium-catalyzed silylation reaction of carbon-cyano bonds using disilane has been developed. Under these catalytic conditions, carbon-cyano bonds in aryl, alkenyl, allyl, and benzyl cyanides bearing a variety of functional groups can be silylated. The observation of an enamine side product in the silylation of benzyl cyanides and related stoichiometric studies indicate that the carbon-cyano bond cleavage proceeds through the deinsertion of silyl isocyanide from eta(2)-iminoacyl complex B. Knowledge gained from these studies has led to the development of a new intramolecular biaryl coupling reaction in which aryl cyanides and aryl chlorides are cross-coupled. PMID:18975946

  1. Diversification of ortho-Fused Cycloocta-2,5-dien-1-one Cores and Eight- to Six-Ring Conversion by σ Bond C-C Cleavage.

    PubMed

    Eccleshare, Lee; Lozada-Rodríguez, Leticia; Cooper, Phillippa; Burroughs, Laurence; Ritchie, John; Lewis, William; Woodward, Simon

    2016-08-22

    Sequential treatment of 2-C6 H4 Br(CHO) with LiC≡CR(1) (R(1) =SiMe3 , tBu), nBuLi, CuBr⋅SMe2 and HC≡CCHClR(2) [R(2) =Ph, 4-CF3 Ph, 3-CNPh, 4-(MeO2 C)Ph] at -50 °C leads to formation of an intermediate carbanion (Z)-1,2-C6 H4 {CA (=O)C≡CB R(1) }{CH=CH(CH(-) )R(2) } (4). Low temperatures (-50 °C) favour attack at CB leading to kinetic formation of 6,8-bicycles containing non-classical C-carbanion enolates (5). Higher temperatures (-10 °C to ambient) and electron-deficient R(2) favour retro σ-bond C-C cleavage regenerating 4, which subsequently closes on CA providing 6,6-bicyclic alkoxides (6). Computational modelling (CBS-QB3) indicated that both pathways are viable and of similar energies. Reaction of 6 with H(+) gave 1,2-dihydronaphthalen-1-ols, or under dehydrating conditions, 2-aryl-1-alkynylnaphthlenes. Enolates 5 react in situ with: H2 O, D2 O, I2 , allylbromide, S2 Me2 , CO2 and lead to the expected C-E derivatives (E=H, D, I, allyl, SMe, CO2 H) in 49-64 % yield directly from intermediate 5. The parents (E=H; R(1) =SiMe3 , tBu; R(2) =Ph) are versatile starting materials for NaBH4 and Grignard C=O additions, desilylation (when R(1) =SiMe) and oxime formation. The latter allows formation of 6,9-bicyclics via Beckmann rearrangement. The 6,8-ring iodides are suitable Suzuki precursors for Pd-catalysed C-C coupling (81-87 %), whereas the carboxylic acids readily form amides under T3P® conditions (71-95 %). PMID:27452351

  2. Direct Functionalization of Nitrogen Heterocycles via Rh-Catalyzed C-H Bond Activation

    PubMed Central

    Lewis, Jared C.; Bergman, Robert G.; Ellman, Jonathan A.

    2008-01-01

    Conspectus Nitrogen heterocycles are present in many compounds of enormous practical importance, ranging from pharmaceutical agents and biological probes to electroactive materials. Direct functionalization of nitrogen heterocycles through C-H bond activation constitutes a powerful means of regioselectively introducing a variety of substituents with diverse functional groups onto the heterocycle scaffold. Working together, our two groups have developed a family of Rh-catalyzed heterocycle alkylation and arylation reactions that are notable for their high level of functional-group compatibility. This Account describes our work in this area, emphasizing the relevant mechanistic insights that enabled synthetic advances and distinguished the resulting transformations from other methods. We initially discovered an intramolecular Rh-catalyzed C-2-alkylation of azoles by alkenyl groups. That reaction provided access to a number of di-, tri-, and tetracyclic azole derivatives. We then developed conditions that exploited microwave heating to expedite these reactions. While investigating the mechanism of this transformation, we discovered that a novel substrate-derived Rh-N-heterocyclic carbene (NHC) complex was involved as an intermediate. We then synthesized analogous Rh–NHC complexes directly by treating precursors to the intermediate [RhCl(PCy3)2] with N-methylbenzimidazole, 3-methyl-3,4-dihydroquinazoline, and 1-methyl-1,4-benzodiazepine-2-one. Extensive kinetic analysis and DFT calculations supported a mechanism for carbene formation in which the catalytically active RhCl(PCy3)2 fragment coordinates to the heterocycle before intramolecular activation of the C-H bond occurs. The resulting Rh-H intermediate ultimately tautomerizes to the observed carbene complex. With this mechanistic information and the discovery that acid co-catalysts accelerate the alkylation, we developed conditions that efficiently and intermolecularly alkylate a variety of heterocycles, including

  3. Direct Functionalization of Nitrogen Heterocycles via Rh-Catalyzed C-H Bond Activation

    SciTech Connect

    Lewis, Jared; Bergman, Robert; Ellman, Jonathan

    2008-02-04

    Nitrogen heterocycles are present in many compounds of enormous practical importance, ranging from pharmaceutical agents and biological probes to electroactive materials. Direct funtionalization of nitrogen heterocycles through C-H bond activation constitutes a powerful means of regioselectively introducing a variety of substituents with diverse functional groups onto the heterocycle scaffold. Working together, our two groups have developed a family of Rh-catalyzed heterocycle alkylation and arylation reactions that are notable for their high level of functional-group compatibility. This Account describes their work in this area, emphasizing the relevant mechanistic insights that enabled synthetic advances and distinguished the resulting transformations from other methods. They initially discovered an intramolecular Rh-catalyzed C-2-alkylation of azoles by alkenyl groups. That reaction provided access to a number of di-, tri-, and tetracyclic azole derivatives. They then developed conditions that exploited microwave heating to expedite these reactions. While investigating the mechanism of this transformation, they discovered that a novel substrate-derived Rh-N-heterocyclic carbene (NHC) complex was involved as an intermediate. They then synthesized analogous Rh-NHC complexes directly by treating precursors to the intermediate [RhCl(PCy{sub 3}){sub 2}] with N-methylbenzimidazole, 3-methyl-3,4-dihydroquinazolein, and 1-methyl-1,4-benzodiazepine-2-one. Extensive kinetic analysis and DFT calculations supported a mechanism for carbene formation in which the catalytically active RhCl(PCy{sub 3}){sub 2} fragment coordinates to the heterocycle before intramolecular activation of the C-H bond occurs. The resulting Rh-H intermediate ultimately tautomerizes to the observed carbene complex. With this mechanistic information and the discovery that acid co-catalysts accelerate the alkylation, they developed conditions that efficiently and intermolecularly alkylate a variety of

  4. Imparting Catalyst-Control upon Classical Palladium-Catalyzed Alkenyl C–H Bond Functionalization Reactions

    PubMed Central

    Sigman, Matthew S.; Werner, Erik W.

    2011-01-01

    Conspectus The functional group transformations carried out by the palladium-catalyzed Wacker and Heck reactions are radically different, but they are both alkenyl C-H bond functionalization reactions that have found extensive use in organic synthesis. The synthetic community depends heavily on these important reactions, but selectivity issues arising from control by the substrate, rather than control by the catalyst, have prevented the realization of their full potential. Because of important similarities in the respective selectivity-determining nucleopalladation and β-hydride elimination steps of these processes, we posit that the mechanistic insight garnered through the development of one of these catalytic reactions may be applied to the other. In this Account, we detail our efforts to develop catalyst-controlled variants of both the Wacker oxidation and the Heck reaction to address synthetic limitations and provide mechanistic insight into the underlying organometallic processes of these reactions. In contrast to previous reports, we discovered that electrophilic palladium catalysts with non-coordinating counterions allowed for the use of a Lewis basic ligand to efficiently promote TBHP-mediated Wacker oxidation reactions of styrenes. This discovery led to the mechanistically guided development of a Wacker reaction catalyzed by a palladium complex with a bidentate ligand. This ligation may prohibit coordination of allylic heteroatoms, thereby allowing for the application of the Wacker oxidation to substrates that were poorly behaved under classical conditions. Likewise, we unexpectedly discovered that electrophilic Pd-σ-alkyl intermediates are capable of distinguishing between electronically inequivalent C–H bonds during β-hydride elimination. As a result, we have developed E-styrenyl selective oxidative Heck reactions of previously unsuccessful electronically non-biased alkene substrates using arylboronic acid derivatives. The mechanistic insight gained

  5. Chlorine atom-initiated low-temperature oxidation of prenol and isoprenol: The effect of C=C double bonds on the peroxy radical chemistry in alcohol oxidation

    DOE PAGESBeta

    Welz, Oliver; Savee, John D.; Osborn, David L.; Taatjes, Craig A.

    2014-07-04

    The chlorine atom-initiated oxidation of two unsaturated primary C5 alcohols, prenol (3-methyl-2-buten-1-ol, (CH3)2CCHCH2OH) and isoprenol (3-methyl-3-buten-1-ol, CH2C(CH3)CH2CH2OH), is studied at 550 K and low pressure (8 Torr). The time- and isomer-resolved formation of products is probed with multiplexed photoionization mass spectrometry (MPIMS) using tunable vacuum ultraviolet ionizing synchrotron radiation. The peroxy radical chemistry of the unsaturated alcohols appears much less rich than that of saturated C4 and C5 alcohols. The main products observed are the corresponding unsaturated aldehydes – prenal (3-methyl-2-butenal) from prenol oxidation and isoprenal (3-methyl-3-butenal) from isoprenol oxidation. No significant products arising from QOOH chemistry are observed. Thesemore » results can be qualitatively explained by the formation of resonance stabilized allylic radicals via H-abstraction in the Cl + prenol and Cl + isoprenol initiation reactions. The loss of resonance stabilization upon O2 addition causes the energies of the intermediate wells, saddle points, and products to increase relative to the energy of the initial radicals and O2. These energetic shifts make most product channels observed in the peroxy radical chemistry of saturated alcohols inaccessible for these unsaturated alcohols. The experimental findings are underpinned by quantum-chemical calculations for stationary points on the potential energy surfaces for the reactions of the initial radicals with O2. Under our conditions, the dominant channels in prenol and isoprenol oxidation are the chain-terminating HO2-forming channels arising from radicals, in which the unpaired electron and the –OH group are on the same carbon atom, with stable prenal and isoprenal co-products, respectively. These results suggest that the presence of C=C double bonds in alcohols will reduce low-temperature reactivity during autoignition.« less

  6. Auxiliary-assisted palladium-catalyzed halogenation of unactivated C(sp(3))-H bonds at room temperature.

    PubMed

    Yang, Xinglin; Sun, Yonghui; Sun, Tian-Yu; Rao, Yu

    2016-05-11

    The direct transformation of unactivated C(sp(3))-H bonds into C-halogen bonds was achieved by palladium catalysis at room temperature with good functional group tolerance. Some drugs and natural products were readily modified by this method. Merged with substitution reaction, newly formed C-X bonds can be transformed into diverse C-O, C-S, C-C and C-N bonds. A preliminary mechanism study demonstrates that solvent is crucial for C-H activation and the C-H activation step is involved in the rate-limiting step. An isolated Pd(ii) intermediate can be transformed into a halogenated product with the retention of conformation which suggests that concerted reductive elimination from Pd(iv) to form a C-X bond was favored. PMID:27095147

  7. Sulfur in coal: Model studies of the role of ArS radicals in C-C and C-S bond formation and structural evolution in coal liquefaction

    SciTech Connect

    Alnajjar, M.S.; Franz, J.A.

    1987-06-01

    Experiments in this paper show the importance of thiyl radicals in sulfur containing coals during coal liquefaction processes. The presence of arylthiyl radicals enhances the cleavage of C-C, C=C, and C=C bonds in these otherwise refactory systems. Abstraction reactions, 1,2-phenyl migration from sulfur to carbon and displacement reactions at sulfur may be important mechanisms of structural evolution during liquefaction. In addition to cleavage of arylalkyl structures, the results also show that undesirable retrograde formation of inert diaryl- and triarylmethanes may be a consequence of the presence of sulfur and the attending aryl thiol structures. Thus, while a reaction medium including sulfur and hydrogen has been demonstrated to lead to the enhance cleavage of the bibenzyl model structure the present results suggest that retrograde reactions may be significant undesired pathways in coal liquefaction in the presence of sulfur. 17 refs.

  8. A DFT study on the NHC catalysed Michael addition of enols to α,β-unsaturated acyl-azoliums. A base catalysed C-C bond-formation step.

    PubMed

    Domingo, Luis R; Sáez, José A; Arnó, Manuel

    2014-02-14

    The NHC catalysed nucleophilic additions of enols to α,β-unsaturated acyl-azolium intermediates have been investigated using DFT methods at the MPWB1K/6-31G** computational level. In the direct and the conjugate additions, formation of a hydrogen bond (HB) with the carboxyl oxygen is not sufficient to favour the C-C bond formation as a consequence of the low nucleophilic character of enols. Interestingly, when enols form a HB with the chloride counterion, the activation energies associated with the conjugate addition decrease as a consequence of the increased nucleophilic character of enols and the increased electrophilic character of the 'acyl-azolium + Cl' ion pair. Analysis of the DFT reactivity indices allows establishing a base catalysed C-C bond-formation step promoted by the chloride counterion. PMID:24343422

  9. Iron-catalyzed N-alkylation of azoles via cleavage of an sp3 C-H bond adjacent to a nitrogen atom.

    PubMed

    Xia, Qinqin; Chen, Wanzhi

    2012-10-19

    Iron-catalyzed direct C-N bond formation between azoles and amides is described. The oxidative coupling reactions of sp(3) C-H bonds adjacent to a nitrogen atom in amides and sulfonamides with the N-H bond in azoles proceeded smoothly in the presence of FeCl(2) and di-tert-butyl peroxide (DTBP). PMID:23025235

  10. Rhodium- and iridium-catalyzed dehydrogenative cyclization through double C-H bond cleavages to produce fluorene derivatives.

    PubMed

    Itoh, Masaki; Hirano, Koji; Satoh, Tetsuya; Shibata, Yu; Tanaka, Ken; Miura, Masahiro

    2013-02-15

    The rhodium-catalyzed cyclization of a series of 2,2-diarylalkanoic acids in the presence of copper acetate as an oxidant smoothly proceeded through double C-H bond cleavages and subsequent decarboxylation to produce the corresponding fluorene derivatives. The direct cyclization of triarylmethanols also took place efficiently by using an iridium catalyst in place of the rhodium, while the hydroxy function was still intact. PMID:23360206

  11. Rhodium(iii)-catalyzed alkylation of primary C(sp(3))-H bonds with α-diazocarbonyl compounds.

    PubMed

    Hou, Wei; Yang, Yaxi; Wu, Yunxiang; Feng, Huijin; Li, Yuanchao; Zhou, Bing

    2016-08-11

    Rh(iii)-catalyzed intermolecular chelation-assisted insertion of carbenes derived from α-diazocarbonyl compounds into non-acidic primary sp(3) C-H bonds, for the first time, is reported under mild reaction conditions, thus affording a good complement to previous metal-carbenoid-induced primary C(sp(3))-H insertion reactions. We believe that this method will open up a new avenue for primary sp(3) C-H functionalization with α-diazocarbonyl compounds. PMID:27400766

  12. Auxiliary-assisted palladium-catalyzed arylation and alkylation of sp2 and sp3 carbon-hydrogen bonds.

    PubMed

    Shabashov, Dmitry; Daugulis, Olafs

    2010-03-24

    We have developed a method for auxiliary-directed, palladium-catalyzed beta-arylation and alkylation of sp(3) and sp(2) C-H bonds in carboxylic acid derivatives. The method employs a carboxylic acid 2-methylthioaniline- or 8-aminoquinoline amide substrate, aryl or alkyl iodide coupling partner, palladium acetate catalyst, and an inorganic base. By employing 2-methylthioaniline auxiliary, selective monoarylation of primary sp(3) C-H bonds can be achieved. If arylation of secondary sp(3) C-H bonds is desired, 8-aminoquinoline auxiliary may be used. For alkylation of sp(3) and sp(2) C-H bonds, 8-aminoquinoline auxiliary affords the best results. Some functional group tolerance is observed and amino- and hydroxy-acid derivatives can be functionalized. Preliminary mechanistic studies have been performed. A palladacycle intermediate has been isolated, characterized by X-ray crystallography, and its reactions have been studied. PMID:20175511

  13. The Rh(ii)-catalyzed formal N-S bond insertion reaction of aryldiazoacetates into N-phenyl-sulfenyl phthalimide.

    PubMed

    Song, Zhuang; Wu, Yizhou; Xin, Tao; Jin, Chao; Wen, Xiaoan; Sun, Hongbin; Xu, Qing-Long

    2016-05-01

    The Rh(ii)-catalyzed sulfur ylide [1,2]-rearrangement of carbenoids generated from aryldiazoacetates has been realized via N-S bond insertion, generating tertiary sulfides in moderate to excellent yields. This demonstrates the first use of the sulfur ylide [1,2]-rearrangement undergoing N-S bond insertion. This protocol could proceed smoothly with high regioselectivity, low catalyst loading (0.1 mol% Rh2(OAc)4), gram-scale reaction and broad substrate scope. And the product could be converted into glycine derivatives through simple procedures. PMID:27087623

  14. Direct C-C Coupling of CO2 and the Methyl Group from CH4 Activation through Facile Insertion of CO2 into Zn-CH3 σ-Bond.

    PubMed

    Zhao, Yuntao; Cui, Chaonan; Han, Jinyu; Wang, Hua; Zhu, Xinli; Ge, Qingfeng

    2016-08-17

    Conversion of CO2 and CH4 to value-added products will contribute to alleviating the green-house gas effect but is a challenge both scientifically and practically. Stabilization of the methyl group through CH4 activation and facile CO2 insertion ensure the realization of C-C coupling. In the present study, we demonstrate the ready C-C coupling reaction on a Zn-doped ceria catalyst. The detailed mechanism of this direct C-C coupling reaction was examined based on the results from density functional theory calculations. The results show that the Zn dopant stabilizes the methyl group by forming a Zn-C bond, thus hindering subsequent dehydrogenation of CH4. CO2 can be inserted into the Zn-C bond in an activated bent configuration, with the transition state in the form of a three-centered Zn-C-C moiety and an activation barrier of 0.51 eV. The C-C coupling reaction resulted in the acetate species, which could desorb as acetic acid by combining with a surface proton. The formation of acetic acid from CO2 and CH4 is a reaction with 100% atom economy, and the implementation of the reaction on a heterogeneous catalyst is of great importance to the utilization of the greenhouse gases. We tested other possible dopants including Al, Ga, Cd, In, and Ni and found a positive correlation between the activation barrier of C-C coupling and the electronegativity of the dopant, although C-H bond activation is likely the dominant reaction on the Ni-doped ceria catalyst. PMID:27452233

  15. Cobalt(III)-Catalyzed Synthesis of Indazoles and Furans by C–H Bond Functionalization/Addition/Cyclization Cascades

    PubMed Central

    2015-01-01

    The development of operationally straightforward and cost-effective routes for the assembly of heterocycles from simple inputs is important for many scientific endeavors, including pharmaceutical, agrochemical, and materials research. In this article we describe the development of a new air-stable cationic Co(III) catalyst for convergent, one-step benchtop syntheses of N-aryl-2H-indazoles and furans by C–H bond additions to aldehydes followed by in situ cyclization and aromatization. Only a substoichiometric amount of AcOH is required as an additive that is both low-cost and convenient to handle. The syntheses of these heterocycles are the first examples of Co(III)-catalyzed additions to aldehydes, and reactions are demonstrated for a variety of aromatic, heteroaromatic, and aliphatic derivatives. The syntheses of both N-aryl-2H-indazoles and furans have been performed on 20 mmol scales and should be readily applicable to larger scales. The reported heterocycle syntheses also demonstrate the use of directing groups that have not previously been applied to Co(III)-catalyzed C–H bond functionalizations. Additionally, the synthesis of furans demonstrates the first example of Co(III)-catalyzed functionalization of alkenyl C–H bonds. PMID:25494296

  16. Chlorine atom-initiated low-temperature oxidation of prenol and isoprenol: The effect of C=C double bonds on the peroxy radical chemistry in alcohol oxidation

    SciTech Connect

    Welz, Oliver; Savee, John D.; Osborn, David L.; Taatjes, Craig A.

    2014-07-04

    The chlorine atom-initiated oxidation of two unsaturated primary C5 alcohols, prenol (3-methyl-2-buten-1-ol, (CH3)2CCHCH2OH) and isoprenol (3-methyl-3-buten-1-ol, CH2C(CH3)CH2CH2OH), is studied at 550 K and low pressure (8 Torr). The time- and isomer-resolved formation of products is probed with multiplexed photoionization mass spectrometry (MPIMS) using tunable vacuum ultraviolet ionizing synchrotron radiation. The peroxy radical chemistry of the unsaturated alcohols appears much less rich than that of saturated C4 and C5 alcohols. The main products observed are the corresponding unsaturated aldehydes – prenal (3-methyl-2-butenal) from prenol oxidation and isoprenal (3-methyl-3-butenal) from isoprenol oxidation. No significant products arising from QOOH chemistry are observed. These results can be qualitatively explained by the formation of resonance stabilized allylic radicals via H-abstraction in the Cl + prenol and Cl + isoprenol initiation reactions. The loss of resonance stabilization upon O2 addition causes the energies of the intermediate wells, saddle points, and products to increase relative to the energy of the initial radicals and O2. These energetic shifts make most product channels observed in the peroxy radical chemistry of saturated alcohols inaccessible for these unsaturated alcohols. The experimental findings are underpinned by quantum-chemical calculations for stationary points on the potential energy surfaces for the reactions of the initial radicals with O2. Under our conditions, the dominant channels in prenol and isoprenol oxidation are the chain-terminating HO2-forming channels arising from radicals, in which the unpaired electron and the –OH group are on the same carbon atom, with stable prenal and isoprenal co-products, respectively. These results suggest that the presence of C=C double bonds in alcohols will reduce

  17. C-H Bond Oxidation Catalyzed by an Imine-Based Iron Complex: A Mechanistic Insight.

    PubMed

    Olivo, Giorgio; Nardi, Martina; Vìdal, Diego; Barbieri, Alessia; Lapi, Andrea; Gómez, Laura; Lanzalunga, Osvaldo; Costas, Miquel; Di Stefano, Stefano

    2015-11-01

    A family of imine-based nonheme iron(II) complexes (LX)2Fe(OTf)2 has been prepared, characterized, and employed as C-H oxidation catalysts. Ligands LX (X = 1, 2, 3, and 4) stand for tridentate imine ligands resulting from spontaneous condensation of 2-pycolyl-amine and 4-substituted-2-picolyl aldehydes. Fast and quantitative formation of the complex occurs just upon mixing aldehyde, amine, and Fe(OTf)2 in a 2:2:1 ratio in acetonitrile solution. The solid-state structures of (L1)2Fe(OTf)(ClO4) and (L3)2Fe(OTf)2 are reported, showing a low-spin octahedral iron center, with the ligands arranged in a meridional fashion. (1)H NMR analyses indicate that the solid-state structure and spin state is retained in solution. These analyses also show the presence of an amine-imine tautomeric equilibrium. (LX)2Fe(OTf)2 efficiently catalyze the oxidation of alkyl C-H bonds employing H2O2 as a terminal oxidant. Manipulation of the electronic properties of the imine ligand has only a minor impact on efficiency and selectivity of the oxidative process. A mechanistic study is presented, providing evidence that C-H oxidations are metal-based. Reactions occur with stereoretention at the hydroxylated carbon and selectively at tertiary over secondary C-H bonds. Isotopic labeling analyses show that H2O2 is the dominant origin of the oxygen atoms inserted in the oxygenated product. Experimental evidence is provided that reactions involve initial oxidation of the complexes to the ferric state, and it is proposed that a ligand arm dissociates to enable hydrogen peroxide binding and activation. Selectivity patterns and isotopic labeling studies strongly suggest that activation of hydrogen peroxide occurs by heterolytic O-O cleavage, without the assistance of a cis-binding water or alkyl carboxylic acid. The sum of these observations provides sound evidence that controlled activation of H2O2 at (LX)2Fe(OTf)2 differs from that occurring in biomimetic iron catalysts described to date. PMID

  18. Nickel-Catalyzed Reductive Couplings.

    PubMed

    Wang, Xuan; Dai, Yijing; Gong, Hegui

    2016-08-01

    The Ni-catalyzed reductive coupling of alkyl/aryl with other electrophiles has evolved to be an important protocol for the construction of C-C bonds. This chapter first emphasizes the recent progress on the Ni-catalyzed alkylation, arylation/vinylation, and acylation of alkyl electrophiles. A brief overview of CO2 fixation is also addressed. The chemoselectivity between the electrophiles and the reactivity of the alkyl substrates will be detailed on the basis of different Ni-catalyzed conditions and mechanistic perspective. The asymmetric formation of C(sp(3))-C(sp(2)) bonds arising from activated alkyl halides is next depicted followed by allylic carbonylation. Finally, the coupling of aryl halides with other C(sp(2))-electrophiles is detailed at the end of this chapter. PMID:27573395

  19. Phosphorus-carbon bond formation by lewis Acid catalyzed/mediated addition of silylphosphines.

    PubMed

    Hayashi, Minoru; Matsuura, Yutaka; Nishimura, Yasunobu; Yamasaki, Toshikazu; Imai, Yoshito; Watanabe, Yutaka

    2007-09-28

    Triethylaluminum-catalyzed/mediated addition of a silylphosphine to aldehydes and epoxides is described. Organophosphines containing a silyloxy group at the alpha- or beta-position on the alkyl substituent are successfully prepared in good yields. PMID:17784776

  20. Copper-catalyzed intramolecular direct amination of sp2 C-H bonds for the synthesis of N-aryl acridones.

    PubMed

    Zhou, Wang; Liu, Yong; Yang, Youqing; Deng, Guo-Jun

    2012-11-01

    A copper-catalyzed approach for the synthesis of N-aryl acridones via sp(2) C-H bond amination using air as oxidant under neutral conditions is disclosed. This reaction not only provides a complementary method for synthesizing medicinally important acridones, but also offers a new strategy for sp(2) C-H bond amination. PMID:23010788

  1. Rh-Catalyzed Direct Amination of Unactivated C(sp(3) )-H bond with Anthranils Under Mild Conditions.

    PubMed

    Tang, Conghui; Zou, Miancheng; Liu, Jianzhong; Wen, Xiaojin; Sun, Xiang; Zhang, Yiqun; Jiao, Ning

    2016-08-01

    C-N Bond formation is of great significance due to the ubiquity of nitrogen-containing compounds. Here, a mild and efficient Rh(III) -catalyzed C(sp(3) )-H aryl amination reaction is reported. Anthranil is employed as the nitrogen source with 100 % atom efficiency. This C-H amination reaction exhibits broad substrate scope without using any external oxidants. Mechanistic studies including rhodacycle intermediates, H-D exchange, kinetic isotope effect (KIE) experiments, and in situ IR are presented. PMID:27258824

  2. A General Method for Aminoquinoline-Directed, Copper-Catalyzed sp(2) C-H Bond Amination.

    PubMed

    Roane, James; Daugulis, Olafs

    2016-04-01

    An operationally simple and general method for copper-catalyzed, aminoquinoline-assisted amination of β-C(sp(2))-H bonds of benzoic acid derivatives is reported. The reaction employs Cu(OAc)2 or (CuOH)2CO3 catalysts, an amine coupling partner, and oxygen from air as a terminal oxidant. Exceptionally high generality with respect to amine coupling partners is observed. Specifically, primary and secondary aliphatic and aromatic amines, heterocycles, such as indoles, pyrazole, and carbazole, sulfonamides, as well as electron-deficient aromatic and heteroaromatic amines are competent coupling components. PMID:26990413

  3. Formation of C(sp(3) )-C(sp(3) ) Bonds through Nickel-Catalyzed Decarboxylative Olefin Hydroalkylation Reactions.

    PubMed

    Lu, Xi; Xiao, Bin; Liu, Lei; Fu, Yao

    2016-08-01

    Olefins and carboxylic acids are among the most important feedstock compounds. They are commonly found in natural products and drug molecules. We report a new reaction of nickel-catalyzed decarboxylative olefin hydroalkylation, which provides a novel practical strategy for the construction of C(sp(3) )-C(sp(3) ) bonds. This reaction can tolerate a variety of synthetically relevant functional groups and shows good chemo- and regioselectivity. It enables cross-coupling of complex organic molecules containing olefin groups and carboxylic acid groups in a convergent fashion. PMID:27245257

  4. Protease-catalyzed peptide synthesis using inverse substrates: the synthesis of Pro-Xaa-bonds by trypsin.

    PubMed

    Schellenberger, V; Schellenberger, U; Jakubke, H D; Zapevalova, N P; Mitin, Y V

    1991-07-01

    Benzyloxycarbonyl-L-proline p-guanidinophenyl ester is an "inverse substrate" for trypsin; i.e., the cationic center is included in the leaving group instead of being in the acyl moiety. This substrate can be used in trypsin-catalyzed acyl-transfer reactions leading to the synthesis of Pro-Xaa peptide bonds. The reaction proceeds about 20 times slower than reaction with similar alanine-containing substrates, but the ratio between synthesis and hydrolysis is more favorable. The investigation of a series of nucleophiles led to information about the specificity of the process. Nucleophiles differing only in the P(1)'-position show an increasing acyl transfer efficiency in the order Phe < Gly < Ley < Ser < Ala < lle. C terminal elongation of the nucleophiles is of minor influence on their efficiency. The formation of an H bond between the acyl-enzyme and the nucleophile seems to play an important role in the aminolysis of the acyl-enzyme. PMID:18600766

  5. Pd-catalyzed β-selective direct C-H bond arylation of thiophenes with aryltrimethylsilanes.

    PubMed

    Funaki, Kenji; Sato, Tetsuo; Oi, Shuichi

    2012-12-21

    Direct arylation of thiophenes and benzothiophenes with aryltrimethylsilanes was effectively catalyzed by PdCl(2)(MeCN)(2) in the presence of CuCl(2) as an oxidant. The reaction preferentially occurred at the β-position of both thiophenes and benzothiophenes. PMID:23214502

  6. FeF(3) catalyzed cascade C-C and C-N bond formation: synthesis of differentially substituted triheterocyclic benzothiazole functionalities under solvent-free condition.

    PubMed

    Atar, Amol B; Jeong, Yeon Tae

    2014-05-01

    A series of diverse polyfunctionalized triheterocyclic benzothiazoles were easily prepared in excellent yields via the Biginelli reaction of 2-aminobenzothiazole with substituted benzaldehydes and α-methylene ketones using FeF(3) as an expeditious catalyst under solvent-free conditions. The protocol provides a practical and straightforward approach toward highly functionalized triheterocyclic benzothiazole derivatives in excellent yields. The reaction was conveniently promoted by FeF(3) and the catalyst could be recovered easily after the reaction and reused without any loss of its catalytic activity. The advantageous features of this methodology are high atom economy, operational simplicity, shorter reaction time, convergence, and facile automation. PMID:24504377

  7. Oxo-rhenium catalyzed reductive coupling and deoxygenation of alcohols.

    PubMed

    Kasner, Gabrielle R; Boucher-Jacobs, Camille; Michael McClain, J; Nicholas, Kenneth M

    2016-06-01

    Representative benzylic, allylic and α-keto alcohols are deoxygenated to alkanes and/or reductively coupled to alkane dimers by reaction with PPh3 catalyzed by (PPh3)2ReIO2 (1). The newly discovered catalytic reductive coupling reaction is a rare C-C bond-forming transformation of alcohols. PMID:27174412

  8. Transition metal-catalyzed process for addition of amines to carbon-carbon double bonds

    DOEpatents

    Hartwig, John F.; Kawatsura, Motoi; Loeber, Oliver

    2002-01-01

    The present invention is directed to a process for addition of amines to carbon-carbon double bonds in a substrate, comprising: reacting an amine with a compound containing at least one carbon-carbon double bond in the presence a transition metal catalyst under reaction conditions effective to form a product having a covalent bond between the amine and a carbon atom of the former carbon-carbon double bond. The transition metal catalyst comprises a Group 8 metal and a ligand containing one or more 2-electron donor atoms. The present invention is also directed to enantioselective reactions of amine compounds with compounds containing carbon-carbon double bonds, and a calorimetric assay to evaluate potential catalysts in these reactions.

  9. Copper-catalyzed aerobic oxidation and cleavage/formation of C-S bond: a novel synthesis of aryl methyl sulfones from aryl halides and DMSO.

    PubMed

    Yuan, Gaoqing; Zheng, Junhua; Gao, Xiaofang; Li, Xianwei; Huang, Liangbin; Chen, Huoji; Jiang, Huanfeng

    2012-08-01

    With atmospheric oxygen as the oxidant, a novel copper(I)-catalyzed synthesis of aryl methyl sulfones from aryl halides and widely available DMSO is described. The procedure tolerates aryl halides with various functional groups (such as methoxy, acetyl, chloro, fluoro and nitro groups), which could afford aryl methyl sulfones in moderate to high yields. The copper-catalyzed aerobic oxidation and the cleavage/formation of C-S bond are the key steps for this transformation. PMID:22728918

  10. Copper-catalyzed oxidative N-S bond formation for the synthesis of N-sulfenylimines.

    PubMed

    Lee, Chan; Wang, Xi; Jang, Hye-Young

    2015-03-01

    Despite the remarkable success of the copper-catalyzed oxidative coupling reaction, direct cross-coupling of amines and thiols for the synthesis of N-sulfenylimines has not been previously reported. Using commercially available copper catalysts (CuI) and oxygen as an environmentally benign oxidant, synthetically useful N-sulfenylimines were prepared from amines and thiols in good yields without overoxidation of sulfur atoms. PMID:25685885

  11. An approach to benzophosphole oxides through silver- or manganese-mediated dehydrogenative annulation involving C-C and C-P bond formation.

    PubMed

    Unoh, Yuto; Hirano, Koji; Satoh, Tetsuya; Miura, Masahiro

    2013-12-01

    Benzophosphole construction was achieved through the Ag(I) -mediated dehydrogenative annulation of phenylphosphine oxides with internal alkynes in a process involving CC and CP bond formation. A wide range of asymmetrical phenylacetylenes could be employed and the reactions proceeded with perfect regioselectivity. Moreover, the annulation could be conducted even at room temperature when a Mn(III) promoter was used in place of Ag(I) . PMID:24127410

  12. Radical S-adenosylmethionine enzyme catalyzed thioether bond formation in sactipeptide biosynthesis.

    PubMed

    Flühe, Leif; Marahiel, Mohamed A

    2013-08-01

    Sactipeptides represent a new emerging class of ribosomally assembled and posttranslationally modified peptides that show diverse bioactivities. Their common hallmark is an intramolecular thioether bond that crosslink the sulfur atom of a cysteine residue with the α-carbon of an acceptor amino acid. This review summarizes recent achievements concerning the biosynthesis of sactipeptides in general and with special focus on the common enzymatic radical SAM mechanism leading to the thioether linkage formation. In addition this mechanism is compared to the mechanism of thioether bond formation during lanthipeptide biosynthesis and to other radical based thioether bond forming reactions. PMID:23891473

  13. Rhenium-Catalyzed Synthesis of 1,3-Diiminoisoindolines via Insertion of Carbodiimides into a C-H Bond of Aromatic and Heteroaromatic Imidates.

    PubMed

    Wang, Zijia; Sueki, Shunsuke; Kanai, Motomu; Kuninobu, Yoichiro

    2016-05-20

    The rhenium-catalyzed synthesis of 1,3-diiminoisoindolines and their related compounds from aromatic or heteroaromatic imidates and carbodiimides are reported via C-H bond activation. This reaction is the first example of a transition-metal-catalyzed insertion of carbodiimides into an aromatic or heteroaromatic C-H bond and a novel method for synthesizing 1,3-diiminoisoindolines and their related compounds. Unsymmetrical 1,3-diiminoisoindolines were easily obtained using this method. The reaction proceeded in good to excellent yield using a variety of substrates. PMID:27153181

  14. The Catalytic Conversion of C1-Cn Hydrocarbons to Olefins and Hydrogen: Microwave-Assisted C-C and C-H Bond Activation

    SciTech Connect

    Tanner, Dennis D.; Kandanarachchi, Pramod; Ding, Qizhu; Shao, Huawu; Vizitiu, Despina; Franz, James A.

    2001-01-17

    The gas phase carbon catalyzed microwave promoted conversion of methane to ethylene, ethane and acetylene and hydrogen is reported. A selection of C1-C4 hydrocarbons, hexadecane, and a cyclic hydrocarbon, cyclodecane, were also subjected to microwave conversion, resulting primarily in a-olefins, ethylene and hydrogen. For methane conversion, the products are reminiscent of those found in methane pyrolysis. Microwave induced cleavage of the liquid hydrocarbons provides conditions for the stabilization, by rapid thermal quenching in ambient temperature liquid reagent, of products such as terminal olefins that would be labile under conventional (thermal bath) pyrolysis reaction conditions. The reactions of long chain acyclic and cyclic hydrocarbons involve high temperatures in the region of the spark leading to a cascade of unimolecular scission reactions from initially formed biradicals from cycloalkanes or radical pairs from linear alkanes, largely to the exclusion of intermolecular radical-radical and radical-molecule reactions. The observed products are discussed in terms of the thermochemistry and dynamics of high temperature unimolecular biradical and radical decomposition reactions, and mechanisms involving reactive surface metal sites. The reaction rates of alkanes were found to increase with the molecular weight of the reactants. Mechanistic pathways consistent with these results are discussed.

  15. General and facile method for exo-methlyene synthesis via regioselective C-C double-bond formation using a copper-amine catalyst system.

    PubMed

    Nishikata, Takashi; Nakamura, Kimiaki; Itonaga, Kohei; Ishikawa, Shingo

    2014-11-01

    In this study, for distal-selective β-hydride elimination to produce exomethylene compounds with a newly formed Csp(3)-Csp(3) bond between tertiary alkyl halides and α-alkylated styrenes, a combination of a Cu(I) salt and a pyridine-based amine ligand (TPMA) is found to be a very efficient catalyst system. The yields and regioselectivities were high, and the regioselectivity was found to be dependent on the structure of the alkyl halide, with bulky alkyl halides showing the highest distal selectivities. PMID:25315319

  16. Does C-C bonding proceed during exposure of adequate metal surfaces to CH{sub 4}? Reply to {open_quotes}Comment by Z. Hlavathy, Z. Paal, and P. Tetenyi{close_quotes}

    SciTech Connect

    Amaraiglio, A.; Pareja, P.; Amariglio, H.

    1997-02-01

    The comments, results, and reflections presented by Hlavathy and co-workers in their Letter aim at demonstrating that C-C bonding between CH{sub x} adspecies, formed upon exposure of Pt to CH{sub 4}, can proceed as well during the exposure itself as during further exposure to H{sub 2}. This possibility was implicitly put forward because they thought that a tight parallelism exists between the interactions of CH{sub 4} and CO with a metal surface, provided that the exposure to CH{sub 4} is carried out at a high enough temperature (450{degrees}C). In both cases these authors assumed that three kinds of carbon, C{sub {alpha}}, C{sub {beta}}, and C{sub {gamma}}, can be formed, C{sub {alpha}} being the main species responsible for the production of CH{sub 4} and of the C{sub 2}, alkanes obtained when the metal was further contacted with H{sub 2} at 100{degrees}C. As they argued that C{sub {alpha}} (also named carbidic carbon) has only metal atoms in its first coordination shell, they were implicitly led it that C-C bonding must take place during the hydrogenation step. The authors have not denied this possibility, but they have suggested that different situations can result from exposures to CH{sub 4} conducted at temperatures much lower than those used by Koerts et al.. 13 refs.

  17. An efficient and general route to reduced polypropionates via Zr-catalyzed asymmetric CC bond formation.

    PubMed

    Negishi, Ei-Ichi; Tan, Ze; Liang, Bo; Novak, Tibor

    2004-04-20

    An efficient and general method for the synthesis of reduced polypropionates has been developed through the application of asymmetric carboalumination of alkenes catalyzed by dichlorobis(1-neomenthylindenyl)zirconium [(NMI)(2)ZrCl(2)]. In this investigation, attention has been focused on those reduced polypropionates that are alpha-monoheterofunctional and either omega-ethyl or omega-n-propyl. The reaction of 3-buten-1-ol with triethylaluminum (Et(3)Al) or tripropylaluminum ((n)Pr(3)Al) in the presence of (NMI)(2)ZrCl(2) and isobutylaluminoxane gave, after protonolysis, (R)-3-methyl-1-pentanol as well as (R)- and (S)-3-methyl-1-hexanols in 88-92% yield in 90-92% enantiomeric excess in one step. These 3-monomethyl-1-alkanols were then converted to two stereoisomers each of 2,4-dimethyl-1-hexanols and 2,4-dimethyl-1-heptanols via methylalumination catalyzed by (NMI)(2)ZrCl(2) and methylaluminoxane followed by oxidation with O(2). The four-step (or three-isolation-step) protocol provided syn-2,4-dimethyl-1-alkanols of >/=98% stereoisomeric purity in approximately 50% overall yields, whereas (2S,4R)-2,4-dimethyl-1-hexanol of comparable purity was obtained in 40% overall yield. Commercial availability of (S)-2-methyl-1-butanol as a relatively inexpensive material suggested its use in the synthesis of (2S,4S)- and (2R,4S)-2,4-dimethyl-1-hexanols via a three-step protocol consisting of (i) iodination, (ii) zincation followed by Pd-catalyzed vinylation, and (iii) Zr-catalyzed methylalumination followed by oxidation with O(2). This three-step protocol is iterative and applicable to the synthesis of reduced polypropionates containing three or more branching methyl groups, rendering this method for the synthesis of reduced polypropionates generally applicable. Its synthetic utility has been demonstrated by preparing the side chain of zaragozic acid A and the C11-C20 fragment of antibiotics TMC-151 A-F. PMID:15073327

  18. A meta-selective copper-catalyzed C-H bond arylation.

    PubMed

    Phipps, Robert J; Gaunt, Matthew J

    2009-03-20

    For over a century, chemical transformations of benzene derivatives have been guided by the high selectivity for electrophilic attack at the ortho/para positions in electron-rich substrates and at the meta position in electron-deficient molecules. We have developed a copper-catalyzed arylation reaction that, in contrast, selectively substitutes phenyl electrophiles at the aromatic carbon-hydrogen sites meta to an amido substituent. This previously elusive class of transformation is applicable to a broad range of aromatic compounds. PMID:19299616

  19. Palladium-Catalyzed Carbonylative Cyclization of Arenes by C-H Bond Activation with DMF as the Carbonyl Source.

    PubMed

    Chen, Jianbin; Feng, Jian-Bo; Natte, Kishore; Wu, Xiao-Feng

    2015-11-01

    A novel palladium-catalyzed CO-gas- and autoclave-free protocol for the synthesis of 11H-pyrido[2,1-b]quinazolin-11-ones has been developed. Quinazolinones, which are omnipresent motif in many pharmaceuticals and agrochemicals, were prepared in good yields by C-H bond activation and annulation using DMF as the CO surrogate. A (13) CO-labelled DMF control experiment demonstrated that CO gas was released from the carbonyl of DMF with acid as the promotor. The kinetic isotope effect (KIE) value indicated that the C-H activation step may not be involved in the rate-determining step. This methodology is operationally simple and showed a broad substrate scope with good to excellent yields. PMID:26406903

  20. Silver-catalyzed silicon-hydrogen bond functionalization by carbene insertion.

    PubMed

    Iglesias, M José; Nicasio, M Carmen; Caballero, Ana; Pérez, Pedro J

    2013-01-28

    The catalytic functionalization of silicon-hydrogen bonds by means of the insertion of carbene units :CHCO(2)Et from ethyl diazoacetate (EDA) has been achieved using a silver-based catalyst, constituting the first example of this metal to promote this transformation. Competition experiments have revealed that the relative reactivity of substituted silanes depends on the bond dissociation energy of the Si-H bond (tertiary > secondary > primary for ethyl substituted). In the presence of bulky substituents such order reverts to secondary > primary ≈ tertiary (for phenyl substituted). Screening with other diazo compounds has shown that N(2)C(Ph)CO(2)Et displays similar reactivity to that of EDA, whereas other N(2)C(R)CO(2)Et (R = Me, CO(2)Et) gave lower conversions. PMID:23114570

  1. Nickel-Catalyzed Decarbonylative Borylation of Amides: Evidence for Acyl C-N Bond Activation.

    PubMed

    Hu, Jiefeng; Zhao, Yue; Liu, Jingjing; Zhang, Yemin; Shi, Zhuangzhi

    2016-07-18

    A nickel/N-heterocyclic carbene catalytic system has been established for decarbonylative borylation of amides with B2 nep2 by C-N bond activation. This transformation shows good functional-group compatibility and can serve as a powerful synthetic tool for late-stage borylation of amide groups in complex compounds. More importantly, as a key intermediate, the structure of an acyl nickel complex was first confirmed by X-ray analysis. Furthermore, the decarbonylative process was also observed. These findings confirm the key mechanistic features of the acyl C-N bond activation process. PMID:27258597

  2. Chlorination-Promoted Skeletal-Cage Transformations of C88 Fullerene by C2 Losses and a C-C Bond Rotation.

    PubMed

    Yang, Shangfeng; Wei, Tao; Scheurell, Kerstin; Kemnitz, Erhard; Troyanov, Sergey I

    2015-10-19

    High-temperature chlorination of fullerene C88 (isomer 33) with VCl4 gives rise to skeletal transformations affording several nonclassical (NC) fullerene chlorides, C86 (NC1)Cl24/26 and C84 (NC2)Cl26 , with one and two heptagons, respectively, in the carbon cages. The branched skeletal transformation including C2 losses as well as a Stone-Wales rearrangement has been comprehensively characterized by the structure determination of two intermediates and three final chlorination products. Quantum-chemical calculations demonstrate that the average energy of the C-Cl bond is significantly increased in chlorides of nonclassical fullerenes with a large number of chlorinated sites of pentagon-pentagon adjacency. PMID:26332709

  3. Methanol conversion to hydrocarbons over zeolite H-ZSM-5: Investigation of the role of CO and ketene in the formation of the initial C-C bond

    SciTech Connect

    Hutchings, G.J.; Johnston, P. ); Hunter, R. ); Van Rensburg, L.J. )

    1993-08-01

    Mechanistic studies concerning the formation of the initial carbon-carbon bond in the methanol conversion reaction over zeolite H-ZSM-5 are described and discussed. In particular, the possible roles of CO as a reaction intermediate or as a catalyst, via the formation of ketene, are evaluated. Experiments using [sup 13]CH[sub 3]OH/[sup 12]CO reactant mixtures demonstrate that no CO is incorporated into ethene, the primary product of this reaction. In addition, CO is found to have no significant effect on the induction period for this reaction. Model experiments for the methylation of ketene by reaction with Me[sub 2]SO[sub 4] and Me[sub 3]O[sup +]SbCl[sub 6][sup [minus

  4. Reusable ionic liquid-catalyzed oxidative coupling of azoles and benzylic compounds via sp(3) C-N bond formation under metal-free conditions.

    PubMed

    Liu, Wenbo; Liu, Chenjiang; Zhang, Yonghong; Sun, Yadong; Abdukadera, Ablimit; Wang, Bin; Li, He; Ma, Xuecheng; Zhang, Zengpeng

    2015-07-14

    The heterocyclic ionic liquid-catalyzed direct oxidative amination of benzylic sp(3) C-H bonds via intermolecular sp(3) C-N bond formation for the synthesis of N-alkylated azoles under metal-free conditions is reported for the first time. The catalyst 1-butylpyridinium iodide can be recycled and reused with similar efficacies for at least eight cycles. PMID:26060993

  5. Interaction of a pseudo-π C-C bond with cuprous and argentous chlorides: Cyclopropane⋯CuCl and cyclopropane⋯AgCl investigated by rotational spectroscopy and ab initio calculations.

    PubMed

    Zaleski, Daniel P; Mullaney, John C; Bittner, Dror M; Tew, David P; Walker, Nicholas R; Legon, Anthony C

    2015-10-28

    Strongly bound complexes (CH2)3⋯MCl (M = Cu or Ag), formed by non-covalent interaction of cyclopropane and either cuprous chloride or argentous chloride, have been generated in the gas phase by means of the laser ablation of either copper or silver metal in the presence of supersonically expanded pulses of a gas mixture containing small amounts of cyclopropane and carbon tetrachloride in a large excess of argon. The rotational spectra of the complexes so formed were detected with a chirped-pulse, Fourier transform microwave spectrometer and analysed to give rotational constants and Cu and Cl nuclear quadrupole coupling constants for eight isotopologues of each of (CH2)3⋯CuCl and (CH2)3⋯AgCl. The geometry of each of these complexes was established unambiguously to have C(2v) symmetry, with the three C atoms coplanar, and with the MCl molecule lying along a median of the cyclopropane C3 triangle. This median coincides with the principal inertia axis a in each of the two complexes (CH2)3⋯MCl. The M atom interacts with the pseudo-π bond linking the pair of equivalent carbon atoms (F)C (F = front) nearest to it, so that M forms a non-covalent bond to one C-C edge of the cyclopropane molecule. The (CH2)3⋯MCl complexes have similar angular geometries to those of the hydrogen- and halogen-bonded analogues (CH2)3⋯HCl and (CH2)3⋯ClF, respectively. Quantitative details of the geometries were determined by interpretation of the observed rotational constants and gave results in good agreement with those from ab initio calculations carried out at the CCSD(T)(F12*)/aug-cc-pVTZ-F12 level of theory. Interesting geometrical features are the lengthening of the (F)C-(F)C bond and the shrinkage of the two equivalent (B)C-(F)C (B = back) bonds relative to the C-C bond in cyclopropane itself. The expansions of the (F)C-(F)C bond are 0.1024(9) Å and 0.0727(17) Å in (CH2)3⋯CuCl and (CH2)3⋯AgCl, respectively, according to the determined r0 geometries. The C-C bond

  6. Trends in Aromatic Oxidation Reactions Catalyzed by Cytochrome P450 Enzymes: A Valence Bond Modeling.

    PubMed

    Shaik, Sason; Milko, Petr; Schyman, Patric; Usharani, Dandamudi; Chen, Hui

    2011-02-01

    The mixed density functional theory (DFT) and valence bond study described herein focuses on the activation of 17 benzene derivatives by the active species of Cytochrome P450, so-called Compound I (Cpd I), as well as by the methoxy radical, as a potentially simple model of Cpd I (Jones, J. P.; Mysinger, M.; Korzekwa, K. R. Drug Metab. Dispos. 2002, 30, 7-12). Valence bond modeling is employed to rationalize the P450 mechanism and its spin-state selectivity from first principles of electronic structure and to predict activation energies independently, using easily accessible properties of the reactants: the singlet-triplet excitation energies, the ionization potentials of the aromatics, and the electron affinity of Cpd I and/or of the methoxy radical. It is shown that the valence bond model rationalizes all the mechanistic aspects and predicts activation barriers (for 35 reactions) with reasonable accuracy compared to the DFT barriers with an average deviation of ±1.0 kcal·mol(-1) (for DFT barriers, see: Bathelt, C. M.; Ridder, L.; Mulholland, A. J.; Harvey, J. N. Org. Biomol. Chem. 2004, 2, 2998-3005). The valence bond modeling also reveals the mechanistic similarities between the P450 Cpd I and methoxy reactions and enables one to make predictions of barriers for reactions from other studies. PMID:26596155

  7. Metalation dictates remote regioselectivity: ruthenium-catalyzed functionalization of meta C(Ar)-H Bonds.

    PubMed

    Juliá-Hernández, Francisco; Simonetti, Marco; Larrosa, Igor

    2013-10-25

    Remote control: The title reaction is effective for the sulfonation and alkylation of arenes bearing directing groups. Initial ortho metalation of the substrate forms an intermediate which does not evolve towards functionalization at the CM bond. Instead, the ruthenium catalyst acts as a strong electron-donating group, thus directing a remote electrophilic attack. PMID:24030678

  8. Copper-catalyzed phosphorylation of sp(2) C-H bonds.

    PubMed

    Wang, Shan; Guo, Rui; Wang, Gao; Chen, Shan-Yong; Yu, Xiao-Qi

    2014-10-28

    The phosphorylation of the ortho C-H bonds in benzamides containing an 8-aminoquinoline moiety as a bidentate directing group with H-phosphonates using copper as a catalyst under mild temperature conditions is described. This method shows high functional group compatibility and selectively gives mono-substituted products. PMID:25204577

  9. A gold-catalyzed unique cycloisomerization of 1,5-enynes: efficient formation of 1-carboxycyclohexa-1,4-dienes and carboxyarenes.

    PubMed

    Wang, Shaozhong; Zhang, Liming

    2006-11-01

    A novel Au-catalyzed migratory cycloisomerization strategy is advanced. Implementation of this strategy led to the development of a unique Au-catalyzed 1,5-enyne cycloisomerizatioin involving carboxy migration and Au-mediated C-C single bond formation. 1-Carboxycyclohexa-1,4-dienes and carboxyarenes can be prepared with good efficiency and with flexible substitution patterns. PMID:17076498

  10. Formation of C(sp(3))-C(sp(3)) Bonds by Palladium Catalyzed Cross-Coupling of α-Diazoketones and Allylboronic Acids.

    PubMed

    Belhomme, Marie-Charlotte; Wang, Dong; Szabó, Kálmán J

    2016-05-20

    Palladium catalyzed cross-coupling of allylboronic acids with α-diazoketones was studied. The reaction selectively affords the linear allylic product. The reaction proceeds with formation of a new C(sp(3))-C(sp(3)) bond. The reaction was performed without an external oxidant, likely without the Pd-catalyst undergoing redox reactions. PMID:27166509

  11. Application of Thio-Ugi Adducts for the Preparation of Benzo[b]thiophene and S-Heterocycle Library via Copper Catalyzed Intramolecular C-S Bond Formation.

    PubMed

    Kim, Yong-Sang; Kwak, Se Hun; Gong, Young-Dae

    2015-06-01

    Fused heterocycles, such as benzo[b]thiophene, thiochroman, benzo[b][1,4]thiazine, and 1,4-benzothiazepine were generated from thio-Ugi adducts containing a thioamide group through copper-catalyzed intramolecular C-S bond formation under microwave irradiation. PMID:25961783

  12. Consecutive condensation, C-N and N-N bond formations: a copper- catalyzed one-pot three-component synthesis of 2H-indazole.

    PubMed

    Kumar, Manian Rajesh; Park, Ahbyeol; Park, Namjin; Lee, Sunwoo

    2011-07-01

    2H-Indazoles are synthesized using copper-catalyzed, one-pot, three-component reactions of 2-bromobenzaldehydes, primary amines, and sodium azide. A copper catalyst plays the key role in the formation of C-N and N-N bonds. This method has a broad substrate scope with a high tolerance for a variety of functional groups. PMID:21644532

  13. 3-Component synthesis of α-substituted sulfonamides via Brønsted acid-catalyzed C(sp(3))-H bond functionalization of 2-alkylazaarenes.

    PubMed

    Beisel, T; Kirchner, J; Kaehler, T; Knauer, J; Soltani, Y; Manolikakes, G

    2016-06-28

    A Brønsted acid-catalyzed addition of 2-alkylazaarenes to in situ generated N-sulfonylimines through selective C(sp(3))-H bond functionalization has been developed. This protocol provides an atom- and step-economic approach to α-substituted sulfonamides. PMID:26868020

  14. Ether complexes of tungsten with two different binding modes: An O-bound ether and an {eta}{sup 2}-(C=C) vinyl ether. Evidence for C-H...O hydrogen bonding of vinylic C-H groups

    SciTech Connect

    Song, J.S.; Szalda, D.J.; Bullock, R.M.

    1996-11-13

    The reaction of PhCH(OCH{sup 3}){sup 2} with Cp(CO){sup 3}WH and HOTf gives [Cp(CO){sup 3}W(PhCH{sup 2}OCH{sup 3})]{sup +}OTf{sup -}. The structure of this benzyl methyl ether complex was determined by single crystal X-ray diffraction and was shown to have the ether bonded to tungsten through the oxygen. This compound was isolated as a kinetic product of the reaction; it decomposes in solution by releasing free PhCH{sup 2}OCH{sup 3} and forming Cp(CO){sup 3}WOTf. An analog with the BAr`{sup 4}{sup -} counterion [Ar` = 3, 5-bis(trifluoromethyl)phenyl] is more stable. The reaction of the vinyl acetal CH{sup 2}=CHCH(OEt){sup 2} with Cp(CO){sup 3}WH and HOTf produces [Cp(CO){sup 3}W({eta}{sup 2}-EtOCH=CHCH{sup 3})]{sup +} OTf{sup -}, in which the ether is bonded to tungsten through the C=C bond of the vinyl ether. The crystal structure of this compound shows that the W-C(OEt) distance (2.69(3) A) is significantly longer than the W-C(CH{sup 3}) distance (2.37(3) A). There are weak C-H...O hydrogen bonds between both vinyl CH`s and oxygens of the triflate counterions. Evidence is presented that some of these weak hydrogen bonds are maintained in CD{sup 2}Cl{sup 2} solution but not in CD{sup 3}CN. 44 refs., 4 figs., 3 tabs.

  15. Rh-Catalyzed C–C Bond Cleavage by Transfer Hydroformylation

    PubMed Central

    Murphy, Stephen K.; Park, Jung-Woo; Cruz, Faben A.; Dong, Vy M.

    2015-01-01

    The dehydroformylation of aldehydes to generate olefins occurs during the biosynthesis of various sterols, including cholesterol in humans. Here, we implement a synthetic version that features the transfer of a formyl group and hydride from an aldehyde substrate to a strained olefin acceptor. A Rh(Xantphos)(benzoate) catalyst activates aldehyde C–H bonds with high chemoselectivity to trigger C–C bond cleavage and generate olefins at low loadings (0.3 to 2 mol%) and temperatures (22 to 80 °C). This mild protocol can be applied to various natural products and was used to achieve a three step synthesis of (+)-yohimbenone. A study of the mechanism reveals that the benzoate counterion acts as a proton-shuttle to enable transfer hydroformylation. PMID:25554782

  16. Boron-Catalyzed Aromatic C-H Bond Silylation with Hydrosilanes.

    PubMed

    Ma, Yuanhong; Wang, Baoli; Zhang, Liang; Hou, Zhaomin

    2016-03-23

    Metal-free catalytic C-H silylation of a series of aromatic compounds such as N,N-disubstituted anilines with various hydrosilanes has been achieved for the first time using commercially available B(C6F5)3 as a catalyst. This protocol features simple and neutral reaction conditions, high regioselectivity, wide substrate scope (up to 40 examples), Si-Cl bond compatibility, and no requirement for a hydrogen acceptor. PMID:26959863

  17. Nickel-catalyzed Csp2-Csp3 bond formation by carbon-fluorine activation.

    PubMed

    Sun, Alex D; Leung, Kaylyn; Restivo, Anita D; LaBerge, Nicole A; Takasaki, Harumi; Love, Jennifer A

    2014-03-10

    We report herein a general catalytic method for Csp(2)-Csp(3) bond formation through C-F activation. The process uses an inexpensive nickel complex with either diorganozinc or alkylzinc halide reagents, including those with β-hydrogen atoms. A variety of fluorine substitution patterns and functional groups can be readily incorporated. Sequential reactions involving different precatalysts and coupling partners permit the synthesis of densely functionalized fluorinated building blocks. PMID:24522982

  18. Sulfide synthesis through copper-catalyzed C-S bond formation under biomolecule-compatible conditions.

    PubMed

    Zhang, Yonghong; Li, Yiming; Zhang, Xiaomei; Jiang, Xuefeng

    2015-01-18

    We report here an efficient and mild method for constructing C-S bonds. The reactions were carried out with Na2S2O3 as a sulfurating reagent, CuSO4 as a catalyst, and water as solvent without any surfactant. The products were achieved in moderate to excellent yields at room temperature under air. Notably, this reaction is compatible with various biomolecules including amino acids, oligosaccharides, nucleosides, proteins, and cell lysates. PMID:25435202

  19. Amide bond formation through iron-catalyzed oxidative amidation of tertiary amines with anhydrides.

    PubMed

    Li, Yuanming; Ma, Lina; Jia, Fan; Li, Zhiping

    2013-06-01

    A general and efficient method for amide bond synthesis has been developed. The method allows for synthesis of tertiary amides from readily available tertiary amines and anhydrides in the presence of FeCl2 as catalyst and tert-butyl hydroperoxide in water (T-Hydro) as oxidant. Mechanistic studies indicated that the in situ-generated α-amino peroxide of tertiary amine and iminium ion act as key intermediates in this oxidative transformation. PMID:23668222

  20. Primary photodissociation pathways of epichlorohydrin and analysis of the C-C bond fission channels from an O((3)P)+allyl radical intermediate.

    PubMed

    Fitzpatrick, Benjamin L; Alligood, Bridget W; Butler, Laurie J; Lee, Shih-Huang; Lin, Jim Jr-Min

    2010-09-01

    This study initially characterizes the primary photodissociation processes of epichlorohydrin, c-(H(2)COCH)CH(2)Cl. The three dominant photoproduct channels analyzed are c-(H(2)COCH)CH(2)+Cl, c-(H(2)COCH)+CH(2)Cl, and C(3)H(4)O+HCl. In the second channel, the c-(H(2)COCH) photofission product is a higher energy intermediate on C(2)H(3)O global potential energy surface and has a small isomerization barrier to vinoxy. The resulting highly vibrationally excited vinoxy radicals likely dissociate to give the observed signal at the mass corresponding to ketene, H(2)CCO. The final primary photodissociation pathway HCl+C(3)H(4)O evidences a recoil kinetic energy distribution similar to that of four-center HCl elimination in chlorinated alkenes, so is assigned to production of c-(H(2)COC)=CH(2); the epoxide product is formed with enough vibrational energy to isomerize to acrolein and dissociate. The paper then analyzes the dynamics of the C(3)H(5)O radical produced from C-Cl bond photofission. When the epoxide radical photoproduct undergoes facile ring opening, it is the radical intermediate formed in the O((3)P)+allyl bimolecular reaction when the O atom adds to an end C atom. We focus on the HCO+C(2)H(4) and H(2)CO+C(2)H(3) product channels from this radical intermediate in this report. Analysis of the velocity distribution of the momentum-matched signals from the HCO+C(2)H(4) products at m/e=29 and 28 shows that the dissociation of the radical intermediate imparts a high relative kinetic energy, peaking near 20 kcal/mol, between the products. Similarly, the energy imparted to relative kinetic energy in the H(2)CO+C(2)H(3) product channel of the O((3)P)+allyl radical intermediate also peaks at high-recoil kinetic energies, near 18 kcal/mol. The strongly forward-backward peaked angular distributions and the high kinetic energy release result from tangential recoil during the dissociation of highly rotationally excited nascent radicals formed photolytically in this

  1. Enantioselective copper-catalyzed carboetherification of unactivated alkenes.

    PubMed

    Bovino, Michael T; Liwosz, Timothy W; Kendel, Nicole E; Miller, Yan; Tyminska, Nina; Zurek, Eva; Chemler, Sherry R

    2014-06-16

    Chiral saturated oxygen heterocycles are important components of bioactive compounds. Cyclization of alcohols onto pendant alkenes is a direct route to their synthesis, but few catalytic enantioselective methods enabling cyclization onto unactivated alkenes exist. Herein reported is a highly efficient copper-catalyzed cyclization of γ-unsaturated pentenols which terminates in C-C bond formation, a net alkene carboetherification. Both intra- and intermolecular C-C bond formations are demonstrated, thus yielding functionalized chiral tetrahydrofurans as well as fused-ring and bridged-ring oxabicyclic products. Transition-state calculations support a cis-oxycupration stereochemistry-determining step. PMID:24798697

  2. C-C and C-Heteroatom Bond Dissociation Energies in CH 3 R'C(OH) 2 : Energetics for Photocatalytic Processes of Organic Diolates on TiO 2 Surfaces

    SciTech Connect

    Wang, Tsang-Hsiu; Dixon, David A.; Henderson, Michael A.

    2010-08-26

    The bond energies of a range of gem-diols, CH3R'C(OH)2 (R' = H, F, Cl, Br, CN, NO2, CF3, CH3CH2, CH3CH2CH2, CH3CH2CH2CH2, ((CH3)2)CH, (CH3)3C, ((CH3)2CH)CH2, (CH3CH2)(CH3)CH, C6H5 (CH3CH2)(CH3)CH) which serve as models for binding to a surface have been studied with density functional theory (DFT) and the molecular orbital G3(MP2) methods to provide thermodynamic data for the analysis of the photochemistry of ketones on TiO2. The ultraviolet (UV) photon-induced photodecomposition of adsorbed acetone and 3,3-dimethylbutanone on the rutile TiO2 (110) surface have been investigated with photon stimulated desorption (PSD) and temperature programmed desorption (TPD). The C-CH3 and C-C(R') bond dissociation energies in CH3R'C(OH)2 were predicted, and our calculated bond dissociation energies are in excellent agreement with the available experimental values. We used a series of isodemic reactions to provide small corrections to the various bond dissociation energies. The calculated bond dissociation energies are in agreement with the observed photodissociation processes except for R' = CF3, suggesting that these processes are under thermodynamic control. For R' = CF3, reaction dynamics also play a role in determining the photodissociation mechanism. The gas phase Brönsted acidities of the gem-diols were calculated. For three molecules, R' = Cl, Br, and NO2, loss of a proton leads to the formation of a complex of acetic acid with the anion Cl-, Br-, and NO2-. The acidities of these three species are very high with the former two having acidities comparable to CF3SO3H. The ketones (R'RC(=O)) are weak Lewis acids except where addition of OH- leads to the dissociation of the complex to form an anion bonded to acetic acid, R' = NO2, Cl, and Br. The X-C bond dissociation energies for a number of X-CO2- species were calculated and these should be useful in correlating with photochemical reactivity studies.

  3. Primary photodissociation pathways of epichlorohydrin and analysis of the C-C bond fission channels from an O({sup 3}P)+allyl radical intermediate

    SciTech Connect

    FitzPatrick, Benjamin L.; Alligood, Bridget W.; Butler, Laurie J.; Lee, Shih-Huang; Lin, Jim Jr-Min

    2010-09-07

    This study initially characterizes the primary photodissociation processes of epichlorohydrin, c-(H{sub 2}COCH)CH{sub 2}Cl. The three dominant photoproduct channels analyzed are c-(H{sub 2}COCH)CH{sub 2}+Cl, c-(H{sub 2}COCH)+CH{sub 2}Cl, and C{sub 3}H{sub 4}O+HCl. In the second channel, the c-(H{sub 2}COCH) photofission product is a higher energy intermediate on C{sub 2}H{sub 3}O global potential energy surface and has a small isomerization barrier to vinoxy. The resulting highly vibrationally excited vinoxy radicals likely dissociate to give the observed signal at the mass corresponding to ketene, H{sub 2}CCO. The final primary photodissociation pathway HCl+C{sub 3}H{sub 4}O evidences a recoil kinetic energy distribution similar to that of four-center HCl elimination in chlorinated alkenes, so is assigned to production of c-(H{sub 2}COC)=CH{sub 2}; the epoxide product is formed with enough vibrational energy to isomerize to acrolein and dissociate. The paper then analyzes the dynamics of the C{sub 3}H{sub 5}O radical produced from C-Cl bond photofission. When the epoxide radical photoproduct undergoes facile ring opening, it is the radical intermediate formed in the O({sup 3}P)+allyl bimolecular reaction when the O atom adds to an end C atom. We focus on the HCO+C{sub 2}H{sub 4} and H{sub 2}CO+C{sub 2}H{sub 3} product channels from this radical intermediate in this report. Analysis of the velocity distribution of the momentum-matched signals from the HCO+C{sub 2}H{sub 4} products at m/e=29 and 28 shows that the dissociation of the radical intermediate imparts a high relative kinetic energy, peaking near 20 kcal/mol, between the products. Similarly, the energy imparted to relative kinetic energy in the H{sub 2}CO+C{sub 2}H{sub 3} product channel of the O({sup 3}P)+allyl radical intermediate also peaks at high-recoil kinetic energies, near 18 kcal/mol. The strongly forward-backward peaked angular distributions and the high kinetic energy release result from

  4. Molecular mechanism of acid-catalyzed hydrolysis of peptide bonds using a model compound.

    PubMed

    Pan, Bin; Ricci, Margaret S; Trout, Bernhardt L

    2010-04-01

    The stability of peptide bonds is a critical aspect of biological chemistry and therapeutic protein applications. Recent studies found elevated nonenzymatic hydrolysis in the hinge region of antibody molecules, but no mechanism was identified. As a first step in providing a mechanistic interpretation, this computational study examines the rate-determining step of the hydrolytic reaction of a peptide bond under acidic pH by a path sampling technique using a model compound N-MAA. Most previous computational studies did not include explicit water molecules, whose effects are significant in solution chemistry, nor did they provide a dynamic picture for the reaction process in aqueous conditions. Because no single trajectory can be used to describe the reaction dynamics due to fluctuations at finite temperatures, a variant version of the transition path sampling technique, the aimless shooting algorithm, was used to sample dynamic trajectories and to generate an ensemble of transition trajectories according to their statistical weights in the trajectory space. Each trajectory was computed as the time evolution of the molecular system using the Car-Parrinello molecular dynamics technique. The likelihood maximization procedure and its modification were used in extracting dynamically relevant degrees of freedom in the system, and approximations of the reaction coordinate were compared. Its low log-likelihood score and poor p(B) histogram indicate that the C-O distance previously assumed as the reaction coordinate for the rate-determining step is inadequate in describing the dynamics of the reaction. More than one order parameter in a candidate set including millions of geometric quantities was required to produce a convergent reaction coordinate model; its involvement of many degrees of freedom suggests that this hydrolytic reaction step is very complex. In addition to affecting atoms directly involved in bond-making and -breaking processes, the water network also has

  5. Copper-Carbene Intermediates in the Copper-Catalyzed Functionalization of O-H Bonds.

    PubMed

    Pereira, Ana; Champouret, Yohan; Martín, Carmen; Álvarez, Eleuterio; Etienne, Michel; Belderraín, Tomás R; Pérez, Pedro J

    2015-06-26

    Copper-carbene [Tp(x)Cu=C(Ph)(CO2Et)] and copper-diazo adducts [Tp(x)Cu{η(1)-N2C(Ph)(CO2Et)}] have been detected and characterized in the context of the catalytic functionalization of O-H bonds through carbene insertion by using N2=C(Ph)(CO2Et) as the carbene source. These are the first examples of these type of complexes in which the copper center bears a tridentate ligand and displays a tetrahedral geometry. The relevance of these complexes in the catalytic cycle has been assessed by NMR spectroscopy, and kinetic studies have demonstrated that the N-bound diazo adduct is a dormant species and is not en route to the formation of the copper-carbene intermediate. PMID:26014686

  6. B-N, B-O, and B-CN Bond Formation via Palladium-Catalyzed Cross-Coupling of B-Bromo-Carboranes.

    PubMed

    Dziedzic, Rafal M; Saleh, Liban M A; Axtell, Jonathan C; Martin, Joshua L; Stevens, Simone L; Royappa, A Timothy; Rheingold, Arnold L; Spokoyny, Alexander M

    2016-07-27

    Carboranes are boron-rich molecules that can be functionalized through metal-catalyzed cross-coupling. Here, for the first time, we report the use of bromo-carboranes in palladium-catalyzed cross-coupling for efficient B-N, B-O, and unprecedented B-CN bond formation. In many cases bromo-carboranes outperform the traditionally utilized iodo-carborane species. This marked difference in reactivity is leveraged to circumvent multistep functionalization by directly coupling small nucleophiles (-OH, -NH2, and -CN) and multiple functional groups onto the boron-rich clusters. PMID:27384544

  7. Base-Catalyzed Insertion of Dioxygen into Rhodium-Hydrogen Bonds: Kinetics and Mechanism

    SciTech Connect

    Szajna-Fuller, Ewa; Bakac, Andreja

    2009-10-27

    The reaction between molecular oxygenm and rhodium hydrides L(OH)RhH{sup +} (L = (NH{sub 3}){sub 4}, trans-L{sup 1}, and cis-L{sup 1}, where L{sup 1} = cyclam) in basic aqueous solutions rapidly produces the corresponding hydroperoxo complexes. Over the pH range 8 < pH < 12, the kinetics exhibit a first order dependence on [OH{sup -}]. The dependence on [O{sub 2}] is less than first order and approaches saturation at the highest concentrations used. These data suggest an attack by OH{sup -} at the hydride with k = (1.45 {+-} 0.25) x 10{sup 3} M{sup -1} s{sup -1} for trans-L{sup 1}(OH)RhH{sup +} at 25 C, resulting in heterolytic cleavage of the Rh-H bond and formation of a reactive Rh(I) intermediate. A competition between O{sub 2} H{sub 2}O for Rh(I) is the source of the observed dependence on O{sub 2}.

  8. The role of ammonization on chemical bonding and optical properties of nickel-catalyzed gallium nitride nanowire

    NASA Astrophysics Data System (ADS)

    Rizal, Umesh; Swain, Bhabani S.; Swain, Bibhu P.

    2016-04-01

    Nickel-catalyzed gallium nitride nanowires (GaN-NWs) were grown on p-type Si (100) substrates using Ga2O3 powder and NH3, N2, and H2 as precursor gases in chemical vapor deposition reactor. The GaN-NWs were characterized by atomic force microscopy (AFM), Fourier transform infrared spectroscopy, Raman spectroscopy, and photoluminescence (PL) spectroscopy to investigate microstructural, structural, optical, and chemical bonding networks of GaN-NW films. AFM shows the formation of GaN-NWs with different diameter. The room temperature PL spectra of GaN-NWs show a broad blue emission band centered at 2.54, 2.69, 2.81, 2.89, and 2.94 eV, which are associated with different electronic transitions. The stokes shift of GaN-NWs reveals the existence of prominent transverse optic and longitudinal optic (LO) peak at 548 and 795 cm-1, respectively. However, the pronounced blue shifting of LO peak was observed with increasing NH3 flow rate indicates considerable stress in NWs.

  9. Unique Reactivity Patterns Catalyzed by Internal Lewis Acid Assisted Hydrogen Bond Donors

    NASA Astrophysics Data System (ADS)

    Auvil, Tyler Jay

    The advancement of hydrogen bond donor (HBD) organocatalysis has been inhibited by a number of challenges. Conventional HBDs suffer from high catalyst loadings and operate in only limited types of reactions, typically the activation of 1,2- and 1,4-acceptors for nucleophilic attack. One strategy to address the shortcomings of HBD catalysis is to design innovative catalysts with improved reactivity. To this end, boronate ureas have been developed as a new family of enhanced HBD catalysts that enable useful new reactivity patterns. Boronate ureas are easily-accessible, small organic molecules that benefit from improved catalytic abilities plausibly due to internal coordination of the urea carbonyl to a strategically placed Lewis acid. Optimization of the boronate urea scaffold has revealed their enhanced catalytic activity, enabling new directions in HBD catalysis. The discovery of boronate ureas has allowed for the unveiling of new HBD activation modes, providing unique reactivity patterns that are inaccessible with conventional HBD catalysts. Among these reactivity patterns is the activation of strained nitrocyclopropane carboxylates for nucleophilic ring-opening reactions, which affords a swift route to access gamma-amino-alpha-nitroester building blocks. The ring-opening method was highlighted by its utilization in the total synthesis of a CB-1 receptor inverse agonist, which was recently patented by Eli Lilly. Additionally, boronate ureas can elicit carbene-like reactivity from alpha-diazocarbonyl compounds, allowing for organocatalytic heteroatom-hydrogen insertions reactions, the first of their kind. The boronate urea activation of alpha-nitrodiazoesters has permitted the development of an unsymmetric double alpha-arylation process, affording a synthetically challenging motif in a single flask. The alpha-arylation reaction proceeds through a conceptually novel organocatalytic transient N--H insertion process, employing anilines as carbene activators. The use

  10. Iron-Carbonyl-Catalyzed Redox-Neutral [4+2] Annulation of N-H Imines and Internal Alkynes by C-H Bond Activation.

    PubMed

    Jia, Teng; Zhao, Chongyang; He, Ruoyu; Chen, Hui; Wang, Congyang

    2016-04-18

    Stoichiometric C-H bond activation of arenes mediated by iron carbonyls was reported by Pauson as early as in 1965, yet the catalytic C-H transformations have not been developed. Herein, an iron-catalyzed annulation of N-H imines and internal alkynes to furnish cis-3,4-dihydroisoquinolines is described, and represents the first iron-carbonyl-catalyzed C-H activation reaction of arenes. Remarkablely, this is also the first redox-neutral [4+2] annulation of imines and alkynes proceeding by C-H activation. The reaction also features only cis stereoselectivity and excellent atom economy as neither base, nor external ligand, nor additive is required. Experimental and theoretical studies reveal an oxidative addition mechanism for C-H bond activation to afford a dinuclear ferracycle and a synergetic diiron-promoted H-transfer to the alkyne as the turnover-determining step. PMID:27002210

  11. Access to Isoquinolines and Isoquinolin-3-ols via Rh(III)-Catalyzed Coupling/Cyclization Cascade Reaction of Arylimidates and Diazo Compounds.

    PubMed

    Li, Xing Guang; Sun, Min; Jin, Qiao; Liu, Kai; Liu, Pei Nian

    2016-05-01

    A Rh(III)-catalyzed coupling/cyclization cascade reaction is described, which involves arylimidates and diazo compounds and proceeds via intermolecular C-C bond formation and subsequent intramolecular C-N bond formation. Mechanistic investigation revealed that the reaction is a two-step process: the initial Rh(III)-catalyzed coupling/cyclization proceeds very fast and the following dehydration is rather slow. The reaction provides a direct approach to isoquinolines and isoquinolin-3-ols without any oxidants. PMID:27042947

  12. Rhodium(III)-Catalyzed C-H Activation/Alkyne Annulation by Weak Coordination of Peresters with O-O Bond as an Internal Oxidant.

    PubMed

    Mo, Jiayu; Wang, Lianhui; Cui, Xiuling

    2015-10-16

    A redox-economic strategy has been developed, involved in an efficient Rh(III)-catalyzed oxidative C-H activation and alkyne annulation with perester as the oxidizing directing group. In this process, the cleavage of an oxidizing O-O bond as an internal oxidant is described for the first time. This reaction could be carried out under mild conditions and exhibits excellent regioselectivity and wide functional groups tolerance. PMID:26414431

  13. Rh(III)-Catalyzed Oxidative Annulation Leading to Substituted Indolizines by Cleavage of C(sp(2))-H/C(sp(3))-H Bonds.

    PubMed

    Shen, Bingxue; Li, Bin; Wang, Baiquan

    2016-06-17

    Rhodium(III)-catalyzed oxidative annulation reactions of pyridinium trifluoromethanesulfonate salts with alkynes leading to substituted indolizines by cleavage of C(sp(2))-H/C(sp(3))-H bonds are developed. The starting materials are readily available, and the reactions have a broad substrate scope. This reaction overcomes some drawbacks of the previous indolizine synthetic methods and provides a new efficient route to indolizine derivatives. PMID:27267054

  14. Pd-Catalyzed Coupling of γ-C(sp(3))-H Bonds of Oxalyl Amide-Protected Amino Acids with Heteroaryl and Aryl Iodides.

    PubMed

    Han, Jian; Zheng, Yongxiang; Wang, Chao; Zhu, Yan; Huang, Zhi-Bin; Shi, Da-Qing; Zeng, Runsheng; Zhao, Yingsheng

    2016-07-01

    Pd-catalyzed regioselective coupling of γ-C(sp(3))-H bonds of oxalyl amide-protected amino acids with heteroaryl and aryl iodides is reported. A wide variety of iodides are tolerated, giving the corresponding products in moderate to good yields. Various oxalyl amide-protected amino acids were compatible in this C-H transformation, thus representing a practical method for constructing non-natural amino acid derivatives. PMID:27286881

  15. Total Synthesis of cis-Clavicipitic Acid from Asparagine via Ir-Catalyzed C-H bond Activation as a Key Step.

    PubMed

    Tahara, Yu-ki; Ito, Mamoru; Kanyiva, Kyalo Stephen; Shibata, Takanori

    2015-08-01

    4-Substituted tryptophan derivatives and the total synthesis of cis-clavicipitic acid were achieved in reactions in which Ir-catalyzed C-H bond activation was a key step. The starting material for these reactions is asparagine, which is a cheap natural amino acid. The reductive amination step from the 4-substituted tryptophan derivative gave cis-clavicipitic acid with perfect diastereoselectivity. PMID:26178075

  16. Directing Group in Decarboxylative Cross-Coupling: Copper-Catalyzed Site-Selective C-N Bond Formation from Nonactivated Aliphatic Carboxylic Acids.

    PubMed

    Liu, Zhao-Jing; Lu, Xi; Wang, Guan; Li, Lei; Jiang, Wei-Tao; Wang, Yu-Dong; Xiao, Bin; Fu, Yao

    2016-08-01

    Copper-catalyzed directed decarboxylative amination of nonactivated aliphatic carboxylic acids is described. This intramolecular C-N bond formation reaction provides efficient access to the synthesis of pyrrolidine and piperidine derivatives as well as the modification of complex natural products. Moreover, this reaction presents excellent site-selectivity in the C-N bond formation step through the use of directing group. Our work can be considered as a big step toward controllable radical decarboxylative carbon-heteroatom cross-coupling. PMID:27439145

  17. Palladium-catalyzed Suzuki-Miyaura coupling of amides by carbon-nitrogen cleavage: general strategy for amide N-C bond activation.

    PubMed

    Meng, Guangrong; Szostak, Michal

    2016-06-15

    The first palladium-catalyzed Suzuki-Miyaura cross-coupling of amides with boronic acids for the synthesis of ketones by sterically-controlled N-C bond activation is reported. The transformation is characterized by operational simplicity using bench-stable, commercial reagents and catalysts, and a broad substrate scope, including substrates with electron-donating and withdrawing groups on both coupling partners, steric-hindrance, heterocycles, halides, esters and ketones. The scope and limitations are presented in the synthesis of >60 functionalized ketones. Mechanistic studies provide insight into the catalytic cycle of the cross-coupling, including the first experimental evidence for Pd insertion into the amide N-C bond. The synthetic utility is showcased by a gram-scale cross-coupling and cross-coupling at room temperature. Most importantly, this process provides a blueprint for the development of a plethora of metal catalyzed reactions of typically inert amide bonds via acyl-metal intermediates. A unified strategy for amide bond activation to enable metal insertion into N-C amide bond is outlined (). PMID:26864384

  18. Palladium-Catalyzed Intermolecular Aerobic Annulation of o-Alkenylanilines and Alkynes for Quinoline Synthesis.

    PubMed

    Zheng, Jia; Li, Zun; Huang, Liangbin; Wu, Wanqing; Li, Jianxiao; Jiang, Huanfeng

    2016-08-01

    A new approach to construct 2,3-disubstituted quinolines is described via Pd-catalyzed oxidative cyclization of o-vinylanilines and alkynes with molecular oxygen. This transformation is supposed to undergo intermolecular amination of alkyne, insertion of the olefin, and oxidative cleavage of C-C bond sequence. PMID:27418021

  19. A Tungsten Complex with a Bidentate, Hemilabile N-Heterocyclic Carbene Ligand, Facile Displacement of the Weakly Bound W-(C=C) Bond, and the Vulnerability of the NHC Ligand Towards Catalyst Deactivation During Ketone Hydrogenation

    SciTech Connect

    Wu,F.; Dioumaev, V.; Szalda, D.; Hanson, J.; Bullock, R.

    2007-01-01

    The initial reaction observed between the N-heterocyclic carbene IMes (IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene) and molybdenum and tungsten hydride complexes CpM(CO){sub 2}(PPh{sub 3})H (M = Mo, W) is deprotonation of the metal hydride by IMes, giving [(IMes)H]{sup +}[CpM(CO){sub 2}(PPh{sub 3})]{sup -}. At longer reaction times and higher temperatures, the reaction of IMes with CpM(CO){sub 2}(PR{sub 3})H (M = Mo, W; R = Me, Ph) produces CpM(CO){sub 2}(IMes)H. Hydride transfer from CpW(CO)2(IMes)H to Ph{sub 3}C{sub +}B(C{sub 6}F{sub 5}){sub 4}{sup -} gives CpW(CO){sub 2}(IMes){sup +}B(C{sub 6}F{sub 5}){sub 4}{sup -}, which was crystallographically characterized using X-ray radiation from a synchrotron. The IMes is bonded as a bidentate ligand, through the carbon of the carbene as well as forming a weak bond from the metal to a C=C bond of one mesityl ring. The weakly bound C=C ligand is hemilabile, being readily displaced by H{sub 2}, THF, ketones, or alcohols. Reaction of CpW(CO){sub 2}(IMes){sup +} with H{sub 2} gives the dihydride complex [CpW(CO){sub 2}(IMes)(H){sub 2}]{sup +}. Addition of Et{sub 2}CH-OH to CpW(CO){sub 2}(IMes){sup +}B(C{sub 6}F{sub 5}){sub 4}{sup -} gives the alcohol complex [CpW(CO){sub 2}(IMes)(Et{sub 2}CH-OH)]{sup +}[B(C{sub 6}F{sub 5}){sub 4}]{sup -}, which was characterized by crystallography and exhibits no evidence for hydrogen bonding of the bound OH group. Addition of H{sub 2} to the ketone complex [CpW(CO){sub 2}(IMes)(Et{sub 2}C=O)]{sup +}[B(C{sub 6}F{sub 5}){sub 4}]{sup -} produces an equilibrium with the dihydride [CpW(CO){sub 2}(IMes)(H){sub 2}]{sup +} (K{sub eq} = 1.1 x 10{sup 3} at 25 {sup o}C). The tungsten ketone complex [CpW(CO){sub 2}(IMes)(Et{sub 2}C=O)]{sup +}[B(C{sub 6}F{sub 5}){sub 4}]{sup -}- serves as a modest catalyst for hydrogenation of Et{sub 2}C=O to Et{sub 2}CH-OH in neat ketone solvent. Decomposition of the catalyst produces [H(IMes)]{sup +}B(C{sub 6}F{sub 5}){sub 4}{sup -}, indicating that these

  20. Palladium-Catalyzed Regioselective Difluoroalkylation and Carbonylation of Alkynes.

    PubMed

    Wang, Qiang; He, Yu-Tao; Zhao, Jia-Hui; Qiu, Yi-Feng; Zheng, Lan; Hu, Jing-Yuan; Yang, Yu-Chen; Liu, Xue-Yuan; Liang, Yong-Min

    2016-06-01

    A novel, four-component synthetic strategy to synthesize a series of β-difluoroalkyl unsaturated esters/amides with high regioslectivity is described. This Pd-catalyzed difluoroalkylation and carbonylation reaction can be carried out with simple starting materials. Through this protocol, two new C-C bonds (including one C-CF2 bond) and one C-O(N) bond are constructed simultaneously in a single step. The synthetic utility of this reaction system has been certified by the applicability to a wide scope of alkynes and nucleophiles. Preliminary mechanistic studies suggest that the difluoroalkyl radical pathway is involved in this reaction. PMID:27191858

  1. Recent advances in copper-catalyzed dehydrogenative functionalization via a single electron transfer (SET) process.

    PubMed

    Zhang, Chun; Tang, Conghui; Jiao, Ning

    2012-05-01

    Copper salts have been developed as versatile catalysts for oxidative coupling reactions in organic synthesis. During these processes, Cu-catalysts are often proposed to serve as a one-electron oxidant to promote the single-electron transfer process. Recently, the transition-metal catalyzed direct dehydrogenative transformation has attracted considerable attention. This tutorial review summarizes the recent advances in the copper-catalyzed dehydrogenative functionalization via a single electron transfer (SET) process achieving C-C, C-N, C-O, C-halogen atoms, C-P, and N-N bond formation. PMID:22349590

  2. Mechanistic insight into conjugated N-N bond cleavage by Rh(III)-catalyzed redox-neutral C-H activation of pyrazolones.

    PubMed

    Wu, Weirong; Liu, Yuxia; Bi, Siwei

    2015-08-14

    Density functional theory (DFT) calculations have been performed to investigate the detailed mechanism of Rh(III)-catalyzed redox-neutral C-H activation of pyrazolones with PhC≡CPh. It is found that (1) the methylene C-H activation is prior to the phenyl C-H activation, (2) the N-N bond cleavage is realized via Rh(III) → Rh(I) → Rh(III) rather than via Rh(III) → Rh(V) → Rh(III). The zwitterionic Rh(I) complex is identified to be a key intermediate in promoting the N-N bond cleavage. (3) Different from the Rh(III)-catalyzed hydrazine-directed C-H activation for indole synthesis, the rate-determining step of the reaction studied in this work is the Rh(III) → Rh(I) → Rh(III) process resulting in the N-N bond cleavage rather than the alkyne insertion step. The present theoretical study provides new insight into the mechanism of the conjugated N-N bond cleavage. PMID:26138233

  3. A new approach to carbon-carbon bond formation: Development of aerobic Pd-catalyzed reductive coupling reactions of organometallic reagents and styrenes

    PubMed Central

    Gligorich, Keith M.; Iwai, Yasumasa; Cummings, Sarah A.; Sigman, Matthew S.

    2009-01-01

    Alkenes are attractive starting materials for organic synthesis and the development of new selective functionalization reactions are desired. Previously, our laboratory discovered a unique Pd-catalyzed hydroalkoxylation reaction of styrenes containing a phenol. Based upon deuterium labeling experiments, a mechanism involving an aerobic alcohol oxidation coupled to alkene functionalization was proposed. These results inspired the development of a new Pd-catalyzed reductive coupling reaction of alkenes and organometallic reagents that generates a new carbon-carbon bond. Optimization of the conditions for the coupling of both organostannanes and organoboronic esters is described and the initial scope of the transformation is presented. Additionally, several mechanistic experiments are outlined and support the rationale for the development of the reaction based upon coupling alcohol oxidation to alkene functionalization. PMID:20161306

  4. C-C bond unsaturation degree in monosubstituted ferrocenes for molecular electronics investigated by a combined near-edge x-ray absorption fine structure, x-ray photoemission spectroscopy, and density functional theory approach

    SciTech Connect

    Boccia, A.; Lanzilotto, V.; Marrani, A. G.; Zanoni, R.; Stranges, S.; Alagia, M.; Fronzoni, G.; Decleva, P.

    2012-04-07

    We present the results of an experimental and theoretical investigation of monosubstituted ethyl-, vinyl-, and ethynyl-ferrocene (EtFC, VFC, and EFC) free molecules, obtained by means of synchrotron-radiation based C 1s photoabsorption (NEXAFS) and photoemission (C 1s XPS) spectroscopies, and density functional theory (DFT) calculations. Such a combined study is aimed at elucidating the role played by the C-C bond unsaturation degree of the substituent on the electronic structure of the ferrocene derivatives. Such substituents are required for molecular chemical anchoring onto relevant surfaces when ferrocenes are used for molecular electronics hybrid devices. The high resolution C 1s NEXAFS spectra exhibit distinctive features that depend on the degree of unsaturation of the hydrocarbon substituent. The theoretical approach to consider the NEXAFS spectrum made of three parts allowed to disentangle the specific contribution of the substituent group to the experimental spectrum as a function of its unsaturation degree. C 1s IEs were derived from the experimental data analysis based on the DFT calculated IE values for the different carbon atoms of the substituent and cyclopentadienyl (Cp) rings. Distinctive trends of chemical shifts were observed for the substituent carbon atoms and the substituted atom of the Cp ring along the series of ferrocenes. The calculated IE pattern was rationalized in terms of initial and final state effects influencing the IE value, with special regard to the different mechanism of electron conjugation between the Cp ring and the substituent, namely the {sigma}/{pi} hyperconjugation in EtFC and the {pi}-conjugation in VFC and EFC.

  5. Ambient pressure XPS and IRRAS investigation of ethanol steam reforming on Ni-CeO2(111) catalysts: an in situ study of C-C and O-H bond scission.

    PubMed

    Liu, Zongyuan; Duchoň, Tomáš; Wang, Huanru; Grinter, David C; Waluyo, Iradwikanari; Zhou, Jing; Liu, Qiang; Jeong, Beomgyun; Crumlin, Ethan J; Matolín, Vladimír; Stacchiola, Dario J; Rodriguez, José A; Senanayake, Sanjaya D

    2016-06-22

    Ambient-Pressure X-ray Photoelectron Spectroscopy (AP-XPS) and Infrared Reflection Absorption Spectroscopy (AP-IRRAS) have been used to elucidate the active sites and mechanistic steps associated with the ethanol steam reforming reaction (ESR) over Ni-CeO2(111) model catalysts. Our results reveal that surface layers of the ceria substrate are both highly reduced and hydroxylated under reaction conditions while the small supported Ni nanoparticles are present as Ni(0)/NixC. A multifunctional, synergistic role is highlighted in which Ni, CeOx and the interface provide an ensemble effect in the active chemistry that leads to H2. Ni(0) is the active phase leading to both C-C and C-H bond cleavage in ethanol and it is also responsible for carbon accumulation. On the other hand, CeOx is important for the deprotonation of ethanol/water to ethoxy and OH intermediates. The active state of CeOx is a Ce(3+)(OH)x compound that results from extensive reduction by ethanol and the efficient dissociation of water. Additionally, we gain an important insight into the stability and selectivity of the catalyst by its effective water dissociation, where the accumulation of surface carbon can be mitigated by the increased presence of surface OH groups. The co-existence and cooperative interplay of Ni(0) and Ce(3+)(OH)x through a metal-support interaction facilitate oxygen transfer, activation of ethanol/water as well as the removal of coke. PMID:27095305

  6. C-C bond unsaturation degree in monosubstituted ferrocenes for molecular electronics investigated by a combined near-edge x-ray absorption fine structure, x-ray photoemission spectroscopy, and density functional theory approach

    NASA Astrophysics Data System (ADS)

    Boccia, A.; Lanzilotto, V.; Marrani, A. G.; Stranges, S.; Zanoni, R.; Alagia, M.; Fronzoni, G.; Decleva, P.

    2012-04-01

    We present the results of an experimental and theoretical investigation of monosubstituted ethyl-, vinyl-, and ethynyl-ferrocene (EtFC, VFC, and EFC) free molecules, obtained by means of synchrotron-radiation based C 1s photoabsorption (NEXAFS) and photoemission (C 1s XPS) spectroscopies, and density functional theory (DFT) calculations. Such a combined study is aimed at elucidating the role played by the C-C bond unsaturation degree of the substituent on the electronic structure of the ferrocene derivatives. Such substituents are required for molecular chemical anchoring onto relevant surfaces when ferrocenes are used for molecular electronics hybrid devices. The high resolution C 1s NEXAFS spectra exhibit distinctive features that depend on the degree of unsaturation of the hydrocarbon substituent. The theoretical approach to consider the NEXAFS spectrum made of three parts allowed to disentangle the specific contribution of the substituent group to the experimental spectrum as a function of its unsaturation degree. C 1s IEs were derived from the experimental data analysis based on the DFT calculated IE values for the different carbon atoms of the substituent and cyclopentadienyl (Cp) rings. Distinctive trends of chemical shifts were observed for the substituent carbon atoms and the substituted atom of the Cp ring along the series of ferrocenes. The calculated IE pattern was rationalized in terms of initial and final state effects influencing the IE value, with special regard to the different mechanism of electron conjugation between the Cp ring and the substituent, namely the σ/π hyperconjugation in EtFC and the π-conjugation in VFC and EFC.

  7. Aromaticity effects on the profiles of the lowest triplet-state potential-energy surfaces for rotation about the C=C bonds of olefins with five-membered ring substituents: an example of the impact of Baird's rule.

    PubMed

    Zhu, Jun; Fogarty, Heather A; Möllerstedt, Helene; Brink, Maria; Ottosson, Henrik

    2013-08-01

    A density functional theory study on olefins with five-membered monocyclic 4n and 4n+2 π-electron substituents (C4H3X; X=CH(+), SiH(+), BH, AlH, CH2, SiH2, O, S, NH, and CH(-)) was performed to assess the connection between the degree of substituent (anti)aromaticity and the profile of the lowest triplet-state (T1) potential-energy surface (PES) for twisting about olefinic C=C bonds. It exploited both Hückel's rule on aromaticity in the closed-shell singlet ground state (S0) and Baird's rule on aromaticity in the lowest ππ* excited triplet state. The compounds CH2=CH(C4H3X) were categorized as set A and set B olefins depending on which carbon atom (C2 or C3) of the C4H3X ring is bonded to the olefin. The degree of substituent (anti)aromaticity goes from strongly S0 -antiaromatic/T1 -aromatic (C5H4 (+)) to strongly S0 -aromatic/T1- antiaromatic (C5H4(-)). Our hypothesis is that the shapes of the T1 PESs, as given by the energy differences between planar and perpendicularly twisted olefin structures in T1 [ΔE(T1)], smoothly follow the changes in substituent (anti)aromaticity. Indeed, correlations between ΔE(T1) and the (anti)aromaticity changes of the C4 H3 X groups, as measured by the zz-tensor component of the nucleus-independent chemical shift ΔNICS(T1;1)zz , are found both for sets A and B separately (linear fits; r(2) =0.949 and 0.851, respectively) and for the two sets combined (linear fit; r(2) =0.851). For sets A and B combined, strong correlations are also found between ΔE(T1) and the degree of S0 (anti)aromaticity as determined by NICS(S0,1)zz (sigmoidal fit; r(2) =0.963), as well as between the T1 energies of the planar olefins and NICS(S0,1)zz (linear fit; r(2) =0.939). Thus, careful tuning of substituent (anti)aromaticity allows for design of small olefins with T1 PESs suitable for adiabatic Z/E photoisomerization. PMID:23794153

  8. New Insights into Mechanism of Molybdenum(VI)-Dioxo Complex Catalyzed Hydrosilylation of Carbonyls: An Alternative Model for Activating Si-H Bond.

    PubMed

    Ning, Xiaoshuang; Wang, Jiandi; Wei, Haiyan

    2016-06-23

    Recently, a series of oxo/nitrido-Re(V)/Mo(VI)/Ru(VI)/Mn(V) complexes were demonstrated to be efficient catalysts in activating silanes and catalyzing hydrosilylations of unsaturated organic substrates. In the present study, the high-valent molybdenum(VI)-dioxo complex MoO2Cl2 catalyzed hydrosilylations of carbonyls was reinvestigated using density functional theory method. Previous experimental and theoretical investigations suggested a [2 + 2] addition pathway for MoO2Cl2 catalyzed hydrosilylations of ketones. In the present study, we propose an ionic outer-sphere mechanistic pathway to be the most favorable pathway. The key step in the ionic outer-sphere pathway is oxygen atom of C═O bonds nucleophilically attacking the silicon atom in an η(1)-silane molybdenum adduct. The Si-H bond is then cleaved heterolytically. This process features a novel SN2@Si transition state, which then generates a loosely bound ion pair: anionic molybdenum hydride paired with silylcarbenium ion ([MoO2Cl2H](-) [SiR3(OCR'R″)](+)) in solvent. The last step is silylcarbenium ion abstracting the hydride on molybdenum hydride to yield silyl ether. The calculated activation free energy barrier of the rate-determing step was 24.1 kcal/mol for diphenylketone (PhC═OPh) and silane of PhMe2SiH. Furthermore, the ionic outer-sphere pathway is calculated to be ∼10.0 kcal/mol lower than the previously proposed [2 + 2] addition pathway for a variety of silanes and aldehyde/ketone substrates. This preference arises from stronger electrophilicity of the high-valent molybdenum(VI) metal center toward a hydride. Here, we emphasize MoO2Cl2 behaves similar to Lewis acidic trispentafluorophenyl borane B(C6F5)3 in activating Si-H bond. PMID:27243271

  9. An efficient copper-catalyzed cross-coupling reaction of alkyl-triflates with alkyl-Grignard reagents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A highly efficient method for the formation of C-C covalent bonds by cross-coupling reaction between alkyl-triflates and alkyl-Grignard reagents catalyzed by copper catalyst, Li2CuCl4, is described. The reaction works with most primary triflates in diethyl ether at low temperature within 0.5-3 h an...

  10. Silver-Catalyzed Allylation of Ketones and Intramolecular Cyclization through Carbene Intermediates from Cyclopropenes Under Ambient Conditions.

    PubMed

    Nakano, Takeo; Endo, Kohei; Ukaji, Yutaka

    2016-03-01

    Tandem C-C bond formation was achieved through silver-catalyzed ring-opening of cyclopropenes via carbene intermediates. The reaction of cyclopropenes in the presence of a silver catalyst gave indene derivatives under ambient conditions. In contrast, the insertion of organozinc reagents to silver carbene or allylic cation intermediates afforded allylmetal intermediates for the tandem allylation of carbonyl compounds. PMID:26611195

  11. Hydrogen-Bond Directed Regioselective Pd-Catalyzed Asymmetric Allylic Alkylation: The Construction of Chiral α-Amino Acids with Vicinal Tertiary and Quaternary Stereocenters.

    PubMed

    Wei, Xuan; Liu, Delong; An, Qianjin; Zhang, Wanbin

    2015-12-01

    A Pd-catalyzed asymmetric allylic alkylation of azlactones with 4-arylvinyl-1,3-dioxolan-2-ones was developed, providing "branched" chiral α-amino acids with vicinal tertiary and quaternary stereocenters, in high yields and with excellent selectivities. Mechanistic studies revealed that the formation of a hydrogen bond between the Pd-allylic complex and azlactone isomer is responsible for the excellent regioselectivities. This asymmetric alkylation can be carried out on a gram scale without a loss of catalytic efficiency, and the resulting product can be further transformed to a chiral azetidine in two simple steps. PMID:26575242

  12. Cp*Rh(III)-Catalyzed Cross-Coupling of Alkyltrifluoroborate with α-Diazomalonates for C(sp(3))-C(sp(3)) Bond Formation.

    PubMed

    Lu, Yin-Suo; Yu, Wing-Yiu

    2016-03-18

    A Cp*Rh(III)-catalyzed cross-coupling of alkyltrifluoroborate with α-diazomalonates was developed; the C(sp(3))-C(sp(3)) bond coupled products were formed in up to 97% yields. The reaction tolerates some useful functional groups, including ketone, ester, amide, ether, sulfonyl, and thiophene. Electrospray ionization mass spectrometry (ESI-MS) analysis revealed the formation of a distinct molecular species corresponding to σ-alkylrhodium(III) complexes. The successful diazo coupling reaction may be attributed to coordination of the amide group that promotes stability of the alkylrhodium(III) complex through the formation of a five-membered metallacycle. PMID:26926387

  13. Copper-Catalyzed Phosphonation-Annulation Approaches to the Synthesis of β-Phosphonotetrahydrofurans Involving C-P and C-O Bonds Formation.

    PubMed

    Gao, Yuzhen; Li, Xueqin; Chen, Weizhu; Tang, Guo; Zhao, Yufen

    2015-11-20

    Substituted tetrahydrofuran derivatives play important roles as biological activities. A versatile method for the synthesis of β-phosphonotetrahydrofurans has been developed based on Cu-catalyzed difunctionalization of alkenes. This transformation would provide a new pathway for the formation of Csp(3)-P and Csp(3)-O bonds in one step. Furthermore, this copper catalyst system can be used in the synthesis of β-phosphonotetrahydropyrans and phosphono-γ-butyrolactones. These reactions were also performed well by using 3 equiv of Mn(OAc)3·2H2O as the oxidant without copper catalyst. PMID:26523923

  14. Lewis Acid Assisted Nickel-Catalyzed Cross-Coupling of Aryl Methyl Ethers by C-O Bond-Cleaving Alkylation: Prevention of Undesired β-Hydride Elimination.

    PubMed

    Liu, Xiangqian; Hsiao, Chien-Chi; Kalvet, Indrek; Leiendecker, Matthias; Guo, Lin; Schoenebeck, Franziska; Rueping, Magnus

    2016-05-10

    In the presence of trialkylaluminum reagents, diverse aryl methyl ethers can be transformed into valuable products by C-O bond-cleaving alkylation, for the first time without the limiting β-hydride elimination. This new nickel-catalyzed dealkoxylative alkylation method enables powerful orthogonal synthetic strategies for the transformation of a variety of naturally occurring and easily accessible anisole derivatives. The directing and/or activating properties of aromatic methoxy groups are utilized first, before they are replaced by alkyl chains in a subsequent coupling process. PMID:27062726

  15. Formation of the Δ18,19 Double Bond and Bis(spiroacetal) in Salinomycin Is Atypically Catalyzed by SlnM, a Methyltransferase‐like Enzyme†

    PubMed Central

    Jiang, Chunyan; Qi, Zhen; Kang, Qianjin; Liu, Jing; Jiang, Ming

    2015-01-01

    Abstract Salinomycin is a widely used polyether coccidiostat and was recently found to have antitumor activities. However, the mechanism of its biosynthesis remained largely speculative until now. Reported herein is the identification of an unprecedented function of SlnM, homologous to O‐methyltransferases, by correlating its activity with the formation of the Δ18,19 double bond and bis(spiroacetal). Detailed in vivo and in vitro investigations revealed that SlnM, using positively charged S‐adenosylmethionine (SAM) or sinefungin as the cofactor, catalyzed the spirocyclization‐coupled dehydration of C19 in a highly atypical fashion to yield salinomycin. PMID:26096919

  16. Novel enzymatic activity of cell free extract from thermophilic Geobacillus sp. UZO 3 catalyzes reductive cleavage of diaryl ether bonds of 2,7-dichlorodibenzo-p-dioxin.

    PubMed

    Suzuki, Yuzoh; Nakamura, Masaya; Otsuka, Yuichiro; Suzuki, Nao; Ohyama, Keisuke; Kawakami, Takeshi; Sato, Kanna; Kajita, Shinya; Hishiyama, Shojiro; Fujii, Takeo; Takahashi, Atsushi; Katayama, Yoshihiro

    2011-04-01

    We characterized the ability of the cell free extract from polychlorinated dibenzo-p-dioxins degrading bacterium Geobacillus sp. UZO 3 to reduce even highly chlorinated dibenzo-p-dioxins such as octachlorodibenzo-p-dioxins in incineration fly ash. The degradation of 2,7-dichlorodibenzo-p-dioxin (2,7-DCDD) as a model dioxin catalyzed by the cell free extract from this strain implicates that the ether bonds of 2,7-DCDD molecule undergo reductive cleavage, since 4',5-dichloro-2-hydroxydiphenyl ether and 4-chlorophenol were detected as intermediate products of 2,7-DCDD degradation. PMID:21435685

  17. Recent Progress in Visible-Light Photoredox-Catalyzed Intermolecular 1,2-Difunctionalization of Double Bonds via an ATRA-Type Mechanism.

    PubMed

    Courant, Thibaut; Masson, Géraldine

    2016-08-19

    Radical difunctionalizations of alkenes constitute an efficient method for the construction of complex organic molecules. This synopsis focuses on visible-light catalysis, a recent and very promising technological refinement of this class of transformations. Examples taken from the literature illustrate the use of a variety of (metallic or nonmetallic) systems, which allow us to leverage the energy of readily available visible-light radiation to efficiently create some of the most commonly looked for types of bonds (C-X, C-O, C-N, and C-C) under mild conditions and starting from unsaturated substrates. PMID:27323289

  18. Practical synthesis of pyrazoles via a copper-catalyzed relay oxidation strategy.

    PubMed

    Tang, Xiaodong; Huang, Liangbin; Yang, Jidan; Xu, Yanli; Wu, Wanqing; Jiang, Huanfeng

    2014-12-01

    Various 1,3- and 1,3,4-substituted pyrazoles are smoothly formed via copper-catalyzed cascade reactions of oxime acetates, amines and aldehydes. This relay oxidative process involves copper-promoted N-O bond cleavage and C-C/C-N/N-N bond formations to furnish pyrazolines, and sequential Cu-O2 system-involved oxidative dehydrogenation of pyrazolines to afford pyrazoles. This transformation provides a novel and versatile approach for the synthesis of pyrazoles, with an inexpensive copper catalyst and green oxidants. It is atom- and step-economical, and possesses a good functional group tolerance, as well as operational simplicity. PMID:25319768

  19. Pd-Catalyzed oxidative isomerization of propargylic acetates: highly efficient access to α-acetoxyenones via alkenyl Csp(2)-O bond-forming reductive elimination from Pd(IV).

    PubMed

    Li, Jun; Yang, Wenjie; Yan, Fachao; Liu, Qing; Wang, Ping; Li, Yueyun; Zhao, Yi; Dong, Yunhui; Liu, Hui

    2016-08-23

    A Pd(ii)/(iv)-catalyzed oxidative isomerization of propargylic acetates developed for the synthesis of polysubstituted alkenyl acetates is described. The reductive elimination of alkenyl Csp(2)-OAc bonds from Pd(IV) intermediates is achieved. Mechanistic studies indicate that the reaction mechanism consists of trans acetoxypalladation of a triple bond, isomerization, oxidative addition with PhI(OAc)2 and alkenyl C-OAc bond reductive elimination. PMID:27500292

  20. The Radical S-Adenosyl-L-methionine Enzyme QhpD Catalyzes Sequential Formation of Intra-protein Sulfur-to-Methylene Carbon Thioether Bonds.

    PubMed

    Nakai, Tadashi; Ito, Hiroto; Kobayashi, Kazuo; Takahashi, Yasuhiro; Hori, Hiroshi; Tsubaki, Motonari; Tanizawa, Katsuyuki; Okajima, Toshihide

    2015-04-24

    The bacterial enzyme designated QhpD belongs to the radical S-adenosyl-L-methionine (SAM) superfamily of enzymes and participates in the post-translational processing of quinohemoprotein amine dehydrogenase. QhpD is essential for the formation of intra-protein thioether bonds within the small subunit (maturated QhpC) of quinohemoprotein amine dehydrogenase. We overproduced QhpD from Paracoccus denitrificans as a stable complex with its substrate QhpC, carrying the 28-residue leader peptide that is essential for the complex formation. Absorption and electron paramagnetic resonance spectra together with the analyses of iron and sulfur contents suggested the presence of multiple (likely three) [4Fe-4S] clusters in the purified and reconstituted QhpD. In the presence of a reducing agent (sodium dithionite), QhpD catalyzed the multiple-turnover reaction of reductive cleavage of SAM into methionine and 5'-deoxyadenosine and also the single-turnover reaction of intra-protein sulfur-to-methylene carbon thioether bond formation in QhpC bound to QhpD, producing a multiknotted structure of the polypeptide chain. Homology modeling and mutagenic analysis revealed several conserved residues indispensable for both in vivo and in vitro activities of QhpD. Our findings uncover another challenging reaction catalyzed by a radical SAM enzyme acting on a ribosomally translated protein substrate. PMID:25778402

  1. The Radical S-Adenosyl-l-methionine Enzyme QhpD Catalyzes Sequential Formation of Intra-protein Sulfur-to-Methylene Carbon Thioether Bonds*

    PubMed Central

    Nakai, Tadashi; Ito, Hiroto; Kobayashi, Kazuo; Takahashi, Yasuhiro; Hori, Hiroshi; Tsubaki, Motonari; Tanizawa, Katsuyuki; Okajima, Toshihide

    2015-01-01

    The bacterial enzyme designated QhpD belongs to the radical S-adenosyl-l-methionine (SAM) superfamily of enzymes and participates in the post-translational processing of quinohemoprotein amine dehydrogenase. QhpD is essential for the formation of intra-protein thioether bonds within the small subunit (maturated QhpC) of quinohemoprotein amine dehydrogenase. We overproduced QhpD from Paracoccus denitrificans as a stable complex with its substrate QhpC, carrying the 28-residue leader peptide that is essential for the complex formation. Absorption and electron paramagnetic resonance spectra together with the analyses of iron and sulfur contents suggested the presence of multiple (likely three) [4Fe-4S] clusters in the purified and reconstituted QhpD. In the presence of a reducing agent (sodium dithionite), QhpD catalyzed the multiple-turnover reaction of reductive cleavage of SAM into methionine and 5′-deoxyadenosine and also the single-turnover reaction of intra-protein sulfur-to-methylene carbon thioether bond formation in QhpC bound to QhpD, producing a multiknotted structure of the polypeptide chain. Homology modeling and mutagenic analysis revealed several conserved residues indispensable for both in vivo and in vitro activities of QhpD. Our findings uncover another challenging reaction catalyzed by a radical SAM enzyme acting on a ribosomally translated protein substrate. PMID:25778402

  2. Short Synthesis of Sulfur Analogues of Polyaromatic Hydrocarbons through Three Palladium-Catalyzed C-H Bond Arylations.

    PubMed

    Hagui, Wided; Besbes, Néji; Srasra, Ezzeddine; Roisnel, Thierry; Soulé, Jean-François; Doucet, Henri

    2016-09-01

    An expeditious synthesis of a wide range of phenanthro[9,10-b]thiophene derivatives, which are a class of polyaromatic hydrocarbon (PAH) containing a sulfur atom, is reported. The synthetic scheme involves only two operations from commercially available thiophenes, 2-bromobenzenesulfonyl chlorides and aryl bromides. In the first step, palladium-catalyzed desulfitative arylation using 2-bromobenzenesulfonyl chlorides allows the synthesis of thiophene derivatives, which are substituted at the C4 position by an aryl group containing an ortho-bromo substituent. Then, a palladium-catalyzed one-pot cascade intermolecular C5-arylation of thiophene using aryl bromides followed by intramolecular arylation led to the corresponding phenanthro[9,10-b]thiophenes in a single operation. In addition, PAHs containing two or three sulfur atoms, as well as both sulfur and nitrogen atoms, were also designed by this strategy. PMID:27550151

  3. Copper-catalyzed direct amination of quinoline N-oxides via C-H bond activation under mild conditions.

    PubMed

    Zhu, Chongwei; Yi, Meiling; Wei, Donghui; Chen, Xuan; Wu, Yangjie; Cui, Xiuling

    2014-04-01

    A highly efficient and concise one-pot strategy for the direct amination of quinoline N-oxides via copper-catalyzed dehydrogenative C-N coupling has been developed. The desired products were obtained in good to excellent yields for 22 examples starting from the parent aliphatic amines. This methodology provides a practical pathway to 2-aminoquinolines and features a simple system, high efficiency, environmental friendliness, low reaction temperature, and ligand, additives, base, and external oxidant free conditions. PMID:24628081

  4. Palladium-catalyzed decarboxylative annulation of 2-arylbenzoic acids with [60]fullerene via C-H bond activation.

    PubMed

    Zhou, Dian-Bing; Wang, Guan-Wu

    2015-03-01

    A convenient and highly efficient palladium-catalyzed decarboxylative annulation of 2-arylbenzoic acids with [60]fullerene has been exploited to synthesize the novel and scarce [60]fullerene-fused dihydrophenanthrenes. The use of Lewis acid ZnCl2 is crucial for the success of the present formal [4 + 2] annulation reaction. Plausible reaction pathways leading to the observed products have been proposed, and the electrochemistry of the fullerene products has also been investigated. PMID:25700187

  5. Synthesis of isoquinolines via Rh-catalyzed C-H activation/C-N cyclization with diazodiesters or diazoketoesters as a C2 source.

    PubMed

    Wang, Jie; Zha, Shanke; Chen, Kehao; Zhang, Feifei; Zhu, Jin

    2016-06-01

    Synthesis of isoquinolines based on efficient C-C and C-N bond formation through Rh(iii)-catalyzed C-H activation and subsequent intramolecular cyclization is reported. Diazodiesters serving as a C2 source in the newly formed heterocycles are first demonstrated. Additionally, the Rh(iii)-catalyzed direct C-H activation/cyclization of benzimidates with diazoketoesters is also described. PMID:27146107

  6. Pd and Mo Catalyzed Asymmetric Allylic Alkylation

    PubMed Central

    Trost, Barry M.

    2012-01-01

    The ability to control the alkylation of organic substrates becomes ever more powerful by using metal catalysts. Among the major benefits of metal catalysis is the possibility to perform such processes asymmetrically using only catalytic amounts of the chiral inducing agent which is a ligand to the metal of the catalyst. A unique aspect of asymmetric metal catalyzed processes is the fact that many mechanisms exist for stereoinduction. Furthermore, using the same catalyst system, many types of bonds including but not limited to C-C, C-N, C-O, C-S, C-P, and C-H can be formed asymmetrically. An overview of this process using palladium and molybdenum based metals being developed in my laboratories and how they influence strategy in synthesizing bioactive molecular targets is presented. PMID:22736934

  7. Silylations of Arenes with Hydrosilanes: From Transition-Metal-Catalyzed C¢X Bond Cleavage to Environmentally Benign Transition-Metal-Free C¢H Bond Activation.

    PubMed

    Xu, Zheng; Xu, Li-Wen

    2015-07-01

    The construction of carbon-silicon bonds is highlighted as an exciting achievement in the field of organosilicon chemistry and green chemistry. Recent developments in this area will enable the sustainable chemical conversion of silicon resources into synthetically useful compounds. Especially, the catalytic silylation through C¢H bond activation without directing groups and hydrogen acceptors is one of the most challenging topics in organic chemistry and green chemistry. These remarkable findings on catalytic silylation can pave the way to a more environmentally benign utilization of earth-abundant silicon-based resources in synthetic chemistry. PMID:26073645

  8. Hybrid Quantum/Classical Molecular Dynamics Simulations of the Proton Transfer Reactions Catalyzed by Ketosteroid Isomerase: Analysis of Hydrogen Bonding, Conformational Motions, and Electrostatics

    PubMed Central

    Chakravorty, Dhruva K.; Soudackov, Alexander V.; Hammes-Schiffer, Sharon

    2009-01-01

    Hybrid quantum/classical molecular dynamics simulations of the two proton transfer reactions catalyzed by ketosteroid isomerase are presented. The potential energy surfaces for the proton transfer reactions are described with the empirical valence bond method. Nuclear quantum effects of the transferring hydrogen increase the rates by a factor of ~8, and dynamical barrier recrossings decrease the rates by a factor of 3–4. For both proton transfer reactions, the donor-acceptor distance decreases substantially at the transition state. The carboxylate group of the Asp38 side chain, which serves as the proton acceptor and donor in the first and second steps, respectively, rotates significantly between the two proton transfer reactions. The hydrogen bonding interactions within the active site are consistent with the hydrogen bonding of both Asp99 and Tyr14 to the substrate. The simulations suggest that a hydrogen bond between Asp99 and the substrate is present from the beginning of the first proton transfer step, whereas the hydrogen bond between Tyr14 and the substrate is virtually absent in the first part of this step but forms nearly concurrently with the formation of the transition state. Both hydrogen bonds are present throughout the second proton transfer step until partial dissociation of the product. The hydrogen bond between Tyr14 and Tyr55 is present throughout both proton transfer steps. The active site residues are more mobile during the first step than during the second step. The van der Waals interaction energy between the substrate and the enzyme remains virtually constant along the reaction pathway, but the electrostatic interaction energy is significantly stronger for the dienolate intermediate than for the reactant and product. Mobile loop regions distal to the active site exhibit significant structural rearrangements and, in some cases, qualitative changes in the electrostatic potential during the catalytic reaction. These results suggest that

  9. Copper-catalyzed alkylarylation of activated alkenes using isocyanides as the alkyl source: an efficient radical access to 3,3-dialkylated oxindoles.

    PubMed

    Zhao, Yaping; Li, Zhenghua; Sharma, Upendra K; Sharma, Nandini; Song, Gonghua; Van der Eycken, Erik V

    2016-05-11

    A novel and efficient protocol for the synthesis of 3,3-dialkylated oxindoles is described. The method involves a copper-catalyzed tandem radical addition/cyclization of N-arylacrylamides with the alkyl radicals generated from isocyanides. Two C-C bonds are formed in a single step. PMID:27086905

  10. Controlled Rh-Catalyzed Mono- and Double-decarbonylation of Alkynyl α-Diones To Form Conjugated Ynones and Disubstituted Alkynes.

    PubMed

    Whittaker, Rachel E; Dong, Guangbin

    2015-11-01

    A Rh-catalyzed controlled decarbonylation of alkynyl α-diones is described. By using different ligand and solvent combinations, mono- and double-decarbonylation can be selectively achieved to give conjugated ynones and disubstituted alkynes, respectively. A fundamental study on catalytic activation of unstrained C-C bonds under nonoxidative conditions is presented. PMID:26503477

  11. Direct Synthesis of Protoberberine Alkaloids by Rh-Catalyzed C-H Bond Activation as the Key Step.

    PubMed

    Jayakumar, Jayachandran; Cheng, Chien-Hong

    2016-01-26

    A one-pot reaction of substituted benzaldehydes with alkyne-amines by a Rh-catalyzed C-H activation and annulation to afford various natural and unnatural protoberberine alkaloids is reported. This reaction provides a convenient route for the generation of a compound library of protoberberine salts, which recently have attracted great attention because of their diverse biological activities. In addition, pyridinium salt derivatives can also be formed in good yields from α,β-unsaturated aldehydes and amino-alkynes. This reaction proceeds with excellent regioselectivity and good functional group compatibility under mild reaction conditions by using O2 as the oxidant. PMID:26689172

  12. Rapid ether and alcohol C-O bond hydrogenolysis catalyzed by tandem high-valent metal triflate + supported Pd catalysts.

    PubMed

    Li, Zhi; Assary, Rajeev S; Atesin, Abdurrahman C; Curtiss, Larry A; Marks, Tobin J

    2014-01-01

    The thermodynamically leveraged conversion of ethers and alcohols to saturated hydrocarbons is achieved efficiently with low loadings of homogeneous M(OTf)n + heterogeneous Pd tandem catalysts (M = transition metal; OTf = triflate; n = 4). For example, Hf(OTf)4 mediates rapid endothermic ether ⇌ alcohol and alcohol ⇌ alkene equilibria, while Pd/C catalyzes the subsequent, exothermic alkene hydrogenation. The relative C-O cleavage rates scale as 3° > 2° > 1°. The reaction scope extends to efficient conversion of biomass-derived ethers, such as THF derivatives, to the corresponding alkanes. PMID:24354599

  13. An efficient and general route to reduced polypropionates via Zr-catalyzed asymmetric C—C bond formation

    PubMed Central

    Negishi, Ei-ichi; Tan, Ze; Liang, Bo; Novak, Tibor

    2004-01-01

    An efficient and general method for the synthesis of reduced polypropionates has been developed through the application of asymmetric carboalumination of alkenes catalyzed by dichlorobis(1-neomenthylindenyl)zirconium [(NMI)2ZrCl2]. In this investigation, attention has been focused on those reduced polypropionates that are α-monoheterofunctional and either ω-ethyl or ω-n-propyl. The reaction of 3-buten-1-ol with triethylaluminum (Et3Al) or tripropylaluminum (nPr3Al) in the presence of (NMI)2ZrCl2 and isobutylaluminoxane gave, after protonolysis, (R)-3-methyl-1-pentanol as well as (R)- and (S)-3-methyl-1-hexanols in 88–92% yield in 90–92% enantiomeric excess in one step. These 3-monomethyl-1-alkanols were then converted to two stereoisomers each of 2,4-dimethyl-1-hexanols and 2,4-dimethyl-1-heptanols via methylalumination catalyzed by (NMI)2ZrCl2 and methylaluminoxane followed by oxidation with O2. The four-step (or three-isolation-step) protocol provided syn-2,4-dimethyl-1-alkanols of ≥98% stereoisomeric purity in ≈50% overall yields, whereas (2S,4R)-2,4-dimethyl-1-hexanol of comparable purity was obtained in 40% overall yield. Commercial availability of (S)-2-methyl-1-butanol as a relatively inexpensive material suggested its use in the synthesis of (2S,4S)- and (2R,4S)-2,4-dimethyl-1-hexanols via a three-step protocol consisting of (i) iodination, (ii) zincation followed by Pd-catalyzed vinylation, and (iii) Zr-catalyzed methylalumination followed by oxidation with O2. This three-step protocol is iterative and applicable to the synthesis of reduced polypropionates containing three or more branching methyl groups, rendering this method for the synthesis of reduced polypropionates generally applicable. Its synthetic utility has been demonstrated by preparing the side chain of zaragozic acid A and the C11–C20 fragment of antibiotics TMC-151 A–F. PMID:15073327

  14. Nickel-Catalyzed Alkylative Cross-Coupling of Anisoles with Grignard Reagents via C-O Bond Activation.

    PubMed

    Tobisu, Mamoru; Takahira, Tsuyoshi; Morioka, Toshifumi; Chatani, Naoto

    2016-06-01

    We report nickel-catalyzed cross-coupling of methoxyarenes with alkylmagnesium halides, in which a methoxy group is eliminated. A wide range of alkyl groups, including those bearing β-hydrogens, can be introduced directly at the ipso position of anisole derivatives. We demonstrate that the robustness of a methoxy group allows this alkylation protocol to be used to synthesize elaborate molecules by combining it with traditional cross-coupling reactions or oxidative transformation. The success of this method is dependent on the use of alkylmagnesium iodides, but not chlorides or bromides, which highlights the importance of the halide used in developing catalytic reactions using Grignard reagents. PMID:27193503

  15. Copper-catalyzed trifluoromethylation of internal olefinic C-H bonds: efficient routes to trifluoromethylated tetrasubstituted olefins and N-heterocycles.

    PubMed

    Mao, Zhifeng; Huang, Fei; Yu, Haifeng; Chen, Jiping; Yu, Zhengkun; Xu, Zhaoqing

    2014-03-17

    The functionalization of internal olefins has been a challenging task in organic synthesis. Efficient CuII-catalyzed trifluoromethylation of internal olefins, that is, α-oxoketene dithioacetals, has been achieved by using Cu(OH)2 as a catalyst and TMSCF3 as a trifluoromethylating reagent. The push-pull effect from the polarized olefin substrates facilitates the internal olefinic C-H trifluoromethylation. Cyclic and acyclic dithioalkyl α-oxoketene acetals were used as the substrates and various substituents were tolerated. The internal olefinic C-H bond cleavage was not involved in the rate-determining step, and a mechanism that involves radicals is proposed based on a TEMPO-quenching experiment of the trifluoromethylation reaction. Further derivatization of the resultant CF3 olefins led to multifunctionalized tetrasubstituted CF3 olefins and trifluoromethylated N-heterocycles. PMID:24677229

  16. Palladium-catalyzed C–N and C–O bond formation of N-substituted 4-bromo-7-azaindoles with amides, amines, amino acid esters and phenols

    PubMed Central

    Surasani, Rajendra; Rao, A V Dhanunjaya; Chandrasekhar, K B

    2012-01-01

    Summary Simple and efficient procedures for palladium-catalyzed cross-coupling reactions of N-substituted 4-bromo-7-azaindole (1H-pyrrole[2,3-b]pyridine), with amides, amines, amino acid esters and phenols through C–N and C–O bond formation have been developed. The C–N cross-coupling reaction of amides, amines and amino acid esters takes place rapidly by using the combination of Xantphos, Cs2CO3, dioxane and palladium catalyst precursors Pd(OAc)2/Pd2(dba)3. The combination of Pd(OAc)2, Xantphos, K2CO3 and dioxane was found to be crucial for the C–O cross-coupling reaction. This is the first report on coupling of amides, amino acid esters and phenols with N-protected 4-bromo-7-azaindole derivatives. PMID:23209536

  17. Water as a green solvent for efficient synthesis of isocoumarins through microwave-accelerated and Rh/Cu-catalyzed C-H/O-H bond functionalization

    SciTech Connect

    Li, Qiu; Yan, Yunnan; Wang, Xiaowei; Gong, Binwei; Tang, Xiaobo; Shi, JingJing; Xu, H. Eric; Yi, Wei

    2014-08-14

    Green chemistry that uses water as a solvent has recently received great attention in organic synthesis. Here we report an efficient synthesis of biologically important isocoumarins through direct cleavage of C–H/O–H bonds by microwave-accelerated and Rh/Cu-catalyzed oxidative annulation of various substituted benzoic acids, where water is used as the only solvent in the reactions. The remarkable features of this “green” methodology include high product yields, wide tolerance of various functional groups as substrates, and excellent region-/site-specificities, thus rendering this methodology a highly versatile and eco-friendly alternative to the existing methods for synthesizing isocoumarins and other biologically important derivatives such as isoquinolones.

  18. Palladium-catalyzed oxidative arylalkylation of activated alkenes: dual C-H bond cleavage of an arene and acetonitrile.

    PubMed

    Wu, Tao; Mu, Xin; Liu, Guosheng

    2011-12-23

    Not one but two: The title reaction proceeds through the dual C-H bond cleavage of both aniline and acetonitrile. The reaction affords a variety of cyano-bearing indolinones in excellent yield. Mechanistic studies demonstrate that this reaction involves a fast arylation of the olefin and a rate-determining C-H activation of the acetonitrile. PMID:22076660

  19. Conversion of Amides to Esters by the Nickel-Catalyzed Activation of Amide C–N Bonds

    PubMed Central

    Hie, Liana; Fine Nathel, Noah F.; Shah, Tejas K.; Baker, Emma L.; Hong, Xin; Yang, Yun-Fang; Liu, Peng; Houk, K. N.; Garg, Neil K.

    2015-01-01

    Amides are common functional groups that have been well studied for more than a century.1 They serve as the key building blocks of proteins and are present in an broad range of other natural and synthetic compounds. Amides are known to be poor electrophiles, which is typically attributed to resonance stability of the amide bond.1,2 Whereas Nature can easily cleave amides through the action of enzymes, such as proteases,3 the ability to selectively break the C–N bond of an amide using synthetic chemistry is quite difficult. In this manuscript, we demonstrate that amide C–N bonds can be activated and cleaved using nickel catalysts. We have used this methodology to convert amides to esters, which is a challenging and underdeveloped transformation. The reaction methodology proceeds under exceptionally mild reaction conditions, and avoids the use of a large excess of an alcohol nucleophile. Density functional theory (DFT) calculations provide insight into the thermodynamics and catalytic cycle of this unusual transformation. Our results provide a new strategy to harness amide functional groups as synthons and are expected fuel the further use of amides for the construction of carbon–heteroatom or carbon–carbon bonds using non-precious metal catalysis. PMID:26200342

  20. Rhodium(I)-catalyzed regiospecific dimerization of aromatic acids: two direct C-H bond activations in water.

    PubMed

    Gong, Hang; Zeng, Huiying; Zhou, Feng; Li, Chao-Jun

    2015-05-01

    2,2'-Diaryl acids are key building blocks for some of the most important and high-performance polymers such as polyesters and polyamides (imides), as well as structural motifs of MOFs (metal-organic frameworks) and biological compounds. In this study, a direct, regiospecific and practical dimerization of simple aromatic acids to generate 2,2'-diaryl acids has been discovered, which proceeds through two rhodium-catalyzed C-H activations in water. This reaction can be easily scaled up to gram level by using only 0.4-0.6 mol % of the rhodium catalyst. As a proof-of-concept, the natural product ellagic acid was synthesized in two steps by this method. PMID:25765625

  1. Cu-Catalyzed Alkynylation of Unactivated C(sp(3))-X Bonds with Terminal Alkynes through Directing Strategy.

    PubMed

    Luo, Fei-Xian; Xu, Xing; Wang, Ding; Cao, Zhi-Chao; Zhang, Yun-Fei; Shi, Zhang-Jie

    2016-05-01

    In this letter, we report an efficient and concise protocol for Cu-catalyzed cross-coupling of unactivated alkyl halides/peusudohalides with terminal alkynes to afford internal alkynes with the assistance of various amides as directing groups. Different alkyl halides/pseudohalides exhibited excellent reactivities, and the inactivated alkyl chlorides and sulfonates showed better reactivity than bromides/iodides. This is the first successful example to apply alkyl chlorides and sulfonates directly in cross-coupling with terminal alkynes in the absence of any additives. A Cu catalyst was found to be more effective than other transition metal catalysts. This reaction also exhibited a broad substrate scope with respect to terminal alkynes. PMID:27074521

  2. Metal-catalyzed activation of ethers via C-O bond cleavage: a new strategy for molecular diversity.

    PubMed

    Cornella, Josep; Zarate, Cayetana; Martin, Ruben

    2014-12-01

    In 1979, the seminal work of Wenkert set the standards for the utilization of aryl and vinyl ethers as coupling partners via C-O bond-cleavage. Although the topic remained dormant for almost three decades, the last few years have witnessed a renaissance in this area of expertise, experiencing an exponential growth and becoming a significant discipline within the cross-coupling arena. The means to utilize readily accessible aryl or vinyl ethers as counterparts does not only represent a practical, powerful and straightforward alternative to organic halides, but also constitutes an excellent opportunity to improve our chemical knowledge about a relatively unexplored area of expertise. This review summarizes the most significant developments in the area of C-O bond-cleavage when employing aryl or vinyl ethers, providing a detailed overview of the current state of the art and including future aspects, when applicable. PMID:25157613

  3. Functionalization of Hydrogenated Graphene: Transition-Metal-Catalyzed Cross-Coupling Reactions of Allylic C-H Bonds.

    PubMed

    Chua, Chun Kiang; Sofer, Zdeněk; Pumera, Martin

    2016-08-26

    The chemical functionalization of hydrogenated graphene can modify its physical properties and lead to better processability. Herein, we describe the chemical functionalization of hydrogenated graphene through a dehydrogenative cross-coupling reaction between an allylic C-H bond and the α-C-H bond of tetrahydrothiophen-3-one using Cu(OTf)2 as the catalyst and DDQ as the oxidant. The chemical functionalization was confirmed by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy and visualized by scanning electron microscopy. The functionalized hydrogenated graphene material demonstrated improved dispersion stability in water, bringing new quality to the elusive hydrogenated graphene (graphane) materials. Hydrogenated graphene provides broad possibilities for chemical modifications owing to its reactivity. PMID:27496619

  4. Rhodium-catalyzed annulative coupling of 3-phenylthiophenes with alkynes involving double C-H bond cleavages.

    PubMed

    Iitsuka, Tomonori; Hirano, Koji; Satoh, Tetsuya; Miura, Masahiro

    2014-01-01

    Double CH bond activation took place efficiently upon treatment of 3-phenylthiophenes with alkynes in the presence of a rhodium catalyst and a copper salt oxidant to form the corresponding naphthothiophene derivatives. Dehydrogenative coupling with alkenes was also found to occur on the phenyl moiety rather than the thiophene ring. These reactions provide straightforward synthetic methods for π-conjugated molecules involving a thiophene unit from readily available, simple building blocks. PMID:24288235

  5. Un-catalyzed peptide bond formation between two monomers of glycine, alanine, serine, threonine, and aspartic acid in gas phase: a density functional theory study

    NASA Astrophysics Data System (ADS)

    Bhunia, Snehasis; Singh, Ajeet; Ojha, Animesh K.

    2016-05-01

    In the present report, un-catalyzed peptide bond formation between two monomers of glycine (Gly), alanine (Ala), serine (Ser), threonine (Thr), and aspartic acid (Asp) has been investigated in gas phase via two steps reaction mechanism and concerted mechanism at B3LYP/6-31G(d,p) and M062X/6-31G(d,p) level of theories. The peptide bond is formed through a nucleophilic reaction via transition states, TS1 and TS2 in stepwise mechanism. The TS1 reveals formation of a new C-N bond while TS2 illustrate the formation of C=O bond. In case of concerted mechanism, C-N bond is formed by a single four-centre transition state (TS3). The energy barrier is used to explain the involvement of energy at each step of the reaction. The energy barrier (20-48 kcal/mol) is required for the transformation of reactant state R1 to TS1 state and intermediate state I1 to TS2 state. The large value of energy barrier is explained in terms of distortion and interaction energies for stepwise mechanism. The energy barrier of TS3 in concerted mechanism is very close to the energy barrier of the first transition state (TS1) of the stepwise mechanism for the formation of Gly-Gly and Ala-Ala di- peptide. However, in case of Ser-Ser, Thr-Thr and Asp-Asp di-peptide, the energy barrier of TS3 is relatively high than that of the energy barrier of TS1 calculated at B3LYP/6-31G(d,p) and M062X/6-31G(d,p) level of theories. In both the mechanisms, the value of energy barrier calculated at B3LYP/6-31G(d,p) level of theory is greater than that of the value calculated at M062X/6-31G(d,p) level of theory.

  6. Rh(I)-Catalyzed Arylation of Heterocycles via C-H Bond Activation: Expanded Scope Through Mechanistic Insight

    SciTech Connect

    Lewis, Jared; Berman, Ashley; Bergman, Robert; Ellman, Jonathan

    2007-07-18

    A practical, functional group tolerant method for the Rh-catalyzed direct arylation of a variety of pharmaceutically important azoles with aryl bromides is described. Many of the successful azole and aryl bromide coupling partners are not compatible with methods for the direct arylation of heterocycles using Pd(0) or Cu(I) catalysts. The readily prepared, low molecular weight ligand, Z-1-tert-butyl-2,3,6,7-tetrahydrophosphepine, which coordinates to Rh in a bidentate P-olefin fashion to provide a highly active yet thermally stable arylation catalyst, is essential to the success of this method. By using the tetrafluoroborate salt of the corresponding phosphonium, the reactions can be assembled outside of a glove box without purification of reagents or solvent. The reactions are also conducted in THF or dioxane, which greatly simplifies product isolation relative to most other methods for direct arylation of azoles employing high-boiling amide solvents. The reactions are performed with heating in a microwave reactor to obtain excellent product yields in two hours.

  7. Enantio- and periselective nitroalkene Diels-Alder reactions catalyzed by helical-chiral hydrogen bond donor catalysts.

    PubMed

    Peng, Zhili; Narcis, Maurice J; Takenaka, Norito

    2013-01-01

    Helical-chiral double hydrogen bond donor catalysts promote the nitroalkene Diels-Alder reaction in an enantio- and periselective manner. This represents the first asymmetric catalytic nitroalkene Diels-Alder reaction via LUMO-lowering catalysis. To gain an insight into this new process, the substrate scope of our catalyst was investigated by exploiting readily available 5-substituted pentamethylcyclopentadienes. The catalyst was found to tolerate dienes with different steric demands as well as dienes substituted with heteroatoms. The synthetic utility of 5-substituted pentamethylcyclopentadienes is rather limited, and thus we have developed a three-step route to 1,4,5,5-tetrasubstituted cyclopentadienes from commercially available ketones. PMID:23966083

  8. The amide C-N bond of isatins as the directing group and the internal oxidant in Ru-catalyzed C-H activation and annulation reactions: access to 8-amido isocoumarins.

    PubMed

    Kaishap, Partha Pratim; Sarma, Bipul; Gogoi, Sanjib

    2016-07-28

    The N-O, N-N and O-O bonds are the frequently used internally oxidative directing groups used in various redox-neutral coupling reactions. The sole use of the C-N bond as the oxidizing directing group was reported recently by Li X. and co-workers for the Rh(iii)-catalyzed C-H activation of phenacyl ammonium salts. Herein, we report the use of the amide C-N bond of isatins as the oxidizing directing group for the Ru(ii)-catalyzed redox-neutral C-H activation and annulation reactions with alkynes which afford 8-amido isocoumarins. The reaction also features excellent regioselectivity with alkyl aryl substituted alkynes. PMID:27417438

  9. Copper-catalyzed one-pot denitrogenative-dehydrogenative-decarboxylative coupling of β-ketoacids with trifluorodiazoethane: facile access to trifluoromethylated aldol products.

    PubMed

    Xiong, Heng-Ying; Yang, Zhen-Yan; Chen, Zhen; Zeng, Jun-Liang; Nie, Jing; Ma, Jun-An

    2014-07-01

    A novel copper-catalyzed one-pot cross-coupling of β-ketoacids with in situ generated trifluorodiazoethane has been developed. This reaction provides a direct and efficient method, in which one C-C bond and one C-O bond were formed in a carbenoid center with concomitant denitrogenation-dehydrogenation-decarboxylation, to afford trifluoromethylated aldol products. In several preliminary experiments, good to high enantioselectivities were also obtained. PMID:24889186

  10. Isotope-labeling of the fibril binding compound FSB via a Pd-catalyzed double alkoxycarbonylation.

    PubMed

    Burhardt, Mia N; Taaning, Rolf; Nielsen, Niels Chr; Skrydstrup, Troels

    2012-06-15

    We have synthesized two isotopically labeled variants of the β-amyloid binding compound FSB possessing (13)C-labels on the two terminal aryl carboxylic acid moieties. One of these was also fully deuterated on the olefinic spacers. The (13)C-isotope labeling was achieved applying a Pd-catalyzed methoxycarbonylation of the corresponding aryl chlorides with externally (ex situ) generated (13)C-labeled CO. Application of the Shirakawa-Hayashi protocol for the Pd-catalyzed reduction of a dialkyne intermediate using D(2)O allowed for the selective deuterium labeling of the two trans-C,C double bonds of FSB. PMID:22612598

  11. Ruthenium-Catalyzed Asymmetric Hydrohydroxyalkylation of Butadiene: The Role of the Formyl Hydrogen Bond in Stereochemical Control

    PubMed Central

    Grayson, Matthew N.; Krische, Michael J.; Houk, K. N.

    2016-01-01

    The catalyst generated in situ from RuH2(CO)(PPh3)3, (S)-SEGPHOS, and a chiral phosphoric acid promotes asymmetric hydrohydroxyalkylation of butadiene and affords enantioenriched α-methyl homoallylic alcohols. The observed diastereo- and enantioselectivities are determined by both the chiral phosphine and chiral phosphate ligands. Density functional theory calculations (M06/SDD-6-311G(d,p)-IEFPCM(acetone)//B3LYP/SDD-6-31G(d)) predict that the product distribution is controlled by the kinetics of carbon-carbon bond formation, and this process occurs via a closed-chair Zimmerman-Traxler-type transition structure (TS). Chiral phosphate-dependent stereoselectivity arising from this TS is enabled through a hydrogen bond between the phosphoryl oxygen and the aldehyde formyl proton present in TADDOL-derived catalysts. This interaction is absent in the corresponding BINOL-derived systems and the opposite sense of attack on the aldehyde occurs. Additional factors influencing stereochemical control are determined. PMID:26107070

  12. Palladium-catalyzed double C-H activation: one-pot synthesis of benzo[c]pyrazolo[1,2-a]cinnolin-1-ones from 5-pyrazolones and aryl iodides.

    PubMed

    Fan, Zhoulong; Wu, Kui; Xing, Li; Yao, Qizheng; Zhang, Ao

    2014-02-18

    A palladium-catalyzed dual C-H activation to construct C-C/C-N bonds for one-pot synthesis of benzo[c]pyrazolo[1,2-a]cinnolin-1-ones is successfully developed. This approach involves using a pyrazolone moiety as an internal directing group for C-H activation, and provides a flexible strategy to access this polycyclic skeleton. PMID:24394189

  13. Ruthenium-catalyzed alkylation of indoles with tertiary amines by oxidation of a sp3 C-H bond and Lewis acid catalysis.

    PubMed

    Wang, Ming-Zhong; Zhou, Cong-Ying; Wong, Man-Kin; Che, Chi-Ming

    2010-05-17

    Ruthenium porphyrins (particularly [Ru(2,6-Cl(2)tpp)CO]; tpp=tetraphenylporphinato) and RuCl(3) can act as oxidation and/or Lewis acid catalysts for direct C-3 alkylation of indoles, giving the desired products in high yields (up to 82% based on 60-95% substrate conversions). These ruthenium compounds catalyze oxidative coupling reactions of a wide variety of anilines and indoles bearing electron-withdrawing or electron-donating substituents with high regioselectivity when using tBuOOH as an oxidant, resulting in the alkylation of N-arylindoles to 3-{[(N-aryl-N-alkyl)amino]methyl}indoles (yield: up to 82%, conversion: up to 95%) and the alkylation of N-alkyl or N-H indoles to 3-[p-(dialkylamino)benzyl]indoles (yield: up to 73%, conversion: up to 92%). A tentative reaction mechanism involving two pathways is proposed: an iminium ion intermediate may be generated by oxidation of an sp(3) C-H bond of the alkylated aniline by an oxoruthenium species; this iminium ion could then either be trapped by an N-arylindole (pathway A) or converted to formaldehyde, allowing a subsequent three-component coupling reaction of the in situ generated formaldehyde with an N-alkylindole and an aniline in the presence of a Lewis acid catalyst (pathway B). The results of deuterium-labeling experiments are consistent with the alkylation of N-alkylindoles via pathway B. The relative reaction rates of [Ru(2,6-Cl(2)tpp)CO]-catalyzed oxidative coupling reactions of 4-X-substituted N,N-dimethylanilines with N-phenylindole (using tBuOOH as oxidant), determined through competition experiments, correlate linearly with the substituent constants sigma (R(2)=0.989), giving a rho value of -1.09. This rho value and the magnitudes of the intra- and intermolecular deuterium isotope effects (k(H)/k(D)) suggest that electron transfer most likely occurs during the initial stage of the oxidation of 4-X-substituted N,N-dimethylanilines. Ruthenium-catalyzed three-component reaction of N-alkyl/N-H indoles

  14. Bulk gold catalyzed oxidation reactions of amines and isocyanides and iron porphyrin catalyzed N-H and O-H bond insertion/cyclization reactions of diamines and aminoalcohols

    SciTech Connect

    Klobukowski, Erik

    2011-01-01

    conditions, it was found that the oxidative dehydrogenation of dibenzylamine to Nbenzylidenebenzylamine, with N-methylmorpholine N-oxide (NMMO), was nearly quantitative (96%) within 24 h. However, the reaction with oxygen was much slower, with only a 52% yield of imine product over the same time period. Moreover, the rate of reaction was found to be influenced by the nature of the amine N-oxide. For example, the use of the weakly basic pyridine N-oxide (PyNO) led to an imine yield of only 6% after 24 h. A comparison of amine N-oxide and O2 was also examined in the oxidation of PhCH{sub 2}OH to PhCHO catalyzed by bulk gold. In this reaction, a 52% yield of the aldehyde was achieved when NMMO was used, while only a 7% product yield was afforded when O{sub 2} was the oxidant after 48 h. The bulk gold-catalyzed oxidative dehydrogenation of cyclic amines generates amidines, which upon treatment with Aerosil and water were found to undergo hydrolysis to produce lactams. Moreover, 5-, 6-, and 7-membered lactams could be prepared through a one-pot reaction of cyclic amines by treatment with oxygen, water, bulk gold, and Aerosil. This method is much more atom economical than industrial processes, does not require corrosive acids, and does not generate undesired byproducts. Additionally, the gold and Aerosil catalysts can be readily separated from the reaction mixture. The second project involved studying iron(III) tetraphenylporphyrin chloride, Fe(TPP)Cl, as a homogeneous catalyst for the generation of carbenes from diazo reagents and their reaction with heteroatom compounds. Fe(TPP)Cl, efficiently catalyzed the insertion of carbenes derived from methyl 2-phenyldiazoacetates into O-H bonds of aliphatic and aromatic alcohols. Fe(TPP)Cl was also found to be an effective catalyst for tandem N-H and O-H insertion/cyclization reactions when 1,2-diamines and 1,2-alcoholamines were treated with diazo reagents. This approach provides a one-pot process for synthesizing piperazinones and

  15. Synergistic H4NI-AcOH Catalyzed Oxidation of the Csp(3)-H Bonds of Benzylpyridines with Molecular Oxygen.

    PubMed

    Ren, Lanhui; Wang, Lianyue; Lv, Ying; Li, Guosong; Gao, Shuang

    2015-05-01

    The oxidation of benzylpyridines forming benzoylpyridines was achieved based on a synergistic H4NI-AcOH catalyst and molecular oxygen in high yield under solvent-free conditions. This is the first nonmetallic catalytic system for this oxidation transformation using molecular oxygen as the oxidant. The catalytic system has a wide scope of substrates and excellent chemoselectivity, and this procedure can also be scaled up. The study of a preliminary reaction mechanism demonstrated that the oxidation of the Csp(3)-H bonds of benzylpyridines was promoted by the pyridinium salts formed by AcOH and benzylpyridines. The synergistic effect of H4NI-AcOH was also demonstrated by control experiments. PMID:25885281

  16. Ceria-Vanadia/Silica-Catalyzed Cascade for C-C and C-O Bond Activation: Green One-Pot Synthesis of 2-Amino-3-cyano-4H-pyrans.

    PubMed

    Maddila, Surya Narayana; Maddila, Suresh; van Zyl, Werner E; Jonnalagadda, Sreekantha B

    2016-02-01

    We designed a ceria-vanadia/silica (Ce-V/SiO2) heterogeneous catalyst and used it for the green and efficient synthesis of 2-amino-3-cyano-4H-pyran derivatives. The green reaction was a multicomponent one-pot condensation of 5,5-dimethylcyclohexane-1,3-dione, aromatic aldehyde, and malononitrile in an eco-compatible solvent (ethanol). The catalyst was synthesized and fully characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) surface area analysis. The reported procedure offers a number of advantages including decreased reaction times, mild conditions, high yields, operational simplicity, and environmentally benign and simple work-up procedures. Furthermore, the catalyst is economical, fully recyclable, and reusable for over five runs while preserving its high activity. The synthesized 2-amino-3-cyano-4H-pyran products can later be used for pharmaceutical purposes. PMID:27308209

  17. Palladium(II)-Catalyzed Cross-Dehydrogenative Coupling (CDC) of N-Phthaloyl Dehydroalanine Esters with Simple Arenes: Stereoselective Synthesis of Z-Dehydrophenylalanine Derivatives.

    PubMed

    Bartoccini, Francesca; Cannas, Diego Maria; Fini, Francesco; Piersanti, Giovanni

    2016-06-01

    Pd(II)-catalyzed cross-dehydrogenative coupling (CDC) of methyl N-phthaloyl dehydroalanine esters with simple aromatic hydrocarbons is reported. The reaction, which involves the cleavage of two sp(2) C-H bonds followed by C-C bond formation, stereoselectively generates highly valuable Z-dehydrophenylalanine skeletons in a practical, versatile, and atom economical manner. In addition, a perfluorinated product was expediently converted into important nonproteinogenic amino acid building blocks through copper-catalyzed conjugate additions of boron, silicon, and hydride moieties. PMID:27206072

  18. The Molybdenum Active Site of Formate Dehydrogenase Is Capable of Catalyzing C-H Bond Cleavage and Oxygen Atom Transfer Reactions.

    PubMed

    Hartmann, Tobias; Schrapers, Peer; Utesch, Tillmann; Nimtz, Manfred; Rippers, Yvonne; Dau, Holger; Mroginski, Maria Andrea; Haumann, Michael; Leimkühler, Silke

    2016-04-26

    Formate dehydrogenases (FDHs) are capable of performing the reversible oxidation of formate and are enzymes of great interest for fuel cell applications and for the production of reduced carbon compounds as energy sources from CO2. Metal-containing FDHs in general contain a highly conserved active site, comprising a molybdenum (or tungsten) center coordinated by two molybdopterin guanine dinucleotide molecules, a sulfido and a (seleno-)cysteine ligand, in addition to a histidine and arginine residue in the second coordination sphere. So far, the role of these amino acids in catalysis has not been studied in detail, because of the lack of suitable expression systems and the lability or oxygen sensitivity of the enzymes. Here, the roles of these active site residues is revealed using the Mo-containing FDH from Rhodobacter capsulatus. Our results show that the cysteine ligand at the Mo ion is displaced by the formate substrate during the reaction, the arginine has a direct role in substrate binding and stabilization, and the histidine elevates the pKa of the active site cysteine. We further found that in addition to reversible formate oxidation, the enzyme is further capable of reducing nitrate to nitrite. We propose a mechanistic scheme that combines both functionalities and provides important insights into the distinct mechanisms of C-H bond cleavage and oxygen atom transfer catalyzed by formate dehydrogenase. PMID:27054466

  19. Nucleophile-catalyzed additions to activated triple bonds. Protection of lactams, imides, and nucleosides with MocVinyl and related groups.

    PubMed

    Mola, Laura; Font, Joan; Bosch, Lluís; Caner, Joaquim; Costa, Anna M; Etxebarría-Jardí, Gorka; Pineda, Oriol; de Vicente, David; Vilarrasa, Jaume

    2013-06-21

    Additions of lactams, imides, (S)-4-benzyl-1,3-oxazolidin-2-one, 2-pyridone, pyrimidine-2,4-diones (AZT derivatives), or inosines to the electron-deficient triple bonds of methyl propynoate, tert-butyl propynoate, 3-butyn-2-one, N-propynoylmorpholine, or N-methoxy-N-methylpropynamide in the presence of many potential catalysts were examined. DABCO and, second, DMAP appeared to be the best (highest reaction rates and E/Z ratios), while RuCl3, RuClCp*(PPh3)2, AuCl, AuCl(PPh3), CuI, and Cu2(OTf)2 were incapable of catalyzing such additions. The groups incorporated (for example, the 2-(methoxycarbonyl)ethenyl group that we name MocVinyl) serve as protecting groups for the above-mentioned heterocyclic CONH or CONHCO moieties. Deprotections were accomplished via exchange with good nucleophiles: the 1-dodecanethiolate anion turned out to be the most general and efficient reagent, but in some particular cases other nucleophiles also worked (e.g., MocVinyl-inosines can be cleaved with succinimide anion). Some structural and mechanistic details have been accounted for with the help of DFT and MP2 calculations. PMID:23713491

  20. Electronic Structure and Bonding in Iron(II) and Iron(I) Complexes Bearing Bisphosphine Ligands of Relevance to Iron-Catalyzed C–C Cross-Coupling

    PubMed Central

    2015-01-01

    Chelating phosphines are effective additives and supporting ligands for a wide array of iron-catalyzed cross-coupling reactions. While recent studies have begun to unravel the nature of the in situ-formed iron species in several of these reactions, including the identification of the active iron species, insight into the origin of the differential effectiveness of bisphosphine ligands in catalysis as a function of their backbone and peripheral steric structures remains elusive. Herein, we report a spectroscopic and computational investigation of well-defined FeCl2(bisphosphine) complexes (bisphosphine = SciOPP, dpbz, tBudppe, or Xantphos) and known iron(I) variants to systematically discern the relative effects of bisphosphine backbone character and steric substitution on the overall electronic structure and bonding within their iron complexes across oxidation states implicated to be relevant in catalysis. Magnetic circular dichroism (MCD) and density functional theory (DFT) studies demonstrate that common o-phenylene and saturated ethyl backbone motifs result in small but non-negligible perturbations to 10Dq(Td) and iron–bisphosphine bonding character at the iron(II) level within isostructural tetrahedra as well as in five-coordinate iron(I) complexes FeCl(dpbz)2 and FeCl(dppe)2. Notably, coordination of Xantphos to FeCl2 results in a ligand field significantly reduced relative to those of its iron(II) partners, where a large bite angle and consequent reduced iron–phosphorus Mayer bond orders (MBOs) could play a role in fostering the unique ability of Xantphos to be an effective additive in Kumada and Suzuki–Miyaura alkyl–alkyl cross-couplings. Furthermore, it has been found that the peripheral steric bulk of the SciOPP ligand does little to perturb the electronic structure of FeCl2(SciOPP) relative to that of the analogous FeCl2(dpbz) complex, potentially suggesting that differences in the steric properties of these ligands might be more important in

  1. Copper catalyzed N-arylation of amidines with aryl boronic acids and one-pot synthesis of benzimidazoles by a Chan-Lam-Evans N-arylation and C-H activation/C-N bond forming process.

    PubMed

    Li, Jihui; Bénard, Sébastien; Neuville, Luc; Zhu, Jieping

    2012-12-01

    Mono-N-arylation of benzamidines 1 with aryl boronic acids 2 was effectively achieved in the presence of a catalytic amount of Cu(OAc)(2) and NaOPiv under mild aerobic conditions. Combining this step with an intramolecular direct C-H bond functionalization, catalyzed by the same catalytic system but under oxygen at 120 °C, afforded benzimidazoles 3 in good to excellent yields. PMID:23151245

  2. Rhodium(III)-Catalyzed Tandem [2+2+2] Annulation-Lactamization of Anilides with Two Alkynoates via Cleavage of Two Adjacent C-H or C-H/C-O bonds.

    PubMed

    Fukui, Miho; Shibata, Yu; Hoshino, Yuki; Sugiyama, Haruki; Teraoka, Kota; Uekusa, Hidehiro; Noguchi, Keiichi; Tanaka, Ken

    2016-08-19

    An electron-deficient Cp(E) rhodium(III) complex bearing a cyclopentadienyl ligand with two ethyl ester substituents catalyzes the tandem [2+2+2] annulation-lactamization of acetanilides with two alkynoates via cleavage of adjacent two C-H bonds to give densely substituted benzo[cd]indolones. The reactions of meta-methoxy-substituted acetanilides with two alkynoates also provided benzo[cd]indolones via cleavage of adjacent C-H/C-O bonds. Furthermore, 3,5-dimethoxyacetanilides reacted with two alkynoates to give dearomatized spiro compounds. PMID:27412046

  3. Synthesis and orthogonal functionalization of oxazolo[5',4':4,5]pyrano[2,3-b]pyridine by intra- and intermolecular Pd-catalyzed direct C-H bond heteroarylation.

    PubMed

    Théveau, Laure; Schneider, Cédric; Querolle, Olivier; Meerpoel, Lieven; Levacher, Vincent; Hoarau, Christophe

    2016-04-01

    The construction and subsequent orthogonal functionalization of a hitherto unknown oxazolo[5',4':4,5]pyrano[2,3-b]pyridine are reported. A palladium-catalyzed direct C-H bond functionalization methodology was used to build the tricyclic scaffold as well as to achieve the subsequent C-H bond functionalization at the C-2 position of the oxazole unit with various (hetero)aryl iodides. Remarkably, selective C-H construction and functionalization procedures preserve the chorine atom on the pyridine moiety offering a late-stage substitution site to progress drug design. PMID:26967763

  4. Regioselective synthesis of 3-anthracenyloxindoles and 3-carbazolyloxindoles by indium(iii)-catalyzed direct arylation and their fluorescent chemosensor properties.

    PubMed

    Somai Magar, Krishna Bahadur; Edison, T N Jebakumar Immanuel; Lee, Yong Rok

    2016-07-26

    An efficient, facile and regioselective strategy was developed for the construction of diverse 3-anthracenyloxindoles and 3-carbazolyloxindoles via In(OTf)3-catalyzed direct arylation reaction of 3-diazooxindoles with anthracenes or carbazoles. This novel methodology involved new C-C bond formation between oxindoles and anthracenes or carbazoles. The fluorescence response of the synthesized compounds to heavy metal ions was also investigated. PMID:27396393

  5. Tandem reactions initiated by copper-catalyzed cross-coupling: a new strategy towards heterocycle synthesis.

    PubMed

    Liu, Yunyun; Wan, Jie-Ping

    2011-10-21

    Copper-catalyzed cross-coupling reactions which lead to the formation of C-N, C-O, C-S and C-C bonds have been recognized as one of the most useful strategies in synthetic organic chemistry. During past decades, important breakthroughs in the study of Cu-catalyzed coupling processes demonstrated that Cu-catalyzed reactions are broadly applicable to a variety of research fields related to organic synthesis. Representatively, employing these coupling transformations as key steps, a large number of tandem reactions have been developed for the construction of various heterocyclic compounds. These tactics share the advantages of high atom economics of tandem reactions as well as the broad tolerance of Cu-catalyst systems. Therefore, Cu-catalyzed C-X (X = N, O, S, C) coupling transformation-initiated tandem reactions were quickly recognized as a strategy with great potential for synthesizing heterocyclic compounds and gained worldwide attention. In this review, recent research progress in heterocycle syntheses using tandem reactions initiated by copper-catalyzed coupling transformations, including C-N, C-O, C-S as well as C-C coupling processes are summarized. PMID:21879127

  6. Formation Mechanism of the First Carbon-Carbon Bond and the First Olefin in the Methanol Conversion into Hydrocarbons.

    PubMed

    Liu, Yue; Müller, Sebastian; Berger, Daniel; Jelic, Jelena; Reuter, Karsten; Tonigold, Markus; Sanchez-Sanchez, Maricruz; Lercher, Johannes A

    2016-05-01

    The elementary reactions leading to the formation of the first carbon-carbon bond during early stages of the zeolite-catalyzed methanol conversion into hydrocarbons were identified by combining kinetics, spectroscopy, and DFT calculations. The first intermediates containing a C-C bond are acetic acid and methyl acetate, which are formed through carbonylation of methanol or dimethyl ether even in presence of water. A series of acid-catalyzed reactions including acetylation, decarboxylation, aldol condensation, and cracking convert those intermediates into a mixture of surface bounded hydrocarbons, the hydrocarbon pool, as well as into the first olefin leaving the catalyst. This carbonylation based mechanism has an energy barrier of 80 kJ mol(-1) for the formation of the first C-C bond, in line with a broad range of experiments, and significantly lower than the barriers associated with earlier proposed mechanisms. PMID:27037603

  7. Advances in nickel-catalyzed cycloaddition reactions to construct carbocycles and heterocycles.

    PubMed

    Thakur, Ashish; Louie, Janis

    2015-08-18

    Transition-metal catalysis has revolutionized the field of organic synthesis by facilitating the construction of complex organic molecules in a highly efficient manner. Although these catalysts are typically based on precious metals, researchers have made great strides in discovering new base metal catalysts over the past decade. This Account describes our efforts in this area and details the development of versatile Ni complexes that catalyze a variety of cycloaddition reactions to afford interesting carbocycles and heterocycles. First, we describe our early work in investigating the efficacy of N-heterocyclic carbene (NHC) ligands in Ni-catalyzed cycloaddition reactions with carbon dioxide and isocyanate. The use of sterically hindered, electron donating NHC ligands in these reactions significantly improved the substrate scope as well as reaction conditions in the syntheses of a variety of pyrones and pyridones. The high reactivity and versatility of these unique Ni(NHC) catalytic systems allowed us to develop unprecedented Ni-catalyzed cycloadditions that were unexplored due to the inefficacy of early Ni catalysts to promote hetero-oxidative coupling steps. We describe the development and mechanistic analysis of Ni/NHC catalysts that couple diynes and nitriles to form pyridines. Kinetic studies and stoichiometric reactions confirmed a hetero-oxidative coupling pathway associated with this Ni-catalyzed cycloaddition. We then describe a series of new substrates for Ni-catalyzed cycloaddition reactions such as vinylcyclopropanes, aldehydes, ketones, tropones, 3-azetidinones, and 3-oxetanones. In reactions with vinycyclopropanes and tropones, DFT calculations reveal noteworthy mechanistic steps such as a C-C σ-bond activation and an 8π-insertion of vinylcyclopropane and tropone, respectively. Similarly, the cycloaddition of 3-azetidinones and 3-oxetanones also requires Ni-catalyzed C-C σ-bond activation to form N- and O-containing heterocycles. PMID:26200651

  8. Designing a Cu(II)-ArCu(II)-ArCu(III)-Cu(I) catalytic cycle: Cu(II)-catalyzed oxidative arene C-H bond azidation with air as an oxidant under ambient conditions.

    PubMed

    Yao, Bo; Liu, Yang; Zhao, Liang; Wang, De-Xian; Wang, Mei-Xiang

    2014-11-21

    On the basis of our recent discovery of high valent organocopper compounds, we have designed and achieved efficient copper(II)-catalyzed oxidative arene C-H bond azidation under very mild aerobic conditions by using NaN3 as an azide source. In the presence of a Cu(II) catalyst, a number of azacalix[1]arene[3]pyridines underwent direct arene C-H bond cupration through an electrophilic aromatic metalation pathway to form an arylcopper(II) intermediate. Oxidized by a free copper(II) ion, the arylcopper(II) intermediate was transformed into an arylcopper(III) species that subsequently cross-coupled with azide to furnish the formation of aryl azide products with the release of a copper(I) ion. Under ambient catalytic reaction conditions, the copper(I) species generated was oxidized by air into copper(II), which entered into the next catalytic cycle. Application of the method was demonstrated by the synthesis of functional azacalix[1]arene[3]pyridines by means of simple and practical functional group transformations of azide. The showcase of the Cu(II)-ArCu(II)-ArCu(III)-Cu(I) catalytic cycle would provide a new strategy for the design of copper(II)-catalyzed aerobic oxidative arene C-H bond activation and transformations. PMID:25350606

  9. Nickel-Catalyzed Allylic Alkylation with Diarylmethane Pronucleophiles: Reaction Development and Mechanistic Insights.

    PubMed

    Sha, Sheng-Chun; Jiang, Hui; Mao, Jianyou; Bellomo, Ana; Jeong, Soo A; Walsh, Patrick J

    2016-01-18

    Palladium-catalyzed allylic substitution reactions are among the most efficient methods to construct C-C bonds between sp(3)-hybridized carbon atoms. In contrast, much less work has been done with nickel catalysts, perhaps because of the different mechanisms of the allylic substitution reactions. Palladium catalysts generally undergo substitution by a "soft"-nucleophile pathway, wherein the nucleophile attacks the allyl group externally. Nickel catalysts are usually paired with "hard" nucleophiles, which attack the metal before C-C bond formation. Introduced herein is a rare nickel-based catalyst which promotes substitution with diarylmethane pronucleophiles by the soft-nucleophile pathway. Preliminary studies on the asymmetric allylic alkylation are promising. PMID:26756444

  10. Iodine-Catalyzed Oxidative Functionalization of Azaarenes with Benzylic C(sp(3))-H Bonds via N-Alkylation/Amidation Cascade: Two-Step Synthesis of Isoindolo[2,1-b]isoquinolin-7(5H)-one.

    PubMed

    Luo, Wen-Kun; Shi, Xin; Zhou, Wang; Yang, Luo

    2016-05-01

    An efficient and practical iodine-catalyzed oxidative functionalization of azaarenes with benzylic C-H bonds via an N-alkylation and amidation cascade is developed to provide isoquinolin-1(2H)-ones. This method utilizes readily available unfunctionalized azaarenes and methylarenes as starting materials and proceeds under metal-free conditions with good to excellent yields, avoiding the use of expensive noble metal catalysts and generation of halide and metal wastes. The synthetic utility of this reaction is exemplified by the concise, two-step synthesis of isoindolo[2,1-b]isoquinolin-7(5H)-one. PMID:27123751

  11. An Umpolung Strategy for the Synthesis of β-Aminoketones via Copper-Catalyzed Electrophilic Amination of Cyclopropanols.

    PubMed

    Ye, Zhishi; Dai, Mingji

    2015-05-01

    A novel copper-catalyzed electrophilic amination of cyclopropanols with O-benzoyl-N,N-dialkylhydroxylamines to synthesize various β-aminoketones via a sequence that includes C-C bond cleavage and Csp(3)-N bond formation is reported. The reaction conditions are mild and tolerate a wide range of functional groups including benzoate, tosylate, expoxide, and α,β-unsaturated carbonyls, which are incompatible in the traditional amine nucleophilic conjugate addition and the Mannich reaction conditions. Preliminary mechanistic studies and a proposed catalytic cycle of this umpolung β-aminoketone synthesis process have been described as well. PMID:25885943

  12. Palladium-catalyzed Cs2CO3-promoted arylation of unactivated C(sp(3))-H bonds by (diacetoxyiodo)arenes: shifting the reactivity of (diacetoxyiodo)arenes from acetoxylation to arylation.

    PubMed

    Gou, Quan; Zhang, Zhao-Fu; Liu, Zhi-Cheng; Qin, Jun

    2015-03-20

    PdCl2(CH3CN)2-catalyzed arylation of unactivated C(sp(3))-H bonds using (diacetoxyiodo)arenes as arylation reagents is reported. The reactivity of (diacetoxyiodo)arenes as arylation reagents is enabled in the presence of Cs2CO3 under the reaction conditions. This arylation method is highly efficient and occurs without the use of silver salt. The reaction tolerates a broad substrate scope that was not demonstrated by other silver salt-free C(sp(3))-H bond arylation conditions. The synthetic utility of the method is further illustrated in the synthesis of the psychotropic drug phenibut. A detailed mechanism study has been conducted to understand the reaction pathway. PMID:25763683

  13. Conformational changes of 1-4-glucopyranosyl residues of a sulfated C-C linked hexasaccharide.

    PubMed

    Coletti, Alessia; Elli, Stefano; Macchi, Eleonora; Galzerano, Patrizia; Zamani, Leila; Guerrini, Marco; Torri, Giangiacomo; Vismara, Elena

    2014-05-01

    This work describes the structure of a fully sulfated maltotriose alpha-beta C-C linked dimer, where a central glycosidic bond was substituted by a non natural, hydrolase-resistant C-C bond. Such compound shows anti-metastatic properties being an inhibitor of the heparanase enzymatic activity and of P-selectin-mediated cell-cell interactions. NMR spectroscopy was applied to investigate the structure and conformational properties of this C-C linked hexasaccharide. The presence of sulfate substituents and the internal C-C bond drives the two internal rings in an unusual (1)C(4) chair conformation, while the external rings linked by glycosidic bonds retain the typical (4)C(1) conformation. The NMR results were confirmed by molecular mechanics calculations using structure corresponding di- and tetrasaccharides as models. PMID:24680506

  14. C8-Selective Acylation of Quinoline N-Oxides with α-Oxocarboxylic Acids via Palladium-Catalyzed Regioselective C-H Bond Activation.

    PubMed

    Chen, Xiaopei; Cui, Xiuling; Wu, Yangjie

    2016-08-01

    A facile and efficient protocol for palladium-catalyzed C8-selective acylation of quinoline N-oxides with α-oxocarboxylic acids has been developed. In this approach, N-oxide was utilized as a stepping stone for the remote C-H functionalization. The reactions proceeded efficiently under mild reaction conditions with excellent regioselectivity and broad functional group tolerance. PMID:27441527

  15. Copper-catalyzed aerobic C(sp2)-H functionalization for C-N bond formation: synthesis of pyrazoles and indazoles.

    PubMed

    Li, Xianwei; He, Li; Chen, Huoji; Wu, Wanqing; Jiang, Huanfeng

    2013-04-19

    A simple, practical, and highly efficient synthesis of pyrazoles and indazoles via copper-catalyzed direct aerobic oxidative C(sp(2))-H amination has been reported herein. This process tolerated a variety of functional groups under mild conditions. Further diversification of pyrazoles was also investigated, which provided its potential for drug discovery. PMID:23547954

  16. Rhodium(III)-catalyzed cyanation of vinylic C-H bonds: N-cyano-N-phenyl-p-toluenesulfonamide as a cyanation reagent.

    PubMed

    Su, Wei; Gong, Tian-Jun; Xiao, Bin; Fu, Yao

    2015-07-28

    Rh(III)-catalyzed direct vinylic C-H cyanation reaction has been developed as a practical method for the synthesis of alkenyl nitriles. N-Cyano-N-phenyl-p-methylbenzenesulfonamide (NCTS), a user-friendly cyanation reagent, was used in the transformation. Both acrylamides and ketoximes can be employed in the new C-H cyanation process. PMID:26108194

  17. 2,4-Dinitrophenol-Catalyzed α-C(sp(3) )-H and C(sp)-H Bond Functionalization of Cyclic Amines and Alkynes: Highly Regio-/Diastereoselective Synthesis of α-Alkynyl-3-Amino-2-Oxindoles.

    PubMed

    Kumar, Mukesh; Kaur, Banni P; Chimni, Swapandeep S

    2016-07-11

    A transition-metal- and oxidant-free DNP (2,4-dinitrophenol)-catalyzed atom-economical regio- and diastereoselective synthesis of monofunctionalized α-alkynyl-3-amino-2-oxindole derivatives by C-H bond functionalization of cyclic amines and alkynes with indoline-2,3-diones has been developed. This cascade event sequentially involves the reductive amination of indoline-2,3-dione by imine formation and cross coupling between C(sp(3) )-H and C(sp)-H of the cyclic amines and alkynes. This reaction offers an efficient and attractive pathway to different types of α-alkynyl-3-amino-2-oxindole derivatives in good yields with a wide tolerance of functional groups. The salient feature of this methodology is that it completely suppresses the homocoupling of alkynes. To the best of our knowledge, this is the first example of a DNP-catalyzed metal-free direct C(sp(3) )-H and C(sp)-H bond functionalization providing biologically active α-alkynyl-3-amino-2-oxindole scaffolds. PMID:27172228

  18. Iminopropadienones RN=C=C=C=O and bisiminopropadienes RN=C=C=C=NR: Matrix infrared spectra and anharmonic frequency calculations

    NASA Astrophysics Data System (ADS)

    Bégué, Didier; Baraille, Isabelle; Andersen, Heidi Gade; Wentrup, Curt

    2013-10-01

    Methyliminopropadienone MeN=C=C=C=O 1a was generated by flash vacuum thermolysis from four different precursors and isolated in solid argon. The matrix-isolation infrared spectrum is dominated by unusually strong anharmonic effects resulting in complex fine structure of the absorptions due to the NCCCO moiety in the 2200 cm-1 region. Doubling and tripling of the corresponding absorption bands are observed for phenyliminopropadienone PhN=C=C=C=O 1b and bis(phenylimino)propadiene PhN=C=C=C=NPh 9, respectively. Anharmonic vibrational frequency calculations allow the identification of a number of overtones and combination bands as the cause of the splittings for each molecule. This method constitutes an important tool for the characterization of reactive intermediates and unusual molecules by matrix-isolation infrared spectroscopy.

  19. Copper-catalyzed intermolecular trifluoromethylarylation of alkenes: mutual activation of arylboronic acid and CF3+ reagent.

    PubMed

    Wang, Fei; Wang, Dinghai; Mu, Xin; Chen, Pinhong; Liu, Guosheng

    2014-07-23

    A novel copper-catalyzed intermolecular trifluoromethylarylation of alkenes is developed using less active ether-type Togni's reagent under mild reaction conditions. Various alkenes and diverse arylboronic acids are compatible with these conditions. Preliminary mechanistic studies reveal that a mutual activation process between arylboronic acid and CF3(+) reagent is essential. In addition, the reaction might involve a rate-determining transmetalation, and the final aryl C-C bond is derived from reductive elimination of the aryl(alkyl)Cu(III) intermediate. PMID:24983408

  20. Palladium-Catalyzed Alkoxycarbonylation of Unactivated Secondary Alkyl Bromides at Low Pressure.

    PubMed

    Sargent, Brendon T; Alexanian, Erik J

    2016-06-22

    Catalytic carbonylations of organohalides are important C-C bond formations in chemical synthesis. Carbonylations of unactivated alkyl halides remain a challenge and currently require the use of alkyl iodides under harsh conditions and high pressures of CO. Herein we report a palladium-catalyzed alkoxycarbonylation of secondary alkyl bromides that proceeds at low pressure (2 atm CO) under mild conditions. Preliminary mechanistic studies are consistent with a hybrid organometallic-radical process. These reactions efficiently deliver esters from unactivated alkyl bromides across a diverse range of substrates and represent the first catalytic carbonylations of alkyl bromides with carbon monoxide. PMID:27267421

  1. Palladium(II)-Catalyzed Tandem Synthesis of Acenes Using Carboxylic Acids as Traceless Directing Groups.

    PubMed

    Kim, Kiho; Vasu, Dhananjayan; Im, Honggu; Hong, Sungwoo

    2016-07-18

    A straightforward synthetic strategy for generating useful anthracene derivatives was developed involving palladium(II)-catalyzed tandem transformation with carboxylic acids as traceless directing groups. Carboxyl-directed C-H alkenylation, carboxyl-directed secondary C-H activation and rollover, intramolecular C-C bond formation, and decarboxylative aromatization are proposed as the key steps in the tandem reaction pathway. This novel synthetic route utilizes a broad range of substrates and provides a convenient synthetic tool that allows access to acenes. PMID:27244536

  2. Rhodium-Catalyzed Asymmetric Cycloisomerization and Parallel Kinetic Resolution of Racemic Oxabicycles.

    PubMed

    Loh, Charles C J; Schmid, Matthias; Webster, Robert; Yen, Andy; Yazdi, Shabnam K; Franke, Patrick T; Lautens, Mark

    2016-08-16

    While desymmetrizations by intermolecular asymmetric ring-opening reactions of oxabicyclic alkenes with various nucleophiles have been reported over the past two decades, the demonstration of an intramolecular variant is unknown. Reported herein is the first rhodium-catalyzed asymmetric cycloisomerization of meso-oxabicyclic alkenes tethered to bridgehead nucleophiles, thus providing access to tricyclic scaffolds through a myriad of enantioselective C-O, C-N, and C-C bond formations. Moreover, we also demonstrate a unique parallel kinetic resolution, whereby racemic oxabicycles bearing two different bridgehead nucleophiles can be resolved enantioselectively. PMID:27416818

  3. Pd loaded amphiphilic COF as catalyst for multi-fold Heck reactions, C-C couplings and CO oxidation

    PubMed Central

    Mullangi, Dinesh; Nandi, Shyamapada; Shalini, Sorout; Sreedhala, Sheshadri; Vinod, Chathakudath P.; Vaidhyanathan, Ramanathan

    2015-01-01

    COFs represent a class of polymers with designable crystalline structures capable of interacting with active metal nanoparticles to form excellent heterogeneous catalysts. Many valuable ligands/monomers employed in making coordination/organic polymers are prepared via Heck and C-C couplings. Here, we report an amphiphilic triazine COF and the facile single-step loading of Pd0 nanoparticles into it. An 18–20% nano-Pd loading gives highly active composite working in open air at low concentrations (Conc. Pd(0) <0.05 mol%, average TON 1500) catalyzing simultaneous multiple site Heck couplings and C-C couplings using ‘non-boronic acid’ substrates, and exhibits good recyclability with no sign of catalyst leaching. As an oxidation catalyst, it shows 100% conversion of CO to CO2 at 150 °C with no loss of activity with time and between cycles. Both vapor sorptions and contact angle measurements confirm the amphiphilic character of the COF. DFT-TB studies showed the presence of Pd-triazine and Pd-Schiff bond interactions as being favorable. PMID:26057044

  4. Cu-catalyzed direct C-H bond functionalization: a regioselective protocol to 5-aryl thiazolo[3,2-b]-1,2,4-triazoles.

    PubMed

    Xie, Zengyang; Zhu, Xiaojun; Guan, Yangfan; Zhu, Dunru; Hu, Hongwen; Lin, Chen; Pan, Yi; Jiang, Juli; Wang, Leyong

    2013-02-28

    An efficient, regioselective C-5 arylation of thiazolo[3,2-b]-1,2,4-triazoles catalyzed by a simple copper catalyst was developed. This arylation proceeded smoothly and tolerated a variety of functional groups (44 examples). A wide range of functionalized thiazolo[3,2-b]-1,2,4-triazole derivatives were obtained in high yields (up to 99% yield). Possible catalytic cycles of the arylation were also discussed. PMID:23328869

  5. Nickel-Catalyzed Cross Couplings of Benzylic Ammonium Salts and Boronic Acids: Stereospecific Formation of Diarylethanes via C–N Bond Activation

    PubMed Central

    Maity, Prantik; Shacklady-McAtee, Danielle M.; Yap, Glenn P. A.; Sirianni, Eric R.; Watson, Mary P.

    2014-01-01

    We have developed a nickel-catalyzed cross coupling of benzylic ammonium triflates with aryl boronic acids to afford diarylmethanes and diarylethanes. This reaction proceeds under mild reaction conditions and with exceptional functional group tolerance. Further, it transforms branched benzylic ammonium salts to diarylethanes with excellent chirality transfer, offering a new strategy for the synthesis of highly enantioenriched diarylethanes from readily available chiral benzylic amines. PMID:23268734

  6. Construction of β-mannosidic bonds via gold(I)-catalyzed glycosylations with mannopyranosyl ortho-hexynylbenzoates and its application in synthesis of acremomannolipin A.

    PubMed

    Sun, Peng; Wang, Peng; Zhang, Yongzhen; Zhang, Xiuli; Wang, Cong; Liu, Shaojing; Lu, Jinjie; Li, Ming

    2015-04-17

    A mild and convenient protocol for direct synthesis of β-mannosides has been developed. Glycosylation of 4,6-O-benzylidene-protected mannosyl ortho-hexynylbenzoates with various alcohol acceptors catalyzed by gold(I) complex proceeded smoothly at 0 °C to room temperature and afforded the corresponding β-mannoside in high yield and satisfactory stereoselectivity. This reaction was applied to the total synthesis of acremomannolipin A and its analogue. PMID:25793552

  7. Iridium-Catalyzed Intramolecular Methoxy C-H Addition to Carbon-Carbon Triple Bonds: Direct Synthesis of 3-Substituted Benzofurans from o-Methoxyphenylalkynes.

    PubMed

    Torigoe, Takeru; Ohmura, Toshimichi; Suginome, Michinori

    2016-07-18

    Catalytic hydroalkylation of an alkyne with methyl ether was accomplished. Intramolecular addition of the C-H bond of a methoxy group in 1-methoxy-2-(arylethynyl)benzenes across a carbon-carbon triple bond took place efficiently either in toluene at 110 °C or in p-xylene at 135 °C in the presence of an iridium catalyst. The initial 5-exo cyclization products underwent double-bond migration during the reaction to give 3-(arylmethyl)benzofurans in high yields. PMID:27168516

  8. Dicumyl Peroxide as a Methylating Reagent in the Ni-Catalyzed Methylation of Ortho C-H Bonds in Aromatic Amides.

    PubMed

    Kubo, Teruhiko; Chatani, Naoto

    2016-04-01

    The direct methylation of ortho C-H bonds in aromatic amides with dicumyl peroxide (DCP) using a nickel complex as the catalyst is reported. The reaction shows a high functional group tolerance and is inhibited by radical scavengers. In reactions of meta-substituted aromatic amides, the reaction proceeds in a highly selective manner at the less hindered C-H bonds. PMID:26991045

  9. 98. Catalog HHistory 1, C.C.C., 19 Tree Planting, Negative No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    98. Catalog H-History 1, C.C.C., 19 Tree Planting, Negative No. P 474c (Photographer and date unknown) TRANSPLANTING TREE. - Skyline Drive, From Front Royal, VA to Rockfish Gap, VA , Luray, Page County, VA

  10. Direct, Sequential, and Stereoselective Alkynylation of C,C-Dibromophosphaalkenes.

    PubMed

    Shameem, Muhammad A; Esfandiarfard, Keyhan; Öberg, Elisabet; Ott, Sascha; Orthaber, Andreas

    2016-07-18

    The first direct alkynylation of C,C-dibromophosphaalkenes by a reaction with sulfonylacetylenes is reported. Alkynylation proceeds selectively in the trans position relative to the P substituent to afford bromoethynylphosphaalkenes. Owing to the absence of transition metals in the procedure, the previously observed conversion of dibromophosphaalkenes into phosphaalkynes through the phosphorus analog of the Fritsch-Buttenberg-Wiechell rearrangement is thus suppressed. The bromoethynylphosphaalkenes can subsequently be converted to C,C-diacetylenic, cross-conjugated phosphaalkenes by following a Sonogashira coupling protocol in good overall yields. By using the newly described method, full control over the stereochemistry at the P=C double bond is achieved. The substrate scope of this reaction is demonstrated for different dibromophosphaalkenes as well as different sulfonylacetylenes. PMID:27310813

  11. Oxidative Cross-Coupling of sp(3)- and sp(2)-Hybridized C-H Bonds: Vanadium-Catalyzed Aminomethylation of Imidazo[1,2-a]pyridines.

    PubMed

    Kaswan, Pinku; Porter, Ashley; Pericherla, Kasiviswanadharaju; Simone, Marissa; Peters, Sean; Kumar, Anil; DeBoef, Brenton

    2015-11-01

    The vanadium-catalyzed oxidative coupling of substituted 2-arylimidiazo[1,2-a]pyridines to N-methylmorpholine oxide, which acts as both a coupling partner and an oxidant, has been achieved. This reaction was applied to various substituted imidiazo[1,2-a]pyridine and indole substrates, resulting in yields as high as 90%. Mechanistic investigations indicate that the reaction may proceed via a Mannich-type process. This work demonstrates how oxidative aminomethylation can be used as a useful method to introduce tertiary amines into heterocycles, thus providing an alternative method for conventional Mannich-type reactions. PMID:26479446

  12. C-Alkylation of Ketones and Related Compounds by Alcohols: Transition-Metal-Catalyzed Dehydrogenation.

    PubMed

    Huang, Fei; Liu, Zhuqing; Yu, Zhengkun

    2016-01-18

    Transition-metal-catalyzed C-alkylation of ketones and secondary alcohols, with alcohols, avoids use of organometallic or environmentally unfriendly alkylating agents by means of borrowing hydrogen (BH) or hydrogen autotransfer (HA) activation of the alcohol substrates. Water is formed as the only by-product, thus making the BH process atom-economical and environmentally benign. Diverse homogeneous and heterogeneous transition-metal catalysts, ketones, and alcohols can be used for this transformation, thus rendering the BH process promising for replacing those procedures that use traditional alkylating agents. This Minireview summarizes the advances during the last five years in transition-metal-catalyzed BH α-alkylation of ketones, and β-alkylation of secondary alcohols with alcohols. A discussion on the application of the BH strategy for C-C bond formation is included. PMID:26639633

  13. Graphene-Catalyzed Direct Friedel-Crafts Alkylation Reactions: Mechanism, Selectivity, and Synthetic Utility.

    PubMed

    Hu, Feng; Patel, Mehulkumar; Luo, Feixiang; Flach, Carol; Mendelsohn, Richard; Garfunkel, Eric; He, Huixin; Szostak, Michal

    2015-11-18

    Transition-metal-catalyzed alkylation reactions of arenes have become a central transformation in organic synthesis. Herein, we report the first general strategy for alkylation of arenes with styrenes and alcohols catalyzed by carbon-based materials, exploiting the unique property of graphenes to produce valuable diarylalkane products in high yields and excellent regioselectivity. The protocol is characterized by a wide substrate scope and excellent functional group tolerance. Notably, this process constitutes the first general application of graphenes to promote direct C-C bond formation utilizing polar functional groups anchored on the GO surface, thus opening the door for an array of functional group alkylations using benign and readily available graphene materials. Mechanistic studies suggest that the reaction proceeds via a tandem catalysis mechanism in which both of the coupling partners are activated by interaction with the GO surface. PMID:26496423

  14. Regio- and stereoselective Pd-catalyzed direct arylation of unactivated sp(3) C(3)-H bonds of tetrahydrofuran and 1,4-benzodioxane systems.

    PubMed

    Parella, Ramarao; Babu, Srinivasarao Arulananda

    2015-02-20

    An auxiliary-enabled Pd-catalyzed highly regio- and stereoselective sp(3) C-H activation and the direct arylation of the C3-position of oxygen heterocycles, such as tetrahydrofuran and 1,4-benzodioxane systems, are reported. An efficient stereoselective construction of cis 2,3-disubstituted tetrahydrofuran derivatives (analogues of norlignans) and cis 2,3-disubstituted 1,4-benzodioxane derivatives (analogues of neolignans) is described. The direct C(sp(3))-H arylation of the C3-position of (R)- or (S)- tetrahydrofuran-2-carboxamides furnished the corresponding (2R,3R) and (2S,3S) C3-arylated THF scaffolds as major compounds with very high regio- and diastereoselectivities. The stereochemistry of the products obtained in this work were unambiguously assigned on the basis of the X-ray structure analyses of representative compounds 3b, 3e, 4p, and 7. PMID:25588549

  15. Extending the Scope of the B(C6 F5 )3 -Catalyzed C=N Bond Reduction: Hydrogenation of Oxime Ethers and Hydrazones.

    PubMed

    Mohr, Jens; Porwal, Digvijay; Chatterjee, Indranil; Oestreich, Martin

    2015-12-01

    The B(C6 F5 )3 -catalyzed hydrogenation is applied to aldoxime triisopropylsilyl ethers and hydrazones bearing an easily removable phthaloyl protective group. The CN reduction of aldehyde-derived substrates (oxime ethers and hydrazones) is enabled by using 1,4-dioxane as the solvent known to participate as the Lewis-basic component in FLP-type heterolytic dihydrogen splitting. More basic ketone-derived hydrazones act as Lewis bases themselves in the FLP-type dihydrogen activation and are therefore successfully hydrogenated in nondonating toluene. The difference in reactivity between aldehyde- and ketone-derived substrates is also reflected in the required catalyst loading and dihydrogen pressure. PMID:26489785

  16. A novel iridium/acid co-catalyzed transfer hydrogenative C(sp(3))-H bond alkylation to access functionalized N-heteroaromatics.

    PubMed

    Tan, Zhenda; Jiang, Huanfeng; Zhang, Min

    2016-08-01

    A novel iridium/acid co-catalysed transfer hydrogenative coupling strategy, enabling direct alkylation of C(sp(3))-H bonds and atom-economic access to alkyl chain-lengthened N-heteroaromatics from six-membered 2-alkyl cyclic amines and aldehydes, has been demonstrated. This work has built an important basis to convert cyclic amines, a class of bulk chemical raw materials, into functionalized products. PMID:27355181

  17. Two [4Fe-4S] clusters containing radical SAM enzyme SkfB catalyze thioether bond formation during the maturation of the sporulation killing factor.

    PubMed

    Flühe, Leif; Burghaus, Olaf; Wieckowski, Beata M; Giessen, Tobias W; Linne, Uwe; Marahiel, Mohamed A

    2013-01-23

    The sporulation killing factor (SKF) is a 26-residue ribosomally assembled and posttranslationally modified sactipeptide. It is produced by Bacillus subtilis 168 and plays a key role in its sporulation. Like all sactipeptides, SKF contains a thioether bond, which links the cysteine residue Cys4 with the α-carbon of the methionine residue Met12. In this study we demonstrate that this bond is generated by the two [4Fe-4S] clusters containing radical SAM enzyme SkfB, which is encoded in the skf operon. By mutational analysis of both cluster-binding sites, we were able to postulate a mechanism for thioether generation which is in agreement with that of AlbA. Furthermore, we were able to show that thioether bond formation is specific toward hydrophobic amino acids at the acceptor site. Additionally we demonstrate that generation of the thioether linkage is leader-peptide-dependent, suggesting that this reaction is the first step in SKF maturation. PMID:23282011

  18. Emissive osmium(II) complexes supported by N-heterocyclic carbene-based C^C^C-pincer ligands and aromatic diimines.

    PubMed

    Chung, Lai-Hon; Chan, Siu-Chung; Lee, Wing-Chun; Wong, Chun-Yuen

    2012-08-20

    Osmium(II) complexes containing N-heterocyclic carbene (NHC)-based pincer ligand 1,3-bis(1-methylimidazolin-2-ylidene)phenyl anion (C(1)^C^C(1)) or 1,3-bis(3-methylbenzimidazolin-2-ylidene)phenyl anion (C(2)^C^C(2)) and aromatic diimine (2,2'-bipyridine (bpy), 1,10-phenanthroline (phen), or 4,4'-diphenyl-2,2'-bipyridine (Ph(2)bpy)) in the form of [Os(C^C^C)(N^N)(CO)](+) have been prepared. Crystal structures for these complexes show that the Os-C(NHC) bonds are essentially single (Os-C(NHC) distances = 2.079(5)-2.103(7) Å). Spectroscopic comparisons and time-dependent density functional theory (TD-DFT) calculations suggest that the lowest-energy electronic transition associated with these complexes (λ(max) = 493-536 nm, ε(max) = (5-10) × 10(3) dm(3) mol(-1) cm(-1), solvent = CH(3)CN) originate from a d(π)(Os(II)) → π*(N^N) metal-to-ligand charge transfer transition, where the d(π)(Os(II)) and π*(N^N) levels contain significant contribution from the C^C^C ligands. All these complexes are emissive in the red-spectral region (674-731 nm) with quantum yields of 10(-4)-10(-2) and emission lifetimes of around 1-6 μs. Transient absorption spectroscopy and spectroelectrochemical measurements have also been used to probe the nature of the emissive excited-states. Overall, this joint experimental and theoretical investigation reveals that the C^C^C ligands can be used to modulate the photophysical properties of a [Os(N^N)] core via the formation of the hybrid [Os + C^C^C] frontier orbitals. PMID:22873818

  19. Mapping the Globe with C & C Technologies

    NASA Astrophysics Data System (ADS)

    Kleiner, A. A.

    2001-12-01

    C & C Technologies is an international survey and mapping company with an entrepreneurial spirit that is evident throughout. C & C was recently awarded the MTS (Marine Technology Society) ROV Committee Corporate Excellence Award in recognition of their pioneering spirit displayed by the introduction of the HUGIN 3000 Autonomous Underwater Vehicle (AUV) to the offshore industry. This presentation will outline the wide variety of global mapping projects that C & C has performed for government, private sector, and academia. These include high-resolution mapping of Cater Lake, the Panama Canal, Antarctica, Lake Tahoe, and the HUGIN 3000ś discovery of the German submarine U-166 in 5000 feet of water in the Gulf of Mexico. Adacemic disciplines required to support these technical challenges will be characterized and job opportunities in this emerging field will be addressed.

  20. Mechanism and Selectivity in Nickel-Catalyzed Cross-Electrophile Coupling of Aryl Halides with Alkyl Halides

    PubMed Central

    Biswas, Soumik; Weix, Daniel J.

    2013-01-01

    The direct cross-coupling of two different electrophiles, such as an aryl halide with an alkyl halide, offers many advantages over conventional cross-coupling methods that require a carbon nucleophile. Despite its promise as a versatile synthetic strategy, a limited understanding of the mechanism and origin of cross selectivity has hindered progress in reaction development and design. Herein, we shed light on the mechanism for the nickel-catalyzed cross-electrophile coupling of aryl halides with alkyl halides and demonstrate that the selectivity arises from an unusual catalytic cycle that combines both polar and radical steps to form the new C-C bond. PMID:23952217

  1. Heteroarene-Directed Oxidative sp(2) C-H Bond Allylation with Aliphatic Alkenes Catalyzed by an (Electron-Deficient η(5)-Cyclopentadienyl)rhodium(III) Complex.

    PubMed

    Takahama, Yuji; Shibata, Yu; Tanaka, Ken

    2016-06-17

    It has been established that the oxidative sp(2) C-H bond allylation with aliphatic alkenes proceeds under mild conditions by using heteroarenes as directing groups and an (electron-deficient η(5)-cyclopentadienyl)rhodium(III) complex, [Cp(E)RhCl2]2, as a precatalyst. In sharp contrast, the use of [Cp*RhCl2]2 instead of [Cp(E)RhCl2]2 led to a complex mixture of products under the same reaction conditions. PMID:27227320

  2. Rh-Catalyzed Decarbonylation of Conjugated Ynones via Carbon–Alkyne Bond Activation: Reaction Scope and Mechanistic Exploration via DFT Calculations

    PubMed Central

    Dermenci, Alpay; Whittaker, Rachel E.; Gao, Yang; Cruz, Faben A.; Yu, Zhi-Xiang; Dong, Guangbin

    2015-01-01

    In this full article, detailed development of a catalytic decarbonylation of conjugated monoynones to synthesize disubstituted alkynes is described. The reaction scope and limitation has been thoroughly investigated, and a broad range of functional groups including heterocycles were compatible under the catalytic conditions. Mechanistic exploration via DFT calculations has also been executed. Through the computational study, a proposed catalytic mechanism has been carefully evaluated. These efforts are expected to serve as an important exploratory study for developing catalytic alkyne-transfer reactions via carbon−alkyne bond activation. PMID:26229587

  3. FINAL TECHNICAL REPORT for grant DE-FG02-93ER14353 "Carbon-Hydrogen Bond Functionalization Catalyzed by Transition Metal Systems"

    SciTech Connect

    Goldman, Alan S

    2012-05-21

    Alkanes are our most abundant organic resource but are highly resistant to selective chemical transformations. Alkenes (olefins) by contrast are the single most versatile class of molecules for selective transformations, and are intermediates in virtually every petrochemical process as well as a vast range of commodity and fine chemical processes. Over the course of this project we have developed the most efficient catalysts to date for the selective conversion of alkanes to give olefins, and have applied these catalysts to other dehydrogenation reactions. We have also developed some of the first efficient catalysts for carbonylation of alkanes and arenes to give aldehydes. The development of these catalysts has been accompanied by elucidation of the mechanism of their operation and the factors controlling the kinetics and thermodynamics of C-H bond activation and other individual steps of the catalytic cycles. This fundamental understanding will allow the further improvement of these catalysts, as well as the development of the next generation of catalysts for the functionalization of alkanes and other molecules containing C-H bonds.

  4. Ligand-Mediated and Copper-Catalyzed C(sp3)-H Bond Functionalization of Aryl Ketones with Sodium Sulfinates under Mild Conditions

    NASA Astrophysics Data System (ADS)

    Lan, Xing-Wang; Wang, Nai-Xing; Bai, Cui-Bing; Zhang, Wei; Xing, Yalan; Wen, Jia-Long; Wang, Yan-Jing; Li, Yi-He

    2015-12-01

    A novel and convenient copper (II) bromide and 1,8-diazabicyclo[5.4.1]undec-7-ene (DBU) or 1,10-phenanthroline catalysis protocol for the construction of α-alkyl-β-keto sulfones via C(sp3)-H bond functionalization followed by C(sp3)-S bond formation between aryl ketones and sodium sulfinates at room temperature has been developed. This method is applicable to a wide range of aryl ketones and sodium sulfinates. The electronic effects of aryl ketones and ligands effects of the copper salts are crucial for this transformation. Typically, substituted aryl ketones with electron-withdrawing group do not need any ligand to give a good to excellent yield, while substituted aryl ketones with electron-donating group and electron-rich heteroaromatic ketones offer a good to excellent yield only under the nitrogen-based ligands. The practical value of this transformation highlights the efficient and robust one-pot synthesis of α-alkyl-β-keto sulfones.

  5. Ligand-Mediated and Copper-Catalyzed C(sp3)-H Bond Functionalization of Aryl Ketones with Sodium Sulfinates under Mild Conditions

    PubMed Central

    Lan, Xing-Wang; Wang, Nai-Xing; Bai, Cui-Bing; Zhang, Wei; Xing, Yalan; Wen, Jia-Long; Wang, Yan-Jing; Li, Yi-He

    2015-01-01

    A novel and convenient copper (II) bromide and 1,8-diazabicyclo[5.4.1]undec-7-ene (DBU) or 1,10-phenanthroline catalysis protocol for the construction of α-alkyl-β-keto sulfones via C(sp3)-H bond functionalization followed by C(sp3)-S bond formation between aryl ketones and sodium sulfinates at room temperature has been developed. This method is applicable to a wide range of aryl ketones and sodium sulfinates. The electronic effects of aryl ketones and ligands effects of the copper salts are crucial for this transformation. Typically, substituted aryl ketones with electron-withdrawing group do not need any ligand to give a good to excellent yield, while substituted aryl ketones with electron-donating group and electron-rich heteroaromatic ketones offer a good to excellent yield only under the nitrogen-based ligands. The practical value of this transformation highlights the efficient and robust one-pot synthesis of α-alkyl-β-keto sulfones. PMID:26681470

  6. Iridium-Catalyzed Hydrogen Transfer Reactions

    NASA Astrophysics Data System (ADS)

    Saidi, Ourida; Williams, Jonathan M. J.

    This chapter describes the application of iridium complexes to catalytic hydrogen transfer reactions. Transfer hydrogenation reactions provide an alternative to direct hydrogenation for the reduction of a range of substrates. A hydrogen donor, typically an alcohol or formic acid, can be used as the source of hydrogen for the reduction of carbonyl compounds, imines, and alkenes. Heteroaromatic compounds and even carbon dioxide have also been reduced by transfer hydrogenation reactions. In the reverse process, the oxidation of alcohols to carbonyl compounds can be achieved by iridium-catalyzed hydrogen transfer reactions, where a ketone or alkene is used as a suitable hydrogen acceptor. The reversible nature of many hydrogen transfer processes has been exploited for the racemization of alcohols, where temporary removal of hydrogen generates an achiral ketone intermediate. In addition, there is a growing body of work where temporary removal of hydrogen provides an opportunity for using alcohols as alkylating agents. In this chemistry, an iridium catalyst "borrows" hydrogen from an alcohol to give an aldehyde or ketone intermediate, which can be transformed into either an imine or alkene under the reaction conditions. Return of the hydrogen from the catalyst provides methodology for the formation of amines or C-C bonds where the only by-product is typically water.

  7. 102. Catalog HHistory 1, C.C.C., 34 Landscaping, Negative No. 6040a ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    102. Catalog H-History 1, C.C.C., 34 Landscaping, Negative No. 6040a (Photographer and date unknown) BEAUTIFICATION PROGRAM STARTED AS SOON AS GRADING ALONG THE DRIVE WAS COMPLETED. CCC CAMP 3 SHOWN PLANTING LAUREL. - Skyline Drive, From Front Royal, VA to Rockfish Gap, VA , Luray, Page County, VA

  8. Magnesium ion catalyzed P-N bond hydrolysis in imidazolide-activated nucleotides - Relevance to template-directed synthesis of polynucleotides

    NASA Technical Reports Server (NTRS)

    Kanavarioti, Anastassia; Bernasconi, Claude F.; Doodokyan, Donald L.; Alberas, Diann J.

    1989-01-01

    Results are presented from a detailed study of the P-N bond hydrolysis in guanosine 5-prime-monophosphate 2-methylimidazolide (2-MeImpG) and in guanosine 5-prime-imidazolide (ImpG) in the presence of 0-0.50 M Mg(2+). Pseudo-first-order rate constants of these compounds were obtained as a function of Mg(2+) concentration, for pH values between 6 and 10 and 37 C. It was found that Mg(2+) catalysis was most effective at pH 10, where a 15-fold increase in hydrolysis was achieved in 0.02 M Mg; at 0.2 M, a 115-fold increase was observed. Implication of these results for the mechanism of template-directed oligomerization is discussed.

  9. Pd-catalyzed cascade reactions between o-iodo-N-alkenylanilines and tosylhydrazones: novel approaches to the synthesis of polysubstituted indoles and 1,4-dihydroquinolines.

    PubMed

    Paraja, Miguel; Valdés, Carlos

    2016-05-01

    Two different Pd-catalyzed cascade reactions between o-iodo-N-alkenylanilines and tosylhydrazones are described. The outcome of the cascade processes is determined by the substitution on the N-alkenyl fragment. The reactions with N-tosyl-N-ethylene-o-iodoanilines lead to indoles through a sequence that involves the sequential migratory insertions of a carbene ligand and a C-C double bond, featuring a 5-exo-trig cyclization. The reactions with N-alkyl-N-alkenyl-o-iodoanilines provide 1,4-dihydroquinolines through a cascade reaction that includes a formal 6-endo-trig cyclization. In both cases the benzofused heterocycles are built through the formation of two C-C bonds on the hydrazonic carbon atom. PMID:27087628

  10. Multinuclear diffusion NMR spectroscopy and DFT modeling: a powerful combination for unraveling the mechanism of phosphoester bond hydrolysis catalyzed by metal-substituted polyoxometalates.

    PubMed

    Luong, Thi Kim Nga; Shestakova, Pavletta; Mihaylov, Tzvetan T; Absillis, Gregory; Pierloot, Kristine; Parac-Vogt, Tatjana N

    2015-03-01

    A detailed reaction mechanism is proposed for the hydrolysis of the phosphoester bonds in the DNA model substrate bis(4-nitrophenyl) phosphate (BNPP) in the presence of the Zr(IV)-substituted Keggin type polyoxometalate (Et2NH2)8[{α-PW11O39Zr(μ-OH)(H2O)}2]⋅7 H2O (ZrK 2:2) at pD 6.4. Low-temperature (31)P DOSY spectra at pD 6.4 gave the first experimental evidence for the presence of ZrK 1:1 in fast equilibrium with ZrK 2:2 in purely aqueous solution. Moreover, theoretical calculations identified the ZrK 1:1 form as the potentially active species in solution. The reaction intermediates involved in the hydrolysis were identified by means of (1)H/(31)P NMR studies, including EXSY and DOSY NMR spectroscopy, which were supported by DFT calculations. This experimental/theoretical approach enabled the determination of the structures of four intermediate species in which the starting compound BNPP, nitrophenyl phosphate (NPP), or the end product phosphate (P) is coordinated to ZrK 1:1. In the proposed reaction mechanism, BNPP initially coordinates to ZrK 1:1 in a monodentate fashion, which results in hydrolysis of the first phosphoester bond in BNPP and formation of NPP. EXSY NMR studies showed that the bidentate complex between NPP and ZrK 1:1 is in equilibrium with monobound and free NPP. Subsequently, hydrolysis of NPP results in P, which is in equilibrium with its monobound form. PMID:25652658

  11. Addition, cycloaddition, and metathesis reactions of the cationic carbyne complexes [Cp(CO)[sub 2]Mn[triple bond]CCH[sub 2]R][sup +] and neutral vinylidene complexes Cp(CO)[sub 2]M=C=C(H)R (M = Mn, Re)

    SciTech Connect

    Terry, M.R.; Mercando, L.A.; Kelley, C.; Geoffroy, G.L. ); Nombel, P.; Lugan, N.; Mathieu, R. ); Ostrander, R.L.; Owens-Waltermire, B.E.; Rheingold, A.L. )

    1994-03-01

    The cationic alkylidyne complexes [Cp(CO)[sub 2]M=VCCH[sub 2]R][sup +] (M = Re, R = H; M = Mn, R = H, Me, Ph) undergo facile deprotonation to give the corresponding neutral vinylidene complexes Cp(CO)[sub 2]M=C=C(H)R. For [Cp(CO)[sub 2]Re=VCCH[sub 3

  12. Brønsted-Evans-Polanyi relationships for C–C bond forming and C–C bond breaking reactions in thiamine-catalyzed decarboxylation of 2-keto acids using density functional theory

    SciTech Connect

    Assary, Rajeev Surendran; Broadbelt, Linda J.; Curtiss, Larry A.

    2011-04-27

    The concept of generalized enzyme reactions suggests that a wide variety of substrates can undergo enzymatic transformations, including those whose biotransformation has not yet been realized. The use of quantum chemistry to evaluate kinetic feasibility is an attractive approach to identify enzymes for the proposed transformation. However, the sheer number of novel transformations that can be generated makes this impractical as a screening approach. Therefore, it is essential to develop structure/activity relationships based on quantities that are more efficient to calculate. In this work, we propose a structure/activity relationship based on the free energy of binding or reaction of non-native substrates to evaluate the catalysis relative to that of native substrates. While Brønsted-Evans-Polanyi (BEP) relationships such as that proposed here have found broad application in heterogeneous catalysis, their extension to enzymatic catalysis is limited. We report here on density functional theory (DFT) studies for C–C bond formation and C–C bond cleavage associated with the decarboxylation of six 2-keto acids by a thiamine-containing enzyme (EC 1.2.7.1) and demonstrate a linear relationship between the free energy of reaction and the activation barrier. We then applied this relationship to predict the activation barriers of 17 chemically similar novel reactions. These calculations reveal that there is a clear correlation between the free energy of formation of the transition state and the free energy of the reaction, suggesting that this method can be further extended to predict the kinetics of novel reactions through our computational framework for discovery of novel biochemical transformations.

  13. Microscopic thermal characterization of C/C and C/C-SiC composites

    NASA Astrophysics Data System (ADS)

    Jumel, J.; Krapez, J. C.; Lepoutre, F.; Enguehard, F.; Rochais, D.; Neuer, G.; Cataldi, M.

    2002-05-01

    To measure the thermal properties of C/C and C/C-SiC composites constituents, photoreflectance microscopy is used. Specific methods are developed to cope with experimental artefacts (material semi-transparency, convolution effects), so as with fibers and matrix specificities (strong thermal anisotropy, geometric effects…). Experimental results are presented demonstrating the interest of photoreflectance microscopy for a quantitative determination of the microscopic thermal properties of these complex graphite materials.

  14. Protocols for the selective cleavage of carbon-sulfur bonds in coal

    SciTech Connect

    Bausch, M.

    1991-01-01

    Removal of the organic sulfur in coal constitutes one of the major challenges facing fossil fuel scientists today. A cost--effective of desulfurizing Illinois coal is non-existent at the present time. Research in our group aims to develop a simple protocol for sulfur removal by gaining understanding of how various additives can enhance the rates of C-S bond cleavage in Illinois coal and coal model compounds, relative to fragmentation of the coal macromolecule via C-C, C-O, and C-N bond cleavage. During this funding period, we plan to carry out examinations of: (a) the effects of various reaction conditions on radical-initiated and Lewis acid-catalyzed C-S bond cleavages; (b) the effects of caustic impregnation and subsequent alcoholic reflux on C-S bond cleavage strategies; (c) the reactions of coal model compounds with electron-deficient substrates; (d) examinations of photooxidative C-S bond cleavage reactions; (e) the effects of moderate (300--400{degrees}C) temperatures and pressures as well as ultrasonic radiation on (a) - (c). Also planned are differential scanning calorimetric (DSC) examinations of selected C-S bond cleavage protocols, including those on Illinois coals that possess varying amounts of organic and inorganic sulfur.

  15. Hydrogen Induced C-C, C-N, & C-S Bond Activation on Pt & Ni Surfaces

    SciTech Connect

    Gland, J. L.

    2004-07-29

    The primary reactions investigated were chosen based on their importance in fuel and chemical production as well as in environmental remediation, and include reactions for hydrodesulfurization (HDS), hydrodenitrogenation (HDN), carbon-carbon hydrogenolysis, and hydrocarbon oxidation.

  16. Mechanism and Selectivity of Ru(II) - and Rh(III) -Catalyzed Oxidative Spiroannulation of Naphthols and Phenols with Alkynes through a C-H Activation/Dearomatization Strategy.

    PubMed

    Zhang, Mei; Huang, Genping

    2016-06-27

    The ruthenium- and rhodium-catalyzed oxidative spiroannulation of naphthols and phenols with alkynes was investigated by means of density functional theory calculations. The results show that the reaction undergoes O-H deprotonation/C(sp(2) )-H bond cleavage through a concerted metalation-deprotonation mechanism/migratory insertion of the alkyne into the M-C bond to deliver the eight-membered metallacycle. However, the dearomatization through the originally proposed enol-keto tautomerization/C-C reductive elimination was calculated to be kinetically inaccessible. Alternatively, an unusual metallacyclopropene, generated from the isomerization of the eight-membered metallacycle through rotation of the C-C double bond, was identified as a key intermediate to account for the experimental results. The subsequent C-C coupling between the carbene carbon atom and the carbon atom of the 2-naphthol/phenol ring was calculated to be relatively facile, leading to the formation of the unexpected dearomatized products. The calculations reproduce quite well the experimentally observed formal [5+2] cycloaddition in the rhodium-catalyzed oxidative annulation of 2-vinylphenols with alkynes. The calculations show that compared with the case of 2-alkenylphenols, the presence of conjugation effects and less steric repulsion between the phenol ring and the vinyl moiety make the competing reductive oxyl migration become dominant, which enables the selectivity switch from the spiroannulation to the formal [5+2] cycloaddition. PMID:27225930

  17. Gold-catalyzed tandem reactions of methylenecyclopropanes and vinylidenecyclopropanes.

    PubMed

    Zhang, Di-Han; Tang, Xiang-Ying; Shi, Min

    2014-03-18

    Gold catalysis is often the key step in the synthesis of natural products, and is a powerful tool for tandem or domino reaction processes. Both gold salts and complexes are among the most powerful soft Lewis acids for electrophilic activation of carbon-carbon multiple bonds toward a variety of nucleophiles. The core of these reactions relies on the interaction between gold catalysts and π-bonds of alkenes, alkynes, and allenes. Activation of functional groups by gold complexes provides a useful and important method for facilitating many different organic transformations with high atom efficiency. Although they are highly strained, methylenecyclopropanes (MCPs) and vinylidenecyclopropanes (VDCPs) are readily accessible molecules that have served as useful building blocks in organic synthesis. Because of their unique structural and electronic properties, significant developments have been made in the presence of transition metal catalysts such as nickel, rhodium, palladium, and ruthenium during the past decades. However, less attention has been paid to the gold-catalyzed chemistry of MCPs and VDCPs. In this Account, we describe gold-catalyzed chemical transformations of MCPs and VDCPs developed both in our laboratory and by other researchers. Chemists have demonstrated that MCPs and VDCPs have amphiphilic properties. When MCPs or VDCPs are activated by a gold catalyst, subsequent nucleophilic attack by other reagents or ring-opening (ring-expansion) of the cyclopropane moiety will occur. However, the C-C double bonds of MCPs and VDCPs can also serve as nucleophilic reagents while more electrophilic reagents are present and activated by gold catalyst, and then further cascade reactions take place as triggered by the release of ring strain of cyclopropane. Based on this strategy, both our group and others have found some interesting gold-catalyzed transformations in recent years. These transformations of MCPs and VDCPs can produce a variety of polycyclic and

  18. C-C Coupling of Benzyl Fluorides Catalyzed by an Electrophilic Phosphonium Cation.

    PubMed

    Zhu, Jiangtao; Pérez, Manuel; Stephan, Douglas W

    2016-07-11

    The activation and cleavage of benzyl fluorides by the electrophilic organofluorophosphonium catalyst, [(C6 F5 )3 PF][B(C6 F5 )4 ], is reported and used for the preparation of 1,1-diarylalkanes (37 examples) and substituted aryl homoallylic alkenes (14 examples). This procedure involves mild conditions, avoids harmful waste, and is compatible with a range of substituted arenes and allylic silanes. PMID:27239806

  19. Transformation of cellulose and its derived carbohydrates into formic and lactic acids catalyzed by vanadyl cations.

    PubMed

    Tang, Zhenchen; Deng, Weiping; Wang, Yanliang; Zhu, Enze; Wan, Xiaoyue; Zhang, Qinghong; Wang, Ye

    2014-06-01

    The transformation of cellulose or cellulose-derived carbohydrates into platform chemicals is the key to establish biomass-based sustainable chemical processes. The systems able to catalyze the conversion of cellulose into key chemicals in water without the consumption of hydrogen are limited. We report that simple vanadyl (VO(2+)) cations catalyze the conversions of cellulose and its monomer, glucose, into lactic acid and formic acid in water. We have discovered an interesting shift of the major product from formic acid to lactic acid on switching the reaction atmosphere from oxygen to nitrogen. Our studies suggest that VO(2+) catalyzes the isomerization of glucose to fructose, the retro-aldol fragmentation of fructose to two trioses, and the isomerization of trioses, which leads to the formation of lactic acid under anaerobic conditions. The oxidative cleavage of C-C bonds in the intermediates caused by the redox conversion of VO2(+)/VO(2+) under aerobic conditions results in formic acid and CO2. We demonstrate that the addition of an alcohol suppresses the formation of CO2 and enhances the formic acid yield significantly to 70-75 %. PMID:24798653

  20. Unified mechanism of alkali and alkaline earth catalyzed gasification reactions of carbon by CO2 and H2O

    USGS Publications Warehouse

    Chen, S.G.; Yang, R.T.

    1997-01-01

    From molecular orbital calculations, a unified mechanism is proposed for the gasification reactions of graphite by CO2 and H2O, both uncatalyzed and catalyzed by alkali and alkaline earth catalysts. In this mechanism, there are two types of oxygen intermediates that are bonded to the active edge carbon atoms: an in-plane semiquinone type, Cf(O), and an off-plane oxygen bonded to two saturated carbon atoms that are adjacent to the semiquinone species, C(O)Cf(O). The rate-limiting step is the decomposition of these intermediates by breaking the C-C bonds that are connected to Cf(O). A new rate equation is derived for the uncatalyzed reactions, and that for the catalyzed reactions is readily available from the proposed mechanism. The proposed mechanism can account for several unresolved experimental observations: TPD and TK (transient kinetics) desorption results of the catalyzed systems, the similar activation energies for the uncatalyzed and catalyzed reactions, and the relative activities of the alkali and alkaline earth elements. The net charge of the edge carbon active site is substantially changed by gaining electron density from the alkali or alkaline earth element (by forming C-O-M, where M stands for metal). The relative catalytic activities of these elements can be correlated with their abilities of donating electrons and changing the net charge of the edge carbon atom. As shown previously (Chen, S. G.; Yang, R. T. J. Catal. 1993, 141, 102), only clusters of the alkali compounds are active. This derives from the ability of the clusters to dissociate CO2 and H2O to form O atoms and the mobility of the dissociated O atoms facilitated by the clusters.

  1. Substrate-dependent aromatic ring fission of catechol and 2-aminophenol with O2 catalyzed by a nonheme iron complex of a tripodal N4 ligand.

    PubMed

    Lakshman, Triloke Ranjan; Chatterjee, Sayanti; Chakraborty, Biswarup; Paine, Tapan Kanti

    2016-06-01

    The catalytic reactivity of an iron(ii) complex [(TPA)Fe(II)(CH3CN)2](2+) (1) (TPA = tris(2-pyridylmethyl)amine) towards oxygenative aromatic C-C bond cleavage of catechol and 2-aminophenol is presented. Complex 1 exhibits catalytic and regioselective C-C bond cleavage of 3,5-di-tert-butylcatechol (H2DBC) to form intradiol products, whereas it catalyzes extradiol-type C-C bond cleavage of 2-amino-4,6-di-tert-butylphenol (H2AP). The catalytic reactions are found to be pH-dependent and the complex exhibits maximum turnovers at pH 5 in acetonitrile-phthalate buffer. An iron(iii)-catecholate complex [(TPA)Fe(III)(DBC)](+) (2) is formed in the ring cleavage of catechol. In the extradiol-type cleavage of H2AP, an iron(iii)-2-iminobenzosemiquinonate complex [(TPA)Fe(III)(ISQ)](2+) (3) (ISQ = 4,6-di-tert-butyl-2-iminobenzosemiquinonate radical anion) is observed in the reaction pathway. This work shows the importance of the nature of 'redox non-innocent' substrates in governing the mode of ring fission reactivity. PMID:27148606

  2. Protocols for the selective cleavage of carbon-sulfur bonds in coal. Quarterly report, September 1, 1991--November 30, 1991

    SciTech Connect

    Bausch, M.

    1991-12-31

    Removal of the organic sulfur in coal constitutes one of the major challenges facing fossil fuel scientists today. A cost--effective of desulfurizing Illinois coal is non-existent at the present time. Research in our group aims to develop a simple protocol for sulfur removal by gaining understanding of how various additives can enhance the rates of C-S bond cleavage in Illinois coal and coal model compounds, relative to fragmentation of the coal macromolecule via C-C, C-O, and C-N bond cleavage. During this funding period, we plan to carry out examinations of: (a) the effects of various reaction conditions on radical-initiated and Lewis acid-catalyzed C-S bond cleavages; (b) the effects of caustic impregnation and subsequent alcoholic reflux on C-S bond cleavage strategies; (c) the reactions of coal model compounds with electron-deficient substrates; (d) examinations of photooxidative C-S bond cleavage reactions; (e) the effects of moderate (300--400{degrees}C) temperatures and pressures as well as ultrasonic radiation on (a) - (c). Also planned are differential scanning calorimetric (DSC) examinations of selected C-S bond cleavage protocols, including those on Illinois coals that possess varying amounts of organic and inorganic sulfur.

  3. Continuous flow Sonogashira C-C coupling using a heterogeneous palladium-copper dual reactor.

    PubMed

    Tan, Li-Min; Sem, Zhi-Yu; Chong, Wei-Yuan; Liu, Xiaoqian; Hendra; Kwan, Wei Lek; Lee, Chi-Lik Ken

    2013-01-01

    We report the development of a heterogeneous catalyst system on continuous flow chemistry. A palladium (Pd) coated tubular reactor was placed in line with copper (Cu) tubing using a continuous flow platform, and a Sonogashira C-C coupling reaction was used to evaluate the performance. The reactions were favorably carried out in the Cu reactor, catalyzed by the traces of leached Pd from the Pd reactor. The leached Pd and Cu were trapped with a metal scavaging resin at the back-end of the continuous flow system, affording a genuine approach toward green chemistry. PMID:23248977

  4. Autyomatic Differentiation of C/C++

    Energy Science and Technology Software Center (ESTSC)

    2005-11-14

    Automatic differentiation (AD) tools mechanize the process of developing code for the computation of derivatives. AD avoids the inaccuracies inherent in numerical approximations. Furthermore, sophisticated AD algoirthms can often produce c ode that is more reliable and more efficient than code written by an expert programmer. ADIC is the first and only AD tool for C and C++ based on compiler technology. This compiler foundation makes possible analyses and optimizations not available in toos basedmore » on operator overloading. The earliest implementations of ADIC included support for ANSI C applications, ADIC 2.0 lverages EDG, a commercial C/C++ parser, to provide robust C++ differentiation support. Modern AD tools, including ADIC are implemented in a modular way, aiming to isolate language-dependent program analyses and semantic transformations. The component design leads to much higher implementation quality because the different components can be implemented by experts in each of the different domains involved. For example, a compiler expert can focus on parsing, canonicalizing, and unparising C and C++, while an expert in graph theory and algorithms can produce new differentiation modules without having to worry about the complexity of parsing and generating C++ code. Thsi separation of concerns was achieved through the use of language-independent program analysis interfaces (in collaboration with researcgers at Rice University) and a language-independent XML representation of the computational portions of programs (XAIF). In addition to improved robustness and faster development times, this design naturally enables the reuse of program analysis algorithms and differentiation modules in compiler-based AD tools for other languages. In fact, the analysis and differention components are used in both ADIC and the Open AD Fortran front-end (based on Rice's Open64 compiler.« less

  5. Autyomatic Differentiation of C/C++

    SciTech Connect

    Beata Winnicka, Boyana Norris

    2005-11-14

    Automatic differentiation (AD) tools mechanize the process of developing code for the computation of derivatives. AD avoids the inaccuracies inherent in numerical approximations. Furthermore, sophisticated AD algoirthms can often produce c ode that is more reliable and more efficient than code written by an expert programmer. ADIC is the first and only AD tool for C and C++ based on compiler technology. This compiler foundation makes possible analyses and optimizations not available in toos based on operator overloading. The earliest implementations of ADIC included support for ANSI C applications, ADIC 2.0 lverages EDG, a commercial C/C++ parser, to provide robust C++ differentiation support. Modern AD tools, including ADIC are implemented in a modular way, aiming to isolate language-dependent program analyses and semantic transformations. The component design leads to much higher implementation quality because the different components can be implemented by experts in each of the different domains involved. For example, a compiler expert can focus on parsing, canonicalizing, and unparising C and C++, while an expert in graph theory and algorithms can produce new differentiation modules without having to worry about the complexity of parsing and generating C++ code. Thsi separation of concerns was achieved through the use of language-independent program analysis interfaces (in collaboration with researcgers at Rice University) and a language-independent XML representation of the computational portions of programs (XAIF). In addition to improved robustness and faster development times, this design naturally enables the reuse of program analysis algorithms and differentiation modules in compiler-based AD tools for other languages. In fact, the analysis and differention components are used in both ADIC and the Open AD Fortran front-end (based on Rice's Open64 compiler.

  6. Ultra precision and reliable bonding method

    NASA Technical Reports Server (NTRS)

    Gwo, Dz-Hung (Inventor)

    2001-01-01

    The bonding of two materials through hydroxide-catalyzed hydration/dehydration is achieved at room temperature by applying hydroxide ions to at least one of the two bonding surfaces and by placing the surfaces sufficiently close to each other to form a chemical bond between them. The surfaces may be placed sufficiently close to each other by simply placing one surface on top of the other. A silicate material may also be used as a filling material to help fill gaps between the surfaces caused by surface figure mismatches. A powder of a silica-based or silica-containing material may also be used as an additional filling material. The hydroxide-catalyzed bonding method forms bonds which are not only as precise and transparent as optical contact bonds, but also as strong and reliable as high-temperature frit bonds. The hydroxide-catalyzed bonding method is also simple and inexpensive.

  7. Copper-catalyzed synthesis of purine-fused polycyclics.

    PubMed

    Qu, Gui-Rong; Liang, Lei; Niu, Hong-Ying; Rao, Wei-Hao; Guo, Hai-Ming; Fossey, John S

    2012-09-01

    A novel protocol for a Cu-catalyzed direct C((sp(2)))-H activation/intramolecular amination reaction of 6-anilinopurine nucleosides has been developed. This approach provides a new access to a variety of multiheterocyclic compounds from purine compounds via Cu-catalyzed intramolecular N-H bond tautomerism which are endowed with fluorescence. PMID:22900616

  8. Enantioselective Functionalization of Allylic C-H Bonds Following a Strategy of Functionalization and Diversification

    PubMed Central

    Sharma, Ankit; Hartwig, John F.

    2013-01-01

    We report the enantioselective functionalization of allylic C-H bonds in terminal alkenes by a strategy involving the installation of a temporary functional group at the terminal carbon atom by C-H bond functionalization, followed by diversification of this intermediate with a broad scope of reagents. The method consists of a one-pot sequence of palladium-catalyzed allylic C-H bond oxidation under neutral conditions to form linear allyl benzoates, followed by iridium-catalyzed allylic substitution. This overall transformation forms a variety of chiral products containing a new C-N, C-O, C-S or C-C bond at the allylic position in good yield with high branched-to-linear selectivity and excellent enantioselectivity (ee ≤ 97%). The broad scope of the overall process results from separating the oxidation and functionalization steps; by doing so, the scope of nucleophile encompasses those sensitive to direct oxidative functionalization. The high enantioselectivity of the overall process is achieved by developing an allylic oxidation that occurs without acid to form the linear isomer with high selectivity. These allylic functionalization processes are amenable to an iterative sequence leading to (1,n)-functionalized products with catalyst-controlled diastereo- and enantioselectivity. The utility of the method in the synthesis of biologically active molecules has been demonstrated. PMID:24156776

  9. Synthesis of Antiviral Tetrahydrocarbazole Derivatives by Photochemical and Acid-catalyzed C-H Functionalization via Intermediate Peroxides (CHIPS)

    PubMed Central

    Gulzar, Naeem; Klussmann, Martin

    2014-01-01

    The direct functionalization of C-H bonds is an important and long standing goal in organic chemistry. Such transformations can be very powerful in order to streamline synthesis by saving steps, time and material compared to conventional methods that require the introduction and removal of activating or directing groups. Therefore, the functionalization of C-H bonds is also attractive for green chemistry. Under oxidative conditions, two C-H bonds or one C-H and one heteroatom-H bond can be transformed to C-C and C-heteroatom bonds, respectively. Often these oxidative coupling reactions require synthetic oxidants, expensive catalysts or high temperatures. Here, we describe a two-step procedure to functionalize indole derivatives, more specifically tetrahydrocarbazoles, by C-H amination using only elemental oxygen as oxidant. The reaction uses the principle of C-H functionalization via Intermediate PeroxideS (CHIPS). In the first step, a hydroperoxide is generated oxidatively using visible light, a photosensitizer and elemental oxygen. In the second step, the N-nucleophile, an aniline, is introduced by Brønsted-acid catalyzed activation of the hydroperoxide leaving group. The products of the first and second step often precipitate and can be conveniently filtered off. The synthesis of a biologically active compound is shown. PMID:24998636

  10. Copper(II)-catalyzed sequential C,N-difunctionalization of 1,4-naphthoquinone for the synthesis of benzo[f]indole-4,9-diones under base-free condition.

    PubMed

    Sun, Jin-Wei; Wang, Xiang-Shan; Liu, Yun

    2013-10-18

    An efficient synthesis of benzo[f]indole-4,9-diones has been achieved by copper(II)-catalyzed naphthoquinone sequential C,N-difunctionalization reactions with β-enaminones. New C-C and C-N bonds are easily formed in the reaction course. Copper(II) salt plays a dual role as Lewis acid and oxidative catalyst, and O2 acts as the terminal oxidant. The advantage of this reaction is the high atom economy with broad substrate scope and excellent yields. The reaction can be scaled up to using at least grams of substrates. PMID:24070011

  11. Silver-catalyzed late-stage fluorination.

    PubMed

    Tang, Pingping; Furuya, Takeru; Ritter, Tobias

    2010-09-01

    Carbon-fluorine bond formation by transition metal catalysis is difficult, and only a few methods for the synthesis of aryl fluorides have been developed. All reported transition-metal-catalyzed fluorination reactions for the synthesis of functionalized arenes are based on palladium. Here we present silver catalysis for carbon-fluorine bond formation. Our report is the first example of the use of the transition metal silver to form carbon-heteroatom bonds by cross-coupling catalysis. The functional group tolerance and substrate scope presented here have not been demonstrated for any other fluorination reaction to date. PMID:20695434

  12. Gold-catalyzed naphthalene functionalization.

    PubMed

    Pérez, Pedro J; Díaz-Requejo, M Mar; Rivilla, Iván

    2011-01-01

    The complexes IPrMCl (IPr = 1,3-bis(diisopropylphenyl)imidazol-2-ylidene, M = Cu, 1a; M = Au, 1b), in the presence of one equiv of NaBAr'(4) (Ar' = 3,5-bis(trifluoromethyl)phenyl), catalyze the transfer of carbene groups: C(R)CO(2)Et (R = H, Me) from N(2)C(R)CO(2)Et to afford products that depend on the nature of the metal center. The copper-based catalyst yields exclusively a cycloheptatriene derivative from the Buchner reaction, whereas the gold analog affords a mixture of products derived either from the formal insertion of the carbene unit into the aromatic C-H bond or from its addition to a double bond. In addition, no byproducts derived from carbene coupling were observed. PMID:21647320

  13. Gold-catalyzed naphthalene functionalization

    PubMed Central

    Rivilla, Iván

    2011-01-01

    Summary The complexes IPrMCl (IPr = 1,3-bis(diisopropylphenyl)imidazol-2-ylidene, M = Cu, 1a; M = Au, 1b), in the presence of one equiv of NaBAr'4 (Ar' = 3,5-bis(trifluoromethyl)phenyl), catalyze the transfer of carbene groups: C(R)CO2Et (R = H, Me) from N2C(R)CO2Et to afford products that depend on the nature of the metal center. The copper-based catalyst yields exclusively a cycloheptatriene derivative from the Buchner reaction, whereas the gold analog affords a mixture of products derived either from the formal insertion of the carbene unit into the aromatic C–H bond or from its addition to a double bond. In addition, no byproducts derived from carbene coupling were observed. PMID:21647320

  14. Carbon-hydrogen vs. carbon-carbon bond cleavage of 1,2-diarylethane radical cations in acetonitrile-water

    SciTech Connect

    Camaioni, D.M.; Franz, J.A.

    1984-05-04

    Radical cations of 1,2-diarylethanes and 1-phenyl-2-arylethanes (Ar = phenyl, p-tolyl, p-anisyl) were generated in acidic 70% acetonitrile-water by Cu/sup 2 +/-catalyzed peroxydisulfate oxidation. The radical cations fragment mainly by loss of benzylic protons (C-H cleavage) rather than by alkyl C-C bond cleavage. The 1,2-diarylethanol products undergo further selective oxidation to aryl aldehydes and arylmethanols via rapid equilibration of diarylethane and diarylethanol radical cations. The radical cation of 2,3-dimethyl-2,3-diphenylbutane fragments efficiently by C-C cleavage, forming cumyl radical and cumyl cation. Oxidations of bibenzyl-bicumyl mixtures show selective oxidation of bicumyl dependent on total substrate concentration, providing evidence of equilibrating radical cations and showing that bicumyl fragments faster than bibenzyl loses protons. The effects of reaction conditions and substrate structure on reactivity are discussed.

  15. Copper-catalyzed oxidative C-O bond formation of 2-acyl phenols and 1,3-dicarbonyl compounds with ethers: direct access to phenol esters and enol esters.

    PubMed

    Park, Jihye; Han, Sang Hoon; Sharma, Satyasheel; Han, Sangil; Shin, Youngmi; Mishra, Neeraj Kumar; Kwak, Jong Hwan; Lee, Cheong Hoon; Lee, Jeongmi; Kim, In Su

    2014-05-16

    A copper-catalyzed oxidative coupling of 2-carbonyl-substituted phenols and 1,3-dicarbonyl compounds with a wide range of dibenzyl or dialkyl ethers is described. This protocol provides an efficient preparation of phenol esters and enol esters in good yields with high chemoselectivity. This method represents an alternative protocol for classical esterification reactions. PMID:24762192

  16. The Chemical Bond in C2.

    PubMed

    Hermann, Markus; Frenking, Gernot

    2016-03-14

    Quantum chemical calculations using the complete active space of the valence orbitals have been carried out for Hn CCHn (n=0-3) and N2 . The quadratic force constants and the stretching potentials of Hn CCHn have been calculated at the CASSCF/cc-pVTZ level. The bond dissociation energies of the C-C bonds of C2 and HC≡CH were computed using explicitly correlated CASPT2-F12/cc-pVTZ-F12 wave functions. The bond dissociation energies and the force constants suggest that C2 has a weaker C-C bond than acetylene. The analysis of the CASSCF wavefunctions in conjunction with the effective bond orders of the multiple bonds shows that there are four bonding components in C2 , while there are only three in acetylene and in N2 . The bonding components in C2 consist of two weakly bonding σ bonds and two electron-sharing π bonds. The bonding situation in C2 can be described with the σ bonds in Be2 that are enforced by two π bonds. There is no single Lewis structure that adequately depicts the bonding situation in C2 . The assignment of quadruple bonding in C2 is misleading, because the bond is weaker than the triple bond in HC≡CH. PMID:26756311

  17. Modelling of c-C2H4O formation on grain surfaces

    NASA Astrophysics Data System (ADS)

    Occhiogrosso, A.; Viti, S.; Ward, M. D.; Price, S. D.

    2012-12-01

    Despite its potential reactivity due to ring strain, ethylene oxide (c-C2H4O) is a complex molecule that seems to be stable under the physical conditions of an interstellar dense core; indeed, it has been detected towards several high-mass star-forming regions with a column density of the order of 1013 cm-2. To date, its observational abundances cannot be reproduced by chemical models and this may be due to the significant contribution played by its chemistry on grain surfaces. Recently, Ward & Price have performed experiments in order to investigate the surface formation of ethylene oxide starting with oxygen atoms and ethylene ice as reactants. We present a chemical model which includes the most recent experimental results from Ward & Price on the formation of c-C2H4O. We study the influence of the physical parameters of dense cores on the abundances of c-C2H4O. We verify that ethylene oxide can indeed be formed during the cold phase (when the interstellar medium dense cores are formed), via addition of an oxygen atom across the C=C double bond of the ethylene molecule, and released by thermal desorption during the hot core phase. A qualitative comparison between our theoretical results and those from the observations shows that we are able to reproduce the abundances of ethylene oxide towards high-mass star-forming regions.

  18. Zero Steric Potential and bond order

    NASA Astrophysics Data System (ADS)

    Ghasemi, S.; Noorizadeh, S.

    2016-05-01

    The variation of Zero Steric Potential (ZSP) through a C-C bond shows two maximums, which their values depend on the bond order (BO). A good relationship (R2 = 1) is observed between the mean values of maximum ZSPs and the bond orders of C-C bonds in ethane, ethylene and acetylene, as reference molecules (Ln BO = 1.956ZSP‾max - 0.898). The obtained equation is used to predict the C-C bond orders of more than twenty aromatic and aliphatic hydrocarbons. The results show that the obtained bond orders from ZSP‾max are more reliable than those which are evaluated using NBO and Laplacian methods.

  19. A Carbonylation Approach Toward Activation of Csp2-H and Csp3-H Bonds: Cu-Catalyzed Regioselective Cross Coupling of Imidazo[1,2-a]pyridines with Methyl Hetarenes.

    PubMed

    Lei, Sai; Mai, Yingying; Yan, Caijuan; Mao, Jianwen; Cao, Hua

    2016-08-01

    An efficient copper-catalyzed selective cross coupling of imidazo[1,2-a]pyridines with methyl hetarenes has been reported. This transformation opened a new route to synthesize the C-3 carbonyl imidazo[1,2-a]pyridine derivative, which is a common structural motif in natural products and pharmaceuticals. (18)O-labeling experiments indicated that the oxygen source of products originated from O2. PMID:27388919

  20. Ni-Catalyzed Amination Reactions: An Overview.

    PubMed

    Marín, Mario; Rama, Raquel J; Nicasio, M Carmen

    2016-08-01

    Nitrogen-containing organic compounds are valuable in many fields of science and industry. The most reliable method for the construction of C(sp(2) )-N bonds is undoubtedly palladium-catalyzed amination. In spite of the great achievements made in this area, the use of expensive Pd-based catalysts constitutes an important limitation for large-scale applications. Since nickel is the least expensive and most abundant among the group 10 metals, the interest in Ni-based catalysts for processes typically catalyzed by palladium has grown considerably over the last few years. Herein, we revise the development of Ni-catalyzed amination reactions, emphasizing the most relevant and recent advances in the field. PMID:27265724

  1. Cooperative catalysis of metal and O-H···O/sp3-C-H···O two-point hydrogen bonds in alcoholic solvents: Cu-catalyzed enantioselective direct alkynylation of aldehydes with terminal alkynes.

    PubMed

    Ishii, Takaoki; Watanabe, Ryo; Moriya, Toshimitsu; Ohmiya, Hirohisa; Mori, Seiji; Sawamura, Masaya

    2013-09-27

    Catalyst-substrate hydrogen bonds in artificial catalysts usually occur in aprotic solvents, but not in protic solvents, in contrast to enzymatic catalysis. We report a case in which ligand-substrate hydrogen-bonding interactions cooperate with a transition-metal center in alcoholic solvents for enantioselective catalysis. Copper(I) complexes with prolinol-based hydroxy amino phosphane chiral ligands catalytically promoted the direct alkynylation of aldehydes with terminal alkynes in alcoholic solvents to afford nonracemic secondary propargylic alcohols with high enantioselectivities. Quantum-mechanical calculations of enantiodiscriminating transition states show the occurrence of a nonclassical sp(3)-C-H···O hydrogen bond as a secondary interaction between the ligand and substrate, which results in highly directional catalyst-substrate two-point hydrogen bonding. PMID:23955688

  2. 7. Historic American Buildings Survey, C. C. Adams, Photographer August ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Historic American Buildings Survey, C. C. Adams, Photographer August 1931, SEED PACKING ROOM, Gift of New York State Department of Education. - Shaker North Family Washhouse (first), Shaker Road, New Lebanon, Columbia County, NY

  3. Modeling of the Reaction Mechanism of Enzymatic Radical C-C Coupling by Benzylsuccinate Synthase.

    PubMed

    Szaleniec, Maciej; Heider, Johann

    2016-01-01

    Molecular modeling techniques and density functional theory calculations were performed to study the mechanism of enzymatic radical C-C coupling catalyzed by benzylsuccinate synthase (BSS). BSS has been identified as a glycyl radical enzyme that catalyzes the enantiospecific fumarate addition to toluene initiating its anaerobic metabolism in the denitrifying bacterium Thauera aromatica, and this reaction represents the general mechanism of toluene degradation in all known anaerobic degraders. In this work docking calculations, classical molecular dynamics (MD) simulations, and DFT+D2 cluster modeling was employed to address the following questions: (i) What mechanistic details of the BSS reaction yield the most probable molecular model? (ii) What is the molecular basis of enantiospecificity of BSS? (iii) Is the proposed mechanism consistent with experimental observations, such as an inversion of the stereochemistry of the benzylic protons, syn addition of toluene to fumarate, exclusive production of (R)-benzylsuccinate as a product and a kinetic isotope effect (KIE) ranging between 2 and 4? The quantum mechanics (QM) modeling confirms that the previously proposed hypothetical mechanism is the most probable among several variants considered, although C-H activation and not C-C coupling turns out to be the rate limiting step. The enantiospecificity of the enzyme seems to be enforced by a thermodynamic preference for binding of fumarate in the pro(R) orientation and reverse preference of benzyl radical attack on fumarate in pro(S) pathway which results with prohibitively high energy barrier of the radical quenching. Finally, the proposed mechanism agrees with most of the experimental observations, although the calculated intrinsic KIE from the model (6.5) is still higher than the experimentally observed values (4.0) which suggests that both C-H activation and radical quenching may jointly be involved in the kinetic control of the reaction. PMID:27070573

  4. Pd-Catalyzed sequential β-C(sp(3))-H arylation and intramolecular amination of δ-C(sp(2))-H bonds for synthesis of quinolinones via an N,O-bidentate directing group.

    PubMed

    Guan, Mingyu; Pang, Yubo; Zhang, Jingyu; Zhao, Yingsheng

    2016-05-19

    The pharmacological importance of 2-quinolinone derivatives is well known. Herein, we developed an effective protocol for the synthesis of 2-quinolinone derivatives by palladium-catalyzed sequential β-C(sp(3))-H arylation and selective intramolecular C(sp(2))-H/N-H amination starting with aryl iodides and carboxylic acids. A novel directing group, glycine dimethylamide, was used in the synthesis. We synthesized various quinolinone derivatives, including 5-substituted quinolinones, which are difficult to obtain using the traditional pathway. The directing group could be easily removed and could be readily transformed into other useful functional groups. PMID:27161570

  5. Nickel-Catalyzed Stereoselective Dicarbofunctionalization of Alkynes.

    PubMed

    Li, Zhaodong; García-Domínguez, Andrés; Nevado, Cristina

    2016-06-01

    A nickel-catalyzed three-component reaction involving terminal alkynes, boronic acids, and alkyl halides is presented herein. Trisubstituted alkenes can be obtained in a highly regio- and stereocontrolled manner by the simultaneous addition of both aryl and alkyl groups across the triple bond in a radical-mediated process. The reaction, devoid of air- and moisture-sensitive organometallic reagents and catalysts, is operationally simple and offers a broad scope and functional-group tolerance. PMID:27111115

  6. Testing of DLR C/C-SiC and C/C for HIFiRE 8 Scramjet Combustor

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Capriotti, Diego P.; Reimer, Thomas; Kutemeyer, Marius; Smart, Michael K.

    2014-01-01

    Ceramic Matrix Composites (CMCs) have been proposed for use as lightweight hot structures in scramjet combustors. Previous studies have calculated significant weight savings by utilizing CMCs (active and passive) versus actively cooled metallic scramjet structures. Both a carbon/carbon (C/C) and a carbon/carbon-silicon carbide (C/C-SiC) material fabricated by DLR (Stuttgart, Germany) are being considered for use in a passively cooled combustor design for Hypersonic International Flight Research Experimentation (HIFiRE) 8, a joint Australia / Air Force Research Laboratory hypersonic flight program, expected to fly at Mach 7 for approximately 30 sec, at a dynamic pressure of 55 kilopascals. Flat panels of the DLR C/C and C/C-SiC materials were installed downstream of a hydrogen-fueled, dual-mode scramjet combustor and tested for several minutes at conditions simulating flight at Mach 5 and Mach 6. Gaseous hydrogen fuel was used to fuel the scramjet combustor. The test panels were instrumented with embedded Type K and Type S thermocouples. Zirconia felt insulation was used during some of the tests to reduce heat loss from the back surface and thus increase the heated surface temperature of the C/C-SiC panel approximately 177 C (350 F). The final C/C-SiC panel was tested for three cycles totaling over 135 sec at Mach 6 enthalpy. Slightly more erosion was observed on the C/C panel than the C/C-SiC panels, but both material systems demonstrated acceptable recession performance for the HIFiRE 8 flight.

  7. Efficient Synthesis of Diaryl Ketones by Nickel-Catalyzed Negishi Cross-Coupling of Amides by Carbon-Nitrogen Bond Cleavage at Room Temperature Accelerated by a Solvent Effect.

    PubMed

    Shi, Shicheng; Szostak, Michal

    2016-07-18

    The first Negishi cross-coupling of amides for the synthesis of versatile diaryl ketones by selective C-N bond activation under exceedingly mild conditions is reported. The cross-coupling was accomplished with bench-stable, inexpensive precatalyst [Ni(PPh3 )2 Cl2 ] that shows high functional-group tolerance and enables the synthesis of highly functionalized diaryl ketone motifs. The coupling occurred with excellent chemoselectivity favoring the ketone (cf. biaryl) products. Notably, this process represents the mildest conditions for amide N-C bond activation accomplished to date (room temperature, <10 min). Considering the versatile role of polyfunctional biaryl ketone linchpins in modern organic synthesis, availability, and excellent functional-group tolerance of organozinc reagents, this strategy provides a new platform for amide N-C bond/organozinc cross-coupling under mild conditions. PMID:27304392

  8. Rhodium-catalyzed cascade oxidative annulation leading to substituted naphtho[1,8-bc]pyrans by sequential cleavage of C(sp2)-H/C(sp3)-H and C(sp2)-H/O-H bonds.

    PubMed

    Tan, Xing; Liu, Bingxian; Li, Xiangyu; Li, Bin; Xu, Shansheng; Song, Haibin; Wang, Baiquan

    2012-10-01

    The cascade oxidative annulation reactions of benzoylacetonitrile with internal alkynes proceed efficiently in the presence of a rhodium catalyst and a copper oxidant to give substituted naphtho[1,8-bc]pyrans by sequential cleavage of C(sp(2))-H/C(sp(3))-H and C(sp(2))-H/O-H bonds. These cascade reactions are highly regioselective with unsymmetrical alkynes. Experiments reveal that the first-step reaction proceeds by sequential cleavage of C(sp(2))-H/C(sp(3))-H bonds and annulation with alkynes, leading to 1-naphthols as the intermediate products. Subsequently, 1-naphthols react with alkynes by cleavage of C(sp(2))-H/O-H bonds, affording the 1:2 coupling products. Moreover, some of the naphtho[1,8-bc]pyran products exhibit intense fluorescence in the solid state. PMID:22989331

  9. Two-State Reactivity Mechanism of Benzene C-C Activation by Trinuclear Titanium Hydride.

    PubMed

    Zhu, Bo; Guan, Wei; Yan, Li-Kai; Su, Zhong-Min

    2016-09-01

    The cleavage of inert C-C bonds is a central challenge in modern chemistry. Multinuclear transition metal complexes would be a desirable alternative because of the synergetic effect of multiple metal centers. In this work, carbon-carbon bond cleavage and rearrangement of benzene by a trinuclear titanium hydride were investigated using density functional theory. The reaction occurs via a novel "two-state reactivity" mechanism. The important elementary steps consist of hydride transfer, benzene coordination, dehydrogenation, oxidative addition, hydride-proton exchange, and reductive elimination. Most importantly, the ground-state potential energy surface switches from nearly degenerate triplet and antiferromagnetic singlet states to a closed-shell singlet state in the dearomatization of benzene, which effectively decreases the activation barrier. Furthermore, the roles of the transition metal centers and hydrides were clarified. PMID:27549571

  10. Identification and structural basis of the reaction catalyzed by CYP121, an essential cytochrome P450 in Mycobacterium tuberculosis

    PubMed Central

    Belin, Pascal; Le Du, Marie Hélène; Fielding, Alistair; Lequin, Olivier; Jacquet, Mickaël; Charbonnier, Jean-Baptiste; Lecoq, Alain; Thai, Robert; Courçon, Marie; Masson, Cédric; Dugave, Christophe; Genet, Roger; Pernodet, Jean-Luc; Gondry, Muriel

    2009-01-01

    The gene encoding the cytochrome P450 CYP121 is essential for Mycobacterium tuberculosis. However, the CYP121 catalytic activity remains unknown. Here, we show that the cyclodipeptide cyclo(l-Tyr-l-Tyr) (cYY) binds to CYP121, and is efficiently converted into a single major product in a CYP121 activity assay containing spinach ferredoxin and ferredoxin reductase. NMR spectroscopy analysis of the reaction product shows that CYP121 catalyzes the formation of an intramolecular C-C bond between 2 tyrosyl carbon atoms of cYY resulting in a novel chemical entity. The X-ray structure of cYY-bound CYP121, solved at high resolution (1.4 Å), reveals one cYY molecule with full occupancy in the large active site cavity. One cYY tyrosyl approaches the heme and establishes a specific H-bonding network with Ser-237, Gln-385, Arg-386, and 3 water molecules, including the sixth iron ligand. These observations are consistent with low temperature EPR spectra of cYY-bound CYP121 showing a change in the heme environment with the persistence of the sixth heme iron ligand. As the carbon atoms involved in the final C-C coupling are located 5.4 Å apart according to the CYP121-cYY complex crystal structure, we propose that C-C coupling is concomitant with substrate tyrosyl movements. This study provides insight into the catalytic activity, mechanism, and biological function of CYP121. Also, it provides clues for rational design of putative CYP121 substrate-based antimycobacterial agents. PMID:19416919

  11. Internal friction and gas desorption of {C}/{C} composites

    NASA Astrophysics Data System (ADS)

    Serizawa, H.; Sato, S.; Kohyama, A.

    1994-09-01

    {C}/{C} composites are the most promising candidates as high heat flux component materials, where temperature dependence of mechanical properties and gas desorption behavior at elevated temperature are important properties. At the beginning, the newly developed internal friction measurement apparatus, which enables the accurate measurement of dynamic elastic properties up to 1373 K along with the measurement of gas desorption behavior, was used. The materials studied were unidirectional (UD) {C}/{C} composites reinforced with mesophase pitch-based carbon fibers, which were heat treated at temperatures ranging from 1473 to 2773 K which produced a variety of graphitized microstructures. Two-dimensional (2D) {C}/{C} composites reinfored with flat woven fabrics of PAN type carbon fibers were also studied. These materials were heat treated at 1873 K. From the temperature spectrum of internal friction of 2D {C}/{C} composites, these internal friction peaks were detected and were related to gas desorption. Also the temperature dependence of Young's modulus of UD {C}/{C} composites, negative and positive dependence of Young's modulus were observed reflecting microstructure changes resulting from the heat treatments.

  12. Characterization of Brazed Joints of C-C Composite to Cu-clad-Molybdenum

    NASA Technical Reports Server (NTRS)

    Singh, M.; Asthana, R.

    2008-01-01

    Carbon-carbon composites with either pitch+CVI matrix or resin-derived matrix were joined to copper-clad molybdenum using two active braze alloys, Cusil-ABA (1.75% Ti) and Ticusil (4.5% Ti). The brazed joints revealed good interfacial bonding, preferential precipitation of Ti at the composite/braze interface, and a tendency toward de-lamination in resin-derived C-C composite due to its low inter-laminar shear strength. Extensive braze penetration of the inter-fiber channels in the pitch+CVI C-C composites was observed. The relatively low brazing temperatures (<950 C) precluded melting of the clad layer and restricted the redistribution of alloying elements but led to metallurgically sound composite joints. The Knoop microhardness (HK) distribution across the joint interfaces revealed sharp gradients at the Cu-clad-Mo/braze interface and higher hardness in Ticusil (approx.85-250 HK) than in Cusil-ABA (approx.50-150 HK). These C-C/Cu-clad-Mo joints with relatively low thermal resistance may be promising for thermal management applications.

  13. Bent Bonds and Multiple Bonds.

    ERIC Educational Resources Information Center

    Robinson, Edward A.; Gillespie, Ronald J.

    1980-01-01

    Considers carbon-carbon multiple bonds in terms of Pauling's bent bond model, which allows direct calculation of double and triple bonds from the length of a CC single bond. Lengths of these multiple bonds are estimated from direct measurements on "bent-bond" models constructed of plastic tubing and standard kits. (CS)

  14. Hydrocarbon oxidation vs C-C bond-forming approaches for efficient syntheses of oxygenated molecules.

    PubMed

    Fraunhoffer, Kenneth J; Bachovchin, Daniel A; White, M Christina

    2005-01-20

    [Reaction: see text] A hydrocarbon oxidation approach has been applied to the construction of several linear (E)-allylic alcohols that have served as intermediates in the synthesis of natural products and natural product-like molecules. In the original syntheses, these intermediates were constructed using a standard Wittig-type olefination approach. We report here that routes to these same intermediates designed around a hydrocarbon oxidation approach are more efficient both in the total number of functional group manipulations (FGMs) and overall steps, as well as in the overall yield. PMID:15646963

  15. Unidirectional redox-stimulated movement around a C-C single bond.

    PubMed

    Tepper, Christina; Haberhauer, Gebhard

    2011-07-11

    A remarkable challenge for the design of molecular machines is the realization of a synchronized and unidirectional movement caused by an external stimulus. Such a movement can be achieved by a unidirectionally controlled change of the conformation or the configuration. Biphenol derivatives are one possibility to realize a redox-driven unidirectional molecular switch. For this reason, a 4,4'-biphenol derivative was fixed to a chiral cyclopeptidic scaffold and stimulated by chemical oxidants and reduction agents. The conformation of the switch was determined by DFT calculations by using B3LYP and the 6-31G* basis set. The switching process was observed by UV and circular dichroism (CD) spectroscopic measurements. Several oxidation agents and various conditions were tested, among which (diacetoxy)iodobenzene (DAIB) in methanol proved to be the best. In this way it was possible to synthesize a redox-stimulated molecular switch with a movement that is part of a rotation around a biaryl binding axis. PMID:21626582

  16. Homolytic cleavage C-C bond in the electrooxidation of ethanol and bioethanol

    NASA Astrophysics Data System (ADS)

    Barroso, J.; Pierna, A. R.; Blanco, T. C.; Morallón, E.; Huerta, F.

    Nowadays, the studies are focused on the search of better electrocatalysts that promote the complete oxidation of ethanol/bioethanol to CO 2. To that end, amorphous bi-catalytic catalysts of composition Ni 59Nb 40Pt 1- xY x (Y = Cu, Ru, x = 0.4% at.) have been developed, obtained by mechanical alloying, resulting in higher current densities and an improvement in tolerance to adsorbed CO vs. Ni 59Nb 40Pt 1 catalyst. By using voltammetric techniques, the appearance of three oxidation peaks can be observed. The first peak could be associated with the electrooxidative process of ethanol/bioethanol to acetaldehyde, the second peak could be the oxidation of acetaldehyde to acetic acid, and the last peak might be the final oxidation to CO 2. Chrono-amperometric experiments show qualitative poisoning of catalytic surfaces. However, the in situ Fourier Transformed Infrared Spectroscopy, FTIR, is used for the quasi-quantitative determination with which can be observed the appearance and evolution of different vibrational bands of carbonyl and carboxylic groups of different species, as it moves towards anodic potential in the electrooxidative process.

  17. In Pursuit of an Ideal C-C Bond-Forming Reaction

    PubMed Central

    RajanBabu, T. V.

    2009-01-01

    Attempts to introduce the highly versatile vinyl group into other organic molecules in a chemo-, regio- and stereoselective fashion via catalytic activation of ethylene provided challenging opportunities to explore new ligand and salt effects in homogeneous catalysis. This review provides a personal account of the development of enantioselective reactions involving ethylene. PMID:19606231

  18. Muon Catalyzed Fusion

    NASA Technical Reports Server (NTRS)

    Armour, Edward A.G.

    2007-01-01

    Muon catalyzed fusion is a process in which a negatively charged muon combines with two nuclei of isotopes of hydrogen, e.g, a proton and a deuteron or a deuteron and a triton, to form a muonic molecular ion in which the binding is so tight that nuclear fusion occurs. The muon is normally released after fusion has taken place and so can catalyze further fusions. As the muon has a mean lifetime of 2.2 microseconds, this is the maximum period over which a muon can participate in this process. This article gives an outline of the history of muon catalyzed fusion from 1947, when it was first realised that such a process might occur, to the present day. It includes a description of the contribution that Drachrnan has made to the theory of muon catalyzed fusion and the influence this has had on the author's research.

  19. Nickel-Catalyzed Aromatic C-H Functionalization.

    PubMed

    Yamaguchi, Junichiro; Muto, Kei; Itami, Kenichiro

    2016-08-01

    Catalytic C-H functionalization using transition metals has received significant interest from organic chemists because it provides a new strategy to construct carbon-carbon bonds and carbon-heteroatom bonds in highly functionalized, complex molecules without pre-functionalization. Recently, inexpensive catalysts based on transition metals such as copper, iron, cobalt, and nickel have seen more use in the laboratory. This review describes recent progress in nickel-catalyzed aromatic C-H functionalization reactions classified by reaction types and reaction partners. Furthermore, some reaction mechanisms are described and cutting-edge syntheses of natural products and pharmaceuticals using nickel-catalyzed aromatic C-H functionalization are presented. PMID:27573407

  20. Recent advances in copper-catalyzed asymmetric coupling reactions

    PubMed Central

    2015-01-01

    Summary Copper-catalyzed (or -mediated) asymmetric coupling reactions have received significant attention over the past few years. Especially the coupling reactions of aryl or alkyl halides with nucleophiles became a very powerful tool for the formation of C–C, C–N, C–O and other carbon–heteroatom bonds as well as for the construction of heteroatom-containing ring systems. This review summarizes the recent progress in copper-catalyzed asymmetric coupling reactions for the formation of C–C and carbon–heteroatom bonds. PMID:26734106

  1. The Gas Leakage Analysis in C/C Composites

    NASA Astrophysics Data System (ADS)

    Nishiyama, Yuichi; Hatta, Hiroshi; Bando, Takamasa; Sugibayashi, Toshio

    Gas leakage through carbon fiber reinforcement carbon composites, C/Cs, was discussed so as to apply C/Cs to heat exchangers in an engine system for a future space-plane. Since C/Cs include many cracks and pores, gas easily leaks through C/Cs. To predict and to prevent the gas flow through a C/C, leakage rate was measured as a function of pressure and gas flow path was identified by micro-observation of the C/C. Then, several analytical models were examined to clarify principal mechanism yielding gas flow resistance. It was found that laminar flow models gave far small flow resistance compared with experimental results, but a model based on adiabatic expansion and compression flow, used for gas leak through labyrinth seals, resulted in reasonable agreement. Finally, Si impregnation in a C/C was examined to minimize the gas leakage. This treatment was shown to be an excellent measure to reduce the gas leakage through C/C.

  2. pH-Dependent catalytic activity and chemoselectivity in transfer hydrogenation catalyzed by iridium complex with 4,4'-dihydroxy-2,2'-bipyridine.

    PubMed

    Himeda, Yuichiro; Onozawa-Komatsuzaki, Nobuko; Miyazawa, Satoru; Sugihara, Hideki; Hirose, Takuji; Kasuga, Kazuyuki

    2008-01-01

    Transfer hydrogenation catalyzed by an iridium catalyst with 4,4'-dihydroxy-2,2'-bipyridine (DHBP) in an aqueous formate solution exhibits highly pH-dependent catalytic activity and chemoselectivity. The substantial change in the activity is due to the electronic effect based on the acid-base equilibrium of the phenolic hydroxyl group of DHBP. Under basic conditions, high turnover frequency values of the DHBP complex, which can be more than 1000 times the value of the unsubstituted analogue, are obtained (up to 81 000 h(-1) at 80 degrees C). In addition, the DHBP catalyst exhibits pH-dependent chemoselectivity for alpha,beta-unsaturated carbonyl compounds. Selective reduction of the C=C bond of enone with high activity are observed under basic conditions. The ketone moieties can be reduced with satisfactory activity under acidic conditions. In particular, pH-selective chemoselectivity of the C=O versus C=C bond reduction was observed in the transfer hydrogenation of cinnamaldehyde. PMID:18989857

  3. Carbon-carbon bond cleavage of 1,2-hydroxy ethers b7 vanadium(V) dipicolinate complexes

    SciTech Connect

    Hanson, Susan K; Gordon, John C; Thorn, David L; Scott, Brian L; Baker, R Tom

    2009-01-01

    The development of alternatives to current petroleum-based fuels and chemicals is becoming increasingly important due to concerns over climate change, growing world energy demand, and energy security issues. Using non-food derived biomass to produce renewable feedstocks for chemicals and fuels is a particularly attractive possibility. However, the majority of biomass is in the form of lignocellulose, which is often not fully utilized due to difficulties associated with breaking down both lignin and cellulose. Recently, a number of methods have been reported to transform cellulose directly into more valuable materials such as glucose, sorbitol, 5-(chloromethyl)furfural, and ethylene glycol. Less progress has been made with selective transformations of lignin, which is typically treated in paper and forest industries by kraft pulping (sodium hydroxide/sodium sulfide) or incineration. Our group has begun investigating aerobic oxidative C-C bond cleavage catalyzed by dipicolinate vanadium complexes, with the idea that a selective C-C cleavage reaction of this type could be used to produce valuable chemicals or intermediates from cellulose or lignin. Lignin is a randomized polymer containing methoxylated phenoxy propanol units. A number of different linkages occur naturally; one of the most prevalent is the {beta}-O-4 linkage shown in Figure 1, containing a C-C bond with 1,2-hydroxy ether substituents. While the oxidative C-C bond cleavage of 1,2-diols has been reported for a number of metals, including vanadium, iron, manganese, ruthenium, and polyoxometalate complexes, C-C bond cleavage of 1,2-hydroxy ethers is much less common. We report herein vanadium-mediated cleavage of C-C bonds between alcohol and ether functionalities in several lignin model complexes. In order to explore the scope and potential of vanadium complexes to effect oxidative C-C bond cleavage in 1,2-hydroxy ethers, we examined the reactivity of the lignin model complexes pinacol monomethyl ether (A

  4. Copper-catalyzed C-H bond direct chalcogenation of aromatic compounds leading to diaryl sulfides, selenides, and diselenides by using elemental sulfur and selenium as chalcogen sources under oxidative conditions.

    PubMed

    Shibahara, Fumitoshi; Kanai, Takafumi; Yamaguchi, Eiji; Kamei, Akika; Yamauchi, Takayuki; Murai, Toshiaki

    2014-01-01

    The reactions of aromatic compounds and elemental chalcogens catalyzed by a copper salt with molecular oxygen as an oxidant were carried out. The reaction of 3-substituted imidazo[1,5-a]pyridines and elemental sulfur in the presence of CuTC (copper(I) thiophenecarboxylate) gave the corresponding bisimidazopyridyl sulfides in good to quantitative yields. The reaction proceeded even under aerobic oxidation conditions. The use of a polar solvent was crucial for the reaction, and DMSO (dimethyl sulfoxide) in particular stimulated the reaction. The reaction could be applied to common aromatic compounds, such as N-methyl indole and dialkyl anilines. The reaction of indole proceeded at the nucleophilic C3 position rather than at the acidic C2 position. In addition, the reaction of dialkyl anilines proceeded with an ortho, para orientation. The reactions of imidazopyridines and elemental selenium under similar conditions gave the corresponding bisimidazopyridyl diselenides along with bisimidazopyridyl monoselenides. The resulting diselenides were readily converted to the corresponding monoselenides with unreacted imidazopyridines under the same conditions. The reaction could be applied to the copolymerization of bifunctional bisimidazopyridines and elemental sulfur to give oligomeric copolymers in quantitative yield. PMID:24347073

  5. Regioselective alkene carbon-carbon bond cleavage to aldehydes and chemoselective alcohol oxidation of allylic alcohols with hydrogen peroxide catalyzed by [cis-Ru(II)(dmp)2(H2O)2]2+ (dmp = 2,9-dimethylphenanthroline).

    PubMed

    Kogan, Vladimir; Quintal, Miriam M; Neumann, Ronny

    2005-10-27

    [reaction: see text] [cis-Ru(II)(dmp)2(H2O)2]2+ (dmp = 2,9-dimethylphenanthroline) was found to be a selective oxidation catalyst using hydrogen peroxide as oxidant. Thus, primary alkenes were very efficiently oxidized via direct carbon-carbon bond cleavage to the corresponding aldehydes as an alternative to ozonolysis. Secondary alkenes were much less reactive, leading to regioselective oxidation of substrates such as 4-vinylcyclohexene and 7-methyl-1,6-octadiene at the terminal position. Primary allylic alcohols were chemoselectively oxidized to the corresponding allylic aldehydes, e.g., geraniol to citral. PMID:16235952

  6. Palladium-Catalyzed One-Pot Reaction of Hydrazones, Dihaloarenes, and Organoboron Reagents: Synthesis and Cytotoxic Activity of 1,1-Diarylethylene Derivatives.

    PubMed

    Roche, Maxime; Salim, Salim Mmadi; Bignon, Jérôme; Levaique, Hélène; Brion, Jean-Daniel; Alami, Mouad; Hamze, Abdallah

    2015-07-01

    A new three-component assembly reaction between N-tosylhydrazones, dihalogenated arenes, and boronic acids or boronate esters was developed, producing highly substituted 1,1-diarylethylenes in good yields. The two C-C bonds formed through this coupling have been catalyzed by a single Pd-catalyst in a one-pot fashion. It is noted that the one-pot pinacol boronate cross-coupling reaction generally provides products in high yields, offers an expansive substrate scope, and can address a broad range of aryl, styrene, vinyl, and heterocyclic olefinic targets. The scope of this one-pot coupling has been also extended to the synthesis of the 1,1-diarylethylene skeleton of the natural product ratanhine. The new compounds were evaluated for their cytotoxic activity, and this allowed the identification of compound 4ab that exhibits excellent antiproliferative activity in the nanomolar concentration range against HCT116 cancer cell lines. PMID:26036279

  7. Synthesis of 2-Cyclopentenone Derivatives via Palladium-Catalyzed Intramolecular Carbonyl α-Alkenylation.

    PubMed

    Chen, Panpan; Meng, Yinggao; Wang, Han; Han, Feipeng; Wang, Yulong; Song, Chuanjun; Chang, Junbiao

    2016-08-01

    2-Cyclopentenone derivatives have been efficiently synthesized from 5-bromo-5-hexen-2-ones via palladium-catalyzed intramolecular carbonyl α-alkenylation followed by double-bond migration under mild reaction conditions. PMID:27463262

  8. Dislocation dissociation in some f.c.c. metals

    NASA Technical Reports Server (NTRS)

    Esterling, D. M.

    1980-01-01

    The dissociation of a perfect screw dislocation into a stacking fault in an f.c.c. lattice is modeled by the modified lattice statics. The interatomic potentials are obtained from the work of Esterling and Swaroop and differ substantially from those empirical potentials usually employed in defect simulations. The calculated stacking fault widths for aluminum, copper, and silver are in good agreement with weak beam microscopy results.

  9. [Study on spectral emissivity of C/C composites].

    PubMed

    Zhu, Bo; Cao, Wei-Wei; Jing, Min; Dong, Xing-Guang; Wang, Cheng-Guo

    2009-11-01

    Different types of C/C composites were prepared by conventional molding, and the changes in normal spectral emissivity of samples were tested. The testing results show that spectral emissivity of C/C composite reinforced by short cut carbon fibers is generally higher than the sample reinforced by carbon cloth in the entire 2500-13000nm wavelength region. The structure of short cut carbon fibers is relatively loose and the number of material particles is less than other samples in unit volume, which increases the penetration depth of electromagnetic waves. This is the reason for higher normal spectral emissivity and better heat radiation property. Meanwhile, the test results of normal spectral emissivity for fiber perform and C/C composite samples show that the spectral emissivity of resin carbon is better than fiber carbon because of the difference in microstructure for the two kinds of carbon materials. Laser Raman spectroscopy was employed to analyze the microstructures of different carbon materials, and the results show that because sp3 and sp2 hybrid states of carbon atoms in resin carbon produced more vibration modes, the resin carbon also has higher normal spectral emissivity and better characteristics of heat radiation. PMID:20101951

  10. Copper-catalyzed N-cyanation of sulfoximines by AIBN.

    PubMed

    Teng, Fan; Yu, Jin-Tao; Zhou, Zhou; Chu, Haoke; Cheng, Jiang

    2015-03-01

    The direct copper-catalyzed N-cyanation of sulfoximines was achieved by using AIBN as a safe cyanide source. It represents a simple and environmentally benign procedure for the construction of the N-CN bond. Furthermore, some sec-amines can also be tolerated well under this procedure. PMID:25668584

  11. Palladium-Catalyzed Synthesis of 9-Fluorenylidenes through Aryne Annulation

    PubMed Central

    Worlikar, Shilpa A.; Larock, Richard C.

    2009-01-01

    The palladium-catalyzed annulation of arynes by substituted ortho-halostyrenes produces substituted 9- fluorenylidenes in good yields. This methodology provides this important carbocyclic ring system in a single step, which involves the generation of two new carbon-carbon bonds, occurs under relatively mild reaction conditions and tolerates a variety of functional groups, including cyano, ester, aldehyde and ketone groups. PMID:19413328

  12. Catalyzed sodium chlorate candles

    NASA Technical Reports Server (NTRS)

    Malich, C. W.; Wydeven, T.

    1972-01-01

    The catalytic effect of cobalt powder on chlorate decomposition has been confirmed. Catalysis is enhanced by oxidation of the metal during burning. Catalysts other than cobalt compounds should also be effective; the complete elimination of fuel has shown that the oxidation of cobalt during decomposition is not a vital factor in the improved performance of catalyzed candles.

  13. Asymmetric Iridium-Catalyzed C-C Coupling of Chiral Diols via Site-Selective Redox-Triggered Carbonyl Addition.

    PubMed

    Shin, Inji; Krische, Michael J

    2016-01-01

    Cyclometalated π-allyliridium C,O-benzoate complexes modified by axially chiral chelating phosphine ligands display a pronounced kinetic preference for primary alcohol dehydrogenation, enabling highly site-selective redox-triggered carbonyl additions of chiral primary-secondary 1,3-diols with exceptional levels of catalyst-directed diastereoselectivity. Unlike conventional methods for carbonyl allylation, the present redox-triggered alcohol C-H functionalizations bypass the use of protecting groups, premetalated reagents, and discrete alcohol-to-aldehyde redox reactions. PMID:26187028

  14. Branching Out: Rhodium-Catalyzed Allylation with Alkynes and Allenes.

    PubMed

    Koschker, Philipp; Breit, Bernhard

    2016-08-16

    We present a new and efficient strategy for the atom-economic transformation of both alkynes and allenes to allylic functionalized structures via a Rh-catalyzed isomerization/addition reaction which has been developed in our working group. Our methodology thus grants access to an important structural class valued in modern organic chemistry for both its versatility for further functionalization and the potential for asymmetric synthesis with the construction of a new stereogenic center. This new methodology, inspired by mechanistic investigations by Werner in the late 1980s and based on preliminary work by Yamamoto and Trost, offers an attractive alternative to other established methods for allylic functionalization such as allylic substitution or allylic oxidation. The main advantage of our methodology consists of the inherent atom economy in comparison to allylic oxidation or substitution, which both produce stoichiometric amounts of waste and, in case of the substitution reaction, require prefunctionalization of the starting material. Starting out with the discovery of a highly branched-selective coupling reaction of carboxylic acids with terminal alkynes using a Rh(I)/DPEphos complex as the catalyst system, over the past 5 years we were able to continuously expand upon this chemistry, introducing various (pro)nucleophiles for the selective C-O, C-S, C-N, and C-C functionalization of both alkynes and the double-bond isomeric allenes by choosing the appropriate rhodium/bidentate phosphine catalyst. Thus, valuable compounds such as branched allylic ethers, sulfones, amines, or γ,δ-unsaturated ketones were successfully synthesized in high yields and with a broad substrate scope. Beyond the branched selectivity inherent to rhodium, many of the presented methodologies display additional degrees of selectivity in regard to regio-, diastereo-, and enantioselective transformations, with one example even proceeding via a dynamic kinetic resolution. Many advances

  15. Quantification of C=C and C=O Surface Carbons in Detonation Nanodiamond by NMR

    SciTech Connect

    Cui, J -F; Fang, X -W; Schmidt-Rohr, K

    2014-05-08

    The ability of solid-state 13C NMR to detect and quantify small amounts of sp2-hybridized carbon on the surface of ~5 nm diameter nanodiamond particles is demonstrated. The C=C carbon fraction is only 1.1 ± 0.4% in pristine purified detonation nanodiamond, while a full single-layer graphitic or “bucky diamond” shell would contain ca. 25% of all C in a 5 nm diameter particle. Instead of large aromatic patches repeatedly proposed in the recent literature, sp3-hybridized CH and COH carbons cover most of the nanodiamond particle surface, accounting for ~5% each. C=O and COO groups also seen in X-ray absorption near-edge structure spectroscopy (XANES) but not detected in previous NMR studies make up ca. 1.5% of all C. They are removed by heat treatment at 800 °C, which increases the aromatic fraction. 13C{1H} NMR demonstrates that the various sp2-hybridized carbons are mostly not protonated, but cross-polarization shows that they are separated from 1H by only a few bond lengths, which proves that they are near the protonated surface. Together, the observed C–H, C–OH, C=O, and C=C groups account for 12–14% of all C, which matches the surface fraction expected for bulk-terminated 5 nm diameter diamond particles.

  16. Mild and General Access to Diverse 1H-Benzotriazoles via Diboron-Mediated N–OH Deoxygenation and Palladium-Catalyzed C–C and C–N Bond Formation

    PubMed Central

    Gurram, Venkateshwarlu; Akula, Hari K.; Garlapati, Ramesh; Pottabathini, Narender; Lakshman, Mahesh K.

    2015-01-01

    Benzotriazoles are a highly important class of compounds with broad-ranging applications in such diverse areas as medicinal chemistry, as auxiliaries in organic synthesis, in metallurgical applications, in aircraft deicing and brake fluids, and as antifog agents in photography. Although there are numerous approaches to N-substituted benzotriazoles, the essentially one general method to N-unsubstituted benzotriazoles is via diazotization of o-phenylenediamines, which can be limited by the availability of suitable precursors. Other methods to N-unsubstitued benzotriazoles are quite specialized. Although reduction of 1-hydroxy-1H-benzotriazoles is known the reactions are not particularly convenient or broadly applicable. This presents a limitation for easy access to and availability of diverse benzotriazoles. Herein, we demonstrate a new, broadly applicable method to diverse 1H-benzotriazoles via a mild diboron-reagent mediated deoxygenation of 1-hydroxy-1H-benzotriazoles. We have also evaluated sequential deoxygenation and Pd-mediated C–C and C–N bond formation as a one-pot process for further diversification of the benzotriazole moiety. However, results indicated that purification of the deoxygenation product prior to the Pd-mediated reaction is critical to the success of such reactions. The overall chemistry allows for facile access to a variety of new benzotriazoles. Along with the several examples presented, a discussion of the advantages of the approaches is described, as also a possible mechanism for the deoxygenation process. PMID:25729343

  17. Theoretical investigation on mechanism of asymmetric Michael addition of malononitrile to chalcones catalyzed by Cinchona alkaloid aluminium(III) complex.

    PubMed

    Su, Zhishan; Lee, Hai Whang; Kim, Chan Kyung

    2011-09-21

    The mechanism of Michael addition of malononitrile to chalcones catalyzed by Cinchona alkaloid aluminium(III) complex has been investigated by DFT and ONIOM methods. Calculations indicate that the reaction proceeds through a dual activation mechanism, in which Al(III) acts as a Lewis acid to activate the electrophile α,β-unsaturated carbonyl substrate while the tertiary amine in the Cinchona alkaloid works as a Lewis base to promote the activation of the malononitrile and deprotonation. A stepwise pathway involving C-C bond formation followed by proton transfer from the catalyst to the carbonyl substrate is adopted, and latter step is predicted to be the rate-determining-step in the reaction with an energy barrier of 12.4 kcal mol(-1). In the absence of the Al(III)-complex, a Cinchona alkaloid activates the carbonyl substrate by a hydrogen bonding of the hydroxyl group, involving a higher energy barrier of 30.4 kcal mol(-1). The steric repulsion between the phenyl group attached to the carbonyl group in the chalcone and isopropoxyl groups of the Al(III)-complex may play an important role in the control of stereoselectivity. The π-π stacking effect between the quinuclidine ring of the quinine and the phenyl group of the chalcones may also help the stabilization of the preferred molecular complex. These results are in agreement with experimental observations. PMID:21796318

  18. Mechanistic studies of highly enantio- and diastereoselective aza-Petasis-Ferrier rearrangement catalyzed by chiral phosphoric acid.

    PubMed

    Terada, Masahiro; Komuro, Takazumi; Toda, Yasunori; Korenaga, Toshinobu

    2014-05-14

    The precise mechanism of the highly anti- and enantioselective aza-Petasis-Ferrier (APF) rearrangement of hemiaminal vinyl ethers catalyzed by a chiral phosphoric acid was investigated by undertaking experimental and theoretical studies. The APF rearrangement is characterized by the following unique mechanistic features: (i) efficient optical kinetic resolution of the starting racemic hemiaminal vinyl ether, (ii) enantioconvergent process from racemic hemiaminal vinyl ethers to optically active β-amino aldehyde products, and (iii) anomalous temperature effects on the enantioselectivity (enantioselectivity increases as reaction temperature increases). The following experiments were conducted to elucidate the unique mechanistic features as well as to uncover the overall scheme of the present rearrangement: (A) X-ray crystallographic analysis of the recovered hemiaminal vinyl ether to determine its absolute configuration, (B) rearrangements of enantiomerically pure hemiaminal vinyl ethers to validate the stereochemical relationship between the hemiaminal vinyl ethers and β-amino aldehydes, (C) theoretical studies on the transition states of the C-O bond cleavage and C-C bond formation steps to gain an insight into the optical kinetic resolution of the hemiaminal vinyl ether and the origin of the stereoselectivity, as well as to elucidate the overall scheme of the present rearrangement, and (D) crossover experiments of two hemiaminal vinyl ethers having different vinyl ether and aliphatic substituents to comprehend the mechanism of the anomalous temperature effect and the enantioconvergent process. The results of experiments and theoretical studies fully support the proposed mechanism of the present anti- and enantioselective APF rearrangement. PMID:24746095

  19. Two Metals Are Better Than One in the Gold Catalyzed Oxidative Heteroarylation of Alkenes

    PubMed Central

    Tkatchouk, Ekaterina; Mankad, Neal P.; Benitez, Diego; Goddard, William A.; Toste, F. Dean

    2011-01-01

    We present a detailed study of the mechanism for oxidative heteroarylation, based on DFT calculations and experimental observations. We propose binuclear Au(II)-Au(II) complexes to be key intermediates in the mechanism for gold catalyzed oxidative heteroarylation. The reaction is thought to proceed via a gold redox cycle involving initial oxidation of Au(I) to binuclear Au(II)-Au(II) complexes by Selectfluor, followed by heteroauration and reductive elimination. While it is tempting to invoke a transmetalation/reductive elimination mechanism similar to that proposed for other transition metal complexes, experimental and DFT studies suggest that the key C-C bond forming reaction occurs via a bimolecular reductive elimination process (devoid of transmetalation). In addition, the stereochemistry of the elimination step was determined experimentally to proceed with complete retention. Ligand and halide effects played an important role in the development and optimization of the catalyst; our data provides an explanation for the ligand effects observed experimentally, useful for future catalyst development. Cyclic voltammetry data is presented that supports redox synergy of the Au···Au aurophilic interaction. The monometallic reductive elimination from mononuclear Au(III) complexes is also studied from which we can predict a ~15 kcal/mol advantage for bimetallic reductive elimination. PMID:21861448

  20. Fe-Catalyzed Cross-Dehydrogenative Coupling Reactions.

    PubMed

    Lv, Leiyang; Li, Zhiping

    2016-08-01

    Cross-dehydrogenative coupling (CDC), which enables the formation of carbon-carbon (C-C) and C-heteroatom bonds from the direct coupling of two C-H bonds or C-H/X-H bonds, represents a new state of the art in the field of organic chemistry. Iron, a prominent metal, has already shown its versatile application in chemical synthesis. This review attempts to provide a comprehensive understanding of the evolution of cross-dehydrogenative coupling via iron catalysis, as well as its application in synthetic chemistry. PMID:27573390

  1. Tritium catalyzed deuterium tokamaks

    SciTech Connect

    Greenspan, E.; Miley, G.H.; Jung, J.; Gilligan, J.

    1984-04-01

    A preliminary assessment of the promise of the Tritium Catalyzed Deuterium (TCD) tokamak power reactors relative to that of deuterium-tritium (D-T) and catalyzed deuterium (Cat-D) tokamaks is undertaken. The TCD mode of operation is arrived at by converting the /sup 3/He from the D(D,n)/sup 3/He reaction into tritium, by neutron capture in the blanket; the tritium thus produced is fed into the plasma. There are three main parts to the assessment: blanket study, reactor design and economic analysis and an assessment of the prospects for improvements in the performance of TCD reactors (and in the promise of the TCD mode of operation, in general).

  2. Manganese Catalyzed C-H Halogenation.

    PubMed

    Liu, Wei; Groves, John T

    2015-06-16

    The remarkable aliphatic C-H hydroxylations catalyzed by the heme-containing enzyme, cytochrome P450, have attracted sustained attention for more than four decades. The effectiveness of P450 enzymes as highly selective biocatalysts for a wide range of oxygenation reactions of complex substrates has driven chemists to develop synthetic metalloporphyrin model compounds that mimic P450 reactivity. Among various known metalloporphyrins, manganese derivatives have received considerable attention since they have been shown to be versatile and powerful mediators for alkane hydroxylation and olefin epoxidation. Mechanistic studies have shown that the key intermediates of the manganese porphyrin-catalyzed oxygenation reactions include oxo- and dioxomanganese(V) species that transfer an oxygen atom to the substrate through a hydrogen abstraction/oxygen recombination pathway known as the oxygen rebound mechanism. Application of manganese porphyrins has been largely restricted to catalysis of oxygenation reactions until recently, however, due to ultrafast oxygen transfer rates. In this Account, we discuss recently developed carbon-halogen bond formation, including fluorination reactions catalyzed by manganese porphyrins and related salen species. We found that biphasic sodium hypochlorite/manganese porphyrin systems can efficiently and selectively convert even unactivated aliphatic C-H bonds to C-Cl bonds. An understanding of this novel reactivity derived from results obtained for the oxidation of the mechanistically diagnostic substrate and radical clock, norcarane. Significantly, the oxygen rebound rate in Mn-mediated hydroxylation is highly correlated with the nature of the trans-axial ligands bound to the manganese center (L-Mn(V)═O). Based on the ability of fluoride ion to decelerate the oxygen rebound step, we envisaged that a relatively long-lived substrate radical could be trapped by a Mn-F fluorine source, effecting carbon-fluorine bond formation. Indeed, this idea

  3. Bond Issues.

    ERIC Educational Resources Information Center

    Pollack, Rachel H.

    2000-01-01

    Notes trends toward increased borrowing by colleges and universities and offers guidelines for institutions that are considering issuing bonds to raise money for capital projects. Discussion covers advantages of using bond financing, how use of bonds impacts on traditional fund raising, other cautions and concerns, and some troubling aspects of…

  4. Palladium-Catalyzed Arylation of Fluoroalkylamines

    PubMed Central

    Brusoe, Andrew T.; Hartwig, John F.

    2015-01-01

    We report the synthesis of fluorinated anilines by palladium-catalyzed coupling of fluoroalkylamines with aryl bromides and aryl chlorides. The products of these reactions are valuable because anilines typically require the presence of an electron-withdrawing substituent on nitrogen to suppress aerobic or metabolic oxidation, and the fluoroalkyl groups have steric properties and polarity distinct from those of more common electron-withdrawing amide and sulfonamide units. The fluoroalkylaniline products are unstable under typical conditions for C–N coupling reactions (heat and strong base). However, the reactions conducted with the weaker base KOPh, which has rarely been used in cross-coupling to form C–N bonds, occurred in high yield in the presence of a catalyst derived from commercially available AdBippyPhos and [Pd(allyl)Cl]2. Under these conditions, the reactions occur with low catalyst loadings (<0.50 mol % for most substrates) and tolerate the presence of various functional groups that react with the strong bases that are typically used in Pd-catalyzed C–N cross-coupling reactions of aryl halides. The resting state of the catalyst is the phenoxide complex, (BippyPhosPd(Ar)OPh); due to the electron-withdrawing property of the fluoroalkyl substituent, the turnover-limiting step of the reaction is reductive elimination to form the C–N bond. PMID:26065341

  5. Defect structures in deformed F.C.C. metals

    SciTech Connect

    Dai, Y.; Victoria, M.

    1997-08-01

    A high density of small defect clusters, similar to those observed in irradiated or quenched metals, has been observed in the deformed f.c.c. metals Cu, Au and Ni. The preliminary results show that the defect clusters are predominantly stacking fault tetrahedral (SFT). The SFT number density, rather than the size distribution, is deformation dependent. The defect cluster density is greater in the vicinities of dislocation tangles and grain boundaries. Their size distribution is wider than that produced by irradiation with an important number of larger clusters being formed. It is argued that these deformation-produced clusters may play a role in determining the flow stress and work hardening at low deformations.

  6. SiC/C nanocomposites with inverse opal structure.

    PubMed

    Emelchenko, G A; Zhokhov, A A; Masalov, V M; Maximuk, M Yu; Fursova, T N; Bazhenov, A V; Zverkova, I I; Khasanov, S S; Steinman, E A; Tereshenko, A N

    2010-11-26

    The synthesis, morphology, structural and optical characteristics of SiC/C nanocomposites with an inverse opal lattice have been investigated. The samples were prepared by thermochemical treatment of opal matrices filled with carbon compounds which was followed by silicon dioxide dissolution. The samples were studied by electron microscopy, x-ray diffraction, photoluminescence, IR and Raman scattering spectroscopy. The electron microscopy data revealed a highly porous periodic structure which was a three-dimensional replica of the voids of the initial opal lattice. The hexagonal silicon carbide was found to be non-uniformly distributed throughout the volume, its greater part located in the surface layer up to 50 µm deep. The data of x-ray diffraction, IR and Raman scattering spectroscopy enabled us to assume that the composite had hexagonal diamond fragments. The photoluminescence and optical reflection spectra of the composites have been measured. PMID:21030770

  7. Heterocycle Formation via Palladium-Catalyzed C–H Functionalization

    PubMed Central

    Mei, Tian-Sheng; Kou, Lei; Ma, Sandy; Engle, Keary M.; Yu, Jin-Quan

    2016-01-01

    Heterocyclic compounds are ubiquitous in natural products, pharmaceuticals, and agrochemicals. Therefore, the design of novel protocols to construct heterocycles more efficiently is a major area of focus in the organic chemistry. In the past several years, cyclization reactions based upon palladium-catalyzed C–H activation have received substantial attention due to their capacity for expediting heterocycle synthesis. This review discusses strategies for heterocycle synthesis via palladium-catalyzed C–H bond activation and highlights recent examples from the literature. PMID:27397938

  8. New Palladium-Catalyzed Approaches to Heterocycles and Carbocycles

    SciTech Connect

    Qinhua Huang

    2004-12-19

    The tert-butylimines of o-(1-alkynyl)benzaldehydes and analogous pyridinecarbaldehydes have been cyclized under very mild reaction conditions in the presence of I{sub 2}, ICl, PhSeCl, PhSCl and p-O{sub 2}NC{sub 6}H{sub 4}SCl to give the corresponding halogen-, selenium- and sulfur-containing disubstituted isoquinolines and naphthyridines, respectively. Monosubstituted isoquinolines and naphthyridines have been synthesized by the metal-catalyzed ring closure of these same iminoalkynes. This methodology accommodates a variety of iminoalkynes and affords the anticipated heterocycles in moderate to excellent yields. The Pd(II)-catalyzed cyclization of 2-(1-alkynyl)arylaldimines in the presence of various alkenes provides an efficient way to synthesize a variety of 4-(1-alkenyl)-3-arylisoquinolines in moderate to excellent yields. The introduction of an ortho-methoxy group on the arylaldimine promotes the Pd-catalyzed cyclization and stabilizes the resulting Pd(II) intermediate, improving the yields of the isoquinoline products. Highly substituted naphthalenes have been synthesized by the palladium-catalyzed annulation of a variety of internal alkynes, in which two new carbon-carbon bonds are formed in a single step under relatively mild reaction conditions. This method has also been used to synthesize carbazoles, although a higher reaction temperature is necessary. The process involves arylpalladation of the alkyne, followed by intramolecular Heck olefination and double bond isomerization. This method accommodates a variety of functional groups and affords the anticipated highly substituted naphthalenes and carbazoles in good to excellent yields. Novel palladium migratiodarylation methodology for the synthesis of complex fused polycycles has been developed, in which one or more sequential Pd-catalyzed intramolecular migration processes involving C-H activation are employed. The chemistry works best with electron-rich aromatics, which is in agreement with the idea that

  9. Copper-Catalyzed Carbonylative Coupling of Cycloalkanes and Amides.

    PubMed

    Li, Yahui; Dong, Kaiwu; Zhu, Fengxiang; Wang, Zechao; Wu, Xiao-Feng

    2016-06-13

    Carbonylation reactions are a most powerful method for the synthesis of carbonyl-containing compounds. However, most known carbonylation procedures still require noble-metal catalysts and the use of activated compounds and good nucleophiles as substrates. Herein, we developed a copper-catalyzed carbonylative transformation of cycloalkanes and amides. Imides were prepared in good yields by carbonylation of a C(sp(3) )-H bond of the cycloalkane with the amides acting as weak nucleophiles. Notably, this is the first report of copper-catalyzed carbonylative C-H activation. PMID:27167881

  10. Palladium (II/IV) catalyzed cyclopropanation reactions: scope and mechanism

    PubMed Central

    Lyons, Thomas W.

    2009-01-01

    This report describes detailed studies of the scope and mechanism of a new Pd-catalyzed oxidation reaction for the stereospecific conversion of enynes into cyclopropyl ketones. Unlike related PdII/0, Au, and Pt-catalyzed cyclopropane-forming reactions, these transformations proceed with net inversion of geometry with respect to the starting alkene. This result, along with other mechanistic data, is consistent with a PdII/IV mechanism in which the key cyclopropane-forming step involves nucleophilic attack of a tethered olefin onto the PdIV–C bond. PMID:20161134

  11. A Simple Test to Determine the Effectiveness of Different Braze Compositions for Joining Ti-Tubes to C/C Composite Plates

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Singh, Mrityunjay; Shpargel, Tarah; Asthana, Rajiv

    2006-01-01

    A simple tube-plate joint tensile test was implemented to compare the effectiveness of commercial brazes, namely, TiCuNi, TiCuSil, and Cu-ABA, used for bonding Ti-tubes joined to C-C composite plates. The different braze systems yielded different; yet, repeatable results. The Cu-ABA system proved to have about twice the load-carrying ability of the other two systems due to the fact that the bonded area between the braze material and the C-C plate was largest for this system. The orientation of the surface fiber tows also had a significant effect on load-carrying ability with tows oriented perpendicular to the tube axis displaying the highest failure loads. Increasing the process load and modifying the surface of the C-C plate by grooving out channels for the Ti-Tube to nest in resulted in increased load-carrying ability for the TiCuSil and Cu-ABA systems due to increased bonded area and better penetration of the braze material into the C-C composite.

  12. Catalyzed Ceramic Burner Material

    SciTech Connect

    Barnes, Amy S., Dr.

    2012-06-29

    Catalyzed combustion offers the advantages of increased fuel efficiency, decreased emissions (both NOx and CO), and an expanded operating range. These performance improvements are related to the ability of the catalyst to stabilize a flame at or within the burner media and to combust fuel at much lower temperatures. This technology has a diverse set of applications in industrial and commercial heating, including boilers for the paper, food and chemical industries. However, wide spread adoption of catalyzed combustion has been limited by the high cost of precious metals needed for the catalyst materials. The primary objective of this project was the development of an innovative catalyzed burner media for commercial and small industrial boiler applications that drastically reduce the unit cost of the catalyzed media without sacrificing the benefits associated with catalyzed combustion. The scope of this program was to identify both the optimum substrate material as well as the best performing catalyst construction to meet or exceed industry standards for durability, cost, energy efficiency, and emissions. It was anticipated that commercial implementation of this technology would result in significant energy savings and reduced emissions. Based on demonstrated achievements, there is a potential to reduce NOx emissions by 40,000 TPY and natural gas consumption by 8.9 TBtu in industries that heavily utilize natural gas for process heating. These industries include food manufacturing, polymer processing, and pulp and paper manufacturing. Initial evaluation of commercial solutions and upcoming EPA regulations suggests that small to midsized boilers in industrial and commercial markets could possibly see the greatest benefit from this technology. While out of scope for the current program, an extension of this technology could also be applied to catalytic oxidation for volatile organic compounds (VOCs). Considerable progress has been made over the course of the grant

  13. Gold-catalyzed efficient formation of alkenyl enol esters/carbonates from trimethylsilylmethyl-substituted propargyl esters/carbonates.

    PubMed

    Wang, Shaozhong; Zhang, Liming

    2006-09-28

    A gold-catalyzed efficient method for the preparation of alkenyl enol esters/carbonates is developed. Besides the mild reaction conditions and high catalytic efficiency, the excellent E-selectivity of the nonenolic double bond is remarkable. PMID:16986956

  14. Half-sandwich rare-earth-catalyzed olefin polymerization, carbometalation, and hydroarylation.

    PubMed

    Nishiura, Masayoshi; Guo, Fang; Hou, Zhaomin

    2015-08-18

    -site catalysts. This Account is intended to give an overview of our recent studies on organo rare-earth catalysis, in particular the synthesis and application of half-sandwich rare-earth alkyl complexes bearing monocyclopentadienyl ligands for olefin polymerization, carbometalation, and hydroarylation. Treatment of half-sandwich rare-earth dialkyl complexes having the general formula CpMR2 with an equimolar amount of an appropriate borate compound such as [Ph3C][B(C6F5)4] can generate the corresponding cationic monoalkyl species, which serve as excellent single-site catalysts for the polymerization and copolymerization of a wide range of olefin monomers such as ethylene, 1-hexene, styrene, conjugated and nonconjugated dienes, and cyclic olefins. The cationic half-sandwich rare-earth alkyl complexes can also catalyze the regio- and stereoselective alkylative alumination of alkenes and alkynes through insertion of the unsaturated C-C bond into the metal-alkyl bond followed by transmetalation between the resulting new alkyl or alkenyl species and an alkylaluminum compound. Moreover, a combination of deprotonative C-H bond activation of appropriate organic compounds such as anisoles and pyridines by the rare-earth alkyl species and insertion of alkenes into the resulting new metal-carbon bond can lead to catalytic C-H bond alkylation of the organic substrates. Most of these transformations are unique to the rare-earth catalysts with selectivity and functional group tolerance different from those of late-transition-metal catalysts. PMID:26214733

  15. JMS Proxy and C/C++ Client SDK

    NASA Technical Reports Server (NTRS)

    Wolgast, Paul; Pechkam, Paul

    2007-01-01

    JMS Proxy and C/C++ Client SDK (JMS signifies "Java messaging service" and "SDK" signifies "software development kit") is a software package for developing interfaces that enable legacy programs (here denoted "clients") written in the C and C++ languages to communicate with each other via a JMS broker. This package consists of two main components: the JMS proxy server component and the client C library SDK component. The JMS proxy server component implements a native Java process that receives and responds to requests from clients. This component can run on any computer that supports Java and a JMS client. The client C library SDK component is used to develop a JMS client program running in each affected C or C++ environment, without need for running a Java virtual machine in the affected computer. A C client program developed by use of this SDK has most of the quality-of-service characteristics of standard Java-based client programs, including the following: Durable subscriptions; Asynchronous message receipt; Such standard JMS message qualities as "TimeToLive," "Message Properties," and "DeliveryMode" (as the quoted terms are defined in previously published JMS documentation); and Automatic reconnection of a JMS proxy to a restarted JMS broker.

  16. Institutional Bonding.

    ERIC Educational Resources Information Center

    Allard, M. June

    Institutional bonding was examined at a public, urban commuter college with exceptionally high attrition and visibly low morale. Changes in bonding and attrition were measured 6 years after a 2-year effort to develop school identity and student feelings of membership. It was found that a simple index of campus morale is provided by level of…

  17. Actinide-Catalyzed Intermolecular Addition of Alcohols to Carbodiimides.

    PubMed

    Batrice, Rami J; Kefalidis, Christos E; Maron, Laurent; Eisen, Moris S

    2016-02-24

    The unprecedented actinide-catalyzed addition of alcohols to carbodiimides is presented. This represents a rare example of thorium-catalyzed transformations of an alcoholic substrate and the first example of uranium complexes showing catalytic reactivity with alcohols. Using the uranium and thorium amides U[N(SiMe3)2]3 and [(Me3Si)2N]2An[κ(2)-(N,C)-CH2Si(CH3)2N(SiMe3)] (An = Th or U), alcohol additions to unsaturated carbon-nitrogen bonds are achieved in short reaction times with excellent selectivities and high to excellent yields. Computational studies, supported by experimental thermodynamic data, suggest plausible models of the profile of the reaction which allow the system to overcome the high barrier of scission of the actinide-oxygen bond. Accompanied by experimentally determined kinetic parameters, a plausible mechanism is proposed for the catalytic cycle. PMID:26844823

  18. Formation of phosphonester bonds catalyzed by DNA polymerase.

    PubMed Central

    Victorova, L S; Dyatkina, N B; Mozzherin DJu; Atrazhev, A M; Krayevsky, A A; Kukhanova, M K

    1992-01-01

    3'-Fluoro-2',3'-dideoxythymidine 5'-(alpha-methylphosphonyl)-beta,gamma- diphosphate and 2'-deoxythymidine-5'-(alpha-methylphosphonyl)-beta, gamma- diphosphate have been synthesized. Both compounds are incorporated into DNA chains during catalysis by reverse transcriptases of human immunodeficiency (HIV) and avian myeloblastosis (AMV) viruses, DNA polymerase beta from rat liver, terminal deoxynucleotidyl transferase from calf thymus and (at a very low rate) is by E. coli DNA polymerase I, Klenow fragment. The first compound is a termination substrate while the second is capable of multiple incorporation into the DNA chains. For instance, reverse transcriptase catalysis resulted in the appearance of 8 residues of second compound. DNA polymerases alpha and epsilon from human placenta incorporated none of the above compounds into DNA chains, although an inhibition of DNA synthesis by both compounds was observed with all enzymes mentioned. The 3'----5'-exonuclease activity of DNA polymerase I, Klenow fragment, hydrolyzed DNA fragments containing phosphonomethyl internucleoside groups, while such DNA fragments were resistant to the E. coli exonuclease III. Images PMID:1371865

  19. Copper-catalyzed trifluoromethylation of trisubstituted allylic and homoallylic alcohols.

    PubMed

    Lei, Jian; Liu, Xiaowu; Zhang, Shaolin; Jiang, Shuang; Huang, Minhao; Wu, Xiaoxing; Zhu, Qiang

    2015-04-27

    An efficient copper-catalyzed trifluoromethylation of trisubstituted allylic and homoallylic alcohols with Togni's reagent has been developed. This strategy, accompanied by a double-bond migration, leads to various branched CF3-substituted alcohols by using readily available trisubstituted cyclic/acyclic alcohols as substrates. Moreover, for alcohols in which β-H elimination is prohibited, CF3-containing oxetanes are isolated as the sole product. PMID:25810003

  20. Copper-catalyzed olefinic C-H difluoroacetylation of enamides.

    PubMed

    Caillot, Gilles; Dufour, Jérémy; Belhomme, Marie-Charlotte; Poisson, Thomas; Grimaud, Laurence; Pannecoucke, Xavier; Gillaizeau, Isabelle

    2014-06-01

    Copper-catalyzed olefinic difluoroacetylation of enamides via direct C-H bond functionalization using BrCF2CO2Et is reported for the first time. It constitutes an efficient radical-free method for the regioselective synthesis of β-difluoroester substituted enamides which exhibits broad substrate scope, and thus demonstrates its potent application in a late stage fluorination strategy. PMID:24760345

  1. Thioether bond formation by SPASM domain radical SAM enzymes: Cα H-atom abstraction in subtilosin A biosynthesis.

    PubMed

    Benjdia, Alhosna; Guillot, Alain; Lefranc, Benjamin; Vaudry, Hubert; Leprince, Jérôme; Berteau, Olivier

    2016-05-01

    AlbA is a radical SAM enzyme catalyzing the formation of three unusual thioether bonds in the antibiotic subtilosin A. We demonstrate here that AlbA catalyzes direct Cα H-atom abstraction and likely contains three essential [4Fe-4S] centers. This leads us to propose novel mechanistic perspectives for thioether bond catalysis by radical SAM enzymes. PMID:27087315

  2. Luminescent Iridium(III) Complexes Supported by N-Heterocyclic Carbene-based C^C^C-Pincer Ligands and Aromatic Diimines

    NASA Astrophysics Data System (ADS)

    Chung, Lai-Hon; Lo, Hoi-Shing; Ng, Sze-Wing; Ma, Dik-Lung; Leung, Chung-Hang; Wong, Chun-Yuen

    2015-10-01

    Iridium(III) hydrido complexes containing N-heterocyclic carbene (NHC)-based pincer ligand 1,3-bis(1-butylimidazolin-2-ylidene)phenyl anion (C1^C^C1) or 1,3-bis(3-butylbenzimidazolin-2-ylidene)phenyl anion (C2^C^C2) and aromatic diimine (2,2‧-bipyridine (bpy), 1,10-phenanthroline (phen), 4,4‧-dimethyl-2,2‧-bipyridine (Me2bpy), or dipyrido-[3,2-f:2‧,3‧-h]-quinoxaline (dpq)) in the form of [Ir(C^C^C)(N^N)(H)]+ have been prepared. Crystal structures for these complexes show that the Ir-CNHC distances are 2.043(5)-2.056(5) Å. The hydride chemical shifts for complexes bearing C1^C^C1 (-20.6 to -20.3 ppm) are more upfield than those with C2^C^C2 (-19.5 and -19.2 ppm), revealing that C1^C^C1 is a better electron donor than C2^C^C2. Spectroscopic comparisons and time-dependent density functional theory (TD-DFT) calculations suggest that the lowest-energy electronic transition associated with these complexes (λ = 340-530 nm (ɛ ≤ 103 dm3 mol-1 cm-1)) originate from a dπ(IrIII) → π*(N^N) metal-to-ligand charge transfer transition, where the dπ(IrIII) level contain significant contribution from the C^C^C ligands. All these complexes are emissive in the yellow-spectral region (553-604 nm in CH3CN and CH2Cl2) upon photo-excitation with quantum yields of 10-3-10-1.

  3. Luminescent Iridium(III) Complexes Supported by N-Heterocyclic Carbene-based C^C^C-Pincer Ligands and Aromatic Diimines

    PubMed Central

    Chung, Lai-Hon; Lo, Hoi-Shing; Ng, Sze-Wing; Ma, Dik-Lung; Leung, Chung-Hang; Wong, Chun-Yuen

    2015-01-01

    Iridium(III) hydrido complexes containing N-heterocyclic carbene (NHC)-based pincer ligand 1,3-bis(1-butylimidazolin-2-ylidene)phenyl anion (C1^C^C1) or 1,3-bis(3-butylbenzimidazolin-2-ylidene)phenyl anion (C2^C^C2) and aromatic diimine (2,2′-bipyridine (bpy), 1,10-phenanthroline (phen), 4,4′-dimethyl-2,2′-bipyridine (Me2bpy), or dipyrido-[3,2-f:2′,3′-h]-quinoxaline (dpq)) in the form of [Ir(C^C^C)(N^N)(H)]+ have been prepared. Crystal structures for these complexes show that the Ir–CNHC distances are 2.043(5)–2.056(5) Å. The hydride chemical shifts for complexes bearing C1^C^C1 (−20.6 to −20.3 ppm) are more upfield than those with C2^C^C2 (−19.5 and −19.2 ppm), revealing that C1^C^C1 is a better electron donor than C2^C^C2. Spectroscopic comparisons and time-dependent density functional theory (TD-DFT) calculations suggest that the lowest-energy electronic transition associated with these complexes (λ = 340–530 nm (ε ≤ 103 dm3 mol−1 cm−1)) originate from a dπ(IrIII) → π*(N^N) metal-to-ligand charge transfer transition, where the dπ(IrIII) level contain significant contribution from the C^C^C ligands. All these complexes are emissive in the yellow-spectral region (553–604 nm in CH3CN and CH2Cl2) upon photo-excitation with quantum yields of 10−3–10−1. PMID:26487542

  4. A Novel Strategy for Preparation of Si-HA Coatings on C/C Composites by Chemical Liquid Vaporization Deposition/Hydrothermal Treatments.

    PubMed

    Xin-Bo, Xiong; Xin-Ye, Ni; Ya-Yun, Li; Cen-Cen, Chu; Ji-Zhao, Zou; Xie-Rong, Zeng

    2016-01-01

    A novel strategy for the preparation of Si-doped hydroxyapatite (Si-HA) coatings on H2O2-treated carbon/carbon composites (C/C) was developed. HA coating was prepared on C/C through chemical liquid vaporization deposition (CLVD)/hydrothermal treatment. HA coating was immersed in an H2SiO3 solution at an autoclave at 413 K for transformation into Si-HA coating. The effects of H2SiO3 mass contents on the phase, morphology, and composition of the Si-HA coatings were studied through SEM, EDS,XRD, and FTIR. Their bonding performance to C/C was measured through a scratch test. Under the optimal content condition, the in vitro skull osteoblast response behaviors of the Si-HA coating were evaluated. Results showed that SiO3(2-) could enter into the HA lattice and occupy the PO4(3-) sites. Doped SiO3(2-) significantly improved the bonding performance of the HA coating to C/C in comparison with the untreated HA. The adhesive strength of the coatings initially increased and then decreased with increasing H2SiO3 content. Meanwhile, the cohesive strength of the Si-HA coatings was almost nearly identical. The Si-HA coating achieved at a content of 90% H2SiO3 exhibited the best bonding performance, and its osteoblast compatibility in vitro was superior to that of the untreated HA coating on C/C through CLVD/hydrothermal treatment. PMID:27492664

  5. A Novel Strategy for Preparation of Si-HA Coatings on C/C Composites by Chemical Liquid Vaporization Deposition/Hydrothermal Treatments

    PubMed Central

    Xin-bo, Xiong; Xin-ye, Ni; Ya-yun, Li; Cen-cen, Chu; Ji-zhao, Zou; Xie-rong, Zeng

    2016-01-01

    A novel strategy for the preparation of Si-doped hydroxyapatite (Si-HA) coatings on H2O2-treated carbon/carbon composites (C/C) was developed. HA coating was prepared on C/C through chemical liquid vaporization deposition (CLVD)/hydrothermal treatment. HA coating was immersed in an H2SiO3 solution at an autoclave at 413 K for transformation into Si-HA coating. The effects of H2SiO3 mass contents on the phase, morphology, and composition of the Si-HA coatings were studied through SEM, EDS,XRD, and FTIR. Their bonding performance to C/C was measured through a scratch test. Under the optimal content condition, the in vitro skull osteoblast response behaviors of the Si-HA coating were evaluated. Results showed that SiO32− could enter into the HA lattice and occupy the PO43− sites. Doped SiO32− significantly improved the bonding performance of the HA coating to C/C in comparison with the untreated HA. The adhesive strength of the coatings initially increased and then decreased with increasing H2SiO3 content. Meanwhile, the cohesive strength of the Si-HA coatings was almost nearly identical. The Si-HA coating achieved at a content of 90% H2SiO3 exhibited the best bonding performance, and its osteoblast compatibility in vitro was superior to that of the untreated HA coating on C/C through CLVD/hydrothermal treatment. PMID:27492664

  6. A Novel Strategy for Preparation of Si-HA Coatings on C/C Composites by Chemical Liquid Vaporization Deposition/Hydrothermal Treatments

    NASA Astrophysics Data System (ADS)

    Xin-Bo, Xiong; Xin-Ye, Ni; Ya-Yun, Li; Cen-Cen, Chu; Ji-Zhao, Zou; Xie-Rong, Zeng

    2016-08-01

    A novel strategy for the preparation of Si-doped hydroxyapatite (Si-HA) coatings on H2O2-treated carbon/carbon composites (C/C) was developed. HA coating was prepared on C/C through chemical liquid vaporization deposition (CLVD)/hydrothermal treatment. HA coating was immersed in an H2SiO3 solution at an autoclave at 413 K for transformation into Si-HA coating. The effects of H2SiO3 mass contents on the phase, morphology, and composition of the Si-HA coatings were studied through SEM, EDS,XRD, and FTIR. Their bonding performance to C/C was measured through a scratch test. Under the optimal content condition, the in vitro skull osteoblast response behaviors of the Si-HA coating were evaluated. Results showed that SiO32‑ could enter into the HA lattice and occupy the PO43‑ sites. Doped SiO32‑ significantly improved the bonding performance of the HA coating to C/C in comparison with the untreated HA. The adhesive strength of the coatings initially increased and then decreased with increasing H2SiO3 content. Meanwhile, the cohesive strength of the Si-HA coatings was almost nearly identical. The Si-HA coating achieved at a content of 90% H2SiO3 exhibited the best bonding performance, and its osteoblast compatibility in vitro was superior to that of the untreated HA coating on C/C through CLVD/hydrothermal treatment.

  7. Copper-Catalyzed (2+1) Annulation of Acetophenones with Maleimides: Direct Synthesis of Cyclopropanes.

    PubMed

    Manna, Srimanta; Antonchick, Andrey P

    2015-12-01

    A practical copper-catalyzed direct oxidative cyclopropanation of electron-deficient alkenes with acetophenone derivatives is reported. The dehydrogenative annulation involves a double C-H bond functionalization at the α-position of the ketone using di-tert-butyl peroxide as oxidant. The broad scope of the reaction and excellent functional-group tolerance is demonstrated for the stereoselective synthesis of fused cyclopropanes. The developed transformation revealed an unprecedented reactivity for copper-catalyzed processes. PMID:26094848

  8. Ablation properties of C/C-SiC composites tested on an arc heater

    NASA Astrophysics Data System (ADS)

    Yin, Jian; Zhang, Hongbo; Xiong, Xiang; Zuo, Jinglv; Tao, Huijin

    2011-11-01

    Carbon fiber-reinforced carbon and silicon carbide (C/C-SiC) composites were fabricated by a combination of chemical vapor infiltration and liquid silicon infiltration. Ablation properties of C/C-SiC composites and C/C composites with similar technique were tested on a high-pressure arc heater. The results show that ablation properties of C/C-SiC composites are more severe than those of C/C composites. Ablation of C/C-SiC composites includes oxidation, sublimation of SiC (Si), and mechanical denudation. Oxidation and sublimation of SiC (Si) lead to the enlarged ablation rates between carbon fibers and matrices, which finally cause serious ablation of C/C-SiC composites.

  9. Palladium-Catalyzed Aminocarbonylation of Allylic Alcohols.

    PubMed

    Li, Haoquan; Neumann, Helfried; Beller, Matthias

    2016-07-11

    A benign and efficient palladium-catalyzed aminocarbonylation reaction of allylic alcohols is presented. The generality of this novel process is demonstrated by the synthesis of β,γ-unsaturated amides including aliphatic, cinnamyl, and terpene derivatives. The choice of ligand is crucial for optimal carbonylation processes: Whereas in most cases the combination of PdCl2 with Xantphos (L6) gave best results, sterically hindered substrates performed better in the presence of simple triphenylphosphine (L10), and primary anilines gave the best results using cataCXium® PCy (L8). The reactivity of the respective catalyst system is significantly enhanced by addition of small amounts of water. Mechanistic studies and control experiments revealed a tandem allylic alcohol amination/C-N bond carbonylation reaction sequence. PMID:27283958

  10. Rhodium-Catalyzed Alkene Difunctionalization with Nitrenes.

    PubMed

    Ciesielski, Jennifer; Dequirez, Geoffroy; Retailleau, Pascal; Gandon, Vincent; Dauban, Philippe

    2016-06-27

    The Rh(II) -catalyzed oxyamination and diamination of alkenes generate 1,2-amino alcohols and 1,2-diamines, respectively, in good to excellent yields and with complete regiocontrol. In the case of diamination, the intramolecular reaction provides an efficient method for the preparation of pyrrolidines, and the intermolecular reaction produces vicinal amines with orthogonal protecting groups. These alkene difunctionalizations proceed by aziridination followed by nucleophilic ring opening induced by an Rh-bound nitrene generated in situ, details of which were uncovered by both experimental and theoretical studies. In particular, DFT calculations show that the nitrogen atom of the putative [Rh]2 =NR metallanitrene intermediate is electrophilic and support an aziridine activation pathway by N⋅⋅⋅N=[Rh]2 bond formation, in addition to the N⋅⋅⋅[Rh]2 =NR coordination mode. PMID:27258005

  11. Glucosamine condensation catalyzed by 1-ethyl-3-methylimidazolium acetate: mechanistic insight from NMR spectroscopy.

    PubMed

    Jia, Lingyu; Pedersen, Christian Marcus; Qiao, Yan; Deng, Tiansheng; Zuo, Pingping; Ge, Wenzhi; Qin, Zhangfeng; Hou, Xianglin; Wang, Yingxiong

    2015-09-21

    The basic ionic liquid 1-ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]) could efficiently catalyze the conversion of 2-amino-2-deoxy-d-glucose (GlcNH2) into deoxyfructosazine (DOF) and fructosazine (FZ). Mechanistic investigation by NMR studies disclosed that [C2C1Im][OAc], exhibiting strong hydrogen bonding basicity, could coordinate with the hydroxyl and amino groups of GlcNH2via the promotion of hydrogen bonding in bifunctional activation of substrates and further catalyzing product formation, based on which a plausible reaction pathway involved in this homogeneous base-catalyzed reaction was proposed. Hydrogen bonding as an activation force, therefore, is responsible for the remarkable selectivity and rate enhancement observed. PMID:26278065

  12. Pd/C catalyzed Suzuki-Miyaura cross coupling reaction: Is it heterogeneous or homogeneous?

    NASA Astrophysics Data System (ADS)

    Hoang, Tony Phuc

    The Suzuki-Miyaura cross-coupling reaction is a popular industrial method of creating covalent bonds between two carbons. This reaction can be catalyzed by a myriad of palladium catalyst including heterogeneous and homogeneous. The objective of this research is to study whether the Suzuki cross coupling reaction catalyzed by solid supported palladium catalysts is truly heterogeneous in nature (i.e. does the reaction occurs on the surface of the catalyst or does palladium leach from the solid support and catalyze the reaction in a homogenous manner).

  13. An Expeditious Synthesis of Sialic Acid Derivatives by Copper(I)-Catalyzed Stereodivergent Propargylation of Unprotected Aldoses.

    PubMed

    Wei, Xiao-Feng; Shimizu, Yohei; Kanai, Motomu

    2016-01-27

    We developed a copper(I)-catalyzed stereodivergent anomeric propargylation of unprotected aldoses as a facile synthetic pathway to a broad variety of sialic acid derivatives. The soft allenylcopper(I) species, catalytically generated from stable allenylboronic acid pinacolate (2), is unusually inert to protonolysis by the multiple hydroxy groups of the substrates and thereby functions as a carbon nucleophile. The key additive B(OMe)3 facilitated ring-opening of the nonelectrophilic cyclic hemiacetal forms of aldoses to the reactive aldehyde forms. The chirality of the catalyst, and not the internal stereogenic centers of substrates, predominantly controlled the stereochemistry of the propargylation step; i.e., the diastereoselectivity was switched simply by changing the catalyst chirality. This is the first nonenzyme catalyst-controlled stereodivergent C-C bond elongation at the anomeric center of unprotected aldoses, which contain multiple protic functional groups and stereogenic centers. The propargylation products can be expeditiously transformed into naturally occurring and synthetic sialic acid derivatives in a simple three-step sequence. This synthetic method, which requires no protecting groups, can be performed on a gram-scale and thus offers general and practical access to various sialic acid derivatives from unprotected aldoses. PMID:27163022

  14. Theoretical study of the bond dissociation energies of methanol

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Walch, Stephen P.

    1992-01-01

    A theoretical study of the bond dissociation energies for H2O and CH3OH is presented. The C-H and O-H bond energies are computed accurately with the modified coupled-pair functional method using a large basis set. For these bonds, an accuracy of +/- 2 kcal/mol is achieved, which is consistent with the C-H and C-C single bond energies of other molecules. The C-O bond is much more difficult to compute accurately because it requires higher levels of correlation treatment and more extensive one-particle basis sets.

  15. Metal Azolate/Carboxylate Frameworks as Catalysts in Oxidative and C-C Coupling Reactions.

    PubMed

    Tăbăcaru, Aurel; Xhaferaj, Nertil; Martins, Luísa M D R S; Alegria, Elisabete C B A; Chay, Rogério S; Giacobbe, Carlotta; Domasevitch, Konstantin V; Pombeiro, Armando J L; Galli, Simona; Pettinari, Claudio

    2016-06-20

    The five metal azolate/carboxylate (MAC) compounds [Cd(dmpzc)(DMF)(H2O)] (Cd-dmpzc), [Pd(H2dmpzc)2Cl2] (Pd-dmpzc), [Cu(Hdmpzc)2] (Cu-dmpzc), [Zn4O(dmpzc)3]·Solv (Zn-dmpzc·S), and [Co4O(dmpzc)3]·Solv (Co-dmpzc·S) were isolated by coupling 3,5-dimethyl-1H-pyrazol-4-carboxylic acid (H2dmpzc) to cadmium(II), palladium(II), copper(II), zinc(II), and cobalt(II) salts. While Cd-dmpzc and Pd-dmpzc had never been prepared in the past, for Cu-dmpzc, Zn-dmpzc·S, and Co-dmpzc·S we optimized alternative synthetic paths that, in the case of the copper(II) and cobalt(II) derivatives, are faster and grant higher yields than the previously reported ones. The crystal structure details were determined ab initio (Cd-dmpzc and Pd-dmpzc) or refined (Cu-dmpzc, Zn-dmpzc·S, and Co-dmpzc·S) by means of powder X-ray diffraction (PXRD). While Cd-dmpzc is a nonporous 3D MAC framework, Pd-dmpzc shows a 3D hybrid coordination/hydrogen-bonded network, in which Pd(H2dmpzc)2Cl2 monomers are present. The thermal behavior of the five MAC compounds was investigated by coupling thermal analysis to variable-temperature PXRD. Their catalytic activity was assessed in oxidative and C-C coupling reactions, with the copper(II) and cadmium(II) derivatives being the first nonporous MAC frameworks to be tested as catalysts. Cu-dmpzc is the most active catalyst in the partial oxidation of cyclohexane by tert-butyl hydroperoxide in acetonitrile (yields up to 12% after 9 h) and is remarkably active in the solvent-free microwave-assisted oxidation of 1-phenylethanol to acetophenone (yields up to 99% at 120 °C in only 0.5 h). On the other hand, activated Zn-dmpzc·S (Zn-dmpzc) is the most active catalyst in the Henry C-C coupling reaction of aromatic aldehydes with nitroethane, showing appreciable diastereoselectivity toward the syn-nitroalkanol isomer (syn:anti selectivity up to 79:21). PMID:27266480

  16. Distinguishing Bonds.

    PubMed

    Rahm, Martin; Hoffmann, Roald

    2016-03-23

    The energy change per electron in a chemical or physical transformation, ΔE/n, may be expressed as Δχ̅ + Δ(VNN + ω)/n, where Δχ̅ is the average electron binding energy, a generalized electronegativity, ΔVNN is the change in nuclear repulsions, and Δω is the change in multielectron interactions in the process considered. The last term can be obtained by the difference from experimental or theoretical estimates of the first terms. Previously obtained consequences of this energy partitioning are extended here to a different analysis of bonding in a great variety of diatomics, including more or less polar ones. Arguments are presented for associating the average change in electron binding energy with covalence, and the change in multielectron interactions with electron transfer, either to, out, or within a molecule. A new descriptor Q, essentially the scaled difference between the Δχ̅ and Δ(VNN + ω)/n terms, when plotted versus the bond energy, separates nicely a wide variety of bonding types, covalent, covalent but more correlated, polar and increasingly ionic, metallogenic, electrostatic, charge-shift bonds, and dispersion interactions. Also, Q itself shows a set of interesting relations with the correlation energy of a bond. PMID:26910496

  17. Iodide effects in transition metal catalyzed reactions.

    PubMed

    Maitlis, Peter M; Haynes, Anthony; James, Brian R; Catellani, Marta; Chiusoli, Gian Paolo

    2004-11-01

    The unique properties of I(-) allow it to be involved in several different ways in reactions catalyzed by the late transition metals: in the oxidative addition, the migration, and the coupling/reductive elimination steps, as well as in substrate activation. Most steps are accelerated by I(-)(for example through an increased nucleophilicity of the metal center), but some are retarded, because a coordination site is blocked. The "soft" iodide ligand binds more strongly to soft metals (low oxidation state, electron rich, and polarizable) such as the later and heavier transition metals, than do the other halides, or N- and O-centered ligands. Hence in a catalytic cycle that includes the metal in a formally low oxidation state there will be less tendency for the metal to precipitate (and be removed from the cycle) in the presence of I(-) than most other ligands. Iodide is a good nucleophile and is also easily and reversibly oxidized to I(2). In addition, I(-) can play key roles in purely organic reactions that occur as part of a catalytic cycle. Thus to understand the function of iodide requires careful analysis, since two or sometimes more effects occur in different steps of one single cycle. Each of these topics is illustrated with examples of the influence of iodide from homogeneous catalytic reactions in the literature: methanol carbonylation to acetic acid and related reactions; CO hydrogenation; imine hydrogenation; and C-C and C-N coupling reactions. General features are summarised in the Conclusions. PMID:15510253

  18. Aerobic oxidation reactions catalyzed by vanadium complexes of bis(phenolate) ligands.

    PubMed

    Zhang, Guoqi; Scott, Brian L; Wu, Ruilian; Silks, L A Pete; Hanson, Susan K

    2012-07-01

    Vanadium(V) complexes of the tridentate bis(phenolate)pyridine ligand H(2)BPP (H(2)BPP = 2,6-(HOC(6)H(2)-2,4-(t)Bu(2))(2)NC(5)H(3)) and the bis(phenolate)amine ligand H(2)BPA (H(2)BPA = N,N-bis(2-hydroxy-4,5-dimethylbenzyl)propylamine) have been synthesized and characterized. The ability of the complexes to mediate the oxidative C-C bond cleavage of pinacol was tested. Reaction of the complex (BPP)V(V)(O)(O(i)Pr) (4) with pinacol afforded the monomeric vanadium(IV) product (BPP)V(IV)(O)(HO(i)Pr) (6) and acetone. Vanadium(IV) complex 6 was oxidized rapidly by air at room temperature in the presence of NEt(3), yielding the vanadium(V) cis-dioxo complex [(BPP)V(V)(O)(2)]HNEt(3). Complex (BPA)V(V)(O)(O(i)Pr) (5) reacted with pinacol at room temperature, to afford acetone and the vanadium(IV) dimer [(BPA)V(IV)(O)(HO(i)Pr)](2). Complexes 4 and 5 were evaluated as catalysts for the aerobic oxidation of 4-methoxybenzyl alcohol and arylglycerol β-aryl ether lignin model compounds. Although both 4 and 5 catalyzed the aerobic oxidation of 4-methoxybenzyl alcohol, complex 4 was found to be a more active and robust catalyst for oxidation of the lignin model compounds. The catalytic activities and selectivities of the bis(phenolate) complexes are compared to previously reported catalysts. PMID:22708725

  19. Inhibition of Chemokine (C-C Motif) Receptor 7 Sialylation Suppresses CCL19-Stimulated Proliferation, Invasion and Anti-Anoikis

    PubMed Central

    Su, Mei-Lin; Chang, Tsung-Ming; Chiang, Chi-Hsiang; Chang, Han-Chen; Hou, Ming-Feng; Li, Wen-Shan; Hung, Wen-Chun

    2014-01-01

    Chemokine (C-C motif) receptor 7 (CCR7) is involved in lymph-node homing of naive and regulatory T cells and lymphatic metastasis of cancer cells. Sialic acids comprise a group of monosaccharide units that are added to the terminal position of the oligosaccharide chain of glycoproteins by sialyation. Recent studies suggest that aberrant sialylation of receptor proteins contributes to proliferation, motility, and drug resistance of cancer cells. In this study, we addressed whether CCR7 is a sialylated receptor protein and tried to elucidate the effect of sialylation in the regulation of signal transduction and biological function of CCR7. Our results demonstrated that α-2, 3-sialyltransferase which catalyze sialylation reaction in vivo was overexpressed in breast tumor tissues and cell lines. Lectin blot analysis clearly demonstrated that CCR7 receptor was sialyated in breast cancer cells. Chemokine (C-C motif) ligand 19 (CCL19), the cognate ligand for CCR7, induced the activation of extracellular signal-regulated kinase (ERK) and AKT signaling and increased the expression of cell cycle regulatory proteins and proliferation of breast cancer cells. When cells were pre-treated with a sialyltransferase inhibitor AL10 or sialidase, CCL19-induced cell growth was significantly suppressed. CCL19 also increased invasion and prevented anoikis by up-regulating pro-survival proteins Bcl-2 and Bcl-xL. Inhibition of sialylation by AL10 totally abolished these effects. Finally, we showed that AL10 inhibited tumorigenicity of breast cancer in experimental animals. Taken together, we demonstrate for the first time that CCR7 receptor is a sialylated protein and sialylation is important for the paracrine stimulation by its endogenous ligand CCL19. In addition, inhibition of aberrant sialylation of CCR7 suppresses proliferation and invasion and triggers anoikis in breast cancer cells. Targeting of sialylation enzymes may be a novel strategy for breast cancer treatment. PMID:24915301

  20. Yankee bonds

    SciTech Connect

    Delaney, P. )

    1993-10-01

    Yankee and Euromarket bonds may soon find their way into the financing of power projects in Latin America. For developers seeking long-term commitments under build, own, operate, and transfer (BOOT) power projects in Latin America, the benefits are substantial.

  1. Bond energy analysis revisited and designed toward a rigorous methodology

    NASA Astrophysics Data System (ADS)

    Nakai, Hiromi; Ohashi, Hideaki; Imamura, Yutaka; Kikuchi, Yasuaki

    2011-09-01

    The present study theoretically revisits and numerically assesses two-body energy decomposition schemes including a newly proposed one. The new decomposition scheme is designed to make the equilibrium bond distance equivalent with the minimum point of bond energies. Although the other decomposition schemes generally predict the wrong order of the C-C bond strengths of C2H2, C2H4, and C2H6, the new decomposition scheme is capable of reproducing the C-C bond strengths. Numerical assessment on a training set of molecules demonstrates that the present scheme exhibits a stronger correlation with bond dissociation energies than the other decomposition schemes do, which suggests that the new decomposition scheme is a reliable and powerful analysis methodology.

  2. C-H and C-C clumping in ethane by high-resolution mass spectrometry

    NASA Astrophysics Data System (ADS)

    Clog, M. D.; Eiler, J. M.

    2014-12-01

    Ethane (C2H6) is an important natural compound, and its geochemistry can be studied through 13C-13C, 13C-D and/or D-D clumping. Such measurements are potentially important both as a stepping stone towards the study of more complex organic molecules and, in its own regard, to understand processes controlling the generation, migration and destruction of natural gas. Isotopic clumping on C-C and C-H bonds could be influenced by thermodynamics, chemical kinetics, diffusion or gas mixing. Previous work showed that 13C-D clumping in methane generally reflects equilibrium and provides a measure of formation temperature (Stolper et al 2014a), whereas 13C-13C clumping in ethane is likely most controlled by chemical-kinetic processes and/or inheritance from the isotopic structure of source organic compounds (Clog et al 2014). 13C-D clumping in ethane has the potential to provide a thermometer for its synthesis, as it does for methane. However, the difference in C-H bond dissociation energy for these two compounds may suggest a lower 'blocking temperature' for this phenomenon in ethane (the blocking temperature for methane is ≥~250 C in geological conditions). We present analytical techniques to measure both 13C-13C and 13C-D clumping in ethane, using a novel two-instrument technique, including both the Thermo 253-Ultra and the Thermo DFS. In this method, the Ultra is used to measure the relative abundances of combinations nearly isobaric isotopologues: (13C12CH6 + 12C2DH5)/12C2H6 and (13C2H6 + 12C13CDH5)/12C2H6, free of other isobaric interferences like O2. The DFS, a very high resolution single-collector instrument, is then used to measure the ratios of isotopologues of ethane at a single cardinal mass: 12C2DH5/13C12CH6, and 12C13CDH5/13C2H6, with precisions of ~1 permil. Those 4 measurements allow us to calculate the bulk isotopic composition (D and 13C) as well as the abundance of 13C2H6 and 13C12CDH5. We also present progress on the development of software tools

  3. Synthesis of 3,4-Disubstituted 2H-Benzopyrans Through C-C Bond Formation via Electrophilic Cyclization

    PubMed Central

    Worlikar, Shilpa A.; Kesharwani, Tanay; Yao, Tuanli; Larock, Richard C.

    2008-01-01

    The electrophilic cyclization of substituted propargylic aryl ethers by I2, ICl and PhSeBr produces 3,4-disubstituted 2H-benzopyrans in excellent yields. This methodology results in vinylic halides or selenides under mild reaction conditions, and tolerates a variety of functional groups, including methoxy, alcohol, aldehyde and nitro groups. PMID:17288382

  4. Reversible Sigma C-C Bond Formation Between Phenanthroline Ligands Activated by (C5Me5)2Yb

    SciTech Connect

    Nocton, Grégory; Lukens, Wayne W.; Booth, Corwin H.; Rozenel, Sergio S.; Medling, Scott A.; Maron, Laurent; Andersen, Richard A.

    2014-06-26

    The electronic structure and associated magnetic properties of the 1,10-phenanthroline adducts of Cp*2Yb are dramatically different from those of the 2,2?-bipyridine adducts. The monomeric phenanthroline adducts are ground state triplets that are based upon trivalent Yb(III), f13, and (phen ) that are only weakly exchange coupled, which is in contrast to the bipyridine adducts whose ground states are multiconfigurational, open-shell singlets in which ytterbium is intermediate valent ( J. Am. Chem. Soc 2009, 131, 6480; J. Am. Chem. Soc 2010, 132, 17537). The origin of these different physical properties is traced to the number and symmetry of the LUMO and LUMO+1 of the heterocyclic diimine ligands. The bipy has only one 1 orbital of b1 symmetry of accessible energy, but phen has two orbitals of b1 and a2 symmetry that are energetically accessible. The carbon p-orbitals have different nodal properties and coefficients and their energies, and therefore their populations change depending on the position and number of methyl substitutions on the ring. A chemical ramification of the change in electronic structure is that Cp 2Yb(phen) is a dimer when crystallized from toluene solution, but a monomer when sublimed at 180190 C. When 3,8-Me2phenanthroline is used, the adduct Cp*2Yb(3,8-Me2phen) exists in the solution in a dimer monomer equilibrium in which G is near zero. The adducts with 3-Me, 4-Me, 5-Me, 3,8-Me2, and 5,6-Me2-phenanthroline are isolated and characterized by solid state X-ray crystallography, magnetic susceptibility and LIII-edge XANES spectroscopy as a function of temperature and variable-temperature 1H NMR spectroscopy.

  5. Efficient Access to Multifunctional Trifluoromethyl Alcohols through Base-Free Catalytic Asymmetric C-C Bond Formation with Terminal Ynamides.

    PubMed

    Cook, Andrea M; Wolf, Christian

    2016-02-01

    The asymmetric addition of terminal ynamides to trifluoromethyl ketones with a readily available chiral zinc catalyst gives CF3 -substituted tertiary propargylic alcohols in up to 99 % yield and 96 % ee. The exclusion of organozinc additives and base as well as the general synthetic utility of the products are key features of this reaction. The value of the β-hydroxy-β-trifluoromethyl ynamides is exemplified by selective transformations to chiral Z- and E-enamides, an amide, and N,O-ketene acetals. The highly regioselective hydration, stereoselective reduction, and hydroacyloxylation reactions proceed with high yields and without erosion of the ee value of the parent β-hydroxy ynamides. PMID:26806871

  6. Visible Light-Induced Radical Rearrangement to Construct C-C Bonds via an Intramolecular Aryl Migration/Desulfonylation Process.

    PubMed

    Li, Yuyuan; Hu, Bei; Dong, Wuheng; Xie, Xiaomin; Wan, Jun; Zhang, Zhaoguo

    2016-08-19

    A highly efficient intramolecular selective aryl migration/desulfonylation of 2-bromo-N-aryl-N-(arenesulfonyl)amide via visible light-induced photoredox catalysis has been accomplished. This approach allows for the construction of a variety of multisubstituted N,2-diarylacetamide under mild reaction conditions. PMID:27351977

  7. Reversible sigma C-C bond formation between phenanthroline ligands activated by (C5Me5)2Yb.

    PubMed

    Nocton, Grégory; Lukens, Wayne W; Booth, Corwin H; Rozenel, Sergio S; Medling, Scott A; Maron, Laurent; Andersen, Richard A

    2014-06-18

    The electronic structure and associated magnetic properties of the 1,10-phenanthroline adducts of Cp*2Yb are dramatically different from those of the 2,2'-bipyridine adducts. The monomeric phenanthroline adducts are ground state triplets that are based upon trivalent Yb(III), f(13), and (phen(•-) ) that are only weakly exchange coupled, which is in contrast to the bipyridine adducts whose ground states are multiconfigurational, open-shell singlets in which ytterbium is intermediate valent ( J. Am. Chem. Soc 2009 , 131 , 6480 ; J. Am. Chem. Soc 2010 , 132 , 17537 ). The origin of these different physical properties is traced to the number and symmetry of the LUMO and LUMO+1 of the heterocyclic diimine ligands. The bipy(•-) has only one π*1 orbital of b1 symmetry of accessible energy, but phen(•-) has two π* orbitals of b1 and a2 symmetry that are energetically accessible. The carbon pπ-orbitals have different nodal properties and coefficients and their energies, and therefore their populations change depending on the position and number of methyl substitutions on the ring. A chemical ramification of the change in electronic structure is that Cp*2Yb(phen) is a dimer when crystallized from toluene solution, but a monomer when sublimed at 180-190 °C. When 3,8-Me2phenanthroline is used, the adduct Cp*2Yb(3,8-Me2phen) exists in the solution in a dimer-monomer equilibrium in which ΔG is near zero. The adducts with 3-Me, 4-Me, 5-Me, 3,8-Me2, and 5,6-Me2-phenanthroline are isolated and characterized by solid state X-ray crystallography, magnetic susceptibility and LIII-edge XANES spectroscopy as a function of temperature and variable-temperature (1)H NMR spectroscopy. PMID:24852897

  8. A first principles study on CVD graphene growth on copper surfaces: C-C bonding reactions at graphene edges

    NASA Astrophysics Data System (ADS)

    Tajima, Nobuo; Kaneko, Tomoaki; Nara, Jun; Takahisa, Ohno

    2015-03-01

    Graphene has attracted considerable research interest owing to its potential application to future electronic devices. Large area and high quality graphene is needed for device applications. Chemical vapor deposition (CVD) using a copper surface with a hydrocarbon source is one of the practical methods to produce graphene. This method is appropriate for creating large area graphene with low cost, and the graphene growth control to obtain a high quality product is a remaining challenge. The carbon atom nucleation and cluster growth processes in the CVD reactions have been studied extensively as key steps that affect the graphene growth behavior. We have been studying the carbon atom reactions in these processes by theoretical approaches In the present study, we have focused on the later stage of CVD reaction, that is, carbon atom reactions at graphene edges by which carbon clusters grow in the Cu-CVD We have found that these reactions have energy barriers of ~1 eV. First principles simulation code PHASE http://www.ciss.iis.u-tokyo.ac.jp/riss/english/project/device/) was used in the theoretical calculations.

  9. Testing of DLR C/C-SiC for HIFiRE 8 Scramjet Combustor

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Capriotti, Diego P.; Reimer, Thomas; Kutemeyer, Marius; Smart, Michael

    2013-01-01

    Ceramic Matrix Composites (CMCs) have been proposed for hot structures in scramjet combustors. Previous studies have calculated significant weight savings by utilizing CMCs (active and passive) versus actively cooled metallic scramjet structures. Both a C/C and a C/C-SiC material system fabricated by DLR (Stuttgart, Germany) are being considered for use in a passively cooled combustor design for HIFiRE 8, a joint Australia / AFRL hypersonic flight program, expected to fly at Mach 7 for approximately 30 sec, at a dynamic pressure of 55 kPa. Flat panels of the DLR C/C and the C/C-SiC were tested in the NASA Langley Direct Connect Rig (DCR) at Mach 5 and Mach 6 enthalpy for several minutes. Gaseous hydrogen fuel was used to fuel the scramjet combustor. The test panels were instrumented with embedded Type K and Type S thermocouples. Zirconia felt insulation was used in some of the tests to increase the surface temperature of the C/C-SiC panel for approximately 350degF. The final C/C-SiC panel was tested for 3 cycles totaling over 135 sec at Mach 6 enthalpy. Slightly more erosion was observed on the C/C panel than the C/C-SiC panels, but both material systems demonstrated acceptable recession performance for the HIFiRE 8 flight.

  10. 77 FR 10004 - C$ cMoney, Inc.; Order of Suspension of Trading

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-21

    ... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION C$ cMoney, Inc.; Order of Suspension of Trading February 16, 2012. It appears to the Securities... securities of C$ cMoney, Inc. (``cMoney'') because of questions regarding the accuracy of assertions by...

  11. A Dynamic Pathway for Stone-Wales Bond Rotation on Carbon Nanotubes through Diamond-Like Bonds

    NASA Technical Reports Server (NTRS)

    Wei, Chen-Yu; Srivastava, Deepak; Cho, Kyeong-Jae; Menon, Madhu

    2003-01-01

    A new lower energy barrier with a two-step pathway of Stone-Wales (SW) ,ond rotation on carbon nanotubes (CNTs) is found through molecular dynamics (MD) simulations of CNTs under tension. The first step involves going over to a stable sp3-like metastable configuration with half rotated and partially tilted C-C bond. The second step involves going over to the fully rotated C-C bond with the formation of a SW defect in the nanotube. The energy barrier for this two-step dynamic pathway is significantly lower than the previously known static barrier for in-plane rotation of the C-C bond on a tensile strained (> 4%) CNT.

  12. Advances in metal-catalyzed cross-coupling reactions of halogenated quinazolinones and their quinazoline derivatives.

    PubMed

    Mphahlele, Malose Jack; Maluleka, Marole Maria

    2014-01-01

    Halogenated quinazolinones and quinazolines are versatile synthetic intermediates for the metal-catalyzed carbon-carbon bond formation reactions such as the Kumada, Stille, Negishi, Sonogashira, Suzuki-Miyaura and Heck cross-coupling reactions or carbon-heteroatom bond formation via the Buchwald-Hartwig cross-coupling to yield novel polysubstituted derivatives. This review presents an overview of the application of these methods on halogenated quinazolin-4-ones and their quinazolines to generate novel polysubstituted derivatives. PMID:25356566

  13. Palladium-catalyzed directing group-assisted C8-triflation of naphthalenes.

    PubMed

    Yang, Zhi-Wei; Zhang, Qi; Jiang, Yuan-Ye; Li, Lei; Xiao, Bin; Fu, Yao

    2016-05-10

    The transition-metal-catalyzed direct triflation of naphthyl amides and naphthyl ketones has been accomplished for the first time. Benzophenone (BP) was found to be a suitable ligand for the cross-coupling reactions. Density functional theory (DFT) calculations revealed that excessive amounts of HOTf inhibit the reductive elimination of the C-F bond to realize the unusual reductive elimination of the C-OTf bond. PMID:27117543

  14. Carbene-catalyzed desymmetrization of 1,3-diols: access to optically enriched tertiary alkyl chlorides.

    PubMed

    Li, Bao-Sheng; Wang, Yuhuang; Proctor, Rupert S J; Jin, Zhichao; Chi, Yonggui Robin

    2016-07-01

    The introduction of a chlorine atom to a carbon center in an enantioselective manner via conventional C-Cl bond formation is difficult. Here we report a new approach to this class of tertiary alkyl chlorides with high optical purities. Instead of forming a new C-Cl bond, our approach involves carbene-catalyzed desymmetrization of 2-chloro-1,3-diols as the key step to set up the chiral carbon center with excellent enantiomeric excess. PMID:27298081

  15. Lewis Acid Catalyzed Regiospecific Cross-Dehydrative Coupling Reaction of 2-Furylcarbinols with β-Keto Amides or 4-Hydroxycoumarins: A Route to Furyl Enols.

    PubMed

    Miao, Maozhong; Luo, Yi; Li, Hongli; Xu, Xin; Chen, Zhengkai; Xu, Jianfeng; Ren, Hongjun

    2016-06-17

    Lewis acid catalyzed directly dehydrative carbon-carbon bond formation reaction of 2-furylcarbinols with β-keto amides provides a straightforward method for regioselective synthesis of (Z)-furyl enols. Moreover, this Lewis acid catalyzed cross-coupling reaction can be extended to an interesting heterocyclic version featuring a functionalized 3-furyl-4-hydroxycoumarin synthesis. PMID:27224045

  16. Diffusion bonding

    DOEpatents

    Anderson, Robert C.

    1976-06-22

    1. A method for joining beryllium to beryllium by diffusion bonding, comprising the steps of coating at least one surface portion of at least two beryllium pieces with nickel, positioning a coated surface portion in a contiguous relationship with an other surface portion, subjecting the contiguously disposed surface portions to an environment having an atmosphere at a pressure lower than ambient pressure, applying a force upon the beryllium pieces for causing the contiguous surface portions to abut against each other, heating the contiguous surface portions to a maximum temperature less than the melting temperature of the beryllium, substantially uniformly decreasing the applied force while increasing the temperature after attaining a temperature substantially above room temperature, and maintaining a portion of the applied force at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions.

  17. Stereoselectivity in (Acyloxy)borane-Catalyzed Mukaiyama Aldol Reactions.

    PubMed

    Lee, Joshua M; Zhang, Xin; Norrby, Per-Ola; Helquist, Paul; Wiest, Olaf

    2016-07-01

    The origin of diastereo- and enantioselectivity in a Lewis acid-catalyzed Mukaiyama aldol reaction is investigated using a combination of dispersion corrected DFT calculations and transition state force fields (TSFF) developed using the quantum guided molecular mechanics (Q2MM) method. The reaction proceeds via a closed transition structure involving a nontraditional hydrogen bond that is 3.3 kJ/mol lower in energy than the corresponding open transition structure. The correct prediction of the diastereoselectivity of a Mukaiyama aldol reaction catalyzed by the conformationally flexible Yamamoto chiral (acyloxy) borane (CAB) requires extensive conformational sampling at the transition structure, which is achieved using a Q2MM-derived TSFF, followed by DFT calculations of the low energy conformational clusters. Finally, a conceptual model for the rationalization of the observed diastereo- and enantioselectivity of the reaction using a closed transition state model is proposed. PMID:27247023

  18. Iron-catalyzed diboration and carboboration of alkynes.

    PubMed

    Nakagawa, Naohisa; Hatakeyama, Takuji; Nakamura, Masaharu

    2015-03-01

    An iron-catalyzed diboration reaction of alkynes with bis(pinacolato)diboron (B2pin2) and external borating agents (MeOB(OR)2) affords diverse symmetrical or unsymmetrical cis-1,2-diborylalkenes. The simple protocol for the diboration reaction can be extended to the iron-catalyzed carboboration of alkynes with primary and, unprecedentedly, secondary alkyl halides, affording various tetrasubstituted monoborylalkenes in a highly stereoselective manner. DFT calculations indicate that a boryliron intermediate adds across the triple bond of an alkyne to afford an alkenyliron intermediate, which can react with the external trapping agents, borates and alkyl halides. In situ trapping experiments support the intermediacy of the alkenyl iron species using radical probe stubstrates. PMID:25631242

  19. Copper-Catalyzed Intramolecular Oxidative Amination of Unactivated Internal Alkenes.

    PubMed

    Xiong, Peng; Xu, Fan; Qian, Xiang-Yang; Yohannes, Yared; Song, Jinshuai; Lu, Xin; Xu, Hai-Chao

    2016-03-18

    A copper-catalyzed oxidative amination of unactivated internal alkenes has been developed. The Wacker-type oxidative alkene amination reaction is traditionally catalyzed by a palladium through a mechanism involving aminopalladation and β-hydride elimination. Replacing the precious and scarce palladium with a cheap and abundant copper for this transformation has been challenging because of the difficulty associated with the aminocupration of internal alkenes. The combination of a simple copper salt, without additional ligand, as the catalyst and Dess-Martin periodinane as the oxidant, promotes efficiently the oxidative amination of allylic carbamates and ureas bearing di- and trisubstituted alkenes leading to oxazolidinones and imidazolidinones. Preliminary mechanistic studies suggested a hybrid radical-organometallic mechanism involving an amidyl radical cyclization to form the key C-N bond. PMID:26878987

  20. Reinterpretation of the Vibrational Spectroscopy of the Medicinal Bioinorganic Synthon c,c,t-[Pt(NH3)2Cl2(OH)2]†

    PubMed Central

    Johnstone, Timothy C.

    2014-01-01

    The Pt(IV) complex c,c,t-[Pt(NH3)2Cl2(OH)2] is an important intermediate in the synthesis of Pt(IV) anticancer prodrugs and has been investigated as an anticancer agent in its own right. An analysis of the vibrational spectroscopy of this molecule was previously reported [Faggiani et al., 1982, Can. J. Chem. 60, 529] in which crystallographic determination of the structure of the complex permitted a site group approach. The space group, however, was incorrectly assigned. In the present study we have redetermined at high resolution crystal structures of c,c,t-[Pt(NH3)2Cl2(OH)2] and c,c,t-[Pt(NH3)2Cl2(OH)2]·H2O2, which enable discussion of the effect of hydrogen bonding on the N–H and O–H vibrational bands. The correct crystallographic site symmetry of the platinum complex in the c,c,t-[Pt(NH3)2Cl2(OH)2] structure is employed to conduct a new vibrational analysis using both group theoretical and modern DFT methods. This analysis reveals the nature and symmetry of the “missing band” described in the original publication and suggests a possible explanation for its disappearance. PMID:24515615