These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Model a Catchment Basin  

NSDL National Science Digital Library

The purpose of this resource is to introduce what a catchment basin is and how it works. Students will make a 3-dimensional model of a catchment basin to understand how water moves through the basin and explore how water is affected when there are changes in the basin.

The GLOBE Program, UCAR (University Corporation for Atmospheric Research)

2003-08-01

2

Preliminary results of hydrological impact studies for catchments of central and lower Danube basin - project CLAVIER  

NASA Astrophysics Data System (ADS)

Preliminary hydrological impact related results of the Project CLAVIER - CLimate ChAnge and Variability: Impact on Central and Eastern EuRope concerning mostly Hungary, Romania, and Bulgaria.The CLAVIER project is supported by the European Commission's 6th Framework Programme (contract number 037013) as a three-year Specific Targeted Research Project from 09/2006 to 08/2009 under the Thematic Sub-Priority "Global Change and Ecosystems". The hydrological impact task of the project is aimed at the production of future hydrological scenarios based on the output of regional climate models. Analysis of the simulation results received by hydrological models serves as direct or indirect input for water management DSSs: VITUKI-NHFS and VIDRA conceptual hydrological models were used to produce long term hydrological series. Mostly Tisza River Basin (the largest - by drainage basin size - tributary of the Danube) and its sub-catchments have been studied with special emphasis on Upper Tisza and Mures/Maros rivers. Separately the Arges basin drained by the lower Danube was also covered. The catchments comprising river systems are situated in various climatological and geo-morphological settings across the region. The hydrological models used in CLAVIER project require 0.1 degree grid resolution meteorologial input data. Since the REMO 5.9 dataset was only available in 0.25 degree resolution, a downscaling procedure based on elevation distribution functions was performed by VITUKI in order to get a dataset in the needed resolution. REMO5.9-ERA40 (1961 - 2000) and REMO5.9-A1B (1951 - 2050) produced by the Max Planck Institute for Meteorology, Hamburg was further processed. The original error corrected dataset was provided by WegCenter, Graz and INHGA, Bucharest. Transient simulations were carried out covering the period 1951 - 2050. Validation was related to the period 1984 - 2000. The use of physically based models is supplemented with the application of a continuous stochastic simulation model (a hybrid Markov-chain type model - Szilágyi et al 2005) to produce climate effect reports for a the selected basins with different types of hydrological regimes and flood problems including the interaction of basins of different runoff production significance and the coincidence and superposition of flood waves. Statistical characteristics of periods 1961-1990 and 2021-2050 were compared. Preliminary results indicate in most cases slight decrease of annual mean flow throughout the region, with significant spatial variability. Some new features in winter and spring flood behaviour are also detected.

Matreata, M.; Corbus, C.; Csik, A.; Gauzer, B.; Gnandt, B.; Mattányi, Z.; Balint, G.

2009-04-01

3

Evaluation of soil erosion as a basis of sediment yield in mountainous catchments: a preliminary study in the River Douro Basin (Northern Portugal)  

NASA Astrophysics Data System (ADS)

The River Corgo drains a meso-scale mountainous rural catchment with an area of 295 km2, underlain by crystalline rocks, in a temperate climate, which integrates the transboundary River Douro Basin, in the northeast of Portugal. A geochemical survey on oxic fluvial sediments of the river network shows considerable contents of metals associated to the finer particles (< 63um). The results on the study of the sediment properties indicate that these are essentially detrital in origin, derived from soils and weathering products. Moreover, taking into account the hydrological pattern of the catchment, the seasonal and spatial variability of metal contents associated to the sediments suggests that the control of metal in the sediments by their mineralogical, geochemical and physical properties is governed primarily at the level of the basin soils system, especially in the Wet Period, when the sediments are frequently remobilised (Reis, 2010). Although the soil particles are a common pathway of transport and entrance of metals in the fluvial network by runoff derived erosion, this mechanism is naturally more marked in mountainous catchments. Modelling sediment and adsorbed contaminant transport within catchments can help to identify possible contaminant sources, as well as to estimate the delivered quantities of eroded material and associated contaminants. In catchments with the described morphological features, monitoring the transport of sediments poses some issues concerning: (a) the low mass yield of suspended sediment from river water, under low-flow conditions; (b) the maintenance of the sediment sampler's devices in the streams, in periods of high-flow or storm events. This study describes the preliminary results of a GIS-based mass balance model of overland sediment transport to the River. The erosion, the first step of sediment transport, was estimated by an empirical model - The Universal Soil Loss Equation (USLE). The objective was to construct a GIS based potential soil loss spatial index model and posteriorly estimate the sediment yield for different locations within the catchment. The R factor was obtained from the literature; K factor was derived from the Soil Map of Trás-os-Montes; LS factor was calculated from the elevation digital model using the Simms et al. (2003) equation; C and P factors were derived from the Corin Land Cover Map produced for Portugal in 2006. The preliminary results indicate that the model is in accordance with the knowledge of the study area, and can be used as an initial indicator of areas of potential sediment source. So, the results show that potential loss is typically higher along the areas where the tributaries are deeply incised and bordered by steeper slopes, with locally extreme values. REFERENCES REIS, A. R. (2010) - Occurrence and mobilisation of non-organic micro-pollutants in mountainous riverine systems. PhD Thesis (unpublished), University of Trás-os-Montes e Alto Douro, Vila Real, 453 pp. SIMMS, A., WOODROFFE, C. & JONES, B. (2003) - Application of RUSLE for erosion management in a coastal catchment, southern NSW. MODSIM 2003: Intern. Congress on Modelling and Simulation, vol.2, Integrative Modelling of Biophysical, Social and Economic Systems for Resource Management Solutions, Australia, pp. 678-683.

Reis, Anabela; Martinho Lourenço, José M.; Parker, Andrew; Alencoão, Ana

2013-04-01

4

Parallel Computing of Catchment Basins in Large Digital Elevation Model  

E-print Network

, to initial geographical catchment basin computing. Watershed transform algorithms use two method classes models (DEM for short). This algorithm aims at using all the specific properties of the problem homogeneous regions of the images and ridges of land that separate catchment basins are called watersheds

Melin, Emmanuel

5

Analyzing catchment behavior through catchment modeling in the Gilgel Abay, Upper Blue Nile River Basin, Ethiopia  

Microsoft Academic Search

Understanding catchment hydrological processes is essential for water resources management, in particular in data scarce regions. The Gilgel Abay catchment (a major tributary into Lake Tana, source of the Blue Nile) is undergoing intensive plans for water management, which is part of larger development plans in the Blue Nile basin in Ethiopia. To obtain a better understanding of the water

S. Uhlenbrook; Y. Mohamed; A. S. Gragne

2010-01-01

6

Analyzing catchment behavior through catchment modeling in the Gilgel Abay, Upper Blue Nile River Basin, Ethiopia  

NASA Astrophysics Data System (ADS)

Understanding catchment hydrological processes is essential for water resources management, in particular in data scarce regions. The Gilgel Abay catchment (a major tributary into Lake Tana, source of the Blue Nile) is undergoing intensive plans for water management, which is part of larger development plans in the Blue Nile basin in Ethiopia. To obtain a better understanding of the water balance dynamics and runoff generation mechanisms and to evaluate model transferability, catchment modeling has been conducted using the conceptual hydrological model HBV. Accordingly, the catchment of the Gilgel Abay has been divided into two gauged sub-catchments (Upper Gilgel Abay and Koga) and the un-gauged part of the catchment. All available data sets were tested for stationarity, consistency and homogeneity and the data limitations (quality and quantity) are discussed. Manual calibration of the daily models for three different catchment representations, i.e. (i) lumped, (ii) lumped with multiple vegetation zones, and (iii) semi-distributed with multiple vegetation and elevation zones, showed good to satisfactory model performances with Nash-Sutcliffe efficiencies Reff > 0.75 and > 0.6 for the Upper Gilgel Abay and Koga sub-catchments, respectively. Better model results could not be obtained with manual calibration, very likely due to the limited data quality and model insufficiencies. Increasing the computation time step to 15 and 30 days improved the model performance in both sub-catchments to Reff > 0.8. Model parameter transferability tests have been conducted by interchanging parameters sets between the two gauged sub-catchments. Results showed poor performances for the daily models (0.30 < Reff < 0.67), but better performances for the 15 and 30 days models, Reff > 0.80. The transferability tests together with a sensitivity analysis using Monte Carlo simulations (more than 1 million model runs per catchment representation) explained the different hydrologic responses of the two sub-catchments, which seems to be mainly caused by the presence of dambos in Koga sub-catchment. It is concluded that daily model transferability is not feasible, while it can produce acceptable results for the 15 and 30 days models. This is very useful for water resources planning and management, but not sufficient to capture detailed hydrological processes in an ungauged area.

Uhlenbrook, S.; Mohamed, Y.; Gragne, A. S.

2010-10-01

7

A Basin-Averaged Water Balance Approach to Estimate Catchment-Scale Groundwater Flow in a Semi-arid Mountainous Catchment  

NASA Astrophysics Data System (ADS)

Quantification of the contribution of groundwater flow from highland areas of mountainous watersheds to semi-arid and arid valley bottom unconsolidated aquifers is increasingly needed for the assessment of water resources in many populated areas. In mountainous environments, however, data for Darcy equation parameters are limited, leading to uncertainty in estimates of groundwater flow of up to two or more orders of magnitude. An alternative method for estimating regional groundwater flow from highland to valley bottom areas was developed for the semi-arid Okanagan Basin, British Columbia, Canada. The method involved a basin-averaged water balance approach, using mean annual surface water run-off (RO) data for 9 gauged tributaries with spatially distributed estimates of mean annual precipitation (P) and actual evapotranspiration (AET), to develop basin-averaged relationships for prediction of recharge-driven groundwater flow through the bedrock highland areas. Groundwater flow from highland bedrock areas to unconsolidated valley bottom aquifers was subsequently accounted for through a calibration exercise using a spreadsheet tool developed for the project. Average annual AET was the most difficult parameter to quantify at the tributary catchment scale. Spatially distributed AET estimates were developed using temperature and precipitation data, with consideration of expected AET ranges established based on available data for the region. Results for the bedrock areas in the Okanagan Basin indicated basin-averaged partitioning of mean annual precipitation as 68% AET, 19% to surface water run-off (in streams), and 13% to net recharge (groundwater flow). The influence of AET and surface water run-off parameter uncertainty on regional bedrock groundwater flow calculations was a factor of 2 (AET range of 60-70% catchment precipitation) and 1.2 (RO range of 14 to 26%), respectively. This approach allows for preliminary estimates of water budget constrained recharge- driven groundwater flow at the catchment or basin scale.

Neilson-Welch, L. A.; Allard, R.; Geller, D.; Allen, D. M.

2008-12-01

8

Regionalising a meso-catchment scale conceptual model for river basin management in the semi-arid environment  

NASA Astrophysics Data System (ADS)

Meso-scale catchments are often of great interest for water resources development and for development interventions aimed at uplifting rural livelihoods. However, in Sub-Saharan Africa IWRM planning in such catchments, and the basins they form part of, are often ungauged or constrained by poor data availability. Regionalisation of a hydrological model presents opportunities for prediction in ungauged basins and catchments. This study regionalises HBVx, derived from the conceptual hydrological model HBV, in the semi-arid Mzingwane Catchment, Limpopo Basin, Zimbabwe. Fifteen meso-catchments were studied, including three that were instrumented during the study. Discriminant analysis showed that the characteristics of catchments in the arid agro-ecological Region V were significantly different from those in semi-arid Region IV. Analysis of flow duration curves statistically separated sub-perennial catchments from (sub-)ephemeral catchments. Regionalised parameter sets for HBVx were derived from means of parameters from the sub-perennial catchments, the (sub-)ephemeral catchments and all catchments. The parameter sets that performed best in the regionalisation are characterised by slow infiltration with moderate/fast “overland flow”. These processes appear more extreme in more degraded catchments. This is points to benefits to be derived from conservation techniques that increase infiltration rate and from runoff farming. Faster, and possibly greater, sub-surface contribution to streamflow is expected from catchments underlain by granitic rocks. Calibration and regionalisation were more successful at the dekad (10 days) time step than when using daily or monthly data, and for the sub-perennial catchments than the (sub-)ephemeral catchments. However, none of the regionalised parameter sets yielded C NS ? 0.3 for half of the catchments. The HBVx model thus does offer some assistance to river basin planning in semi-arid basins, particularly for predicting flows in ungauged catchments at longer time steps, such as for water allocation purposes. However, the model is unreliable for more ephemeral and drier catchments. Without more reliable and longer rainfall and runoff data, regionalisation in semi-arid ephemeral catchments will remain highly challenging.

Love, David; Uhlenbrook, Stefan; van der Zaag, Pieter

9

Attributes for NHDPlus Catchments (Version 1.1): Basin Characteristics, 2002  

USGS Publications Warehouse

This data set represents basin characteristics, compiled for every catchment in NHDPlus for the conterminous United States. These characteristics are basin shape index, stream density, sinuosity, mean elevation, mean slope, and number of road-stream crossings. The source data sets are the U.S. Environmental Protection Agency's NHDPlus and the U.S. Census Bureau's TIGER/Line Files. The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

Wieczorek, Michael E.; LaMotte, Andrew E.

2010-01-01

10

Fractal dimension of non-network space of a catchment basin  

NASA Astrophysics Data System (ADS)

Topographically convex regions within a catchment basin represent varied degrees of hill-slopes. The non-network space (M), the characterization of which we address in this letter, is akin to the space that is achieved by subtracting channelized portions contributed due to concave regions from the watershed space (X). This non-network space is similar to non-channelized convex region within a catchment basin. We propose an alternative shape-dependent quantity like fractal dimension to characterize this non-network space. Towards this goal, we decompose the non-network space in two-dimensional discrete space into simple non-overlapping disks (NODs) of various sizes by employing mathematical morphological transformations and certain logical operations. Furthermore, we plot the number of NODs of less than threshold radius against the radius, and compute the shape-dependent fractal dimension of non-network space.

Sagar, B. S. Daya; Chockalingam, L.

2004-06-01

11

Catchment condition as a major control on the quality of receiving basin sediments (Sydney Harbour, Australia).  

PubMed

The current work aimed to compile existing information to better understand the source, fate and effects of metallic contaminants in one catchment-receiving basin system (Iron Cove) in Sydney Harbour (Australia). Copper, Pb and Zn concentrations of potential source materials, i.e. soils (mean 62, 410 and 340 microg g(-1), respectively) and road dust (mean 160, 490 and 520 microg g(-1), respectively) and in materials being transported to the estuary, i.e. in gully pots (mean 110, 200 and 260 microg g(-1) for Cu, Pb, and Zn, respectively), in bedload (mean 210, 880 and 1700 microg g(-1), respectively) and particulates in canals draining the catchment (mean 325, 290 and 1865 microg g(-1), respectively) were highly enriched. Estuarine sediments in the receiving basin are enriched 20 times over pre-anthropogenic concentrations and are toxic to benthic animals at the canal mouths. Stormwater remediation is required to reduce metal loads to the adjacent estuary. PMID:19211135

Birch, G F; McCready, S

2009-04-01

12

Role of river bank erosion in sediment budgets of catchments within the Loire river basin (France)  

NASA Astrophysics Data System (ADS)

Quantifying volumes of sediments produced on hillslopes or in channels and transported or stored within river systems is necessary to establish sediment budgets. If research efforts on hillslope erosion processes have led to a relatively good understanding and quantification of local sources, in-channel processes remain poorly understood and quasi inexistent in global budgets. However, profound landuse changes and agricultural practices have altered river functioning, caused river bank instability and stream incision. During the past decades in France, river channelization has been perfomed extensively to allow for new agricultural practices to take place. Starting from a recent study on the quantification of sediment fluxes for catchments within the Loire river basin (Gay et al. 2013), our aim is to complete sediment budgets by taking into account various sources and sinks both on hillslope and within channel. The emphasis of this study is on river bank erosion and how bank erosion contributes to global budgets. A model of bank retreat is developed for the entire Loire river basin. In general, our results show that bank retreat is on average quite low with approximately 1 cm.yr-1. However, a strong variability exists within the study area with channels displaying values of bank retreat up to ~10 cm.yr-1. Our results corroborate those found by Landemaine et al. in 2013 on a small agricultural catchment. From this first step, quantification of volumes of sediment eroded from banks and available for transport should be calculated and integrated in sediment budgets to allow for a better understanding of basin functioning. Gay A., Cerdan O., Delmas M., Desmet M., Variability of sediment yields in the Loire river basin (France): the role of small scale catchments (under review). Landemaine V., Gay A., Cerdan O., Salvador-Blanes S., Rodriguez S. Recent morphological evolution of a headwater stream in agricultural context after channelization in the Ligoire river (France) (in prep)

Gay, Aurore; Cerdan, Olivier; Poisvert, Cecile; Landemaine, Valentin

2014-05-01

13

Catchment Restoration in the Tweed UNESCO-IHP HELP Basin - Eddleston Water  

NASA Astrophysics Data System (ADS)

The EU Water Frame Work Directive (WFD) requires member states to work towards the achievement of 'good ecological status' for water bodies, through a 6 year cycle of river basin management plans (RBMPs). Within these RBMPs, states must develop and implement programmes of measures designed to improve the quality of individual water bodies at risk of failing to achieve this status. These RBMPS must not only be focussed on the key causes of failure, but increasingly look to deliver multiple benefits, such as flood risk reduction and improvement to biodiversity from such catchment interventions, and to involve communities and other stakeholders in restoration of their local environment. This paper reports on progress of a detailed study of the restoration of the Eddleston Water, a typical 'failing' water body in Scotland, the monitoring and governance arrangements behind this, and implications for rehabilitation of river systems elsewhere. Within UK rivers, the main causes of failure to achieve good ecological status are historical morphological changes to river courses, diffuse agricultural pollution and invasive non-native species. The Eddleston Water is a 70 sq kms sub-catchment of the Tweed, an UNESCO IHP-HELP basin in the Scottish : English borders, and is currently classified as 'bad' status, due largely to morphological changes to the course and structure of the river over the past 200 years. The main challenge therefor is physical restoration of the river to achieve functional connectivity with the flood plain. At the same time however, the two communities within the catchment suffer from flooding, so a second priority is to intervene within the catchment to reduce the risk of flooding through the use of "natural flood management" measures and, underlying both these two aspects a whole catchment approach to community participation and the achievement of a range of other ecosystem service benefits, including conservation of biodiversity. We report on the initial characterisation of the catchment; the identification of potential key locations and types of intervention to improve ecological status and flood risk reduction; the setting up of the monitoring networks, the engagement with local communities and land managers; initial habitat modifications and the early results of the study. We situate this within the wider context of priorities for restoration and the UNESCO IHP-HELP programme.

Spray, Christopher

2013-04-01

14

Towards seasonal hydrological forecasting in mountain catchments: preliminary results from the APRIL project  

NASA Astrophysics Data System (ADS)

The APRIL project aims at addressing the long term quantitative prediction of monthly discharge from mountain catchments and setting up a system which can then be used operationally. More specifically, its objectives are: - To investigate the potential of EO products (snow cover extent, vegetation and soil moisture statust) and weather/climatic variables for the prediction of water streamflow from mountain catchments - To develop a robust methodology for the long term quantitative forecast of montly discharge from EO and weather/climatic data - To build a fully operational system for seasonal hydrological forecasting. This contribution illustrates the general concept of the project as well as some preliminary results. Water discharge in mountain catchments is physically related to antecedent snow cover and climatology (precipitation, temperature). Other factors may play a role, such as vegetation/soil status and topography. Historical discharge measurements and earth observation (EO) data are a valuable source for inferring the quantitative relationship between the discharge and its predictors using appropriate techniques. The prediction is based on the Support Vector Regression (SVR)technique, a state of the art machine learning regression method with good intrinsic generalization ability and robustness. In the contribution we present and discuss results of a preliminary analysis on water discharge prediction ( with lead time of 1 to 3 months) in South Tyrol, Italy. Despite the use of a limited set of predictors (among which mainly snow cover area), the results are encouraging. The analysis is in the process of being extended at different spatial scales, which will give the possibility to investigate different aspects of the problem and develop different prediction systems; by updating on the current developments, the contribution discusses also perspectives and current limitations towards the set up of a fully operational seasonal hydrological forecasting system in Europe.

Pistocchi, Alberto; Mazzoli, Paolo; Bagli, Stefano; Notarnicola, Claudia; Pasolli, Luca

2013-04-01

15

Ecosystem based river basin management planning in critical water catchment in Mongolia  

NASA Astrophysics Data System (ADS)

Developing the ecosystem based adaptation strategies to maintain water security in critical water catchments in Mongolia would be very significant. It will be base by reducing the vulnerability. "Ecosystem Based adaptation" is quite a new term in Mongolia and the ecosystem approach is a strategy for the integrated management of land, water and living resources that promotes conservation and sustainable use in an equitable way. To strengthen equitable economic development, food security, climate resilience and protection of the environment, the implementation of sustainable river basin management in critical water catchments is challenging in Mongolia. The Ulz river basin is considered one of the critical water catchments due to the temperature has increased by in average 1.30Ñ over the period 1976 to 2011. It is more intense than the global warming rate (0.740C/100 years) and a bit higher than the warming rate over whole Mongolia as well. From long-term observations and measurements it is clear that Ulz River has low water in a period of 1970-1980 and since the end of 1980s and middle of 1990s there were dominated years of the flood. However, under the influence of the global warming, climate changes of Mongolia and continuation of drought years with low water since the end of 1990s until today river water was sharply fallen and dried up. For the last ten years rivers are dried up and annual mean run-off is less by 3-5 times from long term mean value. The Ulz is the transboundary river basin and taking its origin from Ikh and Baga Burd springs on territory of Norovlin soum of Khentii province that flows through Khentii and Dornod provinces to the northeast, crossing the state border it flows in Baruun Tari located in Tari Lake concavity in Russia. Based on the integrative baseline study on the 'The Ulz River Basin Environmental and Socioeconomic condition', ecosystem based river basin management was planned. 'Water demand Calculator 3' (WDC) software was used to estimate water demand and calculate water use balance in 2015, 2021. The result of the water balance estimation shows that water consumption-use will be increased 3 times in the river basin by 2021. As the water consumption-use source, surface water - 6.4 % and groundwater is 93.6 percent. The current consumption of the mining sector is shares 71 percent of the total users; it would be 82 percent in 2021. However, the livestock water consumption-use is 27 percent of the current demand; it would be decrease up to 16 percent in 2021. Ecosystem based approach IWRM plan would be efficient to the local resident to adapt the climate change situation. Thus, the results of the research study on the river basin ecosystem services and values are the base of the planning.

Tugjamba, Navchaa; Sereeter, Erdenetuul; Gonchigjav, Sarantuya

2014-05-01

16

Analysis of annual dissolved-solids loading from selected natural and irrigated catchments in the Upper Colorado River Basin, 1974-2003  

USGS Publications Warehouse

Dissolved-solids loading from 17 natural catchments and 14 irrigated catchments in the Upper Colorado River Basin was examined for the period from 1974 through 2003. In general, dissolved-solids loading increased and decreased concurrently in natural and irrigated catchments but at different magnitudes. Annually, the magnitude of loading in natural catchments changed about 10 percent more, on average, than in irrigated catchments. Measures of variability, or spread, indicate that natural catchments had 35 percent greater annual variability in loading than irrigated catchments. Precipitation and dissolved-solids loads were positively correlated in natural catchments, and a weak positive correlation was determined for irrigated catchments. A weak negative correlation between temperature and dissolved-solids load was determined for both natural and irrigated catchments. In irrigated catchments, the dissolved-solids load response to an above-average precipitation period from 1982 through 1987 generally lagged behind that in the natural catchments. On average, irrigated catchments with reservoir storage had the largest normalized maximum annual loads during the wet period.

Kenney, Terry A.; Gerner, Steven J.; Buto, Susan G.

2012-01-01

17

Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Bedrock Geology  

USGS Publications Warehouse

This tabular data set represents the area of bedrock geology types in square meters compiled for every catchment of MRB_E2RF1 catchments for Major River Basins (MRBs, Crawford and others, 2006). The source data set is the "Geology of the Conterminous United States at 1:2,500,000 Scale--A Digital Representation of the 1974 P.B. King and H.M. Beikman Map" (Schuben and others, 1994). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

Wieczorek, Michael E.; LaMotte, Andrew E.

2010-01-01

18

Preliminary design review report for K Basin Dose Reduction Project  

SciTech Connect

The strategy for reducing radiation dose, originating from radionuclides absorbed in the K East Basin concrete, is to raise the pool water level to provide additional shielding. This report documents a preliminary design review conducted to ensure that design approaches for cleaning/coating basin walls and modifying other basin components were appropriate. The conclusion of this review was that design documents presently conclusion of this review was that design documents presently completed or in process of modification are and acceptable basis for proceeding to complete the design.

Blackburn, L.D. [ICF Kaiser Hanford Co., Richland, WA (United States)

1996-01-01

19

Catchment modeling and model transferability in upper Blue Nile Basin, Lake Tana, Ethiopia  

Microsoft Academic Search

Understanding spatial and temporal distribution of water resources has an important role for water resource management. To understand water balance dynamics and runoff generation mechanisms at the Gilgel Abay catchment (a major tributary into lake Tana, source of Blue Nile, Ethiopia) and to evaluate model transferability, catchment modeling was conducted using the conceptual hydrological model HBV. The catchment of the

A. S. Gragne; S. Uhlenbrook; Y. Mohammed; S. Kebede

2008-01-01

20

Geo-referenced modelling of metal concentrations in river basins at the catchment scale  

NASA Astrophysics Data System (ADS)

1. Introduction The European Water Framework Directive demands the good ecological and chemical state of surface waters [1]. This implies the reduction of unwanted metal concentrations in surface waters. To define reasonable environmental target values and to develop promising mitigation strategies a detailed exposure assessment is required. This includes the identification of emission sources and the evaluation of their effect on local and regional surface water concentrations. Point source emissions via municipal or industrial wastewater that collect metal loads from a wide variety of applications and products are important anthropogenic pathways into receiving waters. Natural background and historical influences from ore-mining activities may be another important factor. Non-point emissions occur via surface runoff and erosion from drained land area. Besides deposition metals can be deposited by fertilizer application or the use of metal products such as wires or metal fences. Surface water concentrations vary according to the emission strength of sources located nearby and upstream of the considered location. A direct link between specific emission sources and pathways on the one hand and observed concentrations can hardly be established by monitoring alone. Geo-referenced models such as GREAT-ER (Geo-referenced Regional Exposure Assessment Tool for European Rivers) deliver spatially resolved concentrations in a whole river basin and allow for evaluating the causal relationship between specific emissions and resulting concentrations. This study summarizes the results of investigations for the metals zinc and copper in three German catchments. 2. The model GREAT-ER The geo-referenced model GREAT-ER has originally been developed to simulate and assess chemical burden of European river systems from multiple emission sources [2]. Emission loads from private households and rainwater runoff are individually estimated based on average consumption figures, runoff rates and the site-specific population and surface area (roof, gutter, street) connected to the local sewer system. For emissions from industry and mine drainage quantitative data on average annual loads are collected. WWTP effluent loads additionally consider average removal during wastewater treatment. Runoff from non-point sources such as agricultural areas and unsealed soils is estimated from average wash-off rates per area multiplied with the total area drained into a specified river reach of the river system. Groundwater infiltration is considered in quantities equal to the base flow in the respective river stretch. The model simulates the steady-state concentration distribution in the whole river basin considering transport and removal processes in the river system. The only major removal process for metals in surface water is sedimentation. Simulations have been carried out exemplary for zinc and copper in the German river basins Main (27,292 km2), Ruhr (4,485 km2) and Sieg (2,832 km2). 3. Results and discussion Model estimations of effluent loads for selected WWTPs agreed well with available surveillance data so that the emission module outcome can be assumed as appropriate starting point for surface water modeling. A detailed comparison of simulated surface water concentrations with monitoring data was performed for zinc in the Ruhr river basin. Good agreement between monitoring data and model simulations was achieved at 20 monitoring sites in the Ruhr River and its major tributaries. GREAT-ER was able to simulate zinc concentrations in surface waters based on estimation of loads from several emission sources and via different emission pathways. A wide applicability of the model was corroborated by successful simulations of zinc concentrations in the Main river basin and simulations for copper in both catchments. The functionality of the model allows for running scenarios with different emission assumptions that can be easily compared. Such case studies can be used to demonstrate the effect of specific mitigation strategies such as improved treatment of ra

Hüffmeyer, N.; Berlekamp, J.; Klasmeier, J.

2009-04-01

21

Plantation Forestry and Peak Flow Responses in Experimental Catchments and Large River Basins in Chile  

NASA Astrophysics Data System (ADS)

Land use changes are inextricably linked to water resources and the consequences of such changes are a problem faced by water managers and governments across the world. This particular study considers the impact of changes in plantation forest cover on the hydrological response, with a specific focus on the issue of peak flow conditions and variation. The research still in progress is focused in small catchments and large river basins of Chile. The analysis of the data and the preparation of this document were carried out within the framework of the INCO- CT2004-510739 EPIC FORCE Project. EPIC FORCE aims to improve the integrated management of forest and water resources at the river basin scale through the development of policies based on sound science, focusing on extreme rainfall/snowmelt events. The focus areas are four Latin American countries (Costa Rica, Ecuador, Chile and Argentina.), which represent a range of humid forest and rainfall/snowmelt regimes with major flood and erosion problems and which suffer from a lack of integrated water and forest policies. Much of the controversy surrounding changes in peak flows following forest treatment arises from uncertainty over the response from different sizes of storms; whilst most studies agree that mean peak flow generally increases (even for only a short period) in the post harvesting period, there have been a number of different conclusions regarding influence of forest cover on peak flows from small storms compared with the flows from large events. In Chile, this research is been carried out in experimental catchments (less than 1 km2) and in large river basins (greater than 94 and up to 1,545 km2). Results from La Reina (34.4 ha), where peak flows from the pre-harvesting period (years 1997 to 1999, plantation of Pinus radiata established in 1977 covering the 79.5% of the area) were compared with those from the post- harvesting period (plantation clearcut between end of 1999 and first months of 2000 and replaced by an Eucalyptus nitens plantation) show that in average peak flows increased by 32% after forest removal. Analyzing pre and post-harvesting peak flows from different sizes of rainfall events (rainfall "small" events from 5 to 10 mm, "medium" events from 10 to 50 mm, and "large" events greater than 50 mm), the median of the peak flows increased by 67% for the small events and 32% for the large events. Besides, comparing the pre-harvesting condition with each of the years of the post-harvesting period (years 2000 to 2005), the analysis showed that in all cases post-harvesting peak flows were still significantly higher than before forest clearing. Decreases in annual runoff were noticed in the large river basins where forested area almost doubled between the beginnings of the 1970 up to present. These decreases in annual runoff are well explained by the increases in evapotranspiration capacity of the new planted forests, calculated using the Zhang model and through direct measurements done in experimental plots by the authors. However, the increases in planted area within these large river basins seem not to affect peak flows, as peak flows from the "pre plantation development period" were not statistically different from those of the "post plantation development" one. This research is allowing the generation of evidence based management proposals to support forest certification processes of Chilean companies.

Iroume, A.; Huber, A.

2007-05-01

22

Basin-scale availability of salmonid spawning gravel as influenced by channel type and hydraulic roughness in mountain catchments  

Microsoft Academic Search

A general framework is presented for examining the effects of channel type and associated hydraulic roughness on salmonid spawning-gravel availability in mountain catchments. Digital elevation models are coupled with grain-size pre- dictions to provide basin-scale assessments of the potential extent and spatial pattern of spawning gravels. To demonstrate both the model and the significance of hydraulic roughness, we present a

John M. Buffington; David R. Montgomery; Harvey M. Greenberg

2004-01-01

23

Mn-oxides and sequestration of heavy metals in a suburban catchment basin of the Chesapeake Bay watershed  

Microsoft Academic Search

The Chesapeake Bay is greatly impacted by numerous pollutants including heavy metals and understanding the controls on the\\u000a distribution of heavy metals in the watershed is critical to mitigation and remediation efforts in controlling this type of\\u000a pollution. Clasts from a stormwater catchment basin draining a subdivision near George Mason University, Fairfax VA (38°50.090°N\\u000a 78°19.204°W) were investigated using X-ray diffraction

James P. Adams; Robert Kirst; Lance E. Kearns; Mark P. S. Krekeler

2009-01-01

24

Mn-oxides and sequestration of heavy metals in a suburban catchment basin of the Chesapeake Bay watershed  

Microsoft Academic Search

The Chesapeake Bay is greatly impacted by numerous pollutants including heavy metals and understanding the controls on the distribution of heavy metals in the watershed is critical to mitigation and remediation efforts in controlling this type of pollution. Clasts from a stormwater catchment basin draining a subdivision near George Mason University, Fairfax VA (38°50.090°N 78°19.204°W) were investigated using X-ray diffraction

James P. Adams; Robert Kirst; Lance E. Kearns; Mark P. S. Krekeler

2009-01-01

25

Catchments by Major River Basins in the Conterminous United States: 30-Year Average Daily Minimum Temperature, 1971-2000  

USGS Publications Warehouse

This tabular data set represents thecatchment-average for the 30-year (1971-2000) average daily minimum temperature in Celsius multiplied by 100 compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data were the United States Average Monthly or Annual Minimum Temperature, 1971 - 2000 raster data set produced by the PRISM Group at Oregon State University. The MRB_E2RF1 catchments are based on a modified version of the Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

Wieczorek, Michael E.; LaMotte, Andrew E.

2010-01-01

26

Attributes for MRB_E2RF1 Catchments in Selected Major River Basins: Population Density, 2000  

USGS Publications Warehouse

This data set represents the average population density, in number of people per square kilometer multiplied by 10 for the year 2000, compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data set is the 2000 Population Density by Block Group for the Conterminous United States (Hitt, 2003). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) RF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

Wieczorek, Michael E.; LaMotte, Andrew E.

2010-01-01

27

Unusual seasonal patterns and inferred processes of nitrogen retention in forested headwater catchments of the Upper Susquehanna basin  

NASA Astrophysics Data System (ADS)

The Susquehanna River provides two-thirds of the annual nitrogen (N) load to the Chesapeake Bay, and atmospheric deposition is a major contributor to the basin's N inputs. Yet, there are few measurements of the retention of atmospheric N in the Upper Susquehanna's forested headwaters. We characterized the amount, form (nitrate, ammonium, and dissolved organic nitrogen), isotopic composition (del18O- and del15N-nitrate), and seasonality of stream N over two years from 8-15 small forested headwater catchments of the Susquehanna Basin. We expected high rates of N retention and seasonal nitrate patterns typical of other seasonally snow-covered catchments: dormant season peaks and growing season minima. Annual nitrate exports were approximately 0.1-0.7 kg N ha-1 y-1, and correlated positively with the percent of catchment free from historical agriculture. DON export averaged 0.6 +/- 0.1 kg N ha-1 y-1. All catchments had high rates of N retention but with atypical seasonal nitrate patterns, consisting of summer peaks, fall crashes, and modest rebounds during the dormant season. The fall nitrate crash coincided with carbon inputs at leaffall, indicating in-stream heterotrophic uptake. Stream del18O-nitrate values indicated microbial nitrification as the dominant source of stream nitrate, with modest contributions directly from precipitation in early stages of snowmelt. Three hypothesized sources of summer nitrate peaks include: delayed release of nitrate flushed to groundwater at snowmelt, weathering of geologic N, and increased net nitrate production. Measurements of shale del15N as well as soil, well-, and springwater nitrate within one catchment point toward a summer increase in net nitrification in surface soils. Rather than plant demand, processes governing the production, retention, and hydrologic transport of nitrate in surface mineral soils may drive the unusual nitrate seasonality in this and other systems, and provide insights on N retention in general.

Goodale, C. L.; Thomas, S. A.; Fredriksen, G.; Elliott, E. M.; Flinn, K. M.; Butler, T. J.

2008-12-01

28

Comparison of Late Quaternary Climate Development Between the Niger Catchment Area and the Amazon Basin  

NASA Astrophysics Data System (ADS)

The inorganic terrigenous fraction of marine sediments offers a great number of different and well established proxy parameters to investigate the development of continental climate. In this study we present high resolution records of terrigenous source elements from the Niger River and the Amazon River fans. Sediment cores are well dated by radiocarbon measurements. Elemental records from both regions reveal strong evidence for rapid continental climate change over the last 18.000 years, especially during last deglaciation. While major changes obviously occure nearly simultaneously, the timing of shorter events is clearly offset between the two regions. In addition, significant differences can be recorded for the development of the sedimentary terrigenous composition during the Late Holocene. While element ratios indicates increasing arid conditions in catchment area of the Niger since the end of the last African Humid Period at about 5.5 kyr ago, in consistency with other studies increasing humid conditions prevail in the Amazon Basin during the Holocene. This opposing climate development could be caused by the discussed E-W SST contrasts due to variations in the thermohaline circulation within the tropical Atlantic. However, in order to support our findings in marine sediments and because we know that the terrigenous fraction in marine sediments contains to a certain degree a filtered climatic information due to Land-ocean transport and depositinal processes, we try to verify information from the marine records by additional information from the adjacent region like on sea and lake level fluctuations.

Zabel, M.; Ettwein, V.; Maslin, M.; Schneider, R. R.

2003-04-01

29

Gauging the ungauged basin: How to diagnose catchment function from field reconnaissance to long-term observation.  

NASA Astrophysics Data System (ADS)

Despite the widespread gauging (usually rainfall and runoff) of watersheds around the world for the past century, little thought has been given to gauging strategies in the context of what to measure, where to measure, and when. We explore in this talk whether or not gauging should be a mechanical and prescriptive approach or, perhaps alternatively as a diagnostic tool to probe how a catchment works. The following questions will be explored: Does a one size-fits-all approach work for basins in different climates, geological situations and vegetative environments? What are the minimum number and location of measurements necessary to even characterize a basin? Should we standardize our gauging for all catchments? How should concepts, theories and modeling inform where and what to measure? These questions have not been explored in detail since the early days of the International Hydrological Decade back in the 1960s. Nevertheless, it is these basic questions that may help us to reveal simplicity from the hitherto measured complexities of gauged basins developed thus far. As we move from the traditional headwater research basin to mesoscale basins and beyond, we need to rethink what it might mean to "gauge" a basin. How might we rapidly assess first order process controls from say a few days of field reconnaissance or perhaps some combination of assessed climate-vegetation-geologic controls on annual water balance, monthly flows, event dynamics, water age, geographic and time source components of flow. This talk presents some ideas on a road map to gauging within the PUB framework and considers how new approaches may reconsider the tradeoffs between precision and accuracy for spatial completeness, new data content and characterization of the gross stocks and flows of water (and things carried with the water) in a basin.

McDonnell, J. J.; Sivapalan, M.

2003-12-01

30

Three-year sediment transport in a highly erodible catchment: The River Isabena (Ebro Basin, Southern Pyrenees)  

NASA Astrophysics Data System (ADS)

Quantifying suspended sediment load is important in catchments containing highly erodible materials, especially in those that drain into reservoirs since high suspended yields generates and exacerbates reservoirs siltation. Suspended sediment records are also essential for the calibration and validation of numerical models that aim to reproduce past soil erosion and sediment dynamics and to generate reliable data for management purposes. The River Isabena is a mesoscale (445 km2) mountainous catchment located in the Southern Central Pyrenees in the Iberian Peninsula. The river experiences frequent floods, a characteristic that, together with the high connectivity between its network and the sediment sources, keeps sediment transport rates relatively high; instantaneous suspended sediment concentration occasionally attains 300 g l-1. The main sources of fine sediment are badland areas on marls (occupying less than 1% of the catchment area). The river flows into the Barasona Reservoir that experiences historical siltation problems. In order to quantify the suspended sediment transport in the Isabena basin, water and suspended sediment were monitored during the period 2005-2007. Discharge was sampled at the downstream end of the catchment. Suspended sediment transport was measured continuously at the same section by combining high-range turbidimeter readings and water samples (obtained regularly using and automatic sampler and manually -DH54 sampler- during floods). A total of 80 floods have been sampled during the study period. Total sediment yield has been estimated at 552,760 tones, representing an annual average of 184,253 t yr-1, and an averaged specific sediment yield (hereafter SSY) of 414 t km-2 yr-1. Most studies that showed a similar range of SSY are restricted to small mountainous catchments (

López-Tarazón, J. A.; Batalla, R. J.; Vericat, D.

2009-04-01

31

Catchment modeling and model transferability in upper Blue Nile Basin, Lake Tana, Ethiopia  

NASA Astrophysics Data System (ADS)

Understanding spatial and temporal distribution of water resources has an important role for water resource management. To understand water balance dynamics and runoff generation mechanisms at the Gilgel Abay catchment (a major tributary into lake Tana, source of Blue Nile, Ethiopia) and to evaluate model transferability, catchment modeling was conducted using the conceptual hydrological model HBV. The catchment of the Gigel Abay was sub-divided into two gauged sub-catchments (Upper Gilgel Abay, UGASC, and Koga, KSC) and one ungauged sub-catchment. Manual calibration of the daily models for three different catchment representations (CRs): (i) lumped, (ii) lumped with multiple vegetation zones, and (iii) semi-distributed with vegetations zone and elevation zones, showed good to satisfactory model performance (Nash-Sutcliffe efficiency values, Reff>0.75 and >0.6, respectively, for UGASC and KSC). The change of the time step to fifteen and thirty days resulted in very good model performances in both sub-catchments (Reff>0.8). The model parameter transferability tests conducted on the daily models showed poor performance in both sub-catchments, whereas the fifteen and thirty days models yielded high Reff values using transferred parameter sets. This together with the sensitivity analysis carried out after Monte Carlo simulations (1 000 000 model runs) per CR explained the reason behind the difference in hydrologic behaviors of the two sub-catchments UGASC and KSC. The dissimilarity in response pattern of the sub-catchments was caused by the presence of dambos in KSC and differences in the topography between UGASC and KSC. Hence, transferring model parameters from the view of describing hydrological process was found to be not feasible for all models. On the other hand, from a water resources management perspective the results obtained by transferring parameters of the larger time step model were acceptable.

Gragne, A. S.; Uhlenbrook, S.; Mohammed, Y.; Kebede, S.

2008-03-01

32

Adaptation of a catchment-based land surface model to the hydrogeological setting of the Somme River basin (France)  

NASA Astrophysics Data System (ADS)

SummaryThe groundwater flow in land surface models (LSMs) is receiving increasing attention, and different groups have recognised the need for an improved representation of the saturated zone. For example, the hydrological model TOPMODEL is now included in several LSMs, which allows the simulation of a shallow water table. In this article, we present an adaptation of the catchment land surface model (CLSM), which is an LSM using the concepts of TOPMODEL to generate runoff and soil moisture patterns, to the Somme River basin located in northern France. This catchment is heavily influenced by the deep groundwater flow in the Chalk aquifer, and groundwater storage exerts a strong buffering effect on the streamflow. However, the TOPMODEL shallow water table is not adapted to store water over long timescales. To account for this process, we propose the implementation of an additional linear storage reservoir (LR). Using 18 years of meteorological and streamflow data, we demonstrate that this parameterisation considerably improves the discharge simulation performance. In particular, it allows the maintanance of low flows and the reduction of overestimated peak flows that were generated by CLSM without this reservoir. Many simulations with different parameter combinations are analysed to investigate the parameter sensitivities. The impact of the LR on the energy budget is assessed using soil temperature data. We conclude that the new LR parameterisation contributes to a better representation of water transfers in an LSM that enables a groundwater-fed catchment to be modelled for impact studies such as those of climate change.

Gascoin, Simon; Ducharne, Agnès; Ribstein, Pierre; Carli, Marion; Habets, Florence

2009-04-01

33

Groundwater vulnerability assessment in Jaworzynka's Valley catchment basin (Tatra Mountains, Poland)  

NASA Astrophysics Data System (ADS)

During the research an attempt was made to assess an intrinsic groundwater vulnerability to contamination in Tatra Mountains (Poland. Assessment of the degree of hazard of permeating pollutions from land surface directly to the ground water table was the main target of the research. The Jaworzynka's Valley in West Tatra Mountains was chosen as the exact research area. Jaworzynka's Valley is a typical karst catchment basin. Location of study area wasn't accidental, because in the north part of the valley there is a well which is being used as drinking water intake for the whole Zakopane City. This is the reason, why the quality of ground water is so important. The method used in this research, entitled KARSTIC, wasn't applied in Poland before. This is a parametric method of groundwater vulnerability assessment. KARSTIC is a modification of much better known DRASTIC method, specialized for specific karst terrain. KARSTIC method created by A. Davis and others (1994), was used for the first time, during a research in the Black Hills Mountains, USA. Research in Jaworzynka's Valley was based on the Black Hills study. In order to apply this method in Tatra Mountains, it was necessary to make a few changes in relation to original area. Applying KARSTIC method consists of successive stages. Schematization of hydrogeological conditions is an inseparable part of KARSTIC method. The first step bases on collecting all of available data such as maps, databases and documentations. Next stage consists of classifying all parameters employed in this method and then assigning a ratings and weights for this parameters. Subsequently it is necessary to use a mathematical formula, named Pollution Potential Index, which presents a ground water vulnerability in each point. The final step is visualization on the ground water vulnerability map. The result of research displays the high vulnerability in close proximity of the drinking water intake. The most vulnerable areas in Jaworzynka's Valley are spring-beds, consequence of very intensive karst development. The rest of research terrain was classified as medium and low vulnerable. KARSTIC method didn't show caves in the valley as high vulnerable, which is certainly incorrect, proving the method to be insufficiently detailed in such cases. During the research, it turned out that using this method in highmountains terrains is not simple. Even a definition of aquifer in highmountains karst areas is difficult (aquifer is not continuous layer and also depth to water is frequently changing). Therefore author decided to continue research about ground water vulnerability assessment in Tatra Mountains, but in a much more detailed form.

Cypel, M.

2012-04-01

34

Daily anomalous high flow (DAHF) of a headwater catchment over the East River basin in South China  

NASA Astrophysics Data System (ADS)

This study develops a new method for analyzing the terrestrial hydrologic responses to precipitation through using level-based daily anomalous high flow (DAHF) occurrence in a catchment. The objectives of this study are twofold: (1) to explore the DAHF features over a headwater catchment; and (2) to evaluate the performance of a hydrologic model for DAHF simulation. In this study, DAHF is defined as the daily streamflow on a given day, whose deseasonalised daily streamflow is larger than a given multiplier of the standard deviation (STD) of the long-term deseasonalised streamflow series. Streamflow observations of a headwater catchment over the period of 1952-1972 (i.e., before reservoir operation) at the Longchuan station in the East River basin in South China are studied. The macro-scale Variable Infiltration Capacity (VIC) model is used for streamflow simulation in the catchment, and wavelet analysis is performed to explore the DAHF variability. The study reveals that the percentages of the number of days with the first and second levels of DAHFs are 4.2% and 1%, respectively, for the observed streamflows, while the corresponding percentages for the VIC model-simulated streamflow are 5% and 1.3%, respectively. Application of the Kolmogorov-Smirnov goodness-of-fit test indicates that these two levels of DAHFs can be described by two probability distribution functions, namely the Lognormal distribution and Generalized Extreme Value Type II distribution, respectively. The variability spectrum of the first level DAHF is basically consistent with that of antecedent precipitation, but not for the second level DAHF, as revealed by the wavelet analysis. The VIC model has better performance on the variability simulation of the first level of DAHF.

Chen, Ji; Niu, Jun; Sivakumar, Bellie

2014-11-01

35

Tectonic controls of the North Anatolian Fault System (NAFS) on the geomorphic evolution of the alluvial fans and fan catchments in Erzincan pull-apart basin; Turkey  

NASA Astrophysics Data System (ADS)

The Erzincan pull-apart basin is located in the eastern section of the North Anatolian Fault System (NAFS). The tectonic evolution of this basin is mostly controlled by strike slip master faults of the NAFS. This study examines the topography-structure relationships in an effort to evaluate the tectonic signatures in the landscape, paying special attention to recent tectonic activity. In the study, the main focus is on the tectonic controls of the NAFS on the geomorphic evolution of alluvial fans and fan catchments in the Erzincan pull-apart basin. The observations of the amount of tilting of the alluvial fans (?) and its relation with morphometric (Asymmetry Factor (AF), Hypsometric Integral (HI), Fractal analysis of drainage networks (D)) properties of the fan catchments provide valuable information about the tectonic evolution of the basin area. The results of the analyses showed that the alluvial fan and fan catchment morphology in the pull-apart basin are mainly controlled by the ongoing tectonic activity of the NAFS. The fault system in the basin has controlled the accommodation space by causing differential subsidence of the basin, and aggradation processes by causing channel migration, channel incision and tilting the alluvial fans.

Sarp, Gulcan

2015-02-01

36

Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Base-Flow Index, 2002  

USGS Publications Warehouse

This tabular data set represents the mean base-flow index expressed as a percent, compiled for every catchment of MRB_E2RF1 catchments of Major River Basins (MRBs, Crawford and others, 2006). Base flow is the component of streamflow that can be attributed to ground-water discharge into streams. The source data set is Base-Flow Index for the Conterminous United States (Wolock, 2003). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every catchment of MRB_E2RF1 catchments for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

Wieczorek, Michael E.; LaMotte, Andrew E.

2010-01-01

37

Soil and plant composition in the Noun river catchment basin, Western Cameroon: a contribution to the development of a biogeochemical baseline  

NASA Astrophysics Data System (ADS)

Soils and selected edible plants of the Noun river catchment basin of western Cameroon were sampled to investigate the distribution of trace elements, based on the preliminary idea of unusual anomalies. Analytical techniques for trace elements included ICP-AES, GF-AAS, and ICP-MS. Further soil analyses comprised the mineralogy and contents of the biogenic elements carbon, nitrogen and sulphur (CNS). The trace element concentrations in the soils reflect those of the lithogeochemical background of the pluto-volcanic rocks of the region. This is consistent with the results from the mineralogical analyses and physicochemical parameters such as pH, taken in the field, which also do not suggest any geochemical anomaly. Most trace elements analyzed in the plants showed concentrations that reflect those of the soils (Al, Fe, Ti, and Rb). However, some trace elements were enriched in the plants as compared to the soils, such as Zn, Cu, Cd, Mo (excluding yam), Ni (peanut), Ba (peanut), Sr (peanut, bean), and B. Trace elements such as As, Cr, V, and Se were not bioavailable for all the analyzed plants. Besides, trace elements such as Cu, Zn, Mo, Fe, Al, Ni, B, Ti, Rb, Cs, and Ba were in the range of phytotoxicity and reached or exceeded human food tolerance level (Cu). The plants with seeds showed a higher absorption of trace elements compared to plants with tubercles.

Njofang, Clémentine; Matschullat, Jörg; Amougou, Akoa; Tchouankoué, Jean Pierre; Heilmeier, Hermann

2009-02-01

38

Evaluation and inter-comparison of Global Climate Models’ performance over Katonga and Ruizi catchments in Lake Victoria basin  

NASA Astrophysics Data System (ADS)

Regional impact assessments of climate change on hydrological extremes require robust examinations of climate model simulations. The climate models may satisfy mean statistics but fail to reproduce extreme quantiles which are crucial for applications of climate change impact analysis on water resources. Through statistical analysis, this paper evaluates and inter-compares the performance of Global Climate Model (GCM) simulations for their ability to predict changes in hydrological extremes for given locations or catchments in the Nile basin. Two catchments were considered: Katonga and Ruizi catchments in the Lake Victoria basin. Models that differ significantly from the observed extremes were considered unreliable for impact assessments on hydrological extremes. A graphical approach (rainfall quantile/frequency analysis), which allows for easy spotting of discordant models, in combination with several statistics, was used to evaluate 18 GCM control simulations against observed rainfall data. Standard deviation, coefficient of variation and root mean squared error (about the mean) of the observed rainfall, were used to derive error margins against which GCM simulations were evaluated. Model results outside the error margins were considered inconsistent with the observed rainfall. Model inter-comparison was also carried out for the rainfall change projections till the 2050s and 2090s through analysis of perturbations and percentage changes based on A1B, A2, and B1 SRES scenarios. It is noted that the GCM outputs are more consistent in reproducing rainfall signatures at annual aggregation level than at monthly aggregation levels with tendency of overestimation of the rainfall depths but with significant variation among different GCM simulations. The GCMs perform better in reproducing rainfall frequency with higher return periods compared with lower return periods. Most of the GCMs perform better for the wet months than the drier months. The GCMs CGCM3.2a, CM3.O, CM4.1, PCM1, CGCM3.1T47, MIROC3.2.HIRES, CCSM3.0 and FGOALS, are the most inconsistent with the observed rainfall for both catchments. Good performing models are MK3.5, MK3.0, ECHAM5, CM2.1U.H2 and CM2.0. In general, most GCMs perform poorly for both catchments. This signals the need for significant improvements in the rainfall modelling of the climate models for the study region. There is no strong evidence to suggest that GCM performance improves with higher spatial resolution. Models which are highly inconsistent with other models in reproducing the observed rainfall are not necessarily inconsistent with other models in the future projections. Differences in projections for the A1B, B2, and B1 scenarios were found to be smaller than the differences between the GCM simulations.

Nyeko-Ogiramoi, P.; Ngirane-Katashaya, G.; Willems, P.; Ntegeka, V.

39

Simulating wind-affected snow accumulations at catchment to basin scales  

NASA Astrophysics Data System (ADS)

In non-forested mountain regions, wind plays a dominant role in determining snow accumulation and melt patterns. A new, computationally efficient algorithm for distributing the complex and heterogeneous effects of wind on snow distributions was developed. The distribution algorithm uses terrain structure, vegetation, and wind data to adjust commonly available precipitation data to simulate wind-affected accumulations. This research describes model development and application in three research catchments in the Reynolds Creek Experimental Watershed in southwest Idaho, USA. All three catchments feature highly variable snow distributions driven by wind. The algorithm was used to derive model forcings for Isnobal, a mass and energy balance distributed snow model. Development and initial testing took place in the Reynolds Mountain East catchment (0.36 km2) where R2 values for the wind-affected snow distributions ranged from 0.50 to 0.67 for four observation periods spanning two years. At the Upper Sheep Creek catchment (0.26 km2) R2 values for the wind-affected model were 0.66 and 0.70. These R2 values matched or exceeded previously published cross-validation results from regression-based statistical analyses of snow distributions in similar environments. In both catchments the wind-affected model accurately located large drift zones, snow-scoured slopes, and produced melt patterns consistent with observed streamflow. Models that did not account for wind effects produced relatively homogenous SWE distributions, R2 values approaching 0.0, and melt patterns inconsistent with observed streamflow. The Dobson Creek (14.0 km2) application incorporated elevation effects into the distribution routine and was conducted over a two-dimensional grid of 6.67 × 105 pixels. Comparisons with satellite-derived snow-covered-area again demonstrated that the model did an excellent job locating regions with wind-affected snow accumulations. This final application demonstrated that the computational efficiency and modest data requirements of this approach are ideally suited for large-scale operational applications.

Winstral, Adam; Marks, Danny; Gurney, Robert

2013-05-01

40

Preliminary data on atmospheric aerosol of the Amazon Basin  

NASA Astrophysics Data System (ADS)

Preliminary distributions of the trace-elements Al, Si, P, S, Cl, K, Ca, Ti, V and Fe in the atmospheric aerosol of the Amazon Basin have been determined through samples collected from 23 August to 2 September 1980, at a remote place located in the Amazon Forest, about 30km NE of the city of Manaus. In all, 10 complete cascade impactor samples of 6-stage, Battelle model, have been exposed but only 8 with success, thus generating 48 samples. From these, 33 samples have been successfully analyzed by the PIXE method (Particle Induced X-Ray Emission), using particle beam of the Pelletron Accelerator of the University of Sào Paulo, and the results revealed that the trace-elements S and K have a noticeable predominance, mainly in the fine particle size range relative to the others. The high correlation factor found between the fine particle concentrations of S and K (0.96) support the assumption of their common airborne transport on the same particulates, originated from the gas-to-particle conversion of gases exuded by the trees of the forest, their only existing sources. Coarse airborne particles, of a probable soil origin, are also present but in unusally small amounts, as it was revealed by the Al, Si, Ca, Ti and Fe size distribution curves.

Orsini, C. Q.; Netto, P. A.; Tabacniks, M. H.

41

5, 811842, 2008 Catchment modeling  

E-print Network

Catchment modeling and model transferability in upper Blue Nile Basin, Lake Tana, Ethiopia A. S. Gragne 1 mechanisms at the Gilgel Abay catchment (a major tributary into lake Tana, source of Blue Nile, EthiopiaHESSD 5, 811­842, 2008 Catchment modeling in upper Blue Nile, Ethiopia A. S. Gragne et al. Title

Boyer, Edmond

42

Projected impacts of climate change on groundwater and stormflow in a humid, tropical catchment in the Ugandan Upper Nile Basin  

NASA Astrophysics Data System (ADS)

The changing availability of freshwater resources is likely to be one of the most important consequences of projected 21st century climate change for both human and natural systems. However, substantial uncertainty remains regarding the precise impacts of climate change on water resources, due in part to uncertainty in GCM projections of climate change. Here we explore the potential impacts of climate change on water resources in a humid, tropical catchment (the River Mitano) in the Upper Nile Basin of Uganda. Uncertainty associated with GCM structure and climate sensitivity is explored, as well as from parameter specification within hydrological models. This is achieved by running pattern-scaled GCM output through a semi-distributed hydrological model (developed using SWAT) of the catchment. Importantly, use of pattern-scaled GCM output allows investigation of specific thresholds of global climate change including the purported 2 °C threshold of "dangerous" climate change. In-depth analysis of results based on HadCM3 climate scenarios shows that annual river discharge first increases, then declines with rising global mean air temperature. A coincidental shift from a bimodal to unimodal discharge regime also results from a projected reduction in baseflow (groundwater discharge). Both of these changes occur after a 4 °C rise in global mean air temperature. These results are, however, highly GCM dependent in both the magnitude and direction of change. This dependence stems primarily from projected differences in GCM scenario precipitation rather than temperature. GCM-related uncertainty is far greater than that associated with climate sensitivity or hydrological model parameterisation.

Kingston, D. G.; Taylor, R. G.

2010-03-01

43

Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Average Daily Maximum Temperature, 2002  

USGS Publications Warehouse

The MRB_E2RF1 catchments are based on a modified version of the Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2008). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

Wieczorek, Michael E.; LaMotte, Andrew E.

2010-01-01

44

Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Average Daily Minimum Temperature, 2002  

USGS Publications Warehouse

The MRB_E2RF1 catchments are based on a modified version of the Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

Wieczorek, Michael E.; LaMotte, Andrew E.

2010-01-01

45

Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Normalized Atmospheric Deposition for 2002, Ammonium (NH4)  

USGS Publications Warehouse

This tabular data set represents the average normalized (wet) deposition, in kilograms per square kilometer multiplied by 100, of ammonium (NH4) for the year 2002 compiled for every MRB_E2RF1 catchment of the Major River Basins (MRBs, Crawford and others, 2006). Estimates of NH4 deposition are based on National Atmospheric Deposition Program (NADP) measurements (B. Larsen, U.S. Geological Survey, written. commun., 2007). De-trending methods applied to the year 2002 are described in Alexander and others, 2001. NADP site selection met the following criteria: stations must have records from 1995 to 2002 and have a minimum of 30 observations. The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

Wieczorek, Michael E.; LaMotte, Andrew E.

2010-01-01

46

Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Normalized Atmospheric Deposition for 2002, Nitrate (NO3)  

USGS Publications Warehouse

This tabular data set represents the average normalized (wet) deposition, in kilograms per square kilometer multiplied by 100, of Nitrate (NO3) for the year 2002 compiled for every MRB_E2RF1 catchment of the Major River Basins (MRBs, Crawford and others, 2006). Estimates of NO3 deposition are based on National Atmospheric Deposition Program (NADP) measurements (B. Larsen, U.S. Geological Survey, written. commun., 2007). De-trending methods applied to the year 2002 are described in Alexander and others, 2001. NADP site selection met the following criteria: stations must have records from 1995 to 2002 and have a minimum of 30 observations. The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

Wieczorek, Michael E.; LaMotte, Andrew E.

2010-01-01

47

Attributes for MRB_E2RF1 Catchments in Selected Major River Basins of the Conterminous United States: Contact Time, 2002  

USGS Publications Warehouse

This tabular data set represents the average contact time, in units of days, compiled for every MRB_E2RF1 catchment of Major River Basins (MRBs, Crawford and others, 2006). Contact time, as described in Vitvar and others (2002), is defined as the baseflow residence time in the subsurface. The source data set was the U.S. Geological Survey's (USGS) 1-kilometer grid for the conterminous United States (D.M. Wolock, U.S. Geological Survey, written commun., 2008). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) RF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

Wieczorek, Michael E.; LaMotte, Andrew E.

2010-01-01

48

Post-wildfire recovery of water yield in the Sydney Basin water supply catchments: An assessment of the 2001/2002 wildfires  

NASA Astrophysics Data System (ADS)

Wildfire is a recurring event which has been acknowledged by the literature to impact the hydrological cycle of a catchment. Hence, wildfire may have a significant impact on water yield levels within a catchment. In Australia, studies of the effect of fire on water yield have been limited to obligate seeder vegetation communities. These communities regenerate from seed banks in the ground or within woody fruits and are generally activated by fire. In contrast, the Sydney Basin is dominated by obligate resprouter communities. These communities regenerate from fire resistant buds found on the plant and are generally found in regions where wildfire is a regular occurrence. The 2001/2002 wildfires in the Sydney Basin provided an opportunity to investigate the impacts of wildfire on water yield in a number of catchments dominated by obligate resprouting communities. The overall aim of this study was to investigate whether there was a difference in water yield post-wildfire. Four burnt subcatchments and 3 control subcatchments were assessed. A general additive model was calibrated using pre-wildfire data and then used to predict post-wildfire water yield using post-wildfire data. The model errors were analysed and it was found that the errors for all subcatchments showed similar trends for the post-wildfire period. This finding demonstrates that wildfires within the Sydney Basin have no significant medium-term impact on water yield.

Heath, J. T.; Chafer, C. J.; van Ogtrop, F. F.; Bishop, T. F. A.

2014-11-01

49

Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Mean Infiltration-Excess Overland Flow, 2002  

USGS Publications Warehouse

This tabular data set represents the mean value for infiltration-excess overland flow as estimated by the watershed model TOPMODEL, compiled for every MRB_E2RF1 catchment of the Major River Basins (MRBs, Crawford and others, 2006). The source data set is Infiltration-Excess Overland Flow Estimated by TOPMODEL for the Conterminous United States (Wolock, 2003). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

Wieczorek, Michael E.; LaMotte, Andrew E.

2010-01-01

50

Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Average Saturation Excess-Overland Flow, 2002  

USGS Publications Warehouse

This tabular data set represents the average value of saturation overland flow, in percent of total streamflow, compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data set is Saturation Overland Flow Estimated by TOPMODEL for the Conterminous United States (Wolock, 2003). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

Wieczorek, Michael E.; LaMotte, Andrew E.

2010-01-01

51

Characterisation of stable isotopes to identify residence times and runoff components in two meso-scale catchments in the Abay/Upper Blue Nile basin, Ethiopia  

NASA Astrophysics Data System (ADS)

Measurements of the stable isotopes oxygen-18 (18O) and deuterium (2H) were carried out in two meso-scale catchments, Chemoga (358 km2) and Jedeb (296 km2) south of Lake Tana, Abay/Upper Blue Nile basin, Ethiopia. The region is of paramount importance for the water resources in the Nile basin, as more than 70% of total Nile water flow originates from the Ethiopian highlands. Stable isotope compositions in precipitation, spring water and streamflow were analysed (i) to characterise the spatial and temporal variations of water fluxes; (ii) to estimate the mean residence time of water using a sine wave regression approach; and (iii) to identify runoff components using classical two-component hydrograph separations on a seasonal timescale. The results show that the isotopic composition of precipitation exhibits marked seasonal variations, which suggests different sources of moisture generation for the rainfall in the study area. The Atlantic-Indian Ocean, Congo basin, Upper White Nile and the Sudd swamps are the potential moisture source areas during the main rainy (summer) season, while the Indian-Arabian and Mediterranean Sea moisture source areas during little rain (spring) and dry (winter) seasons. The spatial variation in the isotopic composition is influenced by the amount effect as depicted by moderate coefficients of determination on a monthly timescale (R2 varies from 0.38 to 0.68) and weak regression coefficients (R2 varies from 0.18 to 0.58) for the altitude and temperature effects. A mean altitude effect accounting for -0.12‰/100 m for 18O and -0.58‰/100 m for 2H was discernible in precipitation isotope composition. Results from the hydrograph separation on a seasonal timescale indicate the dominance of event water, with an average of 71 and 64% of the total runoff during the wet season in the Chemoga and Jedeb catchments, respectively. Moreover, the stable isotope compositions of streamflow samples were damped compared to the input function of precipitation for both catchments. This damping was used to estimate mean residence times of stream water of 4.1 and 6.0 months at the Chemoga and Jedeb catchment outlets, respectively. Short mean residence times and high fractions of event water components recommend catchment management measures aiming at reduction of overland flow/soil erosion and increasing of soil water retention and recharge to enable sustainable development in these agriculturally dominated catchments.

Tekleab, S.; Wenninger, J.; Uhlenbrook, S.

2014-06-01

52

Catchment-scale contaminant transport under changing hydro-climatic conditions in the Aral Sea Drainage Basin, Central Asia  

NASA Astrophysics Data System (ADS)

Dependable projections of future water availability and quality are essential in the management of water resources. Changes in land use, water use and climate can have large impacts on water and contaminant flows across extensive catchments that may contain different administrative regions where shared water resources must be managed. We consider the extensive Aral Sea Drainage Basin (ASDB) and the Amu Darya River Delta in Central Asia, which are currently under severe water stress due to large-scale irrigation expansion. We interpret data on hydro-climatic conditions, main contaminants of surface water and shallow groundwater systems, location of rivers and canal networks, and groundwater flow directions. The data are used together with climate change projections from general circulation models (GCMs) as input to hydrological and (advective) transport modelling. The main goal is to assess how regional transport pathways and travel times have changed, and are likely to change further, in response to past and projected future hydro-climatic changes. More specifically, the hydrological modelling was based on temperature and precipitation change (?T and ?P) results from 65 GCM projections of 21st century conditions (specifically considering time periods around 2025, 2050, and 2100), relative to reference conditions around 1975 (taken from the reference period 1961-1990). Whereas ?T is robustly projected to increase with time, the projected magnitude of ?P differs more among projections for the distant future (2100) than for the near future (2025), with uncertainty remaining even about the direction of change (i.e., positive or negative ?P). However, mainly due to the projected temperature-driven increases in evapotranspiration, ensemble average results show that the Amu Darya river discharge Q in the downstream ASDB is likely to show a decreasing trend throughout the 21st century. Notably, projected changes in the upstream, mountainous regions have a relatively large impact on these Q-projections. For example, the locally created runoff of the downstream region is projected to be maintained or even increase slightly, in contrast to the decreasing Q-trend that reflects an integrated, average response of the entire catchment. A continued drying of surface waters within the Amu Darya river delta implies that advective travel times are increasingly governed by the groundwater system. Such diminished exchanges with surface waters imply increased mean travel times from shallow groundwaters to the (drying) river and drainage canal network by an order of magnitude (from months to years). This can considerably influence mass flow and retention of contaminants in the river delta region, which suffers from e.g. copper, chromium and lead contamination.

Jarsjö, Jerker; Törnqvist, Rebecka; Su, Ye

2013-04-01

53

Lacustrine groundwater discharge (LGD) to a closed- basin lake - a concept for estimating the effects of a changing catchment on the lake water balance  

NASA Astrophysics Data System (ADS)

In the water balance of closed-basin lakes, which are common in young glacial landscapes of the North German Plains, groundwater is an important term beside precipitation and evaporation. A quantification of groundwater impacts on the lake water balance is still a challenge although there is a broad spectrum of methods from point measurements over integrative methods to numerical modelling approaches. All modelling approaches rely on a fixed lake catchment. This might be an adequate assumption for steady state estimations and catchments in hilly and mountainous landscapes but it is not for the long run in flat terrain such as the North German Plains. Of course, the calculation of the temporal development of a water balance requires the availability of time series of groundwater levels and lake water stages. Such hydraulic data set covering more than 50 years with a monthly resolution is available for the Lake Stechlin area. A former study already pointed out that the lake catchment differs between wet an dry years, but in that study no estimation of the water balance was conducted. We present a three dimensional conceptual model, which is based on the time series of the hydraulic data, additional geological and geomorphological information as well as estimations of spatial and temporal groundwater recharge rates within the area. At first, a geological model is established on the basis of about 50 drill logs. Based on hydraulic head data the temporal development of the catchment size is determined and the maximum and minimum area for groundwater exfiltration into the lake and surface water infiltration into the aquifer are derived. In the end, the annual varying catchment size is combined to the annual varying groundwater recharge to get an annual "steady state" estimation of the lake water balance. This model is the basis for further numerical modelling.

Pöschke, Franziska; Lewandowski, Jörg; Nützmann, Gunnar

2014-05-01

54

Mn-oxides and sequestration of heavy metals in a suburban catchment basin of the Chesapeake Bay watershed  

NASA Astrophysics Data System (ADS)

The Chesapeake Bay is greatly impacted by numerous pollutants including heavy metals and understanding the controls on the distribution of heavy metals in the watershed is critical to mitigation and remediation efforts in controlling this type of pollution. Clasts from a stormwater catchment basin draining a subdivision near George Mason University, Fairfax VA (38°50.090°N 78°19.204°W) were investigated using X-ray diffraction (XRD), Scanning electron microcopy (SEM) and energy dispersive spectroscopy (EDS) to determine the nature of Mn-oxide coatings and relationship to bound heavy metals. Mn-oxides are poorly crystalline and occur as subhedral to anhedral platy particles and more rarely as euhedral plates. Micronodules are a commonly observed texture. Chemical compositions of coatings are variable with average major constituent concentrations being Mn (33.38 wt%), Fe (11.88 wt%), Si (7.33 wt%), Al (5.03 wt%), and Ba (0.90 wt%). Heavy metals are found in the coatings with Zn being most prevalent, occurring in approximately 58% of analyses with an average concentration of (0.66 wt%). Minor amounts of Co, Ni, Pb, and Cl are observed. Heavy metals and Cl are interpreted as being derived from road pollution. Mn-oxides can serve as a sequestration mechanism for pollution but may also release heavy metals. Field and laboratory observations indicate Mn-oxides occurring on the surface of the clasts can be mechanically mobilized. This is a mechanism for transporting heavy metals into the Chesapeake Bay watershed. Deicing agents may serve as a mechanism to release heavy metals through cation exchange and increased ionic strength. This is the first detailed mineralogical investigation of Mn-oxides and the roles they may play in pollution in the Chesapeake Bay.

Adams, James P.; Kirst, Robert; Kearns, Lance E.; Krekeler, Mark P. S.

2009-09-01

55

Hydrological control on the triggering of debris flows in alpine catchments: storm analysis and basin response variability  

NASA Astrophysics Data System (ADS)

Three storm events, occurred in 2006, 2007 and 2009 in the upper Adige River basin (Eastern Alps, northern Italy) have been analyzed. The first storm system (4 October 2006) generated a flash flood with almost no debris flows and landslides, the second (21 June 2007) triggered a large number of debris flows and was characterized by a relatively minor runoff response, and the third (4 September 2009) resulted in both a relevant flash flood response and debris flows in minor streams. A strong interest both for civil protection and research purposes has been devoted by local authorities and researchers to such events. The study methods include radar rainfall analysis, hydrological modeling and GIS processing of spatial rainfall data and debris-flow locations. Precise information on debris-flow location and related volumes were derived from a geo-spatial database of instability phenomena implemented and managed by the Autonomous Province of Bolzano. Patterns of rainfall distribution and relations between the main hydrological variables (cumulative rainfall, intensity and antecedent moisture) have been analyzed to explain differences in catchments responses between the three studied events. Radar rainfall data have permitted to analyze rainfall fields with high spatial resolution, taking into account also the elevation variability of rainfall rates. The striking responses' contrast among the three events is related to differences in antecedent moisture, space-time structure of the rainstorms, cumulative rainfall and intensity distributions and temperature regime. The frequency analysis of the main hydrological variables revealed to be a powerful tool capable of distinguishing, within a synoptic framework, the space-time-magnitude variability of the events, so as to highlight the differences in flood and debris-flow response.

Crema, Stefano; Marchi, Lorenzo; Marra, Francesco

2013-04-01

56

Integrating dynamic ecohydrological relations with the catchment response: A multi-scale hydrological modeling effort in a monsoonal regime basin  

NASA Astrophysics Data System (ADS)

Seasonal vegetation changes highly affect the energy and hydrologic fluxes in semiarid regions around the world. Accounting for different water use strategies among drought-deciduous ecosystems is important for understanding how these exploit the temporally brief and localized rainfall pulses of the North American Monsoon (NAM). Furthermore, quantifying these plant-water relations can help elucidate the spatial patterns of ecohydrological processes at catchment scale in the NAM region. In this effort, we focus on the San Miguel river basin (~ 3500 km2) in Sonora, Mexico, which exhibits seasonal vegetation greening that varies across ecosystems organized along mountain fronts. To assess the spatial variability of ecohydrological conditions, we relied on diverse tools that included multi-temporal remote sensing observations, model-based meteorological forcing, ground-based water and energy flux measurements and hydrologic simulations carried out at multiple scales. We evaluated the impact of seasonal vegetation dynamics on evapotranspiration (ET), its partitioning into soil evaporation (E) and plant transpiration (T), as well as their spatiotemporal patterns over the course of the NAM season. We utilized ground observations of soil moisture and evapotranspiration estimated by the eddy covariance method at two sites, as well as inferences of ET partitioning from stable isotope measurements, to test the numerical simulations. We found that ecosystem phenological differences lead to variations in the time to peak in transpiration during a season and in the overall seasonal ratio of transpiration to evapotranspiration (T/ET). A sensitivity analysis of the numerical simulations revealed that vegetation cover and the soil moisure threshold at which stomata close exert strong controls on the seasonal dominance of transpiration or evaporation. The dynamics of ET and its partitioning are then mapped spatially revealing that mountain front ecosystems utilize water differently. The results of this study aid in understanding how variations in water use and phenological strategies affect how soil water is returned to the atmosphere with implications on the watershed runoff response.

Mendez-Barroso, L. A.; Vivoni, E.; Robles-Morua, A.; Yepez, E. A.; Rodriguez, J. C.; Watts, C.; Saiz-Hernandez, J.

2013-05-01

57

Preliminary stratigraphic and paleomagnetic results from Neogene basins across the Anatolian Plateau (Turkey).  

NASA Astrophysics Data System (ADS)

An integrated paleomagnetic and stratigraphic study on Neogene basins across the Anatolian Plateau was carried out. This study is developed within the VAMP (Vertical Anatolian Movement Project), an interdisciplinary project aimed to the recent tectonic evolution of the central Anatolian Plateau. The studied areas are located in southern Turkey (Adana, Mut and Ermenek basins) and in northern Turkey (Kazan, Çankiri, Kastamonu, Boyabat and Sinop basins). For paleomagnetic analyses we sampled 1062 standard cylindrical samples from 13 stratigraphic sections, and 746 samples for paleontological analysis were taken from the same sections. AMS (Anisotropy of Magnetic Susceptibility), magnetic mineralogy and paleomagnetic polarity data are presented together with the results of the integrated stratigraphic analyses. In the Southern Turkey basins preliminary results show the diffuse presence of authigenic iron sulphides, together with magnetite, as main magnetic carriers. In these sections the iron-sulphides Characteristic Natural Magnetization (ChRM) component is characterized by inconsistent polarity record, suggesting that iron-sulphides have a late diagenetic origin. Conversely, magnetite bearing sediments show more reliable results in term of magnetic polarity interpretations. Preliminary stratigraphic and paleomagnetic results from the southern margin of the plateau allow us both to refine the stratigraphy for the late Miocene of the Adana Basin and to better constrain the age of the youngest marine deposits of the Mut and Ermenek basins. In the late Miocene of the Adana Basin evidence of the Messinian salinity crisis led to a new stratigraphic framework specially for the Messinian-Pliocene interval. Thick fluvial conglomerates from the uppermost Messinian deposits of the Adana Basin, which could be linked to the activation of the southern margin of the plateau, allow us to constrain at about 5.4 Ma the uplift of the central Anatolian Plateau. On the other hand, the preliminary results of the micropaleontological analyses carried out on the higher marine deposits sampled in the northern part of the Ermenek Basin (Basyayla section, 1840 m a.s.l.) point to a post-Tortonian age for the plateau uplift. The age of the basins at the northern margin of the plateau are very poor constrained, except for that basins containing vertebrate-bearing continental deposits. However, from a palaeogeographic point of view, our preliminary data suggest a possible Tortonian connection between the Çankiri Basin and the Paratethyan realm. This presentation was supported by the EUROCORE programme TOPO-EUROPE of the European Science Foundation.

Lucifora, Stella; Cifelli, Francesca; Mazzini, Ilaria; Cosentino, Domenico; Mattei, Massimo; Cipollari, Paola; Gliozzi, Elsa; Palolo Cavinato, Gian

2010-05-01

58

Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: NLCD 2001 Tree Canopy  

USGS Publications Warehouse

This tabular data set represents the mean percent tree canopy from the Canopy Layer of the National Land Cover Dataset 2001 (LaMotte and Wieczorek, 2010), compiled for every MRB_E2RF1 catchment of Major River Basins (MRBs, Crawford and others, 2006). The source data set represents tree canopy percentage for the conterminous United States for 2001. The Canopy Layer of the National Land Cover Data Set for 2001 was produced through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of Federal agencies (http://www.mrlc.gov), consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (USEPA), the U.S. Department of Agriculture (USDA), the U.S. Forest Service (USFS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (USFWS), the Bureau of Land Management (BLM), and the USDA Natural Resources Conservation Service (NRCS). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

Wieczorek, Michael E.; LaMotte, Andrew E.

2010-01-01

59

Preliminary isotopic studies in the Bida basin, central Nigeria  

NASA Astrophysics Data System (ADS)

The area of the Bida basin is lacking in essential data for effective groundwater management. Hydrological studies using environmental isotopes (2H,3H,13C,18O) were carried out in the basin during the 1987 1988 hydrological year on samples of rainfall, streams, springs, and groundwater. The results obtained results do not indicate the presence of paleowaters; rather all groundwaters in the basin are found to be of meteoric origin as both ?D and ? 18O values of the samples, plotted in the conventional way, align with the meteoric water line (MWL). Moreover, these data show the deeper, and apparently older, groundwater to be more depleted in the heavy stable isotopes than the shallower, relatively younger groundwaters, indicating recharge under cooler climatic conditions for the former. Measured tritium values range from 0.7 to 23.8 TU and show a variation with both depth and lithology, while at the same time indicating that active recent recharge is taking place basin-wide. The few13C data available were used to illustrate the effect of pumping on the carbonate geochemistry of the groundwaters. Also, the stable isotope data from the basin were compared with similar data from other parts of the country to show the continental effect.

Kehinde, M. O.

1993-11-01

60

Late Miocene uplift of the NE Tibetan Plateau inferred from basin filling, planation and fluvial terraces in the Huang Shui catchment  

NASA Astrophysics Data System (ADS)

The geomorphological evolution of the marginal areas of the Tibetan Plateau may provide valuable information for reconstructing the tectonic movements of the region. This study reports on a morpho-tectonic analysis of the Huang Shui catchment (tributary of the Yellow River), in the Northeastern Tibetan Plateau using a digital elevation model and field observations. One prominent bevelled surface, preliminarily interpreted as a peneplain surface, is recognized at around 2750 m altitude. It corresponds with the top of the relict sedimentary fill of large tectonic basins, and the adjacent summits. After the formation of this peneplain, a terrace sequence was formed along the Huang Shui river. The transition of peneplain surface formation to incision was dated as older than 10-6 Ma using the biochronology of micromammalian assemblages from fluvial terraces and the depositional record of the basin fill. The river incision into the former peneplain is attributed to an important uplift event around 10-17 Ma.

Wang, Xianyan; Lu, Huayu; Vandenberghe, Jef; Zheng, Shaohua; van Balen, Ronald

2012-05-01

61

Effects of Catchment and Riparian Landscape Setting on Water Chemistry and Seasonal Evolution of Water Quality in the Upper Han River Basin, China  

PubMed Central

Six-year (2005–2010) evolution of water chemistry (Cl?, NO3?, SO42?, HCO3?, Na+, K+, Ca2+ and Mg2+) and their interactions with morphological properties (i.e., slope and area), land cover, and hydrological seasonality were examined to identify controlling factors and processes governing patterns of stream water quality in the upper Han River, China. Correlation analysis and stepwise multiple regression models revealed significant correlations between ions (i.e., Cl?, SO42?, Na+ and K+) and land cover (i.e., vegetation and bare land) over the entire catchment in both high- and low-flow periods, and in the buffer zone the correlation was much more stronger in the low-flow period. Catchment with steeper slope (>15°) was negatively correlated with major ions, largely due to multicollinearity of basin characteristics. Land cover within the buffer zone explained slightly less of major elements than at catchment scale in the rainy season, whereas in the dry season, land cover along the river networks in particular this within 100 m riparian zone much better explained major elements rather than this over the entire catchment. Anthropogenic land uses (i.e., urban and agriculture) however could not explain water chemical variables, albeit EC, TDS, anthropogenic markers (Cl?, NO3?, SO42), Na+, K+ and Ca2+ significantly increased during 2005–2010, which was corroborated by principal component analyses (PCA) that indicated anthropogenic inputs. Observations demonstrated much higher solute concentrations in the industrial-polluted river. Our results suggested that seasonal evolution of water quality in combined with spatial analysis at multiple scales should be a vital part of identifying the controls on spatio-temporal patterns of water quality. PMID:23349700

Li, Siyue; Xia, Xiaoling; Tan, Xiang; Zhang, Quanfa

2013-01-01

62

Analysis of Cheshire basin by gravity method: Some preliminary results  

NASA Astrophysics Data System (ADS)

Gravity data acquired from Cheshire basin located in the northwestern part of the United Kingdom were processed and analysed to determine the structural pattern within the entire sedimentary basin. A total of 753 gravity data were obtained from the British Geological Society and with the aid of Oasis Montaj software, maps of Bouguer anomaly, isostatic and total horizontal derivative were obtained for qualitative and quantitative interpretation in determining the fault trend and the tectonic system of the study area. The positive Bouguer anomaly region found in the northwest of the study area is associated with the high density sedimentary rocks while the negative region in the southern part corresponds to low density sediments. The regional and local isostatic maps with different cut-off wavelengths reflect changes in anomalies corresponding to different types of sedimentary rocks. The general trends of faults in the Chesire basin are shown in the total horizontal derivative map of the Bouguer gravity values. Most of the major faults found in the southern part of the study area are trending in NW-SE and NE-SW directions. The less dominant faults are found in the western and eastern parts with N-S trending faults while in the northern and southern part are trending E-W. The 2D modeling shows the estimated depth to limestone basement of about 3736 m below the sandstone and mudstone.

Shafie, Nadiah Hanim; Hamzah, Umar; Samsudin, Abdul Rahim

2014-09-01

63

A Preliminary OBS Data Analysis in the West Philippine Basin  

NASA Astrophysics Data System (ADS)

During Leg 4 of TAIGER MCS/OBS experiment (June-July 2009), a long profile of 550 km was shot by R/V Langseth in the West Philippine Basin. We placed 28 short-period OBSs at a station-to-station distance of 15 km along this profile. This profile was designed to be 90 degree to the spreading fabric as previously mapped by the multi-beam echo-sounding data. Because of the Typhoon Molave, R/V Langseth shot 3 times to complete the whole track. The large air-gun sources and over-lapping shoots allow us to place the shoot geometry at either a single-combined profile or 3 separated profiles. We are investigating the best result from these two different geometry models. The age-depth relationship shows that the bathymetry is deeper toward the north, the Ryukyu Subduction Zone, however, the magnetic modeling suggest the older West Philippine Basin crust is in the south. An initial OBS model indicates the Pn arrival can be traced up to 80 more km away from the OBS station center. More interpretations will be elucidated for the crustal evolution of the West Philippine Basin in the near future. Drs. Shu-Kun Hsu and Kirk MacIntash were the chief scientists of Leg 4 TAIGER cruise on board R/V Langseth. We provided several ships to support the OBS experiment. These data were collected by a multi-ship operation.

Lai, W.; Huang, W.; Lee, C.

2009-12-01

64

Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: 30-Year Average Daily Minimum Temperature, 1971-2000  

USGS Publications Warehouse

(MRBs, Crawford and others, 2006). The source data were the United States Average Monthly or Annual Minimum Temperature, 1971 - 2000 raster data set produced by the PRISM Group at Oregon State University. The MRB_E2RF1 catchments are based on a modified version of the Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

Wieczorek, Michael E.; LaMotte, Andrew E.

2010-01-01

65

Two Preliminary SRTM DEMs Within the Amazon Basin  

Microsoft Academic Search

Digital topography provides important measures, such as hillslope lengths and flow path networks, for understanding hydrologic and geomorphic processes (e.g., runoff response to land use change and floodplain inundation volume). Two preliminary Shuttle Radar Topography Mission digital elevation models of Manaus (1S to 5S and 59W to 63W) and Rondonia (9S to 12S and 61W to 64W) were received from

D. Alsdorf; L. Hess; J. Melack; T. Dunne; L. Mertes; A. Ballantine; T. Biggs; K. Holmes; Y. Sheng; G. Hendricks

2002-01-01

66

Preliminary assessment of the Lago Mercedes discovery, Magallanes Basin, Chile  

SciTech Connect

The Lago Mercedes No. 1 well, spudded January 17, 1991, was positioned to test a seismically defined structural culmination located along a blind thrust near the deep foreland axis of the western magallanes Basin. This fault, which defines the leading edge of Andean-related thrust detachment in the region, is responsible for a trap geometry that is genetically related to, but fundamentally different from the numerous unrooted Tertiary folds in the area. Although the Lower Cretaceous Springhill Formation comprised the primary target, it was anticipated that the geometry of the fold allowed for the possibility of several fractured intervals in the hanging wall, including volcaniclastic rocks of the underlying Jurassic Tobifera [open quotes]basement[close quotes] sequence, recently found to be productive elsewhere on the eastern platform of the basin. During drilling of the well, gas and condensate shows were encountered in numerous horizons. The most surprising of these later proved to be a Permo-Triassic granodiorite underlying the Tobifera. Although relatively widespread on outcrop, this represents the first time a pre-rift intrusive body has been penetrated in the subsurface. All of the hydrocarbon-bearing intervals exhibit minimal matrix porosity but varying degrees of fracturing. Subsequent testing of the well yielded combined flow rates of in excess of 12 MMCFD of rich gas and 1140 BPD of 52 A.P.I. condensate. The most prolific zone corresponds to an intensely fractured and partially weathered interval in the uppermost portion of the intrusive. Additional testing is planned prior to any estimate of recoverable reserves. Nevertheless, this unique accumulation underscored the possibility for nonconventional reservoirs throughout the lightly explored Sub-Andean basin trend, particularly fold-thrust belts which have the potential to [open quotes]create[close quotes] reservoirs and trap geometry simultaneously.

Dean, J.S. (Advantage Resources, Denver, CO (United States)); Wilson, J.T.; Mainzer, G.F. (Anderman-Smith, Denver, CO (United States)); Escobar, F.; Aguirre, G. (ENAP, Punta Arenas (Chile))

1993-02-01

67

Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Artificial Drainage (1992) and Irrigation (1997)  

USGS Publications Warehouse

This tabular data set represents the estimated area of artifical drainage for the year 1992 and irrigation types for the year 1997 compiled for every MRB_E2RF1 catchment of Major River Basins (MRBs, Crawford and others, 2006). The source data sets were derived from tabular National Resource Inventory (NRI) data sets created by the National Resources Conservation Service (NRCS, U.S. Department of Agriculture, 1995, 2000). Artificial drainage is defined as subsurface drains and ditches. Irrigation types are defined as gravity and pressure. Subsurface drains are described as conduits, such as corrugated plastic tubing, tile, or pipe, installed beneath the ground surface to collect and/or convey drainage. Surface drainage field ditches are described as graded ditches for collecting excess water. Gravity irrigation source is described as irrigation delivered to the farm and/or field by canals or pipelines open to the atmosphere; and water is distributed by the force of gravity down the field by: (1) A surface irrigation system (border, basin, furrow, corrugation, wild flooding, etc.) or (2) Sub-surface irrigation pipelines or ditches. Pressure irrigation source is described as irrigation delivered to the farm and/or field in pump or elevation-induced pressure pipelines, and water is distributed across the field by: (1) Sprinkle irrigation (center pivot, linear move, traveling gun, side roll, hand move, big gun, or fixed set sprinklers), or (2) Micro irrigation (drip emitters, continuous tube bubblers, micro spray or micro sprinklers). NRI data do not include Federal lands and are thus excluded from this dataset. The tabular data for drainage were spatially apportioned to the National Land Cover Dataset (NLCD, Kerie Hitt, U.S. Geological Survey, written commun., 2005) and the tabular data for irrigation were spatially apportioned to an enhanced version of the National Land Cover Dataset (NLCDe, Nakagaki and others, 2007). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

Wieczorek, Michael E.; LaMotte, Andrew E.

2010-01-01

68

Two Preliminary SRTM DEMs Within the Amazon Basin  

NASA Astrophysics Data System (ADS)

Digital topography provides important measures, such as hillslope lengths and flow path networks, for understanding hydrologic and geomorphic processes (e.g., runoff response to land use change and floodplain inundation volume). Two preliminary Shuttle Radar Topography Mission digital elevation models of Manaus (1S to 5S and 59W to 63W) and Rondonia (9S to 12S and 61W to 64W) were received from NASA JPL in August 2002. The "PI Processor" produced these initial DEM segments and we are using them to assess the initial accuracy of the interferometrically derived heights and for hydrologic research. The preliminary SRTM derived absolute elevations across the Amazon floodplain in the Cabaliana region generally range from 5 to 15 m with reported errors of 1 to 3 m. This region also includes some preliminary elevations that are erroneously negative. However, topographic contours on 1:100,000 scale quadrangles of 1978 to 1980 vintage indicate elevations of 20 to 30 m. Because double-bounce travel paths are possible over the sparsely vegetated and very-flat 2400 sq-km water surface of the Balbina reservoir near Manaus, it serves to identify the relative accuracy of the SRTM heights. Here, cell-to-cell height changes are generally 0 to 1 m and changes across a ~100 km transect rarely exceed 3 m. Reported errors throughout the transect range from 1 to 2 m with some errors up to 5 m. Deforestation in Rondonia is remarkably clear in the C-band DEM where elevations are recorded from the canopy rather than bare earth. Here, elevation changes are ~30 m (with reported 1 to 2 m errors) across clear-cut areas. Field derived canopy heights are in agreement with this change. Presently, we are deriving stream networks in the Amazon floodplain for comparison with our previous network extraction from JERS-1 SAR mosaics and for hydrologic modeling.

Alsdorf, D.; Hess, L.; Melack, J.; Dunne, T.; Mertes, L.; Ballantine, A.; Biggs, T.; Holmes, K.; Sheng, Y.; Hendricks, G.

2002-12-01

69

Baseflow and stormflow metal fluxes from two small agricultural catchments in the Coastal Plain of the Chesapeake Bay Basin, United States  

USGS Publications Warehouse

Annual yields (fluxes per unit area) of Al, Mn, Fe, Ni, Cd, Pb, Zn, Cu, Cr, Co, As and Se were estimated for two small non-tidal stream catchments on the Eastern Shore of the Chesapeake Bay, United States - a poorly drained dissected-upland watershed in the Nanticoke River Basin, and a well-drained feeder tributary in the lower reaches of the Chester River Basin. Both watersheds are dominated by agriculture. A hydrograph-separation technique was used to determine the baseflow and stormflow components of metal yields, thus providing important insights into the effects of hydrology and climate on the transport of metals. Concentrations of suspended-sediment were used as a less-costly proxy of metal concentrations which are generally associated with particles. Results were compared to other studies in Chesapeake Bay and to general trends in metal concentrations across the United States. The study documented a larger than background yield of Zn and Co from the upper Nanticoke River Basin and possibly enriched concentrations of As, Cd and Se from both the upper Nanticoke River and the Chesterville Branch (a tributary of the lower Chester River). The annual yield of total Zn from the Nanticoke River Basin in 1998 was 18,000 g/km2/a, and was two to three times higher than yields reported from comparable river basins in the region. Concentrations of Cd also were high in both basins when compared to crustal concentrations and to other national data, but were within reasonable agreement with other Chesapeake Bay studies. Thus, Cd may be enriched locally either in natural materials or from agriculture.

Miller, C.V.; Foster, G.D.; Majedi, B.F.

2003-01-01

70

Estimation of design floods in ungauged catchments using a regional index flood method. A case study of Lake Victoria Basin in Kenya  

NASA Astrophysics Data System (ADS)

Reliable estimation of flood magnitudes corresponding to required return periods, vital for structural design purposes, is impacted by lack of hydrological data in the study area of Lake Victoria Basin in Kenya. Use of regional information, derived from data at gauged sites and regionalized for use at any location within a homogenous region, would improve the reliability of the design flood estimation. Therefore, the regional index flood method has been applied. Based on data from 14 gauged sites, a delineation of the basin into two homogenous regions was achieved using elevation variation (90-m DEM), spatial annual rainfall pattern and Principal Component Analysis of seasonal rainfall patterns (from 94 rainfall stations). At site annual maximum series were modelled using the Log normal (LN) (3P), Log Logistic Distribution (LLG), Generalized Extreme Value (GEV) and Log Pearson Type 3 (LP3) distributions. The parameters of the distributions were estimated using the method of probability weighted moments. Goodness of fit tests were applied and the GEV was identified as the most appropriate model for each site. Based on the GEV model, flood quantiles were estimated and regional frequency curves derived from the averaged at site growth curves. Using the least squares regression method, relationships were developed between the index flood, which is defined as the Mean Annual Flood (MAF) and catchment characteristics. The relationships indicated area, mean annual rainfall and altitude were the three significant variables that greatly influence the index flood. Thereafter, estimates of flood magnitudes in ungauged catchments within a homogenous region were estimated from the derived equations for index flood and quantiles from the regional curves. These estimates will improve flood risk estimation and to support water management and engineering decisions and actions.

Nobert, Joel; Mugo, Margaret; Gadain, Hussein

71

Preliminary assessment of tree mortality near F- and H-area seepage basins  

SciTech Connect

A preliminary assessment was conducted to evaluate factors that may have been responsible for the vegetation damage that has occurred in groundwater seeps downslope from the F- and H-area seepage basins. The factors that were considered included altered hydrology, toxicity from hazardous chemical constituents associated with seepage basin operation, and toxicity from non-hazardous constituents associated with basin operation. It was concluded that the observed damage was not likely to have resulted from altered hydrologic conditions or hazardous constituents associated with basin operation. Insufficient information is currently available to determine definitively which of the non-hazardous constituents, alone or in concert, were responsible for the observed vegetation damage. The most likely explanation, however, is that elevated Na, pH, and conductivity is outcropping seep water are responsible for tree mortality. All three of these factors will return to ambient levels over a period of several years when basin operation ceases. Faster remediation can be achieved using lime at the seep line.

Loehle, C; Gladden, J

1988-01-28

72

Scale-dependence effects of landscape on seasonal water quality in Xitiaoxi catchment of Taihu Basin, China.  

PubMed

Further understanding the mechanisms of landscape-water interactions is of great importance to water quality management in the Xitiaoxi catchment. Pearson's correlation analysis, stepwise multiple regression and redundancy analysis were adopted in this study to investigate the relation between water quality and landscape at the sub-catchment and 200 m riparian zone scales during dry and wet seasons. Landscape was characterized by natural environmental factors, land use patterns and four selected landscape configuration metrics. The obtained results indicated that land use categories of urban and forest were dominant landscape attributes, which influenced water quality. Natural environment and landscape configuration were overwhelmed due to land management activities and hydrologic conditions. In general, the landscape of the 200 m riparian zone appeared to have slightly greater influence on water than did the sub-catchment, and water quality was slightly better explained by all landscape attributes in the wet season than in the dry season. The results suggested that management efforts aimed at maintaining and restoring river water quality should currently focus on the protection of riparian zones and the development of an updated long-term continuous data set and higher resolution digital maps to discuss the minimum width of the riparian zone necessary to protect water quality. PMID:25607670

Lv, Huihua; Xu, Youpeng; Han, Longfei; Zhou, Feng

2015-01-01

73

SUGAR CANE GROWING AND CATTLE GRAZING AS DRIVERS TO WETLAND DEGRADATION IN UGANDA: A case of upper river Ruizi and Iguluibi catchments Lake Victoria basin  

NASA Astrophysics Data System (ADS)

Introduction: This study was conducted with in the framework of the VLIR-OI project with the aim of making contributions to the Diagnosis and Remediation of Land Degradation Processes in the Riparian Zone of Lake Victoria Uganda in view of reducing sediment pollution of the Lake Waters with a special focus on the upper river Ruiz and Iguluibi catchments. The study seeks to investigate Sugarcane growing and cattle grazing as drivers to wetland degradation in light of the current farming systems and practices and their contributions to land degradation and pollution of the Lake Victoria waters. Vegetation especially wetlands improves the resistance to erosion. The removal of riparian vegetation tends to accelerate surface erosion as a result of human activities. Increased erosion with in the catchments due to clearing of wetlands for sugarcane growing and cattle grazing has caused adverse increased sedimentation, degraded the water quality, and reduced the water productivity of the Lake Victoria Basin. Methods: We conducted a qualitative and quantitative study to investigate Sugarcane growing and cattle grazing as drivers to wetland degradation in Uganda in light of the current farming systems and practices and their socio-economic contributions to wetland degradation and pollution of the Lake Victoria waters. Focus group discussions, key informant interviews, semi structured interviews and observations were undertaken with the relevant stakeholders in the community. Results: Findings reveal that in Iguluibi catchment, sugarcane growing is now a major activity indicating land use change since the 1990s. Community members said when planting sugarcane all vegetations including all trees are cut leaving the land bare to allow the tractor to clear the land for cultivation. This has left the land bare without any natural vegetation with increased erosion hence eventually loss of soil fertility and increased sediment pollution to the Lake Victoria waters. As a result of land loosing fertility upland, due to erosion and runoff, most community members have resorted to wetlands for agricultural practices with in the catchment and this has hardly left any natural vegetation to protect the soil and increased runoff to Lake Victoria hence sediment pollution of the lake waters. In the Ruizi catchment, many valleys, the natural vegetation has been cut and the land has been turned into pastureland. The massive expansion of livestock keeping into the low lands mainly covered by wetlands is relatively new (over the last 20 years). Burning of rangelands is a common practice and seasonal swamps are grazed during the dry season This change of land use as far as farming practice is concerned has had a big impact on the water levels of the River Ruizi systems in a number of ways for example: the wetland filter system for sediments and sediment fixed nutrients is compromised; lowering of the water storage capacity of the papyrus swamps as a consequence of drainage, hence surface lowering; river bank erosion of the Ruizi by livestock coming into the river for drinking; pollution of the River Ruizi by livestock defecating into the water while drinking. Due to overstocking of the steep slopes by livestock, the low lands are overgrazed which has resulted in soil erosion, that is, mainly sheet and rill erosion, mass movement below cattle tracks, and stone movement by cattle trampling. The steep slope grazing area has generated substantial runoff, the concentrated flow of which causes gullies that cut through the banana groves. Conclusion Vegetation management of riparian areas especially wetlands in Uganda should conserve and maintain adequate ecological balance of the Lake by reducing on nutrient-loaded fluxes from the riparian zone into the Lake Victoria basin.

Nakiyemba Were, Alice; Isabirye, Moses; Mathijs, Erik; Deckers, Jozef; Poesen, Jean

2010-05-01

74

Controls on hydrologic partitioning: A comparative hydrology study across sub-catchments in a mountain headwater basin  

NASA Astrophysics Data System (ADS)

Headwater streams are the most abundant portion of the river network but the least monitored. As such, we have a limited understanding of headwater stream behaviors and how they are influenced by watershed properties such as topography, geology, and vegetation. Given the lack of runoff monitoring within headwater streams, improving an understanding of how catchment properties influence hydrologic behavior is necessary for transferring information from instrumented areas to ungauged sites. We utilize this concept to understand physical controls on similarities and differences in hydrologic behavior for five adjacent sub-catchments located in the Tenderfoot Creek Experimental Forest in central Montana with variable topographies and vegetative cover. We use an uncalibrated, distributed, physically-based watershed model, the Distributed Hydrology-Soil-Vegetation Model (DHSVM) combined with global, variance-based sensitivity analysis to investigate physical controls on a range of model-predicted hydrologic behavior (i.e. states) across multiple time scales. We implement comparative hydrology to improve our understanding of headwater watershed runoff behavior within this framework by directly relating physical properties of a given catchment to process-based predictions of hydrologic behavior. We find that across different hydrologic fluxes, including streamflow, evapotranspiration, and snow water equivalent change, only a few vegetation and soil parameters control the variability in hydrologic behavior for all sub-catchments. These controls are similar at the annual and weekly scale, though parameter influence varies seasonally from wet to dry periods. Three of the five watersheds exhibited different controls on hydrologic behavior, likely resulting from past vegetation treatments and differing surficial geology within these sub-watersheds. This framework has strong potential to inform how similarities and differences in headwater watershed characteristics can influence variability in spatially and temporally varying hydrologic behavior. We ultimately demonstrate that the influences of soil and vegetation across headwater watersheds vary, using a modeling framework to understand physical controls on hydrologic behavior at a high resolution. We suggest that this approach can enhance estimation of controls on headwater watershed behavior at unmonitored sites.

Kelleher, C.; Wagener, T.; McGlynn, B. L.

2013-12-01

75

Testing the Transferability of Hydrological Water Quality Model between two Catchments in Central Germany  

NASA Astrophysics Data System (ADS)

Several indications showed that changes in land use/cover can influence the hydrological regimes and in consequence river water quality. Hydrological water quality modelling has proven to be an efficient tool to predict how the changes in land cover can affect the discharge of river catchment and its water quality (such as nitrogen and phosphorus) using different land use scenarios. The aim of this study was to test the tranferability of a hydrological water quality model between two catchments with different physiographical charcatctreristics. The HYPE model (HYdrological Predictions for the Environment) was setup in two mesoscale catchments in central Germany. The selected catchments are Selke (463 km2) and Weida (99.5 km2), which are two small tributaries of Elbe river basin and are located in Saxony-Anhalt and Thuringian states, respectively. The predominant land use classes of the Selke catchment are arable land (? 50%) located mainly in the lowland area and forest (35%), which is situated in low montain area. Howover, the dominating land use classes of the Weida catchment are agricultural land (40%), forest (29%) and grassland (26%), which are all located in low-montain range (elevation between 357-552m). First, The HYPE model was setup for the Selke catchment. Second, the model was used to predict the measured discharge and nutrient concentration of the Weida catchment using the same corresponding optimized paramter values obtained from calibration in the Selke catchment. Therefore, the feasability of HYPE model-parameter transferability between catchments with different physiographic characteristics and new regionalization schemes were investigated. The HYPE model was then used to predict the impact of different bionergy scanarios on the river discharge and nutrient emission. The preliminary results of this study will be presented and discussed.

Jomaa, S.; Jiang, S.; Rode, M.

2013-12-01

76

Analysis of Eocene depositional environments - Preliminary TM and TIMS results, Wind River Basin, Wyoming  

NASA Technical Reports Server (NTRS)

Both Landsat TM and aircraft Thermal IR Multispectral Scanner (TIMS) data have been used to map the lithofacies of the Wind River Basin's Eocene physical and biological environments. Preliminary analyses of these data have furnished maps of a fault contact boundary and a complex network of fluvial ribbon channel sandstones. The synoptic view thereby emerging for Eocene fluvial facies clarifies the relationships of ribbon channel sandstones to fossil-bearing overbank/floodplain facies and certain peleosols. The utility of TM and TIMS data is thereby demonstrated.

Stucky, Richard K.; Krishtalka, Leonard; Redline, Andrew D.; Lang, Harold R.

1987-01-01

77

Sources of uncertainty in climate change impacts on river discharge and groundwater in a headwater catchment of the Upper Nile Basin, Uganda  

NASA Astrophysics Data System (ADS)

The changing availability of freshwater resources is likely to be one of the most important consequences of projected 21st century climate change for both human and natural systems. However, substantial uncertainty remains regarding the precise impacts of climate change on water resources, due in part due to uncertainty in GCM projections of climate change. Here we explore the potential impacts of climate change on freshwater resources in a humid, tropical catchment (the River Mitano) in the Upper Nile Basin of Uganda. Uncertainty associated with GCM structure and climate sensitivity is explored, as well as parameter specification within hydrological models. These aims are achieved by running pattern-scaled output from seven GCMs through a semi-distributed hydrological model of the catchment (developed using SWAT). Importantly, use of pattern-scaled GCM output allows investigation of specific thresholds of global climate change including the purported 2 °C threshold of "dangerous" climate change. In-depth analysis of results based on the HadCM3 GCM climate scenarios shows that annual river discharge first increases, then declines with rising global mean air temperature. A coincidental shift from a bimodal to unimodal discharge regime also results from a projected reduction in baseflow (groundwater discharge). Both of these changes occur after a 4 °C rise in global mean air temperature. These results are, however, highly GCM dependent, in both the magnitude and direction of change. This dependence stems primarily from projected differences in GCM scenario precipitation rather than temperature. GCM-related uncertainty is far greater than that associated with climate sensitivity or hydrological model parameterisation.

Kingston, D. G.; Taylor, R. G.

2010-07-01

78

Preliminary evaluation of nominal drainage basin volume as a potentially useful morphometric parameter for small mountain basins  

SciTech Connect

Morphometric basin parameters have been used in quantitative geomorphic assessments since Horton's Hydrophysical Approach in 1945. A relationship between basin form and dominant process in small mountain basins in the western United States would be valuable for use in differentiating basins which produce deep-seated landslides from those which produce debris flows from debris slides. Drainage basin volume seems like it should be a parameter directly related to the dominant process operating in a basin. Consequently, it may be a potentially useful morphometric parameter. Nominal drainage basin volume is herein defined as the volume creates by the basin topography and linear projection of topographic contours across the basin. Incremental volume is computed from area encompassed by topographic contours and projections and the contour interval using the formula for the volume of the frustrum of a cone. Seven basins in the Wasatch Range and five in the Wasatch Plateau of Utah show strong relationship of log Basin Area to log Basin Volume (r/sup 2/ = 0.97). The relationship between average Basin Slope and log Basin Volume was poorer (r/sup 2/ = 0.78) than between Basin Slope and log Basin Area (r/sup 2/ = 0.87). This suggests that basin area may be a more useful parameter than basin volume, especially since area is more easily measured.

Keaton, J.R.

1985-01-01

79

Évolution morphogénique holocène d'un bassin versant de la Forêt guyanaise : la Nourague occidentale (Guyane française)Holocene morphogenic evolution of a Guyanese forest catchment basin: western Nourague (French Guiana).  

NASA Astrophysics Data System (ADS)

Chronological and sedimentological analysis of the western Nourague catchment basin alluvial inheritances underscore several erosive crises during the last Holocene millenium. Two of them coincide with forest opening episodes identified by previous palaeoecologic studies: the first one occurs between 1?400 and 1?200 BP; the second one between 1?000 and 600 BP. Otherwise, low hydrosedimentary activity associated with badly drained environments is identified in certain places in the Kwak Creek; this phase stopped about 4?700 BP.

Rosique, Thierry; Pous, Frédéric; Charles-Dominique, Pierre

2000-03-01

80

From the Highest to the Deepest: A River-Sea Dispersal System that Links A Mountainous Catchment to the Deep-Sea Basin (Invited)  

NASA Astrophysics Data System (ADS)

Gaoping River (GPR) is a small mountainous river whose source area is located in the southern Central Range of Taiwan, about 3900 m above sea level. It has an average gradient of 1:150. Both the chemical and physical weathering rates for the GPR catchment are higher than the world average. Approximately 1 km seaward from the mouth of the GPR is the head of the Gaoping Submarine Canyon (GPSC). GPR annually discharges 35 Mt of sediment into the sea, most of which enters the GPSC. The GPSC owes its existence to tectonic processes related to the collision of the Philippine Plate and the Eurasia Plate. The canyon extents from the mouth of GPR, cutting through the Gaoping shelf and slope, and merges into the northeastern Manila Trench over a distance of about 260 km in water depth over 3000 m. It is a major conduit for the transport of terrestrial sediment to the South China Sea (SCS) and the landward transport of particles of marine origin in the SCS. The thickness of the tidally-dominated benthic nepheloid layer (BNL) in the GPSC can exceed 200 m, in which the temperature, flow, and suspended sediment concentration show distinctive tidal oscillations. Both semidiruanl barotropic and baroclinic tides are important in the canyon. In the GRSC the normal transport of suspended sediment associated with tidal propagation from offshore is up-canyon yet episodic sediment transports associated with episodic gravity-driven events are down-canyon. Typhoon-induced river floods often ignite turbidity currents (TCs) in the GPSC. Therefore, hperpycnal river plume and the ensuing TCs form an effective pathway to transport large amount of terrestrial sediment and carbon (fresh and aged) to the SCS basin. However, due to the extensive disturbance in the GPR catchment by typhoon-related deep erosion of hillslopes and incision of river channels, the ';fresh' flood sediment exported by GPR during and immediately after typhoons contains old sediment as defined by the absence of 7Be. Consequently, a new paradigm is proposed that ';fresh sediments exported from highly disturbed catchments during floods are old sediments'. The upper reaches of the canyon act as a sink for coarser TC deposits (turbidites). Finer turbidites are abundant in the middle and lower reaches. These findings also suggest rapid transport of fluvial sediment from the GPR down the GPSC, delivered by hyperpycnal TCs. Earthquake-triggered episodic gravity flows are also important transport agents of reworked marine sediment in the GPSC. The GPR-GPSC represents a type of source-to-sink systems in which terrestrial sediment in a mountainous catchment is promptly removed and transported to the river mouth by fluvial processes, and then efficiently and quickly transported to the deep-sea by turbidity currents along a submarine conduit during episodic typhoon events. This is also a pathway by which fresh terrestrial carbon could be quickly and effectively delivered to the deep-sea with little oxidation, which is a substantial step in the sequestration of carbon.

Liu, J. T.; Hsu, R. T.

2013-12-01

81

Preliminary study of the geology and uranium favorability of the Forest City Basin in Kansas, Missouri, Iowa, and Nebraska  

Microsoft Academic Search

This preliminary study was conducted to evaluate the favorability for uranium in the Forest City basin where Pennsylvanian strata are the predominant outcropping units. Permian and Cretaceous sediments are also present but are of minor importance in the project area. No literature pertaining to uranium occurrences in the project area has been found. However, because the igneous and metamorphic core

V. C. Johnson; W. S. Dubyk

1977-01-01

82

Preliminary assessment of channel stability and bed-material transport in the Coquille River basin, southwestern Oregon  

USGS Publications Warehouse

This report summarizes a preliminary study of bed-material transport, vertical and lateral channel changes, and existing datasets for the Coquille River basin, which encompasses 2,745 km2 (square kilometers) of the southwestern Oregon coast. This study, conducted to inform permitting decisions regarding instream gravel mining, revealed that:

Jones, Krista L.; O'Connor, Jim E.; Keith, Mackenzie K.; Mangano, Joseph F.; Wallick, J. Rose

2012-01-01

83

A comparative analysis of groundwater recharge estimates from three major methods: An analysis of subsurface recharge in the Nabogo sub-catchment of the White Volta Basin, Northern Ghana  

NASA Astrophysics Data System (ADS)

Groundwater recharge in the Nabogo sub-catchment of the White Volta Basin is assessed using three main methods: the water table fluctuations method, baseflow recession method, and chloride mass balance approach. The objective is to quantify the relative proportions of direct vertical infiltration and percolation of rainwater in the area and subsurface flows in determining the total groundwater recharge in the basin. Groundwater resources development for commercial irrigation activities is an essential aspect of the livelihoods of communities living within the catchments of the Volta Basin. A comprehensive assessment of the recharge component of groundwater budgets in the basin is critical towards determining optimal abstraction rates in order to ensure resource sustainability and ecological integrity. This will form the basis for quantifying abstraction rates that are permissible to support large scale irrigation activities in the basin. The presence and thickness of the clay layer in the unsaturated zone serves to limit vertical infiltration of rainwater, and thus reduce vertical groundwater recharge in the area. In this study, the chloride mass balance technique, supported by the analysis of stable isotope signatures, has been used to estimate the vertical groundwater recharge and its spatial pattern of distribution in the area. The water table fluctuations technique and base flow recession method are then used to estimate total groundwater recharge in the basin. It is then possible to quantify the relative contributions of subsurface flows in the groundwater recharge in the basin. Temporal variations in groundwater recharge in the area are examined from time series of estimates from the baseflow recession technique. The results will assist in assessing the short term impacts of rainfall variability on groundwater budgets in the area.

Fynn, O. F.; Yidana, S. M.; Alo, C. A.; Mensah, F. O.

2013-12-01

84

REACH-ER: a tool to evaluate river basin remediation measures for contaminants at the catchment scale  

NASA Astrophysics Data System (ADS)

The European Union (EU) adopted the Water Framework Directive (WFD) in 2000 ensuring that all aquatic ecosystems meet ‘good status' by 2015. However, it is a major challenge for river basin managers to meet this requirement in river basins with a high population density as well as intensive agricultural and industrial activities. The EU financed AQUAREHAB project (FP7) specifically examines the ecological and economic impact of innovative rehabilitation technologies for multi-pressured degraded water bodies. For this purpose, a generic collaborative management tool ‘REACH-ER' is being developed that can be used by stakeholders, citizens and water managers to evaluate the ecological and economical effects of different remedial actions on waterbodies. The tool is built using databases from large scale models simulating the hydrological dynamics of the river basing and sub-basins, the costs of the measures and the effectiveness of the measures in terms of ecological impact. Knowledge rules are used to describe the relationships between these data in order to compute the flux concentrations or to compute the effectiveness of measures. The management tool specifically addresses nitrate pollution and pollution by organic micropollutants. Detailed models are also used to predict the effectiveness of site remedial technologies using readily available global data. Rules describing ecological impacts are derived from ecotoxicological data for (mixtures of) specific contaminants (msPAF) and ecological indices relating effects to the presence of certain contaminants. Rules describing the cost-effectiveness of measures are derived from linear programming models identifying the least-cost combination of abatement measures to satisfy multi-pollutant reduction targets and from multi-criteria analysis.

van Griensven, Ann; Haest, Pieter Jan; Broekx, Steven; Seuntjens, Piet; Campling, Paul; Ducos, Geraldine; Blaha, Ludek; Slobodnik, Jaroslav

2010-05-01

85

Quantification of water and sediment yield from small catchment in open mining areas: experience and results from Poro nickel mining basin in New Caledonia  

NASA Astrophysics Data System (ADS)

Water management in mining environments is a major challenge of the mining projects. In New Caledonia large areas have been excavated for Nickel mining since the end of the 19th century. In the past, the bad management of the water and coarse sediments left scars in the landscape and management problems in the channel reaches downstream. Nowadays, open mining techniques no longer yield coarse material out of the mining areas but the management of water and fine sediment remains a difficult question as the suspended sediments reach the very fragile environment of the lagoon. In addition, in many areas, it threatens human activities in the downstream rivers. In order to quantify and understand the formation of runoff, erosion and sediment transport in small mining watersheds the "Hydromine" project was initiated in 2008 by the New Caledonia government (DAVAR) with the collaboration of the University of New Caledonia (UNC) and later with the scientific support of Irstea Grenoble. The questions addressed by this project are: - What is the response (water and sediments) of a mining watershed to a rainfall input? - What factors control this response? - What are the processes involved? And which are dominant in the various hydrometeorological situations? - What are the characteristics of the transported materials? - What is the efficiency of mitigation works in the mining area? Two small embedded catchments (0.09 and 0.30 km²) are monitored for measuring rainfall, runoff and fine sediment transport in the mining area of Poro, East cost of New Caledonia. Elevation ranges from 197 to 366 m.a.s.l. The slope are steep (36 % in average but locally up to 130%) and the vegetation cover is very low (20% for the larger basin, 0% for the headwater basin). Rainfall-runoff and discharge-sediment concentration (SSC) relationship were analysed at the event and annual time scale. As a result, we pointed out the main factors that influence the response of the basins to a rainfall event: rainfall depth, rainfall intensity in fifteen minutes and in two hours, peak discharge, runoff coefficient, dry time duration before the event and flood duration. The calculation of suspended sediment yield (SSY) at different time scales gives an evaluation of the pollution delivered to the creeks and lagoon and of the water management and sediment trap efficiency. An extreme rainfall event (December 25th, 2011) of 500 mm in 26 hours yielded downstream more suspended sediment than all the floods of the previous monitored period. This highlights the threshold effects in runoff and erosion response in these open mining areas.

Mathys, Nicolle; Allenbach, Michel; Wottling, Geoffroy; Carpentier, Laureen; Freydier, Perrine; Navarrot, Lucie

2014-05-01

86

Preliminary hydrologic budget studies, Indian Creek watershed and vicinity, Western Paradox Basin, Utah  

SciTech Connect

Preliminary quantitative estimates of ground-water discharge into the Colorado River System in the western Paradox Basin were prepared on the basis of existing climatological and streamflow records. Ground-water outflow to the river was deduced as a residual from hydrologic budget equations for two different study areas: (1) the region between gaging stations at Cisco, Green River, and Hite, Utah; and (2) the Indian Creek watershed. An empirical correlation between recharge rates and precipitation amounts derived for several basins in eastern Nevada was applied to estimate recharge amounts for the Indian Creek watershed. A simple Darcian flow model was then used to approximate the ground-water flux outward from the watershed for comparison. Salinity measurements in the Colorado River were also used to approximate ground-water outflow to a river reach in Cataract Canyon in order to provide another comparison with the hydrologic budget results. Although these estimates should be considered only gross approximations, all approaches used provide values of ground-water outflow that are much less than estimates of similar parameters provided by the US Geological Survey in recent hydrologic reconnaissance reports. Estimates contained herein will be refined in future numerical modeling and data collection studies.

Thackston, J.W.; Mangarella, P.A.; Preslo, L.M.

1986-05-01

87

Congo Basin Streamflow characterization using multi-source satellite-derived data: Preliminary Results  

NASA Astrophysics Data System (ADS)

The Congo Basin in Central Africa has the second largest discharge of any river system, second only to the Amazon Basin. As such, it is considered a potential and strategic asset for supplying not only fresh water but also clean energy through hydropower generation. However, very little of Congo River Basin hydrology is known. Indeed, the basin hydrometeorological network is deteriorating and has a small number of gauges unevenly distributed throughout the Congo watershed. In such cases where in situ data are scarce, remote sensing can be used to quantify rainfall pattern and river flow regime. In default of contributing to quantification exercises, limited ground data available can be used for validation work. To better understand hydrological processes in the Congo River Basin, a 2009 NASA funded project entitled “Hydrological Response to Land Cover and Land Use Change in the Congo Basin” exploits remote sensing capabilities coupled with large scale hydrological modeling. Temporal and terrestrial satellite-based data are ingested into the USGS Geospatial Streamflow Model (GeoSFM) for daily flow generation. The reliance on remotely sensed data to replace or supplement ground data for this hydrological application necessitates rigorous validation of these products. As TRMM Satellite rainfall estimates are being used in this study in place of gauge observations, ground precipitation data reported in existing nationally-held datasets from 33 meteorological stations are used for validation purposes. Initial research on the Congo Basin compared streamflow estimated with GeoSFM against available current and historical streamflow data. While initial results were promising, some discrepancies were revealed, attributed to the accuracy of the input data and the non-calibration of the model. A key finding was that the existing parameterization of land cover using coarse resolution data is inadequate to accurately characterize rainfall-runoff processes in the Congo. As part of the NASA project, the important question of improving the agreement between modeled flows from satellite-derived data and observed flow data from hydrometric field stations is addressed. To evaluate the GeoSFM performance, the model is run using coarse resolution (Land Cover Land Use) LCLU and DEM inputs and then using improved region-specific high spatial resolution inputs. Intercomparisons are made to evaluate improvement to streamflow characterization based on improved input data. Improved streamflow is a key for establishing the setting for a high-performance calibration process for the Congo. Changing the parameter values used in the model until a satisfactory agreement between simulated and the recorded variables is obtained is an integral part of modeling. However, in order to produce realistic parameters values and a sufficiently calibrated model, the calibration requires the finest baseline simulated streamflow data possible. A poster will present our preliminary results.

Munzimi, Y.; Hansen, M. C.; Asante, K. O.

2010-12-01

88

A preliminary assessment of the spatial sources of contemporary suspended sediment in the Ohio River basin, United States, using water quality data from the NASQAN programme in a source tracing procedure  

USGS Publications Warehouse

Reliable information on catchment scale suspended sediment sources is required to inform the design of management strategies for helping abate the numerous environmental issues associated with enhanced sediment mobilization and off-site loadings. Since sediment fingerprinting techniques avoid many of the logistical constraints associated with using more traditional indirect measurement methods at catchment scale, such approaches have been increasingly reported in the international literature and typically use data sets collected specifically for sediment source apportionment purposes. There remains scope for investigating the potential for using geochemical data sets assembled by routine monitoring programmes to fingerprint sediment provenance. In the United States, routine water quality samples are collected as part of the US Geological Survey's revised National Stream Quality Accounting Network programme. Accordingly, the geochemistry data generated from these samples over a 10-year period (1996-2006) were used as the basis for a fingerprinting exercise to assess the key tributary sub-catchment spatial sources of contemporary suspended sediment transported by the Ohio River. Uncertainty associated with the spatial source estimates was quantified using a Monte Carlo approach in conjunction with mass balance modelling. Relative frequency weighted means were used as an alternative way of summarizing the spatial source contributions, thereby avoiding the need to use confidence limits. The results should be interpreted in the context of the routine, but infrequent nature, of the suspended sediment samples used to assemble geochemistry as a basis for the sourcing exercise. Nonetheless, the study demonstrates how routine monitoring samples can be used to provide some preliminary information on sediment provenance in large drainage basins. ?? 2011 John Wiley & Sons, Ltd.

Zhang, Y.-S.; Collins, A.L.; Horowitz, A.J.

2012-01-01

89

Constraining back-arc basin formation in the eastern Coral Sea: preliminary results from the ECOSAT voyage  

NASA Astrophysics Data System (ADS)

The eastern Coral Sea region is an underexplored area at the northeastern corner of the Australian plate, where long-lived interaction between the Pacific and Australian plate boundaries has resulted in an intricate assemblage of deep oceanic basins and ridges, continental fragments and volcanic products. A paucity of marine geophysical and geological data from this complex region has resulted in the lack of a clear conceptual framework to describe its formation, ultimately affecting our understanding of the connection between the plate boundaries of the SW Pacific and SE Asia. In particular, the tectonic relationship between two back-arc basins, the Santa Cruz and d'Entrecasteaux Basins, and the South Rennell Trough, has yet to be resolved. In October-November, 2012, we collected 6,200 km of marine magnetic, 6,800 km of gravity and over 13,600 km2 of swath bathymetry data from the eastern Coral Sea onboard the RV Southern Surveyor. A complementary dredging program yielded useful samples from 14 seafloor sites. Our preliminary geochemical interpretation of the dredge samples obtained from the South Rennell Trough reveal volcanic rocks resembling MORB or BABB-type basalts, similar in composition to the recently re-analysed and dated ORSTOM dredges from the area that yielded ~28 Ma MORB-like basalts. Swath bathymetry profiles from the Santa Cruz Basin reveal that the South Rennell Trough extends into this basin, with seafloor spreading fabric being parallel to the trough. Preliminary analysis of the three full and four partial new magnetic anomaly profiles across the Santa Cruz Basin, coupled with limited existing profiles, reveals that the basin may have formed between Chrons 13-18 (~32-38 Ma), with an extinct spreading ridge along the inferred continuation of the South Rennell Trough, consistent with ORSTOM age dates. Our results suggest that the South Rennell Trough is an extinct southwestward propagating spreading ridge, which may have initiated along a pre-existing zone of weakness. A preliminary interpretation of the 4 magnetic profiles collected in the d'Entrecasteaux Basin and existing profiles of seafloor fabric shows that this basin does not share a common seafloor spreading history with the Santa Cruz Basin, as has been suggested previously. Our preliminary interpretation of the relationship between the Santa Cruz Basin, South Rennell Trough and d'Entrecasteaux Basin requires a re-interpretation of existing models of the SW Pacific to take into account a southwestward propagating spreading ridge between 38-32 Ma, contemporaneous with seafloor spreading further south in the North Loyalty Basin. Further work on age-dating and geochemical analysis of the newly collected dredge samples and an in-depth analysis of the magnetic anomalies in the d'Entrecasteaux Basin may further yield important information concerning the tectonic evolution of the area.

Seton, M.; Williams, S.; Mortimer, N. N.; Meffre, S.; Moore, J.; Micklethwaite, S.; Zahirovic, S.

2013-12-01

90

Preliminary study on the radiological and physicochemical quality of the Umgeni Water catchments and drinking water sources in KwaZulu-Natal, South Africa.  

PubMed

Raw and potable water sample sources, from the Umgeni Water catchment areas (rivers, dams, boreholes) in central KwaZulu-Natal (South Africa), were screened for Uranium concentration and alpha and beta radioactivity. Test methods used were gas flow proportional counting for alpha-beta radioactivity, and kinetic phosphorescence analysis (KPA), for Uranium. The uranium levels (median = 0.525 ?g/L, range = <0.050-5.010) were well below the international World Health Organization (WHO) (2011) guideline for drinking-water quality (?15 ?g/L). The corresponding alpha and beta radioactivity was ?0.5 Bq/L (median = 0.084, Interquartile Range (IR) = 0.038, range = 0.018-0.094), and ?1.0 Bq/L (median = 0.114, IR = 0.096, range = 0.024-0.734), respectively, in compliance with the international WHO limits. For uranium radionuclide, the average dose level, at uranium level of ±0.525 ?g/L, was 0.06 ?Sv/a, which complies with the WHO reference dose level for drinking water (<0.1 mSv/a). There was a distinct trend of cluster of relatively higher Uranium levels of some sources that were found to be associated with the geology/geography and groundwater sources. Overall, the radiological water quality classification, with respect to WHO, is "Blue" - ideal; additional physicochemical analyses indicated good water quality. The analytical test methods employed were found to be suitable for preliminary screening for potential radioactive "hot spots". The observed Uranium levels, and the alpha/beta radioactivity, indicate contribution largely from Naturally Occurring Radioactive Material (NORM), with no significant health risk to humans, or to the environment. PMID:25151527

Manickum, T; John, W; Terry, S; Hodgson, K

2014-11-01

91

Tool for defining catchment similarity matrix  

NASA Astrophysics Data System (ADS)

It is important to classify catchments for many reasons, for example, for prediction in ungauged basins, model parameterization and watershed development. There have been many studies on catchment classification, but no silver bullet exists for choosing the most relevant measure of catchment similarity. The aim of this study is to explore a new measure of similarity among catchments, using a data depth function. We used a similarity measure called "Depth-Depth plot" (DD-plot) which measures similarity in the catchment flow dynamics in multiple dimension. The area under the convex hull of DD-plot can be used as similarity matrix to any clustering technique. In this study we used Affinity propagation (AP) clustering algorithm for grouping the similar catchments. Catchment classifications based on flow and physical characteristics were compared. We evaluate whether the similarity based on depth-depth plots provides a better basis for transferring parameter sets of a hydrological model between catchments. We used a case study of 21 catchments located in the Bay of Plenty region in the North Island of New Zealand. The catchments have a wide range of topographic properties, response behaviours and geological features. The TopNet hydrological model was calibrated for all the catchments and the transferability of model parameters among the similar catchments was tested by transferring the parameters from within the cluster group and outside the group. The results of parameter transferred with in group based on Nash-Sutcliffe coefficient are promising. Results also show that clustering based on our proposed depth-depth measure, catchment characteristics, flow, and flow indices are different. The catchment classification of this study can be used to improve regional flood forecasting capabilities.

Singh, Shailesh Kumar; McMillan, Hilary; Bárdossy, András; Fateh, Chebana

2014-05-01

92

Preliminary seismicity and focal mechanisms for the southern Great Basin of Nevada and California: January 1992 through September 1992  

SciTech Connect

The telemetered southern Great Basin seismic network (SGBSN) is operated for the Department of Energy`s Yucca Mountain Project (YMP). The US Geological Survey, Branch of Earthquake and Landslide Hazards, maintained this network until September 30, 1992, at which time all operational and analysis responsibilities were transferred to the University of Nevada at Reno Seismological Laboratory (UNRSL). This report contains preliminary earthquake and chemical explosion hypocenter listings and preliminary earthquake focal mechanism solutions for USGS/SGBSN data for the period January 1, 1992 through September 30, 1992, 15:00 UTC.

Harmsen, S.C.

1994-06-01

93

Congo Basin Streamflow characterization using multi-source satellite-derived data: Preliminary Results  

Microsoft Academic Search

The Congo Basin in Central Africa has the second largest discharge of any river system, second only to the Amazon Basin. As such, it is considered a potential and strategic asset for supplying not only fresh water but also clean energy through hydropower generation. However, very little of Congo River Basin hydrology is known. Indeed, the basin hydrometeorological network is

Y. Munzimi; M. C. Hansen; K. O. Asante

2010-01-01

94

Preliminary Crater Retention Ages for an Expanded Inventory of Large Lunar Basins  

NASA Technical Reports Server (NTRS)

Based on LOLA topography and a new crustal thickness model, the number of candidate lunar basins greater than 300 km in diameter is at least a factor 2 larger than the traditional number based on photogeology alone, and may be as high as 95. Preliminary N(50) crater retention ages for this population of candidate basins shows two distinct peaks. Frey [1] suggested, based on Clementine-era topography (ULCN2005) and a crustal thickness model based on Lunar Prospector data [2], that there could be as many as 98 lunar basins greater than 300 km diameter. Many of the weaker cases have not stood up to recent testing [3,4,5] using LOLA data and a newer crustal thickness model based on Kaguya gravity data and LOLA topography data [6]. As described in companion abstracts [4,5], we have deleted from the earlier inventory 1 more named feature (Sikorsky- Rittenhouse; LOLA data show that its diameter is actually less than 300 km), 11 Quasi-Circular Depressions (QCDs) identified in the ULCN topography, and 11 Circular Thin Areas (CTAs) found in the earlier crustal thickness model [2]. We did this by repeating the scoring exercise originally done in [1] but with the new data [4,5]. Topographic Expression (TE) and Crustal Thickness Expression (CTE) scores were determined for each candidate on a scale of 0 to 5 (5 being a strong, circular signature, 0 for those with no discernible circular topographic or crustal thickness signature). These scores are added together to produce a Summary Score which has a range of 0 to 10. We eliminated all candidates with a Summary Score less than 3, as well as other cases where, for example, the TE went to zero because what looked like a single large circular QCD in the lower resolution ULCN data was in fact a cluster of smaller deep impacts readily apparent in the newer higher resolution LOLA data. This process reduced the original inventory from 98 to 75 candidates.

Frey, H. V.

2012-01-01

95

Preliminary digital model of the Arikaree aquifer in the Sweetwater River basin, central Wyoming  

USGS Publications Warehouse

In central Wyoming, Potentially large supplies of ground water are available in the Sweetwater River basin from the Arikaree aquifer, which consists of the upper part of the White River, the Arikaree, and the Ogallala Formations. A preliminary digital model was developed for the Arikaree aquifer using a small amount of poorly distributed data, an estimated distribution of recharge, and a conceptual model of the Arikaree aquifer flow system. Calibration of the model was based on reproduction of the potentiometric surface and the base flow of the Sweetwater River in November 1975. Calculated steady-state hydraulic heads were within 50 feet of the observed heads in about 98 percent of the nodes. The calculated leakage from the Arikaree aquifer to he Sweetwater River in the western area was within about 12 percent of the leadage determined by gain and loss studies. In order to develop a comprehensive digital model that would respond to hydraulic stress in nearly the same manner as the actual aquifer flow system, measured responses of the aquifer to stress are needed. Also needed are additional data on aquifer characteristics, recharge to the aquifer, and stream-aquifer relationships. (Woodard-USGS)

Borchert, W.B.

1977-01-01

96

Deep seismic reflection profiling of sedimentary basins offshore Brazil: Geological objectives and preliminary results in the Sergipe Basin  

NASA Astrophysics Data System (ADS)

The first deep seismic reflection profiles offshore Brazil were acquired in Campos Basin and processed to 10 s TWT in 1984. Starting in 1989, Petrobrás acquired an extensive data set of deep seismic profiles using special acquisition equipment capable of effectively penetrating through the sedimentary layers and imaging the whole crustal architecture. These deep (18 s TWT) seismic reflection profiles extend across the Atlantic-type marginal basins, from the platform to the deepwater province, presently considered frontier regions for petroleum exploration. This work addresses the geological objectives of a deep seismic profile in the Sergipe Basin and discusses the results obtained by integrating regional seismic, gravity and magnetic data. When combined, these data provide evidence that deep seismic reflectors observed in the Sergipe Basin are related to intracrustal-upper mantle structures rather than sedimentary features. The deep seismic reflection profile in the Sergipe Basin also suggests that, rather than a non-volcanic passive margin, the deepwater extension of this basin is marked by several magmatic structures, including thick wedges of seaward-dipping reflectors and volcanic plugs. These magmatic features are associated with basinforming processes resulting from lithospheric extension during the breakup of Gondwana in the Early Cretaceous and subsequent emplacement of oceanic crust. These results are compared to the crustal scale structures observed in the Campos Basin, in the southeastern margin of Brazil. The interpretation of the deep structure of these basins indicates that final separation between the South American and African plates formed passive margins characterized by different patterns of crustal attenuation underlying the rift blocks.

Mohriak, Webster Ueipass; Lira Rabelo, JoséHenrique; De Matos, Renato Darros; De Barros, Mozart C.

1995-12-01

97

Spatial and Seasonal Patterns of Natural Organic Matter Spectral Fluorescent Signatures in Lake Kinneret (Sea of Galilee) and its Catchment Basin  

NASA Astrophysics Data System (ADS)

This paper presents a characterization of fluorescent natural organic matter (NOM) in Lake Kinneret (Sea of Galilee) and its catchment basin. Lake Kinneret, the large high-productive subtropical lake, is the only freshwater lake and one of the major water resources in Israel. The work is based on the analysis of the spectral fluorescent signatures (excitation emission matrices; EEM) of 167 water samples collected between 2/2005-9/2006 and examined using parallel factor analysis. By examining relationships between different fluorescing components and probing their spatial and seasonal patterns, we aimed at learning about differences between lacustrian and riverine-originated NOM and differentiating between the various sources of organic matter in the lake. Two humic-like and one proteinous components were sufficient to describe EEM variability among all the water samples. The two humic-like components showed essentially different relations in lake and riverine samples. The vertical distributions of humic-like components in Lake Kinneret are indicative of seasonal lake stratification. When the humic-like matter stratification is established, the concentration of humic-like substances is greater in the bottom water layers than in the surface. At the layer closest to the sediments, the concentration of humic-like components increases also with time (at anoxic conditions) thus linking their production to NOM transformation in the bottom water layer and/or to its release from sediments. Depth-related distribution of humic-like components appears to be similar in different lake locations thus (i) indicating the important role of a distance from the water surface in the vertical distribution of humic-like matter and (ii) supporting a possible influence of photodegradation on the concentrations of humic-like components in the upper water layers. Vertical distribution of the proteinous component, which reflects biological activity at the upper water layers, did not correlate with that of the humic-like components. Dissolved organic carbon concentrations did not show any vertical stratification, emphasizing the power of EEM to explore NOM dynamics.

Borisover, M.; Laor, Y.; Parparov, A.; Bukhanovsky, N.; Lado, M.

2009-04-01

98

Sediments in urban river basins: identification of sediment sources within the Lago Paranoá catchment, Brasilia DF, Brazil - using the fingerprint approach.  

PubMed

The development of effective sediment management strategies is a key requirement in tropical areas with fast urban development, like Brasilia DF, Brazil, because of the limited resources available. Accurate identification and management of sediment sources areas, however, is hampered by the dearth of reliable information on the primary sources of sediment. Few studies have attempted to quantify the source of sediment within fast urbanizing, mixed used, tropical catchments. In this study, statistically verified composite fingerprints and a multivariate mixing model have been used to identify the main land use specific sources of sediment deposited in the artificial Lago Paranoá, Central Brazil. Because of the variability of urban land use types within the Lago Paranoá sub-catchments, the fingerprinting approach was additionally undertaking for the Riacho Fundo sub-catchment. The main contributions from individual source types (i.e. surface materials from residential areas, constructions sites, road deposited sediment, cultivated areas, pasture, farm tracks, woodland and natural gullies) varied between the whole catchment and the Riacho Fundo sub-catchment, reflecting the different proportions of land uses. The sediments deposited in the silting zones of the Lago Paranoá originate largely from urban sources (85 ± 4%). Areas with (semi-) natural vegetation and natural gullies contribute 10 ± 2% of the sediment yield. Agricultural sites have only a minor sediment contribution of about 5 ± 4% within the whole catchment. Within the Riacho Fundo sub-catchment there is a significant contribution from urban (53 ± 4%) source, such as residential areas with semi-detached housings (42 ± 3%) with unpaved roads (12 ± 3%) and construction sites (20 ± 3%) and agricultural areas (31 ± 2%). The relative contribution from land use specific sources to the sediment deposition in the silting zone of the Lago Paranoá demonstrated that most of the sediment is derived from sites with high anthropogenic impact. PMID:23933453

Franz, C; Makeschin, F; Weiß, H; Lorz, C

2014-01-01

99

SUGAR CANE GROWING AND CATTLE GRAZING AS DRIVERS TO WETLAND DEGRADATION IN UGANDA: A case of upper river Ruizi and Iguluibi catchments Lake Victoria basin  

Microsoft Academic Search

Introduction: This study was conducted with in the framework of the VLIR-OI project with the aim of making contributions to the Diagnosis and Remediation of Land Degradation Processes in the Riparian Zone of Lake Victoria Uganda in view of reducing sediment pollution of the Lake Waters with a special focus on the upper river Ruiz and Iguluibi catchments. The study

Alice Nakiyemba Were; Moses Isabirye; Erik Mathijs; Jozef Deckers; Jean Poesen

2010-01-01

100

Changes in alluvial architecture associated with Eocene hyperthermals: Preliminary results from the Bighorn Basin Coring Project  

NASA Astrophysics Data System (ADS)

The Paleocene-Eocene Thermal Maximum (PETM) was followed by two lesser hyperthermal events: ETM2 and H2 both at ~53.7 Ma. The carbon isotope excursion for ETM2 was approximately half that of the PETM and the H2 excursion even smaller, indicating lower increases in temperature than during the PETM. The paleohydrologic responses to these events are less well understood than the response to PETM warming. Although the ETM2 and H2 events are better known from marine than continental strata, both events have been identified from outcrops of the alluvial Willwood Formation from the Deer Creek and Gilmore Hill areas of the Bighorn Basin, Wyoming (Abels et al., 2012). Here, we analyze two cores drilled from stratigraphically equivalent Willwood strata from Gilmore Hill. The cores provide an opportunity to examine the impact of these events on the architecture of fluvial strata. Willwood strata are composed largely of channel sandstones, heterolithic deposits generated by channel avulsion, and paleosols that formed on overbank deposits. The paleosols provide qualitative and quantitative information on changes in soil moisture and precipitation through this interval. The cores also show a distinct change in the stacking of paleosols The core is subdivided into three parts: (1) the lowest ~third has thinner, more densely spaced paleosols, (2) the middle has thicker paleosols that are more widely spaced, and (3) the upper third has thicker and more common channel sandstones interspersed with avulsion deposits and fewer red paleosols; this corresponds to the hyperthermal interval. In particular, a ~20 m thick sandstone complex caps the section and appears to truncate part of the hyperthermal interval. Although vertical variations in alluvial architecture can reflect tectonic or climatic change, the correspondence of the sandstone-rich part of the cores with the hyperthermals suggests climate was the major control on their formation. Thick purple paleosols associated with the hyperthermals at Deer Creek suggest wetter conditions, and our preliminary interpretation is that a change to wetter conditions caused increased discharge and deposition of coarser (sandy) sediment. The thick sandstone complex at Gilmore Hill is underlain by paleosols with abundant calcrete nodules, which indicate drier soil conditions prior to deposition of the sandstone, and the change from drier to wetter conditions probably also caused increased sediment yield.

Acks, R.; Kraus, M. J.

2012-12-01

101

Preliminary potential-field constraints on the geometry of the San Fernando basin, Southern California  

USGS Publications Warehouse

Gravity and magnetic data provide new insights on the structural underpinnings of the San Fernando Basin region, which may be important to ground motion models. Gravity data indicate that a deep basin (>5 km) underlies the northern part of the San Fernando Valley; this deep basin is required to explain the lowest gravity values over the Mission Hills thrust fault. Gravity modeling, constrained by well data and density information, shows that the basin may reach a thickness of 8 km, coinciding with the upper termination of the 1994 Northridge earthquake mainshock rupture. The basin is deeper than previous estimates by 2 to 4 km; this estimate is the result of high densities for the gravels of the Pliocene-Pleisocene Saugus Formation. The geometry of the southern margin of the deep basin is not well-constrained by the gravity data, but may dip to the south. Recently acquired seismic data along the LARSE (Los Angeles Regional Seismic Experiment) II profile may provide constraints to determine the location and attitude of the basin edge. Gravity and aeromagnetic models across the eastern margin of the San Fernando Valley indicate that the Verdugo fault may dip to the southwest along its southern extent and therefore have a normal fault geometry whereas it clearly has a thrust fault geometry along its northern strand.

Langenheim, Victoria E.; Griscom, Andrew; Jachens, R.C.; Hildenbrand, T.G.

2000-01-01

102

High frequency sampling of stable water isotopes for assessing runoff generation processes in a mesoscale urbanized catchment  

NASA Astrophysics Data System (ADS)

Experimental hydrology critically relies on tracer techniques to decipher and uncover runoff generation processes. Although tracer measurements contributed significantly to a better understanding of catchment functioning, their potential is not yet fully exploited. The temporal resolution of tracer measurements is typically relatively coarse, and applications are confined to a few locations. Additionally, experimental hydrology has focused primarily on pristine catchments, and the influence of anthropogenic effects remains largely unexplored. High frequency sampling of multiple tracers may therefore substantially enhance our understanding of hydrological processes and the impact of anthropogenic effects and enable a better protection and management of water resources and water quality. In this preliminary study we aim to assess runoff generation processes using geochemical and isotopic tracer techniques in the mesoscale Olewiger Bach catchment (24 km²) that is located in the low mountain ranges of the city of Trier, southwest Germany. The catchment is mainly characterized by quartzite and Devonian schist, overlain by fluvial sediments. Mixed land use prevails in the southern part of the basin, while the northern lower reaches are mainly urbanized. Several waste water treatment plants, separate sewer and stormwater management systems are present in parts of the catchment and contribute to the discharge of the main river. Tracer techniques employed in this ongoing study are twofold. A long term sampling of stable water isotopes (oxygen-18 and deuterium) was initiated in order to allow inferences about mean residence times of water in different catchment compartments, while event-based sampling using a multi-tracer approach was used to identify different runoff components and associated water pathways. Special attention is given to the observation of in-channel processes by assessing the dynamics of dissolved and particulate geochemical tracers and stable water isotopes during several controlled reservoir releases in the basin. The application of high resolution sampling of stable water isotopes employing a portable laser spectroscope is foreseen in this context.

Wrede, Sebastian; Fenicia, Fabrizio; Kurtenbach, Andreas; Keßler, Sabine; Bierl, Reinhard

2013-04-01

103

Space-time observations in nested catchment experiments of representative basins—experiences gained and lessons learned to help the PUB initiative in the World's biomes  

Microsoft Academic Search

Field experiences with a Nested Catchment Experiment (NCE) layout sited in a biome of a developing country are outlined in terms of both space-time observational hydrology and modelling constraints. This NCE encompasses scales of 0.125 km2, 1.1 km2, 19.9 km2, 165 km2 and 560 km2, aided by experimental plots of 1 m2 under different land uses. To address the prediction

E. M. MENDIONDO; C. E. TUCCI; R. T. CLARKE; N. M. CASTRO; J. GOLDENFUM; P. CHEVALLIER

104

Quantifying Spatial and Temporal Variability of Mountain System Recharge in Semi-Arid Catchments  

NASA Astrophysics Data System (ADS)

Groundwater recharge is likely to be altered as a result of climate change and variability impacting groundwater resources. In semi-arid Basin and Range systems where Mountain System Recharge (MSR) represents a significant component of recharge, this impact is likely to be more pronounced. Despite the importance of MSR in such basins' water budget, physical processes that control MSR have not been fully investigated due to complexity of recharge processes in mountainous catchments and limited soil moisture and water level elevation data. In most groundwater models, MSR is either derived from empirical relationships or estimated during the model calibration and water balance analysis. Therefore, these models are not capable of assessing the impact of climate variability and change on groundwater resources. The objective of this research is to enhance our conceptual understanding of MSR, and quantify temporal and spatial variability of MSR in selected semi-arid catchments in the Basin and Range province of Arizona. Water budget analysis was performed on a seasonal time scale using the Soil and Water Assessment Tool (SWAT2005). Isotopic and soil moisture data were used to provide a constraint on recharge seasonality and water balance partitioning. Preliminary results show annual variability of MSR with pronounced differences in winter and summer seasons. The ratio of MSR to precipitation varied between (0-20%) in summer with a median of 8% compared to (0-50%) in winter with a median of 18%. Moreover, a threshold response of MSR to winter and summer precipitation and soil moisture was shown over the simulation period in different catchments. These results demonstrate the advantage of using modeling approaches that can evaluate these seasonal recharge thresholds. The results further highlight the need for further understanding of the physical factors in semi-arid catchments that control precipitation partitioning into MSR such as vegetation, soil type and slope.

Ajami, H.; Hogan, J.; Maddock, T.; Meixner, T.; Troch, P.

2008-12-01

105

Runoff responses to forest thinning at plot and catchment scales in a headwater catchment draining Japanese cypress forest  

NASA Astrophysics Data System (ADS)

SummaryWe examined the effect of forest thinning on runoff generation at plot and catchment scales in headwater basins draining a Japanese cypress (Chamaecyparis obtusa) forest. We removed 58.3% of the stems (corresponding to 43.2% of the basal area) in the treated headwater basin (catchment M5), and left the control catchment (M4) untreated. In both catchments, we monitored overland flow from hillslope plots and stream runoff from catchments at basin outlets over a 2-year pre-thinning period and a 2-year post-thinning period. Paired catchment analysis revealed that annual catchment runoff increased 240.7 mm after thinning. Delayed runoff increased significantly, while quick runoff followed similar patterns in the pre- and post-thinning periods. Flow duration in the ephemeral channel in catchment M5 increased from 56.9% in the pre-thinning period to 73.3% in the post-thinning period. Despite the changes in hydrological responses at the catchment scale, increases in overland flow were not significant. The increased availability of water in the soil matrix, caused by decreased interception loss and evapotranspiration, increased base flow after thinning. Based on the summarized data of previous studies together with this study, the effects of forest thinning on increases in runoff were less than partial harvesting in which the managed areas were concentrated within a watershed. We demonstrated that the effect of forest thinning was strongly scale dependent, an important finding for optimizing water and forest management in forested watersheds.

Dung, Bui Xuan; Gomi, Takashi; Miyata, Shusuke; Sidle, Roy C.; Kosugi, Kenichiro; Onda, Yuichi

2012-06-01

106

Origins of streamflow in a crystalline basement catchment in a sub-humid Sudanian zone: The Donga basin (Benin, West Africa): Inter-annual variability of water budget  

NASA Astrophysics Data System (ADS)

SummaryDuring the last quarter of the 20th century, West Africa underwent a particularly intense and generalized drought. During this period, the biggest drops in streamflow were observed in the Sudanian zone rather than in the Sahelian zone, but the reasons are still poorly understood. In 2000, a meso-scale hydrological observatory was set up in the sub-humid Sudanian zone of the Upper Ouémé Valley (Benin). Three embedded catchments of 12-586 km 2 located on a crystalline bedrock were intensively instrumented to document the different terms of the water budget and to identify the main streamflow generating processes and base-flow mechanisms at different scales. Geophysical, hydrological and geochemical data were collected throughout the catchments from 2002 to 2006. Crossing these data helped define their hydrological functioning. The region has seasonal streamflow, and the permanent groundwater in the weathered mantle does not drain to rivers, instead, seasonal perched groundwaters are the major contributor to annual streamflow. The perched groundwaters are mainly located in seasonally waterlogged sandy layers in the headwater bottom-lands called bas-fonds in French-speaking West Africa of 1st order streams. During the period 2003-2006, regolith groundwater recharge ranged between 10% and 15% of the annual rainfall depth. Depletion of permanent groundwater during the dry season is probably explained by local evapotranspiration which was seen not to be limited to gallery forests. During the 4-year study period, a reduction of 20% in annual rainfall led to a 50% reduction in streamflow. This reduction was observed in the two components of the flow: direct runoff and drainage of perched groundwater. Thanks to the comprehensive dataset obtained, the results obtained for the Donga experimental catchment are now being extrapolated to the whole upper Ouémé valley, which can be considered as representative of sub-humid Sudanian rivers flowing on a crystalline basement, for example, the upper courses of several major West African rivers (Senegal, Niger, Bani, and Volta).

Séguis, L.; Kamagaté, B.; Favreau, G.; Descloitres, M.; Seidel, J.-L.; Galle, S.; Peugeot, C.; Gosset, M.; Le Barbé, L.; Malinur, F.; Van Exter, S.; Arjounin, M.; Boubkraoui, S.; Wubda, M.

2011-05-01

107

A new perspective on catchment storage gained from a nested catchment experiment in Luxembourg (Europe)  

NASA Astrophysics Data System (ADS)

Recent hydrological process research focussed on how much water a catchment can store and how these catchments store and release water. Storage can be a valuable metric for catchment description, inter-comparison, and classification. Further storage controls catchment mixing, non-linearities in rainfall-runoff transformation and eco-hydrological processes. Various methods exist to determine catchment storage (e.g. natural tracer, soil moisture and groundwater data, hydrological models). Today it remains unclear what parts of the catchment storage are measured with the different models. Here we present a new hydrometric approach to answer the question how much water a catchment can store. We tested our approach in a dense hydro-climatological monitoring network that encompasses 16 recording streamgauges and 21 pluviographs in the Alzette River basin in Luxembourg (Europe). Catchment scales are ranging from 0.47 to 285 km2 and they have clean- and mixed combinations of distinct geologies ranging from schists to marls, sandstone, dolomite and limestone. Previous investigations in the area of interest have shown that geology largely controls winter runoff coefficients. Here, we focus at how catchment geology is ultimately affecting catchment storage. We used the approach of Sayama et al. (2011) to compute catchment dynamic storage changes for each winter season over the period 2002-2012 (based on precipitation as input; discharge and evapotranspiration as output). We determined dynamic storage changes for each winter semester (October to March) in all 16 catchments over the period 2002-2012. At the beginning of each hydrological winter season, all catchments showed similar trends in storage change. A few weeks into the winter season, catchments with lowest permeability (e.g. marls) started to plateau. The highest storage values were reached several months later in the season in catchments dominated by permeable substrate (e.g. sandstone). For most catchments, we found strong correlations between baseflow prior to the recharge period (i.e. at initiation of the total storage calculations) and the seasonal maximum value of the total storage change calculations. In order to determine the maximum storage potential for each catchment, we fitted a trendline through the annual 'initial baseflow - maximum storage' populations. By extrapolating these trendlines to zero flow conditions, we obtained the maximum storage potential. Our results show that these maximum storage values clearly tend to be larger in catchments dominated by permeable substrate, compared to areas underlain by impermeable bedrock. In the latter, average filling ratios were found to be substantially higher (exceeding 80%) than in catchments dominated by permeable substrate (approximately 40%). These findings were confirmed by average seasonal winter runoff coefficients that are substantially higher in catchments dominated by impermeable bedrock (Pfister et al., in prep.). Our new approach allows a fast assessment of storage potential in catchments based on discharge, precipitation and evapotranspiration data. Pfister L. et al. 2014: Catchment storage, baseflow isotope signatures and basin geology: Is there a connection? In preparation. Sayama, T., McDonnell, J.J., Dhakal, A., Sullivan, K., 2011. How much water can a watershed store ? Hydrological Processes 25, 3899-3908.

Pfister, Laurent; Klaus, Julian; Hissler, Christophe; François Iffly, Jean; Gourdol, Laurent; Martinez-Carreras, Nuria; McDonnell, Jeffrey J.

2014-05-01

108

Preliminary Risk Analysis of Nitrate Contamination in the Salinas Valley and Tulare Lake Basin of California, Including the Implementation of POU Devices in Small Communities  

E-print Network

i Preliminary Risk Analysis of Nitrate Contamination in the Salinas Valley and Tulare Lake Basin and Funding Options to Mitigate Nitrate Contamination By HOLLY ELYSE CANADA B.S. (Lehigh University) 2010 M for always taking the time to talk. I can't imagine surviving the nitrate project without Anna Fryjoff

Lund, Jay R.

109

Potential impacts of climate change on tropospheric ozone in California: a preliminary episodic modeling assessment of the Los Angeles basin and the Sacramento valley  

SciTech Connect

In this preliminary and relatively short modeling effort, an initial assessment is made for the potential air quality implications of climate change in California. The focus is mainly on the effects of changes in temperature and related meteorological and emission factors on ozone formation. Photochemical modeling is performed for two areas in the state: the Los Angeles Basin and the Sacramento Valley.

Taha, Haider

2001-01-01

110

A preliminary report of the geohydrology of the Mississippi Salt-Dome Basin  

USGS Publications Warehouse

The U.S. Department of Energy is investigating the suitability of salt domes in the Mississippi salt-dome basin as repositories for storing radioactive wastes. The Department of Energy has requested that the U.S. Geological Survey describe the groundwater hydrology of the Mississippi salt-dome basin, giving special attention to direction and rate of movement of water. In this first part of a continuing investigation the data obtained from one year of extensive literature search and data compilation are summarized. The regional groundwater hydrology in the salt-dome basin is defined with respect to (1) groundwater flow, (2) facies changes, (3) geological structure, (4) recharge and discharge, (5) freshwater-saltwater relations, and (6) identification of localities where additional data are needed. From the 50 piercement-type salt domes in the Mississippi salt-dome basin three domes (Richton, Cypress Creek, and Lampton) were selected for more intensive study. To further evaluate the geohydrology of Richton, Lampton, and Cypress Creek domes as possible sites for storage of radioactive waste, an intensive geohydrologic study based on a comprehensive test drilling program near the domes is planned. (USGS)

Spiers, C.A.; Gandl, L.A.

1980-01-01

111

Preliminary gravity inversion model of basins east of Yucca Flat, Nevada Test Site, Nevada.  

SciTech Connect

The Yucca Flat eastern extension study area, a 14 kilometer by 45 kilometer region contiguous to Yucca Flat on the west and Frenchman Flat on the south, is being studied to expand the boundary of the Yucca Flat hydrogeologic model. The isostatic residual gravity anomaly was inverted to create a model of the depth of the geologic basins within the study area. Such basins typically are floored by dense pre-Tertiary basement rocks and filled with less-dense Tertiary volcanic and sedimentary rocks and Quaternary alluvium, a necessary condition for the use of gravity modeling to predict the depth to the pre-Tertiary basement rocks within the basins. Three models were created: a preferred model to represent the best estimate of depth to pre-Tertiary basement rocks in the study area, and two end-member models to demonstrate the possible range of solutions. The preferred model predicts shallow basins, generally less than 1,000m depth, throughout the study area, with only Emigrant Valley reaching a depth of 1,100m. Plutonium valley and West Fork Scarp Canyon have maximum depths of 800m and 1,000m, respectively. The end-member models indicate that the uncertainty in the preferred model is less than 200m for most of the study area.

Geoffrey A. Phelps; Carter W. Roberts, and Barry C. Moring

2006-03-17

112

Magnetostratigraphy of Mesozoic shallow-water carbonates: Preliminary results from the Middle Jurassic of the Paris basin  

SciTech Connect

The use of sedimentary paleomagnetism has enhanced greatly our understanding of the timing of deposition and diagenesis of Cenozoic platform and reefal carbonates. Its application to similar but older deposits will have direct implications for economic exploration and development. The authors report here preliminary paleomagnetic results from the Middle Jurassic limestones of the Paris basin (France). The samples consist mainly of bioclastic and oolitic limestones deposited in ancient counterpart of the shallow-water environments of the Bahama platform. The Jurassic samples are stable to progressive, incremental demagnetization and exhibit magnetization patterns identical to Cenozoic rocks from the Bahama platform or Mururoa Atoll. The natural remanent magnetization of these limestones is weak and comprised between 7.7 x 10{sup {minus}9} to 1.8 x 10{sup {minus}8} AM{sup 2}/kg. Magnetic components of both normal and reversed polarity are observed. Paired isothermal remanent magnetization (IRM) and alternating field demagnetization experiments show that most of the remanence is lost between 20 and 45 mT, which is typical of single-domain biogenic magnetite or maghemite. The ratio of IRM at H{sub RG} to the saturation IRM ranges from 35 to 42% indicating a moderate to low interparticle interaction. This is confirmed by the anhysteretic remanent magnetization as compared with intact, freeze-dried cells of magnetotactic bacteria and chiton teeth. Magnetic minerals extracted from the Jurassic samples are examined to further confirm the occurrence of SD magnetite within the Middle Jurassic limestones of the Paris basin. The preliminary results suggest that the strata should be good for the paleomagnetic investigation of Mesozoic shallow-water carbonates.

Aissaoui, D.M.; Kirschvink, J.L. (California Inst. of Tech., Pasadena, CA (United States))

1991-03-01

113

Effect of initial conditions of a catchment on seasonal streamflow prediction using ensemble streamflow prediction (ESP) technique for the Rangitata and Waitaki River basins on the South Island of New Zealand  

NASA Astrophysics Data System (ADS)

Increased access to water is a key pillar of the New Zealand government plan for economic growths. Variable climatic conditions coupled with market drivers and increased demand on water resource result in critical decision made by water managers based on climate and streamflow forecast. Because many of these decisions have serious economic implications, accurate forecast of climate and streamflow are of paramount importance (eg irrigated agriculture and electricity generation). New Zealand currently does not have a centralized, comprehensive, and state-of-the-art system in place for providing operational seasonal to interannual streamflow forecasts to guide water resources management decisions. As a pilot effort, we implement and evaluate an experimental ensemble streamflow forecasting system for the Waitaki and Rangitata River basins on New Zealand's South Island using a hydrologic simulation model (TopNet) and the familiar ensemble streamflow prediction (ESP) paradigm for estimating forecast uncertainty. To provide a comprehensive database for evaluation of the forecasting system, first a set of retrospective model states simulated by the hydrologic model on the first day of each month were archived from 1972-2009. Then, using the hydrologic simulation model, each of these historical model states was paired with the retrospective temperature and precipitation time series from each historical water year to create a database of retrospective hindcasts. Using the resulting database, the relative importance of initial state variables (such as soil moisture and snowpack) as fundamental drivers of uncertainties in forecasts were evaluated for different seasons and lead times. The analysis indicate that the sensitivity of flow forecast to initial condition uncertainty is depend on the hydrological regime and season of forecast. However initial conditions do not have a large impact on seasonal flow uncertainties for snow dominated catchments. Further analysis indicates that this result is valid when the hindcast database is conditioned by ENSO classification. As a result hydrological forecasts based on ESP technique, where present initial conditions with histological forcing data are used may be plausible for New Zealand catchments.

Singh, Shailesh Kumar; Zammit, Christian; Hreinsson, Einar; Woods, Ross; Clark, Martyn; Hamlet, Alan

2013-04-01

114

Rainfall-runoff model calibration at an ungauged catchment using the map-correlation method  

NASA Astrophysics Data System (ADS)

The International Association of Hydrological Sciences ten-year Prediction in Ungauged Basins (PUB) initiative encourages the development of approaches to estimate streamflow at ungauged catchments. One such approach is to transpose calibrated rainfall-runoff model parameters from a gauged, reference catchment to an ungauged catchment. Central to this approach is the selection of the reference catchment from which to transpose the model parameters to the ungauged catchment. Previous studies have found the selection of the reference catchment to be problematic and different selection criteria have shown little success. We introduce the map-correlation method, which selects a reference catchment whose logarithms of daily streamflow are most correlated with the ungauged catchment. This is achieved by first kriging the cross-correlations, r, between the logarithms of daily streamflow at each reference catchment and all other reference catchments in the study area. Then, at an ungauged catchment, the map-correlation method yields an r value for each reference catchment. The reference catchment resulting in the highest r value is selected. To determine if r is related to model goodness-of-fit, 34 sets of simulation model parameters were obtained by calibrating rainfall-runoff models at 34 gauged catchments in the mid-Atlantic United States. At each of the 34 study catchments, the other 33 calibrated sets of model parameters were transposed to the study catchment, resulting in 33 goodness-of-fit values between the observed and estimated daily streamflows. These goodness-of-fit values were compared to the r values estimated from the observed, concurrent daily streamflow between each study catchment and the other 33 catchments. This comparison was repeated for each of the 34 catchments to obtain 1,122 (34 multiplied by 33) goodness-of-fit and r values. The relation between r and goodness-of-fit will be presented and contrasted with the use of other criteria to choose a reference catchment.

Archfield, S. A.; Vogel, R. M.; Wagener, T.

2009-12-01

115

Rainfall-runoff model calibration at an ungauged catchment using the map-correlation method  

NASA Astrophysics Data System (ADS)

The International Association of Hydrological Sciences ten-year Prediction in Ungauged Basins (PUB) initiative encourages the development of approaches to estimate streamflow at ungauged catchments. One such approach is to transpose calibrated rainfall-runoff model parameters from a gauged, reference catchment to an ungauged catchment. Central to this approach is the selection of the reference catchment from which to transpose the model parameters to the ungauged catchment. Previous studies have found the selection of the reference catchment to be problematic and different selection criteria have shown little success. We introduce the map-correlation method, which selects a reference catchment whose logarithms of daily streamflow are most correlated with the ungauged catchment. This is achieved by first kriging the cross-correlations, r, between the logarithms of daily streamflow at each reference catchment and all other reference catchments in the study area. Then, at an ungauged catchment, the map-correlation method yields an r value for each reference catchment. The reference catchment resulting in the highest r value is selected. To determine if r is related to model goodness-of-fit, 34 sets of simulation model parameters were obtained by calibrating rainfall-runoff models at 34 gauged catchments in the mid-Atlantic United States. At each of the 34 study catchments, the other 33 calibrated sets of model parameters were transposed to the study catchment, resulting in 33 goodness-of-fit values between the observed and estimated daily streamflows. These goodness-of-fit values were compared to the r values estimated from the observed, concurrent daily streamflow between each study catchment and the other 33 catchments. This comparison was repeated for each of the 34 catchments to obtain 1,122 (34 multiplied by 33) goodness-of-fit and r values. The relation between r and goodness-of-fit will be presented and contrasted with the use of other criteria to choose a reference catchment.

Archfield, Stacey; Vogel, Richard; Wagener, Thorsten; Singh, Riddhi

2010-05-01

116

Preliminary gravity inversion model of Frenchman Flat Basin, Nevada Test Site, Nevada  

USGS Publications Warehouse

The depth of the basin beneath Frenchman Flat is estimated using a gravity inversion method. Gamma-gamma density logs from two wells in Frenchman Flat constrained the density profiles used to create the gravity inversion model. Three initial models were considered using data from one well, then a final model is proposed based on new information from the second well. The preferred model indicates that a northeast-trending oval-shaped basin underlies Frenchman Flat at least 2,100 m deep, with a maximum depth of 2,400 m at its northeast end. No major horst and graben structures are predicted. Sensitivity analysis of the model indicates that each parameter contributes the same magnitude change to the model, up to 30 meters change in depth for a 1% change in density, but some parameters affect a broader area of the basin. The horizontal resolution of the model was determined by examining the spacing between data stations, and was set to 500 square meters.

Phelps, Geoffrey A.; Graham, Scott E.

2002-01-01

117

Preliminary examination of microearthquake activity along the Eastern Lau Spreading Center and southern Lau Basin  

NASA Astrophysics Data System (ADS)

Presently, a hydroacoustic array is moored in the Lau Basin (Bohnenstiehl et al.) to examine wave propagation in the water column and tectonics associated with the basin as a whole. One region that has suffered from a lack of seismic observations is the Eastern Lau Spreading Center (ELSC) a RIDGE 2000 Integrated Studies Site. The ELSC, west of the Tongan islands located along the forearc of the Tongan subduction system, is opening the southern portion of the Lau Basin in a wedge-like fashion. Spreading rates vary along the length of the ELSC from 97 mm/yr at the northern end to ~40 mm/yr towards the southern end, with the southern end closer to and more strongly affected by the arc as seen in ridge morphology and basalt chemistry. Active arc volcanoes are within 100 km of the spreading center and several hydrothermal sites are found along the axis. The Tongan subduction system is also one of the most seismically active tectonic systems on the Earth. However, while GSN stations record considerable activity along the Tongan forearc and along plate boundaries further to the north in the basin, almost no earthquake activity has been recorded along the ELSC. The few events unambiguously associated with the ELSC all lie at the northern terminus where the ridge system steps leftward with an overlapping spreading center. The LABATTS experiment, a 3 month OBS deployment in 1994 along the central portion of the basin, recorded hundreds of shallow events throughout the backarc region. The experiment recorded dozens of events associated with swarms near the northern terminus but still less than a handful along the length of the ELSC itself. Some of this lack may be due to the highly attenuative mantle beneath the Lau Basin and less than optimal experiment geometry for LABATTS (which was focussed on tomographic structure). However, numerous other events with similar difficulties are observed to the north and east, suggesting that active seismicity along the ridge primarily comprises events smaller than magnitude 2 - 3, below the likely detection threshold of LABATTS, and offering no information regarding timing or distribution of cracking or broader tectonic deformation. While data recovery has not yet occurred for the hydroacoustic array, the L-SCAN active source seismic experiment carried out in Jan - March of this year has provided some fortuitous results on microseismicity of the ELSC. The L-SCAN experiment deployed 84 seismometers on the seafloor for recording airgun shots along and under the axis. Throughout the data, there is clearly noticeable microseismic earthquake activity during the airgunning. Initial data processing suggests a high rate of local seismicity in the area. With rates in some places approaching 15 events per hour. These high rates of activity allow us to get a glimpse of patterns of ELSC microseismic activity in both time and space. In addition, within weeks after disembarkment, Tonga experienced both an underwater eruption within 50 km of the array footprint and a magnitude 7.6 subduction thrust event ~200 km south of the array footprint. Further analysis of the data could shed further light on any precursor activity associated with the nearby eruption and large trench earthquake.

Conder, J. A.; Dunn, R.; Godfrey, K. E.

2009-12-01

118

Geology of the Ahuas area in the Mosquitia basin of Honduras: Preliminary report  

SciTech Connect

Following a 36-fold seismic survey that covered 460 km, two exploratory wells were drilled between July 1991 and August 1993 in the Ahuas area, on the Patuca tectonic belt, in the Mosquitia savannah in northeastern Honduras. The Embarcadero 1 well encountered only dense, barren, gray and red siliciclastics and some phyllite at total depth. The RaitiTara 1 well also drilled mostly barren, but less dense, red beds that included some Upper Cretaceous limestone conglomerate in the lower section. We did not find source or reservoir rocks in either well, nor did we find hydrocarbon shows. The absence of Lower Cretaceous limestone in both wells is significant because more than 1500 m of limestone are exposed 35-50 km southwest in the Colon Mountains. The lithology of the clastics in the Embarcadero well is similar to Middle and Upper Jurassic formations in central Honduras. The lithology of the softer red beds in the Raiti-Tara well suggests they are Tertiary fill in a pull-apart basin. The Mosquitia basin, including the Ahuas area, probably was on the seaward side of the Chortis block (once part of Mexico) and received only Jurassic sediments until it was elevated by arc magmatism in the Early Cretaceous. However, thick Lower Cretaceous platform carbonates were deposited some distance inland. Lateral forces in the early Late Cretaceous caused the outer edge of Chortis to break up, carrying the Colon carbonate block up to 50 km northwest by sinistral fault movement. Later, antithetic dextral displacement offset the various blocks and created pull-apart basins that filled with Tertiary sediments. In the early Paleocene, compression from a spreading center to the southeast ruptured the Jurassic rocks, creating a decollement and later thrusting. No complete petroleum system seems to exist along the axis of the uplifted Patuca tectonic belt largely because of the lack of organic-rich source rocks and the presence of complicated young structures.

Mills, R.A.; Barton, R. [True Oil Co., Casper, WY (United States)

1996-10-01

119

Preliminary Classification of Water Areas Within the Atchafalaya Basin Floodway System by Using Landsat Imagery  

USGS Publications Warehouse

The southern portion of the Atchafalaya Basin Floodway System (ABFS) is a large area (2,571 km2) in south central Louisiana bounded on the east and west sides by a levee system. The ABFS is a sparsely populated area that includes some of the Nation's most significant extents of bottomland hardwoods, swamps, bayous, and backwater lakes, holding a rich abundance and diversity of terrestrial and aquatic species. The seasonal flow of water through the ABFS is critical to maintaining its ecological integrity. Because of strong interdependencies among species, habitat quality, and water flow in the ABFS, there is a need to better define the paths by which water moves at various stages of the hydrocycle. Although river level gages have collected a long historical record of water level variation, very little synoptic information has been available regarding the distribution and character of water at more remote locations in the basin. Most water management plans for the ABFS strive to improve water quality by increasing water flow and circulation from the main stem of the Atchafalaya River into isolated areas. To describe the distribution of land and water on a basin-wide scale, we chose to use Landsat 5 and Landsat 7 imagery to determine the extent of water distribution from 1985 to 2006 and at a variety of river stages. Because the visual signature of river water is high turbidity, we also used Landsat imagery to describe the distribution of turbid water in the ABFS. The ability to track water flow patterns by tracking turbid waters will enhance the characterization of water movement and aid in planning.

Allen, Yvonne C.; Constant, Glenn C.; Couvillion, Brady R.

2008-01-01

120

Runoff Responses to Forest Thinning at Plot and Catchment Scales in a Headwater Catchment Draining Japanese Cypress Forest  

EPA Science Inventory

We examined the effect of forest thinning on runoff generation at plot and catchment scales in headwater basins draining a Japanese cypress (Chamaecyparis obtusa) forest. We removed 58.3% of the stems (corresponding to 43.2% of the basal area) in the treated headwater basin (catc...

121

Magnetic Fabric of the Itararé Group, Paraná Basin Brazil: Preliminary Results  

NASA Astrophysics Data System (ADS)

The late Paleozoic Itararé Group and equivalent beds in the Paraná Basin of Brazil extend into Paraguay, Argentina, and Uruguay. The Itararé Group contains the most extensive lithological record of Gondwana glaciation in the world. The succession has a maximum subsurface thickness of around 1400 m and extends over a total area greater than 1 million km2. The lower boundary of the Itararé Group is nonconformable with Precambrian to early Paleozoic crystalline basement and with Devonian strata of the Furnas and Ponta Grossa Formations, which together constitute the base of the Gondwana supersequence of the Paraná Basin. This boundary encompasses a hiatus that is loosely estimated in 45 Ma. The upper contact with the overlying Rio Bonito Formation is described as conformable to partially erosional. We performed our study on 13 sites from sedimentary rocks (sandstones and siltites) from the Itararé beds in the Brazilian portion of the Paraná Basin (mainly in São Paulo State). Magnetic fabrics were determined on oriented cylindrical specimens (2.54 cm x 2.2 cm) using the anisotropy of low-field magnetic susceptibility (AMS). Rock-magnetic analyses reveal that magnetite is the main magnetic mineral. In one of the sampled site, however, the ferromagnetic minerals are both magnetite and hematite. Regarding the eingenvector orientations, the sites usually gave good results. The analysis at the individual-site scale defines three AMS fabric types. The first type (7 sites) shows Kmin perpendicular to the bedding plane while Kmax and Kint are scattered within the bedding plane itself. This fabric is usually interpreted as primary (sedimentary-compactional), typical of undeformed sediments. The second type (5 sites) shows good clustering of the AMS principal axes with Kmin still sub-perpendicular to the bedding plane. The third type, pertaining to an intensely folded site previously interpreted as slumped, is characterized in geographic coordinates by well-clustered Kmax in the bedding plane, while Kmin and Kint are distributed along a NE-SW girdle with a sub-vertical, yet elongate Kmin distribution. In stratigraphic coordinates Kmax maintains the same NNW-SSE clustering, yet Kmin and Kint become scattered within the girdle. The second fabric type would be interpreted as combination of sedimentary-compactional and tectonic contributions if some strain markers or evidence for tectonic deformation had been found in the studied area. On the other hand, the tight Kmax grouping in this fabric type could be explained by the action of currents since they cause Kmax to be aligned sub-parallel to the paleocurrent direction.

Raposo, M. B.; Bilardello, D.; Santos, P. R.

2012-12-01

122

[Preliminary research on bacterial diversity of Parece Vela Basin, Pacific Ocean by culture-independent method].  

PubMed

The environmental DNA was directly extracted from the sediment in Parece Vela Basin, Pacific Ocean, at a depth of 5010 m. Bacterial 16S rRNA gene library of 32 clones was generated using bacterial universal primers and 16S rDNA sequences were analyzed phylogenetically. 17 phylotypes were obtained. The library was dominated by gamma-Proteobacteria, alpha-Proteobacteria and marine uncultured bacteria. Sixty-two percent of the cloned sequences was highly related to the known bacteria in the genus Halomonas, Alcanivorax, Pseudomonas, Acinetobacter, Pseudoalteromonas (> 96% sequence similarity), while some of the cloned sequences showed less affiliation with known taxa (< 94% sequence similarity) and may represent novel taxa. PMID:15847151

Xie, Hua; Xue, Yan-fen; Zhao, Ai-min; Li, Tie-gang; Ma, Yan-he

2005-02-01

123

Mid-Neolithic exploitation of mollusks in the Guanzhong Basin of Northwestern China: preliminary results.  

PubMed

Mollusk remains are abundant in archaeological sites in the Guanzhong Basin of Northwestern China, providing good opportunities for investigations into the use of mollusks by prehistoric humans. Here we report on freshwater gastropod and bivalve mollusks covering the time interval from about 5600 to 4500 cal. yrs BP from sites of Mid-Late Neolithic age. They are identified as Cipangopaludina chinensis and Unio douglasiae, both of which are currently food for humans. The shells are well preserved and have no signs of abrasion. They are all freshwater gastropods and bivalves found in pits without water-reworked deposits and have modern representatives which can be observed in rivers, reservoirs, and paddy fields in the studied region. Mollusk shells were frequently recovered in association with mammal bones, lithic artifacts, and pottery. These lines of evidence indicate that the mollusks are the remains of prehistoric meals. The mollusk shells were likely discarded into the pits by prehistoric humans after the flesh was eaten. However, these mollusk remains may not have been staple food since they are not found in large quantities. Mollusk shell tools and ornaments are also observed. Shell tools include shell knives, shell reaphooks and arrowheads, whereas shell ornaments are composed of pendants and loops. All the shell tools and ornaments are made of bivalve mollusks and do not occur in large numbers. The finding of these freshwater mollusk remains supports the view that the middle Holocene climate in the Guanzhong Basin may have been warm and moist, which was probably favorable to freshwater mollusks growing and developing in the region. PMID:23544050

Li, Fengjiang; Wu, Naiqin; Lu, Houyuan; Zhang, Jianping; Wang, Weilin; Ma, Mingzhi; Zhang, Xiaohu; Yang, Xiaoyan

2013-01-01

124

CHARIS - The Contribution to High Asian Runoff from Ice and Snow, Preliminary results from the Upper Indus Basin, Pakistan  

NASA Astrophysics Data System (ADS)

The goal of the CHARIS project is to improve the understanding of the regional water resources of High Asia. In order to achieve this goal CHARIS is a cross-boundary exercise with University of Colorado scientists working directly with researchers at institutions in nine different nations where these ice and snow resources are located (Bhutan, Nepal, India, Pakistan, Afghanistan, Kazakhstan, Uzbekistan, Kyrgyzstan, Tajikistan). These countries contain the headwaters of the Brahmaputra, Ganges, Indus, Syr Darya and Amu Darya rivers. This collaboration includes both joint research and capacity building that includes augmented field programs and technical training. While it is generally accepted that a significant component of these water resources results from the melting of glacier ice and seasonal snow, the actual water volume available from these two individual sources remains uncertain. The amount, timing, and spatial patterns of snow and ice melt play key roles in providing water for downstream irrigation, hydropower generation, and general consumption. The fundamental objective of this collaborative study is to develop a thorough and systematic assessment of the separate contributions from seasonal snow melt and from glacier ice melt to the water resources originating across the region. To accomplish project objectives, a suite of satellite remote sensing, reanalysis and ground based data are applied as input to specific snow and ice melt models. Gridded maps of snow and glacier area/elevation are used as input to temperature-index melt models to estimate runoff from snow covered grid cells, based on cell area and melt depth. Glacier melt is estimated in the same way, once seasonal snow has disappeared from glacierized grid cells. The melt models are driven by daily mean temperature from reanalysis data. We are comparing the melt volume time series generated from temperature-index models with measured river discharge volumes and comparing the regional scale results with local sub-basin studies based on energy balance modeling approaches. We are also evaluating the accuracy of the melt model results using isotopic and geochemical tracers to identify and quantify the sources of water (ice melt, snow melt, rainfall and ground water) flowing into selected rivers representing the major hydro-climates of the study area. Preliminary results are presented for the Upper Indus Basin, and the Hunza sub-basin, for the period 2000-2012.

Armstrong, R. L.; Barrett, A. P.; Brodzik, M.; Fetterer, F. M.; Hashmey, D.; Horodyskyj, U. N.; Khalsa, S.; Racoviteanu, A.; Raup, B. H.; Williams, M. W.; Wilson, A.

2013-12-01

125

Reservoir property estimation in Pohang Basin, South Korea for the preliminary CO2 storage prospect  

NASA Astrophysics Data System (ADS)

Geological CO2 storage draws a great attention globally and South Korea also look for proper storage sites to reduce CO2 emission. The Pohang Basin area, located at the southeastern part of Korea, is regarded as a good candidate for CO2 storage, since the basin is believed to have good sand intervals, and there are various CO2 sources, such as a steel mill and a car factory around the area. However, there are not many geophysical data (core, logs, seismic, etc.) available since the area is highly industrialized and the target site is located offshore. There are a few well logs sparsely located, and core data are not many either since the target formation is semi- to unconsolidated clastics. To overcome these difficulties, we firstly go back to regional geology and determine the regional 3D distribution of target formation. Then, we obtain onshore outcrop samples from the same target formation to compliment scarce core data. The core and outcrop samples are not well-consolidated, which makes lab measurements highly difficult. We adopt a computational rock physics method, which estimates porosity and permeability on 3D microstructures statistically reconstructed from thin section images. The average values of porosity and permeability of outcrop samples are 25% and 1,000mD, and those from one core data 17% and 100mD, respectively. Other cores from the same formation do not give any significant permeability values. Thus, we categorize the formation into two subgroups, good and bad. Next, we visit well-log data and categorize intervals into two subgroups, and apply the our computation results to the good group. Finally, we can give maps of reservoir properties for the target formation. Although we can give only approximate values/relations of reservoir properties for good interval, it helps evaluate overall prospect of the target formation. Acknowledgements: This research was supported by the Basic Research Project of the Korea Institute of Geoscience and Mineral Resources (KIGAM) funded by the Ministry of Trade, Industry and Energy of Korea (GP2012-030).

Han, J.; Keehm, Y.

2013-12-01

126

Preliminary report on coal resources of the Wyodak-Anderson coal zone, Powder River Basin, Wyoming and Montana  

USGS Publications Warehouse

The National Coal Resource Assessment (NCRA) project by the U.S. Geological Survey is designed to assess US coal with the greatest potential for development in the next 20 to 30 years. Coal in the Wyodak-Anderson (WA) coal zone in the Powder River Basin of Wyoming and Montana is plentiful, clean, and compliant with EPA emissions standards. This coal is considered to be very desirable for development for use in electric power generation. The purpose of this NCRA study was to compile all available data relating to the Wyodak- Anderson coal, correlate the beds that make up the WA coal zone, create digital files pertaining to the study area and the WA coal, and produce a variety of reports on various aspects of the assessed coal unit. This report contains preliminary calculations of coal resources for the WA coal zone and is one of many products of the NCRA study. Coal resource calculations in this report were produced using both public and confidential data from many sources. The data was manipulated using a variety of commercially available software programs and several custom programs. A general description of the steps involved in producing the resource calculations is described in this report.

Ellis, Margaret S.; Gunther, Gregory L.; Flores, Romeo M.; Ochs, Allen M.; Stricker, Gary D.; Roberts, Steven B.; Taber, Thomas T.; Bader, Lisa R.; Schuenemeyer, John H.

1998-01-01

127

Monitoring of wild fish health at selected sites in the Great Lakes Basin: methods and preliminary results  

USGS Publications Warehouse

During fall 2010 and spring 2011, a total of 119 brown bullhead (Ameiurus nebulosus), 136 white sucker (Catostomus commersoni), 73 smallmouth bass (Micropterus dolomieu), and 59 largemouth bass (M. salmoides) were collected from seven Great Lakes Basin Areas of Concern and one Reference Site. Comprehensive fish health assessments were conducted in order to document potential adverse affects from exposure to complex chemical mixtures. Fish were necropsied on site, blood samples obtained, pieces of liver, spleen, kidney, gill and any abnormalities placed in fixative for histopathology. Liver samples were saved for gene expression analysis and otoliths were removed for aging. A suite of fish health indicators was developed and implemented for site comparisons and to document seasonal effects and species differences in response to environmental conditions. Organism level (grossly visible lesions, condition factor), tissue level (microscopic pathology, organosomatic indices, micronuclei, and other nuclear abnormalities), plasma factors (reproductive steroid hormones, vitellogenin), and molecular (gene expression) indicators were included. This report describes the methods and preliminary results.

Blazer, Vicki S.; Mazik, Patricia M.; Iwanowicz, Luke R.; Braham, Ryan; Hahn, Cassidy; Walsh, Heather L.; Sperry, Adam

2014-01-01

128

Modeling the Caspian Sea and its catchment area using a coupled regional atmosphere-ocean model (RegCM-ROMS): model design and preliminary results  

NASA Astrophysics Data System (ADS)

We describe the development of a coupled regional atmosphere-ocean model (RegCM-ROMS) and its implementation over the Caspian Sea basin. The coupled model is run for the period 1999-2008 (after a spin up of 4 yr) and it is compared to corresponding stand alone model simulations and a simulation in which a distributed 1d lake model is run for the Caspian Sea. All model versions show a good performance in reproducing the climatology of the Caspian Sea basin, with relatively minor differences across them. The coupled ROMS produces realistic, although somewhat overestimated, lake surface temperatures (LSTs), with a considerable improvement compared to the use of the simpler coupled lake model. Simulated near surface salinity and sea currents are also realistic, although the upwelling over the eastern coastal regions is underestimated. The distribution of sea ice over the shallow northern shelf of the Caspian Sea and its seasonal evolution are well reproduced. ROMS also calculates the Caspian Sea Level (CSL), showing that for the present experiment excessive evaporation over the lake area leads to a drift in estimated CSL. Despite this problem which requires further analysis due to many uncertainties in the estimation of CSL, overall the coupled RegCM-ROMS system shows encouraging results in reproducing both the climatology of the region and the basic characteristics of the Caspian Sea.

Turuncoglu, Ufuk; Giuliani, Graziano; Elguindi, Nellie; Giorgi, Filippo

2013-04-01

129

Modelling the Caspian Sea and its catchment area using a coupled regional atmosphere-ocean model (RegCM4-ROMS): model design and preliminary results  

NASA Astrophysics Data System (ADS)

We describe the development of a coupled regional atmosphere-ocean model (RegCM4-ROMS) and its implementation over the Caspian Sea basin. The coupled model is run for the period 1999-2008 (after a spin up of 4 yr) and it is compared to corresponding stand alone model simulations and a simulation in which a distributed 1d lake model is run for the Caspian Sea. All model versions show a good performance in reproducing the climatology of the Caspian Sea basin, with relatively minor differences across them. The coupled ROMS produces realistic, although somewhat overestimated, Caspian Sea Surface Temperature (SST), with a considerable improvement compared to the use of the simpler coupled lake model. Simulated near surface salinity and sea currents are also realistic, although the upwelling over the eastern coastal regions is underestimated. The sea ice extent over the shallow northern shelf of the Caspian Sea and its seasonal evolution are well reproduced, however, a significant negative bias in sea-ice fraction exists due to the relatively poor representation of the bathymetry. ROMS also calculates the Caspian Sea Level (CSL), showing that for the present experiment excessive evaporation over the lake area leads to a drift in estimated CSL. Despite this problem, which requires further analysis due to many uncertainties in the estimation of CSL, overall the coupled RegCM4-ROMS system shows encouraging results in reproducing both the climatology of the region and the basic characteristics of the Caspian Sea.

Turuncoglu, U. U.; Giuliani, G.; Elguindi, N.; Giorgi, F.

2013-03-01

130

Channel erosion and sediment transport in Pheasant Branch basin near Middleton, Wisconsin; a preliminary report  

USGS Publications Warehouse

The purpose of this 5-year study is to (1) evaluate the sediment transport, streamflow characteristics, and stream-channel morphology, (2) relate the above to land-use practices; and (3) evaluate the effect that changes in land-use practices will have on Pheasant Branch basin near Middleton, Wis. This report presents findings of sediment transport, streamflow characteristics, and stream-channel morphology from the first year of the study and documents historical erosion. The study is being conducted by the U.S. Geological Survey in cooperation with the city of Middleton and the Wisconsin Geological and Natural History Survey. Pheasant Branch, a tributary to Lake Mendota, drains 23.1 square miles of glacial drift. Channel erosion is severe within Middleton, requiring extensive use of erosion-control structures. Occasionally, channel dredging near the mouth and into Lake Mendota is required for boating. Comparison of stream-channel surveys of 1971 and 1977 shows the lowest part of the channel lowered 3 to 4 feet at some sites in the urban reach from U.S. Highway 12 downstream to Century Avenue. Downstream from Century Avenue, channel width increased from about 35 to 48 feet and channel cross-section area increased about 86 percent. A survey of Pheasant Branch in 1971 provided data for quantification of stream-channel changes since that time. Six erosion-control structures previously installed appear to have had some benefit in controlling head cutting in the channel. (USGS).

Grant, R. Stephen; Goddard, Gerald

1980-01-01

131

Hydrology, secondary growth, and elevation accuracy in two preliminary Amazon Basin SRTM DEMs  

NASA Astrophysics Data System (ADS)

Two preliminary Shuttle Radar Topography Mission digital elevation models (SRTM DEMs) of Manaus (1S to 5S and 59W to 63W) and Rondonia (9S to 12S and 61W to 64W) were received from the "PI Processor" at NASA JPL. We compared the Manaus DEM (C-band) with a previously constructed Cabaliana floodplain classification based on Global RainForest Mapping (GRFM) JERS-1 SAR data (L-band) and determined that habitats of open water, bare ground, and flooded shrub contained the lowest elevations; macrophyte and non-flooded shrub habitats are marked by intermediate elevations; and the highest elevations are found within flooded and non-flooded forest. Although the water surface typically produces specular reflections, double-bounce travel paths result from dead, leafless trees found across the Balbina reservoir near Manaus. There (i.e., in Balbina) the water surface is marked by pixel-to-pixel height changes of generally 0 to 1 m and changes across a ˜100 km transect rarely exceed 3 m. Reported SRTM errors throughout the transect range from 1 to 2 m with some errors up to 5 m. The smooth Balbina surface contrasts with the wind-roughened Amazon River surface where SRTM height variations easily range from 1 to 10 m (reported errors often exceed 5 m). Deforestation and subsequent regrowth in the Rondonia DEM is remarkably clear. Our colleagues used a 20 year sequence of Landsat TM/MSS classified imagery to delineate areas in various stages of secondary growth and we find a general trend of increasing vegetation height with increasing age. Flow path networks derived from the Cabaliana floodplain DEM are in general agreement with networks previously extracted from the GRFM mosaics; however, watershed boundaries differ. We have also developed an algorithm for extracting channel widths, which is presently being applied to the DEM and classified imagery to determine morphological variations between reaches.

Alsdorf, D.; Hess, L.; Sheng, Y.; Souza, C.; Pavelsky, T.; Melack, J.; Dunne, T.; Hendricks, G.; Ballantine, A.; Holmes, K.

2003-04-01

132

Isotopic monitoring (2H, 18O) of the St. Lawrence and Ottawa rivers between 1997 and 2003- Links with interannual climatic variability and hydrological processes in their catchment basins  

NASA Astrophysics Data System (ADS)

This study based on a water isotope (18O and 2H) monitoring of the St. Lawrence and Ottawa rivers (Canada) is a contribution to the international IAEA project: Isotopes tracing of hydrologic processes in large river basins [Gibson et al., 2002. EOS 83: 613 et p.]. Sampling of the St. Lawrence and Ottawa river waters started in 1997, on a biweekly to weekly basis. Monitoring stations are located at Montreal (i.e., at the outlet of the Great Lakes), Quebec City (the estuary of the St. Lawrence) and at the Carillon hydroelectric dam, near the outlet of a major tributary, the Ottawa River into the St. Lawrence itself. The goal of the study was to examine the seasonal and interannual variability of isotopic signatures of the St. Lawrence and Ottawa rivers, in relation notably with interannual climatic variations, and seasonal hydrologic processes in the watershed (summer evaporation, snowmelt, transit time of precipitation signals into runoff). Waters sampled at the three stations depict distinct isotopic compositions. At Montreal, relatively stable isotopic composition are observed with a mean weighted annual value of -54 % for 2H and -7.1 % for 18O. The Ottawa River water at Carillon also displays stable isotopic compositions but much lighter values (weighted mean annual values: -80 % for 2H and -10.8 % for 18O). Finally, isotopic compositions at Quebec City are intermediate between those of Montreal and Carillon, but show a much larger variability. They reflect mixing between the heavy isotope enriched Great Lakes water, the lighter water from the Ottawa River, and highly variable inputs from smaller tributaries (from the Laurentides and Appalachian mountains). The mean weighted isotopic compositions at Quebec City are -65 % and -8.6 %, respectively for 2H and 18O). Evaporative enrichment, in particular during low water level episodes, seem to be more important in the Ottawa River catchment than in the Great Lakes basin, based on a comparison of isotopic clusters at Montreal and Carillon (figure 1). Relatively strongly correlated relationships are observed between isotopic compositions at the estuary of the St. Lawrence River (Quebec) and hydrologic variables such as water discharge. The best fit follows the equation : 2HQUEBEC = -1.9E-03 * QQUEBEC - 41.9, R2= 0.59. Such a relationship leads us to conclude that some properties of the regional hydrology can be relatively well described by stable isotope systematics. In contradiction, air temperatures are not well correlated with isotopic signatures partly because of lag times between them in relation to transit time of precipitation signal into runoff. A comparison of isotopic values in precipitation to those of runoff gives an estimate of the mean transfer time of water from the catchment to the river estuary. For summer heavy isotope enriched, but scarcer precipitation, a transit time of approximately 3 months is observed, whereas in winter, it can be as long as 4 to 5 months due to the residence time of winter precipitation in the snowcover. The assessment of the interannual variability of the St. Lawrence River isotopic system will require a better estimate of the isotopic inprint from small tributaries (that drain isotopically buffered ground waters, particularly in winter). Data are presently at processing stage.

Myre, A.; Hillaire-Marcel, C.

2004-05-01

133

Magnetic Fabric of the Aquidauana Formation, western border of the Paraná Basin Central Brazil: Preliminary Results  

NASA Astrophysics Data System (ADS)

The glaciogenic sedimentation (Carboniferous-Permian) on the western border of the Paraná Basin is represented by reddish-brown strata of the Aquidauana Formation. Subsurface data suggest that this Formation is equivalent to the Itararé Group, which contains the most extensive lithological record of Gondwana glaciation in the world. The Aquidauna Formation crops out as an NNE-SSW-oriented elongated belt at the western portion of the Maracaju-Campo Grande Plateau in Mato Grosso do Sul State (Central part of Brazil), and extents to the north up to Mato Grosso and Goias states. This Formation is composed of a variety of types of sandstones, siltites, and mudstones. The magnetic studies were performed on sites of undeformed reddish-brown sandstones, siltites, and mudstones, which crop out mainly in Mato Grosso do Sul State. Magnetic fabrics were determined on oriented cylindrical specimens (2.54 cm x 2.2 cm) using anisotropy of low-field magnetic susceptibility (AMS). Rock-magnetic analyses reveal that both magnetite and hematite are the main magnetic minerals in the majority of the analyzed sites. Regarding the eingenvector orientations, the sites usually gave good results. The analysis at the individual-site scale defines two AMS fabric types. The first type shows Kmin perpendicular to the bedding plane, while Kmax and Kint are scattered within the bedding plane itself. This fabric is usually interpreted as primary (sedimentary-compactional), typical of undeformed sediments and is dominant among the sites. The second type shows good clustering of the AMS principal axes with Kmin still either perpendicular or sub-perpendicular to the bedding plane. This fabric type could be interpreted as a combination of sedimentary-compactional and tectonic contributions if some strain markers or evidence for tectonic deformation had been found in the studied area. On the other hand, the tight Kmax grouping in this fabric type could be explained by the action of currents since they cause Kmax to be aligned sub-parallel to the paleocurrent direction.

Raposo, M. B.

2013-05-01

134

A preliminary assessment of sources of nitrate in springwaters, Suwannee River basin, Florida  

USGS Publications Warehouse

A cooperative study between the Suwannee River Water Management District (SRWMD) and the U.S. Geological Survey (USGS) is evaluating sources of nitrate in water from selected springs and zones in the Upper Floridan aquifer in the Suwannee River Basin. A multi-tracer approach, which consists of the analysis of water samples for naturally occurring chemical and isotopic indicators, is being used to better understand sources and chronology of nitrate contamination in the middle Suwannee River region. In July and August 1997, water samples were collected and analyzed from six springs and two wells for major ions, nutrients, and dissolved organic carbon. These water samples also were analyzed for environmental isotopes [18O/16O, D/H, 13C/12C, 15N/14N] to determine sources of water and nitrate. Chlorofluorocarbons (CCl3F, CCl2F2, and C2Cl3F3) and tritium (3H) were analyzed to assess the apparent ages (residence time) of springwaters and water from the Upper Floridan aquifer. Delta 15N-NO3 values in water from the six springs range from 3.94 per mil (Little River Springs) to 8.39 per mil (Lafayette Blue Spring). The range of values indicates that nitrate in the sampled springwaters most likely originates from a mixture of inorganic (fertilizers) and organic (animal wastes) sources, although the higher delta 15N-NO3 value for Lafayette Blue Spring indicates that an organic source of nitrogen is likely at this site. Water samples from the two wells sampled in Lafayette County have high delta 15N-NO3 values of 10.98 and 12.1 per mil, indicating the likelihood of an organic source of nitrate. These two wells are located near dairy and poultry farms, where leachate from animal wastes may contribute nitrate to ground water. Based on analysis of chlorofluorocarbons in ground water, the mean residence time of water in springs ranges from about 12 to 25 years. Chlorofluorocarbons-modeled recharge dates for water samples from the two shallow zones in the Upper Floridan aquifer range from 1985 to 1989.

Katz, B.G.; Hornsby, H.D.

1998-01-01

135

Towards a catchment-scale macro-ecological model to support integrated catchment management in Europe  

NASA Astrophysics Data System (ADS)

In Europe, the Water Framework Directive (WFD) is providing a powerful regulatory driver to adopt integrated catchment management, and so pressurizing researchers to build suitable supporting tools. The WFD requires agencies to drive towards `good ecological quality' by 2015. After the initial step of characterising water bodies and the pressures on them, the next substantive step is the preparation of river basin management plans and proposed programmes of measures by 2009. Ecological quality is a complex concept and poorly defined, unless it is taken as a simple measure such as the abundance of a particular species of organism. There is clearly substantial work to do to build a practical but sound definition of ecological quality; practical in the sense of being easy to measure and explain to stakeholders, and sound in the sense that it reflects ecological complexity within catchments, the variability between catchments, and the conflicts demands for goods and services that human society places upon the ecological system. However ecological quality is defined, it will be driven by four interacting groups of factors. These represent the physical, chemical, ecological and socio-economic environments within and encompassing the catchment. Some of these groupings are better understood than others, for example hydrological processes and the transport of solutes are reasonably understood, even though they remain research areas in their own right. There are much larger gaps in our understanding at the interfaces, i.e. predicting how, for example, hydrological processes such as flow and river morphology influence ecological quality. Overall, it is clear we are not yet in a position to build deterministic models of the overall ecological behaviour of catchment. But we need predictive tools to support catchment management agencies in preparing robust plans. This poster describes our current exploration of soft modelling options to build a comprehensive macro-ecological model of UK catchments. This is taking place within the Catchment Science Centre, a joint venture between the University of Sheffield and the Environment Agency.

Lerner, R. N.; Lerner, D. N.; Surridge, B.; Paetzold, A.; Harris, B.; Anderson, C. W.

2005-12-01

136

Modeling of facade leaching in urban catchments  

NASA Astrophysics Data System (ADS)

Building facades are protected from microbial attack by incorporation of biocides within them. Flow over facades leaches these biocides and transports them to the urban environment. A parsimonious water quantity/quality model applicable for engineered urban watersheds was developed to compute biocide release from facades and their transport at the urban basin scale. The model couples two lumped submodels applicable at the basin scale, and a local model of biocide leaching at the facade scale. For the facade leaching, an existing model applicable at the individual wall scale was utilized. The two lumped models describe urban hydrodynamics and leachate transport. The integrated model allows prediction of biocide concentrations in urban rivers. It was applied to a 15 km2urban hydrosystem in western Switzerland, the Vuachère river basin, to study three facade biocides (terbutryn, carbendazim, diuron). The water quality simulated by the model matched well most of the pollutographs at the outlet of the Vuachère watershed. The model was then used to estimate possible ecotoxicological impacts of facade leachates. To this end, exceedance probabilities and cumulative pollutant loads from the catchment were estimated. Results showed that the considered biocides rarely exceeded the relevant predicted no-effect concentrations for the riverine system. Despite the heterogeneities and complexity of (engineered) urban catchments, the model application demonstrated that a computationally "light" model can be employed to simulate the hydrograph and pollutograph response within them. It thus allows catchment-scale assessment of the potential ecotoxicological impact of biocides on receiving waters.

Coutu, S.; Del Giudice, D.; Rossi, L.; Barry, D. A.

2012-12-01

137

Solid discharge and landslide activity at basin scale  

NASA Astrophysics Data System (ADS)

This work presents a preliminary analysis aimed at understanding the relationship between landslide sediment supply and sediment yield at basin scale in central and southern Italy. A database of solid discharge measurements regarding 116 gauging stations, located along the Apennines chain in Italy, has been compiled by investigating the catalogues, named Annali Idrologici, published by Servizio Idrografico e Mareografico Italiano in the period from 1917 to 1997. The database records several information about the 116 gauging stations, and especially reports the sediment yield monthly measurements (103 ton) and the catchments area (km2). These data have been used to calculate the average solid yield and the normalized solid yield for each station in the observation period. The Italian Landslide Inventory (Progetto IFFI) has been used to obtained the size of the landslides, in order to estimate the landslide mobilization rates. The IFFI Project funded by the Italian Government is realized by ISPRA (Italian National Institute for Environmental Protection and Research - Geological Survey of Italy) in partnership with the 21 Regions and Self Governing Provinces. 21 of the 116 gauging stations and the related catchments have been selected on the basis of the length of the solid discharge observation period and excluding the catchments with dams located upstream the stations. The landslides inside the selected catchments have been extracted from the IFFI inventory, calculating the planimetric area of each landslide. Considering both the shallow and deep landslides, the landslide volume has been estimated using an empirical power law relation (landslide area vs. volume). The total landslide volume in the study areas and the average sediment yield measured at the gauging stations have been compared, analysing the behaviour of the basins which drainage towards the Tyrrhenian sea and the basins which drainage towards the Adriatic sea.

Ardizzone, F.; Guzzetti, F.; Iadanza, C.; Rossi, M.; Spizzichino, D.; Trigila, A.

2012-04-01

138

Design and development of a wireless sensor network to monitor snow depth in multiple catchments in the American River basin, California: hardware selection and sensor placement techniques  

NASA Astrophysics Data System (ADS)

A 100-node wireless sensor network (WSN) was designed for the purpose of monitoring snow depth in two watersheds, spanning 3 km2 in the American River basin, in the central Sierra Nevada of California. The network will be deployed as a prototype project that will become a core element of a larger water information system for the Sierra Nevada. The site conditions range from mid-elevation forested areas to sub-alpine terrain with light forest cover. Extreme temperature and humidity fluctuations, along with heavy rain and snowfall events, create particularly challenging conditions for wireless communications. We show how statistics gathered from a previously deployed 60-node WSN, located in the Southern Sierra Critical Zone Observatory, were used to inform design. We adapted robust network hardware, manufactured by Dust Networks for highly demanding industrial monitoring, and added linear amplifiers to the radios to improve transmission distances. We also designed a custom data-logging board to interface the WSN hardware with snow-depth sensors. Due to the large distance between sensing locations, and complexity of terrain, we analyzed network statistics to select the location of repeater nodes, to create a redundant and reliable mesh. This optimized network topology will maximize transmission distances, while ensuring power-efficient network operations throughout harsh winter conditions. At least 30 of the 100 nodes will actively sense snow depth, while the remainder will act as sensor-ready repeaters in the mesh. Data from a previously conducted snow survey was used to create a Gaussian Process model of snow depth; variance estimates produced by this model were used to suggest near-optimal locations for snow-depth sensors to measure the variability across a 1 km2 grid. We compare the locations selected by the sensor placement algorithm to those made through expert opinion, and offer explanations for differences resulting from each approach.

Kerkez, B.; Rice, R.; Glaser, S. D.; Bales, R. C.; Saksa, P. C.

2010-12-01

139

Comparison of Regionalization Methods for Flow Regime Simulation at Ungauged Basins in Ontario.  

NASA Astrophysics Data System (ADS)

In this study, regionalization, a process of transferring hydrological information from gauged to ungauged basins, is used to simulate continuous flow regime in different watersheds across Ontario climatic regions. The entire study area covers approximately 1 million km2 and most of the basins have incomplete or short period of data records and most of them are located in the northern regions. Various regionalisation approaches have been proposed in the literature; however, it is unclear which methods could be the most appropriate for a given climatic and physical environment. The data collected for this study includes the catchment attributes (e.g. soil and geology types, landscape properties, shape characteristics of the catchments, etc) and computed model parameters of the integrated hydrologic modeling system (IHMS-HBV) for gauged basins. The regional model parameters used to simulate continuous flows in ungauged basins are obtained using a physical similarity approach through clustering technique, a non-physical similarity approach such as multiple regression, and methods which do not consider the role of catchment attributes such as kriging and weighting based on the inverse distance. Preliminary results based on jackknife cross correlation validation show that the weighting approach based on the inverse distance technique produces better results than kriging, multiple regression and clustering. Although kriging and multiple regression are the most largely used regionalization methods, they appear inappropriate in this region. This may be due to the large size of the catchments and/or the large number of selected attributes. Other emerging regionalization methods such as logistic regression implemented through neural network technique are under investigation. The best methods identified will be used to simulate flow regime at gauged and ungauged basins across Ontario. The flow regime information is essential to establishing environmental flow policy, regulations, and sustainable water management.

Samuel, J.; Coulibaly, P.; Metcalfe, R.

2009-05-01

140

The contribution of sea-level rise to flooding in large river catchments  

NASA Astrophysics Data System (ADS)

Climate change is expected to both impact sea level rise as well as flooding. Our study focuses on the combined effect of climate change on upper catchment precipitation as well as on sea-level rise at the river mouths and the impact this will have on river flooding both at the coast and further upstream. We concentrate on the eight catchments of the Amazonas, Congo, Orinoco, Ganges/Brahmaputra/Meghna, Mississippi, St. Lawrence, Danube and Niger rivers. To assess the impact of climate change, upper catchment precipitation as well as monthly mean thermosteric sea-level rise at the river mouth outflow are taken from the four CCSM4 1° 20th Century ensemble members as well as from six CCSM4 1° ensemble members for the RCP scenarios RCP8.5, 6.0, 4.5 and 2.6. Continuous daily time series for average catchment precipitation and discharge are available for each of the catchments. To arrive at a future discharge time series, we used these observations to develop a simple statistical hydrological model which can be applied to the modelled future upper catchment precipitation values. The analysis of this surrogate discharge time series alone already yields significant changes in flood return levels as well as flood duration. Using the geometry of the river channel, the backwater effect of sea-level rise is incorporated in our analysis of both flood frequencies and magnitudes by calculating the effective additional discharge due to the increase in water level at the river mouth outflow, as well as its tapering impact upstream. By combining these effects, our results focus on the merged impact of changes in extreme precipitation with increases in river height due to sea-level rise at the river mouths. Judging from our preliminary results, the increase in effective discharge due to sea-level rise cannot be neglected when discussing late 21st century flooding in the respective river basins. In particular, we find that especially in countries with low elevation gradient, flood characteristics are impacted by changes in sea-level rise as far inland as 150 kilometers. Therefore, a larger population than the coastal inhabitants alone are exposed to risks of further projected increases of sea-level rise. A prime example for a megacity greatly put at risk by this is Dhaka City in Bangladesh, with a population of roughly 14 million people.

Thiele-Eich, I.; Hopson, T. M.; Gilleland, E.; Lamarque, J.; Hu, A.; Simmer, C.

2012-12-01

141

PRELIMINARY DATA REPORT: HUMATE INJECTION AS AN ENHANCED ATTENUATION METHOD AT THE F-AREA SEEPAGE BASINS, SAVANNAH RIVER SITE  

SciTech Connect

A field test of a humate technology for uranium and I-129 remediation was conducted at the F-Area Field Research Site as part of the Attenuation-Based Remedies for the Subsurface Applied Field Research Initiative (ABRS AFRI) funded by the DOE Office of Soil and Groundwater Remediation. Previous studies have shown that humic acid sorbed to sediments strongly binds uranium at mildly acidic pH and potentially binds iodine-129 (I-129). Use of humate could be applicable for contaminant stabilization at a wide variety of DOE sites however pilot field-scale tests and optimization of this technology are required to move this technical approach from basic science to actual field deployment and regulatory acceptance. The groundwater plume at the F-Area Field Research Site contains a large number of contaminants, the most important from a risk perspective being strontium-90 (Sr-90), uranium isotopes, I-129, tritium, and nitrate. Groundwater remains acidic, with pH as low as 3.2 near the basins and increasing to the background pH of approximately 5at the plume fringes. The field test was conducted in monitoring well FOB 16D, which historically has shown low pH and elevated concentrations of Sr-90, uranium, I-129 and tritium. The field test included three months of baseline monitoring followed by injection of a potassium humate solution and approximately four and half months of post monitoring. Samples were collected and analyzed for numerous constituents but the focus was on attenuation of uranium, Sr-90, and I-129. This report provides background information, methodology, and preliminary field results for a humate field test. Results from the field monitoring show that most of the excess humate (i.e., humate that did not sorb to the sediments) has flushed through the surrounding formation. Furthermore, the data indicate that the test was successful in loading a band of sediment surrounding the injection point to a point where pH could return to near normal during the study timeframe. Future work will involve a final report, which will include data trends, correlations and interpretations of laboratory data.

Millings, M.

2013-09-16

142

Preliminary results of the Cloud-Aerosol Interaction Measurements (CLAIM) 2007 campaign on the Amazon Basin, Brazil  

NASA Astrophysics Data System (ADS)

Clouds and precipitation play an important role on Earth's radiation budget, water and hydrological cycles, as well as energy cycles through latent heat release in the atmosphere. Under several aspects the interaction between aerosols and clouds is still a poorly understood process, and one reason for this is the lack of experimental observations to characterize the evolution of cloud microphysical structure. An instrumentation suite was put together to assess these issues. The Cloud Scanner is a scanning radiometer composed of 2 wavelengths in the near infrared (2.10 and 2.25 ?m) used for the separation between ice and water, and 3 wavelengths in the thermal infrared (8, 11 and 12 ?m) for the measurement of cloud brightness temperature, cirrus properties and water vapor correction. The Rainbow Camera is a multiangle imaging polarimeter with the wavelengths 0.47, 0.55, 0.66, 0.76, 0.87, and 0.91 ?m, with 60 degrees FOV, used to retrieve droplet effective radii and distribution width. Both instruments were integrated onto a research aircraft for a field campaign over the Brazilian Amazon Basin from Sep-Oct 2007 under varying conditions of aerosol loading and cloud type, development stages, and cover area. The preliminary results obtained include real-time mappings of ice/water separation for clouds, with temperature profiles allowing for the retrieval of glaciation levels for a variety of cloud developmental stages and aerosol loadings, including deep convective cumulus clouds and/or high aerosol content. Vertical profiles of effective radius can be obtained using the measurements in 2.10 ?m as entries in a look up table from a 3D radiative transfer model for the cloud field. The post-processed polarimeter measurements allow retrieving a polarized reflectance signal from which one can derive effective radii and distribution widths of droplets for clouds in the observed scenes. These results help understanding and quantifying the effects of cloud-aerosol interactions and their consequences for cloud microphysics.

Correia, A. L.; Fernandez-Borda, R.; Martins, J. V.

2007-12-01

143

Concentration and mineralogical residence of elements in rich oil shales of the Green River Formation, Piceance Creek basin, Colorado, and the Uinta Basin, Utah - A preliminary report  

USGS Publications Warehouse

Ten samples from drillcore of two rich oil-shale beds from the Parachute Creek Member of the Eocene Green River Formation, Piceance Creek basin, Colorado, and Uinta Basin, Utah, were analyzed for 37 major, minor, and trace elements. For 23 of these elements, principal mineralogical residence is established or suggested and such studies may provide data which are useful for predicting the kinds and amounts of elements and compounds that might be released into the environment by oil-shale mining operations. ?? 1976.

Desborough, G.A.; Pitman, J.K.; Huffman, C., Jr.

1976-01-01

144

Downward approach at the catchment scale or at the catchment set scale?  

NASA Astrophysics Data System (ADS)

The downward approach that learns from observations the main features of the catchment hydrological response has long been recognized as a way to develop hydrological models for the catchment scale (Klemes, 1983). In this approach, a link is made between rainfall inputs and flow outputs using the mathematical tools found the most efficient to reproduce catchment behaviour. This approach received recently more attention, as some limitations of the upward approach were identified (Sivapalan et al., 2003). However model structures developed with this downward approach at the catchment scale are often difficult to generalize, i.e. difficult to transpose to other catchments. Indeed they are often over-adapted to the specific features of the catchment on which they were developed. Generalization is a major problem in current hydrological modelling (Sivakumar, 2008). This is potentially a major drawback for the application of such models to the case of ungauged catchments. We argue that a better way to develop the structure of hydrological models following a downward approach is to place model development at the level of large set of catchments and not only at the level of a single catchment. This way of developing models will force them to be general, i.e. more transposable in space. They will capture the essential features of the rainfall-runoff transformation common between catchments. This way of developing models also gives the opportunity to analyse the spatial patterns of model failures, therefore providing more robust sources of explanations and more convincing ways to improve models. We do not believe that we could develop a single model that fit all conditions, but models developed with this approach are likely to be better starting points to get general models. Then we have to find ways to make them more appropriate to specific conditions without losing their generality. We will illustrate the advantages (and possible limitations) of this approach using examples drawn from our past and current research activities based on large data sets. Surprisingly, the level of model complexity that could be achieved following this approach is quite low, which may indicate that the current understanding of the main features of hydrological catchment behaviour is not as good as many models may suggest (Michel et al., 2006). We hope that this communication will stimulate discussion on this issue and encourage more hydrologists to work on large sets of catchments (Andréassian et al., 2006). References: Andréassian, V., Hall, A., Chahinian, N., Schaake, J. (2006). Introduction and synthesis: Why should hydrologists work on a large number of basin data sets? IAHS Publication n° 307, 1-5. Klemes, V. (1983). Conceptualisation and scale in hydrology. Journal of Hydrology, 65, 1-23. Michel, C., Perrin, C., Andréassian, V. Oudin, L. and Mathevet, T. (2006). Has basin scale modelling advanced far beyond empiricism, IAHS Publication n° 307, 108-116. Sivakumar, B. (2008). Dominant processes concept, model simplification and classification framework in catchment hydrology, Stoch. Envrion. Res. Risk. Assess., 22, 737-748. Sivapalan, M., Blöschl, G., Zhang, L. and Vertessy, R. (2003). Downward approach to hydrological prediction. Hydrological Processes, 17, 2101-2111.

Perrin, C.; Andréassian, V.; Le Moine, N.

2009-04-01

145

How old is upland catchment water?  

NASA Astrophysics Data System (ADS)

Understanding the dynamics of water supply catchments is an essential part of water management. Upland catchments provide a continuous, reliable source of high quality water not only for some of the world's biggest cities, but also for agriculture and industry. Headwater streams control river flow in lowland agricultural basins as the majority of river discharge emerges from upland catchments. Many rivers are perennial and flow throughout the year, even during droughts. However, it is still unclear how reliable and continuous upland catchment water resources really are. Despite many efforts in upland catchment research, there is still little known about where the water is stored and how long it takes to travel through upper catchments. Resolving these questions is crucial to ensure that this resource is protected from changing land use and to estimate potential impacts from a changing climate. Previous research in this important area has been limited by existing measurement techniques. Knowledge to date has relied heavily on the use of variation in stable isotope signals to estimate the age and origin of water from upland catchments. The problem with relying on these measures is that as the water residence time increases, the variation in the stable isotope signal decreases. After a maximum period of four years, no variation can be detected This means that to date, the residence time in upland catchments is likely to have been vastly underestimated. Consequently, the proportion of water flow out of upland river catchments to the total river flow is also underestimated. Tritium (3H) combines directly with water molecules and enters the flow paths with the infiltrating water. Its half-life (12.32 years) makes it ideal to describe residence times in upper catchment reservoirs as it can theoretically measure water up to about 150 years old. The bomb pulse peak in the southern hemisphere was several orders of magnitude lower than in the northern hemisphere. Hence the Tritium activities in the southern hemisphere have long decayed down the natural background levels, which allows unique ages to be determined by single measurements. In this study major ion chemistry, stable isotopes and Tritium were determined at 2 locations and various stages of discharge (18 Tritium samples in between April 2013 and January 2014) in a first-order perennial stream draining a 7.3 km2 catchment in the Dandenong National Park, Melbourne, Australia. Even during major discharge event major ions and stable isotope data have little variation and Tritium activities remain low (1.4 to 1.8 TU) in comparison to local rainfall of ~ 3TU. Age estimations based on an exponential flow model are 15 to 25 years indicating that water draining from upland catchments is much older than we have previously estimated using stable isotopes.

Hofmann, Harald; Cartwright, Ian; Morgenstern, Uwe; Gilfedder, Benjamin

2014-05-01

146

Computational uncertainty analysis of groundwater recharge in catchment  

Microsoft Academic Search

In this paper, a computational environinformatics (environmental informatics) operation for mapping the groundwater climatological recharge in regional sub-basin is presented. It is based on a soil–water balance (SWB) and spatial statistics integrated in a GIS environment. Mediterranean is a region with large demands for groundwater supplies. However, water catchment data are affected by large uncertainty, arising from sampling and modelling,

Nazzareno Diodato; Michele Ceccarelli

2006-01-01

147

Preliminary assessment of alkane and PAH data for sediment cores from six lakes in the Fraser River basin  

E-print Network

Preliminary assessment of alkane and PAH data for sediment cores from six lakes in the Fraser River including alkanes and polynuclear aromatic hydrocarbons (PAH). A preliminary examination of the data using detectable alkane and PAH compounds but there are differences between lakes and between sediment depths

148

Long-term and short-term erosion rates in river catchments of the Rhenish Massif and the Black Forest, Germany  

NASA Astrophysics Data System (ADS)

We constrained long-term erosion rates from the concentration of cosmogenic 10Be in stream sediments in order to quantify the Late Quaternary denudation history of mountain ranges in central Europe. Four different catchments in Germany, ranging in size from 8 to 379 km2 were investigated. Two of them, the Aabach and Möhne catchments drain predominantly low-grade Paleozoic metasediments. The other two, the Gutach and Acher catchments in the Black Forest are situated in Late Paleozoic granites. Erosion rates derived from the 10Be concentrations range from 29 to 86 mm/ka in the Rhenish Massif and from 26 to 91 mm/ka in the Black Forest. These spatially-averaged erosion rates integrate over the past 7 to 23 ka. Central to our investigation are questions concerning the relative importance of lithology and catchment relief on long-term erosion rates. Short-term erosion rates for all catchments were quantified by combining the amounts of suspended and dissolved loads in water samples with water discharge data and basin area. By analyzing the stable isotope signatures ?18O of river water and ?13C of dissolved anorganic carbon and by taking into account the precipitation and evaporation we corrected the dissolved load for organic, atmospheric and anthropogenic inputs. The preliminary short-term erosion rates vary between 9 and 33 mm/ka and are only about one third of the erosion rates derived from 10Be. The short-term erosion rates are complemented by erosion rates derived from the volume of sediment stored behind reservoirs of known age. These erosion rates range from 2 to 13 mm/ka and are lower than the erosion rates derived from river loads, as they do not take into account the dissolved load. Furthermore, we focused on dependence of lithology and land use on short-term erosion rates.

Meyer, H.; Hetzel, R.; Strauss, H.

2007-12-01

149

Nanophytoplankton Diversity Across the Oligohaline Lake Pontchartrain Basin Estuary: A Preliminary Investigation Utlizing psbA Sequences  

Technology Transfer Automated Retrieval System (TEKTRAN)

The Lake Pontchartrain basin estuary is shallow, wind-driven and comprised of two large embayments (1645 km2). Salinities range from freshwater in the west to 8 ppt in the east near the Gulf of Mexico. Phytoplankton investigations spanning this salinity gradient or examining small photoautotrophs ar...

150

Preliminary study of the uranium potential of the northern part of the Durham Triassic Basin, North Carolina  

SciTech Connect

This report presents results of a four-channel spectrometric survey of the northern part of the Durham Triassic basin and adjacent Piedmont, North Carolina. Gamma-ray spectrometric measurements were obtained at 112 localities from 136 different lithologies. The nominal sampling density in the Durham Basin is one site per 2 mi/sup 2/. Surface radiometric surveys reveal no anomalous radioactivity in the northern part of the Durham Basin. Uranium concentrations in Triassic rocks are from 0.6 to 9.7 ppM and average 2.9 ppM. Mudrocks contain from 1.3 to 9.7 ppM, and the average is 4.5 ppM. Sandstones contain from 0.6 to 8.8 ppM, and the average is 2.5 ppM. Fanglomerates contain the lowest concentrations of uranium, from 1.4 to 2.0 ppM, for an average of 1.8 ppM. Uranium/thorium ratios average 0.27 for Triassic rocks and are from 0.04 to 1.85. The mean log uranium/log thorium for Triassic rocks is 0.37. Mudrock has the highest average uranium/thorium ratio (0.32), and the range is 0.09 to 0.66. Sandstones have an average uranium/thorium ratio of 0.26, and the range is 0.04 to 1.85. Fanglomerates have the lowest range uranium/thorium ratio (0.19), and the range is 0.12 to 0.19. On the basis of surface radiometric surveys and geologic studies, it is believed that sedimentary strata in the northern part of the Durham Basin are poor targets for further uranium exploration. This conclusion is based on the lack of favorable characteristics commonly present in fluvial uranium deposits. Among these are: (1) carbonaceous material is absent in Triassic rocks of the northern basin, (2) indicators of a reduzate facies in sandstones are not present, and (3) no tuffaceous beds are associated with sediments in the northern Durham Basin.

Harris, W.B.; Thayer, P.A.

1981-09-01

151

Creating a catchment perspective for river restoration  

NASA Astrophysics Data System (ADS)

One of the major challenges in river restoration is to identify the natural fluvial landscape in catchments with a long history of river control. Intensive land use on valley floors often predates the earliest remote sensing: levees, dikes, dams, and other structures alter valley-floor morphology, river channels and flow regimes. Consequently, morphological patterns indicative of the fluvial landscape including multiple channels, extensive floodplains, wetlands, and fluvial-riparian and tributary-confluence dynamics can be obscured, and information to develop appropriate and cost effective river restoration strategies can be unavailable. This is the case in the Pas River catchment in northern Spain (650 km2), in which land use and development have obscured the natural fluvial landscape in many parts of the basin. To address this issue we coupled general principles of hydro-geomorphic processes with computer tools to characterize the fluvial landscape. Using a 5-m digital elevation model, valley-floor surfaces were mapped according to elevation above the channel and proximity to key geomorphic processes. The predicted fluvial landscape is patchily distributed according to topography, valley morphology, river network structure, and fan and terrace landforms. The vast majority of the fluvial landscape in the main segments of the Pas River catchment is presently masked by human infrastructure, with only 15% not impacted by river control structures and development. The reconstructed fluvial landscape provides a catchment scale context to support restoration planning, in which areas of potential ecological productivity and diversity could be targeted for in-channel, floodplain and riparian restoration projects.

Benda, L.; Miller, D.; Barquín, J.

2011-03-01

152

Recognising the Anthropocene at a Regional-Catchment Scale  

NASA Astrophysics Data System (ADS)

Recent reviews concerning the recognition of the Anthropocene in geomorphology have focussed on small to medium-sized catchments and have aggregated these studies to derive regional syntheses. However, the erosional and sedimentary responses to human activities vary both in nature and scale within regional-scale or medium to large catchments. Geomorphological responses also vary in their connectivity and this is, and will be, reflected in the residence time of Anthropogenic units and earth surface properties. This paper will explore the variation of anthropogenic responses in a medium-sized sedimentary basin (the Somerset Levels basin) which drains into the estuary of the River Severn in the UK. It will be shown that different human activities at different dates, and driven by very different socio-economic factors, interact and change geomorphic connectivity producing a palimpsest of anthropogenic geomorphic responses with highly variable surface expression and geochemical signatures.

Brown, Tony

2014-05-01

153

Long-term stable water isotope data from large river basins: preliminary analysis of the Global Network of Isotopes in Rivers (GNIR)  

NASA Astrophysics Data System (ADS)

In 2002 the International Atomic Energy Agency (IAEA) launched an international observation program for the collection and measurement of stable water isotopes and tritium in rivers. The Global network of Isotopes in Rivers (GNIR) now serves as a world-wide repository for contributed riverine isotope data, and expedites public dissemination of isotope data for water research purposes. Currently, the GNIR database contains about 21,000 stable water isotope records from 750 locations in 35 countries, in database format. Basic statistical descriptions are available for 252 observation sites that have isotope records for a minimum of two years. Here, we provide a summary of the GNIR stations established and the data compilations. Because the river locations are from different hydrological settings and climatic zones, the evaluation of the data gives a wide perspective of the global and temporal variations in the isotopic compositions of water in medium-size and large river basins. This synopsis reveals the useful application of stable water isotopes to assess the origin of water sources, mixing with precipitation, glacier and snow melt water, tributaries, the contribution of groundwater to baseflow, as well as, the impact of damming and irrigation return. In addition, the compiled isotope data give insights into temporal and spatial variations in the deuterium-excess and thereby provides independent information to estimate the relevance of evaporation in the water balance of large river basins. This preliminary analysis of the GNIR summarizes moreover, the experience gained from establishing large scale monitoring network stations and stable water isotope data collection within different environments. The GNIR program will be expanded and enhanced into the future with the addition of other biogeochemical isotopes, such as nutrients, particulate organic matter, and sediments. This will enhance gaining further scientific insights and information into water security and quality issues.

Halder, Janine; Terzer, Stefan; Wassenaar, Leonard, I.; Araguas-Araguas, Luis; Aggarwal, Pradeep

2014-05-01

154

Hydrological Catchment Similarity Assessment in Geum River Catchments, Korea  

NASA Astrophysics Data System (ADS)

Similarity measure of catchments is essential for regionalization studies, which provide in depth analysis in hydrological response and flood estimations at ungauged catchments. However, this similarity measure is often biased to the selected catchments and is notclearly explained in hydrological sense. This study applied a type of hydrological similarity distance measure-Flood Estimation Handbook to 25 Geum river catchments, Korea. Three Catchment Characteristics, Area (A)-Annual precipitation (SAAR)-SCS Curve Number (CN), are used in Euclidian distance measures. Furthermore, six index of Flow Duration Curve (ILow:Q275/Q185, IDrought:Q355/Q185, IFlood:Qmax/Q185, IAbundant:Q95/Q185, IFloodDuration:Q10/Q355 and IRiverRegime:Qmax/Qmin) are applied to clustering analysis of SPSS. The catchments' grouping of hydrological similarity measures suggests three groups: H1 (Cheongseong, Gidae, Bukil, Oksan, Seockhwa, Habgang and Sangyeogyo), H2 (Cheongju, Guryong, Ugon, Boksu, Useong and Seokdong) and H3 (Muju, Yangganggyo and YongdamDam). The four catchments (Cheoncheon, Donghyang, DaecheongDam and Indong) are not grouped in this study. The clustering analysis of FDC provides four Groups; CFDC1 (Muju, YongdamDam, Yangganggyo, DaecheongDam, Cheongseong, Gidae, Seokhwa, Bukil, Habgang, Cheongju, Oksan, Yuseong and Guryong), CFDC2 (Cheoncheon, Donghyang, Boksu, Indong, Nonsan, Seokdong, Ugon, Simcheon, Useong and Sangyeogyo), CFDC3 (Songcheon) and CFDC4 (Tanbu). The six catchments (out of seven) of H1 are grouped in CFDC1, while Sangyeogyo is grouped in CFDC2. The four catchments (out of six) of H2 are also grouped in CFDC2, while Cheongju and Guryong are grouped in CFDC1. The catchments of H3 are categorized in CFDC1. The authors examine the results (H1, H2 and H3) of similarity measure based on catchment physical descriptors with results (CFDC1 and CFDC2) of clustering based on catchment hydrological response. The results of hydrological similarity measures are supported by clustering analysis of FDC. This study shows a potential of hydrological catchment similarity measures in Korea. It will be used as a starting point for flood predictions at ungauged catchment.

Ko, Ara; Park, Kisoon; Lee, Hyosang

2013-04-01

155

What controls inter-basin variation in cold-season river flow recession in permafrost basins in sub-Arctic Siberia?  

NASA Astrophysics Data System (ADS)

Cold-season river discharge during the period of ice cover and snow fall in northern high latitudes, provides a unique window on the role of subsurface hydrology in permafrost settings as direct surface runoff contributions are largely inhibited. Several recent studies have brought to light positive temporal trends in cold-season discharge totals for the past several decades to one century, and have interpreted these trends to reflect permafrost degradation and associated increased subsurface water transport in response to climate warming. While these are significant and compelling findings of hydrological change, there is a clear need to better understand the hydrology of cold-season flow and the discharge-generating processes themselves. We present results of an inter-basin comparison of cold-season (October - April) river flow characteristics for 17 catchments in Siberia that are not disturbed by artifical reservoirs/dam influences. Streamflow data for the period 1980 - 1998 were studied. Flow and recession metrics for each basin and mean annual cold season catchment-averaged drainage depth, CSDD (in mm equivalent water depth) were compared/correlated with various basin attributes in order to evaluate the significance of these attributes as potential controls. Preliminary findings include a marked behavioural distinction between (11) basins on continuous permafrost and (6) basins with reduced permafrost coverage (discontinuous/sporadic). The latter are characterized by slow recession, relatively high discharge in April before spring freshet, and high CSDD values up to about 80 mm corresponding to more than 10% of total annual rainfall. Although positive correlations with several attributes (annual precipitation; peat land fraction) are found, higher abundance of through-taliks and greater active layer depth (ALD) appear to be the most prominent controls of the distinctive behaviour. Cold-season flow behaviour of the (11) basins on continuous permafrost also show conspicuous inter-basin differences, with some rivers exhibiting very fast recession and cessation of flow for 3 to 4 months, while others show strongly reduced, but continuous discharge throughout the cold season. An interesting question is if the latter behaviour signals contributions from intra- and/or sub-permafrost groundwater flow. Comparison with investigated catchment attributes suggests that ALD, soil properties and vegetation cover do not account for these differences, while lake area fraction and peat land fraction may play a role in favouring prolonged cold-season flow, although correlation is weak. It is anticipated that river valley and stream channel characteristics may be important, but this remains to be evaluated.

Kooi, H.; Watson, V.; Bense, V. F.

2012-04-01

156

Monitoring in the Tualatin River Basin to assess the effectiveness of the Oregon Forest Practicers Program: Preliminary results of phosphorus monitoring.  

PubMed

The Oregon Department of Forestry is a designated management agency to provide a forestry program to assist in bringing the Tualatin River into complicance with pH and dissolved oxygen water quality standards. The Oregon Environmental Quality Commission set a total maximum daily load (TMDL) of 70 µg/l total phosphorus to control algae growth and meet these standards. The Department of Forestry has a basin effectiveness monitoring plan to determine that the Oregon Forest Practice Rules' BMPs are maintaining adequate control of phosphorus loadings from forest operations. Three sites monitored during May to October of 1990 were augmented by eight more sites in 1991. As laboratory methods were refined, the results became more accurate. The 1991 monitoring showed lower phosphorus levels that were consistent for each tributary. Mean total phosphorus levels ranged from 17 to 65 µg/l. Preliminary field reconnaissance suggests a correlation between phosphorus levels and underlying geology. Concentrations were lowest at sites underlain by tertiary intrusive basalts, next higher for sites with terrestrial basalt, next higher for one site with a basalt-sandstone bedrock mix, and highest for sites underlain predominately by sandstone. These results may be modified by 1992 monitoring and further analysis. PMID:24220838

Degenhardt, D A; Fromuth, C C

1993-07-01

157

A preliminary sub-basin scale evaluation framework of site suitability for onshore aquifer-based CO{sub 2} storage in China  

SciTech Connect

Development of a reliable, broadly applicable framework for the identification and suitability evaluation of potential CO{sub 2} storage sites is essential before large-scale deployment of carbon dioxide capture and geological storage (CCS) can commence. In this study, a sub-basin scale evaluation framework was developed to assess the suitability of potential onshore deep saline aquifers for CO{sub 2} storage in China. The methodology, developed in consultation with experts from the academia and the petroleum industry in China, is based on a multi-criteria analysis (MCA) framework that considers four objectives: (1) storage optimization, in terms of storage capacity and injectivity; (2) risk minimization and storage security; (3) environmental restrictions regarding surface and subsurface use; and (4) economic considerations. The framework is designed to provide insights into both the suitability of potential aquifer storage sites as well as the priority for early deployment of CCS with existing CO{sub 2} sources. Preliminary application of the framework, conducted using GIS-based evaluation tools revealed that 18% of onshore aquifer sites with a combined CO{sub 2} storage capacity of 746 gigatons are considered to exhibit very high suitability, and 11% of onshore aquifer sites with a total capacity of 290 gigatons exhibit very high priority opportunities for implementation. These onshore aquifer sites may provide promising opportunities for early large-scale CCS deployment and contribute to CO{sub 2} mitigation in China for many decades.

Wei, Ning; Li, Xiaochun; Wang, Ying; Dahowski, Robert T.; Davidson, Casie L.; Bromhal Grant S.

2013-01-01

158

A preliminary sub-basin scale evaluation framework of site suitability for onshore aquifer-based CO2 storage in China  

SciTech Connect

Development of a reliable, broadly applicable framework for the identification and suitability evaluation of potential CO2 storage sites is essential before large scale deployment of carbon dioxide capture and geological storage (CCS) can commence. In this study, a sub-basin scale evaluation framework was developed to assess the suitability of potential onshore deep saline aquifers for CO2 storage in China. The methodology, developed in consultation with experts from the academia and the petroleum industry in China, is based on a multi-criteria analysis (MCA) framework that considers four objectives: (1) storage optimization, in terms of storage capacity and injectivity; (2) risk minimization and storage security; (3) environmental restrictions regarding surface and subsurface use; and (4) economic considerations. The framework is designed to provide insights into both the suitability of potential aquifer storage sites as well as the priority for early deployment of CCS with existing CO2 sources. Preliminary application of the framework, conducted using GIS-based evaluation tools revealed that 18% of onshore aquifer sites with a combined CO2 storage capacity of 746 gigatons are considered to exhibit very high suitability, and 11% of onshore aquifer sites with a total capacity of 290 gigatons exhibit very high priority opportunities for implementation. These onshore aquifer sites may provide promising opportunities for early large-scale CCS deployment and contribute to CO2 mitigation in China for many decades.

Wei, Ning; Li, Xiaochun; Wang, Ying; Dahowski, Robert T.; Davidson, Casie L.; Bromhal, Grant

2013-01-30

159

Preliminary paleogeographic reconstruction of the Illinois basin during deposition of the Mississippian Aux Vases Formation: Implications for hydrocarbon recovery  

SciTech Connect

Extensive outcrop investigation and selective subsurface study allow definition of Illinois basin paleogeography during deposition of the Mississippian (Valmeyeran-Meramecian) Aux Vases Formation. The results incorporate an integrated approach utilizing field observations and petrographic analysis, wireline logs, subsurface maps, and cores. The Aux Vases Formation depositional system has been determined to be composed of subtidal to intertidal facies. Depositional facies in outcrop are based on rock body geometries, sedimentary structure assemblages, paleocurrent analysis, paleontology of body and trace fossils, facies relationships, and petrography. Depositional facies determined from subsurface data are based on correlation of lithologic interpretations from wireline logs, sand body geometries form isopach maps, and petrography. Specific depositional facies observed in outcrop and core and inferred from wireline logs and isopach maps are offshore bars and tidal channel complexes, extensive subtidal to lower intertidal, ripple-laminated, fine-grained quartzose sandstone. Carbonate facies occur as subtidal grainstones at or near the base of a sequence, or as high energy deposits which have been tidally reworked. This depositional system produces reservoir heterogeneities that complicate efficient hydrocarbon recovery. This diverse facies architecture is modified by tectonic and diagenetic overprinting, further segregating potential producing zones. To significantly improve recovery efficiency, predictions regarding compartmentalization can be used prior to designing a drilling program, an infill drilling program, or an application of enhanced recovery techniques.

Cole, R.D. (Illinois State Geological Survey, Champaign (United States))

1991-03-01

160

The relative influence of climate and catchment properties on hydrological drought  

NASA Astrophysics Data System (ADS)

Studying hydrological drought (a below-normal water availability in groundwater, lakes and streams) is important to society and the ecosystem, but can also reveal interesting information about catchment functioning. This information can later be used for predicting drought in ungauged basins and to inform water management decisions. In this study, we used an extensive Austrian dataset of discharge measurements in clusters of catchments and combine this dataset with thematic information on climate and catchment properties. Our aim was to study the relative effects of climate and catchment characteristics on drought duration and deficit and on hydrological drought typology. Because the climate of the region is roughly uniform, our hypothesis was that the effect of differences of catchment properties would stand out. From time series of precipitation and discharge we identified droughts with the widely-used threshold level approach, defining a drought when a variable falls below a pre-defined threshold representing the regime. Drought characteristics that were analysed are drought duration and deficit. We also applied the typology of Van Loon & Van Lanen (2012). To explain differences in drought characteristics between catchments we did a correlation analysis with climate and catchment characteristics, based on Pearson correlation. We found very interesting patterns in the correlations of drought characteristics with climate and catchment properties: 1) Droughts with long duration (mean and maximum) and composite droughts are related to catchments with a high BFI (high baseflow) and a high percentage of shallow groundwater tables. 2) The deficit (mean and maximum) of both meteorological droughts and hydrological droughts is strongly related to catchment humidity, in this case quantified by average annual precipitation. 3) The hydrological drought types that are related to snow, i.e. cold snow season drought and snow melt drought, occur in catchments that are have a high elevation, steep slopes, a high percentage of crystalline rock, bare rock and glacier. The conclusion of our research is that it is not straightforward to separate the effects of climate and catchment properties on drought, since they are interrelated. This is especially true for mountainous regions where temperature and precipitation are strongly dependent on altitude. We did however see that the duration of drought is more related to catchment storage (catchment properties) and the severity of drought (represented by the drought deficit) is more related to catchment wetness (climate). Van Loon, A.F., and Van Lanen, H.A.J.: A process-based typology of hydrological drought, Hydrology and Earth System Science, 16, p. 1915-1946, doi: 10.5194/hess-16-1915-2012, 2012

Van Loon, Anne; Laaha, Gregor; Koffler, Daniel

2014-05-01

161

Evaluating stream water quality through land use analysis in two grassland catchments: impact of wetlands on stream nitrogen concentration.  

PubMed

We evaluated the impacts of natural wetlands and various land uses on stream nitrogen concentration in two grassland-dominated catchments in eastern Hokkaido, Japan. Analyzing land use types in drainage basins, measuring denitrification potential of its soil, and water sampling in all seasons of 2003 were performed. Results showed a highly significant positive correlation between the concentration of stream NO3-N and the proportion of upland area in drainage basins in both catchments. The regression slope, which we assumed to reflect the impact on water quality, was 24% lower for the Akkeshi catchment (0.012 +/- 0.001) than for the Shibetsu catchment (0.016 +/- 0.001). In the Akkeshi catchment, there was a significant negative correlation between the proportion of wetlands in the drainage basins and stream NO3-N concentration. Stream dissolved organic nitrogen (DON) and carbon (DOC) concentrations were significantly higher in the Akkeshi catchment. Upland and urban land uses were strongly linked to increases in in-stream N concentrations in both catchments, whereas wetlands and forests tended to mitigate water quality degradation. The denitrification potential of the soils was highest in wetlands, medium in riparian forests, and lowest in grasslands; and was significant in wetlands and riparian forests in the Akkeshi catchment. The solubility of soil organic carbon (SOC) and soil moisture tended to determine the denitrification potential. These results indicate that the water environment within the catchments, which influences denitrification potential and soil organic matter content, could have caused the difference in stream water quality between the two catchments. PMID:16510707

Hayakawa, A; Shimizu, M; Woli, K P; Kuramochi, K; Hatano, R

2006-01-01

162

Holocene Paleoenvironment of the North-central Great Basin: Preliminary Results from Favre Lake, Northern Ruby Mountains, Nevada  

NASA Astrophysics Data System (ADS)

Little is known about Holocene climate variability in north-central Nevada. This study aims to assess changes in watershed vegetation, fire history, lake levels and limnological conditions in order to understand secular to millennial-scale changes in regional climate. Favre Lake (2,899 m a.s.l.; 12 m deep; 7.7 hectares) is a flow-through lake in the northern Ruby Mountains. The primary sources of influent, both of which appear to be intermittent, are Castle Lake (2,989 m a.s.l.) and Liberty Lake (3,077 m a.s.l.). The bedrock of the three lake basins is early Paleozoic marble and Mesozoic granite and metamorphic rocks. Bathymetric maps and temperature, pH, salinity, and conductivity profiles have been generated for Favre Lake. Surface samples and a series of cores were also collected using a modified Livingstone piston corer. The presence of the Mazama ash in the basal sediment (~4 m below the sediment/water interface) indicates the record extends to ~7,700 cal yr B.P. Magnetic susceptibility (MS) and loss-on-ignition data indicate that the sediments in the lowest part of the core contain primary and reworked Mazama ash. About 2,000 years ago CaCO3 increased from 2 to 3% of the inorganic sediment. The upper 25 cm of the core are marked by an increase in MS which may indicate increased erosion due to grazing. Between about 7,700 and 6,000 cal yr B.P. the diatom flora is dominated by a diverse assemblage of benthic species. The remainder of the core is dominated by Fragilaria, suggesting that lake level rose and flooded the shelf that surrounds the depocenter of the lake. This is supported by changes in the abundance of the aquatic fern Isoetes. Pinus and Artemisia dominate the pollen record, followed by subordinate levels of Poaceae, Asteraceae, Amaranthaceae, and Sarcobatus. The late early Holocene (7,700-6,000 cal yr B.P.) is dominated by Pinus which is present in reduced amounts during the middle Holocene (6,000-3,000 cal yr B.P.) and then returns to dominance in the late Holocene (post-3,000 cal yr B.P.). Future research will include analysis of both macro- and micro-charcoal abundances. The charcoal record will augment the suite of data presented here by providing independent evidence of variability in precipitation regimes and drought history. An additional set of cores from a perennial wetland on the eastern edge of the range, Ruby Marsh, will provide a low elevation paleoclimatic counterpoint to this alpine site.

Starratt, S.; Wahl, D.; Wan, E.; Anderson, L.; Wanket, J.; Olson, H.; Lloyd-Davies, T.; Kusler, J.

2009-12-01

163

Which catchment properties determine runoff behavior in small catchments?  

NASA Astrophysics Data System (ADS)

The complexity of Pleistocene landscape and various anthropogenic influences complicate the classification of runoff characteristics of small catchments in northeast Germany. Such a classification would be of use for scientists and water managers in order to estimate the catchments' vulnerability regarding floods and low flows, transfer results to ungauged catchments as well as planning of measures to adapt to climate change. The objective of our study is the use of dimensional reduction technique solely on discharge time series in order to classify runoff behavior of small catchments (< 500 km2) of Brandenburg, Germany. The study is based on data of daily discharge at 40 gauges from 1991 to 2006. Data was provided by the State Office of Environment, Health and Consumer Protection of the Federal State of Brandenburg. Principal Component Analysis was applied to reduce dimensionality to as few principal components as possible explaining still most of the variance in the data. Additionally, meteorological data and catchment properties derived from hydrogeologic, soil and land use maps were included to better understand the results and to check hypotheses about underlying processes and driving forces. The first six components exhibited an eigenvalue exceeding one and explained 73% of the total variance. Analysis of the loadings and comparison with meteorological and catchment properties allowed assigning runoff generating processes to the principal components. The first principal component represented the mean runoff behavior of the time series from all catchments. Further components could be related to precipitation patterns that exhibited a northwest-southeast and southwest-northeast gradient, a higher evapotranspiration by wetlands and river lakes, water management activities and specific behavior or measurement errors at single gauges. Despite our hypothesis that soil, groundwater and land use properties are crucial to understand discharge patterns at small catchments the results show that precipitation patterns and the area of river lakes and wetlands explain most of the variance in our data set. Our method was suited to extract common patterns in catchment runoff. We show challenges in defining catchment similarity arising from runoff generating processes which are correlated. Additionally, similarity in water management and other anthropogenic influences had to be included in this research area. Further, we used this classification to estimate catchments' vulnerability to extremes, especially low flows, and formulate key concerns for water managers.

Thomas, B. D.; Lischeid, G.; Steidl, J.; Dannowski, R.

2012-04-01

164

Old groundwater influence on stream hydrochemistry and catchment response times in a small Sierra Nevada catchment: Sagehen Creek, California  

USGS Publications Warehouse

[1] The relationship between the chemical and isotopic composition of groundwater and residence times was used to understand the temporal variability in stream hydrochemistry in Sagehen basin, California. On the basis of the relationship between groundwater age and [Ca2+], the mean residence time of groundwater feeding Sagehen Creek during base flow is approximately 28 years. [Cl-]:[Ca2+] ratios in Sagehen Creek can be used to distinguish between two important processes: changes in the apparent age of groundwater discharging into the creek and dilution with snowmelt. The mean residence time of groundwater discharging into the creek is approximately 15 years during snowmelt periods. The results from this study have implications for hydrograph separation studies as groundwater is not a single, well-mixed chemical component but rather is a variable parameter that predictably depends on groundwater residence time. Most current models of catchment hydrochemistry do not account for chemical and isotopic variability found within the groundwater reservoir. In addition, this study provides valuable insight into the long-term hydrochemical response of a catchment to perturbations as catchment-flushing times are related to the mean residence time of water in a basin. Copyright 2005 by the American Geophysical Union.

Rademacher, L.K.; Clark, J.F.; Clow, D.W.; Hudson, G.B.

2005-01-01

165

A Preliminary Investigation of The Structure of Southern Yucca Flat, Massachusetts Mountain, and CP Basin, Nevada Test Site, Nevada, Based on Geophysical Modeling  

USGS Publications Warehouse

New gravity and magnetic data collected in the vicinity of Massachusetts Mountain and CP basin (Nevada Test Site, NV) provides a more complex view of the structural relationships present in the vicinity of CP basin than previous geologic models, helps define the position and extent of structures in southern Yucca Flat and CP basin, and better constrains the configuration of the basement structure separating CP basin and Frenchman Flat. The density and gravity modeling indicates that CP basin is a shallow, oval-shaped basin which trends north-northeast and contains ~800 m of basin-filling rocks and sediment at its deepest point in the northeast. CP basin is separated from the deeper Frenchman Flat basin by a subsurface ridge that may represent a Tertiary erosion surface at the top of the Paleozoic strata. The magnetic modeling indicates that the Cane Spring fault appears to merge with faults in northwest Massachusetts Mountain, rather than cut through to Yucca Flat basin and that the basin is downed-dropped relative to Massachusetts Mountain. The magnetic modeling indicates volcanic units within Yucca Flat basin are down-dropped on the west and supports the interpretations of Phelps and KcKee (1999). The magnetic data indicate that the only faults that appear to be through-going from Yucca Flat into either Frenchman Flat or CP basin are the faults that bound the CP hogback. In general, the north-trending faults present along the length of Yucca Flat bend, merge, and disappear before reaching CP hogback and Massachusetts Mountain or French Peak.

Phelps, Geoffrey A.; Justet, Leigh; Moring, Barry C.; Roberts, Carter W.

2006-01-01

166

A preliminary investigation of the structure of southern Yucca Flat, Massachusetts Mountain, and CP basin, Nevada Test Site, Nevada, based on geophysical modeling.  

SciTech Connect

New gravity and magnetic data collected in the vicinity of Massachusetts Mountain and CP basin (Nevada Test Site, NV) provides a more complex view of the structural relationships present in the vicinity of CP basin than previous geologic models, helps define the position and extent of structures in southern Yucca Flat and CP basin, and better constrains the configuration of the basement structure separating CP basin and Frenchman Flat. The density and gravity modeling indicates that CP basin is a shallow, oval-shaped basin which trends north-northeast and contains ~800 m of basin-filling rocks and sediment at its deepest point in the northeast. CP basin is separated from the deeper Frenchman Flat basin by a subsurface ridge that may represent a Tertiary erosion surface at the top of the Paleozoic strata. The magnetic modeling indicates that the Cane Spring fault appears to merge with faults in northwest Massachusetts Mountain, rather than cut through to Yucca Flat basin and that the basin is downed-dropped relative to Massachusetts Mountain. The magnetic modeling indicates volcanic units within Yucca Flat basin are down-dropped on the west and supports the interpretations of Phelps and KcKee (1999). The magnetic data indicate that the only faults that appear to be through-going from Yucca Flat into either Frenchman Flat or CP basin are the faults that bound the CP hogback. In general, the north-trending faults present along the length of Yucca Flat bend, merge, and disappear before reaching CP hogback and Massachusetts Mountain or French Peak.

Geoffrey A. Phelps; Leigh Justet; Barry C. Moring, and Carter W. Roberts

2006-03-17

167

COMMENTS ON THE CATCHMENT EXPERIMENT TO DETERMINE VEGETAL EFFECTS ON WATER YIELD1  

Microsoft Academic Search

So far most applicable knowledge about forests and water yield has come from catch- ment experiments. Perhaps even more practical information might have been secured during the past twenty years if more and better designed catchment experiments had been undertaken. At the very least, the old question of the main effects of vegetation on total basin water yield should now

John D. Hewlett

168

Catchment-scale biogeography of riverine bacterioplankton.  

PubMed

Lotic ecosystems such as rivers and streams are unique in that they represent a continuum of both space and time during the transition from headwaters to the river mouth. As microbes have very different controls over their ecology, distribution and dispersion compared with macrobiota, we wished to explore biogeographical patterns within a river catchment and uncover the major drivers structuring bacterioplankton communities. Water samples collected across the River Thames Basin, UK, covering the transition from headwater tributaries to the lower reaches of the main river channel were characterised using 16S rRNA gene pyrosequencing. This approach revealed an ecological succession in the bacterial community composition along the river continuum, moving from a community dominated by Bacteroidetes in the headwaters to Actinobacteria-dominated downstream. Location of the sampling point in the river network (measured as the cumulative water channel distance upstream) was found to be the most predictive spatial feature; inferring that ecological processes pertaining to temporal community succession are of prime importance in driving the assemblages of riverine bacterioplankton communities. A decrease in bacterial activity rates and an increase in the abundance of low nucleic acid bacteria relative to high nucleic acid bacteria were found to correspond with these downstream changes in community structure, suggesting corresponding functional changes. Our findings show that bacterial communities across the Thames basin exhibit an ecological succession along the river continuum, and that this is primarily driven by water residence time rather than the physico-chemical status of the river. PMID:25238398

Read, Daniel S; Gweon, Hyun S; Bowes, Michael J; Newbold, Lindsay K; Field, Dawn; Bailey, Mark J; Griffiths, Robert I

2015-02-01

169

Catchment-scale biogeography of riverine bacterioplankton  

PubMed Central

Lotic ecosystems such as rivers and streams are unique in that they represent a continuum of both space and time during the transition from headwaters to the river mouth. As microbes have very different controls over their ecology, distribution and dispersion compared with macrobiota, we wished to explore biogeographical patterns within a river catchment and uncover the major drivers structuring bacterioplankton communities. Water samples collected across the River Thames Basin, UK, covering the transition from headwater tributaries to the lower reaches of the main river channel were characterised using 16S rRNA gene pyrosequencing. This approach revealed an ecological succession in the bacterial community composition along the river continuum, moving from a community dominated by Bacteroidetes in the headwaters to Actinobacteria-dominated downstream. Location of the sampling point in the river network (measured as the cumulative water channel distance upstream) was found to be the most predictive spatial feature; inferring that ecological processes pertaining to temporal community succession are of prime importance in driving the assemblages of riverine bacterioplankton communities. A decrease in bacterial activity rates and an increase in the abundance of low nucleic acid bacteria relative to high nucleic acid bacteria were found to correspond with these downstream changes in community structure, suggesting corresponding functional changes. Our findings show that bacterial communities across the Thames basin exhibit an ecological succession along the river continuum, and that this is primarily driven by water residence time rather than the physico-chemical status of the river. PMID:25238398

Read, Daniel S; Gweon, Hyun S; Bowes, Michael J; Newbold, Lindsay K; Field, Dawn; Bailey, Mark J; Griffiths, Robert I

2015-01-01

170

Fuel dispenser catchment box  

SciTech Connect

This patent describes a fuel dispenser catchment box. It comprises: a metal casing, formed from spaced side walls and end walls, having an open top and open bottom; means on the outer surface of the metal casing, spaced from the open top, for attachment of a dispenser housing; a horizontally inwardly extending flange on the metal casing about the open bottom thereof; a non-metallic closure member having a base, upwardly extending spaced side walls and end walls and an open top, the closure member having an outwardly extending lip about the open top thereof which rests on the horizontally inwardly extending flange of the metal casing to close the bottom of the casing; at least one fuel supply line aperture, having a wall, formed in the base of the closure member for entry to the metal casing of a fuel supply line thereto; a first seal between the fuel supply line and the wall of the fuel supply line aperture; at least one auxiliary conduit aperture, having a wall, formed in the base of the closure member for entry to the metal casing of an auxiliary conduit thereto; a second seal between the auxiliary conduit and the wall of the auxiliary conduit aperture, and a support clamp extending between the spaced walls of the metal casing adjacently above the fuel supply line aperture for support of a fuel supply line therein.

Rieseck, R.J.

1991-02-05

171

Coupling Geomorphologic Analysis and Multiscaling Properties of Hydraulic Geometry for Runoff Routing in Ungaged Catchments: The Geomorphologic Nonlinear Reservoirs in Network (GNRN) Concept  

NASA Astrophysics Data System (ADS)

The dependencies between channel properties and river flows have been observed for a long time, and empirically described by the so-called hydraulic geometry (HG) relationships; however, it is only recently that systematic attempts have been made to consider these relationships in the context of hydrologic response. Based on empirical evidence that the parameters of the HG relationships are not constant over a basin but change as a function of contributing area (scale), we postulate a multiscaling model for HG variables (width, depth, cross-sectional area, mean velocity and discharge) and revise the HG relationships to reflect scale-dependency. Data from 85 streamflow gaging stations in Central US, Oklahoma and Kansas, are used to verify the proposed multiscaling model and the revised HG relationships. The revised HG relationships are then combined with geomorphologic analysis of a stream network via a "network of nonlinear reservoirs" concept of runoff routing, to develop a model termed "Geomorphologic Nonlinear Reservoirs in Network (GNRN)" for runoff routing in ungaged catchments. Preliminary results are encouraging and indicate the potential of the proposed methodology for (a) runoff prediction in ungaged catchments via regionalization of the revised HG relationships and (b) better understanding of the nonlinear effects of the temporal variability of forcing and topological structure of the river network on streamflow dynamics.

Dodov, B.; Foufoula-Georgiou, E.

2002-12-01

172

Modeling soil moisture patterns in a microscale forest catchment  

NASA Astrophysics Data System (ADS)

The study investigates the spatial variability of the soil moisture on the microscale forest Wüstebach (27 ha) basin. A fully-integrated surface-subsurface flow model is applied to the Wüstebach headwater catchment in Germany which is a tributary to the Erkensruhr river and has a catchment size of about 27 ha. The catchment which is part of the Eifel national park is completely covered by spruce. The catchment is well characterized and monitored. In addition to the discharge data measured since 2007, soil moisture were measured discontinuously at a number of points. In summer 2009 a wireless sensor network was implemented which collects soil moisture data in three different depths at 150 points with an hourly resolution. Spatial patterns of soil moisture provide powerful information for testing distributed models and can provide independent information that are complementary to more traditional data as point discharge measurements. The 3-D fully coupled flow simulation model HydroGeoSphere was applied to this headwater catchment in two spatial resolutions (25 and 100 m). The distributed hydrological model produces spatially explicit predictions that allow more detailed analysis in decision-making than lumped models. With the model the importance of the spatial features of soil moisture patterns is quantified. We will present simulation results as well as a comparison of the predicted spatial patterns of soil moisture with those observed by the wireless sensor network. The comparison will be done using cell-by-cell method, which allows expressing the strength of agreement between simulated and observed soil moisture patterns through measures of similarity between two maps based on a contingency table and expressed in terms of Kappa statistics.

Sciuto, G.; Diekkrüger, B.; Bogena, H.; Rosenbaum, U.; Dwersteg, D.

2010-05-01

173

Preliminary Pliocene-Pleistocene Stable-Isotope and Paleosol Data From the Fish Creek- Vallecito Basin, Southern California: Insights Into Paleoclimate From Pedogenic Carbonate  

NASA Astrophysics Data System (ADS)

In this study we use detailed measurements and isotopic analyses of paleosols in the Fish Creek-Vallecito basin (FCVB), southern California, to interpret changes in Pliocene-Pleistocene paleoclimate in the area. The FCVB currently lies in a hyperarid rain shadow (MAP = 15-17 cm) formed by the Peninsular Ranges. The timing of Peninsular Range uplift is not known, although recent work suggests it could have occurred as recently as early Pleistocene (Mueller et al., 2006). In the FCVB, abundant paleosols are exposed in a thick, tilted stratigraphic section that accumulated in the hanging wall of the West Salton detachment fault. New high-resolution magnetostratigraphic dating allows us to determine the age of paleosol horizons to within an average of ? 0.06 m.y.. Pedogenic carbonate nodules from 23 horizons ranging in age from 3.7 to 1.0 Ma, spanning a thickness of 2.5 km, were analyzed for oxygen and carbon isotopic compositions on a Gasbench and MAT 253 mass spectrometer. The data reveal an increase in carbonate ?18O values at about 2.5-3.0 Ma, from -10.5 ? 0.1 ‰ to -9.2 ‰ ? 0.2 ‰ (VPDB). Pedogenic carbonate ?13C values vary between -10.4 ‰ and -3.8 ‰ (VPDB) with no apparent trend. A total of forty-nine paleosols were described in the study interval. Most paleosols have shallow carbonate (Bk) horizons and thin, poorly-developed A horizons. Our finding of an increase in ?18O corresponds broadly to a previous study of fossil horse teeth (Brogenski, 2001), which recorded a 2 ‰ increase in ?18O in meteoric water at about 2 Ma. Preliminary recalculation of Brogenski's fossil site ages suggests that the change in ?18O occurred earlier than previously reported, around 2.4 Ma. The increase in ?18O at 2.5-3.0 Ma coincides with a global climate change caused by the onset of northern hemisphere glaciation, and may reflect (1) an increase in enriched Pacific Ocean-derived storms and decrease in the concentration of isotopically depleted monsoonal sources, (2) a change in the source of atmospheric water vapor within the Pacific Ocean, or (3) an increase in soil water evaporation driven by an increase in local temperature or of summer precipitation. The observed increase in ?18O is opposite of the change that would be produced by the onset of a rain shadow in the FCVB. This suggests that uplift of the Peninsular Ranges occurred before 3.7 Ma or after 1 Ma, or perhaps took place in two stages before 3.7 Ma and after 1 Ma. We interpret the majority of paleosols as Aridisols that formed under arid to semi-arid conditions. Measurements of depth to the soil carbonate (Bk) horizon show an average decompacted depth to Bk of 19.7 ? 1 cm, which corresponds to a mean annual precipitation of approximately 25 cm (Retallack, 2005). This is similar to modern annual rainfall in coastal San Diego and is 8-10 cm more than in the present-day FCVB. While there is considerable scatter in depth-to-Bk measurements, clear trends are not apparent, suggesting that aridity was the dominant climate condition in the basin between 3.7 and 1.0 Ma. Other indicators of climate change in the area, including rise and fall of lake levels and inferences from faunal assemblages, may reflect external factors (i.e. fluvial inflow) rather than local climate conditions.

Peryam, T. C.; Dorsey, R. J.; Bindeman, I.; Housen, B.; Palandri, J.

2008-12-01

174

Applying different spatial distribution and modelling concepts in three nested mesoscale catchments of Germany  

NASA Astrophysics Data System (ADS)

Distributed, physically based river basin models are receiving increasing importance in integrated water resources management (IWRM) in Germany and in Europe, especially after the release of the new European Water Framework Directive (WFD). Applications in mesoscale catchments require an appropriate approach to represent the spatial distribution of related catchment properties such as land use, soil physics and topography by utilizing techniques of remote sensing and GIS analyses. The challenge is to delineate scale independent homogeneous modelling entities which, on the one hand may represent the dynamics of the dominant hydrological processes and, on the other hand can be derived from spatially distributed physiographical catchment properties. This scaling problem is tackled in this regional modelling study by applying the concept of hydrological response units (HRUs). In a nested catchment approach three different modelling conceptualisations are used to describe the runoff processes: (i) the topographic stream-segment-based HRU delineation proposed by Leavesley et al. [Precipitation-Runoff-Modelling-System, User’s Manual, Water Resource Investigations Report 83-4238, US Geological Survey, 1983]; (ii) the process based physiographic HRU-concept introduced by Flügel [Hydrol. Process. 9 (1995) 423] and (iii) an advanced HRU-concept adapted from (ii), which included the topographic topology of HRU-areas and the river network developed by Staudenraush [Eco Regio 8 (2000) 121]. The influence of different boundary conditions associated with changing the landuse classes, the temporal data resolution and the landuse scenarios were investigated. The mesoscale catchment of the river Ilm ( A?895 km 2) in Thuringia, Germany, and the Precipitation-Runoff-Modelling-System (PRMS) were selected for this study. Simulations show that the physiographic based concept is a reliable method for modelling basin dynamics in catchments up to 200 km 2 whereas in larger catchments, where lateral processes dominate, the other concepts have advantages.

Bongartz, K.

175

Assessment of interbasin groundwater flows between catchments using a semi-distributed water balance model  

NASA Astrophysics Data System (ADS)

In hydrological modeling it is often assumed that the aquifers boundaries are formed by the geographical demarcation of the catchment. However, this assumption is rarely met, given the existence of groundwater flows going beyond the catchment limits. The assessment of interbasin groundwater flows is crucial when managing water resources in areas where baseflows are mainly formed by groundwater, especially when catchments are managed separately. Aiming at estimating the volume and direction of the main groundwater flows, this work presents a new methodological approach for hydrological modeling. This approach employs a semi-distributed water balance model created with lumped models. This model is formulated in such a way that a part of the groundwater discharge of a specific catchment can become baseflows in other catchments, which helps characterize interbasin groundwater flows. This methodology is applied in the headwater of the Segura River Basin (southeast of Spain), where groundwater plays an important role in surface hydrology. The catchments are modeled with a high goodness of fit, and the main interbasin groundwater flows between them is evaluated, proving its importance in the characterization of hydrological modeling.

Pellicer-Martínez, Francisco; Martínez-Paz, José Miguel

2014-11-01

176

Modeling coupled surface water - Groundwater processes in a small mountainous headwater catchment  

NASA Astrophysics Data System (ADS)

Hydrological models for headwater catchments have typically excluded deep groundwater flow based on the assumption that it is a negligible component of the water budget. This study tests this assumption using a coupled surface water-groundwater model to explore the potential contribution of deep groundwater recharge to the bedrock in a snowmelt-dominated headwater catchment (Upper Penticton Creek 241) in the Okanagan Basin, British Columbia. Recharge to the bedrock is estimated at ?27% of the annual precipitation over the period 2005-2010, recognizing the uncertainty in this estimate due to data limitations, parameter uncertainty and calibration errors. A specified outward flux from the catchment boundary within the saturated zone, representing ?2% of the annual water budget, was also included in the model. This outward flux contributes to cross-catchment flow and, ultimately, to groundwater inflow to lower elevation catchments in the mountain block. This modeling exercise is one of the first in catchment hydrologic modeling within steep mountainous terrain in which the bedrock is not treated as impermeable, and in which recharge to the bedrock and discharge to the surrounding mountain block were estimated.

Voeckler, Hendrik M.; Allen, Diana M.; Alila, Younes

2014-09-01

177

Rainfall/runoff processes in a small peri-urban catchment in the Andes mountains. The Rumihurcu Quebrada, Quito (Ecuador)  

NASA Astrophysics Data System (ADS)

Situated at the foot of the Pichincha volcano, the city of Quito is frequently subjected to hydroclimatic hazards. In 1995 an 11·2 km2 watershed, located in the vicinity of the city, was equipped with eight rain gauges and two flow gauges to better understand the local rainfall/runoff transformation processes. Rainfall simulation experiments were carried out on more than 40 one-square-metre plots to measure infiltration point-processes. The high density of measurement devices allowed us to identify the origin and nature of the various contributions to runoff for the different physiographic units of the watershed: urban area from an altitude of 2800 to 3200 m; farmland, pasture and forested land, and finally páramo above 3900 m. Runoff occurs mainly in the lower part of the basin and is caused by urbanization; however, the natural soils of this area can also produce Hortonian runoff, which is predominant in a few events. This contribution can be studied through rainfall simulation experiments. In the upper natural zone, the younger and more permeable soils generate less runoff on the slopes. However, almost permanently saturated contributing areas, which are located in the bottom of the quebradas, may generate flood events, the size of which depends on the extent of the area concerned. Variations in the runoff coefficients are related first to the baseflow and second to the amount of rainfall in the previous 24 h. This analysis, which underlines the complexity of a small, peri-urban, volcanic catchment, is a necessary preliminary to runoff modelling in an area where very few experiments have been carried out on small catchments.

Perrin, J. L.; Bouvier, C.; Janeau, J. L.; Ménez, G.; Cruz, F.

2001-04-01

178

Farmer Tree Nursery as a Catalyst for Developing Sustainable Best Management Land Use Practices in Lake Victoria Catchments Ecosystem  

NASA Astrophysics Data System (ADS)

Support to farmer nurseries is classified as either hard referring to material inputs (tree seed, water, tools and fencing) or soft (information, training and backstopping advice). Against a background of poor services for smallholder farmers in the Lake Victoria basin, it was hypothesized that a number of support agents operating at the grassroot level together with farmers themselves provide the different support functions needed in the establishment of farmer tree nurseries. Through financial support from Inter-University Council of East Africa coordinated VicReS Project, a collaborative project involving Kenyatta University (Kenya), Kenya Agricultural Research Institute (KARI) and Mulingano Agricultural Research Institute (Tanzania) has been able to initiate reforestation/afforestation activities in Lake Victoria catchments ecosystems of western Kenya and western Tanzania. Through the initial activities, a total of twenty four farmer groups have been identified in western Kenya and supported through capacity building and supply of basic inputs for tree nursery seed bed preparation and management. The groups have been able to set up tree nurseries and are now managing seed beds with a total of 450,000 agro-forestry seedlings, mainly Grevillea robusta and Casuarina spp. The farmers intend to distribute the seedling among the members for planting on farm boundaries, around homesteads and woodlots within their homesteads and sell the surplus. Preliminary findings show that there is an urgent need to facilitate grassroot level support systems with larger participation from the national extension service for provision of training and backstopping advice. Strengthening the human capital of farmers and service providers emerges as critical in increasing impact. Farmer nurseries are shown to play a number of important and interrelated functions in building natural, human and social capital. Monitoring and evaluating farmer nurseries in catalyzing these three functions should therefore receive proper attention in assessing impact of sustainable land use systems. Policies need to be well articulated to address some of the major constrains identified in the Lake Victoria catchments ecosystem.

Shisanya, C. A.; Makokha, M. O.; Kimani, S. K.; Kalumuna, M.; Tenge, A.

179

HYDROLOGIC SENSITIVITIES OF THE SACRAMENTO-SAN JOAQUIN RIVER BASIN, CA TO GLOBAL WARMING  

EPA Science Inventory

The hydrologic sensitivities of four medium-sized mountainous catchments in the Sacramento and San Joaquin River basins to long-term global warming were analyzed. he hydrologic response of these catchments, all of which are dominated by spring snowmelt runoff, were simulated by t...

180

Runoff and Solute Mobilisation in a Semi-arid Headwater Catchment  

NASA Astrophysics Data System (ADS)

Runoff and solute transport processes contributing to stream flow were determined in a small headwater catchment in the eastern Murray-Darling Basin of Australia using hydrometric and tracer methods. Stream flow and electrical conductivity were monitored from two gauges draining a portion of upper catchment area (UCA), and a saline scalded area respectively. Results show that the bulk of catchment solute export, occurs via a small saline scald (< 2% of catchment area) where solutes are concentrated in the near surface zone (0-40 cm). Non-scalded areas of the catchment are likely to provide the bulk of catchment runoff, although the scalded area is a higher contributor on an areal basis. Runoff from the non-scalded area is about two orders of magnitude lower in electrical conductivity than the scalded area. This study shows that the scalded zone and non-scalded parts of the catchment can be managed separately since they are effectively de-coupled except over long time scales, and produce runoff of contrasting quality. Such differences are "averaged out" by investigations that operate at larger scales, illustrating that observations need to be conducted at a range of scales. EMMA modelling using six solutes shows that "event" or "new" water dominated the stream hydrograph from the scald. This information together with hydrometric data and soil physical properties indicate that saturated overland flow is the main form of runoff generation in both the scalded area and the UCA. Saturated areas make up a small proportion of the catchment, but are responsible for production of all run off in conditions experienced throughout the experimental period. The process of saturation and runoff bears some similarities to the VSA concept (Hewlett and Hibbert 1967).

Hughes, J. D.; Khan, S.; Crosbie, R.; Helliwell, S.; Michalk, D.

2006-12-01

181

Be-10 derived basin-wide erosion rates of Southern Qilian Shan, NE Tibet  

NASA Astrophysics Data System (ADS)

The actively uplifting Qilian Shan forms the northeastern margin of the Tibetan Plateau. The mountain range is bounded to the northeast by a thrust fault forming a 2 km-high mountain front over the Hexi Corridor basin, and to the southwest by a series of thrusts within an internally-drained elevated plateau that steps downwards into the Qaidam basin. The mountain range forms an important climatic boundary as well, where the East Asian Monsoon gives its way to Northern Hemisphere Westerlies. Understanding the interplay among active faulting, climate, and erosion in this region could be important for revealing the northeastern expansion and uplift of the Tibetan Plateau. Here we present 10Be derived catchment-wide erosion rates for a large area of the southern Qilian Shan. Our preliminary results show remarkably slow erosion rates ranging from~ 10 - 100 mm/ky,much slower than those reported for rivers draining the north Qilian Shan (ranging from 39-833 mm/ky) [Palumbo et al., 2011]. These results may suggest that catchments draining the mountain front experience relatively high precipitation and are eroding quickly, while catchments in the arid, internally-drained interior are isolated from base level fall and are eroding slowly. Moreover, our erosion rates may also suggest that the interior (southern) portions of the Qilian Shan are deforming more slowly than along the frontal thrust. This is consistent with the North Qilian Shan thrust accommodating most of the tectonic shortening in the mountain range, with shortening occurring at a slower rate in the interior. These data may suggest that low erosion rates (at least partially due to aridity) are promoting surface uplift of the Qilian Shan and Qaidam basin along the northeastern edge of the Tibetan Plateau. Additional samples are being processed from a variety of geologic and climatic settings that we hope will further elucidate patterns of erosion in the Qilian Shan region. Palumbo, L., R. Hetzel, M. Tao, and X. Li (2011), Catchment-wide denudation rates at the margin of NE Tibet from in situ-produced cosmogenic 10Be, Terra Nova, 23(1), 42-48.

Hu, K.; Fang, X.; Granger, D. E.; Zhao, Z.

2013-12-01

182

Sediment connectivity evolution on an alpine catchment undergoing glacier retreat  

NASA Astrophysics Data System (ADS)

Climate changes can result in a wide range of variations of natural environment including retreating glaciers. Melting from glaciers will have a significant impact on the sediment transport characteristics of glacierized alpine catchments that can affect downstream channel network. Sediment connectivity assessment, i.e. the degree of connections that controls sediment fluxes between different segments of a landscape, can be useful in order to address management activity on sediment fluxes changes of alpine streams. Through the spatial characterization of the connectivity patterns of a catchment and its potential evolution it is possible to both define sediment transport pathways and estimate different contributions of the sub-catchment as sediment sources. In this study, a topography based index (Cavalli et al., 2013) has been applied to assess spatial sediment connectivity in the Navisence catchment (35 km2), an alpine basin located in the southern Walliser Alps (Switzerland) characterized by a complex glacier system with well-developed lateral moraines on glacier margins already crossed by several lateral channels. Glacier retreat of the main glacial edifice will provide a new connectivity pattern. At present the glacier disconnects lateral slopes from the main talweg: it is expected that its retreat will experience an increased connectivity. In order to study this evolution, two high resolution (2 m) digital terrain models (DTMs) describing respectively the terrain before and after glacier retreat have been analyzed. The current DTM was obtained from high resolution photogrammetry (2 m resolution). The future DTM was derived from application of the sloping local base level (SLBL) routine (Jaboyedoff et al., 2004) on the current glacier system, allowing to remove the ice body by reconstituting a U-shaped polynomial bedrock surface. From this new surface a coherent river network was drawn and slight random noise was added. Finally the river network was burned into the rough surface of the SLBL results. The impact of sediment dynamic changes on the study catchment due to glacier retreat has been assessed by comparing predictions deriving from model application on different scenarios. Simulations allowed the analysis of sediment connectivity evolution over decade scales suggesting an increase of potential sediment transfer and connections in areas close to the main channel network. References: Cavalli, M., Trevisani, S., Comiti, F., Marchi, L., 2013. Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology 188, 31-41. Jaboyedoff M., Bardou E., Derron M.-H. 2004. Sloping local base level: a tool to estimate potential erodible volume and infilling alluvial sediment of glacial valleys. Swiss Geo-Scientists meeting, November 2004, Lausanne.

Goldin, Beatrice; Rudaz, Benjamin; Bardou, Eric

2014-05-01

183

Creating a catchment scale perspective for river restoration  

NASA Astrophysics Data System (ADS)

One of the major challenges in river restoration is to identify the natural fluvial landscape in catchments with a long history of river control. Intensive land use on valley floors often predates the earliest remote sensing: levees, dikes, dams, and other structures alter valley-floor morphology, river channels and flow regimes. Consequently, morphological patterns indicative of the fluvial landscape including multiple channels, extensive floodplains, wetlands, and fluvial-riparian and tributary-confluence dynamics can be obscured, and information to develop appropriate and cost effective river restoration strategies can be unavailable. This is the case in the Pas River catchment in northern Spain (650 km2), in which land use and development have obscured the natural fluvial landscape in many parts of the basin. To address this issue we used computer tools to examine the spatial patterns of fluvial landscapes that are associated with five domains of hydro-geomorphic processes and landforms. Using a 5-m digital elevation model, valley-floor surfaces were mapped according to elevation above the channel and proximity to key geomorphic processes. The predicted fluvial landscape is patchily distributed according to hillslope and valley topography, river network structure, and channel elevation profiles. The vast majority of the fluvial landscape in the main segments of the Pas River catchment is presently masked by human infrastructure, with only 15% not impacted by river control structures and development. The reconstructed fluvial landscape provides a catchment scale context to support restoration planning, in which areas of potential ecological productivity and diversity could be targeted for in-channel, floodplain and riparian restoration projects.

Benda, L.; Miller, D.; Barquín, J.

2011-09-01

184

Factors controlling mercury transport in an upland forested catchment  

USGS Publications Warehouse

Total mercury (Hg) deposition and input/output relationships were investigated in an 11-ha deciduous forested catchment in northern Vermont as part of ongoing evaluations of rig cycling and transport in the Lake Champlain basin. Atmospheric Hg deposition (precipitation + modeled vapor phase downward flux) was 425 mg ha-1 during the one-year period March 1994 through February 1995 and 463 mg ha-1 from March 1995 through February 1996. In the same periods, stream export of total Hg was 32 mg ha-1 and 22 mg ha-1, respectively. Thus, there was a net retention of Hg by the catchment of 92% the first year and 95% the second year. In the first year, 16.9 mg ha-1 or about half of the annual stream export, occurred on the single day of peak spring snowmelt in April. In contrast, the maximum daily export in the second year, when peak stream flow was somewhat lower, was 3.5 mg ha-1 during a January thaw. The fate of file Hg retained by this forested catchment is not known. Dissolved (< 0.22 ??m) Hg concentrations in stream water ranged from 0.5-2.6 ng L-1, even when total (unfiltered) concentrations were greater than 10 ng L-1 during high flow events. Total Hg concentrations in stream water were correlated with the total organic fraction of suspended sediment, suggesting the importance of organic material in Hg transport within the catchment. High flow events and transport with organic material may be especially important mechanisms for the movement of Hg through forested ecosystems.

Scherbatskoy, T.; Shanley, J.B.; Keeler, G.J.

1998-01-01

185

Fate of organic contaminants in a boreal forest catchment  

NASA Astrophysics Data System (ADS)

The aim of the study was to investigate and predict the impact of hydrological and atmospheric processes on the mobilisation of contaminants in a remote catchment where the major input is related to diffuse pollution. The project included priory substances according to the European water framework directive (WFD), such as the persistent organic pollutants (POPs) HCB, PCBs and dioxins. The study was conducted at a well-characterised catchment system in northern Sweden dominated by two landscape types: forest and mire. Chemical analyses of POPs in forest soil and mire peat at various depths were performed. Evaluation of POP composition by principal component analysis (PCA) showed distinct differences between surface and deeper samples. This was attributed to vertical transport, degradation and/or shifting sources over time. The calculated net vertical transport differed between surface (0.3% of the pollutant reservoir) and deeper soils (8.0 %), suggesting that vertical transport conditions and processes differ in the deeper layers compared to the surface layers.The fate of POPs in soils and waters was explored through the development of a chemical fate model. The northerly location of the studied catchment enabled a study on the impact of spring snow melt and associated hydrological processes on contaminant mobilization. Input was based on bulk atmospheric deposition and was dominated by accumulation in the winter snowpack. The model considered air-soil exchange and accumulation in forest and mire soil as well as export of dissolved and particle-bound POPs from soil to catchment surface water. The predicted export of POPs to catchment surface waters was up to 40 times higher the during snow melt period (three week during April/May) compared to the snow covered period (approximately 4 months), highlighting the importance of the seasonal snow pack as a source of these chemicals. Release from soils was governed by the POP concentration in soil, the fraction of soil organic carbon and soil-water dissolved organic carbon (DOC) content. Significant differences in export of POPs were apparent between the forested and mire areas, and this could be linked to observed differences in hydrology, biogeochemistry and flux of DOC. Levels of POPs in surface water along the water path from the studied catchment to the Baltic Sea (the Gulf of Bothnia subbasin) were measured and the results showed that for this water system, atmospherically derived diffuse pollution has impact on the surface water quality in addition to downstream point sources. In conclusion, it is evident that a full understanding of the baseline contribution and the soil-to-water processes controlling the transport of priority substances at catchment scale is a prerequisite for assessing the variation of priority substances in water streams and river basins on a seasonal and regional scale. It is also clear that mobilization of headwater atmospherically derived diffuse pollution may have an impact on stream water quality in addition to downstream point sources. The above findings are applicable to a wide variety of north European catchments systems and provide an integrated and process-based understanding of base-line contamination of major catchments. The presented data highlight the findings from the PERSPEC project, which was possible under the umbrella of the European Commission's 6th Framework Programme project SNOWMAN (contract no ERAC-CT-2003-003219).

Bergknut, Magnus; Meijer, Sandra; Halsall, Crispin; Ågren, Anneli; Laudon, Hjalmar; Köhler, Stephan; Jones, Kevin; Tysklind, Mats; Wiberg, Karin

2010-05-01

186

Determination of evaporation from a catchment water balance at a monthly time scale  

NASA Astrophysics Data System (ADS)

A method is presented to determine total evaporation from the earth's surface at a spatial scale that is adequate for linkage with climate models. The method is based on the water balance of catchments, combined with a calibrated autoregressive rainfall-runoff model. The time scale used is in the order of decades (10 days) to months. The rainfall-runoff model makes a distinction between immediate processes (interception and short term storage) and the remaining longer-term processes. Besides the calibrated rainfall-runoff model and the time series of observed rainfall and runoff, the method requires a relation between transpiration and soil moisture storage. The method is applied to data of the Bani catchment in Mali, a sub-catchment of the Niger river basin.

Savenije, H. H. G.

187

Hydrological approach using SWAT model to assess nutrient sources in a mesoscale agricultural catchment, Case study: Roxo Catchment, South Portugal.  

NASA Astrophysics Data System (ADS)

Control of diffuse pollution, caused particularly by agriculture activities, has posed effort in all EU Member Countries with most countries facing problems with the implementation of the EU Nitrate Directive (91/676/EEC). In Portugal, a considerable number of areas have been classified as "vulnerable zones" of nitrate contamination from agricultural sources. Roxo Catchment, located in Beja District, Alentejo Province, South Portugal, is inside the Alqueva area which has been classified as a vulnerable zone during 2006 by the Directive 91/767/CEE. From this agricultural catchment with 352 km2, water accumulates in a reservoir (dam) that provides water supply to Beja City, making it an important evaluation site for nutrients pollution. Therefore, this study explores the use of a spatially referenced hydrological model, Soil and Water Assessment Tool (SWAT) to evaluate stream networks of the catchment, in order to asses the effects of land use on water quality along hydrological pathways and denitrification processes, estimating the water balance and sources of nitrate and phosphate in the agricultural catchment. In this study we used data from eight years of climatic information (2001-2008), 4 different land uses and 12 soils units; final product were 12 sub-basin and 313 hydrologic response units (HRU). Comparison of the simulation results with literature data revealed that SWAT provides reasonable results, which can be used for assessing the land use impact in Roxo. The sensitivity analysis indicated low dependency of the model output to minor and moderate changes in model input. The hydrological model was calibrated using the stream flow data generated and nutrient time series from 2000-2003 and for the validation we used data from 2004 to 2008. Nutrients levels were used in order to estimate temporal variability of nutrient contributions from stream networks to the main reservoir. Scenario analysis allowed us to predict the impact of land use on the stream networks and the reservoir of the study area.

Yevenes-Burgos, M.; Mannaerts, C.

2009-04-01

188

Improving Catchment-Scale Rainfall Accumulation Using Satellite Retrievals of Soil Moisture  

NASA Astrophysics Data System (ADS)

Flood is the most costly natural disaster in Australia. Flood-prone areas in Australia are broadly distributed from the coast to far into the inner regions of New South Wales, Queensland, and Western Australia. However, whereas the basins located near the coast are well instrumented with stream/rain gauges and rainfall-monitoring radars, which provide inputs to the flood forecasting system, the monitoring networks become progressively in the inner river basins. Considering that river discharges from the inner basins eventually merge and reach the coastal regions where most people reside, limited capability of monitoring and predicting floods in the inner basins poses a great threat to the entire flood warning system. In this work, a space-borne surface soil moisture product is used to demonstrate its potential to correct errors in catchment-scale rainfall accumulations of the basins with limited observation networks. The Cooper Creek and Condamine-Culgoa Rivers catchments located in New South Wales and Queensland, Australia are chosen to perform the rainfall-correction experiment. Satellite retrievals of soil moisture from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) are assimilated into a simple antecedent precipitation index (API) model to improve the quality of the uncorrected satellite precipitation product from the Tropical Rainfall Measuring Mission (TRMM); The analysis increment from the Kalman filter is used to correct the TRMM precipitation and then compared with ground-based precipitation data averaged over the basins. In the data-rich basins, a reduced number of rainfall gauges are employed to force the API model, error-corrected using the space-borne soil moisture and compared with the catchment-scale rainfall accumulations from the entire gauges. Hydrologic and geomorphic factors affecting the performance of the rainfall-correction scheme is examined and the implications on the flood forecast are discussed.

Ryu, D.; Martin, J.; Crow, W.; Elliott, J. F.; Smith, A. B.

2009-12-01

189

Characteristics of discrete and basin-centered parts of the Lower Silurian regional oil and gas accumulation, Appalachian basin; preliminary results from a data set of 25 oil and gas fields  

USGS Publications Warehouse

Oil and gas trapped in Lower Silurian 'Clinton' sands and Medina Group sandstone constitute a regional hydrocarbon accumulation that extends 425 mi in length from Ontario, Canada to northeastern Kentucky. The 125-mi width of the accumulation extends from central Ohio eastward to western Pennsylvania and west-central New York. Lenticular and intertonguing reservoirs, a gradual eastward decrease in reservoir porosity and permeability, and poorly segregated gas, oil, and water in the reservoirs make it very difficult to recognize clear-cut geologic- and production-based subdivisions in the accumulation that are relevant to resource assessment. However, subtle variations are recognizable that permit the regional accumulation to be subdivided into three tentative parts: a western gas-bearing part having more or less discrete fields; an eastern gas-bearing part having many characteristics of a basin-centered accumulation; and a central oil- and gas-bearing part with 'hybrid' fields that share characteristics of both discrete and basin-centered accumulation. A data set of 25 oil and gas fields is used in the report to compare selected attributes of the three parts of the regional accumulation. A fourth part of the regional accumulation, not discussed here, is an eastern extension of basin-centered accumulation having local commercial gas in the Tuscarora Sandstone, a proximal facies of the Lower Silurian depositional system. A basin-centered gas accumulation is a regionally extensive and commonly very thick zone of gas saturation that occurs in low-permeability rocks in the central, deeper part of a sedimentary basin. Another commonly used term for this type of accumulation is deep-basin gas accumulation. Basin-centered accumulation is a variety of continuous-type accumulation. The 'Clinton' sands and Medina Group sandstone part of the basin-centered gas accumulation is characterized by: a) reservoir porosity ranging from about 5 to 10 percent; b) reservoir permeability equal to or less than 0.1 mD; c) low reservoir water saturation and an average water yield per well less than about 9 to 13 BW/MMCFG; d) a broadly defined updip water-block trap; e) underpressured reservoirs with a gradient ranging from 0.25 to 0.35 psi/ft; and f) reservoir temperature of at least 125? F (52? C). Other than for historical and location purposes, the term field has little or no meaning as an assessment unit for the regional accumulation. In practice, each designated field represents a production sweet spot having relatively high EURs per well that in turn merges with surrounding gas-productive regions that are generally larger in area but have lower EURs per well. This important feature of the Lower Silurian regional accumulation, whereby most wells drilled into it are gas productive, must be considered when assessing its potential for remaining recoverable gas resources. Most of the remaining gas resources reside in 'Clinton' sands and Medina Group sandstone in the basin-centered part of the accumulation where as much as several tens of TCF of natural gas may be technically recoverable. The Tuscarora Sandstone in the eastern extension of the basin-centered part of the accumulation underlies a very large area and, although commonly characterized by very low porosity and permeability and low-Btu gas, probably contains additional gas resources. Remaining undiscovered recoverable gas and oil resources in the discrete and hybrid parts of the accumulation are primarily located beneath Lake Erie.

Ryder, Robert T.

1998-01-01

190

A physically-based Distributed Hydrologic Model for Tropical Catchments  

NASA Astrophysics Data System (ADS)

Hydrological models are mathematical formulations intended to represent observed hydrological processes in a watershed. Simulated watersheds in turn vary in their nature based on their geographic location, altitude, climatic variables and geology and soil formation. Due to these variations, available hydrologic models vary in process formulation, spatial and temporal resolution and data demand. Many tropical watersheds are characterized by extensive and persistent biological activity and a large amount of rain. The Agua Salud catchments located within the Panama Canal Watershed, Panama, are such catchments identified by steep rolling topography, deep soils derived from weathered bedrock, and limited exposed bedrock. Tropical soils are highly affected by soil cracks, decayed tree roots and earthworm burrows forming a network of preferential flow paths that drain to a perched water table, which forms at a depth where the vertical hydraulic conductivity is significantly reduced near the bottom of the bioturbation layer. We have developed a physics-based, spatially distributed, multi-layered hydrologic model to simulate the dominant processes in these tropical watersheds. The model incorporates the major flow processes including overland flow, channel flow, matrix and non-Richards film flow infiltration, lateral downslope saturated matrix and non-Darcian pipe flow in the bioturbation layer, and deep saturated groundwater flow. Emphasis is given to the modeling of subsurface unsaturated zone soil moisture dynamics and the saturated preferential lateral flow from the network of macrospores. Preliminary results indicate that the model has the capability to simulate the complex hydrological processes in the catchment and will be a useful tool in the ongoing comprehensive ecohydrological studies in tropical catchments, and help improve our understanding of the hydrological effects of deforestation and aforestation.

Abebe, N. A.; Ogden, F. L.

2010-12-01

191

Analyzing runoff processes through conceptual hydrological modeling in the Upper Blue Nile Basin, Ethiopia  

NASA Astrophysics Data System (ADS)

Understanding runoff processes in a basin is of paramount importance for the effective planning and management of water resources, in particular in data-scarce regions such as the Upper Blue Nile. Hydrological models representing the underlying hydrological processes can predict river discharges from ungauged catchments and allow for an understanding of the rainfall-runoff processes in those catchments. In this paper, such a conceptual process-based hydrological model is developed and applied to the upper Gumara and Gilgel Abay catchments (both located within the Upper Blue Nile Basin, the Lake Tana sub-basin) to study the runoff mechanisms and rainfall-runoff processes in the basin. Topography is considered as a proxy for the variability of most of the catchment characteristics. We divided the catchments into different runoff production areas using topographic criteria. Impermeable surfaces (rock outcrops and hard soil pans, common in the Upper Blue Nile Basin) were considered separately in the conceptual model. Based on model results, it can be inferred that about 65% of the runoff appears in the form of interflow in the Gumara study catchment, and baseflow constitutes the larger proportion of runoff (44-48%) in the Gilgel Abay catchment. Direct runoff represents a smaller fraction of the runoff in both catchments (18-19% for the Gumara, and 20% for the Gilgel Abay) and most of this direct runoff is generated through infiltration excess runoff mechanism from the impermeable rocks or hard soil pans. The study reveals that the hillslopes are recharge areas (sources of interflow and deep percolation) and direct runoff as saturated excess flow prevails from the flat slope areas. Overall, the model study suggests that identifying the catchments into different runoff production areas based on topography and including the impermeable rocky areas separately in the modeling process mimics the rainfall-runoff process in the Upper Blue Nile Basin well and yields a useful result for operational management of water resources in this data-scarce region.

Dessie, M.; Verhoest, N. E. C.; Pauwels, V. R. N.; Admasu, T.; Poesen, J.; Adgo, E.; Deckers, J.; Nyssen, J.

2014-12-01

192

Analyzing runoff processes through conceptual hydrological modelling in the Upper Blue Nile basin, Ethiopia  

NASA Astrophysics Data System (ADS)

Understanding runoff processes in a basin is of paramount importance for the effective planning and management of water resources, in particular in data scarce regions of the Upper Blue Nile. Hydrological models representing the underlying hydrological processes can predict river discharges from ungauged catchments and allow for an understanding of the rainfall-runoff processes in those catchments. In this paper, such a conceptual process-based hydrological model is developed and applied to the upper Gumara and Gilgel Abay catchments (both located within the Upper Blue Nile basin, the Lake Tana sub-basin) to study the runoff mechanisms and rainfall-runoff processes in the basin. Topography is considered as a proxy for the variability of most of the catchment characteristics. We divided the catchments into different runoff production areas using topographic criteria. Impermeable surfaces (rock outcrops and hard soil pans, common in the Upper Blue Nile basin) were considered separately in the conceptual model. Based on model results, it can be inferred that about 65% of the runoff appears in the form of interflow in the Gumara study catchment, and baseflow constitutes the larger proportion of runoff (44-48%) in the Gilgel Abay catchment. Direct runoff represents a smaller fraction of the runoff in both catchments (18-19% for the Gumara, and 20% for the Gilgel Abay) and most of this direct runoff is generated through infiltration excess runoff mechanism from the impermeable rocks or hard soil pans. The study reveals that the hillslopes are recharge areas (sources of interflow and deep percolation) and direct runoff as saturated excess flow prevails from the flat slope areas. Overall, the model study suggests that identifying the catchments into different runoff production areas based on topography and including the impermeable rocky areas separately in the modeling process mimics well the rainfall-runoff process in the Upper Blue Nile basin and brings a useful result for operational management of water resources in this data scarce region.

Dessie, M.; Verhoest, N. E. C.; Pauwels, V. R. N.; Admasu, T.; Poesen, J.; Adgo, E.; Deckers, J.; Nyssen, J.

2014-05-01

193

Recasting catchment water balance for water allocation between human and environmental purposes  

NASA Astrophysics Data System (ADS)

Rebalancing water allocation between human consumptive uses and the environment in water catchments is a global challenge. The conventional water balance approach which partitions precipitation into evapotranspiration (ET) and surface runoff supports the optimization of water allocations among different human water use sectors under the cap of water supply. However, this approach is unable to support the emerging water management priority issue of allocating water between societal and ecological systems. This paper recast the catchment water balance by partitioning catchment total ET into ET for the society and ET for the natural ecological systems, and estimated the impacts of water allocation on the two systems in terms of gross primary productivity (GPP), in the Murray-Darling Basin (MDB) of Australia over the period 1900-2010. With the recast water balance, the more than 100 year water management in the MDB was divided into four periods corresponding to major changes in basin management: period 1 (1900-1956) expansion of water and land use by the societal system, period 2 (1956-1985) maximization of water and land use by the societal system, period 3 (1985-2002) maximization of water diversion for the societal system, and period 4 (2002-present) rebalancing of water and land use between the societal and ecological systems. The recast water balance provided new understandings of the water and land dynamics between societal and ecological systems in the MDB, and it highlighted the experiences and lessons of catchment water management in the MDB over the last more than 100 years. The recast water balance could serve as the theoretical foundation for water allocation to keep a dynamic balance between the societal and ecological systems within a basin for sustainable catchment development. It provides a new approach to advance the discipline of socio-hydrology.

Zhou, S.; Huang, Y.; Wei, Y.; Wang, G.

2015-01-01

194

Geochemistry of Daihai Lake sediments, Inner Mongolia, north China: Implications for provenance, sedimentary sorting, and catchment weathering  

Microsoft Academic Search

To advance the understanding of sediment distribution, catchment weathering, hydraulic sorting, and sediment provenance in a tectonically stable basin, the geochemistry of surface sediment samples from Daihai Lake in north China is presented. Mud bulk sediments were analyzed for 10 major and 30 trace elements, organic carbon, and nitrogen and for 87Sr\\/86Sr ratios in silicate fraction (acid insoluble, AI) and

Zhangdong Jin; Fuchun Li; Junji Cao; Sumin Wang; Jimin Yu

2006-01-01

195

Rainfall-Runoff Processes in a Mixed Sudanian Savanna Agriculture Catchment: Use of a distributed sensor network  

E-print Network

ENAC/ Rainfall-Runoff Processes in a Mixed Sudanian Savanna Agriculture Catchment: Use m) or upper savanna (300 m) Upper basin (2.4 km2 ) which is the main runoff producer, mixed trees and grass open savanna, lithosol rocky escarpement. Two permanent springs and several seasonal springs

196

Model development based on a landscape oriented catchment unit concept  

NASA Astrophysics Data System (ADS)

This paper is a companion paper to our project proposal "Hydrologic model framework for river basins with a range of hydroclimatic and bioclimatic conditions" (HS4.1). It intends to present a few ideas of how to bridge available concepts of landscape classification (as an example the Holdridge Life Zones classification scheme will be used) and hydrological approaches related to the Dominant Process Concept. The focus is on the development of landscape related indices that consider water balance characteristics (e.g.: the relationship ET/P), seasonality measures, and/or runoff generation process signatures at the landscape scale. Methods applied to consider runoff generation in hydrological modelling are commonly based on concepts such as the Hydrological Response Unit (HRU) concept (e.g. Flügel, 1995), the "hydrotop" concept (e.g. Reszler et al., 2006) and the Dominant Runoff Processes concept (DRP, e.g. Schmocker-Fackel and Scherrer, 2007). They are best suited to smaller scale catchment description. It is hypothesized here that additional/new concepts are necessary if the mechanismus that control runoff generation on a larger, i.e. regional scale should be captured. Hydrological reasoning and first results from regional studies indicate that appropiately chosen "signatures" can be found to characterise differences in the control of the runoff processes in different catchments situations. Examples might be "indicators" which include the soil moisture state of a basin or the event runoff coefficient derived from hydrological model simulatons or from runoff observations, respectly (e.g. Samuel et al. 2008; Merz & Blöschl, 2009a). The presentation will demostrate a few results from first studies on the above outlined concept. The study uses data from a set of Austrian catchments prepared for the studies reported in Merz & Blöschl (2009a). References: Flügel, W.-A. (1995): Delineating hydrological response units by geographical information system analyses for regional hydrological modelling using PRMS/MMS in the drainage basin of the river Bröl, Germany. Hydrological Processes 9, 424-436. Merz, R., Blöschl, G. (2009a): process controls on the statistical flood moments - a data based analysis. Hydrological Processes 23, 675-696. Merz, R., Blöschl, G. (2009b): A regional analysis of event runoff coefficients with respect to climate and catchment characteristics in Austria. Water Resources Research, Vol. 45, W01404, doi:10.1029/2008WR007163, 2009. Reszler, C. Komma, J., Blöschl, G., Gutknecht, D. (2008): Dominante Prozesse und Ereignistypen zur Plausibilisierung flächendetaillierter Niederschlag-Abflussmodelle. Hydrologie und Wasserbewirtschaftung 52, 120-131 Samuel, J.M., Sivapalan, M., Struthers, I. (2008): Diagnostic analysis of water balance variability: A comparative modeling study of catchments in Perth, Newcastle, and Darwin, Australia. Water Resources Research, Vol. 44, W06403, doi.10.1029/2007WR006694, 2008. Schmocker_Fackel, P., Scherrer, S. (2007): Identifying runoff processes on the plot and catchment scale. Hydrol. Earth Syst. Sci. 11, 891-906

Cárdenas Gaudry, María.; Gutknecht, Dieter

2010-05-01

197

How tritium illuminates catchment structure  

NASA Astrophysics Data System (ADS)

Streams contain water which has taken widely-varying times to pass through catchments, and the distribution of ages is likely to change with the flow. Part of the water has 'runoff' straight to the stream with little delay, other parts are more delayed and some has taken years (in some cases decades) to traverse the deeper regolith or bedrock of the catchment. This work aims to establish the significance of the last component, which is important because it can cause catchments to have long memories of contaminant inputs (e.g. nitrate). Results of tritium studies on streams world-wide were accessed from the scientific literature. Most of the studies assumed that there were just two age-components present in the streams (i.e. young and old). The mean ages and proportions of the components were found by fitting simulations to tritium data. It was found that the old component in streams was substantial (average was 50% of the annual runoff) and had considerable age (average mean age was 10 years) (Stewart et al., 2010). Use of oxygen-18 or chloride variations to estimate streamflow mean age usually does not reveal the age or size of this old component, because these methods cannot detect water older than about four years. Consequently, the use of tritium has shown that substantial parts of streamflow in headwater catchments are older than expected, and that deep groundwater plays an active and sometimes even a dominant role in runoff generation. Difficulties with interpretation of tritium in streams in recent years due to interference from tritium due to nuclear weapons testing are becoming less serious, because very accurate tritium measurements can be made and there is now little bomb-tritium remaining in the atmosphere. Mean ages can often be estimated from single tritium measurements in the Southern Hemisphere, because there was much less bomb-tritium in the atmosphere. This may also be possible for some locations in the Northern Hemisphere. Age determination on single samples allows the variation of mean age with streamflow to be investigated, as observed in the Toenepi Catchment in New Zealand where baseflow mean ages varied from 4 to 155 years depending on flow (Morgenstern et al., 2010).

Stewart, M.; Morgenstern, U.; McDonnell, J.

2012-04-01

198

Seismic controls on contemporary sediment export in the Siret river catchment, Romania  

NASA Astrophysics Data System (ADS)

While differences in catchment sediment yield (SY, [t km- 2 y- 1]) are generally attributed to topography, lithology, climate and land use, recent studies have highlighted that also seismic activity may have an important impact on SY. Nonetheless, relatively little is known about the importance of this factor and the processes and mechanisms explaining its influence. Therefore, this study explores the role of seismic activity in explaining spatial and temporal variation in sediment export within the Siret Basin (Romania, 45,000 km2), a catchment with a large variability in seismic activity. Based on previously unpublished long-term (> 30 years) SY measurements for 38 subcatchments of the Siret, we analyze the correlation between average SY, seismic activity and various other catchment characteristics. Our results showed that spatial variation in average SY was indeed strongly correlated with the degree of seismic activity in each catchment (R2 = 0.74). Also catchment lithology explained an important part of the differences in SY (R2 = 0.67). The combination of these two factors accounted for about 80% of the observed variation in SY, while other factors (e.g. topography, land use, climate, and runoff) did not significantly contribute to the explained variance in average SY. To explore the impact of a specific earthquake event on sediment export, we analyzed daily variations in suspended sediment concentrations of 10 subcatchments, five years before and after an earthquake of Mw = 7.4 that affected the Vrancea region in 1977 and triggered a substantial number of landslides. Only one catchment showed a clear (3-fold) increase in sediment concentrations at unit discharge. For the other nine catchments, no consistent increase could be observed. This indicates that the impact of seismic activity on average SY is mainly indirect and not associated with sudden pulses of sediments, caused by earthquake-triggered landslides. Potential mechanisms that could explain such indirect responses are discussed.

Vanmaercke, Matthias; Obreja, Florin; Poesen, Jean

2014-07-01

199

Nutrient sources in a Mediterranean catchment and their improvement for water quality management  

NASA Astrophysics Data System (ADS)

Changes in land-use or management strategies may affect water outflow, sediment and nutrients loads. Thus, there is an increasing demand for quantitative information at the catchment scale that would help decision makers or planners to take appropriate decisions. The characterisation of water status, the description of pollution sources impact, the establishment of monitoring programs and the implementation of river basin management plans require an analysis of the current basin status and estimates of the relative significance of the different sources of pollution. Particularly, in this study the Soil and Water Assessment Tool (SWAT2000) model was considered since it is an integrated hydrological model that simulates both the qualitative as well as quantitative terms of hydrological balances. It is a spatially distributed hydrological model that operates on a daily time step at catchment scale developed by the Agricultural Research Service at the U.S. Department of Agriculture. Its purpose is to simulate water sediment and chemical yields on large river basins and possible impacts of land use, climate changes and watershed management. Integrated hydrological models are, nowadays, needed to support the implementation of integrated water management plans and to comply with the current requirements of the European Water Directive. Actually, they can help in evaluating current water resources, identify pollution sources, evaluate alternative management policies. More specifically, the analysis has been applied to the Oreto catchment (77 Km2), an agricultural and urbanised catchment located in Sicily (Italy). Residential, commercial, farm and industrial settlements cover almost the entire area. The climate is Mediterranean with hot dry summer and rainy winter season. The hydrological response of this basin is dominated by long dry seasons and following wetting-up periods, during which even large inputs of rainfall may produce little or no response at the basin outlet. Regarding the inventory of point and non-point pollutants sources, the river receives a number of point source pollutants from small villages and some outskirts of Palermo, most of them untreated, and non point source pollutants from agricultural cropland and zoo-technical farms. In particular, the Oreto river receives untreated wastewater and stormwater from Altofonte (8200 inhabitants) and Pioppo (2500 inhabitants) . The model was first calibrated using meteorological, flow and water quality data collected at various stations through-out the catchment, in order to predict water and nutrient concentrations at the catchment outlet and then was used to evaluate the potential impact of various management strategies on surface water quality. The results demonstrates that point and non-point polluting sources have to be contiguously analysed because they concur to the definition of river water quality both during wet and dry periods.

Candela, Angela; Viviani, Gaspare

2010-05-01

200

Sediment yield estimation in mountain catchments of the Camastra reservoir, southern Italy: a comparison among different empirical methods  

NASA Astrophysics Data System (ADS)

Sedimentary budget estimation is an important topic for both scientific and social community, because it is crucial to understand both dynamics of orogenic belts and many practical problems, such as soil conservation and sediment accumulation in reservoir. Estimations of sediment yield or denudation rates in southern-central Italy are generally obtained by simple empirical relationships based on statistical regression between geomorphic parameters of the drainage network and the measured suspended sediment yield at the outlet of several drainage basins or through the use of models based on sediment delivery ratio or on soil loss equations. In this work, we perform a study of catchment dynamics and an estimation of sedimentary yield for several mountain catchments of the central-western sector of the Basilicata region, southern Italy. Sediment yield estimation has been obtained through both an indirect estimation of suspended sediment yield based on the Tu index (mean annual suspension sediment yield, Ciccacci et al., 1980) and the application of the Rusle (Renard et al., 1997) and the USPED (Mitasova et al., 1996) empirical methods. The preliminary results indicate a reliable difference between the RUSLE and USPED methods and the estimation based on the Tu index; a critical data analysis of results has been carried out considering also the present-day spatial distribution of erosion, transport and depositional processes in relation to the maps obtained from the application of those different empirical methods. The studied catchments drain an artificial reservoir (i.e. the Camastra dam), where a detailed evaluation of the amount of historical sediment storage has been collected. Sediment yield estimation obtained by means of the empirical methods have been compared and checked with historical data of sediment accumulation measured in the artificial reservoir of the Camastra dam. The validation of such estimations of sediment yield at the scale of large catchments using sediment storage in reservoirs provides a good opportunity: i) to test the reliability of the empirical methods used to estimate the sediment yield; ii) to investigate the catchment dynamics and its spatial and temporal evolution in terms of erosion, transport and deposition. References Ciccacci S., Fredi F., Lupia Palmieri E., Pugliese F., 1980. Contributo dell'analisi geomorfica quantitativa alla valutazione dell'entita dell'erosione nei bacini fluviali. Bollettino della Società Geologica Italiana 99: 455-516. Mitasova H, Hofierka J, Zlocha M, Iverson LR. 1996. Modeling topographic potential for erosion and deposition using GIS. International Journal of Geographical Information Systems 10: 629-641. Renard K.G., Foster G.R., Weesies G.A., McCool D.K., Yoder D.C., 1997. Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE), USDA-ARS, Agricultural Handbook No. 703.

Lazzari, Maurizio; Danese, Maria; Gioia, Dario; Piccarreta, Marco

2013-04-01

201

Influence of geology, regolith and soil on fluid flow pathways in an upland catchment in central NSW, Australia  

NASA Astrophysics Data System (ADS)

Influence of geology, regolith and soil on fluid flow pathways in an upland catchment in central NSW, Australia. Tony Bernardi and Leah Moore Dryland Salinity Hazard Mitigation Program (DSHMP), University of Canberra, ACT 2601, AUSTRALIA The diversity of salt expression in central NSW has defied classification because salt expression, mobilisation and transport is highly variable and is typically site specific. Hydrological models are extensively used to simulate possible outcomes for a range of land use changes to mitigate the mobilisation and transport of salt into the streams or across the land surface. The ability of these models to mimic reality can be variable thereby reducing the confidence in the models outputs and uptake of strategic management changes by the community. This study focuses on a 250 ha semi-arid sub-catchment of Little River catchment in central west NSW in the Murray-Darling Basin, Australia. We propose that an understanding the structure of the landforms and configuration of rock, regolith and soil materials at the study site influences fluid flow pathways in the landscape and can be related to observed variations in the chemical composition and salinity of surface and aquifer water. Preliminary geological mapping of the site identified the dominant rock type as a pink and grey dacite and in localised mid-slope areas, a coarsely crystalline biotite-phyric granodiorite. Samples were taken at regular intervals from natural exposures in eroded stream banks and in excavations made during the installation of neutron moisture meter tubes. In order to establish mineral weathering pathways, samples were taken from the relatively unweathered core to the outer weathered 'onion skins' of corestones on both substrates, and then up through the regolith profile, including the soil zone, to the land surface. X-ray diffraction (XRD) analysis and X-ray fluorescence (XRF) was conducted on the rock and soil/saprock samples. Electromagnetic induction (EMI) profile data were compiled from previous work with colleagues in this area. Preliminary interpretation of the mapping and the geophysics is that there is a three-layer framework for groundwater modelling: fractured granitic rock with an irregular upper surface, finer-grained (volcanic) rock that has either mantled the older granite or has been intruded into, and a weathering profile developed in relation to the land surface. More careful interpretation of the intervals that shallow and deep piezometers and shallow and deep bores are sampling indicates that variability in water chemistry between holes can, in part, be explained because they are sampling different materials in the sub-surface geology/regolith geology. Quartz is a relatively resistant phase throughout the profiles. For both substrates there is a decrease in the feldspar in increasingly weathered regolith materials, with a corresponding increase in kaolinite clay. There is increased homogenisation of the profile, and some horizonation due to pedogenic processes (e.g. bioturbation, illuviation of fines down profile) nearer the land surface. This results in a concentration of more resistant phases (quartz and remnant primary feldspar as sands) at the land surface over the granitic substrate, however kaolinite persists in the profile over the finer substrate. The presence of measurable ferruginous oxides and sesquioxides relates to localised percolation of oxidising fluids through the profiles. Understanding the configuration and composition of rocks and regolith materials in the Baldry catchment facilitates interpretation of observed patterns in hydrological analyses.

Bernardi, Tony

2014-05-01

202

Preliminary digital model of ground-water flow in the Madison Group, Powder River Basin and adjacent areas, Wyoming, Montana, South Dakota, North Dakota, and Nebraska  

USGS Publications Warehouse

A digital simulation model was used to analyze regional ground-water flow in the Madison Group aquifer in the Powder River Basin in Montana and Wyoming and adjacent areas. Most recharge to the aquifer originates in or near the outcrop areas of the Madison in the Bighorn Mountains and Black Hills, and most discharge occurs through springs and wells. Flow through the aquifer in the modeled areas was approximately 200 cubic feet per second. The aquifer can probably sustain increased ground-water withdrawals of up to several tens of cubic feet per second, but these withdrawals probably would significantly lower the potentiometric surface in the Madison aquifer in a large part of the basin. (Woodard-USGS)

Konikow, L.F.

1976-01-01

203

The impact of land management in agricultural catchments on groundwater pollution levels  

NASA Astrophysics Data System (ADS)

Agricultural activity results in water pollution from nitrogen and phosphorus compounds. Increased concentrations of nitrogen compounds pose a threat to animal and human health. The purpose of this study was to determine the impact of agriculture in a catchment basin on the level of groundwater pollution from biogenic compounds. Spatial analysis of the land cover was conducted using a GIS and was based on data from the Corine Land Cover databases.

Matysik, Magdalena

2014-10-01

204

The hydrological regime of a forested tropical Andean catchment  

NASA Astrophysics Data System (ADS)

The hydrology of tropical mountain catchments plays a central role in ecological function, geochemical and biogeochemical cycles, erosion and sediment production, and water supply in globally important environments. There have been few studies quantifying the seasonal and annual water budgets in the montane tropics, particularly in cloud forests. We investigated the water balance and hydrologic regime of the Kosñipata catchment (basin area: 164.4 km2) over the period 2010-2011. The catchment spans over 2500 m in elevation in the eastern Peruvian Andes and is dominated by tropical montane cloud forest with some high-elevation puna grasslands. Catchment-wide rainfall was 3112 ± 414 mm yr-1, calculated by calibrating Tropical Rainfall Measuring Mission (TRMM) 3B43 rainfall with rainfall data from nine meteorological stations in the catchment. Cloud water input to streamflow was 316 ± 116 mm yr-1 (9.2% of total inputs), calculated from an isotopic mixing model using deuterium excess (Dxs) and ?D of waters. Field streamflow was measured in 2010 by recording height and calibrating to discharge. River run-off was estimated to be 2796 ± 126 mm yr-1. Actual evapotranspiration (AET) was 688 ± 138 mm yr-1, determined using the Priestley and Taylor-Jet Propulsion Laboratory (PT-JPL) model. The overall water budget was balanced within 1.6 ± 13.7%. Relationships between monthly rainfall and river run-off follow an anticlockwise hysteresis through the year, with a persistence of high run-off after the end of the wet season. The size of the soil and shallow groundwater reservoir is most likely insufficient to explain sustained dry-season flow. Thus, the observed hysteresis in rainfall-run-off relationships is best explained by sustained groundwater flow in the dry season, which is consistent with the water isotope results that suggest persistent wet-season sources to streamflow throughout the year. These results demonstrate the importance of transient groundwater storage in stabilising the annual hydrograph in this region of the Andes.

Clark, K. E.; Torres, M. A.; West, A. J.; Hilton, R. G.; New, M.; Horwath, A. B.; Fisher, J. B.; Rapp, J. M.; Robles Caceres, A.; Malhi, Y.

2014-12-01

205

Hydrothermal deposits in the Southern Trough of Guaymas Basin, Gulf of California: Observations and Preliminary Results from the 2003 MBARI Dive Program  

Microsoft Academic Search

During Leg 2 of the 2003 MBARI expedition to the Gulf of California, the ROV Tiburon completed eight dives to active vent fields in the Southern Trough of Guaymas Basin. Six venting areas were investigated in detail. Tiburon operations included (1) sampling mineral deposits that range from mini-chimneys a few centimeters high to 10-meter-tall sulfide-carbonate structures with wide flanges; (2)

D. S. Stakes; M. K. Tivey; R. A. Koski; A. Ortego-Osorio; C. M. Preston; M. T. McCulloch; K. Nakamura; J. Seewald; C. G. Wheat

2003-01-01

206

Will urban expansion lead to an increase in future water pollution loads?--a preliminary investigation of the Haihe River Basin in northeastern China.  

PubMed

Urban expansion is a major driving force changing regional hydrology and nonpoint source pollution. The Haihe River Basin, the political, economic, and cultural center of northeastern China, has undergone rapid urbanization in recent decades. To investigate the consequences of future urban sprawl on nonpoint source water pollutant emissions in the river basin, the urban sprawl in 2030 was estimated, and the annual runoff and nonpoint source pollution in the Haihe River basin were simulated. The Integrated Model of Non-Point Sources Pollution Processes (IMPULSE) was used to simulate the effects of urban sprawl on nonpoint source pollution emissions. The outcomes indicated that the urban expansion through 2030 increased the nonpoint source total nitrogen (TN), total phosphorous (TP), and chemical oxygen demand (COD) emissions by 8.08, 0.14, and 149.57 kg/km(2), respectively. Compared to 2008, the total nonpoint emissions rose by 15.33, 0.57, and 12.39 %, respectively. Twelve percent of the 25 cities in the basin would increase by more than 50 % in nonpoint source TN and COD emissions in 2030. In particular, the nonpoint source TN emissions in Xinxiang, Jiaozuo, and Puyang would rise by 73.31, 67.25, and 58.61 %, and the nonpoint source COD emissions in these cities would rise by 74.02, 51.99, and 53.27 %, respectively. The point source pollution emissions in 2008 and 2030 were also estimated to explore the effects of urban sprawl on total water pollution loads. Urban sprawl through 2030 would bring significant structural changes of total TN, TP, and COD emissions for each city in the area. The results of this study could provide insights into the effects of urbanization in the study area and the methods could help to recognize the role that future urban sprawl plays in the total water pollution loads in the water quality management process. PMID:24532209

Dong, Yang; Liu, Yi; Chen, Jining

2014-06-01

207

Estimating low flow characteristics in ungauged catchments  

Microsoft Academic Search

This paper describes the development and derivation of a methodology for estimating low flow characteristics and yield in small ungauged rural catchments. The methodology has been applied to 184 catchments located in New South Wales and Victoria, in south-eastern Australia. A systems approach was adopted in which multivariate techniques were used to develop relationships between low flow parameters and climatic

Rory J. Nathan; Tom A. McMahon

1992-01-01

208

Storage as a Metric of Catchment Comparison  

USGS Publications Warehouse

The volume of water stored within a catchment, and its partitioning among groundwater, soil moisture, snowpack, vegetation, and surface water are the variables that ultimately characterize the state of the hydrologic system. Accordingly, storage may provide useful metrics for catchment comparison. Unfortunately, measuring and predicting the amount of water present in a catchment is seldom done; tracking the dynamics of these stores is even rarer. Storage moderates fluxes and exerts critical controls on a wide range of hydrologic and biologic functions of a catchment. While understanding runoff generation and other processes by which catchments release water will always be central to hydrologic science, it is equally essential to understand how catchments retain water. We have initiated a catchment comparison exercise to begin assessing the value of viewing catchments from the storage perspective. The exercise is based on existing data from five watersheds, no common experimental design, and no integrated modelling efforts. Rather, storage was estimated independently for each site. This briefing presents some initial results of the exercise, poses questions about the definitions and importance of storage and the storage perspective, and suggests future directions for ongoing activities. ?? 2011 John Wiley & Sons, Ltd.

McNamara, J.P.; Tetzlaff, D.; Bishop, K.; Soulsby, C.; Seyfried, M.; Peters, N.E.; Aulenbach, B.T.; Hooper, R.

2011-01-01

209

Preliminary study of land-plant biomarkers in marine sediments of Alfonso basin and its relationship with the climate of the last 3.5 ka  

NASA Astrophysics Data System (ADS)

This study used biomarkers such as n-alkanes, especially focused on the long chain n-alkanes and some diagnostic indexes derived from abundance, to elucidate molecular changes in the contribution of organic matter to the sediments, especially terrestrial vegetation surrounding continental areas around of Alfonso basin in response to climate change, particularly changes in the hydrological cycle. The results show that in general the n-alkanes of organic matter (OM) of Alfonso basin sediments are composed of a mixture of waxes derived from phytoplankton and terrestrial plants, with a greater contribution from phytoplankton compare to terrestrial vegetation, in the oldest part of the record, associated with a marine productivity increased period favored by rainfall. Maximum abundance of C29, and high values of C27/C31 ratio indicate leaves from trees as a source wax, probably succulents plants characteristic of arid zones, with C3 as one of their metabolic pathway, identified from mean ACL values around 29.5. The low CPI index indicates contamination and microbial communities as a possible source of long chain n-alkanes, probably due to anoxic bottom conditions in Alfonso basin favor the development of these communities. Finally, it is suggested no change in the community, at least for the last ~ 3.5 ka BP, but increased cover vegetation (biomass) in southern California during periods of increased rainfall (from ~ 3.5 to ~ 1.7 ka BP). The ability of terrestrial plant communities to adapt for longer periods before being replaced by other species, when faced with gradual changes rather than rapid climate change is reflected in a few changes in its composition.

Ricaurte-Villota, Constanza; Gonzalez-Yajimovich, Oscar; Betancourt-Portela, Julian

2014-05-01

210

Geomorphological characterization of endorheic basins in northern Chile  

NASA Astrophysics Data System (ADS)

Quantitative geomorphology regroups a large number of interesting tools to characterize natural basins across scales. The application of these tools to several river basins allows the description and comparison of geomorphological properties at different spatial scales as oppose to more traditional descriptors that are typically applied at a single scale, meaning the catchment scale. Most of the recent research using these quantitative geomorphological tools has focused on open catchments and no specific attention has been given to endorheic basins, and the possibility of having particular features that distinguish them from exorheic catchments. The main objective of our study is to characterize endorheic basins and investigate whether these special geomorphological features can be identified. Because scaling invariance is a widely observed and relatively well quantified property of open basins, it provides a suitable tool to characterize differences between the geomorphology of closed and open basins. Our investigation focuses on three closed basins located in northern Chile which describe well the diversity in the geomorphology and geology of this arid region. Results show that endhoreic basins exhibit different slope-area and flow paths sinuosity regimes compared to those observed in open basins. These differences are in agreement with the particular self-similar behavior across spatial scales of the Euclidean length of subcatchments, as well as the Hack's law and Horton's ratios. These regimes imply different physical processes inside the channel network regardless of the basin area, and they seem to be related to the endorheic character of these basins. The analysis of the probability density functions of contributing areas and lengths to the lower region shows that the hypothesis of self-similarity can also be applied to closed basins. Theoretical expressions for these distributions were derived and validated by the data. Future research will focus on (1) applying similar analyses in other locations and comparing the results, and (2) understanding and modeling the effects of groundwater in forming the landscape of these arid regions.

Dorsaz, J.; Gironas, J. A.; Escauriaza, C. R.; Rinaldo, A.

2011-12-01

211

The Saale-Project -A multidisciplinary approach towards sustainable integrative catchment management -  

NASA Astrophysics Data System (ADS)

In the joint research project “Development of an integrated methodology for the sustainable management of river basins The Saale River Basin example”, coordinated by the Centre of Environmental Research (UFZ), concepts and tools for an integrated management of large river basins are developed and applied for the Saale river basin. The ultimate objective of the project is to contribute to the holistic assessment and benchmarking approaches in water resource planning, as required by the European Water Framework Directive. The study presented here deals (1) with the development of a river basin information and modelling system, (2) with the refinement of a regionalisation approach adapted for integrated basin modelling. The approach combines a user friendly basin disaggregation method preserving the catchment’s physiographic heterogeneity with a process oriented hydrological basin assessment for scale bridging integrated modelling. The well tested regional distribution concept of Response Units (RUs) will be enhanced by landscape metrics and decision support tools for objective, scale independent and problem oriented RU delineation to provide the spatial modelling entities for process oriented and distributed simulation of vertical and lateral hydrological transport processes. On basis of this RUs suitable hydrological modelling approaches will be further developed with strong respect to a more detailed simulation of the lateral surface and subsurface flows as well as the channel flow. This methodical enhancement of the well recognised RU-concept will be applied to the river basin of the Saale (Ac: 23 179 km2) and validated by a nested catchment approach, which allows multi-response-validation and estimation of uncertainties of the modelling results. Integrated modelling of such a complex basin strongly influenced by manifold human activities (reservoirs, agriculture, urban areas and industry) can only be achieved by coupling the various modelling approaches within a well defined model framework system. The latter is interactively linked with a sophisticated geo-relational database (DB) serving all research teams involved in the project. This interactive linkage is a core element comprising an object-oriented, internet-based modelling framework system (MFS) for building interdisciplinary modelling applications and offering different analysis and visualisation tools.

Bongartz, K.; Flügel, W. A.

2003-04-01

212

Attributes for NHDPlus Catchments (Version 1.1): Level 3 Nutrient Ecoregions, 2002  

USGS Publications Warehouse

This data set represents the area of each level 3 nutrient ecoregion in square meters, compiled for every catchment of NHDPlus for the conterminous United States. The source data are from the 2002 version of the U.S. Environmental Protection Agency's (USEPA) Aggregations of Level III Ecoregions for National Nutrient Assessment & Management Strategy (USEPA, 2002). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

Wieczorek, Michael E.; LaMotte, Andrew E.

2010-01-01

213

Attributes for NHDPlus Catchments (Version 1.1) in the Conterminous United States: Bedrock Geology  

USGS Publications Warehouse

This data set represents the area of bedrock geology types in square meters compiled for every catchment of NHDPlus for the conterminous United States. The source data set is the "Geology of the Conterminous United States at 1:2,500,000 Scale--A Digital Representation of the 1974 P.B. King and H.M. Beikman Map" (Schuben and others, 1994). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18

Wieczorek, Michael E.; LaMotte, Andrew E.

2010-01-01

214

Attributes for NHDplus Catchments (Version 1.1) for the Conterminous United States: Population Density, 2000  

USGS Publications Warehouse

This data set represents the average population density, in number of people per square kilometer multiplied by 10 for the year 2000, compiled for every catchment of NHDPlus for the conterminous United States. The source data set is the 2000 Population Density by Block Group for the Conterminous United States (Hitt, 2003). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

Wieczorek, Michael E.; LaMottem, Andrew E.

2010-01-01

215

Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Hydrologic Landscape Regions  

USGS Publications Warehouse

This data set represents the area of Hydrologic Landscape Regions (HLR) compiled for every catchment of NHDPlus for the conterminous United States. The source data set is a 100-meter version of Hydrologic Landscape Regions of the United States (Wolock, 2003). HLR groups watersheds on the basis of similarities in land-surface form, geologic texture, and climate characteristics. The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

Wieczorek, Michael E.; LaMotte, Andrew E.

2010-01-01

216

Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Level 3 Ecoregions  

USGS Publications Warehouse

This data set represents the estimated area of level 3 ecological landscape regions (ecoregions), as defined by Omernik (1987), compiled for every catchment of NHDPlus for the conterminous United States. The source data set is Level III Ecoregions of the Continental United States (U.S. Environmental Protection Agency, 2003). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

Wieczorek, Michael E.; LaMotte, Andrew E.

2010-01-01

217

Attributes for NHDPlus catchments (Version 1.1) for the conterminous United States: STATSGO soil characteristics  

USGS Publications Warehouse

This data set represents estimated soil variables compiled for every catchment of NHDPlus for the conterminous United States. The variables included are cation exchange capacity, percent calcium carbonate, slope, water-table depth, soil thickness, hydrologic soil group, soil erodibility (k-factor), permeability, average water capacity, bulk density, percent organic material, percent clay, percent sand, and percent silt. The source data set is the State Soil ( STATSGO ) Geographic Database (Wolock, 1997). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

Wieczorek, Michael E.; LaMotte, Andrew E.

2010-01-01

218

Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Physiographic Provinces  

USGS Publications Warehouse

This dataset represents the area of each physiographic province (Fenneman and Johnson, 1946) in square meters, compiled for every catchment of NHDPlus for the conterminous United States. The source data are from Fenneman and Johnson's Physiographic Provinces of the United States, which is based on 8 major divisions, 25 provinces, and 86 sections representing distinctive areas having common topography, rock type and structure, and geologic and geomorphic history (Fenneman and Johnson, 1946). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

Wieczorek, Michael E.; LaMotte, Andrew E.

2010-01-01

219

Attributes for NHDPlus catchments (version 1.1) for the conterminous United States: surficial geology  

USGS Publications Warehouse

This data set represents the area of surficial geology types in square meters compiled for every catchment of NHDPlus for the conterminous United States. The source data set is the "Digital data set describing surficial geology in the conterminous US" (Clawges and Price, 1999). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

Wieczorek, Michael E.; LaMotte, Andrew E.

2010-01-01

220

Runoff and solute mobilization processes in a semiarid headwater catchment  

NASA Astrophysics Data System (ADS)

Runoff and solute transport processes contributing to streamflow were determined in a small headwater catchment in the eastern Murray-Darling Basin of Australia using hydrometric and tracer methods. Streamflow and electrical conductivity were monitored from two gauges draining a portion of the upper catchment area (UCA) and a saline scalded area, respectively. Runoff in the UCA was related to the formation of a seasonally perched aquifer in the near-surface zone (0-0.4 m). A similar process was responsible for runoff generation in the saline scalded area. However, saturation in the scald area was related to the proximity of groundwater rather than low subsurface hydraulic conductivity. Because of higher antecedent water content, runoff commenced earlier in winter from the scald than did the UCA. Additionally, areal runoff from the scald was far greater than from the UCA. Total runoff from the UCA was higher than the scald (15.7 versus 3.5 mL), but salt export was far lower (0.6 and 5.4 t for the UCA and scald area, respectively) since salinity of the scald runoff was far higher than that from the UCA, indicating the potential impact of saline scalded areas at the catchment scale. End-member mixing analysis modeling using six solutes indicated that most runoff produced from the scald was "new" (40-71%) despite the proximity of the groundwater surface and the high antecedent moisture levels. This is a reflection of the very low hydraulic conductivity of soils in the study area. Nearly all chloride exported to the stream from the scald emanated from the near-surface zone (77-87%). Runoff and solute mobilization processes depend upon seasonal saturation occurring in the near-surface zone during periods of low evaporative demand and generation of saturated overland flow.

Hughes, Justin D.; Khan, Shahbaz; Crosbie, Russell S.; Helliwell, Stuart; Michalk, David L.

2007-09-01

221

Data-based information gain on the response behaviour of hydrological models at catchment scale  

NASA Astrophysics Data System (ADS)

A data-based approach is presented to analyse the response behaviour of hydrological models at the catchment scale. The approach starts with a number of sequential time series processing steps, applied to available rainfall, ETo and river flow observation series. These include separation of the high frequency (e.g., hourly, daily) river flow series into subflows, split of the series in nearly independent quick and slow flow hydrograph periods, and the extraction of nearly independent peak and low flows. Quick-, inter- and slow-subflow recession behaviour, sub-responses to rainfall and soil water storage are derived from the time series data. This data-based information on the catchment response behaviour can be applied on the basis of: - Model-structure identification and case-specific construction of lumped conceptual models for gauged catchments; or diagnostic evaluation of existing model structures; - Intercomparison of runoff responses for gauged catchments in a river basin, in order to identify similarity or significant differences between stations or between time periods, and relate these differences to spatial differences or temporal changes in catchment characteristics; - (based on the evaluation of the temporal changes in previous point:) Detection of temporal changes/trends and identification of its causes: climate trends, or land use changes; - Identification of asymptotic properties of the rainfall-runoff behaviour towards extreme peak or low flow conditions (for a given catchment) or towards extreme catchment conditions (for regionalization, ungauged basin prediction purposes); hence evaluating the performance of the model in making extrapolations beyond the range of available stations' data; - (based on the evaluation in previous point:) Evaluation of the usefulness of the model for making extrapolations to more extreme climate conditions projected by for instance climate models. Examples are provided for river basins in Belgium, Ethiopia, Kenya, Ecuador, Bolivia and China. References: Van Steenbergen, N., Willems, P. (2012), 'Method for testing the accuracy of rainfall-runoff models in predicting peak flow changes due to rainfall changes, in a climate changing context', Journal of Hydrology, 414-415, 425-434, doi:10.1016/j.jhydrol.2011.11.017 Mora, D., Willems, P. (2012), 'Decadal oscillations in rainfall and air temperature in the Paute River Basin - Southern Andes of Ecuador', Theoretical and Applied Climatology, 108(1), 267-282, doi:0.1007/s00704-011-0527-4 Taye, M.T., Willems, P. (2011). 'Influence of climate variability on representative QDF predictions of the upper Blue Nile Basin', Journal of Hydrology, 411, 355-365, doi:10.1016/j.jhydrol.2011.10.019 Taye, M.T., Willems, P. (2012). 'Temporal variability of hydro-climatic extremes in the Blue Nile basin', Water Resources Research, 48, W03513, 13p. Vansteenkiste, Th., Tavakoli, M., Ntegeka, V., Willems, P., De Smedt, F., Batelaan, O. (in press), 'Climate change impact on river flows and catchment hydrology: a comparison of two spatially distributed models', Hydrological Processes; doi: 10.1002/hyp.9480 [in press

Willems, Patrick

2013-04-01

222

Influence of basin connectivity on sediment source, transport, and storage within the Mkabela Basin, South Africa  

NASA Astrophysics Data System (ADS)

The management of sediment and other non-point source (NPS) pollution has proven difficult, and requires a sound understanding of particle movement through the drainage system. The primary objective of this investigation was to obtain an understanding of NPS sediment source(s), transport, and storage within the Mkabela Basin, a representative agricultural catchment within the KwaZulu-Natal Midlands of eastern South Africa, by combining geomorphic, hydrologic and geochemical fingerprinting analyses. The Mkabela Basin can be subdivided into three distinct subcatchments that differ in their ability to transport and store sediment along the axial valley. Headwater (upper catchment) areas are characterized by extensive wetlands that act as significant sediment sinks. Mid-catchment areas, characterized by higher relief and valley gradients, exhibit few wetlands, but rather are dominated by a combination of alluvial and bedrock channels that are conducive to sediment transport. The lower catchment exhibits a low-gradient alluvial channel that is boarded by extensive riparian wetlands that accumulate large quantities of sediment (and NPS pollutants). Fingerprinting studies suggest that silt- and clay-rich layers found within wetland and reservoir deposits of the upper and upper-mid subcatchments are derived from the erosion of fine-grained, valley bottom soils frequently utilized as vegetable fields. Coarser-grained deposits within these wetlands and reservoirs result from the erosion of sandier hillslope soils extensively utilized for sugar cane, during relatively high magnitude runoff events that are capable of transporting sand-sized sediment off the slopes. Thus, the source of sediment to the axial valley varies as a function of sediment size and runoff magnitude. Sediment export from upper to lower catchment areas was limited until the early 1990s, in part because the upper catchment wetlands were hydrologically disconnected from lower parts of the watershed during low to moderate flood events. The construction of a drainage ditch through a previously unchanneled wetland altered the hydrologic connectivity of the catchment, allowing sediment to be transported from the headwaters to the lower basin where much of it was deposited within riparian wetlands. The axial drainage system is now geomorphically and hydrologically connected during events capable of overflowing dams located throughout the study basin. The study indicates that increased valley connectivity partly negated the positive benefits of controlling sediment/nutrient exports from the catchment by means of upland based, best management practices.

Miller, J. R.; Mackin, G.; Lechler, P.; Lord, M.; Lorentz, S.

2013-02-01

223

Impact of papyrus wetland encroachment on spatial and temporal variabilities of stream flow and sediment export from wet tropical catchments.  

PubMed

During the past decades, land use change in the Lake Victoria basin has significantly increased the sediment fluxes to the lake. These sediments as well as their associated nutrients and pollutants affect the food and water security of millions of people in one of Africa's most densely populated regions. Adequate catchment management strategies, based on a thorough understanding of the factors controlling runoff and sediment discharge are therefore crucial. Nonetheless, studies on the magnitude and dynamics of runoff and sediment discharge are very scarce for the Lake Victoria basin and the African Rift region. We therefore conducted runoff discharge and sediment export measurements in the Upper Rwizi, a catchment in Southwest Uganda, which is representative for the Lake Victoria basin. Land use in this catchment is characterized by grazing area on the high plateaus, banana cropping on the slopes and Cyperus papyrus L. wetlands in the valley bottoms. Due to an increasing population pressure, these papyrus wetlands are currently encroached and transformed into pasture and cropland. Seven subcatchments (358km(2)-2120km(2)), with different degrees of wetland encroachment, were monitored during the hydrological year June 2009-May 2010. Our results indicate that, due to their strong buffering capacity, papyrus wetlands have a first-order control on runoff and sediment discharge. Subcatchments with intact wetlands have a slower rainfall-runoff response, smaller peak runoff discharges, lower rainfall-runoff ratios and significantly smaller suspended sediment concentrations. This is also reflected in the measured annual area-specific suspended sediment yields (SYs): subcatchments with encroached papyrus swamps have SY values that are about three times larger compared to catchments with intact papyrus vegetation (respectively 106-137tonkm(-2)y(-1) versus 34-37tonkm(-2)y(-1)). We therefore argue that protecting and (where possible) rehabilitating these papyrus wetlands should be a corner stone of catchment management strategies in the Lake Victoria basin. PMID:25617700

Ryken, N; Vanmaercke, M; Wanyama, J; Isabirye, M; Vanonckelen, S; Deckers, J; Poesen, J

2015-04-01

224

SWAT model application in a data scarce tropical complex catchment in Tanzania  

NASA Astrophysics Data System (ADS)

This study intended to validate the Soil and Water Assessment Tool (SWAT) model in data scarce environment in a complex tropical catchment in the Pangani River Basin located in northeast Tanzania. The validation process involved the model initialization, calibration, verification and sensitivity analysis. Both manual and auto-calibration procedures were used to facilitate the comparison of the results with past studies in the same catchment. For this study, some model parameters including Soil depth (SOL_Z) and Saturated hydraulic conductivity (SOL_K) were assumed uniform within the study catchment and were therefore lumped comprising the huge computation resource requirement of the SWAT model. Results indicated that the same set of important parameters was identified with or without the use of observed flows data. Some of the parameters had physical interpretation and could therefore relate directly to hydrological controlling factors within the catchment. Despite swapping ranking importance of parameters, these results suggest the suitability of the SWAT model for identifying hydrological controlling factors/parameters in ungauged catchments. Results of calibration and validation at the daily timescale gave moderately satisfactory Nash-Sutcliffe Coefficient of Efficiency (CE) of 54.6% for calibration and 68% for validation while simulated and observed mean annual flow discharges gave an Index of Volumetric Fit (IVF) of 100%. The study further indicated the improvement of model estimation when more reliable spatial representation of rainfall was used. Although in this study SWAT model has performed satisfactorily in data poor and complex catchment, the authors recommend a wider validation effort of the model before it is adopted for operational purpose.

Ndomba, Preksedis; Mtalo, Felix; Killingtveit, Aanund

225

Going With the Flow: Participatory Action Research and River Catchment Management  

NASA Astrophysics Data System (ADS)

Public participation, now mainstreamed as a desirable goal in research and policy has a wide variety of different models, classifications, approaches, tools, mechanisms and processes that are utilized across science and social science utilise. Demands for public participation in environmental issues have found particular resonance within recent European water legislation, specifically the Water Framework Directive (2000/60/EC). In the UK River Basin Plans are under the jurisdiction of the Environment Agency (EA) and the practice of their management is currently being trialed through the EA's management of 10 trial catchments. In these trials, the Environment Agency has outlined its wish to explore improved ways of engaging with people so as to develop shared understandings of problems within catchments. In this work, we report on project outcomes funded under the Rural Economy and Land Use Program (Relu) in which we worked with the Lune Rivers Trust. The project was the first in the UK to use a Participatory Action Research (PAR) approach to understanding and creating tools to address problems in river catchments. PAR is a distinct approach to participation because it is driven by participants (people who have a stake in the issue being researched) rather than an outside sponsor, funder or academic (although they may be invited to help); it offers a democratic model of who can produce, own and use knowledge; it is collaborative at every stage, involving discussion, pooling skills and working together; and it is intended to result in some action, change or improvement on the issue being researched, towards more socially and environmentally just outcomes. Both the project and the tools we coproduced resonate very strongly with current policy objects for river catchments as outlined above. We argue that PAR has particular resonance with the above focus of catchment management particularly in light of future uncertainties with climate change. As such, it offers a critical reflection on approaches to catchment management that characterize themselves as 'participatory'.

Whitman, G.; Pain, R.

2012-04-01

226

Influence of basin connectivity on sediment source, transport, and storage within the Mkabela Basin, South Africa  

NASA Astrophysics Data System (ADS)

The management of sediment and other non-point source (NPS) pollution has proven difficult, and requires a sound understanding of particle movement through the drainage system. The primary objective of this investigation was to obtain an understanding of NPS sediment source(s), transport, and storage within the Mkabela basin, a representative agricultural catchment within the KwaZulu-Natal Midlands of southeastern South Africa, by combining geomorphic, hydrologic and geochemical fingerprinting analyses. The Mkabela Basin can be subdivided into three distinct subcatchments that differ in their ability to transport and store sediment along the axial valley. Headwater (upper catchment) areas are characterized by extensive wetlands that act as significant sediment sinks. Mid-catchment areas, characterized by higher relief and valley gradients, exhibit few wetlands, but rather are dominated by a combination of alluvial and bedrock channels that are conducive to sediment transport. The lower catchment exhibits a low-gradient alluvial channel that is boarded by extensive riparian wetlands that accumulate large quantities of sediment (and NPS pollutants). Fingerprinting studies suggest that silt- and clay-rich layers found within wetland and reservoir deposits are derived from the erosion of fine-grained, valley bottom soils frequently utilized as vegetable fields. Coarser-grained deposits within both wetlands and reservoirs result from the erosion of sandier hillslope soils extensively utilized for sugar cane, during relatively high magnitude runoff events that are capable of transporting sand-sized sediment off the slopes. Thus, the source of sediment to the axial valley varies as a function of sediment size and runoff magnitude. Sediment export from the basin was limited until the early 1990s, in part because the upper catchment wetlands were hydrologically disconnected from lower parts of the watershed during low- to moderate flood events. The construction of a drainage ditch through a previously unchanneled wetland altered the hydrologic connectivity of the catchment, allowing sediment to be transported from the headwaters to the lower basin where much of it was deposited within the riparian wetlands. The axial drainage system is now geomorphically and hydrologically connected during most events throughout the study basin. The study indicates that increased valley connectivity partly negated the positive benefits of controlling sediment/nutrient exports from the catchment by means of upland based, best management practices.

Miller, J. R.; Mackin, G.; Lechler, P.; Lord, M.; Lorentz, S.

2012-09-01

227

Ensemble modeling of flows in ungaged catchments  

NASA Astrophysics Data System (ADS)

The established approach to rainfall-runoff model regionalisation is regression of model parameters (MPs) against numeric catchment descriptors (CDs). We argue that, due to its fundamental limitations, further refinement of the regression method is not the optimum way forward, and we introduce an alternative method based on weighed averaging and ensemble modelling. The new method consists of the following basic steps: 1) A sample of successful models is identified for each of a number of `donor' gaged catchments. 2) Each model is assigned a weight based on how well it has performed. 3) This weight is updated based on the similarity of the associated catchment to the `target' ungaged catchment. 4) All models with non-zero weight are applied to the target catchment, to produce an ensemble time-series and a weighted average prediction. The theoretical advantage is that MP interactions are not neglected or linearized to facilitate regression. The practical attraction is the ease with which all sources of uncertainty (e.g. data, CD, equifinality, model structure) can be integrated into the pool of models and the weighting scheme. A case study of daily data from 127 non-urban UK catchments is presented. A single conceptual model structure is used (a five-parameter probability distributed model) so that, in this case, differences in models are defined only by the MP sets. Each of the 127 catchments is, in turn, considered to be ungaged, so that candidate models can be drawn from up to 126 donor catchments. Relative weights are proportional to a quantitative measure of donor-target catchment similarity. Various schemes for defining catchment similarity are applied, based on CDs relating mainly to soil type, catchment size and climate. Using the models of the ten most similar catchments provided the best weighted average simulations, both in terms of NSE and a low-flow objective function. Using this scheme, in 90% of low-permeability catchments the prediction NSE was within 0.05 of that achieved using the locally calibrated model. Performance was poorer when fewer or more donor catchments were used, and was a little poorer in high-permeability catchments. The results were not sensitive to how many models were drawn from each donor catchment. The method out-performed regression-based schemes; the improvement was small for NSE but was considerable for the low-flow objective function. Comparisons of the prior and posterior ensembles demonstrates the reduction in uncertainty permitted by the method. The ability of the ensemble to envelope the observed flood peaks was inconsistent - options for improving robustness include integration of alternative model structures and rainfall input realisations. In summary, the ensemble modelling and weighted averaging method is a theoretical improvement on established regionalisation schemes, and initial results are promising. The method provides an elegant basis for transfer of information between catchments and comprehensive analysis of uncertainty for PUBs.

McIntyre, N.; Wheater, H.; Lee, H.; Young, A.; Wagener, T.

2005-12-01

228

Influence of catchment characteristics, forestry activities and deposition on nitrogen export from small forested catchments  

Microsoft Academic Search

The ability to predict nitrogen export from forested catchments is essential in order to evaluate the effects of anthropogenic activities on the trophic status of lakes and sea areas, and to extrapolate the results to catchments from which no measurements are available. Data from 20 forested catchments (0.3–42 km2) in Finland and Sweden during the 10-year period 1979–88 were used

Ahti Lepistö; Lotta Andersson; Berit Arheimer; Karin Sundblad

1995-01-01

229

Aquatic carbon and GHG losses via the aquatic pathway in an arctic catchment  

NASA Astrophysics Data System (ADS)

Based in Northwest Canada, the HYDRA project ('Permafrost catchments in transition: hydrological controls on carbon cycling and greenhouse gas budgets') aims to understand the fundamental role that hydrological processes play in regulating landscape-scale carbon fluxes. The project aims to determine a) the role of vegetation functional type in carbon uptake, turnover and allocation, b) how the same functional types influence the delivery of soil-derived carbon to surface waters, and c) how important the aquatic carbon and greenhouse gas (GHG) losses are relative to catchment scale terrestrial fluxes. Here we focus on the magnitude of the aquatic concentrations and fluxes, presenting results from the first year of field sampling. Concentrations of the greenhouse gases CO2, CH4 and N2O, as well as dissolved organic and inorganic carbon (DOC and DIC), will be presented from a range of freshwater types within the tundra landscape; sites include lakes, polygons and the 'Siksik' stream which drains the primary study catchment. Eight sampling locations were selected along the approximately 2km long Siksik stream to allow carbon and GHG concentrations to be considered within a set of nested subcatchments. This synoptic sampling regime, in combination with stable isotopes and major ion concentrations also measured at each sampling point, will allow inputs of carbon and GHGs to be traced to source areas within the catchment. Evasion and downstream export will also be calculated and preliminary results presented in the context of quantifying the relative importance of the aquatic pathway to the full catchment carbon and greenhouse gas budgets. This analysis will also allow an initial comparison between the relative importance of different water bodies within the catchment, highlighting spatial hotspots to be prioritized in future campaigns.

Dinsmore, Kerry; Billett, Mike; Lessels, Jason; Street, Lorna; Wookey, Philip; Baxter, Robert; Subke, Jens-Arne; Tetzlaff, Doerthe

2014-05-01

230

Dissolved Organic Nitrogen Dynamics in Forested Catchments on the Precambrian Shield  

NASA Astrophysics Data System (ADS)

We present preliminary data on nitrogen (N) mass balances for eleven forested catchments on the southern Ontario Precambrian Shield. Meteorological parameters, stream flow, precipitation and stream chemistry have been monitored since 1980-81. We focus on the most recent decade (1998 to 2008) and attempt to determine whether or not there are changes to N dynamics. In particular, we test whether changes have occurred to the concentrations, fluxes and percent of N species (NO3-, NH4+ and dissolved organic nitrogen (DON)) in precipitation and stream export. We also estimate the amount of N retained within forest stands and soils and test for changes in the rate of catchment scale N leaching. We place particular emphasis on patterns observed between catchments with differing amounts of wetland cover. As DON is the primary form of N exported from these catchments, we determine the relative age of stream DON. By examining the 15 N of soil organic matter within horizons of upland and wetland soils, we establish the extent to which organic forms of N are re-cycled within the catchment prior to being exported into the streams. We characterize soil organic N and DON to determine the proportion of proteinaceous material, amino sugars, and heterocyclic N. Both age and molecular composition may help reveal the primary source of DON. Currently it is unclear what proportion of DON is the product of fresh litter decomposition or aged soil organic matter. The export of stream DON is generally closely linked to dissolved organic carbon (DOC). However there is some evidence of seasonal de-coupling. We also identify changes to DOC:DON with movement through a catchment from throughfall, to soil and stream waters.

Kothawala, D. N.; Dillon, P. J.

2009-05-01

231

A preliminary assessment of streamflow gains and losses for selected stream reaches in the lower Guadalupe River Basin, Texas, 2010-12  

USGS Publications Warehouse

The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers–Fort Worth District, the Texas Water Development Board, the Guadalupe-Blanco River Authority, and the Edwards Aquifer Authority, investigated streamflow gains and losses in the lower Guadalupe River Basin during four selected base-flow periods in March 2010, April 2011, August 2011, and, for a stream reach between Seguin, Tex., and Gonzales, Tex., in September 2012. Major sources of streamflow in this basin include releases from Canyon Lake, inflow from major springs (Comal Springs, San Marcos Springs, and Hueco Springs), and base flow (groundwater seeping to streams). Streamflow and spring-flow data were collected at 35 streamflow-gaging stations (including 6 deployed for this study) during the base-flow periods. This report describes streamflow in the lower Guadalupe River Basin, which consists of the Guadalupe River drainage basin downstream from Canyon Lake to the Guadalupe River near Tivoli, Tex. Streamflow conditions in the lower Guadalupe River Basin were analyzed by computing surface-water budgets for reaches of the lower Guadalupe River and tributary streams. Streamflow gains and losses were mapped for reaches where the computed gain or loss was greater than the uncertainty in the computed streamflow at the upstream and downstream ends of the reach. During the March 15–21, 2010, base-flow period, five reaches had gains greater than the uncertainty in the computed streamflow, including reach 1 on the Guadalupe River, which gained 130 cubic feet per second (ft3/s), and reach 3 on the Comal River, which gained 359 ft3/s. Streamflow gains during March 2010 primarily were derived from (1) inflow from the Edwards aquifer outcrop, including Hueco Springs and Comal Springs; (2) flow conveyed through the alluvium of the streambed; (3) inflows from the Carrizo-Wilcox aquifer and the Yegua Jackson aquifer; and (4) groundwater inflows from the Gulf Coast aquifer, which are enhanced by seepage losses from Coleto Creek Reservoir. During this base-flow period, none of the reaches had a loss greater in magnitude than the uncertainty in the computed streamflow. During the April 10–16, 2011, base-flow period, three reaches had gains greater than the uncertainty in the computed streamflow. Among these three reaches were reach 1 on the Guadalupe River, which gained 40.7 ft3/s, and reach 3 on the Comal River, which gained 271 ft3/s—reaches where streamflow gains were also measured in March 2010. Streamflow gains during April 2011 primarily were derived from (1) inflow from the Edwards aquifer outcrop, including Hueco Springs and Comal Springs; and (2) inflows from the Carrizo-Wilcox aquifer. During this base-flow period, three reaches had losses greater in magnitude than the uncertainty in the computed streamflow. A reach of the Blanco River near Kyle, Tex. (reach 10), lost 18.7 cubic feet per second (ft3/s). Much of this loss likely entered the groundwater system through the numerous faults that intersect the stream channel northwest of Kyle. The reach that included the confluence of the Guadalupe and San Marcos Rivers (reach 17) lost 155 ft3/s, likely as recharge to the Sparta and Queen City aquifers. During the August 19–25, 2011, base-flow period, three reaches had gains greater than the uncertainty in the computed streamflow, including reach 3 on the Comal River (168 ft3/s gain), which was one of the reaches where gains in streamflow also were measured in March 2010 and April 2011. Streamflow gains in August 2011 were primarily from (1) inflows from Comal Springs, (2) inflows from the Yegua Jackson aquifer, and (3) groundwater inflows from the Gulf Coast aquifer, which are enhanced by seepage losses from Coleto Creek Reservoir. During this base-flow period, five reaches had losses greater in magnitude than the uncertainty in the computed streamflow. The reach including the confluence of the Guadalupe and Comal Rivers lost 82.8 ft3/s. Much of that loss likely seeped into the local groundwater system. The reach of the Guadalupe River south

Wehmeyer, Loren L.; Winters, Karl E.; Ockerman, Darwin J.

2013-01-01

232

Chloride circulation in a lowland catchment and the formulation of transport by travel time distributions  

NASA Astrophysics Data System (ADS)

Travel times are fundamental catchment descriptors that blend key information about storage, geochemistry, flow pathways and sources of water into a coherent mathematical framework. Here we analyze travel time distributions (TTDs) (and related attributes) estimated on the basis of the extensive hydrochemical information available for the Hupsel Brook lowland catchment in the Netherlands. The relevance of the work is perceived to lie in the general importance of characterizing nonstationary TTDs to capture catchment transport properties, here chloride flux concentrations at the basin outlet. The relative roles of evapotranspiration, water storage dynamics, hydrologic pathways and mass sources/sinks are discussed. Different hydrochemical models are tested and ranked, providing compelling examples of the improved process understanding achieved through coupled calibration of flow and transport processes. The ability of the model to reproduce measured flux concentrations is shown to lie mostly in the description of nonstationarities of TTDs at multiple time scales, including short-term fluctuations induced by soil moisture dynamics in the root zone and long-term seasonal dynamics. Our results prove reliable and suggest, for instance, that drastically reducing fertilization loads for one or more years would not result in significant permanent decreases in average solute concentrations in the Hupsel runoff because of the long memory shown by the system. Through comparison of field and theoretical evidence, our results highlight, unambiguously, the basic transport mechanisms operating in the catchment at hand, with a view to general applications.

Benettin, Paolo; Velde, Ype; Zee, Sjoerd E. A. T. M.; Rinaldo, Andrea; Botter, Gianluca

2013-08-01

233

Applying Different Spatial Distribution and Modeling Concepts In Three Nested Mesoscale Catchments of Germany  

NASA Astrophysics Data System (ADS)

Distributed physically based river basin models are receiving increasing importance for integrated water resources management (IWRM) in Germany and in Europe especially after the release of the new European Water Framework Directive (WFD). The challenge is to delineate homogeneous modeling entities which on the one side represent the dominant hydrological process dynamics and on the other side can be delineated from spatially distributed physiographical catchment properties. This challenge is met by applying the concept of Hydrological Response Units (HRUs) in a nested catchment approach. The aim of the study was to determine the dominance of different hydrological processes on different catchment sizes within the mesoscale. Three different HRU-concepts have been tested in this regard: (i) the topographic stream-segment-based HRU delineation proposed by Leavesley et al. (1983); the process based physiographic HRU-concept introduced by Flügel (1995) and (iii) an advanced HRU-concept adapted from (ii), which included the topographic topology of HRU-areas and the river network developed by Staudenrausch (2000). Different boundary conditions like the influence of varying landuse classes, temporal data resolution and landuse szenarios were investigated. The mesoscale catchment of the river Ilm (A ~ 895 km2) in Thuringia, Germany and the PRMS model were selected for this study.

Bongartz, Klaus

234

Modelling fate and transport of glyphosate and AMPA in the Meuse catchment to assess the contribution of different pollution sources  

NASA Astrophysics Data System (ADS)

Large river basins have multiple sources of pesticides and usually the pollution sources are spread over the entire catchment. The cumulative effect of pesticides entering the river system in upstream areas and the formation of persistent degradation products can compromise downstream water use e.g. raw water quality for drinking water abstractions. For assessments at catchment scale pesticide fluxes coming from different sources and sub basins need to be taken into account. To improve management strategies, a sound understanding of the sources, emission routes, transport, environmental fate and conversion of pesticides is needed. In the Netherlands, the Meuse river basin is an important source for drinking water production. The river suffers from elevated concentrations of glyphosate and aminomethylphosphonic acid (AMPA). For AMPA it is rather unclear to what extent the pollution is related to glyphosate degradation and what is the contribution of other sources, especial phosphonates in domestic and industrial waste water. Based on the available monitoring data only it is difficult to distinguish between AMPA sources in such a large river basin. This hampers interpretation and decision making for water quality management in the Meuse catchment. Here, application of water quality models is very useful to obtain complementary information and insights. Modelling allows accounting for temporal and spatial variability in discharge and concentrations as well as distinguishing the contribution from conversion processes. In this study, a model for the river Meuse was developed and applied to assess the contribution of tributary and transnational influxes, glyphosate degradation and other sources to the AMPA pollution.

Desmet, Nele; Seuntjens, Piet

2013-04-01

235

Water Quality Modeling in Kranji Catchment  

E-print Network

This thesis describes the process and results of applying the Soil and Water Assessment Tool (SWAT) to characterize bacterial fate and transport in the Kranji Catchment of Singapore. The goal of this process is to predict ...

Granger, Erika C

2010-01-01

236

Spectral Analysis in Catchment Hydrology and Geochemistry  

NASA Astrophysics Data System (ADS)

Spectral analysis of chemical tracer time series can be used to probe the internal workings of catchments. It has recently been shown that catchments act as fractal filters for inert chemical tracers like chloride, converting "white noise" rainfall chemistry inputs into fractal "1/f noise" runoff chemistry time series (Kirchner et al., 2000). This implies that catchments have long-tailed travel time distributions, and thus retain soluble contaminants for unexpectedly long timespans. Long-term monitoring data from North America, Britain, and Scandinavia show that this fractal behavior characterizes a wide array of catchments. How can this fractal scaling arise in such diverse settings? One can show that advection and dispersion of spatially distributed rainfall tracer inputs will generate fractal tracer time series, as long as the flow system is highly dispersive (Kirchner et al., in press). This implies that subsurface flow in small catchments is dominated by large conductivity contrasts, such as arise from macropores, fracture networks, and similar large-scale heterogeneities in subsurface conductivity. One can also use spectral methods to analyze long-term time series of water fluxes in rainfall and streamflow. Spectral analysis of hydrologic time series measures the downslope propagation of the hydraulic potential waves that mobilize runoff, whereas spectral analysis of tracer time series clocks the propagation of water itself through the catchment. Water fluxes in streamflow exhibit non-fractal scaling, instead of the fractal 1/f scaling shown by chemical tracers. These observations imply that hydrologic signals are transmitted downslope more rapidly, and with much less dispersion, than chemical tracer signals are. Thus small upland catchments transmit hydraulic potentials (which drive runoff) much less dispersively than they transport water itself. These observations provide important constraints for theoretical models of subsurface flow and transport in catchments.

Kirchner, J. W.; Feng, X.; Renshaw, C. E.; Neal, C.

2001-12-01

237

Preliminary report on fluid inclusions from halites in the Castile and lower Salado formations of the Delaware Basin, southeastern New Mexico. [Freezing-point depression  

SciTech Connect

A suite of samples composed primarily of halite from the upper Castile and lower Salado Formations of the Permian Basin was selected from Waste Isolation Pilot Plant (WIPP) core for a reconnaissance study of fluid inclusions. Volume percent of these trapped fluids averaged 0.7% to 1%. Freezing-point depressions varied widely and appeared to be unrelated to fluid-inclusion type, to sedimentary facies, or to stratigraphic depth. However, because very low freezing points were usually associated with anhydrite, a relation may exist between freezing-point data and lithology. Dissolved sulfate values were constant through the Castile, then decreased markedly with lesser depth in the lower Salado. This trend correlates very well with observed mineralogy and is consistent with an interpretation of the occurrence of secondary polyhalite as a result of gypsum or anhydrite alteration with simultaneous consumption of dissolved sulfate from the coexisting fluids. Together with the abundance and distribution of fluid inclusions in primary or ''hopper'' crystal structures, this evidence suggests that inclusions seen in these halites did not migrate any significant geographical distance since their formation. 28 refs., 17 figs., 2 tabs.

Stein, C.L.

1985-09-01

238

Understanding Pesticide Behaviour At The Catchment Scale  

NASA Astrophysics Data System (ADS)

Pesticides in stream flow at the outlet of a 142ha catchment in Eastern England (Col- worth, Bedfordshire), have been monitored since October 1999. About 50% of the total catchment is directly controlled within one farm and a rotation of wheat, oil seed rape, grass, linseed, beans and peas is grown. The data from this catchment are being used to investigate the performance of the USDA SWAT contaminant transport pack- age at the catchment scale. Three years of stream flow and climate data are available with a useful set of pesticide application and detection data. Following calibration and validation of the hydrology of the catchment, pesticide modelling was carried out for tebuconazole, terbutryn, and terbuthylazine. This paper reports on the results of a sen- sitivity analysis of the model, and the final calibrated pesticide component. Analysis of the results obtained show that the timing and decay of predicted pesticide concen- trations are correct. It is therefore recommended that SWAT can be used as a tool to understand pesticide behaviour at the catchment scale.

Kannan, N.; White, S. M.; Worrall, F.; Pendlington, D.; Groves, S.

239

Water balance of Lake Tana and its sensitivity to fluctuations in rainfall, Blue Nile basin, Ethiopia  

NASA Astrophysics Data System (ADS)

The annual water budget of Lake Tana is determined from estimates of runoff, rainfall on the lake, measured outflow and empirically determined evaporation. Simulation of lake level variation (1960-1992) has been conducted through modeling at a monthly time step. Despite the ±20% rainfall variations in the Blue Nile basin in the last 50 years, the lake level remained regular. A preliminary analysis of the sensitivity of level and outflow of the lake suggests that they are controlled more by variation in rainfall than by basin-scale forcing induced by human activities. The analysis shows that a drastic (40-45%) and sustained (7-8 years) rainfall reduction is required to change the lake from out flowing to terminal (cessation of outflow). However, the outflow from the lake shows significant variation responding to the rainfall variations. Unlike the terminal lakes in the Ethiopian rift valley or the other large lakes of Tropical Africa, at its present hydrologic condition, the Lake Tana level is less sensitive to rainfall variation and changes in catchment characteristics.

Kebede, S.; Travi, Y.; Alemayehu, T.; Marc, V.

2006-01-01

240

A detailed model for simulation of catchment scale subsurface hydrologic processes  

NASA Technical Reports Server (NTRS)

A catchment scale numerical model is developed based on the three-dimensional transient Richards equation describing fluid flow in variably saturated porous media. The model is designed to take advantage of digital elevation data bases and of information extracted from these data bases by topographic analysis. The practical application of the model is demonstrated in simulations of a small subcatchment of the Konza Prairie reserve near Manhattan, Kansas. In a preliminary investigation of computational issues related to model resolution, we obtain satisfactory numerical results using large aspect ratios, suggesting that horizontal grid dimensions may not be unreasonably constrained by the typically much smaller vertical length scale of a catchment and by vertical discretization requirements. Additional tests are needed to examine the effects of numerical constraints and parameter heterogeneity in determining acceptable grid aspect ratios. In other simulations we attempt to match the observed streamflow response of the catchment, and we point out the small contribution of the streamflow component to the overall water balance of the catchment.

Paniconi, Claudio; Wood, Eric F.

1993-01-01

241

GRACE in the Murray Darling Basin: Integrating Remote Sensing with Field Monitoring to Improve Hydrological Model Prediction  

NASA Astrophysics Data System (ADS)

Hydrological processes occurring throughout the earth's surface lead to temporal changes in the distribution of mass, which subsequently cause subtle changes in the earth's gravity field. The GRACE mission (Gravity Recovery And Climate Experiment) of NASA and the German Aerospace Centre will provide global data sets of changes in earth's gravity field at unprecedented accuracy over the next several years. This mission has the potential to provide the first-ever global measurements of changes in terrestrial water storage for large regions at monthly to annual time scales. In this paper we present a methodology designed to address two fundamental questions regarding the applicability of GRACE: (1) is the soil moisture component of terrestrial water storage change detectable in the vertically integrated gravity signal, and (2) can such large-scale measurements of gravity changes be used to improve our understanding and simulation of catchment-scale hydrological processes? The methodology involves three key components: (1) ground-based monitoring of gravity and terrestrial water storage changes at 40 sites throughout the Murrumbidgee catchment in Australia; (2) development of a modelling framework which includes the downscaling and disaggregation of GRACE data; and (3) using AMSR (Advanced Microwave Scanning Radiometer) remotely-sensed surface soil moisture observations to further constrain the downscaling and disaggregation. The GRACE data will be processed through assimilation into a hydrological model of the entire Murray-Darling Basin, and the results verified against the monitoring network. Preliminary results from 18 monitoring sites installed in 2001 suggest that changes in root-zone soil moisture represent the dominant fraction of terrestrial water storage changes occurring in the Murrumbidgee and the magnitude of such changes (monthly changes as high as 130 mm at the point-scale and 38 mm at the mean catchment-scale) should produce a statistically significant signal in both GRACE and ground-based observations of gravity.

Ellett, K. M.; Walker, J. P.; Grayson, R. B.; Smith, A.; Rodell, M.

2004-05-01

242

Selenium and mining in the Powder River Basin, Wyoming: Phase III - a preliminary survey of selenium concentrations in deer mice (Peromyscus maniculatus) livers  

SciTech Connect

Samples of liver tissue from deer mice trapped on not-yet-mined areas and reclaimed areas at five surface coal mines in the Powder River Basin of northeastern Wyoming were analyzed for selenium. The overall mean concentration of selenium in wet weight liver tissue was 1.685 ppm. The mean value from not-yet-mined areas was 1.437 ppm; the mean value from reclaimed areas was 1.910 ppm (significant at p<0.1016). When one not-yet-mined outlier was removed, significance rose to p<0.0004. Mine-to-mine comparison of samples stratified by type (that is, by not-yet-mined or reclaimed), showed average tissue concentrations from the reclaimed area of Mine 1 were also higher (p<0.0143) then not-yet-mined area samples at Mine 1. No statistically significant differences were found between mines for samples from not-yet-mined areas, and no statistically significant differences were found between Mines 2, 3, 4, and 5 for samples from reclaimed areas. Multiple analysis of variance using the factors: site (mine) and type (not-yet-mined or reclaimed) was not significantly significant (p<0.2115). Simple linear regression showed that selenium concentrations in dry tissue could easily be predicted from wet tissue selenium (r2=0.9775), demonstrating that percent water in the samples was relatively constant. Animal body weight in general was not a predictor for either wet or dry tissue selenium concentrations, but was related to body weight at the higher tissue concentrations of selenium encountered in samples from the reclaimed area at Mine 1. Mouse body weights at Mine 1 were higher on the reclaimed area than mouse body weights from the not-yet-mined area.

Raisbeck, M.L.; Vance, G.F. [Univ. of Wyoming, Laramie, WY (United States); Steward, D.G. [AMAX Coal West, Inc., Gillette, WY (United States)] [and others

1995-09-01

243

Geohydrology, water quality, and preliminary simulations of ground-water flow of the alluvial aquifer in the Upper Black Squirrel Creek basin, El Paso County, Colorado  

USGS Publications Warehouse

The upper Black Squirrel Creek basin in eastern El Paso County, Colorado, is underlain by an alluvial aquifer and four bedrock aquifers. Groundwater pumpage from the alluvial aquifer has increased since the mid-1950's, and water level declines have been substantial; the bedrock aquifers virtually are undeveloped. Groundwater pumpage for domestic, stock, agricultural, and municipal uses have exceeded recharge for the past 25 years. The present extent of the effect of pumpage on the alluvial aquifer was evaluated, and a groundwater flow model was used to simulate the future effect of continued pumpage on the aquifer. Measured water level declines from 1974 through 1984 were as much as 30 ft in an area north of Ellicott, Colorado. On the basis of the simulations, water level declines from October 1984 to April 1999 north of Ellicott might be as much as 20 to 30 ft and as much as 1 to 10 ft in most of the aquifer. The groundwater flow models provided a means of evaluating the importance of groundwater evapotranspiration at various stages of aquifer development. Simulated groundwater evapotranspiration was about 43% of the outflow from the aquifer during predevelopment stages but was less than 3% of the outflow from the aquifer during late-development stages. Analyses of 36 groundwater samples collected during 1984 indicated that concentrations of dissolved nitrite plus nitrate as nitrogen generally were large. Samples from 5 of the 36 wells had concentrations of dissolved nitrite plus nitrate as nitrogen that exceeded drinking water standards. Water from the alluvial aquifer generally is of suitable quality for most uses. (USGS)

Buckles, D.R.; Watts, K.R.

1988-01-01

244

Pre-Mount Simon basin under the Cincinnati Arch  

Microsoft Academic Search

A newly discovered sedimentary basin underlies the Mount Simon Sandstone (Upper Cambrian) below part of the Cincinnati Arch in southwestern Ohio. On the basis of preliminary examination of samples and geophysical data, the basin is tentatively traced for at least 160 km north-south and 48 km east-west in Ohio and adjacent Kentucky and Indiana. The basin is located in an

Douglas L. Shrake; Richard W. Carlton; Lawrence H. Wickstrom; Paul E. Potter; Benjamin H. Richard; Paul J. Wolfe; Gary W. Sitler

1991-01-01

245

Hydrological extreme events with Mike Basin  

NASA Astrophysics Data System (ADS)

This work is part of a broader project which aims to develop an integrated system to model and simulate of the hydrological cycle processes at river basin scale. All these processes involved in the dynamics of a watershed, which play an important role in the proper management and sustainable use of water resources, are influenced by many factors (e.g. soil use, vegetation cover, weather and climate) being of particular importance, all aspects related to the occurrence, amount and the spatial-temporal distribution of precipitation. We focus our work on the use of the MIKE Basin model and apply it to the Corgo River basin, which is a tributary of the Douro river, located in the Portuguese region of Trás-os-Montes and Alto Douro. Different datasets were used to characterize and model the river basin catchment hydrological processes, namely temperature, precipitation and runoff registered in several weather/hydrometric stations from the Institute of Information System for Water Resources (http://snirh.pt/) as well as land use/soil occupation and topography maps. The MIKE BASIN model runs on a Geographic Information System (GIS) to perform hydrologic modeling at basin-scale. This software allows a set of multisectoral water demands (domestic and industrial water supply, irrigation, hydropower generation, among others) and provides simulation and visualization in both space and time. We start by using the topography, soil type, soil use and vegetation cover of the region. Then the model is calibrated and tested, comparing model runoff estimates with observed data. Finally, the model is used to simulate the river basin catchment behavior to the typical conditions of the hydrological extreme events namely, heavy precipitation and drought. We present the geologic, hydrologic and climatologic characterization of the Corgo river catchment, list the most important factors that control the water availability in the river basin, describe the MIKE BASIN model calibration process, and discuss the role of each factor through sensibility tests and the estimated impacts of extreme events on the river basin management.

Pereira, M. G.; Carvalho, S.; Fernandes, L.; Caramelo, L.; Alencoão, A.

2012-04-01

246

Controls on old and new water contributions to stream flow at some nested catchments in Vermont, USA  

USGS Publications Warehouse

Factors controlling the partitioning of old and new water contributions to stream flow were investigated for three events in four catchments (three of which were nested) at Sleepers River Research Watershed in Danville, Vermont. In the 1993 snowmelt period, two-component isotopic hydrograph separations showed that new water (meltwater) inputs to the stream ranged widely from 41 to 74%, and increased with catchment size (41 to 11 125 ha) (with one exception) and with open land cover (0-73%). Peak dissolved organic carbon concentrations and relative alkalinity dilution in stream water ranked in the same order among catchments as the new water fractions, suggesting that new water followed shallow flow paths. During the 1994 snowmelt, despite similar timing and magnitude of melt inputs, the new-water contribution to stream flow ranged only from 30 to 36% in the four catchments. We conclude that the uncommonly high and variable new water fractions in streamwater during the 1993 melt were caused by direct runoff of meltwater over frozen ground, which was prevalent in open land areas during the 1993 winter. In a high-intensity summer rainstorm in 1993, new water fractions were smaller relative to the 1993 snowmelt, ranging from 28 to 46%, but they ranked in the identical catchment order. Reconciliation of the contrasting patterns of new-old water partitioning in the three events appears to require an explanation that invokes multiple processes and effects, including: 1 topographically controlled increase in surface-saturated area with increasing catchment size; 2 direct runoff over frozen ground; 3 low infiltration in agriculturally compacted soils; 4 differences in soil transmissivity, which may be more relevant under dry antecedent conditions. These data highlight some of the difficulties faced by catchment hydrologists in formulating a theory of runoff generation at varying basin scales. Copyright ?? 2002 John Wiley and Sons, Ltd.

Shanley, J.B.; Kendall, C.; Smith, T.E.; Wolock, D.M.; McDonnell, J.J.

2002-01-01

247

Assessing agriculture–water links at the basin scale: hydrologic and economic models of the São Francisco River Basin, Brazil  

Microsoft Academic Search

This article uses a basin-wide hydrologic model to assess the hydrologic and economic effects of expanding agriculture in the São Francisco River Basin, Brazil. It then uses a basin-wide economic model of agriculture to examine the effects of implementing water use regulations. Preliminary results suggest that substantially expanding agriculture would put pressure on some of the river's environmental flows. Agricultural

Marco Maneta; Marcelo Torres; Stephen A. Vosti; Wesley W. Wallender; Summer Allen; Luís H. Bassoi; Lisa Bennett; Richard Howitt; Lineu Rodrigues; Julie Young

2009-01-01

248

Hydrologic sensitivities of the Sacramento-San Joaquin River basin, California, to global warming  

Microsoft Academic Search

The hydrologic sensitivities of four medium-sized mountainous catchments in the Sacramento and San Joaquin River basins to long-term global warming were analyzed. The hydrologic response of these catchments, all of which are dominated by spring snowmelt runoff, were simulated by the coupling of the snowmelt and the soil moisture accounting models of the U.S. National Weather Service River Forecast System.

D. P. Lettenmaier; Thian Yew Gan

1990-01-01

249

High Park burn in South Fork Cache la Poudre Basin: Preliminary findings from spring and summer 2013 hydrologic and sedimentation monitoring  

NASA Astrophysics Data System (ADS)

The High Park fire burned over 35,000 ha within the Cache la Poudre basin in early summer 2012, including an eastern portion of the Little South Fork Cache la Poudre (SFCLP) watershed. Given the proximity of the burn and the implications for water quality supplied to Fort Collins and Greeley, CO, there is an expressed interest on the part of the cities for improved understanding of sediment loads in SFCLP and main stem Cache la Poudre River over the next few years. Prior to burning, data on sediment transport (suspended sediment and bedload) were collected by researchers from the US Forest Service, providing baseline information on sedimentation comparable to similar measurements taken after the High Park fire. In 2013, bedload was measured during snowmelt runoff using standard pressure-difference samplers identical to those used previously in 1989 and 1997. Turbidity sensors were deployed as a surrogate measure of suspended sediment concentration. This signal was calibrated using both grab samples (from a DH-48) and samples obtained from an automated water sampler triggered to collect during substantial increases in turbidity. Additional sampling stations were later established downstream of this site in conjunction with assessments of channel extension and sedimentation from severely burned hillslopes and gulches, one of which was mulched for erosion control in spring 2013. The primary source of post-fire sediment to the most upstream site is from Monument Gulch, located about 1 km upstream of the sampling location. Debris flows emanated from this gulch within a few weeks post-fire and delivered charcoal, ash, burned trees and inorganic sediment to the main stem SFCLP. Although snowmelt runoff was less than bankfull in 2013, there was a substantial amount of burned organic matter transported and collected in the bedload and suspended sediment samplers. Low intensity storms during summer caused a few sediment rich flows, though not to the extent of those in 2012. In this presentation, we present initial findings on differences in sediment loads attributed to the fire.

Ryan, S. E.; Dixon, M.; Rathburn, S. L.; Shahverdian, S.

2013-12-01

250

Hydrothermal deposits in the Southern Trough of Guaymas Basin, Gulf of California: Observations and Preliminary Results from the 2003 MBARI Dive Program  

NASA Astrophysics Data System (ADS)

During Leg 2 of the 2003 MBARI expedition to the Gulf of California, the ROV Tiburon completed eight dives to active vent fields in the Southern Trough of Guaymas Basin. Six venting areas were investigated in detail. Tiburon operations included (1) sampling mineral deposits that range from mini-chimneys a few centimeters high to 10-meter-tall sulfide-carbonate structures with wide flanges; (2) collection of 90C to 303C methane, carbon dioxide, and hydrogen-rich vent fluids in gas-tight samplers and plume-laden particulates in Niskin samplers; 3) collection of warm (up to 83C) hydrocarbon-rich sediment push cores; 4) long-term monitoring of three vent sites using thermocouple arrays (see adjacent Tivey et al poster) and osmotically-driven fluid samplers. Seventy days later, the ROV returned to recover the thermocouple arrays and ingrown chimneys. At the lowest temperature sites, fluid (up to 90C) discharged from orifices in sediment surrounded by white to yellow microbial mats. Combined Eh-ISUS (InSitu Ultraviolet Spectrophotometer) sensors mounted on Tiburon identified local increases in bisulfide and decreases in the oxidation/reduction potential (a proxy for methane and hydrogen sulfide) associated with these sites. Massive barite chimneys recovered from the margins of moderate-temperature vent sites are permeated with oil. Chimneys from higher temperature sites, in contrast, lack the liquid hydrocarbon component, and are largely composed of calcium carbonate with lesser anhydrite, amorphous silica, barite, pyrrhotite, Mg-silicate, galena, sphalerite, and chalcopyrite. Mineral precipitation at the southernmost site (Toadstool) is characterized by the formation of carbonate-rich flanges directly above a substrate of altered diatomaceous sediment. The upper sediment crust lies above a stockwork of calcite veins. High-temperature structures at Rebecca's Roost and Broken Mushroom have pagoda-like carbonate-rich flanges trapping pools of hydrothermal fluids that facilitate the growth of centimeter-thick layers of euhedral carbonate and pyrrhotite. Rapidly formed, anhydrite-rich chimneys are present at the summit of the pagoda structures. In-situ laser ablation Sr isotopic analyses of calcite and anhydrite indicate that minerals within flanges precipitate from vent fluids with less than 5% seawater dilution, whereas minerals within the more permeable anhydrite-dominant chimneys precipitate from mixtures of vent fluid with up to 70% seawater.

Stakes, D. S.; Tivey, M. K.; Koski, R. A.; Ortego-Osorio, A.; Preston, C. M.; McCulloch, M. T.; Nakamura, K.; Seewald, J.; Wheat, C. G.

2003-12-01

251

An Open-Source Approach for Catchment's Physiographic Characterization  

NASA Astrophysics Data System (ADS)

A water catchment's hydrologic response is intimately linked to its morphological shape, which is a signature on the landscape of the particular climate conditions that generated the hydrographic basin over time. Furthermore, geomorphologic structures influence hydrologic regimes and land cover (vegetation). For these reasons, a basin's characterization is a fundamental element in hydrological studies. Physiographic descriptors have been extracted manually for long time, but currently Geographic Information System (GIS) tools ease such task by offering a powerful instrument for hydrologists to save time and improve accuracy of result. Here we present a program combining the flexibility of the Python programming language with the reliability of GRASS GIS, which automatically performing the catchment's physiographic characterization. GRASS (Geographic Resource Analysis Support System) is a Free and Open Source GIS, that today can look back on 30 years of successful development in geospatial data management and analysis, image processing, graphics and maps production, spatial modeling and visualization. The recent development of new hydrologic tools, coupled with the tremendous boost in the existing flow routing algorithms, reduced the computational time and made GRASS a complete toolset for hydrological analysis even for large datasets. The tool presented here is a module called r.basin, based on GRASS' traditional nomenclature, where the "r" stands for "raster", and it is available for GRASS version 6.x and more recently for GRASS 7. As input it uses a Digital Elevation Model and the coordinates of the outlet, and, powered by the recently developed r.stream.* hydrological tools, it performs the flow calculation, delimits the basin's boundaries and extracts the drainage network, returning the flow direction and accumulation, the distance to outlet and the hill slopes length maps. Based on those maps, it calculates hydrologically meaningful shape factors and morphological parameters such as topological diameter, drainage density, Horton's ratios, concentration time, and many more, beside producing statistics on main channel and elevation and geometric features such as centroid's coordinates, rectangle containing the basin, etc. Exploiting Python libraries, such as Numpy and Matplotlib, it produces graphics like the hypsographic and hypsometric curve and the Width Function. The results are exported as a spreadsheet in CSV format and graphics as pngs. The advantages offered by the implementation in Python and GRASS are manifold. Python is a powerful scripting language with huge potential for researchers due to its relative simplicity, high flexibility and thanks to a broad availability of scientific libraries. GRASS, and as a consequence, r.basin, is platform independent, so that it is available for GNU/Linux, MS Windows, Mac, etc. Furthermore, the module is constantly maintained and improved according to users' feedback with the precious help of expert developers. The code is available for review under the official GRASS add-ons repository, allowing hydrologists and researchers to knowingly use, inspect, modify, reuse, and even incorporate it in other projects, such as web services.

Di Leo, M.; Di Stefano, M.

2013-12-01

252

PRELIMINARY PALEOMAGNETIC RESULTS FROM OUTFLOW EOCENE-OLIGOCENE ASH FLOW TUFFS FROM THE WESTERN MARGIN OF THE SAN LUIS BASIN: IMPLICATION FOR THE KINEMATIC EVOLUTION OF THE RIO GRANDE RIFT  

NASA Astrophysics Data System (ADS)

In the Rio Grande rift (RGR), a late Cenozoic continental rift from central Colorado to southern New Mexico, hanging wall margins typically contain en echelon normal fault systems with intervening areas of typically complex structure, called relay zones. Relay zones transfer displacement through complex strain patterns and eventual linkage of faults and hold clues as to how fault zones initiate and grow. The western margin of the RGR at the latitude of the San Luis basin (SLB) exposes laterally continuous Eocene-Oligocene volcanic rocks, well-correlated by 40Ar/39Ar data, and well-preserved rift structures. Ash flow tuffs are usually excellent recorders of the instantaneous geomagnetic field and five ash flow tuffs (ca. 32.3 to 27.3 Ma; including the Saguache Creek, La Jara Canyon, Masonic Park, Fish Canyon, and Carpenter Ridge tuffs) have been sampled in spatial detail along west to east transects of the eastern San Juan volcanic field to the westernmost margin of the RGR at the SLB. Data obtained from our sampling approach will yield a comprehensive definition of relative vertical-axis rotations across the area and will be used to assess the timing of RGR fault linkages. Preliminary paleomagnetic data from the Masonic Park tuff (ca. 28.2 Ma) suggest up to ~17° clockwise rotation between sample locations on the Colorado Plateau and locations to the east, nearest the western margin of the RGR. Preliminary data from the Fish Canyon tuff (ca. 27.8 Ma) show a ~12° clockwise rotation. The relative clockwise vertical-axis rotation of sampling sites in both ash flow tuffs nearest the RGR margin suggests that relay zone development with attending vertical-axis rotation played an important role in the opening of the northern RGR. Our data set is not sufficiently robust at present to test the hypothesis that rotation was taking place concurrently with eruption of these large-volume ash flow tuffs in the early Oligocene, but it is a possibility and if so, the RGR at the latitude of the SLB began to open by about 28 Ma, some 1.5 Ma earlier than previously thought and coeval with late-stage volcanism in the San Juan region.

Mason, S. N.; Geissman, J. W.; Sussman, A. J.

2009-12-01

253

Preliminary geochemical assessment of water in selected streams, springs, and caves in the Upper Baker and Snake Creek drainages in Great Basin National Park, Nevada, 2009  

USGS Publications Warehouse

Water in caves, discharging from springs, and flowing in streams in the upper Baker and Snake Creek drainages are important natural resources in Great Basin National Park, Nevada. Water and rock samples were collected from 15 sites during February 2009 as part of a series of investigations evaluating the potential for water resource depletion in the park resulting from the current and proposed groundwater withdrawals. This report summarizes general geochemical characteristics of water samples collected from the upper Baker and Snake Creek drainages for eventual use in evaluating possible hydrologic connections between the streams and selected caves and springs discharging in limestone terrain within each watershed. Generally, water discharging from selected springs in the upper Baker and Snake Creek watersheds is relatively young and, in some cases, has similar chemical characteristics to water collected from associated streams. In the upper Baker Creek drainage, geochemical data suggest possible hydrologic connections between Baker Creek and selected springs and caves along it. The analytical results for water samples collected from Wheelers Deep and Model Caves show characteristics similar to those from Baker Creek, suggesting a hydrologic connection between the creek and caves, a finding previously documented by other researchers. Generally, geochemical evidence does not support a connection between water flowing in Pole Canyon Creek to that in Model Cave, at least not to any appreciable extent. The water sample collected from Rosethorn Spring had relatively high concentrations of many of the constituents sampled as part of this study. This finding was expected as the water from the spring travelled through alluvium prior to being discharged at the surface and, as a result, was provided the opportunity to interact with soil minerals with which it came into contact. Isotopic evidence does not preclude a connection between Baker Creek and the water discharging from Rosethorn Spring. The residence time of water discharging into the caves and from selected springs sampled as part of this study ranged from 10 to 25 years. Within the upper Snake Creek drainage, the results of this study show geochemical similarities between Snake Creek and Outhouse Spring, Spring Creek Spring, and Squirrel Spring Cave. The strontium isotope ratio (87Sr/86Sr) for intrusive rock samples representative of the Snake Creek drainage were similar to carbonate rock samples. The water sample collected from Snake Creek at the pipeline discharge point had lower strontium concentrations than the sample downstream and a similar 87Sr/86Sr value as the carbonate and intrusive rocks. The chemistry of the water sample was considered representative of upstream conditions in Snake Creek and indicates minimal influence of rock dissolution. The results of this study suggest that water discharging from Outlet Spring is not hydrologically connected to Snake Creek but rather is recharged at high altitude(s) within the Snake Creek drainage. These findings for Outlet Spring largely stem from the relatively high specific conductance and chloride concentration, the lightest deuterium (?D) and oxygen-18 (?18O) values, and the longest calculated residence time (60 to 90 years) relative to any other sample collected as part of this study. With the exception of water sampled from Outlet Spring, the residence time of water discharging into Squirrel Spring Cave and selected springs in the upper Snake Creek drainage was less than 30 years.

Paul, Angela P.; Thodal, Carl E.; Baker, Gretchen M.; Lico, Michael S.; Prudic, David E.

2014-01-01

254

Coupling a basin erosion and river sediment transport model into a large scale hydrological model: an application in the Amazon basin  

NASA Astrophysics Data System (ADS)

This study presents the first application and preliminary results of the large scale hydrodynamic/hydrological model MGB-IPH with a new module to predict the spatial distribution of the basin erosion and river sediment transport in a daily time step. The MGB-IPH is a large-scale, distributed and process based hydrological model that uses a catchment based discretization and the Hydrological Response Units (HRU) approach. It uses physical based equations to simulate the hydrological processes, such as the Penman Monteith model for evapotranspiration, and uses the Muskingum Cunge approach and a full 1D hydrodynamic model for river routing; including backwater effects and seasonal flooding. The sediment module of the MGB-IPH model is divided into two components: 1) prediction of erosion over the basin and sediment yield to river network; 2) sediment transport along the river channels. Both MGB-IPH and the sediment module use GIS tools to display relevant maps and to extract parameters from SRTM DEM (a 15" resolution was adopted). Using the catchment discretization the sediment module applies the Modified Universal Soil Loss Equation to predict soil loss from each HRU considering three sediment classes defined according to the soil texture: sand, silt and clay. The effects of topography on soil erosion are estimated by a two-dimensional slope length (LS) factor which using the contributing area approach and a local slope steepness (S), both estimated for each DEM pixel using GIS algorithms. The amount of sediment releasing to the catchment river reach in each day is calculated using a linear reservoir. Once the sediment reaches the river they are transported into the river channel using an advection equation for silt and clay and a sediment continuity equation for sand. A sediment balance based on the Yang sediment transport capacity, allowing to compute the amount of erosion and deposition along the rivers, is performed for sand particles as bed load, whilst no erosion or deposition is allowed for silt and clay. The model was first applied on the Madeira River basin, one of the major tributaries of the Amazon River (~1.4*106 km2) accounting for 35% of the suspended sediment amount annually transported for the Amazon river to the ocean. Model results agree with observed data, mainly for monthly and annual time scales. The spatial distribution of soil erosion within the basin showed a large amount of sediment being delivered from the Andean regions of Bolivia and Peru. Spatial distribution of mean annual sediment along the river showed that Madre de Dios, Mamoré and Beni rivers transport the major amount of sediment. Simulated daily suspended solid discharge agree with observed data. The model is able to provide temporaly and spatialy distributed estimates of soil loss source over the basin, locations with tendency for erosion or deposition along the rivers, and to reproduce long term sediment yield at several locations. Despite model results are encouraging, further effort is needed to validate the model considering the scarcity of data at large scale.

Buarque, D. C.; Collischonn, W.; Paiva, R. C. D.

2012-04-01

255

What makes catchment management groups "tick"?  

PubMed

The work of catchment management groups throughout Australia represents a significant economic and social investment in natural resource management. Institutional structures and policies, the role of on-ground coordinators, facilitation processes, citizen participation and social capital are critical factors influencing the success of catchment management groups. From a participant-researcher viewpoint, this paper signposts research directions and themes that are being pursued from the participant/coordinator, catchment group, and lead government/non-government agency perspective on the influence of these factors on the success of a catchment management group in the Pumicestone Region of Southeast Queensland, Australia. Research directions, themes and discussion/reflection points for practitioners include--the importance of understanding milieu; motivation; success; having fun; "networking networks"; involvement of "nontraditional" stakeholders; development of stakeholder/participant partnerships; learning from other practitioners; methods of stakeholder/participant representation; evaluation; the need for guiding principles or philosophy; the equivalence of planning, implementation, evaluation, and resourcing; catchments as fundamental units of Nature; continuity of support for groups; recognising a new role for government; working with existing networks; and the need for an eclectic approach to natural resource management. PMID:11424936

Oliver, P

2001-01-01

256

Understanding Polycyclic Aromatic Hydrocarbon transfers at the catchment scale combining chemical and fallout radionuclides analyses  

NASA Astrophysics Data System (ADS)

Contamination of river water and sediment constitutes a major environmental issue for industrialized countries. Polycyclic Aromatic Hydrocarbons (PAHs) are a group of persistent organic pollutants characterized by two or more fused rings. In recent years, studies dealing with PAHs have grown in number. Some PAHs present indeed a high risk for environment and human health because of their carcinogenic and mutagenic properties. However, most of these studies focused on measuring PAH concentration in the different compartments of the environment (air, soil, sediment, water, etc.) In this context, there remains a lack of understanding regarding the various processes responsible for PAH transfers from one environmental compartment to another. Our study aims to quantify PAHs transfers at the catchment scale by combining chemical analysis with gamma spectrometry. Air, soil, river water and sediment samples (n=820) were collected in two upstream sub-catchments of the Seine River basin (France) during one year. Chemical analyses were carried out to determine PAHs concentrations in all samples. Furthermore, measurement of fallout radionuclides (Beryllium-7, Lead-210, Caesium-137) in both rainfall and river sediment provided a way to discriminate between freshly eroded sediment vs. resuspension of older material that previously deposited on the riverbed. This information is crucial to estimate PAH residence time and transfer velocities in the Seine River basin. The results show that the PAH behaviour varies from one subcatchment to the next. PAH transfers depend indeed on both the characteristics of the catchment (e.g. topography, presence of drained cropland in catchments) and the local anthropogenic pressures. A significant increase in atmospheric deposition of PAHs is observed during winter due to a larger number of sources (household heating). The 14-month study has also highlighted the seasonal variations of PAH fluxes, which are mainly related to the hydrological regimes (i.e. low flow vs. flood periods). The behaviour of the PAHs mainly depends on their molecular mass. The lightest ones tend to quickly migrate to rivers whereas the heaviest slowly accumulate in soils throughout the low-flow period. Then, an increase in PAH export associated with sediment is observed during the winter floods, when rivers are heavily loaded with suspended matter. The downstream exports of PAHs are controlled by the main erosion processes that occurred in the catchments. Results show that PAH fluxes are more important when material is mostly supplied to rivers by soil surface erosion processes than when they are delivered by gully or riverbank erosion. Despite the reduction in PAH emissions since the 1960s, there is still a significant storage of PAHs in the upstream part of the Seine River basin. In this context, WFD objectives are unlikely to be reached by 2015.

Gateuille, David; Evrard, Olivier; Lefevre, Irène; Moreau-Guigon, Elodie; Alliot, fabrice; Chevreuil, Marc; Mouchel, Jean-Marie

2013-04-01

257

Human impacts on river water quality- comparative research in the catchment areas of the Tone River and the Mur River-  

NASA Astrophysics Data System (ADS)

Human activities in river basin affect river water quality as water discharges into river with pollutant after we use it. By detecting pollutants source, pathway, and influential factor of human activities, it will be possible to consider proper river basin management. In this study, material flow analysis was done first and then nutrient emission modeling by MONERIS was conducted. So as to clarify land use contribution and climate condition, comparison of Japanese and European river basin area has been made. The model MONERIS (MOdelling Nutrient Emissions in RIver Systems; Behrendt et al., 2000) was applied to estimate the nutrient emissions in the Danube river basin by point sources and various diffuse pathways. Work for the Mur River Basin in Austria was already carried out by the Institute of Water Quality, Resources and Waste Management at the Vienna University of Technology. This study treats data collection, modelling for the Tone River in Japan, and comparative analysis for these two river basins. The estimation of the nutrient emissions was carried out for 11 different sub catchment areas covering the Tone River Basin for the time period 2000 to 2006. TN emissions into the Tone river basin were 51 kt/y. 67% was via ground water and dominant for all sub catchments. Urban area was also important emission pathway. Human effect is observed in urban structure and agricultural activity. Water supply and sewer system make urban water cycle with pipeline structure. Excess evapotranspiration in arable land is also influential in water cycle. As share of arable land is 37% and there provides agricultural products, it is thought that N emission from agricultural activity is main pollution source. Assumption case of 10% N surplus was simulated and the result was 99% identical to the actual. Even though N surplus reduction does not show drastic impact on N emission, it is of importance to reduce excess of fertilization and to encourage effective agricultural activity. Population rate of waste water treatment is 67 % in the total catchment area. Assumption case of 100% WWT was simulated and the result suggests that connection to public sewer system with WWTP is effective potential measure. TN emission in the Tone is higher than it in the Mur. Emission per capita is almost same level for both basin areas. Though the personal pollution stresses same as European basin area, the basin has huge population and activities to support their daily life. Agricultural activity and urban structure have great impacts on N emission and on the river water quality. Possible remedy for river pollution is construction of sewer system with waste water treatment. Agricultural activity is potential betterment factor. Comparison of Mur, Tone and assumption cases

Kogure, K.

2013-12-01

258

Tracer-based runoff modelling in a glacierized alpine catchment  

NASA Astrophysics Data System (ADS)

Water budget of high elevation catchments is dominated by snow and glacier runoff contributions. However, climate change is rapidly affecting such processes and many areas are experiencing an increasing human pressure on water resources. Therefore, it is crucial to develop reliable methods to quantify the partitioning of rainfall, snow and ice melt contribution to runoff. This study focuses on the identification of the sources of stream runoff in a glacierized catchment in the Eastern Italian Alps by means of isotopic (?18O) and electrical conductivity data. The information is then used for the parameterization of the distributed hydrological model GEOtop 1.2, applied implementing different model scenarios. Field work and modelling activities were carried out for the Saldur basin (South Tyrol, 62 km2 drainage area). Catchment elevations range between 900 and 3700 m a.s.l., and the main glacier is located between 2700 and 3700 m a.s.l. (3.3 km2 glacier extent). Water stage was continuously recorded at two cross sections at 2150 m a.s.l. (20 km2 drainage area) and at 2350 m a.s.l. (11 km2 drainage area). Additionally, discharge measurements (by salt dilution method) were carried out to build up the flow rating curves. From late spring to early fall 2011, two sampling approaches were adopted to measure the spatial and temporal variability of tracer concentration: (1) monthly or twice a month water samples were manually taken in the Saldur stream and in its tributaries at different sections ranging from 1800 m to 2400 m a.s.l., and also in some spring sources considered as possible end-members. (2) hourly water samples over 24 hours were taken simultaneously at different stream sections, tributaries and spring sources during two glacier melt- and snowmelt-induced flood events in mid-July and mid-August. Tracer results confirm a great contribution of snow and ice melt to runoff during warmer days, while the influence of groundwater increased during colder days. Isotope data for two daily melting cycles in mid-July and mid-August 2011 highlight different snow and ice melt contributions to river runoff, reflecting the reduced extent of snow cover in the basin during the later period. Based on this information, for both sub-catchments, GEOtop model was run. Input data contained a digital elevation model, land cover data, and the current glacier extent. Meteorological data was provided by a weather station managed by the European Academy of Bozen/Bolzano (EURAC). In order to isolate the contribution of snow- versus ice-related runoff, model scenarios were prepared with different initial model conditions (i.e. snow cover and ice cover extent). Model results thus provided an independent estimation of the different water sources and offered a conceptual framework for isotopic observations.

Engel, M.; Bertoldi, G.; Penna, D.; Comiti, F.

2012-04-01

259

Volume-Duration-Frequencies for Ungaged Catchments in Texas  

E-print Network

This report summarizes results from studies to determine relationships among the volume, duration and frequencies of floods in ungaged catchments in Texas. Methodologies were adopted for determining flood volumes at unregulated, non-urban catchments...

Devulapalli, Ravi S.; Valdes, Juan B.

260

Validation of Pacific Northwest hydrologic landscapes at the catchment scale  

EPA Science Inventory

The interaction between the physical properties of a catchment (form) and climatic forcing of precipitation and energy control how water is partitioned, stored, and conveyed through a catchment (function). Hydrologic Landscapes (HLs) were previously developed across Oregon and de...

261

Temporal variation in sediment budget components for a small incised upland catchment in southeastern Australia  

NASA Astrophysics Data System (ADS)

Temporal variation in process rates, sediment storage and exports can result in substantial changes to components of catchment sediment budgets over both short and long timescales. Quantifying the magnitude of temporal change in sediment budgets is important for interpretation of current and future processes and in understanding landform change. In this study, we develop a fine (900 m) plateau, with channel incision extending along the valley floor to mid-catchment. Land use is predominantly sheep and cattle grazing of pasture, with unrestricted stock access to channels. Various process-based techniques were used to examine temporal variation in sediment budget components over seasonal timescales (3-4 monthly) for a period of nearly two years. This included monitoring of hillslope and channel bank erosion, channel cross-sectional change, and suspended sediment output in conjunction with USLE-based hillslope erosion modelling and sediment source tracing using 137Cs and 210Pbex. Over the total study period, the sediment budget developed from these datasets indicated channel bank erosion accounted for an estimated 80% (41.6 t) of total sediment inputs. Valley floor and in-channel sediment storage represented 53% of total inputs and the remaining 47% was exported from the catchment. Temporal variation in catchment suspended sediment exports was largely dependent on the dynamics of sediment supply and storage within eroding channels. This was reflected in the sediment delivery ratios (SDR) for individual measurement intervals, which ranged from 1 to 153%. Bank sediment supply during low rainfall periods was reduced but subaerial processes - including rainsplash and sheetwash, freeze-thaw, and stock trampling effects - continued delivering sediment to channels, resulting in net accumulation on the channel bed with insufficient flow to transport this material to the catchment outlet. Following the higher flow period in spring of the first year of monitoring, sediment supplied to channels during the 3-month measurement interval was removed as well as an estimated 72% of the sediment accumulated on the channel bed since the start of the study period. The variation in rainfall patterns, pasture vegetation growth, and antecedent soil moisture with seasons and drought conditions contributed to observed hydrological response and sediment flux patterns. Given the seasonal and drought-dependent variability in sediment storage and delivery, the period of monitoring may have an important influence on the overall SDR and interpretation of sediment transfer through catchments. This study also highlighted the potential significance of sediment dynamics in channels for determining contemporary sediment yields from small gullied upland catchments in southeastern Australia, which are widespread in parts of the southern Murray-Darling Basin and appear to represent an important source of fine sediment delivered to lowlands.

Smith, Hugh; Dragovich, Deirdre

2010-05-01

262

Hydrological improvements for nutrient and pollutant emission modeling in large scale catchments  

NASA Astrophysics Data System (ADS)

An estimation of emissions and loads of nutrients and pollutants into European water bodies with as much accuracy as possible depends largely on the knowledge about the spatially and temporally distributed hydrological runoff patterns. An improved hydrological water balance model for the pollutant emission model MoRE (Modeling of Regionalized Emissions) (IWG, 2011) has been introduced, that can form an adequate basis to simulate discharge in a hydrologically differentiated, land-use based way to subsequently provide the required distributed discharge components. First of all the hydrological model had to comply both with requirements of space and time in order to calculate sufficiently precise the water balance on the catchment scale spatially distributed in sub-catchments and with a higher temporal resolution. Aiming to reproduce seasonal dynamics and the characteristic hydrological regimes of river catchments a daily (instead of a yearly) time increment was applied allowing for a more process oriented simulation of discharge dynamics, volume and therefore water balance. The enhancement of the hydrological model became also necessary to potentially account for the hydrological functioning of catchments in regard to scenarios of e.g. a changing climate or alterations of land use. As a deterministic, partly physically based, conceptual hydrological watershed and water balance model the Precipitation Runoff Modeling System (PRMS) (USGS, 2009) was selected to improve the hydrological input for MoRE. In PRMS the spatial discretization is implemented with sub-catchments and so called hydrologic response units (HRUs) which are the hydrotropic, distributed, finite modeling entities each having a homogeneous runoff reaction due to hydro-meteorological events. Spatial structures and heterogeneities in sub-catchments e.g. urbanity, land use and soil types were identified to derive hydrological similarities and classify in different urban and rural HRUs. In this way the hydrological system is simulated spatially differentiated and emissions from urban and rural areas into river courses can be detected separately. In the Ruhr catchment (4.485 km2) as a right tributary of the Rhine located in the lower mountain range of North Rhine-Westphalia in Germany for the validation period 2002-2006 the hydrological model showed first satisfying results. The feasibility study in the Ruhr shows the suitability of the approach and illustrates the potentials for further developments in terms of an implementation throughout the German and contiguous watersheds. IWG, Karlsruhe Institute of Technology (KIT). 2011. http://isww.iwg.kit.edu/MoRE.php. [Online] Institute for Water and River Basin Management, Department of Aquatic Environmental Engineering, October 2011. USGS, U.S. Geological Survey. 2009. PRMS-2009, the Precipitation-Runoff Modeling System. Denver, Colorado : s.n., 2009. Bd. U.S. Geologic Survey Open File Report.

Höllering, S.; Ihringer, J.

2012-04-01

263

Before and after integrated catchment management in a headwater catchment: changes in water quality.  

PubMed

Few studies have comprehensively measured the effect on water quality of catchment rehabilitation measures in comparison with baseline conditions. Here we have analyzed water clarity and nutrient concentrations and loads for a 13-year period in a headwater catchment within the western Waikato region, New Zealand. For the first 6 years, the entire catchment was used for hill-country cattle and sheep grazing. An integrated catchment management plan was implemented whereby cattle were excluded from riparian areas, the most degraded land was planted in Pinus radiata, channel banks were planted with poplar trees and the beef cattle enterprise was modified. The removal of cattle from riparian areas without additional riparian planting had a positive and rapid effect on stream water clarity. In contrast, the water clarity decreased in those sub-catchments where livestock was excluded but riparian areas were planted with trees and shrubs. We attribute the decrease in water clarity to a reduction in groundcover vegetation that armors stream banks against preparatory erosion processes. Increases in concentrations of forms of P and N were recorded. These increases were attributed to: (i) the reduction of instream nutrient uptake by macrophytes and periphyton due to increased riparian shading; (ii) uncontrolled growth of a nitrogen fixing weed (gorse) in some parts of the catchment, and (iii) the reduction in the nutrient attenuation capacity of seepage wetlands due to the decrease in their areal coverage in response to afforestation. Our findings highlight the complex nature of the water quality response to catchment rehabilitation measures. PMID:25228091

Hughes, Andrew O; Quinn, John M

2014-12-01

264

Identification of internal flow dynamics in two experimental catchments  

USGS Publications Warehouse

Identification of the internal flow dynamics in catchments is difficult because of the lack of information in precipitation -stream discharge time series alone. Two experimental catchments, Hydrohill and Nandadish, near Nanjing in China, have been set up to monitor internal flows reaching the catchment stream at various depths, from the surface runoff to the bedrock. With analysis of the precipitation against these internal discharges, it is possible to quantify the time constants and volumes associated with various flowpaths in both catchments.

Hansen, D.P.; Jakeman, A.J.; Kendall, C.; Weizu, G.

1997-01-01

265

Snow cover trend and hydrological characteristics of the Astore River basin (Western Himalayas) and its comparison to the Hunza basin (Karakoram region).  

PubMed

A large proportion of Pakistan's irrigation water supply is taken from the Upper Indus River Basin (UIB) in the Himalaya-Karakoram-Hindukush range. More than half of the annual flow in the UIB is contributed by five of its snow and glacier-fed sub-basins including the Astore (Western Himalaya - south latitude of the UIB) and Hunza (Central Karakoram - north latitude of the UIB) River basins. Studying the snow cover, its spatio-temporal change and the hydrological response of these sub-basins is important so as to better manage water resources. This paper compares new data from the Astore River basin (mean catchment elevation, 4100m above sea level; masl afterwards), obtained using MODIS satellite snow cover images, with data from a previously-studied high-altitude basin, the Hunza (mean catchment elevation, 4650masl). The hydrological regime of this sub-catchment was analyzed using the hydrological and climate data available at different altitudes from the basin area. The results suggest that the UIB is a region undergoing a stable or slightly increasing trend of snow cover in the southern (Western Himalayas) and northern (Central Karakoram) parts. Discharge from the UIB is a combination of snow and glacier melt with rainfall-runoff at southern part, but snow and glacier melt are dominant at the northern part of the catchment. Similar snow cover trends (stable or slightly increasing) but different river flow trends (increasing in Astore and decreasing in Hunza) suggest a sub-catchment level study of the UIB to understand thoroughly its hydrological behavior for better flood forecasting and water resources management. PMID:25461078

Tahir, Adnan Ahmad; Chevallier, Pierre; Arnaud, Yves; Ashraf, Muhammad; Bhatti, Muhammad Tousif

2015-02-01

266

Contextualising impacts of logging on tropical rainforest catchment sediment dynamics and source processes using the stratigraphic record of an in-channel bench deposit.  

NASA Astrophysics Data System (ADS)

While rivers draining tropical rainforested catchments are considered to be relatively stable in terms of their hydrological regime, forest disturbance due to logging can lead to extreme, non-linear responses in both flow and sediment load. With growing concern regarding the downstream impacts of enhanced sediment loads and, in particular in tropical regions, the impacts on coastal habitats, data are required to set recent human impacts on drainage basin response into a longer-term natural response context. Landforms that are constructed incrementally by fluvial processes offer sedimentary archives of river basin sediment responses to disturbance. In this regard, floodplain deposits have been used extensively, but less attention has focussed on mid-catchment lateral channel bench deposits. This study reports the stratigraphic record of a mid-catchment lateral bench deposit in the rotationally logged Segama catchment in eastern Sabah, Malaysian Borneo. Accretion rates derived from fallout radionuclide depth profiles (excess Pb-210 and Cs-137) indicate a significant increase in accretion rates since the 1980s when logging operations began and peaks in accretion match known periods of intensive disturbance. Within this framework, downcore profiles of mineral magnetic and geochemical properties are used to infer switches in sediment source from surface/near-surface (slopewash and pipe erosion) to deeper subsurface (landslide) processes in line with the impact of logging operations. The wider role of in-channel bench deposits as sediment stores in disturbed tropical rainforest catchments is considered.

Blake, W. H.; Walsh, R. P. D.; Bidin, K.; Annammala, K. V.

2012-04-01

267

Urban drainage catchments: Selected worldwide rainfall-runoff data from experimental catchments  

SciTech Connect

This book provides a valuable collection of carefully selected data from both field and laboratory experimental catchments, which will prove indispensable to engineers for testing performances of various urban runoff models in different conditions before applying the model to real-life problems. It contains comprehensive discussions of the methodology involved in data collection, processing and interpretation supported by complete data from 20 urban catchments and four laboratory catchments. Topics considered include data collection and harmonization, discharge measurements, data acquisition, transmission, recording and processing.

Maksimovic, C.; Radojkovic, M.

1986-01-01

268

Modeling daily streamflow at ungauged catchments: What information is necessary?  

NASA Astrophysics Data System (ADS)

Streamflow modeling at ungauged catchments involves transfer of information (viz., model structure and parameters) from gauged to ungauged catchments that are judged to be hydrologically similar. In this study, we focus on identifying: (1) what constitutes the critical information that needs to be transferred among hydrologically similar catchments to achieve good predictability using models at ungauged sites, and (2) which is the best approach for transferring this information from gauged to ungauged catchments. We develop a simple hydrologic model with minimal calibration requirement and implement it over 756 catchments located across the continental United States. The model computes water balance at a daily time-step and conceptualizes subsurface runoff through a storage-dependent exponential decline in saturated hydraulic conductivity. Snow accumulation and melt are modeled using the thermal degree-day concept. The calibrated model performs better in humid runoff-dominated regions than in the drier evapotranspiration-dominated regions. Results show that within a region, transfer of hydrograph recession information alone is sufficient for reliable streamflow predictions at ungauged catchments. Information transfer from spatially proximate gauged catchments provides better streamflow predictability at ungauged catchments than transfer from catchments identified as physically similar. When considering spatially proximate catchments, information transfer from multiple donor catchments is preferable to transfer from a single donor catchment.

Patil, S.; Stieglitz, M.

2011-12-01

269

The case of controlling soil salinisation in an Australian catchment  

Microsoft Academic Search

Externalities are commonly associated with farming activities. As small portions of landscapes, catchments and regions, farms are embedded in large-scale biophysical and ecological processes. Farm activities in upstream parts of catchments may have hydrological effects that affect the well being of people downstream. Human-induced soil salinisation is an externality problem based on catchment hydrology. This paper investigates the case of

Romy Greiner

270

River discharge from ungauged catchments by least-squares prediction  

E-print Network

River discharge from ungauged catchments by least-squares prediction Nico Sneeuw, Robin Thor discharge from ungauged catchments by least-squares prediction #12;Problem 1970 1985 2000 2010 1950 1960 discharge from ungauged catchments by least-squares prediction #12;Goal using legacy data to boost

Stuttgart, Universität

271

Differing chemical weathering conditions in meltwater catchments of western Greenland  

NASA Astrophysics Data System (ADS)

Chemical weathering in the proglacial environment is limited by moisture availability rather than by temperature and proceeds at rates comparable to more temperate catchments of similar specific discharge. Moisture originates from two sources during the ablation season in proglacial environments: snow melt from non-glacierized catchments and directly from glacial melt. The magnitudes of these water sources create differences in stream size and ecology, which may result in different styles and rates of weathering due to differences in water rock interaction time and acid sources. We test this hypothesis through observations of specific conductance (SpC) and stable isotopes of water collected from streams in the Paakitsoq region of western Greenland in July 2011. In the Paakitsoq region, snow and glacier melt waters flow through distinct drainage basins with different types and amounts of vegetation. Basins that only receive water from snow melt have small clear streams that flow through vegetated marshlands. In contrast, basins where the greatest water flux is derived from glacial melt host larger turbid streams that drain across frontal moraines and continue along largely unvegetated flow paths. Snow and glacier end members can be separated by stable isotopic compositions (snow: ?D: -107.3 %; ?18O: -14.8 % and glacier: ?D: -229.8 %; ?18O: -29.7 %). Water isotopes from the two types of streams fall between the snow and glacier end member compositions, reflecting addition of snow melt to the turbid streams and isotopic fractionation of the snow as it melts. Isotopic compositions of water in the turbid streams lie along the global meteoric water line (GMWL), but isotopic compositions from the clear streams lie to the left of the GMWL and reflect preferential weathering in the more highly vegetated watersheds. The greatest amount of chemical weathering occurs in flat, marshy areas in the clear stream catchments, presumably as a result of decreased pH caused by plant metabolism and/or microbial reactions, lower specific discharge, and longer residence times. Higher chemical weathering rates in the clear streams are supported by field measurements of SpC that increase downstream from the snow source. SpC of turbid streams are lower than clear streams but increase downstream as they discharge to a single braided, turbid channel that flows ~20 km to the ocean. Future work on these samples will include analyses of major and trace elements, inorganic and organic carbon species, and Sr and Nd isotopes of water and compositions of rock, suspended and bedload sediments. These measurements will aid in understanding which phases contribute the most weathering products to the water and how these products interact with the local ecosystem, as well as quantify the delivery of weathering products to the ocean. Our results reflect the control of ecology on weathering in high latitude areas. This linkage of weathering to ecology suggests that weathering rates and magnitudes will vary with time through the ablation season depending on melt rate, residence time of water in the stream channels and ecosystems, and magnitude of primary productivity.

Deuerling, K. M.; Martin, J. B.; Gulley, J.

2011-12-01

272

A new debris-flow monitoring system in an Alpine catchment  

NASA Astrophysics Data System (ADS)

Monitoring of debris flows in instrumented catchments permits collection of data on these phenomena and provides a valuable link with geomorphological and topographical observations of erosion, sediment supply and channel-bed evolution. Numerous sites recently instrumented in various geographical regions show that field monitoring is receiving increasing attention in debris-flow research worldwide. The poster presents a novel installation for debris-flow monitoring in the Gadria catchment (Eastern Alps, Northern Italy). The Gadria basin has been chosen mainly because of the relatively high frequency of debris flows (on average 1-2 per year). The Gadria catchment has a drainage area of 6.3 km2 and ranges in elevation from 1394 m to 2945 m. An important bedload tributary (Strimm, drainage area 8.5 km2, minimum elevation 1394 m, maximum elevation 3197 m) joins the Gadria channel close to a filter check dam located near the alluvial fan apex, which has been set as the outlet of both basins. Sensors have been installed both in the Gadria and in the Strimm basins. The monitoring equipment consists of rain gauges, radar sensors for flow depth, geophones for ground vibrations, and videocameras with spotlights. Two radar sensors, four geophones and three videocameras have been installed in the lower reach of the Gadria channel just upstream of the previously mentioned filter check dam. A further monitoring station will be installed approximately 500 m upstream along the main channel. Rain gauges and pressure transducers for monitoring flow stage have been installed in the Strimm basin. Six water pore pressure sensors, 28 spatially-distributed soil moisture probes (at 10 cm and 50 cm depth) and six piezometric wells equipped with pressure transducers have been installed in the sediment source areas in the upper portion of the Gadria catchment in order to describe and understand the main hydrological controls connected to the debris-flow triggering and sediment mobilization. A small-magnitude debris flow, which occurred on August 5, 2011, has represented a first test for the monitoring equipment. Debris-flow hydrograph, flow velocity and frames of different phases of the debris flow recorded by the videocameras are illustrated in the poster.

Marchi, L.; Comiti, F.; Arattano, M.; Cavalli, M.; Macconi, P.; Penna, D.

2012-04-01

273

A rapid method to identify the potential of debris flow development induced by rainfall in catchments of the Wenchuan earthquake area  

NASA Astrophysics Data System (ADS)

In many mountainous areas, the limited space in the valley floors has created a need to construct the temporary settlements in zones potentially exposed to debris flow hazards after a strong earthquake. In these zones, a rapid identification of catchments with a high hazard level for debris flows is then necessary, to provide information for future risk management. This paper presents an empirical model to identify debris flow prone catchments at a regional scale. Sixty-nine debris flow catchments in the Wenchuan earthquake area were selected and investigated using high-resolution aerial photography to estimate the area of loose materials in the debris-flow catchments The statistical results show that debris flow prone catchments, have areas lower than 5 km2, and channel gradients which vary between 364 and 1192o and an internal relief lower than 2 km. But the level of debris flow hazard in these catchments is more closely related to the area of loose materials than basin relief and channel gradient. So basin area and area of loose materials were selected as the key factor to establish an applicable identification model. A mathematical model was constructed to estimate the thresholds of areas of loose materials for debris-flow prone catchments. The validation showed that the established model was suitable and met the requirements for identification of potential debris flows in the Wenchuan earthquake area. The results of the study will help the local government to select safe sites for rehabilitation and relocation in the future and can also be used as an important basis for debris-flow risk management. The approach may be applied to other earthquake areas, when adapting the threshold parameters according to new local conditions. Key words: Wenchuan earthquake; statistical model; debris flow thresholds

Zhou, Wei; Tang, Chuan; Van Asch, ThWJ; Chang, Ming

2014-05-01

274

Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Mean Infiltration-Excess Overland Flow, 2002  

USGS Publications Warehouse

This tabular data set represents the mean value for infiltration-excess overland flow as estimated by the watershed model TOPMODEL, compiled for every catchment of NHDPlus for the conterminous United States. Infiltration-excess overland flow, expressed as a percent of total overland flow, is simulated in TOPMODEL as precipitation that exceeds the infiltration capacity of the soil and enters the stream channel. The source data set is Infiltration-Excess Overland Flow Estimated by TOPMODEL for the Conterminous United States (Wolock, 2003). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

Wieczorek, Michael E.; LaMotte, Andrew E.

2010-01-01

275

Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Estimated Mean Annual Natural Groundwater Recharge, 2002  

USGS Publications Warehouse

This data set represents the mean annual natural groundwater recharge, in millimeters, compiled for every catchment of NHDPlus for the conterminous United States. The source data set is Estimated Mean Annual Natural Ground-Water Recharge in the Conterminous United States (Wolock, 2003). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, containing NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

Wieczorek, Michael E.; LaMotte, Andrew E.

2010-01-01

276

Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Average Annual Daily Minimum Temperature, 2002  

USGS Publications Warehouse

This data set represents the average monthly minimum temperature in Celsius multiplied by 100 for 2002 compiled for every catchment of NHDPlus for the conterminous United States. The source data were the Near-Real-Time High-Resolution Monthly Average Maximum/Minimum Temperature for the Conterminous United States for 2002 raster dataset produced by the Spatial Climate Analysis Service at Oregon State University. The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

Wieczorek, Michael E.; LaMotte, Andrew E.

2010-01-01

277

Attributes for NHDPlus catchments (version 1.1) for the conterminous United States: Average Annual Daily Maximum Temperature, 2002  

USGS Publications Warehouse

This data set represents the average monthly maximum temperature in Celsius multiplied by 100 for 2002 compiled for every catchment of NHDPlus for the conterminous United States. The source data were the Near-Real-Time High-Resolution Monthly Average Maximum/Minimum Temperature for the Conterminous United States for 2002 raster dataset produced by the Spatial Climate Analysis Service at Oregon State University. The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

Wieczorek, Michael E.; LaMotte, Andrew E.

2010-01-01

278

Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Base-Flow Index  

USGS Publications Warehouse

This tabular data set represents the mean base-flow index expressed as a percent, compiled for every catchment in NHDPlus for the conterminous United States. Base flow is the component of streamflow that can be attributed to ground-water discharge into streams. The source data set is Base-Flow Index for the Conterminous United States (Wolock, 2003). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

Wieczorek, Michael E.; LaMotte, Andrew E.

2010-01-01

279

Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Average Monthly Precipitation, 2002  

USGS Publications Warehouse

This data set represents the average monthly precipitation in millimeters multiplied by 100 for 2002 compiled for every catchment of NHDPlus for the conterminous United States. The source data were the Near-Real-Time Monthly High-Resolution Precipitation Climate Data Set for the Conterminous United States (2002) raster dataset produced by the Spatial Climate Analysis Service at Oregon State University. The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

Wieczorek, Michael E.; LaMotte, Andrew E.

2010-01-01

280

Sediment Delivery Assessment for a Transboundary Mediterranean Catchment: The Example of Nestos River Catchment  

Microsoft Academic Search

Nestos River flows through Bulgaria and Greece and discharges into the North Aegean Sea. Its total catchment area is around\\u000a 6,200 km2, while the mean annual precipitation and runoff are 680 mm and 40 m3\\/s, respectively. The Hellenic part of the catchment has undergone a substantial hydroelectric development, since two dams\\u000a associated with major hydropower pumped-storage facilities are in operation. The main objective

Demetris Zarris; Marianna Vlastara; Dionysia Panagoulia

281

Measuring winter precipitation in a mountain catchment  

Technology Transfer Automated Retrieval System (TEKTRAN)

Measuring winter precipitation (principally snowfall) in a mountain catchment is difficult. The magnitude of gauge under catch is affected by variable density during deposition, wind speed and direction, and site conditions such as vegetation and topography. Though numerous studies have been condu...

282

Lake and catchment management in Denmark  

Microsoft Academic Search

The majority of Danish lakes are highly eutrophic due to high nutrient input from domestic sources and agricultural activities. Reduced nutrient retention, and more rapid removal, in catchments as a result of agricultural drainage of wetlands and lakes and channelisation or culverting of streams also play a role. Attempts have recently been made to reduce nutrient loading on lakes by

Erik Jeppesen; Martin Søndergaard; Brian Kronvang; Jens P. Jensen; Lars M. Svendsen; Torben L. Lauridsen

1999-01-01

283

Hydrological Modelling of Small Catchments Using Swat  

NASA Astrophysics Data System (ADS)

The data from a 142ha catchment in Eastern England(Colworth, Bedfordshire)are be- ing used to investigate the performance of the USDA SWAT software for modelling hydrology of small catchments. Stream flow at the catchment outlet has been mon- itored since October 1999. About 50% of the total catchment is directly controlled within one farm and a rotation of wheat, oil seed rape, grass, linseed, beans and peas is grown. Three years of stream flow and climate data are available. Calibration and validation of stream flow was carried out with both runoff modelling options in the SWAT model (USDA curve number method and the Green and Ampt method). The Nash and Sutcliffe efficiencies for the calibration period were 66% and 63% respec- tively. The performance of SWAT was better in the validation period as a whole, with regard to timing of peaks, baseflow values and Nash and Sutcliffe efficiency. An ef- ficiency of 70% was obtained using the curve number method, which is comparable with the efficiencies obtainable with more complex models. Despite this performance, SWAT is under predicting stream flow peaks. A detailed investigation of important model components, has allowed us to identify some of the reasons for under predic- tion of stream flow peaks.

Kannan, N.; White, S. M.; Worrall, F.; Groves, S.

284

Creating a catchment perspective for river restoration  

Microsoft Academic Search

One of the major challenges in river restoration is to identify the natural fluvial landscape in catchments with a long history of river control. Intensive land use on valley floors often predates the earliest remote sensing: levees, dikes, dams, and other structures alter valley-floor morphology, river channels and flow regimes. Consequently, morphological patterns indicative of the fluvial landscape including multiple

L. Benda; D. Miller; J. Barquín

2011-01-01

285

Calibration of hydrological models in glacierized catchments  

NASA Astrophysics Data System (ADS)

Glacierized catchments are important source regions for water, and detailed knowledge of water availability is a prerequisite for good resource management strategies. Reliable and physically consistent runoff simulations become even more important if climate change impacts on alpine water resources are to be assessed. However, hydrological modeling of glacierized catchments is challenging ice melt which represents an additional source of water. Thus, adequate calibration strategies are needed especially in data scarce regions. An important question is how powerful a limited amount of data might be for model calibration. Accordingly, we analyzed the calibration power of limited discharge measurements, mass balance observations and the combination of by means of both Monte Carlo analyzes and multi-criteria model performance evaluation. Ensembles of 100 parameter sets were selected by evaluating the simulations based on a limited and discrete number of discharge measurements, glacier mass balance, and the combination of discharge and mass balance observations. Using these ensembles then the runoff was simulated and evaluated for the entire runoff series. The results for the Vernagtferner catchment and the Venter Ache catchment in Austria indicated that a single annual glacier mass balance observation contained useful information to constrain hydrological models. Combining mass balance observations with a few discharge data improved the internal consistency and significantly reduced the uncertainties compared to parameter set selections based on discharge measurements alone. Information on discharge was required for at least 3 days during the melting season to obtain good ensemble predictions.

Konz, Markus; Seibert, Jan; Braun, Ludwig; Burlando, Paolo

2010-05-01

286

A simple framework for relating variations in runoff to variations in climatic conditions and catchment properties  

NASA Astrophysics Data System (ADS)

We use the Budyko framework to calculate catchment-scale evapotranspiration (E) and runoff (Q) as a function of two climatic factors, precipitation (P) and evaporative demand (Eo = 0.75 times the pan evaporation rate), and a third parameter that encodes the catchment properties (n) and modifies how P is partitioned between E and Q. This simple theory accurately predicted the long-term evapotranspiration (E) and runoff (Q) for the Murray-Darling Basin (MDB) in southeast Australia. We extend the theory by developing a simple and novel analytical expression for the effects on E and Q of small perturbations in P, Eo, and n. The theory predicts that a 10% change in P, with all else constant, would result in a 26% change in Q in the MDB. Future climate scenarios (2070-2099) derived using Intergovernmental Panel on Climate Change AR4 climate model output highlight the diversity of projections for P (±30%) with a correspondingly large range in projections for Q (±80%) in the MDB. We conclude with a qualitative description about the impact of changes in catchment properties on water availability and focus on the interaction between vegetation change, increasing atmospheric [CO2], and fire frequency. We conclude that the modern version of the Budyko framework is a useful tool for making simple and transparent estimates of changes in water availability.

Roderick, Michael L.; Farquhar, Graham D.

2011-12-01

287

Sediment yield model implementation based on check dam infill stratigraphy in a semiarid Mediterranean catchment  

NASA Astrophysics Data System (ADS)

Soil loss and sediment transport in Mediterranean areas are driven by complex non-linear processes which have been only partially understood. In order to facilitate the comprehension of these phenomena, distributed models can be very helpful tools for sediment yield estimation. In this work, a modelling approach is proposed to reproduce and evaluate erosion and sediment yield processes in a Mediterranean catchment (Rambla del Poyo, Valencia, Spain). Due to the lack of sediment transport records for model calibration and validation, a detailed description of the alluvial stratigraphy infilling a check dam that drains a 12.9 km2 sub-catchment was used as an indirect evidence of sediment yield data. These dam infill sediments showed evidences of at least 15 depositional events (floods) over the time period 1990-2009. The TETIS-SED model, a distributed conceptual hydrological and sediment model, was coupled to the Sediment Trap Efficiency for Small Ponds (STEP) model for reproducing reservoir retention, and it was calibrated and validated using the sedimentation volume estimated for the depositional units associated with discrete runoff events. The results show relatively low net erosion rates compared to other Mediterranean catchments (14 t km-2 yr-1), probably due to the extensive outcrops of limestone bedrock and rather homogeneous vegetation cover, and confirms the ephemeral behaviour of the stream. The modelled sediment production rates offer satisfactory results, further supported by palaeohydrological evidences, showing its great potential for the quantitative analysis of sediment dynamics in ungauged Mediterranean basins.

Bussi, G.; Rodríguez-Lloveras, X.; Francés, F.; Benito, G.; Sánchez-Moya, Y.; Sopeña, A.

2013-03-01

288

Quantifying the performance of two conceptual models for snow dominated catchments in Austria and Turkey  

NASA Astrophysics Data System (ADS)

In many mountainous regions, snowmelt makes significant contribution to streamflow, particularly during spring and summer months. Understanding the magnitude and timing of this contribution and hydrological forecasts are essential for a range of purposes concerning the implications with water resources management. Conceptual hydrological models have been widely applied for mountain catchments both for operational and scientific applications. Hydrologiska Byran Vattenbalansavdelning (HBV) and Snowmelt Runoff Model (SRM) are selected in this study as the commonly used conceptual models in hydrological modeling forecasting for a number of basins in several countries. Moreover, this selection is also supported by the experiences on the improvement and application in remote sensing techniques in snow dominated regions. The greatest similarity between the two models is that each uses a temperature index method to predict melt rate whereas the greatest difference lies in the way snow cover is handled. In mountainous regions, data limitations prevent detailed understanding of the variability of snow cover and melt. In situ snowpack measurements are sparsely distributed relative to snowpack heterogeneity therefore, to supplement ground measurements; remotely sensed images of snow covered area (SCA) provide useful information for runoff prediction during the snowmelt season. SCA has been used as a direct input to SRM and as a means of checking the internal validity for HBV model. Moderate Resolution Imaging Spectroradiometer (MODIS) daily snow cover products with 500 m spatial resolution are used to derive SCA data in this study. A number of studies have been reported in the literature indicated that the model performance can vary depending on several factors, including the scale and characteristics of the catchment, availability of the data required and runoff producing mechanism. Therefore, five different catchments including data scare and rich basins, areas and reliefs changing in between 1000-10250 km2and 1250-3050 m, respectively, in Austria and Turkey are tested to understand the impact of catchment properties on model simulations. Both models are used to simulate runoff for the years 2001-2010 with the period of 2001-2008 and 2009-2011 for model calibration and validation, respectively. The overall model calibration performance evaluated with the model efficiency is above 0.70 and volume difference less than 10% for both of the models. Discussion of results are supervised to reflect the general debates in hydrologic modeling in terms of parameters and calibration, internal validation, the value and limitations of using satellite derived data, impact of different catchment properties with emphasis on the contrasting treatments in two widely used hydrologic models, SRM and HBV.

Sensoy, Aynur; Parajka, Juraj; Coskun, Cihan; Sorman, Arda; Ertas, Cansaran

2014-05-01

289

Modelling sediment yield of a highly erodible catchment based on reservoir siltation volumes  

NASA Astrophysics Data System (ADS)

Distributed sediment models are a fundamental tool for the estimation of soil erosion and basins sediment yield. One of the main restrictions for its implementation at the catchment scale is data availability. Sediment yield records are necessary for a correct model calibration and validation. Nevertheless, continuous sediment yield measurements are very scarce, and almost exclusively available for small catchments or experimental plots. This problem can be overcome by using bottom reservoir and lake deposits as estimates of the total sediment yield. In this study, the TETIS model is applied to the Ésera catchment (Central Southern Pyrenees), which flows into the Barasona Reservoir. The TETIS model is a distributed conceptual hydrological model widely used in the last two decades, and it includes a sedimentological extension. Hydrological processes such as soil static storage, infiltration and runoff generation are conceptualized by means of a simple tank structure, while sediment production is estimated by the modified Kilinc-Richardson equation and the sediment channel transport capacity is calculated by means of the Engelund-Hansen formula. The Ésera and its main tributary, the River Isabena, are highly erodible catchments due to presence of badlands stripes on marls located in the middle parts of the basins. Rivers drain into the Barasona Reservoir, a lake that experiences severe siltation. The reservoir has lost most of its original capacity and must be dredged regularly. Five bathymetrical surveys are available, carried out by the Experimental Studies Centre (CEDEX - 1986, 1993, and 1998) and the University of Lleida (2006 and 2007). The depositional history of the Barasona Reservoir has been reconstructed using these measurements and other studies carried out at the reservoir deposits in the last 20 years. This historical reconstruction provides estimated siltation volumes, which have been used for calibrating and validating the sediment submodel. Sediment dry bulk density was incorporated using the Miller formula, and the sediment trap efficiency of the reservoir was calculated by the Brune's formula. Model outcomes were compared to suspended sediment measurements on the River Isábena. Overall, results show a good behaviour of the model, which is able to estimate total deposited volumes into the reservoir and to detect high erosion zones all over the catchment. Nevertheless, some relevant differences with gauged sediments are observed, above all for the period 88-93 (the model error on the total volume is -60%, i.e. the model underestimates the observed sediment accumulation), which are worth a more detailed analysis, e.g. taking into account possible errors in trap efficiency estimation and in reservoir storage capacity estimation.

Bussi, Gianbattista; Francés, Félix; Andrés López-Tarazón, José; Batalla, Ramón J.

2013-04-01

290

Holocene activity of an alpine debris-flow catchment: does climate control erosion rate variability?  

NASA Astrophysics Data System (ADS)

The Zielbach catchment is located in the central-eastern Italian Alps. It covers an area of ca. 40 km2 and is characterized by fluvial sediment transport along the main drainage basin, and by the supply of sediment through debris flows, derived from a ca. 10 km2 tributary catchment. A debris-flow database demonstrates that nowadays this latter tributary dominates the sediment budget of the entire Zielbach. In this study, we analyze modern and paleo-erosion rates of the catchment through the application of the cosmogenic nuclides technique. For modern erosion rate, samples of river-born sand were taken from the main river and tributaries along the entire drainage system, while paleo-erosion rates are calculated thanks to cores' samples, which were collected on the alluvial fan and which were likewise dated based on 14C measurements of organic matter. Results obtained from the modern drainage system reveal the spatial erosion rate variability that characterizes the catchment nowadays (values ranging from 2.6 to 0.15 mm/yr). This spatial pattern is characterized by a generally increasing trend of 10Be values where hillslope contributions predominate and by a decreasing concentration trend where sediment has been supplied by debris flows. Results obtained from the cores allow the reconstruction of the Zielbach Holocene evolution and the assignment of the climate role on the temporal erosion rate variability (values ranging between 21 and 0.43 mm/yr). 14C concentrations of organic material collected from the core material indicate a lowermost age of 10'000 yr at ca. 35 m depth. The sedimentary fabric of the deposits indicates that the fan is built up by alternation of alluvial and debris-flow deposits, where the latter ones dominate in volumes. The stratigraphic architecture also infers that alluvial deposits correspond to periods of low activity of the debris-flow catchment. Most important, however, paleo-erosion rates indicate a decreasing trend for the debris-flow activity from ca. 10'000 yr to the present, with values decreasing from ca. 21 to 0.8 mm/yr. During the same time span, the alluvial sediment supplied by the main catchment appears to have been steady, as indicated by a constant basin-averaged denudation rate of 0.45 mm/yr. The comparison of these results with the climatic history of the valley reveals that periods of high activity of the debris flow catchment (associated with higher 10Be-based erosion rates) correspond to periods of a wetter and cooler climate. In particular, the highest value (21 mm/yr) seems to be related to the late glacial phase, which presumably started after the LGM and terminated around 10'000 yr, while a reactivation of the debris-flow activity, with erosion rates around 1.0 mm/yr, corresponds to the Holocene climatic deterioration at ca. 3'500 yr B.P. The alluvial phase of the Zielbach catchment (erosion rate of ca. 0.43 mm/yr), marked by absent or lower debris-flow activity, seems to be related to the Holocene climatic optimum between 8'000 and 4'000 years ago.

Savi, S.; Norton, K. P.; Brardinoni, F.; Akçar, N.; Kubik, P.; Picotti, V.; Schlunegger, F.

2012-12-01

291

Estimating net anthropogenic nitrogen inputs (NANI) in the Lake Dianchi basin of China  

NASA Astrophysics Data System (ADS)

Net anthropogenic nitrogen inputs (NANI) with components of atmospheric N deposition, synthetic N fertilizer, agricultural N fixation and N in net food and feed imports from 15 catchments in the Lake Dianchi basin were determined over an 11-year period (2000-2010). The 15 catchments range in size from 44 km2 to 316 km2 with an average of 175 km2. To reduce uncertainty from scale change methodology, results from data extraction by area-weighting and land use-weighting methods were compared. Results show that the methodology for extrapolating data from the county scale to watersheds has a great influence on NANI computation for catchments in the Lake Dianchi basin, and that estimates of NANI between the two methods have an average difference of 30% on a catchment basis, while a smaller difference (15%) was observed on the whole Lake Dianchi basin basis. The riverine N export has a stronger linear relationship with NANI computed by the land use-weighting method, which we believe is more reliable. Overall, nitrogen inputs assessed by the NANI approach for the Lake Dianchi basin are 9900 kg N km-2 yr-1, ranging from 6600 to 28 000 kg N km-2 yr-1 among the 15 catchments. Synthetic N fertilizer is the largest component of NANI in most subwatersheds. On average, riverine flux of nitrogen in catchments of the Lake Dianchi basin averages 83% of NANI, far higher than generally observed in North America and Europe. Saturated N sinks and a limited capacity for denitrification in rivers may be responsible for this high percentage of riverine N export. Overall, the NANI methodology should be applicable in small watersheds when sufficiently detailed data are available to estimate its components.

Gao, W.; Howarth, R. W.; Hong, B.; Swaney, D. P.; Guo, H. C.

2014-08-01

292

Spatial variability of herbicide mobilisation and transport at catchment scale: insights from a field experiment  

NASA Astrophysics Data System (ADS)

During rain events, herbicides can be transported from their point of application to surface waters where they may harm aquatic organisms. Since the spatial pattern of mobilisation and transport is heterogeneous, the contributions of different fields to the herbicide load in the stream may differ considerably within one catchment. Therefore, the prediction of contributing areas could help to target mitigation measures efficiently to those locations where they reduce herbicide pollution the most. Such spatial predictions require sufficient insight into the underlying transport processes. To improve the understanding of the process chain of herbicide mobilisation on the field and the subsequent transport through the catchment to the stream, we performed a controlled herbicide application on corn fields in a small agricultural catchment (ca. 1 km2) with intensive crop production in the Swiss Plateau. For two months after application in 2009, water samples were taken at different locations in the catchment (overland flow, tile drains and open channel) with a high temporal resolution during rain events. We also analysed soil samples from the experimental fields and measured discharge, groundwater level, soil moisture and the occurrence of overland flow at several locations. Several rain events with varying intensities and magnitudes occurred during the study period. Overland flow and erosion were frequently observed in the entire catchment. Infiltration excess and saturation excess overland flow were both observed. However, the main herbicide loss event was dominated by infiltration excess. This is in contrast to earlier studies in the Swiss Plateau, demonstrating that saturation excess overland flow was the dominant process. Despite the frequent and wide-spread occurrence of overland flow, most of this water did not directly reach the channel. It mostly got retained in small sinks in the catchment. From there, it reached the stream via macropores and tile drains. Manholes of the drainage system and catch basins for road and farmyard runoff acted as additional shortcuts to the stream. Although fast flow processes like overland and macropore flow reduce the influence of herbicide properties due to short travel times, sorption properties influenced the herbicide transfer from ponding overland flow to tile drains (macropore flow). However, no influence of sorption was observed during the mobilisation of the herbicides from soil to overland flow. These two observations on the role of herbicide properties contradict, to some degrees, previous findings. They demonstrate that valuable insight can be gained by spatially detailed observations along the flow paths.

Doppler, T.; Camenzuli, L.; Hirzel, G.; Krauss, M.; Lück, A.; Stamm, C.

2012-02-01

293

Morphometric analysis of Suketi river basin, Himachal Himalaya, India  

NASA Astrophysics Data System (ADS)

Suketi river basin is located in the Mandi district of Himachal Pradesh, India. It encompasses a central inter-montane valley and surrounding mountainous terrain in the Lower Himachal Himalaya. Morphometric analysis of the Suketi river basin was carried out to study its drainage characteristics and overall groundwater resource potential. The entire Suketi river basin has been divided into five sub-basins based on the catchment areas of Suketi trunk stream and its major tributaries. Quantitative assessment of each sub-basin was carried out for its linear, areal, and relief aspects. The analysis reveals that the drainage network of the entire Suketi river basin constitutes a 7th order basin. Out of five sub-basins, Kansa khad sub-basin (KKSB), Gangli khad sub-basin (GKSB) and Ratti khad sub-basin (RKSB) are 5th order sub-basins. The Dadour khad sub-basin (DKSB) is 6th order sub-basin, while Suketi trunk stream sub-basin (STSSB) is a 7th order sub-basin. The entire drainage basin area reflects late youth to early mature stage of development of the fluvial geomorphic cycle, which is dominated by rain and snow fed lower order streams. It has low stream frequency (Fs) and moderate drainage density (Dd) of 2.69 km/km 2. Bifurcation ratios (Rb) of various stream orders indicate that streams up to 3rd order are surging through highly dissected mountainous terrain, which facilitates high overland flow and less recharge into the sub-surface resulting in low groundwater potential in the zones of 1st, 2nd, and 3rd order streams of the Suketi river basin. The circulatory ratio (Rc) of 0.65 and elongation ratio (Re) of 0.80 show elongated nature of the Suketi river basin, while infiltration number (If) of 10.66 indicates dominance of relief features and low groundwater potential in the high altitude mountainous terrain. The asymmetry factor (Af) of Suketi river basin indicates that the palaeo-tectonic tilting, at drainage basin scale, was towards the downstream right side of the drainage basin. The slope map of Suketi river basin has been classified into three main zones, which delineate the runoff zone in the mountains, recharge zone in the transition zone between mountains and valley plane, and discharge zone in the plane areas of Balh valley.

Pophare, Anil M.; Balpande, Umesh S.

2014-10-01

294

Characterization of the regional variability of flood regimes within the Omo-Gibe River Basin, Ethiopia  

NASA Astrophysics Data System (ADS)

Hydrological variability and seasonality is one of the Ethiopia's primary water resource management challenges. Variability is most obviously manifest in endemic, devastating droughts and floods. While the level of flooding is quite often extremely high and destroys human beings and property, in many cases flooding is of vital importance because the community benefits from flood recession agriculture. This is the case of the lower Omo plain whose agriculture is based on the regularity of the inundations due to flooding of the Omo Gibe River. The big flood in 2006, which caused death for more than 300 people and 2000 cattle, poses a dilemma. Flooding must be controlled and regulated in a way that the damages are reduced as much as possible but the flooding-related benefits are not lost. To this aim, characterization and understanding of hydrological variability of the Omo Gibe River basin is fundamental. The goal of this work is to extract the maximal amount of information on the hydrological variability and specially on the flooding regime from the few data available in the region. Because most of the basin is ungauged, hydrological information is reconstructed using the data from 9 gauged catchments. A daily water balance model has been developed, calibrated and validated for 9 gauged catchments and, subsequently, the parameters have been correlated to catchment characteristics in order to establish a functional relationship that allows to apply the model to ungauged catchments. Daily streamflow has been predicted for 15 ungauged catchments, which are assumed to comprehensively represent the hydrological variability of the Omo-Gibe River Basin. Even though both northern and southern catchments are affected by a strong seasonality of precipitation, with most of the rain falling in less than 3 months, most of the northern catchments are humid, while in the southern part of the Omo-Gibe River basin, the catchments are either humid, dry sub humid, semiarid or arid. As for climate, also landscape and vegetation cover is more homogeneous in the northern part of the Omo Gibe River basin than in the southern part. Consequently, the runoff variability reflects the interesting diversity of climate and landscape of the basin. The gradient of flooding regimes from the north to the south of the Omo Gibe River basin will be analysed and the impacts of possible regime changes will be discussed.

Yared, Adanech; Demissie, Solomon S.; Sivapalan, Murugesu; Viglione, Alberto; MacAlister, Charlotte

2014-05-01

295

Homogenization of Spatial Patterns of Hydrologic Response in Artificially Drained Agricultural Catchments  

NASA Astrophysics Data System (ADS)

Anthropogenic modifications to the landscape, with agricultural activities being a primary driver, have resulted in significant alterations to the hydrologic cycle. Artificial drainage, including surface and subsurface drainage (tile drains), is one of the most extensive manipulations in agricultural landscapes and thus is expected to provide a distinct signature of anthropogenic modification. This study adopts a data synthesis approach in an effort to characterize the signature of artificial subsurface drainage. Daily discharge data from 24 basins across the state of Iowa, which encapsulate a range of anthropogenic modifications, are assessed using a variety of flow metrics. Results indicate that the presence of artificial subsurface drainage leads to a homogenization of landscape hydrologic response. Non-tiled watersheds exhibit a decrease in the area-normalized peak discharge and an increase in the baseflow ratio (baseflow/streamflow) with increases in the spatial scale, while scale invariance is apparent in tiled basins. Within-basin variability in hydrograph recession coefficients also appears to decrease with increases in the proportion of the catchment that is artificially drained. Finally, the differences between tiled and non-tiled landscapes disappear at scales greater than approximately 2200 km2, indicating that this may be a threshold scale for studying the effects of tile drainage. This decrease in within-basin variability and the scale invariance of hydrologic metrics in artificially drained watersheds are attributed to the creation of a bypass flow hydrologic pathway that bypasses the complexity of the catchment travel paths. Spatial homogeneity in responses implies that it may be possible to develop more parsimonious hydrologic models for these regions.

Boland, S. J.; Basu, N. B.; Schilling, K.

2013-12-01

296

Influences on the establishment and dominance of vegetation in stormwater infiltration basins.  

PubMed

Infiltration basins are widely used in urban environments as a technique for managing and reducing the volume of stormwater. These basins can be spontaneously colonized by wild plants, which can be used as bioindicators of edaphic characteristics. As the basins are anthropogenic environments, the description of plant biodiversity allows the determination of which species colonize such environments and identification of the relationships between plants, basin type and operation. Nineteen infiltration basins were selected according to their catchment types (industrial, urban, agricultural). The dominant species were identified and sampled. Rumex sp., Taraxacum sp. and Artemisia sp. are the three types most represented (88, 61 and 55% respectively of the basins studied). Their families and their respective orders are those most commonly found (Caryophyllales, Asterales and Polygonaceae, Asteraceae). Poaceae is the family grouping with the largest number of different species (11). Although each species occupies only 1 or 2 basins, plants of this family occupy 61% of the basins. Although the catchment characteristics of the 19 basins do not play a direct role in the diversity of plant families, they can influence the presence or absence of certain species. Thus, these plants can be used as bio-indicators of basin soil and operating characteristics, such as sediment depths, inundation frequency and duration. PMID:24355843

Bedell, J-P; Mourier, B; Provot, J; Winiarski, T

2013-01-01

297

Sediment yield model implementation based on check dam infill stratigraphy in a semiarid Mediterranean catchment  

NASA Astrophysics Data System (ADS)

Soil loss and sediment transport in Mediterranean areas are driven by complex non-linear processes which have been only partially understood. Distributed models can be very helpful tools for understanding the catchment-scale phenomena which lead to soil erosion and sediment transport. In this study, a modelling approach is proposed to reproduce and evaluate erosion and sediment yield processes in a Mediterranean catchment (Rambla del Poyo, Valencia, Spain). Due to the lack of sediment transport records for model calibration and validation, a detailed description of the alluvial stratigraphy infilling a check dam that drains a 12.9 km2 sub-catchment was used as indirect information of sediment yield data. These dam infill sediments showed evidences of at least 15 depositional events (floods) over the time period 1990-2009. The TETIS model, a distributed conceptual hydrological and sediment model, was coupled to the Sediment Trap Efficiency for Small Ponds (STEP) model for reproducing reservoir retention, and it was calibrated and validated using the sedimentation volume estimated for the depositional units associated with discrete runoff events. The results show relatively low net erosion rates compared to other Mediterranean catchments (0.136 Mg ha-1 yr-1), probably due to the extensive outcrops of limestone bedrock, thin soils and rather homogeneous vegetation cover. The simulated sediment production and transport rates offer model satisfactory results, further supported by in-site palaeohydrological evidences and spatial validation using additional check dams, showing the great potential of the presented data assimilation methodology for the quantitative analysis of sediment dynamics in ungauged Mediterranean basins.

Bussi, G.; Rodríguez-Lloveras, X.; Francés, F.; Benito, G.; Sánchez-Moya, Y.; Sopeña, A.

2013-08-01

298

A general protocol for restoration of entire river catchments  

SciTech Connect

Large catchment basins may be viewed as ecosystems with interactive natural and cultural attributes. Stream regulation severs ecological connectivity between channels and flood plains by reducing the range of natural flow and temperature variation, reduces the capacity of the ecosystem to sustain native biodiversity and bioproduction and promotes proliferation of non-native biota. However, regulated rivers regain normative attributes, which promote recovery of native biota, as distance from the dam increases and in relation to the mode of regulation. Therefore, reregulation of flow and temperature to normative pattern, coupled with elimination of pollutants and constrainment of nonnative biota, can naturally restore damaged habitats from headwaters to mouth. The expectation is rapid recovery of depressed populations of native species. The protocol requires: restoration of seasonal temperature patterns; restoration of peak flows needed to reconnect and periodically reconfigure channel and floodplain habitats; stabilization of base flows to revitalize the shallow water habitats; maximization of dam passage to allow restoration of metapopulation structure; change in the management belief system to rely on natural habitat restoration as opposed to artificial propagation, installation of artificial instream structures (river engineering) and artificial food web control; and, practice of adaptive ecosystem management.

Stanford, J.A.; Frissell, C.A. [Univ. of Montana, Polson, MT (United States). Flathead Lake Biological Station; Ward, J.V. [EAWAG/ETH, Dubendorf (Switzerland). Dept. of Limnology; Liss, W.J. [Oregon State Univ., Corvallis, OR (United States). Dept. of Fisheries and Wildlife; Coutant, C.C. [Oak Ridge National Lab., TN (United States); Williams, R.N.; Lichatowich, J.A.

1996-05-28

299

Modelling the areal depletion of snowcover in a forested catchment  

NASA Astrophysics Data System (ADS)

Successful modelling of snowmelt runoff from drainage basins often requires information concerning changes in the snowpack area during the course of the melt. Such data can be provided through the use of feedback models which employ the snowpack's areal extent and observed or estimated melts to forecast the snow-covered area for the subsequent day. The structure of five of these models is examined along with the results of a field study examining snowmelt and snowpack depletion in a forested catchment in south-central Ontario. The predictions of snowcover depletion for each model are compared with the observed trends for three distinct melt environments. The results suggest that several of these models can be used successfully to simulate changes in snowcover extent during snowmelt in forested areas. Snowpack depletion in areas of discontinuous snowcover is best simulated by models that assume that melt occurs predominantly at the snowpack margins, while models that utilize observed spatial variations in peak snowpack water-equivalent and assume either uniform or spatially variable melt depths perform best in environments with continuous snowcover prior to melt.

Buttle, J. M.; McDonnell, J. J.

1987-03-01

300

Estimation of predictive hydrologic uncertainty using quantile regression and UNEEC methods and their comparison on contrasting catchments  

NASA Astrophysics Data System (ADS)

In operational hydrology, estimation of predictive uncertainty of hydrological models used for flood modelling is essential for risk based decision making for flood warning and emergency management. In the literature, there exists a variety of methods analyzing and predicting uncertainty. However, case studies comparing performance of these methods, most particularly predictive uncertainty methods, are limited. This paper focuses on two predictive uncertainty methods that differ in their methodological complexity: quantile regression (QR) and UNcertainty Estimation based on local Errors and Clustering (UNEEC), aiming at identifying possible advantages and disadvantages of these methods (both estimating residual uncertainty) based on their comparative performance. We test these two methods on several catchments (from UK) that vary in its hydrological characteristics and models. Special attention is given to the errors for high flow/water level conditions. Furthermore, normality of model residuals is discussed in view of clustering approach employed within the framework of UNEEC method. It is found that basin lag time and forecast lead time have great impact on quantification of uncertainty (in the form of two quantiles) and achievement of normality in model residuals' distribution. In general, uncertainty analysis results from different case studies indicate that both methods give similar results. However, it is also shown that UNEEC method provides better performance than QR for small catchments with changing hydrological dynamics, i.e. rapid response catchments. We recommend that more case studies of catchments from regions of distinct hydrologic behaviour, with diverse climatic conditions, and having various hydrological features be tested.

Dogulu, N.; López López, P.; Solomatine, D. P.; Weerts, A. H.; Shrestha, D. L.

2014-09-01

301

Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: NLCD 2001 Imperviousness  

USGS Publications Warehouse

This data set represents the mean percent impervious surface from the Imperviousness Layer of the National Land Cover Dataset 2001 (LaMotte and Wieczorek, 2010), compiled for every catchment of NHDPlus for the conterminous United States. The source data set represents imperviousness for the conterminous United States for 2001. The Imperviousness Layer of the National Land Cover Data Set for 2001 was produced through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of Federal agencies (http://www.mrlc.gov), consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (USEPA), the U.S. Department of Agriculture (USDA), the U.S. Forest Service (USFS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (USFWS), the Bureau of Land Management (BLM), and the USDA Natural Resources Conservation Service (NRCS). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

Wieczorek, Michael E.; LaMotte, Andrew E.

2010-01-01

302

Attributes for NHDPlus Catchments (Version 1.1)for the Conterminous United States: Contact Time, 2002  

USGS Publications Warehouse

This data set represents the average contact time, in units of days, compiled for every catchment of NHDPlus for the conterminous United States. Contact time, as described in Wolock and others (1989), is the baseflow residence time in the subsurface. The source data set was the U.S. Geological Survey's (USGS) 1-kilometer grid for the conterminous United States (D.M. Wolock, U.S. Geological Survey, written commun., 2008). The grid was created using a method described by Wolock and others (1997a; see equation 3). In the source data set, the contact time was estimated from 1-kilometer resolution elevation data (Verdin and Greenlee, 1996 ) and STATSGO soil characteristics (Wolock, 1997b). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

Wieczorek, Michael E.; LaMotte, Andrew E.

2010-01-01

303

A fingerprinting mixing model approach to generate uniformly representative solutions for distributed contributions of sediment sources in a Pyrenean drainage basin  

NASA Astrophysics Data System (ADS)

Spanish Pyrenean reservoirs are under pressure from high sediment yields in contributing catchments. Sediment fingerprinting approaches offer potential to quantify the contribution of different sediment sources, evaluate catchment erosion dynamics and develop management plans to tackle the reservoir siltation problems. The drainage basin of the Barasona reservoir (1509 km2), located in the Central Spanish Pyrenees, is an alpine-prealpine agroforest basin supplying sediments to the reservoir at an annual rate of around 350 t km-2 with implications for reservoir longevity. The climate is mountain type, wet and cold, with both Atlantic and Mediterranean influences. Steep slopes and the presence of deep and narrow gorges favour rapid runoff and large floods. The ability of geochemical fingerprint properties to discriminate between the sediment sources was investigated by conducting the nonparametric Kruskal-Wallis H-test and a stepwise discriminant function analysis (minimization of Wilk's lambda). This standard procedure selects potential fingerprinting properties as optimum composite fingerprint to characterize and discriminate between sediment sources to the reservoir. Then the contribution of each potential sediment source was assessed by applying a Monte Carlo mixing model to obtain source proportions for the Barasona reservoir sediment samples. The Monte Carlo mixing model was written in C programming language and designed to deliver a user-defined number possible solutions. A Combinatorial Principals method was used to identify the most probable solution with associated uncertainty based on source variability. The unique solution for each sample was characterized by the mean value and the standard deviation of the generated solutions and the lower goodness of fit value applied. This method is argued to guarantee a similar set of representative solutions in all unmixing cases based on likelihood of occurrence. Soil samples for the different potential sediment sources of the drainage basin were compared with samples from the reservoir using a range of different fingerprinting properties (i.e. mass activities of environmental radionuclides, elemental composition and magnetic susceptibility) analyzed in the < 63 ?m sediment fraction. In this case, the 100 best results from 106 generated iterations were selected obtaining a goodness of fit higher than 0.76. The preliminary results using this new data processing methodology for samples collected in the reservoir allowed us to identify cultivated fields and badlands as main potential sources of sediments to the reservoir. These findings support the appropriate use of the fingerprinting methodology in a Spanish Pyrenees basin, which will enable us to better understand the basin sediment production of the Barasona reservoir.

Palazón, Leticia; Gaspar, Leticia; Latorre, Borja; Blake, Will; Navas, Ana

2014-05-01

304

Characterizing hot spots throughout the catchment  

NASA Astrophysics Data System (ADS)

Few catchments in the world are left truly undisturbed. Rather, they are under anthropogenic stress for a variety of reasons ranging from climate forcing to meeting the basic water allocation needs of the population. Reduction in the number of inundation areas has significantly decreased the nutrient and organic matter retention capacity along the river corridor, with major consequences for the both the riverine and coastal ecosystems. Cumulative stress may build up to a "tipping point" which can cause a change or set of changes which could occur non-linearly. In order to mitigate the environmental stress on these ecosystems, management plans are created to balance the needs of the dependent populations and those of ecology. While these catchment-wide plans aim to improve the ecological function of aquatic areas over the large scale, this sledge-hammer approach ignores the inherent heterogeneity in the catchment. Societal (and policy) decisions involve more than abiotic quantification of water storage and flow. A more encompassing ecohydrological view facilitates a more rounded policy framework that has flexibility to accommodate multiple social drivers, and one that can accommodate an "ecosystem improvement" rather than single species improvement. Not every spot in the landscape is equally valuable for specific societal values. Areas of high activity may provide the resilience capacity necessary to prevent catastrophic changes. In times of ecological instability, ecosystem resilience is of paramount importance in maintaining essential ecosystem services. Hot spots of biogeochemical cycling will occur where unique situations arise, such as areas of surface and groundwater interaction, creating spots of localized, high activity. In order to understand the systems' potential to support various habitat niches in the large scale, the identification of specific hot spots or hot moments is necessary. A basal understanding of the concurrent biogeochemical cycles enables the subsequent predictions of the alternative ecosystem responses. This study aims to understand the where and why of hot spots in selected catchments in southeastern Australia and Midwestern United States. The ecosystem response to changes in the catchment will be generated based on various biotic parameters, with the ultimate goal of incorporation into a policy framework at the catchment scale.

Welti, N.; Lockington, D.; Jakeman, T.; Hunt, R.

2012-04-01

305

Spatial and Temporal Variation of Vertical Motions in the Congo River Catchment  

NASA Astrophysics Data System (ADS)

Africa's 'basin and swell' topography is thought to be dynamically supported by mantle convection and correlates closely with long wavelength free-air gravity anomalies, which can be regarded as a proxy for the convective pattern. Seismic tomographic studies reveal a region of slow seismic velocity beneath sub-equatorial Africa. This region broadly correlates with a zone of anomalously high elevation, known as the 'African Superswell' that stretches from the South Atlantic Ocean across Africa to Afar. More recently temporal parameters such as uplift rate have been considered in dynamic topography modeling. However, theoretical predictions of dynamic topography have not been carefully tested against observations. The Congo River Catchment is of particular interest as its large catchment area drains from both negative and positive long wavelength free air gravity. The recent availability of global high-resolution topographic data (e.g. SRTM 90 meter) allows for detailed studies of geomorphological features of inaccessible areas such as the Congo Basin. DEMs show that drainage along the southern edge of the Congo River Catchment incises into a smooth, low relief surface. This surface slopes northwards from elevations of 1500m to 700m. Knickpoints on river profiles indicate that the drainage network is immature and may have experienced a recent change in base level. The low-relief surface represents the top of a group of fluviatile sediments, known as the sable ocres deposited in an aggrading environment. Topography of this surface correlates with long wavelength free-air gravity anomalies and is caused by mantle convection. This correlation is evident in an admittance analysis of gravity and topography in the frequency domain. The geology and geomorphology in this region can be used as a further test of uplift rates predicted from seismic tomographic data.

Rogers, E. P.; White, N.; Jones, S.

2005-12-01

306

Role of bedrock landslides in erosion of a glaciated basin 1111 Copyright 2005 John Wiley & Sons, Ltd. Earth Surf. Process. Landforms 30, 11111125 (2005)  

E-print Network

Role of bedrock landslides in erosion of a glaciated basin 1111 Copyright © 2005 John Wiley & Sons.interscience.wiley.com). DOI: 10.1002/esp.1265 Contribution of deep-seated bedrock landslides to erosion of a glaciated basin, Corvallis, OR 97330, USA Abstract Landslides represent a key component of catchment-scale denudation, though

Kurapov, Alexander

307

Collaborative Catchment-Scale Water Quality Management using Integrated Wireless Sensor Networks  

NASA Astrophysics Data System (ADS)

Electronics and Computer Science, University of Southampton, United Kingdom Summary The challenge of improving water quality (WQ) is a growing global concern [1]. Poor WQ is mainly attributed to poor water management and outdated agricultural activities. We propose that collaborative sensor networks spread across an entire catchment can allow cooperation among individual activities for integrated WQ monitoring and management. We show that sharing information on critical parameters among networks of water bodies and farms can enable identification and quantification of the contaminant sources, enabling better decision making for agricultural practices and thereby reducing contaminants fluxes. Motivation and results Nutrient losses from land to water have accelerated due to agricultural and urban pursuits [2]. In many cases, the application of fertiliser can be reduced by 30-50% without any loss of yield [3]. Thus information about nutrient levels and trends around the farm can improve agricultural practices and thereby reduce water contamination. The use of sensor networks for monitoring WQ in a catchment is in its infancy, but more applications are being tested [4]. However, these are focussed on local requirements and are mostly limited to water bodies. They have yet to explore the use of this technology for catchment-scale monitoring and management decisions, in an autonomous and dynamic manner. For effective and integrated WQ management, we propose a system that utilises local monitoring networks across a catchment, with provision for collaborative information sharing. This system of networks shares information about critical events, such as rain or flooding. Higher-level applications make use of this information to inform decisions about nutrient management, improving the quality of monitoring through the provision of richer datasets of catchment information to local networks. In the full paper, we present example scenarios and analyse how the benefits of collaborative information sharing can have a direct influence on agricultural practice. We apply a nutrient management scheme to a model of an example catchment with several individual networks. The networks are able to correlate catchment events to events within their zone of influence, allowing them to adapt their monitoring and control strategy in light of wider changes across the catchment. Results indicate that this can lead to significant reductions in nutrient losses (up to 50%) and better reutilization of nutrients amongst farms, having a positive impact on catchment scale water quality and fertilizer costs. 1. EC, E.C., Directive 2000/60/EC establishing a framework for Community action in the field of water policy, 2000. 2. Rivers, M., K. Smettem, and P. Davies. Estimating future scenarios for farm-watershed nutrient fluxes using dynamic simulation modelling-Can on-farm BMPs really do the job at the watershed scale? in Proc.29th Int.Conf System Dynamics Society, 2011. 2010. Washington 3. Liu, C., et al., On-farm evaluation of winter wheat yield response to residual soil nitrate-N in North China Plain. Agronomy Journal, 2008. 100(6): p. 1527-1534. 4. Kotamäki, N., et al., Wireless in-situ sensor network for agriculture and water monitoring on a river basin scale in Southern Finland: Evaluation from a data user's perspective. Sensors, 2009. 9(4): p. 2862-2883.

Zia, Huma; Harris, Nick; Merrett, Geoff

2013-04-01

308

Catchment Engineering: A New Paradigm in Water Management  

NASA Astrophysics Data System (ADS)

Recent catchment initiatives have highlighted the need for new holistic approaches to sustainable water management. Here, a catchment engineering approach seeks to describe catchment 'function' (or role) as the principal driver for evaluating how it should be managed in the future. Catchment engineering does not seek to re-establish a natural system but seeks to work with natural processes in order to engineer landscapes so that multiple benefits accrue. This approach involves quantifying and assessing catchment change and impacts but most importantly suggests an urgent and proactive agenda for future planning. In particular, an interventionist approach to managing hydrological flow pathways across scale is proposed. It is already accepted that future management will require a range of scientific expertise and full engagement with stakeholders, namely the general public and policy makers. This inclusive concept under a catchment engineering agenda forces any consortia to commit to actively changing and perturbing the catchment system and thus learn, in situ, how to manage the environment for collective benefits. The shared cost, the design, the implementation, the evaluation and any subsequent modifications should involve all relevant parties in the consortia. This joint ownership of a 'hands on' interventionist agenda to catchment change is at the core of catchment engineering. In this paper we show a range of catchment engineering projects from the UK that have addressed multi-disciplinary approaches to flooding, pollution and ecosystem management whilst maintaining economic food production. Local scale demonstration activities, led by local champions, have proven to be an effective means of encouraging wider uptake. Catchment engineering is a concept that relies on all relevant parties within a catchment to take responsibility for the water quantity and quality that arises from the catchment. Further, any holistic solution requires a bottom up, problem solving agenda which is facilitated by policy makers and is underpinned by scientific knowledge.

Quinn, P. F.; Burke, S.; O'Donnell, G. M.; Wilkinson, M.; Jonczyk, J.; Barber, N.; Nicholson, A.; Proactive Team

2011-12-01

309

Assessment of catchment scale connectivity in different catchments using measured suspended sediment output  

NASA Astrophysics Data System (ADS)

Recent developments in hydrology and geomorphology include the connectivity principle, which describes how different elements in a landscape are connected and how water and matter moves between these elements. So far, studies on connectivity have been mainly of a conceptual nature and have been done on a small scale, while studies that map, quantitatively establish relations, and model water and sediment transport in connectivity are rare. In this study we established a relation between change in connectivity within four catchments and the time of year by using suspended sediment data. The data were collected for four catchments in Navarra, Spain of which two catchments are dominated by forest and pasture, while the other two catchments are dominated by agriculture and have no forest. Data were collected during a 13 year period; 4 samples were taken a day at 6 hour intervals which were mixed to obtain a daily average suspended sediment concentration. This was then converted into daily suspended sediment output using the measured total daily discharge. The effect of precipitation on the sediment output data was minimized by using an antecedent precipitation index (API), which consists of the precipitation of the current day added by the precipitation of the previous 14 days, where the influence of the previous days decays exponentially with time. The daily total suspended sediment output was divided by the API, to obtain a measure for sediment output independent of precipitation. This sediment output then serves as a measure for the connectivity within the catchment. The connectivity of the four catchments throughout the years will be compared to each other and we hypothesise that the two catchments dominated by forests and pastures will change only slightly throughout the year, whereas we expect to see large differences in connectivity in the two agricultural catchments. The agricultural catchments are likely to display a highly varying connectivity throughout the seasons due to changes in vegetation cover of the fields throughout the year, whereas daily variations will likely be small due to a slowly changing connectivity.

Masselink, Rens; Keesstra, Saskia; Seeger, Manuel

2014-05-01

310

Provenance of the Fluvial-deltaic Sedimentary Deposits Within the Eberswalde Crater Catchment, Mars  

NASA Astrophysics Data System (ADS)

Eberswalde crater is one of few locations on Mars where a clear source-to-sink sedimentary path can be identified [1]. While the delta in western Eberswalde crater has been extensively studied [e.g., 2-5], few studies have described the catchment geology. [e.g. 6-7]. Here we present a geologic and compositional study of the catchment in order to characterise the source region for the Eberswalde delta. We have used DTMs and images from MRO's Context Camera (CTX) to map the channels that feed the delta at a finer scale than has previously been possible and to identify the headwater regions. We find that all channels begin on local or regional topographic highs, suggesting precipitation or snowmelt as a source of water rather than mobilization of subsurface ice due to hot overlying ejecta from the Holden crater impact [6]. Comparisons of channel depth and estimated Holden crater ejecta thickness throughout the catchment, in addition to our geologic mapping, indicate that the source for the Eberswalde sediments is almost exclusively Holden crater ejecta. One exception is the northern catchment area where channel depths exceed Holden ejecta thicknesses and therefore likely sample underlying Eberswalde ejecta or Holden basin rim material. Previous studies have confirmed the presence of Fe-Mg phyllosilicates in both the Holden crater walls [8] and ejecta [1]. We have also identified Fe-Mg phyllosilicates in a sedimentary deposit in a local basin within the Eberswalde catchment which has been eroded by the main Eberswalde fluvial system [9]. Therefore, there are phyllosilicates within the source sediments for the main deltaic feature within Eberswalde crater. However, some of the channels erode into Noachian-age Eberswalde ejecta and possibly the Holden basin rim. [9-11] have identified a subsurface layer of phyllosilicates that is present throughout the plateau region south of Vallis Marineris, west of Holden and Eberswalde craters, and north of Nirgal Vallis. This layer may have been sampled by the Eberswalde and Holden crater impacts [9]. Lastly, [12] have identified sedimentary phyllosilicate deposits throughout the Noachian-age Ladon basin and it is likely that phyllosilicates are also present in Holden basin sediments. Therefore, we have identified a clear source-to-sink for fluvially-transported phyllosilicate-bearing materials in the Eberswalde system. [1] Milliken, R. E. and D. L. Bish., 2010, JGR, 90, 17-18, 2293; [2] Lewis, K. W. and O. Aharonson., 2006, JGR, 111, E06001; [3] Wood, L. J., 2006, GSA Bulletin, 118, 5/6, 557; [4] Pondrelli, M., et al., 2008, Icarus, 197, 429; [5] Rice, M. S., et al., 2013, MARS, 8, 15-59; [6] Mangold, N., et al., 2012, Icarus, 220, 530-551; [7] Irwin III, R. P., 2011, LPSC XLII, abstract# 2748; [8] Grant, J. A. et al., 2008, Geology, 36, 3, 195-198; [9] McKeown et al., 2013, LPSC XLIV, abstract# 2302; [10] Le Deit, L. et al., 2012, JGR, 117, E00J05; [11] Buczkowski, D. L. and Seelos, K. D., 2010, MSL Landing Site Workshop; [12] Weitz et al., 2013, LPSC XLIV, abstract# 2081

McKeown, N.; Warner, N. H.; Rice, M. S.; Grindrod, P. M.

2013-12-01

311

Assessing urbanization impacts on catchment transit times  

NASA Astrophysics Data System (ADS)

isotopes have potential for assessing the hydrologic impacts of urbanization, although it is unclear whether established methods of isotope modeling translate to such disturbed environments. We tested two transit time modeling approaches (using a gamma distribution and a two-parallel linear reservoir (TPLR) model) in a rapidly urbanizing catchment. Isotopic variability in precipitation was damped in streams with attenuation inversely correlated with urban cover. The models captured this reasonably well, although the TPLR better represented the integrated dual response of urban and nonurban areas with reduced uncertainty. Percent urban cover influenced the shape of the catchment transit time distribution. Total urban cover reduced the mean transit time to <10 days compared with ~1 year and ~2-3 years with 63% and 13% urbanization, respectively, while it was at >4 years for nonurban sites.

Soulsby, Chris; Birkel, Christian; Tetzlaff, Doerthe

2014-01-01

312

Land use control of nitrate export behavior across catchments  

NASA Astrophysics Data System (ADS)

Nutrient exports from catchments and their temporal and spatial variability significantly affect downstream water quality and ecosystem health. There is hence a need to better understand and classify catchment nutrient export dynamics in order to reproduce catchment functions (such as nutrient mobilization and retention) and predict the response of these functions to changing boundary conditions. However, the complexity of catchment structure and the multitude of the processes involved challenge this objective. One approach to meet this challenge is a top-down, data-driven analysis of integrated catchment responses, such as discharge and solute concentration time series. For top-down analysis, different catchments are compared to identify key variables governing catchment response. We conducted a multi-catchment study applying top-down methods to analyze nitrate concentration and discharge time series from streams draining nine catchments in central Germany. The studied catchments, ranging from "pristine" mountains to agriculturally-managed lowlands, span gradients in land use, geology, and climatic conditions. We hypothesized that land use type is the main control on stream nitrate concentrations and catchment export behaviour, with more chemostatic export behaviour occurring in catchments with higher percentages of agricultural land use due to the presence of large nitrate stocks that effectively function as an unlimited nitrate storage. Consistent with this hypothesis we found that median nitrate concentrations were positively correlated with the percentage of agricultural land use in the different catchments despite differences in catchment climatic and geological conditions. Magnitude and direction of concentration-discharge relationship was evaluated using the slope b of the linear regression of log nitrate concentrations vs. log discharge as a metric for export behaviour. All catchments exhibited a positive slope b indicating concentrations increase with increasing discharge. The slope b was positively correlated with the percentage of agricultural land being artificially drained, which suggested that a higher share of drained agricultural land within the catchments results in a more dynamic export behaviour. Thus, a high percentage of agricultural land use, and subsequent higher nitrate input and storage, does not necessarily lead to chemostatic export conditions. While median concentrations were a function of agricultural land use, concentration dynamics and export behaviour were controlled by the presence of artificial drainage as the dominant input pathway of nitrate to surface waters. These results illustrate that it is feasible to use a multi-catchment top-down analysis to evaluate both dominant controls of nutrient export and the importance of land management on nutrient dynamics in the receiving surface waters.

Musolff, Andreas; Schmidt, Christian; Selle, Benny; Fleckenstein, Jan H.

2014-05-01

313

Chlorobenzenes in rivers draining industrial catchments  

Microsoft Academic Search

Eleven chlorobenzenes (out of a total of 12 in the congener series) were monitored weekly on four industrialized rivers (Aire, Calder, Don and Trent) of the Southern Humber Catchment in whole water samples. 1,2- and 1,4- dichlorobenzene were present at relatively high levels on both the Aire and Calder, having mean concentrations of ?30 ng\\/l. They were both at lower

A. A Meharg; J Wright; D Osborn

2000-01-01

314

Similarity and scale in catchment storm response  

NASA Technical Reports Server (NTRS)

Until recently, very little progress had been made in understanding the relationship between small-scale variability of topography, soil, and rainfalls and the storm response seen at the catchment scale. The work reviewed here represents the first attempt at a systematic theoretical framework for such understanding in the context of surface runoff generation by different processes. The parameterization of hydrological processes over a range of scales is examined, and the concept of the 'representative elementary area' (REA) is introduced. The REA is a fundamental scale for catchment modeling at which continuum assumptions can be applied for the spatially variable controls and parameters, and spatial patterns no longer have to be considered explicitly. The investigation of scale leads into the concept of hydrologic similarity in which the effects of the environmental controls on runoff generation and flood frequency response be investigated independently of catchment scale. The paper reviews the authors' initial results and hopefully will motivate others to also investigate the issues of hydrologic scale and similarity.

Wood, Eric F.; Sivapalan, Murugesu; Beven, Keith

1993-01-01

315

Groundwater salt accessions to land in the Queensland Murray-Darling Basin, Australia  

NASA Astrophysics Data System (ADS)

Salt accessions from artesian and sub-artesian bores have been calculated for the Queensland Murray-Darling Basin (QMDB), Australia, using available water chemistry, licensing data and a number of assumptions. The majority (~90%) of the salt accessions come from sub-artesian bores used for irrigation (including intensive livestock) purposes. Historically, free-flowing artesian bores in the west of the basin have contributed large quantities of salt, but their contributions have declined with capping and piping of these bores. The highest salt yields (t/km2) are in the Condamine catchment, which also contains 70% of the bores in the region. Groundwater salt accessions are considerably less than atmospheric (rainfall) accessions in all catchments except the Condamine. Further expansion of the coal seam gas industry may substantially increase non-cyclic groundwater accessions, further reducing catchment salt export/import ratios.

Biggs, Andrew J. W.

2011-05-01

316

A Study of Inter-Crater Basin Evolution in the Martian Highlands: Runanga-Jörn Basin, Northeast Hellas, Mars  

NASA Astrophysics Data System (ADS)

The preliminary hypothesis for the geologic evolution of the "Runanga-Jörn basin" in northeast Hellas Planitia, east of Terby crater, includes episodic volcanism mixed with hydrologic activity following the formation of Hellas.

Fortezzo, C. M.; Skinner, J. A.

2012-05-01

317

Geochemical techniques on contaminated sediments-river basin view  

Microsoft Academic Search

The big flood in the upper Elbe River catchment area has revealed a wide spectrum of problems with contaminated sediments.\\u000a So far, an effective strategy for managing contaminated sediments on a river basin scale is still missing and it seems that\\u000a not much has been learned from the lessons received during the last decade.\\u000a \\u000a In the following overview, special emphasis

Ulrich Förstner

2003-01-01

318

A biogeochemical model of Lake Pusiano (North Italy) and its use in the predictability of phytoplankton blooms: first preliminary results  

Microsoft Academic Search

This study reports the first preliminary results of the DYRESM-CAEDYM model application to a mid size sub-alpine lake (Lake Pusiano North Italy). The in-lake modelling is a part of a more general project called Pusiano Integrated Lake\\/Catchment project (PILE) whose final goal is to understand the hydrological and trophic relationship between lake and catchment, supporting the restoration plan of the

Diego COPETTI; Gianni TARTARI; Giuseppe MORABITO; Alessandro OGGIONI; Elena LEGNANI; Jörg IMBERGER

319

Quantifying fluvial non linearity and finding self organized criticality? Insights from simulations of river basin evolution  

Microsoft Academic Search

A numerical study was undertaken to investigate non linearity and the potential for self-organized criticality (SOC) in the evolution of river basins. Twenty-three simulations were carried out, using the authors' CAESAR landscape evolution model, in which the magnitude of storm events, variability of storm events, sediment heterogeneity, sources of sediment supply, and catchment morphology are systematically varied to evaluate their

Tom J. Coulthard; Marco J. Van De Wiel

2007-01-01

320

Metaphor in Natural Resource Gaming: Insights from the RIVER BASIN GAME  

ERIC Educational Resources Information Center

The RIVER BASIN GAME is a dialogue tool for decision makers and water users tested in Tanzania and Nigeria. It comprises a physical representation of a river catchment. A central channel flows between an upper watershed and a downstream wetland and has on it several intakes into irrigation systems. Glass marbles, representing water, roll down the…

Lankford, Bruce; Watson, Drennan

2007-01-01

321

Evolution of a trench-slope basin within the Cascadia subduction margin: the Neogene Humboldt Basin, California  

USGS Publications Warehouse

The Neogene Humboldt (Eel River) Basin is located along the north-eastern margin of the Pacific Ocean within the Cascadia subduction zone. This sedimentary basin originated near the base of the accretionary prism in post-Eocene time. Subduction processes since that time have elevated strata in the south-eastern portion of the basin above sea level. High-resolution chronostratigraphic data from the onshore portion of the Humboldt Basin enable correlation of time-equivalent lithofacies across the palaeomargin, reconstruction of slope-basin evolution, and preliminary delineation of climatic and tectonic influence on lithological variation. -from Author

McCrory, P.A.

1995-01-01

322

Estimation of total nitrogen and total phosphorus in streams of the Middle Columbia River Basin (Oregon, Washington, and Idaho) using SPARROW models, with emphasis on the Yakima River Basin, Washington  

USGS Publications Warehouse

The watershed model SPARROW (Spatially Related Regressions on Watershed attributes) was used to predict total nitrogen (TN) and total phosphorus (TP) loads and yields for the Middle Columbia River Basin in Idaho, Oregon, and Washington. The new models build on recently published models for the entire Pacific Northwest, and provide revised load predictions for the arid interior of the region by restricting the modeling domain and recalibrating the models. Results from the new TN and TP models are provided for the entire region, and discussed with special emphasis on the Yakima River Basin, Washington. In most catchments of the Yakima River Basin, the TN and TP in streams is from natural sources, specifically nitrogen fixation in forests (TN) and weathering and erosion of geologic materials (TP). The natural nutrient sources are overshadowed by anthropogenic sources of TN and TP in highly agricultural and urbanized catchments; downstream of the city of Yakima, most of the load in the Yakima River is derived from anthropogenic sources. Yields of TN and TP from catchments with nearly uniform land use were compared with other yield values and export coefficients published in the scientific literature, and generally were in agreement. The median yield of TN was greatest in catchments dominated by agricultural land and smallest in catchments dominated by grass and scrub land. The median yield of TP was greatest in catchments dominated by forest land, but the largest yields (90th percentile) of TP were from agricultural catchments. As with TN, the smallest TP yields were from catchments dominated by grass and scrub land.

<