Science.gov

Sample records for catchment basin preliminary

  1. Evaluation of soil erosion as a basis of sediment yield in mountainous catchments: a preliminary study in the River Douro Basin (Northern Portugal)

    NASA Astrophysics Data System (ADS)

    Reis, Anabela; Martinho Lourenço, José M.; Parker, Andrew; Alencoão, Ana

    2013-04-01

    The River Corgo drains a meso-scale mountainous rural catchment with an area of 295 km2, underlain by crystalline rocks, in a temperate climate, which integrates the transboundary River Douro Basin, in the northeast of Portugal. A geochemical survey on oxic fluvial sediments of the river network shows considerable contents of metals associated to the finer particles (< 63um). The results on the study of the sediment properties indicate that these are essentially detrital in origin, derived from soils and weathering products. Moreover, taking into account the hydrological pattern of the catchment, the seasonal and spatial variability of metal contents associated to the sediments suggests that the control of metal in the sediments by their mineralogical, geochemical and physical properties is governed primarily at the level of the basin soils system, especially in the Wet Period, when the sediments are frequently remobilised (Reis, 2010). Although the soil particles are a common pathway of transport and entrance of metals in the fluvial network by runoff derived erosion, this mechanism is naturally more marked in mountainous catchments. Modelling sediment and adsorbed contaminant transport within catchments can help to identify possible contaminant sources, as well as to estimate the delivered quantities of eroded material and associated contaminants. In catchments with the described morphological features, monitoring the transport of sediments poses some issues concerning: (a) the low mass yield of suspended sediment from river water, under low-flow conditions; (b) the maintenance of the sediment sampler's devices in the streams, in periods of high-flow or storm events. This study describes the preliminary results of a GIS-based mass balance model of overland sediment transport to the River. The erosion, the first step of sediment transport, was estimated by an empirical model - The Universal Soil Loss Equation (USLE). The objective was to construct a GIS based

  2. Are big basins just the sum of small catchments?

    NASA Astrophysics Data System (ADS)

    Shaman, Jeffrey; Stieglitz, Marc; Burns, Doug

    2004-11-01

    Many challenges remain in extending our understanding of how hydrologic processes within small catchments scale to larger river basins. In this study we examine how low-flow runoff varies as a function of basin scale at 11 catchments, many of which are nested, in the 176 km2 Neversink River watershed in the Catskill Mountains of New York. Topography, vegetation, soil and bedrock structure are similar across this river basin, and previous research has demonstrated the importance of deep groundwater springs for maintaining low-flow stream discharge at small scales in the basin. Therefore, we hypothesized that deep groundwater would contribute an increasing amount to low-flow discharge as basin scale increased, resulting in increased runoff. Instead, we find that, above a critical basin size of 8 to 21 km2, low-flow runoff is similar within the Neversink watershed. These findings are broadly consistent with those of a previous study that examined stream chemistry as a function of basin scale for this watershed. However, we find physical evidence of self-similarity among basins greater than 8 km2, whereas the previous study found gradual changes in stream chemistry among basins greater than 3 km2.We believe that a better understanding of self-similarity and the subsurface flow processes that affect stream runoff will be attained through simultaneous consideration of both chemical and physical evidence. We also suggest that similar analyses of stream runoff in other basins that represent a range of spatial scales, geomorphologies and climate conditions will further elucidate the issue of scaling of hydrologic processes.

  3. Are Big Basins Just the Sum of Small Catchments?

    NASA Astrophysics Data System (ADS)

    Shaman, J.; Stieglitz, M.; Burns, D.

    2005-05-01

    2 Many challenges remain in extending our understanding of how hydrologic processes within small catchments scale to larger river basins. We examine how low-flow runoff varies as a function of basin scale at 11 catchments, many of which are nested, in the 176km2 Neversink River watershed in the Catskill Mountains of New York. Topography, vegetation, soil and bedrock structure are similar across this river basin, and previous research has demonstrated the importance of deep groundwater springs for maintaining low-flow stream discharge at small scales in the basin. Therefore, we hypothesized that deep groundwater would contribute an increasing amount to low-flow discharge as basin scale increased, resulting in increased runoff. Instead, we find that, above a critical basin size of 8 to 21km2, low-flow runoff is similar within the Neversink watershed. These findings are broadly consistent with those of a previous study that examined stream chemistry as a function of basin scale for this watershed. However, we find physical evidence of self-similarity among basins greater than 8km2, whereas the previous study found gradual changes in stream chemistry among basins greater than 3km2. We believe that a better understanding of self-similarity and the subsurface flow processes that affect streamrunoff will be attained through simultaneous consideration of both chemical and physical evidence. We also suggest that similar analyses of stream runoff in other basins that represent a range of spatial scales, geomorphologies and climate conditions will further elucidate the issue of scaling of hydrologic processes.

  4. Are big basins just the sum of small catchments?

    USGS Publications Warehouse

    Shaman, J.; Stieglitz, M.; Burns, D.

    2004-01-01

    Many challenges remain in extending our understanding of how hydrologic processes within small catchments scale to larger river basins. In this study we examine how low-flow runoff varies as a function of basin scale at 11 catchments, many of which are nested, in the 176 km2 Neversink River watershed in the Catskill Mountains of New York. Topography, vegetation, soil and bedrock structure are similar across this river basin, and previous research has demonstrated the importance of deep groundwater springs for maintaining low-flow stream discharge at small scales in the basin. Therefore, we hypothesized that deep groundwater would contribute an increasing amount to low-flow discharge as basin scale increased, resulting in increased runoff. Instead, we find that, above a critical basin size of 8 to 21 km2, low-flow runoff is similar within the Neversink watershed. These findings are broadly consistent with those of a previous study that examined stream chemistry as a function of basin scale for this watershed. However, we find physical evidence of self-similarity among basins greater than 8 km2, whereas the previous study found gradual changes in stream chemistry among basins greater than 3 km 2. We believe that a better understanding of self-similarity and the subsurface flow processes that affect stream runoff will be attained through simultaneous consideration of both chemical and physical evidence. We also suggest that similar analyses of stream runoff in other basins that represent a range of spatial scales, geomorphologies and climate conditions will further elucidate the issue of scaling of hydrologic processes. Copyright ?? 2004 John Wiley & Sons, Ltd.

  5. Isotope hydrology of catchment basins: lithogenic and cosmogenic isotopic systems

    SciTech Connect

    Nimz, G. J., LLNL

    1998-06-01

    also be treated as a mostly closed system for mass balance considerations. It is the near closure of the system that permits well- constrained chemical mass balance calculations to be made. These calculations generally focus of lithogenic solutes, and therefore in our discussions of lithogenic nuclides in the paper, the concept of chemical mass balance in a nearly dosed system will play an important role. Examination of the isotopic compositions of solutes provides a better understanding of the variety of processes controlling mass balance. It is with this approach that we examined the variety of processes occurring within the catchment system, such as weathering and soil production, generation of stormflow and streamflow (hydrograph separation), movement of soil pore water, groundwater flow, and the overall processes involved with basinal water balance. In this paper, the term `nuclide` will be used when referring to a nuclear species that contains a particular number of protons and neutrons. The term is not specific to any element. The term `isotope` will be used to distinguish nuclear species of a given element (atoms with the same number of protons). That is to say, there are many nuclides in nature - for example, {sup 36}Cl, {sup 87}Sr, {sup 238}U; the element has four naturally-occurring isotopes - {sup 87}Sr, and {sup 88}Sr. This paper will first discuss the general principles that underlie the study of lithogenic and cosmogenic nuclides in hydrology, and provide references to some of the more important studies applying these principles and nuclides. We then turn in the second section to a discussion of their specific applications in catchment- scale systems. The final section of this paper discusses new directions in the application of lithogenic and cosmogenic nuclides to catchment hydrology, with some thoughts concerning possible applications that still remain unexplored.

  6. Coupling catchment hydrology and landscape evolution: Interactive effects on hydrograph and basin shape

    NASA Astrophysics Data System (ADS)

    Vivoni, E. R.; Istanbulluoglu, E.; Bras, R. L.

    2003-12-01

    The catchment hydrologic response to rainfall and the evolution of the river basin network and landscape morphology are closely linked phenomena, albeit active over different temporal scales. While the relation between hydrograph shape and catchment form has long been hypothesized, little is yet understood about the evolution of the basin hydrologic response with catchment age or geomorphic condition. Similarly, the long-term morphologic changes and feedbacks associated with a spatially-variable, evolving runoff response are still unknown. Understanding the complex interaction between basin hydrology and geomorphology was an important pursuit during Michael J. Kirkby's scientific career. In this study, we describe the interactive effects and feedbacks between the basin hydrograph (hydrologic response) and shape (geomorphic response) utilizing two state-of-the-art models: the Channel-Hillslope Integrated Landscape Development (CHILD) and the TIN-based Real-time Integrated Basin Simulator (tRIBS). We first illustrate the changes occurring in the basin hydrograph, variable source area and channel network as the catchment evolves. We then describe how the spatially-explicit hydrologic response from various mechanisms and its associated moisture field directly impacts the erosion and subsequently the basin shape. Quantitative comparisons are then made between a set of interactive and non-interactive simulations for idealized conditions. Our ultimate goal is to highlight the need for coupling distributed simulations of catchment hydrology and geomorphology for investigating the interaction between basin and hydrograph shape.

  7. PSYCHIC A process-based model of phosphorus and sediment transfers within agricultural catchments. Part 2. A preliminary evaluation

    NASA Astrophysics Data System (ADS)

    Strömqvist, J.; Collins, A. L.; Davison, P. S.; Lord, E. I.

    2008-02-01

    SummaryThis paper describes the preliminary evaluation of the PSYCHIC catchment scale (Tier 1) model for predicting the mobilisation and delivery of phosphorus (P) and suspended sediment (SS) in the Hampshire Avon (1715 km 2) and Herefordshire Wye (4017 km 2) drainage basins, in the UK, using empirical data. Phosphorus and SS transfers to watercourses in the Wye were predicted to be greater than corresponding delivery in the Avon; SS, 249 vs 33 kg ha -1 yr -1; DP, 2.57 vs 1.26 kg ha -1 yr -1; PP, 2.20 vs 0.56 kg ha -1 yr -1. The spatial pattern of the predicted transfers was relatively uniform across the Wye drainage basin, whilst in the Avon, delivery to watercourses was largely confined to the river corridors and small areas of drained land. Statistical performance in relation to predicted exports of P and SS, using criteria for relative error (RE) and root mean square error (RMSE), reflected the potential shortcomings associated with using longer-term climate data for predicting shorter-term (2002-2004) catchment response and the need to refine calculations of point source contributions and to incorporate additional river basin processes such as channel bank erosion and in-stream geochemical processing. PSYCHIC is therefore best suited to characterising longer-term catchment response.

  8. The "Teflon basin" myth: Snow-soil interactions in mountain catchments in the western US

    NASA Astrophysics Data System (ADS)

    Williams, M. W.; Cowie, R. M.

    2015-12-01

    In much of western North America, snow and snowmelt provide the primary means for storage of winter precipitation, effectively transferring water from the relatively wet winter season to the typically dry summers. A common assumption is that high-elevation catchments in the western United States behave like "Teflon basins" and that water released from seasonal storage in snow packs flows directly into streams with little or no interaction with underlying soils. Here I present information from a variety of catchments in the Colorado Front Range on snowmelt/soil interactions using isotopic, geochemical, nutrient and hydrometric data in 2- and 3- component hydrograph separations, along with end-member mixing analysis (EMMA). For most catchments we measured these parameters in weekly precipitation, the seasonal snowpack, snowmelt before contact with the ground, discharge, springs, soil solution, and groundwater. We ran EMMA at the catchment scale for catchments that represent the rain-snow transition zone in the montane forest, the seasonally snow covered sub-alpine to alpine transition zone, and a high-elevation alpine zone near the continental divide. In all catchments three end-members were the source waters for about 95% of discharge. Two end-members were the same in all catchments, snow and groundwater. For the alpine catchment talus springs was the third water source, while rain was the third water source in the two lower-elevation catchments. For all three catchments, soil solution plotted with stream waters along or near a line connecting the snow and groundwater end-members. Thus, for seasonally snow-covered catchments from montane to alpine ecosystems, snowmelt infiltrates underlying soils before snowmelt recharges groundwater reservoirs and contributes to surface flows. Seasonally snow-covered catchments are not Teflon basins. Rather, snowmelt infiltrates soils where solute concentrations are changed by biological and geochemical processes.

  9. Catchment salt balances in the Queensland Murray-Darling Basin, Australia

    NASA Astrophysics Data System (ADS)

    Biggs, Andrew J. W.; Silburn, D. Mark; Power, R. Edward

    2013-09-01

    Catchment salt mass balances and export/import ratios were calculated for 55 gauging stations in nine major catchments across the Queensland Murray-Darling Basin (QMDB), Australia. Salt inputs were comprised of atmospheric, groundwater and inter-basin transfer contributions, while exports were derived from model runs calibrated to streamflow data and flow-salt relationships. Catchment atmospheric salt inputs were larger than groundwater inputs in the major catchments, with the exception of the Condamine catchment. Across the whole QMDB, the magnitude of atmospheric and groundwater inputs is potentially equal. Average annual streamflow salt export is generally much less than salt input, even when atmospheric inputs alone are considered, and is strongly influenced by episodic, large events. The exceptions to this are some smaller salt-affected upland catchments in the eastern QMDB where flow is more continual (i.e. baseflow occurs) and stream salinity is higher - a result of long-term land use change impacts. Variability in catchment salt export/import ratio (E/I) as a result of different calculation methods for both inputs and outputs creates a wide range in possible E/I for some sites, but trends remain the same. Losses of stream water to floodplains, seepage and extractions in lower portions of catchments leads to significant reductions in E/I with distance downstream. It appears that in general, the natural status of the QMDB is one of salt accumulation and significant hydrologic changes - as represented through salt mass balance calculations - are largely confined to the eastern half of the Basin, although further change may yet express in the landscape.

  10. Attributes for NHDPlus Catchments (Version 1.1): Basin Characteristics, 2002

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This data set represents basin characteristics, compiled for every catchment in NHDPlus for the conterminous United States. These characteristics are basin shape index, stream density, sinuosity, mean elevation, mean slope, and number of road-stream crossings. The source data sets are the U.S. Environmental Protection Agency's NHDPlus and the U.S. Census Bureau's TIGER/Line Files. The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris

  11. Nonstationarities in Catchment Response According to Basin and Rainfall Characteristics: Application to Korean Watershed

    NASA Astrophysics Data System (ADS)

    Kwon, Hyun-Han; Kim, Jin-Guk; Jung, Il-Won

    2015-04-01

    It must be acknowledged that application of rainfall-runoff models to simulate rainfall-runoff processes are successful in gauged watershed. However, there still remain some issues that will need to be further discussed. In particular, the quantitive representation of nonstationarity issue in basin response (e.g. concentration time, storage coefficient and roughness) along with ungauged watershed needs to be studied. In this regard, this study aims to investigate nonstationarity in basin response so as to potentially provide useful information in simulating runoff processes in ungauged watershed. For this purpose, HEC-1 rainfall-runoff model was mainly utilized. In addition, this study combined HEC-1 model with Bayesian statistical model to estimate uncertainty of the parameters which is called Bayesian HEC-1 (BHEC-1). The proposed rainfall-runofall model is applied to various catchments along with various rainfall patterns to understand nonstationarities in catchment response. Further discussion about the nonstationarity in catchment response and possible regionalization of the parameters for ungauged watershed are discussed. KEYWORDS: Nonstationary, Catchment response, Uncertainty, Bayesian Acknowledgement This research was supported by a Grant (13SCIPA01) from Smart Civil Infrastructure Research Program funded by the Ministry of Land, Infrastructure and Transport (MOLIT) of Korea government and the Korea Agency for Infrastructure Technology Advancement (KAIA).

  12. Evaluation of water and energy balances ovet the Colombian Orinoco Catchment Basin

    NASA Astrophysics Data System (ADS)

    Abril, C.; Baquero-Bernal, A.

    2012-04-01

    This study presents a comparison between in-situ observations and gridded data from reanalyses and from a regional climate model over the Colombian Orinoco Catchment Basin, in South America, with focus on the surface water and energy balances. We use datasets from the regional climate model REMO and re-analyses ERA40, ERAInterim and NCEP/NCAR. The in-situ observations have been provided by the Colombian Institute of Hydrology, Meteorology and Environmental Studies (IDEAM). The balances are for the 1958-2011 period. Statistical analyses of temperature and precipitation are also presented. Discrepancies between gridded datasets and observations are evaluated and possible sources of error in each of the datasets are discussed. The research presented is the first intercomparison of the surface water and energy balances over the Colombian Orinoco Catchment Basin from different datasets.

  13. Variability of rainfall over Lake Kariba catchment area in the Zambezi river basin, Zimbabwe

    NASA Astrophysics Data System (ADS)

    Muchuru, Shepherd; Botai, Joel O.; Botai, Christina M.; Landman, Willem A.; Adeola, Abiodun M.

    2016-04-01

    In this study, average monthly and annual rainfall totals recorded for the period 1970 to 2010 from a network of 13 stations across the Lake Kariba catchment area of the Zambezi river basin were analyzed in order to characterize the spatial-temporal variability of rainfall across the catchment area. In the analysis, the data were subjected to intervention and homogeneity analysis using the Cumulative Summation (CUSUM) technique and step change analysis using rank-sum test. Furthermore, rainfall variability was characterized by trend analysis using the non-parametric Mann-Kendall statistic. Additionally, the rainfall series were decomposed and the spectral characteristics derived using Cross Wavelet Transform (CWT) and Wavelet Coherence (WC) analysis. The advantage of using the wavelet-based parameters is that they vary in time and can therefore be used to quantitatively detect time-scale-dependent correlations and phase shifts between rainfall time series at various localized time-frequency scales. The annual and seasonal rainfall series were homogeneous and demonstrated no apparent significant shifts. According to the inhomogeneity classification, the rainfall series recorded across the Lake Kariba catchment area belonged to category A (useful) and B (doubtful), i.e., there were zero to one and two absolute tests rejecting the null hypothesis (at 5 % significance level), respectively. Lastly, the long-term variability of the rainfall series across the Lake Kariba catchment area exhibited non-significant positive and negative trends with coherent oscillatory modes that are constantly locked in phase in the Morlet wavelet space.

  14. Role of river bank erosion in sediment budgets of catchments within the Loire river basin (France)

    NASA Astrophysics Data System (ADS)

    Gay, Aurore; Cerdan, Olivier; Poisvert, Cecile; Landemaine, Valentin

    2014-05-01

    Quantifying volumes of sediments produced on hillslopes or in channels and transported or stored within river systems is necessary to establish sediment budgets. If research efforts on hillslope erosion processes have led to a relatively good understanding and quantification of local sources, in-channel processes remain poorly understood and quasi inexistent in global budgets. However, profound landuse changes and agricultural practices have altered river functioning, caused river bank instability and stream incision. During the past decades in France, river channelization has been perfomed extensively to allow for new agricultural practices to take place. Starting from a recent study on the quantification of sediment fluxes for catchments within the Loire river basin (Gay et al. 2013), our aim is to complete sediment budgets by taking into account various sources and sinks both on hillslope and within channel. The emphasis of this study is on river bank erosion and how bank erosion contributes to global budgets. A model of bank retreat is developed for the entire Loire river basin. In general, our results show that bank retreat is on average quite low with approximately 1 cm.yr-1. However, a strong variability exists within the study area with channels displaying values of bank retreat up to ~10 cm.yr-1. Our results corroborate those found by Landemaine et al. in 2013 on a small agricultural catchment. From this first step, quantification of volumes of sediment eroded from banks and available for transport should be calculated and integrated in sediment budgets to allow for a better understanding of basin functioning. Gay A., Cerdan O., Delmas M., Desmet M., Variability of sediment yields in the Loire river basin (France): the role of small scale catchments (under review). Landemaine V., Gay A., Cerdan O., Salvador-Blanes S., Rodriguez S. Recent morphological evolution of a headwater stream in agricultural context after channelization in the Ligoire river (France

  15. Catchment Restoration in the Tweed UNESCO-IHP HELP Basin - Eddleston Water

    NASA Astrophysics Data System (ADS)

    Spray, Christopher

    2013-04-01

    The EU Water Frame Work Directive (WFD) requires member states to work towards the achievement of 'good ecological status' for water bodies, through a 6 year cycle of river basin management plans (RBMPs). Within these RBMPs, states must develop and implement programmes of measures designed to improve the quality of individual water bodies at risk of failing to achieve this status. These RBMPS must not only be focussed on the key causes of failure, but increasingly look to deliver multiple benefits, such as flood risk reduction and improvement to biodiversity from such catchment interventions, and to involve communities and other stakeholders in restoration of their local environment. This paper reports on progress of a detailed study of the restoration of the Eddleston Water, a typical 'failing' water body in Scotland, the monitoring and governance arrangements behind this, and implications for rehabilitation of river systems elsewhere. Within UK rivers, the main causes of failure to achieve good ecological status are historical morphological changes to river courses, diffuse agricultural pollution and invasive non-native species. The Eddleston Water is a 70 sq kms sub-catchment of the Tweed, an UNESCO IHP-HELP basin in the Scottish : English borders, and is currently classified as 'bad' status, due largely to morphological changes to the course and structure of the river over the past 200 years. The main challenge therefor is physical restoration of the river to achieve functional connectivity with the flood plain. At the same time however, the two communities within the catchment suffer from flooding, so a second priority is to intervene within the catchment to reduce the risk of flooding through the use of "natural flood management" measures and, underlying both these two aspects a whole catchment approach to community participation and the achievement of a range of other ecosystem service benefits, including conservation of biodiversity. We report on the

  16. An appraisal of precipitation distribution in the high-altitude catchments of the Indus basin.

    PubMed

    Dahri, Zakir Hussain; Ludwig, Fulco; Moors, Eddy; Ahmad, Bashir; Khan, Asif; Kabat, Pavel

    2016-04-01

    Scarcity of in-situ observations coupled with high orographic influences has prevented a comprehensive assessment of precipitation distribution in the high-altitude catchments of Indus basin. Available data are generally fragmented and scattered with different organizations and mostly cover the valleys. Here, we combine most of the available station data with the indirect precipitation estimates at the accumulation zones of major glaciers to analyse altitudinal dependency of precipitation in the high-altitude Indus basin. The available observations signified the importance of orography in each sub-hydrological basin but could not infer an accurate distribution of precipitation with altitude. We used Kriging with External Drift (KED) interpolation scheme with elevation as a predictor to appraise spatiotemporal distribution of mean monthly, seasonal and annual precipitation for the period of 1998-2012. The KED-based annual precipitation estimates are verified by the corresponding basin-wide observed specific runoffs, which show good agreement. In contrast to earlier studies, our estimates reveal substantially higher precipitation in most of the sub-basins indicating two distinct rainfall maxima; 1st along southern and lower most slopes of Chenab, Jhelum, Indus main and Swat basins, and 2nd around north-west corner of Shyok basin in the central Karakoram. The study demonstrated that the selected gridded precipitation products covering this region are prone to significant errors. In terms of quantitative estimates, ERA-Interim is relatively close to the observations followed by WFDEI and TRMM, while APHRODITE gives highly underestimated precipitation estimates in the study area. Basin-wide seasonal and annual correction factors introduced for each gridded dataset can be useful for lumped hydrological modelling studies, while the estimated precipitation distribution can serve as a basis for bias correction of any gridded precipitation products for the study area. PMID

  17. Determining Spatial Distribution And Air-Water Exchange Of Polycyclic Aromatic Hydrocarbons In Stormwater Runoff Catchment Basins

    NASA Astrophysics Data System (ADS)

    Kasaraneni, V. K.; Schifman, L. A.; Craver, V.; Boving, T. B.

    2014-12-01

    Stormwater runoff is a conduit for several pollutants such as polycyclic aromatic hydrocarbons (PAHs) in to surface and ground water bodies. The control of runoff and pollutants is typically addressed by best management practices (BMPs), such as retention/detention ponds or catchment basins in general. The effectiveness of catchment basins in reducing the volume of runoff and removal of some contaminants has been established. However, very little is known about the fate of the contaminants settled within these structures. In coastal regions and places with shallow groundwater tables accumulation of high concentrations of PAHs in the bottom sediments poses a potential threat for groundwater contamination. The concentrations of PAHs accumulated in the sediments of these catchment basins will primarily depend on the sources of runoff origin and the surrounding land use. Due to the physico-chemical characteristics of PAHs, their transport not only can occur in the liquid and solid phase, but it is also possible that gaseous emissions can be produced from BMP systems. For the purpose of this study, five stormwater catchment basins along the I-95 corridor in Rhode Island were selected based on the stormwater runoff origin and covering (industrial, urban, highway, and commercial) land uses. To study the stratification of PAHs sediment cores one foot were collected and analyzed for 31PAHs (16 EPA parent PAH and 15 methylated PAHs). In order to determine whether the catchment basins are a source of atmospheric pollution polyethylene passive samplers were deployed to determine the freely dissolved PAHs in the water column and gas phase PAHs at the air-water interface. This presentation will describe how PAH fluxes move between three environmental compartments (sediments, water column, atmosphere) within the five stormwater catchment basins. Further, it will be investigated whether these BMP structures can act as contaminant sources rather than sinks and whether BMP

  18. Estimation of Catchment Transit Time in Fuji River Basin by using an improved Tank model

    NASA Astrophysics Data System (ADS)

    Wenchao, M.; Yamanaka, T.; Wakiyama, Y.; Wang, P.

    2013-12-01

    As an important parameter that reflects the characteristics of catchments, the catchment transit time (CTT) has been given much more widely attentions especially in recent years. The CTT is defined as the time water spends travelling through a catchment to the stream network [1], and it describes how catchments retain and release water and solutes and thus control geochemical and biogeochemical cycling and contamination persistence [2]. The objectives of the present study are to develop a new approach for estimating CTT without prior information on such TTD functions and to apply it to the Fuji River basin in the Central Japan Alps Region. In this study, an improved Tank model was used to compute mean CTT and TTD functions simultaneously. It involved water fluxes and isotope mass balance. Water storage capacity in the catchment, which strongly affects CTT, is reflected in isotope mass balance more sensitively than in water fluxes. A model calibrated with observed discharge and isotope data is used for virtual age tracer computation to estimate CTT. This model does not only consider the hydrological data and physical process of the research area but also reflects the actual TTD with considering the geological condition, land use and the other catchment-hydrological conditions. For the calibration of the model, we used river discharge record obtained by the Ministry of Land, Infrastructure and Transportation, and are collecting isotope data of precipitation and river waters monthly or semi-weekly. Three sub-catchments (SC1~SC3) in the Fuji River basin was selected to test the model with five layers: the surface layer, upper-soil layer, lower-soil layer, groundwater aquifer layer and bedrock layer (Layer 1- Layer 5). The evaluation of the model output was assessed using Nash-Sutcliffe efficiency (NSE), root mean square error-observations standard deviation ratio (RSR), and percent bias (PBIAS). Using long time-series of discharge records for calibration, the simulated

  19. Implementing Integrated Catchment Management in the upper Limpopo River basin: A situational assessment

    NASA Astrophysics Data System (ADS)

    Mwenge Kahinda, J.; Meissner, R.; Engelbrecht, F. A.

    2016-06-01

    A three-phase study was initiated as a way to promote Integrated Catchment Management approaches in the Limpopo River basin. This paper presents the situational assessment, which should enable De Beers to understand how their Venetia Mine operations are located within a broader and highly dynamic socio-economic and ecohydrological landscape as it pertains to water risks. The second phase, Risk assessment, aims to develop conservation interventions in the identified areas; the third phase will develop mechanisms for implementing water stewardship schemes to mitigate the shared water risks. Analysis of the social-ecological system (hydrological, climatic, ecological, socio-economic and governance systems) of the Limpopo River basin indicates that the institutional arrangement of the Limpopo River basin is neither simple nor effective. The basin is rapidly approaching closure in the sense that almost all of the available supplies of water have already been allocated to existing water users. If the proposed ecological flow requirements were to be met for all of the tributaries, the basin would be 'closed'. On-going and projected land use changes and water resources developments in the upper reaches of the basin, coupled with projected rainfall reductions and temperature increases, and allocation of the flows for the ecological reserve, are likely to further reduce downstream river flows. The coupled increase in temperature and decrease in rainfall is of great concern for everyone in the basin, especially the poorer communities, who rely on rain-fed agriculture for their livelihoods. Increased temperatures also lead to increased evaporation from reservoirs and therefore result in a decrease in water availability. This will lead to increased abstraction of groundwater, especially from alluvial aquifers, and consequently an increase in river transmission losses and a decrease in river flows.

  20. Preliminary design review report for K Basin Dose Reduction Project

    SciTech Connect

    Blackburn, L.D.

    1996-01-01

    The strategy for reducing radiation dose, originating from radionuclides absorbed in the K East Basin concrete, is to raise the pool water level to provide additional shielding. This report documents a preliminary design review conducted to ensure that design approaches for cleaning/coating basin walls and modifying other basin components were appropriate. The conclusion of this review was that design documents presently conclusion of this review was that design documents presently completed or in process of modification are and acceptable basis for proceeding to complete the design.

  1. Towards seasonal hydrological forecasting in mountain catchments: preliminary results from the APRIL project

    NASA Astrophysics Data System (ADS)

    Pistocchi, Alberto; Mazzoli, Paolo; Bagli, Stefano; Notarnicola, Claudia; Pasolli, Luca

    2013-04-01

    The APRIL project aims at addressing the long term quantitative prediction of monthly discharge from mountain catchments and setting up a system which can then be used operationally. More specifically, its objectives are: - To investigate the potential of EO products (snow cover extent, vegetation and soil moisture statust) and weather/climatic variables for the prediction of water streamflow from mountain catchments - To develop a robust methodology for the long term quantitative forecast of montly discharge from EO and weather/climatic data - To build a fully operational system for seasonal hydrological forecasting. This contribution illustrates the general concept of the project as well as some preliminary results. Water discharge in mountain catchments is physically related to antecedent snow cover and climatology (precipitation, temperature). Other factors may play a role, such as vegetation/soil status and topography. Historical discharge measurements and earth observation (EO) data are a valuable source for inferring the quantitative relationship between the discharge and its predictors using appropriate techniques. The prediction is based on the Support Vector Regression (SVR)technique, a state of the art machine learning regression method with good intrinsic generalization ability and robustness. In the contribution we present and discuss results of a preliminary analysis on water discharge prediction ( with lead time of 1 to 3 months) in South Tyrol, Italy. Despite the use of a limited set of predictors (among which mainly snow cover area), the results are encouraging. The analysis is in the process of being extended at different spatial scales, which will give the possibility to investigate different aspects of the problem and develop different prediction systems; by updating on the current developments, the contribution discusses also perspectives and current limitations towards the set up of a fully operational seasonal hydrological forecasting system

  2. Effects of land cover change on evapotranspiration and streamflow of small catchments in the Upper Xingu River Basin, Central Brazi

    NASA Astrophysics Data System (ADS)

    Costa, M. H.; Dias, L. C. P.; Macedo, M.; Coe, M. T.; Neill, C.

    2015-12-01

    This study assess the influence of land cover changes on evapotranspiration and streamflow in small catchments in the Upper Xingu River Basin (Mato Grosso state, Brazil). Streamflow was measured in catchments with uniform land use for September 1, 2008 to August 31, 2010. We used models to simulate evapotranspiration and streamflow for the four most common land cover types found in the Upper Xingu: tropical forest, cerrado (savanna), pasture, and soybean croplands. We used INLAND to perform single point simulations considering tropical rainforest, cerrado and pasturelands, and AgroIBIS for croplands. Converting natural vegetation to agriculture substantially modifies evapotranspiration and streamflow in small catchments. Measured mean streamflow in soy catchments was about three times greater than that of forest catchments, while the mean annual amplitude of flow in soy catchments was more than twice that of forest catchments. Simulated mean annual evapotranspiration was 39% lower in agricultural ecosystems (pasture and soybean cropland) than in natural ecosystems (tropical rainforest and cerrado). Observed and simulated mean annual streamflows in agricultural ecosystems were more than 100% higher than in natural ecosystems. The accuracy of the simulations is improved by using field-measured soil hydraulic properties. The inclusion of local measurements of key soil parameters is likely to improve hydrological simulations in other tropical regions.

  3. Effects of land cover change on evapotranspiration and streamflow of small catchments in the Upper Xingu River Basin, Central Brazi

    NASA Astrophysics Data System (ADS)

    Costa, M. H.; Dias, L. C. P.; Macedo, M.; Coe, M. T.; Neill, C.

    2014-12-01

    This study assess the influence of land cover changes on evapotranspiration and streamflow in small catchments in the Upper Xingu River Basin (Mato Grosso state, Brazil). Streamflow was measured in catchments with uniform land use for September 1, 2008 to August 31, 2010. We used models to simulate evapotranspiration and streamflow for the four most common land cover types found in the Upper Xingu: tropical forest, cerrado (savanna), pasture, and soybean croplands. We used INLAND to perform single point simulations considering tropical rainforest, cerrado and pasturelands, and AgroIBIS for croplands. Converting natural vegetation to agriculture substantially modifies evapotranspiration and streamflow in small catchments. Measured mean streamflow in soy catchments was about three times greater than that of forest catchments, while the mean annual amplitude of flow in soy catchments was more than twice that of forest catchments. Simulated mean annual evapotranspiration was 39% lower in agricultural ecosystems (pasture and soybean cropland) than in natural ecosystems (tropical rainforest and cerrado). Observed and simulated mean annual streamflows in agricultural ecosystems were more than 100% higher than in natural ecosystems. The accuracy of the simulations is improved by using field-measured soil hydraulic properties. The inclusion of local measurements of key soil parameters is likely to improve hydrological simulations in other tropical regions.

  4. Ecosystem based river basin management planning in critical water catchment in Mongolia

    NASA Astrophysics Data System (ADS)

    Tugjamba, Navchaa; Sereeter, Erdenetuul; Gonchigjav, Sarantuya

    2014-05-01

    Developing the ecosystem based adaptation strategies to maintain water security in critical water catchments in Mongolia would be very significant. It will be base by reducing the vulnerability. "Ecosystem Based adaptation" is quite a new term in Mongolia and the ecosystem approach is a strategy for the integrated management of land, water and living resources that promotes conservation and sustainable use in an equitable way. To strengthen equitable economic development, food security, climate resilience and protection of the environment, the implementation of sustainable river basin management in critical water catchments is challenging in Mongolia. The Ulz river basin is considered one of the critical water catchments due to the temperature has increased by in average 1.30Ñ over the period 1976 to 2011. It is more intense than the global warming rate (0.740C/100 years) and a bit higher than the warming rate over whole Mongolia as well. From long-term observations and measurements it is clear that Ulz River has low water in a period of 1970-1980 and since the end of 1980s and middle of 1990s there were dominated years of the flood. However, under the influence of the global warming, climate changes of Mongolia and continuation of drought years with low water since the end of 1990s until today river water was sharply fallen and dried up. For the last ten years rivers are dried up and annual mean run-off is less by 3-5 times from long term mean value. The Ulz is the transboundary river basin and taking its origin from Ikh and Baga Burd springs on territory of Norovlin soum of Khentii province that flows through Khentii and Dornod provinces to the northeast, crossing the state border it flows in Baruun Tari located in Tari Lake concavity in Russia. Based on the integrative baseline study on the 'The Ulz River Basin Environmental and Socioeconomic condition', ecosystem based river basin management was planned. 'Water demand Calculator 3' (WDC) software was used to

  5. Applicability of LOICZ catchment coast continuum in a major Caribbean basin: The Magdalena River, Colombia

    NASA Astrophysics Data System (ADS)

    Restrepo, Juan D.

    2008-04-01

    Within the Land Ocean Interactions in the Coastal Zone (LOICZ)-Basins approach, the Magdalena River Project (MRP) is an interdisciplinary research, which aims to improve the scientific understanding of the linkages between the Magdalena drainage basin and its associated coastal environments. The MRP is an outgrowth of the initial regional planning that resulted from the LOICZ South American Basins (SamBas) and Caribbean Basins (CariBas) studies on land use and hydrological changes during approximately the past century in tropical and temperate benchmark river basins. The results of the MRP presented in this article show that the extent of land-cover change and erosion within the catchment has increased over the last 10-20 yr. The overall increasing trends in sediment load on a regional scale may be attributed to a range of anthropogenic influences including: a 40% decrease in forests over a 20-yr period; a 65% increase in agricultural and pasture; poor practices of land use; mining; and increasing rates of urbanization. These increasing trends in sediment load coincide with the overall decline of live coral cover in a 145-km 2 coral reef complex in the Caribbean Sea. In addition, the impacts of heavy sediment loads and freshwater discharges have greatly contributed not only to the total disappearance of coral formations but also to a considerable reduction in abundance of seagrass beds in Cartagena Bay and neighbouring areas. The synthesis and analysis presented in this article are just first steps toward understanding the natural and human-induced factors that have produced the observed patterns of water discharge and sediment load of the Magdalena River into the Caribbean Sea, and to relating these processes to the impact on coastal ecosystems.

  6. Monitoring of metals, organic compounds and coliforms in water catchment points from the Sinos River basin.

    PubMed

    Nascimento, C A; Staggemeier, R; Bianchi, E; Rodrigues, M T; Fabres, R; Soliman, M C; Bortoluzzi, M; Luz, R B; Heinzelmann, L S; Santos, E L; Fleck, J D; Spilki, F R

    2015-05-01

    Unplanned use and occupation of the land without respecting its capacity of assimilation and environmental purification leads to the degradation of the environment and of water used for human consumption. Agricultural areas, industrial plants and urban centres developed without planning and the control of effluent discharges are the main causes of water pollution in river basins that receive all the liquid effluents produced in those places. Over the last decades, environmental management has become part of governmental agendas in search of solutions for the preservation of water quality and the restoration of already degraded resources. This study evaluated the conditions of the main watercourse of the Sinos River basin by monitoring the main physical, chemical and microbiological parameters described in the CONAMA Resolution no. 357/2005.The set of parameters evaluated at five catchment points of water human consumption revealed a river that has different characteristics in each reach, as the upper reach was class 1, whereas the middle and lower reaches of the basin were class 4. Monitoring pointed to households as the main sources of pollutants in those reaches, although metals used in the industrial production of the region were found in the samples analyzed. PMID:26270213

  7. Analysis of annual dissolved-solids loading from selected natural and irrigated catchments in the Upper Colorado River Basin, 1974-2003

    USGS Publications Warehouse

    Kenney, Terry A.; Gerner, Steven J.; Buto, Susan G.

    2012-01-01

    Dissolved-solids loading from 17 natural catchments and 14 irrigated catchments in the Upper Colorado River Basin was examined for the period from 1974 through 2003. In general, dissolved-solids loading increased and decreased concurrently in natural and irrigated catchments but at different magnitudes. Annually, the magnitude of loading in natural catchments changed about 10 percent more, on average, than in irrigated catchments. Measures of variability, or spread, indicate that natural catchments had 35 percent greater annual variability in loading than irrigated catchments. Precipitation and dissolved-solids loads were positively correlated in natural catchments, and a weak positive correlation was determined for irrigated catchments. A weak negative correlation between temperature and dissolved-solids load was determined for both natural and irrigated catchments. In irrigated catchments, the dissolved-solids load response to an above-average precipitation period from 1982 through 1987 generally lagged behind that in the natural catchments. On average, irrigated catchments with reservoir storage had the largest normalized maximum annual loads during the wet period.

  8. The 20th century whole-basin trophic history of an inter-drumlin lake in an agricultural catchment.

    PubMed

    Jordan, Philip; Rippey, Brian; Anderson, N John

    2002-10-01

    Eight 1-m sediment cores were extracted from across the basin of Friary Lough, a 5.4-ha eutrophic lake in a wholly grassland agricultural catchment in Co. Tyrone, Northern Ireland. Sedimentary TP, diatom inferred TP, Ca, Na, Fe, Mn, loss-on-ignition (LOI), dry weight and density were determined in the core profiles. Core dating and correlation gave a 210Pb, 137Cs and 241Am chronology from 1906 to 1995 and enabled a whole-basin estimate of chemical and sediment accumulation rate over the 20th Century. The major changes for all parameters occurred after c. 1946. Sediment accumulation rate was most influenced by organic matter accumulations, probably of planktonic origin, and increasing after c. 1946. Inorganic sediment accumulation rate was found to be largely unchanging through the century at 10 t km(-2) yr(-1) when expressed as catchment exports. All chemical accumulation rate changes occurred after c. 1946. Total phosphorus accumulation rate, however, was found to be the only chemical to be increasing throughout the epilimnion and hypolimnion areas of the sedimentary basin at an average of 22.5 mg m(-2) yr(-1) between 1946 and 1995. The other chemical parameters showed increasing accumulation rates after c. 1946 in the epilimnion part of the basin only. Interpreted in terms of whole-basin sedimentation and catchment export processes over time, it is suggested that diffuse TP inputs are independent of sediment inputs. This corresponds to hydrochemical models that suggest soluble P as the primary fraction that is lost from grassland catchments. The increase in sedimentary TP accumulation rate, and DI-TP concentration, are also explained with regard to current models that suggest increases in runoff P concentrations from elevated soil P concentrations. Increases in eplimnion chemical and sediment accumulation rate after c. 1946 may be due to local erosion that has limited impact on lake basin sedimentation. PMID:12389788

  9. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Bedrock Geology

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the area of bedrock geology types in square meters compiled for every catchment of MRB_E2RF1 catchments for Major River Basins (MRBs, Crawford and others, 2006). The source data set is the "Geology of the Conterminous United States at 1:2,500,000 Scale--A Digital Representation of the 1974 P.B. King and H.M. Beikman Map" (Schuben and others, 1994). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  10. Variability of streamflow under climate change: A study for 26 Brazilian large basins and sub-catchments.

    NASA Astrophysics Data System (ADS)

    Isidoro, Jorge; Tiezzi, Rafael

    2016-04-01

    Human activity is entirely dependent on water resources, thus highly vulnerable to the effects of rainfall variability. This work aims to analyse the impact of rainfall variability on streamflow for 26 Brazilian large basins and sub-catchments. Records form 83-years of observations (1931-2013) were compared with the results of simulations for the 2011-2100 (90-year) period. Two rainfall-runoff hydrological models were used for the numerical simulations: Soil Moisture Accounting Procedure-SMAP (process-based) and Stochastic Linear Model-MEL (stochastic). Very significant impacts were found, namely the increase in streamflow in the Southern basins that may reach almost 100%, while in the Northern and Northeastern basins, streamflow may decrease about 90%. These major changes can aggravate the history of flooding in the Southern basins and of droughts in several regions of the North and Northeast basins.

  11. Data mining methods for predicting event runoff coefficients in ungauged basins using static and dynamic catchment characteristics

    NASA Astrophysics Data System (ADS)

    Loritz, Ralf; Weiler, Markus; Seibert, Simon

    2015-04-01

    Transferring hydrological information into ungauged basin by regionalisation approaches is an ongoing field of research. Usually regionalisation techniques use physical landscape descriptors to transfer either model parameters or hydrological characteristics from a catchment to another. A common problem of these approaches is the high degree of uncertainty associated to their results. One reason is that often solely static (structural) catchment characteristics such as catchment area, physiographic properties or land use data are used for regionalisation. However, it is well known that the hydrological response of a 'natural' system is a complex and a non-linear interaction of its structure, state and forcing. Here it is important to note, that only structure is a static property. State and forcing are highly dynamic when considering the temporal and spatial scale of a rainfall-runoff event. To overcome the limitations associated with 'static' regionalisation techniques we propose a regionalisation technique for event runoff coefficients combining static and dynamic catchment properties. The approach is based on the two data mining algorithms 'random forests' and 'quantile regression forests'. The static catchment characteristics include standard variables such as physiographic properties, land cover and soil data. The dynamic variables include event based properties of the forcing (i.e. rainfall amount, intensity,...) and proxies for the initial state of the catchment (i.e. initial soil moisture). Together with the runoff coefficient these quantities were extracted form hydro-meteorological time series (precipitation, discharge and soil moisture) using an automated rainfall-runoff event detection technique. We tested our method using a set of 60 meso-scale catchments (3.1 to 205,6 km2, covering a range of different geologies and land uses) from Southwest Germany. We randomly separated the catchments in two groups. The first group (30 donor catchments) was used to

  12. Mean Transit Times in Seven Upland Catchments, Otway Basin, Southeast Australia

    NASA Astrophysics Data System (ADS)

    Howcroft, William; Cartwright, Ian; Morgenstern, Uwe

    2016-04-01

    The timescales over which precipitation is transmitted into upland streams (the mean transit times, MTTs) are poorly understood, as are the physical processes and controls that govern the variation in mean transit times. In this study, we use tritium (3H), major ion geochemistry and discharge data to investigate the MTTs in upland streams of the Otway Basin of southeast Australia. Samples were collected under varying discharge conditions from seven catchments of varying size whose land use varies from relatively pristine eucalyptus forest to a mixture of pasture, grazing, and production forestry. This allows the controls on MTTs to be assessed. Tritium activities within the streams varied from 0.20 to 2.35 TU, which are below that of local rainfall (~2.7 TU). The highest tritium activities were generally reported in samples collected during periods of high winter discharge, while the lowest tritium activities were reported in samples collected during low, summer discharge. However, at several of the streams, there appears to be a discharge threshold above which tritium activities do not increase appreciably with increased discharge. In general, streams with larger catchment areas and relatively simple geology have less variable but higher tritium activities. In contrast, the lowest and most variable tritium activities were reported in streams having small catchment areas and a greater complexity in geology. MTTs calculated using an exponential-piston flow model ranged between 8 and 180 years; MTTs calculated using other flow models were generally similar, except where the tritium activities were less than around 1 TU. Major ion concentrations generally increased with a corresponding increase in MTT. However, in those streams having more variable MTTs, the opposite often held true, which most likely reflects the variable contribution to flow by water from different geologic units under differing flow conditions. By contrast, land use does not appear to impart a

  13. Plantation Forestry and Peak Flow Responses in Experimental Catchments and Large River Basins in Chile

    NASA Astrophysics Data System (ADS)

    Iroume, A.; Huber, A.

    2007-05-01

    Land use changes are inextricably linked to water resources and the consequences of such changes are a problem faced by water managers and governments across the world. This particular study considers the impact of changes in plantation forest cover on the hydrological response, with a specific focus on the issue of peak flow conditions and variation. The research still in progress is focused in small catchments and large river basins of Chile. The analysis of the data and the preparation of this document were carried out within the framework of the INCO- CT2004-510739 EPIC FORCE Project. EPIC FORCE aims to improve the integrated management of forest and water resources at the river basin scale through the development of policies based on sound science, focusing on extreme rainfall/snowmelt events. The focus areas are four Latin American countries (Costa Rica, Ecuador, Chile and Argentina.), which represent a range of humid forest and rainfall/snowmelt regimes with major flood and erosion problems and which suffer from a lack of integrated water and forest policies. Much of the controversy surrounding changes in peak flows following forest treatment arises from uncertainty over the response from different sizes of storms; whilst most studies agree that mean peak flow generally increases (even for only a short period) in the post harvesting period, there have been a number of different conclusions regarding influence of forest cover on peak flows from small storms compared with the flows from large events. In Chile, this research is been carried out in experimental catchments (less than 1 km2) and in large river basins (greater than 94 and up to 1,545 km2). Results from La Reina (34.4 ha), where peak flows from the pre-harvesting period (years 1997 to 1999, plantation of Pinus radiata established in 1977 covering the 79.5% of the area) were compared with those from the post- harvesting period (plantation clearcut between end of 1999 and first months of 2000 and

  14. Geo-referenced modelling of metal concentrations in river basins at the catchment scale

    NASA Astrophysics Data System (ADS)

    Hüffmeyer, N.; Berlekamp, J.; Klasmeier, J.

    2009-04-01

    1. Introduction The European Water Framework Directive demands the good ecological and chemical state of surface waters [1]. This implies the reduction of unwanted metal concentrations in surface waters. To define reasonable environmental target values and to develop promising mitigation strategies a detailed exposure assessment is required. This includes the identification of emission sources and the evaluation of their effect on local and regional surface water concentrations. Point source emissions via municipal or industrial wastewater that collect metal loads from a wide variety of applications and products are important anthropogenic pathways into receiving waters. Natural background and historical influences from ore-mining activities may be another important factor. Non-point emissions occur via surface runoff and erosion from drained land area. Besides deposition metals can be deposited by fertilizer application or the use of metal products such as wires or metal fences. Surface water concentrations vary according to the emission strength of sources located nearby and upstream of the considered location. A direct link between specific emission sources and pathways on the one hand and observed concentrations can hardly be established by monitoring alone. Geo-referenced models such as GREAT-ER (Geo-referenced Regional Exposure Assessment Tool for European Rivers) deliver spatially resolved concentrations in a whole river basin and allow for evaluating the causal relationship between specific emissions and resulting concentrations. This study summarizes the results of investigations for the metals zinc and copper in three German catchments. 2. The model GREAT-ER The geo-referenced model GREAT-ER has originally been developed to simulate and assess chemical burden of European river systems from multiple emission sources [2]. Emission loads from private households and rainwater runoff are individually estimated based on average consumption figures, runoff rates

  15. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Physiographic Provinces

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the area of each physiographic province (Fenneman and Johnson, 1946) in square meters, compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data are from Fenneman and Johnson's Physiographic Provinces of the United States, which is based on 8 major divisions, 25 provinces, and 86 sections representing distinctive areas having common topography, rock type and structure, and geologic and geomorphic history (Fenneman and Johnson, 1946).The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  16. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Surficial Geology

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the area of surficial geology types in square meters compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data set is the "Digital data set describing surficial geology in the conterminous US" (Clawges and Price, 1999).The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2008). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  17. Catchments by Major River Basins in the Conterminous United States: 30-Year Average Daily Minimum Temperature, 1971-2000

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents thecatchment-average for the 30-year (1971-2000) average daily minimum temperature in Celsius multiplied by 100 compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data were the United States Average Monthly or Annual Minimum Temperature, 1971 - 2000 raster data set produced by the PRISM Group at Oregon State University. The MRB_E2RF1 catchments are based on a modified version of the Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  18. Attributes for MRB_E2RF1 Catchments in Selected Major River Basins: Population Density, 2000

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This data set represents the average population density, in number of people per square kilometer multiplied by 10 for the year 2000, compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data set is the 2000 Population Density by Block Group for the Conterminous United States (Hitt, 2003). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) RF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  19. Sulfonylurea herbicides in an agricultural catchment basin and its adjacent wetland in the St. Lawrence River basin.

    PubMed

    de Lafontaine, Yves; Beauvais, Conrad; Cessna, Allan J; Gagnon, Pierre; Hudon, Christiane; Poissant, Laurier

    2014-05-01

    The use of sulfonylurea herbicides (SU) has increased greater than 100 times over the past 30 years in both Europe and North America. Applied at low rates, their presence, persistence and potential impacts on aquatic ecosystems remain poorly studied. During late-spring to early fall in 2009-2011, concentrations of 9 SU were assessed in two agricultural streams and their receiving wetland, an enlargement of the St. Lawrence River (Canada). Six SU in concentrations >LOQ (10 ng L(-1)) were detected in 10% or less of surface water samples. Rimsulfuron was detected each year, sulfosulfuron and nicosulfuron in two years and the others in one year only, suggesting that application of specific herbicides varied locally between years. Detection frequency and concentrations of SU were not significantly associated with total precipitation which occurred 1 to 5d before sampling. Concentrations and fate of SU differed among sites due to differences in stream dynamics and water quality characteristics. The persistence of SU in catchment basin streams reflected the dissipation effects associated with stream discharge. Maximum concentrations of some SU (223 and 148 ng L(-1)) were occasionally above the baseline level (100 ng L(-1)) for aquatic plant toxicity, implying potential toxic stress to flora in the streams. Substantially lower concentrations (max 55 ng L(-1)) of SU were noted at the downstream wetland site, likely as a result from dilution and mixing with St. Lawrence River water, and represent less toxicological risk to the wetland flora. Sporadic occurrence of SU at low concentrations in air and rain samples indicated that atmospheric deposition was not an important source of herbicides to the study area. PMID:24534695

  20. Gauging the ungauged basin: How to diagnose catchment function from field reconnaissance to long-term observation.

    NASA Astrophysics Data System (ADS)

    McDonnell, J. J.; Sivapalan, M.

    2003-12-01

    Despite the widespread gauging (usually rainfall and runoff) of watersheds around the world for the past century, little thought has been given to gauging strategies in the context of what to measure, where to measure, and when. We explore in this talk whether or not gauging should be a mechanical and prescriptive approach or, perhaps alternatively as a diagnostic tool to probe how a catchment works. The following questions will be explored: Does a one size-fits-all approach work for basins in different climates, geological situations and vegetative environments? What are the minimum number and location of measurements necessary to even characterize a basin? Should we standardize our gauging for all catchments? How should concepts, theories and modeling inform where and what to measure? These questions have not been explored in detail since the early days of the International Hydrological Decade back in the 1960s. Nevertheless, it is these basic questions that may help us to reveal simplicity from the hitherto measured complexities of gauged basins developed thus far. As we move from the traditional headwater research basin to mesoscale basins and beyond, we need to rethink what it might mean to "gauge" a basin. How might we rapidly assess first order process controls from say a few days of field reconnaissance or perhaps some combination of assessed climate-vegetation-geologic controls on annual water balance, monthly flows, event dynamics, water age, geographic and time source components of flow. This talk presents some ideas on a road map to gauging within the PUB framework and considers how new approaches may reconsider the tradeoffs between precision and accuracy for spatial completeness, new data content and characterization of the gross stocks and flows of water (and things carried with the water) in a basin.

  1. Fine-Resolution Hydrologic Modeling of Semiarid River Basins: Preliminary Results from the Upper Rio Grande

    NASA Astrophysics Data System (ADS)

    Wyckoff, R.; Vivoni, E. R.; Rinehart, A.

    2004-12-01

    Water resources management and decision making in arid and semiarid regions require scientific knowledge and predictive capability of the physical processes occurring within hydrologic systems at scales sufficient to capture the variability inherent in the resource and its utilization. Our understanding of the interaction between water supply and demand is aided through numerical models that best represent our current knowledge of the hydrologic, ecological and meteorological processes in river basins. To this end, advances in distributed hydrologic modeling over large regional watersheds can aid in providing estimates of water availability and its susceptibility to climate variations, land-cover change and population growth. In this study, we utilize the TIN-based Real-time Integrated Basin Simulator (tRIBS) model to simulate continuous hydrological processes within subbasins of the Upper Río Grande in north-central New Mexico. First, we introduce the distributed model by highlighting the following salient features: (1) coupled unsaturated and saturated zones through a dynamic water table, (2) coupled energy and hydrologic balance at the land surface and (3) topographically-driven soil moisture redistribution, radiation and evapotranspiration. Accurate terrain representation at fine-resolution is achieved through the use of a triangulated irregular network (TIN) terrain model. Second, we present semiarid case studies in model setup, parameterization and continuous operation for the Upper Río Puerco and Jemez River. These river basins provide test cases for the calibration and validation of the tRIBS model through the use of in-situ measurement networks and long-term rainfall and stream gauging records. We will present the catchment hydrological response and its spatial organization by integrating geospatial data on topography, land-surface properties and precipitation obtained from geographic information systems, gauging networks and remote sensing. Although

  2. Validation of a simple distributed sediment delivery approach in selected sub-basins of the River Inn catchment area

    NASA Astrophysics Data System (ADS)

    Reid, Lucas; Kittlaus, Steffen; Scherer, Ulrike

    2015-04-01

    For large areas without highly detailed data the empirical Universal Soil Loss Equation (USLE) is widely used to quantify soil loss. The problem though is usually the quantification of actual sediment influx into the rivers. As the USLE provides long-term mean soil loss rates, it is often combined with spatially lumped models to estimate the sediment delivery ratio (SDR). But it gets difficult with spatially lumped approaches in large catchment areas where the geographical properties have a wide variance. In this study we developed a simple but spatially distributed approach to quantify the sediment delivery ratio by considering the characteristics of the flow paths in the catchments. The sediment delivery ratio was determined using an empirical approach considering the slope, morphology and land use properties along the flow path as an estimation of travel time of the eroded particles. The model was tested against suspended solids measurements in selected sub-basins of the River Inn catchment area in Germany and Austria, ranging from the high alpine south to the Molasse basin in the northern part.

  3. Geo-referenced modelling of metal concentrations in river basins at the catchment scale

    NASA Astrophysics Data System (ADS)

    Hüffmeyer, N.; Berlekamp, J.; Klasmeier, J.

    2009-04-01

    1. Introduction The European Water Framework Directive demands the good ecological and chemical state of surface waters [1]. This implies the reduction of unwanted metal concentrations in surface waters. To define reasonable environmental target values and to develop promising mitigation strategies a detailed exposure assessment is required. This includes the identification of emission sources and the evaluation of their effect on local and regional surface water concentrations. Point source emissions via municipal or industrial wastewater that collect metal loads from a wide variety of applications and products are important anthropogenic pathways into receiving waters. Natural background and historical influences from ore-mining activities may be another important factor. Non-point emissions occur via surface runoff and erosion from drained land area. Besides deposition metals can be deposited by fertilizer application or the use of metal products such as wires or metal fences. Surface water concentrations vary according to the emission strength of sources located nearby and upstream of the considered location. A direct link between specific emission sources and pathways on the one hand and observed concentrations can hardly be established by monitoring alone. Geo-referenced models such as GREAT-ER (Geo-referenced Regional Exposure Assessment Tool for European Rivers) deliver spatially resolved concentrations in a whole river basin and allow for evaluating the causal relationship between specific emissions and resulting concentrations. This study summarizes the results of investigations for the metals zinc and copper in three German catchments. 2. The model GREAT-ER The geo-referenced model GREAT-ER has originally been developed to simulate and assess chemical burden of European river systems from multiple emission sources [2]. Emission loads from private households and rainwater runoff are individually estimated based on average consumption figures, runoff rates

  4. Realism test of a topography driven conceptual model (FLEX-Topo) in nested catchments of the Heihe River Basins, China

    NASA Astrophysics Data System (ADS)

    Gao, H.; Savenije, H.; Hrachowitz, M.; Fenicia, F.; Gharari, S.

    2013-12-01

    Although elevation data are globally available and many models do take topographical information into account, here it is demonstrated that topography is still an under-exploiting source of information in hydrological models . Based on the recently proposed modelling approach (FLEX-Topo) a semi-distributed topographic driven conceptual model (FLEXT), has been developed and tested in two nested catchments of the Heihe river basin. The model uses four topographical properties (i.e. Height Above the Nearest Drainage (HAND), absolute elevation, slope and aspect) to make a hydrological landscape classification which correspond with the dominant rainfall-runoff processes of these landscapes, to which a conceptual model structure is attributed. To analyses the additional information provided by the landscape classification, the performance of the FLEXT model is compared to a completely lumped hydrological models (FLEXL) and a semi-distributed model (FLEXD). All models have been calibrated and validated at the catchment outlet. Additionally, the models were evaluated in two nested sub-catchments. FLEXT performs substantially better than the other two models especially in the two nested sub-catchments during validation. It is especially better equipped to represent rainfall-runoff events during the dry season, which supports the following hypotheses: (1) topography can be used to distinguish different landscape elements with different hydrological function; (2) the model structure of the FLEXT is much better equipped to represent hydrological signatures than a lumped or semi-distributed model, and hence has a more realistic model structure and parameterization. The hydrograph components of the calibration(a), split-sample validation(b) and nested sub-catchments validation(c,d), of the FLEXT model

  5. Application of strontium isotope measurements to trace sediment sources in an upstream agricultural catchment (Loire River basin, France)

    NASA Astrophysics Data System (ADS)

    Le Gall, Marion; Evrard, Olivier; Thil, François; Foucher, Anthony; Salvador-Blanes, Sébastien; Cerdan, Olivier; Ayrault, Sophie

    2015-04-01

    Soil erosion is recognized as one of the main processes of land degradation in agricultural areas. It accelerates the supply of sediment to the rivers and degrades water quality. To limit those impacts and optimize management programs in such areas, sources of sediment need to be identified and sediment transport to be controlled. Here, we determined the sources of suspended sediment in the Louroux (24 km², French Loire River basin), a small catchment representative of lowland cultivated environments of Northwestern Europe. In this catchment, channels have been reshaped and 220 tile drain outlets have been installed over the last several decades. As a result, soil erosion and sediment fluxes have increased drastically. The variation of 87Sr/86Sr ratios, driven by the weathering of rocks with different ages and chemical composition, may reflect the mixing of different sediment sources. Strontium isotopic ratios (87Sr/86Sr) were therefore determined in potential soil sources, suspended particulate matter (SPM) and a sediment core sampled in the Louroux Pond at the catchment outlet. Soil, SPM and core samples displayed significantly different isotopic signatures. 87Sr/86Sr ratios in soil samples varied from 0.712763 to 0.724631 ± 0.000017 (2σ, n=20). Highest values were observed in silicic parts of the catchment whereas the lower values were identified in a calcareous area close to the Louroux Pond. 87Sr/86Sr ratios in SPM (0.713660 to 0.725749 ± 0.000017, 2σ, n=20) plotted between the soil and sediment core (0.712255 to 0.716415 ± 0.000017, 2σ, n=12), suggesting the presence of particles originating from at least two different lithological sources, i.e. silicic rocks and carbonate material. Variations in 87Sr/86Sr ratios in the outlet core sample were used to reconstruct the sedimentary dynamics in the catchment during the last decades. These results will guide the future implementation of appropriate management practices aiming to reduce erosion in upstream

  6. Daily anomalous high flow (DAHF) of a headwater catchment over the East River basin in South China

    NASA Astrophysics Data System (ADS)

    Chen, Ji; Niu, Jun; Sivakumar, Bellie

    2014-11-01

    This study develops a new method for analyzing the terrestrial hydrologic responses to precipitation through using level-based daily anomalous high flow (DAHF) occurrence in a catchment. The objectives of this study are twofold: (1) to explore the DAHF features over a headwater catchment; and (2) to evaluate the performance of a hydrologic model for DAHF simulation. In this study, DAHF is defined as the daily streamflow on a given day, whose deseasonalised daily streamflow is larger than a given multiplier of the standard deviation (STD) of the long-term deseasonalised streamflow series. Streamflow observations of a headwater catchment over the period of 1952-1972 (i.e., before reservoir operation) at the Longchuan station in the East River basin in South China are studied. The macro-scale Variable Infiltration Capacity (VIC) model is used for streamflow simulation in the catchment, and wavelet analysis is performed to explore the DAHF variability. The study reveals that the percentages of the number of days with the first and second levels of DAHFs are 4.2% and 1%, respectively, for the observed streamflows, while the corresponding percentages for the VIC model-simulated streamflow are 5% and 1.3%, respectively. Application of the Kolmogorov-Smirnov goodness-of-fit test indicates that these two levels of DAHFs can be described by two probability distribution functions, namely the Lognormal distribution and Generalized Extreme Value Type II distribution, respectively. The variability spectrum of the first level DAHF is basically consistent with that of antecedent precipitation, but not for the second level DAHF, as revealed by the wavelet analysis. The VIC model has better performance on the variability simulation of the first level of DAHF.

  7. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Base-Flow Index, 2002

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the mean base-flow index expressed as a percent, compiled for every catchment of MRB_E2RF1 catchments of Major River Basins (MRBs, Crawford and others, 2006). Base flow is the component of streamflow that can be attributed to ground-water discharge into streams. The source data set is Base-Flow Index for the Conterminous United States (Wolock, 2003). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every catchment of MRB_E2RF1 catchments for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  8. Soil and plant composition in the Noun river catchment basin, Western Cameroon: a contribution to the development of a biogeochemical baseline

    NASA Astrophysics Data System (ADS)

    Njofang, Clémentine; Matschullat, Jörg; Amougou, Akoa; Tchouankoué, Jean Pierre; Heilmeier, Hermann

    2009-02-01

    Soils and selected edible plants of the Noun river catchment basin of western Cameroon were sampled to investigate the distribution of trace elements, based on the preliminary idea of unusual anomalies. Analytical techniques for trace elements included ICP-AES, GF-AAS, and ICP-MS. Further soil analyses comprised the mineralogy and contents of the biogenic elements carbon, nitrogen and sulphur (CNS). The trace element concentrations in the soils reflect those of the lithogeochemical background of the pluto-volcanic rocks of the region. This is consistent with the results from the mineralogical analyses and physicochemical parameters such as pH, taken in the field, which also do not suggest any geochemical anomaly. Most trace elements analyzed in the plants showed concentrations that reflect those of the soils (Al, Fe, Ti, and Rb). However, some trace elements were enriched in the plants as compared to the soils, such as Zn, Cu, Cd, Mo (excluding yam), Ni (peanut), Ba (peanut), Sr (peanut, bean), and B. Trace elements such as As, Cr, V, and Se were not bioavailable for all the analyzed plants. Besides, trace elements such as Cu, Zn, Mo, Fe, Al, Ni, B, Ti, Rb, Cs, and Ba were in the range of phytotoxicity and reached or exceeded human food tolerance level (Cu). The plants with seeds showed a higher absorption of trace elements compared to plants with tubercles.

  9. Monitoring of fluvial transport in small upland catchments - methods and preliminary results

    NASA Astrophysics Data System (ADS)

    Janicki, Grzegorz; Rodzik, Jan; Chabudziński, Łukasz; Franczak, Łukasz; Siłuch, Marcin; Stępniewski, Krzysztof; Dyer, Jamie L.; Kołodziej, Grzegorz; Maciejewska, Ewa

    2014-06-01

    In April 2011 a study was initiated, financed from resources of the Polish National Science Centre, entitled: ‘Rainstorm prediction and mathematic modelling of their environmental and social-economical effects’ (No. NN/306571640). The study, implemented by a Polish-American team, covers meteorological research, including: (1) monitoring of single cell storms developing in various synoptic situations, (2) detection of their movement courses, and (3) estimation of parameters of their rain field. Empirical studies, including hydrological and geomorphological measurements, are conducted in objects researched thoroughly in physiographic terms (experimental catchments) in the Lublin region (SE Poland), distinguished by high frequency of occurrence of the events described. For comparative purposes, studies are also carried out on selected model areas in the lower course of the Mississippi River valley (USA), in a region with high frequency of summer rainstorms. For detailed studies on sediment transport processes during rainstorm events, catchments of low hydrological rank and their sub-catchments in a cascade system were selected. For the basic, relatively uniform geomorpho logical units distinguished this way, erosion and deposition balance of material transported was determined. The aim of work was to determine influence of weather condition on fluvial transport rate in small catchment with low hydrological order

  10. Validation of soil hydraulic pedotransfer functions at the local and catchment scale for an Indonesian basin

    NASA Astrophysics Data System (ADS)

    Booij, Martijn J.; Oldhoff, Ruben J. J.; Rustanto, Andry

    2016-04-01

    In order to accurately model the hydrological processes in a catchment, information on the soil hydraulic properties is of great importance. These data can be obtained by conducting field work, which is costly and time consuming, or by using pedotransfer functions (PTFs). A PTF is an empirical relationship between easily obtainable soil characteristics and a soil hydraulic parameter. In this study, PTFs for the saturated hydraulic conductivity (Ks) and the available water content (AWC) are investigated. PTFs are area-specific, since for instance tropical soils often have a different composition and hydraulic behaviour compared to temperate soils. Application of temperate soil PTFs on tropical soils might result in poor performance, which is a problem as few tropical soil PTFs are available. The objective of this study is to determine whether Ks and AWC can be accurately approximated using PTFs, by analysing their performance at both the local scale and the catchment scale. Four published PTFs for Ks and AWC are validated on a data set of 91 soil samples collected in the Upper Bengawan Solo catchment on Java, Indonesia. The AWC is predicted very poorly, with Nash-Sutcliffe Efficiency (NSE) values below zero for all selected PTFs. For Ks PTFs better results were found. The Wösten and Rosetta-3 PTFs predict the Ks moderately accurate, with NSE values of 0.28 and 0.39, respectively. New PTFs for both AWC and Ks were developed using multiple linear regression and NSE values of 0.37 (AWC) and 0.55 (Ks) were obtained. Although these values are not very high, they are significantly higher than for the published PTFs. The hydrological SWAT model was set up for the Keduang, a sub-catchment of the Upper Bengawan Solo River, to simulate monthly catchment streamflow. Eleven cases were defined to validate the PTFs at the catchment scale. For the Ks-PTF cases NSE values of around 0.84 were obtained for the validation period. The use of AWC PTFs resulted in slightly lower NSE

  11. The Immatsiak network of groundwater wells in a small catchment basin in the discontinuous permafrost zone of Northern Quebec, Canada: A unique opportunity for monitoring the impacts of climate change on groundwater (Invited)

    NASA Astrophysics Data System (ADS)

    Fortier, R.; Lemieux, J.; Molson, J. W.; Therrien, R.; Ouellet, M.; Bart, J.

    2013-12-01

    During a summer drilling campaign in 2012, a network of nine groundwater monitoring wells was installed in a small catchment basin in a zone of discontinuous permafrost near the Inuit community of Umiujaq in Northern Quebec, Canada. This network, named Immatsiak, is part of a provincial network of groundwater monitoring wells to monitor the impacts of climate change on groundwater resources. It provides a unique opportunity to study cold region groundwater dynamics in permafrost environments and to assess the impacts of permafrost degradation on groundwater quality and availability as a potential source of drinking water. Using the borehole logs from the drilling campaign and other information from previous investigations, an interpretative cryo-hydrogeological cross-section of the catchment basin was produced which identified the Quaternary deposit thickness and extent, the depth to bedrock, the location of permafrost, one superficial aquifer located in a sand deposit, and another deep aquifer in fluvio-glacial sediments and till. In the summer of 2013, data were recovered from water level and barometric loggers which were installed in the wells in August 2012. Although the wells were drilled in unfrozen zones, the groundwater temperature is very low, near 0.4 °C, with an annual variability of a few tenths of a degree Celsius at a depth of 35 m. The hydraulic head in the wells varied as much as 6 m over the last year. Pumping tests performed in the wells showed a very high hydraulic conductivity of the deep aquifer. Groundwater in the wells and surface water in small thermokarst lakes and at the catchment outlet were sampled for geochemical analysis (inorganic parameters, stable isotopes of oxygen (δ18O) and hydrogen (δ2H), and radioactive isotopes of carbon (δ14C), hydrogen (tritium δ3H) and helium (δ3He)) to assess groundwater quality and origin. Preliminary results show that the signature of melt water from permafrost thawing is observed in the

  12. Groundwater storage change in the Ngadda Catchment of the Lake Chad Basin using GRACE and ground truth data

    NASA Astrophysics Data System (ADS)

    Skaskevych, A.; Lee, J.

    2013-12-01

    The present study is to analyze groundwater storage variations in the Ngadda Catchment located in the southwestern edge of Lake Chad Basin using Gravity Recovery and Climate Experiment (GRACE) data. We collected monthly total water storage data from GRACE and monthly soil moisture data from Global Land Data Assimilation System (GLDAS) for the period of 2005 - 2009 with the spatial resolution of 1 and 0.25 degrees. We assumed surface water contributions to be negligible in the study area. The estimated groundwater storage changes were compared to the ground truth groundwater depth data collected in 2005 and 2009. The challenge of the present study is sparseness of the ground truth data in space and time. The study area is one of the data poor regions in the world due to the limited accessibility to the area. Different geostatistical techniques such as Kriging, Thiessen polygons, and Bayesian updating were applied to overcome such sparseness and modeling uncertainty under different scales and resolution. The study shows a significant increase of groundwater storage in the Ngadda catchment during the study period. Uncertainty is significant though depending on the size of the model and modeling technique. The study discusses advantages of using remote sensing data in data poor regions and how geostatistical techniques can be applied to deal with modeling uncertainty.

  13. River water quality of the River Cherwell: an agricultural clay-dominated catchment in the upper Thames Basin, southeastern England.

    PubMed

    Neal, Colin; Neal, Margaret; Hill, Linda; Wickham, Heather

    2006-05-01

    The water quality of the River Cherwell and a tributary of it, the Ray, are described in terms of point and diffuse sources of pollution, for this rural area of the upper Thames Basin. Point sources of pollution dominate at the critical ecological low flow periods of high biological activity. Although the surface geology is predominantly clay, base flow is partly supplied from springs in underlying carbonate-bearing strata, which influences the water quality particularly with regards to calcium and alkalinity. The hydrogeochemistry of the river is outlined and the overall importance of urban point sources even in what would normally be considered to be rural catchments is stressed in relation to the European Unions Water Framework Directive. Issues of phosphorus stripping at sewage treatment works are also considered: such stripping on the Cherwell has reduced phosphorus concentrations by about a factor of two, but this is insufficient for the needs of the Water Framework Directive. PMID:16253306

  14. Environmental isotopic and hydrochemical characteristics of groundwater from the Sandspruit Catchment, Berg River Basin, South Africa.

    PubMed

    Naicker, S; Demlie, M

    2014-01-01

    The Sandspruit catchment (a tributary of the Berg River) represents a drainage system, whereby saline groundwater with total dissolved solids (TDS) up to 10,870 mg/l, and electrical conductivity (EC) up to 2,140 mS/m has been documented. The catchment belongs to the winter rainfall region with precipitation seldom exceeding 400 mm/yr, as such, groundwater recharge occurs predominantly from May to August. Recharge estimation using the catchment water-balance method, chloride mass balance method, and qualified guesses produced recharge rates between 8 and 70 mm/yr. To understand the origin, occurrence and dynamics of the saline groundwater, a coupled analysis of major ion hydrochemistry and environmental isotopes (δ(18)O, δ(2)H and (3)H) data supported by conventional hydrogeological information has been undertaken. These spatial and multi-temporal hydrochemical and environmental isotope data provided insight into the origin, mechanisms and spatial evolution of the groundwater salinity. These data also illustrate that the saline groundwater within the catchment can be attributed to the combined effects of evaporation, salt dissolution, and groundwater mixing. The salinity of the groundwater tends to vary seasonally and evolves in the direction of groundwater flow. The stable isotope signatures further indicate two possible mechanisms of recharge; namely, (1) a slow diffuse type modern recharge through a relatively low permeability material as explained by heavy isotope signal and (2) a relatively quick recharge prior to evaporation from a distant high altitude source as explained by the relatively depleted isotopic signal and sub-modern to old tritium values. PMID:24552734

  15. Seismic Response of a Sedimentary Basin: Preliminary Results from Strong Motion Downhole Array in Taipei Basin

    NASA Astrophysics Data System (ADS)

    Young, B.; Chen, K.; Chiu, J.

    2013-12-01

    The Strong Motion Downhole Array (SMDA) is an array of 32 triggered strong motion broadband seismometers located at eight sites in Taipei Basin. Each site features three to five co-located three-component accelerometers--one at the surface and an additional two to four each down independent boreholes. Located in the center of Taipei Basin is Taipei City and the Taipei metropolitan area, the capital of Taiwan and home to more than 7 million residents. Taipei Basin is in a major seismic hazard area and is prone to frequent large earthquakes producing strong ground motion. This unique three-dimension seismic array presents new frontiers for seismic research in Taiwan and, along with it, new challenges. Frequency-dependent and site-specific amplification of seismic waves from depth to surface has been observed: preliminary results indicate that the top few tens of meters of sediment--not the entire thickness--are responsible for significant frequency-dependent amplification; amplitudes of seismic waves at the surface may be as much as seven times that at depth. Dominant amplification frequencies are interpreted as quarter-wavelength constructive interference between the surface and major interfaces in the sediments. Using surface stations with known orientation as a reference, borehole seismometer orientations in these data--which are unknown, and some of which vary considerably from event to event--have been determined using several methods. After low-pass filtering the strong motion data, iteratively rotating the two horizontal components from an individual borehole station and cross-correlating them with that from a co-located surface station has proven to be very effective. In cases where the iterative cross-correlation method does not provide a good fit, rotating both surface and borehole stations to a common axis of maximum seismic energy provides an alternative approach. The orientation-offset of a borehole station relative to the surface station may be

  16. Isotope methods as a tool to characterize nitrate origin and transport in Kocinka catchment (central Poland): preliminary results

    NASA Astrophysics Data System (ADS)

    Zurek, Anna; Wachniew, Przemyslaw; Witczak, Stanislaw; Rozanski, Kazimierz; Kania, Jaroslaw

    2014-05-01

    Kocinka catchment with 258 km2 of surface area is one of the Soils2Sea project (BONUS programme) case studies. One of the main scientific objectives of this project is to analyze how changes in land use and climate may affect the nutrient load to the Baltic Sea. Hydrogeological conditions in the Kocinka catchment are determined by Quaternary glacial till and glacifluvial sands and gravels underlain by karstic-fractured limestones which compose the Upper Jurassic Major Groundwater Basin (MGWB 326), one of four most important groundwater reservoirs in Poland. Pollution with nitrates is the most important threat to groundwater quality in this groundwater body. The concentration of nitrate in some wells, in the southern part of Kocinka catchment where outcrops of Jurassic limestones occur, exceeds the maximum permissible level of 50 mgNO3/L and constantly increases. A prerequisite for measures to reduce NO3 loads to the groundwater body is identification of sources of nitrate pollution. The working hypothesis links the high nitrate concentrations with the leaking sewage system in Czestochowa city and its surroundings but agricultural sources cannot be excluded as 66% of Kocinka catchment area is used agriculturally. A dedicated study employing environmental tracers was launched with the main aim of quantifying the pathways and dynamic of groundwater flow in the aquifer. Tritium was found throughout the system but its concentrations vary considerably. Decrease of tritium contents with depth in the aquifer was observed in one of wells. This points to active recharge and characteristic time scales of groundwater flow in order of years to several decades. To identify the origin of nitrate pollution nitrogen and oxygen isotope ratios of dissolved nitrate was analyzed in a number of wells with high nitrate concentrations. The isotopic composition of dissolved nitrates does not confirm the hypothesis on the decisive role of urban sewage in nitrate pollution. The isotope date

  17. Analysis of catchment behavior using residence time distributions with application to the Thuringian Basin

    NASA Astrophysics Data System (ADS)

    Prykhodko, Vladyslav; Heße, Falk; Kumar, Rohini; Samaniego, Luis; Attinger, Sabine

    2014-05-01

    Residence time distribution (RTD), as presented e.g. by Botter et al., are a novel mathematical framework for a quantitative characterization of hydrological systems. These distributions contain information about water storage, flow pathways and water sources and therefore improve the classical hydrograph methods by allowing both nonlinear as well as time-dependent dynamics. In our study we extend this previous works by applying this theoretical framework on real-world heterogeneous catchments. To that end we use a catchment-scale hydrological model (mHM) and apply the approach of Botter et al. to each spatial grid cell of mHM. To facilitate the coupling we amended Botter's approach by introducing additional fluxes (like runoff from unsaturated zone) and specifying the structure of the groundwater zone. By virtue of this coupling we could then make use of the realistic hydrological fluxes and state variables as provided by mHM. This allowed us to use both observed (precipitation, temperature, soil type etc.) and modeled data sets and asses their impact on the behavior of the resulting RTD's. We extended the aforementioned framework to analyze large catchments by including geomorphic effect due to the actual arrangement of subcatchments around the channel network using the flood routing algorithm of mHM. Additionally we study dependencies of the stochastic characteristics of RTD's on the meteorological and hydrological processes as well as on the morphological structure of the catchment. As a result we gained mean residence times (MRT) of base flow and groundwater flow on the mesoscale (4km x 4km). We compare the spatial distribution of MRT's with land cover and soil moisture maps as well as driving forces like precipitation and temperature. Results showed that land cover is a major predictor for MRT's whereas its impact on the mean evapotranspiration time was much lower. Additionally we determined the temporal evolution of mean travel times by using time series of

  18. Simulating wind-affected snow accumulations at catchment to basin scales

    NASA Astrophysics Data System (ADS)

    Winstral, Adam; Marks, Danny; Gurney, Robert

    2013-05-01

    In non-forested mountain regions, wind plays a dominant role in determining snow accumulation and melt patterns. A new, computationally efficient algorithm for distributing the complex and heterogeneous effects of wind on snow distributions was developed. The distribution algorithm uses terrain structure, vegetation, and wind data to adjust commonly available precipitation data to simulate wind-affected accumulations. This research describes model development and application in three research catchments in the Reynolds Creek Experimental Watershed in southwest Idaho, USA. All three catchments feature highly variable snow distributions driven by wind. The algorithm was used to derive model forcings for Isnobal, a mass and energy balance distributed snow model. Development and initial testing took place in the Reynolds Mountain East catchment (0.36 km2) where R2 values for the wind-affected snow distributions ranged from 0.50 to 0.67 for four observation periods spanning two years. At the Upper Sheep Creek catchment (0.26 km2) R2 values for the wind-affected model were 0.66 and 0.70. These R2 values matched or exceeded previously published cross-validation results from regression-based statistical analyses of snow distributions in similar environments. In both catchments the wind-affected model accurately located large drift zones, snow-scoured slopes, and produced melt patterns consistent with observed streamflow. Models that did not account for wind effects produced relatively homogenous SWE distributions, R2 values approaching 0.0, and melt patterns inconsistent with observed streamflow. The Dobson Creek (14.0 km2) application incorporated elevation effects into the distribution routine and was conducted over a two-dimensional grid of 6.67 × 105 pixels. Comparisons with satellite-derived snow-covered-area again demonstrated that the model did an excellent job locating regions with wind-affected snow accumulations. This final application demonstrated that the

  19. Attributes for MRB_E2RF1 Catchments by Major Rivers Basins in the Conterminous United States: Total Precipitation, 2002

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the catchment-average total precipitation in millimeters multiplied by 100 for 2002, compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data were the Near-Real-Time Monthly High-Resolution Precipitation Climate Data Set for the Conterminous United States (2002) raster data set produced by the Spatial Climate Analysis Service at Oregon State University. The MRB_E2RF1 catchments are based on a modified version of the Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  20. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Average Atmospheric (Wet) Deposition of Inorganic Nitrogen, 2002

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the average atmospheric (wet) deposition, in kilograms per square kilometer, of inorganic nitrogen for the year 2002 compiled for every catchment for MRB_E2RF1 of Major River Basins (MRBs, Crawford and others, 2006). The source data set for wet deposition was from the USGS's raster data set atmospheric (wet) deposition of inorganic nitrogen for 2002 (Gronberg, 2005). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every catchment of MRB_E2RF1 catchments for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  1. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Basin Characteristics, 2002 Geospatial_Data_Presentation_Form: tabular digital data

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents basin characteristics for the year 2002 compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). These characteristics are reach catchment shape index, stream density, sinuosity, mean elevation, mean slope and number of road-stream crossings. The source data sets are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) RF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011) and the U.S. Census Bureau's TIGER/Line Files (U.S. Census Bureau,2006). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  2. Preliminary catalog of the sedimentary basins of the United States

    USGS Publications Warehouse

    Coleman, James L., Jr.; Cahan, Steven M.

    2012-01-01

    One hundred forty-four sedimentary basins (or groups of basins) in the United States (both onshore and offshore) are identified, located, and briefly described as part of a Geographic Information System (GIS) data base in support of the Geologic Carbon Dioxide Sequestration National Assessment Project (Brennan and others, 2010). This catalog of basins is designed to provide a check list and basic geologic framework for compiling more detailed geologic and reservoir engineering data for this project and other future investigations.

  3. Stable Water Isotope Tracing and Model Evaluation in Large Basins: the `` Special Case'' of Semi-Arid Catchments

    NASA Astrophysics Data System (ADS)

    Henderson-Sellers, A.; Airey, P.; McGuffie, K.; Bradd, J.; Stone, D.

    2004-05-01

    The use of stable water isotopes in hydro-climate monitoring and modelling offers a new means of measuring and parameterizing critical processes. Here we review these specifically for the case of semi-arid basins where water resources are essential for potable supply and agriculture around the world. The verity and performance of existing models is examined using observations and simulations of stable water isotopes in rivers, aquifers and their precedent precipitations. Here we report on the Murray-Darling basin in Australia as one example of the `` special case'' of semi-arid catchments and use these data and results to examine evaluation and refinement of models and predictions on three time-scales: (i) minutes to months, (ii) years to decades and (iii) tens to thousands of years. We find that modelled isotopic depletions become increasingly sensitive to parameterized characteristics as the time period is decreased and/or a significant atmospheric circulation disturbance occurs. Minute to monthly isotope fluxes simulated by land surface schemes and river hydrology models allow comparison of the partition of precipitation between transpiration, run-off and open-water evaporation with isotope observations from 2002 and 2003. A range of atmospheric global circulation models (GCMs) simulations of key hydrological parameters over years to decades reveals poor results for the majority (13 in 20). We show that between 1979 and 1996 modelled groundwater is apparently being `tapped' in many of these GCMs at rates required to allow evaporation to greatly exceed precipitation (Ev>>Pr). Analysis of the `` good"'' versus the `` poor'' hydro-climate models reveals that unwitting application of `` poor'' models to current and future hydrological issues in semi-arid basins generates errors of over 100% in predictions. Isotopes demonstrate that in warm semi-arid regions, in contrast to the behaviour in cool temperate zones, groundwater recharge occurs only when rainfall

  4. Preliminary investigations of toxicity in the Georges Bay catchment, Tasmania, Australia

    PubMed Central

    Bleaney, Alison; Hickey, Christopher W.; Stewart, Michael; Scammell, Marcus; Senjen, Rye

    2015-01-01

    North-eastern Tasmania, Australia has been an area of major production for Pacific oysters (Crassostrea gigas) for over 25 years. Since the mid-1990s, increased oyster mortality has been observed. The purpose of the present study was to identify the agent causing aquatic toxicity and to investigate whether there is a chemical and/or toxicological link between river foam and monoculture timber plantation forests of exotic eucalypts (Eucalyptus nitens) present in the catchment area. Foam samples from the George River catchment demonstrated high toxicity to a freshwater cladoceran and larvae of a marine blue mussel species. After filtration to remove most particulates, foam samples also demonstrated a marked reduction in toxicity to blue mussels, which suggested that the toxicity is particle associated. Foam and leaf extracts of E. nitens were then fractionated using HPLC and size exclusion chromatography and the resulting fractions were screened for cladoceran and blue mussel toxicity. Toxicity was detected in fractions common to both the foam and the leaf extracts. This study suggests that there may be a chemical and toxicological relationship between foam and E. nitens leaf components. PMID:25745193

  5. Environmental flows allocation in river basins: Exploring allocation challenges and options in the Great Ruaha River catchment in Tanzania

    NASA Astrophysics Data System (ADS)

    Kashaigili, Japhet J.; Kadigi, Reuben M. J.; Lankford, Bruce A.; Mahoo, Henry F.; Mashauri, Damus A.

    Provision for environmental flows is currently becoming a central issue in the debate of integrated water resources management in river basins. However, the theories, concepts and practical applications are still new in most developing countries with challenging situations arising in complex basins with multiple water uses and users and increasing water demands and conflicts exemplified by the Great Ruaha River catchment in Tanzania. The research has shown that a flow of 0.5-1 m 3/s for Great Ruaha River through the Ruaha National Park is required to sustain the environment in the park during the dry season. But a question is how can this be achieved? This paper reviews the challenges and suggests some options for achieving environmental water allocation in river basins. The following challenges are identified: (a) the concept of environmental flows is still new and not well known, (b) there is limited data and understanding of the hydrologic and ecological linkages, (c) there is insufficient specialist knowledge and legislative support, (d) there are no storage reservoirs for controlled environmental water releases, and (e) there are contradicting policies and institutions on environmental issues. Notwithstanding these challenges, this paper identifies the options towards meeting environmental water allocation and management: (a) conducting purposive training and awareness creation to communities, politicians, government officials and decision makers on environmental flows, (b) capacity building in environmental flows and setting-up multidisciplinary environmental flows team with stakeholders involvement, (c) facilitating the development of effective local institutions supported by legislation, (d) water harvesting and storage and proportional flow structures design to allow water for the environment, and (e) harmonizing policies and reform in water utilization and water rights to accommodate and ensure water for the environment.

  6. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Average Daily Minimum Temperature, 2002

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    The MRB_E2RF1 catchments are based on a modified version of the Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  7. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Average Daily Maximum Temperature, 2002

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    The MRB_E2RF1 catchments are based on a modified version of the Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2008). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  8. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: STATSGO Soil Characteristics

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents estimated soil variables compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The variables included are cation exchange capacity, percent calcium carbonate, slope, water-table depth, soil thickness, hydrologic soil group, soil erodibility (k-factor), permeability, average water capacity, bulk density, percent organic material, percent clay, percent sand, and percent silt. The source data set is the State Soil ( STATSGO ) Geographic Database (Wolock, 1997). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  9. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Mean Infiltration-Excess Overland Flow, 2002

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the mean value for infiltration-excess overland flow as estimated by the watershed model TOPMODEL, compiled for every MRB_E2RF1 catchment of the Major River Basins (MRBs, Crawford and others, 2006). The source data set is Infiltration-Excess Overland Flow Estimated by TOPMODEL for the Conterminous United States (Wolock, 2003). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  10. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Mean Annual R-factor, 1971-2000

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the average annual R-factor, rainfall-runoff erosivity measure, compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data are from Christopher Daly of the Spatial Climate Analysis Service, Oregon State University, and George Taylor of the Oregon Climate Service, Oregon State University (2002). The ERF1_2 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  11. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Hydrologic Landscape Regions

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the area of Hydrologic Landscape Regions (HLR) compiled for every MRB_E2RF1 catchment of the Major River Basins (MRBs, Crawford and others, 2006). The source data set is a 100-meter version of Hydrologic Landscape Regions of the United States (Wolock, 2003). HLR groups watersheds on the basis of similarities in land-surface form, geologic texture, and climate characteristics. The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  12. Post-wildfire recovery of water yield in the Sydney Basin water supply catchments: An assessment of the 2001/2002 wildfires

    NASA Astrophysics Data System (ADS)

    Heath, J. T.; Chafer, C. J.; van Ogtrop, F. F.; Bishop, T. F. A.

    2014-11-01

    Wildfire is a recurring event which has been acknowledged by the literature to impact the hydrological cycle of a catchment. Hence, wildfire may have a significant impact on water yield levels within a catchment. In Australia, studies of the effect of fire on water yield have been limited to obligate seeder vegetation communities. These communities regenerate from seed banks in the ground or within woody fruits and are generally activated by fire. In contrast, the Sydney Basin is dominated by obligate resprouter communities. These communities regenerate from fire resistant buds found on the plant and are generally found in regions where wildfire is a regular occurrence. The 2001/2002 wildfires in the Sydney Basin provided an opportunity to investigate the impacts of wildfire on water yield in a number of catchments dominated by obligate resprouting communities. The overall aim of this study was to investigate whether there was a difference in water yield post-wildfire. Four burnt subcatchments and 3 control subcatchments were assessed. A general additive model was calibrated using pre-wildfire data and then used to predict post-wildfire water yield using post-wildfire data. The model errors were analysed and it was found that the errors for all subcatchments showed similar trends for the post-wildfire period. This finding demonstrates that wildfires within the Sydney Basin have no significant medium-term impact on water yield.

  13. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: 30-Year Average Daily Minimum Temperature, 1971-2000

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents thecatchment-average for the 30-year (1971-2000) average daily minimum temperature in Celsius multiplied by 100 compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data were the United States Average Monthly or Annual Minimum Temperature, 1971 - 2000 raster data set produced by the PRISM Group at Oregon State University. The MRB_E2RF1 catchments are based on a modified version of the Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  14. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: 30-Year Average Annual Precipitation, 1971-2000

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the 30-year (1971-2000) average annual precipitation in millimeters multiplied by 100 compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data were the United States Average Monthly or Annual Minimum Precipitation, 1971 - 2000 raster data set produced by the PRISM Group at Oregon State University. The MRB_E2RF1 catchments are based on a modified version of the Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; J.W. Brakebill, U.S. Geological Survey, written commun., 2008). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  15. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Level 3 Nutrient Ecoregions, 2002

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the area of each level 3 nutrient ecoregion in square meters compiled for every MRB_E2RF1 catchment of the Major River Basins (MRBs, Crawford and others, 2006). The source data are from the 2002 version of the U.S. Environmental Protection Agency's (USEPA) Aggregations of Level III Ecoregions for National Nutrient Assessment & Management Strategy (USEPA, 2002). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  16. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Level 3 Ecoregions

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the estimated area of level 3 ecological landscape regions (ecoregions), as defined by Omernik (1987), compiled for every MRB_E2RF1 catchment of the Major River Basins (MRBs, Crawford and others, 2006). The source data set is Level III Ecoregions of the Continental United States (U.S. Environmental Protection Agency, 2003). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  17. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Normalized Atmospheric Deposition for 2002, Ammonium (NH4)

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the average normalized (wet) deposition, in kilograms per square kilometer multiplied by 100, of ammonium (NH4) for the year 2002 compiled for every MRB_E2RF1 catchment of the Major River Basins (MRBs, Crawford and others, 2006). Estimates of NH4 deposition are based on National Atmospheric Deposition Program (NADP) measurements (B. Larsen, U.S. Geological Survey, written. commun., 2007). De-trending methods applied to the year 2002 are described in Alexander and others, 2001. NADP site selection met the following criteria: stations must have records from 1995 to 2002 and have a minimum of 30 observations. The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  18. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Average Saturation Excess-Overland Flow, 2002

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the average value of saturation overland flow, in percent of total streamflow, compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data set is Saturation Overland Flow Estimated by TOPMODEL for the Conterminous United States (Wolock, 2003). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  19. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Normalized Atmospheric Deposition for 2002, Nitrate (NO3)

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the average normalized (wet) deposition, in kilograms per square kilometer multiplied by 100, of Nitrate (NO3) for the year 2002 compiled for every MRB_E2RF1 catchment of the Major River Basins (MRBs, Crawford and others, 2006). Estimates of NO3 deposition are based on National Atmospheric Deposition Program (NADP) measurements (B. Larsen, U.S. Geological Survey, written. commun., 2007). De-trending methods applied to the year 2002 are described in Alexander and others, 2001. NADP site selection met the following criteria: stations must have records from 1995 to 2002 and have a minimum of 30 observations. The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  20. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Estimated Mean Annual Natural Groundwater Recharge, 2002

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the mean annual natural groundwater recharge, in millimeters, compiled for every MRB_E2RF1catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data set is Estimated Mean Annual Natural Ground-Water Recharge in the Conterminous United States (Wolock, 2003). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  1. Attributes for MRB_E2RF1 Catchments in Selected Major River Basins of the Conterminous United States: Contact Time, 2002

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the average contact time, in units of days, compiled for every MRB_E2RF1 catchment of Major River Basins (MRBs, Crawford and others, 2006). Contact time, as described in Vitvar and others (2002), is defined as the baseflow residence time in the subsurface. The source data set was the U.S. Geological Survey's (USGS) 1-kilometer grid for the conterminous United States (D.M. Wolock, U.S. Geological Survey, written commun., 2008). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) RF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  2. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Normalized Atmospheric Deposition for 2002, Total Inorganic Nitrogen

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the average normalized atmospheric (wet) deposition, in kilograms per square kilometer multiplied by 100, of Total Inorganic Nitrogen for the year 2002 compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). Estimates of Total Inorganic Nitrogen deposition are based on National Atmospheric Deposition Program (NADP) measurements (B. Larsen, U.S. Geological Survey, written. commun., 2007). De-trending methods applied to the year 2002 are described in Alexander and others, 2001. NADP site selection met the following criteria: stations must have records from 1995 to 2002 and have a minimum of 30 observations. The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  3. Estimation of the relative severity of floods in small ungauged catchments for preliminary observations on flash flood preparedness: a case study in Korea.

    PubMed

    Kim, Eung Seok; Choi, Hyun Il

    2012-04-01

    An increase in the occurrence of sudden local flooding of great volume and short duration has caused significant danger and loss of life and property in Korea as well as many other parts of the World. Since such floods usually accompanied by rapid runoff and debris flow rise quite quickly with little or no advance warning to prevent flood damage, this study presents a new flash flood indexing methodology to promptly provide preliminary observations regarding emergency preparedness and response to flash flood disasters in small ungauged catchments. Flood runoff hydrographs are generated from a rainfall-runoff model for the annual maximum rainfall series of long-term observed data in the two selected small ungauged catchments. The relative flood severity factors quantifying characteristics of flood runoff hydrographs are standardized by the highest recorded maximum value, and then averaged to obtain the flash flood index only for flash flood events in each study catchment. It is expected that the regression equations between the proposed flash flood index and rainfall characteristics can provide the basis database of the preliminary information for forecasting the local flood severity in order to facilitate flash flood preparedness in small ungauged catchments. PMID:22690208

  4. Preliminary stratigraphic and paleomagnetic results from Neogene basins across the Anatolian Plateau (Turkey).

    NASA Astrophysics Data System (ADS)

    Lucifora, Stella; Cifelli, Francesca; Mazzini, Ilaria; Cosentino, Domenico; Mattei, Massimo; Cipollari, Paola; Gliozzi, Elsa; Palolo Cavinato, Gian

    2010-05-01

    An integrated paleomagnetic and stratigraphic study on Neogene basins across the Anatolian Plateau was carried out. This study is developed within the VAMP (Vertical Anatolian Movement Project), an interdisciplinary project aimed to the recent tectonic evolution of the central Anatolian Plateau. The studied areas are located in southern Turkey (Adana, Mut and Ermenek basins) and in northern Turkey (Kazan, Çankiri, Kastamonu, Boyabat and Sinop basins). For paleomagnetic analyses we sampled 1062 standard cylindrical samples from 13 stratigraphic sections, and 746 samples for paleontological analysis were taken from the same sections. AMS (Anisotropy of Magnetic Susceptibility), magnetic mineralogy and paleomagnetic polarity data are presented together with the results of the integrated stratigraphic analyses. In the Southern Turkey basins preliminary results show the diffuse presence of authigenic iron sulphides, together with magnetite, as main magnetic carriers. In these sections the iron-sulphides Characteristic Natural Magnetization (ChRM) component is characterized by inconsistent polarity record, suggesting that iron-sulphides have a late diagenetic origin. Conversely, magnetite bearing sediments show more reliable results in term of magnetic polarity interpretations. Preliminary stratigraphic and paleomagnetic results from the southern margin of the plateau allow us both to refine the stratigraphy for the late Miocene of the Adana Basin and to better constrain the age of the youngest marine deposits of the Mut and Ermenek basins. In the late Miocene of the Adana Basin evidence of the Messinian salinity crisis led to a new stratigraphic framework specially for the Messinian-Pliocene interval. Thick fluvial conglomerates from the uppermost Messinian deposits of the Adana Basin, which could be linked to the activation of the southern margin of the plateau, allow us to constrain at about 5.4 Ma the uplift of the central Anatolian Plateau. On the other hand, the

  5. Preliminary design report for the K basins integrated water treatment system

    SciTech Connect

    Pauly, T.R., Westinghouse Hanford

    1996-08-12

    This Preliminary Design Report (PDR) provides a revised concept for the K Basins Integrated Water Treatment Systems (IWTS). This PDR incorporates the 11 recommendations made in a May 1996 Value Engineering session into the Conceptual Design, and provides new flow diagrams, hazard category assessment, cost estimate, and schedule for the IWTS Subproject.

  6. Characterisation of stable isotopes to identify residence times and runoff components in two meso-scale catchments in the Abay/Upper Blue Nile basin, Ethiopia

    NASA Astrophysics Data System (ADS)

    Tekleab, S.; Wenninger, J.; Uhlenbrook, S.

    2014-06-01

    Measurements of the stable isotopes oxygen-18 (18O) and deuterium (2H) were carried out in two meso-scale catchments, Chemoga (358 km2) and Jedeb (296 km2) south of Lake Tana, Abay/Upper Blue Nile basin, Ethiopia. The region is of paramount importance for the water resources in the Nile basin, as more than 70% of total Nile water flow originates from the Ethiopian highlands. Stable isotope compositions in precipitation, spring water and streamflow were analysed (i) to characterise the spatial and temporal variations of water fluxes; (ii) to estimate the mean residence time of water using a sine wave regression approach; and (iii) to identify runoff components using classical two-component hydrograph separations on a seasonal timescale. The results show that the isotopic composition of precipitation exhibits marked seasonal variations, which suggests different sources of moisture generation for the rainfall in the study area. The Atlantic-Indian Ocean, Congo basin, Upper White Nile and the Sudd swamps are the potential moisture source areas during the main rainy (summer) season, while the Indian-Arabian and Mediterranean Sea moisture source areas during little rain (spring) and dry (winter) seasons. The spatial variation in the isotopic composition is influenced by the amount effect as depicted by moderate coefficients of determination on a monthly timescale (R2 varies from 0.38 to 0.68) and weak regression coefficients (R2 varies from 0.18 to 0.58) for the altitude and temperature effects. A mean altitude effect accounting for -0.12‰/100 m for 18O and -0.58‰/100 m for 2H was discernible in precipitation isotope composition. Results from the hydrograph separation on a seasonal timescale indicate the dominance of event water, with an average of 71 and 64% of the total runoff during the wet season in the Chemoga and Jedeb catchments, respectively. Moreover, the stable isotope compositions of streamflow samples were damped compared to the input function of

  7. Quantitative catchment profiling to apportion faecal indicator organism budgets for the Ribble system, the UK's sentinel drainage basin for Water Framework Directive research.

    PubMed

    Stapleton, C M; Wyer, M D; Crowther, J; McDonald, A T; Kay, D; Greaves, J; Wither, A; Watkins, J; Francis, C; Humphrey, N; Bradford, M

    2008-06-01

    Under the EU Water Framework Directive (WFD) 20/60/EC and the US Federal Water Pollution Control Act 2002 management of water quality within river drainage basins has shifted from traditional point-source control to a holistic approach whereby the overall contribution of point and diffuse sources of pollutants has to be considered. Consequently, there is a requirement to undertake source-apportionment studies of pollutant fluxes within catchments. The inclusion of the Bathing Water Directive (BWD), under the list of 'protected areas' in the WFD places a requirement to control sources of faecal indicator organisms within catchments in order to achieve the objectives of both the BWD (and its revision - 2006/7/EC) and the WFD. This study was therefore initiated to quantify catchment-derived fluxes of faecal indicator compliance parameters originating from both point and diffuse sources. The Ribble drainage basin is the single UK sentinel WFD research catchment and discharges to the south of the Fylde coast, which includes a number of high profile, historically non-compliant, bathing waters. Faecal indicator concentrations (faecal coliform concentrations are reported herein) were measured at 41 riverine locations, the 15 largest wastewater treatment works (WwTWs) and 15 combined sewer overflows (CSOs) across the Ribble basin over a 44-day period during the 2002 bathing season. The sampling programme included targeting rainfall-induced high flow events and sample results were categorised as either base flow or high flow. At the riverine sites, geometric mean faecal coliform concentrations showed statistically significant elevation at high flow compared to base flow. The resultant faecal coliform flux estimates revealed that over 90% of the total organism load to the Ribble Estuary was discharged by sewage related sources during high flow events. These sewage sources were largely related to the urban areas to the south and east of the Ribble basin, with over half the

  8. How accurately are climatological characteristics and surface water and energy balances represented for the Colombian Caribbean Catchment Basin?

    NASA Astrophysics Data System (ADS)

    Hoyos, Isabel; Baquero-Bernal, Astrid; Hagemann, Stefan

    2013-09-01

    In Colombia, the access to climate related observational data is restricted and their quantity is limited. But information about the current climate is fundamental for studies on present and future climate changes and their impacts. In this respect, this information is especially important over the Colombian Caribbean Catchment Basin (CCCB) that comprises over 80 % of the population of Colombia and produces about 85 % of its GDP. Consequently, an ensemble of several datasets has been evaluated and compared with respect to their capability to represent the climate over the CCCB. The comparison includes observations, reconstructed data (CPC, Delaware), reanalyses (ERA-40, NCEP/NCAR), and simulated data produced with the regional climate model REMO. The capabilities to represent the average annual state, the seasonal cycle, and the interannual variability are investigated. The analyses focus on surface air temperature and precipitation as well as on surface water and energy balances. On one hand the CCCB characteristics poses some difficulties to the datasets as the CCCB includes a mountainous region with three mountain ranges, where the dynamical core of models and model parameterizations can fail. On the other hand, it has the most dense network of stations, with the longest records, in the country. The results can be summarised as follows: all of the datasets demonstrate a cold bias in the average temperature of CCCB. However, the variability of the average temperature of CCCB is most poorly represented by the NCEP/NCAR dataset. The average precipitation in CCCB is overestimated by all datasets. For the ERA-40, NCEP/NCAR, and REMO datasets, the amplitude of the annual cycle is extremely high. The variability of the average precipitation in CCCB is better represented by the reconstructed data of CPC and Delaware, as well as by NCEP/NCAR. Regarding the capability to represent the spatial behaviour of CCCB, temperature is better represented by Delaware and REMO, while

  9. Preliminary assessment of the Lago Mercedes discovery, Magallanes Basin, Chile

    SciTech Connect

    Dean, J.S. ); Wilson, J.T.; Mainzer, G.F. ); Escobar, F.; Aguirre, G. )

    1993-02-01

    The Lago Mercedes No. 1 well, spudded January 17, 1991, was positioned to test a seismically defined structural culmination located along a blind thrust near the deep foreland axis of the western magallanes Basin. This fault, which defines the leading edge of Andean-related thrust detachment in the region, is responsible for a trap geometry that is genetically related to, but fundamentally different from the numerous unrooted Tertiary folds in the area. Although the Lower Cretaceous Springhill Formation comprised the primary target, it was anticipated that the geometry of the fold allowed for the possibility of several fractured intervals in the hanging wall, including volcaniclastic rocks of the underlying Jurassic Tobifera [open quotes]basement[close quotes] sequence, recently found to be productive elsewhere on the eastern platform of the basin. During drilling of the well, gas and condensate shows were encountered in numerous horizons. The most surprising of these later proved to be a Permo-Triassic granodiorite underlying the Tobifera. Although relatively widespread on outcrop, this represents the first time a pre-rift intrusive body has been penetrated in the subsurface. All of the hydrocarbon-bearing intervals exhibit minimal matrix porosity but varying degrees of fracturing. Subsequent testing of the well yielded combined flow rates of in excess of 12 MMCFD of rich gas and 1140 BPD of 52 A.P.I. condensate. The most prolific zone corresponds to an intensely fractured and partially weathered interval in the uppermost portion of the intrusive. Additional testing is planned prior to any estimate of recoverable reserves. Nevertheless, this unique accumulation underscored the possibility for nonconventional reservoirs throughout the lightly explored Sub-Andean basin trend, particularly fold-thrust belts which have the potential to [open quotes]create[close quotes] reservoirs and trap geometry simultaneously.

  10. Measuring fallout radionuclides to constrain the origin and the dynamics of suspended sediment in an agricultural drained catchment (Loire River basin, France)

    NASA Astrophysics Data System (ADS)

    Le Gall, Marion; Evrard, Olivier; Foucher, Anthony; Laceby, J. Patrick; Salvador-Blanes, Sébastien; Lefèvre, Irène; Cerdan, Olivier; Ayrault, Sophie

    2015-04-01

    Soil erosion reaches problematic levels in agricultural areas of Northwestern Europe where tile drains may accelerate sediment transfer to rivers. This supply of large quantities of fine sediment to the river network leads to the degradation of water quality by increasing water turbidity, filling reservoirs and transporting contaminants. Agricultural patterns and landscapes features have been largely modified by human activities during the last century. To investigate erosion and sediment transport in lowland drained areas, a small catchment, the Louroux (24 km²), located in the French Loire River basin was selected. In this catchment, channels have been reshaped and more than 220 tile drains outlets have been installed after World War II. As a result, soil erosion and sediment fluxes strongly increased. Sediment supply needs to be better understood by quantifying the contribution of sources and the residence times of particles within the catchment. To this end, a network of river monitoring stations was installed, and fallout radionuclides (Cs-137, excess Pb-210 and Be-7) were measured in rainwater (n=3), drain tile outlets (n=4), suspended sediment (n=15), soil surface (n=30) and channel bank samples (n=15) between January 2013 and February 2014. Cs-137 concentrations were used to quantify the contribution of surface vs. subsurface sources of sediment. Results show a clear dominance of particles originating from surface sources (99 ± 1%). Be-7 and excess Pb-210 concentrations and calculation of Be-7/excess Pb-210 ratios in rainfall and suspended sediment samples were used to estimate percentages of recently eroded sediment in rivers. The first erosive winter storm mainly exported sediment depleted in Be-7 that likely deposited on the riverbed during the previous months. Then, during the subsequent floods, sediment was directly eroded and exported to the catchment outlet. Our results show the added value of combining spatial and temporal tracers to characterize

  11. Preliminary analysis of ERTS-relayed water resources data in the Delaware River Basin

    NASA Technical Reports Server (NTRS)

    Paulson, R. W.

    1973-01-01

    Preliminary analysis of ERTS-DCS data from water-resources stations in the Delaware River Basin indicates that the Data-Collection System is performing well. Data-Collections Platforms have been successfully interfaced with five stream-gaging station and three ground-water observation wells and are being interfaced with 12 water-quality monitors in the basin. Data are being relayed during four or five ERTS orbital passes per day, which is within the design specifications of the ERTS-DCS.

  12. Debris-flow frequency and dynamics of an Alpine catchment during the past 150 years, the Schimbrig drainage basin, Central Switzerland

    NASA Astrophysics Data System (ADS)

    Savi, Sara; Bollschweiler, Michelle; Stoffel, Markus; Schlunegger, Fritz

    2010-05-01

    This paper focuses on links between landsliding and debris-flow activity in a ca. 4 km2-large drainage basin located at the northern foothills of the Central Swiss Alps. Debris-flow frequency of the recent past was reconstructed using dendrogeomorphic methods. In addition, the source area was mapped in detail to assess the spatial distribution of landslides, and to determine the connectivity between hillslopes and the channel network. The geomorphic map indicates that the hillslopes host abundant landslides sourced in Paleogene Flysch and Molasse sandstone-mudstone alternations. Major differences in the landscape architecture between the eastern and western sides were identified. In particular, the eastern segment is characterized by a >300'000 m2 large earth flow (Schimbrig landslide) that is 5-10 m deep. This flow experienced a phase of high slip rates >2m day-1 between September 1994 and May 1995, transferring a total of 350'000 m3 of material. In contrast, the western side is characterized by a network of deeply incised channels (>50 m) bordered by hillslopes that host landslides that generally measure <15'000 m2. On these hillslopes, the downslope transfer of sediment is dominated by soil creep or by rotational and translational slip. The depositional fan at the outlet of the catchment has an approximate size of 50'000 m2. The surface is characterized by levees, lobes and channels and is covered by a conifer forest comprising spruces (Picea abies (L.) Karst.) and firs (Abies alba Mill.). A total of 325 increment cores were sampled from 162 trees obviously influenced by past debris-flow activity. Preliminary analysis of the tree samples indicate that 64% of the tree grew up between 1900 and 2009. 34% of the tree samples showed germination dates between 1800 and 1900, and the remaining 2% of the sampled specimens germinated before 1800. Dendrogeomorphic analyses depict that nearly 50% of the sampled trees were affected by debris-flow activity in the 1990s. This

  13. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: NLCD 2001 Imperviousness

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the mean percent impervious surface from the Imperviousness Layer of the National Land Cover Dataset 2001, (LaMotte and Wieczorek, 2010), compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data set represents imperviousness for the conterminous United States for 2001. The Imperviousness Layer of the National Land Cover Data Set for 2001 was produced through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of Federal agencies (http://www.mrlc.gov), consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (USEPA), the U.S. Department of Agriculture (USDA), the U.S. Forest Service (USFS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (USFWS), the Bureau of Land Management (BLM), and the USDA Natural Resources Conservation Service (NRCS). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002;Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  14. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: NLCD 2001 Tree Canopy

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the mean percent tree canopy from the Canopy Layer of the National Land Cover Dataset 2001 (LaMotte and Wieczorek, 2010), compiled for every MRB_E2RF1 catchment of Major River Basins (MRBs, Crawford and others, 2006). The source data set represents tree canopy percentage for the conterminous United States for 2001. The Canopy Layer of the National Land Cover Data Set for 2001 was produced through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of Federal agencies (http://www.mrlc.gov), consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (USEPA), the U.S. Department of Agriculture (USDA), the U.S. Forest Service (USFS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (USFWS), the Bureau of Land Management (BLM), and the USDA Natural Resources Conservation Service (NRCS). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  15. Lower Permian Dry Mountain trough, eastern Nevada: preliminary basin analysis

    SciTech Connect

    Schwarz, D.L.; Snyder, W.S.; Spinosa, C.

    1987-08-01

    The Lower Permian Dry Mountain trough (DMT) is one of several basins that developed during the Late Pennsylvanian to Permian along the western edge of the North American continent. A tectonic mechanism has been suggested for the subsidence of the DMT, possibly due to reactivation of the Antler orogenic belt during the waning stages of Ancestral Rocky Mountain deformation. The DMT records marked subsidence with the appearance during the Artinskian (latest Wolfcampian) of a deeper water facies that consists of thin-bedded silty micrites and micritic mudstones rich in radiolarians and sponge spicules, characterized by a relative abundance of ammonoids, and rarer conodonts and Nereites ichnofacies trace fossils. Taxa recovered from a distinctive concretionary horizon at various locations provide an Artinskian datum on which to palinspastically reconstruct the DMT paleogeography. These taxa include ammonoids: Uraloceras, Medlicottia, Marathonites, Crimites, Metalegoceras, properrinitids; and conodonts: Neogondolella bisselli, Sweetognathus whitei, S. behnkeni, and Diplognathodus stevensi. The western margin facies of the DMT consists of Permian Carbon Ridge/Garden Valley Formations. Here, lowermost black Artinskianage euxinic micrites, considered a potential source rock for petroleum generation, are overlain by base-of-slope carbonate apron deposits, which, in turn, are overlain by base-of-slope carbonate apron deposits, which, in turn, are overlain by a thick, eastwardly prograding conglomerate wedge. Seismic profiles across Diamond Valley indicate a 3.0-4.6-km thick Tertiary sequence above the Paleozoic strata.

  16. Las Vegas Basin Seismic Response Project: Preliminary Results From Seismic Refraction Experiments, Las Vegas, NV.

    NASA Astrophysics Data System (ADS)

    Zaragoza, S. A.; Snelson, C. M.; Harder, S. H.; Kaip, G.; Luke, B.; Buck, B. J.; Hanson, A. D.

    2002-12-01

    NW/SE trending step in the basin floor across which the basement drops from 2 to 4 km in depth. In addition, the profiles cross several Quaternary fault scarps, which have recently been identified as tectonic in origin. Preliminary analyses of the seismic refraction data indicate that the basin has an average P-wave velocity of 4.5 km/s and is in agreement with the estimated basin depths from isostatic gravity studies (2 to 5 km depth). Both tomographic inversion and forward modeling techniques are being used to analyze these data. These data will be used to produce a velocity model of the basin and image the basin/bedrock contact. In addition, these data will be integrated into a community model, which is being produced by the Las Vegas Basin Seismic Response working group to further assess the site response of the basin.

  17. Selected examples of needs for long term pilot areas in Mediterranean catchments: a mountain traditional agricultural system and a large and regulated hydrographic basin in Southern Spain

    NASA Astrophysics Data System (ADS)

    José Polo, María; Herrero, Javier; Millares, Agustín; José Pérez-Palazón, María; Pimentel, Rafael; Aguilar, Cristina; Jurado, Alicia; Contreras, Eva; Gómez-Beas, Raquel; Carpintero, Miriam; Gulliver, Zacarías

    2015-04-01

    Integrated River Basin Management (IRBM) aims at planning water, land and other natural resources for an equitable and sustainable management, also capable of preserving or restoring freshwater ecosystems. Long term series of significant variables at different scales and a sound knowledge of the river basin processes are needed to establish the current state and past&future evolution of the hydrological system, soil use and vegetation distribution, and their social impacts and feedbacks. This is particularly crucial if future scenario analyses are to be performed to assess decision-making processes and adaptive plans. This work highlights the need for an adequate design and development of process-oriented monitoring systems at the basin scale in a decision-making framework. First, the hydrologic monitoring network of the Guadalfeo River Basin, in the southern face of Sierra Nevada Range (Spain), is shown, in a pilot catchment of 1300 km2 in which snow processes in Mediterranean conditions have been studied over the last ten years with a holistic approach. The network development and the main features of the dataset are described together with their use for different scientific and environmental applications; their benefits for assessing social and economic impact in the rural environment are shown from a study case in which the sustainability of ancient channels fed by snowmelt, in use since the XIIIth century for traditional irrigated crops in the mountainous area, was assessed in a future scenarios analyses. Secondly, the standard flow and water quality monitoring networks in the Guadalquivir River Basin, a large (57400 km2) and highly regulated agricultural catchment in southern Spain, are shown, and their strengths and weaknessess for an IRBM framework are analysed. Sediments and selected pollutants are used to trace soil erosion and agricultural/urban exports throughout the catchment, and the final loads to the river estuary in the Atlantic Ocean are assessed

  18. Hydro-meteorological functioning of the Eastern Andean Tropical Montane Cloud Forests: Insight from a paired catchment study in the Orinoco river basin highlands

    NASA Astrophysics Data System (ADS)

    Ramirez, Beatriz; Teuling, Adriaan J.; Ganzeveld, Laurens; Leemans, Rik

    2016-04-01

    Tropical forests regulate large scale precipitation patterns and catchment-scale streamflow, while tropical mountains influence runoff by orographic effects and snowmelt. Along tropical elevation gradients, these climate/ecosystem/hydrological interactions are specific and heterogeneous. These interactions are poorly understood and represented in hydro-meteorological monitoring networks and regional or global earth system models. A typical case are the South American Tropical Montane Cloud Forests (TMCF), whose water balance is strongly driven by fog persistence. This also depends on local and up wind temperature and moisture, and changes in this balance alter the impacts of changes in land use and climate on hydrology. These TMCFs were until 2010 only investigated up to 350km from the coast. Continental TMCFs are largely ignored. This gap is covered by our study area, which is part of the Orinoco river basin highlands and located on the northern Eastern Andes at an altitudinal range of 1550 to 2300m a.s.l. The upwind part of our study area is dominated by lowland savannahs that are flooded seasonally. Because meteorological stations are absent in our study area, we first describe the spatial and seasonal meteorological variability and analyse the corresponding catchment hydrology. Our hydro-meteorological data set is collected at three gauged neighbouring catchments with contrasting TMCF/grassland cover from June 2013 to May 2014 and includes hourly solar radiation, temperature, relative humidity, wind speed, precipitation, soil moisture and runoff measurements. We compare our results with recent TCMF studies in the eastern Andean highlands in the Amazon basin. The studied elevational range always shows wetter conditions at higher elevations. This indicates a positive relation between elevation and fog or rainfall persistence. Lower elevations are more seasonally variable. Soil moisture data indicate that TMCFs do not use persistently more water than grasslands

  19. Calculation of Sediment yield at the S 7-4 catchment of the Shirindareh Watershed of Iran using the River Basins model

    NASA Astrophysics Data System (ADS)

    Spalevic, Velibor; Barovic, Goran; Vujacic, Dusko; Mijanovic, Dragica; Curovic, Milic; Tanaskovik, Vjekoslav; Behzadfar, Morteza

    2016-04-01

    Soil erosion is driven by complex processes involving detachment of material caused by raindrops and flow tractions, which is further transported by the wind or by the water flow. The region of Shirindareh Watershed of Iran is particularly prone to erosion because it is subject to long dry periods followed by heavy erosive rainfalls, falling on steep slopes with soils prone to erosion. The identification of areas that are vulnerable to those processes is needed for improving our knowledge about the extent of the areas affected and for developing measures to control the problem. In our opinion, models can be very supportive tools for understanding of the soil erosion and sediment transport at the watershed scale. This study aims to illustrate the possibility in computing the runoff and sediment yield at the catchment scale using the River Basins model of Spalevic, which is based on the Erosion Potential Method of Garilovic. We apply the mode in the S 7-4 catchment of the Shirindareh Watershed of Iran using the computer graphic model, which allowed the quantification of the environmental effects of erosion and the land use measures applied at the studied area. Model calculations showed that the calculated peak discharge from the river basin was 61 m3 s-1 for the incidence of 100 years and the net soil loss was 5806 m3 per year, specific 159 m3km-2 per year. According to Gavrilovic this amount of soil loss indicates very weak erosion category. The method we used in this study can also be of interest for soil erosion modelling in other basins. The proper implementation of best management practices and control measures are crucial for protecting land resources in the Shirindareh Watershed and the other river basins with similar physical - geographical conditions.

  20. Effects of Catchment and Riparian Landscape Setting on Water Chemistry and Seasonal Evolution of Water Quality in the Upper Han River Basin, China

    PubMed Central

    Li, Siyue; Xia, Xiaoling; Tan, Xiang; Zhang, Quanfa

    2013-01-01

    Six-year (2005–2010) evolution of water chemistry (Cl−, NO3−, SO42−, HCO3−, Na+, K+, Ca2+ and Mg2+) and their interactions with morphological properties (i.e., slope and area), land cover, and hydrological seasonality were examined to identify controlling factors and processes governing patterns of stream water quality in the upper Han River, China. Correlation analysis and stepwise multiple regression models revealed significant correlations between ions (i.e., Cl−, SO42−, Na+ and K+) and land cover (i.e., vegetation and bare land) over the entire catchment in both high- and low-flow periods, and in the buffer zone the correlation was much more stronger in the low-flow period. Catchment with steeper slope (>15°) was negatively correlated with major ions, largely due to multicollinearity of basin characteristics. Land cover within the buffer zone explained slightly less of major elements than at catchment scale in the rainy season, whereas in the dry season, land cover along the river networks in particular this within 100 m riparian zone much better explained major elements rather than this over the entire catchment. Anthropogenic land uses (i.e., urban and agriculture) however could not explain water chemical variables, albeit EC, TDS, anthropogenic markers (Cl−, NO3−, SO42), Na+, K+ and Ca2+ significantly increased during 2005–2010, which was corroborated by principal component analyses (PCA) that indicated anthropogenic inputs. Observations demonstrated much higher solute concentrations in the industrial-polluted river. Our results suggested that seasonal evolution of water quality in combined with spatial analysis at multiple scales should be a vital part of identifying the controls on spatio-temporal patterns of water quality. PMID:23349700

  1. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: NLCD 2001 Land Use and Land Cover

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the estimated area of land use and land cover from the National Land Cover Dataset 2001 (LaMotte, 2008), compiled for every MRB_E2RF1 catchment of the Major River Basins (MRBs, Crawford and others, 2006). The source data set represents land use and land cover for the conterminous United States for 2001. The National Land Cover Data Set for 2001 was produced through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of Federal agencies (http://www.mrlc.gov), consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (USEPA), the U.S. Department of Agriculture (USDA), the U.S. Forest Service (USFS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (USFWS), the Bureau of Land Management (BLM), and the USDA Natural Resources Conservation Service (NRCS). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering the South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5) and the Pacific Northwest (MRB7) river basins.

  2. Preliminary assessment of tree mortality near F- and H-area seepage basins

    SciTech Connect

    Loehle, C; Gladden, J

    1988-01-28

    A preliminary assessment was conducted to evaluate factors that may have been responsible for the vegetation damage that has occurred in groundwater seeps downslope from the F- and H-area seepage basins. The factors that were considered included altered hydrology, toxicity from hazardous chemical constituents associated with seepage basin operation, and toxicity from non-hazardous constituents associated with basin operation. It was concluded that the observed damage was not likely to have resulted from altered hydrologic conditions or hazardous constituents associated with basin operation. Insufficient information is currently available to determine definitively which of the non-hazardous constituents, alone or in concert, were responsible for the observed vegetation damage. The most likely explanation, however, is that elevated Na, pH, and conductivity is outcropping seep water are responsible for tree mortality. All three of these factors will return to ambient levels over a period of several years when basin operation ceases. Faster remediation can be achieved using lime at the seep line.

  3. Effect of Agricultural Practices on Hydrology and Water Chemistry in a Small Irrigated Catchment, Yakima River Basin, Washington

    USGS Publications Warehouse

    McCarthy, Kathleen A.; Johnson, Henry M.

    2009-01-01

    The role of irrigation and artificial drainage in the hydrologic cycle and the transport of solutes in a small agricultural catchment in central Washington's Yakima Valley were explored using hydrologic, chemical, isotopic, age-dating, and mineralogical data from several environmental compartments, including stream water, ground water, overland flow, and streambed pore water. A conceptual understanding of catchment hydrology and solute transport was developed and an inverse end-member mixing analysis was used to further explore the effects of agriculture in this small catchment. The median concentrations of major solutes and nitrates were similar for the single field site and for the catchment outflow site, indicating that the net effects of transport processes for these constituents were similar at both scales. However, concentrations of nutrients were different at the two sites, suggesting that field-scale variations in agricultural practices as well as nearstream and instream biochemical processes are important components of agricultural chemical transformation and transport in this catchment. This work indicates that irrigation coupled with artificial drainage networks may exacerbate the ecological effects of agricultural runoff by increasing direct connectivity between fields and streams and minimizing potentially mitigating effects (denitrification and dilution, for example) of longer subsurface pathways.

  4. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Artificial Drainage (1992) and Irrigation (1997)

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the estimated area of artifical drainage for the year 1992 and irrigation types for the year 1997 compiled for every MRB_E2RF1 catchment of Major River Basins (MRBs, Crawford and others, 2006). The source data sets were derived from tabular National Resource Inventory (NRI) data sets created by the National Resources Conservation Service (NRCS, U.S. Department of Agriculture, 1995, 2000). Artificial drainage is defined as subsurface drains and ditches. Irrigation types are defined as gravity and pressure. Subsurface drains are described as conduits, such as corrugated plastic tubing, tile, or pipe, installed beneath the ground surface to collect and/or convey drainage. Surface drainage field ditches are described as graded ditches for collecting excess water. Gravity irrigation source is described as irrigation delivered to the farm and/or field by canals or pipelines open to the atmosphere; and water is distributed by the force of gravity down the field by: (1) A surface irrigation system (border, basin, furrow, corrugation, wild flooding, etc.) or (2) Sub-surface irrigation pipelines or ditches. Pressure irrigation source is described as irrigation delivered to the farm and/or field in pump or elevation-induced pressure pipelines, and water is distributed across the field by: (1) Sprinkle irrigation (center pivot, linear move, traveling gun, side roll, hand move, big gun, or fixed set sprinklers), or (2) Micro irrigation (drip emitters, continuous tube bubblers, micro spray or micro sprinklers). NRI data do not include Federal lands and are thus excluded from this dataset. The tabular data for drainage were spatially apportioned to the National Land Cover Dataset (NLCD, Kerie Hitt, U.S. Geological Survey, written commun., 2005) and the tabular data for irrigation were spatially apportioned to an enhanced version of the National Land Cover Dataset (NLCDe, Nakagaki and others, 2007). The MRB_E2RF1 catchments are based on a modified

  5. Baseflow and stormflow metal fluxes from two small agricultural catchments in the Coastal Plain of the Chesapeake Bay Basin, United States

    USGS Publications Warehouse

    Miller, C.V.; Foster, G.D.; Majedi, B.F.

    2003-01-01

    Annual yields (fluxes per unit area) of Al, Mn, Fe, Ni, Cd, Pb, Zn, Cu, Cr, Co, As and Se were estimated for two small non-tidal stream catchments on the Eastern Shore of the Chesapeake Bay, United States - a poorly drained dissected-upland watershed in the Nanticoke River Basin, and a well-drained feeder tributary in the lower reaches of the Chester River Basin. Both watersheds are dominated by agriculture. A hydrograph-separation technique was used to determine the baseflow and stormflow components of metal yields, thus providing important insights into the effects of hydrology and climate on the transport of metals. Concentrations of suspended-sediment were used as a less-costly proxy of metal concentrations which are generally associated with particles. Results were compared to other studies in Chesapeake Bay and to general trends in metal concentrations across the United States. The study documented a larger than background yield of Zn and Co from the upper Nanticoke River Basin and possibly enriched concentrations of As, Cd and Se from both the upper Nanticoke River and the Chesterville Branch (a tributary of the lower Chester River). The annual yield of total Zn from the Nanticoke River Basin in 1998 was 18,000 g/km2/a, and was two to three times higher than yields reported from comparable river basins in the region. Concentrations of Cd also were high in both basins when compared to crustal concentrations and to other national data, but were within reasonable agreement with other Chesapeake Bay studies. Thus, Cd may be enriched locally either in natural materials or from agriculture.

  6. Preliminary investigation of oil and source rock organic geochemistry from selected Tertiary basins of Thailand

    NASA Astrophysics Data System (ADS)

    Lawwongngam, Kulwadee; Philp, R. P.

    Selected samples of crude oils and extracts from source rocks obtained from six Thailand Tertiary basins of the central plain and of the Gulf of Thailand regions were examined for geochemical properties and molecular compositions. Analyses were performed using GC, CGCMS and carbon isotope mass spectrometry. Though these results should be viewed as preliminary, the results are significant in terms of a regional understanding of the petroleum geochemistry of Thailand. Results from bulk geochemical properties and biomarker assemblages characterize derivatives of organic sources deposited in lacustrine environments. The organic matter is mainly derived from algae with varying amounts of higher plant material. However, an observed variation in the pristane/phytane ratios among the samples may imply differences in depositional oxicity. On the other hand, basinal differences in sedimentation rates, or in the oxygen concentration of the varying waters and/or sediment pore-waters resulted in spatial heterogeneities in the quantity and degree of preservation of the organic matter. In addition, a degree of physical separation between these paleo-lacustrine environments is indicated by differences in paleosalinity, e.g. the hypersaline biomarker, gammacerane, which is restricted to samples from the offshore Gulf of Thailand basins. Maturity parameters for these Tertiary oils and source rock extracts were determined using biomarker analyses of T s/T m, 22S/22S + 22R C 31 hopane, C 30 moretane/hopane, 20R/20S + 20R C 29 sterane, and aromatic compounds. Though the samples demonstrate an overall relatively low level of maturity as specified by the biomarker index, a degree of individual basinal variability is also distinguishable. The observed differences in the maturity values indicate regional heterogeneity among the basin thermal histories, suggesting differences in geothermal gradients and/or in the basin subsidence rates.

  7. Analysis of Eocene depositional environments - Preliminary TM and TIMS results, Wind River Basin, Wyoming

    NASA Technical Reports Server (NTRS)

    Stucky, Richard K.; Krishtalka, Leonard; Redline, Andrew D.; Lang, Harold R.

    1987-01-01

    Both Landsat TM and aircraft Thermal IR Multispectral Scanner (TIMS) data have been used to map the lithofacies of the Wind River Basin's Eocene physical and biological environments. Preliminary analyses of these data have furnished maps of a fault contact boundary and a complex network of fluvial ribbon channel sandstones. The synoptic view thereby emerging for Eocene fluvial facies clarifies the relationships of ribbon channel sandstones to fossil-bearing overbank/floodplain facies and certain peleosols. The utility of TM and TIMS data is thereby demonstrated.

  8. Drainage architecture and sediment routing in erosive catchments within the Ebro Eiver sedimentary basin (NE Iberian Peninsula)

    NASA Astrophysics Data System (ADS)

    Castelltort, Xavier; Colombo, Ferran; Carles Balasch Solanes, Josep

    2016-04-01

    The Ebro Basin (EB) is the result of filling a foreland basin located between active mountain ranges during the Paleogene compressive phases, and later affected by phases of distension in the Neogene. The arrangement of filler material is monocline in the eastern margin and in the contact with the Catalan Coastal Range (CCR). This has repercussions on the model of emptying the erosive basins and in the drainage that took place in the margins of the original sedimentary basin. One can speak of a drainage architecture and sediment routing associated to a monocline erosive basin model. The monocline topography in the original margin of EB encouraged the formation of a string of erosive basins around the contact with CCR, which are the result of headward erosion towards the center of the EB of the rivers draining the CCR towards the Valencia Trough. At the time, the transition from the EB in its initial condition of endorheic to exorheic was through one of these monocline erosive basins. The erosive basins emptied by means of two vectors. On the one hand, growth in surface of the basin by deepening anaclinal streams through resistant beds of monocline stratigraphic succession that empty and link small depressions that increase laterally on the less resistant lithologic member. Moreover, the new drainage system entrenches as the exit point of the basin does, thanks to gradients created by distensional movements of the Neogene Valencia Trough. Growth and entrenchment model of river basins, as well as, sedimentary deposits and landforms generated by these processes are described and analyzed.

  9. Preliminary evaluation of nominal drainage basin volume as a potentially useful morphometric parameter for small mountain basins

    SciTech Connect

    Keaton, J.R.

    1985-01-01

    Morphometric basin parameters have been used in quantitative geomorphic assessments since Horton's Hydrophysical Approach in 1945. A relationship between basin form and dominant process in small mountain basins in the western United States would be valuable for use in differentiating basins which produce deep-seated landslides from those which produce debris flows from debris slides. Drainage basin volume seems like it should be a parameter directly related to the dominant process operating in a basin. Consequently, it may be a potentially useful morphometric parameter. Nominal drainage basin volume is herein defined as the volume creates by the basin topography and linear projection of topographic contours across the basin. Incremental volume is computed from area encompassed by topographic contours and projections and the contour interval using the formula for the volume of the frustrum of a cone. Seven basins in the Wasatch Range and five in the Wasatch Plateau of Utah show strong relationship of log Basin Area to log Basin Volume (r/sup 2/ = 0.97). The relationship between average Basin Slope and log Basin Volume was poorer (r/sup 2/ = 0.78) than between Basin Slope and log Basin Area (r/sup 2/ = 0.87). This suggests that basin area may be a more useful parameter than basin volume, especially since area is more easily measured.

  10. Mass balance and decontamination times of Polycyclic Aromatic Hydrocarbons in rural nested catchments of an early industrialized region (Seine River basin, France).

    PubMed

    Gateuille, David; Evrard, Olivier; Lefevre, Irène; Moreau-Guigon, Elodie; Alliot, Fabrice; Chevreuil, Marc; Mouchel, Jean-Marie

    2014-02-01

    Accumulation of Polycyclic Aromatic Hydrocarbons (PAHs) in soils and their subsequent release in rivers constitute a major environmental and public health problem in industrialized countries. In the Seine River basin (France), some PAHs exceed the target concentrations, and the objectives of good chemical status required by the European Water Framework Directive might not be achieved. This investigation was conducted in an upstream subcatchment where atmospheric fallout (n=42), soil (n=33), river water (n=26) and sediment (n=101) samples were collected during one entire hydrological year. PAH concentrations in atmospheric fallout appeared to vary seasonally and to depend on the distance to urban areas. They varied between 60 ng·L(-1) (in a remote site during autumn) and 2,380 ng·L(-1) (in a built-up area during winter). PAH stocks in soils of the catchment were estimated based on land use, as mean PAH concentrations varied between 110 ng·g(-1) under woodland and 2,120 ng·g(-1) in built-up areas. They ranged from 12 to 220 kg·km(-2). PAH contamination in the aqueous phase of rivers remained homogeneous across the catchment (72 ± 38 ng·L(-1)). In contrast, contamination of suspended solid was heterogeneous depending on hydrological conditions and population density in the drainage area. Moreover, PAH concentrations appeared to be higher in sediment (230-9,210 ng·g(-1)) than in the nearby soils. Annual mass balance calculation conducted at the catchment scale showed that current PAH losses were mainly due to dissipation (biodegradation, photo-oxidation and volatilization) within the catchments (about 80%) whereas exports due to soil erosion and riverine transport appeared to be of minor importance. Based on the calculated fluxes, PAHs appeared to have long decontamination times in soils (40 to 1,850 years) thereby compromising the achievement of legislative targets. Overall, the study highlighted the major role of legacy contamination that supplied the bulk of

  11. A Watershed Directory As A Basis For Integrated River Catchment Management of The Modau Catchment (germany)

    NASA Astrophysics Data System (ADS)

    Klawitter, A.; Ostrowski, M.

    A key element of the EU Water Framework Directive is the River Basin Management Plan providing the program of measures, which are aimed at protecting and meliorat- ing surface waters, groundwaters and other protected areas. A further important role in the River Basin Management Plan plays the monitoring of surface waters, as well as groundwaters and protected areas, which was the trigger for this investigation. The Modau catchment, situated East of the Rhine in South Hesse, is intensively used by agriculture and industry, and is furthermore densely populated. The river channel is severely impaired by urban settlements and water engineering works. Finally, the lower part of the Modau catchment is used for groundwater extraction. Due to these facts, an integrated water management is compulsory. The main purpose of the investigation was to establish a watershed directory com- bining all available information for watershed management and to evaluate this data basis towards its suitability for a River Basin Management Plan. A further purpose was to identify deficits as well as information gaps in this data basis. During the inves- tigation, a preliminary assessment of the monitoring and management strategies was carried out, to see whether current work with regard to river basin management meets the requirements of the Water Framework Directive.

  12. The challenges of catchment hydrological modelling in the Himalayan region: a case study from the Dudh Kosi River basin of Eastern Nepal

    NASA Astrophysics Data System (ADS)

    Nepal, Santosh; Bajracharya, Sagar R.; Shea, Joseph; Wahid, Shahriar M.; Shrestha, Arun B.; Flügel, Wolfgang-Albert

    2014-05-01

    Catchment-scale hydrological modelling in the Himalayan region suffers from multiple issues that affect our ability to represent the hydrological dynamics of a river system. Due to a lack of monitoring infrastructure, especially in the high-altitude areas, the spatial distribution of precipitation is essentially unknown. Therefore, the regionalization of precipitation in river basins is a challenging task that has implications in the modelling approach at different levels. This paper explores the uncertainty in modelled discharge using different precipitation input datasets in the glaciated catchment of the Dudh Kosi River basin in Eastern Nepal (3712 km2). The basin hosts some of the world's highest mountain peaks, including Mt Everest. Six precipitation stations, which cover mostly the lowland area of the basin, give a station density of one station per 618 km2. First, we examine precipitation dynamics in the study area based on the observed data. Second, the process-oriented distributed J2000 hydrological model is applied in the Dudh Kosi River basin. Third, the model is run with APHRODITE-(V1003R1), CPC-RFE-(2.0) and TRMM-(V7) precipitation products to compare observed and modelled discharge. Nearly 82% of the precipitation occurs during the monsoon season (June - September), and the limited station observations suggest that there is non-uniform distribution of precipitation in which the underlying topography has a great influence. The maximum precipitation occurred at the station which is located on the middle hills region, followed by the station located at the foothills of the Higher Himalaya. Compared to the observed precipitation, the TRMM product is found to be 7% less than the observed data, whereas the other two products were up to 35% less. The model was applied with the six stations data and the regionalization was carried out using Inverse Distance Weighting (IDW) method to simulate the hydrograph. The model was first applied between 1985-1997 in

  13. SUGAR CANE GROWING AND CATTLE GRAZING AS DRIVERS TO WETLAND DEGRADATION IN UGANDA: A case of upper river Ruizi and Iguluibi catchments Lake Victoria basin

    NASA Astrophysics Data System (ADS)

    Nakiyemba Were, Alice; Isabirye, Moses; Mathijs, Erik; Deckers, Jozef; Poesen, Jean

    2010-05-01

    Introduction: This study was conducted with in the framework of the VLIR-OI project with the aim of making contributions to the Diagnosis and Remediation of Land Degradation Processes in the Riparian Zone of Lake Victoria Uganda in view of reducing sediment pollution of the Lake Waters with a special focus on the upper river Ruiz and Iguluibi catchments. The study seeks to investigate Sugarcane growing and cattle grazing as drivers to wetland degradation in light of the current farming systems and practices and their contributions to land degradation and pollution of the Lake Victoria waters. Vegetation especially wetlands improves the resistance to erosion. The removal of riparian vegetation tends to accelerate surface erosion as a result of human activities. Increased erosion with in the catchments due to clearing of wetlands for sugarcane growing and cattle grazing has caused adverse increased sedimentation, degraded the water quality, and reduced the water productivity of the Lake Victoria Basin. Methods: We conducted a qualitative and quantitative study to investigate Sugarcane growing and cattle grazing as drivers to wetland degradation in Uganda in light of the current farming systems and practices and their socio-economic contributions to wetland degradation and pollution of the Lake Victoria waters. Focus group discussions, key informant interviews, semi structured interviews and observations were undertaken with the relevant stakeholders in the community. Results: Findings reveal that in Iguluibi catchment, sugarcane growing is now a major activity indicating land use change since the 1990s. Community members said when planting sugarcane all vegetations including all trees are cut leaving the land bare to allow the tractor to clear the land for cultivation. This has left the land bare without any natural vegetation with increased erosion hence eventually loss of soil fertility and increased sediment pollution to the Lake Victoria waters. As a result of

  14. Preliminary assessment of channel stability and bed-material transport in the Coquille River basin, southwestern Oregon

    USGS Publications Warehouse

    Jones, Krista L.; O'Connor, Jim E.; Keith, Mackenzie K.; Mangano, Joseph F.; Wallick, J. Rose

    2012-01-01

    This report summarizes a preliminary study of bed-material transport, vertical and lateral channel changes, and existing datasets for the Coquille River basin, which encompasses 2,745 km2 (square kilometers) of the southwestern Oregon coast. This study, conducted to inform permitting decisions regarding instream gravel mining, revealed that:

  15. Crop yield risk analysis and mitigation of smallholder farmers at quaternary catchment level: Case study of B72A in Olifants river basin, South Africa

    NASA Astrophysics Data System (ADS)

    Magombeyi, Manuel S.; Taigbenu, Akpofure E.

    Currently, Sub-Sahara is experiencing increased frequency of disasters either as floods or droughts which depletes the scarce resources available to sustain increasing populations. Success in preventing food shortages in the African continent can only be achieved by understanding the vulnerability and risk of the majority of smallholder farmers under rainfed and supplementary irrigation coupled with appropriate interventions. Increased frequency of floods, droughts and dry spells pose an increasing threat to the smallholder farmers’ food security and water resources availability in B72A quaternary catchment of the Olifants river basin in South Africa. This paper links maize crop yield risk and smallholder farmer vulnerability arising from droughts by applying a set of interdisciplinary indicators (physical and socio-economic) encompassing gender and institutional vulnerabilities. For the study area, the return period of droughts and dry spells was 2 years. The growing season for maize crop was 121 days on average. Soil water deficit during critical growth stages may reduce potential yields by up to 62%, depending on the length and severity of the moisture deficit. To minimize grain yield loss and avoid total crop failures from intra-seasonal dry spells, farmers applied supplementary irrigation either from river water or rainwater harvested into small reservoirs. Institutional vulnerability was evidenced by disjointed water management institutions with lack of comprehension of roles of higher level institutions by lower level ones. Women are most hit by droughts as they derived more than 90% of their family income from agriculture activities. An enhanced understanding of the vulnerability and risk exposure will assist in developing technologies and policies that conform to the current livelihood strategies of smallholder, resource-constrained farmers. Development of such knowledge base for a catchment opens avenues for computational modeling of the impacts of

  16. SPATIAL VARIABILITY OF DRY SPELLS A spatial and temporal rainfall analysis of the Pangani basin and Makanya catchment, Tanzania

    NASA Astrophysics Data System (ADS)

    Fischer, B. M. C.; Savenije, H. H. G. H. H. G.

    2009-04-01

    Rainfall and soil moisture are key parameters for food production and which are spatial and temporal variable. In a ever growing world the stress on water for food production increases. Farmers especially in semi arid regions with rain fed agriculture are more often forced to make away from "A" locations where water is available to water scares "B" or worse locations. Obliged by availability of arable land, tradition, customs, natural 6th sense or farmers cleverness. To improve agricultural yields a better water resource planning ,supported by system knowledge, is needed. This study describes a Markov bases dry spell tool which can fulfil in this need. By making use of Markov properties of rainfall, the temporal variability has been analysed. Plotting the derived seasonal transition probabilities vs. the rainfall amount a spatial variable power function could be derived. The spatial and temporal knowledge of rainfall was combined in the Markov based dry spell tool. For a given probability the tool provides a dry spell map. The dry spell tool is a powerful tool to assess vulnerability of dry spells based on meteorological data. The meteorological dry spell in combination with the agricultural dry spell length or critical dry spell length, which is determined by soil and vegetation characteristics, risk maps of an area to the vulnerability of dry spells could be made. The tool was applied in a case study in the Makanya catchment and showed: Compared to the lower middle part of the catchment, high altitude parts of the catchment receive higher amounts of rainfall, have shorter meteorological dry spells and are more resilient to dry spells due to their soil and vegetation characteristics. As a result one can state that farmers living in mountainous areas are blessed by their location. They receive more rain and have lower probability of long dry spells, higher probability of crop success and a higher probability of high yields, in contrast to the farmers in the valley

  17. Preliminary hydrologic budget studies, Indian Creek watershed and vicinity, Western Paradox Basin, Utah

    SciTech Connect

    Thackston, J.W.; Mangarella, P.A.; Preslo, L.M.

    1986-05-01

    Preliminary quantitative estimates of ground-water discharge into the Colorado River System in the western Paradox Basin were prepared on the basis of existing climatological and streamflow records. Ground-water outflow to the river was deduced as a residual from hydrologic budget equations for two different study areas: (1) the region between gaging stations at Cisco, Green River, and Hite, Utah; and (2) the Indian Creek watershed. An empirical correlation between recharge rates and precipitation amounts derived for several basins in eastern Nevada was applied to estimate recharge amounts for the Indian Creek watershed. A simple Darcian flow model was then used to approximate the ground-water flux outward from the watershed for comparison. Salinity measurements in the Colorado River were also used to approximate ground-water outflow to a river reach in Cataract Canyon in order to provide another comparison with the hydrologic budget results. Although these estimates should be considered only gross approximations, all approaches used provide values of ground-water outflow that are much less than estimates of similar parameters provided by the US Geological Survey in recent hydrologic reconnaissance reports. Estimates contained herein will be refined in future numerical modeling and data collection studies.

  18. Preliminary Simulations of CO2 Transport in the Dolostone Formations in the Ordos Basin, China

    SciTech Connect

    Hao, Y; Wolery, T; Carroll, S

    2009-04-30

    This report summarizes preliminary 2-D reactive-transport simulations on the injection, storage and transport of supercritical CO{sub 2} in dolostone formations in the Ordos Basin in China. The purpose of the simulations was to evaluate the role that basin heterogeneity, permeability, CO{sub 2} flux, and geochemical reactions between the carbonate geology and the CO{sub 2} equilibrated brines have on the evolution of porosity and permeability in the storage reservoir. The 2-D simulation of CO{sub 2} injection at 10{sup 3} ton/year corresponds to CO{sub 2} injection at a rate of 3 x 10{sup 5} ton/year in a 3-D, low permeable rock. An average permeability of 10 md was used in the simulation and reflects the upper range of permeability reported for the Ordos Basin Majiagou Group. Transport and distribution of CO{sub 2} between in the gas, aqueous, and solid phases were followed during a 10-year injection phase and a 10-year post injection phase. Our results show that CO{sub 2} flux and the spatial distribution of reservoir permeability will dictate the transport of CO{sub 2} in the injection and post injection phases. The injection rate of supercritical CO{sub 2} into low permeable reservoirs may need to be adjusted to avoid over pressure and mechanical damage to the reservoir. Although it should be noted that 3-D simulations are needed to more accurately model pressure build-up in the injection phase. There is negligible change in porosity and permeability due to carbonate mineral dissolution or anhydrite precipitation because a very small amount of carbonate dissolution is required to reach equilibrium with respect these phases. Injected CO{sub 2} is stored largely in supercritical and dissolved phases. During the injection phase, CO{sub 2} is transport driven by pressure build up and CO{sub 2} buoyancy.

  19. Preliminary use of compound-specific stable isotope (CSSI) technique to identify and apportion sediment origin in a small Austrian catchment

    NASA Astrophysics Data System (ADS)

    Mabit, Lionel; Gibbs, Max; Chen, Xu; Meusburger, Katrin; Toloza, Arsenio; Resch, Christian; Klik, Andreas; Eder, Alexander; Strauss, Peter; Alewell, Christine

    2015-04-01

    , preliminary results highlighted that about 50-55% of the sediment located in the deposition area originated from the main grassed waterway of the catchment.

  20. Suspended sediment yield and metal contamination in a river catchment affected by El Niño events and gold mining activities: the Puyango river basin, southern Ecuador

    NASA Astrophysics Data System (ADS)

    Tarras-Wahlberg, N. H.; Lane, S. N.

    2003-10-01

    The suspended sediment yield and the transfer of polluted sediment are investigated for the Puyango river basin in southern Ecuador. This river system receives metal (Cd, Cu, Hg, Pb and Zn) and cyanide pollution generated by mining, and is associated with large-scale hydrological variability, which is partly governed by El Niño events. Field sampling and statistical modelling methods are used to quantify the amount of mine tailings that is discharged into the basin. Annual suspended sediment yields are estimated using a novel combination of the suspended sediment rating method and Monte Carlo simulations, which allow for propagation of the uncertainties of the calculations that lead to final load estimates. Geochemical analysis of suspended and river bed sediment is used to assess the dispersion and long-term fate of contaminated sediment within the river catchment. Knowledge of the inter- and intra-annual variation in suspended sediment yield is shown to be crucial for judging the importance of mining discharges, and the extent to which the resultant pollution is diluted by river flows. In wet years, polluted sediments represent only a very small proportion of the yield estimates, but in dry years the proportion can be significant. Evidence shows that metal contaminated sediments are stored in the Puyango river bed during low flows. Large flood events flush this sediment periodically, both on an annual cycle associated with the rainy season, and also related to El Niño events. Therefore, environmental impacts of mining-related discharges are more likely to be severe during dry years compared with wet years, and in the dry season rather than the wet season. The hydrological consequences of El Niño events are shown to depend upon the extent to which these events penetrate inland. It is, thus, shown that the general conclusion that El Niño events can significantly affect suspended sediment yields needs evaluation with respect to the particular way in which those

  1. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Nutrient Inputs from Fertilizer and Manure, Nitrogen and Phosphorus (N&P), 2002

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the total amount of nitrogen and phosphorus, in kilograms for the year 2002, compiled for every MRB_E2RF1 catchment of the Major River Basins (MRBs, Crawford and others, 2006). The source data set is County-Level Estimates of Nutrient Inputs to the Land Surface of the Conterminous United States, 1982-2001 (Ruddy and others, 2006). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  2. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Nutrient Application (Phosphorus and Nitrogen) for Fertilizer and Manure Applied to Crops (Cropsplit), 2002

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the estimated amount of phosphorus and nitrogen fertilizers applied to selected crops for the year 2002, compiled for every MRB_E2RF1 catchment of Major River Basins (MRBs, Crawford and others, 2006). The source data set is based on 2002 fertilizer data (Ruddy and others, 2006) and tabulated by crop type per county (Alexander and others, 2007). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for MRB_E2RF1 catchments for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  3. Preliminary study on soil to rock spectral ratio method of microtremor measurement in Taipei Basin, Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, Jyun Yan; Wen, Kuo Liang; Te Chen, Chun; Chang, Shun Chiang

    2014-05-01

    Taipei city is the capital of Taiwan which located in Taipei basin and covered with hundreds meter of alluvial layer that might cause serious damage during huge earthquake. Prediction of possible strong motion levels occurred in the basin then became popular. Engineers most like to use Ground Motion Prediction Equation (GMPEs) as common tool for seismic hazard calculation but GMPEs were usually debated that it can only give one prediction value (PGA, PGV, Sa etc.) rather than time history or spectrum. Seismologists tried theoretical simulation (1D, 2D, 3D method) but could only give low frequency (usually less than 1 Hz) results restricted to that the shallow structures were not clear enough. Resent years, wide frequency simulation techniques such as empirical green's function added stochastic simulation method (hybrid method) were applied to several different purposes but site effect still plays an important role that need to be considered. Traditionally soil to rock spectral ratio of shear wave (denoted as S/R) was widely applied to check basin effect for decades but the technique needs lots of permanent stations and several years to get enough records. If some site located within strong motion network but not close enough to the strong motion stations, interpolate or extrapolate results needed to be used. Wen and Huang (2012) conducted a dense microtremor measurement network in whole Taiwan and applied microtremor H/V to discuss dominant frequency with traditional transfer functions from earthquake shear wave and found good agreement between them. Furthermore, in this study, the ability of soil to rock spectral ratio of microtremor (denoted as MS/R) measurement was tested in Taipei basin. The preliminary results showed MS/R had good agreement with S/R between 0.2 to 5 Hz. And distance from soil site to reference rock site should no greater than 8 to 10 km base on degree of spectrum difference (DSPD) calculation. If the MS/R works that site effect study from this

  4. From the Highest to the Deepest: A River-Sea Dispersal System that Links A Mountainous Catchment to the Deep-Sea Basin (Invited)

    NASA Astrophysics Data System (ADS)

    Liu, J. T.; Hsu, R. T.

    2013-12-01

    Gaoping River (GPR) is a small mountainous river whose source area is located in the southern Central Range of Taiwan, about 3900 m above sea level. It has an average gradient of 1:150. Both the chemical and physical weathering rates for the GPR catchment are higher than the world average. Approximately 1 km seaward from the mouth of the GPR is the head of the Gaoping Submarine Canyon (GPSC). GPR annually discharges 35 Mt of sediment into the sea, most of which enters the GPSC. The GPSC owes its existence to tectonic processes related to the collision of the Philippine Plate and the Eurasia Plate. The canyon extents from the mouth of GPR, cutting through the Gaoping shelf and slope, and merges into the northeastern Manila Trench over a distance of about 260 km in water depth over 3000 m. It is a major conduit for the transport of terrestrial sediment to the South China Sea (SCS) and the landward transport of particles of marine origin in the SCS. The thickness of the tidally-dominated benthic nepheloid layer (BNL) in the GPSC can exceed 200 m, in which the temperature, flow, and suspended sediment concentration show distinctive tidal oscillations. Both semidiruanl barotropic and baroclinic tides are important in the canyon. In the GRSC the normal transport of suspended sediment associated with tidal propagation from offshore is up-canyon yet episodic sediment transports associated with episodic gravity-driven events are down-canyon. Typhoon-induced river floods often ignite turbidity currents (TCs) in the GPSC. Therefore, hperpycnal river plume and the ensuing TCs form an effective pathway to transport large amount of terrestrial sediment and carbon (fresh and aged) to the SCS basin. However, due to the extensive disturbance in the GPR catchment by typhoon-related deep erosion of hillslopes and incision of river channels, the ';fresh' flood sediment exported by GPR during and immediately after typhoons contains old sediment as defined by the absence of 7Be

  5. Congo Basin Streamflow characterization using multi-source satellite-derived data: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Munzimi, Y.; Hansen, M. C.; Asante, K. O.

    2010-12-01

    The Congo Basin in Central Africa has the second largest discharge of any river system, second only to the Amazon Basin. As such, it is considered a potential and strategic asset for supplying not only fresh water but also clean energy through hydropower generation. However, very little of Congo River Basin hydrology is known. Indeed, the basin hydrometeorological network is deteriorating and has a small number of gauges unevenly distributed throughout the Congo watershed. In such cases where in situ data are scarce, remote sensing can be used to quantify rainfall pattern and river flow regime. In default of contributing to quantification exercises, limited ground data available can be used for validation work. To better understand hydrological processes in the Congo River Basin, a 2009 NASA funded project entitled “Hydrological Response to Land Cover and Land Use Change in the Congo Basin” exploits remote sensing capabilities coupled with large scale hydrological modeling. Temporal and terrestrial satellite-based data are ingested into the USGS Geospatial Streamflow Model (GeoSFM) for daily flow generation. The reliance on remotely sensed data to replace or supplement ground data for this hydrological application necessitates rigorous validation of these products. As TRMM Satellite rainfall estimates are being used in this study in place of gauge observations, ground precipitation data reported in existing nationally-held datasets from 33 meteorological stations are used for validation purposes. Initial research on the Congo Basin compared streamflow estimated with GeoSFM against available current and historical streamflow data. While initial results were promising, some discrepancies were revealed, attributed to the accuracy of the input data and the non-calibration of the model. A key finding was that the existing parameterization of land cover using coarse resolution data is inadequate to accurately characterize rainfall-runoff processes in the Congo. As

  6. REACH-ER: a tool to evaluate river basin remediation measures for contaminants at the catchment scale

    NASA Astrophysics Data System (ADS)

    van Griensven, Ann; Haest, Pieter Jan; Broekx, Steven; Seuntjens, Piet; Campling, Paul; Ducos, Geraldine; Blaha, Ludek; Slobodnik, Jaroslav

    2010-05-01

    The European Union (EU) adopted the Water Framework Directive (WFD) in 2000 ensuring that all aquatic ecosystems meet ‘good status' by 2015. However, it is a major challenge for river basin managers to meet this requirement in river basins with a high population density as well as intensive agricultural and industrial activities. The EU financed AQUAREHAB project (FP7) specifically examines the ecological and economic impact of innovative rehabilitation technologies for multi-pressured degraded water bodies. For this purpose, a generic collaborative management tool ‘REACH-ER' is being developed that can be used by stakeholders, citizens and water managers to evaluate the ecological and economical effects of different remedial actions on waterbodies. The tool is built using databases from large scale models simulating the hydrological dynamics of the river basing and sub-basins, the costs of the measures and the effectiveness of the measures in terms of ecological impact. Knowledge rules are used to describe the relationships between these data in order to compute the flux concentrations or to compute the effectiveness of measures. The management tool specifically addresses nitrate pollution and pollution by organic micropollutants. Detailed models are also used to predict the effectiveness of site remedial technologies using readily available global data. Rules describing ecological impacts are derived from ecotoxicological data for (mixtures of) specific contaminants (msPAF) and ecological indices relating effects to the presence of certain contaminants. Rules describing the cost-effectiveness of measures are derived from linear programming models identifying the least-cost combination of abatement measures to satisfy multi-pollutant reduction targets and from multi-criteria analysis.

  7. Constraining back-arc basin formation in the eastern Coral Sea: preliminary results from the ECOSAT voyage

    NASA Astrophysics Data System (ADS)

    Seton, M.; Williams, S.; Mortimer, N. N.; Meffre, S.; Moore, J.; Micklethwaite, S.; Zahirovic, S.

    2013-12-01

    The eastern Coral Sea region is an underexplored area at the northeastern corner of the Australian plate, where long-lived interaction between the Pacific and Australian plate boundaries has resulted in an intricate assemblage of deep oceanic basins and ridges, continental fragments and volcanic products. A paucity of marine geophysical and geological data from this complex region has resulted in the lack of a clear conceptual framework to describe its formation, ultimately affecting our understanding of the connection between the plate boundaries of the SW Pacific and SE Asia. In particular, the tectonic relationship between two back-arc basins, the Santa Cruz and d'Entrecasteaux Basins, and the South Rennell Trough, has yet to be resolved. In October-November, 2012, we collected 6,200 km of marine magnetic, 6,800 km of gravity and over 13,600 km2 of swath bathymetry data from the eastern Coral Sea onboard the RV Southern Surveyor. A complementary dredging program yielded useful samples from 14 seafloor sites. Our preliminary geochemical interpretation of the dredge samples obtained from the South Rennell Trough reveal volcanic rocks resembling MORB or BABB-type basalts, similar in composition to the recently re-analysed and dated ORSTOM dredges from the area that yielded ~28 Ma MORB-like basalts. Swath bathymetry profiles from the Santa Cruz Basin reveal that the South Rennell Trough extends into this basin, with seafloor spreading fabric being parallel to the trough. Preliminary analysis of the three full and four partial new magnetic anomaly profiles across the Santa Cruz Basin, coupled with limited existing profiles, reveals that the basin may have formed between Chrons 13-18 (~32-38 Ma), with an extinct spreading ridge along the inferred continuation of the South Rennell Trough, consistent with ORSTOM age dates. Our results suggest that the South Rennell Trough is an extinct southwestward propagating spreading ridge, which may have initiated along a pre

  8. Long-term integrated river basin planning and management of water quantity and water quality in mining impacted catchments

    NASA Astrophysics Data System (ADS)

    Pohle, Ina; Zimmermann, Kai; Claus, Thomas; Koch, Hagen; Gädeke, Anne; Uhlmann, Wilfried; Kaltofen, Michael; Müller, Fabian; Redetzky, Michael; Schramm, Martina; Schoenheinz, Dagmar; Grünewald, Uwe

    2015-04-01

    During the last decades, socioeconomic change in the catchment of the Spree River, a tributary of the Elbe, has been to a large extent associated with lignite mining activities and the rapid decrease of these activities in the 1990s. There are multiple interconnections between lignite mining and water management both in terms of water quantity and quality. During the active mining period a large-scale groundwater depression cone has been formed while river discharges have been artificially increased. Now, the decommissioned opencast mines are being transformed into Europe's largest man-made lake district. However, acid mine drainage causes low pH in post mining lakes and high concentrations of iron and sulphate in post mining lakes and the river system. Next to potential changes in mining activities, also the potential impacts of climate change (increasing temperature and decreasing precipitation) on water resources of the region are of major interest. The fundamental question is to what extent problems in terms of water quantity and water quality are exacerbated and whether they can be mitigated by adaptation measures. In consequence, long term water resource planning in the region has to formulate adaptation measures to climate change and socioeconomic change in terms of mining activities which consider both, water quantity and water quality aspects. To assess potential impacts of climate and socioeconomic change on water quantity and water quality of the Spree River catchment up to the Spremberg reservoir in the scenario period up to 2052, we used a model chain which consists of (i) the regional climate model STAR (scenarios with a further increase in temperature of 0 and 2 K), (ii) mining scenarios (mining discharges, cooling water consumption of thermal power plants), (iii) the ecohydrological model SWIM (natural water balance), (iv) the long term water management model WBalMo (managed discharges, withdrawal of water users, reservoir operation) and (v) the

  9. Quantification of water and sediment yield from small catchment in open mining areas: experience and results from Poro nickel mining basin in New Caledonia

    NASA Astrophysics Data System (ADS)

    Mathys, Nicolle; Allenbach, Michel; Wottling, Geoffroy; Carpentier, Laureen; Freydier, Perrine; Navarrot, Lucie

    2014-05-01

    Water management in mining environments is a major challenge of the mining projects. In New Caledonia large areas have been excavated for Nickel mining since the end of the 19th century. In the past, the bad management of the water and coarse sediments left scars in the landscape and management problems in the channel reaches downstream. Nowadays, open mining techniques no longer yield coarse material out of the mining areas but the management of water and fine sediment remains a difficult question as the suspended sediments reach the very fragile environment of the lagoon. In addition, in many areas, it threatens human activities in the downstream rivers. In order to quantify and understand the formation of runoff, erosion and sediment transport in small mining watersheds the "Hydromine" project was initiated in 2008 by the New Caledonia government (DAVAR) with the collaboration of the University of New Caledonia (UNC) and later with the scientific support of Irstea Grenoble. The questions addressed by this project are: - What is the response (water and sediments) of a mining watershed to a rainfall input? - What factors control this response? - What are the processes involved? And which are dominant in the various hydrometeorological situations? - What are the characteristics of the transported materials? - What is the efficiency of mitigation works in the mining area? Two small embedded catchments (0.09 and 0.30 km²) are monitored for measuring rainfall, runoff and fine sediment transport in the mining area of Poro, East cost of New Caledonia. Elevation ranges from 197 to 366 m.a.s.l. The slope are steep (36 % in average but locally up to 130%) and the vegetation cover is very low (20% for the larger basin, 0% for the headwater basin). Rainfall-runoff and discharge-sediment concentration (SSC) relationship were analysed at the event and annual time scale. As a result, we pointed out the main factors that influence the response of the basins to a rainfall event

  10. Preliminary seismicity and focal mechanisms for the southern Great Basin of Nevada and California: January 1992 through September 1992

    SciTech Connect

    Harmsen, S.C.

    1994-06-01

    The telemetered southern Great Basin seismic network (SGBSN) is operated for the Department of Energy`s Yucca Mountain Project (YMP). The US Geological Survey, Branch of Earthquake and Landslide Hazards, maintained this network until September 30, 1992, at which time all operational and analysis responsibilities were transferred to the University of Nevada at Reno Seismological Laboratory (UNRSL). This report contains preliminary earthquake and chemical explosion hypocenter listings and preliminary earthquake focal mechanism solutions for USGS/SGBSN data for the period January 1, 1992 through September 30, 1992, 15:00 UTC.

  11. Preliminary seismicity and focal mechanisms for the Southern Great Basin of Nevada and California, January 1992 - September 1992

    NASA Astrophysics Data System (ADS)

    Harmsen, S. C.

    The telemetered southern Great Basin seismic network (SGBSN) is operated for the Department of Energy's Yucca Mountain Project (YMP). The US Geological Survey, Branch of Earthquake and Landslide Hazards, maintained this network until September 30, 1992, at which time all operational and analysis responsibilities were transferred to the University of Nevada at Reno Seismological Laboratory (UNRSL). This report contains preliminary earthquake and chemical explosion hypocenter listings and preliminary earthquake focal mechanism solutions for USGS/SGBSN data for the period January 1, 1992 through September 30, 1992, 15:00 UTC.

  12. A comparative analysis of groundwater recharge estimates from three major methods: An analysis of subsurface recharge in the Nabogo sub-catchment of the White Volta Basin, Northern Ghana

    NASA Astrophysics Data System (ADS)

    Fynn, O. F.; Yidana, S. M.; Alo, C. A.; Mensah, F. O.

    2013-12-01

    Groundwater recharge in the Nabogo sub-catchment of the White Volta Basin is assessed using three main methods: the water table fluctuations method, baseflow recession method, and chloride mass balance approach. The objective is to quantify the relative proportions of direct vertical infiltration and percolation of rainwater in the area and subsurface flows in determining the total groundwater recharge in the basin. Groundwater resources development for commercial irrigation activities is an essential aspect of the livelihoods of communities living within the catchments of the Volta Basin. A comprehensive assessment of the recharge component of groundwater budgets in the basin is critical towards determining optimal abstraction rates in order to ensure resource sustainability and ecological integrity. This will form the basis for quantifying abstraction rates that are permissible to support large scale irrigation activities in the basin. The presence and thickness of the clay layer in the unsaturated zone serves to limit vertical infiltration of rainwater, and thus reduce vertical groundwater recharge in the area. In this study, the chloride mass balance technique, supported by the analysis of stable isotope signatures, has been used to estimate the vertical groundwater recharge and its spatial pattern of distribution in the area. The water table fluctuations technique and base flow recession method are then used to estimate total groundwater recharge in the basin. It is then possible to quantify the relative contributions of subsurface flows in the groundwater recharge in the basin. Temporal variations in groundwater recharge in the area are examined from time series of estimates from the baseflow recession technique. The results will assist in assessing the short term impacts of rainfall variability on groundwater budgets in the area.

  13. Preliminary Crater Retention Ages for an Expanded Inventory of Large Lunar Basins

    NASA Technical Reports Server (NTRS)

    Frey, H. V.

    2012-01-01

    Based on LOLA topography and a new crustal thickness model, the number of candidate lunar basins greater than 300 km in diameter is at least a factor 2 larger than the traditional number based on photogeology alone, and may be as high as 95. Preliminary N(50) crater retention ages for this population of candidate basins shows two distinct peaks. Frey [1] suggested, based on Clementine-era topography (ULCN2005) and a crustal thickness model based on Lunar Prospector data [2], that there could be as many as 98 lunar basins greater than 300 km diameter. Many of the weaker cases have not stood up to recent testing [3,4,5] using LOLA data and a newer crustal thickness model based on Kaguya gravity data and LOLA topography data [6]. As described in companion abstracts [4,5], we have deleted from the earlier inventory 1 more named feature (Sikorsky- Rittenhouse; LOLA data show that its diameter is actually less than 300 km), 11 Quasi-Circular Depressions (QCDs) identified in the ULCN topography, and 11 Circular Thin Areas (CTAs) found in the earlier crustal thickness model [2]. We did this by repeating the scoring exercise originally done in [1] but with the new data [4,5]. Topographic Expression (TE) and Crustal Thickness Expression (CTE) scores were determined for each candidate on a scale of 0 to 5 (5 being a strong, circular signature, 0 for those with no discernible circular topographic or crustal thickness signature). These scores are added together to produce a Summary Score which has a range of 0 to 10. We eliminated all candidates with a Summary Score less than 3, as well as other cases where, for example, the TE went to zero because what looked like a single large circular QCD in the lower resolution ULCN data was in fact a cluster of smaller deep impacts readily apparent in the newer higher resolution LOLA data. This process reduced the original inventory from 98 to 75 candidates.

  14. Soil water conservation and rainwater harvesting strategies in the semi-arid Mzingwane Catchment, Limpopo Basin, Zimbabwe

    NASA Astrophysics Data System (ADS)

    Mupangwa, Walter; Love, David; Twomlow, Steve

    Various soil water management practices have been developed and promoted for the semi arid areas of Zimbabwe. These include a variety of infield crop management practices that range from primary and seconday tillage approaches for crop establishment and weed management through to land forming practices such as tied ridges and land fallowing. Tillage methods evaluated in this study include deep winter ploughing, no till tied ridges, modified tied ridges, clean and mulch ripping, and planting basins. Data collected from the various trials since the 1990s show that mulch ripping and other minimum tillage practices consistently increased soil water content and crop yields compared to traditional spring ploughing. Trial results also showed higher soil loss from conventionally ploughed plots compared to plots under different minimum tillage practices.

  15. A preliminary assessment of the spatial sources of contemporary suspended sediment in the Ohio River basin, United States, using water quality data from the NASQAN programme in a source tracing procedure

    USGS Publications Warehouse

    Zhang, Y.-S.; Collins, A.L.; Horowitz, A.J.

    2012-01-01

    Reliable information on catchment scale suspended sediment sources is required to inform the design of management strategies for helping abate the numerous environmental issues associated with enhanced sediment mobilization and off-site loadings. Since sediment fingerprinting techniques avoid many of the logistical constraints associated with using more traditional indirect measurement methods at catchment scale, such approaches have been increasingly reported in the international literature and typically use data sets collected specifically for sediment source apportionment purposes. There remains scope for investigating the potential for using geochemical data sets assembled by routine monitoring programmes to fingerprint sediment provenance. In the United States, routine water quality samples are collected as part of the US Geological Survey's revised National Stream Quality Accounting Network programme. Accordingly, the geochemistry data generated from these samples over a 10-year period (1996-2006) were used as the basis for a fingerprinting exercise to assess the key tributary sub-catchment spatial sources of contemporary suspended sediment transported by the Ohio River. Uncertainty associated with the spatial source estimates was quantified using a Monte Carlo approach in conjunction with mass balance modelling. Relative frequency weighted means were used as an alternative way of summarizing the spatial source contributions, thereby avoiding the need to use confidence limits. The results should be interpreted in the context of the routine, but infrequent nature, of the suspended sediment samples used to assemble geochemistry as a basis for the sourcing exercise. Nonetheless, the study demonstrates how routine monitoring samples can be used to provide some preliminary information on sediment provenance in large drainage basins. ?? 2011 John Wiley & Sons, Ltd.

  16. Deep seismic reflection profiling of sedimentary basins offshore Brazil: Geological objectives and preliminary results in the Sergipe Basin

    NASA Astrophysics Data System (ADS)

    Mohriak, Webster Ueipass; Lira Rabelo, JoséHenrique; De Matos, Renato Darros; De Barros, Mozart C.

    1995-12-01

    The first deep seismic reflection profiles offshore Brazil were acquired in Campos Basin and processed to 10 s TWT in 1984. Starting in 1989, Petrobrás acquired an extensive data set of deep seismic profiles using special acquisition equipment capable of effectively penetrating through the sedimentary layers and imaging the whole crustal architecture. These deep (18 s TWT) seismic reflection profiles extend across the Atlantic-type marginal basins, from the platform to the deepwater province, presently considered frontier regions for petroleum exploration. This work addresses the geological objectives of a deep seismic profile in the Sergipe Basin and discusses the results obtained by integrating regional seismic, gravity and magnetic data. When combined, these data provide evidence that deep seismic reflectors observed in the Sergipe Basin are related to intracrustal-upper mantle structures rather than sedimentary features. The deep seismic reflection profile in the Sergipe Basin also suggests that, rather than a non-volcanic passive margin, the deepwater extension of this basin is marked by several magmatic structures, including thick wedges of seaward-dipping reflectors and volcanic plugs. These magmatic features are associated with basinforming processes resulting from lithospheric extension during the breakup of Gondwana in the Early Cretaceous and subsequent emplacement of oceanic crust. These results are compared to the crustal scale structures observed in the Campos Basin, in the southeastern margin of Brazil. The interpretation of the deep structure of these basins indicates that final separation between the South American and African plates formed passive margins characterized by different patterns of crustal attenuation underlying the rift blocks.

  17. Preliminary report on coal pile, coal pile runoff basins, and ash basins at the Savannah River Site: effects on groundwater

    SciTech Connect

    Palmer, E.

    1997-04-28

    Coal storage piles, their associated coal pile runoff basins and ash basins could potentially have adverse environmental impacts, especially on groundwater. This report presents and summarizes SRS groundwater and soil data that have been compiled. Also, a result of research conducted on the subject topics, discussions from noted experts in the field are cited. Recommendations are made for additional monitor wells to be installed and site assessments to be conducted.

  18. Impact of altitudinal variability on streamflows in mountainous catchments under changing climate (Upper Indus Basin), Himalayas Pakistan

    NASA Astrophysics Data System (ADS)

    Khan, K. M.; Yaseen, M.

    2014-12-01

    Pakistan's economy is based on agriculture that is highly dependent on water resources originating in the mountain sources of the Upper Indus Basin (UIB). Various rivers i.e. Chitral, Swat, Kabul, Hunza, Gilgit, Astore, Shigar, Shyok & tributaries contribute water to main Indus River. The elevation of UIB ranges from 254 m to 8570 m a.m.s.l. Changes in climate and related hydrological impacts vary in space and time as affected by local climatic and topographic settings. So, the objective of this study was to assess the climate change and related hydrological impacts resulting from altitudinal variability. Trend analyses were performed by applying Mann-Kendall and Sen's method was applied to estimate slope time series that indicates changes in river flows. The results of this study indicate that maximum temperature in annual, winter, spring and autumn seasons has increased with increased in altitude while annual, winter and autumn minimum temperature has decreased with increased in altitude for the period (1961-2011). Moreover, annual, winter, summer and autumn precipitation has been decreased. The impact of altitudinal variability under changing climate yields that annual and seasonal streamflows in River Indus (at Kharmong, Alam Br. and Khairabad), Sawat (at Kalam) and Kabul (at Nowshera) have decreased whereas in River Shoyk (9%), Shigar (7%) and Indus at Kachura (5%) have been increased. However, annual runoff in Gilgit (1%) and Hunza River (18%) has increased by increasing 2 % annual temperature. A seasonal correlation coefficient between temperature and streamflow has the positive correlation in most of the sub-basins of UIB for both spring and summer. With increased 1 oC temperature in spring yields increased streamflow for rives Gilgit, Chitral, Astore, Shoyk, Shigar, Indus at Kachura & Kharmong and Hunza with percentage of 19, 5, 11, 15, 9, 7, 1 and 12 respectively. The prevailing trends and variability, caused by climate change, have an effect on the flows

  19. Restoring the Mississippi River Basin from the Catchment to the Coast Defines Science and Policy Issues of Ecosystem Services Associated with Alluvial and Coastal Deltaic Floodplains: Soil Conservation, Nutrient Reduction, Carbon Sequestration, and Flood Control

    NASA Astrophysics Data System (ADS)

    Twilley, R.

    2014-12-01

    Large river systems are major economic engines that provide national economic wealth in transporting commerce and providing extensive agriculture production, and their coastal deltas are sites of significant ports, energy resources and fisheries. These coupled natural and social systems from the catchment to the coast depend on how national policies manage the river basins that they depend. The fundamental principle of the Mississippi River Basin, as in all basins, is to capitalize on the ability of fertile soil that moves from erosional regions of a large watershed, through downstream regions of the catchment where sediment transport and storage builds extensive floodplains, to the coastal region of deposition where deltas capture sediment and nutrients before exported to the oceans. The fate of soil, and the ability of that soil to do work, supports the goods and services along its path from the catchment to the coast in all large river basin and delta systems. Sediment is the commodity of all large river basin systems that together with the seasonal pulse of floods across the interior of continents provide access to the sea forming the assets that civilization and economic engines have tapped to build national and global wealth. Coastal landscapes represent some of the most altered ecosystems worldwide and often integrate the effects of processes over their entire catchment, requiring systemic solutions to achieve restoration goals from alluvial floodplains upstream to coastal deltaic floodplains downstream. The urgent need for wetland rehabilitation at landscape scales has been initiated through major floodplain reclamation and hydrologic diversions to reconnect the river with wetland processes. But the constraints of sediment delivery and nutrient enrichment represent some critical conflicts in earth surface processes that limit the ability to design 'self sustaining' public work projects; particularly with the challenges of accelerated sea level rise. Only

  20. Relative weathering intensity of calcite versus dolomite in carbonate-bearing temperate zone watersheds: Carbonate geochemistry and fluxes from catchments within the St. Lawrence and Danube river basins

    NASA Astrophysics Data System (ADS)

    Szramek, Kathryn; McIntosh, Jennifer C.; Williams, Erika L.; Kanduc, Tjasa; Ogrinc, Nives; Walter, Lynn M.

    2007-04-01

    Calcite and dolomite solubilities in open weathering environments are proportional to pCO2 and inversely proportional to temperature, and dolomite solubility is progressively greater than calcite below 25°C. The continent-scale weathering budget reveals the significance of the Northern Hemisphere (NH) to globally integrated riverine fluxes of Ca2+, Mg2+, and HCO3-. The NH contributes 70% of the global HCO3- flux while only 54% of the riverine discharge. We present results of a comparative hydrogeochemical study of carbonate mineral equilibria and weathering fluxes in two NH carbonate-rich river basins. Surface water geochemistry and discharge were determined for headwater streams in Michigan and Slovenia within the St. Lawrence and Danube river basins. Michigan watersheds are established atop carbonate-bearing glacial drift deposits derived from erosion of Paleozoic strata with thick soil horizons (100-300 cm). Slovenia watersheds drain Mesozoic bedrock carbonates in alpine and dinaric karst environments with thin soil horizons (0-70 cm). Carbonate weathering intensity is a parameter that normalizes river runoff and HCO3- concentration to catchment area (meq HCO3- km-2 s-1), summing calcite and dolomite contributions, and is used to gauge the effects of climate, land use, and soil thickness on organic-inorganic carbon processing rates. Importantly, Michigan riverine discharge is one-tenth of Slovenian rivers, providing the opportunity to evaluate the kinetics of carbonate mineral equilibration. The study rivers are HCO3- - Ca2+ - Mg2+ waters, supersaturated for calcite at pCO2 values in excess of the atmosphere. As discharge varies, HCO3- concentrations differ by less than 20% for any location, and Mg2+/Ca2+ remains relatively fixed for Michigan (0.5) and Slovenia streams (0.4), requiring that dolomite dissolution exceed calcite on a mole basis. The ability of calcite and dolomite dissolution to keep pace with increased discharge indicates carbonate weathering is

  1. The effects of soil properties on the turbidity of catchment soils from the Yongdam dam basin in Korea.

    PubMed

    Hur, Jin; Jung, Myung Chae

    2009-06-01

    Environmental concerns have been raised that suspended solids in turbid water adversely affect human health, and that their removal increases in the cost of water treatment. The Yongdam dam reservoir, located in the southwestern region of Korea, is severely affected by inflowing turbid water after storms. In this study, soil samples were collected from 37 sites in the Yongdam upstream basin to investigate mineralogical and environmental factors associated with the turbidity potential of soils in water environments. Turbidity potential was estimated by measuring the turbidity of soil-suspension solutions after settling for 24 h. The mineralogy of the soils was dominated by four minerals-quartz, microcline, albite, and muscovite-with lesser amounts of hornblende, chlorite, kaolinite, illite, and mixed layer illite. The quartz content was the most variable of the soil mineralogy among the collected samples. Principal-components analysis (PCA) was used to examine relationships between turbidity potential and other soil properties. The variables considered in the PCA included turbidity potential, quartz content, albite content, mean size of soil particles, clay content, clay mineral content, zeta potential, conductivity, and pH of the soil-suspension solution. The first two components of the PCA explained 52% of the overall variation of the selected variables. The first component was possibly explained by physical properties such as the size of the soil particles; the second was correlated with chemical properties of the soils, for example dissolution and extent of weathering. Closer examination of the PCA results revealed that the quartz content of the soils was negatively correlated with their turbidity potential. A linear correlation (r = 0.63) was obtained between measured turbidity potential and that predicted using multiple regression analysis based on the content of clay-sized particles, clay minerals, and quartz, and the conductivity of the soil

  2. Preliminary Measurements Of N2O Partial Pressures In Rivers of Amazon Basin, Brazil

    NASA Astrophysics Data System (ADS)

    Oliveira, C. B.; Rasera, M. F.; Krusche, A. V.; Victoria, R. L.; Richey, J. E.; Cunha, H. B.; Gomes, B. M.

    2006-12-01

    The concentrations of nitrous oxide (N2O), an important component of the greenhouse effect and with a long residence time in the atmosphere, have significantly increased in this century. The reasons for this atmospheric increase in N2O are still partially unexplained. This uncertainty is worse in relation to aquatic environments. Here we report on preliminary measurements of N2O partial pressures in rivers of the Amazon basin. The study areas are in the state of Rondonia (rivers Ji Parana, Urupa, Comemoracao and Pimenta Bueno) and Amazonas (rivers Solimoes and Negro). The rivers were sampled from October 2005 to April 2006, using with immersion pumps, lowered in the middle of the channel to 60% of total depth. Water was pumped directly into a 1 l plastic bottle, which was overflown three times before closing. Using syringes, 60 ml of N2 were injected into the bottle, simultaenously to the withdrawn of 60 ml of sample. N2O was extracted into these 60 ml of N2 by shaking vigorously for 2 minutes. With the same syringes, the gas was taken from the bottles and injected into sealed evacuated 25 ml vials. Atmospheric samples were taken from one meter above the water column and stored the same way. N2O partial pressures were determined on a Shimadzu GC-14 Green House Gas Analyzer. All rivers showed little variations in N2O partial pressures. Average values in the rivers of Rondonia were around 0.41 ± 0.07 μ atm (n=46), whereas the Solimoes and Negro rivers, in the state of Amazonas, showed values around 0.43 ± 0.08 μ atm (n=131). Atmospheric averages were approximately 0.34 ± 0.04 μ atm (n=58) and 0.32 ± 0.03 μ atm (n=134) in the states of Rondonia and Amazonas, respectively. This means that, although these waters are supersatured in CO2, making evasive fluxes of this gas an important component of the C cycle in this basin, the same does not occur in the N cycle. Small differences in partial pressures of N2O between water and air will result in small fluxes of

  3. Terrasar-X Insar Processing in Northern Bohemian Coal Basin Using Corner Reflectors (preliminary Results)

    NASA Astrophysics Data System (ADS)

    Hlaváčová, I.; Halounová, L.; Svobodová, K.

    2012-07-01

    The area of Northern Bohemian coal basin is rich in brown coal. Part of it is undermined, but large areas were mined using open-pit mines. There are numerous reclaimed waste dumps here, with a horse racetrack, roads and in some cases also houses. However, on most of the waste dumps, there are forests, meadows and fields. Above the coal basin, there are the Ore mountains which are suspected to be sliding down to the open mines below them. We installed 11 corner reflectors in the area and monitor them using the TerraSAR-X satellite. One of the reflectors is situated in the area of radar layover, therefore it cannot be processed. We present preliminary results of monitoring the remaining corner reflectors, with the use of 7 TerraSAR-X scenes acquired between June and December 2011. We process whole scene crops, as well as the artificial reflector information alone. Our scene set contains interferometric pairs with perpendicular baselines reaching from 0 to 150 m. Such a configuration allows us to distinguish deformations from DEM errors, which are usual when the SRTM (Shuttle Radar Topography Mission) DEM (X-band) is used for Stripmap data. Unfortunately, most of the area of interest is decorrelated due to vegetation that covers both the Ore mountains and the reclaimed waste dumps. We had to enlarge the scene crop in order to be able to distinguish deformations from the atmospheric delay. We are still not certain about the stability of some regions. For the installed artificial reflectors, the expected deformations are in the order of mm/year. Generally, deformations in the area of interest may reach up to about 5 cm/year for the Ervěnice corridor (a road and railway built on a waste dump). When processing artificial corner reflector information alone, we check triangular sums and perform the processing for all possible point combinations - and that allows us to correct for some unwrapping errors. However, the problem is highly ambiguous.

  4. Preliminary study on the radiological and physicochemical quality of the Umgeni Water catchments and drinking water sources in KwaZulu-Natal, South Africa.

    PubMed

    Manickum, T; John, W; Terry, S; Hodgson, K

    2014-11-01

    Raw and potable water sample sources, from the Umgeni Water catchment areas (rivers, dams, boreholes) in central KwaZulu-Natal (South Africa), were screened for Uranium concentration and alpha and beta radioactivity. Test methods used were gas flow proportional counting for alpha-beta radioactivity, and kinetic phosphorescence analysis (KPA), for Uranium. The uranium levels (median = 0.525 μg/L, range = <0.050-5.010) were well below the international World Health Organization (WHO) (2011) guideline for drinking-water quality (≤15 μg/L). The corresponding alpha and beta radioactivity was ≤0.5 Bq/L (median = 0.084, Interquartile Range (IR) = 0.038, range = 0.018-0.094), and ≤1.0 Bq/L (median = 0.114, IR = 0.096, range = 0.024-0.734), respectively, in compliance with the international WHO limits. For uranium radionuclide, the average dose level, at uranium level of ±0.525 μg/L, was 0.06 μSv/a, which complies with the WHO reference dose level for drinking water (<0.1 mSv/a). There was a distinct trend of cluster of relatively higher Uranium levels of some sources that were found to be associated with the geology/geography and groundwater sources. Overall, the radiological water quality classification, with respect to WHO, is "Blue" - ideal; additional physicochemical analyses indicated good water quality. The analytical test methods employed were found to be suitable for preliminary screening for potential radioactive "hot spots". The observed Uranium levels, and the alpha/beta radioactivity, indicate contribution largely from Naturally Occurring Radioactive Material (NORM), with no significant health risk to humans, or to the environment. PMID:25151527

  5. Preliminary results of high resolution magneto-biostratigraphy of continental sequences in Chapala Basin, Southwestern Mexico

    NASA Astrophysics Data System (ADS)

    Mendez Cardenas, D. L.; Benammi, M.

    2007-05-01

    Chapala Lake is south from Guadalajara, Jalisco State (Southwestern Mexico). Belongs to a series of Pliocenic lakes along the Mexican Volcanic Belt. It is localized in the Chapala rift, and the entire area is controlled by the tectonic setting of the Colima, Tepic and Chapala rifts, constituting the triple junction rift-rift-rift. The deposits studied belong to volcanosedimentary sequences, composed by lacustrine and fluvial associations alternated with units of ash and pumice. The faunistic component reported consists at least of 27 mammals species, and the sediments were there're in have to work with special attention for seek rodents by handpicking. Probably these rodents will be the clue to determine the deposits correlation. Core demagnetization shows that they are low-coercivity magnetic minerals like magnetite or Ti-magnetite. It was verified that the characteristic magnetization corresponds to MNRp and the inversion test resulted good. Rodents are represented by Geomynae, Sigmondontinae and Sciurinae. The Geomynae family is the most common, and the faunistic association indicates Blancan age. This also allows a correlation with the polarity pattern in the GSS between 3,6 and 2,6 Ma. Actually, is known that this kind of studies in continental sequences supported with paleontological record of vertebrates could give us a more precised calibration of the age of such deposits. Allowing better understanding of the evolution of these mammals and their path trough geological record. This work shows the preliminary results of rodents palaeontology and high resolution magneto-stratigraphy in the units from to Chapala Basin.

  6. Preliminary paleomagnetic results from Miocene Monterey Formation, Shell Beach, Pismo Basin, central California

    SciTech Connect

    Khan, S.M.; Coe, R.S.; Barron, J.A.

    1988-03-01

    An excellently exposed 300-m thick section of the Monterey Formation at Shell Beach, Pismo basin, has been sampled at intervals of 2-5 m for paleomagnetic analysis. This study is part of an ongoing research aimed at providing detailed magnetostratigraphy and geochronology of the Monterey Formation sections from northern and central California. Here they report on the detailed magnetostratigraphy and diatom biostratigraphy of the upper 150 m of the Shell Beach section, which spans a 2-m.y. long interval in the upper middle Miocene (upper lower Mohnian). Their preliminary data reveal two distinct components of magnetization in about 75% of the dolomite samples and 40-60% of the samples from calcareous to siliceous shales and cherty porcelanitic rocks. The first of these components (a), which is removed at T less than or equal to 200/sup 0/C, is presumably recent viscous magnetization. The thermally discrete second component (b) had dual polarity and stable and consistent directions with a relatively narrow unblocking temperature range (200/sup 0/-400/sup 0/C). Usually this component remains blocked on heating to 450/sup 0/-500/sup 0/C and is then masked by unusually high intensity components of magnetochemical origin produced during heating in the lab. In their best samples, orthogonal vector diagrams show that b is the early characteristic remanence, and all evidence to date suggests that this component is pre-Pliocene-Pleistocene folding and most likely primary. By using diatom data extracted from their samples, they are attempting to obtain detailed magnetostratigraphy for this section of the Monterey Formation.

  7. How microtopography and soil morphology can help decipher flow paths and processes in headwater catchments

    NASA Astrophysics Data System (ADS)

    Gannon, J. P.; McGuire, K. J.; Bailey, S.

    2012-12-01

    Headwater catchments dominate the drainage basins of larger rivers and determine the water quality of downstream water bodies. In these catchments, hydrology strongly influences soil development and soil chemistry, thereby determining stream water quality. This study aims to explain spatial and temporal variations of flow paths and fine scale variations in hydrologic regimes at the headwater catchment scale utilizing a hydropedological approach. Hydropedologic units (HPUs), defined by differing soil morphological characteristics provide a framework for describing the function of different soil types in a catchment. Preliminary analysis and field observations also indicate that HPU locations will be predictable based on surface microtopography calculated from a 1-meter, LiDAR (Light Detection and Range) derived digital elevation model. We show that water table data from 50 wells distributed throughout the catchment confirms HPUs are indicative of specific hydrologic flow regimes, including threshold behavior, consistent with predictions based on soil morphology alone. This study focuses on three intensive study sites representative of typical soil morphological development in a small catchment. Furthering the water table analysis, measures of saturated and unsaturated hydrologic regimes, surface topographic characteristics, subsurface characteristics, and soil morphology were compared for the three intensive sites in an effort to quantify the effect of surface microtopography on the proposed hydropedologic system. Preliminary analysis shows matric potential gradients develop laterally down slope at site locations hypothesized to be indicative of lateral podsolization based on site topography and soil morphology. These results are in agreement with our findings describing threshold behavior in water table development at the same sites. The results of this study suggest a hydropedological approach may be a useful tool for describing catchment runoff response as well

  8. Spatial and Seasonal Patterns of Natural Organic Matter Spectral Fluorescent Signatures in Lake Kinneret (Sea of Galilee) and its Catchment Basin

    NASA Astrophysics Data System (ADS)

    Borisover, M.; Laor, Y.; Parparov, A.; Bukhanovsky, N.; Lado, M.

    2009-04-01

    This paper presents a characterization of fluorescent natural organic matter (NOM) in Lake Kinneret (Sea of Galilee) and its catchment basin. Lake Kinneret, the large high-productive subtropical lake, is the only freshwater lake and one of the major water resources in Israel. The work is based on the analysis of the spectral fluorescent signatures (excitation emission matrices; EEM) of 167 water samples collected between 2/2005-9/2006 and examined using parallel factor analysis. By examining relationships between different fluorescing components and probing their spatial and seasonal patterns, we aimed at learning about differences between lacustrian and riverine-originated NOM and differentiating between the various sources of organic matter in the lake. Two humic-like and one proteinous components were sufficient to describe EEM variability among all the water samples. The two humic-like components showed essentially different relations in lake and riverine samples. The vertical distributions of humic-like components in Lake Kinneret are indicative of seasonal lake stratification. When the humic-like matter stratification is established, the concentration of humic-like substances is greater in the bottom water layers than in the surface. At the layer closest to the sediments, the concentration of humic-like components increases also with time (at anoxic conditions) thus linking their production to NOM transformation in the bottom water layer and/or to its release from sediments. Depth-related distribution of humic-like components appears to be similar in different lake locations thus (i) indicating the important role of a distance from the water surface in the vertical distribution of humic-like matter and (ii) supporting a possible influence of photodegradation on the concentrations of humic-like components in the upper water layers. Vertical distribution of the proteinous component, which reflects biological activity at the upper water layers, did not correlate

  9. Changes in alluvial architecture associated with Eocene hyperthermals: Preliminary results from the Bighorn Basin Coring Project

    NASA Astrophysics Data System (ADS)

    Acks, R.; Kraus, M. J.

    2012-12-01

    The Paleocene-Eocene Thermal Maximum (PETM) was followed by two lesser hyperthermal events: ETM2 and H2 both at ~53.7 Ma. The carbon isotope excursion for ETM2 was approximately half that of the PETM and the H2 excursion even smaller, indicating lower increases in temperature than during the PETM. The paleohydrologic responses to these events are less well understood than the response to PETM warming. Although the ETM2 and H2 events are better known from marine than continental strata, both events have been identified from outcrops of the alluvial Willwood Formation from the Deer Creek and Gilmore Hill areas of the Bighorn Basin, Wyoming (Abels et al., 2012). Here, we analyze two cores drilled from stratigraphically equivalent Willwood strata from Gilmore Hill. The cores provide an opportunity to examine the impact of these events on the architecture of fluvial strata. Willwood strata are composed largely of channel sandstones, heterolithic deposits generated by channel avulsion, and paleosols that formed on overbank deposits. The paleosols provide qualitative and quantitative information on changes in soil moisture and precipitation through this interval. The cores also show a distinct change in the stacking of paleosols The core is subdivided into three parts: (1) the lowest ~third has thinner, more densely spaced paleosols, (2) the middle has thicker paleosols that are more widely spaced, and (3) the upper third has thicker and more common channel sandstones interspersed with avulsion deposits and fewer red paleosols; this corresponds to the hyperthermal interval. In particular, a ~20 m thick sandstone complex caps the section and appears to truncate part of the hyperthermal interval. Although vertical variations in alluvial architecture can reflect tectonic or climatic change, the correspondence of the sandstone-rich part of the cores with the hyperthermals suggests climate was the major control on their formation. Thick purple paleosols associated with the

  10. Coevolution of volcanic catchments in Japan

    NASA Astrophysics Data System (ADS)

    Yoshida, Takeo; Troch, Peter A.

    2016-03-01

    Present-day landscapes have evolved over time through interactions between the prevailing climates and geological settings. Understanding the linkage between spatial patterns of landforms, soils, and vegetation in landscapes and their hydrological response is critical to make quantitative predictions in ungaged basins. Catchment coevolution is a theoretical framework that seeks to formulate hypotheses about the mechanisms and conditions that determine the historical development of catchments and how such evolution affects their hydrological response. In this study, we selected 14 volcanic catchments of different ages (from 0.225 to 82.2 Ma) in Japan. We derived indices of landscape properties (drainage density and slope-area relationship) as well as hydrological response (annual water balance, baseflow index, and flow-duration curves) and examined their relation with catchment age and climate (through the aridity index). We found a significant correlation between drainage density and baseflow index with age, but not with climate. The intra-annual flow variability was also significantly related to catchments age. Younger catchments tended to have lower peak flows and higher low flows, while older catchments exhibited more flashy runoff. The decrease in baseflow with catchment age is consistent with the existing hypothesis that in volcanic landscapes the major flow pathways change over time from deep groundwater flow to shallow subsurface flow. The drainage density of our catchments decreased with age, contrary to previous findings in a set of similar, but younger volcanic catchments in the Oregon Cascades, in which drainage density increased with age. In that case, older catchments were thought to show more landscape incision due to increasing near-surface lateral flow paths. Our results suggests two competing hypotheses on the evolution of drainage density in mature catchments. One is that as catchments continue to age, the hydrologically active channels retreat

  11. Sediments in urban river basins: identification of sediment sources within the Lago Paranoá catchment, Brasilia DF, Brazil - using the fingerprint approach.

    PubMed

    Franz, C; Makeschin, F; Weiß, H; Lorz, C

    2014-01-01

    The development of effective sediment management strategies is a key requirement in tropical areas with fast urban development, like Brasilia DF, Brazil, because of the limited resources available. Accurate identification and management of sediment sources areas, however, is hampered by the dearth of reliable information on the primary sources of sediment. Few studies have attempted to quantify the source of sediment within fast urbanizing, mixed used, tropical catchments. In this study, statistically verified composite fingerprints and a multivariate mixing model have been used to identify the main land use specific sources of sediment deposited in the artificial Lago Paranoá, Central Brazil. Because of the variability of urban land use types within the Lago Paranoá sub-catchments, the fingerprinting approach was additionally undertaking for the Riacho Fundo sub-catchment. The main contributions from individual source types (i.e. surface materials from residential areas, constructions sites, road deposited sediment, cultivated areas, pasture, farm tracks, woodland and natural gullies) varied between the whole catchment and the Riacho Fundo sub-catchment, reflecting the different proportions of land uses. The sediments deposited in the silting zones of the Lago Paranoá originate largely from urban sources (85 ± 4%). Areas with (semi-) natural vegetation and natural gullies contribute 10 ± 2% of the sediment yield. Agricultural sites have only a minor sediment contribution of about 5 ± 4% within the whole catchment. Within the Riacho Fundo sub-catchment there is a significant contribution from urban (53 ± 4%) source, such as residential areas with semi-detached housings (42 ± 3%) with unpaved roads (12 ± 3%) and construction sites (20 ± 3%) and agricultural areas (31 ± 2%). The relative contribution from land use specific sources to the sediment deposition in the silting zone of the Lago Paranoá demonstrated that most of the sediment is derived from

  12. Preliminary potential-field constraints on the geometry of the San Fernando basin, Southern California

    USGS Publications Warehouse

    Langenheim, V.E.; Griscom, Andrew; Jachens, R.C.; Hildenbrand, T.G.

    2000-01-01

    Gravity and magnetic data provide new insights on the structural underpinnings of the San Fernando Basin region, which may be important to ground motion models. Gravity data indicate that a deep basin (>5 km) underlies the northern part of the San Fernando Valley; this deep basin is required to explain the lowest gravity values over the Mission Hills thrust fault. Gravity modeling, constrained by well data and density information, shows that the basin may reach a thickness of 8 km, coinciding with the upper termination of the 1994 Northridge earthquake mainshock rupture. The basin is deeper than previous estimates by 2 to 4 km; this estimate is the result of high densities for the gravels of the Pliocene-Pleisocene Saugus Formation. The geometry of the southern margin of the deep basin is not well-constrained by the gravity data, but may dip to the south. Recently acquired seismic data along the LARSE (Los Angeles Regional Seismic Experiment) II profile may provide constraints to determine the location and attitude of the basin edge. Gravity and aeromagnetic models across the eastern margin of the San Fernando Valley indicate that the Verdugo fault may dip to the southwest along its southern extent and therefore have a normal fault geometry whereas it clearly has a thrust fault geometry along its northern strand.

  13. Using stable isotopes to determine sources of eroded carbon in low-order Sierra Nevada catchments

    NASA Astrophysics Data System (ADS)

    McCorkle, E. P.; Berhe, A.; Hunsaker, C. T.; Fogel, M. L.; Hart, S. C.

    2013-12-01

    Recent studies have shown that soil erosion can induce a terrestrial sink for atmospheric carbon dioxide and impose important controls on biogeochemical cycling of other essential elements. However, little information is available on the source of C eroded from different watersheds (i.e., whether most of the eroded material is comprised of litter, soil minerals from topsoil, vs. deep C eroded due to fresh channelization or scouring of stream banks). In order to identify sources of eroded carbon, we compared the C to N ratios and 13C, and 15N stable isotope concentrations of potential source materials to sediments collected in basins at the outlet of low order catchments in the western slopes of the Sierra Nevada. Potential source materials (i.e., surficial organic and mineral soil and stream bank sediments) from three landform positions (crest, back slope, toe slope) were sampled from low- and high-elevation catchments within the Kings River Experimental Watershed. The potential source materials were compared with materials collected from sediment basins at the outlet of the sampled catchments. Preliminary results indicate that the different landform positions have similar concentrations of 13C and 15N, but the stable isotope concentrations of sediments reflect a combination of sources. Further analysis will delineate which pool of carbon is the main contributor to the sediments. Determining the source of the eroded carbon in these catchments is critical for assessing the fate of the eroded C after it is laterally distributed by soil erosion to downslope depositional landforms within the same catchment, or exported out of these catchments.

  14. Preliminary bathymetry of Shoup Basin and late Holocene changes of Shoup Glacier, Alaska

    USGS Publications Warehouse

    Post, Austin; Viens, R.J.

    2000-01-01

    Shoup Glacier is a retreating, tidewater-calving glacier in northeast Prince William Sound, Alaska. Historical records, vegetation distribution, and sediment depth in Shoup Bay indicate that the glacier reached a late Holocene maximum at the mouth of Shoup Bay prior to 1750. When first observed around 1900, the terminus was stable on a series of shallow, bedrock obstructions between Shoup Bay and Shoup Basin, 2 miles from the late Holocene maximum. Shoup Glacier receded into tidewater in 1957 and in the following 33 years retreated 1.3 miles to expose Shoup Basin, a deep (more than 350 feet) basin with virtually no sediment accumulation. Shoup Glacier is expected to stabilize at the head of Shoup Basin shortly after the year 2000 and will not readvance if present climatic conditions continue.

  15. Inferring the effect of catchment complexity on mesoscale hydrologic response

    NASA Astrophysics Data System (ADS)

    FröHlich, Holger L.; Breuer, Lutz; Vaché, Kellie B.; Frede, Hans-Georg

    2008-09-01

    The effect of catchment complexity on hydrologic and hydrochemical catchment response was characterized in the mesoscale Dill catchment (692 km2), Germany. This analysis was developed using multivariate daily stream concentration and discharge data at the basin outlet, in connection with less frequently sampled catchment-wide end-member chemistries. The link between catchment-wide runoff sources and basin output was observed through a combination of concentration-discharge (C-Q) analysis and multivariate end-member projection. Subsurface stormflow, various groundwater and wastewater sources, as well as urban surface runoff emerged in catchment output chemistry. Despite the identification of multiple sources, several runoff sources observed within the catchment failed to display consistent links with the output chemistry. This failure to associate known source chemistry with outlet chemistry may have resulted from a lack of hydraulic connectivity between sources and basin outlet, from different arrival times of subbasin-scale runoff contributions, and also from an overlap of source chemistries that subsumed discrete runoff sources in catchment output. This combination of catchment heterogeneity and complexity simply suggests that the internal spatial organization of the catchment impeded the application of lumped mixing calculations at the 692 km2 outlet. Given these challenges, we suggest that in mesoscale catchment research, the potential effects of spatial organization should be included in any interpretation of highly integrated response signals, or when using those signals to evaluate numerical rainfall-runoff models.

  16. Microbial water pollution: a screening tool for initial catchment-scale assessment and source apportionment.

    PubMed

    Kay, D; Anthony, S; Crowther, J; Chambers, B J; Nicholson, F A; Chadwick, D; Stapleton, C M; Wyer, M D

    2010-11-01

    The European Union Water Framework Directive requires that Management Plans are developed for individual River Basin Districts. From the point of view of faecal indicator organisms (FIOs), there is a critical need for screening tools that can provide a rapid assessment of the likely FIO concentrations and fluxes within catchments under base- and high-flow conditions, and of the balance ('source apportionment') between agriculture- and sewage-derived sources. Accordingly, the present paper reports on: (1) the development of preliminary generic models, using water quality and land cover data from previous UK catchment studies for assessing FIO concentrations, fluxes and source apportionment within catchments during the summer bathing season; (2) the calibration of national land use data, against data previously used in the models; and (3) provisional FIO concentration and source-apportionment assessments for England and Wales. The models clearly highlighted the crucial importance of high-flow conditions for the flux of FIOs within catchments. At high flow, improved grassland (and associated livestock) was the key FIO source; FIO loadings derived from catchments with high proportions of improved grassland were shown to be as high as from urbanized catchments; and in many rural catchments, especially in NW and SW England and Wales, which are important areas of lowland livestock (especially dairy) farming, ≥ 40% of FIOs was assessed to be derived from agricultural sources. In contrast, under base-flow conditions, when there was little or no runoff from agricultural land, urban (i.e. sewerage-related) sources were assessed to dominate, and even in rural areas the majority of FIOs were attributed to urban sources. The results of the study demonstrate the potential of this type of approach, particularly in light of climate change and the likelihood of more high-flow events, in underpinning informed policy development and prioritization of investment. PMID:19717181

  17. Human impact variability on soil erosion during the Holocene based on valley floor sediments study in a Parisian basin fluvial catchment (France): crossing sedimentological, archaeological and palynological proxies

    NASA Astrophysics Data System (ADS)

    Morin, E.; Cyprien, A. L.; Gay-Ovejero, I.; Hinschberger, F.; Joly, C.; Macaire, J. J.; Poirier, N.; Visset, L.; Zadora-Rio, E.

    2009-04-01

    This work is part of the French CNRS ECLIPSE program « Impact anthropique sur l'érosion des sols et la sédimentation dans les zones humides associées durant l'Holocène ». It aims to reconstitute the evolution of human impact on soil erosion at various periods via the study of Holocene sedimentary archives. In this framework the Choisille catchment (288 km²; elevation: 50 - 200 m), tributary of the River Loire near Tours (France), has been the subject of an interdisciplinary study (sedimentology, geophysics, archaeology, palynology). 3 areas are investigated: a downstream stretch, a silicated sub-catchment area and a carbonated sub-catchment area. In the downstream stretch, located near ancient populated areas, drillings were performed along cross sections through valley floor alluviums. They show that a more or less organic clayey silty sedimentation started at the beginning of the Holocene. The sedimentation rates strongly increased at the beginning of the Subbatlantic (Bronze Age), simultaneously with the anthropogenic pressure advent (on set of agriculture), as shown by archaeological and palynological evidences (agricultural settlements, massive loggings on slopes, stockbreeding on valley-floor grasslands). In the silicated sub-catchment area, located upstream, drillings have shown that clayey silty sedimentation began at the end of the Roman Period, continued during the Early Middle Ages and increased during the High Middle Ages. Spatial archaeological prospecting has revealed a faint anthropogenic presence at the Roman Period, then a decline of population until the High Middle Ages, characterised by an agricultural revival. Palynological analyses have shown that, in this area, grasslands were dominant since the Early Middle Ages, with an increase in cereal cultures at the beginning of the High Middle Ages. In the carbonated sub-catchment area, drillings have shown that the more or less organic clayey silty sedimentation has begun during the Bronze Age

  18. Preliminary interpretation of industry two-dimensional seismic data from Susitna Basin, south-central Alaska

    USGS Publications Warehouse

    Lewis, Kristen A.; Potter, Christopher J.; Shah, Anjana K.; Stanley, Richard G.; Haeussler, Peter J.; Saltus, Richard W.

    2015-01-01

    The eastern seismic lines show evidence of numerous short-wavelength antiforms that appear to correspond to a series of northeast-trending lineations observed in aeromagnetic data, which have been interpreted as being due to folding of Paleogene volcanic strata. The eastern side of the basin is also cut by a number of reverse faults and thrust faults, the majority of which strike north-south. The western side of the Susitna Basin is cut by a series of regional reverse faults and is characterized by synformal structures in two fault blocks between the Kahiltna River and Skwentna faults. These synforms are progressively deeper to the west in the footwalls of the east-vergent Skwentna and northeast-vergent Beluga Mountain reverse faults. Although the seismic data are limited to the south, we interpret a potential regional south-southeast-directed reverse fault striking east-northeast on the east side of the basin that may cross the entire southern portion of the basin.

  19. Preliminary gravity inversion model of basins east of Yucca Flat, Nevada Test Site, Nevada.

    SciTech Connect

    Geoffrey A. Phelps; Carter W. Roberts, and Barry C. Moring

    2006-03-17

    The Yucca Flat eastern extension study area, a 14 kilometer by 45 kilometer region contiguous to Yucca Flat on the west and Frenchman Flat on the south, is being studied to expand the boundary of the Yucca Flat hydrogeologic model. The isostatic residual gravity anomaly was inverted to create a model of the depth of the geologic basins within the study area. Such basins typically are floored by dense pre-Tertiary basement rocks and filled with less-dense Tertiary volcanic and sedimentary rocks and Quaternary alluvium, a necessary condition for the use of gravity modeling to predict the depth to the pre-Tertiary basement rocks within the basins. Three models were created: a preferred model to represent the best estimate of depth to pre-Tertiary basement rocks in the study area, and two end-member models to demonstrate the possible range of solutions. The preferred model predicts shallow basins, generally less than 1,000m depth, throughout the study area, with only Emigrant Valley reaching a depth of 1,100m. Plutonium valley and West Fork Scarp Canyon have maximum depths of 800m and 1,000m, respectively. The end-member models indicate that the uncertainty in the preferred model is less than 200m for most of the study area.

  20. Preliminary data report for the San Juan Basin-Crownpoint surveillance study

    USGS Publications Warehouse

    Frenzel, Peter F.; Craigg, Steven D.; Padgett, Elizabeth T.

    1981-01-01

    Geohydrologic data that may be used to predict the effects of mining on Navajo water resources in the San Juan structural basin are reported as well as the current availability of data from other government agencies. Emphasis is on the vicinity of Crownpoint, New Mexico. (USGS)

  1. A preliminary report of the geohydrology of the Mississippi Salt-Dome Basin

    USGS Publications Warehouse

    Spiers, C.A.; Gandl, L.A.

    1980-01-01

    The U.S. Department of Energy is investigating the suitability of salt domes in the Mississippi salt-dome basin as repositories for storing radioactive wastes. The Department of Energy has requested that the U.S. Geological Survey describe the groundwater hydrology of the Mississippi salt-dome basin, giving special attention to direction and rate of movement of water. In this first part of a continuing investigation the data obtained from one year of extensive literature search and data compilation are summarized. The regional groundwater hydrology in the salt-dome basin is defined with respect to (1) groundwater flow, (2) facies changes, (3) geological structure, (4) recharge and discharge, (5) freshwater-saltwater relations, and (6) identification of localities where additional data are needed. From the 50 piercement-type salt domes in the Mississippi salt-dome basin three domes (Richton, Cypress Creek, and Lampton) were selected for more intensive study. To further evaluate the geohydrology of Richton, Lampton, and Cypress Creek domes as possible sites for storage of radioactive waste, an intensive geohydrologic study based on a comprehensive test drilling program near the domes is planned. (USGS)

  2. Potential impacts of climate change on tropospheric ozone in California: a preliminary episodic modeling assessment of the Los Angeles basin and the Sacramento valley

    SciTech Connect

    Taha, Haider

    2001-01-01

    In this preliminary and relatively short modeling effort, an initial assessment is made for the potential air quality implications of climate change in California. The focus is mainly on the effects of changes in temperature and related meteorological and emission factors on ozone formation. Photochemical modeling is performed for two areas in the state: the Los Angeles Basin and the Sacramento Valley.

  3. Preliminary Geologic/spectral Analysis of LANDSAT-4 Thematic Mapper Data, Wind River/bighorn Basin Area, Wyoming

    NASA Technical Reports Server (NTRS)

    Lang, H. R.; Conel, J. E.; Paylor, E. D.

    1984-01-01

    A LIDQA evaluation for geologic applications of a LANDSAT TM scene covering the Wind River/Bighorn Basin area, Wyoming, is examined. This involves a quantitative assessment of data quality including spatial and spectral characteristics. Analysis is concentrated on the 6 visible, near infrared, and short wavelength infrared bands. Preliminary analysis demonstrates that: (1) principal component images derived from the correlation matrix provide the most useful geologic information. To extract surface spectral reflectance, the TM radiance data must be calibrated. Scatterplots demonstrate that TM data can be calibrated and sensor response is essentially linear. Low instrumental offset and gain settings result in spectral data that do not utilize the full dynamic range of the TM system.

  4. A preliminary study of the distribution of selected trace metals in the Besut River basin, Terengganu, Malaysia.

    PubMed

    Suratman, S; Hang, H C; Shazili, N A M; Mohd Tahir, N

    2009-01-01

    This paper presents a preliminary result carried out in the Besut River basin, Terengganu, Malaysia to determine the selected trace metal concentrations. Concentrations of dissolved Pb, Cu, and Fe during the present study were in the range of 3.3-8.3 microg/L Pb, 0.1-0.3 microg/L Cu, and 1.1-12.3 microg/L Fe. For the particulate fraction concentrations of Pb, Cu, and Fe ranged from 1.0 to 3.6 microg/L, 0.3 to 2.8 microg/L, and 114 to 1,537 microg/L, respectively. The concentrations of metals in this study area, in general, were lower than those reported for other study areas. Higher metal concentrations measured in the wet monsoon season suggest that the input was mainly due to terrestrial runoff. PMID:18665317

  5. Magnetostratigraphy of Mesozoic shallow-water carbonates: Preliminary results from the Middle Jurassic of the Paris basin

    SciTech Connect

    Aissaoui, D.M.; Kirschvink, J.L. )

    1991-03-01

    The use of sedimentary paleomagnetism has enhanced greatly our understanding of the timing of deposition and diagenesis of Cenozoic platform and reefal carbonates. Its application to similar but older deposits will have direct implications for economic exploration and development. The authors report here preliminary paleomagnetic results from the Middle Jurassic limestones of the Paris basin (France). The samples consist mainly of bioclastic and oolitic limestones deposited in ancient counterpart of the shallow-water environments of the Bahama platform. The Jurassic samples are stable to progressive, incremental demagnetization and exhibit magnetization patterns identical to Cenozoic rocks from the Bahama platform or Mururoa Atoll. The natural remanent magnetization of these limestones is weak and comprised between 7.7 x 10{sup {minus}9} to 1.8 x 10{sup {minus}8} AM{sup 2}/kg. Magnetic components of both normal and reversed polarity are observed. Paired isothermal remanent magnetization (IRM) and alternating field demagnetization experiments show that most of the remanence is lost between 20 and 45 mT, which is typical of single-domain biogenic magnetite or maghemite. The ratio of IRM at H{sub RG} to the saturation IRM ranges from 35 to 42% indicating a moderate to low interparticle interaction. This is confirmed by the anhysteretic remanent magnetization as compared with intact, freeze-dried cells of magnetotactic bacteria and chiton teeth. Magnetic minerals extracted from the Jurassic samples are examined to further confirm the occurrence of SD magnetite within the Middle Jurassic limestones of the Paris basin. The preliminary results suggest that the strata should be good for the paleomagnetic investigation of Mesozoic shallow-water carbonates.

  6. Hydraulic Characteristics of the San Gregorio Creek Drainage Basin, California: a Preliminary Study.

    NASA Astrophysics Data System (ADS)

    Davis, J. R.; Snow, M. K.; Pestrong, R.; Sklar, L. S.; Vavro, M.; Sawachi, A.; Talapian, E.; Bailey, E.

    2004-12-01

    Population pressures within the greater San Francisco Bay Area are forcing development into nearby rural communities, and are impacting local environments. This study of the San Gregorio Creek Watershed is designed as a baseline for evaluating the effect increasing development within the drainage basin has on its river system. We hope to provide evidence for that impact through laboratory and field studies that provide a snap-shot of this drainage basin's current characteristics. The San Gregorio Creek watershed, in the Coast Ranges, is located in the southwestern portion of San Mateo County, California. It drains the western slopes of the Santa Cruz Mountains, in the Coast Ranges into the Pacific Ocean at the town of San Gregorio. Most of its fingertip tributaries flow into the trunk from the north and west, with elevations as high as 2050 feet. The watershed includes an area of approximately 51.6 square miles and San Gregorio Creek, the trunk stream, is roughly 12 miles long. San Gregorio Creek is a fourth order perennial stream. It is fed by a number of major tributaries, the largest of which are Alpine, Mindego, and La Honda creeks. The U.S. Geological Survey maintains a stream gauging station for San Gregorio Creek at the town of San Gregorio, where it has been monitoring stream flows for more than 30 years through its Water Resources Department. The resulting data indicate a mean discharge of 36.4 cfs. Map studies of hydraulic geometry for the drainage basin reveal geometric characteristics for San Gregorio Creek that coincide with similar streams in comparable climatic and environmental settings. Stream table studies are used to further investigate fundamental stream processes. Field studies at selected reaches throughout the drainage basin will document hydraulic characteristics. The results of this study will contribute to more comprehensive studies demonstrateing channel response to changing environmental conditions.

  7. Preliminary gravity inversion model of Frenchman Flat Basin, Nevada Test Site, Nevada

    SciTech Connect

    Phelps, G.A.; Graham, S.E.

    2002-10-01

    The depth of the basin beneath Frenchman Flat is estimated using a gravity inversion method. Gamma-gamma density logs from two wells in Frenchman Flat constrained the density profiles used to create the gravity inversion model. Three initial models were considered using data from one well, then a final model is proposed based on new information from the second well. The preferred model indicates that a northeast-trending oval-shaped basin underlies Frenchman Flat at least 2,100 m deep, with a maximum depth of 2,400 m at its northeast end. No major horst and graben structures are predicted. Sensitivity analysis of the model indicates that each parameter contributes the same magnitude change to the model, up to 30 meters change in depth for a 1% change in density, but some parameters affect a broader area of the basin. The horizontal resolution of the model was determined by examining the spacing between data stations, and was set to 500 square meters.

  8. Nutrient removal using biosorption activated media: preliminary biogeochemical assessment of an innovative stormwater infiltration basin.

    PubMed

    O'Reilly, Andrew M; Wanielista, Martin P; Chang, Ni-Bin; Xuan, Zhemin; Harris, Willie G

    2012-08-15

    Soil beneath a stormwater infiltration basin receiving runoff from a 23 ha predominantly residential watershed in north-central Florida, USA, was amended using biosorption activated media (BAM) to study the effectiveness of this technology in reducing inputs of nitrogen and phosphorus to groundwater. The functionalized soil amendment BAM consists of a 1.0:1.9:4.1 mixture (by volume) of tire crumb (to increase sorption capacity), silt and clay (to increase soil moisture retention), and sand (to promote sufficient infiltration), which was applied to develop an innovative stormwater infiltration basin utilizing nutrient reduction and flood control sub-basins. Comparison of nitrate/chloride (NO(3)(-)/Cl(-)) ratios for the shallow groundwater indicates that prior to using BAM, NO(3)(-) concentrations were substantially influenced by nitrification or variations in NO(3)(-) input. In contrast, for the new basin utilizing BAM, NO(3)(-)/Cl(-) ratios indicate minor nitrification and NO(3)(-) losses with the exception of one summer sample that indicated a 45% loss. Biogeochemical indicators (denitrifier activity derived from real-time polymerase chain reaction and variations in major ions, nutrients, dissolved and soil gases, and stable isotopes) suggest that NO(3)(-) losses are primarily attributable to denitrification, whereas dissimilatory nitrate reduction to ammonium is a minor process. Denitrification was likely occurring intermittently in anoxic microsites in the unsaturated zone, which was enhanced by the increased soil moisture within the BAM layer and resultant reductions in surface/subsurface oxygen exchange that produced conditions conducive to increased denitrifier activity. Concentrations of total dissolved phosphorus and orthophosphate (PO(4)(3-)) were reduced by more than 70% in unsaturated zone soil water, with the largest decreases in the BAM layer where sorption was the most likely mechanism for removal. Post-BAM PO(4)(3-)/Cl(-) ratios for shallow

  9. Nutrient removal using biosorption activated media: preliminary biogeochemical assessment of an innovative stormwater infiltration basin

    USGS Publications Warehouse

    O'Reilly, Andrew M.; Wanielista, Martin P.; Chang, Ni-Bin; Xuan, Zhemin; Harris, Willie G.

    2012-01-01

    Soil beneath a stormwater infiltration basin receiving runoff from a 22.7 ha predominantly residential watershed in central Florida, USA, was amended using biosorption activated media (BAM) to study the effectiveness of this technology in reducing inputs of nitrogen and phosphorus to groundwater. The functionalized soil amendment BAM consists of a 1.0:1.9:4.1 mixture (by volume) of tire crumb (to increase sorption capacity), silt and clay (to increase soil moisture retention), and sand (to promote sufficient infiltration), which was applied to develop a prototype stormwater infiltration basin utilizing nutrient reduction and flood control sub-basins. Comparison of nitrate/chloride (NO3-/Cl-) ratios for the shallow groundwater indicate that prior to using BAM, NO3- concentrations were substantially influenced by nitrification or variations in NO3- input. In contrast, for the prototype basin utilizing BAM, NO3-/Cl- ratios indicate minor nitrification and NO3- losses with the exception of one summer sample that indicated a 45% loss. Biogeochemical indicators (denitrifier activity derived from real-time polymerase chain reaction and variations in major ions, nutrients, dissolved and soil gases, and stable isotopes) suggest NO3- losses are primarily attributable to denitrification, whereas dissimilatory nitrate reduction to ammonium is a minor process. Denitrification was likely occurring intermittently in anoxic microsites in the unsaturated zone, which was enhanced by increased soil moisture within the BAM layer and resultant reductions in surface/subsurface oxygen exchange that produced conditions conducive to increased denitrifier activity. Concentrations of total dissolved phosphorus and orthophosphate (PO43-) were reduced by more than 70% in unsaturated zone soil water, with the largest decreases in the BAM layer where sorption was the most likely mechanism for removal. Post-BAM PO43-/Cl- ratios for shallow groundwater indicate predominantly minor increases and

  10. Tectonic evolution and subsidence history of the Nenana Basin, Interior Alaska: Preliminary results from seismic-reflection, electric logs and gravity data

    NASA Astrophysics Data System (ADS)

    Dixit, N. C.; Hanks, C. L.; Tomsich, C. S.

    2012-12-01

    The Nenana basin is an elongated Tertiary structural half-graben located in Interior Alaska, between the Denali fault to the south and the Tintina fault to the north. Although the basin has been explored for oil, gas and coal episodically over the past 40 years, the timing and mechanisms that are responsible for its formation remain unclear. Our preliminary work offers new insights into the tectonic subsidence history and structural history of the basin. Seismic-reflection and gravity data indicate that the Tertiary sedimentary fill of the southern Nenana basin is up to 19,500 ft deep, resulting in a Complete Bouguer gravity anomaly with a low of -50 mgal. The southeast margin of the basin is formed by the Minto fault, a major, steeply dipping, east-northeast striking fault. The fault shows evidence of both significant sinistral strike-slip and down-to-the-west normal faulting, with metamorphic rocks of the Yukon-Tanana terrane exposed to the east and Quaternary deposits to the west. Secondary active normal faults in the basin are oriented west-northwest and east-northeast and indicate a probable ongoing sinistral transtension across the Minto fault zone. Our preliminary interpretation of these geometries suggest that the Nenana basin is superimposed on a crustal block rotating clockwise within a dextral shear zone bounded by the regional Denali and Tintina fault systems, which is probably the direct driver of present tectonic subsidence in the basin. Further details as to the subsidence history of the basin can be derived from the geometry, thickness and seismic character of the Tertiary basin fill. The basin experienced three phases of subsidence and two uplift events during this time, possibly due to regional tectonic events during the history of Interior Alaska. The most important tectonic control that may have resulted in periods of basin subsidence was probably Tertiary strike-slip faulting of the Denali and Tintina fault systems, and subsequent transtension

  11. Incorporating flood event analyses and catchment structures into model development

    NASA Astrophysics Data System (ADS)

    Oppel, Henning; Schumann, Andreas

    2016-04-01

    The space-time variability in catchment response results from several hydrological processes which differ in their relevance in an event-specific way. An approach to characterise this variance consists in comparisons between flood events in a catchment and between flood responses of several sub-basins in such an event. In analytical frameworks the impact of space and time variability of rainfall on runoff generation due to rainfall excess can be characterised. Moreover the effect of hillslope and channel network routing on runoff timing can be specified. Hence, a modelling approach is needed to specify the runoff generation and formation. Knowing the space-time variability of rainfall and the (spatial averaged) response of a catchment it seems worthwhile to develop new models based on event and catchment analyses. The consideration of spatial order and the distribution of catchment characteristics in their spatial variability and interaction with the space-time variability of rainfall provides additional knowledge about hydrological processes at the basin scale. For this purpose a new procedure to characterise the spatial heterogeneity of catchments characteristics in their succession along the flow distance (differentiated between river network and hillslopes) was developed. It was applied to study of flood responses at a set of nested catchments in a river basin in eastern Germany. In this study the highest observed rainfall-runoff events were analysed, beginning at the catchment outlet and moving upstream. With regard to the spatial heterogeneities of catchment characteristics, sub-basins were separated by new algorithms to attribute runoff-generation, hillslope and river network processes. With this procedure the cumulative runoff response at the outlet can be decomposed and individual runoff features can be assigned to individual aspects of the catchment. Through comparative analysis between the sub-catchments and the assigned effects on runoff dynamics new

  12. Methodological issues and preliminary results from a combined sediment fingerprinting and radioisotope dating approach to explore changes in sediment sources with land-use change in the Brantian Catchment, Borneo.

    NASA Astrophysics Data System (ADS)

    Walsh, Rory; Higton, Sam; Marshall, Jake; Bidin, Kawi; Blake, William; Nainar, Anand

    2015-04-01

    area due to the prevalence of steep, incised channels without even narrow floodplains. Preliminary results are reported from (1) a field visit to investigate potential sampling sites in July 2014 and (2) initial analysis of a sediment core at a promising lateral bench site. Marked down-profile geochemistry changes of the core indicate a history of phases of high deposition and lateral growth of the channel caused by mobilisation of sediment linked to logging and clearance upstream. Recent channel bed degradation suggests the system has been adjusting a decline in sediment supply with forest recovery since logging in 2005, but a renewed sedimentation phase heralded by > 10 cm deposition at the site in a flood in July 2014 appears to have started linked to partial forest clearance for oil palm. These preliminary results support the ability of a combined fingerprinting and dating approach to reflect the spatial history of land-use change in a catchment undergoing disturbance. Walsh R. P. D. , Bidin K., Blake W.H., Chappell N.A., Clarke M.A., Douglas I., Ghazali R., Sayer A.M., Suhaimi J., Tych W. & Annammala K.V. (2011) Long-term responses of rainforest erosional systems at different spatial scales to selective logging and climatic change. Philosophical Transactions of the Royal Society B, 366, 3340-3353.

  13. Preliminary Classification of Water Areas Within the Atchafalaya Basin Floodway System by Using Landsat Imagery

    USGS Publications Warehouse

    Allen, Yvonne C.; Constant, Glenn C.; Couvillion, Brady R.

    2008-01-01

    The southern portion of the Atchafalaya Basin Floodway System (ABFS) is a large area (2,571 km2) in south central Louisiana bounded on the east and west sides by a levee system. The ABFS is a sparsely populated area that includes some of the Nation's most significant extents of bottomland hardwoods, swamps, bayous, and backwater lakes, holding a rich abundance and diversity of terrestrial and aquatic species. The seasonal flow of water through the ABFS is critical to maintaining its ecological integrity. Because of strong interdependencies among species, habitat quality, and water flow in the ABFS, there is a need to better define the paths by which water moves at various stages of the hydrocycle. Although river level gages have collected a long historical record of water level variation, very little synoptic information has been available regarding the distribution and character of water at more remote locations in the basin. Most water management plans for the ABFS strive to improve water quality by increasing water flow and circulation from the main stem of the Atchafalaya River into isolated areas. To describe the distribution of land and water on a basin-wide scale, we chose to use Landsat 5 and Landsat 7 imagery to determine the extent of water distribution from 1985 to 2006 and at a variety of river stages. Because the visual signature of river water is high turbidity, we also used Landsat imagery to describe the distribution of turbid water in the ABFS. The ability to track water flow patterns by tracking turbid waters will enhance the characterization of water movement and aid in planning.

  14. Geology of the Ahuas area in the Mosquitia basin of Honduras: Preliminary report

    SciTech Connect

    Mills, R.A.; Barton, R.

    1996-10-01

    Following a 36-fold seismic survey that covered 460 km, two exploratory wells were drilled between July 1991 and August 1993 in the Ahuas area, on the Patuca tectonic belt, in the Mosquitia savannah in northeastern Honduras. The Embarcadero 1 well encountered only dense, barren, gray and red siliciclastics and some phyllite at total depth. The RaitiTara 1 well also drilled mostly barren, but less dense, red beds that included some Upper Cretaceous limestone conglomerate in the lower section. We did not find source or reservoir rocks in either well, nor did we find hydrocarbon shows. The absence of Lower Cretaceous limestone in both wells is significant because more than 1500 m of limestone are exposed 35-50 km southwest in the Colon Mountains. The lithology of the clastics in the Embarcadero well is similar to Middle and Upper Jurassic formations in central Honduras. The lithology of the softer red beds in the Raiti-Tara well suggests they are Tertiary fill in a pull-apart basin. The Mosquitia basin, including the Ahuas area, probably was on the seaward side of the Chortis block (once part of Mexico) and received only Jurassic sediments until it was elevated by arc magmatism in the Early Cretaceous. However, thick Lower Cretaceous platform carbonates were deposited some distance inland. Lateral forces in the early Late Cretaceous caused the outer edge of Chortis to break up, carrying the Colon carbonate block up to 50 km northwest by sinistral fault movement. Later, antithetic dextral displacement offset the various blocks and created pull-apart basins that filled with Tertiary sediments. In the early Paleocene, compression from a spreading center to the southeast ruptured the Jurassic rocks, creating a decollement and later thrusting. No complete petroleum system seems to exist along the axis of the uplifted Patuca tectonic belt largely because of the lack of organic-rich source rocks and the presence of complicated young structures.

  15. High frequency sampling of stable water isotopes for assessing runoff generation processes in a mesoscale urbanized catchment

    NASA Astrophysics Data System (ADS)

    Wrede, Sebastian; Fenicia, Fabrizio; Kurtenbach, Andreas; Keßler, Sabine; Bierl, Reinhard

    2013-04-01

    Experimental hydrology critically relies on tracer techniques to decipher and uncover runoff generation processes. Although tracer measurements contributed significantly to a better understanding of catchment functioning, their potential is not yet fully exploited. The temporal resolution of tracer measurements is typically relatively coarse, and applications are confined to a few locations. Additionally, experimental hydrology has focused primarily on pristine catchments, and the influence of anthropogenic effects remains largely unexplored. High frequency sampling of multiple tracers may therefore substantially enhance our understanding of hydrological processes and the impact of anthropogenic effects and enable a better protection and management of water resources and water quality. In this preliminary study we aim to assess runoff generation processes using geochemical and isotopic tracer techniques in the mesoscale Olewiger Bach catchment (24 km²) that is located in the low mountain ranges of the city of Trier, southwest Germany. The catchment is mainly characterized by quartzite and Devonian schist, overlain by fluvial sediments. Mixed land use prevails in the southern part of the basin, while the northern lower reaches are mainly urbanized. Several waste water treatment plants, separate sewer and stormwater management systems are present in parts of the catchment and contribute to the discharge of the main river. Tracer techniques employed in this ongoing study are twofold. A long term sampling of stable water isotopes (oxygen-18 and deuterium) was initiated in order to allow inferences about mean residence times of water in different catchment compartments, while event-based sampling using a multi-tracer approach was used to identify different runoff components and associated water pathways. Special attention is given to the observation of in-channel processes by assessing the dynamics of dissolved and particulate geochemical tracers and stable water

  16. Preliminary study on avian fauna of the Krishna River basin Sangli District, Western Maharashtra, India.

    PubMed

    Kumbar, Suresh M; Ghadage, Abhijit B

    2014-11-01

    The present study on avifaunal diversity carried out for three years at the Krishna River Basin, Sangli District revealed a total of 126 species of birds belonging to 30 families, of which 91 species were resident, 16 migratory, 12 resident and local migratory and 7 species were resident and migratory. Among the migrant birds, Rosy Starling Sturnus roseus was dominant in the study area. Commonly recorded resident bird species were, Red vented bulbul, Jungle crow, House sparrow, Common myna, Brahminy myna, Rock pigeon, Spotted dove, Rose ringed parakeet, Indian robin, White-browed fantail-flycatcher and Small sunbird. Most of the families had one or two species, whereas Muscicapidae family alone had 16 species. Forty one species of waterfowls were recorded in this small landscape. Out of 126 bird species, 38 were insectivorous, 28 piscivorous, 25 omnivorous, 19 carnivorous, 9 granivorous, 5 frugivorous and 2 species were nectar sucker and insectivorous. These results suggest that richness of avifauna in the Krishna River Basin, Western Maharashtra might be due to large aquatic ground, varied vegetations and favourable environmental conditions. PMID:25522499

  17. Preliminary study of the hydrologic response of an urban drainage basin at two different scales

    NASA Astrophysics Data System (ADS)

    Ferreira, Carla; Ferreira, António; Coelho, Celeste; de Lima João, Pedroso

    2010-05-01

    Predicted changes in climate and urban sprawl areas are expected to cause significant modification in rainfall pattern and hydrological regimes. Urbanization can alter the hydrologic response by increasing streamflow, reducing time of concentration, altering soil moisture levels and increasing overland flow, thereby increasing the size, frequency and speed of peak flow responses. However, despite the profusion of works, effective methodologies to investigate the impacts of potential land-use change on how spatial variability of soil moisture and precipitation affect runoff production at a range of scales and on different land uses remain largely undeveloped. This has important implications for flood prediction accuracy. The main aim of this work is to assess the hydrological response and to understand the influence of different land uses. The study is based on a small urban drainage basin (7 Km2), undergoing rapid urbanization, located in central Portugal: Ribeira dos Covões. It considers a combined approach of field survey and data acquisition to access spatiotemporal dynamics and land uses contributions to surface hydrology, based on drainage basins and small plot scales. At drainage basin scale, the study is based on three years rainfall and stream flow data analysis (collected through an automatic water level recorder and rain gauges). Rainfall-runoff relationship was assessed over the time and isolated events were studied. To understand land uses on the hydrology, rainfall simulations were conducted at the small plot scale (0.25 m2) during a dry period, in forested and deforested areas, agricultural areas, including tilled and abandoned areas, as well as built-up areas (21 experiments with 1 hour duration, with a rain intensity of 43±3 mm h-1). During the experiments hydrophobicity was monitored (Molarity of an Ethanol Droplet technique), soil moisture content was assessed every minute, and runoff volume was measured every 5 minutes. This work has shown the

  18. Magnetic Fabric of the Itararé Group, Paraná Basin Brazil: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Raposo, M. B.; Bilardello, D.; Santos, P. R.

    2012-12-01

    The late Paleozoic Itararé Group and equivalent beds in the Paraná Basin of Brazil extend into Paraguay, Argentina, and Uruguay. The Itararé Group contains the most extensive lithological record of Gondwana glaciation in the world. The succession has a maximum subsurface thickness of around 1400 m and extends over a total area greater than 1 million km2. The lower boundary of the Itararé Group is nonconformable with Precambrian to early Paleozoic crystalline basement and with Devonian strata of the Furnas and Ponta Grossa Formations, which together constitute the base of the Gondwana supersequence of the Paraná Basin. This boundary encompasses a hiatus that is loosely estimated in 45 Ma. The upper contact with the overlying Rio Bonito Formation is described as conformable to partially erosional. We performed our study on 13 sites from sedimentary rocks (sandstones and siltites) from the Itararé beds in the Brazilian portion of the Paraná Basin (mainly in São Paulo State). Magnetic fabrics were determined on oriented cylindrical specimens (2.54 cm x 2.2 cm) using the anisotropy of low-field magnetic susceptibility (AMS). Rock-magnetic analyses reveal that magnetite is the main magnetic mineral. In one of the sampled site, however, the ferromagnetic minerals are both magnetite and hematite. Regarding the eingenvector orientations, the sites usually gave good results. The analysis at the individual-site scale defines three AMS fabric types. The first type (7 sites) shows Kmin perpendicular to the bedding plane while Kmax and Kint are scattered within the bedding plane itself. This fabric is usually interpreted as primary (sedimentary-compactional), typical of undeformed sediments. The second type (5 sites) shows good clustering of the AMS principal axes with Kmin still sub-perpendicular to the bedding plane. The third type, pertaining to an intensely folded site previously interpreted as slumped, is characterized in geographic coordinates by well

  19. Hydrologic responses of a tropical catchment in Thailand and two temperate/cold catchments in north America to global warming

    SciTech Connect

    Gan, T.Y.; Ahmad, Z.

    1997-12-31

    The hydrologic impact or sensitivities of three medium-sized catchments to global warming, one of tropical climate in Northern Thailand and two of temperate climate in the Sacramento and San Joaquin River basins of California, were investigated.

  20. Preliminary spectral and geologic analysis of Landsat-4 Thematic Mapper data, Wind River Basin area, Wyoming

    NASA Technical Reports Server (NTRS)

    Conel, J. E.; Lang, H. R.; Paylor, E. D.; Alley, R. E.

    1985-01-01

    A Landsat-4 Thematic Mapper (TM) image of the Wind River Basin area in Wyoming is currently under analysis for stratigraphic and structural mapping and for assessment of spectral and spatial characteristics using visible, near infrared, and short wavelength infrared bands. To estimate the equivalent Lambertian surface reflectance, TM radiance data were calibrated to remove atmospheric and instrumental effects. Reflectance measurements for homogeneous natural and cultural targets were acquired about one year after data acquisition. Calibration data obtained during the analysis were used to calculate new gains and offsets to improve scanner response for earth science applications. It is shown that the principal component images calculated from the TM data were the result of linear transformations of ground reflectance. In images prepared from this transform, the separation of spectral classes was independent of systematic atmospheric and instrumental factors. Several examples of the processed images are provided.

  1. Preliminary results of imaging spectroscopy of the Humorum Basin region of the moon

    NASA Technical Reports Server (NTRS)

    Lucey, P. G.; Bruno, B. C.; Hawke, B. R.

    1991-01-01

    Imaging spectroscopy of the lunar surface was carried out using a CCD spectrograph employed as an imaging spectrometer at the University of Hawaii 2.24-m telescope at Mauna Kea Observatory. A portion of the Humorum multiringed impact basin was observed, yielding an imaging spectroscopic dataset consisting of approximately 400,000 spectra covering the wavelength region 0.7-0.98 microns at a spectral resolution of 200 (lambda/Delta-lambda). Results of this analysis included (1) identifying craters and other explosures of highland material within the bounds of Mare Humorum, (2) identifying craters in the highlands adjacents to Mare Humorum that excavate buried mare basalt, and (3) identifying two spectral units in the highlands that likely represent compositional units. The region is shown to be extremely diverse spectrally and demonstrates the ability of imaging spectroscopy to enable a qualitative improvement in the ability to identify and map compositional units.

  2. Mid-Neolithic Exploitation of Mollusks in the Guanzhong Basin of Northwestern China: Preliminary Results

    PubMed Central

    Li, Fengjiang; Wu, Naiqin; Lu, Houyuan; Zhang, Jianping; Wang, Weilin; Ma, Mingzhi; Zhang, Xiaohu; Yang, Xiaoyan

    2013-01-01

    Mollusk remains are abundant in archaeological sites in the Guanzhong Basin of Northwestern China, providing good opportunities for investigations into the use of mollusks by prehistoric humans. Here we report on freshwater gastropod and bivalve mollusks covering the time interval from about 5600 to 4500 cal. yrs BP from sites of Mid-Late Neolithic age. They are identified as Cipangopaludina chinensis and Unio douglasiae, both of which are currently food for humans. The shells are well preserved and have no signs of abrasion. They are all freshwater gastropods and bivalves found in pits without water-reworked deposits and have modern representatives which can be observed in rivers, reservoirs, and paddy fields in the studied region. Mollusk shells were frequently recovered in association with mammal bones, lithic artifacts, and pottery. These lines of evidence indicate that the mollusks are the remains of prehistoric meals. The mollusk shells were likely discarded into the pits by prehistoric humans after the flesh was eaten. However, these mollusk remains may not have been staple food since they are not found in large quantities. Mollusk shell tools and ornaments are also observed. Shell tools include shell knives, shell reaphooks and arrowheads, whereas shell ornaments are composed of pendants and loops. All the shell tools and ornaments are made of bivalve mollusks and do not occur in large numbers. The finding of these freshwater mollusk remains supports the view that the middle Holocene climate in the Guanzhong Basin may have been warm and moist, which was probably favorable to freshwater mollusks growing and developing in the region. PMID:23544050

  3. Mid-Neolithic exploitation of mollusks in the Guanzhong Basin of Northwestern China: preliminary results.

    PubMed

    Li, Fengjiang; Wu, Naiqin; Lu, Houyuan; Zhang, Jianping; Wang, Weilin; Ma, Mingzhi; Zhang, Xiaohu; Yang, Xiaoyan

    2013-01-01

    Mollusk remains are abundant in archaeological sites in the Guanzhong Basin of Northwestern China, providing good opportunities for investigations into the use of mollusks by prehistoric humans. Here we report on freshwater gastropod and bivalve mollusks covering the time interval from about 5600 to 4500 cal. yrs BP from sites of Mid-Late Neolithic age. They are identified as Cipangopaludina chinensis and Unio douglasiae, both of which are currently food for humans. The shells are well preserved and have no signs of abrasion. They are all freshwater gastropods and bivalves found in pits without water-reworked deposits and have modern representatives which can be observed in rivers, reservoirs, and paddy fields in the studied region. Mollusk shells were frequently recovered in association with mammal bones, lithic artifacts, and pottery. These lines of evidence indicate that the mollusks are the remains of prehistoric meals. The mollusk shells were likely discarded into the pits by prehistoric humans after the flesh was eaten. However, these mollusk remains may not have been staple food since they are not found in large quantities. Mollusk shell tools and ornaments are also observed. Shell tools include shell knives, shell reaphooks and arrowheads, whereas shell ornaments are composed of pendants and loops. All the shell tools and ornaments are made of bivalve mollusks and do not occur in large numbers. The finding of these freshwater mollusk remains supports the view that the middle Holocene climate in the Guanzhong Basin may have been warm and moist, which was probably favorable to freshwater mollusks growing and developing in the region. PMID:23544050

  4. Effect of initial conditions of a catchment on seasonal streamflow prediction using ensemble streamflow prediction (ESP) technique for the Rangitata and Waitaki River basins on the South Island of New Zealand

    NASA Astrophysics Data System (ADS)

    Singh, Shailesh Kumar; Zammit, Christian; Hreinsson, Einar; Woods, Ross; Clark, Martyn; Hamlet, Alan

    2013-04-01

    Increased access to water is a key pillar of the New Zealand government plan for economic growths. Variable climatic conditions coupled with market drivers and increased demand on water resource result in critical decision made by water managers based on climate and streamflow forecast. Because many of these decisions have serious economic implications, accurate forecast of climate and streamflow are of paramount importance (eg irrigated agriculture and electricity generation). New Zealand currently does not have a centralized, comprehensive, and state-of-the-art system in place for providing operational seasonal to interannual streamflow forecasts to guide water resources management decisions. As a pilot effort, we implement and evaluate an experimental ensemble streamflow forecasting system for the Waitaki and Rangitata River basins on New Zealand's South Island using a hydrologic simulation model (TopNet) and the familiar ensemble streamflow prediction (ESP) paradigm for estimating forecast uncertainty. To provide a comprehensive database for evaluation of the forecasting system, first a set of retrospective model states simulated by the hydrologic model on the first day of each month were archived from 1972-2009. Then, using the hydrologic simulation model, each of these historical model states was paired with the retrospective temperature and precipitation time series from each historical water year to create a database of retrospective hindcasts. Using the resulting database, the relative importance of initial state variables (such as soil moisture and snowpack) as fundamental drivers of uncertainties in forecasts were evaluated for different seasons and lead times. The analysis indicate that the sensitivity of flow forecast to initial condition uncertainty is depend on the hydrological regime and season of forecast. However initial conditions do not have a large impact on seasonal flow uncertainties for snow dominated catchments. Further analysis indicates

  5. Origins of streamflow in a crystalline basement catchment in a sub-humid Sudanian zone: The Donga basin (Benin, West Africa): Inter-annual variability of water budget

    NASA Astrophysics Data System (ADS)

    Séguis, L.; Kamagaté, B.; Favreau, G.; Descloitres, M.; Seidel, J.-L.; Galle, S.; Peugeot, C.; Gosset, M.; Le Barbé, L.; Malinur, F.; Van Exter, S.; Arjounin, M.; Boubkraoui, S.; Wubda, M.

    2011-05-01

    SummaryDuring the last quarter of the 20th century, West Africa underwent a particularly intense and generalized drought. During this period, the biggest drops in streamflow were observed in the Sudanian zone rather than in the Sahelian zone, but the reasons are still poorly understood. In 2000, a meso-scale hydrological observatory was set up in the sub-humid Sudanian zone of the Upper Ouémé Valley (Benin). Three embedded catchments of 12-586 km 2 located on a crystalline bedrock were intensively instrumented to document the different terms of the water budget and to identify the main streamflow generating processes and base-flow mechanisms at different scales. Geophysical, hydrological and geochemical data were collected throughout the catchments from 2002 to 2006. Crossing these data helped define their hydrological functioning. The region has seasonal streamflow, and the permanent groundwater in the weathered mantle does not drain to rivers, instead, seasonal perched groundwaters are the major contributor to annual streamflow. The perched groundwaters are mainly located in seasonally waterlogged sandy layers in the headwater bottom-lands called bas-fonds in French-speaking West Africa of 1st order streams. During the period 2003-2006, regolith groundwater recharge ranged between 10% and 15% of the annual rainfall depth. Depletion of permanent groundwater during the dry season is probably explained by local evapotranspiration which was seen not to be limited to gallery forests. During the 4-year study period, a reduction of 20% in annual rainfall led to a 50% reduction in streamflow. This reduction was observed in the two components of the flow: direct runoff and drainage of perched groundwater. Thanks to the comprehensive dataset obtained, the results obtained for the Donga experimental catchment are now being extrapolated to the whole upper Ouémé valley, which can be considered as representative of sub-humid Sudanian rivers flowing on a crystalline

  6. Modeling the impact of development and management options on future water resource use in the Nyangores sub-catchment of the Mara Basin in Kenya

    NASA Astrophysics Data System (ADS)

    Omonge, Paul; Herrnegger, Mathew; Fürst, Josef; Olang, Luke

    2016-04-01

    Despite the increasing water insecurity consequent of competing uses, the Nyangores sub-catchment of Kenya is yet to develop an inclusive water use and allocation plan for its water resource systems. As a step towards achieving this, this contribution employed the Water Evaluation and Planning (WEAP) system to evaluate selected policy based water development and management options for future planning purposes. Major water resources of the region were mapped and quantified to establish the current demand versus supply status. To define a reference scenario for subsequent model projections, additional data on urban and rural water consumption, water demand for crop types, daily water use for existing factories and industries were also collated through a rigorous fieldwork procedure. The model was calibrated using the parameter estimation tool (PEST) and validated against observed streamflow data, and subsequently used to simulate feasible management options. Due to lack of up-to-date data for the current year, the year 2000 was selected as the base year for the scenario simulations up to the year 2030, which has been set by the country for realizing most flagship development projects. From the results obtained, the current annual water demand within the sub-catchment is estimated to be around 27.2 million m3 of which 24% is being met through improved and protected water sources including springs, wells and boreholes, while 76% is met through informal and unprotected sources which are insufficient to cater for future increases in demand. Under the reference scenario, the WEAP model predicted an annual total inadequate supply of 8.1 million m3 mostly in the dry season by the year 2030. The current annual unmet water demand is 1.3 million m3 and is noteworthy in the dry seasons of December through February at the irrigation demand site. The monthly unmet domestic demand under High Population Growth (HPG) was projected to be 1.06 million m3 by the year 2030. However

  7. Luminescence Dating of Marine Terrace Sediments Between Trabzon and Rize, Eastern Black Sea Basin: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Softa, Mustafa; Spencer, Joel Q. G.; Emre, Tahir; Sözbilir, Hasan; Turan, Mehmet

    2016-04-01

    Quaternary marine terraces in the coastal region of Pontides in Northeastern Turkey are valuable archives of past sea level change. Until recently, dates of raised marine terraces undeciphered in the coastal region between Trabzon and Rize because of chronologic limitations. In this paper was to determine ages of the terrace deposits by applying optically stimulated luminescence (OSL) dating methods using single aliquot regenerative dose (SAR) techniques on quartz minerals from extracted marine terraces. Several samples were collected from three orders of Quaternary marine terraces which are reproducible at all sampling location in between cities of Trabzon and Rize, Turkey, coastal of Eastern Pontides, at the front of the thrust system. The terrace deposits mainly consist of clays, silts, sands and gravels. The sediments in these deposits are mainly derived from basaltic, andesitic, and limestone geology, and have elipsoid, square and flat shapes. The terrace deposits have heights ranging from 1 to 17 meters and increases in height and thickness from west to east. Initial OSL results from 1 mm and 3 mm quartz aliquots demonstrate good luminescence characteristics. Preliminary equivalent dose analysis results ranging from 17.6 Gy to 79.6 Gy have been calculated using the Central Age Model (CAM) and Minimum Age Model (MAM). According to ages obtained from three separate terrace is ~8 ka, ~42 ka and ~78 ka, respectively. Results of marine terrace sediments indicate this region has three sedimentation periods and coastal region of Pontides has been remarkably tectonically active since latest Pleistocene to earlier Holocene. This study will present preliminary OSL dating results obtained from samples of Quaternary marine terrace formation. Keywords: optically stimulated luminescence (OSL) dating, single grain, marine terraces, Eastern Pontides.

  8. CHARIS - The Contribution to High Asian Runoff from Ice and Snow, Preliminary results from the Upper Indus Basin, Pakistan

    NASA Astrophysics Data System (ADS)

    Armstrong, R. L.; Barrett, A. P.; Brodzik, M.; Fetterer, F. M.; Hashmey, D.; Horodyskyj, U. N.; Khalsa, S.; Racoviteanu, A.; Raup, B. H.; Williams, M. W.; Wilson, A.

    2013-12-01

    results with local sub-basin studies based on energy balance modeling approaches. We are also evaluating the accuracy of the melt model results using isotopic and geochemical tracers to identify and quantify the sources of water (ice melt, snow melt, rainfall and ground water) flowing into selected rivers representing the major hydro-climates of the study area. Preliminary results are presented for the Upper Indus Basin, and the Hunza sub-basin, for the period 2000-2012.

  9. Preliminary results of polarization signatures for glacial moraines in the Mono Basin, Eastern Sierra Nevada

    NASA Technical Reports Server (NTRS)

    Forster, Richard R.; Fox, Andrew N.; Isacks, Bryan

    1992-01-01

    The valleys of the Mono Basin contain several sets of lateral and terminal moraines representing multiple stages of glaciation. The semi-arid climate with slow weathering rates preserved sequences of nested younger moraines within older ones. There is a well established relative chronology and recently exposure dating provided a new set of numerical dates. The moraines span the late Wisconsin (11-25 ka) to the Illinoian (130-190 ka) glaciations. The Mono Basin area was used as a 'calibration site' to establish remote dating techniques for eventual transfer to the more inaccessible but geomorphically and climatically similar moraines of the South American Andes Mountains. Planned polarimetric synthetic aperture radar (SAR) imagery acquired by JPL AIRSAR (South American Campaign) and SIR-C (Andes super-site) are analyzed to establish chronologies of previously undated moraine sequences in a study of Pleistocene climatic change in the Southern Hemisphere. The dry climate and sparse vegetation is also favorable for correlation of ground surface roughness with radar polarization signature. The slow weathering processes acting over thousands of years reduce the size, frequency, and angularity of surface boulders while increasing soil development on the moraines. Field observations based on this hypothesis result in relative ages consistent with those inferred from nested position within the valley. Younger moraines, therefore, will appear rougher than the older smoother moraines at scales measurable at AIRSAR wavelengths. Previously documented effects of ground surface roughness on polarization signatures suggest that analysis of moraine polarization signatures can be useful for relative dating. The technique may be extended to predict numerical ages. The data set reported were acquired on 8 Sep. 1989 with the JPL Airborne SAR (AIRSAR) collecting polarimetric imagery at C- (5.6 cm), L- (24 cm), and P-band (68 cm) with a flight-line parallel to the strike of the mountains

  10. Reservoir property estimation in Pohang Basin, South Korea for the preliminary CO2 storage prospect

    NASA Astrophysics Data System (ADS)

    Han, J.; Keehm, Y.

    2013-12-01

    Geological CO2 storage draws a great attention globally and South Korea also look for proper storage sites to reduce CO2 emission. The Pohang Basin area, located at the southeastern part of Korea, is regarded as a good candidate for CO2 storage, since the basin is believed to have good sand intervals, and there are various CO2 sources, such as a steel mill and a car factory around the area. However, there are not many geophysical data (core, logs, seismic, etc.) available since the area is highly industrialized and the target site is located offshore. There are a few well logs sparsely located, and core data are not many either since the target formation is semi- to unconsolidated clastics. To overcome these difficulties, we firstly go back to regional geology and determine the regional 3D distribution of target formation. Then, we obtain onshore outcrop samples from the same target formation to compliment scarce core data. The core and outcrop samples are not well-consolidated, which makes lab measurements highly difficult. We adopt a computational rock physics method, which estimates porosity and permeability on 3D microstructures statistically reconstructed from thin section images. The average values of porosity and permeability of outcrop samples are 25% and 1,000mD, and those from one core data 17% and 100mD, respectively. Other cores from the same formation do not give any significant permeability values. Thus, we categorize the formation into two subgroups, good and bad. Next, we visit well-log data and categorize intervals into two subgroups, and apply the our computation results to the good group. Finally, we can give maps of reservoir properties for the target formation. Although we can give only approximate values/relations of reservoir properties for good interval, it helps evaluate overall prospect of the target formation. Acknowledgements: This research was supported by the Basic Research Project of the Korea Institute of Geoscience and Mineral

  11. Channel erosion and sediment transport in Pheasant Branch basin near Middleton, Wisconsin; a preliminary report

    USGS Publications Warehouse

    Grant, R. Stephen; Goddard, Gerald

    1980-01-01

    The purpose of this 5-year study is to (1) evaluate the sediment transport, streamflow characteristics, and stream-channel morphology, (2) relate the above to land-use practices; and (3) evaluate the effect that changes in land-use practices will have on Pheasant Branch basin near Middleton, Wis. This report presents findings of sediment transport, streamflow characteristics, and stream-channel morphology from the first year of the study and documents historical erosion. The study is being conducted by the U.S. Geological Survey in cooperation with the city of Middleton and the Wisconsin Geological and Natural History Survey. Pheasant Branch, a tributary to Lake Mendota, drains 23.1 square miles of glacial drift. Channel erosion is severe within Middleton, requiring extensive use of erosion-control structures. Occasionally, channel dredging near the mouth and into Lake Mendota is required for boating. Comparison of stream-channel surveys of 1971 and 1977 shows the lowest part of the channel lowered 3 to 4 feet at some sites in the urban reach from U.S. Highway 12 downstream to Century Avenue. Downstream from Century Avenue, channel width increased from about 35 to 48 feet and channel cross-section area increased about 86 percent. A survey of Pheasant Branch in 1971 provided data for quantification of stream-channel changes since that time. Six erosion-control structures previously installed appear to have had some benefit in controlling head cutting in the channel. (USGS).

  12. Southern Great Basin seismological data report for 1981 and preliminary data analysis

    SciTech Connect

    Rogers, A.M.; Harmsen, S.C.; Carr, W.J.; Spence, W.

    1983-09-01

    Earthquake data for the calendar year 1981 are reported for earthquakes occurring within and adjacent to the southern Great Basin seismograph network. Locations, magnitudes, and selected focal mechanisms for these events and events from prior years of network operations are presented and discussed in relation to the geologic framework of the region. These data are being collected to aid in the evaluation of the seismic hazard to a potential repository site at Yucca Mountain in the southwestern Nevada Test Site. The regional stress field orientation, as inferred from focal mechanisms, is characterized by a northwest-directed least compressive stress and a northeast-directed greatest compressive stress. We infer from this stress orientation that faults of north to northeast trend are most susceptible to slip. Faults of this orientation exist within the Yucca Mountain block, but they probably have not moved significantly in the last 500,000 years. Yucca Mountain lies within a fairly large area of relatively low level seismicity extending west to the Funeral Mountains, south of the Black Mountains and Nopah Range, and southeast to the Spring Mountains. One M 1.7 earthquake has been located in the Yucca Mountain block in about 1 year of intense monitoring. At present somewhat conflicting geologic, seismologic, and stress evidence hinder definitive conclusions about the seismic hazard at the proposed repository site. 36 references, 18 figures, 1 table.

  13. Modeling fluid flow and heat transfer at Basin and Range faults: preliminary results for Leach hot springs, Nevada

    USGS Publications Warehouse

    López, Dina L.; Smith, Leslie; Storey, Michael L.

    1994-01-01

    The hydrothermal systems of the Basin and Range Province are often located at or near major range bounding normal faults. The flow of fluid and energy at these faults is affected by the advective transfer of heat and fluid from an to the adjacent mountain ranges and valleys, This paper addresses the effect of the exchange of fluid and energy between the country rock, the valley fill sediments, and the fault zone, on the fluid and heat flow regimes at the fault plane. For comparative purposes, the conditions simulated are patterned on Leach Hot Springs in southern Grass Valley, Nevada. Our simulations indicated that convection can exist at the fault plane even when the fault is exchanging significant heat and fluid with the surrounding country rock and valley fill sediments. The temperature at the base of the fault decreased with increasing permeability of the country rock. Higher groundwater discharge from the fault and lower temperatures at the base of the fault are favored by high country rock permabilities and fault transmissivities. Preliminary results suggest that basal temperatures and flow rates for Leach Hot Springs can not be simulated with a fault 3 km deep and an average regional heat flow of 150 mW/m2 because the basal temperature and mass discharge rates are too low. A fault permeable to greater depths or a higher regional heat flow may be indicated for these springs.

  14. Construction and preliminary analysis of a deep-sea sediment metagenomic fosmid library from Qiongdongnan Basin, South China Sea.

    PubMed

    Hu, Yongfei; Fu, Chengzhang; Yin, Yeshi; Cheng, Gong; Lei, Fang; Yang, Xi; Li, Jing; Ashforth, Elizabeth Jane; Zhang, Lixin; Zhu, Baoli

    2010-11-01

    Preliminary characterization of the microbial phylogeny and metabolic potential of a deep-sea sediment sample from the Qiongdongnan Basin, South China Sea, was carried out using a metagenomic library approach. An effective and rapid method of DNA isolation, purification, and library construction was used resulting in approximately 200,000 clones with an average insert size of about 36 kb. End sequencing of 600 individual clones from the fosmid library generated 1,051 sequences with an average sequence length of 619 bp. Phylogenetic ascription indicated that this library was dominated by Bacteria, predominantly Proteobacteria, though Planctomycetes were also relatively abundant. Sulfate-reducing and anaerobic ammonium-oxidizing bacteria, which play important roles in the cycling of sedimentary nutrients, were abundant in the library. Cluster of orthologous groups category analysis showed that most of the genes contained in the end sequences were related to metabolism, and with cellular processes and signaling. Functional groups assigned by SEED (subsystems-based annotations) highlighted the existence of 'one-carbon' metabolism within this community as well as identifying functional genes involved in methanogenesis. Furthermore, diverse genes involved in the biodegradation of xenobiotics were found using Kyoto Encyclopedia of Genes and Genomes metabolic pathway analysis. PMID:20514504

  15. Development and preliminary application of a method to assess river ecological status in the Hai River Basin, north China.

    PubMed

    Shan, Baoqing; Ding, Yuekui; Zhao, Yu

    2016-01-01

    The river ecosystem in the Hai River Basin (HRB), an important economic region in China, is seriously degraded. With the aim of river restoration in the HRB, we developed a method to assess the river's ecological status and conducted a preliminary application of the method. The established method was a predictive model, which used macroinvertebrates as indicator organisms. The river's ecological status was determined by calculating the ratio of observed to expected values (O/E). The method included ecoregionalization according to natural factors, and the selection of reference sites based on combinations of habitat quality and macroinvertebrate community. Macroinvertebrate taxa included Insecta, Crustacea, Gastropoda, and Oligochaeta, with 39 families and 95 genera identified in the HRB. The HRB communities were dominated by pollution tolerant taxa, such as Lymnaeidae, Chironomus, Limnodrilus, Glyptotendipes, and Tubifex. The average Shannon-Wiener index was 1.40±0.5, indicating a low biodiversity. In the river length of 3.31×10(4) km, 55% of the sites were designated poor, with a bad ecological status. Among nine secondary river systems, Luan and Zi-ya had the best and worst river conditions, respectively. Only 17 reference site groups were selected for river management in the 41 ecoregions examined. This study lays the foundation for river restoration and related research in the HRB, and we anticipate further developments of this novel method. PMID:26899653

  16. Preliminary report on coal resources of the Wyodak-Anderson coal zone, Powder River Basin, Wyoming and Montana

    USGS Publications Warehouse

    Ellis, Margaret S.; Gunther, Gregory L.; Flores, Romeo M.; Ochs, Allen M.; Stricker, Gary D.; Roberts, Steven B.; Taber, Thomas T.; Bader, Lisa R.; Schuenemeyer, John H.

    1998-01-01

    The National Coal Resource Assessment (NCRA) project by the U.S. Geological Survey is designed to assess US coal with the greatest potential for development in the next 20 to 30 years. Coal in the Wyodak-Anderson (WA) coal zone in the Powder River Basin of Wyoming and Montana is plentiful, clean, and compliant with EPA emissions standards. This coal is considered to be very desirable for development for use in electric power generation. The purpose of this NCRA study was to compile all available data relating to the Wyodak- Anderson coal, correlate the beds that make up the WA coal zone, create digital files pertaining to the study area and the WA coal, and produce a variety of reports on various aspects of the assessed coal unit. This report contains preliminary calculations of coal resources for the WA coal zone and is one of many products of the NCRA study. Coal resource calculations in this report were produced using both public and confidential data from many sources. The data was manipulated using a variety of commercially available software programs and several custom programs. A general description of the steps involved in producing the resource calculations is described in this report.

  17. Preliminary report on the clay mineralogy of the Upper Devonian Shales in the southern and middle Appalachian Basin

    USGS Publications Warehouse

    Hosterman, John W.; Loferski, Patricia J.

    1978-01-01

    The distribution of kaolinite in parts of the Devonian shale section is the most significant finding of this work. These shales are composed predominately of 2M illite and illitic mixed-layer clay with minor amounts of chlorite and kaolinite. Preliminary data indicate that kaolinite, the only allogenic clay mineral, is present in successively older beds of the Ohio Shale from south to north in the southern and middle parts of the Appalachian basin. This trend in the distribution of kaolinite shows a paleocurrent direction to the southwest. Three well-known methods of preparing the clay fraction for X-ray diffraction analysis were tested and evaluated. Kaolinite was not identified in two of the methods because of layering due to differing settling rates of the clay minerals. It is suggested that if one of the two settling methods of sample preparation is used, the clay film be thin enough for the X-ray beam to penetrate the entire thickness of clay.

  18. Co-evolution of volcanic catchments in Japan

    NASA Astrophysics Data System (ADS)

    Yoshida, T.; Troch, P. A.

    2015-09-01

    Present day landscapes have evolved over time through interactions between the prevailing climates and geological settings. Understanding the linkage between spatial patterns of landforms, soils, and vegetation in landscapes and their hydrological response is critical to make quantitative predictions in ungaged basins. Catchment co-evolution is a theoretical framework that seeks to formulate hypotheses about the mechanisms and conditions that determine the historical development of catchments and how such evolution affects their hydrological response. In this study, we selected 14 volcanic catchments of different ages (from 0.225 to 82.2 Ma) in Japan. We derived indices of landscape properties (drainage density) as well as hydrological response (annual water balance, baseflow index, and flow duration curves) and examined their relation with catchment age and climate (through the aridity index). We found significant correlation between drainage density and baseflow index with age, but not with climate. The age of the catchments was also significantly related to intra-annual flow variability. Younger catchments tend to have lower peak flows and higher low flows, while older catchments exhibit more flashy runoff. The decrease of baseflow with catchment age confirms previous studies that hypothesized that in volcanic landscapes the major flow pathways have changed over time, from deep groundwater flow to shallow subsurface flow. The drainage density of our catchments decreased with age, contrary to previous findings in similar volcanic catchments but of significant younger age than the ones explored here. In these younger catchments, an increase in drainage density with age was observed, and it was hypothesized that this was because of more landscape incision due to increasing near-surface lateral flow paths in more mature catchments. Our results suggests two hypotheses on the evolution of drainage density in matured catchments. One is that as catchments further evolve

  19. Preliminary Paleomagnetic Results From Tertiary Rocks of Sedimentary Basins in Northern Vietnam and Tectonic Implications

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Liu, Z.; Le, K.; Zhao, Y.; Hoang, V.; Phan, D.

    2013-12-01

    The South China Sea (SCS) is a classical representative of western Pacific marginal seas and contains records of Cenozoic tectonic events of SE Asia. The SCS has been at the center stage of many first-order tectonic and paleoclimatic events since the Mesozoic. One clear way to evaluate the relationship between tectonic uplift and climate is to study the resulting changes in marginal sea strata. To this end, we will conduct an integrated paleomagnetic and stratigraphic investigation on Tertiary strata from Phu Tho and Yen Bai provinces, northern Vietnam to help understand the causal linkages among geological and tectonic events and their consequences related to the SCS evolution. We will collect paleomagnetic samples at sections where the most continuous, complete, and best preserved Eocene-Miocene successions. Standard paleomagnetic field tests, such as the fold, reversal, and conglomerate tests will be used to determine the relative age of the magnetization. In addition to detailed thermal and alternating field demagnetization and analysis, selected samples will also be subjected to several rock magnetic analyses to identify magnetic carriers in the rocks. In particular, the hysteresis parameters Jrs/Js and Hcr /Hc ratios will enable us to apply techniques for detecting low-temperature remagnetization of sedimentary rocks. Preliminary finding of this ongoing project will be presented.

  20. An Integrated Multi-Scale Approach to the Study of Evapotranspiration on the Alaskan North Slope: Preliminary Characterization of Fluxes and Turbulence in the Imnavait Creek Basin

    NASA Astrophysics Data System (ADS)

    Wyatt, C.; Mumm, J.; Trochim, E.; Fochesatto, G. J.; Prakash, A.; Anderson, M. C.; Kane, D. L.

    2009-12-01

    Evapotranspiration (ET) plays a significant role in the hydrologic cycle of Arctic basins. Surface-atmosphere exchanges due to ET in the Imnaviat Creek Basin are estimated from water balance computations to be about 74% of summer precipitation or 50% of annual precipitation. Even though ET is a significant component of the hydrologic cycle in this region, the bulk estimates don't accurately account for spatial and temporal variability due to vegetation type, topography, etc. A preliminary experiment was carried out in the summer of 2009 to characterize the turbulent fluxes (i.e. buoyancy fluxes) at two levels of 1 and 3 m AGL and the heat fluxes in an integrated horizontal path covering about 80% of the basin. We present the preliminary analysis and characterization of the turbulent fluxes in the basin and we discuss the design of a multi-scale experimental and modeling approach to the study of ET that integrates point, spatial and volumetric in situ measurements, up to satellite scale observations. This ultimate focus of this exercise is to develop a consistent satellite-based ET retrieval approach.

  1. Hydrologic comparison between a lowland catchment (Kielstau, Germany) and a mountainous catchment (XitaoXi, China) using KIDS model in PCRaster

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Hörmann, G.; Fohrer, N.

    2009-08-01

    The KIDS model (Kielstau Discharge Simulation model) is a simple rainfall-runoff model developed originally for the Kielstau catchment. To extend its range of application we applied it to a completely different catchment, the XitaoXi catchment in China. Kielstau is a small (51 km2) lowland basin in Northern Germany, with large proportion of wetland area. And XitaoXi is a mesoscale (2271 km2) mountainous basin in the south of China. Both catchments differ greatly in size, topography, landuse, soil properties, and weather conditions. We compared two catchments in these features and stress on the analysis how the specific catchment characteristics could guide the adaptation of KIDS model and the parameter estimation for streamflow simulation. The Nash and Sutcliffe coefficient was 0.73 for Kielstau and 0.65 for XitaoXi. The results suggest that the application of KIDS model may require adjustments according to the specific physical background of the study basin.

  2. Hydrology, secondary growth, and elevation accuracy in two preliminary Amazon Basin SRTM DEMs

    NASA Astrophysics Data System (ADS)

    Alsdorf, D.; Hess, L.; Sheng, Y.; Souza, C.; Pavelsky, T.; Melack, J.; Dunne, T.; Hendricks, G.; Ballantine, A.; Holmes, K.

    2003-04-01

    Two preliminary Shuttle Radar Topography Mission digital elevation models (SRTM DEMs) of Manaus (1S to 5S and 59W to 63W) and Rondonia (9S to 12S and 61W to 64W) were received from the "PI Processor" at NASA JPL. We compared the Manaus DEM (C-band) with a previously constructed Cabaliana floodplain classification based on Global RainForest Mapping (GRFM) JERS-1 SAR data (L-band) and determined that habitats of open water, bare ground, and flooded shrub contained the lowest elevations; macrophyte and non-flooded shrub habitats are marked by intermediate elevations; and the highest elevations are found within flooded and non-flooded forest. Although the water surface typically produces specular reflections, double-bounce travel paths result from dead, leafless trees found across the Balbina reservoir near Manaus. There (i.e., in Balbina) the water surface is marked by pixel-to-pixel height changes of generally 0 to 1 m and changes across a ˜100 km transect rarely exceed 3 m. Reported SRTM errors throughout the transect range from 1 to 2 m with some errors up to 5 m. The smooth Balbina surface contrasts with the wind-roughened Amazon River surface where SRTM height variations easily range from 1 to 10 m (reported errors often exceed 5 m). Deforestation and subsequent regrowth in the Rondonia DEM is remarkably clear. Our colleagues used a 20 year sequence of Landsat TM/MSS classified imagery to delineate areas in various stages of secondary growth and we find a general trend of increasing vegetation height with increasing age. Flow path networks derived from the Cabaliana floodplain DEM are in general agreement with networks previously extracted from the GRFM mosaics; however, watershed boundaries differ. We have also developed an algorithm for extracting channel widths, which is presently being applied to the DEM and classified imagery to determine morphological variations between reaches.

  3. Impact of Urbanization on Stormwater Runoff from a Small Urban Catchment: Gdańsk Małomiejska Basin Case Study

    NASA Astrophysics Data System (ADS)

    Olechnowicz, Borys; Weinerowska-Bords, Katarzyna

    2014-12-01

    This paper deals with the impact of different forms of urbanization on the basin outflow. The influence of changes in land cover/use, drainage system development, reservoirs, and alternative ways of stormwater management (green roofs, permeable pavements) on basin runoff was presented in the case of a small urban basin in Gdansk (Poland). Seven variants of area development (in the period of 2000-2012) - three historical and four hypothetical - were analyzed. In each case, runoff calculations for three rainfall scenarios were carried out by means of the Hydrologic Modeling System designed by Hydrologic Engineering Center of the U.S. Army Corps of Engineers (HEC-HMS). The Soil Conservation Service (SCS) Curve Number (CN) method was used for calculations of effective rainfall, the kinematic wave model for those of overland flow, and the Muskingum-Cunge model for those of channel routing. The calculations indicated that urban development had resulted in increased peak discharge and runoff volume and in decreased peak time. On the other hand, a significant reduction in peak values was observed for a relatively small decrease in the normal storage level (NSL) in reservoirs or when green roofs on commercial centers were present. The study confirmed a significant increase in runoff as a result of urbanization and a considerable runoff reduction by simple alternative ways of stormwater management.

  4. A preliminary assessment of sources of nitrate in springwaters, Suwannee River basin, Florida

    USGS Publications Warehouse

    Katz, B.G.; Hornsby, H.D.

    1998-01-01

    A cooperative study between the Suwannee River Water Management District (SRWMD) and the U.S. Geological Survey (USGS) is evaluating sources of nitrate in water from selected springs and zones in the Upper Floridan aquifer in the Suwannee River Basin. A multi-tracer approach, which consists of the analysis of water samples for naturally occurring chemical and isotopic indicators, is being used to better understand sources and chronology of nitrate contamination in the middle Suwannee River region. In July and August 1997, water samples were collected and analyzed from six springs and two wells for major ions, nutrients, and dissolved organic carbon. These water samples also were analyzed for environmental isotopes [18O/16O, D/H, 13C/12C, 15N/14N] to determine sources of water and nitrate. Chlorofluorocarbons (CCl3F, CCl2F2, and C2Cl3F3) and tritium (3H) were analyzed to assess the apparent ages (residence time) of springwaters and water from the Upper Floridan aquifer. Delta 15N-NO3 values in water from the six springs range from 3.94 per mil (Little River Springs) to 8.39 per mil (Lafayette Blue Spring). The range of values indicates that nitrate in the sampled springwaters most likely originates from a mixture of inorganic (fertilizers) and organic (animal wastes) sources, although the higher delta 15N-NO3 value for Lafayette Blue Spring indicates that an organic source of nitrogen is likely at this site. Water samples from the two wells sampled in Lafayette County have high delta 15N-NO3 values of 10.98 and 12.1 per mil, indicating the likelihood of an organic source of nitrate. These two wells are located near dairy and poultry farms, where leachate from animal wastes may contribute nitrate to ground water. Based on analysis of chlorofluorocarbons in ground water, the mean residence time of water in springs ranges from about 12 to 25 years. Chlorofluorocarbons-modeled recharge dates for water samples from the two shallow zones in the Upper Floridan aquifer

  5. Using self-organizing maps to infill missing data in hydro-meteorological time series from the Logone catchment, Lake Chad basin.

    PubMed

    Nkiaka, E; Nawaz, N R; Lovett, J C

    2016-07-01

    Hydro-meteorological data is an important asset that can enhance management of water resources. But existing data often contains gaps, leading to uncertainties and so compromising their use. Although many methods exist for infilling data gaps in hydro-meteorological time series, many of these methods require inputs from neighbouring stations, which are often not available, while other methods are computationally demanding. Computing techniques such as artificial intelligence can be used to address this challenge. Self-organizing maps (SOMs), which are a type of artificial neural network, were used for infilling gaps in a hydro-meteorological time series in a Sudano-Sahel catchment. The coefficients of determination obtained were all above 0.75 and 0.65 while the average topographic error was 0.008 and 0.02 for rainfall and river discharge time series, respectively. These results further indicate that SOMs are a robust and efficient method for infilling missing gaps in hydro-meteorological time series. PMID:27282595

  6. Establishment of a hydrological monitoring network in a tropical African catchment: An integrated participatory approach

    NASA Astrophysics Data System (ADS)

    Gomani, M. C.; Dietrich, O.; Lischeid, G.; Mahoo, H.; Mahay, F.; Mbilinyi, B.; Sarmett, J.

    Sound decision making for water resources management has to be based on good knowledge of the dominant hydrological processes of a catchment. This information can only be obtained through establishing suitable hydrological monitoring networks. Research catchments are typically established without involving the key stakeholders, which results in instruments being installed at inappropriate places as well as at high risk of theft and vandalism. This paper presents an integrated participatory approach for establishing a hydrological monitoring network. We propose a framework with six steps beginning with (i) inception of idea; (ii) stakeholder identification; (iii) defining the scope of the network; (iv) installation; (v) monitoring; and (vi) feedback mechanism integrated within the participatory framework. The approach is illustrated using an example of the Ngerengere catchment in Tanzania. In applying the approach, the concept of establishing the Ngerengere catchment monitoring network was initiated in 2008 within the Resilient Agro-landscapes to Climate Change in Tanzania (ReACCT) research program. The main stakeholders included: local communities; Sokoine University of Agriculture; Wami Ruvu Basin Water Office and the ReACCT Research team. The scope of the network was based on expert experience in similar projects and lessons learnt from literature review of similar projects from elsewhere integrated with local expert knowledge. The installations involved reconnaissance surveys, detailed surveys, and expert consultations to identify best sites. First, a Digital Elevation Model, land use, and soil maps were used to identify potential monitoring sites. Local and expert knowledge was collected on flow regimes, indicators of shallow groundwater plant species, precipitation pattern, vegetation, and soil types. This information was integrated and used to select sites for installation of an automatic weather station, automatic rain gauges, river flow gauging stations

  7. Runoff Responses to Forest Thinning at Plot and Catchment Scales in a Headwater Catchment Draining Japanese Cypress Forest

    EPA Science Inventory

    We examined the effect of forest thinning on runoff generation at plot and catchment scales in headwater basins draining a Japanese cypress (Chamaecyparis obtusa) forest. We removed 58.3% of the stems (corresponding to 43.2% of the basal area) in the treated headwater basin (catc...

  8. Towards sediment residence time in a Himalayan catchment? Insights from paired in-situ 14C and 10Be measurements in river sands

    NASA Astrophysics Data System (ADS)

    Lupker, M.; Hippe, K.; Wacker, L.; Wieler, R.

    2014-12-01

    Cosmogenic nuclides in detrital river sediments have been widely applied to derive denudation rates and sediment fluxes across entire catchments. Nuclides, such as 10Be, allow the derivation of denudation rates integrated over several hundreds to thousands of years, but single isotopic systems often provide little information on the intricate dynamics that control the export of sediments from catchments. The quantification of sediment storage and recycling within catchments is nevertheless crucial for a better understanding of the variability of sediments fluxes and their implication for landscape evolution. The paired measurement of 10Be along with cosmogenic, in-situ 14C in river sediments may provide new insides into sediment dynamics over kyr time scales for which other nuclides are not suitable [1,2]. In an effort to better understand the sediment dynamics in active orogens we combine in-situ 14C and 10Be measurements from the Kosi basin in eastern Nepal (~53 000 km2). Our preliminary 14C/10Be data shows apparent burial/storage ages of 14 to 21 kyr in the sediments currently exported by the river. These elevated burial ages suggest a larger storage component than previously thought in these catchments, even though possible biases associated to the use of 14C/10Be in sediments as burial chronometer have to be considered: First, the short half-life of 14C cannot be neglected and hence basin wide denudation cannot be considered as a simple mixing of sediments from individually eroding surfaces, introducing bias towards higher apparent burial ages in most settings. Second, in steep environments, sediments supplied by deep-seated landslides carry a buried signature that should not be confounded with sediment storage in the catchment. The importance of both biases needs to be quantified carefully, before basin-wide storage can be quantified. [1] Lauer & Willenbring, 2010 - JGR-Earth, vol. 115, F04018. [2] Hippe et al., 2012 - Geomorphology, vol. 179, pp. 58-70.

  9. A differential equation for specific catchment area

    NASA Astrophysics Data System (ADS)

    Gallant, John C.; Hutchinson, Michael F.

    2011-05-01

    Analysis of the behavior of specific catchment area in a stream tube leads to a simple nonlinear differential equation describing the rate of change of specific catchment area along a flow path. The differential equation can be integrated numerically along a flow path to calculate specific catchment area at any point on a digital elevation model without requiring the usual estimates of catchment area and width. The method is more computationally intensive than most grid-based methods for calculating specific catchment area, so its main application is as a reference against which conventional methods can be tested. This is the first method that provides a benchmark for more approximate methods in complex terrain with both convergent and divergent areas, not just on simple surfaces for which analytical solutions are known. Preliminary evaluation of the D8, M8, digital elevation model networks (DEMON), and D∞ methods indicate that the D∞ method is the best of those methods for estimating specific catchment area, but all methods overestimate in divergent terrain.

  10. Co-evolution of volcanic catchments in Japan

    NASA Astrophysics Data System (ADS)

    Yoshida, T.; Troch, P. A. A.

    2015-12-01

    Present day landscapes have evolved over time through interactions between the prevailing climates and geological settings. Understanding the linkage between spatial patterns of landforms, soils, and vegetation in landscapes and their hydrological response is critical to make quantitative predictions in ungaged basins. Catchment co-evolution is a theoretical framework that seeks to formulate hypotheses about the mechanisms and conditions that determine the historical development of catchments and how such evolution affects their hydrological response. In this study, we selected 14 volcanic catchments of different ages (from 0.22 to 82Ma) in Japan. We derived indices of landscape properties (drainage density) as well as hydrological response (annual water balance, baseow index, and flow duration curves) and examined their relation with catchment age and climate (through the aridity index). We found signicant correlation between drainage density and baseow index with age, but not with climate. The age of the catchments was also signicantly related to intra-annual flow variability. Younger catchments tend to have lower peak flows and higher low flows, while older catchments exhibit more flashy runoff. The decrease of baseflow with catchment age confirms previous studies that hypothesized that in volcanic landscapes the major flow pathways have changed over time, from deep groundwater flow to shallow subsurface flow. The drainage density of our catchments decreased with age, contrary to previous findings in similar volcanic catchments but of signicant younger age than the ones explored here. In these younger catchments, an increase in drainage density with age was observed, and it was hypothesized that this was because of more landscape incision due to increasing near-surface lateral flow paths in more mature catchments. Our results suggest that as catchments further evolve, hydrologically active channels retreat as less recharge leads to lower average aquifer levels

  11. A land-locked back-arc basin: preliminary results from ODP Leg 107 in the Tyrrhenian Sea

    NASA Astrophysics Data System (ADS)

    Mascle, Jean; Kastens, Kim; Auroux, Christian

    1988-01-01

    The ODP Leg 107 drilled a series of eleven holes across the Tyrrhenian Sea, probably one of the youngest of the Mediterranean Sea sub-basins. Four sites have documented the evolution of the Sardinia passive-type continental margin and shown that tilting and subsidence occurred earlier on the upper margin than on the present lower margin. Three sites have been drilled into the two small deep basins of the central Tyrrhenian—the results show that both basins are floored by basaltic basements and strongly support the model of back-arc basin growth by seaward (southeast in this case) retreat of the downgoing hinge line plate.

  12. A multi-proxy lake core record from Lago Lungo, Rieti Basin, Lazio, Italy and its relation to human activities in the catchment during the last century

    NASA Astrophysics Data System (ADS)

    Noble, Paula; Tunno, Irene; Mensing, Scott; Piovesan, Gianluca

    2016-04-01

    The lakes of the Rieti Basin have experienced extensive human modification dating back to pre-Roman times, yet lake archives indicate that the most profound changes to the aquatic ecosystem have occurred during the last century. Analysis of the upper ˜120 cm segment of a sediment core from Lago Lungo, dating back to ˜1830 CE, show changes in water quality and hydrologic inflow largely attributed to 20th century reclamation and land use activities. Lago Lungo is a shallow, small, eutrophic, hard water lake situated in an intermontaine alluvial plain ˜90 km NE of Rome. It is one of several remnant lakes in a poorly drained wetland area fed by numerous springs. Reclamation activities over the last century have substantially altered the drainage network affecting water delivery to the lakes and their connectivity. There are 3 interesting signals in the core. First, small Stephanodiscus species, associated with hypereutrophic conditions, appear after 1950, peak ˜1990, and may be attributed to increased use of chemical fertilizers and intensification of local agriculture. Elemental proxies from scanning XRF data (abundances of Ti, Si/Ti, and Ca) are consistent with increased eutrophication starting ˜1950. A decline in Stephanodicsus after 1990 reflects some improvement to the water quality following the lake's incorporation into a nature preserve and creation of a narrow vegetation buffer. Intermittent water quality measurements from 1982 onward corroborate the changes in trophic status interpreted from the core record. Second, a large change in the core stratigraphy, elemental geochemistry, and diatom composition occurs ˜1940 and is associated with several major reclamation efforts, including the rerouting of the Santa Susanna channel, which redirected large volumes of artesian inflows away from the lakes and estuarine system. Upstream, dams on the Turano and Salto rivers were also constructed, further affecting hydrological inflows into the basin. From ˜1900

  13. Preliminary analysis of the role of lake basin morphology on the modern diatom flora in the Ruby Mountains and East Humboldt Range, Nevada, USA

    USGS Publications Warehouse

    Starratt, Scott W.

    2014-01-01

    As paleolimnologists, we often look at the world through a 5-cm-diameter hole in the bottom of a lake, and although a number of studies have shown that a single core in the deepest part of a lake does not necessarily reflect the entire diatom flora, time and money often limit our ability to collect more than one core from a given site. This preliminary study is part of a multidisciplinary research project to understand Holocene climate variability in alpine regions of the Great Basin, and ultimately, to compare these high elevation records to the better studied pluvial records from adjacent valleys, in this case, the Ruby Valley.

  14. Impact and sustainability of low-head drip irrigation kits, in the semi-arid Gwanda and Beitbridge Districts, Mzingwane Catchment, Limpopo Basin, Zimbabwe

    NASA Astrophysics Data System (ADS)

    Moyo, Richard; Love, David; Mul, Marloes; Mupangwa, Walter; Twomlow, Steve

    Resource-poor smallholder farmers in the semi-arid Gwanda and Beitbridge districts face food insecurity on an annual basis due to a combination of poor and erratic rainfall (average 500 mm/a and 345 mm/a, respectively, for the period 1970-2003) and technologies inappropriate to their resource status. This impacts on both household livelihoods and food security. In an attempt to improve food security in the catchment a number of drip kit distribution programmes have been initiated since 2003 as part of an on-going global initiative aimed at 2 million poor households per year. A number of recent studies have assessed the technical performance of the drip kits in-lab and in-field. In early 2005 a study was undertaken to assess the impacts and sustainability of the drip kit programme. Representatives of the NGOs, local government, traditional leadership and agricultural extension officers were interviewed. Focus group discussions with beneficiaries and other villagers were held at village level. A survey of 114 households was then conducted in two districts, using a questionnaire developed from the output of the interviews and focus group discussions. The results from the study showed that the NGOs did not specifically target the distribution of the drip kits to poor members of the community (defined for the purpose of the study as those not owning cattle). Poor households made up 54% of the beneficiaries. This poor targeting of vulnerable households could have been a result of conditions set by some implementing NGOs that beneficiaries must have an assured water source. On the other hand, only 2% of the beneficiaries had used the kit to produce the expected 5 harvests over the 2 years, owing to problems related to water shortage, access to water and also pests and diseases. About 51% of the respondents had produced at least 3 harvests and 86% produced at least 2 harvests. Due to water shortages during the dry season 61% of production with the drip kit occurred during

  15. Isotopic monitoring (2H, 18O) of the St. Lawrence and Ottawa rivers between 1997 and 2003- Links with interannual climatic variability and hydrological processes in their catchment basins

    NASA Astrophysics Data System (ADS)

    Myre, A.; Hillaire-Marcel, C.

    2004-05-01

    This study based on a water isotope (18O and 2H) monitoring of the St. Lawrence and Ottawa rivers (Canada) is a contribution to the international IAEA project: Isotopes tracing of hydrologic processes in large river basins [Gibson et al., 2002. EOS 83: 613 et p.]. Sampling of the St. Lawrence and Ottawa river waters started in 1997, on a biweekly to weekly basis. Monitoring stations are located at Montreal (i.e., at the outlet of the Great Lakes), Quebec City (the estuary of the St. Lawrence) and at the Carillon hydroelectric dam, near the outlet of a major tributary, the Ottawa River into the St. Lawrence itself. The goal of the study was to examine the seasonal and interannual variability of isotopic signatures of the St. Lawrence and Ottawa rivers, in relation notably with interannual climatic variations, and seasonal hydrologic processes in the watershed (summer evaporation, snowmelt, transit time of precipitation signals into runoff). Waters sampled at the three stations depict distinct isotopic compositions. At Montreal, relatively stable isotopic composition are observed with a mean weighted annual value of -54 % for 2H and -7.1 % for 18O. The Ottawa River water at Carillon also displays stable isotopic compositions but much lighter values (weighted mean annual values: -80 % for 2H and -10.8 % for 18O). Finally, isotopic compositions at Quebec City are intermediate between those of Montreal and Carillon, but show a much larger variability. They reflect mixing between the heavy isotope enriched Great Lakes water, the lighter water from the Ottawa River, and highly variable inputs from smaller tributaries (from the Laurentides and Appalachian mountains). The mean weighted isotopic compositions at Quebec City are -65 % and -8.6 %, respectively for 2H and 18O). Evaporative enrichment, in particular during low water level episodes, seem to be more important in the Ottawa River catchment than in the Great Lakes basin, based on a comparison of isotopic clusters at

  16. PRELIMINARY DATA REPORT: HUMATE INJECTION AS AN ENHANCED ATTENUATION METHOD AT THE F-AREA SEEPAGE BASINS, SAVANNAH RIVER SITE

    SciTech Connect

    Millings, M.

    2013-09-16

    A field test of a humate technology for uranium and I-129 remediation was conducted at the F-Area Field Research Site as part of the Attenuation-Based Remedies for the Subsurface Applied Field Research Initiative (ABRS AFRI) funded by the DOE Office of Soil and Groundwater Remediation. Previous studies have shown that humic acid sorbed to sediments strongly binds uranium at mildly acidic pH and potentially binds iodine-129 (I-129). Use of humate could be applicable for contaminant stabilization at a wide variety of DOE sites however pilot field-scale tests and optimization of this technology are required to move this technical approach from basic science to actual field deployment and regulatory acceptance. The groundwater plume at the F-Area Field Research Site contains a large number of contaminants, the most important from a risk perspective being strontium-90 (Sr-90), uranium isotopes, I-129, tritium, and nitrate. Groundwater remains acidic, with pH as low as 3.2 near the basins and increasing to the background pH of approximately 5at the plume fringes. The field test was conducted in monitoring well FOB 16D, which historically has shown low pH and elevated concentrations of Sr-90, uranium, I-129 and tritium. The field test included three months of baseline monitoring followed by injection of a potassium humate solution and approximately four and half months of post monitoring. Samples were collected and analyzed for numerous constituents but the focus was on attenuation of uranium, Sr-90, and I-129. This report provides background information, methodology, and preliminary field results for a humate field test. Results from the field monitoring show that most of the excess humate (i.e., humate that did not sorb to the sediments) has flushed through the surrounding formation. Furthermore, the data indicate that the test was successful in loading a band of sediment surrounding the injection point to a point where pH could return to near normal during the study

  17. Concentration and mineralogical residence of elements in rich oil shales of the Green River Formation, Piceance Creek basin, Colorado, and the Uinta Basin, Utah - A preliminary report

    USGS Publications Warehouse

    Desborough, G.A.; Pitman, J.K.; Huffman, C., Jr.

    1976-01-01

    Ten samples from drillcore of two rich oil-shale beds from the Parachute Creek Member of the Eocene Green River Formation, Piceance Creek basin, Colorado, and Uinta Basin, Utah, were analyzed for 37 major, minor, and trace elements. For 23 of these elements, principal mineralogical residence is established or suggested and such studies may provide data which are useful for predicting the kinds and amounts of elements and compounds that might be released into the environment by oil-shale mining operations. ?? 1976.

  18. Design and development of a wireless sensor network to monitor snow depth in multiple catchments in the American River basin, California: hardware selection and sensor placement techniques

    NASA Astrophysics Data System (ADS)

    Kerkez, B.; Rice, R.; Glaser, S. D.; Bales, R. C.; Saksa, P. C.

    2010-12-01

    A 100-node wireless sensor network (WSN) was designed for the purpose of monitoring snow depth in two watersheds, spanning 3 km2 in the American River basin, in the central Sierra Nevada of California. The network will be deployed as a prototype project that will become a core element of a larger water information system for the Sierra Nevada. The site conditions range from mid-elevation forested areas to sub-alpine terrain with light forest cover. Extreme temperature and humidity fluctuations, along with heavy rain and snowfall events, create particularly challenging conditions for wireless communications. We show how statistics gathered from a previously deployed 60-node WSN, located in the Southern Sierra Critical Zone Observatory, were used to inform design. We adapted robust network hardware, manufactured by Dust Networks for highly demanding industrial monitoring, and added linear amplifiers to the radios to improve transmission distances. We also designed a custom data-logging board to interface the WSN hardware with snow-depth sensors. Due to the large distance between sensing locations, and complexity of terrain, we analyzed network statistics to select the location of repeater nodes, to create a redundant and reliable mesh. This optimized network topology will maximize transmission distances, while ensuring power-efficient network operations throughout harsh winter conditions. At least 30 of the 100 nodes will actively sense snow depth, while the remainder will act as sensor-ready repeaters in the mesh. Data from a previously conducted snow survey was used to create a Gaussian Process model of snow depth; variance estimates produced by this model were used to suggest near-optimal locations for snow-depth sensors to measure the variability across a 1 km2 grid. We compare the locations selected by the sensor placement algorithm to those made through expert opinion, and offer explanations for differences resulting from each approach.

  19. Solid discharge and landslide activity at basin scale

    NASA Astrophysics Data System (ADS)

    Ardizzone, F.; Guzzetti, F.; Iadanza, C.; Rossi, M.; Spizzichino, D.; Trigila, A.

    2012-04-01

    This work presents a preliminary analysis aimed at understanding the relationship between landslide sediment supply and sediment yield at basin scale in central and southern Italy. A database of solid discharge measurements regarding 116 gauging stations, located along the Apennines chain in Italy, has been compiled by investigating the catalogues, named Annali Idrologici, published by Servizio Idrografico e Mareografico Italiano in the period from 1917 to 1997. The database records several information about the 116 gauging stations, and especially reports the sediment yield monthly measurements (103 ton) and the catchments area (km2). These data have been used to calculate the average solid yield and the normalized solid yield for each station in the observation period. The Italian Landslide Inventory (Progetto IFFI) has been used to obtained the size of the landslides, in order to estimate the landslide mobilization rates. The IFFI Project funded by the Italian Government is realized by ISPRA (Italian National Institute for Environmental Protection and Research - Geological Survey of Italy) in partnership with the 21 Regions and Self Governing Provinces. 21 of the 116 gauging stations and the related catchments have been selected on the basis of the length of the solid discharge observation period and excluding the catchments with dams located upstream the stations. The landslides inside the selected catchments have been extracted from the IFFI inventory, calculating the planimetric area of each landslide. Considering both the shallow and deep landslides, the landslide volume has been estimated using an empirical power law relation (landslide area vs. volume). The total landslide volume in the study areas and the average sediment yield measured at the gauging stations have been compared, analysing the behaviour of the basins which drainage towards the Tyrrhenian sea and the basins which drainage towards the Adriatic sea.

  20. Preliminary assessment of channel stability and bed-material transport in the Rogue River basin, southwestern Oregon

    USGS Publications Warehouse

    Jones, Krista L.; O'Connor, Jim E.; Keith, Mackenzie K.; Mangano, Joseph F.; Wallick, J. Rose

    2012-01-01

    This report summarizes a preliminary assessment of bed-material transport, vertical and lateral channel changes, and existing datasets for the Rogue River basin, which encompasses 13,390 square kilometers (km2) along the southwestern Oregon coast. This study, conducted to inform permitting decisions regarding instream gravel mining, revealed that: * The Rogue River in its lowermost 178.5 kilometers (km) alternates between confined and unconfined segments, and is predominately alluvial along its lowermost 44 km. The study area on the mainstem Rogue River can be divided into five reaches based on topography, hydrology, and tidal influence. The largely confined, active channel flows over bedrock and coarse bed material composed chiefly of boulders and cobbles in the Grants Pass (river kilometers [RKM] 178.5-152.8), Merlin (RKM 152.8-132.7), and Galice Reaches (RKM 132.7-43.9). Within these confined reaches, the channel contains few bars and has stable planforms except for locally wider segments such as the Brushy Chutes area in the Merlin Reach. Conversely, the active channel flows over predominately alluvial material and contains nearly continuous gravel bars in the Lobster Creek Reach (RKM 43.9-6.7). The channel in the Tidal Reach (RKM 6.7-0) is also alluvial, but tidally affected and unconfined until RKM 2. The Lobster Creek and Tidal Reaches contain some of the most extensive bar deposits within the Rogue River study area. * For the 56.6-km-long segment of the Applegate River included in this study, the river was divided into two reaches based on topography. In the Upper Applegate River Reach (RKM 56.6-41.6), the confined, active channel flows over alluvium and bedrock and has few bars. In the Lower Applegate River Reach (RKM 41.6-0), the active channel alternates between confined and unconfined segments, flows predominantly over alluvium, shifts laterally in unconfined sections, and contains more numerous and larger bars. * The 6.5-km segment of the lower

  1. Regional stochastic estimation of the groundwater catchment for distributed hydrological modelling

    NASA Astrophysics Data System (ADS)

    Wöhling, Th.; Samaniego, L.; Selle, B.; Kumar, R.; Zink, M.

    2012-04-01

    Rainfall-runoff modeling typically assumes that the groundwater catchment boundary coincide with the topographic one. While this is often a reasonable assumption for large and and mesoscale catchments (> 103 km2), this assumption may lead to large errors of streamflow in small scale catchments (≤ 102 km2), in particular in certain geological settings. The Ammer catchment (135 km2) in the upper Neckar river basin (Germany) is a prime example where groundwater and topographic catchment boundaries are significantly distinct from each other. The catchment is characterized by a complex sequence of fractured, karstic Triassic rock formations. These strata gently dip into ESE direction governing groundwater flow. Analysis of tracer experiments conducted in the 1970s indicates that the boundary overlap could be less than 80 percent. Further, a modelling study of the upper Neckar river basin using the distributed hydrological model mHM showed Nash-Sutcliff efficiencies (NSE) < 0.4 for simulated runoff in the Ammer sub-basin whereas higher efficiencies (NSE ~ 0.7) were obtained for most of the other 21 sub basins in the region. In this study we present a methodology to simultaneously estimate the regional groundwater catchment boundaries of the Ammer and its surrounding basins. In a first step we derive the best possible fit between mHM simulated and observed runoff for the individual sub-basins in the Ammer region and determine the trade-off between the fits of the individual basins using the muliobjective optimization method AMALGAM. We further present a strategy to estimate the regional groundwater catchment boundaries with the aim to improve runoff predictions in the Ammer catchment while not deteriorating runoff predictions in the surrounding basins. Our strategy involves a modification of the mHM model to account for ground water import/export from neighboring catchments while maintaining full mass balance of the surrounding basins. Groundwater catchment boundaries

  2. Preliminary vitrinite and bitumen reflectance, total organic carbon, and pyrolysis data for samples from Upper and Lower Cretaceous strata, Maverick Basin, south Texas

    USGS Publications Warehouse

    Hackley, Paul C.; Dennen, Kristin O.; Gesserman, Rachel M.; Ridgley, Jennie L.

    2009-01-01

    The Lower Cretaceous Pearsall Formation, a regionally occurring limestone and shale interval of 500-600-ft maximum thickness (Rose, 1986), is being evaluated as part of an ongoing U.S. Geological Survey (USGS) assessment of undiscovered hydrocarbon resources in onshore Lower Cretaceous strata of the northern Gulf of Mexico. The purpose of this report is to release preliminary vitrinite and bitumen reflectance, total organic carbon, and pyrolysis data for Pearsall Formation, Glen Rose Formation, Hosston Formation, Austin Group, and Eagle Ford Group samples from the Maverick Basin in south Texas in order to aid in the characterization of these strata in this area. The preliminary nature of this report and the data contained herein reflect that the assessment and characterization of these samples is a work currently in progress. Pearsall Formation subdivisions are, in ascending stratigraphic order, the Pine Island Shale, James Limestone, and Bexar Shale Members (Loucks, 2002). The Lower Cretaceous Glen Rose Formation is also part of the USGS Lower Cretaceous assessment and produces oil in the Maverick Basin (Loucks and Kerans, 2003). The Hosston Formation was assessed by the USGS for undiscovered oil and gas resources in 2006 (Dyman and Condon, 2006), but not in south Texas. The Upper Cretaceous Austin Group is being assessed as part of the USGS assessment of undiscovered hydrocarbon resources in the Upper Cretaceous strata of the northern Gulf of Mexico and, along with the Upper Cretaceous Eagle Ford Group, is considered to be an important source rock in the Smackover-Austin-Eagleford Total Petroleum System (Condon and Dyman, 2006). Both the Austin Group and the Eagle Ford Group are present in the Maverick Basin in south Texas (Rose, 1986).

  3. Modeling of facade leaching in urban catchments

    NASA Astrophysics Data System (ADS)

    Coutu, S.; Del Giudice, D.; Rossi, L.; Barry, D. A.

    2012-12-01

    Building facades are protected from microbial attack by incorporation of biocides within them. Flow over facades leaches these biocides and transports them to the urban environment. A parsimonious water quantity/quality model applicable for engineered urban watersheds was developed to compute biocide release from facades and their transport at the urban basin scale. The model couples two lumped submodels applicable at the basin scale, and a local model of biocide leaching at the facade scale. For the facade leaching, an existing model applicable at the individual wall scale was utilized. The two lumped models describe urban hydrodynamics and leachate transport. The integrated model allows prediction of biocide concentrations in urban rivers. It was applied to a 15 km2urban hydrosystem in western Switzerland, the Vuachère river basin, to study three facade biocides (terbutryn, carbendazim, diuron). The water quality simulated by the model matched well most of the pollutographs at the outlet of the Vuachère watershed. The model was then used to estimate possible ecotoxicological impacts of facade leachates. To this end, exceedance probabilities and cumulative pollutant loads from the catchment were estimated. Results showed that the considered biocides rarely exceeded the relevant predicted no-effect concentrations for the riverine system. Despite the heterogeneities and complexity of (engineered) urban catchments, the model application demonstrated that a computationally "light" model can be employed to simulate the hydrograph and pollutograph response within them. It thus allows catchment-scale assessment of the potential ecotoxicological impact of biocides on receiving waters.

  4. River Styles, a Geomorphic Approach to Catchment Characterization: Implications for River Rehabilitation in Bega Catchment, New South Wales, Australia.

    PubMed

    Brierley; Fryirs

    2000-06-01

    / Geomorphologically derived river styles provide an integrative framework for examining the interactions of biophysical processes in rivers throughout a drainage basin. Nine styles of river character and behavior are identified in Bega catchment, on the south coast of New South Wales, Australia. Headwater streams above the escarpment drain into gorges in the escarpment zone. In different subcatchments at the base of the escarpment, there are three different river styles, namely cut-and-fill, vertically accreted floodplains, and fans. Downstream of these river styles, in the rounded foothills of the catchment, throughput and transfer river styles convey sediments to the lowland plain. In one mid-catchment setting, a floodout traps sediment. Finally, along the lowland plain of Bega River, there is a floodplain accumulation river style. Downstream patterns of river styles in differing subcatchments of the Bega River basin are differentiated into three types, reflecting river adjustments to valley width, slope, and responses to human disturbance. Analysis of the character and condition of each river style in Bega catchment, and their downstream patterns, are used to provide a biophysical basis to prioritorize river management strategies. These reach-scale strategies are prioritorized within an integrative catchment framework. Conserving near-intact sections of the catchment is the first priority. Second, those parts of the catchment that have natural recovery potential are targeted. Finally, rehabilitation priorities are considered for highly degraded reaches. At these sites, erosion and sedimentation problems may reflect irreversible changes to river structure. PMID:10790530

  5. Simulation of mine drainage for preliminary development of oil shale and associated minerals, Piceance basin, northwestern Colorado

    USGS Publications Warehouse

    Taylor, O. James

    1986-01-01

    The Piceance basin of northwestern Colorado contains large resources of oil shale, nahcolite, and dawsonite. Development of these minerals will require drainage of water from mines. A six-layer hydrologic model of the basin was prepared to simulate mine drainage for mineral development. Streams and major tributaries were simulated as head-dependent nodes. Stream nodes were gaining or losing, but the rate of loss was constrained by the leakance of the streambed and the stream stage. Springs also were simulated as head-dependent nodes that stop flowing if the aquifer head declines below the spring orifice. (USGS)

  6. The contribution of sea-level rise to flooding in large river catchments

    NASA Astrophysics Data System (ADS)

    Thiele-Eich, I.; Hopson, T. M.; Gilleland, E.; Lamarque, J.; Hu, A.; Simmer, C.

    2012-12-01

    Climate change is expected to both impact sea level rise as well as flooding. Our study focuses on the combined effect of climate change on upper catchment precipitation as well as on sea-level rise at the river mouths and the impact this will have on river flooding both at the coast and further upstream. We concentrate on the eight catchments of the Amazonas, Congo, Orinoco, Ganges/Brahmaputra/Meghna, Mississippi, St. Lawrence, Danube and Niger rivers. To assess the impact of climate change, upper catchment precipitation as well as monthly mean thermosteric sea-level rise at the river mouth outflow are taken from the four CCSM4 1° 20th Century ensemble members as well as from six CCSM4 1° ensemble members for the RCP scenarios RCP8.5, 6.0, 4.5 and 2.6. Continuous daily time series for average catchment precipitation and discharge are available for each of the catchments. To arrive at a future discharge time series, we used these observations to develop a simple statistical hydrological model which can be applied to the modelled future upper catchment precipitation values. The analysis of this surrogate discharge time series alone already yields significant changes in flood return levels as well as flood duration. Using the geometry of the river channel, the backwater effect of sea-level rise is incorporated in our analysis of both flood frequencies and magnitudes by calculating the effective additional discharge due to the increase in water level at the river mouth outflow, as well as its tapering impact upstream. By combining these effects, our results focus on the merged impact of changes in extreme precipitation with increases in river height due to sea-level rise at the river mouths. Judging from our preliminary results, the increase in effective discharge due to sea-level rise cannot be neglected when discussing late 21st century flooding in the respective river basins. In particular, we find that especially in countries with low elevation gradient, flood

  7. Preliminary thermal-maturity map of the Cameo and Fairfield or equivalent coal zone in the Piceance Creek Basin, Colorado

    USGS Publications Warehouse

    Nuccio, Vito F.; Johnson, Ronald C.

    1983-01-01

    This map was prepared in cooperation with the U.S. Department of Energy's Western Gas Sands Project and was constructed to show the thermal maturity of the Upper Cretaceous Mesaverde Formation (or Group) in the Piceance Creek Basin. The ability of a source rock to generate oil and gas is directly related to its kerogen content and thermal maturity; hence, thermal maturity is commonly used as an exploration tool. This publication consists of two parts: a coal rank map for the basinwide Cameo and Fairfield or equivalent coal zone and three cross sections showing the variation in a coal rank for the entire Mesaverde. Structure contours on the map show the top of the Rollins Sandstone Member of the Mesaverde Formation and its equivalent the Trout Creek Sandstone Member of the Iles Formation of the Mesaverde Group, which immediately underlie the Cameo and Fairfield zone. The structure contours show the fairly strong correlation between structure and coal rank in the basin, suggesting that maximum overburden was the key factor in determining the coal ranks. Even in the southern part of the basin where extensive plutonism occurred during the Oligocene, coal ranks still generally follow structure; indicating that the plutons had little affect on the coals. On the cross sections both the top of the Rollins and Trout Creek, and the top of the Mesaverde Formation/Group are shown. A complete analysis of the entire Mesaverde in the basin would require more information than is presently available.

  8. Nanophytoplankton Diversity Across the Oligohaline Lake Pontchartrain Basin Estuary: A Preliminary Investigation Utlizing psbA Sequences

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Lake Pontchartrain basin estuary is shallow, wind-driven and comprised of two large embayments (1645 km2). Salinities range from freshwater in the west to 8 ppt in the east near the Gulf of Mexico. Phytoplankton investigations spanning this salinity gradient or examining small photoautotrophs ar...

  9. Preliminary selection of storm-water basins suitable for infiltration of reclaimed water in Nassau County, Long Island, New York

    USGS Publications Warehouse

    Aronson, D.A.

    1976-01-01

    A survey was made of 205 storm-water basins south of the ground-water divide and north of Hempstead Turnpike in Nassau County, Long Island, N.Y., to determine which would be best suited for infiltration of reclaimed water. Selection depended on infiltration area, location with respect to the ground-water divide and to planned transmission mains, tendency to retain storm runoff, underlying lithology, and depth to water table. The total maximum infiltration area of 14 selected basins is 60.2 acres, or 2,620,900 square feet (0.24 square kilometers). If 5-foot (1.5-meter) -high partitions were constructed in the basins to divide each into approximately equal halves and reclaimed water were applied in half of each basin to a depth of 5 feet (1.5 meters), using an application-rest cycle, a total area of 25.2 acres (0.10 square kilometers) would be available for supplemental recharge; the remaining infiltration area could be used for disposal of storm runoff. (Woodard-USGS)

  10. Collaborative Adaptation Planning for Water Security: Preliminary Lessons, Challenges, and the Way Forward for Maipo Basin Adaptation Plan, Chile

    NASA Astrophysics Data System (ADS)

    Vicuna, S.; Scott, C. A.; Bonelli, S.; Bustos, E.; Meza, F. J.

    2014-12-01

    The Maipo basin holds 40% of Chile's total population and almost half of the country's Gross Domestic Product. The basin is located in the semiarid central region of the country and, aside from the typical pressures of growth in developing country basins, the Maipo river faces climate change impacts associated with a reduction in total runoff and changes in its seasonality. Surface water is the main water source for human settlements and economic activities including agriculture. In 2012 we started a research project to create a climate variability and climate change adaptation plan for the basin. The pillars of the plan are co-produced by researchers and a Scenario Building Team (SBT) with membership of relevant water and land use stakeholders (including from civil society, public and private sectors) in the basin. Following similar experiences in other regions in the world that have faced the challenges of dealing with long term planning under uncertainty, the project has divided the task of developing the plan into a series of interconnected elements. A critical first component is to work on the desired vision(s) of the basin for the future. In this regards, the "water security" concept has been chosen as a framework that accommodates all objectives of the SBT members. Understanding and quantifying the uncertainties that could affect the future water security of the basin is another critical aspect of the plan. Near and long term climate scenarios are one dimension of these uncertainties that are combined with base development uncertainties such as urban growth scenarios. A third component constructs the models/tools that allows the assessment of impacts on water security that could arise under these scenarios. The final critical component relates to the development of the adaptation measures that could avoid the negative impacts and/or capture the potential opportunities. After two years in the development of the adaptation plan a series of results has been

  11. Flash flood warning in mountainaious areas: using damages reports to evaluate the method at small ungauged catchments

    NASA Astrophysics Data System (ADS)

    Defrance, Dimitri; Javelle, Pierre; Ecrepont, Stéphane; Andreassian, Vazken

    2013-04-01

    floods. Furthermore, many events are missed, since flash floods can occur very locally. In this study, we try to evaluate the results on observations collected by witnesses on 'real' ungauged catchments. The proposed method consists to use an historical data-base of flood damages reports. These data have been collected by local authorities (RTM). Finally, 139 ungauged locations were considered, where we simulated discharges for the entire 1997-2006 period. The comparison of these modelled discharges with the occurrence of an observed discharge makes it possible to determine a local 'modelled' discharge threshold above it most of the damages are observed. The pertinence of this threshold (and consequently of the model used for the simulation) is assessed by considering classical contingency statistics: probability of detection (POD), false alarm rate (FAR) and critical success index (CSI). The main advantage of this historical approach is the availability of many events in the database on very small catchments (50% less than 20 km²). The preliminary results show that on gauged basins, the base flow and the snowmelt added modules improve the performance of the AIGA method when locally calibrated. But when results are applied on real ungauged catchments, improvements become less obvious, with a small advantage for neighbour's method. These results shows the difficulty arising with ungauged catchments, specially when target catchments are smaller than the gauged 'parents'. It also illustrates the interest of the damages database used as 'proxy' data to investigate the model performances at smaller scales. This work has been done in the framework of the RHYTMME project, with the financial support of the European Union, the Provence-Alpes-Côte d'Azur Region and the French Ministry in charge of Ecology.

  12. Preliminary study of the uranium potential of the northern part of the Durham Triassic Basin, North Carolina

    SciTech Connect

    Harris, W.B.; Thayer, P.A.

    1981-09-01

    This report presents results of a four-channel spectrometric survey of the northern part of the Durham Triassic basin and adjacent Piedmont, North Carolina. Gamma-ray spectrometric measurements were obtained at 112 localities from 136 different lithologies. The nominal sampling density in the Durham Basin is one site per 2 mi/sup 2/. Surface radiometric surveys reveal no anomalous radioactivity in the northern part of the Durham Basin. Uranium concentrations in Triassic rocks are from 0.6 to 9.7 ppM and average 2.9 ppM. Mudrocks contain from 1.3 to 9.7 ppM, and the average is 4.5 ppM. Sandstones contain from 0.6 to 8.8 ppM, and the average is 2.5 ppM. Fanglomerates contain the lowest concentrations of uranium, from 1.4 to 2.0 ppM, for an average of 1.8 ppM. Uranium/thorium ratios average 0.27 for Triassic rocks and are from 0.04 to 1.85. The mean log uranium/log thorium for Triassic rocks is 0.37. Mudrock has the highest average uranium/thorium ratio (0.32), and the range is 0.09 to 0.66. Sandstones have an average uranium/thorium ratio of 0.26, and the range is 0.04 to 1.85. Fanglomerates have the lowest range uranium/thorium ratio (0.19), and the range is 0.12 to 0.19. On the basis of surface radiometric surveys and geologic studies, it is believed that sedimentary strata in the northern part of the Durham Basin are poor targets for further uranium exploration. This conclusion is based on the lack of favorable characteristics commonly present in fluvial uranium deposits. Among these are: (1) carbonaceous material is absent in Triassic rocks of the northern basin, (2) indicators of a reduzate facies in sandstones are not present, and (3) no tuffaceous beds are associated with sediments in the northern Durham Basin.

  13. Prediction of reservoir quality and porosity basement in sandstones of the Pakawau and Kapuni groups, Taranaki basin, New Zealand - Preliminary results

    SciTech Connect

    Bloch, S.; Helmold, K.P. )

    1990-05-01

    Vitrinite reflectance porosity and porosity permeability relationships were established in 12 wells during a preliminary investigation of arkosic sandstones of the Pakawau and Kapuni groups (Late Cretaceous through Eocene) in the Taranaki basin of New Zealand. These relationships were used in conjunction with geohistory analysis to determine the economic basement and to predict porosity and permeability in the sandstones prior to drilling. Medium- to coarse-grained Kapuni and Pakawau sandstones, at vitrinite reflectance values of 0.65-0.70% R{sub 0} and higher, are not expected to have porosities and permeabilities greater than 10% and 1 md, respectively. Results obtained from a subsequently drilled well confirmed the validity of this approach. Meaningful reservoir quality predictions can be obtained only if (1) the lithological characteristics of the sandstones are accurately predicted from facies analysis, (2) the realistic input parameters, based on seismic stratigraphy and regional geologic interpretations, are used in basin modeling, and (3) the sandstones were not affected by hydrothermal activity associated with regional volcanism.

  14. Seismic stratigraphy, Cenozoic basin evolution, and sedimentary history of the southern part of Baffin Bay, Canada: preliminary results of ODP Leg 105

    SciTech Connect

    Srivastava, S.P.; Arthur, M.A.

    1987-05-01

    Ocean Drilling Program Leg 105 drilled Site 645 (2018 m water depth) in southern Baffin Bay, recovering 1147 m of lowermost Miocene to Quaternary sediments. The drilling results, a regional multichannel seismic net, and industry wells on the Greenland margin and in Davis Strait allow us to reconstruct the late Paleogene-Quaternary tectonic and sedimentary history in southern Baffin Bay. A deep regional seismic reflector (R3) that extends across the central part of Baffin Bay and lies at a depth of about 1540 m below sea floor in the vicinity of Site 645 was not reached, but their results suggest a late Eocene-early Oligocene age for the horizon. That age, depositional sequences in seismic records, and results of a preliminary subsidence model for the site indicate that subsidence, following rifting of the basin, began between 63 and 55 Ma, and that spreading ceased by the Oligocene, in agreement with plate tectonic models for the region. This basin probably was not a major conduit for water-mass exchange between the Arctic and Atlantic Oceans prior to the Eocene. Silty and sandy mud and muddy sand (porosities 20-30%), deposited in relatively deep water at rates of 30 to 140 m/m.y., dominate the sedimentary sequence at Site 645. Organic carbon contents average near 1% over much of the sequence, with a maximum of 3%, but the organic matter has low hydrogen indices and is predominantly of terrestrial origin. The paucity of siliceous and calcareous biota, the neritic aspect of diatom and dinocyst floras, and other indicators suggest that cool, subsaline, low-productivity surface waters predominated from at least the Miocene to the present. Regional reflector (R2) marks the onset of vigorous deep-water circulation in the basin in the middle Miocene - perhaps the first major penetration of cold Arctic water masses into the Labrador Sea via Baffin Bay.

  15. Catchment classification and model parameter transfer with a view to regionalisation

    NASA Astrophysics Data System (ADS)

    Ley, Rita; Hellebrand, Hugo; Casper, Markus C.

    2013-04-01

    strong connection between runoff behaviour, catchment properties and model parameter sets within the classes. The next step is the classification of the catchments based on calibrated model parameters with SOM. If the parameter sets show significant relation to the previous classification, model parameters may be used as an easy accessible start for catchment description. Physiographic and climatic properties can now be related directly to model parameters, corroborating a quantitative approach to basin classification. Furthermore, one representative parameter set for each class of catchments can describe the runoff behaviour for a whole class. The description of runoff behaviour by calibrated model parameters of a conceptual model in relation to classes of physically and climatically similar catchments can facilitates catchment description, classification and regionalisation and provides insight into the processes and functioning of catchments. The use of calibrated model parameters for classification instead of time-consuming description of the runoff behaviour with event runoff coefficients offers an attractive alternative for regionalisation.

  16. The Effect of Terrain Aspect on Interannual Variability of Hydrologic Response in Mountainous Catchments in New Mexico

    NASA Astrophysics Data System (ADS)

    Zapata, X.; Troch, P. A.; McIntosh, J. C.; Broxton, P. D.; Brooks, P. D.

    2012-12-01

    The aspect of the land surface in mid and high latitudes control hydrological response through differences in energy fluxes, prevailing winds, snow processes, evaporation and transpiration. In the Valles Caldera National Preserve (VCNP) in northern New Mexico, recent research has shown that north facing terrains accumulate thicker snow packs, the snow cover duration is longer, the soil moisture content is higher and hillslopes have longer water transit times. These findings suggest that catchments with a predominant north facing aspect are expected to have more water available and consequently a different hydrological response than catchments characterized by a different land orientation. This poster presents four years (2008-2011) of hydrological data in the VCNP and shows the hydrological response to interannual climate variability in mountainous catchments draining along different aspects. This investigation focuses on three perennial catchments draining Redondo Peak (3435m): La Jara (LJ; 3.67 km2), History Grove (HG; 2.42 km2) and Upper Jaramillo (UJ; 3.06 km2). The three catchments range in elevation between 2680 m and 3429 m. They share similar topographic characteristics, climate, vegetation and a complex geology. The most predominant north facing catchment is UJ; HG and LJ have both a predominant east facing aspect. This study is based on empirical observations of basin response and it has been carried out by way of monitoring physical amount, intensity and timing of water entering and leaving the catchments using the available meteorological data in the region and the instrumented network installed by the Jemez River Basin and Santa Catalina Mountains Critical Zone Observatory (http://www.czo.arizona.edu/). The climate in the region is semi-arid, continental and highly variable. For the water years (WY) 2008 and 2011 annual precipitation was 86% and 71% below the mean (P=711.5mm), and during WY 2009 and 2010, annual precipitation was 4% and 1% above the

  17. Preliminary assessment of climatic change during late Wisconsin time, southern Great Basin and vicinity, Arizona, California, and Nevada

    SciTech Connect

    Spaulding, W.G.; Robinson, S.W.; Paillet, L.

    1984-12-31

    Concentration and relative abundance of plant macrofossils illustrate compositional variations in samples from the Eleana Range-2 packrat midden. Nine macrofossil assemblages spanning 6500 radiocarbon years record local vegetational changes in the southern Great Basin of Nevada during the last one-half of the late Wisconsin glacial age. The vegetation of the Eleana Range-2 site, on a south-facing slope at 1810 meters altitude, was characterized by limber pine and steppe shrubs, from before 17,100 radiocarbon years before present to shortly after 13,200 radiocarbon years before present. Changes toward a more xerophytic plant association at the site began by 16,000 radiocarbon years before present, culminating in a major change to pinyon-juniper woodland between 13,200 and 11,700 radiocarbon years before present. The climatic reconstruction for the late full glacial episode (17,000 to 15,000 radiocarbon years before present) that is proposed to account for limber pine-shrub vegetation in the Eleana Range is characterized by increased winter precipitation, and very little summer rainfall. A major warming trend occurred between about 16,000 and 12,000 radiocarbon years before present and was largely concordant with major dessication of closed lakes in the southern Great Basin. A period of wetter conditions in the southern Great Basin during the latest Wisconsin may have incorporated increased precipitation during both the summer and winter, and lower temperatures during the winter, relative to the present. 93 references, 5 figures, 6 tables.

  18. Towards catchment classification in data-scarce regions

    DOE PAGESBeta

    Auerbach, Daniel A.; Buchanan, Brian P.; Alexiades, Alex V.; Anderson, Elizabeth P.; Encalada, Andrea C.; Larson, Erin I.; McManamay, Ryan A.; Poe, Gregory L.; Walter, M. Todd; Flecker, Alexander S.

    2016-01-29

    Assessing spatial variation in hydrologic processes can help to inform freshwater management and advance ecological understanding, yet many areas lack sufficient flow records on which to base classifications. Seeking to address this challenge, we apply concepts developed in data-rich settings to public, global data in order to demonstrate a broadly replicable approach to characterizing hydrologic variation. The proposed approach groups the basins associated with reaches in a river network according to key environmental drivers of hydrologic conditions. This initial study examines Colorado (USA), where long-term streamflow records permit comparison to previously distinguished flow regime types, and the Republic of Ecuador,more » where data limitations preclude such analysis. The flow regime types assigned to gages in Colorado corresponded reasonably well to the classes distinguished from environmental features. The divisions in Ecuador reflected major known biophysical gradients while also providing a higher resolution supplement to an existing depiction of freshwater ecoregions. Although freshwater policy and management decisions occur amidst uncertainty and imperfect knowledge, this classification framework offers a rigorous and transferrable means to distinguish catchments in data-scarce regions. The maps and attributes of the resulting ecohydrologic classes offer a departure point for additional study and data collection programs such as the placement of stations in under-monitored classes, and the divisions may serve as a preliminary template with which to structure conservation efforts such as environmental flow assessments.« less

  19. Towards catchment classification in data-scarce regions

    SciTech Connect

    Auerbach, Daniel A.; Buchanan, Brian P.; Alexiades, Alex V.; Anderson, Elizabeth P.; Encalada, Andrea C.; Larson, Erin I.; McManamay, Ryan A.; Poe, Gregory L.; Walter, M. Todd; Flecker, Alexander S.

    2015-12-01

    Assessing spatial variation in hydrologic processes can help to inform freshwater management and advance ecological understanding, yet many areas lack sufficient flow records on which to base classifications. Seeking to address this challenge, we apply concepts developed in data-rich settings to public, global data in order to demonstrate a broadly replicable approach to characterizing hydrologic variation. The proposed approach groups the basins associated with reaches in a river network according to key environmental drivers of hydrologic conditions. This initial study examines Colorado (USA), where long-term streamflow records permit comparison to previously distinguished flow regime types, and the Republic of Ecuador, where data limitations preclude such analysis. The flow regime types assigned to gages in Colorado corresponded reasonably well to the classes distinguished from environmental features. The divisions in Ecuador reflected major known biophysical gradients while also providing a higher resolution supplement to an existing depiction of freshwater ecoregions. Although freshwater policy and management decisions occur amidst uncertainty and imperfect knowledge, this classification framework offers a rigorous and transferrable means to distinguish catchments in data-scarce regions. The maps and attributes of the resulting ecohydrologic classes offer a departure point for additional study and data collection programs such as the placement of stations in under-monitored classes, and the divisions may serve as a preliminary template with which to structure conservation efforts such as environmental flow assessments.

  20. A detailed study on Catchment delineation for Urban areas

    NASA Astrophysics Data System (ADS)

    Sharma, B.; B M, A.; Lohani, B.; Jain, A.

    2015-12-01

    Urban flood modelling is carried out for predicting, analysing and planning of floods in urban areas. Catchment information is an important input for urban flood modelling. Automatic catchment delineation at gully gratings for urban areas using appropriate software packages/methods along with an appropriate set of input data and parameters is still a research challenge. Considering the above, the aim of this study is to (i) identify the best suitable software for automatic catchment delineation by considering gully grating as outlet (ii) understand the effect of resolution of DEM on catchments delineated (iii) understand whether to consider DEM or DSM for catchment delineation (iv) study the effect of grid based and TIN based DEM. In this study catchment delineation has been investigated considering IIT Kanpur as a study site. LiDAR data are used to generate DEM/DSM of the study area. A comparative study of catchment delineation has been carried out between ArcHydro 10.1, BASINS 4.1, ArcSWAT, WMS 7.1, and HEC-GeoHMS approaches. Catchments have been delineated for different drainage threshold areas using gully grating points as outlets and their effects have been compared for the aforementioned software. In order to understand the effect of resolution of data, DEMs of 1m and 5m resolution have been generated and compared against each other. Effects of building ridge lines and their contribution to catchment delineation has been studied by generating a DSM of 1m resolution, and comparing the results with catchments delineated using 1m DEM. In order to assess the effects of the types of DEM over catchment delineation, a grid based DEM and TIN based DEM are compared against each other using WMS 7.1 software. The results for the catchment delineation using various software illustrate that ArcHydro 10.1 performs better than any other aforementioned software. Also, it is noted that varied drainage threshold area parameters, resolutions of DEM, selection of DEM

  1. Downward approach at the catchment scale or at the catchment set scale?

    NASA Astrophysics Data System (ADS)

    Perrin, C.; Andréassian, V.; Le Moine, N.

    2009-04-01

    examples drawn from our past and current research activities based on large data sets. Surprisingly, the level of model complexity that could be achieved following this approach is quite low, which may indicate that the current understanding of the main features of hydrological catchment behaviour is not as good as many models may suggest (Michel et al., 2006). We hope that this communication will stimulate discussion on this issue and encourage more hydrologists to work on large sets of catchments (Andréassian et al., 2006). References: Andréassian, V., Hall, A., Chahinian, N., Schaake, J. (2006). Introduction and synthesis: Why should hydrologists work on a large number of basin data sets? IAHS Publication n° 307, 1-5. Klemes, V. (1983). Conceptualisation and scale in hydrology. Journal of Hydrology, 65, 1-23. Michel, C., Perrin, C., Andréassian, V. Oudin, L. and Mathevet, T. (2006). Has basin scale modelling advanced far beyond empiricism, IAHS Publication n° 307, 108-116. Sivakumar, B. (2008). Dominant processes concept, model simplification and classification framework in catchment hydrology, Stoch. Envrion. Res. Risk. Assess., 22, 737-748. Sivapalan, M., Blöschl, G., Zhang, L. and Vertessy, R. (2003). Downward approach to hydrological prediction. Hydrological Processes, 17, 2101-2111.

  2. How old is upland catchment water?

    NASA Astrophysics Data System (ADS)

    Hofmann, Harald; Cartwright, Ian; Morgenstern, Uwe; Gilfedder, Benjamin

    2014-05-01

    Understanding the dynamics of water supply catchments is an essential part of water management. Upland catchments provide a continuous, reliable source of high quality water not only for some of the world's biggest cities, but also for agriculture and industry. Headwater streams control river flow in lowland agricultural basins as the majority of river discharge emerges from upland catchments. Many rivers are perennial and flow throughout the year, even during droughts. However, it is still unclear how reliable and continuous upland catchment water resources really are. Despite many efforts in upland catchment research, there is still little known about where the water is stored and how long it takes to travel through upper catchments. Resolving these questions is crucial to ensure that this resource is protected from changing land use and to estimate potential impacts from a changing climate. Previous research in this important area has been limited by existing measurement techniques. Knowledge to date has relied heavily on the use of variation in stable isotope signals to estimate the age and origin of water from upland catchments. The problem with relying on these measures is that as the water residence time increases, the variation in the stable isotope signal decreases. After a maximum period of four years, no variation can be detected This means that to date, the residence time in upland catchments is likely to have been vastly underestimated. Consequently, the proportion of water flow out of upland river catchments to the total river flow is also underestimated. Tritium (3H) combines directly with water molecules and enters the flow paths with the infiltrating water. Its half-life (12.32 years) makes it ideal to describe residence times in upper catchment reservoirs as it can theoretically measure water up to about 150 years old. The bomb pulse peak in the southern hemisphere was several orders of magnitude lower than in the northern hemisphere. Hence the

  3. Elemental composition in sediments and water in the Trancão river basin. A preliminary study

    NASA Astrophysics Data System (ADS)

    Araújo, F.; Pinheiro, T.; Alves, L. C.; Valério, P.; Gaspar, F.; Alves, J.

    1998-03-01

    The Trancão river basin, located in the Lisbon area shows preoccupying pollution levels, that constitute a threat to public health and the ecological system. This work reports on the results obtained in the analysis of surface sediments (EDXRF) and water (PIXE) collected in the wet and dry season during 1996. In general, bulk sediments and water show high concentration levels for some heavy metals like Cr, Cu, Zn and Pb. The elemental contents variation of samples collected at the different sites of the river basin were large, owing apparently to pollution sources, seasonal variabilities and grain size distribution (sediments). In the dry season, effluents (industrial and domestic) showed a stronger influence on the sediment composition. High levels of As and Br were found in the water that can be attributed to extended sources like sewage sludge and fertilizers. In some locations, the metals, Ca and organic matter enrichment could be associated with a paper mill and metal processing industry (high levels of Cr). At the estuary, the decrease of metal content determined in the sampled water indicates the flocculation of dissolved organic and inorganic materials. However, no effects were found for the surface sediment metal content, probably due to a dilution with materials from the Tagus inner estuary (the largest in Portugal).

  4. Distribution of organic carbon and petroleum source rock potential of Cretaceous and lower Tertiary carbonates, South Florida Basin: preliminary results

    USGS Publications Warehouse

    Palacas, James George

    1978-01-01

    Analyses of 134 core samples from the South Florida Basin show that the carbonates of Comanchean age are relatively richer in average organic carbon (0.41 percent) than those of Coahuilan age (0.28 percent), Gulfian age (0.18 percent) and Paleocene age (0.20 percent). They are also nearly twice as rich as the average world, wide carbonate (average 0.24 percent). The majority of carbonates have organic carbons less than 0.30 percent but the presence of many relatively organic rich beds composed of highly bituminous, argillaceous, highly stylolitic, and algal-bearing limestones and dolomites accounts for the higher percentage of organic carbon in some of the stratigraphic units. Carbonate rocks that contain greater than 0.4 percent organic carbon and that might be considered as possible petroleum sources were noted in almost each subdivision of the Coahuilan and Comanchean Series but particularly the units of Fredericksburg 'B', Trinity 'A', Trinity 'F', and Upper Sunniland. Possible source rocks have been ascribed by others to the Lower Sunniland, but lack of sufficient samples precluded any firm assessment in this initial report. In the shallower section of the basin, organic-rich carbonates containing as much as 3.2 percent organic carbon were observed in the lowermost part of the Gulfian Series and carbonate rocks with oil staining or 'dead' and 'live oil' were noted by others in the uppermost Gulfian and upper Cedar Keys Formation. It is questionable whether these shallower rocks are of sufficient thermal maturity to have generated commercial oil. The South Florida basin is still sparsely drilled and produces only from the Sunniland Limestone at an average depth of 11,500 feet (3500 m). Because the Sunniland contains good reservoir rocks and apparently adequate source rocks, and because the success rate of new oil field discoveries has increased in recent years, the chances of finding additional oil reserves in the Sunniland are promising. Furthermore, the

  5. Regional magnetic and gravity features of the Gibson Dome area and surrounding region, Paradox Basin, Utah : a preliminary report

    USGS Publications Warehouse

    Hildenbrand, T.G.; Kucks, R.P.

    1983-01-01

    Analyses of regional gravity and magnetic anomaly maps have been carried out to assist in the evaluation of the Gibson Dome area as a possible repository site for high-level radioactive waste. Derivative, wavelength-filtered, and trend maps were compiled to aid in properly locating major geophysical trends corresponding to faults, folds, and lithologic boundaries. The anomaly maps indicate that Paradox Basin is characterized by a heterogeneous Precambrian basement, essentially a metamorphic complex of gneisses and schist intruded by granitic rocks and mafic to ultramafic bodies. Interpreted Precambrian structures trend predominantly northwest and northeast although east-west trending features are evident. Prominent gravity lows define the salt anticlines. Structural and lithologic trends in the Gibson Dome area are closely examined. Of greatest interest is a series of circular magnetic highs trending west-northwest into the Gibson Dome area. Further study of the exact definition and geologic significance of this series of anomalies is warranted.

  6. Evolution of Lake Chad Basin hydrology during the mid-Holocene: A preliminary approach from lake to climate modelling

    NASA Astrophysics Data System (ADS)

    Sepulchre, Pierre; Schuster, Mathieu; Ramstein, Gilles; Krinnezr, Gerhard; Girard, Jean-Francois; Vignaud, Patrick; Brunet, Michel

    2008-03-01

    During the mid-Holocene (6000 yr Before Present, hereafter yr BP) the Chad Basin was occupied by a large endoreic lake, called Lake Mega-Chad. The existence of this lake at that time seems linked to increased monsoonal moisture supply to the Sahel and the Sahara, which in turn was probably ultimately caused by variations in the orbital forcing and higher temperature gradients between ocean and continent. This study provides a synthesis of several works carried out on the Lake Chad Basin and analyses the results of a simulation of the mid-Holocene climate with an Atmosphere General Circulation Model (LMDZ for Laboratoire de Météorologie Dynamique, IPSL Paris), with emphasis on the possible conditions leading to the existence of Lake Mega-Chad. The aim is to define the best diagnostics to understand which mechanisms lead to the existence of the large lake. This paper is the first step of an ongoing work that intends to understand the environmental conditions that this part of Africa experienced during the Upper Miocene (ca. 7 Ma BP), an epoch that was contemporaneous with the first known hominids. Indeed, early hominids of Lake Chad Basin, Australopithecus bahrelghazali [ Brunet, M., et al., 1995. The first australopithecine 2500 kilometers west of the Rift-Valley (Chad). Nature, 378(6554): 273-275] and Sahelanthropus tchadensis [Brunet, M., et al., 2002. A new hominid from the Upper Miocene of Chad, central Africa. Nature, 418(6894): 145-151; Brunet, M., et al., 2005. New material of the earliest hominid from the Upper Miocene of Chad. Nature, 434(7034): 752-755] are systematically associated with wet episodes that are documented for 7 Ma BP [Vignaud, P., et al., 2002. Geology and palaeontology of the Upper Miocene Toros-Menalla hominid locality, Chad. Nature, 418(6894): 152-155] and testified by extended lacustrine deposits (diatomites, pelites, various aquatic fauna). Because the mid-Holocene was the last such mega-lake episode, our aim here is to assess the

  7. New thermo-mechanical fluid flow modeling of multiscale deformations in the Levant basin: formulation, verification, and preliminary analysis

    NASA Astrophysics Data System (ADS)

    Belferman, Mariana; Katsman, Regina; Agnon, Amotz

    2015-04-01

    The Levant has been repeatedly devastated by numerous earthquakes since prehistorical time, as recorded in historical documents, archaeological ruins, and sedimentary archives. In order to understand the role of the dynamics of the water bodies in triggering the deformations in the Levant basin, a new theoretical thermo-mechanical model is constructed and extended by including a fluid flow component. The latter is modeled on a basis of two-way poroelastic coupling with momentum equation. This coupling is essential to capture the fluid flow evolution induced by dynamic water loading and to resolve porosity changes. All the components of the model, namely elasticity, creep, plasticity, fluid flow, etc., have been extensively verified and presented. Results of the initial sensitivity analysis addressing the relative importance of each process in earthquakes triggering are discussed. The rich archives of pre-instrumental destructive earthquakes will set constraints for future modeling under the present formulation.

  8. Preliminary results of chronostratigraphic field work, OSL-dating and morphogenetic reconstruction of an alluvial apron at Alborz southern foothill, Damghan basin, Iran

    NASA Astrophysics Data System (ADS)

    Büdel, Christian; Fuchs, Markus; Majid Padashi, Seyed; Baumhauer, Roland

    2014-05-01

    Here we present preliminary results of a chronostratigraphic study of an alluvial fan in the Damghan Basin, northern Iran. The basin sediments date back to the Mio- and Pliocene and therefore represent the starting point of alluvial fan aggradation. Today, the still active alluvial fans prograde from the Albors Mountain ranges and sit on the older sediment bodies. In this study, our focus is on the late Pleistocene to Holocene alluvial fan sedimentation history. The upper stratigraphy of the alluvial fans and intercalated lake deposits is characterized by six individual layers of gravels and fines, representing six different stratigraphic units. These units are described and classified by detailed geomorphological and stratigraphic mapping. To establish an alluvial fan chronology, six profiles were sampled for OSL dating. As expected, due to the high-energy transport system of alluvial fan aggradation in semi-desert environments, OSL dating of these sediments is challenging due to the problem of insufficient bleaching. Consequently, most of the samples are interpreted as maximum ages. However, the measurements show a consistent internal age structure and the overall OSL-based chronology is in agreement with the age model derived from our geomorphological analysis. As a first interpretation, based on surveyed geomorphological features and chronological analysis, we could identify seven morphodynamic phases, leading to a genetic model of alluvial fan aggradation. The oldest Pleistocene age estimate is derived from a former lake terrace. The following ages represent ongoing lake sediment deposition and the development of a proximal and mid-fan gravel cover. After the youngest lake deposits were accumulated within the Holocene, the lake starts to retreat and small alluvial fans are filling up the former lake bottom. This last sedimentation phase can be divided in at least two sub-phases, probably coupled to a lateral shifting of the active depositional lobe and to the

  9. Long-term and short-term erosion rates in river catchments of the Rhenish Massif and the Black Forest, Germany

    NASA Astrophysics Data System (ADS)

    Meyer, H.; Hetzel, R.; Strauss, H.

    2007-12-01

    We constrained long-term erosion rates from the concentration of cosmogenic 10Be in stream sediments in order to quantify the Late Quaternary denudation history of mountain ranges in central Europe. Four different catchments in Germany, ranging in size from 8 to 379 km2 were investigated. Two of them, the Aabach and Möhne catchments drain predominantly low-grade Paleozoic metasediments. The other two, the Gutach and Acher catchments in the Black Forest are situated in Late Paleozoic granites. Erosion rates derived from the 10Be concentrations range from 29 to 86 mm/ka in the Rhenish Massif and from 26 to 91 mm/ka in the Black Forest. These spatially-averaged erosion rates integrate over the past 7 to 23 ka. Central to our investigation are questions concerning the relative importance of lithology and catchment relief on long-term erosion rates. Short-term erosion rates for all catchments were quantified by combining the amounts of suspended and dissolved loads in water samples with water discharge data and basin area. By analyzing the stable isotope signatures δ18O of river water and δ13C of dissolved anorganic carbon and by taking into account the precipitation and evaporation we corrected the dissolved load for organic, atmospheric and anthropogenic inputs. The preliminary short-term erosion rates vary between 9 and 33 mm/ka and are only about one third of the erosion rates derived from 10Be. The short-term erosion rates are complemented by erosion rates derived from the volume of sediment stored behind reservoirs of known age. These erosion rates range from 2 to 13 mm/ka and are lower than the erosion rates derived from river loads, as they do not take into account the dissolved load. Furthermore, we focused on dependence of lithology and land use on short-term erosion rates.

  10. Noble Gas geochemistry of the newly discovered hydrothermal fields in the Gulf of California: preliminary He-isotope ratios from the Alarcon Rise and Pescadero basin vent sites

    NASA Astrophysics Data System (ADS)

    Spelz, R. M.; Lupton, J. E.; Evans, L. J.; Zierenberg, R. A.; Clague, D. A.; Neumann, F.; Paduan, J. B.

    2015-12-01

    Numerous submarine deep-sea hydrothermal vents related to volcanic activity of the East Pacific Rise (EPR) are situated along the Pacific margins of Mexico. Until recently, active hydrothermal venting was unknown between the Guaymas Basin and 21°N on the EPR. MBARI's recent oceanographic surveys have added 7 new active vent sites. In this study, we aimed to sample the high-temperature hydrothermal fluids emanating from two distinct vent sites, named Meyibo and Auka, located in the Alarcon Rise and Pescadero Basin, respectively. Mantle-derived He have long been identified in hydrothermal fluid releases. The presence of He in aqueous fluids with 3He/4He ratios greater than in-situ production values (~0.05 RA, where RA = air He or 1.4 x 10-6) indicates the presence of mantle-derived melts. Preliminary analyses of He-isotope ratios derived from the newly discovered Meyibo and Auka hydrothermal fields show high 3He/4He ratios (~8RA), typical of MORB's. Auka vent field, characterized by chimneys composed of light carbonate minerals and oil-like hydrocarbons, and temperatures between 250-290oC, show average values of ~7.87RA. In contrast, the black-smokers at the Meyibo field, composed of dark sulfide minerals and temperatures over 350oC, yielded a higher He ratio of ~8.24RA. Recently, it has become clear that regional maximum mantle He values correlate with the velocity structure in the mantle, therefore, He has the potential to map regions of the underlying mantle that are undergoing partial melting. Seismic records could then be compared with the geochemical He ratio signal and supply information regarding tectonics and other processes involved in the generation of these gases. The data presented here will be completing a totally new inventory of He results from hydrothermal vents in the EPR and fault-termination basins distributed along the P-NA plate boundary in the Gulf of California. The results will be further coupled with the analysis of other geochemical

  11. Preliminary Modelling of the Effect of Impurity in CO2 Streams on the Storage Capacity and the Plume Migration in Pohang Basin, Korea

    NASA Astrophysics Data System (ADS)

    Park, Yongchan; Choi, Byoungyoung; Shinn, Youngjae

    2015-04-01

    Captured CO2 streams contain various levels of impurities which vary depending on the combustion technology and CO2 sources such as a power plant and iron and steel production processes. Common impurities or contaminants are non-condensable gases like nitrogen, oxygen and hydrogen, and are also air pollutants like sulphur and nitrogen oxides. Specifically for geological storage, the non-condensable gases in CO2 streams are not favourable because they can decrease density of the injected CO2 stream and can affect buoyancy of the plume. However, separation of these impurities to obtain the CO2 purity higher than 99% would greatly increase the cost of capture. In 2010, the Korean Government announced a national framework to develop CCS, with the aim of developing two large scale integrated CCS projects by 2020. In order to achieve this goal, a small scale injection project into Pohang basin near shoreline has begun which is seeking the connection with a capture project, especially at a steel company. Any onshore sites that are suitable for the geological storage are not identified by this time so we turned to the shallow offshore Pohang basin where is close to a large-scale CO2 source. Currently, detailed site surveys are being undertaken and the collected data were used to establish a geological model of the basin. In this study, we performed preliminary modelling study on the effect of impurities on the geological storage using the geological model. Using a potential compositions of impurities in CO2 streams from the steel company, we firstly calculated density and viscosity of CO2 streams as a function of various pressure and temperature conditions with CMG-WINPROP and then investigated the effect of the non-condensable gases on storage capacity, injectivity and plume migrations with CMG-GEM. Further simulations to evaluate the areal and vertical sweep efficiencies by impurities were perform in a 2D vertical cross section as well as in a 3D simulation grid. Also

  12. Modeling relationships between catchment attributes and river water quality in southern catchments of the Caspian Sea.

    PubMed

    Hasani Sangani, Mohammad; Jabbarian Amiri, Bahman; Alizadeh Shabani, Afshin; Sakieh, Yousef; Ashrafi, Sohrab

    2015-04-01

    Increasing land utilization through diverse forms of human activities, such as agriculture, forestry, urban growth, and industrial development, has led to negative impacts on the water quality of rivers. To find out how catchment attributes, such as land use, hydrologic soil groups, and lithology, can affect water quality variables (Ca(2+), Mg(2+), Na(+), Cl(-), HCO 3 (-) , pH, TDS, EC, SAR), a spatio-statistical approach was applied to 23 catchments in southern basins of the Caspian Sea. All input data layers (digital maps of land use, soil, and lithology) were prepared using geographic information system (GIS) and spatial analysis. Relationships between water quality variables and catchment attributes were then examined by Spearman rank correlation tests and multiple linear regression. Stepwise approach-based multiple linear regressions were developed to examine the relationship between catchment attributes and water quality variables. The areas (%) of marl, tuff, or diorite, as well as those of good-quality rangeland and bare land had negative effects on all water quality variables, while those of basalt, forest land cover were found to contribute to improved river water quality. Moreover, lithological variables showed the greatest most potential for predicting the mean concentration values of water quality variables, and noting that measure of EC and TDS have inversely associated with area (%) of urban land use. PMID:25395322

  13. Development and Application of a Simple Hydrogeomorphic Model for Headwater Catchments

    EPA Science Inventory

    We developed a catchment model based on a hydrogeomorphic concept that simulates discharge from channel-riparian complexes, zero-order basins (ZOB, basins ZB and FA), and hillslopes. Multitank models simulate ZOB and hillslope hydrological response, while kinematic wave models pr...

  14. Study of Beijiang catchment flash-flood forecasting model

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Li, J.; Huang, S.; Dong, Y.

    2015-05-01

    Beijiang catchment is a small catchment in southern China locating in the centre of the storm areas of the Pearl River Basin. Flash flooding in Beijiang catchment is a frequently observed disaster that caused direct damages to human beings and their properties. Flood forecasting is the most effective method for mitigating flash floods, the goal of this paper is to develop the flash flood forecasting model for Beijiang catchment. The catchment property data, including DEM, land cover types and soil types, which will be used for model construction and parameter determination, are downloaded from the website freely. Based on the Liuxihe Model, a physically based distributed hydrological model, a model for flash flood forecasting of Beijiang catchment is set up. The model derives the model parameters from the terrain properties, and further optimized with the observed flooding process, which improves the model performance. The model is validated with a few observed floods occurred in recent years, and the results show that the model is reliable and is promising for flash flood forecasting.

  15. Preliminary results of land subsidence monitoring project in Konya Closed Basin between 2006-2009 by means of GNSS observations

    NASA Astrophysics Data System (ADS)

    Ustun, A.; Tusat, E.; Yalvac, S.

    2010-06-01

    One of the potential dangers that might arise as a result of bringing excessive amounts of groundwater to the surface of the Earth is land subsidence. Such surface deformations - these velocities may vary from a few millimetres to a few metres per year - do the greatest damage to infrastructure facilities and buildings in residential units. Agricultural lands, in which excessive irrigation is performed, and densely populated cities are more likely to suffer from land subsidence. Konya Closed Basin (KCB), where a rapid groundwater withdrawal has been observed during the last 30-40 years, is faced with such a threat. In this study, the possibility of the occurrence of land subsidence, related to groundwater withdrawal for the KCB, is assessed and the geodetic studies conducted up to now, with the intention of identifying land subsidence, are introduced. The vertical displacements of between -12 and -52 mm/year have been detected through GNSS observations collected on the 6-point test network. The land subsidence phenomenon has been developing in the areas where the groundwater is extensively used for irrigation and daily life. The results support the findings derived from the historical leveling records and point out the need of an extended study based on both GNSS and InSAR techniques for spatial and temporal mapping of land subsidence in the KCB.

  16. Preliminary paleogeographic reconstruction of the Illinois basin during deposition of the Mississippian Aux Vases Formation: Implications for hydrocarbon recovery

    SciTech Connect

    Cole, R.D. )

    1991-03-01

    Extensive outcrop investigation and selective subsurface study allow definition of Illinois basin paleogeography during deposition of the Mississippian (Valmeyeran-Meramecian) Aux Vases Formation. The results incorporate an integrated approach utilizing field observations and petrographic analysis, wireline logs, subsurface maps, and cores. The Aux Vases Formation depositional system has been determined to be composed of subtidal to intertidal facies. Depositional facies in outcrop are based on rock body geometries, sedimentary structure assemblages, paleocurrent analysis, paleontology of body and trace fossils, facies relationships, and petrography. Depositional facies determined from subsurface data are based on correlation of lithologic interpretations from wireline logs, sand body geometries form isopach maps, and petrography. Specific depositional facies observed in outcrop and core and inferred from wireline logs and isopach maps are offshore bars and tidal channel complexes, extensive subtidal to lower intertidal, ripple-laminated, fine-grained quartzose sandstone. Carbonate facies occur as subtidal grainstones at or near the base of a sequence, or as high energy deposits which have been tidally reworked. This depositional system produces reservoir heterogeneities that complicate efficient hydrocarbon recovery. This diverse facies architecture is modified by tectonic and diagenetic overprinting, further segregating potential producing zones. To significantly improve recovery efficiency, predictions regarding compartmentalization can be used prior to designing a drilling program, an infill drilling program, or an application of enhanced recovery techniques.

  17. A preliminary sub-basin scale evaluation framework of site suitability for onshore aquifer-based CO{sub 2} storage in China

    SciTech Connect

    Wei, Ning; Li, Xiaochun; Wang, Ying; Dahowski, Robert T; Davidson, Casie L; Bromhal, Grant S

    2013-01-01

    Development of a reliable, broadly applicable framework for the identification and suitability evaluation of potential CO{sub 2} storage sites is essential before large-scale deployment of carbon dioxide capture and geological storage (CCS) can commence. In this study, a sub-basin scale evaluation framework was developed to assess the suitability of potential onshore deep saline aquifers for CO{sub 2} storage in China. The methodology, developed in consultation with experts from the academia and the petroleum industry in China, is based on a multi-criteria analysis (MCA) framework that considers four objectives: (1) storage optimization, in terms of storage capacity and injectivity; (2) risk minimization and storage security; (3) environmental restrictions regarding surface and subsurface use; and (4) economic considerations. The framework is designed to provide insights into both the suitability of potential aquifer storage sites as well as the priority for early deployment of CCS with existing CO{sub 2} sources. Preliminary application of the framework, conducted using GIS-based evaluation tools revealed that 18% of onshore aquifer sites with a combined CO{sub 2} storage capacity of 746 gigatons are considered to exhibit very high suitability, and 11% of onshore aquifer sites with a total capacity of 290 gigatons exhibit very high priority opportunities for implementation. These onshore aquifer sites may provide promising opportunities for early large-scale CCS deployment and contribute to CO{sub 2} mitigation in China for many decades.

  18. A preliminary sub-basin scale evaluation framework of site suitability for onshore aquifer-based CO2 storage in China

    SciTech Connect

    Wei, Ning; Li, Xiaochun; Wang, Ying; Dahowski, Robert T.; Davidson, Casie L.; Bromhal, Grant

    2013-01-30

    Development of a reliable, broadly applicable framework for the identification and suitability evaluation of potential CO2 storage sites is essential before large scale deployment of carbon dioxide capture and geological storage (CCS) can commence. In this study, a sub-basin scale evaluation framework was developed to assess the suitability of potential onshore deep saline aquifers for CO2 storage in China. The methodology, developed in consultation with experts from the academia and the petroleum industry in China, is based on a multi-criteria analysis (MCA) framework that considers four objectives: (1) storage optimization, in terms of storage capacity and injectivity; (2) risk minimization and storage security; (3) environmental restrictions regarding surface and subsurface use; and (4) economic considerations. The framework is designed to provide insights into both the suitability of potential aquifer storage sites as well as the priority for early deployment of CCS with existing CO2 sources. Preliminary application of the framework, conducted using GIS-based evaluation tools revealed that 18% of onshore aquifer sites with a combined CO2 storage capacity of 746 gigatons are considered to exhibit very high suitability, and 11% of onshore aquifer sites with a total capacity of 290 gigatons exhibit very high priority opportunities for implementation. These onshore aquifer sites may provide promising opportunities for early large-scale CCS deployment and contribute to CO2 mitigation in China for many decades.

  19. Influence of Rainfall Data Resolution and Catchment Subdivision on Runoff Modelling

    NASA Astrophysics Data System (ADS)

    Puttaraksa Mapiam, Punpim; Chauysuk, Suttiched

    2016-04-01

    Precipitation and catchment characteristics are significant factors for runoff modelling. This study demonstrates the relative benefits offered by the application of alternate rainfall products to several scales of catchment subdivision for simulation of the runoff hydrograph in the upper Ping river basin, northern Thailand. Two point locations at the runoff stations in the upper Ping river basin were selected for model calibration over the period of 2004-2005. Rain gauge and radar rainfall products were specified as inputs to the semi-distributed hydrological URBS model at each runoff station with five catchment subdivision schemes for runoff simulation. Point rainfall from the sparse rain gauge network and estimated radar rainfall at each radar pixel were spatially averaged over each sub-catchment using Thiessen polygons and arithmetic averaging approaches, respectively. Results for using high resolution of radar rainfall input appear that the accuracy of runoff estimates is affected appreciably by a number of sub-catchments, and the accuracy of runoff estimates tends to obviously increase with an increase of the number of sub-catchments. On the other hand, there is no significant improvement with an increasing number of sub-catchments while the coarse resolution of rain gauge rainfall input is used. The comparison on runoff accuracy among different scenarios indicates that the use of radar rainfall together with the largest number of sub-catchments gives the highest accuracy of runoff estimates.

  20. Empirical relations between catchment characteristics and discharge patterns in Sweden

    NASA Astrophysics Data System (ADS)

    Lindström, G.; Dahné, J.; Arheimer, B.

    2012-04-01

    In hydrological modelling it is often assumed that catchment characteristics, such as soil type, vegetation, land-use, slope, altitude and climate influence both the magnitude and dynamics of the water discharge characteristics. This presentation demonstrates an inter-site comparison on similarities and dissimilarities in hydrological response from Swedish unregulated catchments with an area less than 2000 km2. Observed daily time-series for about 20 years from 198 sites were analysed to search for and quantify statistical relationships between catchment characteristics and flow characteristics. A number of flow characteristics were calculated, such as the mean, mean annual maximum, peakiness, skewness and percentiles. The catchments were grouped dependent on catchment characteristics (for example >80% forest). The differences between the discharges from different catchment types were analysed both graphically and statistically. A T-test was performed to see if the mean value for the flow characteristics was significantly different from the rest of the catchments. Following the t-test, a set of box-whisker diagrams were made for visual inspection of the results. The results showed that lake percentage is the most important catchment characteristic for most of the flow characteristics. The effect of lakes was therefore treated separately. For lake-free basins soil type was in general more important than land-use. For instance, coarse soils exhibit a sustained base flow, whereas thin soils and bare rock are characterised by peak flows with short duration. Finally, the presentation will give some examples on how the retrieved empirical information was included in a national modelling approach to simulate spatial variability in Swedish water discharge patterns.

  1. Dynamic processes in the mountain catchment

    NASA Astrophysics Data System (ADS)

    Trifonova, Tatiana; Arakelian, Sergei

    2015-04-01

    The process of the river cftchment foundation and the mechanisms being in the basis of its development are not clear at present. Principal phenomena determining the dynamics of formation of the river catchment are under our study in this paper for the case of the mountain basin as an example. The methodology of this monitoring includes the space image recognition and computer data processing of the images for the Maliy Caucasus Mountains. Mountain river catchment formation on the slope of the ridge can be considered as a self-organizing staged process of its evolution passing through several non-equilibrium but steady-state conditions. We consider a system of tributaries in the mountain river catchment as a system of cracks, which are formed on the slope of the mountain massif. In other words, the formation of river networks should be the result of development of several processes, among of which the mechanisms of crack development should play a dominant role. The principal results, discussed in the present report, can be formulated as follow. (1) The mountain catchment (litho-watershed) formation takes place under conditions of the confined states of a mountain massif: on the one hand it is bounded by the surface of the slope; but on the other hand, - by a primary cracks density occurrence (as a spatial distribution 3D-crack net). (2) The development in time of the river catchment takes place by several stages. Each stage specifies a definite energetic state of the system in the mountain massif. (3) The overhead river streams arise not only due to surface water, but and namely due to rising of water from underground water horizons over the watercourse cracks penetrating deeply into the underground. (4) The 3D-river catchment structure results in concept in behavior of the unit as an open nonlinear dynamic system with a spatially distributed feedback. The energetic (endogen) processes of formation, rising and bifurcation for cracks are the consequence of relaxation

  2. Creating a catchment perspective for river restoration

    NASA Astrophysics Data System (ADS)

    Benda, L.; Miller, D.; Barquín, J.

    2011-03-01

    One of the major challenges in river restoration is to identify the natural fluvial landscape in catchments with a long history of river control. Intensive land use on valley floors often predates the earliest remote sensing: levees, dikes, dams, and other structures alter valley-floor morphology, river channels and flow regimes. Consequently, morphological patterns indicative of the fluvial landscape including multiple channels, extensive floodplains, wetlands, and fluvial-riparian and tributary-confluence dynamics can be obscured, and information to develop appropriate and cost effective river restoration strategies can be unavailable. This is the case in the Pas River catchment in northern Spain (650 km2), in which land use and development have obscured the natural fluvial landscape in many parts of the basin. To address this issue we coupled general principles of hydro-geomorphic processes with computer tools to characterize the fluvial landscape. Using a 5-m digital elevation model, valley-floor surfaces were mapped according to elevation above the channel and proximity to key geomorphic processes. The predicted fluvial landscape is patchily distributed according to topography, valley morphology, river network structure, and fan and terrace landforms. The vast majority of the fluvial landscape in the main segments of the Pas River catchment is presently masked by human infrastructure, with only 15% not impacted by river control structures and development. The reconstructed fluvial landscape provides a catchment scale context to support restoration planning, in which areas of potential ecological productivity and diversity could be targeted for in-channel, floodplain and riparian restoration projects.

  3. Holocene Paleoenvironment of the North-central Great Basin: Preliminary Results from Favre Lake, Northern Ruby Mountains, Nevada

    NASA Astrophysics Data System (ADS)

    Starratt, S.; Wahl, D.; Wan, E.; Anderson, L.; Wanket, J.; Olson, H.; Lloyd-Davies, T.; Kusler, J.

    2009-12-01

    Little is known about Holocene climate variability in north-central Nevada. This study aims to assess changes in watershed vegetation, fire history, lake levels and limnological conditions in order to understand secular to millennial-scale changes in regional climate. Favre Lake (2,899 m a.s.l.; 12 m deep; 7.7 hectares) is a flow-through lake in the northern Ruby Mountains. The primary sources of influent, both of which appear to be intermittent, are Castle Lake (2,989 m a.s.l.) and Liberty Lake (3,077 m a.s.l.). The bedrock of the three lake basins is early Paleozoic marble and Mesozoic granite and metamorphic rocks. Bathymetric maps and temperature, pH, salinity, and conductivity profiles have been generated for Favre Lake. Surface samples and a series of cores were also collected using a modified Livingstone piston corer. The presence of the Mazama ash in the basal sediment (~4 m below the sediment/water interface) indicates the record extends to ~7,700 cal yr B.P. Magnetic susceptibility (MS) and loss-on-ignition data indicate that the sediments in the lowest part of the core contain primary and reworked Mazama ash. About 2,000 years ago CaCO3 increased from 2 to 3% of the inorganic sediment. The upper 25 cm of the core are marked by an increase in MS which may indicate increased erosion due to grazing. Between about 7,700 and 6,000 cal yr B.P. the diatom flora is dominated by a diverse assemblage of benthic species. The remainder of the core is dominated by Fragilaria, suggesting that lake level rose and flooded the shelf that surrounds the depocenter of the lake. This is supported by changes in the abundance of the aquatic fern Isoetes. Pinus and Artemisia dominate the pollen record, followed by subordinate levels of Poaceae, Asteraceae, Amaranthaceae, and Sarcobatus. The late early Holocene (7,700-6,000 cal yr B.P.) is dominated by Pinus which is present in reduced amounts during the middle Holocene (6,000-3,000 cal yr B.P.) and then returns to dominance in

  4. Temporal and Spatial Variation of Surface Water Stable Isotopes in the Marys River Basin, Oregon

    NASA Astrophysics Data System (ADS)

    Nickolas, L. B.; Segura, C.; Brooks, J. R.

    2015-12-01

    Understanding the temporal and spatial variability of water sources within a basin is vital to our ability to manage the impacts of climate variability and land cover change. Water stable isotopes can be used as a tool to determine geographic and seasonal sources of water at the basin scale. Previous studies in the Coastal Range of Oregon reported that the variation in the isotopic signatures of surface water does not conform to the commonly observed "rainout effect", which exhibits a trend of increasing isotopic depletion with rising elevation. The primary purpose of this research is to investigate the mechanisms governing seasonal and spatial variations in the isotopic signature of surface waters within the Marys River Basin, located in the Oregon Coastal Range. We hypothesize that catchment orientation, drainage area, geology, and topography act as controlling factors on groundwater flow, storage, and atmospheric moisture cycling, which explain variations in source water contribution. Surface water and precipitation samples were collected every 2-3 weeks for isotopic analysis of δ18O and δ2H for one year. Preliminary results indicate a significant difference (p<0.001) in isotopic signature between watersheds underlain by basalt and sandstone. The degree of separation is the most distinct during the summer when low flows likely reflect deeper groundwater sources, whereas isotopic signatures during the rainy season (fall & winter) show a greater degree of similarity between the two lithologies. These findings indicate that the more permeable sandstone formations may be hydrologically connected to enriched water sources on the windward side of the Coastal Range that sustain baseflow within catchments on the leeward side, while streams draining basalt catchments are fed by a more depleted source of water (e.g. precipitation originating within the Marys River Basin).

  5. Geochemical signature and properties of sediment sources and alluvial sediments within the Lago Paranoá catchment, Brasilia DF: a study on anthropogenic introduced chemical elements in an urban river basin.

    PubMed

    Franz, C; Makeschin, F; Weiß, H; Lorz, C

    2013-05-01

    One of the largest urban agglomerations in Brazil is the capital Brasilia and its surrounding area. Due to fast urban sprawl and accelerated land use changes, available water supplies are near their limits. The water supply depends largely on surface water collected in reservoirs. There are increasing concerns regarding water shortages due to sediment aggradations, and of water quality due to geochemical modification of sediments from human activities. The concentration of 18 chemical elements and five sediment properties was analyzed from different potential land-based sediment sources and deposited alluvial sediment within the Lago Paranoà catchment. The goal of this study was to assess the distribution of chemical elements and geochemical/physical properties of potential sediment sources in the Lago Paranoá catchment. Principal component analysis and hierarchical cluster analysis were used to investigate the influence of different land use types on the geochemistry of sediments. Geochemical fingerprints of anthropogenic activities were developed based on the results of the cluster analysis grouping. The anthropogenic input of land use specific geochemical elements was examined and quantified by the calculation of enrichment factors using the local geological background as reference. Through comparison of the geochemical signature of potential sediment sources and alluvial sediments of the Lago Paranoá and sub-catchments, the relative contribution of land use specific sediment sources to the sediment deposition of the main water reservoir were estimated. The existing findings suggest a strong relationship between land use and quantifiable features of sediment geochemistry and indicate that urban land use had the greatest responsibility for recent silting in the Lago Paranoá. This assessment helps to characterize the role of human activities in mixed-used watersheds on sediment properties, and provides essential information to guide management responses

  6. Hillslope versus riparian zone runoff contributions in headwater catchments: A multi-watershed comparison

    NASA Astrophysics Data System (ADS)

    McGlynn, B. L.; McGlynn, B. L.; McDonnell, J. J.; Hooper, R. P.; Shanley, J. B.; Hjerdt, K. N.; Hjerdt, K. N.

    2001-12-01

    It is often assumed that hillslope and riparian areas constitute the two most important and identifiable landscape units contributing to catchment runoff in upland humid catchments. Nevertheless, the relative amount and timing of hillslope versus riparian contributions to stormflow are poorly understood across different watersheds. We quantified the contributions of hillslopes and riparian zones to stormflow using physical, chemical, and isotopic techniques across 3 diverse ({ ~}15 ha) headwater catchments: a highly responsive steep wet watershed (Maimai, New Zealand), a moderately steep snowmelt dominated watershed (Sleepers, River, VT), and at a highly seasonal relatively low relief watershed (Panola Mt., Georgia). We monitored catchment runoff, internal hydrological response, and isotopic and solute dynamics for discrete riparian and hillslope zones within each catchment. Monitored catchment positions, including hillslope trenches at Maimai and Panola, were used to characterize directly, the hydrologic response and source water signatures for hillslope zones and riparian zones. We also examined the spatial and temporal source components of catchment stormflow using 3-component mass balance hydrograph separation techniques. At Maimai, NZ we found that hillslope runoff comprised 47-55% of total runoff during a 70 mm event. Despite the large amount of subsurface hillslope runoff in total catchment stormflow, riparian and channel zones accounted for 28% out of 29% of the total new water measured catchment runoff. Riparian water dominated the storm hydrograph composition early in the event, although hillslope water reached the catchment outlet soon after hillslope water tables were developed. Preliminary results for Sleepers River, VT and Panola Mountain, GA indicate that the timing and relative proportion of hillslope water in catchment runoff is later and smaller than at Maimai. Our multi-catchment comparison suggests that the ratio of the riparian reservoir to the

  7. A methodological comparison of catchment storages in mountainous catchments

    NASA Astrophysics Data System (ADS)

    Weiler, Markus; Staudinger, Maria; Stölzle, Michael; Seeger, Stefan; Seibert, Jan; Stahl, Kerstin

    2015-04-01

    One of the most important functions of catchments is the temporary storage of water, which directly influences runoff dynamics, rainfall-runoff transformation, partitioning of evaporation and runoff fluxes, and accessibility of water to plants. Generally, a large catchment storage is considered beneficial and in particular increases the transit times and hence the buffer functioning related to water quality. Many different methods have been developed to assess catchment storage, however, there are hardly any direct comparisons of several of these methods. One challenge is the definition of water storage, while some methods allow estimation of the entire water storage in a catchment, other methods quantify only the dynamic storage. In addition, most studies focused more on lowland catchments with rain-dominated runoff regimes and observed groundwater fluctuations. Furthermore, these studies often focus on one or two catchments, but do not consider the influence of different climates on the relevance of water storage in the catchment. We applied a range of different methods to assess catchment storage characteristics in 18 catchments in the Swiss Alps, ranging from 500 to 2000m of mean elevation and hence from rainfall- to snowmelt dominated runoff regimes. The first method use only discharge information during recession periods and with varying approaches to extract discharge and storage changes between high flow and low flow, the dynamic catchment storage can be derived. In the next methods the conceptual hydrological model HBV is calibrated to the runoff dynamics and the dynamic and total catchment storages of the different compartments are being evaluated. The last methods are based on stable water isotope data analysis. We use the model TRANSEP to derive the dynamic storage as well as the total water storage of the catchment based on the transit times using several years of fortnightly isotope data in streamflow. The results show that the derived catchment

  8. Catchment controls on solute export

    NASA Astrophysics Data System (ADS)

    Musolff, Andreas; Schmidt, Christian; Selle, Benny; Fleckenstein, Jan H.

    2015-12-01

    Dynamics of solute export from catchments can be classified in terms of chemostatic and chemodynamic export regimes by an analysis of concentration-discharge relationships. Previous studies hypothesized that distinct export regimes emerge from the presence of solute mass stores within the catchment and their connectivity to the stream. However, so far a direct link of solute export to identifiable catchment characteristics is missing. Here we investigate long-term time series of stream water quality and quantity of nine neighboring catchments in Central Germany ranging from relatively pristine mountain catchments to agriculturally dominated lowland catchments, spanning large gradients in land use, geology, and climatic conditions. Given the strong collinearity of catchment characteristics we used partial least square regression analysis to quantify the predictive power of these characteristics for median concentrations and the metrics of export regime. We can show that median concentrations and metrics of the export regimes of major ions and nutrients can indeed be inferred from catchment characteristics. Strongest predictors for median concentrations were the share of arable land, discharge per area, runoff coefficient and available water capacity in the root zone of the catchments. The available water capacity in the root zone, the share of arable land being artificially drained and the topographic gradient were found to be the most relevant predictors for the metrics of export regime. These catchment characteristics can represent the size of solute mass store such as the fraction of arable land being a measure for the store of nitrate. On the other hand, catchment characteristics can be a measure for the connectivity of these solute stores to the stream such as the fraction of tile drained land in the catchments. This study demonstrates the potential of data-driven, top down analyses using simple metrics to classify and better understand dominant controls of

  9. The anthropic catchment-ecosystem concept: an Irish example

    SciTech Connect

    Phillips-Howard, K.D.

    1985-06-01

    The catchment-ecosystem concept is adapted to investigate the nutrient-budget of the highly-modified Colebrooke drainage basin in Northern Ireland. Anthropogenic inputs, mainly manures and fertilizers, account for 86% of the nitrogen and 96% of the phosphorus added to the catchment. These inputs greatly exceed the streamflow outputs, thereby indicating that the flow of nutrients is dominated by agriculture. This is explained by the transformation of traditional mixed farming into more intensive livestock production and is linked to policies encouraging increased agricultural production, amalgamation of farms, afforestation, rural depopulation, and urbanization. Substantial increases in the N and P output of the catchment and further eutrophication of the recipient lake, Lough Erne, are predicted without the implementation of policies to reduce agricultural nutrient losses.

  10. Equitable water allocation in a heavily committed international catchment area: the case of the Komati Catchment

    NASA Astrophysics Data System (ADS)

    Nkomo, Sakhiwe; van der Zaag, Pieter

    This paper investigates water availability and use in the Komati catchment. The Komati catchment is shared by Swaziland and South Africa and forms part of the Incomati basin, with Mozambique as the third riparian country. In 2002 the three countries reached agreement about how the scarce water should be allocated, based on the principle of equitable and sustainable utilization, as stipulated by the SADC Protocol. The Komati catchment has five main water uses: afforestation, irrigation, the environment, urban/industrial/mining (UIM), and interbasin water transfers (for industrial use). In addition, South Africa and Swaziland have committed themselves to satisfy a certain cross border flow to downstream Mozambique. Frequently, debate has arisen between users and riparian countries on the direction that water resources development has taken in the catchment. Downstream farmers have often complained about interbasin transfers taking place in the upstream portions of the catchment. There has also been animosity about effecting environmental flow releases. A relatively simple, spreadsheet-based water resources model (Waflex) was developed to analyse water availability and use under current and future scenarios. The results were then compared to results obtained from another model that was used in a joint study by Mozambique, South Africa and Swaziland. The Waflex model showed a high degree of consistency with the one used for comparison, especially in terms of trends. It was found that the recent completion of two new dams has improved water supply to irrigation in the two countries. Future water demands will result in appreciable shortages for irrigation and domestic use. The agreed maximum development levels will soon outstrip the ability of the catchment’s supply. The paper shows that a combination of measures will be required to ensure equitable and sustainable water utilisation in the Komati catchment. These will have to be agreed by the riparian countries

  11. Ensemble approach for hydrological forecasting in ungauged catchments

    NASA Astrophysics Data System (ADS)

    Randrianasolo, Annie; Ramos, Maria-Helena; Andreassian, Vazken

    2013-04-01

    This study focuses on the application of ensemble approaches to forecast flows in ungauged catchments. The aim is to study the best strategy to search for information in gauged "donor" basins and to transfer it to the ungauged site. We investigate what information is needed to set up a rainfall-runoff model and to perform forecast updating in real time. These two components of a flood forecasting system are thus decoupled in our approach. The methodology adopted integrates the scenarios of regional transfer of information and the scenarios of ensemble weather forecasting together in a forecasting system. The approach of ensemble forecasting is thus generalised to the particular case of hydrological forecasting in ungauged basins. The study is based on 211 catchments in France and on an archive of about 4.5 years of ensemble forecasts of rainfall, which are used for hydrological modelling on a daily time step. Flow forecasts are evaluated with special attention paid to the attributes of reliability and accuracy of the forecasts. The results show that forecast reliability in ungauged sites can be improved by using several sets of parameters from neighbour catchments, while forecast accuracy is improved with the transfer of updating information from gauged neighbour catchments.

  12. Understanding catchment behavior through stepwise model concept improvement

    NASA Astrophysics Data System (ADS)

    Fenicia, Fabrizio; Savenije, Hubert H. G.; Matgen, Patrick; Pfister, Laurent

    2008-01-01

    Lack of data is one of the main limitations for hydrological modeling. However, it is often used as a justification for over simplifying, poorly performing models. If we want to enhance our understanding of hydrological systems, it is important to fully exploit the information contained in the available data, and to learn from model deficiencies. In this paper, we propose a methodology where we systematically update the model structure, progressively incorporating new hypotheses of catchment behavior. We apply this methodology to the Alzette river basin in Luxembourg, showing how stepwise model improvement helps to identify the behavior of this catchment. We show that the most significant improvement of the evolving model structure is associated to the characterization of antecedent wetness. This is improved accounting for interception, which affects vertical storage distribution, and accounting for rainfall spatial heterogeneity, which influences storage variations in the horizontal dimension. Overall, our results suggested that, due to the damping effect of the basin, the description of fast catchment response benefits more from spatially distributed information than that of slow catchment response.

  13. What controls inter-basin variation in cold-season river flow recession in permafrost basins in sub-Arctic Siberia?

    NASA Astrophysics Data System (ADS)

    Kooi, H.; Watson, V.; Bense, V. F.

    2012-04-01

    Cold-season river discharge during the period of ice cover and snow fall in northern high latitudes, provides a unique window on the role of subsurface hydrology in permafrost settings as direct surface runoff contributions are largely inhibited. Several recent studies have brought to light positive temporal trends in cold-season discharge totals for the past several decades to one century, and have interpreted these trends to reflect permafrost degradation and associated increased subsurface water transport in response to climate warming. While these are significant and compelling findings of hydrological change, there is a clear need to better understand the hydrology of cold-season flow and the discharge-generating processes themselves. We present results of an inter-basin comparison of cold-season (October - April) river flow characteristics for 17 catchments in Siberia that are not disturbed by artifical reservoirs/dam influences. Streamflow data for the period 1980 - 1998 were studied. Flow and recession metrics for each basin and mean annual cold season catchment-averaged drainage depth, CSDD (in mm equivalent water depth) were compared/correlated with various basin attributes in order to evaluate the significance of these attributes as potential controls. Preliminary findings include a marked behavioural distinction between (11) basins on continuous permafrost and (6) basins with reduced permafrost coverage (discontinuous/sporadic). The latter are characterized by slow recession, relatively high discharge in April before spring freshet, and high CSDD values up to about 80 mm corresponding to more than 10% of total annual rainfall. Although positive correlations with several attributes (annual precipitation; peat land fraction) are found, higher abundance of through-taliks and greater active layer depth (ALD) appear to be the most prominent controls of the distinctive behaviour. Cold-season flow behaviour of the (11) basins on continuous permafrost also show

  14. Moments of catchment storm area

    NASA Technical Reports Server (NTRS)

    Eagleson, P. S.; Wang, Q.

    1985-01-01

    The portion of a catchment covered by a stationary rainstorm is modeled by the common area of two overlapping circles. Given that rain occurs within the catchment and conditioned by fixed storm and catchment sizes, the first two moments of the distribution of the common area are derived from purely geometrical considerations. The variance of the wetted fraction is shown to peak when the catchment size is equal to the size of the predominant storm. The conditioning on storm size is removed by assuming a probability distribution based upon the observed fractal behavior of cloud and rainstorm areas.

  15. Preliminary assessment of channel stability and bed-material transport in the Tillamook Bay tributaries and Nehalem River basin, northwestern Oregon

    USGS Publications Warehouse

    Jones, Krista L.; Keith, Mackenzie K.; O'Connor, Jim E.; Mangano, Joseph F.; Wallick, J. Rose

    2012-01-01

    This report summarizes a preliminary study of bed-material transport, vertical and lateral channel changes, and existing datasets for the Tillamook (drainage area 156 square kilometers [km2]), Trask (451 km2), Wilson (500 km2), Kilchis (169 km2), Miami (94 km2), and Nehalem (2,207 km2) Rivers along the northwestern Oregon coast. This study, conducted in coopera-tion with the U.S. Army Corps of Engineers and Oregon Department of State Lands to inform permitting decisions regarding instream gravel mining, revealed that: * Study areas along the six rivers can be divided into reaches based on tidal influence and topography. The fluvial (nontidal or dominated by riverine processes) reaches vary in length (2.4-9.3 kilometer [km]), gradient (0.0011-0.0075 meter of elevation change per meter of channel length [m/m]), and bed-material composition (a mixture of alluvium and intermittent bedrock outcrops to predominately alluvium). In fluvial reaches, unit bar area (square meter of bar area per meter of channel length [m2/m]) as mapped from 2009 photographs ranged from 7.1 m2/m on the Tillamook River to 27.9 m2/m on the Miami River. * In tidal reaches, all six rivers flow over alluvial deposits, but have varying gradients (0.0001-0.0013 m/m) and lengths affected by tide (1.3-24.6 km). The Miami River has the steepest and shortest tidal reach and the Nehalem River has the flattest and longest tidal reach. Bars in the tidal reaches are generally composed of sand and mud. Unit bar area was greatest in the Tidal Nehalem Reach, where extensive mud flats flank the lower channel. * Background factors such as valley and channel confinement, basin geology, channel slope, and tidal extent control the spatial variation in the accumulation and texture of bed material. Presently, the Upper Fluvial Wilson and Miami Reaches and Fluvial Nehalem Reach have the greatest abundance of gravel bars, likely owing to local bed-material sources in combination with decreasing channel gradient and

  16. Changes in runoff generation due to conversion of catchment vegetation

    NASA Astrophysics Data System (ADS)

    Vilhar, Urša; Kestnar, Klemen; Šraj, Mojca

    2015-04-01

    In Central Europe, many pure Norway spruce stands, established on primary beech sites, were converted into mixed stands over the last 60 years. The conversion of forest management from Norway spruce monocultures into mixed deciduous-coniferous forests changed the forest structure dramatically. This changes could influence the hydrological processes on the catchment scale, associated with changes in runoff generation. In this study, the effect of forest management on the runoff in mixed deciduous-coniferous stands on Pohorje mountains in NE Slovenia were investigated. Two small forested experimental catchments of Oplotnica River on Pohorje were compared with similar size and shape but different share of Norway spruce Picea abies (L. Karst) and European beech Fagus sylvatica (L.). Measured stream flows, throughfall, stemflow and the mixture of forests were compared in the period 2008 till 2013 for both catchments. Hydrological models in the HEC-HMS program were built for both catchmenta, calibrated and validated using measured data. Precipitation losses were estimated by the Soil Conservation Service (SCS) method, while precipitation was converted into surface runoff using the SCS synthetic unit hydrograph procedure. The measured seasonal throughfall and stream flow was lower in the catchment with higher share of spruce in the mixed spruce-beech forest. Modeled precipitation losses in the river basins were 92% and 95% of total precipitation, respectively. The results indicate higher interception, infiltration and accumulation of precipitation in the catchment with higher share of spruce in the mixed spruce-beech forest. Forest management practices should aim towards decreased surface runoff in alpine catchments. Therefore implementation of hydrology-oriented sylvicultural measures via a more accurate prediction of the impacts of tree species conversion on runoff generation in this type of alpine catchments is discussed.

  17. A Preliminary Investigation of The Structure of Southern Yucca Flat, Massachusetts Mountain, and CP Basin, Nevada Test Site, Nevada, Based on Geophysical Modeling

    USGS Publications Warehouse

    Phelps, Geoffrey A.; Justet, Leigh; Moring, Barry C.; Roberts, Carter W.

    2006-01-01

    New gravity and magnetic data collected in the vicinity of Massachusetts Mountain and CP basin (Nevada Test Site, NV) provides a more complex view of the structural relationships present in the vicinity of CP basin than previous geologic models, helps define the position and extent of structures in southern Yucca Flat and CP basin, and better constrains the configuration of the basement structure separating CP basin and Frenchman Flat. The density and gravity modeling indicates that CP basin is a shallow, oval-shaped basin which trends north-northeast and contains ~800 m of basin-filling rocks and sediment at its deepest point in the northeast. CP basin is separated from the deeper Frenchman Flat basin by a subsurface ridge that may represent a Tertiary erosion surface at the top of the Paleozoic strata. The magnetic modeling indicates that the Cane Spring fault appears to merge with faults in northwest Massachusetts Mountain, rather than cut through to Yucca Flat basin and that the basin is downed-dropped relative to Massachusetts Mountain. The magnetic modeling indicates volcanic units within Yucca Flat basin are down-dropped on the west and supports the interpretations of Phelps and KcKee (1999). The magnetic data indicate that the only faults that appear to be through-going from Yucca Flat into either Frenchman Flat or CP basin are the faults that bound the CP hogback. In general, the north-trending faults present along the length of Yucca Flat bend, merge, and disappear before reaching CP hogback and Massachusetts Mountain or French Peak.

  18. A preliminary investigation of the structure of southern Yucca Flat, Massachusetts Mountain, and CP basin, Nevada Test Site, Nevada, based on geophysical modeling.

    SciTech Connect

    Geoffrey A. Phelps; Leigh Justet; Barry C. Moring, and Carter W. Roberts

    2006-03-17

    New gravity and magnetic data collected in the vicinity of Massachusetts Mountain and CP basin (Nevada Test Site, NV) provides a more complex view of the structural relationships present in the vicinity of CP basin than previous geologic models, helps define the position and extent of structures in southern Yucca Flat and CP basin, and better constrains the configuration of the basement structure separating CP basin and Frenchman Flat. The density and gravity modeling indicates that CP basin is a shallow, oval-shaped basin which trends north-northeast and contains ~800 m of basin-filling rocks and sediment at its deepest point in the northeast. CP basin is separated from the deeper Frenchman Flat basin by a subsurface ridge that may represent a Tertiary erosion surface at the top of the Paleozoic strata. The magnetic modeling indicates that the Cane Spring fault appears to merge with faults in northwest Massachusetts Mountain, rather than cut through to Yucca Flat basin and that the basin is downed-dropped relative to Massachusetts Mountain. The magnetic modeling indicates volcanic units within Yucca Flat basin are down-dropped on the west and supports the interpretations of Phelps and KcKee (1999). The magnetic data indicate that the only faults that appear to be through-going from Yucca Flat into either Frenchman Flat or CP basin are the faults that bound the CP hogback. In general, the north-trending faults present along the length of Yucca Flat bend, merge, and disappear before reaching CP hogback and Massachusetts Mountain or French Peak.

  19. Hydrological Catchment Similarity Assessment in Geum River Catchments, Korea

    NASA Astrophysics Data System (ADS)

    Ko, Ara; Park, Kisoon; Lee, Hyosang

    2013-04-01

    Similarity measure of catchments is essential for regionalization studies, which provide in depth analysis in hydrological response and flood estimations at ungauged catchments. However, this similarity measure is often biased to the selected catchments and is notclearly explained in hydrological sense. This study applied a type of hydrological similarity distance measure-Flood Estimation Handbook to 25 Geum river catchments, Korea. Three Catchment Characteristics, Area (A)-Annual precipitation (SAAR)-SCS Curve Number (CN), are used in Euclidian distance measures. Furthermore, six index of Flow Duration Curve (ILow:Q275/Q185, IDrought:Q355/Q185, IFlood:Qmax/Q185, IAbundant:Q95/Q185, IFloodDuration:Q10/Q355 and IRiverRegime:Qmax/Qmin) are applied to clustering analysis of SPSS. The catchments' grouping of hydrological similarity measures suggests three groups: H1 (Cheongseong, Gidae, Bukil, Oksan, Seockhwa, Habgang and Sangyeogyo), H2 (Cheongju, Guryong, Ugon, Boksu, Useong and Seokdong) and H3 (Muju, Yangganggyo and YongdamDam). The four catchments (Cheoncheon, Donghyang, DaecheongDam and Indong) are not grouped in this study. The clustering analysis of FDC provides four Groups; CFDC1 (Muju, YongdamDam, Yangganggyo, DaecheongDam, Cheongseong, Gidae, Seokhwa, Bukil, Habgang, Cheongju, Oksan, Yuseong and Guryong), CFDC2 (Cheoncheon, Donghyang, Boksu, Indong, Nonsan, Seokdong, Ugon, Simcheon, Useong and Sangyeogyo), CFDC3 (Songcheon) and CFDC4 (Tanbu). The six catchments (out of seven) of H1 are grouped in CFDC1, while Sangyeogyo is grouped in CFDC2. The four catchments (out of six) of H2 are also grouped in CFDC2, while Cheongju and Guryong are grouped in CFDC1. The catchments of H3 are categorized in CFDC1. The authors examine the results (H1, H2 and H3) of similarity measure based on catchment physical descriptors with results (CFDC1 and CFDC2) of clustering based on catchment hydrological response. The results of hydrological similarity measures are supported by

  20. Modeling of matters removal from swampy catchment

    NASA Astrophysics Data System (ADS)

    Inishev, N. G.; Inisheva, L. I.

    2010-05-01

    This work shows the results of fixed study of geochemical conditions in the system of landscape oligotrophic profile at Vasyugan mire spurs, and also we make an approach to processes modelling of compounds removal from swampy catchment. During investigation of symbolic model of chemical matters removal from the surface of a catchment basin and their movement along the channel network it was taken into account that removal of chemical elements during the period of spring flood and rain high waters occur mainly with overland flow. During calculation of dissolved matters movement the following admissions take place: 1. The problem is solved at one-dimension set-up. Concentration of investigated components is taken as averaged one along the flow cross section or effective area of slope cross-section for overland runoff, i.e. it changes only lengthways and in time. 2. It is considered that dissolved matters spread due to movement of water and together with its particles. 3. Processes of water self-clarification are not considered. The model is calculated on the basis of discharge of the investigated ingredient, i.e. matter mass moving through the given flow cross-section into time unit. This is the peculiarity of the model. Matter removal together with water flow is determined if necessary. Everyday impurity consumptions and its concentration can be estimated at the outlet at the moment of time according to convolution integral. Estimation of overland runoff and water inflow into the channel network is based on the mathematic model of outflow formation from peatland areas which considers basic processes carrying out at catchment and basin channel network. Stored moisture estimation of snow cover is taken according to snow survey data before snow melting. Everyday water supply to the surface of water collection was determined according to the results of snow melt intensity estimation by the methods of temperature coefficient and water yield from snow (A.G. Kovzel). All

  1. River nutrient loads and catchment size

    USGS Publications Warehouse

    Smith, S.V.; Swaney, D.P.; Buddemeier, R.W.; Scarsbrook, M.R.; Weatherhead, M.A.; Humborg, Christoph; Eriksson, H.; Hannerz, F.

    2005-01-01

    We have used a total of 496 sample sites to calibrate a simple regression model for calculating dissolved inorganic nutrient fluxes via runoff to the ocean. The regression uses the logarithms of runoff and human population as the independent variables and estimates the logarithms of dissolved inorganic nitrogen and phosphorus loading with R 2 values near 0.8. This predictive capability is about the same as has been derived for total nutrient loading with process-based models requiring more detailed information on independent variables. We conclude that population and runoff are robust proxies for the more detailed application, landscape modification, and in-stream processing estimated by more process-based models. The regression model has then been applied to a demonstration data set of 1353 river catchments draining to the sea from the North American continent south of the Canadian border. The geographic extents of these basins were extracted from a 1-km digital elevation model for North America, and both runoff and population were estimated for each basin. Most of the basins (72% of the total) are smaller than 103 km2, and both runoff and population density are higher and more variable among small basins than among larger ones.While total load to the ocean can probably be adequately estimated from large systems only, analysis of the geographic distribution of nutrient loading requires consideration of the small basins, which can exhibit significant hydrologic and demographic heterogeneity between systems over their range even within the same geographic region. High-resolution regional and local analysis is necessary for environmental assessment and management. ?? Springer 2005.

  2. Calcareous nannofossils of the Toarcian-Aalenian transition in the São Gião section (Lusitanian Basin, Portugal): preliminary results

    NASA Astrophysics Data System (ADS)

    Cortesão, André; Henriques, Maria Helena

    2016-04-01

    This work presents preliminary results regarding the composition of the calcareous nannofossils assemblages' recorded in the Lower-Middle Jurassic transition of the São Gião section, located in the northern Lusitanian Basin (Central Portugal). The section is a 45 m-thick monotonous alternation of marl and marly limestone (the Póvoa da Lomba Formation) ranging from the Upper Toarcian to the Lower Aalenian, and it corresponds to an expanded section showing exceptional exposure conditions. The continuous record of ammonites has enabled the recognition of the Aalensis Zone (Mactra and Aalensis subzones) and the Opalinum Zone (Opalinum and Comptum subzones). The abundant and very diverse benthic foraminiferal record accurately calibrated with the ammonite record has allowed the recognition of the Astacolus dorbignyi Zone. For the study of the calcareous nannofossil record, four samples were collected (one for each ammonite subzone) and processed; the smear slides were analyzed in a Leica DM750P polarizing microscope, using a 1000 X magnification. The nannfossil assemblages of the São Gião section are dominated by representatives of the genera Lotharingius and Discorhabdus, whereas Carinolithus and Schizosphaerella are subordinated. Other genera also represented in the analysed assemblages include Crepidolithus and Thoracosphaera. As noticed for the ammonite and for the benthic foraminiferal record, throughout the Upper Toarcian - Lower Aalenian record for the São Gião section no drastic changes in the number of originations and extinctions of nannofossil genera between ammonite biozones was detected. The main faunal change is the increase in the relative abundance of the genera Carinolithus in the Comptum Subzone, and the concomitant reduction of the relative abundance of Discorhabdus, but Lotharingius representatives remain dominant during the whole Upper Toarcian - Lower Aalenian transition. Further developments on this study will contribute to elaborate an

  3. Characterising groundwater-dominated lowland catchments: the UK Lowland Catchment Research Programme (LOCAR)

    NASA Astrophysics Data System (ADS)

    Wheater, H. S.; Peach, D.; Binley, A.

    2007-01-01

    This paper reports on a major UK initiative to address deficiencies in understanding the hydro-ecological response of groundwater-dominated lowland catchments. The scope and objectives of this national programme are introduced and focus on one of three sets of research basins - the Pang/Lambourn Chalk catchments, tributaries of the river Thames in southern England. The motivation for the research is the need to support integrated management of river systems that have high ecological value and are subject to pressures that include groundwater abstraction for water supply, diffuse pollution, and land use and climate change. An overview of the research programme is provided together with highlights of some current research findings concerning the hydrological functioning of these catchments. Despite the importance of the Chalk as a major UK aquifer, knowledge of the subsurface movement of water and solutes is poor. Solute transport in the dual porosity unsaturated zone depends on fracture/matrix interactions that are difficult to observe; current experimental and modelling research supports the predominance of matrix flow and suggests that slow migration of a time-history of decades of nutrient loading is occurring. Groundwater flows are complex; catchments vary seasonally and are ill-defined and karst features are locally important. Groundwater flow pathways are being investigated using natural and artificial geochemical tracers based on experimental borehole arrays; stream-aquifer interaction research is using a combination of geophysics, borehole array geochemistry and longitudinal profiles of stream flow and solutes. A complex picture of localised subsurface inflows, linked to geological controls and karst features, and significant longitudinal groundwater flow below the river channel is emerging. Management implications are discussed. Strategies to control surface application of nutrients are expected to have little effect on groundwater quality for several

  4. Preliminary report on the geology, geophysics and hydrology of USBM/AEC Colorado core hole No. 2, Piceance Creek Basin, Rio Blanco County, Colorado

    USGS Publications Warehouse

    Ege, J.R.; Carroll, R.D.; Welder, F.A.

    1967-01-01

    Approximately 1,400 feet of continuous core was taken .between 800-2,214 feet in depth from USBM/AEC Colorado core hole No. 2. The drill, site is located in the Piceance Creek basin, Rio Blanco County, Colorado. From ground surface the drill hole penetrated 1,120 feet of the Evacuation Creek Member and 1,094 feet of oil shale in the Parachute Creek Member of the Green River Formation. Oil shale yielding more than 20 gallons per ton occurs between 1,260-2,214 feet in depth. A gas explosion near the bottom of the hole resulted in abandonment of the exploratory hole which was still in oil shale. The top of the nahcolite zone is at 1,693 feet. Below this depth the core contains common to abundant amounts of sodium bicarbonate salt intermixed with oil shale. The core is divided into seven structural zones that reflect changes in joint intensity, core loss and broken core due to natural causes. The zone of poor core recovery is in the Interval between 1,300-1,450 feet. Results of preliminary geophysical log analyses indicate that oil yields determined by Fischer assay compare favorably with yields determined by geophysical log analyses. There is strong evidence that analyses of complete core data from Colorado core holes No. 1 and No. 2 reveal a reliable relationship between geophysical log response and oil yield. The quality of the logs is poor in the rich shale section and the possibility of repeating the logging program should be considered. Observations during drilling, coring, and hydrologic testing of USBM/AEC Colorado core hole No. 2 reveal that the Parachute Creek Member of the Green River Formation is the principal aquifer water in the Parachute Creek Member is under artesian pressure. The upper part of the aquifer has a higher hydrostatic head than, and is hydrologically separated from the lower part of the aquifer. The transmissibility of the aquifer is about 3500 gpd per foot. The maximum water yield of the core hole during testing was about 500 gpm. Chemical

  5. Environmental care in agricultural catchments: Toward the communicative catchment

    NASA Astrophysics Data System (ADS)

    Martin, Peter

    1991-11-01

    Substantial land degradation of agricultural catchments in Australia has resulted from the importation of European farming methods and the large-scale clearing of land. Rural communities are now being encouraged by government to take responsibility for environmental care. The importance of community involvement is supported by the view that environmental problems are a function of interactions between people and their environment. It is suggested that the commonly held view that community groups cannot care for their resources is due to inappropriate social institutions rather that any inherent disability in people. The communicative catchment is developed as a vision for environmental care into the future. This concept emerges from a critique of resource management through the catchment metaphors of the reduced, mechanical, and the complex, evolving catchment, which reflect the development of systemic and people-centered approaches to environmental care. The communicative catchment is one where both community and resource managers participate collaboratively in environmental care. A methodology based on action research and systemic thinking (systemic action research) is proposed as a way of moving towards the communicative catchment of the future. Action research is a way of taking action in organizations and communities that is participative and informed by theory, while systemic thinking takes into account the interconnections and relationships between social and natural worlds. The proposed vision, methodology, and practical operating principles stem from involvement in an action research project looking at extension strategies for the implementation of total catchment management in the Hunter Valley, New South Wales.

  6. Classification of Lebanese catchments according to their structural and functional characteristics

    NASA Astrophysics Data System (ADS)

    Merheb, Mohammad; Abdallah, Chadi; Moussa, Roger; Baghdadi, Nicolas

    2013-04-01

    Although a global catchment classification scheme is yet to be established, grouping of catchments according to their hydrologic similarities based upon catchment structure and function is an important tool for modeling guidance, generalization, transferability, prediction in un-gauged basins and anthropogenic global change impacts. The purpose of this study is to create a typology of a set of 17 catchments in Lebanon according to their hydrologic similarities using structural (landform, topography, geology, land use, climate, etc.) and functional (magnitude, duration, frequency, rate of change, climate, etc.) hydrological indices. These indices could be derived from widely available hydrologic and landscapes data. Correlations were performed over pairs of indices and only those showing little or no positive correlation were kept for analysis. To further reduce the number of variables, PCA (Principal Component Analysis) was carried out between structural and functional hydrological indices; as variables, and their correspondingbasins respectively. Only variables strongly associated with one or more of the three principal axes were retained. Furthermore, a stepwise linear regression was used to define relationship between multiple structural indices and each individual functional characteristic for each basin. Herein, two classification approaches has been followed. (1) Classification according to functional index: for each index, basins showing similar regression relationships were grouped together, thus resulting in different catchment classifications from one index to another. One can use one or another of these different classifications according to the problematic that have been raised. (2) A global classification approach where catchments representing similar regressions in more than half of their functional indices were gathered in one class. This latter approach permits the regrouping of catchments that have the maximum of similarities in term of their

  7. Defining prior probabilities for hydrologic model structures in UK catchments

    NASA Astrophysics Data System (ADS)

    Clements, Michiel; Pianosi, Francesca; Wagener, Thorsten; Coxon, Gemma; Freer, Jim; Booij, Martijn

    2014-05-01

    The selection of a model structure is an essential part of the hydrological modelling process. Recently flexible modeling frameworks have been proposed where hybrid model structures can be obtained by mixing together components from a suite of existing hydrological models. When sufficient and reliable data are available, this framework can be successfully utilised to identify the most appropriate structure, and associated optimal parameters, for a given catchment by maximizing the different models ability to reproduce the desired range of flow behaviour. In this study, we use a flexible modelling framework to address a rather different question: can the most appropriate model structure be inferred a priori (i.e without using flow observations) from catchment characteristics like topography, geology, land use, and climate? Furthermore and more generally, can we define priori probabilities of different model structures as a function of catchment characteristics? To address these questions we propose a two-step methodology and demonstrate it by application to a national database of meteo-hydrological data and catchment characteristics for 89 catchments across the UK. In the first step, each catchment is associated with its most appropriate model structure. We consider six possible structures obtained by combining two soil moisture accounting components widely used in the UK (Penman and PDM) and three different flow routing modules (linear, parallel, leaky). We measure the suitability of a model structure by the probability of finding behavioural parameterizations for that model structure when applied to the catchment under study. In the second step, we use regression analysis to establish a relation between selected model structures and the catchment characteristics. Specifically, we apply Classification And Regression Trees (CART) and show that three catchment characteristics, the Base Flow Index, the Runoff Coefficient and the mean Drainage Path Slope, can be used

  8. Comparison of subsurface connectivity in Alpine headwater catchments

    NASA Astrophysics Data System (ADS)

    Zuecco, Giulia; Rinderer, Michael; van Meerveld, Ilja; Penna, Daniele; Borga, Marco

    2016-04-01

    . The temporal changes in the area of the catchment that was connected to the stream reflected the streamflow dynamics for all catchments. Subsurface connectivity increased during rainfall events but there was a short delay compared to streamflow, suggesting that other processes (e.g. direct channel precipitation, runoff from near stream saturated areas) contributed to streamflow at the beginning of the event. Groundwater levels declined later and slower than streamflow, resulting in complex but mainly anti-clockwise hysteretic relations between streamflow and the area that was connected to the stream. Threshold-like relations between maximum connectivity and total stormflow and between maximum connectivity and the sum of total rainfall plus antecedent rainfall were more evident for the dolomitic catchments, where the riparian zone is characterized by a groundwater table near the soil surface. A sudden increase in connectivity for these catchments could represent the connection of hillslopes to the stream. These preliminary results suggest that the delayed increase in subsurface connectivity relative to streamflow is likely not affected by the presence of a riparian zone. However, further analyses are needed to determine if the climate and/or morphology of the catchments affect the observed relations between maximum connectivity and total stormflow. Keywords: subsurface connectivity; headwater catchments; groundwater; graph theory; hysteresis.

  9. Runoff predictions in ungauged catchments in southeast Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Li, Fapeng; Zhang, Yongqiang; Xu, Zongxue; Liu, Changming; Zhou, Yanchun; Liu, Wenfeng

    2014-04-01

    The Tibetan Plateau (TP) plays a key role on both hydrology and climate for southern and eastern Asia. Improving runoff predictions in ungauged catchments in the TP is critical for surface water hydrology and water resources management in this region. However, a detailed runoff prediction study in this region has not been reported yet. To fill the gap, this study evaluates two regionalization approaches, spatial proximity and physical similarity, for predicting runoff using two rainfall-runoff models (SIMHYD and GR4J). These models are driven by meteorological inputs from eight large non-nested catchments (4000-50,000 km2) in the Yarlung Tsangpo River basin located in southeast TP. For each catchment, the two models are calibrated using data from the first two-thirds of the observation period and validated over the remaining period. The calibrated and validated Nash-Sutcliffe Efficiency of monthly runoff (NSE) varies from 0.73 to 0.93 for the SIMHYD model, and are similar to or slightly better than those obtained for the GR4J model. The incorporation of snowfall-snowmelt processes into the rainfall-runoff models does not noticeably improve the runoff predictions in the study area. The main reason is that monthly runoff is dominated by summer precipitation and snowfall in winter accounts for a small percentage (less than 14%). The results from both models show that the spatial proximity approach marginally outperforms the physical similarity approach and both approaches are better than random selection of a donor catchment. This is consistent with recent regionalization studies carried out in Europe and Australia. The study suggests that conceptual rainfall-runoff models are powerful and simple tools for monthly runoff predictions in large catchments in southeast TP, and incorporation of more catchments into regionalization can further improve prediction skills.

  10. The relative influence of climate and catchment properties on hydrological drought

    NASA Astrophysics Data System (ADS)

    Van Loon, Anne; Laaha, Gregor; Koffler, Daniel

    2014-05-01

    Studying hydrological drought (a below-normal water availability in groundwater, lakes and streams) is important to society and the ecosystem, but can also reveal interesting information about catchment functioning. This information can later be used for predicting drought in ungauged basins and to inform water management decisions. In this study, we used an extensive Austrian dataset of discharge measurements in clusters of catchments and combine this dataset with thematic information on climate and catchment properties. Our aim was to study the relative effects of climate and catchment characteristics on drought duration and deficit and on hydrological drought typology. Because the climate of the region is roughly uniform, our hypothesis was that the effect of differences of catchment properties would stand out. From time series of precipitation and discharge we identified droughts with the widely-used threshold level approach, defining a drought when a variable falls below a pre-defined threshold representing the regime. Drought characteristics that were analysed are drought duration and deficit. We also applied the typology of Van Loon & Van Lanen (2012). To explain differences in drought characteristics between catchments we did a correlation analysis with climate and catchment characteristics, based on Pearson correlation. We found very interesting patterns in the correlations of drought characteristics with climate and catchment properties: 1) Droughts with long duration (mean and maximum) and composite droughts are related to catchments with a high BFI (high baseflow) and a high percentage of shallow groundwater tables. 2) The deficit (mean and maximum) of both meteorological droughts and hydrological droughts is strongly related to catchment humidity, in this case quantified by average annual precipitation. 3) The hydrological drought types that are related to snow, i.e. cold snow season drought and snow melt drought, occur in catchments that are have a

  11. Evaluating stream water quality through land use analysis in two grassland catchments: impact of wetlands on stream nitrogen concentration.

    PubMed

    Hayakawa, A; Shimizu, M; Woli, K P; Kuramochi, K; Hatano, R

    2006-01-01

    We evaluated the impacts of natural wetlands and various land uses on stream nitrogen concentration in two grassland-dominated catchments in eastern Hokkaido, Japan. Analyzing land use types in drainage basins, measuring denitrification potential of its soil, and water sampling in all seasons of 2003 were performed. Results showed a highly significant positive correlation between the concentration of stream NO3-N and the proportion of upland area in drainage basins in both catchments. The regression slope, which we assumed to reflect the impact on water quality, was 24% lower for the Akkeshi catchment (0.012 +/- 0.001) than for the Shibetsu catchment (0.016 +/- 0.001). In the Akkeshi catchment, there was a significant negative correlation between the proportion of wetlands in the drainage basins and stream NO3-N concentration. Stream dissolved organic nitrogen (DON) and carbon (DOC) concentrations were significantly higher in the Akkeshi catchment. Upland and urban land uses were strongly linked to increases in in-stream N concentrations in both catchments, whereas wetlands and forests tended to mitigate water quality degradation. The denitrification potential of the soils was highest in wetlands, medium in riparian forests, and lowest in grasslands; and was significant in wetlands and riparian forests in the Akkeshi catchment. The solubility of soil organic carbon (SOC) and soil moisture tended to determine the denitrification potential. These results indicate that the water environment within the catchments, which influences denitrification potential and soil organic matter content, could have caused the difference in stream water quality between the two catchments. PMID:16510707

  12. The catchment based approach using catchment system engineering

    NASA Astrophysics Data System (ADS)

    Jonczyk, Jennine; Quinn, Paul; Barber, Nicholas; Wilkinson, Mark

    2015-04-01

    The catchment based approach (CaBa) has been championed as a potential mechanism for delivery of environmental directives such as the Water Framework Directive in the UK. However, since its launch in 2013, there has been only limited progress towards achieving sustainable, holistic management, with only a few of examples of good practice ( e.g. from the Tyne Rivers trust). Common issues with developing catchment plans over a national scale include limited data and resources to identify issues and source of those issues, how to systematically identify suitable locations for measures or suites of measures that will have the biggest downstream impact and how to overcome barriers for implementing solutions. Catchment System Engineering (CSE) is an interventionist approach to altering the catchment scale runoff regime through the manipulation of hydrological flow pathways throughout the catchment. A significant component of the runoff generation can be managed by targeting hydrological flow pathways at source, such as overland flow, field drain and ditch function, greatly reducing erosive soil losses. Coupled with management of farm nutrients at source, many runoff attenuation features or measures can be co-located to achieve benefits for water quality and biodiversity. A catchment, community-led mitigation measures plan using the CSE approach will be presented from a catchment in Northumberland, Northern England that demonstrate a generic framework for identification of multi-purpose features that slow, store and filter runoff at strategic locations in the landscape. Measures include within-field barriers, edge of field traps and within-ditch measures. Progress on the implementation of measures will be reported alongside potential impacts on the runoff regime at both local and catchment scale and costs.

  13. Longterm Measurements of Bedload-Transport in alpine Catchments

    NASA Astrophysics Data System (ADS)

    Achleitner, Stefan; Kammerlander, Johannes; Eichner, Bernhard; Schöber, Johannes; Chiari, Michael

    2016-04-01

    In recent years the necessity of predicting the long-term behavior of sediment transport has increased. On the one hand, the effects of technical measures (e.g. retaining measures, hydropower, etc.) in the natural system are to be evaluated. On the other hand long term ecological studies that are strongly linked to the sediment budgets and its variation are more and more evolving. The ACRP Project DevoBeta-CC addresses the dynamics of long term sediment transport dynamics and its temporal altering. The focus is put on smaller tributary catchments enabling the model development. In total the data from ten catchments connected to the hydropower station Kaunertal (Tyrol/Austria) and eleven catchments linked to the power plant group Sellrain-Silz (Tyrol/Austria) are available. The considered catchments vary regarding their characteristics such as size (3 km³ to 27 km²), glaciation (0 % to 53 %), mean catchment slope (53 % to 92 %) and mean channel gradient (4 % to 49 %). The main data basis are records from the water intake structures operated (partly since 1965) by the TIWAG (Tiroler Wasserkraft AG). The sedimentation dynamics and operational flushings of the connected settling basins are used to measure the transported sediments. Since 1985 even high resolution data (15min intervals) are available. At selected catchments, the operationally recorded data (flushings, load membrane measurements,...) are verified within measuring campaigns using bed load traps upstream. Further, the sedimentation dynamics and grain size distributions in the settling basins are evaluated. Therefor two water intakes were put temporally out of operation, allowing an improved measurement of settled volumes by means of terrestrial surveying. Uncertainty assessments reveal an overall accuracy of estimated annual bed load volumes lower than a factor of two. Additionally, the data set enables to address sediment transport at a sub-annual basis, hence, the presented data set is unique regarding

  14. Assessing the temporal variance of evapotranspiration considering climate and catchment storage factors

    NASA Astrophysics Data System (ADS)

    Zeng, Ruijie; Cai, Ximing

    2015-05-01

    Understanding the temporal variance of evapotranspiration (ET) at the catchment scale remains a challenging task, because ET variance results from the complex interactions among climate, soil, vegetation, groundwater and human activities. This study extends the framework for ET variance analysis of Koster and Suarez (1999) by incorporating the water balance and the Budyko hypothesis. ET variance is decomposed into the variance/covariance of precipitation, potential ET, and catchment storage change. The contributions to ET variance from those components are quantified by long-term climate conditions (i.e., precipitation and potential ET) and catchment properties through the Budyko equation. It is found that climate determines ET variance under cool-wet, hot-dry and hot-wet conditions; while both catchment storage change and climate together control ET variance under cool-dry conditions. Thus the major factors of ET variance can be categorized based on the conditions of climate and catchment storage change. To demonstrate the analysis, both the inter- and intra-annul ET variances are assessed in the Murray-Darling Basin, and it is found that the framework corrects the over-estimation of ET variance in the arid basin. This study provides an extended theoretical framework to assess ET temporal variance under the impacts from both climate and storage change at the catchment scale.

  15. Runoff Production in the Upper Rio Chagres Catchment, Panama

    NASA Astrophysics Data System (ADS)

    Niezialek, J. M.; Ogden, F. L.

    2003-12-01

    Runoff production in watersheds in the seasonal tropics is governed by a number of factors. The mountainous 414 sq. km upper Rio Chagres watershed offers a unique opportunity to better understand the runoff production mechanisms in seasonal tropical catchments through data analysis and modeling. The upper Rio Chagres catchment provides the majority of inflows to the Panama Canal, has been monitored for over 60 years as part of canal operations. Discharge data are available at both the catchment outlet (Chico gaging station) and an internal catchment location (Rio Piedras gaging station). There are also seven tipping bucket recording rain gages in and around the catchment. Analysis of runoff data reveals anomalously-high runoff production efficiencies early in the wet season. Furthermore, the existence of two quasi-stable base flow regimes during the wet season imply critical threshold storages. Initial field studies have shown that the soils are water repellent during the dry season. Runoff data from the 80 sq. km Rio Piedras subcatchment reveal ephemeral flows throughout the wet season, indicating significant heterogeneity in runoff production and deep groundwater circulation. Preliminary hydrologic modeling is performed with the Sacramento Soil Moisture Accounting Model (SAC-SMA), calibrated using data from 1988 and verified using data from 1989. Further modeling on the flood of 28-31 December, 2000 is also performed. Modeling using the distributed parameter GSSHA model combined with the Sacramento groundwater module allows simulation of distributed runoff. However, the role of interception by the triple-layer tropical canopy and the magnitude of evapotranspiration are uncertain. New data collection is proposed in the Rio Chagres catchment to help quantify interception and evapotranspiration. This instrumentation will include measurements of rainfall above the canopy, cloud stripping, stemflow, throughfall, soil moisture, groundwater, interflow

  16. Geochemical effects of CO2 injection on produced water chemistry at an enhanced oil recovery site in the Permian Basin of northwest Texas, USA: Preliminary geochemical and Li isotope results

    NASA Astrophysics Data System (ADS)

    Pfister, S.; Gardiner, J.; Phan, T. T.; Macpherson, G. L.; Diehl, J. R.; Lopano, C. L.; Stewart, B. W.; Capo, R. C.

    2014-12-01

    Injection of supercritical CO2 for enhanced oil recovery (EOR) presents an opportunity to evaluate the effects of CO2 on reservoir properties and formation waters during geologic carbon sequestration. Produced water from oil wells tapping a carbonate-hosted reservoir at an active EOR site in the Permian Basin of Texas both before and after injection were sampled to evaluate geochemical and isotopic changes associated with water-rock-CO2 interaction. Produced waters from the carbonate reservoir rock are Na-Cl brines with TDS levels of 16.5-34 g/L and detectable H2S. These brines are potentially diluted with shallow groundwater from earlier EOR water flooding. Initial lithium isotope data (δ7Li) from pre-injection produced water in the EOR field fall within the range of Gulf of Mexico Coastal sedimentary basin and Appalachian basin values (Macpherson et al., 2014, Geofluids, doi: 10.1111/gfl.12084). Pre-injection produced water 87Sr/86Sr ratios (0.70788-0.70795) are consistent with mid-late Permian seawater/carbonate. CO2 injection took place in October 2013, and four of the wells sampled in May 2014 showed CO2 breakthrough. Preliminary comparison of pre- and post-injection produced waters indicates no significant changes in the major inorganic constituents following breakthrough, other than a possible drop in K concentration. Trace element and isotope data from pre- and post-breakthrough wells are currently being evaluated and will be presented.

  17. Using stable isotopes to estimate and compare mean residence times in contrasting geologic catchments (Attert River, NW Luxembourg)

    NASA Astrophysics Data System (ADS)

    Martínez-Carreras, N.; Fenicia, F.; Frentress, J.; Wrede, S.; Pfister, L.

    2012-04-01

    In recent years, stable isotopes have been increasingly used to characterize important aspects of catchment hydrological functioning, such as water storage dynamics, flow pathways and water sources. These characteristics are often synthesized by the Mean Residence Time (MRT), which is a simple catchment descriptor that employ the relation of distinct stable isotopic signatures in the rainfall input and streamflow output of a catchment that are significantly dampened through sub-surface propagation. In this preliminary study, MRT was estimated in the Attert River catchment (NW Luxembourg), where previous studies have shown that lithology exerts a major control on runoff generation. The Attert catchment lies at the transition zone of contrasting bedrock lithology: the Northern part is characterized by Devonian schist of the Ardennes massif, while sedimentary deposits of sandstone and marls dominate in the south of the catchment. As a consequence of differing lithologic characteristics, hydrological processes change across scales. The schistose catchments exhibit a delayed shallow groundwater component, sandstone catchments have slow-responding year-round groundwater component, whereas flashy runoff regimes prevails in the marly catchments. Under these circumstances, the MRTs are expected to vary significantly according to lithology, and provide additional understanding in internal catchment processes and their scale dependencies. In order to test this, bi-weekly monitoring of rainfall and discharge stable water isotope composition (oxygen-18 and deuterium) has been carried out since 2007 in 10 nested sub-catchments ranging in size from 0.4 to 247 km2 in the Attert catchment. MRT was estimated using different lumped convolution integral models and sine wave functions with varying transit times distributions (TTDs). TTDs were evaluated through calibration. Further research efforts will deal with the application of conceptual models to simulate and compare TTD, using

  18. Source and transport factors influencing storm phosphorus losses in agricultural catchments

    NASA Astrophysics Data System (ADS)

    Shore, Mairead; Jordan, Phil; Mellander, Per-Erik; kelly-quinn, Mary; Wall, David; Murphy, Paul; Melland, Alice

    2014-05-01

    The relative risk of diffuse phosphorus (P) loss from agricultural land was assessed in a well-drained arable catchment and a poorly-drained grassland catchment and in two nested basins within each catchment. This research investigated the relative control of hydrology and soil P on P losses between basins. Quick flow (QF) P losses (defined here as both concentrations and loads), monitored in stream flow during four storm events, were compared with a dynamic metric of transport risk (QF magnitude) and a static metric of critical source area (CSA) risk (extent of highly-connected poorly-drained soils with excess plant-available soil P). The potential for static transport metrics of soil connectivity and soil drainage class, to predict relative QF magnitudes and P losses between basins was also investigated. In basins with similar CSA risk but with contrasting QF magnitudes, mean TRP (total molybdate-reactive P) losses were consistently higher in the basins which had the highest QF magnitudes. This suggests that basin hydrology, rather than hydrology of high-P soils only, determined relative TRP losses between hydrologically contrasting basins. Furthermore, static transport metrics of soil connectivity and soil drainage class reliably discerned relative QF magnitudes and TRP losses between these basins. However, for two of the storm events (both occurring during the hydrologically active season), PP (particulate P) concentrations were frequently higher in basins which had the lowest QF magnitudes and may be attributed to a higher proportion of bare soil in these basins at these times as a result of their predominantly arable nature. In basins with similar hydrology, relative TRP and PP losses did not reflect trends in CSA risk or QF magnitude. The dynamics of TRP and PP losses and QF magnitude between these basins varied across storms, thus could not be predicted using static metrics. Where differences in hydrological dynamics were large, storm TRP losses were well

  19. Deep Drilling to Decipher Potential Interaction Between Shallow and Deep Fluid Systems: Preliminary Results From the INFLUINS Drilling Campaign in the Thuringian Basin, Central Germany

    NASA Astrophysics Data System (ADS)

    Kukowski, N.; Totsche, K. U.; Methe, P.; Goepel, A.; Abratis, M.; Habisreuther, A.; Kunkel, C.; Ward, T.

    2014-12-01

    To shed light on the coupled dynamics of near surface and deep fluid systems in a sedimentary basin on various scales, ranging from the pore scale to the extent of an entire basin, is the overall goal of INFLUINS (INtegrated FLuid dynamics IN Sedimentary basins). To do so is essential to understand the functioning of sedimentary basins fluid systems. An integral INFLUINS topic also is the potential interaction of aquifers within a basin and at its rims. Regionally, INFLUINS is focusing on the Thuringian basin, a well-confined, intra-continental sedimentary basin in central Germany as a natural geo-laboratory. The Thuringian basin is composed of sedimentary rocks from the latest Paleozoic and mainly Triassic and particularly suited to undertake such research as it is of relative small size, about 50 times 100 km, easily accessible, and quite well known from previous studies. INFLUINS consists on several projects tightly connected to each other and coming from various disciplines of geosciences including among others geophysics, hydrogeology, sedimentology, mineralogy, and remote sensing. A deep drilling campaign, which took place close to Erfurt in the center of the basin in summer 2013, is one of the main achievements of INFLUINS. In preparation for deep drilling, in 2011, we conducted an extensive seismic reflection site survey, in the framework of which the center of the basin down to the top basement was imaged in high quality. Drilling went down to a depth of 1179 m, drilling Triassic rocks from Keuper to lower Buntsandstein and led to more than 500 m of cores of excellent quality and more than 600 cuttings samples. Down-hole geophysical logging over the entire depth of the drill hole is complemented with Multi Sensor Core Logging leading to an extensive geophysical data set with a spatial resolution up to the cm-scale. Here, we present overall results of the drilling campaign and focus on the boundaries between major groups as well as between prominent beds

  20. Transport and deposition of carbon at catchment scale: stabilization mechanisms approach

    NASA Astrophysics Data System (ADS)

    Martínez-Mena, María; Almagro, María; Díaz-Pereira, Elvira; García-Franco, Noelia; Boix-Fayos, Carolina

    2016-04-01

    Terrestrial sedimentation buries large amounts of organic carbon (OC) annually, contributing to the terrestrial carbon sink. The temporal significance of this sink will strongly depend on the attributes of the depositional environment, but also on the characteristics of the OC reaching these sites and its stability upon deposition. The fate of the redistributed OC will ultimately depend on the mechanisms of its physical and chemical protection against decomposition, its turnover rates and the conditions under which the OC is stored in sedimentary settings. This framework is more complex in Mediterranean river basins where sediments are often redistributed under a range of environmental conditions in ephemeral, intermittent and perennial fluvial courses, sometimes within the same catchment. The OC stabilization mechanisms and their relations with aggregation at different transport and sedimentary deposits is under those conditions highly uncertain. The main objective of this work was to characterize the stabilization and mineralization of OC in sediments in transit (suspended load), at a range of depositional settings (alluvial bars, reservoir sediments) and soils from the source areas in a sub-catchment (111 km2) at the headwaters of the Segura catchment in South East Spain. In order to obtain a deeper knowledge on the predominant stabilization mechanism corresponding to each erosional phase, the following organic carbon fractionation method was carried out: Four aggregate size classes were distinguished by sieving (large and small macroaggregates, free microaggregates, and free silt plus clay fraction), and the microaggregates occluded within macroaggregates (SMm) were isolated. As a further step, an oxidation of the OC occluded in silt plus clay fraction and that of the free silt plus clay fraction was performed to estimate the oxidant resistant OC pool. Measured OC in these fractions can be related to three functional pools: active (free particulate organic

  1. A simple distributed sediment delivery approach for rural catchments

    NASA Astrophysics Data System (ADS)

    Reid, Lucas; Scherer, Ulrike

    2014-05-01

    The transfer of sediments from source areas to surface waters is a complex process. In process based erosion models sediment input is thus quantified by representing all relevant sub processes such as detachment, transport and deposition of sediment particles along the flow path to the river. A successful application of these models requires, however, a large amount of spatially highly resolved data on physical catchment characteristics, which is only available for a few, well examined small catchments. For the lack of appropriate models, the empirical Universal Soil Loss Equation (USLE) is widely applied to quantify the sediment production in meso to large scale basins. As the USLE provides long-term mean soil loss rates, it is often combined with spatially lumped models to estimate the sediment delivery ratio (SDR). In these models, the SDR is related to data on morphological characteristics of the catchment such as average local relief, drainage density, proportion of depressions or soil texture. Some approaches include the relative distance between sediment source areas and the river channels. However, several studies showed that spatially lumped parameters describing the morphological characteristics are only of limited value to represent the factors of influence on sediment transport at the catchment scale. Sediment delivery is controlled by the location of the sediment source areas in the catchment and the morphology along the flow path to the surface water bodies. This complex interaction of spatially varied physiographic characteristics cannot be adequately represented by lumped morphological parameters. The objective of this study is to develop a simple but spatially distributed approach to quantify the sediment delivery ratio by considering the characteristics of the flow paths in a catchment. We selected a small catchment located in in an intensively cultivated loess region in Southwest Germany as study area for the development of the SDR approach. The

  2. Catchment-scale biogeography of riverine bacterioplankton.

    PubMed

    Read, Daniel S; Gweon, Hyun S; Bowes, Michael J; Newbold, Lindsay K; Field, Dawn; Bailey, Mark J; Griffiths, Robert I

    2015-02-01

    Lotic ecosystems such as rivers and streams are unique in that they represent a continuum of both space and time during the transition from headwaters to the river mouth. As microbes have very different controls over their ecology, distribution and dispersion compared with macrobiota, we wished to explore biogeographical patterns within a river catchment and uncover the major drivers structuring bacterioplankton communities. Water samples collected across the River Thames Basin, UK, covering the transition from headwater tributaries to the lower reaches of the main river channel were characterised using 16S rRNA gene pyrosequencing. This approach revealed an ecological succession in the bacterial community composition along the river continuum, moving from a community dominated by Bacteroidetes in the headwaters to Actinobacteria-dominated downstream. Location of the sampling point in the river network (measured as the cumulative water channel distance upstream) was found to be the most predictive spatial feature; inferring that ecological processes pertaining to temporal community succession are of prime importance in driving the assemblages of riverine bacterioplankton communities. A decrease in bacterial activity rates and an increase in the abundance of low nucleic acid bacteria relative to high nucleic acid bacteria were found to correspond with these downstream changes in community structure, suggesting corresponding functional changes. Our findings show that bacterial communities across the Thames basin exhibit an ecological succession along the river continuum, and that this is primarily driven by water residence time rather than the physico-chemical status of the river. PMID:25238398

  3. Catchment-scale biogeography of riverine bacterioplankton

    PubMed Central

    Read, Daniel S; Gweon, Hyun S; Bowes, Michael J; Newbold, Lindsay K; Field, Dawn; Bailey, Mark J; Griffiths, Robert I

    2015-01-01

    Lotic ecosystems such as rivers and streams are unique in that they represent a continuum of both space and time during the transition from headwaters to the river mouth. As microbes have very different controls over their ecology, distribution and dispersion compared with macrobiota, we wished to explore biogeographical patterns within a river catchment and uncover the major drivers structuring bacterioplankton communities. Water samples collected across the River Thames Basin, UK, covering the transition from headwater tributaries to the lower reaches of the main river channel were characterised using 16S rRNA gene pyrosequencing. This approach revealed an ecological succession in the bacterial community composition along the river continuum, moving from a community dominated by Bacteroidetes in the headwaters to Actinobacteria-dominated downstream. Location of the sampling point in the river network (measured as the cumulative water channel distance upstream) was found to be the most predictive spatial feature; inferring that ecological processes pertaining to temporal community succession are of prime importance in driving the assemblages of riverine bacterioplankton communities. A decrease in bacterial activity rates and an increase in the abundance of low nucleic acid bacteria relative to high nucleic acid bacteria were found to correspond with these downstream changes in community structure, suggesting corresponding functional changes. Our findings show that bacterial communities across the Thames basin exhibit an ecological succession along the river continuum, and that this is primarily driven by water residence time rather than the physico-chemical status of the river. PMID:25238398

  4. Changes in catchment hydrology in relation to vegetation recovery: a comparative modelling experiment

    NASA Astrophysics Data System (ADS)

    Lana-Renault, Noemí; Karssenberg, Derek; Latron, Jérôme; Serrano, Mā Pilar; Regüés, David; Bierkens, Marc F. P.

    2010-05-01

    Mediterranean mountains have been largely affected by land abandonment and subsequent vegetation recovery, with a general expansion of shrubs and forests. Such a large scale land-cover change has modified the hydrological behavior of these areas, with significant impact on runoff production. Forecasting the trend of water resources under future re-vegetation scenarios is of paramount importance in Mediterranean basins, where water management relies on runoff generated in these areas. With this purpose, a modelling experiment was designed based on the information collected in two neighbouring research catchments with a different history of land use in the central Spanish Pyrenees. One (2.84 km2) is an abandoned agricultural catchment subjected to plant colonization and at present mainly covered by shrubs. The other (0.92 km2) is a catchment covered by dense natural forest, representative of undisturbed environments. Here we present the results of the analysis of the hydrological differences between the two catchments, and a description of the approach and results of the modelling experiment. In a statistical analysis of the field data, significant differences were observed in the streamflow response of the two catchments. The forested catchment recorded fewer floods per year compared to the old agricultural catchment, and its hydrological response was characterised by a marked seasonality, with autumn and spring as the only high flow periods. Stormflow was generally higher in the old agricultural catchment, especially for low to intermediate size events; only for large events the stormflow in the forested catchment was sometimes greater. Under drier conditions, the relative differences in the stormflow between the two catchments tended to increase whereas under wet conditions they tended to be similar. The forested catchment always reacted more slowly to rainfall, with lower peakflows (generally one order of magnitude lower) and longer recession limbs. The modelling

  5. Geomorphic (de-) coupling of hillslope and channel systems within headwater catchments in two subarctic tributary valleys, Nordfjord, Western Norway

    NASA Astrophysics Data System (ADS)

    Laute, Katja; Beylich, Achim A.

    2010-05-01

    Hillslopes occupy large areas of the earth surface. Studying the characteristics, development and interaction of hillslopes as components of the geomorphic hillslope-channel coupling process-response system will improve the understanding of the complex response of mountain landscape formation. The rates of hillslope processes are exceptionally varied and affected by many influences of varying intensity. Hillslope-channel coupling and sediment storage within slopes are important factors that influence sediment delivery through catchments, especially in steep environments. Within sediment transfers from sources to sinks in drainage basins, hillslopes function as a key element concerning sediment storage, both for short term periods as between rainstorms as well as for longer periods in colluvial deposits. This PhD project is part of the NFR funded SedyMONT-Norway project within the ESF TOPO-EUROPE SedyMONT (Timescales of sediment dynamics, climate and topographic change in mountain landscapes) programme. The focus of this study is on geomorphic hillslope-channel coupling or de-coupling and sediment transport within four distinct headwater areas of the Erdalen and Bødalen catchments in the Nordfjord valley-fjord system (inner Nordfjord, Western Norway). Both catchments can be described as steep, U-shaped and glacier-fed, subarctic tributary valleys. Approximately 14% of the 49 km2 large headwater area of Erdalen is occupied by hillslope deposits; in Bødalen hillslope deposits occupy 12% of the 42 km2 large headwater area. The main aims of the study are to present preliminary findings on (i) the identification of possible sediment sources and delivery pathways within the headwater areas of the catchments, (ii) to analyze the development of hillslope-channel coupling / de-coupling from postglacial to contemporary timescales as well as (iii) to investigate the current degree of geomorphic hillslope-channel coupling within the different headwater catchments and (iv) to

  6. Preliminary results on the characterization of Cretaceous and lower Tertiary low-permeability (tight) gas-bearing rocks in the Wind River Basin, Wyoming

    SciTech Connect

    Fouch, T.D.; Keefer, W.R.; Finn, T.M.

    1993-12-31

    The Wind River Basin is a structural and sedimentary basin in central Wyoming (Figure 1) that was created during the Laramide orogeny from Late Cretaceous through Eocene time. The objectives of the Wind River Basin tight gas sandstone project are to define the limits of the tight gas accumulation in the basin and to estimate in-place and recoverable gas resources. The approximate limits of the tight gas accumulation are defined from available drillhole information. Geologic parameters, which controlled the development of the accumulation, are studied in order to better understand the origins of tight gas accumulations, and to predict the limits of the accumulation in areas where little drillhole information is available. The architecture of sandstone reservoirs are studied in outcrop to predict production characteristics of similar reservoirs within the tight gas accumulation. Core and cuttings are used to determine thermal maturities, quality of source rocks, and diagenetic histories. Our work thus far has concentrated in the Wind River Indian Reservation in the western part of the basin.

  7. Preliminary applications of Landsat images and aerial photography for determining land-use, geologic, and hydrologic characteristics, Yampa River basin, Colorado and Wyoming

    USGS Publications Warehouse

    Heimes, F.J.; Moore, G.K.; Steele, T.D.

    1978-01-01

    Expanded energy- and recreation-related activities in the Yampa River basin, Colorado and Wyoming, have caused a rapid increase in economic development which will result in increased demand and competition for natural resources. In planning for efficient allocation of the basin 's natural resources, Landsat images and small-scale color and color-infrared photographs were used for selected geologic, hydrologic and land-use applications within the Yampa River basin. Applications of Landsat data included: (1) regional land-use classification and mapping, (2) lineament mapping, and (3) areal snow-cover mapping. Results from the Landsat investigations indicated that: (1) Landsat land-use classification maps, at a regional level, compared favorably with areal land-use patterns that were defined from available ground information, (2) lineaments were mapped in sufficient detail using recently developed techniques for interpreting aerial photographs, (3) snow cover generally could be mapped for large areas with the exception of some densely forested areas of the basin and areas having a large percentage of winter-season cloud cover. Aerial photographs were used for estimation of turbidity for eight stream locations in the basin. Spectral reflectance values obtained by digitizing photographs were compared with measured turbidity values. Results showed strong correlations (variances explained of greater than 90 percent) between spectral reflectance obtained from color photographs and measured turbidity values. (Woodard-USGS)

  8. Groundwater Resources Evolution in Degrading Permafrost Environments: A Small Catchment-Scale Study in Northern Quebec, Canada

    NASA Astrophysics Data System (ADS)

    Molson, John; Lemieux, Jean-Michel; Fortier, Richard; Therrien, Rene; Ouellet, Michel; Barth, Johannes; van Geldern, Robert; Cochand, Marion; Sottas, Jonathan; Murray, Renaud; Banville, David

    2015-04-01

    A two square kilometre catchment in a discontinuous permafrost zone near the Inuit community of Umiujaq on the eastern shore of Hudson Bay in Northern Quebec, Canada, is being investigated to determine the impact of permafrost degradation on groundwater resources. The catchment, which became deglaciated about 7500 years ago, lies in a valley which includes about 30-40 m of glacial-fluvial and marine Quaternary sediments. Permafrost mounds at the site extend from a few meters below ground surface to depths of about 10-30 m. Instrumentation has been installed to measure groundwater levels and temperature, as well as groundwater and surface water geochemistry, isotope signatures (including δ18O and 3H) and stream flow. Preliminary groundwater isotope data reflect depleted δ18O signals that differ from expected values for local groundwater, possibly representing permafrost thaw. In addition, stable water isotopes indicate evaporation from shallow thermokarst lakes. Meteorological conditions including air temperatures, precipitation and snowpack are also being monitored. Near-surface geophysical surveys using electrical resistivity tomography (ERT), induced polarization tomography (IPT), georadar and seismic refraction tomography have been carried out to characterize the catchment and to build a 3D geological site model. A numerical model of coupled groundwater flow and heat transport, including thermal advection, conduction, freeze-thaw and latent heat, is being developed for the site to help develop the conceptual model and to assess future impacts of permafrost degradation due to climate warming. The model (Heatflow/3D) includes nonlinear functions for the temperature-dependent unfrozen moisture content and relative permeability, and has been tested against analytical solutions and using benchmarks developed by the INTERFROST modelling consortium. A conceptual 2D vertical-plane model including several permafrost mounds along a 1 km section shows dynamic seasonal

  9. Using river discharge to access the quality of different precipitation datasets over large-scale basins

    NASA Astrophysics Data System (ADS)

    Dutra, Emanuel; Balsamo, Gianpaolo; Wetterhall, Fredrik; Florian Pappenberger, ,; Yamazaki, Dai

    2015-04-01

    River discharge is a natural integrator of meteorological variables. The integration is made over a spatial domain (catchment) which is geophysically appropriate, and over time. It takes into account the correlations and covariances between several meteorological variables in a meaningful way, integrating information from a multidimensional variable space. Furthermore, river discharge observations are available and generally reliable. Therefore, river discharge is an important variable to consider in when evaluating the water balance of large-scale basins. In this study we evaluate different precipitation corrections applied to the ECMWF ERA-Interim reanalysis in terms of long-term means and variability of river discharge over several large-scale basins. We compare the original ERA-Interim dataset, the precipitation correction used in the production of the ERA-Interim/Land dataset (adjusted using GPCP) and the WFDEI dataset (adjusted using CRU). Global simulations with the ECMWF land surface model HTESSEL were performed with the different datasets and the simulated runoff routed using the river-floodplain model CaMa-Flood. Preliminary results highlight the deficiencies of ERA-Interim in several tropical basins (e.g. Congo) while the precipitation adjustments in ERA-Interim/Land and in WFDEI degrade the simulations in several northern hemisphere basins dominated by cold processes (e.g. Mackenzie).

  10. Knickpoint Propagation and Hillslope Response in the Mangataikapua Catchment, Waipaoa River, New Zealand

    NASA Astrophysics Data System (ADS)

    Cerovski-Darriau, C.; Roering, J. J.; Bilderback, E. L.

    2012-12-01

    Base level change can cause differential incision in fluvial networks, driving a transient hillslope response as slopes attempt to adjust to a new base level. Following a shift to a warmer, wetter climate after the Last Glacial Maximum (LGM) (~17.5 ka), the Waipaoa River (NZ) rapidly incised ~120 m leaving perched relict hillslopes that are still adjusting to that base level fall. While previous studies of the Waipaoa basin have only focused on sediment contribution from channel incision or a few individual large earthflows, here we analyze an entire catchment that experiences widespread adjustment due to earthflow activity. In the Mangataikapua catchment—a tributary of the Waipaoa River principally comprised of weak mélange—we see wholesale relaxation of hillslopes due to pervasive post-LGM earthflows. Less than 6% of the mélange area retains relict terrain unaltered by earthflows, exemplifying the importance of including hillslope sediment contribution. Incision has propagated ~9 km upstream along the mainstem of the Mangataikapua (~86% of the channel length) and has created 80 m of relief at the junction with the Waipaoa. Continued adjustment along Mangataikapua tributaries and slopes is evident from knickpoints in the channels and changes in gradient, curvature, and degree of earthflow-altered terrain on the hillslopes. By identifying the location of this transition in channels and on the hillslopes, we can estimate the amount of post-LGM hillslope relaxation. We analyzed 10 major sub-catchments (drainage areas >35,000 m2) in the mélange on the southeastern side of the catchment. We used slope-area plots, in conjunction with normalized steepness index values (ksn) generated with the Stream Profiler (www.geomorphtools.org), to determine the degree to which the tributary channels have adjusted to incision along the mainstem. Preliminary results show an "upper zone" of relict channel morphology with an average curvature value of θ=-0.3 (±0.1 s.d.) and a

  11. The large-scale landslide risk classification in catchment scale

    NASA Astrophysics Data System (ADS)

    Liu, Che-Hsin; Wu, Tingyeh; Chen, Lien-Kuang; Lin, Sheng-Chi

    2013-04-01

    The landslide disasters caused heavy casualties during Typhoon Morakot, 2009. This disaster is defined as largescale landslide due to the casualty numbers. This event also reflects the survey on large-scale landslide potential is so far insufficient and significant. The large-scale landslide potential analysis provides information about where should be focused on even though it is very difficult to distinguish. Accordingly, the authors intend to investigate the methods used by different countries, such as Hong Kong, Italy, Japan and Switzerland to clarify the assessment methodology. The objects include the place with susceptibility of rock slide and dip slope and the major landslide areas defined from historical records. Three different levels of scales are confirmed necessarily from country to slopeland, which are basin, catchment, and slope scales. Totally ten spots were classified with high large-scale landslide potential in the basin scale. The authors therefore focused on the catchment scale and employ risk matrix to classify the potential in this paper. The protected objects and large-scale landslide susceptibility ratio are two main indexes to classify the large-scale landslide risk. The protected objects are the constructions and transportation facilities. The large-scale landslide susceptibility ratio is based on the data of major landslide area and dip slope and rock slide areas. Totally 1,040 catchments are concerned and are classified into three levels, which are high, medium, and low levels. The proportions of high, medium, and low levels are 11%, 51%, and 38%, individually. This result represents the catchments with high proportion of protected objects or large-scale landslide susceptibility. The conclusion is made and it be the base material for the slopeland authorities when considering slopeland management and the further investigation.

  12. Characteristics of discrete and basin-centered parts of the Lower Silurian regional oil and gas accumulation, Appalachian basin; preliminary results from a data set of 25 oil and gas fields

    USGS Publications Warehouse

    Ryder, Robert T.

    1998-01-01

    Oil and gas trapped in Lower Silurian 'Clinton' sands and Medina Group sandstone constitute a regional hydrocarbon accumulation that extends 425 mi in length from Ontario, Canada to northeastern Kentucky. The 125-mi width of the accumulation extends from central Ohio eastward to western Pennsylvania and west-central New York. Lenticular and intertonguing reservoirs, a gradual eastward decrease in reservoir porosity and permeability, and poorly segregated gas, oil, and water in the reservoirs make it very difficult to recognize clear-cut geologic- and production-based subdivisions in the accumulation that are relevant to resource assessment. However, subtle variations are recognizable that permit the regional accumulation to be subdivided into three tentative parts: a western gas-bearing part having more or less discrete fields; an eastern gas-bearing part having many characteristics of a basin-centered accumulation; and a central oil- and gas-bearing part with 'hybrid' fields that share characteristics of both discrete and basin-centered accumulation. A data set of 25 oil and gas fields is used in the report to compare selected attributes of the three parts of the regional accumulation. A fourth part of the regional accumulation, not discussed here, is an eastern extension of basin-centered accumulation having local commercial gas in the Tuscarora Sandstone, a proximal facies of the Lower Silurian depositional system. A basin-centered gas accumulation is a regionally extensive and commonly very thick zone of gas saturation that occurs in low-permeability rocks in the central, deeper part of a sedimentary basin. Another commonly used term for this type of accumulation is deep-basin gas accumulation. Basin-centered accumulation is a variety of continuous-type accumulation. The 'Clinton' sands and Medina Group sandstone part of the basin-centered gas accumulation is characterized by: a) reservoir porosity ranging from about 5 to 10 percent; b) reservoir permeability

  13. On the trail of 'hidden streamflow' in Luxembourgish catchments

    NASA Astrophysics Data System (ADS)

    Stewart, Michael; Pfister, Laurent; Morgenstern, Uwe; Martinez-Carreras, Nuria; Gourdol, Laurent; Klaus, Julian; McDonnell, Jeffrey

    2014-05-01

    Tritium measurements are being carried out in well-studied catchments in the Attert sub-basin of the Alzette River in Luxembourg to investigate transit times of baseflow from the various lithologies in the area. Rock-types vary from sandstone with high permeability to marl and schist with low permeabilities. In contrast to other methods, tritium reveals the full spectrum of ages present in streams including 'hidden streamflow' (i.e. water older than that measurable by stable isotope or conservative tracer methods) Stewart et al. (2012). In principle, it can also provide ages for individual samples and therefore reveal variations in age with flow if measurements are accurate enough. However, difficulties arise in determining the tritium input function and from ambiguous age solutions due to the past input of thermonuclear tritium. Previous and concurrent geochemical and stable isotope studies are providing complementary information about the systems (e.g. geological controls on catchment storage, mixing potential, isotopic signatures in streamflow) Pfister et al. (2014). Results to date are showing that old water with mean transit times of about 18 years flow from catchments dominated by sandstone at medium to low flows. These streams also have very homogeneous δD values at such flows showing large storages and mixing potentials. On the other hand, catchments dominated by marl and schist show varying mean transit times ranging from 2 to 20 years depending on flows, although data is limited. The δD values of these streams are scattered and have a decreasing trend with streamflow showing event and seasonal rainfall influence, and thus small storage capacities and mixing potentials. It appears that 'hidden streamflow' is alive and well, and living in Luxembourg! Pfister L. et al. 2014: Catchment storage, baseflow isotope signatures and basin geology: Is there a connection? In preparation. Stewart, M.K., Morgenstern, U., McDonnell, J.J., Pfister, L. 2012: The 'hidden

  14. Basin Economic Allocation Model (BEAM): An economic model of water use developed for the Aral Sea Basin

    NASA Astrophysics Data System (ADS)

    Riegels, Niels; Kromann, Mikkel; Karup Pedersen, Jesper; Lindgaard-Jørgensen, Palle; Sokolov, Vadim; Sorokin, Anatoly

    2013-04-01

    The water resources of the Aral Sea basin are under increasing pressure, particularly from the conflict over whether hydropower or irrigation water use should take priority. The purpose of the BEAM model is to explore the impact of changes to water allocation and investments in water management infrastructure on the overall welfare of the Aral Sea basin. The BEAM model estimates welfare changes associated with changes to how water is allocated between the five countries in the basin (Kazakhstan, Kyrgyz Republic, Tajikistan, Turkmenistan and Uzbekistan; water use in Afghanistan is assumed to be fixed). Water is allocated according to economic optimization criteria; in other words, the BEAM model allocates water across time and space so that the economic welfare associated with water use is maximized. The model is programmed in GAMS. The model addresses the Aral Sea Basin as a whole - that is, the rivers Syr Darya, Amu Darya, Kashkadarya, and Zarafshan, as well as the Aral Sea. The model representation includes water resources, including 14 river sections, 6 terminal lakes, 28 reservoirs and 19 catchment runoff nodes, as well as land resources (i.e., irrigated croplands). The model covers 5 sectors: agriculture (crops: wheat, cotton, alfalfa, rice, fruit, vegetables and others), hydropower, nature, households and industry. The focus of the model is on welfare impacts associated with changes to water use in the agriculture and hydropower sectors. The model aims at addressing the following issues of relevance for economic management of water resources: • Physical efficiency (estimating how investments in irrigation efficiency affect economic welfare). • Economic efficiency (estimating how changes in how water is allocated affect welfare). • Equity (who will gain from changes in allocation of water from one sector to another and who will lose?). Stakeholders in the region have been involved in the development of the model, and about 10 national experts, including

  15. Hydrochemical responses among nested catchments of the Sleepers River Research Watershed.

    NASA Astrophysics Data System (ADS)

    Sebestyen, S. D.; Boyer, E. W.; Shanley, J. B.; Kendall, C.

    2005-12-01

    We are probing chemical and isotopic tracers of dissolved organic carbon (DOC) and nitrate over both space and time to determine how stream nutrient dynamics change with increasing basin size and differ with flow conditions. At the Sleepers River Research Watershed in northeastern Vermont, USA, 20 to 30 nested sub-basins that ranged in size from 3 to 11,000 ha were sampled repeatedly under baseflow conditions. These synoptic surveys showed a pattern of heterogeneity in headwaters that converged to a consistent response at larger basin sizes and is consistent with findings of other studies. In addition to characterizing spatial patterns under baseflow, we sampled rainfall and snowmelt events over a gradient of basin sizes to investigate scaling responses under different flow conditions. During high flow events, DOC and nitrate flushing responses varied among different basins where high-frequency event samples were collected. While the DOC and nitrate concentration patterns were similar at four headwater basins, the concentration responses of larger basins were markedly different in that the concentration patterns, flushing duration, and maximum concentrations were attenuated from headwaters to the largest basin. We are using these data to explore how flow paths and solute mixing aggregate. Overall, these results highlight the complexities of understanding spatial scaling issues in catchments and underscore the need to consider event responses of hydrology and chemistry among catchments.

  16. Using isotope, hydrochemical methods and energy-balance modelling to estimate contribution of different components to flow forming process in a high-altitude catchment (Dzhancuat river basin case study)

    NASA Astrophysics Data System (ADS)

    Rets, Ekaterina; Loshakova, Nadezhda; Chizhova, Julia; Kireeva, Maria; Frolova, Natalia; Tokarev, Igor; Budantseva, Nadine; Vasilchuk, Yurij

    2016-04-01

    A multicomponent structure of sources of river runoff formation is characteristic of high-altitude territories: ice and firn melting; seasonal snow melting on glacier covered and non-glacier area of a watershed; liquid precipitation; underground waters. In addition, each of these components can run off the watershed surface in different ways. Use of isotopic, hydrochemical methods and energy balance modelling provides possibility to estimate contribution of different components to river runoff that is an essential to understand the mechanism of flow formation in mountainious areas. A study was carried out for Dzhancuat river basin that was chosen as representative for North Caucasus in course of the International Hydrological Decade. Complex glaciological, hydrological and meteorological observation have been carried in the basin since 1965. In years 2013-2015 the program also included daily collecting of water samples on natural stable isotopes on the Dzhancuat river gauging station, and sampling water nourishment sources (ice, snow, firn, liquid precipitation) within the study area. More then 800 water samples were collected. Application of an energy balance model of snow and ice melt with distributed parameters provided an opportunity to identify Dzhancuat river runoff respond to glaciers melt regime and seasonal redistribution of melt water. The diurnal amplitude of oscillation of the Dzhakuat river runoff in the days without precipitation is formed by melting at almost snow-free areas of the Dzhancuat glacier tongues. Snowmelt water from the non-glacierized part contributes to the formation of the next day runoff. A wave of snow and firn melt in upper zones of glacier flattens considerably during filtration through snow and run-off over the surface and in the body of the glacier. This determines a general significant inertia of the Dzhacuat river runoff. Some part of melt water is stored into natural regulating reservoirs of the watershed that supply the

  17. Factors affecting ground-water exchange and catchment size for Florida lakes in mantled karst terrain

    USGS Publications Warehouse

    Lee, Terrie Mackin

    2002-01-01

    In the mantled karst terrain of Florida, the size of the catchment delivering ground-water inflow to lakes is often considerably smaller than the topographically defined drainage basin. The size is determined by a balance of factors that act individually to enhance or diminish the hydraulic connection between the lake and the adjacent surficial aquifer, as well as the hydraulic connection between the surficial aquifer and the deeper limestone aquifer. Factors affecting ground-water exchange and the size of the ground-water catchment for lakes in mantled karst terrain were examined by: (1) reviewing the physical and hydrogeological characteristics of 14 Florida lake basins with available ground-water inflow estimates, and (2) simulating ground-water flow in hypothetical lake basins. Variably-saturated flow modeling was used to simulate a range of physical and hydrogeologic factors observed at the 14 lake basins. These factors included: recharge rate to the surficial aquifer, thickness of the unsaturated zone, size of the topographically defined basin, depth of the lake, thickness of the surficial aquifer, hydraulic conductivity of the geologic units, the location and size of karst subsidence features beneath and onshore of the lake, and the head in the Upper Floridan aquifer. Catchment size and the magnitude of ground-water inflow increased with increases in recharge rate to the surficial aquifer, the size of the topographically defined basin, hydraulic conductivity in the surficial aquifer, the degree of confinement of the deeper Upper Floridan aquifer, and the head in the Upper Floridan aquifer. The catchment size and magnitude of ground-water inflow increased with decreases in the number and size of karst subsidence features in the basin, and the thickness of the unsaturated zone near the lake. Model results, although qualitative, provided insights into: (1) the types of lake basins in mantled karst terrain that have the potential to generate small and large

  18. Dominant controls on catchment hydrological functions: what can we learn from biological and isotopic tracers?

    NASA Astrophysics Data System (ADS)

    Pfister, L.; Klaus, J.; Wetzel, C. E.; Stewart, M. K.; McDonnell, J.; Martinez Carreras, N.

    2014-12-01

    One emerging and important control on catchment hydrological functions of water storage, mixing and release is bedrock geology. Until today, catchment-based work has been limited by small ranges of rock types in adjacent basins. Moreover, conventional hydrological tracer approaches suffer from limitations inherent to the large storages related to certain bedrock types (e.g. the damping of stable isotope tracer signatures in deep storage catchments and obliteration of output signals at larger spatial scales). Here, we show how a multi-tracer approach, based on terrestrial diatoms and different stable and radioactive isotopic tracers can help refining our understanding of the dominant controls on catchment hydrological functions, especially the role of bedrock geology. We present new data and results from a nested catchment set-up, located in the Alzette River basin in Luxembourg (Europe). These 16 catchments (with sizes ranging from 0.47 to 285 km2) are characterized by clean and mixed assemblages of geology and land use. We have monitored these systems since 2002, including meteorological variables (precipitation, air temperature, etc.), as well as 15 minute discharge. Additional parameters have been monitored bi-weekly and at the event time scale, including geochemical and isotopic (3H, D, 18O) tracers, as well as terrestrial diatom communities in streamwater. Our results show that water balance derived dynamic storage significantly differs across the 16 catchments and scales. Catchment mixing potential inferred from standard deviations in stream baseflow ∂D (as a proxy for the damping of isotopic signatures in precipitation), as well as tritium-derived baseflow transit times, both exhibit a significant spatial variability, but strong correlation to bedrock pemeability. Terrestrial diatom assemblages in streamwater, as a proxy for rapid flow pathway connectedness to the stream network, are highly variable across the study catchments but also show strong

  19. Transit times of water particles in the vadose zone across catchment states and catchments functional units

    NASA Astrophysics Data System (ADS)

    Sprenger, Matthias; Weiler, Markus

    2014-05-01

    Understanding the water movement in the vadose zone and its associated transport of solutes are of major interest to reduce nutrient leaching, pollution transport or other risks to water quality. Soil physical models are widely used to asses such transport processes, while the site specific parameterization of these models remains challenging. Inverse modeling is a common method to adjust the soil physical parameters in a way that the observed water movement or soil water dynamics are reproduced by the simulation. We have shown that the pore water stable isotope concentration can serve as an additional fitting target to simulate the solute transport and water balance in the unsaturated zone. In the presented study, the Mualem- van Genuchten parameters for the Richards equation and diffusivity parameter for the convection-dispersion equation have been parameterized using the inverse model approach with Hydrus-1D for 46 experimental sites of different land use, topography, pedology and geology in the Attert basin in Luxembourg. With the best parameter set we simulated the transport of a conservative solute that was introduced via a pulse input at different points in time. Thus, the transit times in the upper 2 m of the soil for different catchment states could be inferred for each location. It has been shown that the time a particle needs to pass the -2 m depth plane highly varies from the systems state and the systems forcing during and after infiltration of that particle. Differences in transit times among the study sites within the Attert basin were investigated with regards to its governing factors to test the concept of functional units. The study shows the potential of pore water stable isotope concentration for residence times and transport analyses in the unsaturated zone leading to a better understanding of the time variable subsurface processes across the catchment.

  20. Be-10 derived basin-wide erosion rates of Southern Qilian Shan, NE Tibet

    NASA Astrophysics Data System (ADS)

    Hu, K.; Fang, X.; Granger, D. E.; Zhao, Z.

    2013-12-01

    The actively uplifting Qilian Shan forms the northeastern margin of the Tibetan Plateau. The mountain range is bounded to the northeast by a thrust fault forming a 2 km-high mountain front over the Hexi Corridor basin, and to the southwest by a series of thrusts within an internally-drained elevated plateau that steps downwards into the Qaidam basin. The mountain range forms an important climatic boundary as well, where the East Asian Monsoon gives its way to Northern Hemisphere Westerlies. Understanding the interplay among active faulting, climate, and erosion in this region could be important for revealing the northeastern expansion and uplift of the Tibetan Plateau. Here we present 10Be derived catchment-wide erosion rates for a large area of the southern Qilian Shan. Our preliminary results show remarkably slow erosion rates ranging from~ 10 - 100 mm/ky,much slower than those reported for rivers draining the north Qilian Shan (ranging from 39-833 mm/ky) [Palumbo et al., 2011]. These results may suggest that catchments draining the mountain front experience relatively high precipitation and are eroding quickly, while catchments in the arid, internally-drained interior are isolated from base level fall and are eroding slowly. Moreover, our erosion rates may also suggest that the interior (southern) portions of the Qilian Shan are deforming more slowly than along the frontal thrust. This is consistent with the North Qilian Shan thrust accommodating most of the tectonic shortening in the mountain range, with shortening occurring at a slower rate in the interior. These data may suggest that low erosion rates (at least partially due to aridity) are promoting surface uplift of the Qilian Shan and Qaidam basin along the northeastern edge of the Tibetan Plateau. Additional samples are being processed from a variety of geologic and climatic settings that we hope will further elucidate patterns of erosion in the Qilian Shan region. Palumbo, L., R. Hetzel, M. Tao, and X

  1. Legacy Contaminantion in UK catchments since the mid-19th century

    NASA Astrophysics Data System (ADS)

    Howden, N. J. K.; Burt, T. P.; Worrall, F.; Noacco, V.; Wagener, T.

    2014-12-01

    We present data from UK catchments to characterise impacts of industrial and agricultural development of UK river catchments since the mid-19th century. We draw heavily on the world's longest continuous water quality monitoring programme in the Thames River Basin (1868-date) and discuss the implications of both agricultural development, social and industrial change, and the impact of legislation on coupled land and water resource systems. Our review draws on both data and model analysis over a 145-year period and explores how a multitude of inter-linked drivers affects process-function and practical water resource management decision-support. Our work uncovers key drivers, catchment responses and emergent challenges for process science and regulation, with particular emphasis on the technical challenge for catchment scientists to provide both insight and workable solutions to maintain food and water security in intensively management river basins. We discuss issues of appropriate methods for both data capture and subsequent analyses to support short- and long-term decision making, and particularly considers the importance of advanced techniques to clarify uncertainties in extrapolation of short-term observations to inform long-term goals. We speculate as to future trajectories of catchment responses to current pressures, and potential pitfalls to immediate concerns that may often be at odds with overall requirements for continued use of natural resources in the future.

  2. Will urban expansion lead to an increase in future water pollution loads?--a preliminary investigation of the Haihe River Basin in northeastern China.

    PubMed

    Dong, Yang; Liu, Yi; Chen, Jining

    2014-01-01

    Urban expansion is a major driving force changing regional hydrology and nonpoint source pollution. The Haihe River Basin, the political, economic, and cultural center of northeastern China, has undergone rapid urbanization in recent decades. To investigate the consequences of future urban sprawl on nonpoint source water pollutant emissions in the river basin, the urban sprawl in 2030 was estimated, and the annual runoff and nonpoint source pollution in the Haihe River basin were simulated. The Integrated Model of Non-Point Sources Pollution Processes (IMPULSE) was used to simulate the effects of urban sprawl on nonpoint source pollution emissions. The outcomes indicated that the urban expansion through 2030 increased the nonpoint source total nitrogen (TN), total phosphorous (TP), and chemical oxygen demand (COD) emissions by 8.08, 0.14, and 149.57 kg/km(2), respectively. Compared to 2008, the total nonpoint emissions rose by 15.33, 0.57, and 12.39 %, respectively. Twelve percent of the 25 cities in the basin would increase by more than 50 % in nonpoint source TN and COD emissions in 2030. In particular, the nonpoint source TN emissions in Xinxiang, Jiaozuo, and Puyang would rise by 73.31, 67.25, and 58.61 %, and the nonpoint source COD emissions in these cities would rise by 74.02, 51.99, and 53.27 %, respectively. The point source pollution emissions in 2008 and 2030 were also estimated to explore the effects of urban sprawl on total water pollution loads. Urban sprawl through 2030 would bring significant structural changes of total TN, TP, and COD emissions for each city in the area. The results of this study could provide insights into the effects of urbanization in the study area and the methods could help to recognize the role that future urban sprawl plays in the total water pollution loads in the water quality management process. PMID:24532209

  3. Geological controls on isotopic signatures of streamflow: results from a nested catchment experiment in Luxembourg (Europe)

    NASA Astrophysics Data System (ADS)

    Pfister, Laurent; McDonnell, Jeffrey J.; Hissler, Christophe; Martinez-Carreras, Nuria; Gourdol, Laurent; Klaus, Julian; François Iffly, Jean; Barnich, François; Stewart, Mike K.

    2014-05-01

    Controls of geology and topography on hydrological metrics, like summer low flow (Grant and Tague, 2004) or dynamic storage (Sayama et al., 2011), have been identified in nested catchment experiments. However, most tracer-based studies on streamflow generation have been carried out in small (10 km2) homogenous catchments (Klaus and McDonnell, 2013). The controlling effects of catchment physiography on how catchments store and release water, and how this eventually controls stream isotope behaviour over a large range of scale are poorly understood. Here, we present results from a nested catchment analysis in the Alzette River basin (Luxembourg, Europe). Our hydro-climatological network consists of 16 recording streamgauges and 21 pluviographs. Catchment areas range from 0.47 to 285 km2, with clean and mixed combinations of distinct geologies ranging from schists to marls, sandstone, dolomite and limestone. Our objective was to identify geological controls on (i) winter runoff ratios, (ii) maximum storage and (iii) isotopic signatures in streamflow. For each catchment we determined average runoff ratios from winter season precipitation-discharge double-mass curves. Maximum catchment storage was based on the dynamic storage change approach of Sayama et al. (2011). Changes in isotopic signatures of streamflow were documented along individual catchment flow duration curves. We found strong correlations between average winter runoff ratios, maximum storage and the prevailing geological settings. Catchments with impermeable bedrock (e.g. marls or schists) were characterised by small storage potential and high average filling ratios. As a consequence, these catchments also exhibited the highest average runoff ratios. In catchments underlain by permeable bedrock (e.g. sandstone), storage potential was significantly higher and runoff ratios were considerably smaller. The isotopic signatures of streamflow showed large differences between catchments. In catchments dominated by

  4. HYDROLOGIC SENSITIVITIES OF THE SACRAMENTO-SAN JOAQUIN RIVER BASIN, CA TO GLOBAL WARMING

    EPA Science Inventory

    The hydrologic sensitivities of four medium-sized mountainous catchments in the Sacramento and San Joaquin River basins to long-term global warming were analyzed. he hydrologic response of these catchments, all of which are dominated by spring snowmelt runoff, were simulated by t...

  5. Applying different spatial distribution and modelling concepts in three nested mesoscale catchments of Germany

    NASA Astrophysics Data System (ADS)

    Bongartz, K.

    Distributed, physically based river basin models are receiving increasing importance in integrated water resources management (IWRM) in Germany and in Europe, especially after the release of the new European Water Framework Directive (WFD). Applications in mesoscale catchments require an appropriate approach to represent the spatial distribution of related catchment properties such as land use, soil physics and topography by utilizing techniques of remote sensing and GIS analyses. The challenge is to delineate scale independent homogeneous modelling entities which, on the one hand may represent the dynamics of the dominant hydrological processes and, on the other hand can be derived from spatially distributed physiographical catchment properties. This scaling problem is tackled in this regional modelling study by applying the concept of hydrological response units (HRUs). In a nested catchment approach three different modelling conceptualisations are used to describe the runoff processes: (i) the topographic stream-segment-based HRU delineation proposed by Leavesley et al. [Precipitation-Runoff-Modelling-System, User’s Manual, Water Resource Investigations Report 83-4238, US Geological Survey, 1983]; (ii) the process based physiographic HRU-concept introduced by Flügel [Hydrol. Process. 9 (1995) 423] and (iii) an advanced HRU-concept adapted from (ii), which included the topographic topology of HRU-areas and the river network developed by Staudenraush [Eco Regio 8 (2000) 121]. The influence of different boundary conditions associated with changing the landuse classes, the temporal data resolution and the landuse scenarios were investigated. The mesoscale catchment of the river Ilm ( A∼895 km 2) in Thuringia, Germany, and the Precipitation-Runoff-Modelling-System (PRMS) were selected for this study. Simulations show that the physiographic based concept is a reliable method for modelling basin dynamics in catchments up to 200 km 2 whereas in larger catchments

  6. Morphotectonic interpretation of the Makuyuni catchment in Northern Tanzania using DEM and SAR data

    NASA Astrophysics Data System (ADS)

    Flores-Prieto, Elio; Quénéhervé, Geraldine; Bachofer, Felix; Shahzad, Faisal; Maerker, Michael

    2015-11-01

    Landscapes in the East African Rift System are formed by complex effects of the active continental extension zone. These effects are caused by the Somalian micro-plate's eastward drift away from the Nubian plate, as well as by volcanic, erosional and depositional processes. Tectonic processes in this region have significantly contributed to the formation of the current drainage systems and landforms. This study focuses on the morphotectonics of the Makuyuni catchment with an analysis of topography, drainage networks, stream longitudinal profiles and lineaments. This analysis reveals a morphostructural control with an N-S trend for the uplifted Masai Block, as well as tectonic deformation in the Makuyuni catchment area (NE of Lake Manyara). Whereas basin asymmetry analysis shows basin tilting associated with active faulting and uplifting near the Essimingor volcanic cone, in this catchment the steepness and concavity indices, coupled with lineaments obtained from interpretations of Synthetic Aperture Radar satellite scenes, show an uplifting along micro-faults. Hypsometry curves reveal that subcatchments on the right side of the Makuyuni River are in a mature equilibrium phase, whereas those at the left side are in a younger stage of maturity. An investigation of base level and statistical moments of the hypsometric curves provides evidences for the spatial distribution of gully erosion phenomena. Such erosion processes are due to tectonic deformation in the northern parts of the Makuyuni catchment. These results of regional tectonic instability suggest that tectonic processes are a significant factor for the current landscape evolution in the Lake Manyara basin.

  7. Farmer Tree Nursery as a Catalyst for Developing Sustainable Best Management Land Use Practices in Lake Victoria Catchments Ecosystem

    NASA Astrophysics Data System (ADS)

    Shisanya, C. A.; Makokha, M. O.; Kimani, S. K.; Kalumuna, M.; Tenge, A.

    Support to farmer nurseries is classified as either hard referring to material inputs (tree seed, water, tools and fencing) or soft (information, training and backstopping advice). Against a background of poor services for smallholder farmers in the Lake Victoria basin, it was hypothesized that a number of support agents operating at the grassroot level together with farmers themselves provide the different support functions needed in the establishment of farmer tree nurseries. Through financial support from Inter-University Council of East Africa coordinated VicReS Project, a collaborative project involving Kenyatta University (Kenya), Kenya Agricultural Research Institute (KARI) and Mulingano Agricultural Research Institute (Tanzania) has been able to initiate reforestation/afforestation activities in Lake Victoria catchments ecosystems of western Kenya and western Tanzania. Through the initial activities, a total of twenty four farmer groups have been identified in western Kenya and supported through capacity building and supply of basic inputs for tree nursery seed bed preparation and management. The groups have been able to set up tree nurseries and are now managing seed beds with a total of 450,000 agro-forestry seedlings, mainly Grevillea robusta and Casuarina spp. The farmers intend to distribute the seedling among the members for planting on farm boundaries, around homesteads and woodlots within their homesteads and sell the surplus. Preliminary findings show that there is an urgent need to facilitate grassroot level support systems with larger participation from the national extension service for provision of training and backstopping advice. Strengthening the human capital of farmers and service providers emerges as critical in increasing impact. Farmer nurseries are shown to play a number of important and interrelated functions in building natural, human and social capital. Monitoring and evaluating farmer nurseries in catalyzing these three functions

  8. Map correlation method: Selection of a reference streamgage to estimate daily streamflow at ungaged catchments.

    USGS Publications Warehouse

    Archfield, Stacey A.; Vogel, Richard M.

    2010-01-01

    Daily streamflow time series are critical to a very broad range of hydrologic problems. Whereas daily streamflow time series are readily obtained from gaged catchments, streamflow information is commonly needed at catchments for which no measured streamflow information exists. At ungaged catchments, methods to estimate daily streamflow time series typically require the use of a reference streamgage, which transfers properties of the streamflow time series at a reference streamgage to the ungaged catchment. Therefore, the selection of a reference streamgage is one of the central challenges associated with estimation of daily streamflow at ungaged basins. The reference streamgage is typically selected by choosing the nearest streamgage; however, this paper shows that selection of the nearest streamgage does not provide a consistent selection criterion. We introduce a new method, termed the map-correlation method, which selects the reference streamgage whose daily streamflows are most correlated with an ungaged catchment. When applied to the estimation of daily streamflow at 28 streamgages across southern New England, daily streamflows estimated by a reference streamgage selected using the map-correlation method generally provides improved estimates of daily streamflow time series over streamflows estimated by the selection and use of the nearest streamgage. The map correlation method could have potential for many other applications including identifying redundancy and uniqueness in a streamgage network, calibration of rainfall runoff models at ungaged sites, as well as for use in catchment classification.

  9. Impact of Drainage Basin Geology and Geomorphology on Detrital Thermochronometric Data from Modern River Sands: A Case Study in the Bhutan Himalaya

    NASA Astrophysics Data System (ADS)

    Coutand, I.; Whipp, D. M., Jr.; Bookhagen, B.; Grujic, D.

    2015-12-01

    Detrital thermochronology has become an important tool to quantify the erosional history of mountainous regions. Despite an increasing number of studies utilizing detrital records, it remains unclear how the record of spatially variable erosion of upstream drainage basins is preserved in the thermochronologic signal contained in the sediments. This important spatiotemporal problem is a first-order unknown that limits the interpretation of the geological significance of the detrital signal. To improve our understanding of detrital records in terms of spatiotemporal erosion rates, we use a three-step approach to study modern fluvial sediments from the Bhutan Himalaya. First, based on a preferred tectonomorphic scenario extracted by inversion of in situ multi-thermochronological ages, we predict apatite fission-track (AFT) age distributions in 18 catchments using the Pecube software. Second, we compare AFT age distributions from modern sand bars collected at each catchment outlet to distributions extracted from Monte Carlo sampling of the predicted catchment ages. We find that observed and predicted age distributions are statistically equivalent for only ~75% of the catchments. Third, we calculate predicted detrital age distributions by scaling the prevalence of ages in the catchment in proportion to topographic and climatic metrics (e.g., local relief, steepness index, specific stream power weighted by precipitation rate) or landslide-driven erosion to quantify their effects and relationships to the observed detrital AFT age distributions. Preliminary results suggest erosion in proportion to the topographic metrics cannot reproduce the observed age distributions, but bedrock landsliding may provide sufficient age variability to reproduce the observations. Ongoing work is determining whether variable target mineral concentrations in bedrock geological units or non-uniform sediment sourcing from moraine- or glacier-covered regions can reproduce the observed ages.

  10. Effect of catchment characteristics on the relationship between past discharge and the power law recession coefficient

    NASA Astrophysics Data System (ADS)

    Patnaik, Swagat; Biswal, Basudev; Nagesh Kumar, D.; Sivakumar, Bellie

    2015-09-01

    This study concerns the relationship between the power law recession coefficient k (in -dQ/dt = kQα, Q being discharge at the basin outlet) and past average discharge QN (where N is the temporal distance from the center of the selected time span in the past to the recession peak), which serves as a proxy for past storage state of the basin. The strength of the k-QN relationship is characterized by the coefficient of determination R2N, which is expected to indicate the basin's ability to hold water for N days. The main objective of this study is to examine how R2N value of a basin is related with its physical characteristics. For this purpose, we use streamflow data from 358 basins in the United States and selected 18 physical parameters for each basin. First, we transform the physical parameters into mutually independent principal components. Then we employ multiple linear regression method to construct a model of R2N in terms of the principal components. Furthermore, we employ step-wise multiple linear regression method to identify the dominant catchment characteristics that influence R2N and their directions of influence. Our results indicate that R2N is appreciably related to catchment characteristics. Particularly, it is noteworthy that the coefficient of determination of the relationship between R2N and the catchment characteristics is 0.643 for N = 45. We found that topographical characteristics of a basin are the most dominant factors in controlling the value of R2N. Our results may be suggesting that it is possible to tell about the water holding capacity of a basin by just knowing about a few of its physical characteristics.

  11. Paleofluvial landscape inheritance for Jakobshavn Isbræ catchment, Greenland

    NASA Astrophysics Data System (ADS)

    Cooper, M. A.; Michaelides, K.; Siegert, M. J.; Bamber, J. L.

    2016-06-01

    Subglacial topography exerts strong controls on glacier dynamics, influencing the orientation and velocity of ice flow, as well as modulating the distribution of basal waters and sediment. Bed geometry can also provide a long-term record of geomorphic processes, allowing insight into landscape evolution, the origin of which may predate ice sheet inception. Here we present evidence from ice-penetrating radar data for a large dendritic drainage network, radiating inland from Jakobshavn Isbræ, Greenland's largest outlet glacier. The size of the drainage basin is ˜450,000 km2 and accounts for about 20% of the total land area of Greenland. Topographic and basin morphometric analyses of an isostatically uplifted (ice-free) bedrock topography suggests that this catchment predates ice sheet initiation and has likely been instrumental in controlling the location and form of the Jakobshavn ice stream, and ice flow from the deep interior to the margin, now and over several glacial cycles.

  12. Preliminary study of land-plant biomarkers in marine sediments of Alfonso basin and its relationship with the climate of the last 3.5 ka

    NASA Astrophysics Data System (ADS)

    Ricaurte-Villota, Constanza; Gonzalez-Yajimovich, Oscar; Betancourt-Portela, Julian

    2014-05-01

    This study used biomarkers such as n-alkanes, especially focused on the long chain n-alkanes and some diagnostic indexes derived from abundance, to elucidate molecular changes in the contribution of organic matter to the sediments, especially terrestrial vegetation surrounding continental areas around of Alfonso basin in response to climate change, particularly changes in the hydrological cycle. The results show that in general the n-alkanes of organic matter (OM) of Alfonso basin sediments are composed of a mixture of waxes derived from phytoplankton and terrestrial plants, with a greater contribution from phytoplankton compare to terrestrial vegetation, in the oldest part of the record, associated with a marine productivity increased period favored by rainfall. Maximum abundance of C29, and high values of C27/C31 ratio indicate leaves from trees as a source wax, probably succulents plants characteristic of arid zones, with C3 as one of their metabolic pathway, identified from mean ACL values around 29.5. The low CPI index indicates contamination and microbial communities as a possible source of long chain n-alkanes, probably due to anoxic bottom conditions in Alfonso basin favor the development of these communities. Finally, it is suggested no change in the community, at least for the last ~ 3.5 ka BP, but increased cover vegetation (biomass) in southern California during periods of increased rainfall (from ~ 3.5 to ~ 1.7 ka BP). The ability of terrestrial plant communities to adapt for longer periods before being replaced by other species, when faced with gradual changes rather than rapid climate change is reflected in a few changes in its composition.

  13. Preliminary hydrogeologic framework of the Silurian and Devonian carbonate aquifer system in the Midwestern Basins and Arches Region of Indiana, Ohio, Michigan, and Illinois

    SciTech Connect

    Casey, G.D. )

    1992-01-01

    The aquifer and confining units have been identified; data on the thickness, extent, and structural configuration of these units have been collected; and thickness and structure-contour maps have been generated. Hydrologic information for the confining units and the aquifer also has been compiled. Where present, the confining unit that caps the carbonate aquifer consists of shales of Middle and Upper Devonian age and Lower Mississippian age, however, these units have been eroded from a large part of the study area. The regional carbonate aquifer consists of Silurian and Devonian limestones and dolomites. The rocks that comprise the aquifer in Indiana and northwestern Illinois are grouped into four major stratigraphic units: Brassfield and Sexton Creek Limestones or the Cataract Formation, the Salamonie Dolomite, the Salina Group, and the Detroit River and Traverse Formations or the Muscatatuck Group. In Ohio and southern Michigan the aquifer is grouped into ten stratigraphic units: Brassfield Limestone and Cataract Formation, the Dayton Limestone, the Rochester Shale equivalent, the Lockport Dolomite, the Salina Formation, the Hillsboro Sandstone, the Detroit River Group, the Columbus Limestone, the Delaware Limestone, and the Traverse Formation. The thickness of the carbonate aquifer increases from the contact with the outcropping Ordovician shales in the south-central part of the study area from the contact into the Appalachian Foreland Structural Basin from 0 ft at the contact to more than 700 ft at the eastern boundary of the study area, to more than 1,000 ft beneath Lake Erie and greater than 1,200 ft in southeastern Michigan. At the edge of the Michigan Intercontinental Structural Basin in western Ohio and eastern Indiana, the thickness ranges from 700 to 900 ft. and from 200 ft to 300 ft in south-central Indiana along the northeastern edge of the Illinois Intercontinental Structural Basin.

  14. Runoff and Solute Mobilisation in a Semi-arid Headwater Catchment

    NASA Astrophysics Data System (ADS)

    Hughes, J. D.; Khan, S.; Crosbie, R.; Helliwell, S.; Michalk, D.

    2006-12-01

    Runoff and solute transport processes contributing to stream flow were determined in a small headwater catchment in the eastern Murray-Darling Basin of Australia using hydrometric and tracer methods. Stream flow and electrical conductivity were monitored from two gauges draining a portion of upper catchment area (UCA), and a saline scalded area respectively. Results show that the bulk of catchment solute export, occurs via a small saline scald (< 2% of catchment area) where solutes are concentrated in the near surface zone (0-40 cm). Non-scalded areas of the catchment are likely to provide the bulk of catchment runoff, although the scalded area is a higher contributor on an areal basis. Runoff from the non-scalded area is about two orders of magnitude lower in electrical conductivity than the scalded area. This study shows that the scalded zone and non-scalded parts of the catchment can be managed separately since they are effectively de-coupled except over long time scales, and produce runoff of contrasting quality. Such differences are "averaged out" by investigations that operate at larger scales, illustrating that observations need to be conducted at a range of scales. EMMA modelling using six solutes shows that "event" or "new" water dominated the stream hydrograph from the scald. This information together with hydrometric data and soil physical properties indicate that saturated overland flow is the main form of runoff generation in both the scalded area and the UCA. Saturated areas make up a small proportion of the catchment, but are responsible for production of all run off in conditions experienced throughout the experimental period. The process of saturation and runoff bears some similarities to the VSA concept (Hewlett and Hibbert 1967).

  15. Flowpaths, source water contributions and water residence times in a Mexican tropical dry forest catchment

    NASA Astrophysics Data System (ADS)

    Farrick, Kegan K.; Branfireun, Brian A.

    2015-10-01

    Runoff in forested tropical catchments has been frequently described in the literature as dominated by the rapid translation of rainfall to runoff through surface and shallow subsurface pathways. However, studies examining runoff generation in tropical catchments with highly permeable soils have received little attention, particularly in tropical dry forests. We present a study focused on identifying the dominant flowpaths, water sources and stream water residence times in a tropical dry forest catchment near the Pacific coast of central Mexico. During the wet season, pre-event water contributions to stormflow ranged from 72% to 97%, with the concentrations of calcium, magnesium, sodium and potassium closely coupling the geochemistry of baseflow and groundwater from the narrow riparian/near-stream zone. Baseflow from the intermittent stream showed a strongly damped isotopic signature and a mean baseflow residence time of 52-110 days was estimated. These findings all suggest that instead of the surface and near-surface subsurface lateral pathways observed over many tropical catchments, runoff is generated through vertical flow processes and the displacement and discharge of stored water from the saturated zone. As the wet season progressed, contributions from the saturated zone persisted; however, the stormflow and baseflow geochemistry suggests that the contributing area of the catchment increased. Our results show that during the early part of the wet season, runoff originated primarily from the headwater portion of the catchment. As the wet season progressed and catchment wetness increased, connectivity among sub-basin was improved, resulting in runoff contributions from across the entire catchment.

  16. Monitoring and modeling of cold region hydrological processes in a high mountain river basin in the upstream area of the Heihe River Basin of China

    NASA Astrophysics Data System (ADS)

    Li, X.; Che, T.; Li, H.; Jin, R.; Liu, S.; Huang, C.

    2015-12-01

    We provide an overview of a high mountain river basin observing system in the Qilian Mountains of China. Mountain cryosphere is very sensitive to climate change, however, monitoring and modeling of cryospheric process and its interaction with hydrology and ecology needs to be further strengthened. We establish a multi-scale high mountain river basin observing system in the upstream area of the Heihe River Basin, Qilian Mountains of China. This system consists of flux towers on alpine tundra, alpine meadow and alpine steppes, a network of automatic meteorological stations, a wireless sensor network of soil moisture, soil temperature, snow depth, and precipitation, and two super observatories for monitoring snow and frozen soil, respectively. Super-high resolution (1 meter) DEMs of four experiment sub-watersheds (each about 20-40 km2) within this river basin were obtained via airborne LiDAR remote sensing.We introduce the data obtained since 2012 and present some preliminary modeling and data assimilation results. The results show that runoff, precipitation, snowmelt, and glacier melt keep increasing in the upstream area of the Heihe River Basin due to a warming climate. The ratio of snowmelt in total runoff has increased and the onset of snowmelt has gone ahead. The contribution of glacier melt to total runoff has almost doubled in the past decade. Frozen soil melt advances in time as well, and it may also contributes to the increase of the portion of baseflow in total runoff.This observatory has joined the International Network for Alpine Research Catchment Hydrology (NARCH) and will work as a unique site to monitor cryospheric and hydroclimatological changes in very high mountains.

  17. Sediment connectivity evolution on an alpine catchment undergoing glacier retreat

    NASA Astrophysics Data System (ADS)

    Goldin, Beatrice; Rudaz, Benjamin; Bardou, Eric

    2014-05-01

    Climate changes can result in a wide range of variations of natural environment including retreating glaciers. Melting from glaciers will have a significant impact on the sediment transport characteristics of glacierized alpine catchments that can affect downstream channel network. Sediment connectivity assessment, i.e. the degree of connections that controls sediment fluxes between different segments of a landscape, can be useful in order to address management activity on sediment fluxes changes of alpine streams. Through the spatial characterization of the connectivity patterns of a catchment and its potential evolution it is possible to both define sediment transport pathways and estimate different contributions of the sub-catchment as sediment sources. In this study, a topography based index (Cavalli et al., 2013) has been applied to assess spatial sediment connectivity in the Navisence catchment (35 km2), an alpine basin located in the southern Walliser Alps (Switzerland) characterized by a complex glacier system with well-developed lateral moraines on glacier margins already crossed by several lateral channels. Glacier retreat of the main glacial edifice will provide a new connectivity pattern. At present the glacier disconnects lateral slopes from the main talweg: it is expected that its retreat will experience an increased connectivity. In order to study this evolution, two high resolution (2 m) digital terrain models (DTMs) describing respectively the terrain before and after glacier retreat have been analyzed. The current DTM was obtained from high resolution photogrammetry (2 m resolution). The future DTM was derived from application of the sloping local base level (SLBL) routine (Jaboyedoff et al., 2004) on the current glacier system, allowing to remove the ice body by reconstituting a U-shaped polynomial bedrock surface. From this new surface a coherent river network was drawn and slight random noise was added. Finally the river network was burned into

  18. Factors controlling mercury transport in an upland forested catchment

    USGS Publications Warehouse

    Scherbatskoy, T.; Shanley, J.B.; Keeler, G.J.

    1998-01-01

    Total mercury (Hg) deposition and input/output relationships were investigated in an 11-ha deciduous forested catchment in northern Vermont as part of ongoing evaluations of rig cycling and transport in the Lake Champlain basin. Atmospheric Hg deposition (precipitation + modeled vapor phase downward flux) was 425 mg ha-1 during the one-year period March 1994 through February 1995 and 463 mg ha-1 from March 1995 through February 1996. In the same periods, stream export of total Hg was 32 mg ha-1 and 22 mg ha-1, respectively. Thus, there was a net retention of Hg by the catchment of 92% the first year and 95% the second year. In the first year, 16.9 mg ha-1 or about half of the annual stream export, occurred on the single day of peak spring snowmelt in April. In contrast, the maximum daily export in the second year, when peak stream flow was somewhat lower, was 3.5 mg ha-1 during a January thaw. The fate of file Hg retained by this forested catchment is not known. Dissolved (< 0.22 ??m) Hg concentrations in stream water ranged from 0.5-2.6 ng L-1, even when total (unfiltered) concentrations were greater than 10 ng L-1 during high flow events. Total Hg concentrations in stream water were correlated with the total organic fraction of suspended sediment, suggesting the importance of organic material in Hg transport within the catchment. High flow events and transport with organic material may be especially important mechanisms for the movement of Hg through forested ecosystems.

  19. Creating a catchment scale perspective for river restoration

    NASA Astrophysics Data System (ADS)

    Benda, L.; Miller, D.; Barquín, J.

    2011-09-01

    One of the major challenges in river restoration is to identify the natural fluvial landscape in catchments with a long history of river control. Intensive land use on valley floors often predates the earliest remote sensing: levees, dikes, dams, and other structures alter valley-floor morphology, river channels and flow regimes. Consequently, morphological patterns indicative of the fluvial landscape including multiple channels, extensive floodplains, wetlands, and fluvial-riparian and tributary-confluence dynamics can be obscured, and information to develop appropriate and cost effective river restoration strategies can be unavailable. This is the case in the Pas River catchment in northern Spain (650 km2), in which land use and development have obscured the natural fluvial landscape in many parts of the basin. To address this issue we used computer tools to examine the spatial patterns of fluvial landscapes that are associated with five domains of hydro-geomorphic processes and landforms. Using a 5-m digital elevation model, valley-floor surfaces were mapped according to elevation above the channel and proximity to key geomorphic processes. The predicted fluvial landscape is patchily distributed according to hillslope and valley topography, river network structure, and channel elevation profiles. The vast majority of the fluvial landscape in the main segments of the Pas River catchment is presently masked by human infrastructure, with only 15% not impacted by river control structures and development. The reconstructed fluvial landscape provides a catchment scale context to support restoration planning, in which areas of potential ecological productivity and diversity could be targeted for in-channel, floodplain and riparian restoration projects.

  20. What happens when catchments get excited? Exploring the link between hydrologic states and responses across spatial scales

    NASA Astrophysics Data System (ADS)

    Wrede, S.; Lyon, S. W.; Martinez-Carreras, N.; Pfister, L.; Uhlenbrook, S.

    2010-12-01

    Investigating relationships between dynamic hydrologic states and associated hydrologic responses of catchments is essential for a better understanding and conceptualization of hydrologic functioning and classification across spatial scales. Nevertheless, the question of “What happens when catchments get excited?” still remains unanswered for most catchments to date. This is especially true with regard to underlying landscape controls and how their relative importance can shift given the state of the various storages in a catchment. To help answering this question, we combined hydrometric and tracer approaches with landscape analysis in 24 nested catchments in Luxembourg, Europe with contrasting bedrock geology ranging from 0.5 to 1091 km2. In our study we discerned two major hydrological states (dry and wet) for each basin according to slope changes in double mass curves of cumulated discharge and precipitation. For each of these states the long-term (i.e. interannual) response of catchment behavior was characterized using conventional runoff signatures, such as master recession curves and average lag time between rainfall and runoff response. We found significantly different hydrologic responses for different hydrologic states of the catchments. These are typified by faster flow recessions, but longer average lag times during wet states and slower flow recessions, but shorter lag times during dry states. Dominating landscape controls on hydrological responses differed during these distinct hydrologic states and were identified as variables related to geology (percentage of impervious bedrock area) and soils (average soil depth), indicating different controls on hydrologic processes under different hydrologic states. Clustering of biweekly conductivity and silica stream water concentration data of the catchments further illustrated the dominant control of the geology on stream chemistry and revealed similar patterns during different hydrologic states. Our

  1. Interpreting the suspended sediment dynamics in a mesoscale river basin of Central Mexico using a nested watershed approach

    NASA Astrophysics Data System (ADS)

    Duvert, C.; Némery, J.; Gratiot, N.; Prat, C.; Collet, L.; Esteves, M.

    2009-12-01

    The Cointzio river basin is located within the Mexican Transvolcanic Belt, in the Michoacán state. Land-use changes undergone over last decades lead to significant erosion processes, though affecting limited areas of the basin. Apart from generating a minor depletion of arable land by incising small headwater areas, this important sediment delivery contributed to siltation in the reservoir of Cointzio, situated right downstream of the basin. During 2009 rainy season, a detailed monitoring of water and sediment fluxes was undertaken in three headwater catchments located within the Cointzio basin (Huertitas, Potrerillos and La Cortina, respectively 2.5, 9.3 and 12.0 km2), as well as at the outlet of the main river basin (station of Santiago Undameo, 627 km2). Preliminary tests realized in 2008 underlined the necessity of carrying out a high-frequency monitoring strategy to assess the sediment dynamics in the basins of this region. In each site, water discharge time-series were obtained from continuous water-level measurements (5-min time-step), and stage-discharge rating curves. At the river basin outlet, Suspended Sediment Concentration (SSC) was estimated every 10 minutes through turbidity measurements calibrated with data from automatic sampling. In the three sub-catchments, SSC time-series were calculated using stage-triggered automatic water samplers. The three upland areas monitored in our study present distinct landforms, morphology and soil types. La Cortina is underlain by andisols, rich in organic matter and with an excellent microstructure under wet conditions. Huertitas and Potrerillos both present a severely gullied landscape, bare and highly susceptible to water erosion in degraded areas. As a result, suspended sediment yields in 2009 were expectedly much higher in these two sub-catchments (≈320 t.km-2 in Huertitas and ≈270 t.km-2 in Potrerillos) than in La Cortina (≈40 t.km-2). The total suspended sediment export was approximately of 30 t.km-2

  2. A modern analog of past climatic impacts on sedimentary processes and landscape evolution in an intermontane basin: The Del Medio fan, NW Argentina

    NASA Astrophysics Data System (ADS)

    Savi, Sara; Schildgen, Taylor F.; Tofelde, Stefanie; Wittmann, Hella; Strecker, Manfred

    2014-05-01

    The combined effects of tectonic and climatic forcing govern the evolution of landscapes, setting the scale of topographic relief and the pace of landscape changes over time. Tectonic uplift or changes in precipitation regimes can fundamentally modify erosional processes and sediment flux from hillslopes, change river profiles, and ultimately impact depositional systems downstream. The complexity of the response, however, often means that we cannot predict a priori how a given landscape will react to future changes in climate, or how it responded in the past to multiple episodes of climate change. The Del Medio catchment is located in the southern part of the Humahuaca Basin, an intermontane valley within the Eastern Cordillera in transition to the Puna Plateau. This area coincides with a climatic and vegetation divide between a sub-humid environment downstream and the semi-arid upper Humahuaca Basin. An extensive fan sourced in the Del Medio catchment covers ca. 18.6 km2 of the basin outlet. The fan stratigraphy and surface morphology suggest that the fan dynamics are dominated by debris-flow processes. The surface comprises abandoned channels, levees and lobes, while exposed sections in channel cuts reveal unsorted, matrix-dominated deposits, with individual boulders reaching a diameter of 5 m. To investigate rates and timing of the Del Medio fan evolution, we analyzed cosmogenic 10Be concentrations on the surfaces of large boulders from the fan surface, river sands in active channels, a depth profile, and bedrock exposed atop the drainage basin margins. Our preliminary CRN results illustrate the rapid rate at which the active fan surface is subject to change, with each of the 11 analyzed boulder samples providing ages of < 200 years. In addition, river sands record very high denudation rates that range from several mm/yr to tens of mm/yr, despite bedrock denudation rates from the basin margins of only 0.04 mm/yr. These contrasting denudation rates likely result

  3. Fate of organic contaminants in a boreal forest catchment

    NASA Astrophysics Data System (ADS)

    Bergknut, Magnus; Meijer, Sandra; Halsall, Crispin; Ågren, Anneli; Laudon, Hjalmar; Köhler, Stephan; Jones, Kevin; Tysklind, Mats; Wiberg, Karin

    2010-05-01

    organic carbon and soil-water dissolved organic carbon (DOC) content. Significant differences in export of POPs were apparent between the forested and mire areas, and this could be linked to observed differences in hydrology, biogeochemistry and flux of DOC. Levels of POPs in surface water along the water path from the studied catchment to the Baltic Sea (the Gulf of Bothnia subbasin) were measured and the results showed that for this water system, atmospherically derived diffuse pollution has impact on the surface water quality in addition to downstream point sources. In conclusion, it is evident that a full understanding of the baseline contribution and the soil-to-water processes controlling the transport of priority substances at catchment scale is a prerequisite for assessing the variation of priority substances in water streams and river basins on a seasonal and regional scale. It is also clear that mobilization of headwater atmospherically derived diffuse pollution may have an impact on stream water quality in addition to downstream point sources. The above findings are applicable to a wide variety of north European catchments systems and provide an integrated and process-based understanding of base-line contamination of major catchments. The presented data highlight the findings from the PERSPEC project, which was possible under the umbrella of the European Commission's 6th Framework Programme project SNOWMAN (contract no ERAC-CT-2003-003219).

  4. IRECCSEM: Evaluating Clare Basin potential for onshore carbon sequestration using magnetotelluric data (Preliminary results). New approaches applied for processing, modeling and interpretation

    NASA Astrophysics Data System (ADS)

    Campanya i Llovet, J.; Ogaya, X.; Jones, A. G.; Rath, V.

    2014-12-01

    The IRECCSEM project (www.ireccsem.ie) is a Science Foundation Ireland Investigator Project that is funded to evaluate Ireland's potential for onshore carbon sequestration in saline aquifers by integrating new electromagnetic data with existing geophysical and geological data. The main goals of the project are to determine porosity-permeability values of the potential reservoir formation as well as to evaluate the integrity of the seal formation. During the Summer of 2014 a magnetotelluric (MT) survey was carried out at the Clare basin (Ireland). A total of 140 sites were acquired including audiomagnetotelluric (AMT), broadband magnetotelluric (BBMT) and long period magnetotelluric (LMT) data. The nominal space between sites is 0.6 km for AMT sites, 1.2 km for BBMT sites and 8 km for LMT sites. To evaluate the potential for carbon sequestration of the Clare basin three advances on geophysical methodology related to electromagnetic techniques were applied. First of all, processing of the MT data was improved following the recently published ELICIT methodology. Secondly, during the inversion process, the electrical resistivity distribution of the subsurface was constrained combining three different tensor relationships: Impedances (Z), induction arrows (TIP) and multi-site horizontal magnetic transfer-functions (HMT). Results from synthetic models were used to evaluate the sensitivity and properties of each tensor relationship. Finally, a computer code was developed, which employs a stabilized least squares approach to estimate the cementation exponent in the generalized Archie law formulated by Glover (2010). This allows relating MT-derived electrical resistivity models to porosity distributions. The final aim of this procedure is to generalize the porosity - permeability values measured in the boreholes to regional scales. This methodology will contribute to the evaluation of possible sequestration targets in the study area.

  5. A physically-based Distributed Hydrologic Model for Tropical Catchments

    NASA Astrophysics Data System (ADS)

    Abebe, N. A.; Ogden, F. L.

    2010-12-01

    Hydrological models are mathematical formulations intended to represent observed hydrological processes in a watershed. Simulated watersheds in turn vary in their nature based on their geographic location, altitude, climatic variables and geology and soil formation. Due to these variations, available hydrologic models vary in process formulation, spatial and temporal resolution and data demand. Many tropical watersheds are characterized by extensive and persistent biological activity and a large amount of rain. The Agua Salud catchments located within the Panama Canal Watershed, Panama, are such catchments identified by steep rolling topography, deep soils derived from weathered bedrock, and limited exposed bedrock. Tropical soils are highly affected by soil cracks, decayed tree roots and earthworm burrows forming a network of preferential flow paths that drain to a perched water table, which forms at a depth where the vertical hydraulic conductivity is significantly reduced near the bottom of the bioturbation layer. We have developed a physics-based, spatially distributed, multi-layered hydrologic model to simulate the dominant processes in these tropical watersheds. The model incorporates the major flow processes including overland flow, channel flow, matrix and non-Richards film flow infiltration, lateral downslope saturated matrix and non-Darcian pipe flow in the bioturbation layer, and deep saturated groundwater flow. Emphasis is given to the modeling of subsurface unsaturated zone soil moisture dynamics and the saturated preferential lateral flow from the network of macrospores. Preliminary results indicate that the model has the capability to simulate the complex hydrological processes in the catchment and will be a useful tool in the ongoing comprehensive ecohydrological studies in tropical catchments, and help improve our understanding of the hydrological effects of deforestation and aforestation.

  6. Forest management for water: a hydro-ecological modeling exercise of headwater catchments in the mixed-conifer belt of the Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Saksa, P. C.; Bales, R. C.; Ray, R. L.

    2011-12-01

    Hydro-ecological modeling provides a cost-effective method for evaluating the effects of vegetation change on water cycling within a catchment. In mountain watersheds, change in forest vegetation not only has direct effects on transpiration rates, but also energy exchanges that influence patterns of snow ablation. In this study, treatment scenarios were implemented using the Regional Hydro-Ecological Simulation System (RHESSys) to estimate impacts on key elements of the hydrologic cycle affected by forest harvesting - snowpack accumulation, ablation, transpiration, and streamflow. Twelve headwater catchments (0.5 - 2.6 km2, 1460 - 2450m) in the mixed-conifer zone of the central Sierra Nevada, within the Sierra and Tahoe National Forests, were included for analysis. These research sites are part of the Sierra Nevada Adaptive Management Project (SNAMP), located in the headwaters of the American and Merced Rivers, and the Southern Sierra Critical Zone Observatory (CZO) in the Kings River basin. Two methods of forest harvesting were simulated in the study watersheds: 1) uniform canopy thinning, through reduction of Leaf Area Index (LAI) values and 2) strip-cut treatments, suggested as the best method for retaining snowpack. Results from this study compare the influence of vegetation on water cycle dynamics through the two harvesting treatments, initial vegetation densities, and individual catchment size. Model simulations for pre-treatment snow depth, soil moisture, and streamflow were validated with SNAMP and CZO in-situ measurements. Preliminary results show that a linear reduction of forest canopy reduces transpiration accordingly, but produces a non-linear increase in streamflow. Peak discharges also increased, occurring earlier in the spring and having more pronounced effects in the smaller catchments. Based on these results, harvesting thresholds required for obtaining increases in water yield are evaluated. Investigating the impact of forest management on these

  7. How tritium illuminates catchment structure

    NASA Astrophysics Data System (ADS)

    Stewart, M.; Morgenstern, U.; McDonnell, J.

    2012-04-01

    Streams contain water which has taken widely-varying times to pass through catchments, and the distribution of ages is likely to change with the flow. Part of the water has 'runoff' straight to the stream with little delay, other parts are more delayed and some has taken years (in some cases decades) to traverse the deeper regolith or bedrock of the catchment. This work aims to establish the significance of the last component, which is important because it can cause catchments to have long memories of contaminant inputs (e.g. nitrate). Results of tritium studies on streams world-wide were accessed from the scientific literature. Most of the studies assumed that there were just two age-components present in the streams (i.e. young and old). The mean ages and proportions of the components were found by fitting simulations to tritium data. It was found that the old component in streams was substantial (average was 50% of the annual runoff) and had considerable age (average mean age was 10 years) (Stewart et al., 2010). Use of oxygen-18 or chloride variations to estimate streamflow mean age usually does not reveal the age or size of this old component, because these methods cannot detect water older than about four years. Consequently, the use of tritium has shown that substantial parts of streamflow in headwater catchments are older than expected, and that deep groundwater plays an active and sometimes even a dominant role in runoff generation. Difficulties with interpretation of tritium in streams in recent years due to interference from tritium due to nuclear weapons testing are becoming less serious, because very accurate tritium measurements can be made and there is now little bomb-tritium remaining in the atmosphere. Mean ages can often be estimated from single tritium measurements in the Southern Hemisphere, because there was much less bomb-tritium in the atmosphere. This may also be possible for some locations in the Northern Hemisphere. Age determination on

  8. 10Be-derived denudation rates from the Burdekin catchment: The largest contributor of sediment to the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Croke, Jacky; Bartley, Rebecca; Chappell, John; Austin, Jenet M.; Fifield, Keith; Tims, Stephen G.; Thompson, Chris J.; Furuichi, Takahisa

    2015-07-01

    Terrestrial cosmogenic nuclides (TCNs) such as Beryllium-10 (10Be) are now routinely used to reconstruct erosional rates over tens of thousands of years at increasingly large basin scales (> 100,000 km2). In Australia, however, the approach and its assumptions have not been systematically tested within a single, large drainage basin. This study measures 10Be concentrations in river sediments from the Burdekin catchment, one of Australia's largest coastal catchments, to determine long-term (> 10,000 years), time-integrated rates of sediment generation and denudation. A nested-sampling design was used to test for effects of increasing catchment scale on nuclide concentrations with upstream catchment areas ranging from 4 to 130,000 km2. Beryllium-10 concentrations in sediment samples collected from the upstream headwater tributaries and mid-stream locations range from 1.8 to 2.89 × 105 atoms g- 1 and data confirm that nuclide concentrations are well and rapidly mixed downstream. Sediment from the same tributaries consistently yielded 10Be concentrations in the range of their upstream samples. Overall, no decrease in 10Be concentrations can be observed at the range of catchment scales measured here. The mean denudation rate for all river sediment samples throughout the Fanning subcatchment (1100 km2) is 18.47 m Ma- 1, which compares with the estimate at the end of the Burdekin catchment (130,000 km2) of 16.22 m Ma- 1. Nuclide concentrations in the lower gradient western and southern catchments show a higher degree of variability, and several complications emerged as a result of the contrasting geomorphic processes and settings. This study confirms the ability of TCNs to determine long-term denudation rates in Australia and highlights some important considerations in the model assumptions that may affect the accuracy of limited sampling in large, low-gradient catchments with long storage times.

  9. Model development based on a landscape oriented catchment unit concept

    NASA Astrophysics Data System (ADS)

    Cárdenas Gaudry, María.; Gutknecht, Dieter

    2010-05-01

    This paper is a companion paper to our project proposal "Hydrologic model framework for river basins with a range of hydroclimatic and bioclimatic conditions" (HS4.1). It intends to present a few ideas of how to bridge available concepts of landscape classification (as an example the Holdridge Life Zones classification scheme will be used) and hydrological approaches related to the Dominant Process Concept. The focus is on the development of landscape related indices that consider water balance characteristics (e.g.: the relationship ET/P), seasonality measures, and/or runoff generation process signatures at the landscape scale. Methods applied to consider runoff generation in hydrological modelling are commonly based on concepts such as the Hydrological Response Unit (HRU) concept (e.g. Flügel, 1995), the "hydrotop" concept (e.g. Reszler et al., 2006) and the Dominant Runoff Processes concept (DRP, e.g. Schmocker-Fackel and Scherrer, 2007). They are best suited to smaller scale catchment description. It is hypothesized here that additional/new concepts are necessary if the mechanismus that control runoff generation on a larger, i.e. regional scale should be captured. Hydrological reasoning and first results from regional studies indicate that appropiately chosen "signatures" can be found to characterise differences in the control of the runoff processes in different catchments situations. Examples might be "indicators" which include the soil moisture state of a basin or the event runoff coefficient derived from hydrological model simulatons or from runoff observations, respectly (e.g. Samuel et al. 2008; Merz & Blöschl, 2009a). The presentation will demostrate a few results from first studies on the above outlined concept. The study uses data from a set of Austrian catchments prepared for the studies reported in Merz & Blöschl (2009a). References: Flügel, W.-A. (1995): Delineating hydrological response units by geographical information system analyses for

  10. Sediment yield estimation in mountain catchments of the Camastra reservoir, southern Italy: a comparison among different empirical methods

    NASA Astrophysics Data System (ADS)

    Lazzari, Maurizio; Danese, Maria; Gioia, Dario; Piccarreta, Marco

    2013-04-01

    Sedimentary budget estimation is an important topic for both scientific and social community, because it is crucial to understand both dynamics of orogenic belts and many practical problems, such as soil conservation and sediment accumulation in reservoir. Estimations of sediment yield or denudation rates in southern-central Italy are generally obtained by simple empirical relationships based on statistical regression between geomorphic parameters of the drainage network and the measured suspended sediment yield at the outlet of several drainage basins or through the use of models based on sediment delivery ratio or on soil loss equations. In this work, we perform a study of catchment dynamics and an estimation of sedimentary yield for several mountain catchments of the central-western sector of the Basilicata region, southern Italy. Sediment yield estimation has been obtained through both an indirect estimation of suspended sediment yield based on the Tu index (mean annual suspension sediment yield, Ciccacci et al., 1980) and the application of the Rusle (Renard et al., 1997) and the USPED (Mitasova et al., 1996) empirical methods. The preliminary results indicate a reliable difference between the RUSLE and USPED methods and the estimation based on the Tu index; a critical data analysis of results has been carried out considering also the present-day spatial distribution of erosion, transport and depositional processes in relation to the maps obtained from the application of those different empirical methods. The studied catchments drain an artificial reservoir (i.e. the Camastra dam), where a detailed evaluation of the amount of historical sediment storage has been collected. Sediment yield estimation obtained by means of the empirical methods have been compared and checked with historical data of sediment accumulation measured in the artificial reservoir of the Camastra dam. The validation of such estimations of sediment yield at the scale of large catchments

  11. Influence of geology, regolith and soil on fluid flow pathways in an upland catchment in central NSW, Australia

    NASA Astrophysics Data System (ADS)

    Bernardi, Tony

    2014-05-01

    Influence of geology, regolith and soil on fluid flow pathways in an upland catchment in central NSW, Australia. Tony Bernardi and Leah Moore Dryland Salinity Hazard Mitigation Program (DSHMP), University of Canberra, ACT 2601, AUSTRALIA The diversity of salt expression in central NSW has defied classification because salt expression, mobilisation and transport is highly variable and is typically site specific. Hydrological models are extensively used to simulate possible outcomes for a range of land use changes to mitigate the mobilisation and transport of salt into the streams or across the land surface. The ability of these models to mimic reality can be variable thereby reducing the confidence in the models outputs and uptake of strategic management changes by the community. This study focuses on a 250 ha semi-arid sub-catchment of Little River catchment in central west NSW in the Murray-Darling Basin, Australia. We propose that an understanding the structure of the landforms and configuration of rock, regolith and soil materials at the study site influences fluid flow pathways in the landscape and can be related to observed variations in the chemical composition and salinity of surface and aquifer water. Preliminary geological mapping of the site identified the dominant rock type as a pink and grey dacite and in localised mid-slope areas, a coarsely crystalline biotite-phyric granodiorite. Samples were taken at regular intervals from natural exposures in eroded stream banks and in excavations made during the installation of neutron moisture meter tubes. In order to establish mineral weathering pathways, samples were taken from the relatively unweathered core to the outer weathered 'onion skins' of corestones on both substrates, and then up through the regolith profile, including the soil zone, to the land surface. X-ray diffraction (XRD) analysis and X-ray fluorescence (XRF) was conducted on the rock and soil/saprock samples. Electromagnetic induction (EMI

  12. Preliminary report on fluid inclusions from halites in the Castile and lower Salado formations of the Delaware Basin, southeastern New Mexico. [Freezing-point depression

    SciTech Connect

    Stein, C.L.

    1985-09-01

    A suite of samples composed primarily of halite from the upper Castile and lower Salado Formations of the Permian Basin was selected from Waste Isolation Pilot Plant (WIPP) core for a reconnaissance study of fluid inclusions. Volume percent of these trapped fluids averaged 0.7% to 1%. Freezing-point depressions varied widely and appeared to be unrelated to fluid-inclusion type, to sedimentary facies, or to stratigraphic depth. However, because very low freezing points were usually associated with anhydrite, a relation may exist between freezing-point data and lithology. Dissolved sulfate values were constant through the Castile, then decreased markedly with lesser depth in the lower Salado. This trend correlates very well with observed mineralogy and is consistent with an interpretation of the occurrence of secondary polyhalite as a result of gypsum or anhydrite alteration with simultaneous consumption of dissolved sulfate from the coexisting fluids. Together with the abundance and distribution of fluid inclusions in primary or ''hopper'' crystal structures, this evidence suggests that inclusions seen in these halites did not migrate any significant geographical distance since their formation. 28 refs., 17 figs., 2 tabs.

  13. Identifying critical source areas for phosphorus loss in Ireland using field and catchment scale ranking schemes

    NASA Astrophysics Data System (ADS)

    Hughes, K. J.; Magette, W. L.; Kurz, I.

    2005-03-01

    Phosphorus (P) in agricultural runoff is a major pollutant in many of Ireland's surface waters. Identification of areas that are at a high risk for P loss to surface waters is a critical component of river basin management. Two P ranking schemes (PRS's) were developed for Ireland, based on multi-criteria analysis approaches proposed in both the US and Europe, to predict the relative likelihood of P loss at both the field and catchment scales. The Field PRS was evaluated by comparing predicted rankings of potential P loss and transport against measured edge-of-field Dissolved Reactive P (DRP) loss for three fields with varying soil P levels. Qualitatively, results indicated that the Field PRS rankings corresponded to the magnitudes of measured P loss for the field sites, as well as to a reasoned evaluation of the relative likelihood that the fields would lose P that would subsequently make its way to surface water. The Catchment PRS was evaluated on a total of 31 catchments and sub-catchments by comparing predicted rankings of potential P loss and transport against measured in-stream median Molybdate Reactive P (MRP). Rankings of the relative likelihood of P loss and transport predicted by the Catchment PRS were positively correlated with median in-stream MRP ( r=0.51, P<0.05). Although the data available for these evaluations were limited, especially at field scale, and further research may identify the opportunity for modifications, both field and catchment scale P ranking schemes demonstrated a potential for identifying critical P source areas within catchments dominated by grass-based agricultural production systems, such as those in Ireland.

  14. Relict rock glaciers as groundwater storage in alpine catchments - the example of the Seckauer Tauern Range

    NASA Astrophysics Data System (ADS)

    Wagner, Thomas; Pauritsch, Marcus; Winkler, Gerfried

    2015-04-01

    Debris accumulations like relict rock glaciers (RRG) might act as groundwater storages in alpine catchments influencing the discharge dynamics of mountain streams. The degree of influence is related to the hydrometeorological conditions and changes seasonally. Especially during drought and flood events, the storage/buffer abilities of RRGs have an impact on the downstream river network. Stream flow could be assured during low flow periods and peak flows might be dampened during storm events. The assessment of the impact is investigated in the Seckauer Tauern Range, the easternmost subunit of the Niedere Tauern Range. In more detail, the discharge of a spring (Schöneben spring) emerging at the front of a RRG draining a catchment of 0.67 km² and discharges at gauging stations Finsterliesing and Unterwald further downstream with areal extents of 7.26 and 44.10 km² respectively are used as input for a lumped-parameter rainfall-runoff model, a modified version of the GR4J (Perrin et al., 2003). The Schöneben spring is 100% influenced by the RRG groundwater storage, as the whole catchment drains through the RRG. The flow dynamics of the other catchments are influenced only partially by RRGs with 15 and 12% as only headwater sections of it are drained by RRGs. The areal extend of the RRG (sub-) catchments, vegetation, debris in general and bare rock are compared to the storage parameters (routing and production store) of the rainfall-runoff model. As such, the influence of RRGs can be identified even in the overall catchment. It can be concluded that RRGs, due to their storage and buffer capabilities and abundance in the Seckauer Tauern Range are important for stream basin management and as a water resource for the sensitive ecosystem in alpine catchments. References: Perrin, C., Michel, C., Andréassian, V. (2003): Improvement of a parsimonious model for streamflow simulation. Journal of Hydrology 279, 275-289.

  15. Geomorphological characterization of endorheic basins in northern Chile

    NASA Astrophysics Data System (ADS)

    Dorsaz, J.; Gironas, J. A.; Escauriaza, C. R.; Rinaldo, A.

    2011-12-01

    Quantitative geomorphology regroups a large number of interesting tools to characterize natural basins across scales. The application of these tools to several river basins allows the description and comparison of geomorphological properties at different spatial scales as oppose to more traditional descriptors that are typically applied at a single scale, meaning the catchment scale. Most of the recent research using these quantitative geomorphological tools has focused on open catchments and no specific attention has been given to endorheic basins, and the possibility of having particular features that distinguish them from exorheic catchments. The main objective of our study is to characterize endorheic basins and investigate whether these special geomorphological features can be identified. Because scaling invariance is a widely observed and relatively well quantified property of open basins, it provides a suitable tool to characterize differences between the geomorphology of closed and open basins. Our investigation focuses on three closed basins located in northern Chile which describe well the diversity in the geomorphology and geology of this arid region. Results show that endhoreic basins exhibit different slope-area and flow paths sinuosity regimes compared to those observed in open basins. These differences are in agreement with the particular self-similar behavior across spatial scales of the Euclidean length of subcatchments, as well as the Hack's law and Horton's ratios. These regimes imply different physical processes inside the channel network regardless of the basin area, and they seem to be related to the endorheic character of these basins. The analysis of the probability density functions of contributing areas and lengths to the lower region shows that the hypothesis of self-similarity can also be applied to closed basins. Theoretical expressions for these distributions were derived and validated by the data. Future research will focus on (1

  16. The impact of land management in agricultural catchments on groundwater pollution levels

    NASA Astrophysics Data System (ADS)

    Matysik, Magdalena

    2014-10-01

    Agricultural activity results in water pollution from nitrogen and phosphorus compounds. Increased concentrations of nitrogen compounds pose a threat to animal and human health. The purpose of this study was to determine the impact of agriculture in a catchment basin on the level of groundwater pollution from biogenic compounds. Spatial analysis of the land cover was conducted using a GIS and was based on data from the Corine Land Cover databases.

  17. Winter streamflow analysis in frozen, alpine catchments to quantify groundwater contribution and properties

    NASA Astrophysics Data System (ADS)

    Stoelzle, Michael; Weiler, Markus

    2016-04-01

    contributions is helpful to assess the water sustainability of alpine catchments functioning as water towers for downstream water basins. We outline how well-known hydrograph and recession analyses in alpine catchments can help to explore the role of catchment storage and to advance our understanding of (ground-)water management in alpine environments.

  18. The hydrological regime of a forested tropical Andean catchment

    NASA Astrophysics Data System (ADS)

    Clark, K. E.; Torres, M. A.; West, A. J.; Hilton, R. G.; New, M.; Horwath, A. B.; Fisher, J. B.; Rapp, J. M.; Robles Caceres, A.; Malhi, Y.

    2014-12-01

    The hydrology of tropical mountain catchments plays a central role in ecological function, geochemical and biogeochemical cycles, erosion and sediment production, and water supply in globally important environments. There have been few studies quantifying the seasonal and annual water budgets in the montane tropics, particularly in cloud forests. We investigated the water balance and hydrologic regime of the Kosñipata catchment (basin area: 164.4 km2) over the period 2010-2011. The catchment spans over 2500 m in elevation in the eastern Peruvian Andes and is dominated by tropical montane cloud forest with some high-elevation puna grasslands. Catchment-wide rainfall was 3112 ± 414 mm yr-1, calculated by calibrating Tropical Rainfall Measuring Mission (TRMM) 3B43 rainfall with rainfall data from nine meteorological stations in the catchment. Cloud water input to streamflow was 316 ± 116 mm yr-1 (9.2% of total inputs), calculated from an isotopic mixing model using deuterium excess (Dxs) and δD of waters. Field streamflow was measured in 2010 by recording height and calibrating to discharge. River run-off was estimated to be 2796 ± 126 mm yr-1. Actual evapotranspiration (AET) was 688 ± 138 mm yr-1, determined using the Priestley and Taylor-Jet Propulsion Laboratory (PT-JPL) model. The overall water budget was balanced within 1.6 ± 13.7%. Relationships between monthly rainfall and river run-off follow an anticlockwise hysteresis through the year, with a persistence of high run-off after the end of the wet season. The size of the soil and shallow groundwater reservoir is most likely insufficient to explain sustained dry-season flow. Thus, the observed hysteresis in rainfall-run-off relationships is best explained by sustained groundwater flow in the dry season, which is consistent with the water isotope results that suggest persistent wet-season sources to streamflow throughout the year. These results demonstrate the importance of transient groundwater storage in

  19. Catchment classification by means of hydrological models

    NASA Astrophysics Data System (ADS)

    Hellebrand, Hugo; Ley, Rita; Casper, Markus

    2013-04-01

    An important hydrological objective is catchment classification that will serve as a basis for the regionalisation of discharge parameters or model parameters. The main task of this study is the development and assessment of two classification approaches with respect to their efficiency in catchment classification. The study area in western Germany comprises about 80 catchments that range in size from 8 km2 up to 1500 km2, covering a wide range of geological substrata, soils, landscapes and mean annual precipitation. In a first approach Self Organising Maps (SOMs) use discharge characteristics or catchment characteristics to classify the catchments of the study area. Next, a reference hydrological model calibrates the catchments of the study area and tests the possibilities of parameter transfer. Compared to the transfer of parameters outside a class, for most catchments the model performance improves when parameters within a class are transferred. Thus, it should be possible to distinguish catchment classes by means of a hydrological model. The classification results of the SOM are compared to the classification results of the reference hydrological model in order to determine the latter validity. The second approach builds on the first approach in such a way that it uses the Superflex Modelling Framework instead of only one reference model. Within this framework multiple conceptual model structures can be calibrated and adapted. Input data for each calibration of a catchment are hourly time series of runoff, precipitation and evaporation for at least eight years. The calibration of multiple models for each catchment and their comparison allows for the assessment of the influence of different model structures on model performance. Learning loops analyse model performance and adapt model structures accordingly with a view to performance improvement. The result of the modelling exercise is a best performing model structure for each catchment that serves as a basis

  20. Geohydrology, water quality, and preliminary simulations of ground-water flow of the alluvial aquifer in the Upper Black Squirrel Creek basin, El Paso County, Colorado

    USGS Publications Warehouse

    Buckles, D.R.; Watts, K.R.

    1988-01-01

    The upper Black Squirrel Creek basin in eastern El Paso County, Colorado, is underlain by an alluvial aquifer and four bedrock aquifers. Groundwater pumpage from the alluvial aquifer has increased since the mid-1950's, and water level declines have been substantial; the bedrock aquifers virtually are undeveloped. Groundwater pumpage for domestic, stock, agricultural, and municipal uses have exceeded recharge for the past 25 years. The present extent of the effect of pumpage on the alluvial aquifer was evaluated, and a groundwater flow model was used to simulate the future effect of continued pumpage on the aquifer. Measured water level declines from 1974 through 1984 were as much as 30 ft in an area north of Ellicott, Colorado. On the basis of the simulations, water level declines from October 1984 to April 1999 north of Ellicott might be as much as 20 to 30 ft and as much as 1 to 10 ft in most of the aquifer. The groundwater flow models provided a means of evaluating the importance of groundwater evapotranspiration at various stages of aquifer development. Simulated groundwater evapotranspiration was about 43% of the outflow from the aquifer during predevelopment stages but was less than 3% of the outflow from the aquifer during late-development stages. Analyses of 36 groundwater samples collected during 1984 indicated that concentrations of dissolved nitrite plus nitrate as nitrogen generally were large. Samples from 5 of the 36 wells had concentrations of dissolved nitrite plus nitrate as nitrogen that exceeded drinking water standards. Water from the alluvial aquifer generally is of suitable quality for most uses. (USGS)

  1. Dissolved and particulate nutrient export from rural catchments: a case study from Luxembourg.

    PubMed

    Salvia-Castellví, Mercè; Iffly, Jean François; Borght, Paul Vander; Hoffmann, Lucien

    2005-05-15

    Nutrient enrichment of freshwaters continues to be one of the most serious problems facing the management of surface waters. Effective remediation/conservation measures require accurate qualitative and quantitative knowledge of nutrient sources, transport mechanisms, transformations and annual dynamics of different nitrogen (N) and phosphorus (P) forms. In this paper, nitrate (NO3-N), soluble reactive phosphorus (SRP) and total phosphorus (TP) concentrations and loads are presented for two adjacent rural basins of 306 km2 and 424 km2, and for five sub-basins differing in size (between 1 km2 and 33 km2), land use (extent of forest cover between 20% and 93%) and household pressure (from 0 to 40 people/km2) with the aim of studying the influence of land use and catchment size on nutrient exports. The studied catchments are all situated on Devonian schistous substrates in the Ardennes region (Belgium-Luxembourg), and therefore have similar hydrological regimes. As the study period could not be the same for all basins, annual export coefficients were corrected with the 25 years normalized discharge of the Sure River: two regression analyses (for dry and humid periods) relating monthly nutrient loads to monthly runoff were used to determine correction factors to be applied to each parameter and each basin. This procedure allows for the comparing annual export coefficients from basins sampled in different years. Results show a marked seasonal response and a large variability of NO3-N export loads between forested (4 kg N ha-1 year-1), agricultural (27-33 kg N ha-1 year-1) and mixed catchments (17-22 kg N ha-1 year-1). For SRP and TP, no significant agricultural impact was found. Land and bank erosion control the total P massflow in the studied catchments (0.4-1.3 kg P ha-1 year-1), which is mostly in a particulate form, detached and transported during storm events. Soluble reactive P fluxes ranged between 10% and 30% of the TP mass, depending on the importance of point

  2. Potential of using WATCH forcing data to model a low land river basin of the upper Murray-Darling basin in Australia

    NASA Astrophysics Data System (ADS)

    Kundu, D.; Van Ogtrop, F. F.; Vervoort, R. W.

    2014-12-01

    Scattered station based climate data is often not sufficient to describe the dynamics of the catchment processes and efficiently manage the water resources. Therefore, a lot of focus has been to identify alternative distributed data sources, such as; remotely sensed data or global re-analysis data. Hence, this study uses the Water and Global Change (WATCH) forcing data, based on 40 years ECMWF Re-Analysis (ERA-40), to model a semi-arid low land flood plain river basin in a data sparse region. The semi-distributed Soil Water Assessment Tool (SWAT) was used to model the river basin (Warrego, 52140.6 square km) located in the upper Murray-Darling basin in Eastern Australia. Multi station model calibration was achieved using the Sequential Uncertainty Fitting -2 (SUFI-2) algorithm with the Nash Sutcliffe Efficiency (NSE) as the goal function against monthly observed flow data. Modelling of a low land river system is highly challenging, due to topographic heterogeneity, nonlinear climatic behavior and sparse observed flow data with extended periods of zero flows. Preliminary simulation results indicate a NSE of 0.26 to 0.86 for the calibration period and 0.04 to 0.47 for the validation period. Furthermore, the volume fraction explained by the model ranged from 0.69 to 2.71 in the validation period. While the unsatisfactory results may be attributed to the SWAT modelling framework, which struggles with modelling flow in flat flood plains, the study does reveal the potential to use remotely sensed data in low land river basins with little or no climate data.

  3. Influence of basin connectivity on sediment source, transport, and storage within the Mkabela Basin, South Africa

    NASA Astrophysics Data System (ADS)

    Miller, J. R.; Mackin, G.; Lechler, P.; Lord, M.; Lorentz, S.

    2013-02-01

    The management of sediment and other non-point source (NPS) pollution has proven difficult, and requires a sound understanding of particle movement through the drainage system. The primary objective of this investigation was to obtain an understanding of NPS sediment source(s), transport, and storage within the Mkabela Basin, a representative agricultural catchment within the KwaZulu-Natal Midlands of eastern South Africa, by combining geomorphic, hydrologic and geochemical fingerprinting analyses. The Mkabela Basin can be subdivided into three distinct subcatchments that differ in their ability to transport and store sediment along the axial valley. Headwater (upper catchment) areas are characterized by extensive wetlands that act as significant sediment sinks. Mid-catchment areas, characterized by higher relief and valley gradients, exhibit few wetlands, but rather are dominated by a combination of alluvial and bedrock channels that are conducive to sediment transport. The lower catchment exhibits a low-gradient alluvial channel that is boarded by extensive riparian wetlands that accumulate large quantities of sediment (and NPS pollutants). Fingerprinting studies suggest that silt- and clay-rich layers found within wetland and reservoir deposits of the upper and upper-mid subcatchments are derived from the erosion of fine-grained, valley bottom soils frequently utilized as vegetable fields. Coarser-grained deposits within these wetlands and reservoirs result from the erosion of sandier hillslope soils extensively utilized for sugar cane, during relatively high magnitude runoff events that are capable of transporting sand-sized sediment off the slopes. Thus, the source of sediment to the axial valley varies as a function of sediment size and runoff magnitude. Sediment export from upper to lower catchment areas was limited until the early 1990s, in part because the upper catchment wetlands were hydrologically disconnected from lower parts of the watershed during

  4. Hydropedological insights when considering catchment classification

    NASA Astrophysics Data System (ADS)

    Bouma, J.; Droogers, P.; Sonneveld, M. P. W.; Ritsema, C. J.; Hunink, J. E.; Immerzeel, W. W.; Kauffman, S.

    2011-06-01

    Soil classification systems are analysed to explore the potential of developing classification systems for catchments. Soil classifications are useful to create systematic order in the overwhelming quantity of different soils in the world and to extrapolate data available for a given soil type to soils elsewhere with identical classifications. This principle also applies to catchments. However, to be useful, soil classifications have to be based on permanent characteristics as formed by the soil forming factors over often very long periods of time. When defining permanent catchment characteristics, discharge data would therefore appear to be less suitable. But permanent soil characteristics do not necessarily match with characteristics and parameters needed for functional soil characterization focusing, for example, on catchment hydrology. Hydropedology has made contributions towards the required functional characterization of soils as is illustrated for three recent hydrological catchment studies. However, much still needs to be learned about the physical behaviour of anisotropic, heterogeneous soils with varying soil structures during the year and about spatial and temporal variability. The suggestion is made therefore to first focus on improving simulation of catchment hydrology, possibly incorporating hydropedological expertise, before embarking on a catchment classification effort which involves major input of time and involves the risk of distraction. In doing so, we suggest to also define other characteristics for catchment performance than the traditionally measured discharge rates. Such characteristics may well be derived from societal issues being studied, as is illustrated for the Green Water Credits program.

  5. Use of natural tracers to identify spatial and temporal variation in runoff sources in a complex, mountainous mesoscale catchment

    NASA Astrophysics Data System (ADS)

    Soulsby, C.; Rodgers, P.; Petry, J.; Dunn, S.

    2003-04-01

    Natural tracers (18O, Si and alkalinity) were used to assess the spatial and temporal variation in runoff sources within the 230 km^2 Feshie catchment in the Cairngorm Mountains of Scotland as part of the UK Catchment Hydrology And Sustainable Management (CHASM) initiative. The elevation of the mesoscale catchment ranges between 230--1110 m and snowfall comprises, on average, ca. 30% of annual precipitation. Tracer behavior was monitored by routine sampling in gauged, nested subcatchments ranging from 3--90 km^2 over a hydrological year. In addition, extensive surveys sampled the spatial variation in tracer concentrations throughout the catchment river network at low, moderate and high flows at sampling intensities of 1 per 1 km^2. Use of tracer data and GIS-based assessment indicated that catchment characteristics, rather than scale, accounted for the major differences in contributions from contrasting hydrological sources in nested subcatchments. Most notably, geology and the distribution of soil types exerted a strong control on the partitioning of runoff sources and groundwater contributions to flow (which mixing analysis showed range between 25 and 52% of annual flow in different subcatchments). Coverage of organic peat soils and thin montane podzols strongly influenced the storm runoff response of different subcatchments (with average runoff coefficients ranging from 0.75 to 0.4 for different sub-catchments) and dominated stream hydrochemistry at high flows. Despite the dominant influence of catchment characteristics at the sub-catchment scale, as spatial scale increased beyond 100 km^2 within the mesoscale catchment, the influence of significant alluvial aquifers on hydrological response became apparent. Neverthless, at scales >3 km^2, preliminary analysis of weekly 18O data indicated that mean residence times are similar, though it is reasonable to expect that residence time distributions would vary if high resolution tracer samples (ie daily or sub

  6. Hydrothermal deposits in the Southern Trough of Guaymas Basin, Gulf of California: Observations and Preliminary Results from the 2003 MBARI Dive Program

    NASA Astrophysics Data System (ADS)

    Stakes, D. S.; Tivey, M. K.; Koski, R. A.; Ortego-Osorio, A.; Preston, C. M.; McCulloch, M. T.; Nakamura, K.; Seewald, J.; Wheat, C. G.

    2003-12-01

    During Leg 2 of the 2003 MBARI expedition to the Gulf of California, the ROV Tiburon completed eight dives to active vent fields in the Southern Trough of Guaymas Basin. Six venting areas were investigated in detail. Tiburon operations included (1) sampling mineral deposits that range from mini-chimneys a few centimeters high to 10-meter-tall sulfide-carbonate structures with wide flanges; (2) collection of 90C to 303C methane, carbon dioxide, and hydrogen-rich vent fluids in gas-tight samplers and plume-laden particulates in Niskin samplers; 3) collection of warm (up to 83C) hydrocarbon-rich sediment push cores; 4) long-term monitoring of three vent sites using thermocouple arrays (see adjacent Tivey et al poster) and osmotically-driven fluid samplers. Seventy days later, the ROV returned to recover the thermocouple arrays and ingrown chimneys. At the lowest temperature sites, fluid (up to 90C) discharged from orifices in sediment surrounded by white to yellow microbial mats. Combined Eh-ISUS (InSitu Ultraviolet Spectrophotometer) sensors mounted on Tiburon identified local increases in bisulfide and decreases in the oxidation/reduction potential (a proxy for methane and hydrogen sulfide) associated with these sites. Massive barite chimneys recovered from the margins of moderate-temperature vent sites are permeated with oil. Chimneys from higher temperature sites, in contrast, lack the liquid hydrocarbon component, and are largely composed of calcium carbonate with lesser anhydrite, amorphous silica, barite, pyrrhotite, Mg-silicate, galena, sphalerite, and chalcopyrite. Mineral precipitation at the southernmost site (Toadstool) is characterized by the formation of carbonate-rich flanges directly above a substrate of altered diatomaceous sediment. The upper sediment crust lies above a stockwork of calcite veins. High-temperature structures at Rebecca's Roost and Broken Mushroom have pagoda-like carbonate-rich flanges trapping pools of hydrothermal fluids that

  7. High Park burn in South Fork Cache la Poudre Basin: Preliminary findings from spring and summer 2013 hydrologic and sedimentation monitoring

    NASA Astrophysics Data System (ADS)

    Ryan, S. E.; Dixon, M.; Rathburn, S. L.; Shahverdian, S.

    2013-12-01

    The High Park fire burned over 35,000 ha within the Cache la Poudre basin in early summer 2012, including an eastern portion of the Little South Fork Cache la Poudre (SFCLP) watershed. Given the proximity of the burn and the implications for water quality supplied to Fort Collins and Greeley, CO, there is an expressed interest on the part of the cities for improved understanding of sediment loads in SFCLP and main stem Cache la Poudre River over the next few years. Prior to burning, data on sediment transport (suspended sediment and bedload) were collected by researchers from the US Forest Service, providing baseline information on sedimentation comparable to similar measurements taken after the High Park fire. In 2013, bedload was measured during snowmelt runoff using standard pressure-difference samplers identical to those used previously in 1989 and 1997. Turbidity sensors were deployed as a surrogate measure of suspended sediment concentration. This signal was calibrated using both grab samples (from a DH-48) and samples obtained from an automated water sampler triggered to collect during substantial increases in turbidity. Additional sampling stations were later established downstream of this site in conjunction with assessments of channel extension and sedimentation from severely burned hillslopes and gulches, one of which was mulched for erosion control in spring 2013. The primary source of post-fire sediment to the most upstream site is from Monument Gulch, located about 1 km upstream of the sampling location. Debris flows emanated from this gulch within a few weeks post-fire and delivered charcoal, ash, burned trees and inorganic sediment to the main stem SFCLP. Although snowmelt runoff was less than bankfull in 2013, there was a substantial amount of burned organic matter transported and collected in the bedload and suspended sediment samplers. Low intensity storms during summer caused a few sediment rich flows, though not to the extent of those in 2012

  8. Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Physiographic Provinces

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This dataset represents the area of each physiographic province (Fenneman and Johnson, 1946) in square meters, compiled for every catchment of NHDPlus for the conterminous United States. The source data are from Fenneman and Johnson's Physiographic Provinces of the United States, which is based on 8 major divisions, 25 provinces, and 86 sections representing distinctive areas having common topography, rock type and structure, and geologic and geomorphic history (Fenneman and Johnson, 1946). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins

  9. Attributes for NHDPlus Catchments (Version 1.1): Level 3 Nutrient Ecoregions, 2002

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This data set represents the area of each level 3 nutrient ecoregion in square meters, compiled for every catchment of NHDPlus for the conterminous United States. The source data are from the 2002 version of the U.S. Environmental Protection Agency's (USEPA) Aggregations of Level III Ecoregions for National Nutrient Assessment & Management Strategy (USEPA, 2002). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins

  10. Attributes for NHDPlus catchments (version 1.1) for the conterminous United States: surficial geology

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This data set represents the area of surficial geology types in square meters compiled for every catchment of NHDPlus for the conterminous United States. The source data set is the "Digital data set describing surficial geology in the conterminous US" (Clawges and Price, 1999). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River

  11. Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Hydrologic Landscape Regions

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This data set represents the area of Hydrologic Landscape Regions (HLR) compiled for every catchment of NHDPlus for the conterminous United States. The source data set is a 100-meter version of Hydrologic Landscape Regions of the United States (Wolock, 2003). HLR groups watersheds on the basis of similarities in land-surface form, geologic texture, and climate characteristics. The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris

  12. Attributes for NHDPlus Catchments (Version 1.1) in the Conterminous United States: Bedrock Geology

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This data set represents the area of bedrock geology types in square meters compiled for every catchment of NHDPlus for the conterminous United States. The source data set is the "Geology of the Conterminous United States at 1:2,500,000 Scale--A Digital Representation of the 1974 P.B. King and H.M. Beikman Map" (Schuben and others, 1994). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus

  13. Attributes for NHDPlus catchments (Version 1.1) for the conterminous United States: STATSGO soil characteristics

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This data set represents estimated soil variables compiled for every catchment of NHDPlus for the conterminous United States. The variables included are cation exchange capacity, percent calcium carbonate, slope, water-table depth, soil thickness, hydrologic soil group, soil erodibility (k-factor), permeability, average water capacity, bulk density, percent organic material, percent clay, percent sand, and percent silt. The source data set is the State Soil ( STATSGO ) Geographic Database (Wolock, 1997). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee

  14. Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Level 3 Ecoregions

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This data set represents the estimated area of level 3 ecological landscape regions (ecoregions), as defined by Omernik (1987), compiled for every catchment of NHDPlus for the conterminous United States. The source data set is Level III Ecoregions of the Continental United States (U.S. Environmental Protection Agency, 2003). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4

  15. Attributes for NHDplus Catchments (Version 1.1) for the Conterminous United States: Population Density, 2000

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMottem, Andrew E.

    2010-01-01

    This data set represents the average population density, in number of people per square kilometer multiplied by 10 for the year 2000, compiled for every catchment of NHDPlus for the conterminous United States. The source data set is the 2000 Population Density by Block Group for the Conterminous United States (Hitt, 2003). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5

  16. Influence of basin connectivity on sediment source, transport, and storage within the Mkabela Basin, South Africa

    NASA Astrophysics Data System (ADS)

    Miller, J. R.; Mackin, G.; Lechler, P.; Lord, M.; Lorentz, S.

    2012-09-01

    The management of sediment and other non-point source (NPS) pollution has proven difficult, and requires a sound understanding of particle movement through the drainage system. The primary objective of this investigation was to obtain an understanding of NPS sediment source(s), transport, and storage within the Mkabela basin, a representative agricultural catchment within the KwaZulu-Natal Midlands of southeastern South Africa, by combining geomorphic, hydrologic and geochemical fingerprinting analyses. The Mkabela Basin can be subdivided into three distinct subcatchments that differ in their ability to transport and store sediment along the axial valley. Headwater (upper catchment) areas are characterized by extensive wetlands that act as significant sediment sinks. Mid-catchment areas, characterized by higher relief and valley gradients, exhibit few wetlands, but rather are dominated by a combination of alluvial and bedrock channels that are conducive to sediment transport. The lower catchment exhibits a low-gradient alluvial channel that is boarded by extensive riparian wetlands that accumulate large quantities of sediment (and NPS pollutants). Fingerprinting studies suggest that silt- and clay-rich layers found within wetland and reservoir deposits are derived from the erosion of fine-grained, valley bottom soils frequently utilized as vegetable fields. Coarser-grained deposits within both wetlands and reservoirs result from the erosion of sandier hillslope soils extensively utilized for sugar cane, during relatively high magnitude runoff events that are capable of transporting sand-sized sediment off the slopes. Thus, the source of sediment to the axial valley varies as a function of sediment size and runoff magnitude. Sediment export from the basin was limited until the early 1990s, in part because the upper catchment wetlands were hydrologically disconnected from lower parts of the watershed during low- to moderate flood events. The construction of a

  17. Process type identification in torrential catchments

    NASA Astrophysics Data System (ADS)

    Heiser, Micha; Scheidl, Christian; Eisl, Julia; Spangl, Bernhard; Hübl, Johannes

    2015-04-01

    The classification of torrential processes takes place according to factors like sediment concentration and flow behavior and ranges from fluvial process types, including water floods and fluvial sediment transport processes, to fluvial mass movements such as debris flows. This study hypothises a context between basic geomorphological disposition parameters and potential dominant flow process types in steep headwater catchments. Thus, examined catchments were selected based on a historical event documentation of torrential events in the Austrian Alps. In total, 84 catchments could be analysed, and 11 different morphometric parameters were considered. To predict the dominant torrential process type within a catchment, a naive Bayes classifier, a decision tree model, and a multinomial regression model was trained against the compiled geomorphological disposition parameters. All models as well as their combination were compared, based on bootstrapping and complexity. The presented classification model with the lowest prediction error for our data might help to identify the most likely torrential process within a considered catchment.

  18. Collaborative knowledge in catchment research networks

    NASA Astrophysics Data System (ADS)

    Macleod, Christopher Kit

    2015-04-01

    There is a need to improve the production, sharing and use of collaborative knowledge of catchment systems through networks of researchers, policy makers and practitioners. This requires greater levels of systems based integrative research. In parallel to the growing realization that greater levels of collaborative knowledge in scientific research networks are required, a digital revolution has been taking place. This has been driven primarily by the emergence of distributed networks of computers and standards-based interoperability. The objective of this paper is to present the status and research needs for greater levels of systems based integrative research for the production, sharing and use of collaborative knowledge in catchment research networks. To enable increased levels of integrative research depends on development and application of digital technologies to improve collection, use and sharing of data and devise new knowledge infrastructures. This paper focuses on the requirements for catchment observatories that integrate existing and novel physical, social and digital networks of knowledge infrastructures. To support this focus, I present three leading international examples of collaborative networks of catchment researchers and their development of catchment observatories. In particular, the digital infrastructures they have developed to support collaborative knowledge in catchment research networks. These examples are from North America (NSF funded CUAHSI HIS) and from Europe (UK NERC funded EVOp and the German Helmholtz Association Centers funded TERENO/TEODOOR). These exemplars all supported advancing collaborative knowledge in catchment research networks through the development of catchment observatories. I will conclude by discussing the future research directions required for greater levels of production, sharing and use of collaborative knowledge in catchment research networks based on catchment systems science.

  19. Preliminary geochemical assessment of water in selected streams, springs, and caves in the Upper Baker and Snake Creek drainages in Great Basin National Park, Nevada, 2009

    USGS Publications Warehouse

    Paul, Angela P.; Thodal, Carl E.; Baker, Gretchen M.; Lico, Michael S.; Prudic, David E.

    2014-01-01

    Water in caves, discharging from springs, and flowing in streams in the upper Baker and Snake Creek drainages are important natural resources in Great Basin National Park, Nevada. Water and rock samples were collected from 15 sites during February 2009 as part of a series of investigations evaluating the potential for water resource depletion in the park resulting from the current and proposed groundwater withdrawals. This report summarizes general geochemical characteristics of water samples collected from the upper Baker and Snake Creek drainages for eventual use in evaluating possible hydrologic connections between the streams and selected caves and springs discharging in limestone terrain within each watershed.Generally, water discharging from selected springs in the upper Baker and Snake Creek watersheds is relatively young and, in some cases, has similar chemical characteristics to water collected from associated streams. In the upper Baker Creek drainage, geochemical data suggest possible hydrologic connections between Baker Creek and selected springs and caves along it. The analytical results for water samples collected from Wheelers Deep and Model Caves show characteristics similar to those from Baker Creek, suggesting a hydrologic connection between the creek and caves, a finding previously documented by other researchers. Generally, geochemical evidence does not support a connection between water flowing in Pole Canyon Creek to that in Model Cave, at least not to any appreciable extent. The water sample collected from Rosethorn Spring had relatively high concentrations of many of the constituents sampled as part of this study. This finding was expected as the water from the spring travelled through alluvium prior to being discharged at the surface and, as a result, was provided the opportunity to interact with soil minerals with which it came into contact. Isotopic evidence does not preclude a connection between Baker Creek and the water discharging from

  20. Data-based information gain on the response behaviour of hydrological models at catchment scale

    NASA Astrophysics Data System (ADS)

    Willems, Patrick

    2013-04-01

    A data-based approach is presented to analyse the response behaviour of hydrological models at the catchment scale. The approach starts with a number of sequential time series processing steps, applied to available rainfall, ETo and river flow observation series. These include separation of the high frequency (e.g., hourly, daily) river flow series into subflows, split of the series in nearly independent quick and slow flow hydrograph periods, and the extraction of nearly independent peak and low flows. Quick-, inter- and slow-subflow recession behaviour, sub-responses to rainfall and soil water storage are derived from the time series data. This data-based information on the catchment response behaviour can be applied on the basis of: - Model-structure identification and case-specific construction of lumped conceptual models for gauged catchments; or diagnostic evaluation of existing model structures; - Intercomparison of runoff responses for gauged catchments in a river basin, in order to identify similarity or significant differences between stations or between time periods, and relate these differences to spatial differences or temporal changes in catchment characteristics; - (based on the evaluation of the temporal changes in previous point:) Detection of temporal changes/trends and identification of its causes: climate trends, or land use changes; - Identification of asymptotic properties of the rainfall-runoff behaviour towards extreme peak or low flow conditions (for a given catchment) or towards extreme catchment conditions (for regionalization, ungauged basin prediction purposes); hence evaluating the performance of the model in making extrapolations beyond the range of available stations' data; - (based on the evaluation in previous point:) Evaluation of the usefulness of the model for making extrapolations to more extreme climate conditions projected by for instance climate models. Examples are provided for river basins in Belgium, Ethiopia, Kenya

  1. Morphometric properties of the trans-Himalayan river catchments: Clues towards a relative chronology of orogen-wide drainage integration

    NASA Astrophysics Data System (ADS)

    Ghosh, Parthasarathi; Sinha, Sayan; Misra, Arindam

    2015-03-01

    transverse watersheds occurring in the middle of the catchments resemble a series of small drainage basins formed on the precursor topography of the modern Himalayas. The lower parts of the catchments were shaped instead by drainage diversions induced by deformations related to the frontal thrust. We show how the shape of the catchments represents an integration of processes such as headward drainage enlargement, capture of pre-existing drainage, and diversion of drainage in response to crustal deformation at successive stages of Himalayan mountain growth. We further show that there is a systematic change in the morphological characters and organization of the watersheds, nested in the catchments, from the middle towards the flanks of the Himalayas indicating the variations in relative influence of different drainage evolution processes and the orogen-scale heterogeneity in tectonic style.

  2. Use of modeling to protect, plan, and manage water resources in catchment areas.

    PubMed

    Constant, Thibaut; Charrière, Séverine; Lioeddine, Abdejalil; Emsellem, Yves

    2016-08-01

    The degradation of water resources by diffuse pollution, mainly due to nitrate and pesticides, is an important matter for public health. Restoration of the quality of natural water catchments by focusing on their catchment areas is therefore a national priority in France. To consider catchment areas as homogeneous and to expend an equal effort on the entire area inevitably leads to a waste of time and money, and restorative actions may not be as efficient as intended. The variability of the pedological and geological properties of the area is actually an opportunity to invest effort on smaller areas, simply because every action is not equally efficient on every kind of pedological or geological surface. Using this approach, it is possible to invest in a few selected zones that will be efficient in terms of environmental results. The contributive hydraulic areas (CHA) concept is different from that of the catchment area. Because the transport of most of the mobile and persistent pollutants is primarily driven by water circulation, the concept of the CHA is based on the water pathway from the surface of the soil in the catchment area to the well. The method uses a three-dimensional hydrogeological model of surface and groundwater integrated with a geographic information system called Watermodel. The model calculates the contribution (m(3)/h or %) of each point of the soil to the total flow pumped in a well. Application of this model, partially funded by the Seine Normandy Basin Agency, to the catchment of the Dormelles Well in the Cretaceous chalk aquifer in the Orvanne valley, France (catchment area of 23,000 ha at Dormelles, county 77), shows that 95 % of the water pumped at the Dormelles Well comes from only 26 % of the total surface area of the catchment. Consequently, an action plan to protect the water resource will be targeted at the 93 farmers operating in this source area rather than the total number of farmers (250) across the entire 23,000 ha. Another

  3. Parsimonious hydrological modeling of urban sewer and river catchments

    NASA Astrophysics Data System (ADS)

    Coutu, Sylvain; Del Giudice, Dario; Rossi, Luca; Barry, D. A.

    2012-09-01

    SummaryA parsimonious model of flow capable of simulating flow in natural/engineered catchments and at WWTP (Wastewater Treatment Plant) inlets was developed. The model considers three interacting, dynamic storages that account for transfer of water within the system. One storage describes the “flashy” response of impervious surfaces, another pervious areas and finally one storage describes subsurface flow. The sewerage pipe network is considered as an impervious surface and is thus included in the impervious surface storage. In addition, the model assumes that water discharged from several CSOs (combined sewer overflows) can be accounted for using a single, characteristic CSO. The model was calibrated on, and validated for, the Vidy Bay WWTP, which receives effluent from Lausanne, Switzerland (population about 200,000), as well as for an overlapping urban river basin. The results indicate that a relatively simple approach is suitable for predicting the responses of interacting engineered and natural hydrosystems.

  4. Quantifying denudation rates in Mediterranean margin catchments: the Gulf of Lion and East-Corsica case-study

    NASA Astrophysics Data System (ADS)

    Molliex, S.; Rabineau, M.; Jouet, G.; Bourles, D. L.; Freslon, N.; Leroux, E.; Moreau, J.; Aslanian, D.; Vella, C.

    2013-12-01

    Margins are the place of transfer, deposit and erosion of sediments whose geometries are controlled by sea-level fluctuations, vertical movements and sedimentary fluxes. Surface processes (sedimentation, denudation) and deep-sea dynamic are also intimately linked. Due to the numerous data acquired over the last 10 years, the Gulf of Lion and East-Corsica margins could be considered as privileged studied areas to understand the relationships between denudation, sedimentation and associated vertical displacements. The quantification of denudation rates on these margins catchments, using offshore and onshore data aims to improve the understanding of the temporal and spatial evolution of denudation processes in their sedimentation and geodynamic evolution in a large basin (Gulf of Lion) and in a small confined basin (Golo margin; East-Corsica) during the Quaternary. The Gulf of Lion is the northern passive margin of the Liguro-provençal basin, in western Mediterranean Sea. During the Quaternary, it receives sediments from catchments draining several structural domains, as Alps, Pyrenees and Massif Central, for a drainage area of about 120,000 km^2. The East-Corsica corresponds to the western passive margin of the Tyrrhenian basin. The main catchment (Golo River) size is about 100 times smaller than the Gulf of Lion and is composed by two main structural units: Hercynian granites in the upstream part and Alpine schists in the downstream part. In this study, we quantified Quaternary denudation rates using four independent methods: i) estimation of eroded volumes using DEMs; ii) compilation of present-day sediment load fluxes; iii) determination of catchment-scale cosmogenic denudation rate by measuring 10Be concentrations in sands at the catchment outlets or buried in boreholes; iv) quantification of sediment volumes deposited offshore. Our results show a good consistence between the four methods. The Inner Alps present the highest values of denudation (~ 700 m

  5. Doing hydrology backwards in tropical humid catchments

    NASA Astrophysics Data System (ADS)

    Real Rangel, R.; Brena-Naranjo, J. A.; Pedrozo-Acuña, A.

    2015-12-01

    Top-down approaches in hydrology offer the possibility to predict water fluxes at the catchment scale based on the interpretation of the observed hydrological response at the catchment itself. Doing hydrology backwards (inferring precipitation and evapotranspiration rates at the catchment scale from streamflow measurements, see Kirchner (2009)) can be a useful methodology for estimating water fluxes at the catchment and regional scales. Previous studies using this inverse modeling approach have been performed in regions (UK, Switzerland, France, Eastern US) where energy-limited (in winter and early spring) and water-limited conditions (in summer) prevail during a large period of the year. However, such approach has not been tested in regions characterized by a quasi-constant supply of water and energy (e.g. humid tropics). The objective of this work is to infer annual rates of precipitation and evapotranspiration over the last decade in 10 catchments located in Mexico's tropical humid regions. Hourly discharge measurements during recession periods were analyzed and parameters for the nonlinear storage-discharge relationship of each catchment were derived. Results showed large variability in both catchment-scale precipitation and evapotranspiration rates among the selected study sites. Finally, a comparison was done between such estimates and those obtained from remotely-sensed data (TRMM for precipitation and MOD16 for evapotranspiration).

  6. Catchment water storage: Models vs Measurements

    NASA Astrophysics Data System (ADS)

    McMillan, Hilary

    2016-04-01

    Recent years have seen a great deal of progress in development of hydrological models that can simulate both the dynamic streamflow response and the hydrochemical flux response of a catchment. In general terms, streamflow response is driven by water deficit in the catchment, whereas hydrochemical response is driven by water storage. Therefore, models that can simultaneously predict both responses must succeed in representing these two related, but different, quantities. This presentation will consider how much information we can gain from field studies to quantify the joint deficit/storage state of a catchment. In particular, examples from two New Zealand experimental catchments in lowland and high country locations will be used to link typical measurements available with the information required by hydrological - hydrochemical models. I will then use the example catchments to assess how well the structure of a typical hydrological-hydrochemical model is supported by field measurements. In particular, can we quantify catchment storage and link this to flow response? Can we incorporate our knowledge of plant water use into such a model, including timing and depth of water withdrawn by the plant? What can field measurements tell us about spatial variability in hydrological-hydrochemical response and can this be represented in the model? I will conclude by discussing what we can learn from field data about the major challenges ahead in catchment storage modelling.

  7. Adaptations of a physical-based hydrological model for alpine catchments. Application to the upper Durance catchment.

    NASA Astrophysics Data System (ADS)

    Lafaysse, Matthieu; Hingray, Benoit

    2010-05-01

    The impact of global change on water resources is expected to be especially pronounced in mountainous areas. Future hydrological scenarios required for impact studies are classically simulated with hydrological models from future meteorological scenarios based on GCMs outputs. Future hydrological regimes of French rivers were estimated following this methodology by Boé et al. (2009) with the physical-based hydrological model SAFRAN-ISBA-MODCOU (SIM), developed by Météo-France. Scenarios obtained for the Alps seem however not very reliable due to the poor performance achieved by the model for the present climate over this region. This work presents possible improvements of SIM for a more relevant simulation of alpine catchments hydrological behavior. Results obtained for the upper Durance catchment (3580 km2) are given for illustration. This catchment is located in Southern French Alps. Its outlet is the Serre-Ponçon lake, a large dam operated for hydropower production, with a key role for water supply in southeastern France. With altitudes ranging from 700 to 4100 meters, the catchment presents highly seasonal flows: minimum and maximum discharges are observed in winter and spring respectively due to snow accumulation and melt, low flows are sustained by glacier melt in late summer (39 km2 are covered by glaciers), major floods can be observed in fall due to large liquid precipitation amounts. Two main limitations of SIM were identified for this catchment. First the 8km-side grid discretization gives a bad representation of the spatial variability of hydrological processes induced by elevation and orientation. Then, low flows are not well represented because the model doesn't include deep storage in aquifers nor ice melt from glaciers. We modified SIM accordingly. For the first point, we applied a discretization based on topography : we divided the catchment in 9 sub-catchments and further 300 meters elevation bands. The vertical variability of meteorological

  8. Improved simulation of groundwater - surface water interaction in catchment models

    NASA Astrophysics Data System (ADS)

    teklesadik, aklilu; van Griensven, Ann; Anibas, Christian; Huysmans, Marijke

    2016-04-01

    Groundwater storage can have a significant contribution to stream flow, therefore a thorough understanding of the groundwater surface water interaction is of prime important when doing catchment modeling. The aim of this study is to improve the simulation of groundwater - surface water interaction in a catchment model of the upper Zenne River basin located in Belgium. To achieve this objective we used the "Groundwater-Surface water Flow" (GSFLOW) modeling software, which is an integration of the surface water modeling tool "Precipitation and Runoff Modeling system" (PRMS) and the groundwater modeling tool MODFLOW. For this case study, the PRMS model and MODFLOW model were built and calibrated independently. The PRMS upper Zenne River basin model is divided into 84 hydrological response units (HRUs) and is calibrated with flow data at the Tubize gauging station. The spatial discretization of the MODFLOW upper Zenne groundwater flow model consists of 100m grids. Natural groundwater divides and the Brussels-Charleroi canal are used as boundary conditions for the MODFLOW model. The model is calibrated using piezometric data. The GSFLOW results were evaluated against a SWAT model application and field observations of groundwater-surface water interactions along a cross section of the Zenne River and riparian zone. The field observations confirm that there is no exchange of groundwater beyond the Brussel-Charleroi canal and that the interaction at the river bed is relatively low. The results show that there is a significant difference in the groundwater simulations when using GSFLOW versus SWAT. This indicates that the groundwater component representation in the SWAT model could be improved and that a more realistic implementation of the interactions between groundwater and surface water is advisable. This could be achieved by integrating SWAT and MODFLOW.

  9. Anomaly in the rainfall-runoff behaviour of the Meuse catchment. Climate, land-use, or land-use management?

    NASA Astrophysics Data System (ADS)

    Fenicia, F.; Savenije, H. H. G.; Avdeeva, Y.

    2009-09-01

    The objective of this paper is to investigate the time variability of catchment characteristics in the Meuse basin through its effect on catchment response. The approach uses a conceptual model to represent rainfall-runoff behaviour of this catchment, and evaluates possible time-dependence of model parameters. The main hypothesis is that conceptual model parameters, although not measurable quantities, are representative of specific catchment attributes (e.g. geology, land-use, land management, topography). Hence, we assume that eventual trends in model parameters are representative of catchment attributes that may have changed over time. The available hydrological record involves ninety years of data, starting in 1911. During this period the Meuse catchment has undergone significant modifications. The catchment structural modifications, although documented, are not available as "hard-data". Hence, our results should be considered as "plausible hypotheses". The main motivation of this work is the "anomaly" found in the rainfall runoff behaviour of the Meuse basin, where ninety years of rainfall-runoff simulations show a consistent overestimation of the runoff in the period between 1930 and 1965. Different authors have debated possible causes for the "anomaly", including climatic variability, land-use change and data errors. None of the authors considered the way in which the land is used by for instance agricultural and forestry practises. This aspect influenced the model design, which has been configured to account for different evaporation demand of growing forest. As a result of our analysis, we conclude that the lag time of the catchment has decreased significantly over time, which we attribute to more intensive drainage and river training works. Furthermore, we hypothesise that forest rotation has had a significant impact on the evaporation of the catchment. These results contrast with previous studies, where the effect of land-use change on the hydrological

  10. Water Catchment and Storage Monitoring

    NASA Astrophysics Data System (ADS)

    Bruenig, Michael; Dunbabin, Matt; Moore, Darren

    2010-05-01

    Sensors and Sensor Networks technologies provide the means for comprehensive understanding of natural processes in the environment by radically increasing the availability of empirical data about the natural world. This step change is achieved through a dramatic reduction in the cost of data acquisition and many orders of magnitude increase in the spatial and temporal granularity of measurements. Australia's Commonwealth Scientific and Industrial Research Organisation (CSIRO) is undertaking a strategic research program developing wireless sensor network technology for environmental monitoring. As part of this research initiative, we are engaging with government agencies to densely monitor water catchments and storages, thereby enhancing understanding of the environmental processes that affect water quality. In the Gold Coast hinterland in Queensland, Australia, we are building sensor networks to monitor restoration of rainforest within the catchment, and to monitor methane flux release and water quality in the water storages. This poster will present our ongoing work in this region of eastern Australia. The Springbrook plateau in the Gold Coast hinterland lies within a World Heritage listed area, has uniquely high rainfall, hosts a wide range of environmental gradients, and forms part of the catchment for Gold Coast's water storages. Parts of the plateau are being restored from agricultural grassland to native rainforest vegetation. Since April 2008, we have had a 10-node, multi-hop sensor network deployed there to monitor microclimate variables. This network will be expanded to 50-nodes in February 2010, and to around 200-nodes and 1000 sensors by mid-2011, spread over an area of approximately 0.8 square kilometers. The extremely dense microclimate sensing will enhance knowledge of the environmental factors that enhance or inhibit the regeneration of native rainforest. The final network will also include nodes with acoustic and image sensing capability for

  11. Hydrologic Transit Times in Tropical Montane Watersheds: Catchment Scale and Landscape Influences

    NASA Astrophysics Data System (ADS)

    Munoz Villers, L. E.; Geissert Kientz, D. R.; Holwerda, F.; McDonnell, J.

    2015-12-01

    Stream water mean transit time (MTT) is a fundamental hydrologic parameter that integrates the distribution of sources, flow paths and storages present in catchments. However, in the tropics little work has been carried out on MTT, despite its usefulness for providing important information about watershed hydrological functioning at different spatial scales in (largely) ungauged basins. In particular, very few studies have quantified stream MTTs and related to catchment characteristics in tropical montane regions. Here we examined topographic, land use/cover and soil hydraulic controls on baseflow MTT for nested watersheds (0.1-34 km2) within a humid mountainous region, underlain by volcanic soil (Andisols) in central Veracruz (eastern Mexico). To estimate MTTs, we used a 2 year record of bi-weekly isotopic composition of precipitation and stream baseflow data. Land use/cover and topographic parameters were derived from GIS analysis. Soil profile hydraulic properties and permeability at the soil-bedrock interface were obtained from intensive field measurements and laboratory analysis. Estimates of baseflow MTT ranged between 1.2 and 2.7 years across the 12 study catchments. Major differences in MTTs were found at the small (0.1-1.5 km2) and at the large scales (14-34 km2), related mostly to catchment slope and morphology and, to much lesser extent, to land cover. Interestingly, longest stream MTTs were found in the cloud forest headwater catchments. Overall, MTTs were mainly controlled by depth to bedrock associated with topography, and permeability at the soil-bedrock interface. Mid and ridge hillslope positions appeared to be the main contributing areas for catchment recharge and runoff. The present study is the first step towards to understand the hydrology and subsurface processes across scales in this tropical environment, with the aim to support decisions for local and regional management water supply under increasing land use and climate change pressures.

  12. SWAT model application in a data scarce tropical complex catchment in Tanzania

    NASA Astrophysics Data System (ADS)

    Ndomba, Preksedis; Mtalo, Felix; Killingtveit, Aanund

    This study intended to validate the Soil and Water Assessment Tool (SWAT) model in data scarce environment in a complex tropical catchment in the Pangani River Basin located in northeast Tanzania. The validation process involved the model initialization, calibration, verification and sensitivity analysis. Both manual and auto-calibration procedures were used to facilitate the comparison of the results with past studies in the same catchment. For this study, some model parameters including Soil depth (SOL_Z) and Saturated hydraulic conductivity (SOL_K) were assumed uniform within the study catchment and were therefore lumped comprising the huge computation resource requirement of the SWAT model. Results indicated that the same set of important parameters was identified with or without the use of observed flows data. Some of the parameters had physical interpretation and could therefore relate directly to hydrological controlling factors within the catchment. Despite swapping ranking importance of parameters, these results suggest the suitability of the SWAT model for identifying hydrological controlling factors/parameters in ungauged catchments. Results of calibration and validation at the daily timescale gave moderately satisfactory Nash-Sutcliffe Coefficient of Efficiency (CE) of 54.6% for calibration and 68% for validation while simulated and observed mean annual flow discharges gave an Index of Volumetric Fit (IVF) of 100%. The study further indicated the improvement of model estimation when more reliable spatial representation of rainfall was used. Although in this study SWAT model has performed satisfactorily in data poor and complex catchment, the authors recommend a wider validation effort of the model before it is adopted for operational purpose.

  13. The relationship between soil heterotrophic activity, soil dissolved organic carbon (DOC) leachate, and catchment-scale DOC export in headwater catchments

    USGS Publications Warehouse

    Brooks, P.D.; McKnight, Diane M.; Bencala, K.E.

    1999-01-01

    Dissolved organic carbon (DOC) from terrestrial sources forms the major component of the annual carbon budget in many headwater streams. In high-elevation catchments in the Rocky Mountains, DOC originates in the upper soil horizons and is flushed to the stream primarily during spring snowmelt. To identify controls on the size of the mobile soil DOC pool available to be transported during the annual melt event, we measured soil DOC production across a range of vegetation communities and soil types together with catchment DOC export in paired watersheds in Summit County, Colorado. Both surface water DOC concentrations and watershed DOC export were lower in areas where pyrite weathering resulted in lower soil pH. Similarly, the amount of DOC leached from organic soils was significantly smaller (p < 0.01) at sites having low soil p H. Scaling point source measurements of DOC production and leaching to the two basins and assuming only vegetated areas contribute to DOC production, we calculated that the amount of mobile DOC available to be leached to surface water during melt was 20.3 g C m-2 in the circumneutral basin and 17.8 g C m-2 in the catchment characterized by pyrite weathering. The significant (r2 = 0.91 and p < 0.05), linear relationship between overwinter CO2 flux and the amount of DOC leached from upper soil horizons during snowmelt suggests that the mechanism for the difference in production of mobile DOC was heterotrophic processing of soil carbon in snow-covered soil. Furthermore, this strong relationship between over-winter heterotrophic activity and the size of the mobile DOC pool present in a range of soil and vegetation types provides a likely mechanism for explaining the interannual variability of DOC export observed in high-elevation catchments.

  14. Pseudo Paired Catchments Analysis to Assess the Impact of Urbanization on Catchment Hydrology

    NASA Astrophysics Data System (ADS)

    Salavati, B.; Oudin, L.; Furusho, C.; Ribstein, P.

    2014-12-01

    Paired catchments analysis provides a robust approach to assess the impact of land use changes on catchment's hydrological response. This approach is limited by the availability of data for two neighbor catchments with and without land use changes under similar climate conditions. Thus, hydrological modelling approaches are also very popular since they do not depend on data of a reference catchment. In the present study, 70 urbanized and non-urbanized paired catchments were selected in the United States. Unit housing density maps over the 1940-2010 time period were used to reconstruct historic impervious area extents with aproximatly the same resolution as the National Land Cover Database (NLCD) maps. Two approaches were compared to assess the impact of urbanization on catchment-scale hydrology: the classical paired catchments approach using observed flow time series and an alternative paired catchments approach involving hydrological modeling that allows to simulate a virtual control catchment. To this aim, the GR4J model, a conceptual daily 4-parameter hydrological model, was used. The parameters of the model calibrated on the pre urbanization period were used to predict the streamflow that would have occurred in the urban catchment if the urbanization had not taken place. Then, classical statistical methods involving ANCOVA were used to detect the significance and to quantify the change on the hydrological responses due to land use changes. Results show that the two approaches lead to similar conclusions on the impact of urbanization on catchment hydrology. Thus, the modelling approach provides a relevant alternative for case studies where data of reference catchments are not available.

  15. Effects of fires on flood frequency curve in mediterranean catchments

    NASA Astrophysics Data System (ADS)

    Candela, A.; Aronica, G.

    2003-04-01

    Fire is one of the major factors affecting Mediterranean catchments: the destruction of the forested ecosystem of a basin has important consequences for its hydrological behaviour. In fact, fire reduces protection of the surface resulting from the loss in vegetation cover and will to increase the water repellency or hydrophobicity of the soil surface. The problem of fires in Sicily strongly affect the hydrological behaviour and the soil conservation of natural areas: hot dry summers, rainfalls with short duration and high intensity, anthropic changes being deforestation and increasing of impervious areas. Aim of this paper is to analyse the effects of wildfire on the flood regime of a sicilian cathcment. In a previous studies of the same authors, changes in the hydrological regime due to the fires have been recognized in the same catchment at monthly and daily scale. In order to understand if these changes also affect the occurrence of extreme events (i.e. peak discharges), the flood frequency curves, before and after the fire, have been analysed and compared. The flood frequency curve for the pre-fire condition has been obtained by peak discharge data provided by the National Hydrographic Service, while, such data were not available for the post-fire condition. To overcome these limitations, a Montecarlo analysis has been carried out on the basis of strategy described as follows: (i) a distributed rainfall-runoff model, TOPMODEL, has been calibrated on hystorical events measured at catchment outlet in the pre-and post-fire conditions in order to recognise changes in the hydrological response of the catchment; (ii) a Neymann-Scott rainfall stochastic model has been used to generate 10000 rainfall time series with an hourly time step. (iii) the flood frequency curve after the wildfire has been derived apart from the output of TOPMODEL runs with the syntethic rainfall events as input. As expected, changes in flood regime, with an increase of peak discharge and a

  16. Hydrologic predictions on ungauged catchments using deterministic distributed modelling system

    NASA Astrophysics Data System (ADS)

    Tachecí, Pavel; Kimlová, Martina

    2010-05-01

    There is a need for warning system giving prediction of flash-flood risk conditions with sufficient advance even in source areas and in small tributaries catchments. New approach is based on combination of numerical weather prediction (NWP) model, radar or rain gauge data with distributed hydrologic mathematical model of particular area. Set of newly developed tools, customized for particular use in the Czech Hydrometeorological Institute (CHMI) environment enhance import of data and presentation of results. This forecast system focuses on hydrological modelling of running water balance in spatially distributed manner. Its computation is repeated day-to-day. Six models of particular basins (800 - 4000 km2), representing different conditions across the Czech Republic territory were calibrated and validated successfully. The Sázava river basin model (4.000 km2) is used for regular testing operation in CHMI Forecast centre since October 2007. Basic size of grid cells used in models is 300x300 m, basic time step of forecast is 1 day, but can be refined according to the input data. Water balance is computed using simplified 2-layer method for unsaturated zone, 2D approximation of Boussinesq equation for saturated zone, diffusion equation for overland flow and 1D kinematic equation for river flow (MIKE 11 model). The whole process of input data processing, model simulation and result generation may be run automatically or in step-by step mode via simple graphical user interface. Three types of input data are supported: •time series (temperature and precipitation) measured at observation stations and stored in CHMI database •radar data products (precipitation intensity field) •results of ALADIN weather forecast model (temperature and precipitation field). For forecast purposes, reference evapotranspiration is approximated according relationship to air temperature for every computational grid cell. The user may choose area (catchment) to be processed and period of

  17. Projected Climate Change Impacts on a Mediterranean Catchment under Different Irrigation Scenarios

    NASA Astrophysics Data System (ADS)

    Gunten, D. V.; Wöhling, T.; Haslauer, C. P.; Cirpka, O. A.

    2014-12-01

    In semi-arid regions, irrigation is often needed for cultivation and greatly impacts the water cycle of agricultural catchments. It is important to investigate the effects of climate change in these settings under consideration of future agricultural management and irrigation needs. However, quantifying how irrigation influences climate-change effects is still a challenge. Understanding the differences in climate-change sensitivity between irrigated and non-irrigated catchments would allow refining regional-scale assessments of climate-change impacts. We investigated a catchment in north-east Spain which had not been irrigated prior to 2006 and where 54% of the land is now converted to irrigated agriculture. Data on hydraulic heads, discharge, and irrigation were used to simulate coupled surface-subsurface flow in the catchment, using the pde-based model HydroGeoSphere. The model performs well for both irrigated and non-irrigated periods. To predict future climate scenarios in the region, we use four regional climate models from the ENSEMBLE project (P.van der Linden and J.Mitchell, ENSEMBLES: Climate Change and its Impacts [...], Met Office Hadley Center, 2009) and three downscaling methods. We further investigated four irrigation scenarios, based on projected potential evapotranspiration. Preliminary results show a shift in the hydrological regime of the catchment under future climate scenarios. Under irrigation, the variability of low-flow discharge increases in future climate. On the contrary, peak flows increase and hydraulics heads decrease significantly in the non-irrigated scenarios. For example, annual maximum flow increases by about 15 % in the non-irrigated case but there is only little change in the corresponding irrigated scenarios. Sensitivity to projected precipitation changes is higher without irrigation, while potential evapotranspiration has more importance for irrigated catchments.

  18. Applying a GIS-based geomorphological routing model in urban catchments

    NASA Astrophysics Data System (ADS)

    Lhomme, Julien; Bouvier, Christophe; Perrin, Jean-Louis

    2004-12-01

    This paper discusses using a GIS-based geomorphological routing model to simulate urban stormwater runoff as an alternative to physically based routing models. Hydrological measurements have been carried out (1982-1984) in the urban catchment El Batan (52 km 2), which forms part of the city of Quito (Ecuador). As detailed data on the drainage network were available, a first attempt was made using, on the one hand, complete Barré de Saint-Venant equations in the network and, on the other, the linear reservoir model for the sub-catchments. Knowing both the geometry and hydraulics of the network was proved to achieve accurate simulations. However, collecting the network data and building the whole topology (reaches, nodes, sub-catchments) of this large urban catchment is very time-consuming work. Thus, grosser representations of the network to simulate runoff were tested, but it was found that the estimation of the concentration time becomes predominant, and may result in a significant loss of accuracy. Using a GIS-based geomorphological routing model is shown to be an efficient alternative: first, physical velocities in the reaches can be derived from slopes and upstream areas; second, the integration of these velocities in a distributed lag and route model produces flood simulations that are equivalent to the physically based routing model; third, Digital Elevation Models avoid most of the tedious preliminary tasks in building the catchment topology. Further investigation is required in order to evaluate variations in the lag parameter from one catchment to another.

  19. Modelling fate and transport of glyphosate and AMPA in the Meuse catchment to assess the contribution of different pollution sources

    NASA Astrophysics Data System (ADS)

    Desmet, Nele; Seuntjens, Piet

    2013-04-01

    Large river basins have multiple sources of pesticides and usually the pollution sources are spread over the entire catchment. The cumulative effect of pesticides entering the river system in upstream areas and the formation of persistent degradation products can compromise downstream water use e.g. raw water quality for drinking water abstractions. For assessments at catchment scale pesticide fluxes coming from different sources and sub basins need to be taken into account. To improve management strategies, a sound understanding of the sources, emission routes, transport, environmental fate and conversion of pesticides is needed. In the Netherlands, the Meuse river basin is an important source for drinking water production. The river suffers from elevated concentrations of glyphosate and aminomethylphosphonic acid (AMPA). For AMPA it is rather unclear to what extent the pollution is related to glyphosate degradation and what is the contribution of other sources, especial phosphonates in domestic and industrial waste water. Based on the available monitoring data only it is difficult to distinguish between AMPA sources in such a large river basin. This hampers interpretation and decision making for water quality management in the Meuse catchment. Here, application of water quality models is very useful to obtain complementary information and insights. Modelling allows accounting for temporal and spatial variability in discharge and concentrations as well as distinguishing the contribution from conversion processes. In this study, a model for the river Meuse was developed and applied to assess the contribution of tributary and transnational influxes, glyphosate degradation and other sources to the AMPA pollution.

  20. Hydrology and sediment yield calibration for the Barasona reservoir catchment (Spain) using SWAT

    NASA Astrophysics Data System (ADS)

    Palazón, Leticia; Navas, Ana

    2013-04-01

    Hydrological and soil erosion models, as Soil and Water Assessment Tool (SWAT), have become very useful tools and increasingly serve as vital components of integrated environmental assessments that provide information outside of direct field experiments and causal observation. The purpose of this study was to improve the calibration of SWAT model to use it in an alpine catchment as a simulator of processes related to water quality and soil erosion. SWAT is spatially semi-distributed, agro-hydrological model that operates on a daily time step (as a minimum) at basin scale. It is designed to predict the impact of management on water, sediment and agricultural chemical yields in ungaged catchments. SWAT provides physically based algorithms as an option to define many of the important components of the hydrologic cycle. The input requirements of the model are used to describe the climate, soil properties, topography, vegetation, and land management practices. SWAT analyzes small or large catchments by discretising into sub-basins, which are then further subdivided into hydrological response units (HRUs) with homogeneous land use, soil type and slope. SWAT model (SWAT2009) coupled with a GIS interface (ArcSWAT), was applied to the Barasona reservoir catchment located in the central Spanish Pyrenees. The 1509 km2 agro-forestry catchment presents a mountain type climate, an altitudinal range close to 3000 meters and a precipitation variation close to 1000 mm/km. The mountainous characteristics of the catchment, in addition to the scarcity of climate data in the region, require specific calibration for some processes. Snowfall and snowmelt are significant processes in the hydrologic regime of the area and were calibrated in a previous work. In this work some of the challenges of the catchment to model with SWAT which affected the hydrology and the sediment yield simulation were performed as improvement of the previous calibration. Two reservoirs, a karst system which

  1. Sensitivity of hydro-geomorphic processes to catchment-scale variations in rainfall distribution

    NASA Astrophysics Data System (ADS)

    Valters, Declan; Brocklehurst, Simon; Schultz, David

    2015-04-01

    The dynamics of severe storms have a pronounced effect on the temporal and spatial distribution of water input to river catchments in upland environments, particularly those with complex orography and steep topographic gradients. Existing landscape evolution models typically forsake realistic patterns of rainfall during storm events, in favour of uniform rainfall input. It is demonstrated that this simplification fails to resolve localised areas of flooding and erosion within a drainage basin, despite the known significance of erosion thresholds and orographic enhancement of rainfall. This shortfall can be remedied by the incorporation of high-resolution precipitation data from rainfall radar into model simulations, accounting for sub-catchment-scale variation in precipitation patterns. Using a series of simulations with both synthetic and real topographies, it is shown that there is a wide variation in hydro-geomorphic response observed in comparison to simulations with spatially-averaged rainfall: localised water depths and erosion rates vary by up to an order of magnitude within the catchments studied. The real-data examples, chosen from severe UK rainfall events over the last 10 years, are analysed by combining the CAESAR-Lisflood landscape evolution model at 5m resolution with data from the UK Met Office NIMROD rainfall radar at 1km resolution. The model-coupling framework presented is also suited to using output from weather forecasting models. The applications are wide-ranging, from improving the accuracy of hydrological predictions during single storm events, to understanding longer-term evolution of catchment-scale geomorphology.

  2. Spectral Analysis in Catchment Hydrology and Geochemistry

    NASA Astrophysics Data System (ADS)

    Kirchner, J. W.; Feng, X.; Renshaw, C. E.; Neal, C.

    2001-12-01

    Spectral analysis of chemical tracer time series can be used to probe the internal workings of catchments. It has recently been shown that catchments act as fractal filters for inert chemical tracers like chloride, converting "white noise" rainfall chemistry inputs into fractal "1/f noise" runoff chemistry time series (Kirchner et al., 2000). This implies that catchments have long-tailed travel time distributions, and thus retain soluble contaminants for unexpectedly long timespans. Long-term monitoring data from North America, Britain, and Scandinavia show that this fractal behavior characterizes a wide array of catchments. How can this fractal scaling arise in such diverse settings? One can show that advection and dispersion of spatially distributed rainfall tracer inputs will generate fractal tracer time series, as long as the flow system is highly dispersive (Kirchner et al., in press). This implies that subsurface flow in small catchments is dominated by large conductivity contrasts, such as arise from macropores, fracture networks, and similar large-scale heterogeneities in subsurface conductivity. One can also use spectral methods to analyze long-term time series of water fluxes in rainfall and streamflow. Spectral analysis of hydrologic time series measures the downslope propagation of the hydraulic potential waves that mobilize runoff, whereas spectral analysis of tracer time series clocks the propagation of water itself through the catchment. Water fluxes in streamflow exhibit non-fractal scaling, instead of the fractal 1/f scaling shown by chemical tracers. These observations imply that hydrologic signals are transmitted downslope more rapidly, and with much less dispersion, than chemical tracer signals are. Thus small upland catchments transmit hydraulic potentials (which drive runoff) much less dispersively than they transport water itself. These observations provide important constraints for theoretical models of subsurface flow and transport in

  3. Socio-hydrological water balance for water allocation between human and environmental purposes in catchments

    NASA Astrophysics Data System (ADS)

    Zhou, S.; Huang, Y.; Wei, Y.; Wang, G.

    2015-08-01

    Rebalancing water allocation between human consumptive uses and the environment in water catchments is a global challenge. This paper proposes a socio-hydrological water balance framework by partitioning catchment total evapotranspiration (ET) into ET for society and ET for natural ecological systems, and establishing the linkage between the changes of water balance and its social drivers and resulting environmental consequences in the Murray-Darling Basin (MDB), Australia, over the period 1900-2010. The results show that the 100-year period of water management in the MDB could be divided into four periods corresponding to major changes in basin management within the socio-hydrological water balance framework: period 1 (1900-1956) - expansion of water and land use for the societal system, period 2 (1956-1978) - maximization of water and land use for the societal system, period 3 (1978-2002) - maximization of water use for the societal system from water diversion, and period 4 (2002-present) - rebalancing of water and land use between the societal and ecological systems. Most of management changes in the MDB were passive and responsive. A precautionary approach to water allocation between the societal and ecological systems should be developed. The socio-hydrological water balance framework could serve as a theoretical foundation for water allocation to evaluate the dynamic balance between the societal and ecological systems in catchments.

  4. Scaling the flood regime with the soil hydraulic properties of the catchment

    NASA Astrophysics Data System (ADS)

    Peña Rojas, Luis Eduardo; Francés García, Félix; Barrios Peña, Miguel

    2015-04-01

    The spatial land cover distribution and soil type affect the hydraulic properties of soils, facilitating or retarding the infiltration rate and the response of a catchment during flooding events. This research analyzes: 1) the effect of land cover use in different time periods as a source of annual maximum flood records nonstationarity; 2) the scalability of the relationship between soil hydraulic properties of the catchment (initial abstractions, upper soil capillary storage and vertical and horizontal hydraulic conductivity) and the flood regime. The study was conducted in Combeima River basin in Colombia - South America and it was modelled the changes in the land uses registered in 1991, 2000, 2002 and 2007, using distributed hydrological modelling and nonparametric tests. The results showed that changes in land use affect hydraulic properties of soil and it has influence on the magnitude of flood peaks. What is a new finding is that this behavior is scalable with the soil hydraulic properties of the catchment flood moments have a simple scaling behavior and the peaks flow increases with higher values of capillary soil storage, whereas higher values, the peaks decreased. Finally it was applied Generalized Extreme Values and it was found scalable behavior in the parameters of the probability distribution function. The results allowed us to find a relationship between soil hydraulic properties and the behavior of flood regime in the basin studied.

  5. Catchment compatibility via copulas: A non-parametric study of the dependence structures of hydrological responses

    NASA Astrophysics Data System (ADS)

    Grimaldi, S.; Petroselli, A.; Salvadori, G.; De Michele, C.

    2016-04-01

    The similarity of catchment responses is a fundamental issue for regionalization studies, and hydrograph attributes (i.e., Discharge Peak, Volume, and Duration) can reveal the signature and the synthesis of local scale processes. Here, we focus the attention on the "compatibility" between catchments, viz. on the possibility to transfer, from one catchment to another, the information about the dependence structures at play. In particular, we statistically investigate the possible relationships between the features of different Basin Scenarios (characterized via the Concentration Time Tc and the Curve Number CN) and the corresponding dependence structures ruling the joint statistics of Discharge, Volume, and Duration. Given a large set of synthetic runoff time series, generated via a rainfall-runoff model, recent non-parametric tests, based on empirical copulas, are used to compare the dependence structures associated with different soil uses and concentration times. The results indicate how the hydrological properties may affect the dependence structure. The outcomes of the investigation could be particularly effective in two practical applications: (1) for determining the degree of compatibility of the dependence structures associated with different basin scenarios, and (2) for enriching scanty data bases, in order to improve the estimation of multivariate copulas.

  6. Using scale-dependent observational data for snow modelling in a glacierized catchment

    NASA Astrophysics Data System (ADS)

    Engel, Michael; Bertoldi, Giacomo; Endrizzi, Stefano; Notarnicola, Claudia; Niedrist, Georg; Comiti, Francesco

    2014-05-01

    Snow cover distribution and melt are essential to understand and to predict runoff. However, the spatial heterogeneity of snow cover in complex terrain and the limited availability of observational data make distributed modelling of snow covered area (SCA) and of snow water equivalent (SWE) in alpine regions still a challenging task. A promising approach is the application of physically based distributed hydrological models coupled with ground observations and with new satellite products. However, the inherent complexity of advanced models and satellite products requires an accurate evaluation both at plot and at catchment scale before their operational use. In this context we evaluate the capability of the new model GEOtop 2.0 for the first time to simulate snow dynamics at plot and at catchment scale. Our study was performed in the upper Saldur basin (61 km²) in the Eastern Italian Alps during the period 2010 - 2013. At plot scale, simulated snow depths and SWE were calibrated against measured snow depth data from multiple measuring sites at different elevations (at 1930 m, at 1998 m, at 2450 m, and 3035 m a.s.l.) in and close to the Saldur basin. The evaluation was quantified by the statistical indices R² and the Nash-Sutcliffe efficiency. Different model parameterisations were evaluated by a manual sensitivity analysis of 11 key parameters controlling the snowpack and the meteorological input data. Most of these key parameters found to be sensitive for SWE and for snow depth were the ones controlling albedo decreasing and precipitation input. At catchment scale, simulated SCA of the upper Saldur basin was calibrated against the daily composite 250 m EURAC MODIS SCA (Notarnicola et al. 2013) and then validated against Landsat 7 ETM+ SCA (at 30 m resolution). The model evaluation was supported by a pixel-based calculation of overall accuracy (Parajka and Blöschl 2008) of total SCA in the upper Saldur basin. Additionally, the snow presence derived from

  7. Topic: Catchment system dynamics: Processes and feedbacks

    NASA Astrophysics Data System (ADS)

    Keesstra, Saskia

    2015-04-01

    In this meeting we can talk about my main expertise: the focus of my research ocus revolves around understanding catchment system dynamics in a holistic way by incorporating both processes on hillslopes as well as in the river channel. Process knowledge enables explanation of the impact of natural and human drivers on the catchment systems and which consequences these drivers have for water and sediment connectivity. Improved understanding of the catchment sediment and water dynamics will empower sustainable land and river management and mitigate soil threats like erosion and off-side water and sediment accumulation with the help of nature's forces. To be able to understand the system dynamics of a catchment, you need to study the catchment system in a holistic way. In many studies only the hillslopes or even plots are studied; or only the channel. However, these systems are connected and should be evaluated together. When studying a catchment system any intervention to the system will create both on- as well as off sites effects, which should especially be taken into account when transferring science into policy regulations or management decisions.

  8. Efforts to Unravel the Cause of Shrinkage of Lake Chad: Development of Hydrologic Real-time Observatory Network in the Lake Chad Basin

    NASA Astrophysics Data System (ADS)

    Lee, J.; Ichoku, C. M.; Bolten, J. D.; Policelli, F. S.; Djimadoumngar, K. N.; Abdullahi, S. I.; Bila, M. D.; Djoret, D.; Ibrahim, G.; Selker, J. S.; Hochreutener, R.; Annor, F. O.

    2015-12-01

    Lake Chad, the fourth largest lake in Africa, is well known as a shrinking lake due to adverse impact of climate change and increased population during drought periods in the 1980s and 1990s. While the shrinkage of the Lake has been studied broadly using remote sensing data, the main cause of shrinkage is still uncertain due to limited availability of ground-truth data. Lack of infrastructure, insecure site conditions, vandalism, and limited site accessibility make it difficult to establish a real-time monitoring network in many parts of Africa including the Lake Chad Basin. For a better understanding of how the Lake responds to the change of weather patterns and other hydrologic processes such as runoff, groundwater flow, and evapotranspiration, a real-time monitoring network is essential in the region. In early 2015, a team from NASA, the Lake Chad Basin Commission, and the University of Missouri - Kansas City set up a hydrologic real-time observatory network in the Chari-Logone catchment, the main feeder of water to the Lake, to monitor meteorological conditions, soil moisture, and groundwater. The TAHMO (Trans-African Hydro-Meteorological Observatory) weather stations were adopted to monitor rainfall, relative humidity, solar radiation, wind speed, and temperature. The present study shows preliminary analysis of the correlations between meteorological and hydrological parameters from real-time monitoring data in the Chari-Logone catchment. We also discuss the importance of partnership with local government and community involvement for data collection and share for sustainable hydrological research in the Lake Chad Basin.

  9. Catchments as simple dynamical systems: A case study on methods and data requirements for parameter identification

    NASA Astrophysics Data System (ADS)

    Melsen, Lieke; Teuling, Adriaan; van Berkum, Sonja; Torfs, Paul; Uijlenhoet, Remko

    2014-05-01

    In many rainfall-runoff models at least some calibration of model parameters has to take place. Especially for ungauged or poorly gauged basins this can be problematic, because there is little or no data available for calibration. A possible solution to overcome the problems caused by data scarcity is to set up a measurement campaign for a short time period. With the employed approach based on the theory of Kirchner (2009), a model was developed and applied to the Rietholzbach catchment in Switzerland (Teuling et al., 2010, Seneviratne et al., 2012), with only two parameters. These two parameters describe a unique storage-discharge relation. The model is constructed such that the parameters can be determined not only with automatic calibration, but also by recession analysis and a priori from Boussinesq theory. The automatic calibration and the recession analysis have been fed with different selections of the full data record as well as with the full data record itself. For Boussinesq theory, catchment characteristics were given as required input. In the end, a comparison of the performance of the three different methods was made, and a comparison on the amount of data that is required by each of the three parameter identification methods. Melsen, L.A., Teuling, A.J., van Berkum, S.W., Torfs, P.J.J.F., Uijlenhoet, R. (2013) Catchments as simple dynamical systems: A case study on methods and data requirements for parameter identification, Water Resour. Res., under review References Kirchner, J.W. (2009), Catchments as simple dynamical systems: Catchment characterization, rainfall-runoff modeling, and doing hydrology backward, Water Resour. Res. 45:W02429. Seneviratne, S.I., I. Lehner, J. Gurtz, A.J. Teuling, H Lang, U. Moser, D. Grebner, L. Menzel, K. Schro, T. Vitvar, and M. Zappa (2012), Swiss prealpine Rietholzbach research catchment and lysimeter: 32 year time series and 2003 drought event, Water Resour. Res. 48:W06526. Teuling, A. J., I. Lehner, J. W. Kirchner

  10. New understanding of the complexity of groundwater flow in Chalk catchments of the UK

    NASA Astrophysics Data System (ADS)

    Peach, D.; Shand, P.; Gooddy, D.; Abesser, C.; Bloomfield, J.; Mathias, S.; Butler, A.; Williams, A.; Binley, A.; Wheater, H.

    2006-12-01

    The Chalk is the largest aquifer in the UK accounting for more than half the groundwater used and nearly a quarter of the total public water supplied in England and Wales. Although the Chalk is a double porosity and permeability medium, transmission of water in the saturated zone depends largely on flow through fractures, the location and distribution of which are controlled by lithology and geological structure. These features operate on a number of spatial scales and so provide a range of flow pathways that can markedly affect both stream flow and water quality. In addition, overlying Palaeogene or superficial deposits can act as controls on recharge and zones of increased groundwater storage. As part of a major initiative on Lowland Catchment Research in the UK two Chalk sub-catchments, in the River Thames basin, the rivers Pang and Lambourn, have been the focus of an intensive set of studies. The catchments have been characterised using a multidisciplinary approach. This has resulted in an improved understanding of the way such catchments work and the mechanisms that control groundwater flow. The low fracture porosity gives rise to a low specific yield, which means that large fluctuations in water table elevation beneath the interfluves are not uncommon. Consequently, groundwater catchments differ from the topographic catchments and their size varies seasonally. This means, for example, that groundwater might be flowing to the River Pang in winter but to the River Thames in summer. It also means that various flow features in the catchment may be active at different locations and times during the year. Four flow systems have been identified, through a detailed analysis of the data; a shallow, but rapid flow system; a slower, deeper system; a very high velocity system developed in large diameter solution enhanced fractures and a system found in the river valley sediments. The interconnections between and within these systems can be poor and sometimes vary on a

  11. Hydrograph transposition to ungauged basin accounting for spatio-temporal rainfall variability

    NASA Astrophysics Data System (ADS)

    de Lavenne, Alban; Cudennec, Christophe

    2013-04-01

    Lack of measurements is one of the main issues in hydrological modelling. However, neighbours and nested gauged catchment are precious sources of information to understand the catchment behaviours within one region. Extracting the maximum of information from those points of measurements, that could be then transposed to ungauged catchment, is still a great challenge. We propose a methodology to transpose hydrological information from gauged catchments to ungauged ones, in order to simulate streamflow hydrographs. It uses geomorphology-based hydrological modelling, which is particularly well adapted to ungauged basins thanks to its robustness, generality and flexibility. We develop a geomorphology-based model on the gauged catchment which has been built in order to capture the main behaviour of the basin. Its transfer function considers the different dynamics of the catchment through the combination of velocities and width functions. Moreover, the explicit structure of the model enables to easily create a map of isochrone areas describing the time to the outlet. Therefore, spatially distributed rainfall can then be split into those isochrone areas, permitting the transfer function to deal with spatio-temporal variability of rainfall. Once the model calibrated, using a particle swarm optimisation algorithm, its transfer function is inversed to assess the net rainfall time series. In this way, we obtained a standardized variable which is used to estimate discharge in ungauged basin. Therefore, net rainfall time series is transposed and convoluted on the ungauged catchment using its own transfer function. Spatio-temporal rainfall variability between basins is considered through a correction of this net rainfall time series. This correction is based on differences between mean gross rainfall observation among those two catchments. This methodology is applied on pairs of basins among 6 gauged basins (from 5km² to 316km²) located in Brittany, France. For the benefit of

  12. Coupling a basin erosion and river sediment transport model into a large scale hydrological model: an application in the Amazon basin

    NASA Astrophysics Data System (ADS)

    Buarque, D. C.; Collischonn, W.; Paiva, R. C. D.

    2012-04-01

    This study presents the first application and preliminary results of the large scale hydrodynamic/hydrological model MGB-IPH with a new module to predict the spatial distribution of the basin erosion and river sediment transport in a daily time step. The MGB-IPH is a large-scale, distributed and process based hydrological model that uses a catchment based discretization and the Hydrological Response Units (HRU) approach. It uses physical based equations to simulate the hydrological processes, such as the Penman Monteith model for evapotranspiration, and uses the Muskingum Cunge approach and a full 1D hydrodynamic model for river routing; including backwater effects and seasonal flooding. The sediment module of the MGB-IPH model is divided into two components: 1) prediction of erosion over the basin and sediment yield to river network; 2) sediment transport along the river channels. Both MGB-IPH and the sediment module use GIS tools to display relevant maps and to extract parameters from SRTM DEM (a 15" resolution was adopted). Using the catchment discretization the sediment module applies the Modified Universal Soil Loss Equation to predict soil loss from each HRU considering three sediment classes defined according to the soil texture: sand, silt and clay. The effects of topography on soil erosion are estimated by a two-dimensional slope length (LS) factor which using the contributing area approach and a local slope steepness (S), both estimated for each DEM pixel using GIS algorithms. The amount of sediment releasing to the catchment river reach in each day is calculated using a linear reservoir. Once the sediment reaches the river they are transported into the river channel using an advection equation for silt and clay and a sediment continuity equation for sand. A sediment balance based on the Yang sediment transport capacity, allowing to compute the amount of erosion and deposition along the rivers, is performed for sand particles as bed load, whilst no

  13. Simulation of the reduction of runoff and sediment load resulting from the Gain for Green Program in the Jialingjiang catchment, upper region of the Yangtze River, China.

    PubMed

    Hayashi, Seiji; Murakami, Shogo; Xu, Kai-Qin; Watanabe, Masataka

    2015-02-01

    A distributed catchment hydrologic model (Hydrological Simulation Program--FORTRAN; HSPF) with improved sediment production processes was used to evaluate the effect of restoration of cultivated land to forest on the reduction of runoff and sediment load in the Jialingjiang basin, which forms part of the Yangtze River basin, China. The simulation results showed that restoration to forest reduced sediment production even in the case of minimum restoration at a threshold catchment slope of 25°, as advocated in the "Gain for Green Program " planned by the Chinese government, even though reduction of the peak flow rate in the river channel was small. The increase in forest area resulting from lowering of the threshold catchment slope reduced sediment production further. PMID:25463578

  14. Detecting runoff variation in Weihe River basin, China

    NASA Astrophysics Data System (ADS)

    Jingjing, F.; Qiang, H.; Shen, C.; Aijun, G.

    2015-05-01

    Dramatic changes in hydrological factors in the Weihe River basin are analysed. These changes have exacerbated ecological problems and caused severe water shortages for agriculture, industries and the human population in the region, but their drivers are uncertain. The Mann-Kendall test, accumulated departure analysis, sequential clustering and the sliding t-test methods were used to identify the causes of changes in precipitation and runoff in the Weihe basin. Change-points were identified in the precipitation and runoff records for all sub-catchments. For runoff, the change in trend was most pronounced during the 1990s, whereas changes in precipitation were more prominent earlier. The results indicate that human activities have had a greater impact than climate change on the hydrology of the Weihe basin. These findings have significant implications for the establishment of effective strategies to counter adverse effects of hydrological changes in the catchment.

  15. Development of regionalisation procedures using a multi-model approach for flow simulation in an ungauged catchment

    NASA Astrophysics Data System (ADS)

    Goswami, M.; O'Connor, K. M.; Bhattarai, K. P.

    2007-02-01

    SummaryFlow simulation in ungauged catchments is presently regarded as one of the most challenging tasks in surface water hydro