Science.gov

Sample records for catchment basin preliminary

  1. Evaluation of soil erosion as a basis of sediment yield in mountainous catchments: a preliminary study in the River Douro Basin (Northern Portugal)

    NASA Astrophysics Data System (ADS)

    Reis, Anabela; Martinho Lourenço, José M.; Parker, Andrew; Alencoão, Ana

    2013-04-01

    The River Corgo drains a meso-scale mountainous rural catchment with an area of 295 km2, underlain by crystalline rocks, in a temperate climate, which integrates the transboundary River Douro Basin, in the northeast of Portugal. A geochemical survey on oxic fluvial sediments of the river network shows considerable contents of metals associated to the finer particles (< 63um). The results on the study of the sediment properties indicate that these are essentially detrital in origin, derived from soils and weathering products. Moreover, taking into account the hydrological pattern of the catchment, the seasonal and spatial variability of metal contents associated to the sediments suggests that the control of metal in the sediments by their mineralogical, geochemical and physical properties is governed primarily at the level of the basin soils system, especially in the Wet Period, when the sediments are frequently remobilised (Reis, 2010). Although the soil particles are a common pathway of transport and entrance of metals in the fluvial network by runoff derived erosion, this mechanism is naturally more marked in mountainous catchments. Modelling sediment and adsorbed contaminant transport within catchments can help to identify possible contaminant sources, as well as to estimate the delivered quantities of eroded material and associated contaminants. In catchments with the described morphological features, monitoring the transport of sediments poses some issues concerning: (a) the low mass yield of suspended sediment from river water, under low-flow conditions; (b) the maintenance of the sediment sampler's devices in the streams, in periods of high-flow or storm events. This study describes the preliminary results of a GIS-based mass balance model of overland sediment transport to the River. The erosion, the first step of sediment transport, was estimated by an empirical model - The Universal Soil Loss Equation (USLE). The objective was to construct a GIS based potential soil loss spatial index model and posteriorly estimate the sediment yield for different locations within the catchment. The R factor was obtained from the literature; K factor was derived from the Soil Map of Trás-os-Montes; LS factor was calculated from the elevation digital model using the Simms et al. (2003) equation; C and P factors were derived from the Corin Land Cover Map produced for Portugal in 2006. The preliminary results indicate that the model is in accordance with the knowledge of the study area, and can be used as an initial indicator of areas of potential sediment source. So, the results show that potential loss is typically higher along the areas where the tributaries are deeply incised and bordered by steeper slopes, with locally extreme values. REFERENCES REIS, A. R. (2010) - Occurrence and mobilisation of non-organic micro-pollutants in mountainous riverine systems. PhD Thesis (unpublished), University of Trás-os-Montes e Alto Douro, Vila Real, 453 pp. SIMMS, A., WOODROFFE, C. & JONES, B. (2003) - Application of RUSLE for erosion management in a coastal catchment, southern NSW. MODSIM 2003: Intern. Congress on Modelling and Simulation, vol.2, Integrative Modelling of Biophysical, Social and Economic Systems for Resource Management Solutions, Australia, pp. 678-683.

  2. Are big basins just the sum of small catchments?

    USGS Publications Warehouse

    Shaman, J.; Stieglitz, M.; Burns, D.

    2004-01-01

    Many challenges remain in extending our understanding of how hydrologic processes within small catchments scale to larger river basins. In this study we examine how low-flow runoff varies as a function of basin scale at 11 catchments, many of which are nested, in the 176 km2 Neversink River watershed in the Catskill Mountains of New York. Topography, vegetation, soil and bedrock structure are similar across this river basin, and previous research has demonstrated the importance of deep groundwater springs for maintaining low-flow stream discharge at small scales in the basin. Therefore, we hypothesized that deep groundwater would contribute an increasing amount to low-flow discharge as basin scale increased, resulting in increased runoff. Instead, we find that, above a critical basin size of 8 to 21 km2, low-flow runoff is similar within the Neversink watershed. These findings are broadly consistent with those of a previous study that examined stream chemistry as a function of basin scale for this watershed. However, we find physical evidence of self-similarity among basins greater than 8 km2, whereas the previous study found gradual changes in stream chemistry among basins greater than 3 km 2. We believe that a better understanding of self-similarity and the subsurface flow processes that affect stream runoff will be attained through simultaneous consideration of both chemical and physical evidence. We also suggest that similar analyses of stream runoff in other basins that represent a range of spatial scales, geomorphologies and climate conditions will further elucidate the issue of scaling of hydrologic processes. Copyright ?? 2004 John Wiley & Sons, Ltd.

  3. Isotope hydrology of catchment basins: lithogenic and cosmogenic isotopic systems

    SciTech Connect

    Nimz, G. J., LLNL

    1998-06-01

    A variety of physical processes affect solute concentrations within catchment waters. The isotopic compositions of the solutes can indicate which processes have determined the observed concentrations. These processes together constitute the physical history of the water. Many solutes in natural waters are derived from the interaction between the water and the rock and/or soil within the system - these are termed `lithogenic` solutes. The isotopic compositions of these solutes provide information regarding rock-water interactions. Many other solutes have their isotopic compositions determined both within and outside of the catchment - i.e., in addition to being derived from catchment rock and soil, they are solutes that are also transported into the catchment. Important members of this group include solutes that have isotopic compositions produced by atomic particle interactions with other nuclides. The source of the atomic particles can be cosmic radiation (producing `cosmogenic` nuclides in the atmosphere and land surface), anthropogenic nuclear reactions (producing `thermonuclear` nuclides), or radioactive and fission decay of naturally-occurring elements, principally {sup 238}U (producing `in-situ` lithogenic nuclides in the deep subsurface). Current language usage often combines all of the atomic particle-produced nuclides under the heading `cosmogenic nuclides`, and for simplicity we will often follow that usage here, although always indicating which variety is being discussed. This paper addresses the processes that affect the lithogenic and cosmogenic solute concentrations in catchment waters, and how the isotopic compositions of the solutes can be used in integrative ways to identify these processes, thereby revealing the physical history of the water within a catchment system. The concept of a `system` is important in catchment hydrology. A catchment is the smallest landscape unit that can both participate in all of the aspects of the hydrologic cycle and also be treated as a mostly closed system for mass balance considerations. It is the near closure of the system that permits well- constrained chemical mass balance calculations to be made. These calculations generally focus of lithogenic solutes, and therefore in our discussions of lithogenic nuclides in the paper, the concept of chemical mass balance in a nearly dosed system will play an important role. Examination of the isotopic compositions of solutes provides a better understanding of the variety of processes controlling mass balance. It is with this approach that we examined the variety of processes occurring within the catchment system, such as weathering and soil production, generation of stormflow and streamflow (hydrograph separation), movement of soil pore water, groundwater flow, and the overall processes involved with basinal water balance. In this paper, the term `nuclide` will be used when referring to a nuclear species that contains a particular number of protons and neutrons. The term is not specific to any element. The term `isotope` will be used to distinguish nuclear species of a given element (atoms with the same number of protons). That is to say, there are many nuclides in nature - for example, {sup 36}Cl, {sup 87}Sr, {sup 238}U; the element has four naturally-occurring isotopes - {sup 87}Sr, and {sup 88}Sr. This paper will first discuss the general principles that underlie the study of lithogenic and cosmogenic nuclides in hydrology, and provide references to some of the more important studies applying these principles and nuclides. We then turn in the second section to a discussion of their specific applications in catchment- scale systems. The final section of this paper discusses new directions in the application of lithogenic and cosmogenic nuclides to catchment hydrology, with some thoughts concerning possible applications that still remain unexplored.

  4. [Molecular-phylogenetic analysis of cyclopoids (Copepoda: Cyclopoida) from Lake Baikal and its water catchment basin].

    PubMed

    Ma?or, T Iu; Sheveleva, N G; Sukhanova, L V; Timoshkin, O A; Kiril'chik, S V

    2010-11-01

    Baikalian cyclopoids represent one of the richest endemic faunas of freshwater cyclopoid copepods. The genus Diacyclops Kiefer, 1927 is the most numerous by species number in the lake. In this work, molecular-phylogenetic analysis of 14 species and 1 sub-species from Lake Baikal and its water catchment basin is performed. The regions of mitochondrial cytochrom-oxydase I (COI) and of nuclear small-subunit 18S rRNA were used as evolution markers. In the obtained set of nucleotide sequences of COT gene, an effect of synonymous substitution saturation is revealed. Baikalian representatives of the genus Diacyclops form at phylogenetic schemes by two markers a monophyletic griup, it suggest their origin from a common ancestral form. Preliminary estimate of the age of this group is 20-25 My. PMID:21261066

  5. UPPER SNAKE RIVER BASIN, PRELIMINARY BASIN EVALUATION

    EPA Science Inventory

    The purpose of this paper was to provide a process and a plan by which the Environmental Protection Agency can insure that water quality goals established in the Water Pollution Control Act Amendments of 1972 are met in the waters of the Upper Snake Basin (17040201, 17040206, 170...

  6. PSYCHIC A process-based model of phosphorus and sediment transfers within agricultural catchments. Part 2. A preliminary evaluation

    NASA Astrophysics Data System (ADS)

    Strömqvist, J.; Collins, A. L.; Davison, P. S.; Lord, E. I.

    2008-02-01

    SummaryThis paper describes the preliminary evaluation of the PSYCHIC catchment scale (Tier 1) model for predicting the mobilisation and delivery of phosphorus (P) and suspended sediment (SS) in the Hampshire Avon (1715 km 2) and Herefordshire Wye (4017 km 2) drainage basins, in the UK, using empirical data. Phosphorus and SS transfers to watercourses in the Wye were predicted to be greater than corresponding delivery in the Avon; SS, 249 vs 33 kg ha -1 yr -1; DP, 2.57 vs 1.26 kg ha -1 yr -1; PP, 2.20 vs 0.56 kg ha -1 yr -1. The spatial pattern of the predicted transfers was relatively uniform across the Wye drainage basin, whilst in the Avon, delivery to watercourses was largely confined to the river corridors and small areas of drained land. Statistical performance in relation to predicted exports of P and SS, using criteria for relative error (RE) and root mean square error (RMSE), reflected the potential shortcomings associated with using longer-term climate data for predicting shorter-term (2002-2004) catchment response and the need to refine calculations of point source contributions and to incorporate additional river basin processes such as channel bank erosion and in-stream geochemical processing. PSYCHIC is therefore best suited to characterising longer-term catchment response.

  7. Nonstationarities in Catchment Response According to Basin and Rainfall Characteristics: Application to Korean Watershed

    NASA Astrophysics Data System (ADS)

    Kwon, Hyun-Han; Kim, Jin-Guk; Jung, Il-Won

    2015-04-01

    It must be acknowledged that application of rainfall-runoff models to simulate rainfall-runoff processes are successful in gauged watershed. However, there still remain some issues that will need to be further discussed. In particular, the quantitive representation of nonstationarity issue in basin response (e.g. concentration time, storage coefficient and roughness) along with ungauged watershed needs to be studied. In this regard, this study aims to investigate nonstationarity in basin response so as to potentially provide useful information in simulating runoff processes in ungauged watershed. For this purpose, HEC-1 rainfall-runoff model was mainly utilized. In addition, this study combined HEC-1 model with Bayesian statistical model to estimate uncertainty of the parameters which is called Bayesian HEC-1 (BHEC-1). The proposed rainfall-runofall model is applied to various catchments along with various rainfall patterns to understand nonstationarities in catchment response. Further discussion about the nonstationarity in catchment response and possible regionalization of the parameters for ungauged watershed are discussed. KEYWORDS: Nonstationary, Catchment response, Uncertainty, Bayesian Acknowledgement This research was supported by a Grant (13SCIPA01) from Smart Civil Infrastructure Research Program funded by the Ministry of Land, Infrastructure and Transport (MOLIT) of Korea government and the Korea Agency for Infrastructure Technology Advancement (KAIA).

  8. Variability of extreme events in the Colombian Pacific and Caribbean catchment basins

    NASA Astrophysics Data System (ADS)

    Hoyos, Isabel; Baquero-Bernal, Astrid; Jacob, Daniela; Rodríguez, Boris A.

    2013-04-01

    This paper analyses the behavior of extreme events of surface precipitation and temperature inside the Pacific and Caribbean Catchment Basins in Colombia using several datasets such as observations, reconstructed data, NCEP-NCAR and ERA-40 reanalyses and data from the regional model REMO. We use an extreme value method that selects the time series excesses over a nonstationary threshold and adjusts them to a generalized Pareto distribution. The goodness of fit is evaluated through a test that includes the Cramer-von Mises, Kolmogorov-Smirnov and Anderson-Darling statistics and the p values generated by parametric bootstrap resampling. The test not only evaluates the goodness of fit but also the threshold choice. The parameters are presented in maps that allow recognition of the features of the extreme behaviour inside the catchment basins, and differences and similarities between them. Maps of return periods for the maximum extreme events are also presented. A strong influence of the El Niño-Southern oscillation on the extreme events of both temperature and precipitation is found in the two catchment basins.

  9. Role of river bank erosion in sediment budgets of catchments within the Loire river basin (France)

    NASA Astrophysics Data System (ADS)

    Gay, Aurore; Cerdan, Olivier; Poisvert, Cecile; Landemaine, Valentin

    2014-05-01

    Quantifying volumes of sediments produced on hillslopes or in channels and transported or stored within river systems is necessary to establish sediment budgets. If research efforts on hillslope erosion processes have led to a relatively good understanding and quantification of local sources, in-channel processes remain poorly understood and quasi inexistent in global budgets. However, profound landuse changes and agricultural practices have altered river functioning, caused river bank instability and stream incision. During the past decades in France, river channelization has been perfomed extensively to allow for new agricultural practices to take place. Starting from a recent study on the quantification of sediment fluxes for catchments within the Loire river basin (Gay et al. 2013), our aim is to complete sediment budgets by taking into account various sources and sinks both on hillslope and within channel. The emphasis of this study is on river bank erosion and how bank erosion contributes to global budgets. A model of bank retreat is developed for the entire Loire river basin. In general, our results show that bank retreat is on average quite low with approximately 1 cm.yr-1. However, a strong variability exists within the study area with channels displaying values of bank retreat up to ~10 cm.yr-1. Our results corroborate those found by Landemaine et al. in 2013 on a small agricultural catchment. From this first step, quantification of volumes of sediment eroded from banks and available for transport should be calculated and integrated in sediment budgets to allow for a better understanding of basin functioning. Gay A., Cerdan O., Delmas M., Desmet M., Variability of sediment yields in the Loire river basin (France): the role of small scale catchments (under review). Landemaine V., Gay A., Cerdan O., Salvador-Blanes S., Rodriguez S. Recent morphological evolution of a headwater stream in agricultural context after channelization in the Ligoire river (France) (in prep)

  10. Catchment Restoration in the Tweed UNESCO-IHP HELP Basin - Eddleston Water

    NASA Astrophysics Data System (ADS)

    Spray, Christopher

    2013-04-01

    The EU Water Frame Work Directive (WFD) requires member states to work towards the achievement of 'good ecological status' for water bodies, through a 6 year cycle of river basin management plans (RBMPs). Within these RBMPs, states must develop and implement programmes of measures designed to improve the quality of individual water bodies at risk of failing to achieve this status. These RBMPS must not only be focussed on the key causes of failure, but increasingly look to deliver multiple benefits, such as flood risk reduction and improvement to biodiversity from such catchment interventions, and to involve communities and other stakeholders in restoration of their local environment. This paper reports on progress of a detailed study of the restoration of the Eddleston Water, a typical 'failing' water body in Scotland, the monitoring and governance arrangements behind this, and implications for rehabilitation of river systems elsewhere. Within UK rivers, the main causes of failure to achieve good ecological status are historical morphological changes to river courses, diffuse agricultural pollution and invasive non-native species. The Eddleston Water is a 70 sq kms sub-catchment of the Tweed, an UNESCO IHP-HELP basin in the Scottish : English borders, and is currently classified as 'bad' status, due largely to morphological changes to the course and structure of the river over the past 200 years. The main challenge therefor is physical restoration of the river to achieve functional connectivity with the flood plain. At the same time however, the two communities within the catchment suffer from flooding, so a second priority is to intervene within the catchment to reduce the risk of flooding through the use of "natural flood management" measures and, underlying both these two aspects a whole catchment approach to community participation and the achievement of a range of other ecosystem service benefits, including conservation of biodiversity. We report on the initial characterisation of the catchment; the identification of potential key locations and types of intervention to improve ecological status and flood risk reduction; the setting up of the monitoring networks, the engagement with local communities and land managers; initial habitat modifications and the early results of the study. We situate this within the wider context of priorities for restoration and the UNESCO IHP-HELP programme.

  11. View of former preliminary sedimentation basin, looking east from south ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of former preliminary sedimentation basin, looking east from south side of low-lift pumping station. - Robert B. Morse Water Filtration Plant, 10700 and 10701 Columbia Pike, Silver Spring, Montgomery County, MD

  12. Determining Spatial Distribution And Air-Water Exchange Of Polycyclic Aromatic Hydrocarbons In Stormwater Runoff Catchment Basins

    NASA Astrophysics Data System (ADS)

    Kasaraneni, V. K.; Schifman, L. A.; Craver, V.; Boving, T. B.

    2014-12-01

    Stormwater runoff is a conduit for several pollutants such as polycyclic aromatic hydrocarbons (PAHs) in to surface and ground water bodies. The control of runoff and pollutants is typically addressed by best management practices (BMPs), such as retention/detention ponds or catchment basins in general. The effectiveness of catchment basins in reducing the volume of runoff and removal of some contaminants has been established. However, very little is known about the fate of the contaminants settled within these structures. In coastal regions and places with shallow groundwater tables accumulation of high concentrations of PAHs in the bottom sediments poses a potential threat for groundwater contamination. The concentrations of PAHs accumulated in the sediments of these catchment basins will primarily depend on the sources of runoff origin and the surrounding land use. Due to the physico-chemical characteristics of PAHs, their transport not only can occur in the liquid and solid phase, but it is also possible that gaseous emissions can be produced from BMP systems. For the purpose of this study, five stormwater catchment basins along the I-95 corridor in Rhode Island were selected based on the stormwater runoff origin and covering (industrial, urban, highway, and commercial) land uses. To study the stratification of PAHs sediment cores one foot were collected and analyzed for 31PAHs (16 EPA parent PAH and 15 methylated PAHs). In order to determine whether the catchment basins are a source of atmospheric pollution polyethylene passive samplers were deployed to determine the freely dissolved PAHs in the water column and gas phase PAHs at the air-water interface. This presentation will describe how PAH fluxes move between three environmental compartments (sediments, water column, atmosphere) within the five stormwater catchment basins. Further, it will be investigated whether these BMP structures can act as contaminant sources rather than sinks and whether BMP maintenance has to be targeted towards pollutant removal to maintain an effective stormwater treatment system.

  13. Estimation of Catchment Transit Time in Fuji River Basin by using an improved Tank model

    NASA Astrophysics Data System (ADS)

    Wenchao, M.; Yamanaka, T.; Wakiyama, Y.; Wang, P.

    2013-12-01

    As an important parameter that reflects the characteristics of catchments, the catchment transit time (CTT) has been given much more widely attentions especially in recent years. The CTT is defined as the time water spends travelling through a catchment to the stream network [1], and it describes how catchments retain and release water and solutes and thus control geochemical and biogeochemical cycling and contamination persistence [2]. The objectives of the present study are to develop a new approach for estimating CTT without prior information on such TTD functions and to apply it to the Fuji River basin in the Central Japan Alps Region. In this study, an improved Tank model was used to compute mean CTT and TTD functions simultaneously. It involved water fluxes and isotope mass balance. Water storage capacity in the catchment, which strongly affects CTT, is reflected in isotope mass balance more sensitively than in water fluxes. A model calibrated with observed discharge and isotope data is used for virtual age tracer computation to estimate CTT. This model does not only consider the hydrological data and physical process of the research area but also reflects the actual TTD with considering the geological condition, land use and the other catchment-hydrological conditions. For the calibration of the model, we used river discharge record obtained by the Ministry of Land, Infrastructure and Transportation, and are collecting isotope data of precipitation and river waters monthly or semi-weekly. Three sub-catchments (SC1~SC3) in the Fuji River basin was selected to test the model with five layers: the surface layer, upper-soil layer, lower-soil layer, groundwater aquifer layer and bedrock layer (Layer 1- Layer 5). The evaluation of the model output was assessed using Nash-Sutcliffe efficiency (NSE), root mean square error-observations standard deviation ratio (RSR), and percent bias (PBIAS). Using long time-series of discharge records for calibration, the simulated discharge basically satisfied requirements of reproducing water fluxes and their balance, while improvements in parameter estimations relating to isotope mass balance is necessary. Water balance and isotopes balance have been exercised in abundant simulations by using Mont-Carlo method, and the optimal parameters combination generated reliable result. Later, we figured out the temporal-variant MTT as well as the degree of influence that brought by precipitation event, where the results showed inverse relationship between precipitation amount and MTT value. Reference: [1] Jeffrey. J. McDonnell, Kevin J. McGuire, Aggarwal, P., et al. 2010. How old is stream water? Open questions in catchment transit time conceptualization, modeling and analysis. Hydro. Process. 24, 1745-1754. [2] Kevin J. McGuire, Jeffrey J. McDonnell. 2006. A review and evaluation of transit time modeling. Journal of Hydrology. 330, 543-563.

  14. Ecosystem based river basin management planning in critical water catchment in Mongolia

    NASA Astrophysics Data System (ADS)

    Tugjamba, Navchaa; Sereeter, Erdenetuul; Gonchigjav, Sarantuya

    2014-05-01

    Developing the ecosystem based adaptation strategies to maintain water security in critical water catchments in Mongolia would be very significant. It will be base by reducing the vulnerability. "Ecosystem Based adaptation" is quite a new term in Mongolia and the ecosystem approach is a strategy for the integrated management of land, water and living resources that promotes conservation and sustainable use in an equitable way. To strengthen equitable economic development, food security, climate resilience and protection of the environment, the implementation of sustainable river basin management in critical water catchments is challenging in Mongolia. The Ulz river basin is considered one of the critical water catchments due to the temperature has increased by in average 1.30Ñ over the period 1976 to 2011. It is more intense than the global warming rate (0.740C/100 years) and a bit higher than the warming rate over whole Mongolia as well. From long-term observations and measurements it is clear that Ulz River has low water in a period of 1970-1980 and since the end of 1980s and middle of 1990s there were dominated years of the flood. However, under the influence of the global warming, climate changes of Mongolia and continuation of drought years with low water since the end of 1990s until today river water was sharply fallen and dried up. For the last ten years rivers are dried up and annual mean run-off is less by 3-5 times from long term mean value. The Ulz is the transboundary river basin and taking its origin from Ikh and Baga Burd springs on territory of Norovlin soum of Khentii province that flows through Khentii and Dornod provinces to the northeast, crossing the state border it flows in Baruun Tari located in Tari Lake concavity in Russia. Based on the integrative baseline study on the 'The Ulz River Basin Environmental and Socioeconomic condition', ecosystem based river basin management was planned. 'Water demand Calculator 3' (WDC) software was used to estimate water demand and calculate water use balance in 2015, 2021. The result of the water balance estimation shows that water consumption-use will be increased 3 times in the river basin by 2021. As the water consumption-use source, surface water - 6.4 % and groundwater is 93.6 percent. The current consumption of the mining sector is shares 71 percent of the total users; it would be 82 percent in 2021. However, the livestock water consumption-use is 27 percent of the current demand; it would be decrease up to 16 percent in 2021. Ecosystem based approach IWRM plan would be efficient to the local resident to adapt the climate change situation. Thus, the results of the research study on the river basin ecosystem services and values are the base of the planning.

  15. Monitoring of metals, organic compounds and coliforms in water catchment points from the Sinos River basin.

    PubMed

    Nascimento, C A; Staggemeier, R; Bianchi, E; Rodrigues, M T; Fabres, R; Soliman, M C; Bortoluzzi, M; Luz, R B; Heinzelmann, L S; Santos, E L; Fleck, J D; Spilki, F R

    2015-05-01

    Unplanned use and occupation of the land without respecting its capacity of assimilation and environmental purification leads to the degradation of the environment and of water used for human consumption. Agricultural areas, industrial plants and urban centres developed without planning and the control of effluent discharges are the main causes of water pollution in river basins that receive all the liquid effluents produced in those places. Over the last decades, environmental management has become part of governmental agendas in search of solutions for the preservation of water quality and the restoration of already degraded resources. This study evaluated the conditions of the main watercourse of the Sinos River basin by monitoring the main physical, chemical and microbiological parameters described in the CONAMA Resolution no. 357/2005.The set of parameters evaluated at five catchment points of water human consumption revealed a river that has different characteristics in each reach, as the upper reach was class 1, whereas the middle and lower reaches of the basin were class 4. Monitoring pointed to households as the main sources of pollutants in those reaches, although metals used in the industrial production of the region were found in the samples analyzed. PMID:26270213

  16. Analysis of annual dissolved-solids loading from selected natural and irrigated catchments in the Upper Colorado River Basin, 1974-2003

    USGS Publications Warehouse

    Kenney, Terry A.; Gerner, Steven J.; Buto, Susan G.

    2012-01-01

    Dissolved-solids loading from 17 natural catchments and 14 irrigated catchments in the Upper Colorado River Basin was examined for the period from 1974 through 2003. In general, dissolved-solids loading increased and decreased concurrently in natural and irrigated catchments but at different magnitudes. Annually, the magnitude of loading in natural catchments changed about 10 percent more, on average, than in irrigated catchments. Measures of variability, or spread, indicate that natural catchments had 35 percent greater annual variability in loading than irrigated catchments. Precipitation and dissolved-solids loads were positively correlated in natural catchments, and a weak positive correlation was determined for irrigated catchments. A weak negative correlation between temperature and dissolved-solids load was determined for both natural and irrigated catchments. In irrigated catchments, the dissolved-solids load response to an above-average precipitation period from 1982 through 1987 generally lagged behind that in the natural catchments. On average, irrigated catchments with reservoir storage had the largest normalized maximum annual loads during the wet period.

  17. Preliminary design review report for K Basin Dose Reduction Project

    SciTech Connect

    Blackburn, L.D.

    1996-01-01

    The strategy for reducing radiation dose, originating from radionuclides absorbed in the K East Basin concrete, is to raise the pool water level to provide additional shielding. This report documents a preliminary design review conducted to ensure that design approaches for cleaning/coating basin walls and modifying other basin components were appropriate. The conclusion of this review was that design documents presently conclusion of this review was that design documents presently completed or in process of modification are and acceptable basis for proceeding to complete the design.

  18. The 20th century whole-basin trophic history of an inter-drumlin lake in an agricultural catchment.

    PubMed

    Jordan, Philip; Rippey, Brian; Anderson, N John

    2002-10-01

    Eight 1-m sediment cores were extracted from across the basin of Friary Lough, a 5.4-ha eutrophic lake in a wholly grassland agricultural catchment in Co. Tyrone, Northern Ireland. Sedimentary TP, diatom inferred TP, Ca, Na, Fe, Mn, loss-on-ignition (LOI), dry weight and density were determined in the core profiles. Core dating and correlation gave a 210Pb, 137Cs and 241Am chronology from 1906 to 1995 and enabled a whole-basin estimate of chemical and sediment accumulation rate over the 20th Century. The major changes for all parameters occurred after c. 1946. Sediment accumulation rate was most influenced by organic matter accumulations, probably of planktonic origin, and increasing after c. 1946. Inorganic sediment accumulation rate was found to be largely unchanging through the century at 10 t km(-2) yr(-1) when expressed as catchment exports. All chemical accumulation rate changes occurred after c. 1946. Total phosphorus accumulation rate, however, was found to be the only chemical to be increasing throughout the epilimnion and hypolimnion areas of the sedimentary basin at an average of 22.5 mg m(-2) yr(-1) between 1946 and 1995. The other chemical parameters showed increasing accumulation rates after c. 1946 in the epilimnion part of the basin only. Interpreted in terms of whole-basin sedimentation and catchment export processes over time, it is suggested that diffuse TP inputs are independent of sediment inputs. This corresponds to hydrochemical models that suggest soluble P as the primary fraction that is lost from grassland catchments. The increase in sedimentary TP accumulation rate, and DI-TP concentration, are also explained with regard to current models that suggest increases in runoff P concentrations from elevated soil P concentrations. Increases in eplimnion chemical and sediment accumulation rate after c. 1946 may be due to local erosion that has limited impact on lake basin sedimentation. PMID:12389788

  19. Geo-referenced modelling of metal concentrations in river basins at the catchment scale

    NASA Astrophysics Data System (ADS)

    Hüffmeyer, N.; Berlekamp, J.; Klasmeier, J.

    2009-04-01

    1. Introduction The European Water Framework Directive demands the good ecological and chemical state of surface waters [1]. This implies the reduction of unwanted metal concentrations in surface waters. To define reasonable environmental target values and to develop promising mitigation strategies a detailed exposure assessment is required. This includes the identification of emission sources and the evaluation of their effect on local and regional surface water concentrations. Point source emissions via municipal or industrial wastewater that collect metal loads from a wide variety of applications and products are important anthropogenic pathways into receiving waters. Natural background and historical influences from ore-mining activities may be another important factor. Non-point emissions occur via surface runoff and erosion from drained land area. Besides deposition metals can be deposited by fertilizer application or the use of metal products such as wires or metal fences. Surface water concentrations vary according to the emission strength of sources located nearby and upstream of the considered location. A direct link between specific emission sources and pathways on the one hand and observed concentrations can hardly be established by monitoring alone. Geo-referenced models such as GREAT-ER (Geo-referenced Regional Exposure Assessment Tool for European Rivers) deliver spatially resolved concentrations in a whole river basin and allow for evaluating the causal relationship between specific emissions and resulting concentrations. This study summarizes the results of investigations for the metals zinc and copper in three German catchments. 2. The model GREAT-ER The geo-referenced model GREAT-ER has originally been developed to simulate and assess chemical burden of European river systems from multiple emission sources [2]. Emission loads from private households and rainwater runoff are individually estimated based on average consumption figures, runoff rates and the site-specific population and surface area (roof, gutter, street) connected to the local sewer system. For emissions from industry and mine drainage quantitative data on average annual loads are collected. WWTP effluent loads additionally consider average removal during wastewater treatment. Runoff from non-point sources such as agricultural areas and unsealed soils is estimated from average wash-off rates per area multiplied with the total area drained into a specified river reach of the river system. Groundwater infiltration is considered in quantities equal to the base flow in the respective river stretch. The model simulates the steady-state concentration distribution in the whole river basin considering transport and removal processes in the river system. The only major removal process for metals in surface water is sedimentation. Simulations have been carried out exemplary for zinc and copper in the German river basins Main (27,292 km2), Ruhr (4,485 km2) and Sieg (2,832 km2). 3. Results and discussion Model estimations of effluent loads for selected WWTPs agreed well with available surveillance data so that the emission module outcome can be assumed as appropriate starting point for surface water modeling. A detailed comparison of simulated surface water concentrations with monitoring data was performed for zinc in the Ruhr river basin. Good agreement between monitoring data and model simulations was achieved at 20 monitoring sites in the Ruhr River and its major tributaries. GREAT-ER was able to simulate zinc concentrations in surface waters based on estimation of loads from several emission sources and via different emission pathways. A wide applicability of the model was corroborated by successful simulations of zinc concentrations in the Main river basin and simulations for copper in both catchments. The functionality of the model allows for running scenarios with different emission assumptions that can be easily compared. Such case studies can be used to demonstrate the effect of specific mitigation strategies such as improved treatment of ra

  20. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Physiographic Provinces

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the area of each physiographic province (Fenneman and Johnson, 1946) in square meters, compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data are from Fenneman and Johnson's Physiographic Provinces of the United States, which is based on 8 major divisions, 25 provinces, and 86 sections representing distinctive areas having common topography, rock type and structure, and geologic and geomorphic history (Fenneman and Johnson, 1946).The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  1. Attributes for MRB_E2RF1 Catchments in Selected Major River Basins: Population Density, 2000

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This data set represents the average population density, in number of people per square kilometer multiplied by 10 for the year 2000, compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data set is the 2000 Population Density by Block Group for the Conterminous United States (Hitt, 2003). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) RF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  2. Validation of a simple distributed sediment delivery approach in selected sub-basins of the River Inn catchment area

    NASA Astrophysics Data System (ADS)

    Reid, Lucas; Kittlaus, Steffen; Scherer, Ulrike

    2015-04-01

    For large areas without highly detailed data the empirical Universal Soil Loss Equation (USLE) is widely used to quantify soil loss. The problem though is usually the quantification of actual sediment influx into the rivers. As the USLE provides long-term mean soil loss rates, it is often combined with spatially lumped models to estimate the sediment delivery ratio (SDR). But it gets difficult with spatially lumped approaches in large catchment areas where the geographical properties have a wide variance. In this study we developed a simple but spatially distributed approach to quantify the sediment delivery ratio by considering the characteristics of the flow paths in the catchments. The sediment delivery ratio was determined using an empirical approach considering the slope, morphology and land use properties along the flow path as an estimation of travel time of the eroded particles. The model was tested against suspended solids measurements in selected sub-basins of the River Inn catchment area in Germany and Austria, ranging from the high alpine south to the Molasse basin in the northern part.

  3. Application of strontium isotope measurements to trace sediment sources in an upstream agricultural catchment (Loire River basin, France)

    NASA Astrophysics Data System (ADS)

    Le Gall, Marion; Evrard, Olivier; Thil, François; Foucher, Anthony; Salvador-Blanes, Sébastien; Cerdan, Olivier; Ayrault, Sophie

    2015-04-01

    Soil erosion is recognized as one of the main processes of land degradation in agricultural areas. It accelerates the supply of sediment to the rivers and degrades water quality. To limit those impacts and optimize management programs in such areas, sources of sediment need to be identified and sediment transport to be controlled. Here, we determined the sources of suspended sediment in the Louroux (24 km², French Loire River basin), a small catchment representative of lowland cultivated environments of Northwestern Europe. In this catchment, channels have been reshaped and 220 tile drain outlets have been installed over the last several decades. As a result, soil erosion and sediment fluxes have increased drastically. The variation of 87Sr/86Sr ratios, driven by the weathering of rocks with different ages and chemical composition, may reflect the mixing of different sediment sources. Strontium isotopic ratios (87Sr/86Sr) were therefore determined in potential soil sources, suspended particulate matter (SPM) and a sediment core sampled in the Louroux Pond at the catchment outlet. Soil, SPM and core samples displayed significantly different isotopic signatures. 87Sr/86Sr ratios in soil samples varied from 0.712763 to 0.724631 ± 0.000017 (2?, n=20). Highest values were observed in silicic parts of the catchment whereas the lower values were identified in a calcareous area close to the Louroux Pond. 87Sr/86Sr ratios in SPM (0.713660 to 0.725749 ± 0.000017, 2?, n=20) plotted between the soil and sediment core (0.712255 to 0.716415 ± 0.000017, 2?, n=12), suggesting the presence of particles originating from at least two different lithological sources, i.e. silicic rocks and carbonate material. Variations in 87Sr/86Sr ratios in the outlet core sample were used to reconstruct the sedimentary dynamics in the catchment during the last decades. These results will guide the future implementation of appropriate management practices aiming to reduce erosion in upstream catchments and the subsequent transport of sediment degrading the stream systems and the filling of reservoirs. Keywords: soil erosion; 87Sr/86Sr isotopic ratio; end-members; mixing models

  4. The importance of earthquake-triggered landslides for catchment sediment yield: a case study of the Siret basin (Romania)

    NASA Astrophysics Data System (ADS)

    Vanmaercke, Matthias; Obreja, Florin; Poesen, Jean

    2014-05-01

    Recent studies have shown that seismic activity may have an important influence on catchment sediment yields (SY, [t/km²/y]), e.g. due to earthquake-triggered landslides (EQL). Nonetheless, relatively little is known about the overall importance of EQL for SY. Therefore, this study explored the role of seismic activity in explaining spatial and temporal variation in sediment export for the Siret Basin (Romania), a catchment characterized by a very large variability in seismic activity. Based on long-term (> 30 years) sediment export measurements for 38 subcatchments of the Siret, we found that spatial variation in annual SY, is mainly explained by the degree of seismic activity (R² = 0.74) and catchment lithology (R² = 0.67) of each catchment. The combination of these two factors accounted for ca. 80% of the observed variation in SY. Other factors (e.g. topography, land use, climate, runoff) did not significantly contribute to the explained variance. To investigate the role of EQL in explaining this seismic control, we studied the temporal changes in sediment concentrations before and after the 7.4 Mw earthquake of 1977 for ten subcatchments of the Siret. Results showed a significant increase in sediment transport in the first years after the earthquake with median sediment concentrations at unit runoff discharge being up to 6 times larger in the year after the earthquake. However, these increases in sediment transport were only observed for rivers that were relatively far away from the epicenter (> 70 km). A possible explanation for this is that rivers close to the epicenter already had a very high sediment input from earlier EQL-events, resulting in no clear increase in sediment transport after the 1977 earthquake. Also available river cross-section data indicate patterns of aggradation close to the epicenter, suggesting that these rivers could not evacuate the increased sediment input.

  5. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Base-Flow Index, 2002

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the mean base-flow index expressed as a percent, compiled for every catchment of MRB_E2RF1 catchments of Major River Basins (MRBs, Crawford and others, 2006). Base flow is the component of streamflow that can be attributed to ground-water discharge into streams. The source data set is Base-Flow Index for the Conterminous United States (Wolock, 2003). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every catchment of MRB_E2RF1 catchments for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  6. Monitoring of fluvial transport in small upland catchments - methods and preliminary results

    NASA Astrophysics Data System (ADS)

    Janicki, Grzegorz; Rodzik, Jan; Chabudzi?ski, ?ukasz; Franczak, ?ukasz; Si?uch, Marcin; St?pniewski, Krzysztof; Dyer, Jamie L.; Ko?odziej, Grzegorz; Maciejewska, Ewa

    2014-06-01

    In April 2011 a study was initiated, financed from resources of the Polish National Science Centre, entitled: ‘Rainstorm prediction and mathematic modelling of their environmental and social-economical effects’ (No. NN/306571640). The study, implemented by a Polish-American team, covers meteorological research, including: (1) monitoring of single cell storms developing in various synoptic situations, (2) detection of their movement courses, and (3) estimation of parameters of their rain field. Empirical studies, including hydrological and geomorphological measurements, are conducted in objects researched thoroughly in physiographic terms (experimental catchments) in the Lublin region (SE Poland), distinguished by high frequency of occurrence of the events described. For comparative purposes, studies are also carried out on selected model areas in the lower course of the Mississippi River valley (USA), in a region with high frequency of summer rainstorms. For detailed studies on sediment transport processes during rainstorm events, catchments of low hydrological rank and their sub-catchments in a cascade system were selected. For the basic, relatively uniform geomorpho logical units distinguished this way, erosion and deposition balance of material transported was determined. The aim of work was to determine influence of weather condition on fluvial transport rate in small catchment with low hydrological order

  7. Groundwater storage change in the Ngadda Catchment of the Lake Chad Basin using GRACE and ground truth data

    NASA Astrophysics Data System (ADS)

    Skaskevych, A.; Lee, J.

    2013-12-01

    The present study is to analyze groundwater storage variations in the Ngadda Catchment located in the southwestern edge of Lake Chad Basin using Gravity Recovery and Climate Experiment (GRACE) data. We collected monthly total water storage data from GRACE and monthly soil moisture data from Global Land Data Assimilation System (GLDAS) for the period of 2005 - 2009 with the spatial resolution of 1 and 0.25 degrees. We assumed surface water contributions to be negligible in the study area. The estimated groundwater storage changes were compared to the ground truth groundwater depth data collected in 2005 and 2009. The challenge of the present study is sparseness of the ground truth data in space and time. The study area is one of the data poor regions in the world due to the limited accessibility to the area. Different geostatistical techniques such as Kriging, Thiessen polygons, and Bayesian updating were applied to overcome such sparseness and modeling uncertainty under different scales and resolution. The study shows a significant increase of groundwater storage in the Ngadda catchment during the study period. Uncertainty is significant though depending on the size of the model and modeling technique. The study discusses advantages of using remote sensing data in data poor regions and how geostatistical techniques can be applied to deal with modeling uncertainty.

  8. Attributes for MRB_E2RF1 Catchments by Major Rivers Basins in the Conterminous United States: Total Precipitation, 2002

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the catchment-average total precipitation in millimeters multiplied by 100 for 2002, compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data were the Near-Real-Time Monthly High-Resolution Precipitation Climate Data Set for the Conterminous United States (2002) raster data set produced by the Spatial Climate Analysis Service at Oregon State University. The MRB_E2RF1 catchments are based on a modified version of the Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  9. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Average Atmospheric (Wet) Deposition of Inorganic Nitrogen, 2002

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the average atmospheric (wet) deposition, in kilograms per square kilometer, of inorganic nitrogen for the year 2002 compiled for every catchment for MRB_E2RF1 of Major River Basins (MRBs, Crawford and others, 2006). The source data set for wet deposition was from the USGS's raster data set atmospheric (wet) deposition of inorganic nitrogen for 2002 (Gronberg, 2005). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every catchment of MRB_E2RF1 catchments for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  10. Environmental isotopic and hydrochemical characteristics of groundwater from the Sandspruit Catchment, Berg River Basin, South Africa.

    PubMed

    Naicker, S; Demlie, M

    2014-01-01

    The Sandspruit catchment (a tributary of the Berg River) represents a drainage system, whereby saline groundwater with total dissolved solids (TDS) up to 10,870 mg/l, and electrical conductivity (EC) up to 2,140 mS/m has been documented. The catchment belongs to the winter rainfall region with precipitation seldom exceeding 400 mm/yr, as such, groundwater recharge occurs predominantly from May to August. Recharge estimation using the catchment water-balance method, chloride mass balance method, and qualified guesses produced recharge rates between 8 and 70 mm/yr. To understand the origin, occurrence and dynamics of the saline groundwater, a coupled analysis of major ion hydrochemistry and environmental isotopes (?(18)O, ?(2)H and (3)H) data supported by conventional hydrogeological information has been undertaken. These spatial and multi-temporal hydrochemical and environmental isotope data provided insight into the origin, mechanisms and spatial evolution of the groundwater salinity. These data also illustrate that the saline groundwater within the catchment can be attributed to the combined effects of evaporation, salt dissolution, and groundwater mixing. The salinity of the groundwater tends to vary seasonally and evolves in the direction of groundwater flow. The stable isotope signatures further indicate two possible mechanisms of recharge; namely, (1) a slow diffuse type modern recharge through a relatively low permeability material as explained by heavy isotope signal and (2) a relatively quick recharge prior to evaporation from a distant high altitude source as explained by the relatively depleted isotopic signal and sub-modern to old tritium values. PMID:24552734

  11. Analysis of catchment behavior using residence time distributions with application to the Thuringian Basin

    NASA Astrophysics Data System (ADS)

    Prykhodko, Vladyslav; Heße, Falk; Kumar, Rohini; Samaniego, Luis; Attinger, Sabine

    2014-05-01

    Residence time distribution (RTD), as presented e.g. by Botter et al., are a novel mathematical framework for a quantitative characterization of hydrological systems. These distributions contain information about water storage, flow pathways and water sources and therefore improve the classical hydrograph methods by allowing both nonlinear as well as time-dependent dynamics. In our study we extend this previous works by applying this theoretical framework on real-world heterogeneous catchments. To that end we use a catchment-scale hydrological model (mHM) and apply the approach of Botter et al. to each spatial grid cell of mHM. To facilitate the coupling we amended Botter's approach by introducing additional fluxes (like runoff from unsaturated zone) and specifying the structure of the groundwater zone. By virtue of this coupling we could then make use of the realistic hydrological fluxes and state variables as provided by mHM. This allowed us to use both observed (precipitation, temperature, soil type etc.) and modeled data sets and asses their impact on the behavior of the resulting RTD's. We extended the aforementioned framework to analyze large catchments by including geomorphic effect due to the actual arrangement of subcatchments around the channel network using the flood routing algorithm of mHM. Additionally we study dependencies of the stochastic characteristics of RTD's on the meteorological and hydrological processes as well as on the morphological structure of the catchment. As a result we gained mean residence times (MRT) of base flow and groundwater flow on the mesoscale (4km x 4km). We compare the spatial distribution of MRT's with land cover and soil moisture maps as well as driving forces like precipitation and temperature. Results showed that land cover is a major predictor for MRT's whereas its impact on the mean evapotranspiration time was much lower. Additionally we determined the temporal evolution of mean travel times by using time series of all relevant hydrological processes (observed as well as modeled by mHM) from 1960-2010. Our analysis revealed the strong regularity of the catchment dynamics over long time periods. The strong seasonal changes of MRT's, usually modeled by sine-wave approach, could be approximated by sawtooth-wave model. Our future work will be focused on comparing of our numerical results with realistic data from tracer experiments and isotope measurements.

  12. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Basin Characteristics, 2002 Geospatial_Data_Presentation_Form: tabular digital data

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents basin characteristics for the year 2002 compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). These characteristics are reach catchment shape index, stream density, sinuosity, mean elevation, mean slope and number of road-stream crossings. The source data sets are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) RF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011) and the U.S. Census Bureau's TIGER/Line Files (U.S. Census Bureau,2006). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  13. Isotope methods as a tool to characterize nitrate origin and transport in Kocinka catchment (central Poland): preliminary results

    NASA Astrophysics Data System (ADS)

    Zurek, Anna; Wachniew, Przemyslaw; Witczak, Stanislaw; Rozanski, Kazimierz; Kania, Jaroslaw

    2014-05-01

    Kocinka catchment with 258 km2 of surface area is one of the Soils2Sea project (BONUS programme) case studies. One of the main scientific objectives of this project is to analyze how changes in land use and climate may affect the nutrient load to the Baltic Sea. Hydrogeological conditions in the Kocinka catchment are determined by Quaternary glacial till and glacifluvial sands and gravels underlain by karstic-fractured limestones which compose the Upper Jurassic Major Groundwater Basin (MGWB 326), one of four most important groundwater reservoirs in Poland. Pollution with nitrates is the most important threat to groundwater quality in this groundwater body. The concentration of nitrate in some wells, in the southern part of Kocinka catchment where outcrops of Jurassic limestones occur, exceeds the maximum permissible level of 50 mgNO3/L and constantly increases. A prerequisite for measures to reduce NO3 loads to the groundwater body is identification of sources of nitrate pollution. The working hypothesis links the high nitrate concentrations with the leaking sewage system in Czestochowa city and its surroundings but agricultural sources cannot be excluded as 66% of Kocinka catchment area is used agriculturally. A dedicated study employing environmental tracers was launched with the main aim of quantifying the pathways and dynamic of groundwater flow in the aquifer. Tritium was found throughout the system but its concentrations vary considerably. Decrease of tritium contents with depth in the aquifer was observed in one of wells. This points to active recharge and characteristic time scales of groundwater flow in order of years to several decades. To identify the origin of nitrate pollution nitrogen and oxygen isotope ratios of dissolved nitrate was analyzed in a number of wells with high nitrate concentrations. The isotopic composition of dissolved nitrates does not confirm the hypothesis on the decisive role of urban sewage in nitrate pollution. The isotope date point to agriculture as the main source of NO3. The isotopic data provided no evidences for natural denitrification in the aquifer. However, only water samples with considerable amounts of nitrates were analyzed for 15N and 18O. On the other hand, low NO3 concentrations in the deeper part of aquifer can be due to denitrification or long residence time of this water. Acknowledgements. The work was carried out as part of the project Soils2Sea in BONUS programme and the statutory funds of the AGH University of Science and Technology (project No.11.11.140.026 and 11.11.220.01).

  14. Flood-initiating catchment conditions: a spatio-temporal analysis of large-scale soil moisture patterns in the Elbe river basin

    NASA Astrophysics Data System (ADS)

    Nied, M.; Hundecha, Y.; Merz, B.

    2012-09-01

    Floods are the result of a complex interaction between meteorological event characteristics and pre-event catchment conditions. While the large-scale meteorological conditions have been classified and successfully linked to floods, this is lacking for the large-scale pre-event catchment conditions. Therefore, we propose to classify soil moisture as a key variable of pre-event catchment conditions and to investigate the link between soil moisture patterns and flood occurrence in the Elbe river basin. Soil moisture is simulated using a semi-distributed conceptual rainfall-runoff model over the period 1951-2003. Principal component analysis (PCA) and cluster analysis are applied successively to identify days of similar soil moisture patterns. The results show that PCA considerably reduced the dimensionality of the soil moisture data. The first principal component (PC) explains 75.71% of the soil moisture variability and represents the large-scale seasonal wetting and drying. The successive PCs express the spatial heterogeneous antecedent catchment conditions. By clustering the leading PCs, we detected large-scale soil moisture patterns which frequently occur before the onset of floods. In winter floods are initiated by overall high soil moisture content whereas in summer the flood initiating soil moisture patterns are diverse and less stable in time. The results underline the importance of large-scale pre-event catchment conditions in flood initiation.

  15. Preliminary investigations of toxicity in the Georges Bay catchment, Tasmania, Australia

    PubMed Central

    Bleaney, Alison; Hickey, Christopher W.; Stewart, Michael; Scammell, Marcus; Senjen, Rye

    2015-01-01

    North-eastern Tasmania, Australia has been an area of major production for Pacific oysters (Crassostrea gigas) for over 25 years. Since the mid-1990s, increased oyster mortality has been observed. The purpose of the present study was to identify the agent causing aquatic toxicity and to investigate whether there is a chemical and/or toxicological link between river foam and monoculture timber plantation forests of exotic eucalypts (Eucalyptus nitens) present in the catchment area. Foam samples from the George River catchment demonstrated high toxicity to a freshwater cladoceran and larvae of a marine blue mussel species. After filtration to remove most particulates, foam samples also demonstrated a marked reduction in toxicity to blue mussels, which suggested that the toxicity is particle associated. Foam and leaf extracts of E. nitens were then fractionated using HPLC and size exclusion chromatography and the resulting fractions were screened for cladoceran and blue mussel toxicity. Toxicity was detected in fractions common to both the foam and the leaf extracts. This study suggests that there may be a chemical and toxicological relationship between foam and E. nitens leaf components. PMID:25745193

  16. Attributes for MRB_E2RF1 Catchments in Selected Major River Basins of the Conterminous United States: Contact Time, 2002

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the average contact time, in units of days, compiled for every MRB_E2RF1 catchment of Major River Basins (MRBs, Crawford and others, 2006). Contact time, as described in Vitvar and others (2002), is defined as the baseflow residence time in the subsurface. The source data set was the U.S. Geological Survey's (USGS) 1-kilometer grid for the conterminous United States (D.M. Wolock, U.S. Geological Survey, written commun., 2008). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) RF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  17. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Hydrologic Landscape Regions

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the area of Hydrologic Landscape Regions (HLR) compiled for every MRB_E2RF1 catchment of the Major River Basins (MRBs, Crawford and others, 2006). The source data set is a 100-meter version of Hydrologic Landscape Regions of the United States (Wolock, 2003). HLR groups watersheds on the basis of similarities in land-surface form, geologic texture, and climate characteristics. The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  18. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Normalized Atmospheric Deposition for 2002, Ammonium (NH4)

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the average normalized (wet) deposition, in kilograms per square kilometer multiplied by 100, of ammonium (NH4) for the year 2002 compiled for every MRB_E2RF1 catchment of the Major River Basins (MRBs, Crawford and others, 2006). Estimates of NH4 deposition are based on National Atmospheric Deposition Program (NADP) measurements (B. Larsen, U.S. Geological Survey, written. commun., 2007). De-trending methods applied to the year 2002 are described in Alexander and others, 2001. NADP site selection met the following criteria: stations must have records from 1995 to 2002 and have a minimum of 30 observations. The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  19. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Estimated Mean Annual Natural Groundwater Recharge, 2002

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the mean annual natural groundwater recharge, in millimeters, compiled for every MRB_E2RF1catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data set is Estimated Mean Annual Natural Ground-Water Recharge in the Conterminous United States (Wolock, 2003). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  20. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Normalized Atmospheric Deposition for 2002, Total Inorganic Nitrogen

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the average normalized atmospheric (wet) deposition, in kilograms per square kilometer multiplied by 100, of Total Inorganic Nitrogen for the year 2002 compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). Estimates of Total Inorganic Nitrogen deposition are based on National Atmospheric Deposition Program (NADP) measurements (B. Larsen, U.S. Geological Survey, written. commun., 2007). De-trending methods applied to the year 2002 are described in Alexander and others, 2001. NADP site selection met the following criteria: stations must have records from 1995 to 2002 and have a minimum of 30 observations. The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  1. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Normalized Atmospheric Deposition for 2002, Nitrate (NO3)

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the average normalized (wet) deposition, in kilograms per square kilometer multiplied by 100, of Nitrate (NO3) for the year 2002 compiled for every MRB_E2RF1 catchment of the Major River Basins (MRBs, Crawford and others, 2006). Estimates of NO3 deposition are based on National Atmospheric Deposition Program (NADP) measurements (B. Larsen, U.S. Geological Survey, written. commun., 2007). De-trending methods applied to the year 2002 are described in Alexander and others, 2001. NADP site selection met the following criteria: stations must have records from 1995 to 2002 and have a minimum of 30 observations. The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  2. Post-wildfire recovery of water yield in the Sydney Basin water supply catchments: An assessment of the 2001/2002 wildfires

    NASA Astrophysics Data System (ADS)

    Heath, J. T.; Chafer, C. J.; van Ogtrop, F. F.; Bishop, T. F. A.

    2014-11-01

    Wildfire is a recurring event which has been acknowledged by the literature to impact the hydrological cycle of a catchment. Hence, wildfire may have a significant impact on water yield levels within a catchment. In Australia, studies of the effect of fire on water yield have been limited to obligate seeder vegetation communities. These communities regenerate from seed banks in the ground or within woody fruits and are generally activated by fire. In contrast, the Sydney Basin is dominated by obligate resprouter communities. These communities regenerate from fire resistant buds found on the plant and are generally found in regions where wildfire is a regular occurrence. The 2001/2002 wildfires in the Sydney Basin provided an opportunity to investigate the impacts of wildfire on water yield in a number of catchments dominated by obligate resprouting communities. The overall aim of this study was to investigate whether there was a difference in water yield post-wildfire. Four burnt subcatchments and 3 control subcatchments were assessed. A general additive model was calibrated using pre-wildfire data and then used to predict post-wildfire water yield using post-wildfire data. The model errors were analysed and it was found that the errors for all subcatchments showed similar trends for the post-wildfire period. This finding demonstrates that wildfires within the Sydney Basin have no significant medium-term impact on water yield.

  3. Estimation of the Relative Severity of Floods in Small Ungauged Catchments for Preliminary Observations on Flash Flood Preparedness: A Case Study in Korea

    PubMed Central

    Kim, Eung Seok; Choi, Hyun Il

    2012-01-01

    An increase in the occurrence of sudden local flooding of great volume and short duration has caused significant danger and loss of life and property in Korea as well as many other parts of the World. Since such floods usually accompanied by rapid runoff and debris flow rise quite quickly with little or no advance warning to prevent flood damage, this study presents a new flash flood indexing methodology to promptly provide preliminary observations regarding emergency preparedness and response to flash flood disasters in small ungauged catchments. Flood runoff hydrographs are generated from a rainfall-runoff model for the annual maximum rainfall series of long-term observed data in the two selected small ungauged catchments. The relative flood severity factors quantifying characteristics of flood runoff hydrographs are standardized by the highest recorded maximum value, and then averaged to obtain the flash flood index only for flash flood events in each study catchment. It is expected that the regression equations between the proposed flash flood index and rainfall characteristics can provide the basis database of the preliminary information for forecasting the local flood severity in order to facilitate flash flood preparedness in small ungauged catchments. PMID:22690208

  4. Characterisation of stable isotopes to identify residence times and runoff components in two meso-scale catchments in the Abay/Upper Blue Nile basin, Ethiopia

    NASA Astrophysics Data System (ADS)

    Tekleab, S.; Wenninger, J.; Uhlenbrook, S.

    2014-06-01

    Measurements of the stable isotopes oxygen-18 (18O) and deuterium (2H) were carried out in two meso-scale catchments, Chemoga (358 km2) and Jedeb (296 km2) south of Lake Tana, Abay/Upper Blue Nile basin, Ethiopia. The region is of paramount importance for the water resources in the Nile basin, as more than 70% of total Nile water flow originates from the Ethiopian highlands. Stable isotope compositions in precipitation, spring water and streamflow were analysed (i) to characterise the spatial and temporal variations of water fluxes; (ii) to estimate the mean residence time of water using a sine wave regression approach; and (iii) to identify runoff components using classical two-component hydrograph separations on a seasonal timescale. The results show that the isotopic composition of precipitation exhibits marked seasonal variations, which suggests different sources of moisture generation for the rainfall in the study area. The Atlantic-Indian Ocean, Congo basin, Upper White Nile and the Sudd swamps are the potential moisture source areas during the main rainy (summer) season, while the Indian-Arabian and Mediterranean Sea moisture source areas during little rain (spring) and dry (winter) seasons. The spatial variation in the isotopic composition is influenced by the amount effect as depicted by moderate coefficients of determination on a monthly timescale (R2 varies from 0.38 to 0.68) and weak regression coefficients (R2 varies from 0.18 to 0.58) for the altitude and temperature effects. A mean altitude effect accounting for -0.12‰/100 m for 18O and -0.58‰/100 m for 2H was discernible in precipitation isotope composition. Results from the hydrograph separation on a seasonal timescale indicate the dominance of event water, with an average of 71 and 64% of the total runoff during the wet season in the Chemoga and Jedeb catchments, respectively. Moreover, the stable isotope compositions of streamflow samples were damped compared to the input function of precipitation for both catchments. This damping was used to estimate mean residence times of stream water of 4.1 and 6.0 months at the Chemoga and Jedeb catchment outlets, respectively. Short mean residence times and high fractions of event water components recommend catchment management measures aiming at reduction of overland flow/soil erosion and increasing of soil water retention and recharge to enable sustainable development in these agriculturally dominated catchments.

  5. Flood-initiating catchment conditions: a spatio-temporal analysis of large-scale soil moisture patterns in the Elbe River basin

    NASA Astrophysics Data System (ADS)

    Nied, M.; Hundecha, Y.; Merz, B.

    2013-04-01

    Floods are the result of a complex interaction between meteorological event characteristics and pre-event catchment conditions. While the large-scale meteorological conditions have been classified and successfully linked to floods, this is lacking for the large-scale pre-event catchment conditions. Therefore, we propose classifying soil moisture as a key variable of pre-event catchment conditions and investigating the link between soil moisture patterns and flood occurrence in the Elbe River basin. Soil moisture is simulated using a semi-distributed conceptual rainfall-runoff model over the period 1951-2003. Principal component analysis (PCA) and cluster analysis are applied successively to identify days of similar soil moisture patterns. The results show that PCA considerably reduced the dimensionality of the soil moisture data. The first principal component (PC) explains 75.71% of the soil moisture variability and represents the large-scale seasonal wetting and drying. The successive PCs express spatially heterogeneous catchment processes. By clustering the leading PCs, we identify large-scale soil moisture patterns which frequently occur before the onset of floods. In winter, floods are initiated by overall high soil moisture content, whereas in summer the flood-initiating soil moisture patterns are diverse and less stable in time.

  6. Preliminary stratigraphic and paleomagnetic results from Neogene basins across the Anatolian Plateau (Turkey).

    NASA Astrophysics Data System (ADS)

    Lucifora, Stella; Cifelli, Francesca; Mazzini, Ilaria; Cosentino, Domenico; Mattei, Massimo; Cipollari, Paola; Gliozzi, Elsa; Palolo Cavinato, Gian

    2010-05-01

    An integrated paleomagnetic and stratigraphic study on Neogene basins across the Anatolian Plateau was carried out. This study is developed within the VAMP (Vertical Anatolian Movement Project), an interdisciplinary project aimed to the recent tectonic evolution of the central Anatolian Plateau. The studied areas are located in southern Turkey (Adana, Mut and Ermenek basins) and in northern Turkey (Kazan, Çankiri, Kastamonu, Boyabat and Sinop basins). For paleomagnetic analyses we sampled 1062 standard cylindrical samples from 13 stratigraphic sections, and 746 samples for paleontological analysis were taken from the same sections. AMS (Anisotropy of Magnetic Susceptibility), magnetic mineralogy and paleomagnetic polarity data are presented together with the results of the integrated stratigraphic analyses. In the Southern Turkey basins preliminary results show the diffuse presence of authigenic iron sulphides, together with magnetite, as main magnetic carriers. In these sections the iron-sulphides Characteristic Natural Magnetization (ChRM) component is characterized by inconsistent polarity record, suggesting that iron-sulphides have a late diagenetic origin. Conversely, magnetite bearing sediments show more reliable results in term of magnetic polarity interpretations. Preliminary stratigraphic and paleomagnetic results from the southern margin of the plateau allow us both to refine the stratigraphy for the late Miocene of the Adana Basin and to better constrain the age of the youngest marine deposits of the Mut and Ermenek basins. In the late Miocene of the Adana Basin evidence of the Messinian salinity crisis led to a new stratigraphic framework specially for the Messinian-Pliocene interval. Thick fluvial conglomerates from the uppermost Messinian deposits of the Adana Basin, which could be linked to the activation of the southern margin of the plateau, allow us to constrain at about 5.4 Ma the uplift of the central Anatolian Plateau. On the other hand, the preliminary results of the micropaleontological analyses carried out on the higher marine deposits sampled in the northern part of the Ermenek Basin (Basyayla section, 1840 m a.s.l.) point to a post-Tortonian age for the plateau uplift. The age of the basins at the northern margin of the plateau are very poor constrained, except for that basins containing vertebrate-bearing continental deposits. However, from a palaeogeographic point of view, our preliminary data suggest a possible Tortonian connection between the Çankiri Basin and the Paratethyan realm. This presentation was supported by the EUROCORE programme TOPO-EUROPE of the European Science Foundation.

  7. Measuring fallout radionuclides to constrain the origin and the dynamics of suspended sediment in an agricultural drained catchment (Loire River basin, France)

    NASA Astrophysics Data System (ADS)

    Le Gall, Marion; Evrard, Olivier; Foucher, Anthony; Laceby, J. Patrick; Salvador-Blanes, Sébastien; Lefèvre, Irène; Cerdan, Olivier; Ayrault, Sophie

    2015-04-01

    Soil erosion reaches problematic levels in agricultural areas of Northwestern Europe where tile drains may accelerate sediment transfer to rivers. This supply of large quantities of fine sediment to the river network leads to the degradation of water quality by increasing water turbidity, filling reservoirs and transporting contaminants. Agricultural patterns and landscapes features have been largely modified by human activities during the last century. To investigate erosion and sediment transport in lowland drained areas, a small catchment, the Louroux (24 km²), located in the French Loire River basin was selected. In this catchment, channels have been reshaped and more than 220 tile drains outlets have been installed after World War II. As a result, soil erosion and sediment fluxes strongly increased. Sediment supply needs to be better understood by quantifying the contribution of sources and the residence times of particles within the catchment. To this end, a network of river monitoring stations was installed, and fallout radionuclides (Cs-137, excess Pb-210 and Be-7) were measured in rainwater (n=3), drain tile outlets (n=4), suspended sediment (n=15), soil surface (n=30) and channel bank samples (n=15) between January 2013 and February 2014. Cs-137 concentrations were used to quantify the contribution of surface vs. subsurface sources of sediment. Results show a clear dominance of particles originating from surface sources (99 ± 1%). Be-7 and excess Pb-210 concentrations and calculation of Be-7/excess Pb-210 ratios in rainfall and suspended sediment samples were used to estimate percentages of recently eroded sediment in rivers. The first erosive winter storm mainly exported sediment depleted in Be-7 that likely deposited on the riverbed during the previous months. Then, during the subsequent floods, sediment was directly eroded and exported to the catchment outlet. Our results show the added value of combining spatial and temporal tracers to characterize and quantify sources of sediment and particle transport processes within an agricultural catchment.

  8. How accurately are climatological characteristics and surface water and energy balances represented for the Colombian Caribbean Catchment Basin?

    NASA Astrophysics Data System (ADS)

    Hoyos, Isabel; Baquero-Bernal, Astrid; Hagemann, Stefan

    2013-09-01

    In Colombia, the access to climate related observational data is restricted and their quantity is limited. But information about the current climate is fundamental for studies on present and future climate changes and their impacts. In this respect, this information is especially important over the Colombian Caribbean Catchment Basin (CCCB) that comprises over 80 % of the population of Colombia and produces about 85 % of its GDP. Consequently, an ensemble of several datasets has been evaluated and compared with respect to their capability to represent the climate over the CCCB. The comparison includes observations, reconstructed data (CPC, Delaware), reanalyses (ERA-40, NCEP/NCAR), and simulated data produced with the regional climate model REMO. The capabilities to represent the average annual state, the seasonal cycle, and the interannual variability are investigated. The analyses focus on surface air temperature and precipitation as well as on surface water and energy balances. On one hand the CCCB characteristics poses some difficulties to the datasets as the CCCB includes a mountainous region with three mountain ranges, where the dynamical core of models and model parameterizations can fail. On the other hand, it has the most dense network of stations, with the longest records, in the country. The results can be summarised as follows: all of the datasets demonstrate a cold bias in the average temperature of CCCB. However, the variability of the average temperature of CCCB is most poorly represented by the NCEP/NCAR dataset. The average precipitation in CCCB is overestimated by all datasets. For the ERA-40, NCEP/NCAR, and REMO datasets, the amplitude of the annual cycle is extremely high. The variability of the average precipitation in CCCB is better represented by the reconstructed data of CPC and Delaware, as well as by NCEP/NCAR. Regarding the capability to represent the spatial behaviour of CCCB, temperature is better represented by Delaware and REMO, while precipitation is better represented by Delaware. Among the three datasets that permit an analysis of surface water and energy balances (REMO, ERA-40, and NCEP/NCAR), REMO best demonstrates the closure property of the surface water balance within the basin, while NCEP/NCAR does not demonstrate this property well. The three datasets represent the energy balance fairly well, although some inconsistencies were found in the individual balance components for NCEP/NCAR.

  9. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: NLCD 2001 Imperviousness

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the mean percent impervious surface from the Imperviousness Layer of the National Land Cover Dataset 2001, (LaMotte and Wieczorek, 2010), compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data set represents imperviousness for the conterminous United States for 2001. The Imperviousness Layer of the National Land Cover Data Set for 2001 was produced through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of Federal agencies (http://www.mrlc.gov), consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (USEPA), the U.S. Department of Agriculture (USDA), the U.S. Forest Service (USFS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (USFWS), the Bureau of Land Management (BLM), and the USDA Natural Resources Conservation Service (NRCS). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002;Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  10. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: NLCD 2001 Tree Canopy

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the mean percent tree canopy from the Canopy Layer of the National Land Cover Dataset 2001 (LaMotte and Wieczorek, 2010), compiled for every MRB_E2RF1 catchment of Major River Basins (MRBs, Crawford and others, 2006). The source data set represents tree canopy percentage for the conterminous United States for 2001. The Canopy Layer of the National Land Cover Data Set for 2001 was produced through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of Federal agencies (http://www.mrlc.gov), consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (USEPA), the U.S. Department of Agriculture (USDA), the U.S. Forest Service (USFS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (USFWS), the Bureau of Land Management (BLM), and the USDA Natural Resources Conservation Service (NRCS). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  11. Preliminary design report for the K basins integrated water treatment system

    SciTech Connect

    Pauly, T.R., Westinghouse Hanford

    1996-08-12

    This Preliminary Design Report (PDR) provides a revised concept for the K Basins Integrated Water Treatment Systems (IWTS). This PDR incorporates the 11 recommendations made in a May 1996 Value Engineering session into the Conceptual Design, and provides new flow diagrams, hazard category assessment, cost estimate, and schedule for the IWTS Subproject.

  12. Selected examples of needs for long term pilot areas in Mediterranean catchments: a mountain traditional agricultural system and a large and regulated hydrographic basin in Southern Spain

    NASA Astrophysics Data System (ADS)

    José Polo, María; Herrero, Javier; Millares, Agustín; José Pérez-Palazón, María; Pimentel, Rafael; Aguilar, Cristina; Jurado, Alicia; Contreras, Eva; Gómez-Beas, Raquel; Carpintero, Miriam; Gulliver, Zacarías

    2015-04-01

    Integrated River Basin Management (IRBM) aims at planning water, land and other natural resources for an equitable and sustainable management, also capable of preserving or restoring freshwater ecosystems. Long term series of significant variables at different scales and a sound knowledge of the river basin processes are needed to establish the current state and past&future evolution of the hydrological system, soil use and vegetation distribution, and their social impacts and feedbacks. This is particularly crucial if future scenario analyses are to be performed to assess decision-making processes and adaptive plans. This work highlights the need for an adequate design and development of process-oriented monitoring systems at the basin scale in a decision-making framework. First, the hydrologic monitoring network of the Guadalfeo River Basin, in the southern face of Sierra Nevada Range (Spain), is shown, in a pilot catchment of 1300 km2 in which snow processes in Mediterranean conditions have been studied over the last ten years with a holistic approach. The network development and the main features of the dataset are described together with their use for different scientific and environmental applications; their benefits for assessing social and economic impact in the rural environment are shown from a study case in which the sustainability of ancient channels fed by snowmelt, in use since the XIIIth century for traditional irrigated crops in the mountainous area, was assessed in a future scenarios analyses. Secondly, the standard flow and water quality monitoring networks in the Guadalquivir River Basin, a large (57400 km2) and highly regulated agricultural catchment in southern Spain, are shown, and their strengths and weaknessess for an IRBM framework are analysed. Sediments and selected pollutants are used to trace soil erosion and agricultural/urban exports throughout the catchment, and the final loads to the river estuary in the Atlantic Ocean are assessed for the last 35 years. Both study areas require an integrated monitoring approach for future scenarios assessment, adaptive actions programming, and especially for the follow up of their short and long term effects and required corrections.

  13. Snow Accumulation and Spring Melt Rates of Bogs and Fens in the North Granny Creek Catchment Basin, Hudson Bay Lowlands, Ontario

    NASA Astrophysics Data System (ADS)

    Cook, C. F.; Price, J. S.

    2009-05-01

    The Hudson Bay Lowlands contain one of the most extensive, contiguous peatland complexes in the world. Interlinked patterned peatlands developed in this region because of the cool climate, low-gradient topography and an underlying layer of low conductivity marine sediments. There is currently little research regarding the mechanisms that control runoff and surface water connectivity in this region, especially the functions of different peatland types on runoff production and flow pathways. Runoff generation in these systems is dependent on several factors such as soil and pool storage capacity, snow accumulation and melt rates, and peatland morphometry. Snowmelt accounts for a major portion of total annual runoff in this region and the timing of the melt will determine effective runoff production from a peatland catchment. One of the objectives of this project is to identify the processes and mechanisms that generate spring snowmelt runoff in different peatland types (i.e. bogs and fens) and quantify the relative contribution of each type in a peatland-dominated catchment basin. This research is being conducted in a 30 km2 catchment basin located near the DeBeers Victor diamond mine, located 90 km west of Attawapiskat, Ontario. The North Granny Creek basin is located approximately 3 km from the mine pit and is comprised of several peatland types and forms. The surface hydrology of this area is expected to be affected by groundwater depressurization due to dewatering of the mine pit by deep groundwater pumping wells. Effects of this activity on surface hydrology could possibly include increased soil storage capacity due to drier conditions and decreased melt rates due to reduced inputs of warm groundwater. Surface water connectivity is usually at a maximum in the spring because of a relatively impermeable frost table and low soil storage capacity which reduces infiltration. These effects of melt will not be observed uniformly over the entire catchment because of the differing hydrological properties of peatland types. Fens are expected to experience melt quicker than bogs and will receive and convey most of the runoff waters. Snow survey data from the springs of 2008 and 2009 coupled with stream discharge measurements will be used to determine the characteristics of different peatland types that control snow accumulation, melt rates and runoff production and their respective contributions. Since it is expected that the surface hydrology of this area will change over time because of groundwater depressurization it is important to develop a base line characterization of runoff generation and flowpaths within and between peatland types. An examination of snow accumulation and melt characteristics is necessary in northern peatland complexes to fully understand the response of these environments to changes in hydrology.

  14. Preliminary assessment of the Lago Mercedes discovery, Magallanes Basin, Chile

    SciTech Connect

    Dean, J.S. ); Wilson, J.T.; Mainzer, G.F. ); Escobar, F.; Aguirre, G. )

    1993-02-01

    The Lago Mercedes No. 1 well, spudded January 17, 1991, was positioned to test a seismically defined structural culmination located along a blind thrust near the deep foreland axis of the western magallanes Basin. This fault, which defines the leading edge of Andean-related thrust detachment in the region, is responsible for a trap geometry that is genetically related to, but fundamentally different from the numerous unrooted Tertiary folds in the area. Although the Lower Cretaceous Springhill Formation comprised the primary target, it was anticipated that the geometry of the fold allowed for the possibility of several fractured intervals in the hanging wall, including volcaniclastic rocks of the underlying Jurassic Tobifera [open quotes]basement[close quotes] sequence, recently found to be productive elsewhere on the eastern platform of the basin. During drilling of the well, gas and condensate shows were encountered in numerous horizons. The most surprising of these later proved to be a Permo-Triassic granodiorite underlying the Tobifera. Although relatively widespread on outcrop, this represents the first time a pre-rift intrusive body has been penetrated in the subsurface. All of the hydrocarbon-bearing intervals exhibit minimal matrix porosity but varying degrees of fracturing. Subsequent testing of the well yielded combined flow rates of in excess of 12 MMCFD of rich gas and 1140 BPD of 52 A.P.I. condensate. The most prolific zone corresponds to an intensely fractured and partially weathered interval in the uppermost portion of the intrusive. Additional testing is planned prior to any estimate of recoverable reserves. Nevertheless, this unique accumulation underscored the possibility for nonconventional reservoirs throughout the lightly explored Sub-Andean basin trend, particularly fold-thrust belts which have the potential to [open quotes]create[close quotes] reservoirs and trap geometry simultaneously.

  15. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Artificial Drainage (1992) and Irrigation (1997)

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the estimated area of artifical drainage for the year 1992 and irrigation types for the year 1997 compiled for every MRB_E2RF1 catchment of Major River Basins (MRBs, Crawford and others, 2006). The source data sets were derived from tabular National Resource Inventory (NRI) data sets created by the National Resources Conservation Service (NRCS, U.S. Department of Agriculture, 1995, 2000). Artificial drainage is defined as subsurface drains and ditches. Irrigation types are defined as gravity and pressure. Subsurface drains are described as conduits, such as corrugated plastic tubing, tile, or pipe, installed beneath the ground surface to collect and/or convey drainage. Surface drainage field ditches are described as graded ditches for collecting excess water. Gravity irrigation source is described as irrigation delivered to the farm and/or field by canals or pipelines open to the atmosphere; and water is distributed by the force of gravity down the field by: (1) A surface irrigation system (border, basin, furrow, corrugation, wild flooding, etc.) or (2) Sub-surface irrigation pipelines or ditches. Pressure irrigation source is described as irrigation delivered to the farm and/or field in pump or elevation-induced pressure pipelines, and water is distributed across the field by: (1) Sprinkle irrigation (center pivot, linear move, traveling gun, side roll, hand move, big gun, or fixed set sprinklers), or (2) Micro irrigation (drip emitters, continuous tube bubblers, micro spray or micro sprinklers). NRI data do not include Federal lands and are thus excluded from this dataset. The tabular data for drainage were spatially apportioned to the National Land Cover Dataset (NLCD, Kerie Hitt, U.S. Geological Survey, written commun., 2005) and the tabular data for irrigation were spatially apportioned to an enhanced version of the National Land Cover Dataset (NLCDe, Nakagaki and others, 2007). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  16. Effect of Agricultural Practices on Hydrology and Water Chemistry in a Small Irrigated Catchment, Yakima River Basin, Washington

    USGS Publications Warehouse

    McCarthy, Kathleen A.; Johnson, Henry M.

    2009-01-01

    The role of irrigation and artificial drainage in the hydrologic cycle and the transport of solutes in a small agricultural catchment in central Washington's Yakima Valley were explored using hydrologic, chemical, isotopic, age-dating, and mineralogical data from several environmental compartments, including stream water, ground water, overland flow, and streambed pore water. A conceptual understanding of catchment hydrology and solute transport was developed and an inverse end-member mixing analysis was used to further explore the effects of agriculture in this small catchment. The median concentrations of major solutes and nitrates were similar for the single field site and for the catchment outflow site, indicating that the net effects of transport processes for these constituents were similar at both scales. However, concentrations of nutrients were different at the two sites, suggesting that field-scale variations in agricultural practices as well as nearstream and instream biochemical processes are important components of agricultural chemical transformation and transport in this catchment. This work indicates that irrigation coupled with artificial drainage networks may exacerbate the ecological effects of agricultural runoff by increasing direct connectivity between fields and streams and minimizing potentially mitigating effects (denitrification and dilution, for example) of longer subsurface pathways.

  17. Baseflow and stormflow metal fluxes from two small agricultural catchments in the Coastal Plain of the Chesapeake Bay Basin, United States

    USGS Publications Warehouse

    Miller, C.V.; Foster, G.D.; Majedi, B.F.

    2003-01-01

    Annual yields (fluxes per unit area) of Al, Mn, Fe, Ni, Cd, Pb, Zn, Cu, Cr, Co, As and Se were estimated for two small non-tidal stream catchments on the Eastern Shore of the Chesapeake Bay, United States - a poorly drained dissected-upland watershed in the Nanticoke River Basin, and a well-drained feeder tributary in the lower reaches of the Chester River Basin. Both watersheds are dominated by agriculture. A hydrograph-separation technique was used to determine the baseflow and stormflow components of metal yields, thus providing important insights into the effects of hydrology and climate on the transport of metals. Concentrations of suspended-sediment were used as a less-costly proxy of metal concentrations which are generally associated with particles. Results were compared to other studies in Chesapeake Bay and to general trends in metal concentrations across the United States. The study documented a larger than background yield of Zn and Co from the upper Nanticoke River Basin and possibly enriched concentrations of As, Cd and Se from both the upper Nanticoke River and the Chesterville Branch (a tributary of the lower Chester River). The annual yield of total Zn from the Nanticoke River Basin in 1998 was 18,000 g/km2/a, and was two to three times higher than yields reported from comparable river basins in the region. Concentrations of Cd also were high in both basins when compared to crustal concentrations and to other national data, but were within reasonable agreement with other Chesapeake Bay studies. Thus, Cd may be enriched locally either in natural materials or from agriculture.

  18. Hydrocarbon Analysis of Hamersley Basin Deep Drill Cores: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Summons, R. E.; Waldbauer, J. R.; Buick, R.; Dunlop, J. S.; Bonser, L. C.

    2004-12-01

    Characterization of the organic constituents of Precambrian rocks is complicated by serious questions as to the provenance of organic material recovered from such ancient and generally altered deposits. The problem is particularly acute in Archean terranes where the rocks are invariably metamorphosed to some degree. Organic matter indigenous to the original depositional environment of the host sediments can be difficult to distinguish from material that subsequently migrated into the rock from other sources. Further, contamination by ubiquitous petroleum products and derivatives can easily be introduced at any point during sample recovery and preparation. Nevertheless, analysis of the molecular and isotopic signatures of Archean biomarker compounds has the potential to provide key insight into ancient biology and ecology. Several continental drilling efforts in recent years have concentrated on obtaining organic-bearing sedimentary samples of low metamorphic grade from Archean and Paleoproterozoic terranes while minimizing sources of contamination. Experimental techniques have been developed to avoid laboratory contamination and to assess the origins of various types of organic matter. Using ultraclean protocols, and a combination of molecular, isotopic and geologic evidence, confident assessments can be made as to the syngeneity of biomarkers in Archean rocks. We present results of analyses of drill core collected from the Hamersley Basin, Western Australia in the summer of 2004.

  19. Lower Permian Dry Mountain trough, eastern Nevada: preliminary basin analysis

    SciTech Connect

    Schwarz, D.L.; Snyder, W.S.; Spinosa, C.

    1987-08-01

    The Lower Permian Dry Mountain trough (DMT) is one of several basins that developed during the Late Pennsylvanian to Permian along the western edge of the North American continent. A tectonic mechanism has been suggested for the subsidence of the DMT, possibly due to reactivation of the Antler orogenic belt during the waning stages of Ancestral Rocky Mountain deformation. The DMT records marked subsidence with the appearance during the Artinskian (latest Wolfcampian) of a deeper water facies that consists of thin-bedded silty micrites and micritic mudstones rich in radiolarians and sponge spicules, characterized by a relative abundance of ammonoids, and rarer conodonts and Nereites ichnofacies trace fossils. Taxa recovered from a distinctive concretionary horizon at various locations provide an Artinskian datum on which to palinspastically reconstruct the DMT paleogeography. These taxa include ammonoids: Uraloceras, Medlicottia, Marathonites, Crimites, Metalegoceras, properrinitids; and conodonts: Neogondolella bisselli, Sweetognathus whitei, S. behnkeni, and Diplognathodus stevensi. The western margin facies of the DMT consists of Permian Carbon Ridge/Garden Valley Formations. Here, lowermost black Artinskianage euxinic micrites, considered a potential source rock for petroleum generation, are overlain by base-of-slope carbonate apron deposits, which, in turn, are overlain by base-of-slope carbonate apron deposits, which, in turn, are overlain by a thick, eastwardly prograding conglomerate wedge. Seismic profiles across Diamond Valley indicate a 3.0-4.6-km thick Tertiary sequence above the Paleozoic strata.

  20. Preliminary assessment of tree mortality near F- and H-area seepage basins

    SciTech Connect

    Loehle, C; Gladden, J

    1988-01-28

    A preliminary assessment was conducted to evaluate factors that may have been responsible for the vegetation damage that has occurred in groundwater seeps downslope from the F- and H-area seepage basins. The factors that were considered included altered hydrology, toxicity from hazardous chemical constituents associated with seepage basin operation, and toxicity from non-hazardous constituents associated with basin operation. It was concluded that the observed damage was not likely to have resulted from altered hydrologic conditions or hazardous constituents associated with basin operation. Insufficient information is currently available to determine definitively which of the non-hazardous constituents, alone or in concert, were responsible for the observed vegetation damage. The most likely explanation, however, is that elevated Na, pH, and conductivity is outcropping seep water are responsible for tree mortality. All three of these factors will return to ambient levels over a period of several years when basin operation ceases. Faster remediation can be achieved using lime at the seep line.

  1. Estimation of design floods in ungauged catchments using a regional index flood method. A case study of Lake Victoria Basin in Kenya

    NASA Astrophysics Data System (ADS)

    Nobert, Joel; Mugo, Margaret; Gadain, Hussein

    Reliable estimation of flood magnitudes corresponding to required return periods, vital for structural design purposes, is impacted by lack of hydrological data in the study area of Lake Victoria Basin in Kenya. Use of regional information, derived from data at gauged sites and regionalized for use at any location within a homogenous region, would improve the reliability of the design flood estimation. Therefore, the regional index flood method has been applied. Based on data from 14 gauged sites, a delineation of the basin into two homogenous regions was achieved using elevation variation (90-m DEM), spatial annual rainfall pattern and Principal Component Analysis of seasonal rainfall patterns (from 94 rainfall stations). At site annual maximum series were modelled using the Log normal (LN) (3P), Log Logistic Distribution (LLG), Generalized Extreme Value (GEV) and Log Pearson Type 3 (LP3) distributions. The parameters of the distributions were estimated using the method of probability weighted moments. Goodness of fit tests were applied and the GEV was identified as the most appropriate model for each site. Based on the GEV model, flood quantiles were estimated and regional frequency curves derived from the averaged at site growth curves. Using the least squares regression method, relationships were developed between the index flood, which is defined as the Mean Annual Flood (MAF) and catchment characteristics. The relationships indicated area, mean annual rainfall and altitude were the three significant variables that greatly influence the index flood. Thereafter, estimates of flood magnitudes in ungauged catchments within a homogenous region were estimated from the derived equations for index flood and quantiles from the regional curves. These estimates will improve flood risk estimation and to support water management and engineering decisions and actions.

  2. Mass balance and decontamination times of Polycyclic Aromatic Hydrocarbons in rural nested catchments of an early industrialized region (Seine River basin, France).

    PubMed

    Gateuille, David; Evrard, Olivier; Lefevre, Irène; Moreau-Guigon, Elodie; Alliot, Fabrice; Chevreuil, Marc; Mouchel, Jean-Marie

    2014-02-01

    Accumulation of Polycyclic Aromatic Hydrocarbons (PAHs) in soils and their subsequent release in rivers constitute a major environmental and public health problem in industrialized countries. In the Seine River basin (France), some PAHs exceed the target concentrations, and the objectives of good chemical status required by the European Water Framework Directive might not be achieved. This investigation was conducted in an upstream subcatchment where atmospheric fallout (n=42), soil (n=33), river water (n=26) and sediment (n=101) samples were collected during one entire hydrological year. PAH concentrations in atmospheric fallout appeared to vary seasonally and to depend on the distance to urban areas. They varied between 60 ng·L(-1) (in a remote site during autumn) and 2,380 ng·L(-1) (in a built-up area during winter). PAH stocks in soils of the catchment were estimated based on land use, as mean PAH concentrations varied between 110 ng·g(-1) under woodland and 2,120 ng·g(-1) in built-up areas. They ranged from 12 to 220 kg·km(-2). PAH contamination in the aqueous phase of rivers remained homogeneous across the catchment (72 ± 38 ng·L(-1)). In contrast, contamination of suspended solid was heterogeneous depending on hydrological conditions and population density in the drainage area. Moreover, PAH concentrations appeared to be higher in sediment (230-9,210 ng·g(-1)) than in the nearby soils. Annual mass balance calculation conducted at the catchment scale showed that current PAH losses were mainly due to dissipation (biodegradation, photo-oxidation and volatilization) within the catchments (about 80%) whereas exports due to soil erosion and riverine transport appeared to be of minor importance. Based on the calculated fluxes, PAHs appeared to have long decontamination times in soils (40 to 1,850 years) thereby compromising the achievement of legislative targets. Overall, the study highlighted the major role of legacy contamination that supplied the bulk of PAHs that are still found nowadays in the environment. PMID:24176709

  3. Scale-dependence effects of landscape on seasonal water quality in Xitiaoxi catchment of Taihu Basin, China.

    PubMed

    Lv, Huihua; Xu, Youpeng; Han, Longfei; Zhou, Feng

    2015-01-01

    Further understanding the mechanisms of landscape-water interactions is of great importance to water quality management in the Xitiaoxi catchment. Pearson's correlation analysis, stepwise multiple regression and redundancy analysis were adopted in this study to investigate the relation between water quality and landscape at the sub-catchment and 200 m riparian zone scales during dry and wet seasons. Landscape was characterized by natural environmental factors, land use patterns and four selected landscape configuration metrics. The obtained results indicated that land use categories of urban and forest were dominant landscape attributes, which influenced water quality. Natural environment and landscape configuration were overwhelmed due to land management activities and hydrologic conditions. In general, the landscape of the 200 m riparian zone appeared to have slightly greater influence on water than did the sub-catchment, and water quality was slightly better explained by all landscape attributes in the wet season than in the dry season. The results suggested that management efforts aimed at maintaining and restoring river water quality should currently focus on the protection of riparian zones and the development of an updated long-term continuous data set and higher resolution digital maps to discuss the minimum width of the riparian zone necessary to protect water quality. PMID:25607670

  4. The challenges of catchment hydrological modelling in the Himalayan region: a case study from the Dudh Kosi River basin of Eastern Nepal

    NASA Astrophysics Data System (ADS)

    Nepal, Santosh; Bajracharya, Sagar R.; Shea, Joseph; Wahid, Shahriar M.; Shrestha, Arun B.; Flügel, Wolfgang-Albert

    2014-05-01

    Catchment-scale hydrological modelling in the Himalayan region suffers from multiple issues that affect our ability to represent the hydrological dynamics of a river system. Due to a lack of monitoring infrastructure, especially in the high-altitude areas, the spatial distribution of precipitation is essentially unknown. Therefore, the regionalization of precipitation in river basins is a challenging task that has implications in the modelling approach at different levels. This paper explores the uncertainty in modelled discharge using different precipitation input datasets in the glaciated catchment of the Dudh Kosi River basin in Eastern Nepal (3712 km2). The basin hosts some of the world's highest mountain peaks, including Mt Everest. Six precipitation stations, which cover mostly the lowland area of the basin, give a station density of one station per 618 km2. First, we examine precipitation dynamics in the study area based on the observed data. Second, the process-oriented distributed J2000 hydrological model is applied in the Dudh Kosi River basin. Third, the model is run with APHRODITE-(V1003R1), CPC-RFE-(2.0) and TRMM-(V7) precipitation products to compare observed and modelled discharge. Nearly 82% of the precipitation occurs during the monsoon season (June - September), and the limited station observations suggest that there is non-uniform distribution of precipitation in which the underlying topography has a great influence. The maximum precipitation occurred at the station which is located on the middle hills region, followed by the station located at the foothills of the Higher Himalaya. Compared to the observed precipitation, the TRMM product is found to be 7% less than the observed data, whereas the other two products were up to 35% less. The model was applied with the six stations data and the regionalization was carried out using Inverse Distance Weighting (IDW) method to simulate the hydrograph. The model was first applied between 1985-1997 in which the model simulates the hydrograph with a Nash-Sutcliffe efficiency of 0.85, a logarithm Nash-Sutcliffe of 0.93, and a coefficient of determination of 0.85. To apply the model during the recent period (2002-2007) when the rainfall products are available, the model was run with the same parameter sets. With observational inputs, high flows are underestimated for some years between 2002 and 2007. Out of the three products, the TRMM generates a better hydrograph, but Percentage BIAS (PBIAS) is -26%, compared to --17% with observed station data between 2002 and 2007. The APHRODITE and CPC-RFE datasets result in discharges that are underestimated by 47% and 51% respectively. The model results based on the three precipitation products suggest that discharge underestimation is due primarily to precipitation input. The lack of precipitation information brings additional challenges to hydrological modelling in the Himalayan region and future research should focus on precipitation observations and dynamics in high-altitude areas. Key words: Catchment hydrology, Himalayan region, J2000 hydrological model, Precipitation pattern

  5. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Nutrient Inputs from Fertilizer and Manure, Nitrogen and Phosphorus (N&P), 2002

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the total amount of nitrogen and phosphorus, in kilograms for the year 2002, compiled for every MRB_E2RF1 catchment of the Major River Basins (MRBs, Crawford and others, 2006). The source data set is County-Level Estimates of Nutrient Inputs to the Land Surface of the Conterminous United States, 1982-2001 (Ruddy and others, 2006). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  6. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Nutrient Application (Phosphorus and Nitrogen) for Fertilizer and Manure Applied to Crops (Cropsplit), 2002

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the estimated amount of phosphorus and nitrogen fertilizers applied to selected crops for the year 2002, compiled for every MRB_E2RF1 catchment of Major River Basins (MRBs, Crawford and others, 2006). The source data set is based on 2002 fertilizer data (Ruddy and others, 2006) and tabulated by crop type per county (Alexander and others, 2007). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for MRB_E2RF1 catchments for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  7. Preliminary use of compound-specific stable isotope (CSSI) technique to identify and apportion sediment origin in a small Austrian catchment

    NASA Astrophysics Data System (ADS)

    Mabit, Lionel; Gibbs, Max; Chen, Xu; Meusburger, Katrin; Toloza, Arsenio; Resch, Christian; Klik, Andreas; Eder, Alexander; Strauss, Peter; Alewell, Christine

    2015-04-01

    The overall impacts of climate change on agriculture are expected to be negative, threatening global food security. In the agricultural areas of the European Union, water erosion risk is expected to increase by about 80% by the year 2050. Reducing soil erosion and sedimentation-related environmental problems represent a key requirement for mitigating the impact of climate change. A new forensic stable isotope technique, using the compound specific stable isotope (CSSI) signatures of inherent soil organic biomarkers, can discriminate and apportion the source soil contribution from different land uses. Plant communities label the soil where they grow by exuding organic biomarkers. Although all plants produce the same biomarkers, the stable isotopic signature of those biomarkers is different for each plant species. For agri-environmental investigation, the CSSI technique is based on the measurement of carbon-13 (13-C) natural abundance signatures of specific organic compounds such as natural fatty acids (FAs) in the soil. By linking fingerprints of land use to the sediment in deposition zones, this approach has been shown to be a useful technique for determining the source of eroded soil and thereby identifying areas prone to soil degradation. The authors have tested this innovative stable isotopic approach in a small Austrian agricultural catchment located 60 km north of Vienna. A previous fallout radionuclide (i.e. 137-Cs) based investigation established a sedimentation rate of 4 mm/yr in the lowest part of the study site. To gain knowledge about the origin of these sediments, the CSSI technique was then tested using representative samples from the different land-uses of the catchment as source material. Values of 13-C signatures of specific FAs (i.e. C22:0 = Behenic Acid ; C24:0 = Lignoceric Acid) and the bulk 13-C of the sediment mixture and potential landscape sources were analyzed with the mixing models IsoSource and CSSIAR v1.00. Using both mixing models, preliminary results highlighted that about 50-55% of the sediment located in the deposition area originated from the main grassed waterway of the catchment.

  8. Quantifying uncertainty in the impacts of climate change on river discharge in sub-catchments of the Yangtze and Yellow River Basins, China

    NASA Astrophysics Data System (ADS)

    Xu, H.; Taylor, R. G.; Xu, Y.

    2011-01-01

    Quantitative evaluations of the impacts of climate change on water resources are primarily constrained by uncertainty in climate projections from GCMs. In this study we assess uncertainty in the impacts of climate change on river discharge in two catchments of the Yangtze and Yellow River Basins that feature contrasting climate regimes (humid and semi-arid). Specifically we quantify uncertainty associated with GCM structure from a subset of CMIP3 AR4 GCMs (HadCM3, HadGEM1, CCSM3.0, IPSL, ECHAM5, CSIRO, CGCM3.1), SRES emissions scenarios (A1B, A2, B1, B2) and prescribed increases in global mean air temperature (1 °C to 6 °C). Climate projections, applied to semi-distributed hydrological models (SWAT 2005) in both catchments, indicate trends toward warmer and wetter conditions. For prescribed warming scenarios of 1 °C to 6 °C, linear increases in mean annual river discharge, relative to baseline (1961-1990), for the River Xiangxi and River Huangfuchuan are +9% and 11% per +1 °C respectively. Intra-annual changes include increases in flood (Q05) discharges for both rivers as well as a shift in the timing of flood discharges from summer to autumn and a rise (24 to 93%) in dry season (Q95) discharge for the River Xiangxi. Differences in projections of mean annual river discharge between SRES emission scenarios using HadCM3 are comparatively minor for the River Xiangxi (13 to 17% rise from baseline) but substantial (73 to 121%) for the River Huangfuchuan. With one minor exception of a slight (-2%) decrease in river discharge projected using HadGEM1 for the River Xiangxi, mean annual river discharge is projected to increase in both catchments under both the SRES A1B emission scenario and 2° rise in global mean air temperature using all AR4 GCMs on the CMIP3 subset. For the River Xiangxi, there is substantial uncertainty associated with GCM structure in the magnitude of the rise in flood (Q05) discharges (-1 to 41% under SRES A1B and -3 to 41% under 2° global warming) and dry season (Q95) discharges (2 to 55% under SRES A1B and 2 to 39% under 2° global warming). For the River Huangfuchuan, all GCMs project a rise in the Q05 flow but there is substantial uncertainty in the magnitude of this rise (7 to 70% under SRES A1B and 2 to 57% under 2° global warming). Differences in the projected hydrological changes are associated with GCM structure in both catchments exceed uncertainty in emission scenarios. Critically, estimated uncertainty in projections of mean annual flows is less than that calculated for extreme (Q05, Q95) flows. The common approach of reporting of climate change impacts on river in terms of mean annual flows masks the magnitude of uncertainty in flows that are of most importance to water management.

  9. Quantifying uncertainty in the impacts of climate change on river discharge in sub-catchments of the River Yangtze and Yellow Basins, China

    NASA Astrophysics Data System (ADS)

    Xu, H.; Taylor, R. G.; Xu, Y.

    2010-09-01

    Quantitative evaluations of the impacts of climate change on water resources are primarily constrained by uncertainty in climate projections from GCMs. In this study we assess uncertainty in the impacts of climate change on river discharge in two catchments of the River Yangtze and Yellow Basins that feature contrasting climate regimes (humid and semi-arid). Specifically we quantify uncertainty associated with GCM structure from a subset of CMIP3 AR4 GCMs (HadCM3, HadGEM1, CCSM3.0, IPSL, ECHAM5, CSIRO, CGCM3.1), SRES emissions scenarios (A1B, A2, B1, B2) and prescribed increases in global mean air temperature (1 °C to 6 °C). Climate projections, applied to semi-distributed hydrological models (SWAT 2005) in both catchments, indicate trends toward warmer and wetter conditions. For prescribed warming scenarios of 1 °C to 6 °C, linear increases in mean annual river discharge, relative to baseline (1961-1990), for the River Xiangxi and River Huangfuchuan are +9% and 11% per +1 °C, respectively. Intra-annual changes include increases in flood (Q05) discharges for both rivers as well as a shift in the timing of flood discharges from summer to autumn and a rise (24 to 93%) in dry season (Q95) discharge for the River Xiangxi. Differences in projections of mean annual river discharge between SRES emission scenarios using HadCM3 are comparatively minor for the River Xiangxi (13% to 17% rise from baseline) but substantial (73% to 121%) for the River Huangfuchuan. With one minor exception of a slight (-2%) decrease in river discharge projected using HadGEM1 for the River Xiangxi, mean annual river discharge is projected to increase in both catchments under both the SRES A1B emission scenario and 2° rise in global mean air temperature using all AR4 GCMs on the CMIP3 subset. For the River Xiangxi, there is great uncertainty associated with GCM structure in the magnitude of the rise in flood (Q05) discharges (-1% to 41% under SRES A1B and -3% to 41% under 2° global warming) and dry season (Q95) discharges (2% to 55% under SRES A1B and 2% to 39% under 2° global warming). For the River Huangfuchuan, all GCMs project a rise in the Q05 flow but there is substantial uncertainty in the magnitude of this rise (7% to 70% under SRES A1B and 2% to 57% under 2° global warming). Greatest differences in the projected hydrologic changes are associated with GCMs in both catchments than emission scenarios and climate sensitivity. Critically, estimated uncertainty in projections of mean annual flows is less than that calculated for extreme (Q05, Q95) flows. This research suggest that the common approach of reporting of climate change impacts on river in terms of mean annual flows may mask the magnitude of uncertainty in flows of most importance to water managers.

  10. A comparative analysis of groundwater recharge estimates from three major methods: An analysis of subsurface recharge in the Nabogo sub-catchment of the White Volta Basin, Northern Ghana

    NASA Astrophysics Data System (ADS)

    Fynn, O. F.; Yidana, S. M.; Alo, C. A.; Mensah, F. O.

    2013-12-01

    Groundwater recharge in the Nabogo sub-catchment of the White Volta Basin is assessed using three main methods: the water table fluctuations method, baseflow recession method, and chloride mass balance approach. The objective is to quantify the relative proportions of direct vertical infiltration and percolation of rainwater in the area and subsurface flows in determining the total groundwater recharge in the basin. Groundwater resources development for commercial irrigation activities is an essential aspect of the livelihoods of communities living within the catchments of the Volta Basin. A comprehensive assessment of the recharge component of groundwater budgets in the basin is critical towards determining optimal abstraction rates in order to ensure resource sustainability and ecological integrity. This will form the basis for quantifying abstraction rates that are permissible to support large scale irrigation activities in the basin. The presence and thickness of the clay layer in the unsaturated zone serves to limit vertical infiltration of rainwater, and thus reduce vertical groundwater recharge in the area. In this study, the chloride mass balance technique, supported by the analysis of stable isotope signatures, has been used to estimate the vertical groundwater recharge and its spatial pattern of distribution in the area. The water table fluctuations technique and base flow recession method are then used to estimate total groundwater recharge in the basin. It is then possible to quantify the relative contributions of subsurface flows in the groundwater recharge in the basin. Temporal variations in groundwater recharge in the area are examined from time series of estimates from the baseflow recession technique. The results will assist in assessing the short term impacts of rainfall variability on groundwater budgets in the area.

  11. Long-term integrated river basin planning and management of water quantity and water quality in mining impacted catchments

    NASA Astrophysics Data System (ADS)

    Pohle, Ina; Zimmermann, Kai; Claus, Thomas; Koch, Hagen; Gädeke, Anne; Uhlmann, Wilfried; Kaltofen, Michael; Müller, Fabian; Redetzky, Michael; Schramm, Martina; Schoenheinz, Dagmar; Grünewald, Uwe

    2015-04-01

    During the last decades, socioeconomic change in the catchment of the Spree River, a tributary of the Elbe, has been to a large extent associated with lignite mining activities and the rapid decrease of these activities in the 1990s. There are multiple interconnections between lignite mining and water management both in terms of water quantity and quality. During the active mining period a large-scale groundwater depression cone has been formed while river discharges have been artificially increased. Now, the decommissioned opencast mines are being transformed into Europe's largest man-made lake district. However, acid mine drainage causes low pH in post mining lakes and high concentrations of iron and sulphate in post mining lakes and the river system. Next to potential changes in mining activities, also the potential impacts of climate change (increasing temperature and decreasing precipitation) on water resources of the region are of major interest. The fundamental question is to what extent problems in terms of water quantity and water quality are exacerbated and whether they can be mitigated by adaptation measures. In consequence, long term water resource planning in the region has to formulate adaptation measures to climate change and socioeconomic change in terms of mining activities which consider both, water quantity and water quality aspects. To assess potential impacts of climate and socioeconomic change on water quantity and water quality of the Spree River catchment up to the Spremberg reservoir in the scenario period up to 2052, we used a model chain which consists of (i) the regional climate model STAR (scenarios with a further increase in temperature of 0 and 2 K), (ii) mining scenarios (mining discharges, cooling water consumption of thermal power plants), (iii) the ecohydrological model SWIM (natural water balance), (iv) the long term water management model WBalMo (managed discharges, withdrawal of water users, reservoir operation) and (v) the water quality model GGM (mining related water quality parameters of lakes and river reaches). Based on the STAR 0K scenario, only minor changes in the natural water balance are simulated, while managed discharges slightly decrease due to declining mining discharges. In the STAR 2K scenario natural and managed discharges decrease resulting in negative consequences on reservoir volumes and on water availability to the users. Additionally, the risk of a re-acidification of mining lakes and increasing sulphate and iron concentrations is much higher in the STAR 2K scenario than in the STAR 0K scenario. In order to compensate for negative impacts on water quantity and water quality, adaptation measures were analysed. While water transfers from the River Elbe into the study region showed positive impacts on both, water quantity and water quality, potentially negative impacts on water quality can also be compensated by technical measures (e.g. in-lake-neutralisation of mining lakes).

  12. Preliminary hydrologic budget studies, Indian Creek watershed and vicinity, Western Paradox Basin, Utah

    SciTech Connect

    Thackston, J.W.; Mangarella, P.A.; Preslo, L.M.

    1986-05-01

    Preliminary quantitative estimates of ground-water discharge into the Colorado River System in the western Paradox Basin were prepared on the basis of existing climatological and streamflow records. Ground-water outflow to the river was deduced as a residual from hydrologic budget equations for two different study areas: (1) the region between gaging stations at Cisco, Green River, and Hite, Utah; and (2) the Indian Creek watershed. An empirical correlation between recharge rates and precipitation amounts derived for several basins in eastern Nevada was applied to estimate recharge amounts for the Indian Creek watershed. A simple Darcian flow model was then used to approximate the ground-water flux outward from the watershed for comparison. Salinity measurements in the Colorado River were also used to approximate ground-water outflow to a river reach in Cataract Canyon in order to provide another comparison with the hydrologic budget results. Although these estimates should be considered only gross approximations, all approaches used provide values of ground-water outflow that are much less than estimates of similar parameters provided by the US Geological Survey in recent hydrologic reconnaissance reports. Estimates contained herein will be refined in future numerical modeling and data collection studies.

  13. Preliminary Simulations of CO2 Transport in the Dolostone Formations in the Ordos Basin, China

    SciTech Connect

    Hao, Y; Wolery, T; Carroll, S

    2009-04-30

    This report summarizes preliminary 2-D reactive-transport simulations on the injection, storage and transport of supercritical CO{sub 2} in dolostone formations in the Ordos Basin in China. The purpose of the simulations was to evaluate the role that basin heterogeneity, permeability, CO{sub 2} flux, and geochemical reactions between the carbonate geology and the CO{sub 2} equilibrated brines have on the evolution of porosity and permeability in the storage reservoir. The 2-D simulation of CO{sub 2} injection at 10{sup 3} ton/year corresponds to CO{sub 2} injection at a rate of 3 x 10{sup 5} ton/year in a 3-D, low permeable rock. An average permeability of 10 md was used in the simulation and reflects the upper range of permeability reported for the Ordos Basin Majiagou Group. Transport and distribution of CO{sub 2} between in the gas, aqueous, and solid phases were followed during a 10-year injection phase and a 10-year post injection phase. Our results show that CO{sub 2} flux and the spatial distribution of reservoir permeability will dictate the transport of CO{sub 2} in the injection and post injection phases. The injection rate of supercritical CO{sub 2} into low permeable reservoirs may need to be adjusted to avoid over pressure and mechanical damage to the reservoir. Although it should be noted that 3-D simulations are needed to more accurately model pressure build-up in the injection phase. There is negligible change in porosity and permeability due to carbonate mineral dissolution or anhydrite precipitation because a very small amount of carbonate dissolution is required to reach equilibrium with respect these phases. Injected CO{sub 2} is stored largely in supercritical and dissolved phases. During the injection phase, CO{sub 2} is transport driven by pressure build up and CO{sub 2} buoyancy.

  14. Video monitoring in the Gadria debris flow catchment: preliminary results of large scale particle image velocimetry (LSPIV)

    NASA Astrophysics Data System (ADS)

    Theule, Joshua; Crema, Stefano; Comiti, Francesco; Cavalli, Marco; Marchi, Lorenzo

    2015-04-01

    Large scale particle image velocimetry (LSPIV) is a technique mostly used in rivers to measure two dimensional velocities from high resolution images at high frame rates. This technique still needs to be thoroughly explored in the field of debris flow studies. The Gadria debris flow monitoring catchment in Val Venosta (Italian Alps) has been equipped with four MOBOTIX M12 video cameras. Two cameras are located in a sediment trap located close to the alluvial fan apex, one looking upstream and the other looking down and more perpendicular to the flow. The third camera is in the next reach upstream from the sediment trap at a closer proximity to the flow. These three cameras are connected to a field shelter equipped with power supply and a server collecting all the monitoring data. The fourth camera is located in an active gully, the camera is activated by a rain gauge when there is one minute of rainfall. Before LSPIV can be used, the highly distorted images need to be corrected and accurate reference points need to be made. We decided to use IMGRAFT (an opensource image georectification toolbox) which can correct distorted images using reference points and camera location, and then finally rectifies the batch of images onto a DEM grid (or the DEM grid onto the image coordinates). With the orthorectified images, we used the freeware Fudaa-LSPIV (developed by EDF, IRSTEA, and DeltaCAD Company) to generate the LSPIV calculations of the flow events. Calculated velocities can easily be checked manually because of the already orthorectified images. During the monitoring program (since 2011) we recorded three debris flow events at the sediment trap area (each with very different surge dynamics). The camera in the gully was in operation in 2014 which managed to record granular flows and rockfalls, which particle tracking may be more appropriate for velocity measurements. The four cameras allows us to explore the limitations of camera distance, angle, frame rate, and image quality.

  15. Congo Basin Streamflow characterization using multi-source satellite-derived data: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Munzimi, Y.; Hansen, M. C.; Asante, K. O.

    2010-12-01

    The Congo Basin in Central Africa has the second largest discharge of any river system, second only to the Amazon Basin. As such, it is considered a potential and strategic asset for supplying not only fresh water but also clean energy through hydropower generation. However, very little of Congo River Basin hydrology is known. Indeed, the basin hydrometeorological network is deteriorating and has a small number of gauges unevenly distributed throughout the Congo watershed. In such cases where in situ data are scarce, remote sensing can be used to quantify rainfall pattern and river flow regime. In default of contributing to quantification exercises, limited ground data available can be used for validation work. To better understand hydrological processes in the Congo River Basin, a 2009 NASA funded project entitled “Hydrological Response to Land Cover and Land Use Change in the Congo Basin” exploits remote sensing capabilities coupled with large scale hydrological modeling. Temporal and terrestrial satellite-based data are ingested into the USGS Geospatial Streamflow Model (GeoSFM) for daily flow generation. The reliance on remotely sensed data to replace or supplement ground data for this hydrological application necessitates rigorous validation of these products. As TRMM Satellite rainfall estimates are being used in this study in place of gauge observations, ground precipitation data reported in existing nationally-held datasets from 33 meteorological stations are used for validation purposes. Initial research on the Congo Basin compared streamflow estimated with GeoSFM against available current and historical streamflow data. While initial results were promising, some discrepancies were revealed, attributed to the accuracy of the input data and the non-calibration of the model. A key finding was that the existing parameterization of land cover using coarse resolution data is inadequate to accurately characterize rainfall-runoff processes in the Congo. As part of the NASA project, the important question of improving the agreement between modeled flows from satellite-derived data and observed flow data from hydrometric field stations is addressed. To evaluate the GeoSFM performance, the model is run using coarse resolution (Land Cover Land Use) LCLU and DEM inputs and then using improved region-specific high spatial resolution inputs. Intercomparisons are made to evaluate improvement to streamflow characterization based on improved input data. Improved streamflow is a key for establishing the setting for a high-performance calibration process for the Congo. Changing the parameter values used in the model until a satisfactory agreement between simulated and the recorded variables is obtained is an integral part of modeling. However, in order to produce realistic parameters values and a sufficiently calibrated model, the calibration requires the finest baseline simulated streamflow data possible. A poster will present our preliminary results.

  16. Restoring the Mississippi River Basin from the Catchment to the Coast Defines Science and Policy Issues of Ecosystem Services Associated with Alluvial and Coastal Deltaic Floodplains: Soil Conservation, Nutrient Reduction, Carbon Sequestration, and Flood Control

    NASA Astrophysics Data System (ADS)

    Twilley, R.

    2014-12-01

    Large river systems are major economic engines that provide national economic wealth in transporting commerce and providing extensive agriculture production, and their coastal deltas are sites of significant ports, energy resources and fisheries. These coupled natural and social systems from the catchment to the coast depend on how national policies manage the river basins that they depend. The fundamental principle of the Mississippi River Basin, as in all basins, is to capitalize on the ability of fertile soil that moves from erosional regions of a large watershed, through downstream regions of the catchment where sediment transport and storage builds extensive floodplains, to the coastal region of deposition where deltas capture sediment and nutrients before exported to the oceans. The fate of soil, and the ability of that soil to do work, supports the goods and services along its path from the catchment to the coast in all large river basin and delta systems. Sediment is the commodity of all large river basin systems that together with the seasonal pulse of floods across the interior of continents provide access to the sea forming the assets that civilization and economic engines have tapped to build national and global wealth. Coastal landscapes represent some of the most altered ecosystems worldwide and often integrate the effects of processes over their entire catchment, requiring systemic solutions to achieve restoration goals from alluvial floodplains upstream to coastal deltaic floodplains downstream. The urgent need for wetland rehabilitation at landscape scales has been initiated through major floodplain reclamation and hydrologic diversions to reconnect the river with wetland processes. But the constraints of sediment delivery and nutrient enrichment represent some critical conflicts in earth surface processes that limit the ability to design 'self sustaining' public work projects; particularly with the challenges of accelerated sea level rise. Only through rethinking how we manage the Mississippi River not only to provide for navigation and flood control, but also as the critical source of sediments to stabilize degrading wetlands, will restoration be realized in a 100-year project cycle.

  17. Preliminary study on soil to rock spectral ratio method of microtremor measurement in Taipei Basin, Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, Jyun Yan; Wen, Kuo Liang; Te Chen, Chun; Chang, Shun Chiang

    2014-05-01

    Taipei city is the capital of Taiwan which located in Taipei basin and covered with hundreds meter of alluvial layer that might cause serious damage during huge earthquake. Prediction of possible strong motion levels occurred in the basin then became popular. Engineers most like to use Ground Motion Prediction Equation (GMPEs) as common tool for seismic hazard calculation but GMPEs were usually debated that it can only give one prediction value (PGA, PGV, Sa etc.) rather than time history or spectrum. Seismologists tried theoretical simulation (1D, 2D, 3D method) but could only give low frequency (usually less than 1 Hz) results restricted to that the shallow structures were not clear enough. Resent years, wide frequency simulation techniques such as empirical green's function added stochastic simulation method (hybrid method) were applied to several different purposes but site effect still plays an important role that need to be considered. Traditionally soil to rock spectral ratio of shear wave (denoted as S/R) was widely applied to check basin effect for decades but the technique needs lots of permanent stations and several years to get enough records. If some site located within strong motion network but not close enough to the strong motion stations, interpolate or extrapolate results needed to be used. Wen and Huang (2012) conducted a dense microtremor measurement network in whole Taiwan and applied microtremor H/V to discuss dominant frequency with traditional transfer functions from earthquake shear wave and found good agreement between them. Furthermore, in this study, the ability of soil to rock spectral ratio of microtremor (denoted as MS/R) measurement was tested in Taipei basin. The preliminary results showed MS/R had good agreement with S/R between 0.2 to 5 Hz. And distance from soil site to reference rock site should no greater than 8 to 10 km base on degree of spectrum difference (DSPD) calculation. If the MS/R works that site effect study from this technique could be applied for some region which distribution of strong motion stations were not dense enough after all.

  18. A preliminary assessment of the spatial sources of contemporary suspended sediment in the Ohio River basin, United States, using water quality data from the NASQAN programme in a source tracing procedure

    USGS Publications Warehouse

    Zhang, Y.-S.; Collins, A.L.; Horowitz, A.J.

    2012-01-01

    Reliable information on catchment scale suspended sediment sources is required to inform the design of management strategies for helping abate the numerous environmental issues associated with enhanced sediment mobilization and off-site loadings. Since sediment fingerprinting techniques avoid many of the logistical constraints associated with using more traditional indirect measurement methods at catchment scale, such approaches have been increasingly reported in the international literature and typically use data sets collected specifically for sediment source apportionment purposes. There remains scope for investigating the potential for using geochemical data sets assembled by routine monitoring programmes to fingerprint sediment provenance. In the United States, routine water quality samples are collected as part of the US Geological Survey's revised National Stream Quality Accounting Network programme. Accordingly, the geochemistry data generated from these samples over a 10-year period (1996-2006) were used as the basis for a fingerprinting exercise to assess the key tributary sub-catchment spatial sources of contemporary suspended sediment transported by the Ohio River. Uncertainty associated with the spatial source estimates was quantified using a Monte Carlo approach in conjunction with mass balance modelling. Relative frequency weighted means were used as an alternative way of summarizing the spatial source contributions, thereby avoiding the need to use confidence limits. The results should be interpreted in the context of the routine, but infrequent nature, of the suspended sediment samples used to assemble geochemistry as a basis for the sourcing exercise. Nonetheless, the study demonstrates how routine monitoring samples can be used to provide some preliminary information on sediment provenance in large drainage basins. ?? 2011 John Wiley & Sons, Ltd.

  19. Impact of altitudinal variability on streamflows in mountainous catchments under changing climate (Upper Indus Basin), Himalayas Pakistan

    NASA Astrophysics Data System (ADS)

    Khan, K. M.; Yaseen, M.

    2014-12-01

    Pakistan's economy is based on agriculture that is highly dependent on water resources originating in the mountain sources of the Upper Indus Basin (UIB). Various rivers i.e. Chitral, Swat, Kabul, Hunza, Gilgit, Astore, Shigar, Shyok & tributaries contribute water to main Indus River. The elevation of UIB ranges from 254 m to 8570 m a.m.s.l. Changes in climate and related hydrological impacts vary in space and time as affected by local climatic and topographic settings. So, the objective of this study was to assess the climate change and related hydrological impacts resulting from altitudinal variability. Trend analyses were performed by applying Mann-Kendall and Sen's method was applied to estimate slope time series that indicates changes in river flows. The results of this study indicate that maximum temperature in annual, winter, spring and autumn seasons has increased with increased in altitude while annual, winter and autumn minimum temperature has decreased with increased in altitude for the period (1961-2011). Moreover, annual, winter, summer and autumn precipitation has been decreased. The impact of altitudinal variability under changing climate yields that annual and seasonal streamflows in River Indus (at Kharmong, Alam Br. and Khairabad), Sawat (at Kalam) and Kabul (at Nowshera) have decreased whereas in River Shoyk (9%), Shigar (7%) and Indus at Kachura (5%) have been increased. However, annual runoff in Gilgit (1%) and Hunza River (18%) has increased by increasing 2 % annual temperature. A seasonal correlation coefficient between temperature and streamflow has the positive correlation in most of the sub-basins of UIB for both spring and summer. With increased 1 oC temperature in spring yields increased streamflow for rives Gilgit, Chitral, Astore, Shoyk, Shigar, Indus at Kachura & Kharmong and Hunza with percentage of 19, 5, 11, 15, 9, 7, 1 and 12 respectively. The prevailing trends and variability, caused by climate change, have an effect on the flows that should be considered by the water managers for better water management in a water scarcity country like Pakistan. On the basis of collected real time data, an awareness regarding present Integrated Water Management (IWM) working with up-to-date techniques is recommended for effective water on-going reform process.

  20. Statistical downscaling and projection of future temperature and precipitation change in middle catchment of Sutlej River Basin, India

    NASA Astrophysics Data System (ADS)

    Singh, Dharmaveer; Jain, Sanjay K.; Gupta, R. D.

    2015-06-01

    Ensembles of two Global Climate Models (GCMs), CGCM3 and HadCM3, are used to project future maximum temperature ( T Max), minimum temperature ( T Min) and precipitation in a part of Sutlej River Basin, northwestern Himalayan region, India. Large scale atmospheric variables of CGCM3 and HadCM3 under different emission scenarios and the National Centre for Environmental Prediction/National Centre for Atmospheric Research reanalysis datasets are downscaled using Statistical Downscaling Model (SDSM). Variability and changes in T Max, T Min and precipitation under scenarios A1B and A2 of CGCM3 model and A2 and B2 of HadCM3 model are presented for future periods: 2020s, 2050s and 2080s. The study reveals rise in annual average T Max, T Min and precipitation under scenarios A1B and A2 for CGCM3 model as well as under A2 and B2 scenarios for HadCM3 model in 2020s, 2050s and 2080s. Increase in mean monthly T Min is also observed for all months of the year under all scenarios of both the models. This is followed by decrease in T Max during June, July August and September. However, the model projects rise in precipitation in months of July, August and September under A1B and A2 scenarios of CGCM3 model and A2 and B2 of HadCM3 model for future periods.

  1. Constraining back-arc basin formation in the eastern Coral Sea: preliminary results from the ECOSAT voyage

    NASA Astrophysics Data System (ADS)

    Seton, M.; Williams, S.; Mortimer, N. N.; Meffre, S.; Moore, J.; Micklethwaite, S.; Zahirovic, S.

    2013-12-01

    The eastern Coral Sea region is an underexplored area at the northeastern corner of the Australian plate, where long-lived interaction between the Pacific and Australian plate boundaries has resulted in an intricate assemblage of deep oceanic basins and ridges, continental fragments and volcanic products. A paucity of marine geophysical and geological data from this complex region has resulted in the lack of a clear conceptual framework to describe its formation, ultimately affecting our understanding of the connection between the plate boundaries of the SW Pacific and SE Asia. In particular, the tectonic relationship between two back-arc basins, the Santa Cruz and d'Entrecasteaux Basins, and the South Rennell Trough, has yet to be resolved. In October-November, 2012, we collected 6,200 km of marine magnetic, 6,800 km of gravity and over 13,600 km2 of swath bathymetry data from the eastern Coral Sea onboard the RV Southern Surveyor. A complementary dredging program yielded useful samples from 14 seafloor sites. Our preliminary geochemical interpretation of the dredge samples obtained from the South Rennell Trough reveal volcanic rocks resembling MORB or BABB-type basalts, similar in composition to the recently re-analysed and dated ORSTOM dredges from the area that yielded ~28 Ma MORB-like basalts. Swath bathymetry profiles from the Santa Cruz Basin reveal that the South Rennell Trough extends into this basin, with seafloor spreading fabric being parallel to the trough. Preliminary analysis of the three full and four partial new magnetic anomaly profiles across the Santa Cruz Basin, coupled with limited existing profiles, reveals that the basin may have formed between Chrons 13-18 (~32-38 Ma), with an extinct spreading ridge along the inferred continuation of the South Rennell Trough, consistent with ORSTOM age dates. Our results suggest that the South Rennell Trough is an extinct southwestward propagating spreading ridge, which may have initiated along a pre-existing zone of weakness. A preliminary interpretation of the 4 magnetic profiles collected in the d'Entrecasteaux Basin and existing profiles of seafloor fabric shows that this basin does not share a common seafloor spreading history with the Santa Cruz Basin, as has been suggested previously. Our preliminary interpretation of the relationship between the Santa Cruz Basin, South Rennell Trough and d'Entrecasteaux Basin requires a re-interpretation of existing models of the SW Pacific to take into account a southwestward propagating spreading ridge between 38-32 Ma, contemporaneous with seafloor spreading further south in the North Loyalty Basin. Further work on age-dating and geochemical analysis of the newly collected dredge samples and an in-depth analysis of the magnetic anomalies in the d'Entrecasteaux Basin may further yield important information concerning the tectonic evolution of the area.

  2. Preliminary seismicity and focal mechanisms for the southern Great Basin of Nevada and California: January 1992 through September 1992

    SciTech Connect

    Harmsen, S.C.

    1994-06-01

    The telemetered southern Great Basin seismic network (SGBSN) is operated for the Department of Energy`s Yucca Mountain Project (YMP). The US Geological Survey, Branch of Earthquake and Landslide Hazards, maintained this network until September 30, 1992, at which time all operational and analysis responsibilities were transferred to the University of Nevada at Reno Seismological Laboratory (UNRSL). This report contains preliminary earthquake and chemical explosion hypocenter listings and preliminary earthquake focal mechanism solutions for USGS/SGBSN data for the period January 1, 1992 through September 30, 1992, 15:00 UTC.

  3. Preliminary study on the radiological and physicochemical quality of the Umgeni Water catchments and drinking water sources in KwaZulu-Natal, South Africa.

    PubMed

    Manickum, T; John, W; Terry, S; Hodgson, K

    2014-11-01

    Raw and potable water sample sources, from the Umgeni Water catchment areas (rivers, dams, boreholes) in central KwaZulu-Natal (South Africa), were screened for Uranium concentration and alpha and beta radioactivity. Test methods used were gas flow proportional counting for alpha-beta radioactivity, and kinetic phosphorescence analysis (KPA), for Uranium. The uranium levels (median = 0.525 ?g/L, range = <0.050-5.010) were well below the international World Health Organization (WHO) (2011) guideline for drinking-water quality (?15 ?g/L). The corresponding alpha and beta radioactivity was ?0.5 Bq/L (median = 0.084, Interquartile Range (IR) = 0.038, range = 0.018-0.094), and ?1.0 Bq/L (median = 0.114, IR = 0.096, range = 0.024-0.734), respectively, in compliance with the international WHO limits. For uranium radionuclide, the average dose level, at uranium level of ±0.525 ?g/L, was 0.06 ?Sv/a, which complies with the WHO reference dose level for drinking water (<0.1 mSv/a). There was a distinct trend of cluster of relatively higher Uranium levels of some sources that were found to be associated with the geology/geography and groundwater sources. Overall, the radiological water quality classification, with respect to WHO, is "Blue" - ideal; additional physicochemical analyses indicated good water quality. The analytical test methods employed were found to be suitable for preliminary screening for potential radioactive "hot spots". The observed Uranium levels, and the alpha/beta radioactivity, indicate contribution largely from Naturally Occurring Radioactive Material (NORM), with no significant health risk to humans, or to the environment. PMID:25151527

  4. Preliminary Crater Retention Ages for an Expanded Inventory of Large Lunar Basins

    NASA Technical Reports Server (NTRS)

    Frey, H. V.

    2012-01-01

    Based on LOLA topography and a new crustal thickness model, the number of candidate lunar basins greater than 300 km in diameter is at least a factor 2 larger than the traditional number based on photogeology alone, and may be as high as 95. Preliminary N(50) crater retention ages for this population of candidate basins shows two distinct peaks. Frey [1] suggested, based on Clementine-era topography (ULCN2005) and a crustal thickness model based on Lunar Prospector data [2], that there could be as many as 98 lunar basins greater than 300 km diameter. Many of the weaker cases have not stood up to recent testing [3,4,5] using LOLA data and a newer crustal thickness model based on Kaguya gravity data and LOLA topography data [6]. As described in companion abstracts [4,5], we have deleted from the earlier inventory 1 more named feature (Sikorsky- Rittenhouse; LOLA data show that its diameter is actually less than 300 km), 11 Quasi-Circular Depressions (QCDs) identified in the ULCN topography, and 11 Circular Thin Areas (CTAs) found in the earlier crustal thickness model [2]. We did this by repeating the scoring exercise originally done in [1] but with the new data [4,5]. Topographic Expression (TE) and Crustal Thickness Expression (CTE) scores were determined for each candidate on a scale of 0 to 5 (5 being a strong, circular signature, 0 for those with no discernible circular topographic or crustal thickness signature). These scores are added together to produce a Summary Score which has a range of 0 to 10. We eliminated all candidates with a Summary Score less than 3, as well as other cases where, for example, the TE went to zero because what looked like a single large circular QCD in the lower resolution ULCN data was in fact a cluster of smaller deep impacts readily apparent in the newer higher resolution LOLA data. This process reduced the original inventory from 98 to 75 candidates.

  5. Tool for defining catchment similarity matrix

    NASA Astrophysics Data System (ADS)

    Singh, Shailesh Kumar; McMillan, Hilary; Bárdossy, András; Fateh, Chebana

    2014-05-01

    It is important to classify catchments for many reasons, for example, for prediction in ungauged basins, model parameterization and watershed development. There have been many studies on catchment classification, but no silver bullet exists for choosing the most relevant measure of catchment similarity. The aim of this study is to explore a new measure of similarity among catchments, using a data depth function. We used a similarity measure called "Depth-Depth plot" (DD-plot) which measures similarity in the catchment flow dynamics in multiple dimension. The area under the convex hull of DD-plot can be used as similarity matrix to any clustering technique. In this study we used Affinity propagation (AP) clustering algorithm for grouping the similar catchments. Catchment classifications based on flow and physical characteristics were compared. We evaluate whether the similarity based on depth-depth plots provides a better basis for transferring parameter sets of a hydrological model between catchments. We used a case study of 21 catchments located in the Bay of Plenty region in the North Island of New Zealand. The catchments have a wide range of topographic properties, response behaviours and geological features. The TopNet hydrological model was calibrated for all the catchments and the transferability of model parameters among the similar catchments was tested by transferring the parameters from within the cluster group and outside the group. The results of parameter transferred with in group based on Nash-Sutcliffe coefficient are promising. Results also show that clustering based on our proposed depth-depth measure, catchment characteristics, flow, and flow indices are different. The catchment classification of this study can be used to improve regional flood forecasting capabilities.

  6. Preliminary report on coal pile, coal pile runoff basins, and ash basins at the Savannah River Site: effects on groundwater

    SciTech Connect

    Palmer, E.

    1997-04-28

    Coal storage piles, their associated coal pile runoff basins and ash basins could potentially have adverse environmental impacts, especially on groundwater. This report presents and summarizes SRS groundwater and soil data that have been compiled. Also, a result of research conducted on the subject topics, discussions from noted experts in the field are cited. Recommendations are made for additional monitor wells to be installed and site assessments to be conducted.

  7. Inferring the effect of catchment complexity on mesoscale hydrologic response

    NASA Astrophysics Data System (ADS)

    FröHlich, Holger L.; Breuer, Lutz; Vaché, Kellie B.; Frede, Hans-Georg

    2008-09-01

    The effect of catchment complexity on hydrologic and hydrochemical catchment response was characterized in the mesoscale Dill catchment (692 km2), Germany. This analysis was developed using multivariate daily stream concentration and discharge data at the basin outlet, in connection with less frequently sampled catchment-wide end-member chemistries. The link between catchment-wide runoff sources and basin output was observed through a combination of concentration-discharge (C-Q) analysis and multivariate end-member projection. Subsurface stormflow, various groundwater and wastewater sources, as well as urban surface runoff emerged in catchment output chemistry. Despite the identification of multiple sources, several runoff sources observed within the catchment failed to display consistent links with the output chemistry. This failure to associate known source chemistry with outlet chemistry may have resulted from a lack of hydraulic connectivity between sources and basin outlet, from different arrival times of subbasin-scale runoff contributions, and also from an overlap of source chemistries that subsumed discrete runoff sources in catchment output. This combination of catchment heterogeneity and complexity simply suggests that the internal spatial organization of the catchment impeded the application of lumped mixing calculations at the 692 km2 outlet. Given these challenges, we suggest that in mesoscale catchment research, the potential effects of spatial organization should be included in any interpretation of highly integrated response signals, or when using those signals to evaluate numerical rainfall-runoff models.

  8. Human impact variability on soil erosion during the Holocene based on valley floor sediments study in a Parisian basin fluvial catchment (France): crossing sedimentological, archaeological and palynological proxies

    NASA Astrophysics Data System (ADS)

    Morin, E.; Cyprien, A. L.; Gay-Ovejero, I.; Hinschberger, F.; Joly, C.; Macaire, J. J.; Poirier, N.; Visset, L.; Zadora-Rio, E.

    2009-04-01

    This work is part of the French CNRS ECLIPSE program « Impact anthropique sur l'érosion des sols et la sédimentation dans les zones humides associées durant l'Holocène ». It aims to reconstitute the evolution of human impact on soil erosion at various periods via the study of Holocene sedimentary archives. In this framework the Choisille catchment (288 km²; elevation: 50 - 200 m), tributary of the River Loire near Tours (France), has been the subject of an interdisciplinary study (sedimentology, geophysics, archaeology, palynology). 3 areas are investigated: a downstream stretch, a silicated sub-catchment area and a carbonated sub-catchment area. In the downstream stretch, located near ancient populated areas, drillings were performed along cross sections through valley floor alluviums. They show that a more or less organic clayey silty sedimentation started at the beginning of the Holocene. The sedimentation rates strongly increased at the beginning of the Subbatlantic (Bronze Age), simultaneously with the anthropogenic pressure advent (on set of agriculture), as shown by archaeological and palynological evidences (agricultural settlements, massive loggings on slopes, stockbreeding on valley-floor grasslands). In the silicated sub-catchment area, located upstream, drillings have shown that clayey silty sedimentation began at the end of the Roman Period, continued during the Early Middle Ages and increased during the High Middle Ages. Spatial archaeological prospecting has revealed a faint anthropogenic presence at the Roman Period, then a decline of population until the High Middle Ages, characterised by an agricultural revival. Palynological analyses have shown that, in this area, grasslands were dominant since the Early Middle Ages, with an increase in cereal cultures at the beginning of the High Middle Ages. In the carbonated sub-catchment area, drillings have shown that the more or less organic clayey silty sedimentation has begun during the Bronze Age. Sedimentation rates have increased during the Modern era and the Contemporary history. The high fine sediment storage appeared and evolved differently, depending on the considered period and catchment valley area, due to variation of soil erosion. The difference between a fine, early and regularly increasing sedimentation in the downstream site and the later, intense and non-univocal sedimentation in the sub-catchments doesn't seem to be strictly resulting from natural factors. This idea and the palaeoenvironnemental dataset show that the fine sedimentation basically results from an anthropogenic impact, notably in the sub-catchments. Therefore soil exploitation by humans seems to be the main sedimentary production factor. This work mainly shows that anthropogenic impact (age of appearance, intensity) highly varies spatially, even into a little catchment. This variability would be led by the agricultural potential of the considered catchment valley area.

  9. Terrasar-X Insar Processing in Northern Bohemian Coal Basin Using Corner Reflectors (preliminary Results)

    NASA Astrophysics Data System (ADS)

    Hlavá?ová, I.; Halounová, L.; Svobodová, K.

    2012-07-01

    The area of Northern Bohemian coal basin is rich in brown coal. Part of it is undermined, but large areas were mined using open-pit mines. There are numerous reclaimed waste dumps here, with a horse racetrack, roads and in some cases also houses. However, on most of the waste dumps, there are forests, meadows and fields. Above the coal basin, there are the Ore mountains which are suspected to be sliding down to the open mines below them. We installed 11 corner reflectors in the area and monitor them using the TerraSAR-X satellite. One of the reflectors is situated in the area of radar layover, therefore it cannot be processed. We present preliminary results of monitoring the remaining corner reflectors, with the use of 7 TerraSAR-X scenes acquired between June and December 2011. We process whole scene crops, as well as the artificial reflector information alone. Our scene set contains interferometric pairs with perpendicular baselines reaching from 0 to 150 m. Such a configuration allows us to distinguish deformations from DEM errors, which are usual when the SRTM (Shuttle Radar Topography Mission) DEM (X-band) is used for Stripmap data. Unfortunately, most of the area of interest is decorrelated due to vegetation that covers both the Ore mountains and the reclaimed waste dumps. We had to enlarge the scene crop in order to be able to distinguish deformations from the atmospheric delay. We are still not certain about the stability of some regions. For the installed artificial reflectors, the expected deformations are in the order of mm/year. Generally, deformations in the area of interest may reach up to about 5 cm/year for the Erv?nice corridor (a road and railway built on a waste dump). When processing artificial corner reflector information alone, we check triangular sums and perform the processing for all possible point combinations - and that allows us to correct for some unwrapping errors. However, the problem is highly ambiguous.

  10. Preliminary Measurements Of N2O Partial Pressures In Rivers of Amazon Basin, Brazil

    NASA Astrophysics Data System (ADS)

    Oliveira, C. B.; Rasera, M. F.; Krusche, A. V.; Victoria, R. L.; Richey, J. E.; Cunha, H. B.; Gomes, B. M.

    2006-12-01

    The concentrations of nitrous oxide (N2O), an important component of the greenhouse effect and with a long residence time in the atmosphere, have significantly increased in this century. The reasons for this atmospheric increase in N2O are still partially unexplained. This uncertainty is worse in relation to aquatic environments. Here we report on preliminary measurements of N2O partial pressures in rivers of the Amazon basin. The study areas are in the state of Rondonia (rivers Ji Parana, Urupa, Comemoracao and Pimenta Bueno) and Amazonas (rivers Solimoes and Negro). The rivers were sampled from October 2005 to April 2006, using with immersion pumps, lowered in the middle of the channel to 60% of total depth. Water was pumped directly into a 1 l plastic bottle, which was overflown three times before closing. Using syringes, 60 ml of N2 were injected into the bottle, simultaenously to the withdrawn of 60 ml of sample. N2O was extracted into these 60 ml of N2 by shaking vigorously for 2 minutes. With the same syringes, the gas was taken from the bottles and injected into sealed evacuated 25 ml vials. Atmospheric samples were taken from one meter above the water column and stored the same way. N2O partial pressures were determined on a Shimadzu GC-14 Green House Gas Analyzer. All rivers showed little variations in N2O partial pressures. Average values in the rivers of Rondonia were around 0.41 ± 0.07 ? atm (n=46), whereas the Solimoes and Negro rivers, in the state of Amazonas, showed values around 0.43 ± 0.08 ? atm (n=131). Atmospheric averages were approximately 0.34 ± 0.04 ? atm (n=58) and 0.32 ± 0.03 ? atm (n=134) in the states of Rondonia and Amazonas, respectively. This means that, although these waters are supersatured in CO2, making evasive fluxes of this gas an important component of the C cycle in this basin, the same does not occur in the N cycle. Small differences in partial pressures of N2O between water and air will result in small fluxes of this gas to the atmosphere from the middle of the river channels. However, at the river margins and riparian zones, significantly different redox conditions may occur, which should be further investigated to fully understand the role of N2O fluxes in these riverine systems.

  11. High precision radiometric dates from the Miocene Shadow Valley basin, So. California: Preliminary rates

    SciTech Connect

    Friedmann, S.J. . Dept. of Geological Sciences)

    1993-04-01

    The sedimentary fill of the Shadow Valley basin can be subdivided into three stratigraphic units, lower, middle, and upper, separated by locally developed angular unconformities. The basin contains a number of volcanic units suitable for single-crystal [sup 40]AR/[sup 39]Ar geochronology. These units are generally sanidine-bearing ashes or hornblende-biotite-bearing flows and are distributed temporally and spatially throughout the basin. Arrays of single crystals, measured at the CLAIR facility at M.I.T. yield isotope correlation diagrams with a general precision of [+-]0.2 m.y. The new dates place the base of the basin fill at ca. 13.0 Ma. The middle unit of basin fill was deposited after intrusion of the Kingston Peak pluton (ca. 12.5). These age data suggest the following interpretations of the basinal strata: (1) the basin experienced episodic sedimentation, with intervening hiatuses of approx. 500,000 yr duration; (2) the intrusion of the Kingston Peak pluton (ca. 12.5 Ma) strongly affected basin sedimentation and led to an hiatus and disconformity; (3) rates of deposition during sedimentation were high (approx. 1 m/1,000 yr or more); (4) upper plate extension, which affects the full stratigraphic package, occurred after 11 Ma; and (5) the basin and the bounding detachment fault were active for at least 2 m.y. before upper plate extension.

  12. Changes in alluvial architecture associated with Eocene hyperthermals: Preliminary results from the Bighorn Basin Coring Project

    NASA Astrophysics Data System (ADS)

    Acks, R.; Kraus, M. J.

    2012-12-01

    The Paleocene-Eocene Thermal Maximum (PETM) was followed by two lesser hyperthermal events: ETM2 and H2 both at ~53.7 Ma. The carbon isotope excursion for ETM2 was approximately half that of the PETM and the H2 excursion even smaller, indicating lower increases in temperature than during the PETM. The paleohydrologic responses to these events are less well understood than the response to PETM warming. Although the ETM2 and H2 events are better known from marine than continental strata, both events have been identified from outcrops of the alluvial Willwood Formation from the Deer Creek and Gilmore Hill areas of the Bighorn Basin, Wyoming (Abels et al., 2012). Here, we analyze two cores drilled from stratigraphically equivalent Willwood strata from Gilmore Hill. The cores provide an opportunity to examine the impact of these events on the architecture of fluvial strata. Willwood strata are composed largely of channel sandstones, heterolithic deposits generated by channel avulsion, and paleosols that formed on overbank deposits. The paleosols provide qualitative and quantitative information on changes in soil moisture and precipitation through this interval. The cores also show a distinct change in the stacking of paleosols The core is subdivided into three parts: (1) the lowest ~third has thinner, more densely spaced paleosols, (2) the middle has thicker paleosols that are more widely spaced, and (3) the upper third has thicker and more common channel sandstones interspersed with avulsion deposits and fewer red paleosols; this corresponds to the hyperthermal interval. In particular, a ~20 m thick sandstone complex caps the section and appears to truncate part of the hyperthermal interval. Although vertical variations in alluvial architecture can reflect tectonic or climatic change, the correspondence of the sandstone-rich part of the cores with the hyperthermals suggests climate was the major control on their formation. Thick purple paleosols associated with the hyperthermals at Deer Creek suggest wetter conditions, and our preliminary interpretation is that a change to wetter conditions caused increased discharge and deposition of coarser (sandy) sediment. The thick sandstone complex at Gilmore Hill is underlain by paleosols with abundant calcrete nodules, which indicate drier soil conditions prior to deposition of the sandstone, and the change from drier to wetter conditions probably also caused increased sediment yield.

  13. Preliminary potential-field constraints on the geometry of the San Fernando basin, Southern California

    USGS Publications Warehouse

    Langenheim, V.E.; Griscom, Andrew; Jachens, R.C.; Hildenbrand, T.G.

    2000-01-01

    Gravity and magnetic data provide new insights on the structural underpinnings of the San Fernando Basin region, which may be important to ground motion models. Gravity data indicate that a deep basin (>5 km) underlies the northern part of the San Fernando Valley; this deep basin is required to explain the lowest gravity values over the Mission Hills thrust fault. Gravity modeling, constrained by well data and density information, shows that the basin may reach a thickness of 8 km, coinciding with the upper termination of the 1994 Northridge earthquake mainshock rupture. The basin is deeper than previous estimates by 2 to 4 km; this estimate is the result of high densities for the gravels of the Pliocene-Pleisocene Saugus Formation. The geometry of the southern margin of the deep basin is not well-constrained by the gravity data, but may dip to the south. Recently acquired seismic data along the LARSE (Los Angeles Regional Seismic Experiment) II profile may provide constraints to determine the location and attitude of the basin edge. Gravity and aeromagnetic models across the eastern margin of the San Fernando Valley indicate that the Verdugo fault may dip to the southwest along its southern extent and therefore have a normal fault geometry whereas it clearly has a thrust fault geometry along its northern strand.

  14. Preliminary bathymetry of Shoup Basin and late Holocene changes of Shoup Glacier, Alaska

    USGS Publications Warehouse

    Post, Austin; Viens, R.J.

    2000-01-01

    Shoup Glacier is a retreating, tidewater-calving glacier in northeast Prince William Sound, Alaska. Historical records, vegetation distribution, and sediment depth in Shoup Bay indicate that the glacier reached a late Holocene maximum at the mouth of Shoup Bay prior to 1750. When first observed around 1900, the terminus was stable on a series of shallow, bedrock obstructions between Shoup Bay and Shoup Basin, 2 miles from the late Holocene maximum. Shoup Glacier receded into tidewater in 1957 and in the following 33 years retreated 1.3 miles to expose Shoup Basin, a deep (more than 350 feet) basin with virtually no sediment accumulation. Shoup Glacier is expected to stabilize at the head of Shoup Basin shortly after the year 2000 and will not readvance if present climatic conditions continue.

  15. Modelling runoff from the Chamonix catchment in the French Alps: Preliminary results and assessment of the uncertainty related to glacial retreat.

    NASA Astrophysics Data System (ADS)

    Douglas, James; Huss, Matthias; Swift, Darrel; Jones, Julie

    2014-05-01

    Climate changes are likely to cause significant modifications to the future runoff regimes of alpine catchments, therefore, modelling this behaviour is advantageous. However, accurately determining future glacier behaviour is complex and requires significant input data and computing power. As such, recent studies have used novel techniques in an attempt to predict glacier behaviour. Here, the Glacier Evolution and Runoff Model (GERM; Huss et al., 2008) is calibrated for the Chamonix catchment in the French Alps. An extensive validation procedure is conducted to compare modelled mass balance, discharge and volume change with relevant measured data. Initial results show that while the model is capable of accurately predicting runoff and glacier changes for a short time, longer timescales show more uncertainty. GERM is then used to predict runoff changes until 2100 incorporating the uncertainty calculated from the validation procedure.

  16. Potential impacts of climate change on tropospheric ozone in California: a preliminary episodic modeling assessment of the Los Angeles basin and the Sacramento valley

    SciTech Connect

    Taha, Haider

    2001-01-01

    In this preliminary and relatively short modeling effort, an initial assessment is made for the potential air quality implications of climate change in California. The focus is mainly on the effects of changes in temperature and related meteorological and emission factors on ozone formation. Photochemical modeling is performed for two areas in the state: the Los Angeles Basin and the Sacramento Valley.

  17. Methodological issues and preliminary results from a combined sediment fingerprinting and radioisotope dating approach to explore changes in sediment sources with land-use change in the Brantian Catchment, Borneo.

    NASA Astrophysics Data System (ADS)

    Walsh, Rory; Higton, Sam; Marshall, Jake; Bidin, Kawi; Blake, William; Nainar, Anand

    2015-04-01

    This paper reports some methodological issues and early results of a project investigating the erosional impacts of land use changes (multiple selective logging and progressive, partial conversion to oil palm) over the last 25-40 years in the 600km2 Brantian river catchment in Sabah, Borneo. A combined sediment fingerprinting and radioisotope dating approach is being applied to sediment cores taken in stream hierarchical fashion across the intermediate catchment scale. Changes in sediment sources and sedimentation rates over time can be captured by changes in the relative importance of geochemical elements with depth in downstream sediment cores, which in turn can be linked to parallel changes in upstream cores by the application of unmixing models and statistical techniques. Radioisotope analysis of the sediment cores allows these changes to be dated and sedimentation rates to be estimated. Work in the neighbouring Segama catchment had successfully demonstrated the potential of such an approach in a rainforest environment (Walsh et al. 2011). The paper first describes steps taken to address methodological issues. The approach relies on taking continuous sediment cores which have aggraded progressively over time and remain relatively undisturbed and uncontaminated. This issue has been tackled (1) through careful core sampling site selection with a focus on lateral bench sites and (2) deployment of techniques such as repeat-measurement erosion bridge transects to assess the contemporary nature of sedimentation to validate (or reject) candidate sites. The issue of sediment storage and uncertainties over lag times has been minimised by focussing on sets of above- and below-confluence sites in the intermediate zone of the catchment, thus minimising sediment transit times between upstream contributing and downstream destination core sites. This focus on the intermediate zone was also driven by difficulties in finding suitable core sites in the mountainous headwaters area due to the prevalence of steep, incised channels without even narrow floodplains. Preliminary results are reported from (1) a field visit to investigate potential sampling sites in July 2014 and (2) initial analysis of a sediment core at a promising lateral bench site. Marked down-profile geochemistry changes of the core indicate a history of phases of high deposition and lateral growth of the channel caused by mobilisation of sediment linked to logging and clearance upstream. Recent channel bed degradation suggests the system has been adjusting a decline in sediment supply with forest recovery since logging in 2005, but a renewed sedimentation phase heralded by > 10 cm deposition at the site in a flood in July 2014 appears to have started linked to partial forest clearance for oil palm. These preliminary results support the ability of a combined fingerprinting and dating approach to reflect the spatial history of land-use change in a catchment undergoing disturbance. Walsh R. P. D. , Bidin K., Blake W.H., Chappell N.A., Clarke M.A., Douglas I., Ghazali R., Sayer A.M., Suhaimi J., Tych W. & Annammala K.V. (2011) Long-term responses of rainforest erosional systems at different spatial scales to selective logging and climatic change. Philosophical Transactions of the Royal Society B, 366, 3340-3353.

  18. Co-evolution of volcanic catchments in Japan

    NASA Astrophysics Data System (ADS)

    Yoshida, T.; Troch, P. A.

    2015-09-01

    Present day landscapes have evolved over time through interactions between the prevailing climates and geological settings. Understanding the linkage between spatial patterns of landforms, soils, and vegetation in landscapes and their hydrological response is critical to make quantitative predictions in ungaged basins. Catchment co-evolution is a theoretical framework that seeks to formulate hypotheses about the mechanisms and conditions that determine the historical development of catchments and how such evolution affects their hydrological response. In this study, we selected 14 volcanic catchments of different ages (from 0.225 to 82.2 Ma) in Japan. We derived indices of landscape properties (drainage density) as well as hydrological response (annual water balance, baseflow index, and flow duration curves) and examined their relation with catchment age and climate (through the aridity index). We found significant correlation between drainage density and baseflow index with age, but not with climate. The age of the catchments was also significantly related to intra-annual flow variability. Younger catchments tend to have lower peak flows and higher low flows, while older catchments exhibit more flashy runoff. The decrease of baseflow with catchment age confirms previous studies that hypothesized that in volcanic landscapes the major flow pathways have changed over time, from deep groundwater flow to shallow subsurface flow. The drainage density of our catchments decreased with age, contrary to previous findings in similar volcanic catchments but of significant younger age than the ones explored here. In these younger catchments, an increase in drainage density with age was observed, and it was hypothesized that this was because of more landscape incision due to increasing near-surface lateral flow paths in more mature catchments. Our results suggests two hypotheses on the evolution of drainage density in matured catchments. One is that as catchments further evolve, hydrologically active channels retreat as less recharge leads to lower average aquifer levels and less baseflow; the other is that it does not significantly change after catchments reached maturity in terms of surface dissection.

  19. A new perspective on catchment storage gained from a nested catchment experiment in Luxembourg (Europe)

    NASA Astrophysics Data System (ADS)

    Pfister, Laurent; Klaus, Julian; Hissler, Christophe; François Iffly, Jean; Gourdol, Laurent; Martinez-Carreras, Nuria; McDonnell, Jeffrey J.

    2014-05-01

    Recent hydrological process research focussed on how much water a catchment can store and how these catchments store and release water. Storage can be a valuable metric for catchment description, inter-comparison, and classification. Further storage controls catchment mixing, non-linearities in rainfall-runoff transformation and eco-hydrological processes. Various methods exist to determine catchment storage (e.g. natural tracer, soil moisture and groundwater data, hydrological models). Today it remains unclear what parts of the catchment storage are measured with the different models. Here we present a new hydrometric approach to answer the question how much water a catchment can store. We tested our approach in a dense hydro-climatological monitoring network that encompasses 16 recording streamgauges and 21 pluviographs in the Alzette River basin in Luxembourg (Europe). Catchment scales are ranging from 0.47 to 285 km2 and they have clean- and mixed combinations of distinct geologies ranging from schists to marls, sandstone, dolomite and limestone. Previous investigations in the area of interest have shown that geology largely controls winter runoff coefficients. Here, we focus at how catchment geology is ultimately affecting catchment storage. We used the approach of Sayama et al. (2011) to compute catchment dynamic storage changes for each winter season over the period 2002-2012 (based on precipitation as input; discharge and evapotranspiration as output). We determined dynamic storage changes for each winter semester (October to March) in all 16 catchments over the period 2002-2012. At the beginning of each hydrological winter season, all catchments showed similar trends in storage change. A few weeks into the winter season, catchments with lowest permeability (e.g. marls) started to plateau. The highest storage values were reached several months later in the season in catchments dominated by permeable substrate (e.g. sandstone). For most catchments, we found strong correlations between baseflow prior to the recharge period (i.e. at initiation of the total storage calculations) and the seasonal maximum value of the total storage change calculations. In order to determine the maximum storage potential for each catchment, we fitted a trendline through the annual 'initial baseflow - maximum storage' populations. By extrapolating these trendlines to zero flow conditions, we obtained the maximum storage potential. Our results show that these maximum storage values clearly tend to be larger in catchments dominated by permeable substrate, compared to areas underlain by impermeable bedrock. In the latter, average filling ratios were found to be substantially higher (exceeding 80%) than in catchments dominated by permeable substrate (approximately 40%). These findings were confirmed by average seasonal winter runoff coefficients that are substantially higher in catchments dominated by impermeable bedrock (Pfister et al., in prep.). Our new approach allows a fast assessment of storage potential in catchments based on discharge, precipitation and evapotranspiration data. Pfister L. et al. 2014: Catchment storage, baseflow isotope signatures and basin geology: Is there a connection? In preparation. Sayama, T., McDonnell, J.J., Dhakal, A., Sullivan, K., 2011. How much water can a watershed store ? Hydrological Processes 25, 3899-3908.

  20. Preliminary Geologic/spectral Analysis of LANDSAT-4 Thematic Mapper Data, Wind River/bighorn Basin Area, Wyoming

    NASA Technical Reports Server (NTRS)

    Lang, H. R.; Conel, J. E.; Paylor, E. D.

    1984-01-01

    A LIDQA evaluation for geologic applications of a LANDSAT TM scene covering the Wind River/Bighorn Basin area, Wyoming, is examined. This involves a quantitative assessment of data quality including spatial and spectral characteristics. Analysis is concentrated on the 6 visible, near infrared, and short wavelength infrared bands. Preliminary analysis demonstrates that: (1) principal component images derived from the correlation matrix provide the most useful geologic information. To extract surface spectral reflectance, the TM radiance data must be calibrated. Scatterplots demonstrate that TM data can be calibrated and sensor response is essentially linear. Low instrumental offset and gain settings result in spectral data that do not utilize the full dynamic range of the TM system.

  1. Preliminary interpretation of industry two-dimensional seismic data from Susitna Basin, south-central Alaska

    USGS Publications Warehouse

    Lewis, Kristen A.; Potter, Christopher J.; Shah, Anjana K.; Stanley, Richard G.; Haeussler, Peter J.; Saltus, Richard W.

    2015-01-01

    The eastern seismic lines show evidence of numerous short-wavelength antiforms that appear to correspond to a series of northeast-trending lineations observed in aeromagnetic data, which have been interpreted as being due to folding of Paleogene volcanic strata. The eastern side of the basin is also cut by a number of reverse faults and thrust faults, the majority of which strike north-south. The western side of the Susitna Basin is cut by a series of regional reverse faults and is characterized by synformal structures in two fault blocks between the Kahiltna River and Skwentna faults. These synforms are progressively deeper to the west in the footwalls of the east-vergent Skwentna and northeast-vergent Beluga Mountain reverse faults. Although the seismic data are limited to the south, we interpret a potential regional south-southeast-directed reverse fault striking east-northeast on the east side of the basin that may cross the entire southern portion of the basin.

  2. A preliminary report of the geohydrology of the Mississippi Salt-Dome Basin

    USGS Publications Warehouse

    Spiers, C.A.; Gandl, L.A.

    1980-01-01

    The U.S. Department of Energy is investigating the suitability of salt domes in the Mississippi salt-dome basin as repositories for storing radioactive wastes. The Department of Energy has requested that the U.S. Geological Survey describe the groundwater hydrology of the Mississippi salt-dome basin, giving special attention to direction and rate of movement of water. In this first part of a continuing investigation the data obtained from one year of extensive literature search and data compilation are summarized. The regional groundwater hydrology in the salt-dome basin is defined with respect to (1) groundwater flow, (2) facies changes, (3) geological structure, (4) recharge and discharge, (5) freshwater-saltwater relations, and (6) identification of localities where additional data are needed. From the 50 piercement-type salt domes in the Mississippi salt-dome basin three domes (Richton, Cypress Creek, and Lampton) were selected for more intensive study. To further evaluate the geohydrology of Richton, Lampton, and Cypress Creek domes as possible sites for storage of radioactive waste, an intensive geohydrologic study based on a comprehensive test drilling program near the domes is planned. (USGS)

  3. Preliminary gravity inversion model of basins east of Yucca Flat, Nevada Test Site, Nevada.

    SciTech Connect

    Geoffrey A. Phelps; Carter W. Roberts, and Barry C. Moring

    2006-03-17

    The Yucca Flat eastern extension study area, a 14 kilometer by 45 kilometer region contiguous to Yucca Flat on the west and Frenchman Flat on the south, is being studied to expand the boundary of the Yucca Flat hydrogeologic model. The isostatic residual gravity anomaly was inverted to create a model of the depth of the geologic basins within the study area. Such basins typically are floored by dense pre-Tertiary basement rocks and filled with less-dense Tertiary volcanic and sedimentary rocks and Quaternary alluvium, a necessary condition for the use of gravity modeling to predict the depth to the pre-Tertiary basement rocks within the basins. Three models were created: a preferred model to represent the best estimate of depth to pre-Tertiary basement rocks in the study area, and two end-member models to demonstrate the possible range of solutions. The preferred model predicts shallow basins, generally less than 1,000m depth, throughout the study area, with only Emigrant Valley reaching a depth of 1,100m. Plutonium valley and West Fork Scarp Canyon have maximum depths of 800m and 1,000m, respectively. The end-member models indicate that the uncertainty in the preferred model is less than 200m for most of the study area.

  4. Magnetostratigraphy of Mesozoic shallow-water carbonates: Preliminary results from the Middle Jurassic of the Paris basin

    SciTech Connect

    Aissaoui, D.M.; Kirschvink, J.L. )

    1991-03-01

    The use of sedimentary paleomagnetism has enhanced greatly our understanding of the timing of deposition and diagenesis of Cenozoic platform and reefal carbonates. Its application to similar but older deposits will have direct implications for economic exploration and development. The authors report here preliminary paleomagnetic results from the Middle Jurassic limestones of the Paris basin (France). The samples consist mainly of bioclastic and oolitic limestones deposited in ancient counterpart of the shallow-water environments of the Bahama platform. The Jurassic samples are stable to progressive, incremental demagnetization and exhibit magnetization patterns identical to Cenozoic rocks from the Bahama platform or Mururoa Atoll. The natural remanent magnetization of these limestones is weak and comprised between 7.7 x 10{sup {minus}9} to 1.8 x 10{sup {minus}8} AM{sup 2}/kg. Magnetic components of both normal and reversed polarity are observed. Paired isothermal remanent magnetization (IRM) and alternating field demagnetization experiments show that most of the remanence is lost between 20 and 45 mT, which is typical of single-domain biogenic magnetite or maghemite. The ratio of IRM at H{sub RG} to the saturation IRM ranges from 35 to 42% indicating a moderate to low interparticle interaction. This is confirmed by the anhysteretic remanent magnetization as compared with intact, freeze-dried cells of magnetotactic bacteria and chiton teeth. Magnetic minerals extracted from the Jurassic samples are examined to further confirm the occurrence of SD magnetite within the Middle Jurassic limestones of the Paris basin. The preliminary results suggest that the strata should be good for the paleomagnetic investigation of Mesozoic shallow-water carbonates.

  5. Effect of initial conditions of a catchment on seasonal streamflow prediction using ensemble streamflow prediction (ESP) technique for the Rangitata and Waitaki River basins on the South Island of New Zealand

    NASA Astrophysics Data System (ADS)

    Singh, Shailesh Kumar; Zammit, Christian; Hreinsson, Einar; Woods, Ross; Clark, Martyn; Hamlet, Alan

    2013-04-01

    Increased access to water is a key pillar of the New Zealand government plan for economic growths. Variable climatic conditions coupled with market drivers and increased demand on water resource result in critical decision made by water managers based on climate and streamflow forecast. Because many of these decisions have serious economic implications, accurate forecast of climate and streamflow are of paramount importance (eg irrigated agriculture and electricity generation). New Zealand currently does not have a centralized, comprehensive, and state-of-the-art system in place for providing operational seasonal to interannual streamflow forecasts to guide water resources management decisions. As a pilot effort, we implement and evaluate an experimental ensemble streamflow forecasting system for the Waitaki and Rangitata River basins on New Zealand's South Island using a hydrologic simulation model (TopNet) and the familiar ensemble streamflow prediction (ESP) paradigm for estimating forecast uncertainty. To provide a comprehensive database for evaluation of the forecasting system, first a set of retrospective model states simulated by the hydrologic model on the first day of each month were archived from 1972-2009. Then, using the hydrologic simulation model, each of these historical model states was paired with the retrospective temperature and precipitation time series from each historical water year to create a database of retrospective hindcasts. Using the resulting database, the relative importance of initial state variables (such as soil moisture and snowpack) as fundamental drivers of uncertainties in forecasts were evaluated for different seasons and lead times. The analysis indicate that the sensitivity of flow forecast to initial condition uncertainty is depend on the hydrological regime and season of forecast. However initial conditions do not have a large impact on seasonal flow uncertainties for snow dominated catchments. Further analysis indicates that this result is valid when the hindcast database is conditioned by ENSO classification. As a result hydrological forecasts based on ESP technique, where present initial conditions with histological forcing data are used may be plausible for New Zealand catchments.

  6. A Preliminary Investigation of the Yallalie Basin: A Buried 15 KM Diameter Structure of Possible Impact Origin in the Perth Basin, Western Australia

    NASA Astrophysics Data System (ADS)

    Dentith, M. C.; Bevan, A. W. R.; McInerney, K. B.

    1992-07-01

    In late 1990, Ampol Exploration drew the attention of the senior author to an enigmatic structure located in Mesozoic rocks in the Dandaragan Trough of the Perth Basin about 200 km north of Perth, Western Australia. The basin-like Yallalie structure, centred on coordinates ca. 30 degrees 28'S, 115 degrees 47'E, is subcircular in plan view and about 15 km in diameter. Recognizing structures beneath the basin likely to contain oil, Ampol carried out an intensive geophysical survey of the area, and subsequently drilled a well (Yallalie 1). The well proved to be dry and exploration ceased. Generously, Ampol and their partners have made available the results of their exploration for a research project into the nature of the structure. Geology and regional setting: The exposed geology of the Yallalie basin area comprises discontinuous sequences of sedimentary rocks (sandstones, siltstones and shales) of Middle Jurassic to Late Cretaceous age that are capped by laterite and locally covered by thin (<50 m) Cenozoic eolian, colluvial and alluvial deposits (Cockbain, 1990). Modern, high-resolution, seismic reflection profiles across the Yallalie structure show a basin-shaped area of chaotic reflections that extend down to a depth of approximately 2 km below the surface. The structure has sharp boundaries with surrounding faulted, but otherwise relatively undisturbed rocks. At the base of the structure there is a central uplifted area approximately 3-4 km across similar to those described from complex impact structures (Dence et al., 1977). A preliminary survey of the area has shown that exposed rocks of the Yarragadee Formation (Middle Jurassic to Lower Cretaceous) and the succeeding Warnbro (Lower Cretaceous) and Coolyena (Late Cretaceous) Groups dip gently and their deposition appears to have postdated the underlying structure of intensely disturbed rocks. Although the structure is "draped" by a thin (a few hundred metres) veneer of late Jurassic to Cretaceous rocks it has some surface expression. A broad depression approximately 120 m deep is centered on Yallalie Well and is bounded to the west and north by a marked "rim." The area is characterized by a radial pattern of drainage that flows into the depression and which is gradually exhuming the buried structure. A southerly flowing stream drains the depression and has breached the "rim" to the south. Evidence for impact at Yallalie: Quartz grains taken from the core at a depth of 430-460 m in the Yallalie 1 well show widesprad development of prismatic cleavage fractures and irregular, slightly curved planes formed by brittle fracture. Quartz grains from a depth of 150-180 m in the well are essentially undeformed (McInerney, 1991). However, multiple sets of closely spaced planar features in quartz, characteristic of highly shocked rocks, have yet to be observed in core material from the Yallalie structure. Nevertheless, the morphology of the Yallalie structure determined from geophysical data suggests strongly that it is of impact origin. Work is continuing on the core material to search for diagnostic shock-metamorhic effects, and to constrain the age of the structure. References Cockbain A. E. (1990) In Geology and Mineral Resources of Western Australia, Western Australia Geological Survey, Memoir 3, pp. 514-516. Dence M. R., Grieve R. A. F., and Robertson P. B. (1977) In Impact and Explosion Cratering (eds. D. J. Roddy, R. O. Pepin, and R. B. Merrill), Pergamon Press, pp. 247-275. McInerney K. B. (1991) Honors Thesis (unpublished), University of Western Australia.

  7. Tectonic evolution and subsidence history of the Nenana Basin, Interior Alaska: Preliminary results from seismic-reflection, electric logs and gravity data

    NASA Astrophysics Data System (ADS)

    Dixit, N. C.; Hanks, C. L.; Tomsich, C. S.

    2012-12-01

    The Nenana basin is an elongated Tertiary structural half-graben located in Interior Alaska, between the Denali fault to the south and the Tintina fault to the north. Although the basin has been explored for oil, gas and coal episodically over the past 40 years, the timing and mechanisms that are responsible for its formation remain unclear. Our preliminary work offers new insights into the tectonic subsidence history and structural history of the basin. Seismic-reflection and gravity data indicate that the Tertiary sedimentary fill of the southern Nenana basin is up to 19,500 ft deep, resulting in a Complete Bouguer gravity anomaly with a low of -50 mgal. The southeast margin of the basin is formed by the Minto fault, a major, steeply dipping, east-northeast striking fault. The fault shows evidence of both significant sinistral strike-slip and down-to-the-west normal faulting, with metamorphic rocks of the Yukon-Tanana terrane exposed to the east and Quaternary deposits to the west. Secondary active normal faults in the basin are oriented west-northwest and east-northeast and indicate a probable ongoing sinistral transtension across the Minto fault zone. Our preliminary interpretation of these geometries suggest that the Nenana basin is superimposed on a crustal block rotating clockwise within a dextral shear zone bounded by the regional Denali and Tintina fault systems, which is probably the direct driver of present tectonic subsidence in the basin. Further details as to the subsidence history of the basin can be derived from the geometry, thickness and seismic character of the Tertiary basin fill. The basin experienced three phases of subsidence and two uplift events during this time, possibly due to regional tectonic events during the history of Interior Alaska. The most important tectonic control that may have resulted in periods of basin subsidence was probably Tertiary strike-slip faulting of the Denali and Tintina fault systems, and subsequent transtension across the Minto fault zone. Growth of the basin during the Tertiary widened the basin to the west. Other far-field driving mechanisms that may have controlled basin subsidence to lesser degrees include subduction of a spreading center along the former coast of southern Alaska (61 Ma- 50 Ma) and resulting oroclinal bending of western Alaska in response to the northwestward shift in plate convergence (60 Ma - 42 Ma). Burial history models further indicate that the basin experienced two different inversion events, possibly in response to increased northward compressive stresses. These compressive regimes may be due to Kula-Pacific plates reorganization (42 Ma - 23 Ma) and/or ongoing flab-slab subduction of Yakutat block beneath south-central Alaska (26 Ma to present day). Our preliminary study accounts for the structure of the southern Nenana basin primarily as the result of combination of Tertiary transtension, transpression and strike-slip faulting, and suggests that the present-day geometry of the basin resembles a pull-apart structure.

  8. Establishment of a hydrological monitoring network in a tropical African catchment: An integrated participatory approach

    NASA Astrophysics Data System (ADS)

    Gomani, M. C.; Dietrich, O.; Lischeid, G.; Mahoo, H.; Mahay, F.; Mbilinyi, B.; Sarmett, J.

    Sound decision making for water resources management has to be based on good knowledge of the dominant hydrological processes of a catchment. This information can only be obtained through establishing suitable hydrological monitoring networks. Research catchments are typically established without involving the key stakeholders, which results in instruments being installed at inappropriate places as well as at high risk of theft and vandalism. This paper presents an integrated participatory approach for establishing a hydrological monitoring network. We propose a framework with six steps beginning with (i) inception of idea; (ii) stakeholder identification; (iii) defining the scope of the network; (iv) installation; (v) monitoring; and (vi) feedback mechanism integrated within the participatory framework. The approach is illustrated using an example of the Ngerengere catchment in Tanzania. In applying the approach, the concept of establishing the Ngerengere catchment monitoring network was initiated in 2008 within the Resilient Agro-landscapes to Climate Change in Tanzania (ReACCT) research program. The main stakeholders included: local communities; Sokoine University of Agriculture; Wami Ruvu Basin Water Office and the ReACCT Research team. The scope of the network was based on expert experience in similar projects and lessons learnt from literature review of similar projects from elsewhere integrated with local expert knowledge. The installations involved reconnaissance surveys, detailed surveys, and expert consultations to identify best sites. First, a Digital Elevation Model, land use, and soil maps were used to identify potential monitoring sites. Local and expert knowledge was collected on flow regimes, indicators of shallow groundwater plant species, precipitation pattern, vegetation, and soil types. This information was integrated and used to select sites for installation of an automatic weather station, automatic rain gauges, river flow gauging stations, flow measurement sites and shallow groundwater wells. The network is now used to monitor hydro-meteorological parameters in collaboration with key stakeholders in the catchment. Preliminary results indicate that the network is working well. The benefits of this approach compared to conventional narrow scientific/technical approaches have been shown by gaining rapid insight into the hydrology of the catchment, identifying best sites for the instruments; and voluntary participation of stakeholders in installation, monitoring and safeguarding the installations. This approach has proved simple yet effective and yielded good results. Based on this experience gained in applying the approach in establishing the Ngerengere catchment monitoring network, we conclude that the integrated participatory approach helps to assimilate local and expert knowledge in catchments monitoring which consequently results in: (i) identifying best sites for the hydrologic monitoring; (ii) instilling the sense of ownership; (iii) providing security of the installed network; and (iv) minimizing costs for installation and monitoring.

  9. Hydraulic Characteristics of the San Gregorio Creek Drainage Basin, California: a Preliminary Study.

    NASA Astrophysics Data System (ADS)

    Davis, J. R.; Snow, M. K.; Pestrong, R.; Sklar, L. S.; Vavro, M.; Sawachi, A.; Talapian, E.; Bailey, E.

    2004-12-01

    Population pressures within the greater San Francisco Bay Area are forcing development into nearby rural communities, and are impacting local environments. This study of the San Gregorio Creek Watershed is designed as a baseline for evaluating the effect increasing development within the drainage basin has on its river system. We hope to provide evidence for that impact through laboratory and field studies that provide a snap-shot of this drainage basin's current characteristics. The San Gregorio Creek watershed, in the Coast Ranges, is located in the southwestern portion of San Mateo County, California. It drains the western slopes of the Santa Cruz Mountains, in the Coast Ranges into the Pacific Ocean at the town of San Gregorio. Most of its fingertip tributaries flow into the trunk from the north and west, with elevations as high as 2050 feet. The watershed includes an area of approximately 51.6 square miles and San Gregorio Creek, the trunk stream, is roughly 12 miles long. San Gregorio Creek is a fourth order perennial stream. It is fed by a number of major tributaries, the largest of which are Alpine, Mindego, and La Honda creeks. The U.S. Geological Survey maintains a stream gauging station for San Gregorio Creek at the town of San Gregorio, where it has been monitoring stream flows for more than 30 years through its Water Resources Department. The resulting data indicate a mean discharge of 36.4 cfs. Map studies of hydraulic geometry for the drainage basin reveal geometric characteristics for San Gregorio Creek that coincide with similar streams in comparable climatic and environmental settings. Stream table studies are used to further investigate fundamental stream processes. Field studies at selected reaches throughout the drainage basin will document hydraulic characteristics. The results of this study will contribute to more comprehensive studies demonstrateing channel response to changing environmental conditions.

  10. Preliminary gravity inversion model of Frenchman Flat Basin, Nevada Test Site, Nevada

    SciTech Connect

    Phelps, G.A.; Graham, S.E.

    2002-10-01

    The depth of the basin beneath Frenchman Flat is estimated using a gravity inversion method. Gamma-gamma density logs from two wells in Frenchman Flat constrained the density profiles used to create the gravity inversion model. Three initial models were considered using data from one well, then a final model is proposed based on new information from the second well. The preferred model indicates that a northeast-trending oval-shaped basin underlies Frenchman Flat at least 2,100 m deep, with a maximum depth of 2,400 m at its northeast end. No major horst and graben structures are predicted. Sensitivity analysis of the model indicates that each parameter contributes the same magnitude change to the model, up to 30 meters change in depth for a 1% change in density, but some parameters affect a broader area of the basin. The horizontal resolution of the model was determined by examining the spacing between data stations, and was set to 500 square meters.

  11. Nutrient removal using biosorption activated media: preliminary biogeochemical assessment of an innovative stormwater infiltration basin

    USGS Publications Warehouse

    O'Reilly, Andrew M.; Wanielista, Martin P.; Chang, Ni-Bin; Xuan, Zhemin; Harris, Willie G.

    2012-01-01

    Soil beneath a stormwater infiltration basin receiving runoff from a 22.7 ha predominantly residential watershed in central Florida, USA, was amended using biosorption activated media (BAM) to study the effectiveness of this technology in reducing inputs of nitrogen and phosphorus to groundwater. The functionalized soil amendment BAM consists of a 1.0:1.9:4.1 mixture (by volume) of tire crumb (to increase sorption capacity), silt and clay (to increase soil moisture retention), and sand (to promote sufficient infiltration), which was applied to develop a prototype stormwater infiltration basin utilizing nutrient reduction and flood control sub-basins. Comparison of nitrate/chloride (NO3-/Cl-) ratios for the shallow groundwater indicate that prior to using BAM, NO3- concentrations were substantially influenced by nitrification or variations in NO3- input. In contrast, for the prototype basin utilizing BAM, NO3-/Cl- ratios indicate minor nitrification and NO3- losses with the exception of one summer sample that indicated a 45% loss. Biogeochemical indicators (denitrifier activity derived from real-time polymerase chain reaction and variations in major ions, nutrients, dissolved and soil gases, and stable isotopes) suggest NO3- losses are primarily attributable to denitrification, whereas dissimilatory nitrate reduction to ammonium is a minor process. Denitrification was likely occurring intermittently in anoxic microsites in the unsaturated zone, which was enhanced by increased soil moisture within the BAM layer and resultant reductions in surface/subsurface oxygen exchange that produced conditions conducive to increased denitrifier activity. Concentrations of total dissolved phosphorus and orthophosphate (PO43-) were reduced by more than 70% in unsaturated zone soil water, with the largest decreases in the BAM layer where sorption was the most likely mechanism for removal. Post-BAM PO43-/Cl- ratios for shallow groundwater indicate predominantly minor increases and decreases in PO43- with the exception of one summer sample that indicated a 50% loss. Differences in nutrient variations between the unsaturated zone and shallow groundwater may be the result of the intensity and duration of nutrient removal processes and mixing ratios with water that had not undergone significant chemical changes. Observed nitrogen and phosphorus losses demonstrate the potential, as well as future research needs to improve performance, of the prototype stormwater infiltration basin using BAM for providing passive, economical, stormwater nutrient-treatment technology to support green infrastructure.

  12. Geology of the Ahuas area in the Mosquitia basin of Honduras: Preliminary report

    SciTech Connect

    Mills, R.A.; Barton, R.

    1996-10-01

    Following a 36-fold seismic survey that covered 460 km, two exploratory wells were drilled between July 1991 and August 1993 in the Ahuas area, on the Patuca tectonic belt, in the Mosquitia savannah in northeastern Honduras. The Embarcadero 1 well encountered only dense, barren, gray and red siliciclastics and some phyllite at total depth. The RaitiTara 1 well also drilled mostly barren, but less dense, red beds that included some Upper Cretaceous limestone conglomerate in the lower section. We did not find source or reservoir rocks in either well, nor did we find hydrocarbon shows. The absence of Lower Cretaceous limestone in both wells is significant because more than 1500 m of limestone are exposed 35-50 km southwest in the Colon Mountains. The lithology of the clastics in the Embarcadero well is similar to Middle and Upper Jurassic formations in central Honduras. The lithology of the softer red beds in the Raiti-Tara well suggests they are Tertiary fill in a pull-apart basin. The Mosquitia basin, including the Ahuas area, probably was on the seaward side of the Chortis block (once part of Mexico) and received only Jurassic sediments until it was elevated by arc magmatism in the Early Cretaceous. However, thick Lower Cretaceous platform carbonates were deposited some distance inland. Lateral forces in the early Late Cretaceous caused the outer edge of Chortis to break up, carrying the Colon carbonate block up to 50 km northwest by sinistral fault movement. Later, antithetic dextral displacement offset the various blocks and created pull-apart basins that filled with Tertiary sediments. In the early Paleocene, compression from a spreading center to the southeast ruptured the Jurassic rocks, creating a decollement and later thrusting. No complete petroleum system seems to exist along the axis of the uplifted Patuca tectonic belt largely because of the lack of organic-rich source rocks and the presence of complicated young structures.

  13. Preliminary study on avian fauna of the Krishna River basin Sangli District, Western Maharashtra, India.

    PubMed

    Kumbar, Suresh M; Ghadage, Abhijit B

    2014-11-01

    The present study on avifaunal diversity carried out for three years at the Krishna River Basin, Sangli District revealed a total of 126 species of birds belonging to 30 families, of which 91 species were resident, 16 migratory, 12 resident and local migratory and 7 species were resident and migratory. Among the migrant birds, Rosy Starling Sturnus roseus was dominant in the study area. Commonly recorded resident bird species were, Red vented bulbul, Jungle crow, House sparrow, Common myna, Brahminy myna, Rock pigeon, Spotted dove, Rose ringed parakeet, Indian robin, White-browed fantail-flycatcher and Small sunbird. Most of the families had one or two species, whereas Muscicapidae family alone had 16 species. Forty one species of waterfowls were recorded in this small landscape. Out of 126 bird species, 38 were insectivorous, 28 piscivorous, 25 omnivorous, 19 carnivorous, 9 granivorous, 5 frugivorous and 2 species were nectar sucker and insectivorous. These results suggest that richness of avifauna in the Krishna River Basin, Western Maharashtra might be due to large aquatic ground, varied vegetations and favourable environmental conditions. PMID:25522499

  14. Towards sediment residence time in a Himalayan catchment? Insights from paired in-situ 14C and 10Be measurements in river sands

    NASA Astrophysics Data System (ADS)

    Lupker, M.; Hippe, K.; Wacker, L.; Wieler, R.

    2014-12-01

    Cosmogenic nuclides in detrital river sediments have been widely applied to derive denudation rates and sediment fluxes across entire catchments. Nuclides, such as 10Be, allow the derivation of denudation rates integrated over several hundreds to thousands of years, but single isotopic systems often provide little information on the intricate dynamics that control the export of sediments from catchments. The quantification of sediment storage and recycling within catchments is nevertheless crucial for a better understanding of the variability of sediments fluxes and their implication for landscape evolution. The paired measurement of 10Be along with cosmogenic, in-situ 14C in river sediments may provide new insides into sediment dynamics over kyr time scales for which other nuclides are not suitable [1,2]. In an effort to better understand the sediment dynamics in active orogens we combine in-situ 14C and 10Be measurements from the Kosi basin in eastern Nepal (~53 000 km2). Our preliminary 14C/10Be data shows apparent burial/storage ages of 14 to 21 kyr in the sediments currently exported by the river. These elevated burial ages suggest a larger storage component than previously thought in these catchments, even though possible biases associated to the use of 14C/10Be in sediments as burial chronometer have to be considered: First, the short half-life of 14C cannot be neglected and hence basin wide denudation cannot be considered as a simple mixing of sediments from individually eroding surfaces, introducing bias towards higher apparent burial ages in most settings. Second, in steep environments, sediments supplied by deep-seated landslides carry a buried signature that should not be confounded with sediment storage in the catchment. The importance of both biases needs to be quantified carefully, before basin-wide storage can be quantified. [1] Lauer & Willenbring, 2010 - JGR-Earth, vol. 115, F04018. [2] Hippe et al., 2012 - Geomorphology, vol. 179, pp. 58-70.

  15. Runoff Responses to Forest Thinning at Plot and Catchment Scales in a Headwater Catchment Draining Japanese Cypress Forest

    EPA Science Inventory

    We examined the effect of forest thinning on runoff generation at plot and catchment scales in headwater basins draining a Japanese cypress (Chamaecyparis obtusa) forest. We removed 58.3% of the stems (corresponding to 43.2% of the basal area) in the treated headwater basin (catc...

  16. Mid-Neolithic Exploitation of Mollusks in the Guanzhong Basin of Northwestern China: Preliminary Results

    PubMed Central

    Li, Fengjiang; Wu, Naiqin; Lu, Houyuan; Zhang, Jianping; Wang, Weilin; Ma, Mingzhi; Zhang, Xiaohu; Yang, Xiaoyan

    2013-01-01

    Mollusk remains are abundant in archaeological sites in the Guanzhong Basin of Northwestern China, providing good opportunities for investigations into the use of mollusks by prehistoric humans. Here we report on freshwater gastropod and bivalve mollusks covering the time interval from about 5600 to 4500 cal. yrs BP from sites of Mid-Late Neolithic age. They are identified as Cipangopaludina chinensis and Unio douglasiae, both of which are currently food for humans. The shells are well preserved and have no signs of abrasion. They are all freshwater gastropods and bivalves found in pits without water-reworked deposits and have modern representatives which can be observed in rivers, reservoirs, and paddy fields in the studied region. Mollusk shells were frequently recovered in association with mammal bones, lithic artifacts, and pottery. These lines of evidence indicate that the mollusks are the remains of prehistoric meals. The mollusk shells were likely discarded into the pits by prehistoric humans after the flesh was eaten. However, these mollusk remains may not have been staple food since they are not found in large quantities. Mollusk shell tools and ornaments are also observed. Shell tools include shell knives, shell reaphooks and arrowheads, whereas shell ornaments are composed of pendants and loops. All the shell tools and ornaments are made of bivalve mollusks and do not occur in large numbers. The finding of these freshwater mollusk remains supports the view that the middle Holocene climate in the Guanzhong Basin may have been warm and moist, which was probably favorable to freshwater mollusks growing and developing in the region. PMID:23544050

  17. CHARIS - The Contribution to High Asian Runoff from Ice and Snow, Preliminary results from the Upper Indus Basin, Pakistan

    NASA Astrophysics Data System (ADS)

    Armstrong, R. L.; Barrett, A. P.; Brodzik, M.; Fetterer, F. M.; Hashmey, D.; Horodyskyj, U. N.; Khalsa, S.; Racoviteanu, A.; Raup, B. H.; Williams, M. W.; Wilson, A.

    2013-12-01

    The goal of the CHARIS project is to improve the understanding of the regional water resources of High Asia. In order to achieve this goal CHARIS is a cross-boundary exercise with University of Colorado scientists working directly with researchers at institutions in nine different nations where these ice and snow resources are located (Bhutan, Nepal, India, Pakistan, Afghanistan, Kazakhstan, Uzbekistan, Kyrgyzstan, Tajikistan). These countries contain the headwaters of the Brahmaputra, Ganges, Indus, Syr Darya and Amu Darya rivers. This collaboration includes both joint research and capacity building that includes augmented field programs and technical training. While it is generally accepted that a significant component of these water resources results from the melting of glacier ice and seasonal snow, the actual water volume available from these two individual sources remains uncertain. The amount, timing, and spatial patterns of snow and ice melt play key roles in providing water for downstream irrigation, hydropower generation, and general consumption. The fundamental objective of this collaborative study is to develop a thorough and systematic assessment of the separate contributions from seasonal snow melt and from glacier ice melt to the water resources originating across the region. To accomplish project objectives, a suite of satellite remote sensing, reanalysis and ground based data are applied as input to specific snow and ice melt models. Gridded maps of snow and glacier area/elevation are used as input to temperature-index melt models to estimate runoff from snow covered grid cells, based on cell area and melt depth. Glacier melt is estimated in the same way, once seasonal snow has disappeared from glacierized grid cells. The melt models are driven by daily mean temperature from reanalysis data. We are comparing the melt volume time series generated from temperature-index models with measured river discharge volumes and comparing the regional scale results with local sub-basin studies based on energy balance modeling approaches. We are also evaluating the accuracy of the melt model results using isotopic and geochemical tracers to identify and quantify the sources of water (ice melt, snow melt, rainfall and ground water) flowing into selected rivers representing the major hydro-climates of the study area. Preliminary results are presented for the Upper Indus Basin, and the Hunza sub-basin, for the period 2000-2012.

  18. Modeling fluid flow and heat transfer at Basin and Range faults: preliminary results for Leach hot springs, Nevada

    USGS Publications Warehouse

    López, Dina L.; Smith, Leslie; Storey, Michael L.

    1994-01-01

    The hydrothermal systems of the Basin and Range Province are often located at or near major range bounding normal faults. The flow of fluid and energy at these faults is affected by the advective transfer of heat and fluid from an to the adjacent mountain ranges and valleys, This paper addresses the effect of the exchange of fluid and energy between the country rock, the valley fill sediments, and the fault zone, on the fluid and heat flow regimes at the fault plane. For comparative purposes, the conditions simulated are patterned on Leach Hot Springs in southern Grass Valley, Nevada. Our simulations indicated that convection can exist at the fault plane even when the fault is exchanging significant heat and fluid with the surrounding country rock and valley fill sediments. The temperature at the base of the fault decreased with increasing permeability of the country rock. Higher groundwater discharge from the fault and lower temperatures at the base of the fault are favored by high country rock permabilities and fault transmissivities. Preliminary results suggest that basal temperatures and flow rates for Leach Hot Springs can not be simulated with a fault 3 km deep and an average regional heat flow of 150 mW/m2 because the basal temperature and mass discharge rates are too low. A fault permeable to greater depths or a higher regional heat flow may be indicated for these springs.

  19. Preliminary report on coal resources of the Wyodak-Anderson coal zone, Powder River Basin, Wyoming and Montana

    USGS Publications Warehouse

    Ellis, Margaret S.; Gunther, Gregory L.; Flores, Romeo M.; Ochs, Allen M.; Stricker, Gary D.; Roberts, Steven B.; Taber, Thomas T.; Bader, Lisa R.; Schuenemeyer, John H.

    1998-01-01

    The National Coal Resource Assessment (NCRA) project by the U.S. Geological Survey is designed to assess US coal with the greatest potential for development in the next 20 to 30 years. Coal in the Wyodak-Anderson (WA) coal zone in the Powder River Basin of Wyoming and Montana is plentiful, clean, and compliant with EPA emissions standards. This coal is considered to be very desirable for development for use in electric power generation. The purpose of this NCRA study was to compile all available data relating to the Wyodak- Anderson coal, correlate the beds that make up the WA coal zone, create digital files pertaining to the study area and the WA coal, and produce a variety of reports on various aspects of the assessed coal unit. This report contains preliminary calculations of coal resources for the WA coal zone and is one of many products of the NCRA study. Coal resource calculations in this report were produced using both public and confidential data from many sources. The data was manipulated using a variety of commercially available software programs and several custom programs. A general description of the steps involved in producing the resource calculations is described in this report.

  20. Preliminary report on the clay mineralogy of the Upper Devonian Shales in the southern and middle Appalachian Basin

    USGS Publications Warehouse

    Hosterman, John W.; Loferski, Patricia J.

    1978-01-01

    The distribution of kaolinite in parts of the Devonian shale section is the most significant finding of this work. These shales are composed predominately of 2M illite and illitic mixed-layer clay with minor amounts of chlorite and kaolinite. Preliminary data indicate that kaolinite, the only allogenic clay mineral, is present in successively older beds of the Ohio Shale from south to north in the southern and middle parts of the Appalachian basin. This trend in the distribution of kaolinite shows a paleocurrent direction to the southwest. Three well-known methods of preparing the clay fraction for X-ray diffraction analysis were tested and evaluated. Kaolinite was not identified in two of the methods because of layering due to differing settling rates of the clay minerals. It is suggested that if one of the two settling methods of sample preparation is used, the clay film be thin enough for the X-ray beam to penetrate the entire thickness of clay.

  1. The relationship between diagenesis and physical properties of sediments in the Shikoku Basin; Preliminary Results

    NASA Astrophysics Data System (ADS)

    Lee, Gwang Soo; Kim, Gil Young; Kyo Seo, Young; Henry, Pierre; Kanamatsu, Toshiya; Kyaw Thu, Moe; 333 Scientists, Expedition

    2013-04-01

    Integrated Ocean Drilling Program (IODP) Site C0011 is located on the northwest flank of the Kashinosaki Knoll which is the crest of bathymetric high in the Shikoku Basin. In this site, the physical properties of sediment were measured to provide high-resolution data on the bulk physical properties and their downhole variations. All physical property (moisture and density, gamma ray attenuation density, magnetic susceptibility, P-wave velocity, thermal conductivity, vane shear, and electrical resistivity) measurements were made after cores had been imaged by X-ray CT and had equilibrated to room temperature (about 20 °C). From the surface to 50 mbsf, bulk density generally increases and porosity decreases along the downhole. The trend reverses between 50 and 80 mbsf and then remains relatively constant until 240 mbsf. A sharp increase in bulk density (decrease in porosity) occurs between 240 and 270 mbsf, after which a steady consolidation trend continues to the base of the borehole. The dramatic change of physical properties in this section was estimated to be caused by sediment diagenesis which is cementation by the opal-A and opal-CT transformation, because the sediment texture observing from core description and CT scan is unconverted in this section. In the result of sediment texture analysis for total 128 subsamples of Holes C0011C and C0011D, the sediment texture does not show the features related to the change of the physical property between 240 and 270 mbsf, except relatively high mean grain size and sand contents at 235 mbsf. In the quantitative analysis of opal contents for 11 subsamples of Holes C0011C and C0011D, using X-ray diffraction (XRD) and computer software based on Rietveld quantification method, the contents of clay mineral and opal-A are high and also unconverted in all samples, whereas the contents of opal-CT are few. The result of quantitative analysis of opal contents using XRD does not support the sediment diagenesis caused by the opal-A and opal-CT transformation. Therefore, the sediment diagenesis in Site C0011 may not be controlled by the opal-A/opal-CT and opal-CT/quartz transformation and additional study is required to determine the relationship between diagenesis and physical properties of sediments in the Shikoku Basin.

  2. Preliminary results of polarization signatures for glacial moraines in the Mono Basin, Eastern Sierra Nevada

    NASA Technical Reports Server (NTRS)

    Forster, Richard R.; Fox, Andrew N.; Isacks, Bryan

    1992-01-01

    The valleys of the Mono Basin contain several sets of lateral and terminal moraines representing multiple stages of glaciation. The semi-arid climate with slow weathering rates preserved sequences of nested younger moraines within older ones. There is a well established relative chronology and recently exposure dating provided a new set of numerical dates. The moraines span the late Wisconsin (11-25 ka) to the Illinoian (130-190 ka) glaciations. The Mono Basin area was used as a 'calibration site' to establish remote dating techniques for eventual transfer to the more inaccessible but geomorphically and climatically similar moraines of the South American Andes Mountains. Planned polarimetric synthetic aperture radar (SAR) imagery acquired by JPL AIRSAR (South American Campaign) and SIR-C (Andes super-site) are analyzed to establish chronologies of previously undated moraine sequences in a study of Pleistocene climatic change in the Southern Hemisphere. The dry climate and sparse vegetation is also favorable for correlation of ground surface roughness with radar polarization signature. The slow weathering processes acting over thousands of years reduce the size, frequency, and angularity of surface boulders while increasing soil development on the moraines. Field observations based on this hypothesis result in relative ages consistent with those inferred from nested position within the valley. Younger moraines, therefore, will appear rougher than the older smoother moraines at scales measurable at AIRSAR wavelengths. Previously documented effects of ground surface roughness on polarization signatures suggest that analysis of moraine polarization signatures can be useful for relative dating. The technique may be extended to predict numerical ages. The data set reported were acquired on 8 Sep. 1989 with the JPL Airborne SAR (AIRSAR) collecting polarimetric imagery at C- (5.6 cm), L- (24 cm), and P-band (68 cm) with a flight-line parallel to the strike of the mountains. Phase calibration was performed on the analyzed scene by setting the co-phase of a smooth lake to zero as described. Absolute amplitude calibration was not possible because corner reflectors were not deployed.

  3. Channel erosion and sediment transport in Pheasant Branch basin near Middleton, Wisconsin; a preliminary report

    USGS Publications Warehouse

    Grant, R. Stephen; Goddard, Gerald

    1980-01-01

    The purpose of this 5-year study is to (1) evaluate the sediment transport, streamflow characteristics, and stream-channel morphology, (2) relate the above to land-use practices; and (3) evaluate the effect that changes in land-use practices will have on Pheasant Branch basin near Middleton, Wis. This report presents findings of sediment transport, streamflow characteristics, and stream-channel morphology from the first year of the study and documents historical erosion. The study is being conducted by the U.S. Geological Survey in cooperation with the city of Middleton and the Wisconsin Geological and Natural History Survey. Pheasant Branch, a tributary to Lake Mendota, drains 23.1 square miles of glacial drift. Channel erosion is severe within Middleton, requiring extensive use of erosion-control structures. Occasionally, channel dredging near the mouth and into Lake Mendota is required for boating. Comparison of stream-channel surveys of 1971 and 1977 shows the lowest part of the channel lowered 3 to 4 feet at some sites in the urban reach from U.S. Highway 12 downstream to Century Avenue. Downstream from Century Avenue, channel width increased from about 35 to 48 feet and channel cross-section area increased about 86 percent. A survey of Pheasant Branch in 1971 provided data for quantification of stream-channel changes since that time. Six erosion-control structures previously installed appear to have had some benefit in controlling head cutting in the channel. (USGS).

  4. Diatoms as a fingerprint of sub-catchment contributions to meso-scale catchment runoff

    NASA Astrophysics Data System (ADS)

    Klaus, Julian; Wetzel, Carlos E.; Martinez-Carreras, Nuria; Ector, Luc; Pfister, Laurent

    2014-05-01

    In recent years, calls were made for new eco-hydrological approaches to improve understanding of hydrological processes. Recently diatoms, one of the most common and diverse algal groups that can be easily transported by flowing water due to their small size (~10-200 µm), were used to detect the onset and cessation of surface runoff to small headwater streams and constrain isotopic and hydro-chemical hydrograph separation methods. While the method showed its potential in the hillslope-riparian zone-stream continuum of headwater catchments, the behavior of diatoms and their use for hydrological process research in meso-scale catchments remains uncertain. Diatoms can be a valuable support for isotope and hydro-chemical tracer methods when these become ambiguous with increasing scale. Distribution and abundance of diatom species is controlled by various environmental factors (pH, soil type, moisture conditions, exposition to sunlight, etc.). We therefore hypothesize that species abundance and composition can be used as a proxy for source areas. This presentation evaluates the potential for diatoms to trace source-areas in the nested meso-scale Attert River basin (250 km2, Luxembourg, Europe). We sampled diatom populations in streamwater during one flood event in Fall 2011 in 6 sub-catchments and the basin outlet - 17 to 28 samples/catchment for the different sampling locations. Diatoms were classified and counted in every individual sample. In total more than 400 diatom species were detected. Ordination analysis revealed a clear distinction between communities sampled in different sub-catchments. The species composition at the catchment outlet reflects a mixing of the diatom composition originating from different sub-catchments. This data suggests that diatoms indeed can reflect the geographic origin of stream water at the catchment outlet. The centroids of the ordination analysis might be linked to the physiographic characteristics (geology and land use) of the catchments. In a next step we will increase sample size of catchments to further evaluate if these distinct species assemblages are characteristic for different physiographic units and can indeed unambiguously trace catchment source areas. We will compare the results with classical source area hydrograph separations.

  5. The influence of sediment supply on arroyo cut-fill dynamics: a preliminary dataset of catchment averaged erosion rates calculated from in-situ 10Be

    NASA Astrophysics Data System (ADS)

    Riley, K. E.; Rittenour, T. M.

    2014-12-01

    Widespread and near-synchronous post-settlement stream entrenchment (arroyo cutting) in the southwest US stimulated research addressing forcing mechanisms and necessary geomorphic and climate conditions leading to episodic evacuations of valley-fill alluvium. Arroyos are an end-member channel form associated with ephemeral streams entrenched into cohesive, fine-grained, valley-fill. Historic arroyo entrenchment exposed 5-30 m of unconformity-bound packages of different aged Holocene alluvium. Chronostratigraphic reconstructions indicate that during the mid-late Holocene these systems underwent multiple periods of rapid episodic entrenchment followed by slow re-aggradation. Previous and ongoing work has developed alluvial chronostratigraphies of Kanab Creek, Johnson Wash, and surrounding streams in southern UT using a combination of stratigraphic relationships, radiocarbon, and single-grain OSL dating. This research investigates the role of allogenic forcing (climate change) and autogenic processes on cut-fill dynamics. This study tests if temporal or spatial variations in sediment supply have influenced the timing and location of arroyo aggradation and entrenchment. We measured in-situ 10-Be in quartz from alluvial and colluvial sediment in Kanab Creek and Johnson Wash to quantify catchment-average erosion rates. Samples were collected from modern channels throughout the watershed and from dated alluvial packages preserved in arroyo walls. Results quantify spatial and temporal variability in sediment supply throughout the two watersheds as a function of lithology, slope, elevation, contribution of sediment stored in valley-fill, and time. Moreover, 10-Be results from dated Holocene alluvium will be used to evaluate if climate change has influenced sediment supply and arroyo cut-fill dynamics.

  6. Preliminary Paleomagnetic Results From Tertiary Rocks of Sedimentary Basins in Northern Vietnam and Tectonic Implications

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Liu, Z.; Le, K.; Zhao, Y.; Hoang, V.; Phan, D.

    2013-12-01

    The South China Sea (SCS) is a classical representative of western Pacific marginal seas and contains records of Cenozoic tectonic events of SE Asia. The SCS has been at the center stage of many first-order tectonic and paleoclimatic events since the Mesozoic. One clear way to evaluate the relationship between tectonic uplift and climate is to study the resulting changes in marginal sea strata. To this end, we will conduct an integrated paleomagnetic and stratigraphic investigation on Tertiary strata from Phu Tho and Yen Bai provinces, northern Vietnam to help understand the causal linkages among geological and tectonic events and their consequences related to the SCS evolution. We will collect paleomagnetic samples at sections where the most continuous, complete, and best preserved Eocene-Miocene successions. Standard paleomagnetic field tests, such as the fold, reversal, and conglomerate tests will be used to determine the relative age of the magnetization. In addition to detailed thermal and alternating field demagnetization and analysis, selected samples will also be subjected to several rock magnetic analyses to identify magnetic carriers in the rocks. In particular, the hysteresis parameters Jrs/Js and Hcr /Hc ratios will enable us to apply techniques for detecting low-temperature remagnetization of sedimentary rocks. Preliminary finding of this ongoing project will be presented.

  7. Preliminary basin analysis of late Proterozoic-Cambrian post-rift strata, southeast Idaho thrust belt

    SciTech Connect

    Link, P.K.; Jansen, S.T.; Halimdihardja, P.; Lande, A.C.; Zahn, P.D.

    1987-08-01

    Strata of the Brigham Group in the Paris-Putnam plate of the southeastern Idaho thrust belt span the late Proterozoic-Cambrian boundary and consist of quartzose sandstone with subordinate pebble conglomerate and siltstone. The Brigham Group is overlain by fossiliferous Cambrian carbonate units that represent the transition from siliciclastic to carbonate deposition in the Cordilleran miogeocline. The Brigham Group contains four stratigraphic sequences bounded by regional disconformities. The lower sequence includes strata below the Brigham group (upper member, Pocatello Formation), plus the Papoose Creek Formation and most of the overlying Caddy Canyon Quartzite. This sequence is dominantly marine with shoreface and braided fluvial strata at the top. The first sequence is overlain disconformably by offshore sub-wave base marine strata of the upper Caddy Canyon Quartzite and Inkom Formation. This second sequence is entirely marine and is composed dominantly of siltstone with sandstone-filled channels. The third sequence comprises the Mutual Formation, an entirely braided fluvial and lacustrine unit. The fourth sequence (Sauk sequence) locally overlies the Mutual Formation with an erosional unconformity and consists of dominantly marine strata of the Camelback Mountain Quartzite, Gibson Jack Formation, Windy Pass Argillite, Twin Knobs Formation, and Sedgwick peak Quartzite. Correlations of these sequences to the McCoy Creek Group of eastern Nevada suggests uniform conditions of sea level and subsidence across the late Proterozoic-Cambrian Cordilleran miogeocline. This preliminary synthesis suggests the Brigham and McCoy Creek Groups are post-rift deposits, as indicated by regional persistence of facies, paleocurrents, and quartzose petrology.

  8. A preliminary assessment of sources of nitrate in springwaters, Suwannee River basin, Florida

    USGS Publications Warehouse

    Katz, B.G.; Hornsby, H.D.

    1998-01-01

    A cooperative study between the Suwannee River Water Management District (SRWMD) and the U.S. Geological Survey (USGS) is evaluating sources of nitrate in water from selected springs and zones in the Upper Floridan aquifer in the Suwannee River Basin. A multi-tracer approach, which consists of the analysis of water samples for naturally occurring chemical and isotopic indicators, is being used to better understand sources and chronology of nitrate contamination in the middle Suwannee River region. In July and August 1997, water samples were collected and analyzed from six springs and two wells for major ions, nutrients, and dissolved organic carbon. These water samples also were analyzed for environmental isotopes [18O/16O, D/H, 13C/12C, 15N/14N] to determine sources of water and nitrate. Chlorofluorocarbons (CCl3F, CCl2F2, and C2Cl3F3) and tritium (3H) were analyzed to assess the apparent ages (residence time) of springwaters and water from the Upper Floridan aquifer. Delta 15N-NO3 values in water from the six springs range from 3.94 per mil (Little River Springs) to 8.39 per mil (Lafayette Blue Spring). The range of values indicates that nitrate in the sampled springwaters most likely originates from a mixture of inorganic (fertilizers) and organic (animal wastes) sources, although the higher delta 15N-NO3 value for Lafayette Blue Spring indicates that an organic source of nitrogen is likely at this site. Water samples from the two wells sampled in Lafayette County have high delta 15N-NO3 values of 10.98 and 12.1 per mil, indicating the likelihood of an organic source of nitrate. These two wells are located near dairy and poultry farms, where leachate from animal wastes may contribute nitrate to ground water. Based on analysis of chlorofluorocarbons in ground water, the mean residence time of water in springs ranges from about 12 to 25 years. Chlorofluorocarbons-modeled recharge dates for water samples from the two shallow zones in the Upper Floridan aquifer range from 1985 to 1989.

  9. Modeling of facade leaching in urban catchments

    NASA Astrophysics Data System (ADS)

    Coutu, S.; Del Giudice, D.; Rossi, L.; Barry, D. A.

    2012-12-01

    Building facades are protected from microbial attack by incorporation of biocides within them. Flow over facades leaches these biocides and transports them to the urban environment. A parsimonious water quantity/quality model applicable for engineered urban watersheds was developed to compute biocide release from facades and their transport at the urban basin scale. The model couples two lumped submodels applicable at the basin scale, and a local model of biocide leaching at the facade scale. For the facade leaching, an existing model applicable at the individual wall scale was utilized. The two lumped models describe urban hydrodynamics and leachate transport. The integrated model allows prediction of biocide concentrations in urban rivers. It was applied to a 15 km2urban hydrosystem in western Switzerland, the Vuachère river basin, to study three facade biocides (terbutryn, carbendazim, diuron). The water quality simulated by the model matched well most of the pollutographs at the outlet of the Vuachère watershed. The model was then used to estimate possible ecotoxicological impacts of facade leachates. To this end, exceedance probabilities and cumulative pollutant loads from the catchment were estimated. Results showed that the considered biocides rarely exceeded the relevant predicted no-effect concentrations for the riverine system. Despite the heterogeneities and complexity of (engineered) urban catchments, the model application demonstrated that a computationally "light" model can be employed to simulate the hydrograph and pollutograph response within them. It thus allows catchment-scale assessment of the potential ecotoxicological impact of biocides on receiving waters.

  10. Design and development of a wireless sensor network to monitor snow depth in multiple catchments in the American River basin, California: hardware selection and sensor placement techniques

    NASA Astrophysics Data System (ADS)

    Kerkez, B.; Rice, R.; Glaser, S. D.; Bales, R. C.; Saksa, P. C.

    2010-12-01

    A 100-node wireless sensor network (WSN) was designed for the purpose of monitoring snow depth in two watersheds, spanning 3 km2 in the American River basin, in the central Sierra Nevada of California. The network will be deployed as a prototype project that will become a core element of a larger water information system for the Sierra Nevada. The site conditions range from mid-elevation forested areas to sub-alpine terrain with light forest cover. Extreme temperature and humidity fluctuations, along with heavy rain and snowfall events, create particularly challenging conditions for wireless communications. We show how statistics gathered from a previously deployed 60-node WSN, located in the Southern Sierra Critical Zone Observatory, were used to inform design. We adapted robust network hardware, manufactured by Dust Networks for highly demanding industrial monitoring, and added linear amplifiers to the radios to improve transmission distances. We also designed a custom data-logging board to interface the WSN hardware with snow-depth sensors. Due to the large distance between sensing locations, and complexity of terrain, we analyzed network statistics to select the location of repeater nodes, to create a redundant and reliable mesh. This optimized network topology will maximize transmission distances, while ensuring power-efficient network operations throughout harsh winter conditions. At least 30 of the 100 nodes will actively sense snow depth, while the remainder will act as sensor-ready repeaters in the mesh. Data from a previously conducted snow survey was used to create a Gaussian Process model of snow depth; variance estimates produced by this model were used to suggest near-optimal locations for snow-depth sensors to measure the variability across a 1 km2 grid. We compare the locations selected by the sensor placement algorithm to those made through expert opinion, and offer explanations for differences resulting from each approach.

  11. The contribution of sea-level rise to flooding in large river catchments

    NASA Astrophysics Data System (ADS)

    Thiele-Eich, I.; Hopson, T. M.; Gilleland, E.; Lamarque, J.; Hu, A.; Simmer, C.

    2012-12-01

    Climate change is expected to both impact sea level rise as well as flooding. Our study focuses on the combined effect of climate change on upper catchment precipitation as well as on sea-level rise at the river mouths and the impact this will have on river flooding both at the coast and further upstream. We concentrate on the eight catchments of the Amazonas, Congo, Orinoco, Ganges/Brahmaputra/Meghna, Mississippi, St. Lawrence, Danube and Niger rivers. To assess the impact of climate change, upper catchment precipitation as well as monthly mean thermosteric sea-level rise at the river mouth outflow are taken from the four CCSM4 1° 20th Century ensemble members as well as from six CCSM4 1° ensemble members for the RCP scenarios RCP8.5, 6.0, 4.5 and 2.6. Continuous daily time series for average catchment precipitation and discharge are available for each of the catchments. To arrive at a future discharge time series, we used these observations to develop a simple statistical hydrological model which can be applied to the modelled future upper catchment precipitation values. The analysis of this surrogate discharge time series alone already yields significant changes in flood return levels as well as flood duration. Using the geometry of the river channel, the backwater effect of sea-level rise is incorporated in our analysis of both flood frequencies and magnitudes by calculating the effective additional discharge due to the increase in water level at the river mouth outflow, as well as its tapering impact upstream. By combining these effects, our results focus on the merged impact of changes in extreme precipitation with increases in river height due to sea-level rise at the river mouths. Judging from our preliminary results, the increase in effective discharge due to sea-level rise cannot be neglected when discussing late 21st century flooding in the respective river basins. In particular, we find that especially in countries with low elevation gradient, flood characteristics are impacted by changes in sea-level rise as far inland as 150 kilometers. Therefore, a larger population than the coastal inhabitants alone are exposed to risks of further projected increases of sea-level rise. A prime example for a megacity greatly put at risk by this is Dhaka City in Bangladesh, with a population of roughly 14 million people.

  12. Preliminary analysis of the role of lake basin morphology on the modern diatom flora in the Ruby Mountains and East Humboldt Range, Nevada, USA

    USGS Publications Warehouse

    Starratt, Scott W.

    2014-01-01

    As paleolimnologists, we often look at the world through a 5-cm-diameter hole in the bottom of a lake, and although a number of studies have shown that a single core in the deepest part of a lake does not necessarily reflect the entire diatom flora, time and money often limit our ability to collect more than one core from a given site. This preliminary study is part of a multidisciplinary research project to understand Holocene climate variability in alpine regions of the Great Basin, and ultimately, to compare these high elevation records to the better studied pluvial records from adjacent valleys, in this case, the Ruby Valley.

  13. PRELIMINARY DATA REPORT: HUMATE INJECTION AS AN ENHANCED ATTENUATION METHOD AT THE F-AREA SEEPAGE BASINS, SAVANNAH RIVER SITE

    SciTech Connect

    Millings, M.

    2013-09-16

    A field test of a humate technology for uranium and I-129 remediation was conducted at the F-Area Field Research Site as part of the Attenuation-Based Remedies for the Subsurface Applied Field Research Initiative (ABRS AFRI) funded by the DOE Office of Soil and Groundwater Remediation. Previous studies have shown that humic acid sorbed to sediments strongly binds uranium at mildly acidic pH and potentially binds iodine-129 (I-129). Use of humate could be applicable for contaminant stabilization at a wide variety of DOE sites however pilot field-scale tests and optimization of this technology are required to move this technical approach from basic science to actual field deployment and regulatory acceptance. The groundwater plume at the F-Area Field Research Site contains a large number of contaminants, the most important from a risk perspective being strontium-90 (Sr-90), uranium isotopes, I-129, tritium, and nitrate. Groundwater remains acidic, with pH as low as 3.2 near the basins and increasing to the background pH of approximately 5at the plume fringes. The field test was conducted in monitoring well FOB 16D, which historically has shown low pH and elevated concentrations of Sr-90, uranium, I-129 and tritium. The field test included three months of baseline monitoring followed by injection of a potassium humate solution and approximately four and half months of post monitoring. Samples were collected and analyzed for numerous constituents but the focus was on attenuation of uranium, Sr-90, and I-129. This report provides background information, methodology, and preliminary field results for a humate field test. Results from the field monitoring show that most of the excess humate (i.e., humate that did not sorb to the sediments) has flushed through the surrounding formation. Furthermore, the data indicate that the test was successful in loading a band of sediment surrounding the injection point to a point where pH could return to near normal during the study timeframe. Future work will involve a final report, which will include data trends, correlations and interpretations of laboratory data.

  14. Concentration and mineralogical residence of elements in rich oil shales of the Green River Formation, Piceance Creek basin, Colorado, and the Uinta Basin, Utah - A preliminary report

    USGS Publications Warehouse

    Desborough, G.A.; Pitman, J.K.; Huffman, C., Jr.

    1976-01-01

    Ten samples from drillcore of two rich oil-shale beds from the Parachute Creek Member of the Eocene Green River Formation, Piceance Creek basin, Colorado, and Uinta Basin, Utah, were analyzed for 37 major, minor, and trace elements. For 23 of these elements, principal mineralogical residence is established or suggested and such studies may provide data which are useful for predicting the kinds and amounts of elements and compounds that might be released into the environment by oil-shale mining operations. ?? 1976.

  15. Preliminary vitrinite and bitumen reflectance, total organic carbon, and pyrolysis data for samples from Upper and Lower Cretaceous strata, Maverick Basin, south Texas

    USGS Publications Warehouse

    Hackley, Paul C.; Dennen, Kristin O.; Gesserman, Rachel M.; Ridgley, Jennie L.

    2009-01-01

    The Lower Cretaceous Pearsall Formation, a regionally occurring limestone and shale interval of 500-600-ft maximum thickness (Rose, 1986), is being evaluated as part of an ongoing U.S. Geological Survey (USGS) assessment of undiscovered hydrocarbon resources in onshore Lower Cretaceous strata of the northern Gulf of Mexico. The purpose of this report is to release preliminary vitrinite and bitumen reflectance, total organic carbon, and pyrolysis data for Pearsall Formation, Glen Rose Formation, Hosston Formation, Austin Group, and Eagle Ford Group samples from the Maverick Basin in south Texas in order to aid in the characterization of these strata in this area. The preliminary nature of this report and the data contained herein reflect that the assessment and characterization of these samples is a work currently in progress. Pearsall Formation subdivisions are, in ascending stratigraphic order, the Pine Island Shale, James Limestone, and Bexar Shale Members (Loucks, 2002). The Lower Cretaceous Glen Rose Formation is also part of the USGS Lower Cretaceous assessment and produces oil in the Maverick Basin (Loucks and Kerans, 2003). The Hosston Formation was assessed by the USGS for undiscovered oil and gas resources in 2006 (Dyman and Condon, 2006), but not in south Texas. The Upper Cretaceous Austin Group is being assessed as part of the USGS assessment of undiscovered hydrocarbon resources in the Upper Cretaceous strata of the northern Gulf of Mexico and, along with the Upper Cretaceous Eagle Ford Group, is considered to be an important source rock in the Smackover-Austin-Eagleford Total Petroleum System (Condon and Dyman, 2006). Both the Austin Group and the Eagle Ford Group are present in the Maverick Basin in south Texas (Rose, 1986).

  16. Hydrological monitoring and modeling of an alpine catchment

    E-print Network

    Lenstra, Arjen K.

    ENAC/ Hydrological monitoring and modeling of an alpine catchment Auteur Raphael Mutzner 1 , S. · Improve basin-scale hydrological modeling using a distributed model that will be validated with the data November to May · Presence of deep gullies · Presence of a small glacier · Sandy silt loam soil

  17. Soil and water assessment tool model calibration results for different catchment sizes in poland.

    PubMed

    Ostojski, Mieczyslaw S; Niedbala, Jerzy; Orlinska-Wozniak, Paulina; Wilk, Pawel; G?bala, Joanna

    2014-01-01

    The watershed model SWAT (Soil and Water Assessment Tool) can be used to implement the requirements of international agreements that Poland has ratified. Among these requirements are the establishment of catchment-based, rather than administrative-based, management plans and spatial information systems. Furthermore, Polish law requires that management of water resources be based on catchment systems. This article explores the use of the SWAT model in the implementation of catchment-based water management in Poland. Specifically, the impacts of basin size on calibration and on the results of the simulation process were analyzed. SWAT was set up and calibrated for three Polish watersheds of varying sizes: (i) G?sawka, a small basin (>593.7 km), (ii) Rega, a medium-sized basin (2766.8 km), and (iii) Warta, a large basin (54,500 km) representing about 17.4% of Polish territory. The results indicated that the size of the catchment has an impact on the calibration process and simulation outputs. Several factors influenced by the size of the catchment affected the modeling results. Among these factors are the number of measurement points within the basin and the length of the measuring period and data quality at checkpoints as determined by the position of the measuring station. It was concluded that the SWAT model is a suitable tool for the implementation of catchment-based water management in Poland regardless of watershed size. PMID:25602547

  18. Preliminary selection of storm-water basins suitable for infiltration of reclaimed water in Nassau County, Long Island, New York

    USGS Publications Warehouse

    Aronson, D.A.

    1976-01-01

    A survey was made of 205 storm-water basins south of the ground-water divide and north of Hempstead Turnpike in Nassau County, Long Island, N.Y., to determine which would be best suited for infiltration of reclaimed water. Selection depended on infiltration area, location with respect to the ground-water divide and to planned transmission mains, tendency to retain storm runoff, underlying lithology, and depth to water table. The total maximum infiltration area of 14 selected basins is 60.2 acres, or 2,620,900 square feet (0.24 square kilometers). If 5-foot (1.5-meter) -high partitions were constructed in the basins to divide each into approximately equal halves and reclaimed water were applied in half of each basin to a depth of 5 feet (1.5 meters), using an application-rest cycle, a total area of 25.2 acres (0.10 square kilometers) would be available for supplemental recharge; the remaining infiltration area could be used for disposal of storm runoff. (Woodard-USGS)

  19. Nanophytoplankton Diversity Across the Oligohaline Lake Pontchartrain Basin Estuary: A Preliminary Investigation Utlizing psbA Sequences

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Lake Pontchartrain basin estuary is shallow, wind-driven and comprised of two large embayments (1645 km2). Salinities range from freshwater in the west to 8 ppt in the east near the Gulf of Mexico. Phytoplankton investigations spanning this salinity gradient or examining small photoautotrophs ar...

  20. Study of Beijiang catchment flash-flood forecasting model

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Li, J.; Huang, S.; Dong, Y.

    2015-05-01

    Beijiang catchment is a small catchment in southern China locating in the centre of the storm areas of the Pearl River Basin. Flash flooding in Beijiang catchment is a frequently observed disaster that caused direct damages to human beings and their properties. Flood forecasting is the most effective method for mitigating flash floods, the goal of this paper is to develop the flash flood forecasting model for Beijiang catchment. The catchment property data, including DEM, land cover types and soil types, which will be used for model construction and parameter determination, are downloaded from the website freely. Based on the Liuxihe Model, a physically based distributed hydrological model, a model for flash flood forecasting of Beijiang catchment is set up. The model derives the model parameters from the terrain properties, and further optimized with the observed flooding process, which improves the model performance. The model is validated with a few observed floods occurred in recent years, and the results show that the model is reliable and is promising for flash flood forecasting.

  1. Collaborative Adaptation Planning for Water Security: Preliminary Lessons, Challenges, and the Way Forward for Maipo Basin Adaptation Plan, Chile

    NASA Astrophysics Data System (ADS)

    Vicuna, S.; Scott, C. A.; Bonelli, S.; Bustos, E.; Meza, F. J.

    2014-12-01

    The Maipo basin holds 40% of Chile's total population and almost half of the country's Gross Domestic Product. The basin is located in the semiarid central region of the country and, aside from the typical pressures of growth in developing country basins, the Maipo river faces climate change impacts associated with a reduction in total runoff and changes in its seasonality. Surface water is the main water source for human settlements and economic activities including agriculture. In 2012 we started a research project to create a climate variability and climate change adaptation plan for the basin. The pillars of the plan are co-produced by researchers and a Scenario Building Team (SBT) with membership of relevant water and land use stakeholders (including from civil society, public and private sectors) in the basin. Following similar experiences in other regions in the world that have faced the challenges of dealing with long term planning under uncertainty, the project has divided the task of developing the plan into a series of interconnected elements. A critical first component is to work on the desired vision(s) of the basin for the future. In this regards, the "water security" concept has been chosen as a framework that accommodates all objectives of the SBT members. Understanding and quantifying the uncertainties that could affect the future water security of the basin is another critical aspect of the plan. Near and long term climate scenarios are one dimension of these uncertainties that are combined with base development uncertainties such as urban growth scenarios. A third component constructs the models/tools that allows the assessment of impacts on water security that could arise under these scenarios. The final critical component relates to the development of the adaptation measures that could avoid the negative impacts and/or capture the potential opportunities. After two years in the development of the adaptation plan a series of results has been achieved in all critical components that are presented here. The success in the process now poses a series of new challenges, most importantly: how to implement and monitor the evolution of the adaptation process.

  2. Development and Application of a Simple Hydrogeomorphic Model for Headwater Catchments

    EPA Science Inventory

    We developed a catchment model based on a hydrogeomorphic concept that simulates discharge from channel-riparian complexes, zero-order basins (ZOB, basins ZB and FA), and hillslopes. Multitank models simulate ZOB and hillslope hydrological response, while kinematic wave models pr...

  3. Modeling relationships between catchment attributes and river water quality in southern catchments of the Caspian Sea.

    PubMed

    Hasani Sangani, Mohammad; Jabbarian Amiri, Bahman; Alizadeh Shabani, Afshin; Sakieh, Yousef; Ashrafi, Sohrab

    2015-04-01

    Increasing land utilization through diverse forms of human activities, such as agriculture, forestry, urban growth, and industrial development, has led to negative impacts on the water quality of rivers. To find out how catchment attributes, such as land use, hydrologic soil groups, and lithology, can affect water quality variables (Ca(2+), Mg(2+), Na(+), Cl(-), HCO 3 (-) , pH, TDS, EC, SAR), a spatio-statistical approach was applied to 23 catchments in southern basins of the Caspian Sea. All input data layers (digital maps of land use, soil, and lithology) were prepared using geographic information system (GIS) and spatial analysis. Relationships between water quality variables and catchment attributes were then examined by Spearman rank correlation tests and multiple linear regression. Stepwise approach-based multiple linear regressions were developed to examine the relationship between catchment attributes and water quality variables. The areas (%) of marl, tuff, or diorite, as well as those of good-quality rangeland and bare land had negative effects on all water quality variables, while those of basalt, forest land cover were found to contribute to improved river water quality. Moreover, lithological variables showed the greatest most potential for predicting the mean concentration values of water quality variables, and noting that measure of EC and TDS have inversely associated with area (%) of urban land use. PMID:25395322

  4. Comment on "Catchment flow estimation using Artifical Neural Networks in the mountainous Euphrates basin" by A.G. Yilmaz, M.A. Imteaz, G. Jenkins (J. Hydrol. 410 (2011) 134-140)

    NASA Astrophysics Data System (ADS)

    ?ensoy, Aynur; Ünal ?orman, A.; Arda ?orman, A.

    2012-08-01

    SummaryThe studies conducted in the Euphrates Basin draws special attention due to its high snow potential and hydropolitical condition. Snow and hydrometeorological instrumentation has been set up for real time monitoring and data collection in the Upper Euphrates Basin over the past decade. Hydrological modeling studies using satellite snow products have been carried out in the basin for real time runoff forecasting. Moreover, the Upper Euphrates Basin is a pilot basin for several national and international projects on snow hydrology concerning its location and topography. These are the main reasons in writing this comment on the methodology and data used by Yilmaz et al. Yilmaz et al. draw the attention to the ANN which does not require a high level of expertise in successfully identifying the nonlinear hydrological processes. However, ANN modeling should be used with care and enough data including topography and snow data especially when applied in a mountainous snow dominated basin.

  5. Characterising Groundwater-dominated Lowland Catchments - the UK Lowland Catchment Research Programme (LOCAR)

    NASA Astrophysics Data System (ADS)

    Wheater, H. S.; Peach, D.; Binley, A.

    2005-12-01

    This paper reports on a major 10million UK initiative to address deficiencies in understanding the hydro-ecological response of groundwater-dominated lowland catchments. We focus here on one of three sets of research basins - the Pang/Lambourn Chalk catchments, tributaries of the river Thames in southern England. The motivation for the research is the need to support integrated management of river systems that have high ecological value and are subject to pressures that include groundwater abstraction for water supply, diffuse pollution, and land use and climate change. We give an overview of the experimental approach and highlight some current research findings. Despite the importance of the Chalk as a major UK aquifer, knowledge of the subsurface movement of water and solutes is poor. Solute transport in the dual porosity unsaturated zone depends on fracture/matrix interactions that are difficult to observe; current experimental and modelling research supports the predominance of matrix flow and suggests that slow migration of a time-history of decades of nutrient loading is occurring. Groundwater flows are complex; catchments vary seasonally and are ill-defined and Karst features are locally important. Groundwater flow pathways are being investigated using natural and artificial geochemical tracers based on experimental borehole arrays; stream-aquifer interaction research is using a combination of geophysics, borehole array geochemistry and longitudinal profiles of stream flow and solutes. A complex picture is emerging of localised subsurface inflows, linked to structural geological controls and karst features, and significant longitudinal groundwater flow below the river channel. Hyporheic zone research has shown significant areas of methanogenesis and denitrification - the catchment-scale significance of this remains to be determined. Similarly, analysis of nutrient transformations in riparian wetlands is being linked to analysis of groundwater flowpaths to determine their catchment-scale significance. Models of surface water quality have been used to interpret catchment-scale response through mixing analyses and longer term nutrient simulation. A new approach has been required to represent unsaturated zone nutrient storage. A conventional distributed groundwater model has been developed outside this research programme to aid the management of riparian ecosystems. The new experimental data has clearly shown that this fails to represent key hydrogeological features. This raises important questions concerning the confidence that can be placed in models as routinely used for decision support and the level of knowledge required for catchment management to be placed on a secure scientific foundation. We argue that major investment in integrated monitoring and modelling is essential to develop an adequate basis for management of the hydroecological functioning of catchment systems.

  6. Preliminary study of the uranium potential of the northern part of the Durham Triassic Basin, North Carolina

    SciTech Connect

    Harris, W.B.; Thayer, P.A.

    1981-09-01

    This report presents results of a four-channel spectrometric survey of the northern part of the Durham Triassic basin and adjacent Piedmont, North Carolina. Gamma-ray spectrometric measurements were obtained at 112 localities from 136 different lithologies. The nominal sampling density in the Durham Basin is one site per 2 mi/sup 2/. Surface radiometric surveys reveal no anomalous radioactivity in the northern part of the Durham Basin. Uranium concentrations in Triassic rocks are from 0.6 to 9.7 ppM and average 2.9 ppM. Mudrocks contain from 1.3 to 9.7 ppM, and the average is 4.5 ppM. Sandstones contain from 0.6 to 8.8 ppM, and the average is 2.5 ppM. Fanglomerates contain the lowest concentrations of uranium, from 1.4 to 2.0 ppM, for an average of 1.8 ppM. Uranium/thorium ratios average 0.27 for Triassic rocks and are from 0.04 to 1.85. The mean log uranium/log thorium for Triassic rocks is 0.37. Mudrock has the highest average uranium/thorium ratio (0.32), and the range is 0.09 to 0.66. Sandstones have an average uranium/thorium ratio of 0.26, and the range is 0.04 to 1.85. Fanglomerates have the lowest range uranium/thorium ratio (0.19), and the range is 0.12 to 0.19. On the basis of surface radiometric surveys and geologic studies, it is believed that sedimentary strata in the northern part of the Durham Basin are poor targets for further uranium exploration. This conclusion is based on the lack of favorable characteristics commonly present in fluvial uranium deposits. Among these are: (1) carbonaceous material is absent in Triassic rocks of the northern basin, (2) indicators of a reduzate facies in sandstones are not present, and (3) no tuffaceous beds are associated with sediments in the northern Durham Basin.

  7. Rainfall-runoff modeling and preliminary regional flood characteristics of small rural watersheds in the Arkansas River basin in Colorado

    USGS Publications Warehouse

    Livingston, Russell K.

    1981-01-01

    Both recorded and synthetic rainfall-runoff and annual peak-discharge data for 17 rural watersheds were analyzed to evaluate the magnitude, frequency, and volume of floods in the plains region of the Arkansas River basin in Colorado. Flood-frequency relations from analysis of recorded data were weighted or combined with flood-frequency relations from analysis of synthetic data to provide improved estimates of selected flood characteristics for 15 of these watersheds. The 10-, 25-, 50-, and 100-year peak discharges were regionalized using multiple-regression and station-year methods. Regression relations were developed to determine peak discharge from effective drainage area (standard error of estimate 30 to 50 percent) and flood volume from peak discharge (standard error of estimate 62 percent) for ungaged basins between 0.5 and 15 square miles in size. Using these two flood characteristics, a dimensionless hydrograph method provides synthetic hydrographs very similar in shape to recorded flood hydrographs. (USGS)

  8. Preliminary assessment of climatic change during late Wisconsin time, southern Great Basin and vicinity, Arizona, California, and Nevada

    SciTech Connect

    Spaulding, W.G.; Robinson, S.W.; Paillet, L.

    1984-12-31

    Concentration and relative abundance of plant macrofossils illustrate compositional variations in samples from the Eleana Range-2 packrat midden. Nine macrofossil assemblages spanning 6500 radiocarbon years record local vegetational changes in the southern Great Basin of Nevada during the last one-half of the late Wisconsin glacial age. The vegetation of the Eleana Range-2 site, on a south-facing slope at 1810 meters altitude, was characterized by limber pine and steppe shrubs, from before 17,100 radiocarbon years before present to shortly after 13,200 radiocarbon years before present. Changes toward a more xerophytic plant association at the site began by 16,000 radiocarbon years before present, culminating in a major change to pinyon-juniper woodland between 13,200 and 11,700 radiocarbon years before present. The climatic reconstruction for the late full glacial episode (17,000 to 15,000 radiocarbon years before present) that is proposed to account for limber pine-shrub vegetation in the Eleana Range is characterized by increased winter precipitation, and very little summer rainfall. A major warming trend occurred between about 16,000 and 12,000 radiocarbon years before present and was largely concordant with major dessication of closed lakes in the southern Great Basin. A period of wetter conditions in the southern Great Basin during the latest Wisconsin may have incorporated increased precipitation during both the summer and winter, and lower temperatures during the winter, relative to the present. 93 references, 5 figures, 6 tables.

  9. Dynamic processes in the mountain catchment

    NASA Astrophysics Data System (ADS)

    Trifonova, Tatiana; Arakelian, Sergei

    2015-04-01

    The process of the river cftchment foundation and the mechanisms being in the basis of its development are not clear at present. Principal phenomena determining the dynamics of formation of the river catchment are under our study in this paper for the case of the mountain basin as an example. The methodology of this monitoring includes the space image recognition and computer data processing of the images for the Maliy Caucasus Mountains. Mountain river catchment formation on the slope of the ridge can be considered as a self-organizing staged process of its evolution passing through several non-equilibrium but steady-state conditions. We consider a system of tributaries in the mountain river catchment as a system of cracks, which are formed on the slope of the mountain massif. In other words, the formation of river networks should be the result of development of several processes, among of which the mechanisms of crack development should play a dominant role. The principal results, discussed in the present report, can be formulated as follow. (1) The mountain catchment (litho-watershed) formation takes place under conditions of the confined states of a mountain massif: on the one hand it is bounded by the surface of the slope; but on the other hand, - by a primary cracks density occurrence (as a spatial distribution 3D-crack net). (2) The development in time of the river catchment takes place by several stages. Each stage specifies a definite energetic state of the system in the mountain massif. (3) The overhead river streams arise not only due to surface water, but and namely due to rising of water from underground water horizons over the watercourse cracks penetrating deeply into the underground. (4) The 3D-river catchment structure results in concept in behavior of the unit as an open nonlinear dynamic system with a spatially distributed feedback. The energetic (endogen) processes of formation, rising and bifurcation for cracks are the consequence of relaxation of tension accumulating into of the mountain materials, and result in specific geometrical image of the river stream system. Exogenic processes of depression have a secondary meaning and take part in organization of the relief picture inside of the basin. Geological peculiarities, concrete physic-chemical properties of the mountain massive and different external factors are overlapped on indicated primary processes, and such complicated picture establishes the morphology of the catchment in general. The conclusion is, the mountain river catchment is the vertical geosystem with the predominantly descending fluxes of substances . Its development in time results in interrelated processes of mountainous massif destruction and, as to direction of the river's channel fracturing growth, the process is going up over the slope. The water balance in such a 3D -system should take into account both surface water and groundwater.

  10. Catchments as filters: Understanding catchment processes through annual duration curves

    NASA Astrophysics Data System (ADS)

    Archfield, S. A.; Wagener, T.

    2012-12-01

    Quantifying the response of a catchment to climate forcing and thereby linking this response to functional catchment properties can increase our understanding of the effects of climate change on water availability and identify those catchments most sensitive to climate. By viewing a catchment as a filter of the precipitation signal, we present a novel approach for comparing the annual variability in precipitation with the annual variability in streamflow using the concept of the annual duration curve (ADC). The ADC constructs a 365-day duration curve for each year of observed record, and has not previously been utilized to examine catchment behavior and understand similarity in catchment response. We compare the year-to-year changes in ADCs of precipitation to the year-to-year changes in the ADCs of streamflow for 42 unregulated catchments across the United States having at least 55 years of observed daily streamflow and precipitation records. We find that the annual variability in precipitation is relatively constant across the study catchments; however, the variability in streamflow can differ quite substantially. This result indicates that the extent to which annual variability in streamflow represents the annual variability in precipitation is likely related to the filtering process, which differs across catchments. Future research will determine if these differences can be explained by functional catchment properties.

  11. The anthropic catchment-ecosystem concept: an Irish example

    SciTech Connect

    Phillips-Howard, K.D.

    1985-06-01

    The catchment-ecosystem concept is adapted to investigate the nutrient-budget of the highly-modified Colebrooke drainage basin in Northern Ireland. Anthropogenic inputs, mainly manures and fertilizers, account for 86% of the nitrogen and 96% of the phosphorus added to the catchment. These inputs greatly exceed the streamflow outputs, thereby indicating that the flow of nutrients is dominated by agriculture. This is explained by the transformation of traditional mixed farming into more intensive livestock production and is linked to policies encouraging increased agricultural production, amalgamation of farms, afforestation, rural depopulation, and urbanization. Substantial increases in the N and P output of the catchment and further eutrophication of the recipient lake, Lough Erne, are predicted without the implementation of policies to reduce agricultural nutrient losses.

  12. A methodological comparison of catchment storages in mountainous catchments

    NASA Astrophysics Data System (ADS)

    Weiler, Markus; Staudinger, Maria; Stölzle, Michael; Seeger, Stefan; Seibert, Jan; Stahl, Kerstin

    2015-04-01

    One of the most important functions of catchments is the temporary storage of water, which directly influences runoff dynamics, rainfall-runoff transformation, partitioning of evaporation and runoff fluxes, and accessibility of water to plants. Generally, a large catchment storage is considered beneficial and in particular increases the transit times and hence the buffer functioning related to water quality. Many different methods have been developed to assess catchment storage, however, there are hardly any direct comparisons of several of these methods. One challenge is the definition of water storage, while some methods allow estimation of the entire water storage in a catchment, other methods quantify only the dynamic storage. In addition, most studies focused more on lowland catchments with rain-dominated runoff regimes and observed groundwater fluctuations. Furthermore, these studies often focus on one or two catchments, but do not consider the influence of different climates on the relevance of water storage in the catchment. We applied a range of different methods to assess catchment storage characteristics in 18 catchments in the Swiss Alps, ranging from 500 to 2000m of mean elevation and hence from rainfall- to snowmelt dominated runoff regimes. The first method use only discharge information during recession periods and with varying approaches to extract discharge and storage changes between high flow and low flow, the dynamic catchment storage can be derived. In the next methods the conceptual hydrological model HBV is calibrated to the runoff dynamics and the dynamic and total catchment storages of the different compartments are being evaluated. The last methods are based on stable water isotope data analysis. We use the model TRANSEP to derive the dynamic storage as well as the total water storage of the catchment based on the transit times using several years of fortnightly isotope data in streamflow. The results show that the derived catchment storage characteristics are strongly dependent on the chosen method. However, the overall ranking of the catchments among the methods is quite similar, despite the derived catchment storage of one catchment may differ by one to two orders of magnitude. Surprisingly, the high elevation catchments generally show a much larger storage than most of the low elevation catchments. To investigate this surprising result further, we analyzed the effect of climate on the derived catchment storage in more detail, since an additional snow storage with the resulting melt period in spring may produce an large dynamic storage due to the concentrated input of water. We both used subsamples of discharge to divide the storage in snow or rain triggered storage and changed the climate input either to a rainfall or snowmelt dominated climate and compared the storage among the catchments based on a similar climate signal. We finally develop a framework for assessing and comparing catchment storages among catchments in different climates, geologies and with different physiographic characteristics. These analyses also provided more insights into the larger storage in mountainous catchments and its importance to catchments functions.

  13. Catchment controls on solute export

    NASA Astrophysics Data System (ADS)

    Musolff, Andreas; Schmidt, Christian; Selle, Benny; Fleckenstein, Jan H.

    2015-12-01

    Dynamics of solute export from catchments can be classified in terms of chemostatic and chemodynamic export regimes by an analysis of concentration-discharge relationships. Previous studies hypothesized that distinct export regimes emerge from the presence of solute mass stores within the catchment and their connectivity to the stream. However, so far a direct link of solute export to identifiable catchment characteristics is missing. Here we investigate long-term time series of stream water quality and quantity of nine neighboring catchments in Central Germany ranging from relatively pristine mountain catchments to agriculturally dominated lowland catchments, spanning large gradients in land use, geology, and climatic conditions. Given the strong collinearity of catchment characteristics we used partial least square regression analysis to quantify the predictive power of these characteristics for median concentrations and the metrics of export regime. We can show that median concentrations and metrics of the export regimes of major ions and nutrients can indeed be inferred from catchment characteristics. Strongest predictors for median concentrations were the share of arable land, discharge per area, runoff coefficient and available water capacity in the root zone of the catchments. The available water capacity in the root zone, the share of arable land being artificially drained and the topographic gradient were found to be the most relevant predictors for the metrics of export regime. These catchment characteristics can represent the size of solute mass store such as the fraction of arable land being a measure for the store of nitrate. On the other hand, catchment characteristics can be a measure for the connectivity of these solute stores to the stream such as the fraction of tile drained land in the catchments. This study demonstrates the potential of data-driven, top down analyses using simple metrics to classify and better understand dominant controls of solute export from catchments.

  14. Evolution of Lake Chad Basin hydrology during the mid-Holocene: A preliminary approach from lake to climate modelling

    NASA Astrophysics Data System (ADS)

    Sepulchre, Pierre; Schuster, Mathieu; Ramstein, Gilles; Krinnezr, Gerhard; Girard, Jean-Francois; Vignaud, Patrick; Brunet, Michel

    2008-03-01

    During the mid-Holocene (6000 yr Before Present, hereafter yr BP) the Chad Basin was occupied by a large endoreic lake, called Lake Mega-Chad. The existence of this lake at that time seems linked to increased monsoonal moisture supply to the Sahel and the Sahara, which in turn was probably ultimately caused by variations in the orbital forcing and higher temperature gradients between ocean and continent. This study provides a synthesis of several works carried out on the Lake Chad Basin and analyses the results of a simulation of the mid-Holocene climate with an Atmosphere General Circulation Model (LMDZ for Laboratoire de Météorologie Dynamique, IPSL Paris), with emphasis on the possible conditions leading to the existence of Lake Mega-Chad. The aim is to define the best diagnostics to understand which mechanisms lead to the existence of the large lake. This paper is the first step of an ongoing work that intends to understand the environmental conditions that this part of Africa experienced during the Upper Miocene (ca. 7 Ma BP), an epoch that was contemporaneous with the first known hominids. Indeed, early hominids of Lake Chad Basin, Australopithecus bahrelghazali [ Brunet, M., et al., 1995. The first australopithecine 2500 kilometers west of the Rift-Valley (Chad). Nature, 378(6554): 273-275] and Sahelanthropus tchadensis [Brunet, M., et al., 2002. A new hominid from the Upper Miocene of Chad, central Africa. Nature, 418(6894): 145-151; Brunet, M., et al., 2005. New material of the earliest hominid from the Upper Miocene of Chad. Nature, 434(7034): 752-755] are systematically associated with wet episodes that are documented for 7 Ma BP [Vignaud, P., et al., 2002. Geology and palaeontology of the Upper Miocene Toros-Menalla hominid locality, Chad. Nature, 418(6894): 152-155] and testified by extended lacustrine deposits (diatomites, pelites, various aquatic fauna). Because the mid-Holocene was the last such mega-lake episode, our aim here is to assess the simulated response of Lake Chad to the hydrologic changes caused by 6 kyr BP forcings (orbital variations, albedo, sea surface temperatures) as a test for a future use of the model for studies of the Miocene climate. We show that the induced northward shift of the simulated ITCZ, and the hydrological changes around the lake caused by this shift, are consistent with an increased water balance over the Lake Chad Basin 6000 yr ago. Water supply from the soil (runoff and river inputs) will have to be taken into account in further simulations in order to discuss the timing of the onset, expansion and decay of such a giant water surface in subtropical Africa.

  15. Assesing Hydrophysical/Enivornmenal impacts by Dams in the Amazon (fluvial) Basin

    NASA Astrophysics Data System (ADS)

    Wight, C.; Latrubesse, E. M.

    2014-12-01

    Growing demands from human activities are increasing the pressure and impacts on the Amazon River basin. Covering almost 40% of South America, the Amazon River basin's health is of global importance. With tributaries in 6 different countries, the anthropogenic impacts on this large system are complex and hard to synthesize. However to better understand large system responses to human impacts such an analysis is called for. Our objective is to organize a rigorous analysis of the potential hydro-physical impacts of dams on the major sub-basins of the Amazon. We are incorporating existing data of sediment fluxes, deforestation and land-use land-change to include the entire extent of the basin as defined by the fluvial unit. In addition, we will be analyzing the spatial distributions of dams (planned, under construction, and constructed) within each sub-basin. Our preliminary results have used statistical analysis and remote sensing to calculate the extent of deforestation on fluvial regimes of the legal Amazon and concentrated to identify the potential disruptions of sediment fluxes. Combining the spatial distributions of dam sites, and deforestation per sub-basin we will develop a system to interpret land-use and land-change per catchment. This in turn will allow us to better predict changes in the fluvial regimes and allow for comparisons of vulnerability.

  16. Analyzing the effect of urbanization on flood characteristics at catchment levels

    NASA Astrophysics Data System (ADS)

    Chen, X.; Tian, C.; Meng, X.; Xu, Q.; Cui, G.; Zhang, Q.; Xiang, L.

    2015-06-01

    It is increasingly recognized that the land-use change, especially urbanization has influenced hydrological attributes intensely. Flood characteristics variation could likewise increase flood risks and pose higher demand on water management. The paper aims to evaluate temporal and spatial processes of urbanization affecting flood events at catchment level. The study sites were Xiaoqinhe catchment and its sub-catchments, a part of lower Yellow river basin in northern China. Historic cities Jinan and Zibo in the area have experienced dramatic urban expansion in recent decades, about 5% growth of urban build-up area annually from 1990s to 2010s, and also pressed alarm for increasing flood disasters. In the paper, a HEC-HMS model was set up to simulate flood processes for different land-use scenarios. The possible effects of urbanization on flood characteristics were checked in study catchment and its sub-catchments.

  17. Changes in runoff generation due to conversion of catchment vegetation

    NASA Astrophysics Data System (ADS)

    Vilhar, Urša; Kestnar, Klemen; Šraj, Mojca

    2015-04-01

    In Central Europe, many pure Norway spruce stands, established on primary beech sites, were converted into mixed stands over the last 60 years. The conversion of forest management from Norway spruce monocultures into mixed deciduous-coniferous forests changed the forest structure dramatically. This changes could influence the hydrological processes on the catchment scale, associated with changes in runoff generation. In this study, the effect of forest management on the runoff in mixed deciduous-coniferous stands on Pohorje mountains in NE Slovenia were investigated. Two small forested experimental catchments of Oplotnica River on Pohorje were compared with similar size and shape but different share of Norway spruce Picea abies (L. Karst) and European beech Fagus sylvatica (L.). Measured stream flows, throughfall, stemflow and the mixture of forests were compared in the period 2008 till 2013 for both catchments. Hydrological models in the HEC-HMS program were built for both catchmenta, calibrated and validated using measured data. Precipitation losses were estimated by the Soil Conservation Service (SCS) method, while precipitation was converted into surface runoff using the SCS synthetic unit hydrograph procedure. The measured seasonal throughfall and stream flow was lower in the catchment with higher share of spruce in the mixed spruce-beech forest. Modeled precipitation losses in the river basins were 92% and 95% of total precipitation, respectively. The results indicate higher interception, infiltration and accumulation of precipitation in the catchment with higher share of spruce in the mixed spruce-beech forest. Forest management practices should aim towards decreased surface runoff in alpine catchments. Therefore implementation of hydrology-oriented sylvicultural measures via a more accurate prediction of the impacts of tree species conversion on runoff generation in this type of alpine catchments is discussed.

  18. Geochemical signature and properties of sediment sources and alluvial sediments within the Lago Paranoá catchment, Brasilia DF: a study on anthropogenic introduced chemical elements in an urban river basin.

    PubMed

    Franz, C; Makeschin, F; Weiß, H; Lorz, C

    2013-05-01

    One of the largest urban agglomerations in Brazil is the capital Brasilia and its surrounding area. Due to fast urban sprawl and accelerated land use changes, available water supplies are near their limits. The water supply depends largely on surface water collected in reservoirs. There are increasing concerns regarding water shortages due to sediment aggradations, and of water quality due to geochemical modification of sediments from human activities. The concentration of 18 chemical elements and five sediment properties was analyzed from different potential land-based sediment sources and deposited alluvial sediment within the Lago Paranoà catchment. The goal of this study was to assess the distribution of chemical elements and geochemical/physical properties of potential sediment sources in the Lago Paranoá catchment. Principal component analysis and hierarchical cluster analysis were used to investigate the influence of different land use types on the geochemistry of sediments. Geochemical fingerprints of anthropogenic activities were developed based on the results of the cluster analysis grouping. The anthropogenic input of land use specific geochemical elements was examined and quantified by the calculation of enrichment factors using the local geological background as reference. Through comparison of the geochemical signature of potential sediment sources and alluvial sediments of the Lago Paranoá and sub-catchments, the relative contribution of land use specific sediment sources to the sediment deposition of the main water reservoir were estimated. The existing findings suggest a strong relationship between land use and quantifiable features of sediment geochemistry and indicate that urban land use had the greatest responsibility for recent silting in the Lago Paranoá. This assessment helps to characterize the role of human activities in mixed-used watersheds on sediment properties, and provides essential information to guide management responses towards more effective source-reduction strategies. PMID:23542435

  19. Effects Of Land Cover Change On The Hydrologic Regime Of Kabompo River Basin, Zambia

    NASA Astrophysics Data System (ADS)

    Kampata, J. M.; Rientjes, T. H. M.; Timmermans, J.

    2013-12-01

    Over the past decades, the Kabompo River Basin in Zambia is affected by deforestation and land degradation as a consequence of intensified agriculture and mining. Changes presumably have affected the hydrological catchment behaviour and related seasonal flow regimes. Impact assessments are unknown for the basin. In this study multi-decadal time series of rainfall and stream flow were evaluated by trend analysis, change point detection methods and analysis on high and low flow exceedance probabilities. Results are combined with satellite based land cover observations for 1984, 1994, 2001 and 2009. Unsupervised classification of the Landsat images indicate pronounced land cover changes. Preliminary results of this study show that i) precipitation time series are not directly affected by climate change and ii) changes in stream flow can be linked to changes in land cover.

  20. New thermo-mechanical fluid flow modeling of multiscale deformations in the Levant basin: formulation, verification, and preliminary analysis

    NASA Astrophysics Data System (ADS)

    Belferman, Mariana; Katsman, Regina; Agnon, Amotz

    2015-04-01

    The Levant has been repeatedly devastated by numerous earthquakes since prehistorical time, as recorded in historical documents, archaeological ruins, and sedimentary archives. In order to understand the role of the dynamics of the water bodies in triggering the deformations in the Levant basin, a new theoretical thermo-mechanical model is constructed and extended by including a fluid flow component. The latter is modeled on a basis of two-way poroelastic coupling with momentum equation. This coupling is essential to capture the fluid flow evolution induced by dynamic water loading and to resolve porosity changes. All the components of the model, namely elasticity, creep, plasticity, fluid flow, etc., have been extensively verified and presented. Results of the initial sensitivity analysis addressing the relative importance of each process in earthquakes triggering are discussed. The rich archives of pre-instrumental destructive earthquakes will set constraints for future modeling under the present formulation.

  1. Preliminary Modelling of the Effect of Impurity in CO2 Streams on the Storage Capacity and the Plume Migration in Pohang Basin, Korea

    NASA Astrophysics Data System (ADS)

    Park, Yongchan; Choi, Byoungyoung; Shinn, Youngjae

    2015-04-01

    Captured CO2 streams contain various levels of impurities which vary depending on the combustion technology and CO2 sources such as a power plant and iron and steel production processes. Common impurities or contaminants are non-condensable gases like nitrogen, oxygen and hydrogen, and are also air pollutants like sulphur and nitrogen oxides. Specifically for geological storage, the non-condensable gases in CO2 streams are not favourable because they can decrease density of the injected CO2 stream and can affect buoyancy of the plume. However, separation of these impurities to obtain the CO2 purity higher than 99% would greatly increase the cost of capture. In 2010, the Korean Government announced a national framework to develop CCS, with the aim of developing two large scale integrated CCS projects by 2020. In order to achieve this goal, a small scale injection project into Pohang basin near shoreline has begun which is seeking the connection with a capture project, especially at a steel company. Any onshore sites that are suitable for the geological storage are not identified by this time so we turned to the shallow offshore Pohang basin where is close to a large-scale CO2 source. Currently, detailed site surveys are being undertaken and the collected data were used to establish a geological model of the basin. In this study, we performed preliminary modelling study on the effect of impurities on the geological storage using the geological model. Using a potential compositions of impurities in CO2 streams from the steel company, we firstly calculated density and viscosity of CO2 streams as a function of various pressure and temperature conditions with CMG-WINPROP and then investigated the effect of the non-condensable gases on storage capacity, injectivity and plume migrations with CMG-GEM. Further simulations to evaluate the areal and vertical sweep efficiencies by impurities were perform in a 2D vertical cross section as well as in a 3D simulation grid. Also, pressure increases caused by the impurities and the partitioning between CO2 and other non-condensable gases were explored. In addition, the possibility of using these contaminants as a tracer were examined.

  2. What controls inter-basin variation in cold-season river flow recession in permafrost basins in sub-Arctic Siberia?

    NASA Astrophysics Data System (ADS)

    Kooi, H.; Watson, V.; Bense, V. F.

    2012-04-01

    Cold-season river discharge during the period of ice cover and snow fall in northern high latitudes, provides a unique window on the role of subsurface hydrology in permafrost settings as direct surface runoff contributions are largely inhibited. Several recent studies have brought to light positive temporal trends in cold-season discharge totals for the past several decades to one century, and have interpreted these trends to reflect permafrost degradation and associated increased subsurface water transport in response to climate warming. While these are significant and compelling findings of hydrological change, there is a clear need to better understand the hydrology of cold-season flow and the discharge-generating processes themselves. We present results of an inter-basin comparison of cold-season (October - April) river flow characteristics for 17 catchments in Siberia that are not disturbed by artifical reservoirs/dam influences. Streamflow data for the period 1980 - 1998 were studied. Flow and recession metrics for each basin and mean annual cold season catchment-averaged drainage depth, CSDD (in mm equivalent water depth) were compared/correlated with various basin attributes in order to evaluate the significance of these attributes as potential controls. Preliminary findings include a marked behavioural distinction between (11) basins on continuous permafrost and (6) basins with reduced permafrost coverage (discontinuous/sporadic). The latter are characterized by slow recession, relatively high discharge in April before spring freshet, and high CSDD values up to about 80 mm corresponding to more than 10% of total annual rainfall. Although positive correlations with several attributes (annual precipitation; peat land fraction) are found, higher abundance of through-taliks and greater active layer depth (ALD) appear to be the most prominent controls of the distinctive behaviour. Cold-season flow behaviour of the (11) basins on continuous permafrost also show conspicuous inter-basin differences, with some rivers exhibiting very fast recession and cessation of flow for 3 to 4 months, while others show strongly reduced, but continuous discharge throughout the cold season. An interesting question is if the latter behaviour signals contributions from intra- and/or sub-permafrost groundwater flow. Comparison with investigated catchment attributes suggests that ALD, soil properties and vegetation cover do not account for these differences, while lake area fraction and peat land fraction may play a role in favouring prolonged cold-season flow, although correlation is weak. It is anticipated that river valley and stream channel characteristics may be important, but this remains to be evaluated.

  3. Management of combined sewer overflows based on observations from the urbanized Liguori catchment of Cosenza, Italy.

    PubMed

    Piro, P; Carbone, M; Garofalo, G; Sansalone, J J

    2010-01-01

    This paper examines an urbanized catchment in Cosenza, Italy where an off-line basin intercepting CSOs was studied to illustrate reduction in CSO discharges to the Crati River. While the hydrologic transport of pollutant mass is never known a-priori and can be flow-limited, the volumetric requirements of the basin were modeled based on the classic assumption that wet weather flows transport urban and sewer loads in a mass-limited (first-flush) delivery. The volumetric capacity of the basin was varied from 10 to 50 m(3)/ha. Operational basin control was simulated with historical datasets from the Liguori catchment, event-based loading data, and continuous simulation modelling with SWMM. Utilizing data from the catchment, the SWMM simulations were conducted considering the storage basin with or without sedimentation treatment. Results illustrate the potential benefits of the off-line operation for the system with respect to the volume and mass reduction of CSOs into the Crati River. Results demonstrate the importance of particle size distribution (PSD) as an index of basin efficiency, coupled with analysis of the hydrodynamic response of the basin. The basin model attenuated influent PSDs, separating the coarser fraction of the PSD, and reduced the load of influent particulate matter (PM). PMID:20057099

  4. A preliminary sub-basin scale evaluation framework of site suitability for onshore aquifer-based CO{sub 2} storage in China

    SciTech Connect

    Wei, Ning; Li, Xiaochun; Wang, Ying; Dahowski, Robert T.; Davidson, Casie L.; Bromhal Grant S.

    2013-01-01

    Development of a reliable, broadly applicable framework for the identification and suitability evaluation of potential CO{sub 2} storage sites is essential before large-scale deployment of carbon dioxide capture and geological storage (CCS) can commence. In this study, a sub-basin scale evaluation framework was developed to assess the suitability of potential onshore deep saline aquifers for CO{sub 2} storage in China. The methodology, developed in consultation with experts from the academia and the petroleum industry in China, is based on a multi-criteria analysis (MCA) framework that considers four objectives: (1) storage optimization, in terms of storage capacity and injectivity; (2) risk minimization and storage security; (3) environmental restrictions regarding surface and subsurface use; and (4) economic considerations. The framework is designed to provide insights into both the suitability of potential aquifer storage sites as well as the priority for early deployment of CCS with existing CO{sub 2} sources. Preliminary application of the framework, conducted using GIS-based evaluation tools revealed that 18% of onshore aquifer sites with a combined CO{sub 2} storage capacity of 746 gigatons are considered to exhibit very high suitability, and 11% of onshore aquifer sites with a total capacity of 290 gigatons exhibit very high priority opportunities for implementation. These onshore aquifer sites may provide promising opportunities for early large-scale CCS deployment and contribute to CO{sub 2} mitigation in China for many decades.

  5. A preliminary sub-basin scale evaluation framework of site suitability for onshore aquifer-based CO2 storage in China

    SciTech Connect

    Wei, Ning; Li, Xiaochun; Wang, Ying; Dahowski, Robert T.; Davidson, Casie L.; Bromhal, Grant

    2013-01-30

    Development of a reliable, broadly applicable framework for the identification and suitability evaluation of potential CO2 storage sites is essential before large scale deployment of carbon dioxide capture and geological storage (CCS) can commence. In this study, a sub-basin scale evaluation framework was developed to assess the suitability of potential onshore deep saline aquifers for CO2 storage in China. The methodology, developed in consultation with experts from the academia and the petroleum industry in China, is based on a multi-criteria analysis (MCA) framework that considers four objectives: (1) storage optimization, in terms of storage capacity and injectivity; (2) risk minimization and storage security; (3) environmental restrictions regarding surface and subsurface use; and (4) economic considerations. The framework is designed to provide insights into both the suitability of potential aquifer storage sites as well as the priority for early deployment of CCS with existing CO2 sources. Preliminary application of the framework, conducted using GIS-based evaluation tools revealed that 18% of onshore aquifer sites with a combined CO2 storage capacity of 746 gigatons are considered to exhibit very high suitability, and 11% of onshore aquifer sites with a total capacity of 290 gigatons exhibit very high priority opportunities for implementation. These onshore aquifer sites may provide promising opportunities for early large-scale CCS deployment and contribute to CO2 mitigation in China for many decades.

  6. Predicting hydrologic response through a hierarchical catchment knowledgebase: A Bayes empirical Bayes approach

    NASA Astrophysics Data System (ADS)

    Smith, Tyler; Marshall, Lucy; Sharma, Ashish

    2014-02-01

    Making useful Predictions in Ungauged Basins is an incredibly difficult task given the limitations of hydrologic models to represent physical processes appropriately across the heterogeneity within and among different catchments. Here, we introduce a new method for this challenge, Bayes empirical Bayes, that allows for the statistical pooling of information from multiple donor catchments and provides the ability to transfer parametric distributions rather than single parameter sets to the ungauged catchment. Further, the methodology provides an efficient framework with which to formally assess predictive uncertainty at the ungauged catchment. We investigated the utility of the methodology under both synthetic and real data conditions, and with respect to its sensitivity to the number and quality of the donor catchments used. This study highlighted the ability of the hierarchical Bayes empirical Bayes approach to produce expected outcomes in both the synthetic and real data applications. The method was found to be sensitive to the quality (hydrologic similarity) of the donor catchments used. Results were less sensitive to the number of donor catchments, but indicated that predictive uncertainty was best constrained with larger numbers of donor catchments (but still adequate with fewer donors).

  7. Preliminary assessment of climatic change during Late Wisconsin time, southern Great Basin and vicinity, Arizona, California, and Nevada

    USGS Publications Warehouse

    Spaulding, W.G.; Robinson, S.W.; Paillet, F.L.

    1984-01-01

    Nine plant macrofossil assemblages from the Eleana Range-2 packrat (Neotoma sp.) midden span 6,500 radiocarbon years and record local vegetational changes in the southern Great Basin of Nevada during the last one-half of the Late Wisconsin glacial age. Climatic reconstructions were developed to account for these changes. During the late full glacial episode (17,000 to 15,000 radiocarbon years before the present), winter precipitation was about 70% greater than present winter precipitation, and summer rainfall was minimal. Average annual precipitation probably exceeded present annual precipitation by less than 40%. Annual temperatures were about 6 to 7 C lower than the present average, and evidence exists for winter temperatures much lower than those of the present. A major warming trend occurred between about 16,000 and 12,000 radiocarbon years before present. By the latest Wisconsin (12 ,000 to 10,000 radiocarbon years before present), annual temperatures were within 2 C of temperatures of the present. During the latest Wisconsin, precipitation was greater during the winter, relative to the present. The climate of this pluvial event was much different from that of the preceding full glacial episode and is consistent with current models of astronomically induced climatic changes. (USGS)

  8. Preliminary paleogeographic reconstruction of the Illinois basin during deposition of the Mississippian Aux Vases Formation: Implications for hydrocarbon recovery

    SciTech Connect

    Cole, R.D. )

    1991-03-01

    Extensive outcrop investigation and selective subsurface study allow definition of Illinois basin paleogeography during deposition of the Mississippian (Valmeyeran-Meramecian) Aux Vases Formation. The results incorporate an integrated approach utilizing field observations and petrographic analysis, wireline logs, subsurface maps, and cores. The Aux Vases Formation depositional system has been determined to be composed of subtidal to intertidal facies. Depositional facies in outcrop are based on rock body geometries, sedimentary structure assemblages, paleocurrent analysis, paleontology of body and trace fossils, facies relationships, and petrography. Depositional facies determined from subsurface data are based on correlation of lithologic interpretations from wireline logs, sand body geometries form isopach maps, and petrography. Specific depositional facies observed in outcrop and core and inferred from wireline logs and isopach maps are offshore bars and tidal channel complexes, extensive subtidal to lower intertidal, ripple-laminated, fine-grained quartzose sandstone. Carbonate facies occur as subtidal grainstones at or near the base of a sequence, or as high energy deposits which have been tidally reworked. This depositional system produces reservoir heterogeneities that complicate efficient hydrocarbon recovery. This diverse facies architecture is modified by tectonic and diagenetic overprinting, further segregating potential producing zones. To significantly improve recovery efficiency, predictions regarding compartmentalization can be used prior to designing a drilling program, an infill drilling program, or an application of enhanced recovery techniques.

  9. HealthyWaterways Healthy Catchments

    E-print Network

    Hilderbrand, Robert H.

    #12;#12;HealthyWaterways Healthy Catchments MAKING THE CONNECTION IN SOUTH EAST QUEENSLAND Collier, Lynda Curtis and Kate Moore Layout by Lone Ranger Creative HEALTHY WATERWAYS i V P>f>r.a\\it=>& Vi Library of Australia Cataloguing-in-Publication data: Healthy Waterways Healthy Catchments: Making

  10. MANAGING CATCHMENT-COASTAL FLOODPLAINS

    E-print Network

    Bateman, Ian J.

    MANAGING CATCHMENT- COASTAL FLOODPLAINS: THE NEED FOR AN UK WATER AND WETLANDS POLICY by Stephen CATCHMENT- COASTAL FLOODPLAINS: THE NEED FOR AN UK WATER AND WETLANDS POLICY by Stephen Crooks1,2,3 , R water resources. This paper argues that managing floodplain `functionality', and component wetland

  11. Characterising groundwater-dominated lowland catchments: the UK Lowland Catchment Research Programme (LOCAR)

    NASA Astrophysics Data System (ADS)

    Wheater, H. S.; Peach, D.; Binley, A.

    2007-01-01

    This paper reports on a major UK initiative to address deficiencies in understanding the hydro-ecological response of groundwater-dominated lowland catchments. The scope and objectives of this national programme are introduced and focus on one of three sets of research basins - the Pang/Lambourn Chalk catchments, tributaries of the river Thames in southern England. The motivation for the research is the need to support integrated management of river systems that have high ecological value and are subject to pressures that include groundwater abstraction for water supply, diffuse pollution, and land use and climate change. An overview of the research programme is provided together with highlights of some current research findings concerning the hydrological functioning of these catchments. Despite the importance of the Chalk as a major UK aquifer, knowledge of the subsurface movement of water and solutes is poor. Solute transport in the dual porosity unsaturated zone depends on fracture/matrix interactions that are difficult to observe; current experimental and modelling research supports the predominance of matrix flow and suggests that slow migration of a time-history of decades of nutrient loading is occurring. Groundwater flows are complex; catchments vary seasonally and are ill-defined and karst features are locally important. Groundwater flow pathways are being investigated using natural and artificial geochemical tracers based on experimental borehole arrays; stream-aquifer interaction research is using a combination of geophysics, borehole array geochemistry and longitudinal profiles of stream flow and solutes. A complex picture of localised subsurface inflows, linked to geological controls and karst features, and significant longitudinal groundwater flow below the river channel is emerging. Management implications are discussed. Strategies to control surface application of nutrients are expected to have little effect on groundwater quality for several decades, and new modelling tools for decision support have been developed to represent these effects. Conventional modelling approaches are limited by the complexities of the subsurface system; catchment areas are difficult to define, hence tracking pollutant pathways to stream receptors is also problematic. Conventional distributed groundwater models have difficulty in capturing key aspects of the groundwater system. This raises important questions concerning the confidence that can be placed in models as routinely used for decision support and the level of knowledge required for catchment management to be placed on a secure scientific foundation.

  12. New Techniques for Hydrothermal Exploration: In Situ Chemical Sensors on AUVs - Preliminary Results From the Lau Basin

    NASA Astrophysics Data System (ADS)

    German, C. R.; Connelly, D. P.; Prien, R. D.; Yoerger, D.; Jakuba, M.; Bradley, A.; Shank, T. J.; Edmonds, H. N.; Langmuir, C. H.

    2004-12-01

    Less than one quarter of the global ridge-crest has yet received even cursory investigation for the presence or absence of hydrothermal activity. To improve exploration efficiency, particularly at high latitudes, new methodologies independent of tethered vehicles are required. To that end, we have begun the use of in situ chemical sensors allied to the increasing capabilities of autonomous underwater vehicles. Here, we present first results from our most recent efforts aboard the second R2K cruise to the Lau Basin (C.Langmuir, PI; Autumn 2004) to (a) map non-buoyant hydrothermal plumes, (b) intercept buoyant hydrothermal plumes and (c) locate and image novel hydrothermal fields on the seafloor. The AUV used for this work is ABE and the sensors deployed are direct extensions of the in situ Fe/Mn sensor deployed previously on SOC's AUTOSUB to investigate seasonally-reducing waters in Loch Etive, NW Scotland. Each in situ instrument comprises an electronics package that contains a tattletale control system with a flash memory card for on-board logging and a chemical manifold, consisting of a series of valves, pumps and a colorimetric cell. Analysis of iron is enabled by the determination of the coloured complex formed between iron II and ferrozine, manganese uses the colour change of PAN in the presence of reduced manganese. The system includes capacity for switching between sample, blank and two on-board samples for "in flight" calibrations with blanks and standards held in medical bags, outside of the pressure-balanced manifold, to attain in situ water-column temperatures. An in-line filter prevents large particle clogging and detection limits for both iron II and manganese II are ca.2nM.

  13. Catchments as simple dynamical systems: Experience from a Swiss prealpine catchment

    E-print Network

    Kirchner, James W.

    Catchments as simple dynamical systems: Experience from a Swiss prealpine catchment A. J. Teuling,1 streamflow dynamics in the Swiss Rietholzbach catchment. The Rietholzbach data set used here provides 32 (2010), Catchments as simple dynamical systems: Experience from a Swiss prealpine catchment, Water

  14. Assessing the temporal variance of evapotranspiration considering climate and catchment storage factors

    NASA Astrophysics Data System (ADS)

    Zeng, Ruijie; Cai, Ximing

    2015-05-01

    Understanding the temporal variance of evapotranspiration (ET) at the catchment scale remains a challenging task, because ET variance results from the complex interactions among climate, soil, vegetation, groundwater and human activities. This study extends the framework for ET variance analysis of Koster and Suarez (1999) by incorporating the water balance and the Budyko hypothesis. ET variance is decomposed into the variance/covariance of precipitation, potential ET, and catchment storage change. The contributions to ET variance from those components are quantified by long-term climate conditions (i.e., precipitation and potential ET) and catchment properties through the Budyko equation. It is found that climate determines ET variance under cool-wet, hot-dry and hot-wet conditions; while both catchment storage change and climate together control ET variance under cool-dry conditions. Thus the major factors of ET variance can be categorized based on the conditions of climate and catchment storage change. To demonstrate the analysis, both the inter- and intra-annul ET variances are assessed in the Murray-Darling Basin, and it is found that the framework corrects the over-estimation of ET variance in the arid basin. This study provides an extended theoretical framework to assess ET temporal variance under the impacts from both climate and storage change at the catchment scale.

  15. The catchment based approach using catchment system engineering

    NASA Astrophysics Data System (ADS)

    Jonczyk, Jennine; Quinn, Paul; Barber, Nicholas; Wilkinson, Mark

    2015-04-01

    The catchment based approach (CaBa) has been championed as a potential mechanism for delivery of environmental directives such as the Water Framework Directive in the UK. However, since its launch in 2013, there has been only limited progress towards achieving sustainable, holistic management, with only a few of examples of good practice ( e.g. from the Tyne Rivers trust). Common issues with developing catchment plans over a national scale include limited data and resources to identify issues and source of those issues, how to systematically identify suitable locations for measures or suites of measures that will have the biggest downstream impact and how to overcome barriers for implementing solutions. Catchment System Engineering (CSE) is an interventionist approach to altering the catchment scale runoff regime through the manipulation of hydrological flow pathways throughout the catchment. A significant component of the runoff generation can be managed by targeting hydrological flow pathways at source, such as overland flow, field drain and ditch function, greatly reducing erosive soil losses. Coupled with management of farm nutrients at source, many runoff attenuation features or measures can be co-located to achieve benefits for water quality and biodiversity. A catchment, community-led mitigation measures plan using the CSE approach will be presented from a catchment in Northumberland, Northern England that demonstrate a generic framework for identification of multi-purpose features that slow, store and filter runoff at strategic locations in the landscape. Measures include within-field barriers, edge of field traps and within-ditch measures. Progress on the implementation of measures will be reported alongside potential impacts on the runoff regime at both local and catchment scale and costs.

  16. Hydrologic sensitivity of headwater catchments to climate and landscape variability

    NASA Astrophysics Data System (ADS)

    Kelleher, Christa; Wagener, Thorsten; McGlynn, Brian; Nippgen, Fabian; Jencso, Kelsey

    2013-04-01

    Headwater streams cumulatively represent an extensive portion of the United States stream network, yet remain largely unmonitored and unmapped. As such, we have limited understanding of how these systems will respond to change, knowledge that is important for preserving these unique ecosystems, the services they provide, and the biodiversity they support. We compare responses across five adjacent headwater catchments located in Tenderfoot Creek Experimental Forest in Montana, USA, to understand how local differences may affect the sensitivity of headwaters to change. We utilize global, variance-based sensitivity analysis to understand which aspects of the physical system (e.g., vegetation, topography, geology) control the variability in hydrologic behavior across these basins, and how this varies as a function of time (and therefore climate). Basin fluxes and storages, including evapotranspiration, snow water equivalent and melt, soil moisture and streamflow, are simulated using the Distributed Hydrology-Vegetation-Soil Model (DHSVM). Sensitivity analysis is applied to quantify the importance of different physical parameters to the spatial and temporal variability of different water balance components, allowing us to map similarities and differences in these controls through space and time. Our results show how catchment influences on fluxes vary across seasons (thus providing insight into transferability of knowledge in time), and how they vary across catchments with different physical characteristics (providing insight into transferability in space).

  17. Development of a forestry plan for the upper catchment of the South Esk to provide options for socio-economic benefits and taking account of stakeholder participation 

    E-print Network

    Lew, Siew Yan

    for landowners and land managers within the upper catchment, as well as develop a preliminary forestry plan with suggestions about appropriate planting models to be applied in different areas within the upper catchment of the South Esk river, and to study...

  18. A Preliminary Investigation of The Structure of Southern Yucca Flat, Massachusetts Mountain, and CP Basin, Nevada Test Site, Nevada, Based on Geophysical Modeling

    USGS Publications Warehouse

    Phelps, Geoffrey A.; Justet, Leigh; Moring, Barry C.; Roberts, Carter W.

    2006-01-01

    New gravity and magnetic data collected in the vicinity of Massachusetts Mountain and CP basin (Nevada Test Site, NV) provides a more complex view of the structural relationships present in the vicinity of CP basin than previous geologic models, helps define the position and extent of structures in southern Yucca Flat and CP basin, and better constrains the configuration of the basement structure separating CP basin and Frenchman Flat. The density and gravity modeling indicates that CP basin is a shallow, oval-shaped basin which trends north-northeast and contains ~800 m of basin-filling rocks and sediment at its deepest point in the northeast. CP basin is separated from the deeper Frenchman Flat basin by a subsurface ridge that may represent a Tertiary erosion surface at the top of the Paleozoic strata. The magnetic modeling indicates that the Cane Spring fault appears to merge with faults in northwest Massachusetts Mountain, rather than cut through to Yucca Flat basin and that the basin is downed-dropped relative to Massachusetts Mountain. The magnetic modeling indicates volcanic units within Yucca Flat basin are down-dropped on the west and supports the interpretations of Phelps and KcKee (1999). The magnetic data indicate that the only faults that appear to be through-going from Yucca Flat into either Frenchman Flat or CP basin are the faults that bound the CP hogback. In general, the north-trending faults present along the length of Yucca Flat bend, merge, and disappear before reaching CP hogback and Massachusetts Mountain or French Peak.

  19. A preliminary investigation of the structure of southern Yucca Flat, Massachusetts Mountain, and CP basin, Nevada Test Site, Nevada, based on geophysical modeling.

    SciTech Connect

    Geoffrey A. Phelps; Leigh Justet; Barry C. Moring, and Carter W. Roberts

    2006-03-17

    New gravity and magnetic data collected in the vicinity of Massachusetts Mountain and CP basin (Nevada Test Site, NV) provides a more complex view of the structural relationships present in the vicinity of CP basin than previous geologic models, helps define the position and extent of structures in southern Yucca Flat and CP basin, and better constrains the configuration of the basement structure separating CP basin and Frenchman Flat. The density and gravity modeling indicates that CP basin is a shallow, oval-shaped basin which trends north-northeast and contains ~800 m of basin-filling rocks and sediment at its deepest point in the northeast. CP basin is separated from the deeper Frenchman Flat basin by a subsurface ridge that may represent a Tertiary erosion surface at the top of the Paleozoic strata. The magnetic modeling indicates that the Cane Spring fault appears to merge with faults in northwest Massachusetts Mountain, rather than cut through to Yucca Flat basin and that the basin is downed-dropped relative to Massachusetts Mountain. The magnetic modeling indicates volcanic units within Yucca Flat basin are down-dropped on the west and supports the interpretations of Phelps and KcKee (1999). The magnetic data indicate that the only faults that appear to be through-going from Yucca Flat into either Frenchman Flat or CP basin are the faults that bound the CP hogback. In general, the north-trending faults present along the length of Yucca Flat bend, merge, and disappear before reaching CP hogback and Massachusetts Mountain or French Peak.

  20. A simple distributed sediment delivery approach for rural catchments

    NASA Astrophysics Data System (ADS)

    Reid, Lucas; Scherer, Ulrike

    2014-05-01

    The transfer of sediments from source areas to surface waters is a complex process. In process based erosion models sediment input is thus quantified by representing all relevant sub processes such as detachment, transport and deposition of sediment particles along the flow path to the river. A successful application of these models requires, however, a large amount of spatially highly resolved data on physical catchment characteristics, which is only available for a few, well examined small catchments. For the lack of appropriate models, the empirical Universal Soil Loss Equation (USLE) is widely applied to quantify the sediment production in meso to large scale basins. As the USLE provides long-term mean soil loss rates, it is often combined with spatially lumped models to estimate the sediment delivery ratio (SDR). In these models, the SDR is related to data on morphological characteristics of the catchment such as average local relief, drainage density, proportion of depressions or soil texture. Some approaches include the relative distance between sediment source areas and the river channels. However, several studies showed that spatially lumped parameters describing the morphological characteristics are only of limited value to represent the factors of influence on sediment transport at the catchment scale. Sediment delivery is controlled by the location of the sediment source areas in the catchment and the morphology along the flow path to the surface water bodies. This complex interaction of spatially varied physiographic characteristics cannot be adequately represented by lumped morphological parameters. The objective of this study is to develop a simple but spatially distributed approach to quantify the sediment delivery ratio by considering the characteristics of the flow paths in a catchment. We selected a small catchment located in in an intensively cultivated loess region in Southwest Germany as study area for the development of the SDR approach. The flow pathways were extracted in a geographic information system. Then the sediment delivery ratio for each source area was determined using an empirical approach considering the slope, morphology and land use properties along the flow path. As a benchmark for the calibration of the model parameters we used results of a detailed process based erosion model available for the study area. Afterwards the approach was tested in larger catchments located in the same loess region.

  1. Geomorphic (de-) coupling of hillslope and channel systems within headwater catchments in two subarctic tributary valleys, Nordfjord, Western Norway

    NASA Astrophysics Data System (ADS)

    Laute, Katja; Beylich, Achim A.

    2010-05-01

    Hillslopes occupy large areas of the earth surface. Studying the characteristics, development and interaction of hillslopes as components of the geomorphic hillslope-channel coupling process-response system will improve the understanding of the complex response of mountain landscape formation. The rates of hillslope processes are exceptionally varied and affected by many influences of varying intensity. Hillslope-channel coupling and sediment storage within slopes are important factors that influence sediment delivery through catchments, especially in steep environments. Within sediment transfers from sources to sinks in drainage basins, hillslopes function as a key element concerning sediment storage, both for short term periods as between rainstorms as well as for longer periods in colluvial deposits. This PhD project is part of the NFR funded SedyMONT-Norway project within the ESF TOPO-EUROPE SedyMONT (Timescales of sediment dynamics, climate and topographic change in mountain landscapes) programme. The focus of this study is on geomorphic hillslope-channel coupling or de-coupling and sediment transport within four distinct headwater areas of the Erdalen and Bødalen catchments in the Nordfjord valley-fjord system (inner Nordfjord, Western Norway). Both catchments can be described as steep, U-shaped and glacier-fed, subarctic tributary valleys. Approximately 14% of the 49 km2 large headwater area of Erdalen is occupied by hillslope deposits; in Bødalen hillslope deposits occupy 12% of the 42 km2 large headwater area. The main aims of the study are to present preliminary findings on (i) the identification of possible sediment sources and delivery pathways within the headwater areas of the catchments, (ii) to analyze the development of hillslope-channel coupling / de-coupling from postglacial to contemporary timescales as well as (iii) to investigate the current degree of geomorphic hillslope-channel coupling within the different headwater catchments and (iv) to determine differently acting mass movement processes. A process-based approach is applied to assess the importance of hillslope sediment production, storage and transport throughout the catchments, including orthophoto-interpretation, hillslope profile surveying, photo monitoring, geomorphological mapping, GIS and DEM computing as well as a combination of different field techniques for bed load monitoring. Appropriate hillslope test sites within the headwater catchments are selected in order to fulfill the main aims of this study as well as to monitor contemporary rates of hillslope fluxes. The designed monitoring instrumentation of the slope test sites includes nets, stone tracer lines, wooden sticks, peg lines, slop wash traps and remote site monitoring cameras. Hillslope profile surveying, geomorphological mapping and measurements of solute yields from the slope systems are carried out at each test site. Channel longitudinal- and cross profiles are measured in defined test stretches of the first order streams, located downhill of the slope test sites. Within the same channel test stretches extensive pebble counts (grain size, grain shape) are conducted seasonally and tracer lines are installed in order to trace different bed load components. The four selected headwater areas are characterized by different intensities of hillslope-channel coupling, mainly due to the distinct valley morphometries affected by the glacial inheritance of the Nordfjord region. Where hillslope-channel coupling exists, primary coarse material is delivered from the hillslopes into the channels via snow avalanches. These coarse grained and angular components can be traced within the channel test stretches. Research on the complex evolution of hillslope-channel (de-) coupling over time and contemporary sediment transfer fluxes contributes to a better understanding of possible trends of mountain landscape development.

  2. Groundwater Resources Evolution in Degrading Permafrost Environments: A Small Catchment-Scale Study in Northern Quebec, Canada

    NASA Astrophysics Data System (ADS)

    Molson, John; Lemieux, Jean-Michel; Fortier, Richard; Therrien, Rene; Ouellet, Michel; Barth, Johannes; van Geldern, Robert; Cochand, Marion; Sottas, Jonathan; Murray, Renaud; Banville, David

    2015-04-01

    A two square kilometre catchment in a discontinuous permafrost zone near the Inuit community of Umiujaq on the eastern shore of Hudson Bay in Northern Quebec, Canada, is being investigated to determine the impact of permafrost degradation on groundwater resources. The catchment, which became deglaciated about 7500 years ago, lies in a valley which includes about 30-40 m of glacial-fluvial and marine Quaternary sediments. Permafrost mounds at the site extend from a few meters below ground surface to depths of about 10-30 m. Instrumentation has been installed to measure groundwater levels and temperature, as well as groundwater and surface water geochemistry, isotope signatures (including ?18O and 3H) and stream flow. Preliminary groundwater isotope data reflect depleted ?18O signals that differ from expected values for local groundwater, possibly representing permafrost thaw. In addition, stable water isotopes indicate evaporation from shallow thermokarst lakes. Meteorological conditions including air temperatures, precipitation and snowpack are also being monitored. Near-surface geophysical surveys using electrical resistivity tomography (ERT), induced polarization tomography (IPT), georadar and seismic refraction tomography have been carried out to characterize the catchment and to build a 3D geological site model. A numerical model of coupled groundwater flow and heat transport, including thermal advection, conduction, freeze-thaw and latent heat, is being developed for the site to help develop the conceptual model and to assess future impacts of permafrost degradation due to climate warming. The model (Heatflow/3D) includes nonlinear functions for the temperature-dependent unfrozen moisture content and relative permeability, and has been tested against analytical solutions and using benchmarks developed by the INTERFROST modelling consortium. A conceptual 2D vertical-plane model including several permafrost mounds along a 1 km section shows dynamic seasonal behavior with preferential melting from below due to sub-permafrost horizontal groundwater flow and upward flow to surface water through taliks. Under current environmental conditions, the simulations suggest the remaining permafrost in the basin could completely thaw within 50 years. The long-term monitoring program in the catchment will help develop optimal investigative methods for monitoring hydrogeological systems and groundwater resources under permafrost-degrading conditions, and will help determine how new groundwater resources may become available for northern communities as permafrost thaws and recharge to aquifers increases.

  3. Catchment-scale biogeography of riverine bacterioplankton

    PubMed Central

    Read, Daniel S; Gweon, Hyun S; Bowes, Michael J; Newbold, Lindsay K; Field, Dawn; Bailey, Mark J; Griffiths, Robert I

    2015-01-01

    Lotic ecosystems such as rivers and streams are unique in that they represent a continuum of both space and time during the transition from headwaters to the river mouth. As microbes have very different controls over their ecology, distribution and dispersion compared with macrobiota, we wished to explore biogeographical patterns within a river catchment and uncover the major drivers structuring bacterioplankton communities. Water samples collected across the River Thames Basin, UK, covering the transition from headwater tributaries to the lower reaches of the main river channel were characterised using 16S rRNA gene pyrosequencing. This approach revealed an ecological succession in the bacterial community composition along the river continuum, moving from a community dominated by Bacteroidetes in the headwaters to Actinobacteria-dominated downstream. Location of the sampling point in the river network (measured as the cumulative water channel distance upstream) was found to be the most predictive spatial feature; inferring that ecological processes pertaining to temporal community succession are of prime importance in driving the assemblages of riverine bacterioplankton communities. A decrease in bacterial activity rates and an increase in the abundance of low nucleic acid bacteria relative to high nucleic acid bacteria were found to correspond with these downstream changes in community structure, suggesting corresponding functional changes. Our findings show that bacterial communities across the Thames basin exhibit an ecological succession along the river continuum, and that this is primarily driven by water residence time rather than the physico-chemical status of the river. PMID:25238398

  4. Catchment-scale biogeography of riverine bacterioplankton.

    PubMed

    Read, Daniel S; Gweon, Hyun S; Bowes, Michael J; Newbold, Lindsay K; Field, Dawn; Bailey, Mark J; Griffiths, Robert I

    2015-02-01

    Lotic ecosystems such as rivers and streams are unique in that they represent a continuum of both space and time during the transition from headwaters to the river mouth. As microbes have very different controls over their ecology, distribution and dispersion compared with macrobiota, we wished to explore biogeographical patterns within a river catchment and uncover the major drivers structuring bacterioplankton communities. Water samples collected across the River Thames Basin, UK, covering the transition from headwater tributaries to the lower reaches of the main river channel were characterised using 16S rRNA gene pyrosequencing. This approach revealed an ecological succession in the bacterial community composition along the river continuum, moving from a community dominated by Bacteroidetes in the headwaters to Actinobacteria-dominated downstream. Location of the sampling point in the river network (measured as the cumulative water channel distance upstream) was found to be the most predictive spatial feature; inferring that ecological processes pertaining to temporal community succession are of prime importance in driving the assemblages of riverine bacterioplankton communities. A decrease in bacterial activity rates and an increase in the abundance of low nucleic acid bacteria relative to high nucleic acid bacteria were found to correspond with these downstream changes in community structure, suggesting corresponding functional changes. Our findings show that bacterial communities across the Thames basin exhibit an ecological succession along the river continuum, and that this is primarily driven by water residence time rather than the physico-chemical status of the river. PMID:25238398

  5. Water erosion processes in an olive orchard catchment using a multidisciplinary approach

    NASA Astrophysics Data System (ADS)

    Guzmán, Gema; Taguas, Encarnación V.; Gómez, José A.

    2015-04-01

    The implementation of soil and water conservation measures in agricultural areas such as, buffer strips, cover crops or check dams, is an important issue in order to maintain soil quality. As these measures involve a significant maintenance and investment, their efficiency must be optimized as much as possible. La Conchuela is an olive orchard catchment of 8.0 ha located in Córdoba (southern Spain) where runoff and sediment losses have been measured at hillslope and catchment scale since 2006. Three different approaches were used to evaluate the behavior of sediment displacement within and from the catchment: soil properties and water erosion and, sediment tracers. During the hydrological year 2010-2011, runoff and soil loss were measured at plot and catchment scale. Chemical (organic carbon and available phosphorus) and physical (particle size distribution) properties were determined in the top 5 cm of the soil and in the sediment collected at plot and catchment scale. Both set of measures were grouped and compared distinguishing between zones (lanes and tree rows) and scales (plot and catchment scale). Finally, these results were compared to the ones obtained using magnetite at hillslope scale regarding soil redistribution after rainfall events during 2008-2010. This study presents a preliminary characterization of the environmental processes occurring during water erosion events to identify significant sources of sediment at hillslope scale and their comparison to the catchment outlet in order to implement local soil and water conservation measures improving their efficiency and therefore reducing the costs associated to them.

  6. The large-scale landslide risk classification in catchment scale

    NASA Astrophysics Data System (ADS)

    Liu, Che-Hsin; Wu, Tingyeh; Chen, Lien-Kuang; Lin, Sheng-Chi

    2013-04-01

    The landslide disasters caused heavy casualties during Typhoon Morakot, 2009. This disaster is defined as largescale landslide due to the casualty numbers. This event also reflects the survey on large-scale landslide potential is so far insufficient and significant. The large-scale landslide potential analysis provides information about where should be focused on even though it is very difficult to distinguish. Accordingly, the authors intend to investigate the methods used by different countries, such as Hong Kong, Italy, Japan and Switzerland to clarify the assessment methodology. The objects include the place with susceptibility of rock slide and dip slope and the major landslide areas defined from historical records. Three different levels of scales are confirmed necessarily from country to slopeland, which are basin, catchment, and slope scales. Totally ten spots were classified with high large-scale landslide potential in the basin scale. The authors therefore focused on the catchment scale and employ risk matrix to classify the potential in this paper. The protected objects and large-scale landslide susceptibility ratio are two main indexes to classify the large-scale landslide risk. The protected objects are the constructions and transportation facilities. The large-scale landslide susceptibility ratio is based on the data of major landslide area and dip slope and rock slide areas. Totally 1,040 catchments are concerned and are classified into three levels, which are high, medium, and low levels. The proportions of high, medium, and low levels are 11%, 51%, and 38%, individually. This result represents the catchments with high proportion of protected objects or large-scale landslide susceptibility. The conclusion is made and it be the base material for the slopeland authorities when considering slopeland management and the further investigation.

  7. Preliminary report on the geology, geophysics and hydrology of USBM/AEC Colorado core hole No. 2, Piceance Creek Basin, Rio Blanco County, Colorado

    USGS Publications Warehouse

    Ege, J.R.; Carroll, R.D.; Welder, F.A.

    1967-01-01

    Approximately 1,400 feet of continuous core was taken .between 800-2,214 feet in depth from USBM/AEC Colorado core hole No. 2. The drill, site is located in the Piceance Creek basin, Rio Blanco County, Colorado. From ground surface the drill hole penetrated 1,120 feet of the Evacuation Creek Member and 1,094 feet of oil shale in the Parachute Creek Member of the Green River Formation. Oil shale yielding more than 20 gallons per ton occurs between 1,260-2,214 feet in depth. A gas explosion near the bottom of the hole resulted in abandonment of the exploratory hole which was still in oil shale. The top of the nahcolite zone is at 1,693 feet. Below this depth the core contains common to abundant amounts of sodium bicarbonate salt intermixed with oil shale. The core is divided into seven structural zones that reflect changes in joint intensity, core loss and broken core due to natural causes. The zone of poor core recovery is in the Interval between 1,300-1,450 feet. Results of preliminary geophysical log analyses indicate that oil yields determined by Fischer assay compare favorably with yields determined by geophysical log analyses. There is strong evidence that analyses of complete core data from Colorado core holes No. 1 and No. 2 reveal a reliable relationship between geophysical log response and oil yield. The quality of the logs is poor in the rich shale section and the possibility of repeating the logging program should be considered. Observations during drilling, coring, and hydrologic testing of USBM/AEC Colorado core hole No. 2 reveal that the Parachute Creek Member of the Green River Formation is the principal aquifer water in the Parachute Creek Member is under artesian pressure. The upper part of the aquifer has a higher hydrostatic head than, and is hydrologically separated from the lower part of the aquifer. The transmissibility of the aquifer is about 3500 gpd per foot. The maximum water yield of the core hole during testing was about 500 gpm. Chemical analyses of water samples indicate that the content of dissolved solids is low, the principal ions being sodium and bicarbonate. Although the hole was originally cored, to a depth of 2,214 feet, ,the present depth is about 2,100 feet. This report presents a preliminary evaluation of core examination, geophysical log interpretation and hydrological tests from the USBM/AEC Colorado core hole No. 2. The cooperation of the U.S. Bureau of Mines is gratefully acknowledged. The reader is referred to Carroll and others (1967) for comparison of USBM/AEC Col0rado core hole No. 1 with USBM/AEC Colorado core hole No. 2.

  8. On the trail of 'hidden streamflow' in Luxembourgish catchments

    NASA Astrophysics Data System (ADS)

    Stewart, Michael; Pfister, Laurent; Morgenstern, Uwe; Martinez-Carreras, Nuria; Gourdol, Laurent; Klaus, Julian; McDonnell, Jeffrey

    2014-05-01

    Tritium measurements are being carried out in well-studied catchments in the Attert sub-basin of the Alzette River in Luxembourg to investigate transit times of baseflow from the various lithologies in the area. Rock-types vary from sandstone with high permeability to marl and schist with low permeabilities. In contrast to other methods, tritium reveals the full spectrum of ages present in streams including 'hidden streamflow' (i.e. water older than that measurable by stable isotope or conservative tracer methods) Stewart et al. (2012). In principle, it can also provide ages for individual samples and therefore reveal variations in age with flow if measurements are accurate enough. However, difficulties arise in determining the tritium input function and from ambiguous age solutions due to the past input of thermonuclear tritium. Previous and concurrent geochemical and stable isotope studies are providing complementary information about the systems (e.g. geological controls on catchment storage, mixing potential, isotopic signatures in streamflow) Pfister et al. (2014). Results to date are showing that old water with mean transit times of about 18 years flow from catchments dominated by sandstone at medium to low flows. These streams also have very homogeneous ?D values at such flows showing large storages and mixing potentials. On the other hand, catchments dominated by marl and schist show varying mean transit times ranging from 2 to 20 years depending on flows, although data is limited. The ?D values of these streams are scattered and have a decreasing trend with streamflow showing event and seasonal rainfall influence, and thus small storage capacities and mixing potentials. It appears that 'hidden streamflow' is alive and well, and living in Luxembourg! Pfister L. et al. 2014: Catchment storage, baseflow isotope signatures and basin geology: Is there a connection? In preparation. Stewart, M.K., Morgenstern, U., McDonnell, J.J., Pfister, L. 2012: The 'hidden' streamflow challenge in catchment hydrology: A call to action for streamwater transit time analysis. Hydrological Processes 26(13), 2061-2066.

  9. From rainfall to rivers: A comparison of modelled and measured stable water isotopes in precipitation and river catchments at a global scale

    NASA Astrophysics Data System (ADS)

    Halder, Janine; Terzer, Stefan; Wassenaar, Leonard I.; Araguas-Araguas, Luis; Aggarwal, Pradeep K.

    2015-04-01

    Rivers are a crucial link in the global hydrological cycle as they discharge precipitation, groundwater, and water stored in snowpacks and glaciers back to the world oceans. However, there are essential gaps in hydrological data between rainfall, infiltration, and river discharge to the world oceans. Stable water isotopes are used to trace sources of precipitation and river water, unravel hydrological processes, as well as to assess the water balance of watersheds. With the widespread adoption of laser absorption spectroscopy for water isotope analysis, there is growing potential for an improved integration and application of isotope methods, combined with traditional quantitative and qualitative hydrological studies of large rivers. The Global Network of Isotopes in Rivers (GNIR) has been established a decade ago and aims to fill the informational data gaps between rainfall and river discharge. Here we report the results of a preliminary evaluation of the GNIR data holdings for about 250 river catchments, using measured and modelled stable water isotope compositions. A regionalized, cluster-based precipitation isotope model (RCWIP) was used to compare measured to predicted isotope compositions of riverine catchments. The results help to identify knowledge gaps and to improve the understanding of catchment scale processes of our world river basins. Our analysis suggests that the global GNIR river stations can be clustered into 6 different groups, as a function of their seasonal variation in stable isotope composition. A sinusoidal function reveals that there are periodic phases within each river grouping, which shows that, despite different catchment effects (e.g. river length, width, or amount of baseflow contribution), direct seasonal run-off (isotopic) patterns are preserved. The periodicity of the isotopic run-off signal, however, is dependent on river catchment latitude and snow or glacier meltwater-contributions. The importance of direct precipitation and run-off to the river discharge is confirmed by the strong co- variation of the isotope composition of precipitation and river water on a global scale. However, as most of the world's rivers are impacted to some degree by natural or man-made reservoirs, mixing processes of different water sources and of precipitation from different seasons are observed. The model predicted isotope composition of rivers correlates well with measured river isotope composition, however, some rivers strongly deviate. These deviations are located in arid regions that experience intense evaporation processes, or watersheds having important contributions from glacier-meltwater or permafrost.

  10. Using river discharge to access the quality of different precipitation datasets over large-scale basins

    NASA Astrophysics Data System (ADS)

    Dutra, Emanuel; Balsamo, Gianpaolo; Wetterhall, Fredrik; Florian Pappenberger, ,; Yamazaki, Dai

    2015-04-01

    River discharge is a natural integrator of meteorological variables. The integration is made over a spatial domain (catchment) which is geophysically appropriate, and over time. It takes into account the correlations and covariances between several meteorological variables in a meaningful way, integrating information from a multidimensional variable space. Furthermore, river discharge observations are available and generally reliable. Therefore, river discharge is an important variable to consider in when evaluating the water balance of large-scale basins. In this study we evaluate different precipitation corrections applied to the ECMWF ERA-Interim reanalysis in terms of long-term means and variability of river discharge over several large-scale basins. We compare the original ERA-Interim dataset, the precipitation correction used in the production of the ERA-Interim/Land dataset (adjusted using GPCP) and the WFDEI dataset (adjusted using CRU). Global simulations with the ECMWF land surface model HTESSEL were performed with the different datasets and the simulated runoff routed using the river-floodplain model CaMa-Flood. Preliminary results highlight the deficiencies of ERA-Interim in several tropical basins (e.g. Congo) while the precipitation adjustments in ERA-Interim/Land and in WFDEI degrade the simulations in several northern hemisphere basins dominated by cold processes (e.g. Mackenzie).

  11. Hydrochemical responses among nested catchments of the Sleepers River Research Watershed.

    NASA Astrophysics Data System (ADS)

    Sebestyen, S. D.; Boyer, E. W.; Shanley, J. B.; Kendall, C.

    2005-12-01

    We are probing chemical and isotopic tracers of dissolved organic carbon (DOC) and nitrate over both space and time to determine how stream nutrient dynamics change with increasing basin size and differ with flow conditions. At the Sleepers River Research Watershed in northeastern Vermont, USA, 20 to 30 nested sub-basins that ranged in size from 3 to 11,000 ha were sampled repeatedly under baseflow conditions. These synoptic surveys showed a pattern of heterogeneity in headwaters that converged to a consistent response at larger basin sizes and is consistent with findings of other studies. In addition to characterizing spatial patterns under baseflow, we sampled rainfall and snowmelt events over a gradient of basin sizes to investigate scaling responses under different flow conditions. During high flow events, DOC and nitrate flushing responses varied among different basins where high-frequency event samples were collected. While the DOC and nitrate concentration patterns were similar at four headwater basins, the concentration responses of larger basins were markedly different in that the concentration patterns, flushing duration, and maximum concentrations were attenuated from headwaters to the largest basin. We are using these data to explore how flow paths and solute mixing aggregate. Overall, these results highlight the complexities of understanding spatial scaling issues in catchments and underscore the need to consider event responses of hydrology and chemistry among catchments.

  12. Derivation of Geomorphological Instantaneous Unit Hydrographs for Ungauged Sites based on Catchment Self Similarity Properties

    NASA Astrophysics Data System (ADS)

    Chavan, Sagar; Srinivas Vemavarapu, Venkata

    2015-04-01

    Hydrologists extensively use Horton-Strahler (H-S) scheme for ordering (classification) of streams in a catchment. The ordered network forms the basis to determine H-S ratios that find use in modeling hydrological response of the catchment and in establishing relations with the fractal nature of channel network in the catchment. However, utility of H-S ratios has attracted criticism owing to (i) their dependence on the threshold area used for initiation of stream network and (ii) their sensitivity to the position of outlet of catchment. This implies that estimates of H-S ratios and inferences drawn from analysis of a river network that is classified based on H-S ordering scheme are conditional on threshold area, which is undesirable. To overcome these limitations, researchers are dedicating their efforts to arrive at an effective strategy that alleviates the dependence of H-S ratios on threshold area used for extraction of stream network in a catchment. Recently, Moussa (2009) proposed that artefacts associated with estimation of H-S ratios could be overcome if self-similarity properties are applicable to channel network. Equivalent H-S ratios that are independent of threshold area could be estimated for a catchment by using morphometric descriptors determined based on self-similarity properties of channel network in the catchment. Moussa (2009) examined applicability of self-similarity properties on seven catchments in France having area ranging from 738 sq.km to 5346 sq.km. There is dearth of attempts to examine potential of the strategy outside France. In this perspective, hypothesis of self-similarity is verified for stream networks in 201 catchments located in Mahanadi, Godavari, Krishna and Cauvery river basins, whose sizes vary from 160 sq.km to 311,150 sq.km. The river basins cover about 794,515 sq.km area in central and southern parts of India. Results indicated that self-similarity based strategy is effective for the Indian catchments irrespective of their size. Results obtained from the investigations would be presented and discussed. Further, utility of information determined on morphometric descriptors of the catchments in estimating equivalent H-S ratios and subsequently constructing Geomorphological Instantaneous Unit Hydrographs (GIUH) for various ungauged locations in the study area would be demonstrated.

  13. Dominant controls on catchment hydrological functions: what can we learn from biological and isotopic tracers?

    NASA Astrophysics Data System (ADS)

    Pfister, L.; Klaus, J.; Wetzel, C. E.; Stewart, M. K.; McDonnell, J.; Martinez Carreras, N.

    2014-12-01

    One emerging and important control on catchment hydrological functions of water storage, mixing and release is bedrock geology. Until today, catchment-based work has been limited by small ranges of rock types in adjacent basins. Moreover, conventional hydrological tracer approaches suffer from limitations inherent to the large storages related to certain bedrock types (e.g. the damping of stable isotope tracer signatures in deep storage catchments and obliteration of output signals at larger spatial scales). Here, we show how a multi-tracer approach, based on terrestrial diatoms and different stable and radioactive isotopic tracers can help refining our understanding of the dominant controls on catchment hydrological functions, especially the role of bedrock geology. We present new data and results from a nested catchment set-up, located in the Alzette River basin in Luxembourg (Europe). These 16 catchments (with sizes ranging from 0.47 to 285 km2) are characterized by clean and mixed assemblages of geology and land use. We have monitored these systems since 2002, including meteorological variables (precipitation, air temperature, etc.), as well as 15 minute discharge. Additional parameters have been monitored bi-weekly and at the event time scale, including geochemical and isotopic (3H, D, 18O) tracers, as well as terrestrial diatom communities in streamwater. Our results show that water balance derived dynamic storage significantly differs across the 16 catchments and scales. Catchment mixing potential inferred from standard deviations in stream baseflow ?D (as a proxy for the damping of isotopic signatures in precipitation), as well as tritium-derived baseflow transit times, both exhibit a significant spatial variability, but strong correlation to bedrock pemeability. Terrestrial diatom assemblages in streamwater, as a proxy for rapid flow pathway connectedness to the stream network, are highly variable across the study catchments but also show strong correlation with geology. Our work suggests a hierarchy of controls on catchment function. Eventually, geology (namely bedrock permeability) trumps other physiographic characteristics such as land use or topography in controlling fundamental catchment functions of storage, mixing and release.

  14. Factors affecting ground-water exchange and catchment size for Florida lakes in mantled karst terrain

    USGS Publications Warehouse

    Lee, Terrie Mackin

    2002-01-01

    In the mantled karst terrain of Florida, the size of the catchment delivering ground-water inflow to lakes is often considerably smaller than the topographically defined drainage basin. The size is determined by a balance of factors that act individually to enhance or diminish the hydraulic connection between the lake and the adjacent surficial aquifer, as well as the hydraulic connection between the surficial aquifer and the deeper limestone aquifer. Factors affecting ground-water exchange and the size of the ground-water catchment for lakes in mantled karst terrain were examined by: (1) reviewing the physical and hydrogeological characteristics of 14 Florida lake basins with available ground-water inflow estimates, and (2) simulating ground-water flow in hypothetical lake basins. Variably-saturated flow modeling was used to simulate a range of physical and hydrogeologic factors observed at the 14 lake basins. These factors included: recharge rate to the surficial aquifer, thickness of the unsaturated zone, size of the topographically defined basin, depth of the lake, thickness of the surficial aquifer, hydraulic conductivity of the geologic units, the location and size of karst subsidence features beneath and onshore of the lake, and the head in the Upper Floridan aquifer. Catchment size and the magnitude of ground-water inflow increased with increases in recharge rate to the surficial aquifer, the size of the topographically defined basin, hydraulic conductivity in the surficial aquifer, the degree of confinement of the deeper Upper Floridan aquifer, and the head in the Upper Floridan aquifer. The catchment size and magnitude of ground-water inflow increased with decreases in the number and size of karst subsidence features in the basin, and the thickness of the unsaturated zone near the lake. Model results, although qualitative, provided insights into: (1) the types of lake basins in mantled karst terrain that have the potential to generate small and large amounts of ground-water inflow, and (2) the location of ground-water catchments that could be managed to safeguard lake water quality. Knowledge of how ground-water catchments are related to lakes could be used by water-resource managers to recommend setback distances for septic tank drain fields, agricultural land uses, and other land-use practices that contribute nutrients and major ions to lakes.

  15. Managing forests in acid sensitive water catchments

    E-print Network

    Ecological Status' in all water bodies bManaging forests in acid sensitive water catchments Practice Guide #12;#12;Practice Guide Managing forests in acid sensitive water catchments Forestry Commission: Edinburgh #12;© Crown Copyright 2014 You

  16. Transit times of water particles in the vadose zone across catchment states and catchments functional units

    NASA Astrophysics Data System (ADS)

    Sprenger, Matthias; Weiler, Markus

    2014-05-01

    Understanding the water movement in the vadose zone and its associated transport of solutes are of major interest to reduce nutrient leaching, pollution transport or other risks to water quality. Soil physical models are widely used to asses such transport processes, while the site specific parameterization of these models remains challenging. Inverse modeling is a common method to adjust the soil physical parameters in a way that the observed water movement or soil water dynamics are reproduced by the simulation. We have shown that the pore water stable isotope concentration can serve as an additional fitting target to simulate the solute transport and water balance in the unsaturated zone. In the presented study, the Mualem- van Genuchten parameters for the Richards equation and diffusivity parameter for the convection-dispersion equation have been parameterized using the inverse model approach with Hydrus-1D for 46 experimental sites of different land use, topography, pedology and geology in the Attert basin in Luxembourg. With the best parameter set we simulated the transport of a conservative solute that was introduced via a pulse input at different points in time. Thus, the transit times in the upper 2 m of the soil for different catchment states could be inferred for each location. It has been shown that the time a particle needs to pass the -2 m depth plane highly varies from the systems state and the systems forcing during and after infiltration of that particle. Differences in transit times among the study sites within the Attert basin were investigated with regards to its governing factors to test the concept of functional units. The study shows the potential of pore water stable isotope concentration for residence times and transport analyses in the unsaturated zone leading to a better understanding of the time variable subsurface processes across the catchment.

  17. Legacy Contaminantion in UK catchments since the mid-19th century

    NASA Astrophysics Data System (ADS)

    Howden, N. J. K.; Burt, T. P.; Worrall, F.; Noacco, V.; Wagener, T.

    2014-12-01

    We present data from UK catchments to characterise impacts of industrial and agricultural development of UK river catchments since the mid-19th century. We draw heavily on the world's longest continuous water quality monitoring programme in the Thames River Basin (1868-date) and discuss the implications of both agricultural development, social and industrial change, and the impact of legislation on coupled land and water resource systems. Our review draws on both data and model analysis over a 145-year period and explores how a multitude of inter-linked drivers affects process-function and practical water resource management decision-support. Our work uncovers key drivers, catchment responses and emergent challenges for process science and regulation, with particular emphasis on the technical challenge for catchment scientists to provide both insight and workable solutions to maintain food and water security in intensively management river basins. We discuss issues of appropriate methods for both data capture and subsequent analyses to support short- and long-term decision making, and particularly considers the importance of advanced techniques to clarify uncertainties in extrapolation of short-term observations to inform long-term goals. We speculate as to future trajectories of catchment responses to current pressures, and potential pitfalls to immediate concerns that may often be at odds with overall requirements for continued use of natural resources in the future.

  18. Geological controls on isotopic signatures of streamflow: results from a nested catchment experiment in Luxembourg (Europe)

    NASA Astrophysics Data System (ADS)

    Pfister, Laurent; McDonnell, Jeffrey J.; Hissler, Christophe; Martinez-Carreras, Nuria; Gourdol, Laurent; Klaus, Julian; François Iffly, Jean; Barnich, François; Stewart, Mike K.

    2014-05-01

    Controls of geology and topography on hydrological metrics, like summer low flow (Grant and Tague, 2004) or dynamic storage (Sayama et al., 2011), have been identified in nested catchment experiments. However, most tracer-based studies on streamflow generation have been carried out in small (10 km2) homogenous catchments (Klaus and McDonnell, 2013). The controlling effects of catchment physiography on how catchments store and release water, and how this eventually controls stream isotope behaviour over a large range of scale are poorly understood. Here, we present results from a nested catchment analysis in the Alzette River basin (Luxembourg, Europe). Our hydro-climatological network consists of 16 recording streamgauges and 21 pluviographs. Catchment areas range from 0.47 to 285 km2, with clean and mixed combinations of distinct geologies ranging from schists to marls, sandstone, dolomite and limestone. Our objective was to identify geological controls on (i) winter runoff ratios, (ii) maximum storage and (iii) isotopic signatures in streamflow. For each catchment we determined average runoff ratios from winter season precipitation-discharge double-mass curves. Maximum catchment storage was based on the dynamic storage change approach of Sayama et al. (2011). Changes in isotopic signatures of streamflow were documented along individual catchment flow duration curves. We found strong correlations between average winter runoff ratios, maximum storage and the prevailing geological settings. Catchments with impermeable bedrock (e.g. marls or schists) were characterised by small storage potential and high average filling ratios. As a consequence, these catchments also exhibited the highest average runoff ratios. In catchments underlain by permeable bedrock (e.g. sandstone), storage potential was significantly higher and runoff ratios were considerably smaller. The isotopic signatures of streamflow showed large differences between catchments. In catchments dominated by permeable bedrock, isotopic signatures of streamflow remained stable throughout the entire flow duration curve consistent with a large storage and mixing potential. On less permeable bedrock substrate, we have observed that isotopic signatures in streamflow were much more variable, due to reduced storage volume and comparatively smaller mixing potential. Other metrics such as catchment size and flowpath length exerted a smaller secondary control on isotopic signatures of streamflow in the Alzette River sub-basins. Tague, C., Grant, G.E., 2004. A geological framework for interpreting the low-flow regimes of Cascade streams, Willamette River Basin, Oregon. Water Resources Research, 40(4), doi:10.1029/2003WR002629 Sayama, T., McDonnell, J.J., Dhakal, A., Sullivan, K., 2011. How much water can a watershed store ? Hydrological Processes 25, 3899-3908. Klaus, J., McDonnell, J.J., 2013. Hydrograph separation using stable isotopes: Review and evaluation. Journal of Hydrology 505, 47-64.

  19. Basin Economic Allocation Model (BEAM): An economic model of water use developed for the Aral Sea Basin

    NASA Astrophysics Data System (ADS)

    Riegels, Niels; Kromann, Mikkel; Karup Pedersen, Jesper; Lindgaard-Jørgensen, Palle; Sokolov, Vadim; Sorokin, Anatoly

    2013-04-01

    The water resources of the Aral Sea basin are under increasing pressure, particularly from the conflict over whether hydropower or irrigation water use should take priority. The purpose of the BEAM model is to explore the impact of changes to water allocation and investments in water management infrastructure on the overall welfare of the Aral Sea basin. The BEAM model estimates welfare changes associated with changes to how water is allocated between the five countries in the basin (Kazakhstan, Kyrgyz Republic, Tajikistan, Turkmenistan and Uzbekistan; water use in Afghanistan is assumed to be fixed). Water is allocated according to economic optimization criteria; in other words, the BEAM model allocates water across time and space so that the economic welfare associated with water use is maximized. The model is programmed in GAMS. The model addresses the Aral Sea Basin as a whole - that is, the rivers Syr Darya, Amu Darya, Kashkadarya, and Zarafshan, as well as the Aral Sea. The model representation includes water resources, including 14 river sections, 6 terminal lakes, 28 reservoirs and 19 catchment runoff nodes, as well as land resources (i.e., irrigated croplands). The model covers 5 sectors: agriculture (crops: wheat, cotton, alfalfa, rice, fruit, vegetables and others), hydropower, nature, households and industry. The focus of the model is on welfare impacts associated with changes to water use in the agriculture and hydropower sectors. The model aims at addressing the following issues of relevance for economic management of water resources: • Physical efficiency (estimating how investments in irrigation efficiency affect economic welfare). • Economic efficiency (estimating how changes in how water is allocated affect welfare). • Equity (who will gain from changes in allocation of water from one sector to another and who will lose?). Stakeholders in the region have been involved in the development of the model, and about 10 national experts, including staff from the International Fund for Saving the Aral Sea (IFAS), have been trained in using the model. The model is publicly accessible through a web-based user interface that allows users to investigate scenarios and perform sensitivity analyses. Preliminary results suggest that: 1. At the margin, hydropower water use increases basin-wide welfare more than irrigation water use. 2. Under normal or average hydrological conditions, water scarcity is not a significant problem in the basin. 3. Under dry hydrological conditions, water scarcity is significant. Under these conditions, preliminary results suggest that cotton irrigation is less effective than other uses, particularly in Turkmenistan. 4. Investments in irrigation efficiency can have a significant impact on the effectiveness of water use for irrigation, thereby increasing the welfare of irrigation regions during dry periods.

  20. Geochemical effects of CO2 injection on produced water chemistry at an enhanced oil recovery site in the Permian Basin of northwest Texas, USA: Preliminary geochemical and Li isotope results

    NASA Astrophysics Data System (ADS)

    Pfister, S.; Gardiner, J.; Phan, T. T.; Macpherson, G. L.; Diehl, J. R.; Lopano, C. L.; Stewart, B. W.; Capo, R. C.

    2014-12-01

    Injection of supercritical CO2 for enhanced oil recovery (EOR) presents an opportunity to evaluate the effects of CO2 on reservoir properties and formation waters during geologic carbon sequestration. Produced water from oil wells tapping a carbonate-hosted reservoir at an active EOR site in the Permian Basin of Texas both before and after injection were sampled to evaluate geochemical and isotopic changes associated with water-rock-CO2 interaction. Produced waters from the carbonate reservoir rock are Na-Cl brines with TDS levels of 16.5-34 g/L and detectable H2S. These brines are potentially diluted with shallow groundwater from earlier EOR water flooding. Initial lithium isotope data (?7Li) from pre-injection produced water in the EOR field fall within the range of Gulf of Mexico Coastal sedimentary basin and Appalachian basin values (Macpherson et al., 2014, Geofluids, doi: 10.1111/gfl.12084). Pre-injection produced water 87Sr/86Sr ratios (0.70788-0.70795) are consistent with mid-late Permian seawater/carbonate. CO2 injection took place in October 2013, and four of the wells sampled in May 2014 showed CO2 breakthrough. Preliminary comparison of pre- and post-injection produced waters indicates no significant changes in the major inorganic constituents following breakthrough, other than a possible drop in K concentration. Trace element and isotope data from pre- and post-breakthrough wells are currently being evaluated and will be presented.

  1. Multiscale investigations in a mesoscale catchment - hydrological modelling in the Gera catchment

    NASA Astrophysics Data System (ADS)

    Krause, P.; Bäse, F.; Bende-Michl, U.; Fink, M.; Flügel, W.; Pfennig, B.

    2006-09-01

    The application of the hydrological process-oriented model J2000 (J2K) is part of a cooperation project between the Thuringian Environmental Agency (Thüringer Landesanstalt für Umwelt und Geologie - TLUG) and the Department of Geoinformatics of the Friedrich-Schiller-University Jena focussing on the implementation of the EU water framework directive (WFD). In the first project phase J2K was parametrised and calibrated for a mesoscale catchment to quantify if it can be used as hydrological part of a multi-objective tool-box needed for the implementation of the WFD. The main objectives for that pilot study were:

    1. The development and application of a suitable distribution concept which provide the spatial data basis for various tasks and which reflects the specific physiogeographical variability and heterogeneity of river basins adequately. This distribution concept should consider the following constraints: The absolute number of spatial entities, which forms the basis for any distributive modelling should be as small as possible, but the spatial distributed factors, which controls quantitative and qualitative hydrological processes should not be generalised to much. The distribution concept of hydrological response units HRUs (Flügel, 1995) was selected and enhanced by a topological routing scheme (Staudenrausch, 2001) for the simulation of lateral flow processes.
    2. J2K should be calibrated for one subbasin of the pilot watershed only. Then the parameter set should be used on the other subbasins (referred as transfer basins) to investigate and quantify the transferability of a calibrated model and potential spatial dependencies of its parameter set. In addition, potential structural problems in the process description should be identified by the transfer to basins which show a different process dominance as the one which was used for calibration does.
    3. Model calibration and selection of efficiency criteria for the quantification of the model quality should be based on a comprehensive sensitivity and uncertainty analysis (Bäse, 2005) and multi-response validations with independent data sets (Krause and Flügel, 2005) carried out in advance in the headwater part of the calibration basin.
    4. To obtain good results in the transfer basins the calibrated parameter set could be adjusted slightly. This step was considered as necessary because of specific constraints which were not of significant importance in the calibration basin. This readjustment should be carried out on parameters which show a sensitive reaction on the identified differences in the environmental setup.
    5. Potential scaling problems of the process description, distribution concept or model structure should be identified by the comparison of the modelling results obtained in a small headwater region of the calibration basin with observed streamflow to find out if the selected efficiency measures show a significant change.

  2. Hydrological Response of Semi-arid Degraded Catchments in Tigray, Northern Ethiopia

    NASA Astrophysics Data System (ADS)

    Teka, Daniel; Van Wesemael, Bas; Vanacker, Veerle; Hallet, Vincent

    2013-04-01

    To address water scarcity in the arid and semi-arid part of developing countries, accurate estimation of surface runoff is an essential task. In semi-arid catchments runoff data are scarce and therefore runoff estimation using hydrological models becomes an alternative. This research was initiated in order to characterize runoff response of semi-arid catchments in Tigray, North Ethiopia to evaluate SCS-CN for various catchments. Ten sub-catchments were selected in different river basins and rainfall and runoff were measured with automatic hydro-monitoring equipments for 2-3 years. The Curve Number was estimated for each Hydrological Response Unit (HRU) in the sub-catchments and runoff was modeled using the SCS-CN method at ? = 0.05 and ? = 0.20. The result showed a significant difference between the two abstraction ratios (P =0.05, df = 1, n= 132) and reasonable good result was obtained for predicted runoff at ? = 0.05 (NSE = -0.69; PBIAS = 18.1%). When using the CN values from literature runoff was overestimated compared to the measured value (e= -11.53). This research showed the importance of using measured runoff data to characterize semi-arid catchments and accurately estimate the scarce water resource. Key words: Hydrological response, rainfall-runoff, degraded environments, semi-arid, Ethiopia, Tigray

  3. HYDROLOGIC SENSITIVITIES OF THE SACRAMENTO-SAN JOAQUIN RIVER BASIN, CA TO GLOBAL WARMING

    EPA Science Inventory

    The hydrologic sensitivities of four medium-sized mountainous catchments in the Sacramento and San Joaquin River basins to long-term global warming were analyzed. he hydrologic response of these catchments, all of which are dominated by spring snowmelt runoff, were simulated by t...

  4. INCORPORATING THE SPATIO-TEMPORAL DISTRIBUTION OF RAINFALL AND BASIN GEOMORPHOLOGY INTO NONLINEAR

    E-print Network

    Foufoula-Georgiou, Efi

    1 INCORPORATING THE SPATIO-TEMPORAL DISTRIBUTION OF RAINFALL AND BASIN GEOMORPHOLOGY INTO NONLINEAR streamflow series, spatio-temporal structure of precipitation and catchment geomorphology into a nonlinear of incorporating process-specific information (in terms of catchment geomorphology and an a-priori chosen

  5. Flowpaths, source water contributions and water residence times in a Mexican tropical dry forest catchment

    NASA Astrophysics Data System (ADS)

    Farrick, Kegan K.; Branfireun, Brian A.

    2015-10-01

    Runoff in forested tropical catchments has been frequently described in the literature as dominated by the rapid translation of rainfall to runoff through surface and shallow subsurface pathways. However, studies examining runoff generation in tropical catchments with highly permeable soils have received little attention, particularly in tropical dry forests. We present a study focused on identifying the dominant flowpaths, water sources and stream water residence times in a tropical dry forest catchment near the Pacific coast of central Mexico. During the wet season, pre-event water contributions to stormflow ranged from 72% to 97%, with the concentrations of calcium, magnesium, sodium and potassium closely coupling the geochemistry of baseflow and groundwater from the narrow riparian/near-stream zone. Baseflow from the intermittent stream showed a strongly damped isotopic signature and a mean baseflow residence time of 52-110 days was estimated. These findings all suggest that instead of the surface and near-surface subsurface lateral pathways observed over many tropical catchments, runoff is generated through vertical flow processes and the displacement and discharge of stored water from the saturated zone. As the wet season progressed, contributions from the saturated zone persisted; however, the stormflow and baseflow geochemistry suggests that the contributing area of the catchment increased. Our results show that during the early part of the wet season, runoff originated primarily from the headwater portion of the catchment. As the wet season progressed and catchment wetness increased, connectivity among sub-basin was improved, resulting in runoff contributions from across the entire catchment.

  6. Preliminary applications of Landsat images and aerial photography for determining land-use, geologic, and hydrologic characteristics, Yampa River basin, Colorado and Wyoming

    USGS Publications Warehouse

    Heimes, F.J.; Moore, G.K.; Steele, T.D.

    1978-01-01

    Expanded energy- and recreation-related activities in the Yampa River basin, Colorado and Wyoming, have caused a rapid increase in economic development which will result in increased demand and competition for natural resources. In planning for efficient allocation of the basin 's natural resources, Landsat images and small-scale color and color-infrared photographs were used for selected geologic, hydrologic and land-use applications within the Yampa River basin. Applications of Landsat data included: (1) regional land-use classification and mapping, (2) lineament mapping, and (3) areal snow-cover mapping. Results from the Landsat investigations indicated that: (1) Landsat land-use classification maps, at a regional level, compared favorably with areal land-use patterns that were defined from available ground information, (2) lineaments were mapped in sufficient detail using recently developed techniques for interpreting aerial photographs, (3) snow cover generally could be mapped for large areas with the exception of some densely forested areas of the basin and areas having a large percentage of winter-season cloud cover. Aerial photographs were used for estimation of turbidity for eight stream locations in the basin. Spectral reflectance values obtained by digitizing photographs were compared with measured turbidity values. Results showed strong correlations (variances explained of greater than 90 percent) between spectral reflectance obtained from color photographs and measured turbidity values. (Woodard-USGS)

  7. Hydrogeomorphic paradigm of stormflow generation in headwater catchments

    NASA Astrophysics Data System (ADS)

    Sidle, Roy C.

    2015-04-01

    Over the past century, different paradigms have emerged to explain the processes of stormflow generation in steep, vegetated headwater catchments. These headwaters are important source areas of flood waters, sediments, nutrients, and biota that affect larger basins and coastal waters. Headwater systems exhibit unique and complex hydrogeomorphic processes from hillslopes to stream channels as well as linkages to downstream reaches. Through the 1960's, stormflow generation was largely attributed to Hortonian overland flow mechanisms. While numerous studies indicated the significance of saturated and unsaturated subsurface flow, it was not until the mid-1960's that the variable source area concept of streamflow generation emerged invoking a dynamic riparian source area that shrinks and expands in response to precipitation and fluctuating water tables. However, this concept does not specify flow mechanisms or pathways functioning at different spatial scales within the catchment. Based on extensive studies in nested, headwater catchment components in Japan, a conceptual hydrogeomorphic model has been developed to more explicitly explain stormflow pathways and response. The conceptual model recognizes the close coupling of hillslope and channel hydrological processes and the unique contributions of geomorphic features such as riparian corridors, geomorphic hollows, and linear hillslopes. During the driest conditions, catchment water yield is very low and runoff occurs as saturated overland flow from the narrow riparian corridors and via direct channel interception. For slightly wetter conditions, subsurface flow from the soil matrix augments stormflow. As wetness increases, two significant non-linear hydrologic responses occur: (1) response from geomorphic hollows (zero-order basins) after a threshold of shallow groundwater accumulates; and (2) self-organization and expansion of preferential flow pathways that facilitate significant amounts of subsurface drainage. The temporal responses from these distinct but linked geomorphic components network forms the basis for the hydrogeomorphic concept of stormflow generation. A parsimonious model has been developed that simulates storm discharge from channel-riparian complexes using a kinematic wave algorithm and from geomorphic hollows (zero-order basins) and hillslopes using a multitank model. Simulations were in good agreement with runoff measurements.

  8. Factors controlling mercury transport in an upland forested catchment

    USGS Publications Warehouse

    Scherbatskoy, T.; Shanley, J.B.; Keeler, G.J.

    1998-01-01

    Total mercury (Hg) deposition and input/output relationships were investigated in an 11-ha deciduous forested catchment in northern Vermont as part of ongoing evaluations of rig cycling and transport in the Lake Champlain basin. Atmospheric Hg deposition (precipitation + modeled vapor phase downward flux) was 425 mg ha-1 during the one-year period March 1994 through February 1995 and 463 mg ha-1 from March 1995 through February 1996. In the same periods, stream export of total Hg was 32 mg ha-1 and 22 mg ha-1, respectively. Thus, there was a net retention of Hg by the catchment of 92% the first year and 95% the second year. In the first year, 16.9 mg ha-1 or about half of the annual stream export, occurred on the single day of peak spring snowmelt in April. In contrast, the maximum daily export in the second year, when peak stream flow was somewhat lower, was 3.5 mg ha-1 during a January thaw. The fate of file Hg retained by this forested catchment is not known. Dissolved (< 0.22 ??m) Hg concentrations in stream water ranged from 0.5-2.6 ng L-1, even when total (unfiltered) concentrations were greater than 10 ng L-1 during high flow events. Total Hg concentrations in stream water were correlated with the total organic fraction of suspended sediment, suggesting the importance of organic material in Hg transport within the catchment. High flow events and transport with organic material may be especially important mechanisms for the movement of Hg through forested ecosystems.

  9. Where is the Total Nitrogen accumulating in the Thames catchment (UK)?

    NASA Astrophysics Data System (ADS)

    Noacco, V.; Howden, N. J.; Wagener, T.; Pianosi, F.; Worrall, F.; Burt, T. P.

    2013-12-01

    The Thames basin has been shown to be a net sink of reactive nitrogen (N) since the 1940s, but it is still unresolved where this N is accumulating. This crucial question has to be addressed before we can understand the capacity of the catchment system to remove or attenuate nutrient export, and therefore future prospects for water quality in the Thames basin. For this purpose, we estimate the total annual nitrogen and carbon budgets of the Thames basin from 1867 to 2007 using budgeting models. The potential N sinks considered, i.e. possible locations for N to accumulate, are the terrestrial biosphere as land not currently used for food production, the sub-soil and the unsaturated zone of aquifers. The carbon model estimates soil organic carbon (SOC) stocks for typical land-uses in the Thames basin. The relationship between carbon and nitrogen, expressed by the C:N ratio typical of soils in the Thames catchment, allows to link the carbon and nitrogen stocks. We use global variance-based Sensitivity Analysis to understand the robustness of our conclusions. Thus considering the uncertainty in both the model parameters and the inputs to identify the factors most responsible for the uncertainty in the model output. We find that the accumulated N is likely stored in the sub-soil. A finding that is backed up by the results from the carbon model, which suggests that the Thames catchment is also a net carbon sink.

  10. Characteristics of discrete and basin-centered parts of the Lower Silurian regional oil and gas accumulation, Appalachian basin; preliminary results from a data set of 25 oil and gas fields

    USGS Publications Warehouse

    Ryder, Robert T.

    1998-01-01

    Oil and gas trapped in Lower Silurian 'Clinton' sands and Medina Group sandstone constitute a regional hydrocarbon accumulation that extends 425 mi in length from Ontario, Canada to northeastern Kentucky. The 125-mi width of the accumulation extends from central Ohio eastward to western Pennsylvania and west-central New York. Lenticular and intertonguing reservoirs, a gradual eastward decrease in reservoir porosity and permeability, and poorly segregated gas, oil, and water in the reservoirs make it very difficult to recognize clear-cut geologic- and production-based subdivisions in the accumulation that are relevant to resource assessment. However, subtle variations are recognizable that permit the regional accumulation to be subdivided into three tentative parts: a western gas-bearing part having more or less discrete fields; an eastern gas-bearing part having many characteristics of a basin-centered accumulation; and a central oil- and gas-bearing part with 'hybrid' fields that share characteristics of both discrete and basin-centered accumulation. A data set of 25 oil and gas fields is used in the report to compare selected attributes of the three parts of the regional accumulation. A fourth part of the regional accumulation, not discussed here, is an eastern extension of basin-centered accumulation having local commercial gas in the Tuscarora Sandstone, a proximal facies of the Lower Silurian depositional system. A basin-centered gas accumulation is a regionally extensive and commonly very thick zone of gas saturation that occurs in low-permeability rocks in the central, deeper part of a sedimentary basin. Another commonly used term for this type of accumulation is deep-basin gas accumulation. Basin-centered accumulation is a variety of continuous-type accumulation. The 'Clinton' sands and Medina Group sandstone part of the basin-centered gas accumulation is characterized by: a) reservoir porosity ranging from about 5 to 10 percent; b) reservoir permeability equal to or less than 0.1 mD; c) low reservoir water saturation and an average water yield per well less than about 9 to 13 BW/MMCFG; d) a broadly defined updip water-block trap; e) underpressured reservoirs with a gradient ranging from 0.25 to 0.35 psi/ft; and f) reservoir temperature of at least 125? F (52? C). Other than for historical and location purposes, the term field has little or no meaning as an assessment unit for the regional accumulation. In practice, each designated field represents a production sweet spot having relatively high EURs per well that in turn merges with surrounding gas-productive regions that are generally larger in area but have lower EURs per well. This important feature of the Lower Silurian regional accumulation, whereby most wells drilled into it are gas productive, must be considered when assessing its potential for remaining recoverable gas resources. Most of the remaining gas resources reside in 'Clinton' sands and Medina Group sandstone in the basin-centered part of the accumulation where as much as several tens of TCF of natural gas may be technically recoverable. The Tuscarora Sandstone in the eastern extension of the basin-centered part of the accumulation underlies a very large area and, although commonly characterized by very low porosity and permeability and low-Btu gas, probably contains additional gas resources. Remaining undiscovered recoverable gas and oil resources in the discrete and hybrid parts of the accumulation are primarily located beneath Lake Erie.

  11. Fate of organic contaminants in a boreal forest catchment

    NASA Astrophysics Data System (ADS)

    Bergknut, Magnus; Meijer, Sandra; Halsall, Crispin; Ågren, Anneli; Laudon, Hjalmar; Köhler, Stephan; Jones, Kevin; Tysklind, Mats; Wiberg, Karin

    2010-05-01

    The aim of the study was to investigate and predict the impact of hydrological and atmospheric processes on the mobilisation of contaminants in a remote catchment where the major input is related to diffuse pollution. The project included priory substances according to the European water framework directive (WFD), such as the persistent organic pollutants (POPs) HCB, PCBs and dioxins. The study was conducted at a well-characterised catchment system in northern Sweden dominated by two landscape types: forest and mire. Chemical analyses of POPs in forest soil and mire peat at various depths were performed. Evaluation of POP composition by principal component analysis (PCA) showed distinct differences between surface and deeper samples. This was attributed to vertical transport, degradation and/or shifting sources over time. The calculated net vertical transport differed between surface (0.3% of the pollutant reservoir) and deeper soils (8.0 %), suggesting that vertical transport conditions and processes differ in the deeper layers compared to the surface layers.The fate of POPs in soils and waters was explored through the development of a chemical fate model. The northerly location of the studied catchment enabled a study on the impact of spring snow melt and associated hydrological processes on contaminant mobilization. Input was based on bulk atmospheric deposition and was dominated by accumulation in the winter snowpack. The model considered air-soil exchange and accumulation in forest and mire soil as well as export of dissolved and particle-bound POPs from soil to catchment surface water. The predicted export of POPs to catchment surface waters was up to 40 times higher the during snow melt period (three week during April/May) compared to the snow covered period (approximately 4 months), highlighting the importance of the seasonal snow pack as a source of these chemicals. Release from soils was governed by the POP concentration in soil, the fraction of soil organic carbon and soil-water dissolved organic carbon (DOC) content. Significant differences in export of POPs were apparent between the forested and mire areas, and this could be linked to observed differences in hydrology, biogeochemistry and flux of DOC. Levels of POPs in surface water along the water path from the studied catchment to the Baltic Sea (the Gulf of Bothnia subbasin) were measured and the results showed that for this water system, atmospherically derived diffuse pollution has impact on the surface water quality in addition to downstream point sources. In conclusion, it is evident that a full understanding of the baseline contribution and the soil-to-water processes controlling the transport of priority substances at catchment scale is a prerequisite for assessing the variation of priority substances in water streams and river basins on a seasonal and regional scale. It is also clear that mobilization of headwater atmospherically derived diffuse pollution may have an impact on stream water quality in addition to downstream point sources. The above findings are applicable to a wide variety of north European catchments systems and provide an integrated and process-based understanding of base-line contamination of major catchments. The presented data highlight the findings from the PERSPEC project, which was possible under the umbrella of the European Commission's 6th Framework Programme project SNOWMAN (contract no ERAC-CT-2003-003219).

  12. A physically-based Distributed Hydrologic Model for Tropical Catchments

    NASA Astrophysics Data System (ADS)

    Abebe, N. A.; Ogden, F. L.

    2010-12-01

    Hydrological models are mathematical formulations intended to represent observed hydrological processes in a watershed. Simulated watersheds in turn vary in their nature based on their geographic location, altitude, climatic variables and geology and soil formation. Due to these variations, available hydrologic models vary in process formulation, spatial and temporal resolution and data demand. Many tropical watersheds are characterized by extensive and persistent biological activity and a large amount of rain. The Agua Salud catchments located within the Panama Canal Watershed, Panama, are such catchments identified by steep rolling topography, deep soils derived from weathered bedrock, and limited exposed bedrock. Tropical soils are highly affected by soil cracks, decayed tree roots and earthworm burrows forming a network of preferential flow paths that drain to a perched water table, which forms at a depth where the vertical hydraulic conductivity is significantly reduced near the bottom of the bioturbation layer. We have developed a physics-based, spatially distributed, multi-layered hydrologic model to simulate the dominant processes in these tropical watersheds. The model incorporates the major flow processes including overland flow, channel flow, matrix and non-Richards film flow infiltration, lateral downslope saturated matrix and non-Darcian pipe flow in the bioturbation layer, and deep saturated groundwater flow. Emphasis is given to the modeling of subsurface unsaturated zone soil moisture dynamics and the saturated preferential lateral flow from the network of macrospores. Preliminary results indicate that the model has the capability to simulate the complex hydrological processes in the catchment and will be a useful tool in the ongoing comprehensive ecohydrological studies in tropical catchments, and help improve our understanding of the hydrological effects of deforestation and aforestation.

  13. 10Be-derived denudation rates from the Burdekin catchment: The largest contributor of sediment to the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Croke, Jacky; Bartley, Rebecca; Chappell, John; Austin, Jenet M.; Fifield, Keith; Tims, Stephen G.; Thompson, Chris J.; Furuichi, Takahisa

    2015-07-01

    Terrestrial cosmogenic nuclides (TCNs) such as Beryllium-10 (10Be) are now routinely used to reconstruct erosional rates over tens of thousands of years at increasingly large basin scales (> 100,000 km2). In Australia, however, the approach and its assumptions have not been systematically tested within a single, large drainage basin. This study measures 10Be concentrations in river sediments from the Burdekin catchment, one of Australia's largest coastal catchments, to determine long-term (> 10,000 years), time-integrated rates of sediment generation and denudation. A nested-sampling design was used to test for effects of increasing catchment scale on nuclide concentrations with upstream catchment areas ranging from 4 to 130,000 km2. Beryllium-10 concentrations in sediment samples collected from the upstream headwater tributaries and mid-stream locations range from 1.8 to 2.89 × 105 atoms g- 1 and data confirm that nuclide concentrations are well and rapidly mixed downstream. Sediment from the same tributaries consistently yielded 10Be concentrations in the range of their upstream samples. Overall, no decrease in 10Be concentrations can be observed at the range of catchment scales measured here. The mean denudation rate for all river sediment samples throughout the Fanning subcatchment (1100 km2) is 18.47 m Ma- 1, which compares with the estimate at the end of the Burdekin catchment (130,000 km2) of 16.22 m Ma- 1. Nuclide concentrations in the lower gradient western and southern catchments show a higher degree of variability, and several complications emerged as a result of the contrasting geomorphic processes and settings. This study confirms the ability of TCNs to determine long-term denudation rates in Australia and highlights some important considerations in the model assumptions that may affect the accuracy of limited sampling in large, low-gradient catchments with long storage times.

  14. Rainfall-Runoff Processes in a Mixed Sudanian Savanna Agriculture Catchment: Use of a distributed sensor network

    E-print Network

    Lenstra, Arjen K.

    ENAC/ Rainfall-Runoff Processes in a Mixed Sudanian Savanna Agriculture Catchment: Use m) or upper savanna (300 m) Upper basin (2.4 km2 ) which is the main runoff producer, mixed trees and grass open savanna, lithosol rocky escarpement. Two permanent springs and several seasonal springs

  15. A LARGE-SCALE WATER SUPPLY MODEL FOR THE UPPER DANUBE CATCHMENT Roland Barthel, Darla Nickel, Alejandro Meleg, Jrgen Braun

    E-print Network

    Cirpka, Olaf Arie

    -term changes in the water cycle of the Upper Danube river basin in light of global environmental change with human activities (water and land use) on the water cycle in the Upper Danube catchment. The Upper Danube the natural water cycle and water availability. In GLOWA-Danube, several independent physical models are being

  16. Relict rock glaciers as groundwater storage in alpine catchments - the example of the Seckauer Tauern Range

    NASA Astrophysics Data System (ADS)

    Wagner, Thomas; Pauritsch, Marcus; Winkler, Gerfried

    2015-04-01

    Debris accumulations like relict rock glaciers (RRG) might act as groundwater storages in alpine catchments influencing the discharge dynamics of mountain streams. The degree of influence is related to the hydrometeorological conditions and changes seasonally. Especially during drought and flood events, the storage/buffer abilities of RRGs have an impact on the downstream river network. Stream flow could be assured during low flow periods and peak flows might be dampened during storm events. The assessment of the impact is investigated in the Seckauer Tauern Range, the easternmost subunit of the Niedere Tauern Range. In more detail, the discharge of a spring (Schöneben spring) emerging at the front of a RRG draining a catchment of 0.67 km² and discharges at gauging stations Finsterliesing and Unterwald further downstream with areal extents of 7.26 and 44.10 km² respectively are used as input for a lumped-parameter rainfall-runoff model, a modified version of the GR4J (Perrin et al., 2003). The Schöneben spring is 100% influenced by the RRG groundwater storage, as the whole catchment drains through the RRG. The flow dynamics of the other catchments are influenced only partially by RRGs with 15 and 12% as only headwater sections of it are drained by RRGs. The areal extend of the RRG (sub-) catchments, vegetation, debris in general and bare rock are compared to the storage parameters (routing and production store) of the rainfall-runoff model. As such, the influence of RRGs can be identified even in the overall catchment. It can be concluded that RRGs, due to their storage and buffer capabilities and abundance in the Seckauer Tauern Range are important for stream basin management and as a water resource for the sensitive ecosystem in alpine catchments. References: Perrin, C., Michel, C., Andréassian, V. (2003): Improvement of a parsimonious model for streamflow simulation. Journal of Hydrology 279, 275-289.

  17. Sediment yield estimation in mountain catchments of the Camastra reservoir, southern Italy: a comparison among different empirical methods

    NASA Astrophysics Data System (ADS)

    Lazzari, Maurizio; Danese, Maria; Gioia, Dario; Piccarreta, Marco

    2013-04-01

    Sedimentary budget estimation is an important topic for both scientific and social community, because it is crucial to understand both dynamics of orogenic belts and many practical problems, such as soil conservation and sediment accumulation in reservoir. Estimations of sediment yield or denudation rates in southern-central Italy are generally obtained by simple empirical relationships based on statistical regression between geomorphic parameters of the drainage network and the measured suspended sediment yield at the outlet of several drainage basins or through the use of models based on sediment delivery ratio or on soil loss equations. In this work, we perform a study of catchment dynamics and an estimation of sedimentary yield for several mountain catchments of the central-western sector of the Basilicata region, southern Italy. Sediment yield estimation has been obtained through both an indirect estimation of suspended sediment yield based on the Tu index (mean annual suspension sediment yield, Ciccacci et al., 1980) and the application of the Rusle (Renard et al., 1997) and the USPED (Mitasova et al., 1996) empirical methods. The preliminary results indicate a reliable difference between the RUSLE and USPED methods and the estimation based on the Tu index; a critical data analysis of results has been carried out considering also the present-day spatial distribution of erosion, transport and depositional processes in relation to the maps obtained from the application of those different empirical methods. The studied catchments drain an artificial reservoir (i.e. the Camastra dam), where a detailed evaluation of the amount of historical sediment storage has been collected. Sediment yield estimation obtained by means of the empirical methods have been compared and checked with historical data of sediment accumulation measured in the artificial reservoir of the Camastra dam. The validation of such estimations of sediment yield at the scale of large catchments using sediment storage in reservoirs provides a good opportunity: i) to test the reliability of the empirical methods used to estimate the sediment yield; ii) to investigate the catchment dynamics and its spatial and temporal evolution in terms of erosion, transport and deposition. References Ciccacci S., Fredi F., Lupia Palmieri E., Pugliese F., 1980. Contributo dell'analisi geomorfica quantitativa alla valutazione dell'entita dell'erosione nei bacini fluviali. Bollettino della Società Geologica Italiana 99: 455-516. Mitasova H, Hofierka J, Zlocha M, Iverson LR. 1996. Modeling topographic potential for erosion and deposition using GIS. International Journal of Geographical Information Systems 10: 629-641. Renard K.G., Foster G.R., Weesies G.A., McCool D.K., Yoder D.C., 1997. Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE), USDA-ARS, Agricultural Handbook No. 703.

  18. How tritium illuminates catchment structure

    NASA Astrophysics Data System (ADS)

    Stewart, M.; Morgenstern, U.; McDonnell, J.

    2012-04-01

    Streams contain water which has taken widely-varying times to pass through catchments, and the distribution of ages is likely to change with the flow. Part of the water has 'runoff' straight to the stream with little delay, other parts are more delayed and some has taken years (in some cases decades) to traverse the deeper regolith or bedrock of the catchment. This work aims to establish the significance of the last component, which is important because it can cause catchments to have long memories of contaminant inputs (e.g. nitrate). Results of tritium studies on streams world-wide were accessed from the scientific literature. Most of the studies assumed that there were just two age-components present in the streams (i.e. young and old). The mean ages and proportions of the components were found by fitting simulations to tritium data. It was found that the old component in streams was substantial (average was 50% of the annual runoff) and had considerable age (average mean age was 10 years) (Stewart et al., 2010). Use of oxygen-18 or chloride variations to estimate streamflow mean age usually does not reveal the age or size of this old component, because these methods cannot detect water older than about four years. Consequently, the use of tritium has shown that substantial parts of streamflow in headwater catchments are older than expected, and that deep groundwater plays an active and sometimes even a dominant role in runoff generation. Difficulties with interpretation of tritium in streams in recent years due to interference from tritium due to nuclear weapons testing are becoming less serious, because very accurate tritium measurements can be made and there is now little bomb-tritium remaining in the atmosphere. Mean ages can often be estimated from single tritium measurements in the Southern Hemisphere, because there was much less bomb-tritium in the atmosphere. This may also be possible for some locations in the Northern Hemisphere. Age determination on single samples allows the variation of mean age with streamflow to be investigated, as observed in the Toenepi Catchment in New Zealand where baseflow mean ages varied from 4 to 155 years depending on flow (Morgenstern et al., 2010).

  19. Influence of geology, regolith and soil on fluid flow pathways in an upland catchment in central NSW, Australia

    NASA Astrophysics Data System (ADS)

    Bernardi, Tony

    2014-05-01

    Influence of geology, regolith and soil on fluid flow pathways in an upland catchment in central NSW, Australia. Tony Bernardi and Leah Moore Dryland Salinity Hazard Mitigation Program (DSHMP), University of Canberra, ACT 2601, AUSTRALIA The diversity of salt expression in central NSW has defied classification because salt expression, mobilisation and transport is highly variable and is typically site specific. Hydrological models are extensively used to simulate possible outcomes for a range of land use changes to mitigate the mobilisation and transport of salt into the streams or across the land surface. The ability of these models to mimic reality can be variable thereby reducing the confidence in the models outputs and uptake of strategic management changes by the community. This study focuses on a 250 ha semi-arid sub-catchment of Little River catchment in central west NSW in the Murray-Darling Basin, Australia. We propose that an understanding the structure of the landforms and configuration of rock, regolith and soil materials at the study site influences fluid flow pathways in the landscape and can be related to observed variations in the chemical composition and salinity of surface and aquifer water. Preliminary geological mapping of the site identified the dominant rock type as a pink and grey dacite and in localised mid-slope areas, a coarsely crystalline biotite-phyric granodiorite. Samples were taken at regular intervals from natural exposures in eroded stream banks and in excavations made during the installation of neutron moisture meter tubes. In order to establish mineral weathering pathways, samples were taken from the relatively unweathered core to the outer weathered 'onion skins' of corestones on both substrates, and then up through the regolith profile, including the soil zone, to the land surface. X-ray diffraction (XRD) analysis and X-ray fluorescence (XRF) was conducted on the rock and soil/saprock samples. Electromagnetic induction (EMI) profile data were compiled from previous work with colleagues in this area. Preliminary interpretation of the mapping and the geophysics is that there is a three-layer framework for groundwater modelling: fractured granitic rock with an irregular upper surface, finer-grained (volcanic) rock that has either mantled the older granite or has been intruded into, and a weathering profile developed in relation to the land surface. More careful interpretation of the intervals that shallow and deep piezometers and shallow and deep bores are sampling indicates that variability in water chemistry between holes can, in part, be explained because they are sampling different materials in the sub-surface geology/regolith geology. Quartz is a relatively resistant phase throughout the profiles. For both substrates there is a decrease in the feldspar in increasingly weathered regolith materials, with a corresponding increase in kaolinite clay. There is increased homogenisation of the profile, and some horizonation due to pedogenic processes (e.g. bioturbation, illuviation of fines down profile) nearer the land surface. This results in a concentration of more resistant phases (quartz and remnant primary feldspar as sands) at the land surface over the granitic substrate, however kaolinite persists in the profile over the finer substrate. The presence of measurable ferruginous oxides and sesquioxides relates to localised percolation of oxidising fluids through the profiles. Understanding the configuration and composition of rocks and regolith materials in the Baldry catchment facilitates interpretation of observed patterns in hydrological analyses.

  20. Will urban expansion lead to an increase in future water pollution loads?--a preliminary investigation of the Haihe River Basin in northeastern China.

    PubMed

    Dong, Yang; Liu, Yi; Chen, Jining

    2014-01-01

    Urban expansion is a major driving force changing regional hydrology and nonpoint source pollution. The Haihe River Basin, the political, economic, and cultural center of northeastern China, has undergone rapid urbanization in recent decades. To investigate the consequences of future urban sprawl on nonpoint source water pollutant emissions in the river basin, the urban sprawl in 2030 was estimated, and the annual runoff and nonpoint source pollution in the Haihe River basin were simulated. The Integrated Model of Non-Point Sources Pollution Processes (IMPULSE) was used to simulate the effects of urban sprawl on nonpoint source pollution emissions. The outcomes indicated that the urban expansion through 2030 increased the nonpoint source total nitrogen (TN), total phosphorous (TP), and chemical oxygen demand (COD) emissions by 8.08, 0.14, and 149.57 kg/km(2), respectively. Compared to 2008, the total nonpoint emissions rose by 15.33, 0.57, and 12.39 %, respectively. Twelve percent of the 25 cities in the basin would increase by more than 50 % in nonpoint source TN and COD emissions in 2030. In particular, the nonpoint source TN emissions in Xinxiang, Jiaozuo, and Puyang would rise by 73.31, 67.25, and 58.61 %, and the nonpoint source COD emissions in these cities would rise by 74.02, 51.99, and 53.27 %, respectively. The point source pollution emissions in 2008 and 2030 were also estimated to explore the effects of urban sprawl on total water pollution loads. Urban sprawl through 2030 would bring significant structural changes of total TN, TP, and COD emissions for each city in the area. The results of this study could provide insights into the effects of urbanization in the study area and the methods could help to recognize the role that future urban sprawl plays in the total water pollution loads in the water quality management process. PMID:24532209

  1. The hydrological regime of a forested tropical Andean catchment

    NASA Astrophysics Data System (ADS)

    Clark, K. E.; Torres, M. A.; West, A. J.; Hilton, R. G.; New, M.; Horwath, A. B.; Fisher, J. B.; Rapp, J. M.; Robles Caceres, A.; Malhi, Y.

    2014-12-01

    The hydrology of tropical mountain catchments plays a central role in ecological function, geochemical and biogeochemical cycles, erosion and sediment production, and water supply in globally important environments. There have been few studies quantifying the seasonal and annual water budgets in the montane tropics, particularly in cloud forests. We investigated the water balance and hydrologic regime of the Kosñipata catchment (basin area: 164.4 km2) over the period 2010-2011. The catchment spans over 2500 m in elevation in the eastern Peruvian Andes and is dominated by tropical montane cloud forest with some high-elevation puna grasslands. Catchment-wide rainfall was 3112 ± 414 mm yr-1, calculated by calibrating Tropical Rainfall Measuring Mission (TRMM) 3B43 rainfall with rainfall data from nine meteorological stations in the catchment. Cloud water input to streamflow was 316 ± 116 mm yr-1 (9.2% of total inputs), calculated from an isotopic mixing model using deuterium excess (Dxs) and ?D of waters. Field streamflow was measured in 2010 by recording height and calibrating to discharge. River run-off was estimated to be 2796 ± 126 mm yr-1. Actual evapotranspiration (AET) was 688 ± 138 mm yr-1, determined using the Priestley and Taylor-Jet Propulsion Laboratory (PT-JPL) model. The overall water budget was balanced within 1.6 ± 13.7%. Relationships between monthly rainfall and river run-off follow an anticlockwise hysteresis through the year, with a persistence of high run-off after the end of the wet season. The size of the soil and shallow groundwater reservoir is most likely insufficient to explain sustained dry-season flow. Thus, the observed hysteresis in rainfall-run-off relationships is best explained by sustained groundwater flow in the dry season, which is consistent with the water isotope results that suggest persistent wet-season sources to streamflow throughout the year. These results demonstrate the importance of transient groundwater storage in stabilising the annual hydrograph in this region of the Andes.

  2. Dissolved and particulate nutrient export from rural catchments: a case study from Luxembourg.

    PubMed

    Salvia-Castellví, Mercè; Iffly, Jean François; Borght, Paul Vander; Hoffmann, Lucien

    2005-05-15

    Nutrient enrichment of freshwaters continues to be one of the most serious problems facing the management of surface waters. Effective remediation/conservation measures require accurate qualitative and quantitative knowledge of nutrient sources, transport mechanisms, transformations and annual dynamics of different nitrogen (N) and phosphorus (P) forms. In this paper, nitrate (NO3-N), soluble reactive phosphorus (SRP) and total phosphorus (TP) concentrations and loads are presented for two adjacent rural basins of 306 km2 and 424 km2, and for five sub-basins differing in size (between 1 km2 and 33 km2), land use (extent of forest cover between 20% and 93%) and household pressure (from 0 to 40 people/km2) with the aim of studying the influence of land use and catchment size on nutrient exports. The studied catchments are all situated on Devonian schistous substrates in the Ardennes region (Belgium-Luxembourg), and therefore have similar hydrological regimes. As the study period could not be the same for all basins, annual export coefficients were corrected with the 25 years normalized discharge of the Sure River: two regression analyses (for dry and humid periods) relating monthly nutrient loads to monthly runoff were used to determine correction factors to be applied to each parameter and each basin. This procedure allows for the comparing annual export coefficients from basins sampled in different years. Results show a marked seasonal response and a large variability of NO3-N export loads between forested (4 kg N ha-1 year-1), agricultural (27-33 kg N ha-1 year-1) and mixed catchments (17-22 kg N ha-1 year-1). For SRP and TP, no significant agricultural impact was found. Land and bank erosion control the total P massflow in the studied catchments (0.4-1.3 kg P ha-1 year-1), which is mostly in a particulate form, detached and transported during storm events. Soluble reactive P fluxes ranged between 10% and 30% of the TP mass, depending on the importance of point sources in the basins studied. No relation was found between the size of the basins and the export of nitrate, SRP or TP. Nutrient export, specially for NO3-N and TP, shows significant inter-annual variations, closely linked to inter-annual discharge variations. Flow and load frequency data analysis confirm this association for all the basins on an annual basis. Seasonal or storm specific fluxes strongly deviate from their annual values. PMID:15907510

  3. Geomorphological characterization of endorheic basins in northern Chile

    NASA Astrophysics Data System (ADS)

    Dorsaz, J.; Gironas, J. A.; Escauriaza, C. R.; Rinaldo, A.

    2011-12-01

    Quantitative geomorphology regroups a large number of interesting tools to characterize natural basins across scales. The application of these tools to several river basins allows the description and comparison of geomorphological properties at different spatial scales as oppose to more traditional descriptors that are typically applied at a single scale, meaning the catchment scale. Most of the recent research using these quantitative geomorphological tools has focused on open catchments and no specific attention has been given to endorheic basins, and the possibility of having particular features that distinguish them from exorheic catchments. The main objective of our study is to characterize endorheic basins and investigate whether these special geomorphological features can be identified. Because scaling invariance is a widely observed and relatively well quantified property of open basins, it provides a suitable tool to characterize differences between the geomorphology of closed and open basins. Our investigation focuses on three closed basins located in northern Chile which describe well the diversity in the geomorphology and geology of this arid region. Results show that endhoreic basins exhibit different slope-area and flow paths sinuosity regimes compared to those observed in open basins. These differences are in agreement with the particular self-similar behavior across spatial scales of the Euclidean length of subcatchments, as well as the Hack's law and Horton's ratios. These regimes imply different physical processes inside the channel network regardless of the basin area, and they seem to be related to the endorheic character of these basins. The analysis of the probability density functions of contributing areas and lengths to the lower region shows that the hypothesis of self-similarity can also be applied to closed basins. Theoretical expressions for these distributions were derived and validated by the data. Future research will focus on (1) applying similar analyses in other locations and comparing the results, and (2) understanding and modeling the effects of groundwater in forming the landscape of these arid regions.

  4. Preliminary hydrogeologic framework of the Silurian and Devonian carbonate aquifer system in the Midwestern Basins and Arches Region of Indiana, Ohio, Michigan, and Illinois

    SciTech Connect

    Casey, G.D. )

    1992-01-01

    The aquifer and confining units have been identified; data on the thickness, extent, and structural configuration of these units have been collected; and thickness and structure-contour maps have been generated. Hydrologic information for the confining units and the aquifer also has been compiled. Where present, the confining unit that caps the carbonate aquifer consists of shales of Middle and Upper Devonian age and Lower Mississippian age, however, these units have been eroded from a large part of the study area. The regional carbonate aquifer consists of Silurian and Devonian limestones and dolomites. The rocks that comprise the aquifer in Indiana and northwestern Illinois are grouped into four major stratigraphic units: Brassfield and Sexton Creek Limestones or the Cataract Formation, the Salamonie Dolomite, the Salina Group, and the Detroit River and Traverse Formations or the Muscatatuck Group. In Ohio and southern Michigan the aquifer is grouped into ten stratigraphic units: Brassfield Limestone and Cataract Formation, the Dayton Limestone, the Rochester Shale equivalent, the Lockport Dolomite, the Salina Formation, the Hillsboro Sandstone, the Detroit River Group, the Columbus Limestone, the Delaware Limestone, and the Traverse Formation. The thickness of the carbonate aquifer increases from the contact with the outcropping Ordovician shales in the south-central part of the study area from the contact into the Appalachian Foreland Structural Basin from 0 ft at the contact to more than 700 ft at the eastern boundary of the study area, to more than 1,000 ft beneath Lake Erie and greater than 1,200 ft in southeastern Michigan. At the edge of the Michigan Intercontinental Structural Basin in western Ohio and eastern Indiana, the thickness ranges from 700 to 900 ft. and from 200 ft to 300 ft in south-central Indiana along the northeastern edge of the Illinois Intercontinental Structural Basin.

  5. Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Physiographic Provinces

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This dataset represents the area of each physiographic province (Fenneman and Johnson, 1946) in square meters, compiled for every catchment of NHDPlus for the conterminous United States. The source data are from Fenneman and Johnson's Physiographic Provinces of the United States, which is based on 8 major divisions, 25 provinces, and 86 sections representing distinctive areas having common topography, rock type and structure, and geologic and geomorphic history (Fenneman and Johnson, 1946). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

  6. Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Hydrologic Landscape Regions

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This data set represents the area of Hydrologic Landscape Regions (HLR) compiled for every catchment of NHDPlus for the conterminous United States. The source data set is a 100-meter version of Hydrologic Landscape Regions of the United States (Wolock, 2003). HLR groups watersheds on the basis of similarities in land-surface form, geologic texture, and climate characteristics. The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

  7. Attributes for NHDplus Catchments (Version 1.1) for the Conterminous United States: Population Density, 2000

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMottem, Andrew E.

    2010-01-01

    This data set represents the average population density, in number of people per square kilometer multiplied by 10 for the year 2000, compiled for every catchment of NHDPlus for the conterminous United States. The source data set is the 2000 Population Density by Block Group for the Conterminous United States (Hitt, 2003). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

  8. Process type identification in torrential catchments

    NASA Astrophysics Data System (ADS)

    Heiser, Micha; Scheidl, Christian; Eisl, Julia; Spangl, Bernhard; Hübl, Johannes

    2015-04-01

    The classification of torrential processes takes place according to factors like sediment concentration and flow behavior and ranges from fluvial process types, including water floods and fluvial sediment transport processes, to fluvial mass movements such as debris flows. This study hypothises a context between basic geomorphological disposition parameters and potential dominant flow process types in steep headwater catchments. Thus, examined catchments were selected based on a historical event documentation of torrential events in the Austrian Alps. In total, 84 catchments could be analysed, and 11 different morphometric parameters were considered. To predict the dominant torrential process type within a catchment, a naive Bayes classifier, a decision tree model, and a multinomial regression model was trained against the compiled geomorphological disposition parameters. All models as well as their combination were compared, based on bootstrapping and complexity. The presented classification model with the lowest prediction error for our data might help to identify the most likely torrential process within a considered catchment.

  9. Potential of using WATCH forcing data to model a low land river basin of the upper Murray-Darling basin in Australia

    NASA Astrophysics Data System (ADS)

    Kundu, D.; Van Ogtrop, F. F.; Vervoort, R. W.

    2014-12-01

    Scattered station based climate data is often not sufficient to describe the dynamics of the catchment processes and efficiently manage the water resources. Therefore, a lot of focus has been to identify alternative distributed data sources, such as; remotely sensed data or global re-analysis data. Hence, this study uses the Water and Global Change (WATCH) forcing data, based on 40 years ECMWF Re-Analysis (ERA-40), to model a semi-arid low land flood plain river basin in a data sparse region. The semi-distributed Soil Water Assessment Tool (SWAT) was used to model the river basin (Warrego, 52140.6 square km) located in the upper Murray-Darling basin in Eastern Australia. Multi station model calibration was achieved using the Sequential Uncertainty Fitting -2 (SUFI-2) algorithm with the Nash Sutcliffe Efficiency (NSE) as the goal function against monthly observed flow data. Modelling of a low land river system is highly challenging, due to topographic heterogeneity, nonlinear climatic behavior and sparse observed flow data with extended periods of zero flows. Preliminary simulation results indicate a NSE of 0.26 to 0.86 for the calibration period and 0.04 to 0.47 for the validation period. Furthermore, the volume fraction explained by the model ranged from 0.69 to 2.71 in the validation period. While the unsatisfactory results may be attributed to the SWAT modelling framework, which struggles with modelling flow in flat flood plains, the study does reveal the potential to use remotely sensed data in low land river basins with little or no climate data.

  10. Influence of basin connectivity on sediment source, transport, and storage within the Mkabela Basin, South Africa

    NASA Astrophysics Data System (ADS)

    Miller, J. R.; Mackin, G.; Lechler, P.; Lord, M.; Lorentz, S.

    2013-02-01

    The management of sediment and other non-point source (NPS) pollution has proven difficult, and requires a sound understanding of particle movement through the drainage system. The primary objective of this investigation was to obtain an understanding of NPS sediment source(s), transport, and storage within the Mkabela Basin, a representative agricultural catchment within the KwaZulu-Natal Midlands of eastern South Africa, by combining geomorphic, hydrologic and geochemical fingerprinting analyses. The Mkabela Basin can be subdivided into three distinct subcatchments that differ in their ability to transport and store sediment along the axial valley. Headwater (upper catchment) areas are characterized by extensive wetlands that act as significant sediment sinks. Mid-catchment areas, characterized by higher relief and valley gradients, exhibit few wetlands, but rather are dominated by a combination of alluvial and bedrock channels that are conducive to sediment transport. The lower catchment exhibits a low-gradient alluvial channel that is boarded by extensive riparian wetlands that accumulate large quantities of sediment (and NPS pollutants). Fingerprinting studies suggest that silt- and clay-rich layers found within wetland and reservoir deposits of the upper and upper-mid subcatchments are derived from the erosion of fine-grained, valley bottom soils frequently utilized as vegetable fields. Coarser-grained deposits within these wetlands and reservoirs result from the erosion of sandier hillslope soils extensively utilized for sugar cane, during relatively high magnitude runoff events that are capable of transporting sand-sized sediment off the slopes. Thus, the source of sediment to the axial valley varies as a function of sediment size and runoff magnitude. Sediment export from upper to lower catchment areas was limited until the early 1990s, in part because the upper catchment wetlands were hydrologically disconnected from lower parts of the watershed during low to moderate flood events. The construction of a drainage ditch through a previously unchanneled wetland altered the hydrologic connectivity of the catchment, allowing sediment to be transported from the headwaters to the lower basin where much of it was deposited within riparian wetlands. The axial drainage system is now geomorphically and hydrologically connected during events capable of overflowing dams located throughout the study basin. The study indicates that increased valley connectivity partly negated the positive benefits of controlling sediment/nutrient exports from the catchment by means of upland based, best management practices.

  11. Collaborative knowledge in catchment research networks

    NASA Astrophysics Data System (ADS)

    Macleod, Christopher Kit

    2015-04-01

    There is a need to improve the production, sharing and use of collaborative knowledge of catchment systems through networks of researchers, policy makers and practitioners. This requires greater levels of systems based integrative research. In parallel to the growing realization that greater levels of collaborative knowledge in scientific research networks are required, a digital revolution has been taking place. This has been driven primarily by the emergence of distributed networks of computers and standards-based interoperability. The objective of this paper is to present the status and research needs for greater levels of systems based integrative research for the production, sharing and use of collaborative knowledge in catchment research networks. To enable increased levels of integrative research depends on development and application of digital technologies to improve collection, use and sharing of data and devise new knowledge infrastructures. This paper focuses on the requirements for catchment observatories that integrate existing and novel physical, social and digital networks of knowledge infrastructures. To support this focus, I present three leading international examples of collaborative networks of catchment researchers and their development of catchment observatories. In particular, the digital infrastructures they have developed to support collaborative knowledge in catchment research networks. These examples are from North America (NSF funded CUAHSI HIS) and from Europe (UK NERC funded EVOp and the German Helmholtz Association Centers funded TERENO/TEODOOR). These exemplars all supported advancing collaborative knowledge in catchment research networks through the development of catchment observatories. I will conclude by discussing the future research directions required for greater levels of production, sharing and use of collaborative knowledge in catchment research networks based on catchment systems science.

  12. Morphometric properties of the trans-Himalayan river catchments: Clues towards a relative chronology of orogen-wide drainage integration

    NASA Astrophysics Data System (ADS)

    Ghosh, Parthasarathi; Sinha, Sayan; Misra, Arindam

    2015-03-01

    The geomorphological evolution of the Himalayan mountain belt both in terms of crustal deformation and concomitant erosion by surface processes has been suggested to have a profound influence on a number of earth system processes and has been extensively researched through a number of different techniques. The huge catchments of the trans-Himalayan rivers are the product of long-term fluvial erosion of the landscape. This work attempts to understand their evolution through a study of drainage network, morphology, and internal organization of the smaller watersheds nested within each catchment. Using morphometric techniques applied to an orogen-wide digital elevation data grid, we characterized the drainage network structure and catchment of all the 18 trans-Himalayan rivers situated between the exits of the Indus and Brahmaputra rivers and constructed rectangular approximations of the catchment geometries. With the help of catchment dimensions measured transverse and parallel to the strike of the orogen, and by analyzing the dimension and spatial dispositions of the rectangular approximations, we demonstrate that the trans-Himalayan catchment shapes cannot be explained only as a product of the headward enlargement of drainage networks on a topographic slope, or orogenic taper. Within individual catchments we identified the existence of drainage components (watersheds) that are organized in a systematic manner with respect to the first-order physiographic features of the Himalayas, formed at different periods of geological time. Each of them shows distinct morphometric characteristics that are indicative of differences in processes and / or time scale involved in their formation. The hypsometric properties of the watersheds occupying the upper part of the catchments suggest that they are the remnants of pre-orogenic drainage that became confined to the leeward side of the Himalayas before the advent of monsoon circulation. The shape and organization of the transverse watersheds occurring in the middle of the catchments resemble a series of small drainage basins formed on the precursor topography of the modern Himalayas. The lower parts of the catchments were shaped instead by drainage diversions induced by deformations related to the frontal thrust. We show how the shape of the catchments represents an integration of processes such as headward drainage enlargement, capture of pre-existing drainage, and diversion of drainage in response to crustal deformation at successive stages of Himalayan mountain growth. We further show that there is a systematic change in the morphological characters and organization of the watersheds, nested in the catchments, from the middle towards the flanks of the Himalayas indicating the variations in relative influence of different drainage evolution processes and the orogen-scale heterogeneity in tectonic style.

  13. Catchment similarity and classification in areas of high hydrologic gradients: the case of Chilean Patagonia

    NASA Astrophysics Data System (ADS)

    Dussaillant, A.; Buytaert, W.; Maturana, O.; Arias, M.

    2009-04-01

    The Baker River Basin is located in Patagonia, Southern South America, with a total drainage area of 26,726 km2 (second-largest river basin in Chile). The Baker River has the highest mean annual discharge rate of all Chilean rivers (1,133 m3/s), and flows out of Bertrand Lake, which in turn receives the draining waters from the General Carrera Lake (surface area of about 1800 km2, Latin America's second largest). Geology and climate gradients are even more extreme than in the rest of the country, from mountain to sea, and sometimes having mean annual rainfalls change from 8000 mm to 400 mm in less than 60 km. Bigger basins, like the Baker, have Eastern sub-basins with even a semi-arid character, whereas Western sub-catchments drain from ice fields. Thus, flow regimes may have very diverse characters in combination. And regarding sediment, although many rivers are born in lakes (many bi-national), they have important profile slopes and plenty of sediment available (partly due to glacial deposits). In spite of this huge natural variability, there is scant data due to low resources and remoteness: few meteorological and flow stations (having few decades or much shorter data series), and lack of stations in Western areas, linked to mountainous terrain, glaciers, and the ice fields. Nevertheless, decisions are being made with what seems extremely limited hydro-meteorological, streamflow, and in general, river data. In fact, Chile is currently in a crossroad due to mega projects being planned in Aysén, Chilean Patagonia (at least 5 hydropower dams producing more than 2000 MW). We characterize streamflows for ungauged basins, such as floods, mean annual flows, and flow duration curves, which can then be used related to a more sustainable design and operation of dams for hydropower. Relations extracted from gauged catchments to their geomorphologic characteristics and indices will be used to transfer those relations to ungauged catchments.

  14. Quantifying denudation rates in Mediterranean margin catchments: the Gulf of Lion and East-Corsica case-study

    NASA Astrophysics Data System (ADS)

    Molliex, S.; Rabineau, M.; Jouet, G.; Bourles, D. L.; Freslon, N.; Leroux, E.; Moreau, J.; Aslanian, D.; Vella, C.

    2013-12-01

    Margins are the place of transfer, deposit and erosion of sediments whose geometries are controlled by sea-level fluctuations, vertical movements and sedimentary fluxes. Surface processes (sedimentation, denudation) and deep-sea dynamic are also intimately linked. Due to the numerous data acquired over the last 10 years, the Gulf of Lion and East-Corsica margins could be considered as privileged studied areas to understand the relationships between denudation, sedimentation and associated vertical displacements. The quantification of denudation rates on these margins catchments, using offshore and onshore data aims to improve the understanding of the temporal and spatial evolution of denudation processes in their sedimentation and geodynamic evolution in a large basin (Gulf of Lion) and in a small confined basin (Golo margin; East-Corsica) during the Quaternary. The Gulf of Lion is the northern passive margin of the Liguro-provençal basin, in western Mediterranean Sea. During the Quaternary, it receives sediments from catchments draining several structural domains, as Alps, Pyrenees and Massif Central, for a drainage area of about 120,000 km^2. The East-Corsica corresponds to the western passive margin of the Tyrrhenian basin. The main catchment (Golo River) size is about 100 times smaller than the Gulf of Lion and is composed by two main structural units: Hercynian granites in the upstream part and Alpine schists in the downstream part. In this study, we quantified Quaternary denudation rates using four independent methods: i) estimation of eroded volumes using DEMs; ii) compilation of present-day sediment load fluxes; iii) determination of catchment-scale cosmogenic denudation rate by measuring 10Be concentrations in sands at the catchment outlets or buried in boreholes; iv) quantification of sediment volumes deposited offshore. Our results show a good consistence between the four methods. The Inner Alps present the highest values of denudation (~ 700 m/Ma), compared to averaged much lower values in other domains (150-250 m/Ma in foreland Alps, 100-150 m/Ma in Corsica, about 100 m/Ma in Pyrenees and 55-75 m/Ma in Massif Central). The alpine domain provides at least 75 % of the eroded volume in the Gulf of Lion catchment. A quantitative geomorphologic approach highlights the main role of denudation processes in relief evolution for both studied areas. At a regional scale (Gulf of Lion catchment), we highlight an exponential correlation between mean catchment elevation and denudation rates suggesting the main role of uplift in areas glaciated during the LGM in the control of denudation rates. At a more local scale (East-Corsica), denudation rates seem to rely on lithologic and structural control.

  15. Data-based information gain on the response behaviour of hydrological models at catchment scale

    NASA Astrophysics Data System (ADS)

    Willems, Patrick

    2013-04-01

    A data-based approach is presented to analyse the response behaviour of hydrological models at the catchment scale. The approach starts with a number of sequential time series processing steps, applied to available rainfall, ETo and river flow observation series. These include separation of the high frequency (e.g., hourly, daily) river flow series into subflows, split of the series in nearly independent quick and slow flow hydrograph periods, and the extraction of nearly independent peak and low flows. Quick-, inter- and slow-subflow recession behaviour, sub-responses to rainfall and soil water storage are derived from the time series data. This data-based information on the catchment response behaviour can be applied on the basis of: - Model-structure identification and case-specific construction of lumped conceptual models for gauged catchments; or diagnostic evaluation of existing model structures; - Intercomparison of runoff responses for gauged catchments in a river basin, in order to identify similarity or significant differences between stations or between time periods, and relate these differences to spatial differences or temporal changes in catchment characteristics; - (based on the evaluation of the temporal changes in previous point:) Detection of temporal changes/trends and identification of its causes: climate trends, or land use changes; - Identification of asymptotic properties of the rainfall-runoff behaviour towards extreme peak or low flow conditions (for a given catchment) or towards extreme catchment conditions (for regionalization, ungauged basin prediction purposes); hence evaluating the performance of the model in making extrapolations beyond the range of available stations' data; - (based on the evaluation in previous point:) Evaluation of the usefulness of the model for making extrapolations to more extreme climate conditions projected by for instance climate models. Examples are provided for river basins in Belgium, Ethiopia, Kenya, Ecuador, Bolivia and China. References: Van Steenbergen, N., Willems, P. (2012), 'Method for testing the accuracy of rainfall-runoff models in predicting peak flow changes due to rainfall changes, in a climate changing context', Journal of Hydrology, 414-415, 425-434, doi:10.1016/j.jhydrol.2011.11.017 Mora, D., Willems, P. (2012), 'Decadal oscillations in rainfall and air temperature in the Paute River Basin - Southern Andes of Ecuador', Theoretical and Applied Climatology, 108(1), 267-282, doi:0.1007/s00704-011-0527-4 Taye, M.T., Willems, P. (2011). 'Influence of climate variability on representative QDF predictions of the upper Blue Nile Basin', Journal of Hydrology, 411, 355-365, doi:10.1016/j.jhydrol.2011.10.019 Taye, M.T., Willems, P. (2012). 'Temporal variability of hydro-climatic extremes in the Blue Nile basin', Water Resources Research, 48, W03513, 13p. Vansteenkiste, Th., Tavakoli, M., Ntegeka, V., Willems, P., De Smedt, F., Batelaan, O. (in press), 'Climate change impact on river flows and catchment hydrology: a comparison of two spatially distributed models', Hydrological Processes; doi: 10.1002/hyp.9480 [in press

  16. Influence of basin connectivity on sediment source, transport, and storage within the Mkabela Basin, South Africa

    NASA Astrophysics Data System (ADS)

    Miller, J. R.; Mackin, G.; Lechler, P.; Lord, M.; Lorentz, S.

    2012-09-01

    The management of sediment and other non-point source (NPS) pollution has proven difficult, and requires a sound understanding of particle movement through the drainage system. The primary objective of this investigation was to obtain an understanding of NPS sediment source(s), transport, and storage within the Mkabela basin, a representative agricultural catchment within the KwaZulu-Natal Midlands of southeastern South Africa, by combining geomorphic, hydrologic and geochemical fingerprinting analyses. The Mkabela Basin can be subdivided into three distinct subcatchments that differ in their ability to transport and store sediment along the axial valley. Headwater (upper catchment) areas are characterized by extensive wetlands that act as significant sediment sinks. Mid-catchment areas, characterized by higher relief and valley gradients, exhibit few wetlands, but rather are dominated by a combination of alluvial and bedrock channels that are conducive to sediment transport. The lower catchment exhibits a low-gradient alluvial channel that is boarded by extensive riparian wetlands that accumulate large quantities of sediment (and NPS pollutants). Fingerprinting studies suggest that silt- and clay-rich layers found within wetland and reservoir deposits are derived from the erosion of fine-grained, valley bottom soils frequently utilized as vegetable fields. Coarser-grained deposits within both wetlands and reservoirs result from the erosion of sandier hillslope soils extensively utilized for sugar cane, during relatively high magnitude runoff events that are capable of transporting sand-sized sediment off the slopes. Thus, the source of sediment to the axial valley varies as a function of sediment size and runoff magnitude. Sediment export from the basin was limited until the early 1990s, in part because the upper catchment wetlands were hydrologically disconnected from lower parts of the watershed during low- to moderate flood events. The construction of a drainage ditch through a previously unchanneled wetland altered the hydrologic connectivity of the catchment, allowing sediment to be transported from the headwaters to the lower basin where much of it was deposited within the riparian wetlands. The axial drainage system is now geomorphically and hydrologically connected during most events throughout the study basin. The study indicates that increased valley connectivity partly negated the positive benefits of controlling sediment/nutrient exports from the catchment by means of upland based, best management practices.

  17. Impact of papyrus wetland encroachment on spatial and temporal variabilities of stream flow and sediment export from wet tropical catchments.

    PubMed

    Ryken, N; Vanmaercke, M; Wanyama, J; Isabirye, M; Vanonckelen, S; Deckers, J; Poesen, J

    2015-04-01

    During the past decades, land use change in the Lake Victoria basin has significantly increased the sediment fluxes to the lake. These sediments as well as their associated nutrients and pollutants affect the food and water security of millions of people in one of Africa's most densely populated regions. Adequate catchment management strategies, based on a thorough understanding of the factors controlling runoff and sediment discharge are therefore crucial. Nonetheless, studies on the magnitude and dynamics of runoff and sediment discharge are very scarce for the Lake Victoria basin and the African Rift region. We therefore conducted runoff discharge and sediment export measurements in the Upper Rwizi, a catchment in Southwest Uganda, which is representative for the Lake Victoria basin. Land use in this catchment is characterized by grazing area on the high plateaus, banana cropping on the slopes and Cyperus papyrus L. wetlands in the valley bottoms. Due to an increasing population pressure, these papyrus wetlands are currently encroached and transformed into pasture and cropland. Seven subcatchments (358 km2-2120 km2), with different degrees of wetland encroachment, were monitored during the hydrological year June 2009-May 2010. Our results indicate that, due to their strong buffering capacity, papyrus wetlands have a first-order control on runoff and sediment discharge. Subcatchments with intact wetlands have a slower rainfall-runoff response, smaller peak runoff discharges, lower rainfall-runoff ratios and significantly smaller suspended sediment concentrations. This is also reflected in the measured annual area-specific suspended sediment yields (SYs): subcatchments with encroached papyrus swamps have SY values that are about three times larger compared to catchments with intact papyrus vegetation (respectively 106-137 ton km(-2) y(-1) versus 34-37 ton km(-2) y(-1)). We therefore argue that protecting and (where possible) rehabilitating these papyrus wetlands should be a corner stone of catchment management strategies in the Lake Victoria basin. PMID:25617700

  18. Parsimonious hydrological modeling of urban sewer and river catchments

    NASA Astrophysics Data System (ADS)

    Coutu, Sylvain; Del Giudice, Dario; Rossi, Luca; Barry, D. A.

    2012-09-01

    SummaryA parsimonious model of flow capable of simulating flow in natural/engineered catchments and at WWTP (Wastewater Treatment Plant) inlets was developed. The model considers three interacting, dynamic storages that account for transfer of water within the system. One storage describes the “flashy” response of impervious surfaces, another pervious areas and finally one storage describes subsurface flow. The sewerage pipe network is considered as an impervious surface and is thus included in the impervious surface storage. In addition, the model assumes that water discharged from several CSOs (combined sewer overflows) can be accounted for using a single, characteristic CSO. The model was calibrated on, and validated for, the Vidy Bay WWTP, which receives effluent from Lausanne, Switzerland (population about 200,000), as well as for an overlapping urban river basin. The results indicate that a relatively simple approach is suitable for predicting the responses of interacting engineered and natural hydrosystems.

  19. Going With the Flow: Participatory Action Research and River Catchment Management

    NASA Astrophysics Data System (ADS)

    Whitman, G.; Pain, R.

    2012-04-01

    Public participation, now mainstreamed as a desirable goal in research and policy has a wide variety of different models, classifications, approaches, tools, mechanisms and processes that are utilized across science and social science utilise. Demands for public participation in environmental issues have found particular resonance within recent European water legislation, specifically the Water Framework Directive (2000/60/EC). In the UK River Basin Plans are under the jurisdiction of the Environment Agency (EA) and the practice of their management is currently being trialed through the EA's management of 10 trial catchments. In these trials, the Environment Agency has outlined its wish to explore improved ways of engaging with people so as to develop shared understandings of problems within catchments. In this work, we report on project outcomes funded under the Rural Economy and Land Use Program (Relu) in which we worked with the Lune Rivers Trust. The project was the first in the UK to use a Participatory Action Research (PAR) approach to understanding and creating tools to address problems in river catchments. PAR is a distinct approach to participation because it is driven by participants (people who have a stake in the issue being researched) rather than an outside sponsor, funder or academic (although they may be invited to help); it offers a democratic model of who can produce, own and use knowledge; it is collaborative at every stage, involving discussion, pooling skills and working together; and it is intended to result in some action, change or improvement on the issue being researched, towards more socially and environmentally just outcomes. Both the project and the tools we coproduced resonate very strongly with current policy objects for river catchments as outlined above. We argue that PAR has particular resonance with the above focus of catchment management particularly in light of future uncertainties with climate change. As such, it offers a critical reflection on approaches to catchment management that characterize themselves as 'participatory'.

  20. IRECCSEM: Evaluating Clare Basin potential for onshore carbon sequestration using magnetotelluric data (Preliminary results). New approaches applied for processing, modeling and interpretation

    NASA Astrophysics Data System (ADS)

    Campanya i Llovet, J.; Ogaya, X.; Jones, A. G.; Rath, V.

    2014-12-01

    The IRECCSEM project (www.ireccsem.ie) is a Science Foundation Ireland Investigator Project that is funded to evaluate Ireland's potential for onshore carbon sequestration in saline aquifers by integrating new electromagnetic data with existing geophysical and geological data. The main goals of the project are to determine porosity-permeability values of the potential reservoir formation as well as to evaluate the integrity of the seal formation. During the Summer of 2014 a magnetotelluric (MT) survey was carried out at the Clare basin (Ireland). A total of 140 sites were acquired including audiomagnetotelluric (AMT), broadband magnetotelluric (BBMT) and long period magnetotelluric (LMT) data. The nominal space between sites is 0.6 km for AMT sites, 1.2 km for BBMT sites and 8 km for LMT sites. To evaluate the potential for carbon sequestration of the Clare basin three advances on geophysical methodology related to electromagnetic techniques were applied. First of all, processing of the MT data was improved following the recently published ELICIT methodology. Secondly, during the inversion process, the electrical resistivity distribution of the subsurface was constrained combining three different tensor relationships: Impedances (Z), induction arrows (TIP) and multi-site horizontal magnetic transfer-functions (HMT). Results from synthetic models were used to evaluate the sensitivity and properties of each tensor relationship. Finally, a computer code was developed, which employs a stabilized least squares approach to estimate the cementation exponent in the generalized Archie law formulated by Glover (2010). This allows relating MT-derived electrical resistivity models to porosity distributions. The final aim of this procedure is to generalize the porosity - permeability values measured in the boreholes to regional scales. This methodology will contribute to the evaluation of possible sequestration targets in the study area.

  1. A preliminary assessment of streamflow gains and losses for selected stream reaches in the lower Guadalupe River Basin, Texas, 2010-12

    USGS Publications Warehouse

    Wehmeyer, Loren L.; Winters, Karl E.; Ockerman, Darwin J.

    2013-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers–Fort Worth District, the Texas Water Development Board, the Guadalupe-Blanco River Authority, and the Edwards Aquifer Authority, investigated streamflow gains and losses in the lower Guadalupe River Basin during four selected base-flow periods in March 2010, April 2011, August 2011, and, for a stream reach between Seguin, Tex., and Gonzales, Tex., in September 2012. Major sources of streamflow in this basin include releases from Canyon Lake, inflow from major springs (Comal Springs, San Marcos Springs, and Hueco Springs), and base flow (groundwater seeping to streams). Streamflow and spring-flow data were collected at 35 streamflow-gaging stations (including 6 deployed for this study) during the base-flow periods. This report describes streamflow in the lower Guadalupe River Basin, which consists of the Guadalupe River drainage basin downstream from Canyon Lake to the Guadalupe River near Tivoli, Tex. Streamflow conditions in the lower Guadalupe River Basin were analyzed by computing surface-water budgets for reaches of the lower Guadalupe River and tributary streams. Streamflow gains and losses were mapped for reaches where the computed gain or loss was greater than the uncertainty in the computed streamflow at the upstream and downstream ends of the reach. During the March 15–21, 2010, base-flow period, five reaches had gains greater than the uncertainty in the computed streamflow, including reach 1 on the Guadalupe River, which gained 130 cubic feet per second (ft3/s), and reach 3 on the Comal River, which gained 359 ft3/s. Streamflow gains during March 2010 primarily were derived from (1) inflow from the Edwards aquifer outcrop, including Hueco Springs and Comal Springs; (2) flow conveyed through the alluvium of the streambed; (3) inflows from the Carrizo-Wilcox aquifer and the Yegua Jackson aquifer; and (4) groundwater inflows from the Gulf Coast aquifer, which are enhanced by seepage losses from Coleto Creek Reservoir. During this base-flow period, none of the reaches had a loss greater in magnitude than the uncertainty in the computed streamflow. During the April 10–16, 2011, base-flow period, three reaches had gains greater than the uncertainty in the computed streamflow. Among these three reaches were reach 1 on the Guadalupe River, which gained 40.7 ft3/s, and reach 3 on the Comal River, which gained 271 ft3/s—reaches where streamflow gains were also measured in March 2010. Streamflow gains during April 2011 primarily were derived from (1) inflow from the Edwards aquifer outcrop, including Hueco Springs and Comal Springs; and (2) inflows from the Carrizo-Wilcox aquifer. During this base-flow period, three reaches had losses greater in magnitude than the uncertainty in the computed streamflow. A reach of the Blanco River near Kyle, Tex. (reach 10), lost 18.7 cubic feet per second (ft3/s). Much of this loss likely entered the groundwater system through the numerous faults that intersect the stream channel northwest of Kyle. The reach that included the confluence of the Guadalupe and San Marcos Rivers (reach 17) lost 155 ft3/s, likely as recharge to the Sparta and Queen City aquifers. During the August 19–25, 2011, base-flow period, three reaches had gains greater than the uncertainty in the computed streamflow, including reach 3 on the Comal River (168 ft3/s gain), which was one of the reaches where gains in streamflow also were measured in March 2010 and April 2011. Streamflow gains in August 2011 were primarily from (1) inflows from Comal Springs, (2) inflows from the Yegua Jackson aquifer, and (3) groundwater inflows from the Gulf Coast aquifer, which are enhanced by seepage losses from Coleto Creek Reservoir. During this base-flow period, five reaches had losses greater in magnitude than the uncertainty in the computed streamflow. The reach including the confluence of the Guadalupe and Comal Rivers lost 82.8 ft3/s. Much of that loss likely seeped into the local groundwater system. The reach of the Guadalupe River south

  2. Water Catchment and Storage Monitoring

    NASA Astrophysics Data System (ADS)

    Bruenig, Michael; Dunbabin, Matt; Moore, Darren

    2010-05-01

    Sensors and Sensor Networks technologies provide the means for comprehensive understanding of natural processes in the environment by radically increasing the availability of empirical data about the natural world. This step change is achieved through a dramatic reduction in the cost of data acquisition and many orders of magnitude increase in the spatial and temporal granularity of measurements. Australia's Commonwealth Scientific and Industrial Research Organisation (CSIRO) is undertaking a strategic research program developing wireless sensor network technology for environmental monitoring. As part of this research initiative, we are engaging with government agencies to densely monitor water catchments and storages, thereby enhancing understanding of the environmental processes that affect water quality. In the Gold Coast hinterland in Queensland, Australia, we are building sensor networks to monitor restoration of rainforest within the catchment, and to monitor methane flux release and water quality in the water storages. This poster will present our ongoing work in this region of eastern Australia. The Springbrook plateau in the Gold Coast hinterland lies within a World Heritage listed area, has uniquely high rainfall, hosts a wide range of environmental gradients, and forms part of the catchment for Gold Coast's water storages. Parts of the plateau are being restored from agricultural grassland to native rainforest vegetation. Since April 2008, we have had a 10-node, multi-hop sensor network deployed there to monitor microclimate variables. This network will be expanded to 50-nodes in February 2010, and to around 200-nodes and 1000 sensors by mid-2011, spread over an area of approximately 0.8 square kilometers. The extremely dense microclimate sensing will enhance knowledge of the environmental factors that enhance or inhibit the regeneration of native rainforest. The final network will also include nodes with acoustic and image sensing capability for monitoring higher level parameters such as fauna diversity. The regenerating rainforest environment presents a number of interesting challenges for wireless sensor networks related to energy harvesting and to reliable low-power wireless communications through dense and wet vegetation. Located downstream from the Springbrook plateau, the Little Nerang and Hinze dams are the two major water supply storages for the Gold Coast region. In September 2009 we fitted methane, light, wind, and sonar sensors to our autonomous electric boat platform and successfully demonstrated autonomous collection of methane flux release data on Little Nerang Dam. Sensor and boat status data were relayed back to a human operator on the shore of the dam via a small network of our Fleck™ nodes. The network also included 4 floating nodes each fitted with a string of 6 temperature sensors for profiling temperature at different water depths. We plan to expand the network further during 2010 to incorporate floating methane nodes, additional temperature sensing nodes, as well as land-based microclimate nodes. The overall monitoring system will provide significant data to understand the connected catchment-to-storage system and will provide continuous data to monitor and understand change trends within this world heritage area.

  3. Pseudo Paired Catchments Analysis to Assess the Impact of Urbanization on Catchment Hydrology

    NASA Astrophysics Data System (ADS)

    Salavati, B.; Oudin, L.; Furusho, C.; Ribstein, P.

    2014-12-01

    Paired catchments analysis provides a robust approach to assess the impact of land use changes on catchment's hydrological response. This approach is limited by the availability of data for two neighbor catchments with and without land use changes under similar climate conditions. Thus, hydrological modelling approaches are also very popular since they do not depend on data of a reference catchment. In the present study, 70 urbanized and non-urbanized paired catchments were selected in the United States. Unit housing density maps over the 1940-2010 time period were used to reconstruct historic impervious area extents with aproximatly the same resolution as the National Land Cover Database (NLCD) maps. Two approaches were compared to assess the impact of urbanization on catchment-scale hydrology: the classical paired catchments approach using observed flow time series and an alternative paired catchments approach involving hydrological modeling that allows to simulate a virtual control catchment. To this aim, the GR4J model, a conceptual daily 4-parameter hydrological model, was used. The parameters of the model calibrated on the pre urbanization period were used to predict the streamflow that would have occurred in the urban catchment if the urbanization had not taken place. Then, classical statistical methods involving ANCOVA were used to detect the significance and to quantify the change on the hydrological responses due to land use changes. Results show that the two approaches lead to similar conclusions on the impact of urbanization on catchment hydrology. Thus, the modelling approach provides a relevant alternative for case studies where data of reference catchments are not available.

  4. Modelling fate and transport of glyphosate and AMPA in the Meuse catchment to assess the contribution of different pollution sources

    NASA Astrophysics Data System (ADS)

    Desmet, Nele; Seuntjens, Piet

    2013-04-01

    Large river basins have multiple sources of pesticides and usually the pollution sources are spread over the entire catchment. The cumulative effect of pesticides entering the river system in upstream areas and the formation of persistent degradation products can compromise downstream water use e.g. raw water quality for drinking water abstractions. For assessments at catchment scale pesticide fluxes coming from different sources and sub basins need to be taken into account. To improve management strategies, a sound understanding of the sources, emission routes, transport, environmental fate and conversion of pesticides is needed. In the Netherlands, the Meuse river basin is an important source for drinking water production. The river suffers from elevated concentrations of glyphosate and aminomethylphosphonic acid (AMPA). For AMPA it is rather unclear to what extent the pollution is related to glyphosate degradation and what is the contribution of other sources, especial phosphonates in domestic and industrial waste water. Based on the available monitoring data only it is difficult to distinguish between AMPA sources in such a large river basin. This hampers interpretation and decision making for water quality management in the Meuse catchment. Here, application of water quality models is very useful to obtain complementary information and insights. Modelling allows accounting for temporal and spatial variability in discharge and concentrations as well as distinguishing the contribution from conversion processes. In this study, a model for the river Meuse was developed and applied to assess the contribution of tributary and transnational influxes, glyphosate degradation and other sources to the AMPA pollution.

  5. The Influence of Historic Land Use Changes and Future Planned Scenarios On Floods In The Oder Catchment

    NASA Astrophysics Data System (ADS)

    de Roo, A.; Schmuck, G.; Perdigao, V.; Thielen, J.

    In July 1997, dramatic flooding occurred in the Oder basin, covering parts of the Czech Republic, Poland and Germany. In August 2001, Poland again suffered from flooding, but more in the Vistula river than in the Oder river. To investigate the causes of the flooding and the influence of land use, soil characteristics and antecedent catchment moisture conditions, the distributed catchment model LISFLOOD has been developed. LISFLOOD simulates runoff in large river basins. Two trans-national European river basins are used to test and validate the model: the Meuse catchment (France, Belgium and The Netherlands) and the Oder basin. In close cooperation with the water authori- ties of Germany, Poland and the Czech Republic, several scenarios are evaluated with LISFLOOD. The effects of the scenarios on floods are examined. Scenarios being evaluated are changes in land use, building water reservoirs and water retention areas. Land use changes considered are reforestation, urban growth, and set-aside of agricul- tural land. The effects of these scenarios on floods will be demonstrated. Furthermore, using historic maps of the 18th century, the effects of land use changes for a period of 200 years is evaluated. Uncertainty aspects are taken into account.

  6. Modelling hydrology and water quality in a Mediterranean catchment

    NASA Astrophysics Data System (ADS)

    Candela, Angela; Viviani, Gaspare

    2010-05-01

    In this study the SWAT model has been used in order to analyse and quantify pollution dynamics at basin scale depending on concentrated and diffuse sources. Nowadays, the receiving water bodies quality safeguarding is of growing importance due to the promulgation of recent laws as well as the growing sensitivity regarding the environment issues by the scientific and practitioner committee. Recently the EU 2000/60 (Water Framework Directive) makes the analysis of receiving water bodies even more complex by integrating the pollution in urban areas in a framework of the pollution sources at catchment scale. and making necessary further integration of environmental impacts associated with discharges concentrates civilian and productive with the widespread pollution linked mainly to agriculture and zoo-technical activities. The complexity of natural systems and the large number of polluting sources and variables to be monitored requires the adoption of models able to get a better view of the whole system in a simplified way without neglecting the most important physical phenomena. Particularly, in this study the SWAT model was considered since it is an integrated hydrological model that are, nowadays, needed to support the implementation of integrated water management plans and to comply with the current requirements of the WFD. In addition, the SWAT model is interfaced with the ARC-VIEW software which allows easy pre-and post processing of the spatially distributed input data, driving the rainfall-runoff process. The model has been applied to the experimental Nocella catchment located in Sicily (Italy), with an area of about 50 km2. The river receives wastewater and stormwater from two urban areas drained by combined sewers. The study demonstrates that the analysis of water quality in partially urbanised natural basins is complex depending on variable polluting contributions of the different parts of the system depending on specific polluting compounds. The model was calibrated and then validated, obtaining satisfactory performance. The estimation of loads from diffuse sources was difficult due to limited data availability. Thus, it was only possible to include constant diffuse pollution concentrations at present. In spite of these limitations, the model captured rather well the dynamic of flow generation and was able to predict the range of nutrient concentrations in surface water. The contribution of urban areas to the polluting loads at catchment scale is relevant especially during the dry season.

  7. Preliminary report on fluid inclusions from halites in the Castile and lower Salado formations of the Delaware Basin, southeastern New Mexico. [Freezing-point depression

    SciTech Connect

    Stein, C.L.

    1985-09-01

    A suite of samples composed primarily of halite from the upper Castile and lower Salado Formations of the Permian Basin was selected from Waste Isolation Pilot Plant (WIPP) core for a reconnaissance study of fluid inclusions. Volume percent of these trapped fluids averaged 0.7% to 1%. Freezing-point depressions varied widely and appeared to be unrelated to fluid-inclusion type, to sedimentary facies, or to stratigraphic depth. However, because very low freezing points were usually associated with anhydrite, a relation may exist between freezing-point data and lithology. Dissolved sulfate values were constant through the Castile, then decreased markedly with lesser depth in the lower Salado. This trend correlates very well with observed mineralogy and is consistent with an interpretation of the occurrence of secondary polyhalite as a result of gypsum or anhydrite alteration with simultaneous consumption of dissolved sulfate from the coexisting fluids. Together with the abundance and distribution of fluid inclusions in primary or ''hopper'' crystal structures, this evidence suggests that inclusions seen in these halites did not migrate any significant geographical distance since their formation. 28 refs., 17 figs., 2 tabs.

  8. Global coastal segmentation and its river catchment contributors: A new look at land-ocean linkage

    NASA Astrophysics Data System (ADS)

    Meybeck, Michel; Dürr, Hans H.; VöRöSmarty, Charles J.

    2006-03-01

    Here we present the COSCATs global database of 151 catchments in exorheic areas. The catchments connect to oceans through coastal segments according to three sets of criteria: natural limits (continents, oceans, regional seas, major capes, and bays), continental shelf topography (sills, basins, island chains), and geophysical dynamics (climate, ocean currents and tectonics). The COSCATs segmentation scheme is designed to improve Earth System analysis and to harmonize reporting of global riverine transfers from land to oceans. Each COSCAT is characterized by its coastal segment limits and length (median 2 400 km), by its catchment characteristics, including area (median 0.45 M km2), width, latitudinal range, runoff average value and direction, including its related physiographic units (n = 500). We apply the COSCAT segmentation to all 151 basins to estimate water discharge and total nitrogen impacts to oceans and find that the average runoff (mm/yr) and N yields (YN in kg km-2 yr-1) range over more than 3 orders of magnitude at this coarse resolution, and that their average population density ranges over 2 orders of magnitude. Hyperactive regions, defined as segments with 5 to 10 times the world average yield (river transfers per unit area of land), are differentially placed for water runoff and total contemporary nitrogen. COSCATs have been designed to facilitate the budget reporting and the analysis of global scale heterogeneity for riverine fluxes and can be applied to other material, such as suspended solids, carbon species or other nutrients, particularly for areas draining into regional seas.

  9. Socio-hydrological water balance for water allocation between human and environmental purposes in catchments

    NASA Astrophysics Data System (ADS)

    Zhou, S.; Huang, Y.; Wei, Y.; Wang, G.

    2015-08-01

    Rebalancing water allocation between human consumptive uses and the environment in water catchments is a global challenge. This paper proposes a socio-hydrological water balance framework by partitioning catchment total evapotranspiration (ET) into ET for society and ET for natural ecological systems, and establishing the linkage between the changes of water balance and its social drivers and resulting environmental consequences in the Murray-Darling Basin (MDB), Australia, over the period 1900-2010. The results show that the 100-year period of water management in the MDB could be divided into four periods corresponding to major changes in basin management within the socio-hydrological water balance framework: period 1 (1900-1956) - expansion of water and land use for the societal system, period 2 (1956-1978) - maximization of water and land use for the societal system, period 3 (1978-2002) - maximization of water use for the societal system from water diversion, and period 4 (2002-present) - rebalancing of water and land use between the societal and ecological systems. Most of management changes in the MDB were passive and responsive. A precautionary approach to water allocation between the societal and ecological systems should be developed. The socio-hydrological water balance framework could serve as a theoretical foundation for water allocation to evaluate the dynamic balance between the societal and ecological systems in catchments.

  10. Water Quality Modeling in Kranji Catchment

    E-print Network

    Granger, Erika C

    2010-01-01

    This thesis describes the process and results of applying the Soil and Water Assessment Tool (SWAT) to characterize bacterial fate and transport in the Kranji Catchment of Singapore. The goal of this process is to predict ...

  11. Improved baseflow characterization in mountainous catchments

    NASA Astrophysics Data System (ADS)

    Stoelzle, Michael; Stahl, Kerstin; Schuetz, Tobias; Weiler, Markus; Seibert, Jan; Tallaksen, Lena M.

    2015-04-01

    Knowledge of the baseflow regime is crucial for managing river ecosystems during low flow periods. Then aquatic conditions, water supply or streamflow forecast highly depend on the sustainability, magnitude, timing or rate of change of the groundwater contribution to streamflow, especially in areas of water shortage or with high water demand. This study aims to improve the understanding of the interplay between quick- and baseflow components by revising a widely used baseflow separation method (WMO or IH-UK method). Baseflow Index (BFI) and quickflow-baseflow-regimes were analyzed for 50 meso-scale catchments in southwestern Germany and Switzerland along a pronounced altitudinal gradient from 200 to 3200 m asl. Since the graphical separation of the baseflow signal depends on the chosen method, we evaluated the separation procedure by analyzing the relation between the seasonal variability of the stable water isotope signal in streamflow and the contribution of the quickflow component. We found that the snowmelt signal in high-elevation catchments is mostly accounted as baseflow suggesting that the used method is only valid for catchment with pluvial regimes. The large variability of BFI values found between the low-elevation, rainfall-driven catchments indicates that here catchment controls such as hydrogeological characteristics determine the baseflow contribution to streamflow. Relationships between several physiographic characteristics and the BFI values differed systematically for rainfall- and snowmelt-driven catchments suggesting that besides quick- and baseflow another delayed storage contributes to streamflow in mountainous catchments. By adjusting the separation procedure (variation of filter parameters) we were able to separate more delayed contributions of snowmelt from the faster groundwater signal. Thus, variable filter parameters are helpful to identify delayed streamflow contributions from different sources (e.g. snow and groundwater). The study's results have implications for water management in mountainous catchments where regime shifts and wide-ranging water redistributions are expected in the future.

  12. Simulation of the reduction of runoff and sediment load resulting from the Gain for Green Program in the Jialingjiang catchment, upper region of the Yangtze River, China.

    PubMed

    Hayashi, Seiji; Murakami, Shogo; Xu, Kai-Qin; Watanabe, Masataka

    2015-02-01

    A distributed catchment hydrologic model (Hydrological Simulation Program--FORTRAN; HSPF) with improved sediment production processes was used to evaluate the effect of restoration of cultivated land to forest on the reduction of runoff and sediment load in the Jialingjiang basin, which forms part of the Yangtze River basin, China. The simulation results showed that restoration to forest reduced sediment production even in the case of minimum restoration at a threshold catchment slope of 25°, as advocated in the "Gain for Green Program " planned by the Chinese government, even though reduction of the peak flow rate in the river channel was small. The increase in forest area resulting from lowering of the threshold catchment slope reduced sediment production further. PMID:25463578

  13. Development of regionalisation procedures using a multi-model approach for flow simulation in an ungauged catchment

    NASA Astrophysics Data System (ADS)

    Goswami, M.; O'Connor, K. M.; Bhattarai, K. P.

    2007-02-01

    SummaryFlow simulation in ungauged catchments is presently regarded as one of the most challenging tasks in surface water hydrology. Many of the ungauged catchments are located in the headwaters of rivers in mountainous regions of the world having enormous potential for sustainable water resource development. However, due to inaccessibility, rugged and inhospitable terrain, and historical lack of foresight concerning the need to have these headwaters adequately gauged, their potential is not readily realizable. Many downstream sites also suffer from non-availability of site-specific data as even in countries having extensive networks of gauged stations data may not be available at sites where these are most needed. As predictive tools for water resources, water quality, natural hazard mitigation and water availability assessment are generally data-driven, the lack of adequate hydrometric records poses difficult problems for planners, engineers, managers, and stake-holders alike. In this study, a methodology is developed for flow simulation in ungauged catchments using a regionalisation and multi-model approach involving a suite of rainfall-runoff models and combination techniques. Daily observed hydrometeorological data for 12 French catchments are used for illustrating the procedures. Following a preliminary investigation of the regional homogeneity of that group of catchments, three regional flow simulation techniques are applied. Although all 12 catchments are gauged, initially each catchment is successively considered as being ungauged for the purpose of flow simulation in that catchment, their actual discharges being subsequently used for evaluating the performance of the flow estimation procedures for the catchment. The Nash-Sutcliffe efficiency index ( R2) is used for assessing and ranking the relative performances of the regionalisation-model couples to identify the most appropriate couple for the region. The final step of applying that couple to a truly ungauged (13th) catchment in the region is described. Results are presented and conclusions drawn on the efficacy of the regional-multi-model approach. Of the couples considered, the pooling method of regionalisation coupled with the conceptual soil moisture accounting and routing (SMAR) model is deemed to be the best for simulating flow in an ungauged catchment in the region.

  14. Topic: Catchment system dynamics: Processes and feedbacks

    NASA Astrophysics Data System (ADS)

    Keesstra, Saskia

    2015-04-01

    In this meeting we can talk about my main expertise: the focus of my research ocus revolves around understanding catchment system dynamics in a holistic way by incorporating both processes on hillslopes as well as in the river channel. Process knowledge enables explanation of the impact of natural and human drivers on the catchment systems and which consequences these drivers have for water and sediment connectivity. Improved understanding of the catchment sediment and water dynamics will empower sustainable land and river management and mitigate soil threats like erosion and off-side water and sediment accumulation with the help of nature's forces. To be able to understand the system dynamics of a catchment, you need to study the catchment system in a holistic way. In many studies only the hillslopes or even plots are studied; or only the channel. However, these systems are connected and should be evaluated together. When studying a catchment system any intervention to the system will create both on- as well as off sites effects, which should especially be taken into account when transferring science into policy regulations or management decisions.

  15. Understanding Pesticide Behaviour At The Catchment Scale

    NASA Astrophysics Data System (ADS)

    Kannan, N.; White, S. M.; Worrall, F.; Pendlington, D.; Groves, S.

    Pesticides in stream flow at the outlet of a 142ha catchment in Eastern England (Col- worth, Bedfordshire), have been monitored since October 1999. About 50% of the total catchment is directly controlled within one farm and a rotation of wheat, oil seed rape, grass, linseed, beans and peas is grown. The data from this catchment are being used to investigate the performance of the USDA SWAT contaminant transport pack- age at the catchment scale. Three years of stream flow and climate data are available with a useful set of pesticide application and detection data. Following calibration and validation of the hydrology of the catchment, pesticide modelling was carried out for tebuconazole, terbutryn, and terbuthylazine. This paper reports on the results of a sen- sitivity analysis of the model, and the final calibrated pesticide component. Analysis of the results obtained show that the timing and decay of predicted pesticide concen- trations are correct. It is therefore recommended that SWAT can be used as a tool to understand pesticide behaviour at the catchment scale.

  16. Catchment Dispersion Mechanisms in an Urban Context

    NASA Astrophysics Data System (ADS)

    Gironas, J. A.; Mejia, A.; Rossel, F.; Rinaldo, A.; Rodriguez, F.

    2014-12-01

    Dispersion mechanisms have been examined in-depth in natural catchments in previous studies. However, these dispersion mechanisms have been studied little in urban catchments, where artificial transport elements and morphological arrangements are expected to modify travel times and mobilize excess rainfall from spatially distributed impervious sites. Thus, these features can modify the variance of the catchment's travel times and hence the total dispersion. This work quantifies the dispersion mechanisms in an urban catchment using the theory of transport by travel times as represented by the Urban Morpho-climatic Instantaneous Unit Hydrograph (U-McIUH) model. This model computes travel times based on kinematic wave theory and accounts explicitly for the path heterogeneities and altered connectivity patterns characteristic of an urban drainage network. The analysis is illustrated using the Aubinière urban catchment (France) as a case study. We found that kinematic dispersion is dominant for small rainfall intensities, whereas geomorphologic dispersion becomes more dominant for larger intensities. The total dispersion scales with the drainage area in a power law fashion. The kinematic dispersion is dominant across spatial scales up to a threshold of approximately 2-3 km2, after which the geomorphologic dispersion becomes more dominant. Overall, overland flow is responsible for most of the dispersion, while conduits tend to counteract the increase of the geomorphologic dispersion with a negative kinematic dispersion. Further studies with other catchments are needed to assess whether the latter is a general feature of urban drainage networks.

  17. Influence of (relict) rock glaciers on the discharge behavior of alpine catchments applying a rainfall-runoff model - example of the Niedere Tauern Range (Austria)

    NASA Astrophysics Data System (ADS)

    Wagner, Thomas; Winkler, Gerfried

    2014-05-01

    Debris accumulations and / or extensive surface weathering within a stream catchment are said to have a possible buffer action concerning flood propagation and might therefore be of interest in geological hazard assessments. Moreover, these deposits might act as (important) groundwater storage components and should therefore be of interest for water management purposes especially during periods of droughts. Although this is plausible, the actual quantification of these "phenomena" is scarce. Here we investigate a number of catchments in the Niedere Tauern Range (Austria) concerning the contribution of relict rock glaciers (and other debris accumulation) in regard to the runoff behavior. Rainfall-runoff models are applied for various (sub-) catchments with different amounts of rock glacier (or debris) coverage. In a first step, the hydrologic modeling is kept simple using a parsimonious lumped-parameter rainfall-runoff model on a daily time step. The variation in model parameter values from (sub-) catchment to (sub-) catchment should ideally correlate with the various degrees of relict rock glacier / debris coverages if their influence is significant. If so, their physical relevance could be helpful to on the one hand aid in catchment characterization and application in neighboring ungauged catchments, and on the other hand to evaluate future changes in the forcing climatic parameters (such as temperature and precipitation) and in the debris accumulations itself on the discharge behavior of alpine catchments. Preliminary results show that catchments with a difference in relict rock glacier coverage but similar other catchment characteristics show differences in the discharge behavior which becomes noticeable in the storage- or routing-related parameters of the model. Analyses of a single catchment including strongly rock glacier influenced sub-catchments indicate a significant storage capacity for the rock glacier itself compared to the average storage capacity of the whole catchment. In addition to an obvious impact of the snow accumulation in these alpine catchments other influences such as lithological differences or microclimatic variations are likely to be important and the interpretation so far is ambiguous and will be further investigated applying (semi-) distributive models.

  18. A detailed model for simulation of catchment scale subsurface hydrologic processes

    NASA Technical Reports Server (NTRS)

    Paniconi, Claudio; Wood, Eric F.

    1993-01-01

    A catchment scale numerical model is developed based on the three-dimensional transient Richards equation describing fluid flow in variably saturated porous media. The model is designed to take advantage of digital elevation data bases and of information extracted from these data bases by topographic analysis. The practical application of the model is demonstrated in simulations of a small subcatchment of the Konza Prairie reserve near Manhattan, Kansas. In a preliminary investigation of computational issues related to model resolution, we obtain satisfactory numerical results using large aspect ratios, suggesting that horizontal grid dimensions may not be unreasonably constrained by the typically much smaller vertical length scale of a catchment and by vertical discretization requirements. Additional tests are needed to examine the effects of numerical constraints and parameter heterogeneity in determining acceptable grid aspect ratios. In other simulations we attempt to match the observed streamflow response of the catchment, and we point out the small contribution of the streamflow component to the overall water balance of the catchment.

  19. Transit time estimation using tritium and stable isotopes in a Mediterranean mountain catchment

    NASA Astrophysics Data System (ADS)

    Roig-Planasdemunt, Maria; Stewart, Mike; Latron, Jérôme; Llorens, Pilar; Morgenstern, Uwe

    2015-04-01

    Water resources of Mediterranean regions mainly depend on runoff generated in mountain areas. Therefore, study of the time water spends travelling through Mediterranean mountains is important for water resources management as it reflects the ability of catchments to retain and release water. Natural isotopes (tritium and stable isotopes) have been used in different environments to quantify the ages of water within catchments. However, there are relatively few studies of water transit times in Mediterranean mountain regions. Additionally, tritium dating is more common in Southern Hemisphere streams because they were less affected by tritium produced mainly in the North Hemisphere by nuclear weapons testing in the 1950s and 60s. With the aim of improving knowledge of the hydrological catchment functioning of Mediterranean mountain areas, this work estimates water transit times in spring water, groundwater and stream water using tritium and stable isotope (?18O and ?2H) measurements in the Vallcebre Research Catchments (NE Spain, 42° 12'N, 1° 49'E). Tritium measurements from a previous study carried out in 1996-1998 (Herrmann et al., 1999) were supplemented by new samples collected on 3 November 2013. Difficulties with the age interpretation of the tritium measurements arise from the determination of the tritium input function, the different accuracies of the tritium measurements and the ambiguous ages resulting from past input of tritium from nuclear testing to the atmosphere. Water stable isotope samples were collected in rainfall, spring water, groundwater and streamwater at baseflow conditions every 15 days over a 27 month period. Detailed distributed hydrometric measurements (precipitation, potential evapotranspiration, discharge and water table level) were obtained during the same period. Preliminary results using ?18O, ?2H and tritium show that mean transit times in the Cal Rodó catchment (4.2 km2) ranged between 1.3 and 11.6 years. The lowest mean transit time was observed in groundwater followed by stream water, while there were longer water retention times in springs. Analysing the spatial distribution of mean transit times using tritium, we observed a mix of different water ages at the catchment outflow. Two sub-catchments had mean water transit times shorter than the adjacent catchment area; this is attributed to differences in slopes and geologies of the areas.

  20. Comparison of New Airborne Gravity Results and GRACE Anomalies in the Thwaites Glacier Catchment of the Amundsen Sea Embayment, West Antarctica

    NASA Astrophysics Data System (ADS)

    Diehl, T. M.; Holt, J. W.; Blankenship, D. D.; Richter, T. G.; Filina, I. Y.

    2005-12-01

    The West Antarctic Ice Sheet is a marine ice sheet of which 75% is resting on bedrock below sea level. This situation is highly unstable and as the climate warms, the potential for rapid discharge of the ice sheet grows. Examining the areas of the ice sheet that are most likely to react to changing climate is essential. The Amundsen Sea Embayment contains two of the most important outlet glaciers in West Antarctica: Thwaites and Pine Island Glaciers. These two glaciers have among the highest discharge velocities in West Antarctica and they lack large protective ice shelves, making them susceptible to warming ocean waters. The area is currently a target of interest for both GRACE and GLAS, as well as future land- and air-based surveys. To date, we have conducted the only large-scale geophysical survey over the catchment of Thwaites Glacier: an airborne survey completed during the austral summer 2004-2005. Over 43,500 line-kilometers of data were collected with a geophysical platform that included ice-penetrating radar, gravity, magnetics, laser and pressure altimetry, and GPS. Free-air gravity, in conjunction with magnetics and radar-derived subglacial topography, is capable of delineating microplate and rift boundaries as well as basin and volcano locations. A free-air gravity map of these structures helps ascertain the contribution of subglacial geology to the ice sheet's decay in the Thwaites Glacier catchment. The acquisition, reduction, and initial results of the airborne gravity survey will be presented and then compared to GRACE gravity anomalies. Extreme relief in ice surface elevation across the survey area necessitated short, smooth vertical altitude changes at survey block boundaries to maintain adequate flight altitude for the onboard ice-penetrating radar systems. Weather conditions sometimes required additional elevation changes or course corrections, producing significant aircraft motion during data acquisition. The impacts of these aircraft motions on the gravity data are discussed. The combination of GPS-derived horizontal accelerations with meter-mounted accelerometer measurements allows for the direct calculation of platform leveling errors, including leakage of the horizontal accelerations into the measured vertical gravity. We examine the magnitude and significance of platform leveling errors in relation to the overall survey resolution. Power spectral analysis of the gravity illuminates differences in the anomaly detection threshold over thick ice like that near Byrd Subglacial Basin versus over thin ice like that near the Thwaites Glacier grounding line. Filtering requirements for this situation are discussed. A preliminary free-air gravity map for the Thwaites Glacier catchment is presented along with error analysis and initial structural interpretations. The interpretations of the airborne regional gravity will be compared to GRACE static gravity anomalies over the same area of the catchment.

  1. Model-based analysis of the influence of catchment properties on hydrologic partitioning across five mountain headwater subcatchments

    NASA Astrophysics Data System (ADS)

    Kelleher, Christa; Wagener, Thorsten; McGlynn, Brian

    2015-06-01

    Ungauged headwater basins are an abundant part of the river network, but dominant influences on headwater hydrologic response remain difficult to predict. To address this gap, we investigated the ability of a physically based watershed model (the Distributed Hydrology-Soil-Vegetation Model) to represent controls on metrics of hydrologic partitioning across five adjacent headwater subcatchments. The five study subcatchments, located in Tenderfoot Creek Experimental Forest in central Montana, have similar climate but variable topography and vegetation distribution. This facilitated a comparative hydrology approach to interpret how parameters that influence partitioning, detected via global sensitivity analysis, differ across catchments. Model parameters were constrained a priori using existing regional information and expert knowledge. Influential parameters were compared to perceptions of catchment functioning and its variability across subcatchments. Despite between-catchment differences in topography and vegetation, hydrologic partitioning across all metrics and all subcatchments was sensitive to a similar subset of snow, vegetation, and soil parameters. Results also highlighted one subcatchment with low certainty in parameter sensitivity, indicating that the model poorly represented some complexities in this subcatchment likely because an important process is missing or poorly characterized in the mechanistic model. For use in other basins, this method can assess parameter sensitivities as a function of the specific ungauged system to which it is applied. Overall, this approach can be employed to identify dominant modeled controls on catchment response and their agreement with system understanding.

  2. Erosivity, surface runoff, and soil erosion estimation using GIS-coupled runoff-erosion model in the Mamuaba catchment, Brazil.

    PubMed

    Marques da Silva, Richarde; Guimarães Santos, Celso Augusto; Carneiro de Lima Silva, Valeriano; Pereira e Silva, Leonardo

    2013-11-01

    This study evaluates erosivity, surface runoff generation, and soil erosion rates for Mamuaba catchment, sub-catchment of Gramame River basin (Brazil) by using the ArcView Soil and Water Assessment Tool (AvSWAT) model. Calibration and validation of the model was performed on monthly basis, and it could simulate surface runoff and soil erosion to a good level of accuracy. Daily rainfall data between 1969 and 1989 from six rain gauges were used, and the monthly rainfall erosivity of each station was computed for all the studied years. In order to evaluate the calibration and validation of the model, monthly runoff data between January 1978 and April 1982 from one runoff gauge were used as well. The estimated soil loss rates were also realistic when compared to what can be observed in the field and to results from previous studies around of catchment. The long-term average soil loss was estimated at 9.4 t ha(-1) year(-1); most of the area of the catchment (60%) was predicted to suffer from a low- to moderate-erosion risk (<6 t ha(-1) year(-1)) and, in 20% of the catchment, the soil erosion was estimated to exceed > 12 t ha(-1) year(-1). Expectedly, estimated soil loss was significantly correlated with measured rainfall and simulated surface runoff. Based on the estimated soil loss rates, the catchment was divided into four priority categories (low, moderate, high and very high) for conservation intervention. The study demonstrates that the AvSWAT model provides a useful tool for soil erosion assessment from catchments and facilitates the planning for a sustainable land management in northeastern Brazil. PMID:23652539

  3. PRELIMINARY PALEOMAGNETIC RESULTS FROM OUTFLOW EOCENE-OLIGOCENE ASH FLOW TUFFS FROM THE WESTERN MARGIN OF THE SAN LUIS BASIN: IMPLICATION FOR THE KINEMATIC EVOLUTION OF THE RIO GRANDE RIFT

    NASA Astrophysics Data System (ADS)

    Mason, S. N.; Geissman, J. W.; Sussman, A. J.

    2009-12-01

    In the Rio Grande rift (RGR), a late Cenozoic continental rift from central Colorado to southern New Mexico, hanging wall margins typically contain en echelon normal fault systems with intervening areas of typically complex structure, called relay zones. Relay zones transfer displacement through complex strain patterns and eventual linkage of faults and hold clues as to how fault zones initiate and grow. The western margin of the RGR at the latitude of the San Luis basin (SLB) exposes laterally continuous Eocene-Oligocene volcanic rocks, well-correlated by 40Ar/39Ar data, and well-preserved rift structures. Ash flow tuffs are usually excellent recorders of the instantaneous geomagnetic field and five ash flow tuffs (ca. 32.3 to 27.3 Ma; including the Saguache Creek, La Jara Canyon, Masonic Park, Fish Canyon, and Carpenter Ridge tuffs) have been sampled in spatial detail along west to east transects of the eastern San Juan volcanic field to the westernmost margin of the RGR at the SLB. Data obtained from our sampling approach will yield a comprehensive definition of relative vertical-axis rotations across the area and will be used to assess the timing of RGR fault linkages. Preliminary paleomagnetic data from the Masonic Park tuff (ca. 28.2 Ma) suggest up to ~17° clockwise rotation between sample locations on the Colorado Plateau and locations to the east, nearest the western margin of the RGR. Preliminary data from the Fish Canyon tuff (ca. 27.8 Ma) show a ~12° clockwise rotation. The relative clockwise vertical-axis rotation of sampling sites in both ash flow tuffs nearest the RGR margin suggests that relay zone development with attending vertical-axis rotation played an important role in the opening of the northern RGR. Our data set is not sufficiently robust at present to test the hypothesis that rotation was taking place concurrently with eruption of these large-volume ash flow tuffs in the early Oligocene, but it is a possibility and if so, the RGR at the latitude of the SLB began to open by about 28 Ma, some 1.5 Ma earlier than previously thought and coeval with late-stage volcanism in the San Juan region.

  4. Estimating emissions of PFOS and PFOA to the Danube River catchment and evaluating them using a catchment-scale chemical transport and fate model.

    PubMed

    Lindim, C; Cousins, I T; vanGils, J

    2015-12-01

    Novel approaches for estimating the emissions of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) to surface waters are explored. The Danube River catchment is used to investigate emissions contributing to riverine loads of PFOS and PFOA and to verify the accuracy of estimates using a catchment-scale dynamic fugacity-based chemical transport and fate model (STREAM-EU; Spatially and Temporally Resolved Exposure Assessment Model for European basins). Model accuracy evaluation performed by comparing STREAM-EU predicted concentrations and monitoring data for the Danube and its tributaries shows that the best estimates for PFOS and PFOA emissions in the Danube region are obtained by considering the combined contributions of human population, wealth (based on local gross domestic product (GDP)) and wastewater treatment. Human population alone cannot explain the levels of PFOS and PFOA found in the Danube catchment waters. Introducing wealth distribution information in the form of local GDPs improves emission estimates markedly, likely by better representing emissions resulting from consumer trends, industrial and commercial sources. For compounds such as PFOS and PFOA, whose main sink and transport media is the aquatic compartment, a major source to freshwater are wastewater treatment plants. Introducing wastewater treatment information in the emission estimations also further improves emission estimates. PMID:26367703

  5. Detecting runoff variation in Weihe River basin, China

    NASA Astrophysics Data System (ADS)

    Jingjing, F.; Qiang, H.; Shen, C.; Aijun, G.

    2015-05-01

    Dramatic changes in hydrological factors in the Weihe River basin are analysed. These changes have exacerbated ecological problems and caused severe water shortages for agriculture, industries and the human population in the region, but their drivers are uncertain. The Mann-Kendall test, accumulated departure analysis, sequential clustering and the sliding t-test methods were used to identify the causes of changes in precipitation and runoff in the Weihe basin. Change-points were identified in the precipitation and runoff records for all sub-catchments. For runoff, the change in trend was most pronounced during the 1990s, whereas changes in precipitation were more prominent earlier. The results indicate that human activities have had a greater impact than climate change on the hydrology of the Weihe basin. These findings have significant implications for the establishment of effective strategies to counter adverse effects of hydrological changes in the catchment.

  6. Preliminary geochemical assessment of water in selected streams, springs, and caves in the Upper Baker and Snake Creek drainages in Great Basin National Park, Nevada, 2009

    USGS Publications Warehouse

    Paul, Angela P.; Thodal, Carl E.; Baker, Gretchen M.; Lico, Michael S.; Prudic, David E.

    2014-01-01

    Water in caves, discharging from springs, and flowing in streams in the upper Baker and Snake Creek drainages are important natural resources in Great Basin National Park, Nevada. Water and rock samples were collected from 15 sites during February 2009 as part of a series of investigations evaluating the potential for water resource depletion in the park resulting from the current and proposed groundwater withdrawals. This report summarizes general geochemical characteristics of water samples collected from the upper Baker and Snake Creek drainages for eventual use in evaluating possible hydrologic connections between the streams and selected caves and springs discharging in limestone terrain within each watershed. Generally, water discharging from selected springs in the upper Baker and Snake Creek watersheds is relatively young and, in some cases, has similar chemical characteristics to water collected from associated streams. In the upper Baker Creek drainage, geochemical data suggest possible hydrologic connections between Baker Creek and selected springs and caves along it. The analytical results for water samples collected from Wheelers Deep and Model Caves show characteristics similar to those from Baker Creek, suggesting a hydrologic connection between the creek and caves, a finding previously documented by other researchers. Generally, geochemical evidence does not support a connection between water flowing in Pole Canyon Creek to that in Model Cave, at least not to any appreciable extent. The water sample collected from Rosethorn Spring had relatively high concentrations of many of the constituents sampled as part of this study. This finding was expected as the water from the spring travelled through alluvium prior to being discharged at the surface and, as a result, was provided the opportunity to interact with soil minerals with which it came into contact. Isotopic evidence does not preclude a connection between Baker Creek and the water discharging from Rosethorn Spring. The residence time of water discharging into the caves and from selected springs sampled as part of this study ranged from 10 to 25 years. Within the upper Snake Creek drainage, the results of this study show geochemical similarities between Snake Creek and Outhouse Spring, Spring Creek Spring, and Squirrel Spring Cave. The strontium isotope ratio (87Sr/86Sr) for intrusive rock samples representative of the Snake Creek drainage were similar to carbonate rock samples. The water sample collected from Snake Creek at the pipeline discharge point had lower strontium concentrations than the sample downstream and a similar 87Sr/86Sr value as the carbonate and intrusive rocks. The chemistry of the water sample was considered representative of upstream conditions in Snake Creek and indicates minimal influence of rock dissolution. The results of this study suggest that water discharging from Outlet Spring is not hydrologically connected to Snake Creek but rather is recharged at high altitude(s) within the Snake Creek drainage. These findings for Outlet Spring largely stem from the relatively high specific conductance and chloride concentration, the lightest deuterium (?D) and oxygen-18 (?18O) values, and the longest calculated residence time (60 to 90 years) relative to any other sample collected as part of this study. With the exception of water sampled from Outlet Spring, the residence time of water discharging into Squirrel Spring Cave and selected springs in the upper Snake Creek drainage was less than 30 years.

  7. Sound management of sediment yields at the catchment scale by small detention ponds

    NASA Astrophysics Data System (ADS)

    Sikorska, A. E.; Wasilewicz, M.; Banasik, K.

    2012-04-01

    Keywords: small detention pond, sediment deposits, reservoir silting, urban catchment Globally observed land use and climate changes have a clear impact on the sediment yields deriving from the catchment. Released sediments may originate from different point and non-point sources. Thereby it is difficult to manage and reduce sediment loads directly at the source without undertaking detailed and expensive monitoring programs. Small detention ponds are therefore frequently used water management systems in urban settlements to improve water quality at the catchment scale. Such ponds located at the outlet of small basins allow reducing sediment loads downstream. Additionally, they capture sediment-associated contaminants as heavy metals, nutrients and micropollutants. On the other hand, a sedimentation within the pond may be a severe problem because it decreases over the time its retention capacity. This is especially significant for small detention ponds, where the siltation rate is high. These ponds can loose their total capacity already after few years of their exploitation when no dredging operations are considered. Unfortunately, maintenance costs of small ponds are expensive and usually not taken into account when planning and constructing such ponds. Consequently, many small detention ponds become inefficient after an entire use of their capacity. Therefore careful planning of maintenance options is essential to keep an effectiveness of such ponds on the expected level. Within presented here study we addressed the problem of silting small detention ponds and we assessed an applicability of such ponds to manage sediment yields discharged from small urban catchments. To this end, a periodic measurement of deposited sediments within a small detention pond (1.35 ha, 5 years old, Warsaw, Poland) has been undertaken. This pond receives a polluted runoff from a small urbanized basin (30 km2), for which no routine sediment measurement exists. The spatial sediment thickness within the pond was measured twice (in 2009 and 2011) by the echo sounding technique. A resulting sediment deposit volume was computed by constructing a Digital Elevation Model (DEM) of the pond. An alternating reservoir volume was estimated for both measurements and confronted with the initial characteristics (2007). Our first results demonstrate that the pond will loose its sufficient capacity after about ten years if no regular sediment dredging is undertaken. Moreover, the useful time of the pond will decrease by two years when the catchment area increases by 10% due to expected urbanization. Furthermore, different scenarios of maintenance options were analyzed and recommendations for sound sediment management of similar small ponds in urban catchments were given.

  8. What can we learn from the hydrological modeling of small-scale catchments for the discharge and water balance modeling of mesoscale catchments?

    NASA Astrophysics Data System (ADS)

    Cornelissen, Thomas; Diekkrüger, Bernd; Bogena, Heye

    2015-04-01

    The application of 3D hydrological models remains a challenge both in research and application studies because the parameterization not only depends on the amount and quality of data available for calibration and validation but also on the spatial and temporal model resolution. In recent years, the model parameterization has improved with the availability of high resolution data (e.g. eddy-covariance, wireless soil sensor networks). Unfortunately, these high resolution data are typically only available for small scale research test sites. This study aims to upscale the parameterization from a highly equipped, small-scale catchment to a mesoscale catchment in order to reduce the parameterization uncertainty at that scale. The two nested catchments chosen for the study are the 0.38 km² large spruce covered Wüstebach catchment and the 42 km² large Erkensruhr catchment characterized by a mixture of spruce and beech forest and grassland vegetation. The 3D hydrogeological model HydroGeoSphere (HGS) has already been setup for the Wüstebach catchment in a previous study with a focus on the simulation performance of soil water dynamics and patterns. Thus, the parameterization process did not only optimize the water balance components but the catchment's wireless soil sensor network data were utilized to calibrate porosities in order to improve the simulation of soil moisture dynamics. In this study we compared different HGS model realizations for the Erkensruhr catchment with different input data. For the first model realization, the catchment is treated heterogeneous in terms of soil properties and topography but homogeneous with respect to land use, precipitation and potential evapotranspiration. For this case, the spruce forest parameterization and the climate input data were taken directly from the small-scale Wüstebach model realization. Next, the calibrated soil porosity for the Wüstebach catchment is applied to the Erkensruhr. Further model realizations stepwise introduce more spatial heterogeneity in the Erkensruhr model (land use properties, potential evapotranspiration and precipitation). In addition, we investigated how the water balance, discharge components and soil moisture dynamics of the Wüstebach HGS simulation change with the usage of the land use parameterizations 'beech forest' and 'grassland' of the Erkensruhr applied to the soil texture and saturated conductivity information from the Erkensruhr (1:50.000) and the Wüstebach (1:2.000). Preliminary results for the Erkensruhr model realizations show that the discharge simulation is insensitive to a distributed land use input as the discharge sum and dynamics are not altered. Those model realizations which use the climate input from the Wüstebach suffer from an overestimation of the total discharge sum (Nash-Sutcliffe Coefficient of 0.48) though dynamics are well simulated with an R² of 0.8. The usage of soil information of the Erkensruhr in the Wüstebach simulation reduces the fraction of subsurface flow and increases the fraction of return and surface slow whereas the usage of mesoscale land use information alters the evapotranspiration components. The discharge quality measures R² and Nash-Sutcliffe Coefficient only slightly reduce from 0.7 to 0.65 when using mesoscale soil and land use information.

  9. Human impacts on river water quality- comparative research in the catchment areas of the Tone River and the Mur River-

    NASA Astrophysics Data System (ADS)

    Kogure, K.

    2013-12-01

    Human activities in river basin affect river water quality as water discharges into river with pollutant after we use it. By detecting pollutants source, pathway, and influential factor of human activities, it will be possible to consider proper river basin management. In this study, material flow analysis was done first and then nutrient emission modeling by MONERIS was conducted. So as to clarify land use contribution and climate condition, comparison of Japanese and European river basin area has been made. The model MONERIS (MOdelling Nutrient Emissions in RIver Systems; Behrendt et al., 2000) was applied to estimate the nutrient emissions in the Danube river basin by point sources and various diffuse pathways. Work for the Mur River Basin in Austria was already carried out by the Institute of Water Quality, Resources and Waste Management at the Vienna University of Technology. This study treats data collection, modelling for the Tone River in Japan, and comparative analysis for these two river basins. The estimation of the nutrient emissions was carried out for 11 different sub catchment areas covering the Tone River Basin for the time period 2000 to 2006. TN emissions into the Tone river basin were 51 kt/y. 67% was via ground water and dominant for all sub catchments. Urban area was also important emission pathway. Human effect is observed in urban structure and agricultural activity. Water supply and sewer system make urban water cycle with pipeline structure. Excess evapotranspiration in arable land is also influential in water cycle. As share of arable land is 37% and there provides agricultural products, it is thought that N emission from agricultural activity is main pollution source. Assumption case of 10% N surplus was simulated and the result was 99% identical to the actual. Even though N surplus reduction does not show drastic impact on N emission, it is of importance to reduce excess of fertilization and to encourage effective agricultural activity. Population rate of waste water treatment is 67 % in the total catchment area. Assumption case of 100% WWT was simulated and the result suggests that connection to public sewer system with WWTP is effective potential measure. TN emission in the Tone is higher than it in the Mur. Emission per capita is almost same level for both basin areas. Though the personal pollution stresses same as European basin area, the basin has huge population and activities to support their daily life. Agricultural activity and urban structure have great impacts on N emission and on the river water quality. Possible remedy for river pollution is construction of sewer system with waste water treatment. Agricultural activity is potential betterment factor. Comparison of Mur, Tone and assumption cases

  10. Understanding Polycyclic Aromatic Hydrocarbon transfers at the catchment scale combining chemical and fallout radionuclides analyses

    NASA Astrophysics Data System (ADS)

    Gateuille, David; Evrard, Olivier; Lefevre, Irène; Moreau-Guigon, Elodie; Alliot, fabrice; Chevreuil, Marc; Mouchel, Jean-Marie

    2013-04-01

    Contamination of river water and sediment constitutes a major environmental issue for industrialized countries. Polycyclic Aromatic Hydrocarbons (PAHs) are a group of persistent organic pollutants characterized by two or more fused rings. In recent years, studies dealing with PAHs have grown in number. Some PAHs present indeed a high risk for environment and human health because of their carcinogenic and mutagenic properties. However, most of these studies focused on measuring PAH concentration in the different compartments of the environment (air, soil, sediment, water, etc.) In this context, there remains a lack of understanding regarding the various processes responsible for PAH transfers from one environmental compartment to another. Our study aims to quantify PAHs transfers at the catchment scale by combining chemical analysis with gamma spectrometry. Air, soil, river water and sediment samples (n=820) were collected in two upstream sub-catchments of the Seine River basin (France) during one year. Chemical analyses were carried out to determine PAHs concentrations in all samples. Furthermore, measurement of fallout radionuclides (Beryllium-7, Lead-210, Caesium-137) in both rainfall and river sediment provided a way to discriminate between freshly eroded sediment vs. resuspension of older material that previously deposited on the riverbed. This information is crucial to estimate PAH residence time and transfer velocities in the Seine River basin. The results show that the PAH behaviour varies from one subcatchment to the next. PAH transfers depend indeed on both the characteristics of the catchment (e.g. topography, presence of drained cropland in catchments) and the local anthropogenic pressures. A significant increase in atmospheric deposition of PAHs is observed during winter due to a larger number of sources (household heating). The 14-month study has also highlighted the seasonal variations of PAH fluxes, which are mainly related to the hydrological regimes (i.e. low flow vs. flood periods). The behaviour of the PAHs mainly depends on their molecular mass. The lightest ones tend to quickly migrate to rivers whereas the heaviest slowly accumulate in soils throughout the low-flow period. Then, an increase in PAH export associated with sediment is observed during the winter floods, when rivers are heavily loaded with suspended matter. The downstream exports of PAHs are controlled by the main erosion processes that occurred in the catchments. Results show that PAH fluxes are more important when material is mostly supplied to rivers by soil surface erosion processes than when they are delivered by gully or riverbank erosion. Despite the reduction in PAH emissions since the 1960s, there is still a significant storage of PAHs in the upstream part of the Seine River basin. In this context, WFD objectives are unlikely to be reached by 2015.

  11. In Lieu of the Paired-Catchment Approach - Hydrologic Model Change Detection at the Catchment Scale

    NASA Astrophysics Data System (ADS)

    Zegre, N. P.

    2009-05-01

    Knowledge of the effects of forest management on hydrology primarily comes from paired-catchment studies conducted world-wide. While this approach has been useful for discerning changes in small experimental catchments and has contributed fundamental knowledge of the effects of forest and natural resources management on hydrology, results from experimental catchment studies exhibit temporal variability, have limited spatial inference, and lack insight into internal catchment processes. To address these limitations, traditional field experiments can be supplemented with numerical models to isolate the effects of disturbance on catchment behavior. Outlined in this study is an alternative method of change detection for daily time-series streamflow that integrates hydrologic modeling and statistical change detection methods used to discern the effects of contemporary forest management on the hydrology of western Oregon Cascades headwater catchments. In this study, a simple rainfall-runoff model was used to generate virtual reference catchments using attributes that reflect streamflow conditions absent of forest disturbance. Streamflow was simulated under three levels of model uncertainty using GLUE and were used to construct generalized least squares regression models to discern changes in hydrologic behavior. By considering processes within a single experimental catchment rather than the two spatially explicit catchments used in traditional paired experiments, it was possible to reduce unexplained variation and increase the likelihood of correctly detecting hydrologic effects following forest harvesting. In order to evaluate the stability of the hydrologic and statistical models and catchment behavior over time, the change detection method was applied to a contemporary reference catchment. By applying the change detection model to reference catchments, it was possible to eliminate unexpected variation as a cause for detected changes in observed hydrology. Further, it was possible to attribute increased streamflow to forest management with greater certainty. Shown is the importance and necessity of coupling hydrologic modeling studies with reference catchments in order to evaluate model performance and reduce false detections from statistical models. The proposed method appears to be a useful alternative to change detection using highly variable daily streamflow.

  12. Estimation of groundwater contribution in runoff from small agricultural dominated catchments

    NASA Astrophysics Data System (ADS)

    Deelstra, Johannes; Jansons, Viesturs; Lagzdi?š, Ainis

    2013-04-01

    Under poor natural drainage condition, agricultural land has to be provided with subsurface drainage systems to discharge excess water from the rootzone, thereby guaranteeing optimal cropping conditions during the growing season, while in addition facilitating land preparation. Subsurface drainage systems can significantly contribute in runoff and nutrient loss generation. A secondary effect of drainage systems is that it reduces surface runoff and thereby erosion and phosphorus loss. In addition to surface and subsurface runoff, a third component, being groundwater, is contributing in runoff. As only information about the total runoff at the catchment outlet is available, uncertainty exists about the contribution of the different flow processes. Agriculture is a main contributor of nutrients and sediments to surface water causing water quality problems. Knowledge about the different pathways of water and hence nutrients and sediments to open water systems is important with respect to the choice of mitigation measures in agricultural dominated catchments. Estimates of groundwater or baseflow contribution (BFI) are often based on the use of digital filters applied to average daily discharge values. When using recommended values for the digital filter, this resulted in BFI of 40 - 50 % when applied to small Norwegian agricultural catchments. When taking the poor natural drainage conditions into consideration in addition to the presence of heavy marine clay deposits at depths greater than 1 - 2 m below soil surface, these values are considered unrealistically high. Deelstra et al (2010) showed that small agricultural catchments can have rather "flashy" runoff behaviour, characterised by large diurnal variations in discharge which also contradicts high baseflow contributions. An approach to obtain a realistic filter parameter for a digital filter has been carried out, based on discharge measurements on a set of small, nested catchments in Norway and further tested in Latvia. Each set consisted of a field providing both surface and subsurface runoff located within the catchment. Different filters were tested but the one developed by Chapman & Maxwell (1996) was selected. An improved filter parameter value was obtained, resulting in more realistic values for BFI in Norwegian catchments, being in the order of 10%. The values for the Latvian catchments were slightly higher, the main reason for this being soil types and geological settings. The results indicate that care should be taken in selecting the digital filter value for catchments having flashy runoff behaviour. This might lead to wrong estimates of baseflow contribution which can have negative effects on modelling hydrology, pollutant transport and the selection of mitigation measures at the scale of small agricultural catchments. References Chapman, T.G., Maxwell, A.I . 1996. Baseflow separation - comparison of numerical methods with tracer experiments. Institute Engineers Australia National Conference. Publ. 96/05, 539-545 Deelstra, J., Eggestad, H.O., Iital, A., Jansons, V. and Barkved, L.J. (2010), "Time resolution and hydrological characteristics in agricultural catchments", in Hermann, A. and Schumann, S. (Eds), Status and Perspectives of Hydrology in Small Basins, Vol. 336, IAHS Publication, pp. 138 - 143.

  13. Groundwater Contributions to Intermittent Streamflow in a Headwater Catchment: How do Geoclimatic Controls Influence Downstream Water Quality?

    NASA Astrophysics Data System (ADS)

    Smull, E. M.; Gooseff, M. N.; Singha, K.

    2014-12-01

    Hydrologic connectivity of headwater catchments affects surface water yield and quality of downstream drinking water supplies. Lower Gordon Gulch, a 2.75 km2 catchment, is part of the Boulder Creek watershed - the primary drinking water supply for the city of Boulder, Colorado. We hypothesize that the geologic and climatic environment within the catchment controls the magnitude, timing, and duration of hydrologic connection between the landscape and the stream, and thus the distribution of major ions to the surface water. Specifically, bedrock patterns, vegetation type and density, and snowpack dynamics influence how precipitation inputs move from the hillslopes to the catchment outlet. Preliminary results suggest that north-facing hillslopes with steeper slopes, deeper weathering of bedrock, denser vegetation stands, and a seasonal snowpack, provide consistently greater groundwater inputs to the stream compared to the south-facing hillslopes. We believe that this is in part due to subsurface bedrock patterns forcing a dominate cross-valley gradient. Through an extensive observation network of hillslope wells, periodic stream water balance measurements, and synoptic chemistry samples, we plan to continue our assessment of the spatio-temporal connectivity dynamics throughout the seasonal dry down (late summer through winter), during which streamflow can be intermittent. Results will help to guide landuse practices of upland catchments with respect to their role in Boulder's drinking water supply.

  14. Spatial variability in river-catchment interaction: Combining radon measurements and salt tracer experiments

    NASA Astrophysics Data System (ADS)

    Angermann, Lisa; Tecklenburg, Christina; Blume, Theresa

    2013-04-01

    Hydrological modeling is commonly based on a discharge calibration. This approach, however, is often insufficient to properly reproduce conditions that exceed the range of calibrated conditions and is therefore inadequate for predicting reactions to a changing environment. Small headwater catchments are often characterized by manifold morphological attributes (e.g. changes in river course, variable depth to bedrock...) and complex topography, resulting in potentially high spatial variability of river-catchment interactions. Such systems are often poorly represented by simple rainfall runoff models. For that reason, increasing effort is taken to investigate the functional organization of river catchments. From a river's point of view, the first questions to be solved are: How variable is river-catchment interaction in space? Where along the river do we find exfiltrating or infiltrating conditions? Which pathway did the water take before entering the stream? To investigate these questions we used an approach that combined salt tracer experiments with Radon-222 (referred to as radon) measurements. Radon is a natural occurring radionuclide that is accumulated in water traveling through saturated bedrock and mineral material. In contact with air the inert noble gas degases quickly and is thus a reliable environmental tracer for groundwater-surface water interactions. Measurements were carried out at a 650 m long tributary of the Colpach, which is part of the Attert basin in Luxembourg. In the first phase of the experiment radon was sampled every 50 m along the tributary. At the same time, salt tracer experiments were conducted over 100 m sections, providing information on discharge at the up- and downstream end of each 100 m section, absolute gain and loss along the 100 m section and travel times between all radon sampling sites. In the second phase, three sections where investigated in more detail. The chosen sections were divided according to changes of morphological attributes like river course (e.g. braided, meandering, straight), changes in stream bed substrate (e.g. loam, gravel, bedrock) or certain landmarks (e.g. ephemeral tributaries, river widening). Radon was sampled at the beginning and end of every subsection and the travel time between every radon sampling site was determined with salt tracer injections. Based on this information we accomplished a simple mass balance calculation to distinguish the respective groundwater and event water components of the measured gain and loss along all river sections. The results show that there is a high spatial variability in discharge quantity and composition down to the scale of few meters. With regard to the functional organization of river catchments, these observations imply that the interpretation of both, discharge dynamics as well as catchment processes requires a thorough understanding of the spatially varying connectedness between river, catchment and groundwater.

  15. The Humber catchment and its coastal area: from UK to European perspectives.

    PubMed

    Cave, R R; Ledoux, L; Turner, K; Jickells, T; Andrews, J E; Davies, H

    2003-10-01

    The present water quality of the Humber rivers and coastal zone depends on a complex interplay of factors, including physical ones, such as the underlying geology, which influences soil type, climatic ones, such as the rainfall, which influences runoff, socio-economic ones, which influence present-day human activities in the catchment, and the legacy of former activities, such as contaminated sediments from mining. All of these factors affect the fluxes of nutrients and other contaminants to the rivers and coastal zone. The Water Framework Directive (WFD) requires the production of a river basin management plan intended to lead to the achievement of good chemical and ecological status for all water bodies in the catchment over the next two decades. This paper provides an overview of the current environmental and socio-economic state of the Humber catchment and coastal zone, and broadly examines how socio-economic drivers affect the fluxes of nutrients and contaminants to the coastal zone, using the driver-pressure-state-impact-response (DPSIR) approach. This is followed by an overview of future research, describing the use of scenarios to simulate future fluxes and provide a consistent framework to evaluate potential policies to improve water quality in the estuary. The Humber catchment is one of eight case studies within a European research project, EUROCAT (EVK1-CT-2000-00044), which aims to achieve integrated catchment and coastal zone management by analysing the response of the coastal sea to changes in fluxes of nutrients and contaminants from the catchments. For the Humber case study, the research focuses on the fluxes of two nutrient elements, N and P, and four metal contaminants, As, Cu, Pb and Zn. The project requires the integration of scientific and socio-economic approaches, bringing together quantitative environmental data garnered for individual river catchments and coastal zones in previous research programmes, and local and regional socio-economic data, to aid decision-makers in their search for integrated and sustainable coastal zone management strategies. PMID:14499525

  16. Validation of Pacific Northwest hydrologic landscapes at the catchment scale

    EPA Science Inventory

    The interaction between the physical properties of a catchment (form) and climatic forcing of precipitation and energy control how water is partitioned, stored, and conveyed through a catchment (function). Hydrologic Landscapes (HLs) were previously developed across Oregon and de...

  17. Volume-Duration-Frequencies for Ungaged Catchments in Texas 

    E-print Network

    Devulapalli, Ravi S.; Valdes, Juan B.

    1996-01-01

    This report summarizes results from studies to determine relationships among the volume, duration and frequencies of floods in ungaged catchments in Texas. Methodologies were adopted for determining flood volumes at unregulated, non-urban catchments...

  18. Before and After Integrated Catchment Management in a Headwater Catchment: Changes in Water Quality

    NASA Astrophysics Data System (ADS)

    Hughes, Andrew O.; Quinn, John M.

    2014-12-01

    Few studies have comprehensively measured the effect on water quality of catchment rehabilitation measures in comparison with baseline conditions. Here we have analyzed water clarity and nutrient concentrations and loads for a 13-year period in a headwater catchment within the western Waikato region, New Zealand. For the first 6 years, the entire catchment was used for hill-country cattle and sheep grazing. An integrated catchment management plan was implemented whereby cattle were excluded from riparian areas, the most degraded land was planted in Pinus radiata, channel banks were planted with poplar trees and the beef cattle enterprise was modified. The removal of cattle from riparian areas without additional riparian planting had a positive and rapid effect on stream water clarity. In contrast, the water clarity decreased in those sub-catchments where livestock was excluded but riparian areas were planted with trees and shrubs. We attribute the decrease in water clarity to a reduction in groundcover vegetation that armors stream banks against preparatory erosion processes. Increases in concentrations of forms of P and N were recorded. These increases were attributed to: (i) the reduction of instream nutrient uptake by macrophytes and periphyton due to increased riparian shading; (ii) uncontrolled growth of a nitrogen fixing weed (gorse) in some parts of the catchment, and (iii) the reduction in the nutrient attenuation capacity of seepage wetlands due to the decrease in their areal coverage in response to afforestation. Our findings highlight the complex nature of the water quality response to catchment rehabilitation measures.

  19. Seasonal variability of suspended sediment transport in the Seine river catchment area (France)

    NASA Astrophysics Data System (ADS)

    Franke, Christine; Baati, Selma; Ayrault, Sophie; Bonte, Philippe; Evrard, Olivier; Kissel, Catherine

    2010-05-01

    This study consists in an innovative application of environmental physico-chemical techniques on fluvial sediments with the aim to trace the seasonal changes in suspended sediment transport of the complex Seine river catchment area in northern France. The aim of this project is to develop a detailed understanding for the discrimination of naturally triggered and anthropogenic induced processes and their temporal changes with weather conditions. With a focus on the heavy metal fraction, we determine the regional distribution of the suspended material and search for environmental fingerprints demonstrating the influence of fluvial transport mechanisms, changes in concentration related to discharge variations or different sediment sources, and in-situ alteration caused by variations in the geochemical conditions (oxy-redox, pH, Eh, etc.). To achieve these goals, we apply a combination of straightforward rock magnetic hysteresis measurements (performed using an AGM2900 at the LSCE) and advanced scanning electron microscopy analyses (SEM). This interdisciplinary approach allows refining the detailed analysis of sediment trap samples, originating from Tessier et al. (2003), as recently shown by Franke et al. (2009). In our preliminary results, we observe a general increase in magnetic concentrations from summer to winter conditions, coupled with a magneto-mineralogic change to rather reduced metallic mineral phases. However, each riversection of the Seine system shows its specific trend line depending on the regional initial input, weathering conditions, drainage area and potential pollution sources. A systematic analysis of the detailed results will allow highlighting the climatic/seasonal influence on the metallic particle assembly. Keywords: Seine river system, environmental magnetism, suspended particulate matter, anthropogenic and natural input, magnetic hysteresis, scanning electron microscopy (SEM),, heavy metal pollution, seasonal variability References: Franke, C., Kissel, C., Robin, E., Bonté, P. and Lagroix, F., 2009, Magnetic particle characterization in the Seine river system: Implications for the determination of natural versus anthropogenic input, Geochem. Geophys. Geosyst., doi:10.1029/2009GC002544. Tessier, L., Bonté, P., Mouchel, J.M., Lefevre, I., Sogon, S., Ayrault, S., Le Cloarec, M.F., 2003, Transport et characterisation des matieres en suspension dans le basin de la Seine : Identification des signatures naturelles et anthropiques, 14èmes Journées Scientifiques de l'Environnement : l'Eau, la Ville, la Vie, Créteil : France 2003. http://hal.archives-ouvertes.fr/docs/00/20/30/84/PDF/4-JSE-2003-Manuscrit-Tessier-HAL-2008-01-08.pdf

  20. Catchment scale multi-objective flood management

    NASA Astrophysics Data System (ADS)

    Rose, Steve; Worrall, Peter; Rosolova, Zdenka; Hammond, Gene

    2010-05-01

    Rural land management is known to affect both the generation and propagation of flooding at the local scale, but there is still a general lack of good evidence that this impact is still significant at the larger catchment scale given the complexity of physical interactions and climatic variability taking place at this level. The National Trust, in partnership with the Environment Agency, are managing an innovative project on the Holnicote Estate in south west England to demonstrate the benefits of using good rural land management practices to reduce flood risk at the both the catchment and sub-catchment scales. The Holnicote Estate is owned by the National Trust and comprises about 5,000 hectares of land, from the uplands of Exmoor to the sea, incorporating most of the catchments of the river Horner and Aller Water. There are nearly 100 houses across three villages that are at risk from flooding which could potentially benefit from changes in land management practices in the surrounding catchment providing a more sustainable flood attenuation function. In addition to the contribution being made to flood risk management there are a range of other ecosystems services that will be enhanced through these targeted land management changes. Alterations in land management will create new opportunities for wildlife and habitats and help to improve the local surface water quality. Such improvements will not only create additional wildlife resources locally but also serve the landscape response to climate change effects by creating and enhancing wildlife networks within the region. Land management changes will also restore and sustain landscape heritage resources and provide opportunities for amenity, recreation and tourism. The project delivery team is working with the National Trust from source to sea across the entire Holnicote Estate, to identify and subsequently implement suitable land management techniques to manage local flood risk within the catchments. These techniques will include: controlling headwater drainage, increasing evapotranspiration and interception by creating new woodlands in the upper catchment areas, enabling coarse woody debris dams to slow down water flows through steep valleys, improving soil water storage potential by appropriate soil and crop management, retaining water on lowland flood meadows and wet woodland creation within the floodplain. The project, due to run from 2009 until 2013, incorporates hydrometric and water quality monitoring, together with hydrologic and hydraulic modelling in order to attempt to demonstrate the effect of land management changes on flood dynamics and flood risk management. To date, the project team have undertaken the fundamental catchment characterisation work to understand its physical setting and the interaction of the physical processes that influence the hydrological response of the catchment to incident precipitation. The results of this initial work has led to the identification of a suitably robust hydrometric monitoring network within the catchments to meet the needs of providing both quantitative evidence of the impacts of land management change on flood risk, together with generating good quality datasets for the validation and testing of the new hydrologic models. As the project aims to demonstrate ‘best practice' in all areas, the opportunity has been taken to install a network of automatic hydrometric monitoring equipment, together with an associated telemetry system, in order to maximise data coverage, accuracy and reliability. Good quality datasets are a critical requirement for reliable modelling. The modelling will also be expanded to incorporate climate change scenarios. This paper will describe the catchment characterisation work undertaken to date, the proposed land management changes in relation to flood risk management, the initial catchment hydraulic modelling work and the implementation of the new hydrometric monitoring network within the study area.

  1. Identification of internal flow dynamics in two experimental catchments

    USGS Publications Warehouse

    Hansen, D.P.; Jakeman, A.J.; Kendall, C.; Weizu, G.

    1997-01-01

    Identification of the internal flow dynamics in catchments is difficult because of the lack of information in precipitation -stream discharge time series alone. Two experimental catchments, Hydrohill and Nandadish, near Nanjing in China, have been set up to monitor internal flows reaching the catchment stream at various depths, from the surface runoff to the bedrock. With analysis of the precipitation against these internal discharges, it is possible to quantify the time constants and volumes associated with various flowpaths in both catchments.

  2. Twenty-first century changes in the hydrology, glaciers, and permafrost of the Susitna Basin, Alaska

    NASA Astrophysics Data System (ADS)

    Bliss, A. K.; Hock, R.; Wolken, G. J.; Zhang, J.; Whorton, E.; Braun, J. L.; Gusmeroli, A.; Liljedahl, A.; Schulla, J.

    2014-12-01

    In the face of climate change, the hydrology of the upper Susitna Basin in South-Central Alaska is expected to change. This would impact the quantity and seasonality of river flow into a proposed hydroelectric dam, if it were to be built. The upper Susitna Basin catchment area is 13,289 km², ranging from 450-4000 m a.s.l. It is 4% glacierized and is characterized by sparse vegetation, discontinuous permafrost, and little human development. We present field measurements and results from hydrological modeling. We present new field data from spring and fall 2014 along with field measurements from the 1980's, 2012, and 2013. These data are used to calibrate and validate the hydrological model. Traditional glacier mass balance measurements show that the glaciers lost more mass in 2012 and 2013 than in 1981, 1982, or 1983. Springtime snow radar surveys of the glaciers allow us to extrapolate from point measurements of snow depth to the whole glacier area. Snow depth measurements at tundra sites as well as tundra vegetation and soil characterizations help us choose appropriate model parameters for the tundra portions of the basin. Meteorological data (temperature, humidity, and precipitation) from over 20 stations in the basin show the summertime temperature lapse rate to be smaller over glacier surfaces compared to ice-free surfaces. Precipitation is highly variable across the basin. Energy balance measurements from two meteorological stations, one located on West Fork Glacier and one on a nunatak near Susitna Glacier, are used for more detailed modeling of summertime glacier melt and runoff. We run a physically-based hydrological model to project 21st century river discharge: Water Flow and Balance Simulation Model (WaSiM). Climate inputs come from a CCSM CMIP5 RCP6.0 scenario downscaled to a 20km-5km nested grid using the Weather Research and Forecasting (WRF) Model. From 2010-2029 to 2080-2099 the basin-wide mean-annual temperature will rise 2.5 degrees and total precipitation will rise 2%, with a 13% decrease in snowfall and a 20% increase in rainfall. Preliminary WaSiM runs indicate that glaciers will retreat, evapotranspiration will increase, and permafrost will thaw. Annual runoff will remain relatively steady, but the timing of the peak spring runoff will shift to an earlier date.

  3. 26Al/10Be burial ages for a Pleistocene terrace in the Vienna Basin, Austria

    NASA Astrophysics Data System (ADS)

    Braumann, S.; Fiebig, M.; Neuhuber, S.; Schaefer, J. M.; Haeuselmann, P.; Schwartz, R.; Finkel, R. C.

    2014-12-01

    The Vienna Basin in the northeastern part of Austria between the Eastern Alps and the West Carpathians is a pull-apart basin crossed by the Danube river. The structure is filled with marine and terrestrial sediments showing thicknesses of up to 6 km. An increase in glacial melt water discharges, typically linked to high productivity of Alpine glaciers, had an essential impact on the formation of the investigated terrace. The scale of erosion and sediment transport translates to deposition rates in the foreland and is influenced by the magnitude of melt water discharges in Alpine catchment areas. Variations in layer characteristics (i.e. grain size, sorting, thickness) are an indicator for glacial pulses. Burial dates of ten quartz pebbles originating from the Gaenserndorfer terrace, situated in the northeastern part of the basin, set time dependent constraints on the required hydrological regime for mobilization, transport and sedimentation of bedloads and allow relating the deposition of glacial sediments to past glacial periods. But the geomorphic evolution of the Vienna Basin was not only determined by sedimentation processes. A number of irregularities manifest that tectonics affected the area as well: Terrace tilts are dipping against the slope of the Danube and offsets of some decameters between sediment layers showing the same facies, but located several kilometers apart from each other, could be identified. An extensive Miocene fault system was partly reactivated during the Middle Pleistocene and could have caused the formation of these discontinuities. It is of great interest to discriminate impacts on the area due to deposition from morphological elements formed by seismic events. The preliminary burial ages afford for putting the sampled terrace segment into a coherent geochronological context and provide a dataset to compare ages of the Gaenserndofer terrace to ages of sediment layers at other locations within the basin in order to either validate or reject the hypothesis that they belong to the same stratigraphical unit. The dating of the terrace helps to analyze the processes dominating this complex area and can contribute to a better understanding of the prevalent climate conditions in the Alps, the Alpine foreland and the inner Alpine basins during the Quaternary.

  4. Climate Change Impacts in the Upper Rio Grande Catchment

    NASA Astrophysics Data System (ADS)

    Heikkila, T.; Siegfried, T. U.; Sellars, S. L.; Schlager, E.

    2010-12-01

    In the US Southwest, evidence of increased future drought severity and duration in the context of climate change has been detected. Considering the already difficult water distribution and allocation strategies within the region, we are investigating the Costilla Creek, a tributary to the Rio Grande. The catchment is located in Costilla county in Colorado from where on runoff is crossing boundaries between Colorado and New Mexico three times before its confluence with the Rio Grande in New Mexico. Water allocation is governed by an interstate compact between Colorado and New Mexico. While the states have been relatively successful in complying with the compact’s allocation rules, the Costilla Creek catchment has experienced interstate upstream/downstream conflict, mainly during irrigation seasons. Whether or not the states will be able to avert conflict in the future and maintain compliance with the compact, is a critical question. The situation in the relatively small catchment is not unique. Various interstate watersheds, including the entire Rio Grande basin, the La Plata, Arkansas, and Colorado, are expected to face similar impacts from climate change, yet the water compacts that govern them may not be structured to adapt to these conditions. Looking at the Costilla Creek offers a valuable starting point for understanding how to model these effects across various basins. We have developed a lumped-parameter rainfall-runoff model including snow storage of the Costilla Creek watershed. Temperature and precipitation data from NCRS - SNOTEL stations together with USGS gauging station data were utilized for model calibration and validation. ISCCP solar radiation data and temperature data were used to estimate irrigation water demand in irrigated agriculture. The model is driven by the IPCC SRES A2 scenario. GCM ensemble averaged temperature / precipitation trends were extracted for the upper Rio Grande region. 50 year precipitation simulations were created using a Non-Homogeneous Hidden Markov model (NHMM). For each of the subcatchments, the NHMM was trained on 14 years of daily NCRS - SNOTEL stations precipitation data from 1994 till 2008. To account for the seasonality in precipitation, a seasonal predictor was utilized for model training. As for the low--frequency variations at decadal to multi-decadal scales, the idea was to develop stochastic scenarios via long--term proxies for regional climate from tree ring chronologies. Precipitation matching temperature series were generated by statistical modeling. A Monte Carlo approach for creating 100 climate scenarios was utilized to account forcing uncertainty. Results indicate that the region will experience a general warming/drying and that the seasonality of the runoff will be significantly impacted due to early melting of the snowpack in the higher elevations. These combined effects will significantly impact the ability of the states to comply with the compact’s allocation rules and call for urgent attention of decision makers and stakeholders alike. The findings will further demonstrate the value of the model for applications to other interstate basins in region.

  5. Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Base-Flow Index

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the mean base-flow index expressed as a percent, compiled for every catchment in NHDPlus for the conterminous United States. Base flow is the component of streamflow that can be attributed to ground-water discharge into streams. The source data set is Base-Flow Index for the Conterminous United States (Wolock, 2003). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

  6. Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Estimated Mean Annual Natural Groundwater Recharge, 2002

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This data set represents the mean annual natural groundwater recharge, in millimeters, compiled for every catchment of NHDPlus for the conterminous United States. The source data set is Estimated Mean Annual Natural Ground-Water Recharge in the Conterminous United States (Wolock, 2003). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, containing NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

  7. Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Mean Infiltration-Excess Overland Flow, 2002

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the mean value for infiltration-excess overland flow as estimated by the watershed model TOPMODEL, compiled for every catchment of NHDPlus for the conterminous United States. Infiltration-excess overland flow, expressed as a percent of total overland flow, is simulated in TOPMODEL as precipitation that exceeds the infiltration capacity of the soil and enters the stream channel. The source data set is Infiltration-Excess Overland Flow Estimated by TOPMODEL for the Conterminous United States (Wolock, 2003). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

  8. Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Average Monthly Precipitation, 2002

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This data set represents the average monthly precipitation in millimeters multiplied by 100 for 2002 compiled for every catchment of NHDPlus for the conterminous United States. The source data were the Near-Real-Time Monthly High-Resolution Precipitation Climate Data Set for the Conterminous United States (2002) raster dataset produced by the Spatial Climate Analysis Service at Oregon State University. The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

  9. Modeling daily streamflow at ungauged catchments: What information is necessary?

    NASA Astrophysics Data System (ADS)

    Patil, S.; Stieglitz, M.

    2011-12-01

    Streamflow modeling at ungauged catchments involves transfer of information (viz., model structure and parameters) from gauged to ungauged catchments that are judged to be hydrologically similar. In this study, we focus on identifying: (1) what constitutes the critical information that needs to be transferred among hydrologically similar catchments to achieve good predictability using models at ungauged sites, and (2) which is the best approach for transferring this information from gauged to ungauged catchments. We develop a simple hydrologic model with minimal calibration requirement and implement it over 756 catchments located across the continental United States. The model computes water balance at a daily time-step and conceptualizes subsurface runoff through a storage-dependent exponential decline in saturated hydraulic conductivity. Snow accumulation and melt are modeled using the thermal degree-day concept. The calibrated model performs better in humid runoff-dominated regions than in the drier evapotranspiration-dominated regions. Results show that within a region, transfer of hydrograph recession information alone is sufficient for reliable streamflow predictions at ungauged catchments. Information transfer from spatially proximate gauged catchments provides better streamflow predictability at ungauged catchments than transfer from catchments identified as physically similar. When considering spatially proximate catchments, information transfer from multiple donor catchments is preferable to transfer from a single donor catchment.

  10. Groundwater resource sustainability in the Nabogo Basin of Ghana

    NASA Astrophysics Data System (ADS)

    Lutz, Alexandra; Thomas, James M.; Pohll, Greg; McKay, W. Alan

    2007-10-01

    In order to address groundwater resource sustainability, a conceptual groundwater flow model is developed for a hydrographic basin of northern Ghana. A three-dimensional steady-state model is applied to the Nabogo Basin, a sub-catchment of the White Volta River Basin. Mean annual data are used for input parameters. Parameters include rates of precipitation, recharge, surface water discharge, and groundwater extraction (pumpage). The model indicates that current well pumpage rates are significantly less than annual groundwater recharge to the basin. Model results for several scenarios tested (i.e., increased population, access to potable water for all citizens, and/or decreased rainfall) indicate that extraction rates will still be less than groundwater input to the basin.

  11. Identification of Water Source Areas Using a Multi Tracer Approach in a Semiarid Catchment in Inner Mongolia, PR China

    NASA Astrophysics Data System (ADS)

    Barthold, F. K.; Schneider, K.; Breuer, L.; Vaché, K. B.; Frede, H.; McDonnell, J. J.

    2007-12-01

    The upscaling of hydrologic process understanding to mesoscale catchments is challenging, in part because of measurement limitations: we cannot characterize the hydrometric response of large catchments using standard hydrometric measurement protocols. Tracer-based approaches, however, do have significant potential to contribute to our understanding in larger catchments. The application of tracer-based approaches to catchment characterization are increasingly common, and are of particular interest to a number of recent research initiatives including PUB, which have been formulated based upon the clear need for the hydrologic sciences to more fully contribute to watershed management strategies at larger scales. This study was designed to identify water source areas and flow paths in the previously ungauged basin of the 3600 km2 comprising catchment of the Xilin river, Inner Mongolia, P.R. China, in order to improve process understanding for further model development. The catchment is characterized by a relatively homogenous land use consisting of large steppe and sand dune areas used for grazing purposes and few small villages. There is no industry which could act as contaminating point sources to the river. We hypothesize that the water chemistry of the Xilin river reflects the composition of the underlying soils and geology. Snapshot sampling was conducted during summers of 2005 and 2006. Samples taken were analyzed for elemental composition with an inductively coupled plasma mass spectrometer (ICP-MS) and for anions with an ion chromatograph (IC). Also, in situ measurements of pH and EC were conducted. In this paper we present mixing diagrams and results of multivariate statistical analysis to better understand and quantify the sources of streamflow. Our results suggest that a simple three component mixture model is capable of describing the water composition during the vegetation period. The three components identified are one groundwater, one tributary and a headwater source.

  12. A simple framework for relating variations in runoff to variations in climatic conditions and catchment properties

    NASA Astrophysics Data System (ADS)

    Roderick, Michael L.; Farquhar, Graham D.

    2011-12-01

    We use the Budyko framework to calculate catchment-scale evapotranspiration (E) and runoff (Q) as a function of two climatic factors, precipitation (P) and evaporative demand (Eo = 0.75 times the pan evaporation rate), and a third parameter that encodes the catchment properties (n) and modifies how P is partitioned between E and Q. This simple theory accurately predicted the long-term evapotranspiration (E) and runoff (Q) for the Murray-Darling Basin (MDB) in southeast Australia. We extend the theory by developing a simple and novel analytical expression for the effects on E and Q of small perturbations in P, Eo, and n. The theory predicts that a 10% change in P, with all else constant, would result in a 26% change in Q in the MDB. Future climate scenarios (2070-2099) derived using Intergovernmental Panel on Climate Change AR4 climate model output highlight the diversity of projections for P (±30%) with a correspondingly large range in projections for Q (±80%) in the MDB. We conclude with a qualitative description about the impact of changes in catchment properties on water availability and focus on the interaction between vegetation change, increasing atmospheric [CO2], and fire frequency. We conclude that the modern version of the Budyko framework is a useful tool for making simple and transparent estimates of changes in water availability.

  13. Measuring winter precipitation in a mountain catchment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measuring winter precipitation (principally snowfall) in a mountain catchment is difficult. The magnitude of gauge under catch is affected by variable density during deposition, wind speed and direction, and site conditions such as vegetation and topography. Though numerous studies have been condu...

  14. Ecosystem Services Derived from Headwater Catchments

    EPA Science Inventory

    We used data from the USEPA’s wadeable streams assessment (WSA), US Forest Service’s forest inventory and analysis (FIA), and select USFS experimental forests (EF) to investigate potential ecosystems services derived from headwater catchments. C, N, and P inputs to these catchmen...

  15. Influences on the establishment and dominance of vegetation in stormwater infiltration basins.

    PubMed

    Bedell, J-P; Mourier, B; Provot, J; Winiarski, T

    2013-01-01

    Infiltration basins are widely used in urban environments as a technique for managing and reducing the volume of stormwater. These basins can be spontaneously colonized by wild plants, which can be used as bioindicators of edaphic characteristics. As the basins are anthropogenic environments, the description of plant biodiversity allows the determination of which species colonize such environments and identification of the relationships between plants, basin type and operation. Nineteen infiltration basins were selected according to their catchment types (industrial, urban, agricultural). The dominant species were identified and sampled. Rumex sp., Taraxacum sp. and Artemisia sp. are the three types most represented (88, 61 and 55% respectively of the basins studied). Their families and their respective orders are those most commonly found (Caryophyllales, Asterales and Polygonaceae, Asteraceae). Poaceae is the family grouping with the largest number of different species (11). Although each species occupies only 1 or 2 basins, plants of this family occupy 61% of the basins. Although the catchment characteristics of the 19 basins do not play a direct role in the diversity of plant families, they can influence the presence or absence of certain species. Thus, these plants can be used as bio-indicators of basin soil and operating characteristics, such as sediment depths, inundation frequency and duration. PMID:24355843

  16. Refining process representation in high-resolution models of headwater catchments using internal catchment diagnostics

    NASA Astrophysics Data System (ADS)

    Kelleher, C.; McGlynn, B. L.; Wagener, T.

    2014-12-01

    As the complexity of the problems we seek to address with process-based models continues to increase, our approaches to improving confidence in our predictions must keep pace. Process-based, distributed models have been applied in headwater catchments to address many different objectives, all of which are linked by their reliance on the selection of a catchment-representative parameter set or sets. While these parameter sets are typically obtained through calibration to the streamflow hydrograph, it is widely acknowledged that there is often insufficient information in the hydrograph to effectively address parameter equifinality. Here, we suggest that optimal parameter sets can be obtained with an additional step in the calibration process that considers the spatial representation of internal catchment behavior (e.g. space-time distributions of evapotranspiration, water table depth, presence of overland flow, soil water). Modeled internal catchment behavior is an under-utilized but valuable source of information for separating plausible from unlikely model scenarios. We demonstrate how spatial patterns of hydrologic states and fluxes across annual, seasonal, and event time scales can improve the calibration process and reduce likely parameter sets. Our approach is applied to an extensively monitored headwater catchment in Tenderfoot Creek Experimental Forest in central Montana, simulated using the Distributed Hydrology-Soil-Vegetation Model. Consideration of spatial diagnostics in the calibration process has great potential to ensure a holistic representation of catchment dynamics as well as to increase confidence in conclusions from these types of modeling applications.

  17. Estimating net anthropogenic nitrogen inputs (NANI) in the Lake Dianchi basin of China

    NASA Astrophysics Data System (ADS)

    Gao, W.; Howarth, R. W.; Hong, B.; Swaney, D. P.; Guo, H. C.

    2014-08-01

    Net anthropogenic nitrogen inputs (NANI) with components of atmospheric N deposition, synthetic N fertilizer, agricultural N fixation and N in net food and feed imports from 15 catchments in the Lake Dianchi basin were determined over an 11-year period (2000-2010). The 15 catchments range in size from 44 km2 to 316 km2 with an average of 175 km2. To reduce uncertainty from scale change methodology, results from data extraction by area-weighting and land use-weighting methods were compared. Results show that the methodology for extrapolating data from the county scale to watersheds has a great influence on NANI computation for catchments in the Lake Dianchi basin, and that estimates of NANI between the two methods have an average difference of 30% on a catchment basis, while a smaller difference (15%) was observed on the whole Lake Dianchi basin basis. The riverine N export has a stronger linear relationship with NANI computed by the land use-weighting method, which we believe is more reliable. Overall, nitrogen inputs assessed by the NANI approach for the Lake Dianchi basin are 9900 kg N km-2 yr-1, ranging from 6600 to 28 000 kg N km-2 yr-1 among the 15 catchments. Synthetic N fertilizer is the largest component of NANI in most subwatersheds. On average, riverine flux of nitrogen in catchments of the Lake Dianchi basin averages 83% of NANI, far higher than generally observed in North America and Europe. Saturated N sinks and a limited capacity for denitrification in rivers may be responsible for this high percentage of riverine N export. Overall, the NANI methodology should be applicable in small watersheds when sufficiently detailed data are available to estimate its components.

  18. Estimating net anthropogenic nitrogen inputs (NANI) in the Lake Dianchi Basin of China

    NASA Astrophysics Data System (ADS)

    Gao, W.; Howarth, R. W.; Hong, B.; Swaney, D. P.; Guo, H. C.

    2014-03-01

    Net anthropogenic nitrogen inputs (NANI) with components of atmospheric N deposition, synthetic N fertilizer, agricultural N fixation and N in net food and feed imports from 15 catchments in Lake Dianchi Basin were determined over an 11 year period (2000-2010). The 15 catchments range in size from 44 km2 to 316 km2 with an average of 175 km2. To reduce uncertainty from scale change methodology, results from data extracting by area-weighting and land use-weighting methods were compared. Results show that methodology for extrapolating data from county scale to watersheds has a great influence on NANI computation for catchments in the Lake Dianchi Basin, and estimates of NANI between two methods have an average difference of 30% on catchments basis while a smaller difference (15%) was observed on the whole Lake Dianchi Basin basis. The riverine N export has stronger linear relationship with NANI computed by land use-weighting method, which we believe is more reliable. Overall, nitrogen inputs assessed by the NANI approach for the Lake Dianchi Basin are 9900 kg N km-2 yr-1, ranging from 6600 to 28 000 kg N km-2 yr-1 among the 15 catchments. Synthetic N fertilizer is the largest component of NANI in most subwatersheds. On average, riverine flux of nitrogen in catchments of the Lake Dianchi Basin averages 83% of NANI, far higher than generally observed in North America and Europe. Saturated N sinks and limited capacity for denitrification in rivers may be responsible for this high percent of riverine N export. A negative intercept observed in the linear relationship between NANI and riverine N export suggests the influence of pollution control measures on N flux in small watershed. The NANI methodology should be applicable in small watersheds when sufficiently detailed data are available to estimate its components.

  19. Groundwater Response to Precipitation Variations and Increased Abstraction Rates in the Nasia Sub-catchment, Ghana

    NASA Astrophysics Data System (ADS)

    Oteng, F. M.; Alo, C. A.; Yidana, S. M.

    2014-12-01

    There is growing concern about the sustainable use of groundwater owing to changing climatic patterns and human activities. In this study, a calibrated transient groundwater flow model for the semiarid Nasia sub-catchment of the White Volta basin in Northern Ghana is used to assess the impacts of precipitation variations and increased abstraction rates on groundwater for the period 2012-2050. The climate forcing for the future projections is derived from bias-corrected output from multiple Coupled Model Intercomparison Project phase 5 (CMIP5) climate models. The spatial and temporal variations in groundwater recharge over the calibration period are presented in this study. Details of the hydraulic properties of the aquifer system, the transient recharge and the responses of the system to the scenarios of changing recharge and increasing abstraction rates are also presented. The model provides initial basis for assessing the impacts of climate change/variability on groundwater resources fortunes in parts of the White Volta basin.

  20. Characterization of the regional variability of flood regimes within the Omo-Gibe River Basin, Ethiopia

    NASA Astrophysics Data System (ADS)

    Yared, Adanech; Demissie, Solomon S.; Sivapalan, Murugesu; Viglione, Alberto; MacAlister, Charlotte

    2014-05-01

    Hydrological variability and seasonality is one of the Ethiopia's primary water resource management challenges. Variability is most obviously manifest in endemic, devastating droughts and floods. While the level of flooding is quite often extremely high and destroys human beings and property, in many cases flooding is of vital importance because the community benefits from flood recession agriculture. This is the case of the lower Omo plain whose agriculture is based on the regularity of the inundations due to flooding of the Omo Gibe River. The big flood in 2006, which caused death for more than 300 people and 2000 cattle, poses a dilemma. Flooding must be controlled and regulated in a way that the damages are reduced as much as possible but the flooding-related benefits are not lost. To this aim, characterization and understanding of hydrological variability of the Omo Gibe River basin is fundamental. The goal of this work is to extract the maximal amount of information on the hydrological variability and specially on the flooding regime from the few data available in the region. Because most of the basin is ungauged, hydrological information is reconstructed using the data from 9 gauged catchments. A daily water balance model has been developed, calibrated and validated for 9 gauged catchments and, subsequently, the parameters have been correlated to catchment characteristics in order to establish a functional relationship that allows to apply the model to ungauged catchments. Daily streamflow has been predicted for 15 ungauged catchments, which are assumed to comprehensively represent the hydrological variability of the Omo-Gibe River Basin. Even though both northern and southern catchments are affected by a strong seasonality of precipitation, with most of the rain falling in less than 3 months, most of the northern catchments are humid, while in the southern part of the Omo-Gibe River basin, the catchments are either humid, dry sub humid, semiarid or arid. As for climate, also landscape and vegetation cover is more homogeneous in the northern part of the Omo Gibe River basin than in the southern part. Consequently, the runoff variability reflects the interesting diversity of climate and landscape of the basin. The gradient of flooding regimes from the north to the south of the Omo Gibe River basin will be analysed and the impacts of possible regime changes will be discussed.

  1. Anthropogenic Signatures in Nutrient Loads Exported from Managed Catchments: Emergence of Effective Biogeochemical Stationarity

    NASA Astrophysics Data System (ADS)

    Basu, N. B.; Destouni, G.; Jawitz, J. W.; Thompson, S. E.; Rinaldo, A.; Sivapalan, M.; Rao, P. C.

    2010-12-01

    Examining the impacts of large-scale human modifications of watersheds (e.g., land-use intensification for food production; hydrologic modification though extensive tile-drainage, etc.) on the hydrologic and biogeochemical responses, and ecological impacts at various scales has been the focus of monitoring and modeling studies over the past two decades. Complex interactions between hydrology and biogeochemistry and the need to predict responses across scales has led to the development of detailed process based models that are computation intensive and calibration dependent. Despite the perceived complexity, our overall hypothesis is that human modifications and intensive management of these watersheds have led to more predictable responses, typical of an engineered, less-complex system rather than natural, complex systems. Thus, simpler and more efficient approaches can be used in these systems for predicting hydrologic and biogeochemical responses. It has been argued that human interferences and climate change may have contributed to the demise of hydrologic stationarity. However, our synthesis of observational data shows that anthropogenic impacts have also resulted in the emergence of effective biogeochemical stationarity in managed catchments. Long-term monitoring data from the Mississippi-Atchafalaya River Basin (MARB) and the Baltic Sea Drainage Basin (BSDB) reveal that inter-annual variations in loads (LT) for total-N (TN) and total-P (TP), and for geogenic constituents exported from a catchment are linearly correlated to discharge (QT), leading to temporal invariance of the flow-weighted concentration, Cf = (LT/QT). Emergence of this consistent pattern across diverse catchments is attributed to the anthropogenic legacy of accumulated nutrient sources generating memory, similar to ubiquitously present sources for geogenic constituents. These responses are characteristic of transport-limited systems. In contrast, in the absence of legacy sources in less-managed catchments, Cf values were highly variable and supply limited. We offer a theoretical explanation for the observed patterns at the event scale, and extend it to consider the stochastic nature of rainfall/flow patterns at annual scales. Our analysis suggests that (1) expected inter-annual variations in nutrient loads can be robustly predicted given discharge variations from hydro-climatic or anthropogenic forcing, and (2) water quality problems in receiving inland and coastal waters would persist until the accumulated storages of nutrients have been substantially depleted. The synthesis bears notable implications on catchment management and on global biogeochemical cycles.

  2. Flood risk assessment in small catchments

    NASA Astrophysics Data System (ADS)

    David, V.

    2009-04-01

    According to needs of better financial sources targeting in flash flood prevention in Czech Republic there is a demand on a tool which could find the most endangered localities within large areas. Therefore the methodology for small catchment classification from the point of view of floods connected with heavy rainfalls (flash floods) is being developed at the Department of Irrigation, Drainage and Landscape Engineering. The methodology classifies potential flood risk which is not expressed in probabilistic values but only categories. Main principle of the methodology is on use of risk matrix prepared for this purpose. The risk matrix combines two main aspects of risk which are hazard and vulnerability of urban areas. The classification is mostly based on spatial data and use of GIS, because measured data is often missing in small catchments. As a hazard the possibility of flash flood occurrence is understood. The hazard is being assessed using different factors which have significant influence on surface runoff process. These factors are so far climatic conditions expressed as totals of 24-hours rainfalls with different time of duration, slopes in catchments, shapes in catchments, soil conditions and land use conditions. As a vulnerability of urban areas a concentration of endangered building structures in potential floodplain is considered. Potential floodplains are determined with use of DEM analysis. First applicable version of the methodology is now already completed and is now in phase of testing and improvements. Application of the first version for the area of Central Bohemia region is presented on the poster. Acknowledgement This research was acomplished within national COST project OC189 „Flood risk and its prevention in small to medium catchments". The support is highly acknowledged.

  3. Characterisation of dispersion mechanisms in an urban catchment using a deterministic spatially distributed direct hydrograph travel time model

    NASA Astrophysics Data System (ADS)

    Rossel, F.; Gironas, J. A.

    2012-12-01

    The link between stream network structure and hydrologic response for natural basins has been extensively studied. It is well known that stream network organization and flow dynamics in the reaches combine to shape the hydrologic response of natural basins. Geomorphologic dispersion and hydrodynamic dispersion along with hillslope processes control to a large extent the overall variance of the hydrograph, particularly under the assumption of constant celerity throughout the basin. In addition, a third mechanism referred as to kinematic dispersion becomes relevant when considering spatial variations of celerity. On contrary, the link between the drainage network structure and overall urban terrain, and the hydrologic response in urban catchments has been much less studied. In particular, the characterization of the different dispersion mechanisms within urban areas remains to be better understood. In such areas artificial elements are expected to contribute to the total dispersion due to the variety of geometries and the spatial distribution of imperviousness. This work quantifies the different dispersion mechanisms in an urban catchment, focusing on their relevance and the spatial scales involved. For this purpose we use the Urban Morpho-climatic Instantaneous Unit Hydrograph model, a deterministic spatially distributed direct hydrograph travel time model, which computes travel times in hillslope, pipe, street and channel cells using formulations derived from kinematic wave theory. The model was applied to the Aubeniere catchment, located in Nantes, France. Unlike stochastic models, this deterministic model allows the quantification of dispersion mechanism at the local scale (i.e. the grid-cell). We found that kinematic dispersion is more relevant for small storm events, whereas geomorphologic dispersion becomes more significant for larger storms, as the mean celerity within the catchment increases. In addition, the total dispersion relates to the drainage area in a power law fashion. The kinematic dispersion is dominant until a threshold of 1 km2, where the geomorphologic dispersion becomes more important. Overall hillslopes are responsible for most of the dispersion, while the channels tend to counteract the increase of the geomorphologic dispersion with a negative kinematic dispersion. Finally, a simplification of the catchment structure in terms of the Horton-Strahler classification confirms the results above mentioned, and showed that geomorphologic dispersion is mostly due to high order elements. Overall the results obtained compared well to those hardly found in the literature, and validate the suitability of the U-McIUH model for simulating flow accumulation and hydrograph generation in urban catchments.

  4. Plio-Pleistocene drainage development in an inverted sedimentary basin: Vera basin, Betic Cordillera, SE Spain

    NASA Astrophysics Data System (ADS)

    Stokes, Martin

    2008-08-01

    The Vera basin is one of a series of interconnected Neogene-Quaternary sedimentary basins located within the Internal Zone of the Betic Cordillera (southeast Spain). Since the Pliocene the Vera basin has been subjected to low uplift rates (11-21 m Ma - 1 ) and inverted via compressive tectonics that are related to the ongoing oblique collision between the African and Iberian plates. Within this paper the sedimentary and geomorphic response to basin inversion is explored. Sedimentary processes and environments are established for key stratigraphic units of the Pliocene/Plio-Pleistocene basin fill and Pleistocene dissectional landscape. These data are subsequently utilised to reconstruct an evolving basin palaeogeography. Fault and uplift data are employed to discuss the role of tectonically driven basin inversion for controlling the resultant palaeogeographic changes and associated patterns of drainage development. During the Early-Mid Pliocene the Vera basin was characterised by shallow marine shelf conditions (Cuevas Formation). A major palaeogeographic reorganisation occurred during the Mid-Late Pliocene. Strike-slip movement along the eastern basin margin, coupled with uplift and basin emergence created a protected, partially enclosed marine embayment that was conducive for Gilbert-type fan-delta sedimentation from fluvial inputs along the northern and eastern basin margins (Espíritu Santo Formation). The Vera basin then became fully continental and internally drained through the development of a consequent drainage network that formed following the withdrawal of marine conditions during the Late Pliocene to Early Pleistocene. Alluvial fans developed along the northern and western basin margins, grading to a bajada and terminating in a playa lake in central basin areas (Salmerón Formation). During the Early-Mid Pleistocene a switch from basin infilling to dissection took place, recorded by alluvial fan incision, a switch to braided river sedimentation and fluvial incision into the underlying basin fill sediments and basin margin mountainous topography. Fluvial incision, headwards erosion, expansion and modification of the consequent drainage network is documented within a series of up to four major inset river terrace levels and associated landforms. Fluvial incision and drainage network expansion are attributed to differential uplift and the creation of regional gradients between adjacent basins. The relatively low Plio-Pleistocene uplift rate of the Vera basin (11-21 m Ma - 1 ) in comparison to adjacent basins (Sorbas: 80-160 m Ma - 1 ; Huercal-Overa: > 50 m Ma - 1 ) resulted in a switch from internal to external basin drainage. Ancestral forms of the principal drainage systems within the Vera basin: the Ríos Almanzora, Aguas and Antas, captured basins and mountain catchment areas to the north (Huercal-Overa basin), southwest (Sorbas basin) and west (Sierra de los Filabres range). The switch from basin infilling to fluvial dissection is coincident with a phase of Early-Mid Pleistocene compressional tectonics, expressed by extensional faulting. This deformation is probably linked to accelerated strike-slip movement along the Palomares Fault Zone. The faulting is superimposed onto the longer term pattern of Plio-Pleistocene uplift and basin inversion.

  5. Attributes for NHDPlus Catchments (Version 1.1)for the Conterminous United States: Contact Time, 2002

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This data set represents the average contact time, in units of days, compiled for every catchment of NHDPlus for the conterminous United States. Contact time, as described in Wolock and others (1989), is the baseflow residence time in the subsurface. The source data set was the U.S. Geological Survey's (USGS) 1-kilometer grid for the conterminous United States (D.M. Wolock, U.S. Geological Survey, written commun., 2008). The grid was created using a method described by Wolock and others (1997a; see equation 3). In the source data set, the contact time was estimated from 1-kilometer resolution elevation data (Verdin and Greenlee, 1996 ) and STATSGO soil characteristics (Wolock, 1997b). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

  6. Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: NLCD 2001 Imperviousness

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This data set represents the mean percent impervious surface from the Imperviousness Layer of the National Land Cover Dataset 2001 (LaMotte and Wieczorek, 2010), compiled for every catchment of NHDPlus for the conterminous United States. The source data set represents imperviousness for the conterminous United States for 2001. The Imperviousness Layer of the National Land Cover Data Set for 2001 was produced through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of Federal agencies (http://www.mrlc.gov), consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (USEPA), the U.S. Department of Agriculture (USDA), the U.S. Forest Service (USFS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (USFWS), the Bureau of Land Management (BLM), and the USDA Natural Resources Conservation Service (NRCS). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

  7. Root reinforcement and its implications in shallow landsliding susceptibility on a small alpine catchment

    NASA Astrophysics Data System (ADS)

    Morandi, M. C.; Farabegoli, E.; Onorevoli, G.

    2012-04-01

    Roots shear resistance offers a considerable contribution to hill-slope stability on vegetated terrains. Through the pseudo-cohesion of shrubs, trees and turf's roots, the geomechanical properties of soils can be drastically increased, exerting a positive influence on the hillslope stability. We analysed the shallow landsliding susceptibility of a small alpine catchment (Duron valley, Central Dolomites, Italy) that we consider representative of a wide altitude belt of the Dolomites (1800 - 2400 m a.s.l). The catchment is mostly mantled by grass (Nardetum strictae s.l.), with clustered shrubs (Rhododendron hirsutum and Juniperus nana), and trees (Pinus cembra, Larix decidua and Picea abies). The soil depth, investigated with direct and indirect methods, ranges from 0 to 180 cm, with its peak at the hollow axes. Locally, the bedrock, made of Triassic volcanic rocks, is deeply incised by the Holocene drainage network. Intensive grazing of cows and horses pervades the catchment area and cattle-trails occupy ca 20% of the grass cover. We used laboratory and field tests to characterize the geotechnical properties of these alpine soils; moreover we designed and tested an experimental device that measures, in situ, the shear strengths of the grass mantle. In the study area we mapped 18 shallow landslides, mostly related to road cuts and periodically reactivated as retrogressive landslides. The triggering mechanisms of these shallow landslides were qualitatively analysed at large scale and modelled at smaller scale. We used SHALSTAB to model the shallow landsliding susceptibility of the catchment at the basin scale and SLIDE (RocScience) to compute the Safety Factor at the versant scale. Qualitative management solutions are provided, in order to reduce the shallow landsliding susceptibility risk in this alpine context.

  8. Heavy metals in potable groundwater of mining-affected river catchments, northwestern Romania.

    PubMed

    Bird, Graham; Macklin, Mark G; Brewer, Paul A; Zaharia, Sorin; Balteanu, Dan; Driga, Basarab; Serban, Mihaela

    2009-12-01

    Groundwater, accessed using wells and municipal springs, represents the major source of potable water for the human population outside of major urban areas in northwestern Romania, a region with a long history of metal mining and metallurgy. The magnitude and spatial distribution of metal contamination in private-supply groundwater was investigated in four mining-affected river catchments in Maramure? and Satu Mare Counties through the collection of 144 groundwater samples. Bedrock geology, pH and Eh were found to be important controls on the solubility of metals in groundwater. Peak metal concentrations were found to occur in the Lapu? catchment, where metal levels exceed Dutch target and intervention values in up to 49% and 14% of samples, respectively. A 700 m wide corridor in the Lapu? catchment on either side of the main river channel was identified in which peak Cd (31 ?g l(-1)), Cu (50 ?g l(-1)), Pb (50 ?g l(-1)) and Zn (3,000 ?g l(-1)) concentrations were found to occur. Given the generally similar bedrock geologies, lower metal levels in other catchments are believed to reflect differences in the magnitude of metal loading to the local environment from both metal mining and other industrial and municipal sources. Sampling of groundwater in northwestern Romania has indicated areas of potential concern for human health, where heavy metal concentrations exceed accepted environmental quality guidelines. The presence of elevated metal levels in groundwater also has implications for the implementation of the EU Water Framework Directive (WFD) and achieving 'good' status for groundwater in this part of the Danube River Basin District (RBD). PMID:19301128

  9. A 1000-year history of large floods in the Upper Ganga catchment, central Himalaya, India

    NASA Astrophysics Data System (ADS)

    Wasson, R. J.; Sundriyal, Y. P.; Chaudhary, Shipra; Jaiswal, Manoj K.; Morthekai, P.; Sati, S. P.; Juyal, Navin

    2013-10-01

    Determining the frequency, magnitude and causes of large floods over long periods in the flood-prone Himalaya is important for estimating the likelihood of future floods. A thousand year record (with some information from 2600 years ago) of the frequency and some estimates of velocities and discharges of large floods has been reconstructed in the Upper Ganga catchment, India, using written reports, litho-stratigraphy and sedimentology, and dated by optical and radiocarbon methods. In the Upper Ganga catchment rainfall triggers large landslides that dam rivers and release large amounts of water when they burst, thereby amplifying the effects of rainfall. The large floods in the catchment may be the result of landslide dam bursts rather than glacial lake bursts, and these are likely to continue and possibly worsen as the monsoon intensifies over the next century. However preliminary information suggests that the recent devastating flood of June 2013 was the result of heavy rainfall not landslide dam bursts. The frequency record is non-random and shows a high frequency between AD 1000 and AD 1300 (omitting uncertainties), then a low frequency until a cluster of floods occurred about 200 years ago, then increased frequency. This temporal pattern is like but not identical with that in Peninsular India, and both appear to be the result of variations in the monsoon.

  10. Geodynamic basin classification

    SciTech Connect

    Klein, G.

    1987-05-01

    Four criteria (continental margin type, basin position within a plate, crustal type, geodynamic models and processes of basin formation) are used to classify sedimentary basins. Within plate interiors, cratonic margin basins and interior cratonic basins are distinguished by position on a tectonic plate. In passive margins, rift basins, aulacogens, and flexure basins are distinguished by orientation with respect to margins (rifts parallel and aulacogens normal to margins) and geodynamic process (rifts and aulacogens form by stretching, flexure basins by elastic or viscoelastic flexure). Basins associated with active continental margins are distinguished by position with respect to margin, crustal type, and stress regimen. Trench-slope basins involve compressional-extensional regimens, whereas trench basins, forearc basins and retroarc basins form in compressional regimes (retroarc basins on continental crust; forearc and trench basins occupy different positions on margin boundaries). Extensional intra-arc basins form on continental crust whereas backarc basins form by rifting oceanic crust and rapid thermal subsidence. Both pull-apart and transform basins form in transform margins by rifting and thermal subsidence with different translational stress regimens. In collision margins, foreland basins occur within continental plates, and superposed (or collage) basins occur along suture zones. Polyhistory basins include successor basins involving changing tectonic styles, and resurgent basins involving repeated tectonic styles. Many mapped basins show polyhistory. Thus the cratonic Illinois basin evolved through stages of a rift basin, followed by thermal subsidence akin to passive margins, followed by viscoelastic basin formation akin to a foreland basin.

  11. A general protocol for restoration of entire river catchments

    SciTech Connect

    Stanford, J.A.; Frissell, C.A.; Ward, J.V.; Coutant, C.C.; Williams, R.N.; Lichatowich, J.A.

    1996-05-28

    Large catchment basins may be viewed as ecosystems with interactive natural and cultural attributes. Stream regulation severs ecological connectivity between channels and flood plains by reducing the range of natural flow and temperature variation, reduces the capacity of the ecosystem to sustain native biodiversity and bioproduction and promotes proliferation of non-native biota. However, regulated rivers regain normative attributes, which promote recovery of native biota, as distance from the dam increases and in relation to the mode of regulation. Therefore, reregulation of flow and temperature to normative pattern, coupled with elimination of pollutants and constrainment of nonnative biota, can naturally restore damaged habitats from headwaters to mouth. The expectation is rapid recovery of depressed populations of native species. The protocol requires: restoration of seasonal temperature patterns; restoration of peak flows needed to reconnect and periodically reconfigure channel and floodplain habitats; stabilization of base flows to revitalize the shallow water habitats; maximization of dam passage to allow restoration of metapopulation structure; change in the management belief system to rely on natural habitat restoration as opposed to artificial propagation, installation of artificial instream structures (river engineering) and artificial food web control; and, practice of adaptive ecosystem management.

  12. Estimation of predictive hydrologic uncertainty using the quantile regression and UNEEC methods and their comparison on contrasting catchments

    NASA Astrophysics Data System (ADS)

    Dogulu, N.; López López, P.; Solomatine, D. P.; Weerts, A. H.; Shrestha, D. L.

    2015-07-01

    In operational hydrology, estimation of the predictive uncertainty of hydrological models used for flood modelling is essential for risk-based decision making for flood warning and emergency management. In the literature, there exists a variety of methods analysing and predicting uncertainty. However, studies devoted to comparing the performance of the methods in predicting uncertainty are limited. This paper focuses on the methods predicting model residual uncertainty that differ in methodological complexity: quantile regression (QR) and UNcertainty Estimation based on local Errors and Clustering (UNEEC). The comparison of the methods is aimed at investigating how well a simpler method using fewer input data performs over a more complex method with more predictors. We test these two methods on several catchments from the UK that vary in hydrological characteristics and the models used. Special attention is given to the methods' performance under different hydrological conditions. Furthermore, normality of model residuals in data clusters (identified by UNEEC) is analysed. It is found that basin lag time and forecast lead time have a large impact on the quantification of uncertainty and the presence of normality in model residuals' distribution. In general, it can be said that both methods give similar results. At the same time, it is also shown that the UNEEC method provides better performance than QR for small catchments with the changing hydrological dynamics, i.e. rapid response catchments. It is recommended that more case studies of catchments of distinct hydrologic behaviour, with diverse climatic conditions, and having various hydrological features, be considered.

  13. Andean Basins Morphometry: Assesing South American Large Rivers' Source Areas

    NASA Astrophysics Data System (ADS)

    Bean, R. A.; Latrubesse, E. M.

    2014-12-01

    Presently there are no regional-scale morphometric analyses of Andean fluvial basins. Therefore, we created a continental-scale database of these basins. Our data covers over an area 1,000,000 km2 of the Andes, from Venezuela to Argentina. These basins are the source of some of the largest rivers in the world including the Amazon, Orinoco, Parana, and Magdalena. Morphometric parameters including shape factor, relief ratio, longitudinal profiles and different indices of basin elevation were calculated based on the CGIAR SRTM 4.1 DEM (~90 m resolution). FAO Hydrosheds were used to segment the DEM by major catchment and then manually cut at the Andean zone. In the North and Central Andes, this produced over 500,000 subcatchments, which we reduced to 619 by setting minimum catchment area to 100 km2. We then integrate lithologic data from DNPM geologic data. Our results indicate that sedimentary lithologies dominate Central Andean catchments (n=268,k=4), which cover an area 767,00 km2, while the Northern Andean catchments (covering 350,000 km2) are more varied, dominated by volcanics in the Pacific (n=78), a sedimentary (48%) dominant mix in the Caribbean (n=138) and 60% sedimentary in the Amazon-Orinoco subregion catchments (n=138). Elevation averages are smallest in the north Andes and average maximum elevations (6,026 m) in the Argentinian catchments (n=65) of the Central Andes are the highest. Shape factors range from 0.49 to 0.58 in the North and 0.52 to 0.58 in the Central Andes. There are clear differences in all categories between region and subregion, but that difference does not hinge on a single morphometric or geologic parameter. Morphometric parameters at a watershed scale (listed in Table) are analyzed and hydrologic data from gauging stations throughout the Andes (n=100) are used to compare morphometric parameters with lithology and characteristics from the basin hydrograph (peak discharge timing, minimum and maximum discharge, and runoff).

  14. Establishing a connection between hydrologic model parameters and physical catchment signatures for improved hierarchical Bayesian modeling in ungauged catchments

    NASA Astrophysics Data System (ADS)

    Marshall, L. A.; Weber, K.; Smith, T. J.; Greenwood, M. C.; Sharma, A.

    2012-12-01

    In an effort to improve hydrologic analysis in areas with limited data, hydrologists often seek to link catchments where little to no data collection occurs to catchments that are gauged. Various metrics and methods have been proposed to identify such relationships, in the hope that "surrogate" catchments might provide information for those catchments that are hydrologically similar. In this study we present a statistical analysis of over 150 catchments located in southeast Australia to examine the relationship between a hydrological model and certain catchment metrics. A conceptual rainfall-runoff model is optimized for each of the catchments and hierarchical clustering is performed to link catchments based on their calibrated model parameters. Clustering has been used in recent hydrologic studies but catchments are often clustered based on physical characteristics alone. Usually there is little evidence to suggest that such "surrogate" data approaches provide sufficiently similar model predictions. Beginning with model parameters and working backwards, we hope to establish if there is a relationship between the model parameters and physical characteristics for improved model predictions in the ungauged catchment. To analyze relationships, permutational multivariate analysis of variance tests are used that suggest which hydrologic metrics are most appropriate for discriminating between calibrated catchment clusters. Additional analysis is performed to determine which cluster pairs show significant differences for various metrics. We further examine the extent to which these results may be insightful for a hierarchical Bayesian modeling approach that is aimed at generating model predictions at an ungauged site. The method, known as Bayes Empirical Bayes (BEB) works to pool information from similar catchments to generate informed probability distributions for each model parameter at a data-limited catchment of interest. We demonstrate the effect of selecting appropriately similar catchments when transferring model parameters to ungauged sites.

  15. Development of catchment research, with particular attention to Plynlimon and its forerunner, the East African catchments

    NASA Astrophysics Data System (ADS)

    Blackie, J. R.; Robinson, M.

    2007-01-01

    Dr J.S.G. McCulloch was deeply involved in the establishment of research catchments in East Africa and subsequently in the UK to investigate the hydrological consequences of changes in land use. Comparison of these studies provides an insight into how influential his inputs and direction have been in the progressive development of the philosophy, the instrumentation and the analytical techniques now employed in catchment research. There were great contrasts in the environments: tropical highland (high radiation, intense rainfall) vs. temperate maritime (low radiation and frontal storms), contrasting soils and vegetation types, as well as the differing social and economic pressures in developing and developed nations. Nevertheless, the underlying scientific philosophy was common to both, although techniques had to be modified according to local conditions. As specialised instrumentation and analytical techniques were developed for the UK catchments many were also integrated into the East African studies. Many lessons were learned in the course of these studies and from the experiences of other studies around the world. Overall, a rigorous scientific approach was developed with widespread applicability. Beyond the basics of catchment selection and the quantification of the main components of the catchment water balance, this involved initiating parallel process studies to provide information on specific aspects of catchment behaviour. This information could then form the basis for models capable of extrapolation from the observed time series to other periods/hydrological events and, ultimately, the capability of predicting the consequences of changes in catchment land management to other areas in a range of climates.

  16. Evolution of a trench-slope basin within the Cascadia subduction margin: the Neogene Humboldt Basin, California

    USGS Publications Warehouse

    McCrory, P.A.

    1995-01-01

    The Neogene Humboldt (Eel River) Basin is located along the north-eastern margin of the Pacific Ocean within the Cascadia subduction zone. This sedimentary basin originated near the base of the accretionary prism in post-Eocene time. Subduction processes since that time have elevated strata in the south-eastern portion of the basin above sea level. High-resolution chronostratigraphic data from the onshore portion of the Humboldt Basin enable correlation of time-equivalent lithofacies across the palaeomargin, reconstruction of slope-basin evolution, and preliminary delineation of climatic and tectonic influence on lithological variation. -from Author

  17. Collaborative Catchment-Scale Water Quality Management using Integrated Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Zia, Huma; Harris, Nick; Merrett, Geoff

    2013-04-01

    Electronics and Computer Science, University of Southampton, United Kingdom Summary The challenge of improving water quality (WQ) is a growing global concern [1]. Poor WQ is mainly attributed to poor water management and outdated agricultural activities. We propose that collaborative sensor networks spread across an entire catchment can allow cooperation among individual activities for integrated WQ monitoring and management. We show that sharing information on critical parameters among networks of water bodies and farms can enable identification and quantification of the contaminant sources, enabling better decision making for agricultural practices and thereby reducing contaminants fluxes. Motivation and results Nutrient losses from land to water have accelerated due to agricultural and urban pursuits [2]. In many cases, the application of fertiliser can be reduced by 30-50% without any loss of yield [3]. Thus information about nutrient levels and trends around the farm can improve agricultural practices and thereby reduce water contamination. The use of sensor networks for monitoring WQ in a catchment is in its infancy, but more applications are being tested [4]. However, these are focussed on local requirements and are mostly limited to water bodies. They have yet to explore the use of this technology for catchment-scale monitoring and management decisions, in an autonomous and dynamic manner. For effective and integrated WQ management, we propose a system that utilises local monitoring networks across a catchment, with provision for collaborative information sharing. This system of networks shares information about critical events, such as rain or flooding. Higher-level applications make use of this information to inform decisions about nutrient management, improving the quality of monitoring through the provision of richer datasets of catchment information to local networks. In the full paper, we present example scenarios and analyse how the benefits of collaborative information sharing can have a direct influence on agricultural practice. We apply a nutrient management scheme to a model of an example catchment with several individual networks. The networks are able to correlate catchment events to events within their zone of influence, allowing them to adapt their monitoring and control strategy in light of wider changes across the catchment. Results indicate that this can lead to significant reductions in nutrient losses (up to 50%) and better reutilization of nutrients amongst farms, having a positive impact on catchment scale water quality and fertilizer costs. 1. EC, E.C., Directive 2000/60/EC establishing a framework for Community action in the field of water policy, 2000. 2. Rivers, M., K. Smettem, and P. Davies. Estimating future scenarios for farm-watershed nutrient fluxes using dynamic simulation modelling-Can on-farm BMPs really do the job at the watershed scale? in Proc.29th Int.Conf System Dynamics Society, 2011. 2010. Washington 3. Liu, C., et al., On-farm evaluation of winter wheat yield response to residual soil nitrate-N in North China Plain. Agronomy Journal, 2008. 100(6): p. 1527-1534. 4. Kotamäki, N., et al., Wireless in-situ sensor network for agriculture and water monitoring on a river basin scale in Southern Finland: Evaluation from a data user's perspective. Sensors, 2009. 9(4): p. 2862-2883.

  18. Identification of the dominant runoff pathways from data-based mechanistic modelling of nested catchments in temperate UK

    NASA Astrophysics Data System (ADS)

    Ockenden, M. C.; Chappell, N. A.

    2011-05-01

    SummaryUnderstanding hydrological flow pathways is important for modelling stream response, in order to address a range of environmental problems such as flood prediction, prediction of chemical loads and identification of contaminant pathways for subsequent remediation. This paper describes the use of parametrically efficient, low order models to identify the dominant modes of stream response for catchments within the Upper Eden, UK. A first order linear model adequately identified the dominant mode in all but one of the sub-catchments. A consistent pattern of time constants and pure time delays between catchments was observed over different periods of data. In the nested catchments, time constants increased as the catchment size increased from 1.1 km 2 at Gais Gill (2-7 h) to 69.4 km 2 at Kirkby Stephen (5-10 h) to 223.4 km 2 at Great Musgrave (7-16 h) to 616.4 km 2 at Temple Sowerby (11-22 h), but Blind Beck (a small catchment 8.8 km 2, time constants 11-21 h) had time constants most similar to Temple Sowerby. This was attributed to a combination of the storage role of permeable rock strata, where present, and the effect of scale on sub-surface and channel routing. A first order model could not be identified for the 1.0 km 2 Low Hall catchment, which comprises permeable sandstone overlain by Quaternary sediments. A second-order model of Low Hall stream showed a higher proportion of water taking a slower pathway (76% via a slow pathway; time constant 252 h) than a model with the same structure for the 8.8 km 2 Blind Beck (46% via slow pathway; time constant 60 h), where only 38% of the basin was underlain by the same permeable sandstone. This highlights the need to quantify the role of deep pathways through permeable rock, where present, in addition to the effect of catchment size on response times.

  19. Preliminary Results of a Multi-Proxy Lake Sediment Core Study in East-Central France

    NASA Astrophysics Data System (ADS)

    Misner, T.; Meyers, S.; Rosenmeier, M.; Strano, S.; Straffin, E.

    2008-12-01

    This paper presents the preliminary results of a multi-proxy study of natural and human-induced changes in the Burgundian environment, as recorded in the sediment geochemistry of three small freshwater basins within the Arroux River Valley, east-central France. Accelerator mass spectrometry radiocarbon dates constrain the age of core material collected from the basins, and indicate that these mill and farm ponds were constructed by at least 1200 A.D. The pond sediments are predominantly massive, organic-rich muds that contain discrete sand and gravel lenses likely related to episodic flooding and/or basin drainage. In this study, continuous X-ray fluorescence (XRF) scanning is used to quantify bulk geochemical variability throughout the lake sediment cores, and to investigate specific elemental proxies for paleoenvironmental change (detrital flux, biogenic flux, and redox state). The high-resolution XRF data are supplemented by sediment magnetic susceptibility measurements, and organic matter concentration as determined by loss on ignition. These records demonstrate a general increase in detrital sediment input from 1200 to 1300 A.D., during a period of known regional agricultural expansion. We infer these changes to be the consequence of increased catchment soil erosion and material flux to the water bodies. The data also suggest changes in mill and farm pond primary productivity, also related to soil erosion and changing transport of soil nutrients to the basins. Near the onset of the Little Ice Age (ca. 1500 A.D.) pond productivity reductions are apparent, likely indicating colder climates. These mill and farm pond sedimentary archives, in conjunction with historic records, can be used to better understand past land management strategies. Furthermore, historically documented landscape changes can be examined within the context of prevailing climatic conditions over the last ~800 years in an effort to establish future best management practices and the most sustainable land uses under future climate change scenarios. This has broad implications not only for local research, but also for the global community of researchers interested in understanding how the sediment record from freshwater basins can be used to interpret past (and predict future) human and environmental impacts on the landscape.

  20. Transit Times as process-based tools to aid hydrological prediction in ungauged basins

    NASA Astrophysics Data System (ADS)

    Soulsby, C.; Tetzlaff, D.; Hrachowitz, M.

    2009-12-01

    Studies using conservative tracers (18O and Cl) have successfully constrained estimates of mean transit times (MTTs) in montane catchments and shown its value as an integrated metric of hydrological function. In such situations, MTTs have also been shown be highly variable (ranging from a few months to several years) but predictable from catchment soil cover and geomorphic properties, reflecting differences in streamflow generation processes. In this contribution we show how low parameter multiple regression models based on mapped catchment characteristics can be used to predict MTTs (with median errors ~0.26) for ungauged basins in the Scottish Highlands at scales from 0.5 to 1500km2. Moreover, MTTs in gauged catchments were found to be strongly correlated with flow statistics of the Mean Annual Flood (MAF), Q5 and Q95. Thus, for ungauged catchments, MTTs predicted from percentage cover of hydrologically responsive soils and drainage densities could be used to estimate the MAF, Q5 and Q95 with respective relative errors of 0.14, 0.11 and 0.28. This offers a parsimonious, but robust tool for estimating both high and low flow design statistics for ungauged upland basins. In addition, as well-constrained MTT estimates can obviously be used to gain a first approximation of catchment storage, this too can be predicted for ungauged sites indicating sensitivity to environmental change. The study demonstrates that MTTs have considerable potential for process-based prediction in ungauged basins in montane regions, where catchments are often under increasing development pressures but lacking basic hydrometric data.

  1. Reconnaissance de la structure géologique du bassin de saïss occidental, Maroc, par sondages électriquesPreliminary survey of the structure and hydrogeology of the western Saiss Basin, Morocco, using electrical resistivity

    NASA Astrophysics Data System (ADS)

    Essahlaoui, A.; Sahbi, H.; Bahi, L.; El-Yamine, N.

    2001-05-01

    A geophysical study, based on 96 electrical resistivity measurements with a line length up to 4 km, was performed in the southern and southwestern parts of the Meknes Plateau, Morocco, which is a part of the Saiss Basin, located between the Rif Range to the north and the Middle Atlas Range to the south. This basin, whose maximum depth is ˜ 1.5 km in the north, is filled with Triassic to Quaternary deposits overlying the Palæozoic basement and includes two main aquifers. The interpretation of the resistivity measurements, calibrated from deep boreholes, made it possible to obtain a new hydrogeological model for the Saiss Basin. The understanding of the basin structure is of primary importance for the water supply of this area, which has been affected by severe droughts in recent years.

  2. Subannual models for catchment management: evaluating model performance on three European catchments.

    PubMed

    Silgram, M; Schoumans, O F; Walvoort, D J J; Anthony, S G; Groenendijk, P; Stromqvist, J; Bouraoui, F; Arheimer, B; Kapetanaki, M; Lo Porto, A; Mårtensson, K

    2009-03-01

    Models' abilities to predict nutrient losses at subannual timesteps is highly significant for evaluating policy measures, as it enables trends and the frequency of exceedance of water quality thresholds to be predicted. Subannual predictions also permit assessments of seasonality in nutrient concentrations, which are necessary to determine susceptibility to eutrophic conditions and the impact of management practices on water quality. Predictions of subannual concentrations are pertinent to EC Directives, whereas load estimates are relevant to the 50% target reduction in nutrient loading to the maritime area under OSPAR. This article considers the ability of four models (ranging from conceptual to fully mechanistic), to predict river flows, concentrations and loads of nitrogen and phosphorus on a subannual basis in catchments in Norway, England, and Italy. Results demonstrate that model performance deemed satisfactory on an annual basis may conceal considerable divergence in performance when scrutinised on a weekly or monthly basis. In most cases the four models performed satisfactorily, and mismatches between measurements and model predictions were primarily ascribed to the limitations in input data (soils in the Norwegian catchment; weather in the Italian catchment). However, results identified limitations in model conceptualisation associated with the damping and lagging effect of a large lake leading to contrasts in model performance upstream and downstream of this feature in the Norwegian catchment. For SWAT applied to the Norwegian catchment, although flow predictions were reasonable, the large number of parameters requiring identification, and the lack of familiarity with this environment, led to poor predictions of river nutrient concentrations. PMID:19280032

  3. Future Water Supply and Demand in the Okanagan Basin, British Columbia: A Scenario-Based Analysis

    E-print Network

    decision-making. Keywords Water supply and demand . Integrated water resource model . Climate change-renewable sources, a changing climate, and increased demands for clean water (Sprague 2007). The Okanagan Basin in Canada in that it has a semi-arid climate, a small catchment for renewable water, and is undergoing

  4. Metaphor in Natural Resource Gaming: Insights from the RIVER BASIN GAME

    ERIC Educational Resources Information Center

    Lankford, Bruce; Watson, Drennan

    2007-01-01

    The RIVER BASIN GAME is a dialogue tool for decision makers and water users tested in Tanzania and Nigeria. It comprises a physical representation of a river catchment. A central channel flows between an upper watershed and a downstream wetland and has on it several intakes into irrigation systems. Glass marbles, representing water, roll down the…

  5. Precipitation in the Black Volta Basin of Western Africa

    NASA Astrophysics Data System (ADS)

    Oppong Kwakye, Stephen

    2015-04-01

    Precipitation is a climate variable that influences the hydrology and water resources of an area. The Black Volta basin in West Africa is a "fast developing" catchment which recently has the Bui Dam in Ghana with an installed capacity of about 400MW of power. The basin covers an area of about 150,000 km2 and spans from 7°N to 15°N and 5° 24`W to 1°W. For any hydrological or climate model, one has to know the spatial and or temporal trend of this important variable (i.e Precipitation). Again, with the impact of climate changes on hydrology, a deeper understanding of the Precipitation in an area is extremely justified. In this study, the annual rainfall cycles, annual sums of rainfall as well as what influences precipitation in the Black Volta Basin are investigated. Precipitation time series for about 20 stations ranging from 1961 to 2005 was used. At the end, the spatial interpolation method called Kriging is used to regionalize rainfall in the catchment and maps of long-term monthly and annual rainfall mean was produced. The results depict the different climates in the catchment which ranges from a sub-humid climate in the south to a semi-arid climate in the north of the basin. There is also a bi-modal annual rainfall cycle at the south of the catchment and a uni-modal cycle towards the north of the basin. The precipitation has a decreasing gradient towards the north of the basin which is all in consonant with previous studies and results by other researchers. A correlation analysis was performed on what influences precipitation in the catchment and at the end, it was revealed that the distances of the rain gauges from the coast influences precipitation and not the elevations. This knowledge was used as the external drift during the Kriging. These revelations would be very helpful during the set-up, calibration and validation of both hydrological and climate models.

  6. Parana basin

    SciTech Connect

    Zalan, P.V.; Wolff, S.; Conceicao, J.C.J.; Vieira, I.S.; Astolfi, M.A.; Appi, V.T.; Zanotto, O.; Neto, E.V.S.; Cerqueira, J.R.

    1987-05-01

    The Parana basin is a large intracratonic basin in South America, developed entirely on continental crust and filled with sedimentary and volcanic rocks ranging in age from Silurian to Cretaceous. It occupies the southern portion of Brazil (1,100,000 km/sup 2/ or 425,000 mi/sup 2/) and the eastern half of Paraguay (100,000 km/sup 2/ or 39,000 mi/sup 2/); its extension into Argentina and Uruguay is known as the Chaco-Parana basin. Five major depositional sequences (Silurian, Devonian, Permo-Carboniferous, Triassic, Juro-Cretaceous) constitute the stratigraphic framework of the basin. The first four are predominantly siliciclastic in nature, and the fifth contains the most voluminous basaltic lava flows of the planet. Maximum thicknesses are in the order of 6000 m (19,646 ft). The sequences are separated by basin wide unconformities related in the Paleozoic to Andean orogenic events and in the Mesozoic to the continental breakup and sea floor spreading between South America and Africa. The structural framework of the Parana basin consists of a remarkable pattern of criss-crossing linear features (faults, fault zones, arches) clustered into three major groups (N45/sup 0/-65/sup 0/W, N50/sup 0/-70/sup 0/E, E-W). The northwest- and northeast-trending faults are long-lived tectonic elements inherited from the Precambrian basement whose recurrent activity throughout the Phanerozoic strongly influenced sedimentation, facies distribution, and development of structures in the basin. Thermomechanical analyses indicate three main phases of subsidence (Silurian-Devonian, late Carboniferous-Permian, Late Jurassic-Early Cretaceous) and low geothermal gradients until the beginning of the Late Jurassic Permian oil-prone source rocks attained maturation due to extra heat originated from Juro-Cretaceous igneous intrusions. The third phase of subsidence also coincided with strong tectonic reactivation and creation of a third structural trend (east-west).

  7. Are transit times key process-based tools for regional classification and prediction in ungauged basins?

    NASA Astrophysics Data System (ADS)

    Tetzlaff, D.; Soulsby, C.; Hrachowitz, M.; Speed, M.

    2009-04-01

    In recent years, transit times (TTs) have been increasingly explored as a process-based tools for conceptualising hydrological processes in an integrated manner at a range of scales. Traditionally the identification of the appropriate transit time distribution (TTD) for a hydrological system (e.g. hillslope or catchment), and the derivation of metrics such as the mean transit time (MTT) have required quantitative assessment of input-output relationships for conservative tracers using lumped parameter models. Such work has allowed the main landscape controls on TTs to be identified and facilitated the prediction of MTT in ungauged basins in particular geomorphic provinces. This has shown TT to be a useful diagnostic index of similarity that can be valuable in process-based catchment classification. In this contribution, we used well-constrained MTT estimates (with uncertainty) from 32 experimental catchments (1 to 250km2 in area) with contrasting geologic, topographic, pedologic and climatic characteristics in Scotland. The MTT was highly variable ranging from 30 days to ca. 1200 days for individual catchments. Moreover, MTT was also found to be closely correlated with key hydrometric design statistics such as the Q95, Q5, Mean Annual Flood (MAF) and the slope of the hydrograph recession curve. Analysis of the TT estimates, in conjunction with GIS-based quantitative assessment of key landscape controls, showed that MTT could be predicted to within 25% for ungauged basins from catchment soil cover, drainage density and topographic wetness index. For ungauged basins it was found that the hydrometric design statistics (Q95, Q5, MAF and the recession slope) could be more simply and accurately forecasted from MTT predictions than a single set of catchment characteristics. We demonstrate that TTs - predicted from mapped landscape characteristics - are useful integrating diagnostic metrics for regional classification, prediction and process assessment in ungauged montane basins. This is an important advance as montane headwaters are often data poor but critical environments influencing the quantity, quality and ecology of downstream flows.

  8. Similarity and scale in catchment storm response

    NASA Technical Reports Server (NTRS)

    Wood, Eric F.; Sivapalan, Murugesu; Beven, Keith

    1993-01-01

    Until recently, very little progress had been made in understanding the relationship between small-scale variability of topography, soil, and rainfalls and the storm response seen at the catchment scale. The work reviewed here represents the first attempt at a systematic theoretical framework for such understanding in the context of surface runoff generation by different processes. The parameterization of hydrological processes over a range of scales is examined, and the concept of the 'representative elementary area' (REA) is introduced. The REA is a fundamental scale for catchment modeling at which continuum assumptions can be applied for the spatially variable controls and parameters, and spatial patterns no longer have to be considered explicitly. The investigation of scale leads into the concept of hydrologic similarity in which the effects of the environmental controls on runoff generation and flood frequency response be investigated independently of catchment scale. The paper reviews the authors' initial results and hopefully will motivate others to also investigate the issues of hydrologic scale and similarity.

  9. Estimation of total nitrogen and total phosphorus in streams of the Middle Columbia River Basin (Oregon, Washington, and Idaho) using SPARROW models, with emphasis on the Yakima River Basin, Washington

    USGS Publications Warehouse

    Johnson, Henry M.; Black, Robert W.; Wise, Daniel R.

    2013-01-01

    The watershed model SPARROW (Spatially Related Regressions on Watershed attributes) was used to predict total nitrogen (TN) and total phosphorus (TP) loads and yields for the Middle Columbia River Basin in Idaho, Oregon, and Washington. The new models build on recently published models for the entire Pacific Northwest, and provide revised load predictions for the arid interior of the region by restricting the modeling domain and recalibrating the models. Results from the new TN and TP models are provided for the entire region, and discussed with special emphasis on the Yakima River Basin, Washington. In most catchments of the Yakima River Basin, the TN and TP in streams is from natural sources, specifically nitrogen fixation in forests (TN) and weathering and erosion of geologic materials (TP). The natural nutrient sources are overshadowed by anthropogenic sources of TN and TP in highly agricultural and urbanized catchments; downstream of the city of Yakima, most of the load in the Yakima River is derived from anthropogenic sources. Yields of TN and TP from catchments with nearly uniform land use were compared with other yield values and export coefficients published in the scientific literature, and generally were in agreement. The median yield of TN was greatest in catchments dominated by agricultural land and smallest in catchments dominated by grass and scrub land. The median yield of TP was greatest in catchments dominated by forest land, but the largest yields (90th percentile) of TP were from agricultural catchments. As with TN, the smallest TP yields were from catchments dominated by grass and scrub land.

  10. Selected Micropollutants as Indicators in a Karst Catchment

    NASA Astrophysics Data System (ADS)

    Zirlewagen, Johannes; Schiperski, Ferry; Hillebrand, Olav; Nödler, Karsten; Licha, Tobias; Scheytt, Traugott

    2015-04-01

    High flow dynamics and variations in water quality are typical for karst springs and reflect the complex interaction of different flow and storage components within a karst system. Event-based monitoring of mobile micropollutants in spring water combined with information on their input is used (1) to quantify the impact of certain contamination scenarios on spring water quality and (2) to gain additional information on the intrinsic characteristics of a karst system. We employ the artificial sweeteners acesulfame and cyclamate as source specific indicators for sewage along with the herbicides atrazine and isoproturon for agriculture. The study site is the 45 km² rural catchment of the perennial karst spring Gallusquelle in SW-Germany (mean discharge: 0.5 m³/s). Overflow events of a stormwater detention basin (SDB, combined sewer system) are known to impact water quality. Most of the sewer system is situated in the SW of the catchment. Most agricultural land is found in the NE. Neither atrazine nor significant amounts of isoproturon were detected in wastewater. Concentrations and mass fluxes of acesulfame and cyclamate in wastewater were determined. The combined evaluation of the persistent compound acesulfame with the rather degradable cyclamate allows for the distinction of long and short transit times and thus slow and fast flow components. The same applies for atrazine (persistent) and isoproturon (degradable). In Germany, acesulfame was licensed in 1990, atrazine was banned shortly after, in 1991. During low flow conditions only atrazine (max. 4 ng/L) and acesulfame (max. 20 ng/L) were detected in spring water. After a recharge event without SDB overflow concentrations as well as mass fluxes of both compounds decreased, reflecting an increasing portion of event water in spring discharge. A breakthrough of isoproturon (max. 9 ng/L) indicated the arrival of water from croplands. After a recharge event accompanied by a SDB overflow cyclamate was detected at max. 28 ng/L. Simultaneously, acesulfame concentrations show superposition of background dilution (old component) and a breakthrough (fresh component, max. 22 ng/L). 1-D-transport-modelling of the cyclamate breakthrough revealed results that are in good agreement with the results of other studies. Analyses of micropollutants might become very sensitive tools in karst hydrogeology where natural background concentrations and signal dampening are limiting factors for conventional investigation methods.

  11. Variability of suspended sediment yields within the Loire river basin (France)

    NASA Astrophysics Data System (ADS)

    Gay, A.; Cerdan, O.; Delmas, M.; Desmet, M.

    2014-11-01

    Suspended sediment fluxes and their variability in time and space have received much attention over the past decades. Large databases compiling suspended sediment load (SL) data are often used to serve these purposes. Analyses of these databases have highlighted the following two major limitations: (i) the role of lowland areas in sediment production and transfer has been minimised, and studies on small-scale catchments (with a drainage area of ?102 km2) are practically non-existent in the literature; and (ii) inhomogeneous data and calculation methods are used to estimate and compare the SL values. In this context, the present study aims to complete the existing studies by providing a reliable comparison of SL values for various catchments within lowland river basins. Therefore, we focused on the Loire and Brittany river basins (France). 111 small to large catchments covering 78% of this area and representative of the basins landscape diversity were chosen. We first present a large database of area-specific suspended sediment yields (SY) calculated from the suspended sediment concentration and flow discharge data over 7-40 yr of measurements at gauging stations. Two calculation methods are used, and the calculated loads are confined within a factor of 0.60-1.65 of the real values. Second, we analyse the temporal and spatial variability of the calculated SY values. Finally, using a nested catchment approach, we provide insight into sediment transport from upstream to downstream gauging stations and into the role of small- and medium- scale catchments in sediment production and transfers. The SL values at the outlet of the catchments range from 2.5 * 102 to 8.6 * 105 t yr-1, and the SY values range from 2.9 to 32.4 t km-2 yr-1. A comparison with the limited values available in the literature for this region corroborates our estimations. Sediment exports from the Loire and Brittany river basins are very low compared with mountainous regions and European exports. However, a strong spatial variability within this territory exists. The expected results on the SY spatial pattern distribution and the correlation between SY values and basin sizes are not observed. An analysis of the SY values at different time steps shows a strong effect of the seasonal availability of detached particles to be transported with a high concentration of suspended sediments during the winter and lower values during the summer and autumn. Annual variations are also observed, with export values varying by a factor 2 to 10 between years for one catchment and the amplitude of the annual variations varying between catchments. The influence of rainfall in the sediment exports is predominant, but investigations on physical characteristics of each catchment (e.g., lithology, slope, land use) are required to better understand the production and transfer processes within a drainage basin. These annual variations imply that long-term data are required to provide mean SY values representative of the catchment functioning. From our calculations, 18 complete years of data are required to obtain a mean SY value with less than 10% of variation on average around the mean. From our results on nested catchments over a long-time scale (40 yr), it appears that most of the suspended sediment load entering the water system is transported downstream. Covariations of the annual-SY values are generally observed for two gauging stations located on the same river. The nested catchment approach is an interesting tool for the identification of active sediment sources within a large catchment and for the construction of detailed sediment budgets.

  12. Quantification of fluvial bedload transport in glacier-connected steep mountain catchments in western Norway

    NASA Astrophysics Data System (ADS)

    Beylich, Achim A.; Laute, Katja

    2015-04-01

    Contemporary fluvial bedload transport rates are still very difficult to measure and, as a result of this, in many sites only quantitative data on fluvial suspended and solute transport are included in sediment budget studies carried out for defined drainage basin systems. During the years 2010-2013 detailed field measurements with portable impact sensors as a non-invasive technique for indirectly determining fluvial bedload transport intensity were conducted in two instrumented drainage basin systems (Erdalen and Bødalen) in the fjord landscape in western Norway. The collected impact sensor field data were calibrated with laboratory flume experiments, and the data from the impact sensor field measurements and the flume experiments were combined with field data from continuous discharge monitoring, repeated surveys of channel morphometry and sediment texture, particle tracer measurements, Helley-Smith samplings, underwater video filming and biofilm analyses. The combination of methods and techniques applied provides insights into the temporal variability and intensity of fluvial bedload transport in the selected mountain streams of both drainage basin systems. The conducted analysis of fluvial bedload dynamics in different defined subsystems of Erdalen (79.5 km2) and Bødalen (60.1 km2) provides information on (i) detectable relevant sediment sources, (ii) instream channel storage of bedload material, (iii) spatiotemporal variability and controls of bedload transport rates and bedload yields, and (iv) the absolute and relative importance of fluvial bedload transport within the sedimentary budgets of these steep cold climate mountain catchments. Rockfalls, snow avalanches, stream channel bank erosion, and fluvial transfers through small tributaries draining slope systems are relevant sediment sources for fluvial bedload transport in the main stream channels, whereas the main outlet glaciers in both catchment systems are not of importance as all bedload material delivered directly from these outlet glaciers is trapped within proglacial lakes. Snow avalanches are the most important sediment source in Erdalen, whereas fluvial transfers through small tributaries followed by snow avalanches are most important in Bødalen. Narrow valleys within both drainage basin systems are characterized by a higher intensity of slope-channel coupling and display higher rates of sediment supply from slopes into main stream channels than wider valleys. Longer-term, instream channel storage is not of great importance in the steep Bødalen catchment but currently plays an important role within the Erdalen drainage basin, which is characterized by a stepped longitudinal main valley bottom profile favoring deposition of bedload material within the less steep main channel reaches. The computed mean annual bedload yields (2010-2013) are 2.4 t km-2y-1 for the entire Erdalen and 13.3 t km-2y-1 for the entire Bødalen, which are comparably low values for steep and partly glacierized catchment systems. Because of supply-limited conditions, the intensity of fluvial bedload transport is generally more related to the availability of sediments than to channel discharge. Fluvial bedload transport accounts for about one-third of the total fluvial transport in both drainage basin systems.

  13. Connectivity from source to sink in a lowland area: the Loire river basin (France)

    NASA Astrophysics Data System (ADS)

    Gay, Aurore; Cerdan, Olivier; Degan, Francesca; Salvador, Sebastien

    2014-05-01

    Sediment connectivity relates to the transfer of sediments from sources to sinks via runoff and in channel transport. It is highly dependent on spatial variability of landscape properties such as differences in morphology, land use and infiltration/runoff characteristics but may also vary in time due to differences in rainfall amount/intensity and changes in vegetation cover throughout the year. In the Loire river basin, we found that sediment fluxes displayed strong variations in space but also at the interannual and seasonnal time scales (Gay et al. 2013). In this context, our goal is to better understand and quantify hillslope sediment redistributions within this lowland area thanks to the use of semi distributed connectivity approach. To this aim, Borselli's index of connectivity (IC, Borselli et al., 2008) is selected to assess hillslope connectivity at annual and seasonal time scales. Several improvements are proposed to take into account the coupling of the structural landscape connectivity and its hydrosedimentary response. Parameters such as rainfall intensity and differences in seasonal land cover are integrated into the model to account for landscape variations through time. Infiltration and runoff indices were also tested. Preliminary results confirm the variability of landscape connectivity throughout the year. The integration of the index of infiltration and runoff properties of landscape (IDPR) as defined by Mardhel et al. 2004 seems to improve the IC model outputs. From this first step, in-stream sediment connectivity index should be developed for a better understanding and assessment of sediment redistributions at the entire catchment scale. L. Borselli L., Cassi P., Torri D. Prolegomena to sediment and flow connectivity in the landscape: a GIS and field numerical assessment. Catena, 75 (2008), pp. 268-277 Gay A., Cerdan O., Delmas M., Desmet M., Variability of sediment yields in the Loire river basin (France): the role of small scale catchments (under review). Mardhel V., Frantar P., Uhan J., Mio A. Index of development and persistence of the river networks as a component of regional groundwater vulnerability assessment in Slovenia.Int. Conf. groundwater vulnerability assessment and mapping. Ustron, Poland, 15-18 June 2004.

  14. Transient sediment supply in a high-altitude Alpine environment evidenced through a 10Be budget of the Etages catchment (French Western Alps)

    NASA Astrophysics Data System (ADS)

    Delunel, Romain; van der Beek, Peter; Carcaillet, Julien; Bourlès, Didier; Schlunegger, Fritz

    2013-04-01

    Although 10Be concentrations in stream sediments provide useful synoptic views of catchment-wide erosion rates, they cannot be used to identify the intrinsic spatial variability of erosion and sediment discharge within a catchment. Therefore we measured 10Be concentrations (n = 19) of different morphologic features and detrital material resulting from high-altitude erosion processes that ultimately feed the sediment routing system. We focussed on the Etages catchment (~14 km2, Ecrins-Pelvoux massif, French Western Alps), located within the altitudinal range where periglacial and especially frost-controlled processes are the most efficient. This catchment also hosts a small cirque-glacier, which is a relict from the Little Ice Age (LIA) glacial advance. Thus, this basin allows identifying the glacial influence on 10Be concentrations in stream sediments. 10Be concentrations vary from ~0.1×105 to 4.5×105 atoms g-1 in the Etages catchment, while displaying consistent 10Be signature within each representative source. 10Be contents of glacial materials vary from 0 (i.e. undistinguishable from procedural blanks) close to the present-day glacier position to ~0.3×105 atoms g-1 towards the LIA moraines. Debris-flow material collected at different catchment levels has slightly higher 10Be concentrations (~0.4-0.7×105 atoms g-1). Regolith material collected close to the highest crests (morphologic features currently affected by frost-cracking processes) carries much higher concentrations (~1.3-1.8×105 atoms g-1), while bare rock surfaces are also characterized by relatively high and heterogeneous 10Be concentrations ranging from ~1.4 to 4.5×105 atoms g-1. Finally, stream sediments collected along the main stream and at the catchment outlet carry 10Be concentrations of only ~0.2×105 atoms g-1, without any downstream trends. We interpret these 10Be concentration measurements combining a geomorphological map and surface 10Be production-rate estimates within a mass-balance model. We show that the 10Be signature of sediments exported from the Etages catchment does not fulfil the steady-state equilibrium required for inferring catchment-wide denudation rates. Most important, the 10Be concentrations measured in the alluvial sediments along the stream reflect the glacial material signature, showing that the Holocene variability in denudation has not imprinted on the 10Be concentration of the trunk stream yet and implying a strong transient state in this high-elevation catchment of the Alps.

  15. Miocene tephrochronology in the northern Basin and Range

    SciTech Connect

    Perkins, M.E.; Brown, F.H.; Nash, W.P. . Dept. of Geology and Geophysics)

    1993-04-01

    Silicic air-fall tephra layers with unaltered glass shards preserved in Miocene basins of the northern Basin and Range Province (NBR) were sampled from well-exposed sections in the Goose Creek (GCB) and Ibapah (IB) basins in the northeastern NBR, and the El Pasco basin (EPB) in the southwestern NBR. Each basin may contain up to 50 tephras. Glass shards from individual tephras in any one basin are compositionally distinct, as shown by XRF and electron microprobe analysis. Seventeen tephra correlate between two or more basins; 12 of these are regionally important, providing precise stratigraphic ties across the NbR. Four regionally correlative tephras are white biotitic ashes from southern Nevada sources, whereas eight are gray vitric ashes from Yellowstone hot spot sources. Dates on tephra layers and lava flows in the basins, and on ashflow units correlated with four other tephra provide a preliminary chronology for the tephra in the all basins. In each section [Delta]h/[Delta]t appears constant on time scales [>=]1 Ma, but variation in [Delta]h/[Delta]t is demonstrated from IB, and is likely typical of all basins. Sedimentation in all five basins begins in the time interval of 14.5--12.5 Ma, which may represent the beginning of a phase of regional extension in the NBR. Post-[approximately]9.5 Ma deformation has affected all basins and likely contributed to the termination of sedimentation in the exposed areas of these basins.

  16. Dynamics of nitrate and chloride during storm events in agricultural catchments with different subsurface drainage intensity (Indiana, USA)

    NASA Astrophysics Data System (ADS)

    Kennedy, Casey D.; Bataille, Clement; Liu, Zhongfang; Ale, Srinivasulu; VanDeVelde, Justin; Roswell, Charles R.; Bowling, Laura C.; Bowen, Gabriel J.

    2012-10-01

    SummaryDrainage tiles buried beneath many naturally poorly drained agricultural fields in the Midwestern U.S. are believed to "short circuit" pools of NO3--laden soil water and shallow groundwater directly into streams that eventually discharge to the Mississippi River. Although much is known about the mechanisms controlling this regionally pervasive practice of artificial drainage at the field-plot scale, an integrative assessment of the effect of drainage density (i.e., the number of tile drains per unit area) on the transport of nutrients and solutes in streams at the catchment scale is lacking. In this study, we quantified the flux and hydrological pathways of agricultural NO3- and road-salt Cl- from catchments lying within the Wabash River Basin, a major source of NO3- to the Mississippi River. The paired catchments differ primarily in drainage density (70% vs. 31%, by catchment area), with essentially all other agricultural management, land use, and soil drainage characteristics remaining equal. Our study revealed two significant hydrological responses to increased drainage density: (1) more near-surface storm event water (dilute in both NO3- and Cl) was transported early in the storm and (2) higher transport of Cl--laden pre-event soil water relative to shallow groundwater elevated in NO3- occurred later in the storm. These patterns are consistent with a proposed conceptual model in which increased drainage density results in (1) greater transport of soil water to streams and (2) a delayed rise in the water table. With respect to nutrient management implications, these results indicate that increased drainage density impacts subsurface pools of Cl- and NO3- differently, a finding that we propose is linked to soil/ground water dynamics in artificially drained agricultural catchments.

  17. Runoff modelling and the contribution of snow and glacier melt to the discharge for highly glacierized catchments in Norway

    NASA Astrophysics Data System (ADS)

    Engelhardt, Markus; Schuler, Thomas V.; Andreassen, Liss M.

    2013-04-01

    In highly glacierized catchments snow and ice melt are the most important contributors to the magnitude and variations in streamflow. In Norway, 98 % of the electricity is generated by hydropower of which 15 % is based on discharge from glacierized basins. Thus, the assessment of water availability is crucial for hydropower applications. Changes in discharge are connected to both, changes in temperature and precipitation and can be amplified or balanced by the presence of a glacier in the catchment. Therefore, variations in annual glacier mass balances alter the streamflow regime. With ongoing climate change, it is expected to see major changes in timing and magnitude of future water availability. Daily discharge rates are available for the catchments of Nigardsbreen (64 km², since 1962) and for Storbreen (8 km², since 2010). These measurements are compared with simulated discharge rates calculated from a melt model for both, the glacierized and non-glacierized parts of the catchment. The model uses runs gridded temperature and precipitation from seNorge (http://senorge.no) as input and runs on a daily time step from 1957 to present. It accounts for evaporation, retention of surface water, refreezing processes and transformation of snow to firn and ice. The simulated discharge data can be split up into their water sources rain, ice and firnmelt, snowmelt on and outside the glacier. For validation of the melt model, both measured seasonal and annual mass-balance measurements of the glacier are used. In addition, daily melt rates were compared with measurements from sonic rangers located in the ablation zones of Storbreen (1580 m a.s.l.) and Nigardsbreen (600 and 1000 m a.s.l.). First results from different catchments in Norway show that the on average 20 % increase in discharge in the 2000s compared to the 1990s is mainly caused by increased icemelt and to a lesser extend by increased precipitation. The increase in discharge is accompanied by increased interannual variations.

  18. Permian Basin

    SciTech Connect

    Donaldson, D.A.

    1981-12-01

    A description of the geology of the Permian Basin of the West Texas And Southeastern New Mexico was presented. Also, a brief history of the petroleum and natural gas drilling in the region was given. It was concluded that the New Mexico portion of the Permian Basin has the greatest potential for future fuel production. During 1980, there were 646 oil well completions, and 168 dry holes were recorded in southeast New Mexico. The average total depths of new wells completed was 4,901 feet for oil wells, 8,987 feet for gas wells, and 6,250 feet for dry holes.

  19. Contextualising impacts of logging on tropical rainforest catchment sediment dynamics using the stratigraphic record of in-channel bench deposits

    NASA Astrophysics Data System (ADS)

    Blake, Will; Walsh, Rory; Bidin, Kawi; Annammala, Kogila

    2015-04-01

    It is widely recognised that commercial logging and conversion of tropical rainforest to oil palm plantation leads to enhanced fluvial sediment flux to the coastal zone but the dynamics of delivery and mechanisms that act to retain sediment and nutrients within rainforest ecosystems, e.g. riparian zone and floodplain storage, are poorly understood and underexploited as a management tool. While accretion of lateral in-channel bench deposits in response to forest clearance has been demonstrated in temperate landscapes, their development and value as sedimentary archives of catchment response to human disturbance remains largely unexplored in tropical rainforest river systems. Working within the Segama River basin, Sabah, Malaysian Borneo, this study aimed to test the hypothesis that (1) lateral bench development in tropical rainforest rivers systems is enhanced by upstream catchment disturbance and that (2) the sedimentary record of these deposits can be used to infer changes in sediment provenance and intensification of sediment flux associated with logging activities. Sediment cores were taken from in-channel bench deposits with upstream catchment contributing areas of 721 km2 and 2800 km2 respectively. Accretion rates were determined using fallout 210Pb and 137Cs and the timing of peak accumulation was shown to correspond exactly with the known temporal pattern of logging and associated fluvial sediment response over the period 1980 to present following low pre-logging rates. Major and minor element geochemistry of deposits was used to assess the degree of weathering that deposited sediment had experienced. This was linked to surface (heavily weathered) and subsurface (less weathered) sediment sources relating to initial disturbance by logging and post-logging landsliding responses respectively. A shift in the dominant source of deposited material from surface (i.e. topsoil) to subsurface (i.e. relatively unweathered subsoil close to bedrock) origin was observed to coincide with the increase in accretion rates following logging of steep headwater slopes. Coherence of sedimentary, monitoring and observational evidence demonstrates that in-channel bench deposits offer a previously unexplored sedimentary archive of catchment response to logging in tropical rainforest systems and a tool for evaluating the erosional responses of ungauged basins. In-channel bench development due to catchment disturbance may augment ecosystem services provided by the riparian corridors of larger rivers and process knowledge gained from sedimentary archives can be used to underpin future riparian and catchment forest management strategies.

  20. Seasonal Accumulation and Depletion of Localized Sediment Stores of Four Headwater Catchments in the Sierra Nevada Mountains, California

    NASA Astrophysics Data System (ADS)

    Martin, S. E.; Conklin, M. H.; Bales, R. C.

    2012-12-01

    Seasonal turbidity patterns and event-level hysteresis analysis of turbidity verses discharge in four 1 km2 headwater catchments indicate localized in-channel sediment sources and a seasonal accumulation-depletion pattern of stream sediments. Our hypothesis is that during low-flow periods, sediment accumulates at the toe of banks and is entrained and transported downstream during high-flow events, with successive storm events depleting sediment stores. Turbidity signals were analyzed during fall rain events, early to mid-winter snow-melt events, spring snow-melt, and summer dry periods. Two catchments in the American River basin at approximately 1580 m elevation and two catchments in the Merced River basin at approximately 1760 meters elevation were used in this study. All study catchments are characterized by a Mediterranean climate with a distinct wet and dry season and are in the rain-snow transition zone, with snow making up roughly 40 to 60 percent of average annual precipitation. Turbidity events tend to be infrequent and of short duration in these basins. Seasonal patterns within the four catchments include more turbidity events associated with fall rainstorms and early to mid- winter melt events than associated with peak snow-melt. When multiple discharge events occurred in succession, the largest turbidity spike was often associated with the first event and not necessarily associated with the largest discharge event. This pattern is indicative of a seasonal depletion of localized sediment stores, with the majority of accumulated sediment being transported in the first storm, leaving less available for subsequent events. Turbidity spikes were also seen during base-flow periods when no discharge events were occurring, likely from the buildup of organic matter rather than the movement of mineral-based materials. An examination of hysteresis loops for individual storm events showed that a clockwise pattern, where turbidity peaks before discharge, was dominant suggesting a localized sediment source. In successive storm events, hysteresis loops shifted from a clockwise pattern to a more random pattern, with turbidity and discharge peaking concurrently. This delay in the turbidity peak suggests that sufficient flow energy must be reached to start entraining the more consolidated bank/bed sediment or that the dominant sediment sources may be shifting to less localized areas such as hill slopes. Both of these scenarios support our hypothesis of seasonal accumulation and depletion of local sediment stores.

  1. Influence of catchment characteristics on the spatio-temporal dynamics of streamwater temperatures in montane headwaters

    NASA Astrophysics Data System (ADS)

    Dick, Jonathan; Tetzlaff, Doerthe; Soulsby, Chris

    2014-05-01

    Streamwater temperature is an important physical parameter in riverine ecosystems. It governs many processes; from water quality to biogeochemical dynamics, and is thus essential to consider when producing river basin management plans. The thermal regimes of streams are determined by a complex series of inter-linkages which can be categorised in one of the three groups: atmospheric conditions, terrestrial controls and stream geomorphology. The climatic conditions are the most important factors as they are the drivers of the processes of heat fluxes at the air-surface interface, however terrestrial and aquatic factors such as elevation, aspect and vegetation are the main modulators of the atmospheric processes. Here we will couple spatially distributed streamwater, groundwater and riparian wetland surface water temperatures to provide insight into dynamics and controls of thermal dynamics at different spatial and temporal scales. The study is located in a 3.2 km2 upland watershed in the North East Scottish Highlands, and covers an 18 month period of measurements. The objectives are to characterise the streamwater thermal fingerprints of the three different headwaters with contrasting landscape description units (fen dominated, steep valley and a wetland dominated corrie), and infer the controls on the spatial and temporal patterns of water temperature throughout the catchment stream network. Results indicate that the temperature of the stream represents the energy balance of the source areas when the riparian zone is connected with the stream network and not just the energy balance of the stream network alone. There are significant differences between the characteristically different headwaters with a significant reduction in the diurnal temperature variability in the largest headwater catchment. The headwater catchment also contains the greatest percentage of wetland soils suggesting groundwater contributions act in the dampening of streamwater temperatures draining that catchment. The streamwater temperature fingerprint of the catchment as a whole is more homogenous and similar to the profile seen from the largest headwater. This would suggest that downstream of the confluence of the three headwaters has similar water sources to the larger wetland dominated headwater. These findings have significant implications for understanding the thermal dynamics of "natural" or "reference" river systems aiding the management actions required to maintain good status.

  2. ANN modeling for flood prediction in the upstream Eure's catchment (France)

    NASA Astrophysics Data System (ADS)

    Kharroubi, Ouissem; masson, Eric; Blanpain, Olivier; Lallahem, Sami

    2013-04-01

    Rainfall-Runoff relationship at basin scale is strongly depending on the catchment complexity including multi-scale interactions. In extreme events cases (i.e. floods and droughts) this relationship is even more complex and differs from average hydrological conditions making extreme runoff prediction very difficult to achieve. However, flood warning, flood prevention and flood mitigation rely on the possibility to predict both flood peak runoff and lag time. This point is crucial for decision making and flood warning to prevent populations and economical stakes to be damaged by extreme hydrological events. Since 2003 in France, a dedicated state service is in charge of producing flood warning from national level (i.e. SCHAPI) to regional level (i.e. SPC). This flood warning service is combining national weather forecast agency (i.e. Meteo France) together with a fully automated realtime hydrological network (i.e. Rainfall-Runoff) in order to produce a flood warning national map online and provide a set of hydro-meteorological data to the SPC in charge of flood prediction from regional to local scale. The SPC is in fact the flood service delivering hydrological prediction at operational level for decision making about flood alert for municipalities and first help services. Our research in collaboration with the SPC SACN (i.e. "Seine Aval et fleuves Côtiers Normands") is focused on the implementation of an Artificial Neural Network model (ANN) for flood prediction in deferent key points of the Eure's catchment and main subcatchment. Our contribution will focus on the ANN model developed for Saint-Luperce gauging station in the upstream part of the Eure's catchment. Prediction of extreme runoff at Saint-Luperce station is of high importance for flood warning in the Eure's catchment because it gives a good indicator on the extreme status and the downstream propagation of a potential flood event. Despite a good runoff monitoring since 27 years Saint Luperce flood prediction remains a challenge for modeling tools used by the SPC SACN. Calibration phases (i.e. learning, test and validation) of Saint Luperce ANN model will be presented and the efficiency assessment will be discussed by mean of RMSE and Cp indicators for different lag time predictions (i.e. +6h, +12h, +24h, +48h). Our conclusions will address the overall added value of using ANN modeling for flood prediction in the Eure's catchment regarding to the SPC SACN objectives.

  3. Estimating the input of wastewater-born micropollutants in a rural karst catchment (Gallusquelle, Germany)

    NASA Astrophysics Data System (ADS)

    Zirlewagen, Johannes; Hillebrand, Olav; Nödler, Karsten; Schiperski, Ferry; Scheytt, Traugott; Licha, Tobias

    2013-04-01

    The main focus of the AGRO research project is on the use of various micropollutants as indicators (e.g. for wastewater) in the catchment of the karst spring Gallusquelle, Swabian Alb. For modeling the micropollutants' fate in the subsurface and their occurrence in spring water, reliable estimates of the spatio-temporal input, i.e. input functions, are crucial. Therefore potential sources for wastewater-born substances are identified. These are the combined sewer system with a stormwater retention basin (untreated wastewater) and the river Fehla (treated wastewater). The micropollutants' concentrations and loads in the potentially infiltrating waters are estimated on the one hand by local water and substance consumption data and on the other hand by water sample analysis and stream gauging. The spring's discharge varies from 0.2-2.0 m³/s with an average of 0.5 m³/s. Treated spring water serves as drinking water for 45 000 people. The catchment area measures 45 km² and is rural in character with 55% forest, 27% grassland, 15% agriculture and 3% residential/industrial. Industrial activity is restricted to a few minor textile and metal works. There are around 4 000 inhabitants and except for a few farms, all households are connected to the public sewer system. The only surface water within the catchment is the stream Fehla, which forms a part of the catchment boundary. It was formerly identified as a sinking stream with an ephemeral part in the lower course. Connections to the Gallusquelle spring were proven by several tracer tests conducted in the 1960's, when the river started to become perennial over the whole course due to heavy colmatation. During a one week campaign, samples of wastewater and river water were taken three times per day. Additionally, hourly samples were taken during a 24 h period. Water samples were analysed for major ions and 58 micropollutants, including pharmaceuticals, stimulants (as caffeine), the artificial sweeteners acesulfame and cyclamate, contrast media, corrosion inhibitors, pesticides and metabolites of several substances. For analysis of micropollutants, water samples were spiked with internal standards before solid-phase-extraction (SPE) and the analysis was conducted by high-performance liquid chromatographic separation with tandem mass spectrometric detection (HPLC/MS-MS). Quantification limits were in the range of 1-28 ng/l for river water and 200-650 ng/l for untreated wastewater. Once the concentrations and loads of micropollutants in the infiltrating waters are known and compared to those in the spring water, one might distinguish and quantify the portions of water infiltrating from the different sources in the catchment area.

  4. Hydrological Dynamics In High Mountain Catchment Areas of Central Norway

    NASA Astrophysics Data System (ADS)

    Löffler, Jörg; Rößler, Ole

    Large-scaled landscape structure is regarded as a mosaic of ecotopes where process dynamics of water and energy fluxes are analysed due to its effects on ecosystem functioning. The investigations have been carried out in the continental most Vågå/Oppland high mountains in central Norway since 1994 (LÖFFLER &WUNDRAM 1999, 2000, 2001). Additionally, comparable investigations started in 2000 dealing with the oceanic high mountain landscapes on same latitudes (LÖFFLER et al. 2001). The theoretical and methodological framework of the project is given by the Landscape-Ecological Complex Analysis (MOSIMANN 1984, 1985) and its variations due to technical and principle methodical challenges in this high mountain landscape (KÖHLER et al. 1994, LÖFFLER 1998). The aim of the project is to characterize high mountain ecosystem structure, functioning and dynamics within small catchment areas, that are chosen in two different altitudinal belts each in the eastern continental and the western oceanic region of central Norway. In the frame of this research project hydrological and meteorological measurements on ground water, percolation and soil moisture dynamics as well as on evaporation, air humidity and air-, surface- and soil-temperatures have been conducted. On the basis of large-scaled landscape-ecological mappings (LÖFFLER 1997) one basic meteorological station and several major data logger run stations have been installed in representative sites of each two catchment areas in the low and mid alpine belts of the investigation regions ( JUNGet al. 1997, LÖFFLER &WUNDRAM 1997). Moreover, spatial differentiations of groundwater level, soil moisture and temperature profiles have been investigated by means of hand held measurements at different times of the day, during different climatic situations and different seasons. Daily and annual air-, surface- and soil-temperature dynamics are demonstrated by means of thermoisopleth-diagrams for different types of ecotopes of the different altitudinal belts. The local differences of temperature dynamics are illustrated in a map as an example of the low alpine altitudinal belt showing a 4-dimensional characterization (in space and time) of high mountain ecosystem functioning. Hydrological aspects derived from those results are presented showing the large- scaled hydrological dynamics of high mountain catchment basins in central Norway. The results of the process analysis of hydrological dynamics in the central Norwegian high mountains are discussed within the frame of investigations on altitudinal changes of mountain ecosystem structure and functioning (LÖFFLER &WUNDRAM [in print]). The poster illustrates the theoretical and methodological conception, methods and techniques, examples from complex data material as well as general outcomes of the project (RÖßLER [in prep.]. JUNG, G., J. LÖFFLER &D. WUNDRAM (1997): Untersuchungen zur Struktur, Funktion und Dynamik mittelnorwegischer Hochgebirgsökosysteme. Forschungsansatz. Oldenburger Geoökologisches Kolloquium 3: 4-36. Oldenburg. KÖHLER, B., J. LÖFFLER &D. WUNDRAM (1994): Probleme der kleinräumigen Geoökovarianz im mittelnorwegischen Gebirge. Norsk geogr. Tidsskr. 48: 99- 111. LÖFFLER, J. (1997): Großmaßstäbige geoökologische Kartierungen in den Höhenstufen des mittelnorwegischen Gebirges. NORDEN 12: 205-228. Bremen. LÖFFLER, J. (1998): Geoökologische Untersuchungen zur Struktur mittelnorwegischer Hochgebirgsökosysteme. Oldenburger Geoökologische Studien 1. Oldenburg. LÖFFLER, J., O.-D. FINCH, J. NAUJOK &R. PAPE (2001): Möglichkeiten der Integration zoologischer Aspekte in die landschaftsökologische Untersuchung von Hochgebirgen. Methodendiskussion am Beispiel ökologischer Prozesssysteme und Biozönosen. Naturschutz u. Landschaftsplanung 33 (11): 351-357. LÖFFLER, J. &D. WUNDRAM (1997): Klimatische Phänomene in mittelnorwegischen Hochgebirgslandschaften und ihre ökosystemare Bedeutung. Oldenburger Geoökologisches Kolloquium 3: 37-86. Oldenburg. LÖFFLER, J. &D. WUNDRAM (1999): Klei

  5. Use of 7Be as a sediment tracer: a scope for testing and refining key assumptions related to its adsorption on a catchment scale

    NASA Astrophysics Data System (ADS)

    Ryken, Nick; Al-Barri, Bashar; Blake, Will; Taylor, Alex; Boeckx, Pascal; Verdoodt, Ann

    2014-05-01

    To date the use of Beryllium-7 (7Be) as a sediment tracer on catchment scale is largely understudied, although several studies applied the ratio 7Be/137Cs or 7Be/210Pbex for sediment source fingerprinting. Several key assumptions, (1) spatially uniform fallout, (2) immediate adsorption upon contact with the soil and (3) irreversible adsorption by the soil, must hold if 7Be is to be used as a sediment tracer. However, recent studies have raised questions about the validity of these assumptions in the changing environments on a catchment scale. In this study three representative soil types of the Mariaborrebeek catchment, a small watershed located in the Flemish Ardennes in Belgium, were collected to assess the adsorption rate of 7Be on the soil surface in this catchment. In a laboratory experiment, soil samples were equilibrated with a stable Be solution of 1 mg l-1 at a soil:solution ratio of 1:10 and the adsorption of Be was measured at different time intervals. Furthermore, different amendments were applied to assess the impact of soil pH, fertilizer and organic matter on the adsorption of Be. Preliminary results confirm a rapid and almost complete Be adsorption and a negative correlation between pH and Be adsorption. The results of this study might lead to the formulation of interpretation guidelines for the use of 7Be to assess short-term soil redistribution and sediment source fingerprinting on catchment scale.

  6. Origin of runoff and suspended sediment in a glacierized Alpine catchment

    NASA Astrophysics Data System (ADS)

    Engel, Michael; Penna, Daniele; Dell'Agnese, Andrea; Lucia, Ana; Comiti, Francesco; Vignoli, Gianluca; Simoni, Silvia; Dinale, Roberto

    2015-04-01

    The spatial and temporal variability of sources of runoff and suspended sediment in high-elevation, glacierized catchments are still poorly explored. In this study we used stable isotopes of water, electrical conductivity (EC) and turbidity as tracers to identify the origin of different waters and of fine sediments contributing to streamflow and suspended sediment transport in the glacierized Sulden/Solda catchment (130 km² drainage area, Eastern Italian Alps). The site ranges in elevation between 1112 and 3905 m a.s.l. and includes two major sub-catchments. Rainfall samples were taken from bulk collectors placed along an elevation gradient (905-2585 m a.s.l.). Winter-integrated snowmelt samples were collected from passive capillary samplers installed at different elevations (1600-2825 m a.s.l.), whereas occasional snowmelt samples were taken from dripping snow patches distributed within the central-upper part of the catchment. Ice melt samples were taken in summer from small rivulets on the glacier surface. Samples from the two main streams at different sections, major tributaries and springs at various locations were collected monthly. At the outlet, daily stream water sampling for isotopic analysis was ensured by an automatic sampler. EC, turbidity and water stage were measured every 5 minutes. Meteorological data were measured by two weather stations at 1600 and 2825 m a.s.l.. Manual samples were taken from February to December 2014, whereas automatic measurements at the outlet started in May 2014. Preliminary results (the isotopic analyses are in progress) showed small seasonal variability of EC in spring water, suggesting a limited role of snowmelt on groundwater recharge. Relatively high and constant values in EC at the catchment outlet were observed until the beginning of the summer, when diurnal fluctuations in streamflow and EC of increasing amplitude reveal increasing contributions of meltwater, peaking in July. The relatively small variability in EC between early and late summer suggests a predominance of snowmelt contributions over ice melt contributions to streamflow, confirming field observations about the greatly above-average snow cover in 2014 that left only a small part of the glacier surface exposed and prone to active melting. Diurnal oscillations in EC were still visible until early November, although with smaller amplitude and slightly higher values with respect to summer, suggesting a possible larger role of glacier meltwater in early fall. Turbidity was more sensitive to rainfall events compared to EC, showing sharp responses during rainy periods in spring and fall, and diurnal cycles during the melting periods. In contrast to EC, turbidity reached its highest values in August and during intense rainfall events. This indicates that both melt water coming from the upper parts of the catchment and direct rainfall erosion of surface near-stream zones played a role on the rapid mobilization of fine sediments and suspended sediment transport in the study catchment. Keywords: stable isotopes of water; electrical conductivity; turbidity; glacierized catchment

  7. Assessing the role of urban developments on storm runoff response through multi-scale catchment experiments

    NASA Astrophysics Data System (ADS)

    Wilkinson, Mark; Owen, Gareth; Geris, Josie; Soulsby, Chris; Quinn, Paul

    2015-04-01

    Many communities across the world face the increasing challenge of balancing water quantity and quality issues with accommodating new growth and urban development. Urbanisation is typically associated with detrimental changes in water quality, sediment delivery, and effects on water storage and flow pathways (e.g. increases in flooding). In particular for mixed rural and urban catchments where the spatio-temporal variability of hydrological responses is high, there remains a key research challenge in evaluating the timing and magnitude of storage and flow pathways at multiple scales. This is of crucial importance for appropriate catchment management, for example to aid the design of Green Infrastructure (GI) to mitigate the risk of flooding, among other multiple benefits. The aim of this work was to (i) explore spatio-temporal storm runoff generation characteristics in multi-scale catchment experiments that contain rural and urban land use zones, and (ii) assess the (preliminary) impact of Sustainable Drainage (SuDs) as GI on high flow and flood characteristics. Our key research catchment, the Ouseburn in Northern England (55km2), has rural headwaters (15%) and an urban zone (45%) concentrated in the lower catchment area. There is an intermediate and increasingly expanding peri-urban zone (currently 40%), which is defined here as areas where rural and urban features coexist, alongside GIs. Such a structure is typical for most catchments with urban developments. We monitored spatial precipitation and multiscale nested (five gauges) runoff response, in addition to the storage dynamics in GIs for a period of 6 years (2007-2013). For a range of events, we examined the multiscale nested runoff characteristics (lag time and magnitude) of the rural and urban flow components, assessed how these integrated with changing land use and increasing scale, and discussed the implications for flood management in the catchment. The analyses indicated three distinctly different patterns in the timing and magnitude of the contributions of the different land use zones and their nested integrated runoff response at increasing scales. These can be clearly linked to variations in antecedent conditions and precipitation patterns. For low antecedent flow conditions, the main flood peak is dominated by urban origins (faster responding and larger in relative magnitude); for high antecedent flow conditions, rural (and peri-urban) sources are most dominant. A third type of response involves mixed events, where both rural and urban contributions interact and reinforce the peak flow response. Our analyses showed that the effectiveness of the GIs varied substantially between the different events, suggesting that their design could be improved by introducing variable drainage rates and strategic placements to allow for interactions with the stream network. However, more information is needed on the spatio-temporal variability in water sources, flow pathways and residence times. This is of particular importance to also assess other multiple benefits of GIs, including the impacts on water quality. These challenges are currently addressed in two new case study catchment in the North East of Scotland (10km2) which are undergoing major land use change from rural to urban. Here, integrated tracer and hydrometric data are being collected to characterise the integrated impacts of urbanisation and GIs on flow pathways (nature and length) and associated water quality.

  8. Snowcover interaction with climate, topography & vegetation in mountain catchments in catchments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mountainous regions in the semi-arid Western US are snow-dominated with little or no summer precipitation. Wind and topographic structure control snow deposition, causing tremendous spatial heterogeneity in the distribution of the snowcover and the delivery of melt water across mountain catchments....

  9. High-resolution distributed analysis of climate and anthropogenic changes on the hydrology of an Alpine catchment

    NASA Astrophysics Data System (ADS)

    Fatichi, S.; Rimkus, S.; Burlando, P.; Bordoy, R.; Molnar, P.

    2015-06-01

    A fully distributed hydrological analysis at scales significant for water management for present-day, and projected future climate conditions is presented for a catchment in the Alps. We selected the upper Rhone basin (Switzerland) as a test case for understanding anthropogenic impacts including climate change on water resources and flood risk in the Alpine area. The upper Rhone basin contains reservoirs, river diversions and irrigated areas offering the opportunity to study the interaction between climate change effects and hydraulic infrastructure. Anthropogenic disturbances of the flow regime were implemented in detail in the hydrological analysis. We downscaled climate model realizations using a methodology that accounts for the uncertainty in climate change projections related to the stochastic variability of precipitation and air temperature. We showed how climate change effects on streamflow propagate from high elevation headwater catchments to the river in the main valley by analyzing changes in several hydrological metrics and at various temporal scales across 297 control sections. Changes in the natural hydrological regime imposed by the existing hydraulic infrastructure are likely larger than climate change signals expected by the middle of the 21st century in most of the river network. Despite a strong uncertainty induced by stochastic climate variability, we identified an elevational dependence of climate change impacts with a severe reduction in streamflow due to the missing contribution of water from ice melt at high-elevation and a dampened effect downstream. Reduced ice cover and ice melt are likely to have significant implications for hydropower production. The impacts can emerge without any additional climate warming. A decrease of August-September discharge and an increase of hourly and daily maximum flows appear as plausible projected change for the most part of the catchment. However, it is unlikely that major changes in total runoff for the entire upper Rhone basin will occur in the next four decades.

  10. Contribution of diffuse inputs to the aqueous mass load of perfluoroalkyl acids in river and stream catchments in Korea.

    PubMed

    Kim, Seung-Kyu; Li, Dong-Hao; Shoeib, Mahiba; Zoh, Kyung-Duk

    2014-02-01

    Recent studies disagree regarding the contributions of point versus non-point sources to the aqueous mass loads of perfluoroalkyl acids (PFAAs). This study investigated the longitudinal change in PFAA mass load from upstream to downstream stations along rivers and/or streams to assess the relative contributions of point versus nonpoint inputs. With concentrations 10 to 100 times higher than running water, point sources such as wastewater treatment plants (WWTPs) effluent and airport ditch-outlet (ADO) water were separated from neighboring upstream and downstream running waters using principal component analysis. Source waters were characterized by certain predominant components [e.g., perfluorobutylsulfonate (PFBS) and perfluorooctanoic acid (PFOA) in WWTP effluent and perfluorohexylsulfonate (PFHxS) and perfluorooctylsulfonate (PFOS) in ADO water], which were minor components of running water. From a mass balance assessment of PFAA mass load, certain compounds such as PFOA and PFBS dominated the contribution of point sources to the mass load in the running water at downstream stations or in small catchment basins with high levels of industrial activity. Most of the mass load in the investigated catchments was attributable to upstream running water with a minor influence from industrial, commercial, and domestic human activities. Furthermore, the negative relationship of per capita emission factors (hereafter, EFs) with population density and a lower contribution of PFAA from WWTPs (~30% on average) compared to the running water-derived mass load at the national level indicated that diffuse inputs were more important contributors to aqueous PFAA contamination in each catchment basin as well as the entire watershed of the country (Korea). Volatile precursor compounds, which are readily dispersed to neighboring basins and transformed to PFAAs in the ambient environment, can be an important source of these diffuse inputs and will become more significant over time. PMID:23849806

  11. Lithogenic and cosmogenic tracers in catchment hydrology

    SciTech Connect

    Nimz, G.J.

    1995-01-01

    A variety of physical processes affect solute concentrations within catchment waters. The isotopic compositions of the solutes can indicate which processes have determined the observed concentrations. These processes together constitute the physical history of the water, which is one of the primary concerns in hydrology. Many groundwater solutes are derived as a result of interaction between the water and the rock and/or soil within the system. These are termed {open_quotes}lithogenic{close_quotes} solutes. The isotopic compositions of these solutes provide information regarding rock-water interactions. Many other solutes have their isotopic compositions determined both internally and externally to the catchment system. Important members of this group include solutes that have isotopic compositions produced by atomic particle interactions with other nuclides. The source of the atomic particles can be cosmic radiation (producing {open_quotes}cosmogenic{close_quotes} nuclides in the atmosphere and land surface), anthropogenic nuclear reactions (producing {open_quotes}thermonuclear{close_quotes} nuclides), or radioactive and fission decay of naturally-occurring elements, such as U and Th (producing {open_quotes}in-situ{close_quotes} lithogenic nuclides in the deep subsurface). Current language usage often combines all of the atomic particle-produced nuclides under the heading {open_quotes}cosmogenic nuclides{close_quotes}, and for simplicity we will often follow that usage, although always clearly indicating which variety is being discussed. This paper addresses the processes that affect the lithogenic and cosmogenic solute compositions in groundwater, and how these compositions can therefore be used in integrative ways to understand the physical history of groundwater within a catchment system.

  12. An elusive search for regional flood frequency estimates in the River Nile basin

    NASA Astrophysics Data System (ADS)

    Nyeko-Ogiramoi, P.; Willems, P.; Mutua, F. M.; Moges, S. A.

    2012-03-01

    Estimation of peak flow quantiles in ungauged catchments is a challenge often faced by water professionals in many parts of the world. Approaches to address such problem exist but widely used technique such as flood frequency regionalization is often not subjected to performance evaluation. In this study we used the jack-knifing principle to assess the performance of the flood frequency regionalization in the complex and data scarce River Nile basin by examining the error (regionalization error) between locally and regionally estimated peak flow quantiles for different return periods (QT). Agglomerative hierarchical clustering based algorithms were used to search for regions with similar hydrological characteristics taking into account the huge catchment area and strong climatic differences across the area. Hydrological data sets employed were from 180 gauged catchments and several physical characteristics in order to regionalize 365 identified catchments. The GEV distribution, selected using L-moment based approach, was used to construct regional growth curves from which peak flow growth factors (QT/MAF) could be derived and mapped through interpolation. Inside each region, variations in at-site flood frequency distribution were modeled by regression of the mean annual maximum peak flow (MAF) versus catchment area. The results show that the performance of the regionalization is heavily dependent on the historical flow record length and the similarity of the hydrological characteristics inside the regions. The flood frequency regionalization of the River Nile basin can be improved if sufficient flow data of longer record length × 40 become available.

  13. Identification of the main attribute of river flow temporal variations in the Nile Basin

    NASA Astrophysics Data System (ADS)

    Onyutha, C.; Willems, P.

    2015-11-01

    Temporal variation of monthly flows was investigated at 18 Discharge Measurement Stations (DMS) within the Nile Basin in Africa. The DMS were grouped using a clustering procedure based on the similarity in the flow variation patterns. The co-variation of the rainfall and flow was assessed in each group. To investigate the possible change in catchment behavior, which may interfere with the flow-rainfall relationship, three rainfall-runoff models were applied to the major catchment in each group based on the data time period falling within 1940-2003. The co-occurrence of the changes in the observed and simulated overland flow was examined using the cumulative rank difference (CRD) technique and the quantile perturbation method (QPM). Two groups of the DMS were obtained. Group 1 comprises the DMS from the equatorial region and/or South Sudan, while those in Sudan, Ethiopia and Egypt form group 2. In the selected catchment of each group, the patterns of changes in terms of the CRD sub-trends and QPM anomalies for both the observed and simulated flows were in a close agreement. These results indicate that change in catchment behavior due to anthropogenic influence in the Nile basin over the selected time period was minimal. Thus, the overall rainfall-runoff generation processes of the catchments were not impacted upon in a significant way. The temporal flow variations could be attributed mainly to the rainfall variations.

  14. Monitoring and Simulating Water, Carbon and Nitrogen Dynamics over Catchments in Eastern Asia

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Xiao, Q.; Liu, C.; Watanabe, M.

    2006-05-01

    There is an emergency need to support decision-making in water environment management in Eastern Asia. For sound management and decision making of sustainable water use, the catchment ecosystem assessment, emphasizing biophysical and biogeochemical processes and human interactions, is a key task. For this task, an integrated ecosystem model has been developed to estimate the spatial and temporal distributions of the water, carbon and nutrient cycles over catchment scales. The model integrated both a distributed hydrologic model (Nakayama and Watanabe, 2004) and an ecosystem model, BIOME-BGC (Running and Coughlan, 1988), which has been modified and validated for various ecosystems by using the APEIS-FLUX datasets in China (Wang and Watanabe, 2005). The model has been applied to catchments in China, such as the Changjiang River and the Yellow River. The MODIS satellite data products, such as leaf area index (LAI), vegetation index (VI) and land surface temperature (LST) were used as the input parameters. By using the integrated model, the future changes in water, carbon and nitrogen cycle can be predicted based on scenarios, such as the decrease in crop production due to water shortage, and the increase in temperature and CO2 concentration, as well as the land use/cover changes. The model was validated by the measured values of soil moisture, and river flow discharge throughout the year, showing that this model achieves a fairly high accuracy. As an example, we applied the integrated model to simulate the daily water vapor, carbon and nitrogen fluxes over the Changjiang River Basin. The Changjiang River is ranked third in length and is the largest river in terms of water discharge over the Euro-Asian continent. The drainage basin of the Changjiang supplies 5-10% of the total world population with water resources and nutrition and irrigates 40% of China's national crop production. Moreover, the materials carried by the Changjiang River have a significant influence on the coastal environment. Simulation results showed that enhanced atmospheric CO2 concentrations and especially increased nitrogen application had a marked effect on the simulated water and carbon sequestration capacity and played a prominent role in increasing this capacity. Finally, the model has been applied to evaluate the impact of land cover change from 1980 to 2000 on water, carbon and nitrogen fluxes over larger river basins in China.

  15. Nutrient loss and water quality under extensive grazing in the upper Burdekin river catchment, North Queensland.

    PubMed

    O'Reagain, P J; Brodie, J; Fraser, G; Bushell, J J; Holloway, C H; Faithful, J W; Haynes, D

    2005-01-01

    Increased sediment and nutrient losses resulting from unsustainable grazing management in the Burdekin River catchment are major threats to water quality in the Great Barrier Reef Lagoon. To test the effects of grazing management on soil and nutrient loss, five 1 ha mini-catchments were established in 1999 under different grazing strategies on a sedimentary landscape near Charters Towers. Reference samples were also collected from watercourses in the Burdekin catchment during major flow events. Soil and nutrient loss were relatively low across all grazing strategies due to a combination of good cover, low slope and low rainfall intensities. Total soil loss varied from 3 to 20 kg ha(-1) per event while losses of N and P ranged from 10 to 1900 g ha(-1) and from 1 to 71 g ha(-1) per event respectively. Water quality of runoff was considered moderate across all strategies with relatively low levels of total suspended sediment (range: 8-1409 mg l(-1)), total N (range: 101-4000 microg l(-1)) and total P (range: 14-609 microg l(-1)). However, treatment differences are likely to emerge with time as the impacts of the different grazing strategies on land condition become more apparent. Samples collected opportunistically from rivers and creeks during flow events displayed significantly higher levels of total suspended sediment (range: 10-6010 mg l(-1)), total N (range: 650-6350 microg l(-1)) and total P (range: 50-1500 microg l(-1)) than those collected at the grazing trial. These differences can largely be attributed to variation in slope, geology and cover between the grazing trial and different catchments. In particular, watercourses draining hillier, grano-diorite landscapes with low cover had markedly higher sediment and nutrient loads compared to those draining flatter, sedimentary landscapes. These preliminary data suggest that on relatively flat, sedimentary landscapes, extensive cattle grazing is compatible with achieving water quality targets, provided high levels of ground cover are maintained. In contrast, sediment and nutrient loss under grazing on more erodable land types is cause for serious concern. Long-term empirical research and monitoring will be essential to quantify the impacts of changed land management on water quality in the spatially and temporally variable Burdekin River catchment. PMID:15757706

  16. Assessing catchment connectivity using hysteretic loops

    NASA Astrophysics Data System (ADS)

    Keesstra, Saskia; Masselink, Rens; Goni, Mikel; Campo, Miguel Angel; Gimenez, Rafael; Casali, Javier; Seeger, Manuel

    2015-04-01

    Sediment connectivity is a concept which can explain the origin, pathways and sinks of sediments within landscapes. This information is valuable for land managers to be able to take appropriate action at the correct place. Hysteresis between sediment and water discharge can give important information about the sources , pathways and conditions of sediment that arrives at the outlet of a catchment. "Hysteresis" happens when the sediment concentration associated with a certain flow rate is different depending on the direction in which the analysis is performed -towards the increase or towards the diminution of the flow. This phenomenon to some extent reflects the way in which the runoff generation processes are conjugated with those of the production and transport of sediments, hence the usefulness of hysteresis as a diagnostic hydrological parameter. However, the complexity of the phenomena and factors which determine hysteresis make its interpretation uncertain or, at the very least, problematic. Many types of hysteretic loops have been described as well as the cause for the shape of the loop, mainly describing the origin of the sediments. In this study, several measures to objectively classify hysteretic loops in an automated way were developed. These were consecutively used to classify several hundreds of loops from several agricultural catchments in Northern Spain. The data set for this study comes from four experimental watersheds in Navarre (Spain), owned and maintained by the Government of Navarre. These experimental watersheds have been monitored and studied since 1996 (La Tejería and Latxaga) and 2001 (Oskotz "principal", Op, and Oskotz "woodland", Ow). La Tejería and Latxaga watersheds, located in the Central Western part of Navarre, are roughly similar to each other regarding size (approximately 200 ha), geology (marls and sandstones), soils (fine texture topsoil), climate (humid sub Mediterranean) and land use (80-90% cultivated with winter grain crops). On the other hand, Op (ca.1,700 ha) is covered with forest and pasture (cattle-breeding); while Ow (ca. 500 ha), a sub-watershed of the Op, is almost completely covered with forest. The predominant climate in Op/Ow is sub-Atlantic. Furthermore, antecedent conditions and event characteristics were analysed. The loops were compared quantitatively and qualitatively between catchments for similar events and within the catchments for events with different characteristics.

  17. Human-Landscape interaction in cultivated lowland catchments (Louroux catchment, Loire Valley, France)

    NASA Astrophysics Data System (ADS)

    Cerdan, Olivier; Foucher, Anthony; Gay, Aurore; Salvador Blanes, Sébastien; Evrard, Olivier; Desmet, Marc

    2015-04-01

    Change of land use or agricultural practices are known to have high impacts on sediment transfer in catchments and rivers. Numerous studies have particularly illustrated these effects in sloping land in tropical areas undergoing deforestation. Much less attention has been paid to lowland humid areas, where permanent land uses have been plowed more recently. However recent studies reported significant erosion rates in these environments despite the gentle topography and the temperate climate. In order to quantify these changing fluxes of sediment, several instrumentation and historical database analyses were carried out in various catchments of the Loire Valley, France. More particularly, a multiparameter analysis was conducted on sedimentary deposits of a pond created in the 11th century in a catchment representative of cultivated and drained lowland environments where an intensification of agricultural practices has occurred during the last 60 years. The results showed that the initial land consolidation period (1954-1960) was characterized by a dominance of allochtonous material input to the pond. This input represents an erosion of 1900 to 2300 t.km-².yr-1 originating from the catchment. Then, between 1970-1990, terrigenous material flow decreased progressively and tended to stabilize, whereas eutrophication and associated primary production increased in the pond. In addition to these temporal changes, material input across the pond during the last 10 years corresponds to a loss of material in the catchment ranging between 90 and 102 t.km-2.yr-1. While a strong decrease is observed, it still represents a 60-fold increase of the sediment fluxes to the pond compared to the preintensification period. Subsequent research monitoring studies permitted to differentiate between the different sources of sediment and highlight the importance of surface erosion during flood events and of bank erosion during low flows. The increased export of the sediment is primarily due to the very high human-made connectivity of these landscapes that was originally created to evacuate the excess water during the humid seasons.

  18. Range-wide selection of catchments for Pacific salmon conservation.

    PubMed

    Pinsky, Malin L; Springmeyer, Dane B; Goslin, Matthew N; Augerot, Xanthippe

    2009-06-01

    Freshwater ecosystems are declining in quality globally, but a lack of data inhibits identification of areas valuable for conservation across national borders. We developed a biological measure of conservation value for six species of Pacific salmon (Oncorhynchus spp.) in catchments of the northern Pacific across Canada, China, Japan, Russia, and the United States. We based the measure on abundance and life-history richness and a model-based method that filled data gaps. Catchments with high conservation value ranged from California to northern Russia and included catchments in regions that are strongly affected by human development (e.g., Puget Sound). Catchments with high conservation value were less affected by agriculture and dams than other catchments, although only 1% were within biodiversity reserves. Our set of high-value areas was largely insensitive to simulated error, although classification remained uncertain for 3% of catchments. Although salmon face many threats, we propose they will be most likely to exhibit resilience into the future if a complementary mosaic of conservation strategies can be proactively adopted in catchments with healthy salmon populations. Our analysis provides an initial map of where these catchments are likely to be located. PMID:19220368

  19. Assessment of wet deposition mechanisms in an upland Scottish catchment

    NASA Astrophysics Data System (ADS)

    Ferrier, Robert C.; Jenkins, Alan; Miller, John D.; Walker, T. A. Bruce; Anderson, Hamish A.

    1990-02-01

    A network of collectors were installed at various altitudes and degrees of exposure in the Allt a Mharcaidh catchment, northeast Scotland, in an attempt to obtain an accurate assessment of wet deposition loading. Results indicate that the quantity and quality of bulk deposition is constant over the whole catchment. "Enhancement deposition" as measured by a filter-gauge interception collector indicated that there was greatest deposition at altitude. The concentrations of all elements, except for hydrogen, were greater than that of catchment bulk deposition at the higher altitudes; at lower altitude enrichment was only appreciable for sodium and chloride. Input/output chloride budgets were used to assess catchment evapotranspiration rates and the relative proportions of enhancement deposition within different altitudinal ranges. The calculation gives a catchment evapotranspiration of 18.5% and a chloride enhancement deposition 2.5 times greater at higher altitudes than at lower altitudes. Rainfall chemistry in this high-level Cairngorm catchment appears independent of the positioning of the rainfall collectors. Different altitudes within the catchment receive an additional loading due to enhancement deposition, dependent upon the frequency of cloud/mist cover. This additional loading must be included in the assessment of total catchment loadings and in the calculation of evapotranspiration.

  20. Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Nutrient Application (Phosphorus and Nitrogen ) for Fertilizer and Manure Applied to Crops (Cropsplit), 2002

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This data set represents the estimated amount of phosphorus and nitrogen fertilizers applied to selected crops for the year 2002, compiled for every catchment of NHDPlus for the conterminous United States. The source data set is based on 2002 fertilizer data (Ruddy and others, 2006) and tabulated by crop type per county (Alexander and others, 2007). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

  1. Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Nutrient Inputs from Fertilizer and Manure, Nitrogen and Phosphorus (N&P), 2002

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This data set represents the estimated amount of nitrogen and phosphorus in kilograms for the year 2002, compiled for every catchment of NHDPlus for the conterminous United States. The source data set is County-Level Estimates of Nutrient Inputs to the Land Surface of the Conterminous United States, 1982-2001 (Ruddy and others, 2006). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

  2. Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Average Atmospheric (Wet) Deposition of Inorganic Nitrogen, 2002

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This data set represents the average atmospheric (wet) deposition, in kilograms per square kilometer, of inorganic nitrogen for the year 2002 compiled for every catchment of NHDPlus for the conterminous United States. The source data set for wet deposition was from the USGS's raster data set atmospheric (wet) deposition of inorganic nitrogen for 2002 (Gronberg, 2005). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years (2007-2008), an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

  3. Catchment Systems Engineering: A New Paradigm in Water Management

    NASA Astrophysics Data System (ADS)

    Quinn, P. F.; Wilkinson, M. E.; Burke, S.; O'Donnell, G. M.; Jonczyk, J.; Barber, N.; Nicholson, A.

    2012-04-01

    Recent catchment initiatives have highlighted the need for new holistic approaches to sustainable water management. Catchment Systems Engineering seeks to describe catchment the function (or role) as the principal driver for evaluating how it should be managed in the future. Catchment Systems Engineering does not seek to re-establish a natural system but rather works with natural processes in order to engineer landscapes to accrue multiple benefits. The approach involves quantifying and assessing catchment change, impacts and most importantly, suggests an urgent and proactive agenda for future planning. In particular, an interventionist approach to managing hydrological flow pathways across scale is proposed. It is already accepted that future management will require a range of scientific expertise and full engagement with stakeholders. This inclusive concept under a Catchment Systems Engineering agenda forces any consortia to commit to actively changing and perturbing the catchment system and thus learn, in situ, how to manage the environment for collective benefits. The shared cost, the design, the implementation, the evaluation and any subsequent modifications should involve all relevant parties in the consortia. This joint ownership of a 'hands on' interventionist agenda to catchment change is at the core of Catchment Systems Engineering. In this paper we show a range of catchment engineering projects from the UK that have addressed multi-disciplinary approaches to flooding, pollution and ecosystem management, whilst maintaining economic food production. Examples using soft engineered features such as wetlands, ponds, woody debris dams and infiltration zones will be shown. Local scale demonstration activities, led by local champions, have proven to be an effective means of encouraging wider uptake. Evidence that impacts can be achieved at local catchment scale will be introduced. Catchment Systems Engineering is a concept that relies on all relevant parties within a catchment to take responsibility for the water quantity and quality that arises from the catchment. Further, any holistic solution requires a bottom up, problem solving agenda which is facilitated by policy makers and is underpinned by scientific knowledge. http:\\research.ncl.ac.ukproactive

  4. Multi-objective, multiple participant decision support for water management in the Andarax catchment, Almeria

    NASA Astrophysics Data System (ADS)

    van Cauwenbergh, N.; Pinte, D.; Tilmant, A.; Frances, I.; Pulido-Bosch, A.; Vanclooster, M.

    2008-04-01

    Water management in the Andarax river basin (Almeria, Spain) is a multi-objective, multi-participant, long-term decision-making problem that faces several challenges. Adequate water allocation needs informed decisions to meet increasing socio-economic demands while respecting the environmental integrity of this basin. Key players in the Andarax water sector include the municipality of Almeria, the irrigators involved in the intensive greenhouse agricultural sector, and booming second residences. A decision support system (DSS) is developed to rank different sustainable planning and management alternatives according to their socio-economic and environmental performance. The DSS is intimately linked to sustainability indicators and is designed through a public participation process. Indicators are linked to criteria reflecting stakeholders concerns in the 2005 field survey, such as fulfilling water demand, water price, technical and economical efficiency, social and environmental impacts. Indicators can be partly quantified after simulating the operation of the groundwater reservoir over a 20-year planning period and partly through a parallel expert evaluation process. To predict the impact of future water demand in the catchment, several development scenarios are designed to be evaluated in the DSS. The successive multi-criteria analysis of the performance indicators permits the ranking of the different management alternatives according to the multiple objectives formulated by the different sectors/participants. This allows more informed and transparent decision-making processes for the Andarax river basin, recognizing both the socio-economic and environmental dimensions of water resources management.

  5. Understanding soil phosphorus systems from emergent phosphorus behaviour in a headwater catchment

    NASA Astrophysics Data System (ADS)

    Ockenden, Mary; Beven, Keith; Collins, Adrian; Evans, Bob; Falloon, Pete; Hiscock, Kevin; Hollaway, Michael; Kahana, Ron; Macleod, Kit; Ross, Kirsty; Wearing, Catherine; Withers, Paul; Zhou, Jian; Benskin, Clare; Burke, Sean; EdenDTC Team; Haygarth, Phil

    2015-04-01

    Knowledge of soil phosphorus (P) sources and pathways is essential for predicting P transfers to water in the future, when drivers of P biogeochemistry may change under climate and land use change. However, the understanding of high frequency phosphorus dynamics has been limited by data of insufficient temporal resolution. This study shows how observing the patterns shown by headwater catchment systems can help to improve understanding of soil system science. The study describes analysis of 15 minute resolution data of rainfall and river discharge, and 30 minute resolution data of total phosphorus (TP) and total reactive phosphorus (TRP) concentrations from a sub-basin of the River Eden catchment, Cumbria, UK, collected by the Defra Demonstration Test Catchment Programme. The analysis focussed on extreme events and event sequences, which are predicted to occur more frequently under a changing climate, such as periods of drying followed by heavy rainfall. Events were classified according to exceedance of discharge and P concentration thresholds (Type 1 = high discharge, low TP; Type 2 = high discharge, high TP; Type 3 = low discharge, high TP). More than 75% of the TP load was transported during the 5% of the time with highest river discharge, with more than 69% of the TP load transferred in Type 2 events (< 4% in Type 1 events). High phosphorus concentrations in the river were also recorded during rainfall events following a dry period, when there was little response in discharge (Type 3, which accounted for less than 2% of total load). A lag of around one hour between peak TP and peak TRP concentrations indicated different pathways, with TP influenced by quickly mobilised sources, such as a readily available soil P pool, and fast pathways. In contrast, TRP showed a slower response indicating the presence of slower sub-surface pathways. Improved understanding of these processes will help in understanding the importance and availability of soil P pools in order to help farmers to plan sustainable phosphorus use and appropriate land management.

  6. Evaluation of Distributed Model Structures in Catchment Scale Modeling to Capture Heterogeneous Landscape Characteristics

    NASA Astrophysics Data System (ADS)

    Julich, S.; Breuer, L.; Vaché, K. B.; Frede, H.

    2007-12-01

    The ability of a model to capture dominant ecological and hydrological processes is a prerequisite for the use of the model in studying impacts of landuse change on the water balance and nutrient fluxes from a watershed. However, in many cases, available model structures do not adequately represent processes of interest. In these cases, a pragmatic response is to revise the structure to better represent key processes. In this paper we outline a model application strategy designed to inject additional realism into a commonly applied model structure. Here we focus on the SWAT model in an application to the mesoscale (514 km 2) Wetter catchment, in central Germany. The catchment is characterized by a heterogeneous landscape structure and characteristics. The southwestern part is formed by a low mountain range with shallow soils over bedrock and steep slopes. Here lateral subsurface stormflow appears to be the dominant runoff generation process. The central and north- eastern regions of the basin are characterized by deep loess born soils and shallow slopes. We hypothesize that the much larger storage potential of the soils promotes vertical infiltration and storage, and that lateral runoff is much less significant. We utilize a variety of SWAT versions to evaluate the potential effects of this hypothesis on the capacity of the model to capture the measured runoff response. Our results indicate that the original SWAT- structure as well as the SWAT-G structure (which was applied to other low mountain catchments in Germany) are not able to acceptably represent the hydrograph. However, a hybrid of the two structures, specifically designed to reflect differences between the mountainous regions and the more gentle topography does result in a satisfactory representation of the hydrograph. The inclusion of elements from of both model structures (original SWAT and SWAT-G) seems to be the best way to reflect our hydrological process understanding, producing results which capture both the runoff response and the spatial variation in the mechanisms responsible for it.

  7. Modelling fate and transport of pesticides in river catchments with drinking water abstractions

    NASA Astrophysics Data System (ADS)

    Desmet, Nele; Seuntjens, Piet; Touchant, Kaatje

    2010-05-01

    When drinking water is abstracted from surface water, the presence of pesticides may have a large impact on the purification costs. In order to respect imposed thresholds at points of drinking water abstraction in a river catchment, sustainable pesticide management strategies might be required in certain areas. To improve management strategies, a sound understanding of the emission routes, the transport, the environmental fate and the sources of pesticides is needed. However, pesticide monitoring data on which measures are founded, are generally scarce. Data scarcity hampers the interpretation and the decision making. In such a case, a modelling approach can be very useful as a tool to obtain complementary information. Modelling allows to take into account temporal and spatial variability in both discharges and concentrations. In the Netherlands, the Meuse river is used for drinking water abstraction and the government imposes the European drinking water standard for individual pesticides (0.1 ?g.L-1) for surface waters at points of drinking water abstraction. The reported glyphosate concentrations in the Meuse river frequently exceed the standard and this enhances the request for targeted measures. In this study, a model for the Meuse river was developed to estimate the contribution of influxes at the Dutch-Belgian border on the concentration levels detected at the drinking water intake 250 km downstream and to assess the contribution of the tributaries to the glyphosate loads. The effects of glyphosate decay on environmental fate were considered as well. Our results show that the application of a river model allows to asses fate and transport of pesticides in a catchment in spite of monitoring data scarcity. Furthermore, the model provides insight in the contribution of different sub basins to the pollution level. The modelling results indicate that the effect of local measures to reduce pesticides concentrations in the river at points of drinking water abstraction, might be limited due to dominant transboundary loads. This emphasizes the need for transboundary management strategies on a river catchment scale.

  8. Review of indexing tools for identifying high risk areas of phosphorus loss in Nordic catchments

    NASA Astrophysics Data System (ADS)

    Heckrath, G.; Bechmann, M.; Ekholm, P.; Ulén, B.; Djodjic, F.; Andersen, H. E.

    2008-01-01

    SummaryCompliance with the Water Framework Directive (WFD) will require substantial reductions in agricultural phosphorus (P) losses in the Nordic countries Denmark, Norway, Sweden and Finland. Falling P surpluses in agriculture for more than a decade and voluntary programmes of good agricultural practice have not reduced P losses to surface waters, while general regulatory measures have primarily focused on nitrogen. Without addressing the role of critical source areas for P loss, policy measures to abate diffuse P losses are likely to be ineffective. This has created a demand by environmental authorities for instruments that assess the risk of P losses from agricultural land and facilitate the planning of mitigation measures. In Nordic countries index-type risk assessment tools for diffuse P losses are under development inspired by experiences with P indexing in the USA. A common feature is that they are empirical, risk-based, user-friendly decision tools with low data requirements. Phosphorus indices vary between the four Nordic countries in response to different agriculture, soil and climate. These differences also result in different recent average annual agricultural P load estimates to the sea of 0.3, 0.5, 0.5 and 1.1 kg total P ha -1 in Denmark, Norway, Sweden and Finland, respectively. In initial evaluations, Nordic P indices explained a large degree of variance in P losses at the field or catchment scale, but comparative data are still limited. To gain acceptance amongst stakeholders and inform river basin management planning in Nordic catchments as part of the WFD, it is crucial to more thoroughly evaluate the performance of these indices' at the field and catchment scale.

  9. Catchment-scale hydrologic implications of parcel-level stormwater management (Ohio USA)

    NASA Astrophysics Data System (ADS)

    Shuster, William; Rhea, Lee

    2013-04-01

    SummaryThe effectiveness of stormwater management strategies is a key issue affecting decision making on urban water resources management, and so proper monitoring and analysis of pilot studies must be addressed before drawing conclusions. We performed a pilot study in the suburban Shepherd Creek watershed located in Cincinnati, Ohio to evaluate the practicality of voluntary incentives for stormwater quantity reduction on privately owned suburban properties. Stream discharge and precipitation were monitored 3 years before and after implementation of the stormwater management treatments. To implement stormwater control measures, we elicited the participation of citizen landowners with two successive reverse-auctions. Auctions were held in spring 2007, and 2008, resulting in the installation of 85 rain gardens and 174 rain barrels. We demonstrated an analytic process of increasing model flexibility to determine hydrologic effectiveness of stormwater management at the sub-catchment level. A significant albeit small proportion of total variance was explained by both the effects of study period (˜69%) and treatment-vs.-control (˜7%). Precipitation-discharge relationships were synthesized in estimated unit hydrographs, which were decomposed and components tested for influence of treatments. Analysis of unit hydrograph parameters showed a weakened correlation between precipitation and discharge, and support the output from the initial model that parcel-level green infrastructure added detention capacity to treatment basins. We conclude that retrofit management of stormwater runoff quantity with green infrastructure in a small suburban catchment can be successfully initiated with novel economic incentive programs, and that these measures can impart a small, but statistically significant decrease in otherwise uncontrolled runoff volume. Given consistent monitoring data and analysis, water resource managers can use our approach as a way to estimate actual effectiveness of stormwater runoff volume management, with potential benefits for management of both separated and combined sewer systems. We also discuss lessons-learned with regard to monitoring design for catchment-scale hydrologic studies.

  10. Predicting the ungauged basin: Model validation and realism assessment

    NASA Astrophysics Data System (ADS)

    van Emmerik, Tim; Mulder, Gert; Eilander, Dirk; Piet, Marijn; Savenije, Hubert

    2015-10-01

    The hydrological decade on Predictions in Ungauged Basins (PUB) led to many new insights in model development, calibration strategies, data acquisition and uncertainty analysis. Due to a limited amount of published studies on genuinely ungauged basins, model validation and realism assessment of model outcome has not been discussed to a great extent. With this paper we aim to contribute to the discussion on how one can determine the value and validity of a hydrological model developed for an ungauged basin. As in many cases no local, or even regional, data are available, alternative methods should be applied. Using a PUB case study in a genuinely ungauged basin in southern Cambodia, we give several examples of how one can use different types of soft data to improve model design, calibrate and validate the model, and assess the realism of the model output. A rainfall-runoff model was coupled to an irrigation reservoir, allowing the use of additional and unconventional data. The model was mainly forced with remote sensing data, and local knowledge was used to constrain the parameters. Model realism assessment was done using data from surveys. This resulted in a successful reconstruction of the reservoir dynamics, and revealed the different hydrological characteristics of the two topographical classes. This paper does not present a generic approach that can be transferred to other ungauged catchments, but it aims to show how clever model design and alternative data acquisition can result in a valuable hydrological model for an ungauged catchment.

  11. Catchment-scale fluorescence water quality determination.

    PubMed

    Baker, A; Inverarity, R; Ward, D

    2005-01-01

    Chemical water quality determinants and river water fluorescence were determined on the River Tyne, northeast England. Statistically significant relationships between nitrate (r = 0.87), phosphate (r = 0.80), ammonia (r = 0.70), biochemical oxygen demand (BOD) (r = 0.85) and dissolved oxygen (r = -0.65) and tryptophan-like fluorescence intensity were observed. The strongest correlations are between tryptophan-like intensity and nitrate and phosphate, which in the Tyne catchment derive predominantly from point and diffuse source sewage inputs. The correlation between BOD and the tryptophan-like fluorescence intensity suggests that this fluorescence centre is related to the bioavailable or fluorescence intensity and ammonia concentration and dissolved oxygen. The weaker correlation with ammonia is due to good ammonia treatment within the wastewater treatment plants within the catchment, and that with dissolved oxygen due to the natural aeration of the river such that this is not a good indicator of water quality. Mean annual tryptophan-like fluorescence intensity, measured by both bench and portable spectrometers, agrees well with the General Water Quality Assessment as determined by the England and Wales environmental regulators, the Environment Agency. PMID:16445189

  12. Modelling response to natural damming in an artificial catchment using LAPSUS

    NASA Astrophysics Data System (ADS)

    van Gorp, Wouter; Temme, Arnaud; Baartman, Jantiene; Schoorl, Jeroen

    2013-04-01

    Fluvial landscapes respond non-linearly to damming. Until now, research to these phenomena has focussed on fieldwork studies. Using a Landscape Evolution Model (LEM) to systematically understand fluvial response to damming has not been done yet. LEM LAPSUS is capable of dealing with depressions in a natural way and has recently been enhanced to incorporate 3D geology and to identify newly deposited sediments. The aim of this study was to model landscape evolution using LAPSUS in a small artificial catchment, that experienced base level change due to natural-damming. A rectangular catchment of 2100 x 6000 m with a 20 m resolution was given a net annual rainfall of 300 mm for a period of 10000 year. Two different landscapes, having a high erodible substrate and a low erodible substrate were modelled. For both landscapes, Three scenarios were evaluated: (i) dam and substrate having equal erodibility; (ii) dam being 10 times more erodibile than substrate; and (iii) dam being 10 times less erodible than substrate. Results showed differences in lake siltation rate, plan channel evolution, longitudinal profile evolution and sediment redistribution patterns. These differences related non-linearly to erodibilities and demonstrate complex response to local base level change. Fluvial archives of landscapes which are regularly undergoing natural dammings should be approached with caution as terrace formation does not necessarily reflect basin wide climate signals.

  13. Application of ANN and fuzzy logic algorithms for streamflow modelling of Savitri catchment

    NASA Astrophysics Data System (ADS)

    Kothari, Mahesh; Gharde, K. D.

    2015-07-01

    The streamflow prediction is an essentially important aspect of any watershed modelling. The black box models (soft computing techniques) have proven to be an efficient alternative to physical (traditional) methods for simulating streamflow and sediment yield of the catchments. The present study focusses on development of models using ANN and fuzzy logic (FL) algorithm for predicting the streamflow for catchment of Savitri River Basin. The input vector to these models were daily rainfall, mean daily evaporation, mean daily temperature and lag streamflow used. In the present study, 20 years (1992-2011) rainfall and other hydrological data were considered, of which 13 years (1992-2004) was for training and rest 7 years (2005-2011) for validation of the models. The mode performance was evaluated by R, RMSE, EV, CE, and MAD statistical parameters. It was found that, ANN model performance improved with increasing input vectors. The results with fuzzy logic models predict the streamflow with single input as rainfall better in comparison to multiple input vectors. While comparing both ANN and FL algorithms for prediction of streamflow, ANN model performance is quite superior.

  14. Vulnerability of groundwater resources to interaction with river water in a boreal catchment

    NASA Astrophysics Data System (ADS)

    Rautio, A.; Kivimäki, A.-L.; Korkka-Niemi, K.; Nygård, M.; Salonen, V.-P.; Lahti, K.; Vahtera, H.

    2015-02-01

    A low altitude aerial infrared (AIR) survey was conducted to identify hydraulic connections between aquifers and rivers, and to map spatial surface temperature patterns along boreal rivers. In addition, the stable isotopic compositions (?18O, ?D), dissolved silica (DSi) concentrations and electrical conductivity of water in combination with AIR data were used as tracers to verify the observed groundwater discharge into the river system in a boreal catchment. The results of AIR surveys and hydrogeochemical studies performed in the boreal catchment are presented. Based on low temperature anomalies in the AIR survey, around 370 groundwater-surface water interaction sites were located along the main river channel and its tributaries (203 km altogether). On the basis of AIR survey, the longitudinal temperature patterns of the studied rivers differed noticeably. The stable isotopes and DSi composition revealed major differences between the studied rivers. The interaction locations identified in the proximity of 12 municipal water intake plants during the low-flow seasons should be considered as potential risk areas for water intake plants during flood periods (groundwater quality deterioration due to bank infiltration), and should be taken under consideration in river basin management under changing climatic situations.

  15. The "normal" elongation of river basins

    NASA Astrophysics Data System (ADS)

    Castelltort, Sebastien

    2013-04-01

    The spacing between major transverse rivers at the front of Earth's linear mountain belts consistently scales with about half of the mountain half-width [1], despite strong differences in climate and rock uplift rates. Like other empirical measures describing drainage network geometry this result seems to indicate that the form of river basins, among other properties of landscapes, is invariant. Paradoxically, in many current landscape evolution models, the patterns of drainage network organization, as seen for example in drainage density and channel spacing, seem to depend on both climate [2-4] and tectonics [5]. Hovius' observation [1] is one of several unexplained "laws" in geomorphology that still sheds mystery on how water, and rivers in particular, shape the Earth's landscapes. This narrow range of drainage network shapes found in the Earth's orogens is classicaly regarded as an optimal catchment geometry that embodies a "most probable state" in the uplift-erosion system of a linear mountain belt. River basins currently having an aspect away from this geometry are usually considered unstable and expected to re-equilibrate over geological time-scales. Here I show that the Length/Width~2 aspect ratio of drainage basins in linear mountain belts is the natural expectation of sampling a uniform or normal distribution of basin shapes, and bears no information on the geomorphic processes responsible for landscape development. This finding also applies to Hack's [6] law of river basins areas and lengths, a close parent of Hovius' law. [1]Hovius, N. Basin Res. 8,