Science.gov

Sample records for catharanthus roseus mesophyll

  1. Patterns of indole alkaloids synthesis in response to heat shock, 5-azacytidine and Na-butyrate treatment of cultured catharanthus roseus mesophyll protoplasts

    SciTech Connect

    Saleem, M.; Cutler, A.J.

    1986-04-01

    Alkaloids of C. roseus are in high demand for therapeutic and other reasons. Cultured Catharanthus cells can produce limited quantities of these alkaloids. The authors have found that cultured mesophyll protoplasts in the presence of /sup 14/C-Tryptamine are capable of synthesizing alkaloids. The pattern of alkaloids synthesis changes when protoplasts are subjected to a heat shock at 37/sup 0/C. The heat shocked protoplasts incorporated 33% more /sup 14/C-Tryptamine and produced 3 new types of alkaloids. Treatment of protoplasts with 5-azacytidine, a DNA hypomethylating agent and Na-butyrate which induces hyperacetylation of histones produced qualitative and quantitative changes in the alkaloid pattern. Four new alkaloids following the above treatments were detected by TLC and HPLC of the extracts. It is suggested that the alkaloid pattern of the cultured protoplasts can be altered by treatment with compounds known as regulators of gene expression. Work is in progress to isolate and identify these new alkaloids.

  2. Monoterpenoid Indole Alkaloids from Catharanthus roseus Cultivated in Yunnan.

    PubMed

    Wang, Bei; Liu, Lu; Chen, Ying-ying; Li, Qiong; Li, Dan; Liu, Va-ping; Luo, Xiao-dong

    2015-12-01

    A new monoterpenoid indole alkaloid, 15,20-dehydro-3α-(2-oxopropyl) coronaridine (1), along with sixteen analogues (2-17) were isolated from the leaves of Catharanthus roseus cultivated in Yunnan. The new alkaloid was elucidated on the basis of extensive spectroscopic analysis, and the known alkaloids were identified by comparison with the reported spectroscopic data. Among them, alkaloid 16 was isolated from Catharanthus for the first time. PMID:26882670

  3. Biosynthesis and regulation of terpenoid indole alkaloids in Catharanthus roseus

    PubMed Central

    Zhu, Jianhua; Wang, Mingxuan; Wen, Wei; Yu, Rongmin

    2015-01-01

    Catharanthus roseus produces a wide range of terpenoid indole alkaloids (TIA). Many of them, such as vinblastine and vincristine, have significant bioactivity. They are valuable chemotherapy drugs used in combination with other drugs to treat lymphoma and leukemia. The TIA biosynthetic pathway has been investigated for many years, for scientific interest and for their potential in manufacturing applications, to fulfill the market demand. In this review, the progress and perspective of C. roseus TIA biosynthesis and its regulating enzymes are described. In addition, the culture condition, hormones, signaling molecules, precursor feeding on the accumulation of TIA, and gene expression are also evaluated and discussed. PMID:26009689

  4. Biosynthesis and regulation of terpenoid indole alkaloids in Catharanthus roseus.

    PubMed

    Zhu, Jianhua; Wang, Mingxuan; Wen, Wei; Yu, Rongmin

    2015-01-01

    Catharanthus roseus produces a wide range of terpenoid indole alkaloids (TIA). Many of them, such as vinblastine and vincristine, have significant bioactivity. They are valuable chemotherapy drugs used in combination with other drugs to treat lymphoma and leukemia. The TIA biosynthetic pathway has been investigated for many years, for scientific interest and for their potential in manufacturing applications, to fulfill the market demand. In this review, the progress and perspective of C. roseus TIA biosynthesis and its regulating enzymes are described. In addition, the culture condition, hormones, signaling molecules, precursor feeding on the accumulation of TIA, and gene expression are also evaluated and discussed. PMID:26009689

  5. [Monomeric indole alkaloids from the aerial parts of Catharanthus roseus].

    PubMed

    Zhong, Xiang-Zhang; Wang, Guo-Cai; Wang, Ying; Zhang, Xiao-Qi; Ye, Wen-Cai

    2010-04-01

    Catharanthus roseus (L.) G. Don is a plant of the Catharanthus genus of Apocynaceae which has been reported to have therapeutic effects of detoxication and anticancer. In order to further study the alkaloid constituents of C. roseus, the aerial parts of the plant were extracted with 95% EtOH, and then treated with 2% H2SO4 and NH3H2O to obtain total alkaloids. The total alkaloids were separated and purified by column chromatography over silica gel and prepared by high performance liquid chromatography (HPLC). Their structures were elucidated on the basis of physicochemical properties and spectral data. A new alkaloid together with five known compounds were isolated and identified as vindolinine B (1), lochnericine (2), horhammericine (3), vindorosine (4), vindoline (5), and coronaridine (6). Compound 1 is a new compound and named as vindolinine B. PMID:21355212

  6. Induced Dwarf Mutant in Catharanthus roseus with Enhanced Antibacterial Activity

    PubMed Central

    Verma, A. K.; Singh, R. R.

    2010-01-01

    Evaluation of an ethyl methane sulphonate-induced dwarf mutant of Catharanthus roseus (L.) G. Don revealed that the mutant exhibited marked variation in morphometric parameters. The in vitro antibacterial activity of the aqueous and alcoholic leaf extracts of the mutant and control plants was investigated against medically important bacteria. The mutant leaf extracts showed enhanced antibacterial activity against all the tested bacteria except Bacillus subtilis. PMID:21695004

  7. Functional characterization of amyrin synthase involved in ursolic acid biosynthesis in Catharanthus roseus leaf epidermis.

    PubMed

    Yu, Fang; Thamm, Antje M K; Reed, Darwin; Villa-Ruano, Nemesio; Quesada, Alfonso Lara; Gloria, Edmundo Lozoya; Covello, Patrick; De Luca, Vincenzo

    2013-07-01

    Catharanthus roseus accumulates high levels of the pentacyclic triterpene, ursolic acid, as a component of its wax exudate on the leaf surface. Bioinformatic analyses of transcripts derived from the leaf epidermis provide evidence for the specialized role of this tissue in the biosynthesis of ursolic acid. Cloning and functional expression in yeast of a triterpene synthase derived from this tissue showed it to be predominantly an α-amyrin synthase (CrAS), since the α-amyrin to β-amyrin reaction products accumulated in a 5:1 ratio. Expression analysis of CrAS showed that triterpene biosynthesis occurs predominantly in the youngest leaf tissues and in the earliest stages of seedling development. Further studies using laser capture microdissection to harvest RNA from epidermis, mesophyll, idioblasts, laticifers and vasculature of leaves showed the leaf epidermis to be the preferred sites of CrAS expression and provide conclusive evidence for the involvement of this tissue in the biosynthesis of ursolic acid in C. roseus. PMID:22652241

  8. The seco-iridoid pathway from Catharanthus roseus.

    PubMed

    Miettinen, Karel; Dong, Lemeng; Navrot, Nicolas; Schneider, Thomas; Burlat, Vincent; Pollier, Jacob; Woittiez, Lotte; van der Krol, Sander; Lugan, Raphaël; Ilc, Tina; Verpoorte, Robert; Oksman-Caldentey, Kirsi-Marja; Martinoia, Enrico; Bouwmeester, Harro; Goossens, Alain; Memelink, Johan; Werck-Reichhart, Danièle

    2014-01-01

    The (seco)iridoids and their derivatives, the monoterpenoid indole alkaloids (MIAs), form two large families of plant-derived bioactive compounds with a wide spectrum of high-value pharmacological and insect-repellent activities. Vinblastine and vincristine, MIAs used as anticancer drugs, are produced by Catharanthus roseus in extremely low levels, leading to high market prices and poor availability. Their biotechnological production is hampered by the fragmentary knowledge of their biosynthesis. Here we report the discovery of the last four missing steps of the (seco)iridoid biosynthesis pathway. Expression of the eight genes encoding this pathway, together with two genes boosting precursor formation and two downstream alkaloid biosynthesis genes, in an alternative plant host, allows the heterologous production of the complex MIA strictosidine. This confirms the functionality of all enzymes of the pathway and highlights their utility for synthetic biology programmes towards a sustainable biotechnological production of valuable (seco)iridoids and alkaloids with pharmaceutical and agricultural applications. PMID:24710322

  9. The seco-iridoid pathway from Catharanthus roseus

    PubMed Central

    Miettinen, Karel; Dong, Lemeng; Navrot, Nicolas; Schneider, Thomas; Burlat, Vincent; Pollier, Jacob; Woittiez, Lotte; van der Krol, Sander; Lugan, Raphaël; Ilc, Tina; Verpoorte, Robert; Oksman-Caldentey, Kirsi-Marja; Martinoia, Enrico; Bouwmeester, Harro; Goossens, Alain; Memelink, Johan; Werck-Reichhart, Danièle

    2014-01-01

    The (seco)iridoids and their derivatives, the monoterpenoid indole alkaloids (MIAs), form two large families of plant-derived bioactive compounds with a wide spectrum of high-value pharmacological and insect-repellent activities. Vinblastine and vincristine, MIAs used as anticancer drugs, are produced by Catharanthus roseus in extremely low levels, leading to high market prices and poor availability. Their biotechnological production is hampered by the fragmentary knowledge of their biosynthesis. Here we report the discovery of the last four missing steps of the (seco)iridoid biosynthesis pathway. Expression of the eight genes encoding this pathway, together with two genes boosting precursor formation and two downstream alkaloid biosynthesis genes, in an alternative plant host, allows the heterologous production of the complex MIA strictosidine. This confirms the functionality of all enzymes of the pathway and highlights their utility for synthetic biology programmes towards a sustainable biotechnological production of valuable (seco)iridoids and alkaloids with pharmaceutical and agricultural applications. PMID:24710322

  10. Hypoglycemic Activity of Aqueous Extracts from Catharanthus roseus

    PubMed Central

    Vega-Ávila, Elisa; Cano-Velasco, José Luis; Alarcón-Aguilar, Francisco J.; Fajardo Ortíz, María del Carmen; Almanza-Pérez, Julio César; Román-Ramos, Rubén

    2012-01-01

    Introduction. Catharanthus roseus (L.) is used in some countries to treat diabetes. The aim of this study was to evaluate the hypoglycemic activity of extracts from the flower, leaf, stem, and root in normal and alloxan-induced diabetic mice. Methods. Roots, leaves, flowers, and stems were separated to obtain organic and aqueous extracts. The blood glucose lowering activity of these extracts was determinate in healthy and alloxan-induced (75 mg/Kg) diabetic mice, after intraperitoneal administration (250 mg/Kg body weight). Blood samples were obtained and blood glucose levels were analyzed employing a glucometer. The data were statistically compared by ANOVA. The most active extract was fractioned. Phytochemical screen and chromatographic studies were also done. Results. The aqueous extracts from C. roseus reduced the blood glucose of both healthy and diabetic mice. The aqueous stem extract (250 mg/Kg) and its alkaloid-free fraction (300 mg/Kg) significantly (P < 0.05) reduced blood glucose in diabetic mice by 52.90 and 51.21%. Their hypoglycemic activity was comparable to tolbutamide (58.1%, P < 0.05). Conclusions. The best hypoglycemic activity was presented for the aqueous extracts and by alkaloid-free stem aqueous fraction. This fraction is formed by three polyphenols compounds. PMID:23056144

  11. Biosynthetic pathway of terpenoid indole alkaloids in Catharanthus roseus.

    PubMed

    Zhu, Xiaoxuan; Zeng, Xinyi; Sun, Chao; Chen, Shilin

    2014-09-01

    Catharanthus roseus is one of the most extensively investigated medicinal plants, which can produce more than 130 alkaloids, including the powerful antitumor drugs vinblastine and vincristine. Here we review the recent advances in the biosynthetic pathway of terpenoid indole alkaloids (TIAs) in C. roseus, and the identification and characterization of the corresponding enzymes involved in this pathway. Strictosidine is the central intermediate in the biosynthesis of different TIAs, which is formed by the condensation of secologanin and tryptamine. Secologanin is derived from terpenoid (isoprenoid) biosynthetic pathway, while tryptamine is derived from indole biosynthetic pathway. Then various specific end products are produced by different routes during downstream process. Although many genes and corresponding enzymes have been characterized in this pathway, our knowledge on the whole TIA biosynthetic pathway still remains largely unknown up to date. Full elucidation of TIA biosynthetic pathway is an important prerequisite to understand the regulation of the TIA biosynthesis in the medicinal plant and to produce valuable TIAs by synthetic biological technology. PMID:25159992

  12. Vacuolar Transport of the Medicinal Alkaloids from Catharanthus roseus Is Mediated by a Proton-Driven Antiport1[W

    PubMed Central

    Carqueijeiro, Inês; Noronha, Henrique; Duarte, Patrícia; Gerós, Hernâni; Sottomayor, Mariana

    2013-01-01

    Catharanthus roseus is one of the most studied medicinal plants due to the interest in their dimeric terpenoid indole alkaloids (TIAs) vinblastine and vincristine, which are used in cancer chemotherapy. These TIAs are produced in very low levels in the leaves of the plant from the monomeric precursors vindoline and catharanthine and, although TIA biosynthesis is reasonably well understood, much less is known about TIA membrane transport mechanisms. However, such knowledge is extremely important to understand TIA metabolic fluxes and to develop strategies aimed at increasing TIA production. In this study, the vacuolar transport mechanism of the main TIAs accumulated in C. roseus leaves, vindoline, catharanthine, and α-3′,4′-anhydrovinblastine, was characterized using a tonoplast vesicle system. Vindoline uptake was ATP dependent, and this transport activity was strongly inhibited by NH4+ and carbonyl cyanide m-chlorophenyl hydrazine and was insensitive to the ATP-binding cassette (ABC) transporter inhibitor vanadate. Spectrofluorimetry assays with a pH-sensitive fluorescent probe showed that vindoline and other TIAs indeed were able to dissipate an H+ gradient preestablished across the tonoplast by either vacuolar H+-ATPase or vacuolar H+-pyrophosphatase. The initial rates of H+ gradient dissipation followed Michaelis-Menten kinetics, suggesting the involvement of mediated transport, and this activity was species and alkaloid specific. Altogether, our results strongly support that TIAs are actively taken up by C. roseus mesophyll vacuoles through a specific H+ antiport system and not by an ion-trap mechanism or ABC transporters. PMID:23686419

  13. Vacuolar transport of the medicinal alkaloids from Catharanthus roseus is mediated by a proton-driven antiport.

    PubMed

    Carqueijeiro, Inês; Noronha, Henrique; Duarte, Patrícia; Gerós, Hernâni; Sottomayor, Mariana

    2013-07-01

    Catharanthus roseus is one of the most studied medicinal plants due to the interest in their dimeric terpenoid indole alkaloids (TIAs) vinblastine and vincristine, which are used in cancer chemotherapy. These TIAs are produced in very low levels in the leaves of the plant from the monomeric precursors vindoline and catharanthine and, although TIA biosynthesis is reasonably well understood, much less is known about TIA membrane transport mechanisms. However, such knowledge is extremely important to understand TIA metabolic fluxes and to develop strategies aimed at increasing TIA production. In this study, the vacuolar transport mechanism of the main TIAs accumulated in C. roseus leaves, vindoline, catharanthine, and α-3',4'-anhydrovinblastine, was characterized using a tonoplast vesicle system. Vindoline uptake was ATP dependent, and this transport activity was strongly inhibited by NH4(+) and carbonyl cyanide m-chlorophenyl hydrazine and was insensitive to the ATP-binding cassette (ABC) transporter inhibitor vanadate. Spectrofluorimetry assays with a pH-sensitive fluorescent probe showed that vindoline and other TIAs indeed were able to dissipate an H(+) gradient preestablished across the tonoplast by either vacuolar H(+)-ATPase or vacuolar H(+)-pyrophosphatase. The initial rates of H(+) gradient dissipation followed Michaelis-Menten kinetics, suggesting the involvement of mediated transport, and this activity was species and alkaloid specific. Altogether, our results strongly support that TIAs are actively taken up by C. roseus mesophyll vacuoles through a specific H(+) antiport system and not by an ion-trap mechanism or ABC transporters. PMID:23686419

  14. First report of Tomato chlorotic spot virus on Annual Vinca (Catharanthus roseus) in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tomato chlorotic spot virus was identified in the ornamental crop Catharanthus roseus (commonly known as vinca) in south Florida, the first report of this virus naturally infecting this species. Genetic diversity of the virus was characterized. This report provides an overview of this emerging vir...

  15. 7-O-methylpelargonidin glycosides from the pale red flowers of Catharanthus roseus.

    PubMed

    Tatsuzawa, Fumi

    2013-08-01

    Two new anthocyanidin glycosides were isolated from the pale red flowers of Catharanthus roseus 'Equator Apricot with Red Eye', and identified as 7-O-methylpelargonidin 3-O-[6-O-(alpha-rhamnopyranosyl)-beta-galactopyranoside] and 7-O-methylpelargonidin 3-O-(beta-galactopyranoside) by chemical and spectroscopic methods. PMID:24079176

  16. Cytogenetic characterization and genome size of the medicinal plant Catharanthus roseus (L.) G. Don

    PubMed Central

    Guimarães, Guilherme; Cardoso, Luísa; Oliveira, Helena; Santos, Conceição; Duarte, Patrícia; Sottomayor, Mariana

    2012-01-01

    Background and aims Catharanthus roseus is a highly valuable medicinal plant producing several terpenoid indole alkaloids (TIAs) with pharmaceutical applications, including the anticancer agents vinblastine and vincristine. Due to the interest in its TIAs, C. roseus is one of the most extensively studied medicinal plants and has become a model species for the study of plant secondary metabolism. However, very little is known about the cytogenetics and genome size of this species, in spite of their importance for breeding programmes, TIA genetics and emerging genomic research. Therefore, the present paper provides a karyotype description and fluorescence in situ hybridization (FISH) data for C. roseus, as well as a rigorous characterization of its genome size. Methodology The organization of C. roseus chromosomes was characterized using several DNA/chromatin staining techniques and FISH of rDNA. Genome size was investigated by flow cytometry using an optimized methodology. Principal results The C. roseus full chromosome complement of 2n = 16 includes two metacentric, four subtelocentric and two telocentric chromosome pairs, with the presence of a single nucleolus organizer region in chromosome 6. An easy and reliable flow cytometry protocol for nuclear genome analysis of C. roseus was optimized, and the C-value of this species was estimated to be 1C = 0.76 pg, corresponding to 738 Mbp. Conclusions The organization and size of the C. roseus genome were characterized, providing an important basis for future studies of this important medicinal species, including further cytogenetic mapping, genomics, TIA genetics and breeding programmes. PMID:22479673

  17. Enhanced catharanthine and vindoline production in suspension cultures of Catharanthus roseus by ultraviolet-B light

    PubMed Central

    Ramani, Shilpa; Jayabaskaran, Chelliah

    2008-01-01

    Suspension cultures of Catharanthus roseus were used to evaluate ultraviolet-B (UV-B) treatment as an abiotic elicitor of secondary metabolites. A dispersed cell suspension culture from C. roseus leaves in late exponential phase and stationary phase were irradiated with UV-B for 5 min. The stationary phase cultures were more responsive to UV-B irradiation than late exponential phase cultures. Catharanthine and vindoline increased 3-fold and 12-fold, respectively, on treatment with a 5-min UV-B irradiation. PMID:18439256

  18. Catharanthus roseus flower extract has wound-healing activity in Sprague Dawley rats

    PubMed Central

    Nayak, BS; Pinto Pereira, Lexley M

    2006-01-01

    Background Catharanthus roseus L (C. roseus) has been used to treat a wide assortment of diseases including diabetes. The objective of our study was to evaluate the antimicrobial and wound healing activity of the flower extract of Catharanthus in rats. Methods Wound healing activity was determined in rats, after administration (100 mg kg-1 day-1) of the ethanol extract of C. roseus flower, using excision, incision and dead space wounds models. The animals were divided into two groups of 6 each in all the models. In the excision model, group 1 animals were topically treated with carboxymethyl cellulose as placebo control and group 2 received topical application of the ethanol extract of C. roseus at a dose of 100 mg/kg body weight/day. In an incision and dead space model group 1 animals were given normal saline and group 2 received the extract orally at a dose of 100 mg kg-1 day-1. Healing was assessed by the rate of wound contraction, period of epithelization, tensile strength (skin breaking strength), granulation tissue weight, and hydoxyproline content. Antimicrobial activity of the flower extract against four microorganisms was also assessed Results The extract of C. roseus significantly increased the wound breaking strength in the incision wound model compared with controls (P < 0.001). The extract-treated wounds were found to epithelialize faster, and the rate of wound contraction was significantly increased in comparison to control wounds (P < 0.001), Wet and dry granulation tissue weights, and hydroxyproline content in a dead space wound model increased significantly (p < 0.05). Pseudomonas aeruginosa and Staphylococcus aureus demonstrated sensitivity to C. roseus Conclusion Increased wound contraction and tensile strength, augmented hydroxyproline content along with antimicrobial activity support the use of C. roseus in the topical management of wound healing. PMID:17184528

  19. [Identification and expression analysis of WRKY transcription factors in medicinal plant Catharanthus roseus].

    PubMed

    Yang, Zhirong; Wang, Xingchun; Xue, Jin'ai; Meng, Lingzhi; Li, Runzhi

    2013-06-01

    WRKY transcription factors, one of the largest families of transcriptional regulators in plants, involve in multiple life activities including plant growth and development as well as stress responses. However, little is known about the types and functions of WRKY transcription factors in Catharanthus roseus, an important medicinal plant. In this study, we identified 47 CrWRKY transcriptional factors from 26 009 proteins in Catharanthus roseus, and classified them into three distinct groups (G1, G2 and G3) according to the structure of WRKY domain and evolution of the protein family. The expression profiling showed that these CrWRKY genes expressed in a tissue/organ specific manner. The 47 CrWRKY genes were clustered into three types of expression patterns. The first type includes the CrWRKYs highly expressed in flowers and the protoplast treated with methy jasmonate (MeJA) or yeast extraction (YE). The second type contains the CrWRKYs highly expressed in stem and hairy root. The third type represents the CrWRKYs highly expressed in root, stem, leaf, seedling and the hairy root treated by MeJA. Real time quantitative PCR was employed to further identify the expression patterns of the 16 selected CrWRKY genes in various organs, the MeJA-treated protoplasts and hairy roots of Catharanthus roseus, and similar results were obtained. Notably, the expresion of more than 1/3 CrWRKY genes were regulated by MeJA or YE, indicating that these CrWRKYs are likely involed in the signalling webs which modulate the biosynthesis of terpenoid indole alkaloid and plant responses to various stresses. The present results provide a framework for functional identification of the CrWRKYs and understanding of the regulation network of terpenoid indole alkaloid biosynthesis in Catharanthus roseus. PMID:24063238

  20. Transcriptome analysis of Catharanthus roseus for gene discovery and expression profiling.

    PubMed

    Verma, Mohit; Ghangal, Rajesh; Sharma, Raghvendra; Sinha, Alok K; Jain, Mukesh

    2014-01-01

    The medicinal plant, Catharanthus roseus, accumulates wide range of terpenoid indole alkaloids, which are well documented therapeutic agents. In this study, deep transcriptome sequencing of C. roseus was carried out to identify the pathways and enzymes (genes) involved in biosynthesis of these compounds. About 343 million reads were generated from different tissues (leaf, flower and root) of C. roseus using Illumina platform. Optimization of de novo assembly involving a two-step process resulted in a total of 59,220 unique transcripts with an average length of 1284 bp. Comprehensive functional annotation and gene ontology (GO) analysis revealed the representation of many genes involved in different biological processes and molecular functions. In total, 65% of C. roseus transcripts showed homology with sequences available in various public repositories, while remaining 35% unigenes may be considered as C. roseus specific. In silico analysis revealed presence of 11,620 genic simple sequence repeats (excluding mono-nucleotide repeats) and 1820 transcription factor encoding genes in C. roseus transcriptome. Expression analysis showed roots and leaves to be actively participating in bisindole alkaloid production with clear indication that enzymes involved in pathway of vindoline and vinblastine biosynthesis are restricted to aerial tissues. Such large-scale transcriptome study provides a rich source for understanding plant-specialized metabolism, and is expected to promote research towards production of plant-derived pharmaceuticals. PMID:25072156

  1. Transcriptome Analysis of Catharanthus roseus for Gene Discovery and Expression Profiling

    PubMed Central

    Sharma, Raghvendra; Sinha, Alok K.; Jain, Mukesh

    2014-01-01

    The medicinal plant, Catharanthus roseus, accumulates wide range of terpenoid indole alkaloids, which are well documented therapeutic agents. In this study, deep transcriptome sequencing of C. roseus was carried out to identify the pathways and enzymes (genes) involved in biosynthesis of these compounds. About 343 million reads were generated from different tissues (leaf, flower and root) of C. roseus using Illumina platform. Optimization of de novo assembly involving a two-step process resulted in a total of 59,220 unique transcripts with an average length of 1284 bp. Comprehensive functional annotation and gene ontology (GO) analysis revealed the representation of many genes involved in different biological processes and molecular functions. In total, 65% of C. roseus transcripts showed homology with sequences available in various public repositories, while remaining 35% unigenes may be considered as C. roseus specific. In silico analysis revealed presence of 11,620 genic simple sequence repeats (excluding mono-nucleotide repeats) and 1820 transcription factor encoding genes in C. roseus transcriptome. Expression analysis showed roots and leaves to be actively participating in bisindole alkaloid production with clear indication that enzymes involved in pathway of vindoline and vinblastine biosynthesis are restricted to aerial tissues. Such large-scale transcriptome study provides a rich source for understanding plant-specialized metabolism, and is expected to promote research towards production of plant-derived pharmaceuticals. PMID:25072156

  2. Catharanthus roseus: a natural source for the synthesis of silver nanoparticles

    PubMed Central

    Mukunthan, KS; Elumalai, EK; Patel, Trupti N; Murty, V Ramachandra

    2011-01-01

    Objective To develop a simple rapid procedure for bioreduction of silver nanoparticles (AgNPs) using aqueous leaves extracts of Catharanthus roseus (C. roseus). Methods Characterization were determined by using UV-Vis spectrophotometry, scanning electron microscopy (SEM), energy dispersive X-ray and X-ray diffraction. Results SEM showed the formation of silver nanoparticles with an average size of 67 nm to 48 nm. X-ray diffraction analysis showed that the particles were crystalline in nature with face centered cubic geometry. Conclusions C. roseus demonstrates strong potential for synthesis of silver nanoparticles by rapid reduction of silver ions (Ag+ to Ag0). This study provides evidence for developing large scale commercial production of value-added products for biomedical/nanotechnology-based industries. PMID:23569773

  3. Antihyperglycemic activity of Catharanthus roseus leaf powder in streptozotocin-induced diabetic rats

    PubMed Central

    Rasineni, Karuna; Bellamkonda, Ramesh; Singareddy, Sreenivasa Reddy; Desireddy, Saralakumari

    2010-01-01

    Catharanthus roseus Linn (Apocynaceae), is a traditional medicinal plant used to control diabetes, in various regions of the world. In this study we evaluated the possible antidiabetic and hypolipidemic effect of C. roseus (Catharanthus roseus) leaf powder in diabetic rats. Diabetes was induced by intraperitoneal injection of streptozotocin (STZ, 55 mg/kg body wt) to male Wistar rats. The animals were divided into four groups: Control, control-treated, diabetic, and diabetic-treated group. Diabetic-treated and control-treated rats were treated with C. roseus leaf powder suspension in 2 ml distilled water, orally (100 mg/kg body weight/day/60 days). In diabetic rats (D-group) the plasma glucose was increased and the plasma insulin was decreased gradually. In the diabetic-treated group lowering of plasma glucose and an increase in plasma insulin were observed after 15 days and by the end of the experimental period the plasma glucose had almost reached the normal level, but insulin had not. The significant enhancement in plasma total cholesterol, triglycerides, LDL and VLDL-cholesterol, and the atherogenic index of diabetic rats were normalized in diabetic-treated rats. Decreased hepatic and muscle glycogen content and alterations in the activities of enzymes of glucose metabolism (glycogen phosphorylase, hexokinase, phosphofructokinase, pyruvate kinase, and glucose-6-phosphate dehydrogenase), as observed in the diabetic control rats, were prevented with C. roseus administration. Our results demonstrated that C. roseus with its antidiabetic and hypolipidemic properties could be a potential herbal medicine in treating diabetes. PMID:21808566

  4. Binary stress induces an increase in indole alkaloid biosynthesis in Catharanthus roseus.

    PubMed

    Zhu, Wei; Yang, Bingxian; Komatsu, Setsuko; Lu, Xiaoping; Li, Ximin; Tian, Jingkui

    2015-01-01

    Catharanthus roseus is an important medicinal plant, which produces a variety of indole alkaloids of significant pharmaceutical relevance. In the present study, we aimed to investigate the potential stress-induced increase of indole alkaloid biosynthesis in C. roseus using proteomic technique. The contents of the detectable alkaloids ajmalicine, vindoline, catharanthine, and strictosidine in C. roseus were significantly increased under binary stress. Proteomic analysis revealed that the abundance of proteins related to tricarboxylic acid cycle and cell wall was largely increased; while, that of proteins related to tetrapyrrole synthesis and photosynthesis was decreased. Of note, 10-hydroxygeraniol oxidoreductase, which is involved in the biosynthesis of indole alkaloid was two-fold more abundant in treated group compared to the control. In addition, mRNA expression levels of genes involved in the indole alkaloid biosynthetic pathway indicated an up-regulation in their transcription in C. roseus under UV-B irradiation. These results suggest that binary stress might negatively affect the process of photosynthesis in C. roseus. In addition, the induction of alkaloid biosynthesis appears to be responsive to binary stress. PMID:26284098

  5. A virus-induced gene silencing approach to understanding alkaloid metabolism in Catharanthus roseus

    PubMed Central

    Liscombe, David K.; O’Connor, Sarah E.

    2011-01-01

    The anticancer agents vinblastine and vincristine are bisindole alkaloids derived from coupling vindoline and catharanthine, monoterpenoid indole alkaloids produced exclusively by Madagascar periwinkle (Catharanthus roseus) plants. Industrial production of vinblastine and vincristine currently relies on isolation from C. roseus leaves, a process that affords these compounds in 0.0003–0.01% yields. Metabolic engineering efforts to improve alkaloid content or provide alternative sources of the bisindole alkaloids ultimately rely on the isolation and characterization of the genes involved. Several vindoline biosynthetic genes have been isolated, and the cellular and subcellular organization of the corresponding enzymes has been well studied. However, due to the leaf-specific localization of vindoline biosynthesis, and the lack of production of this precursor in cell suspension and hairy root cultures of C. roseus, further elucidation of this pathway demands the development of reverse genetics approaches to assay gene function in planta. The bipartite pTRV vector system is a Tobacco Rattle Virus-based virus-induced gene silencing (VIGS) platform that has provided efficient and effective means to assay gene function in diverse plant systems. We have developed a VIGS method to investigate gene function in C. roseus plants using the pTRV vector system. The utility of this approach in understanding gene function in C. roseus leaves is demonstrated by silencing known vindoline biosynthetic genes previously characterized in vitro. PMID:21802100

  6. Binary stress induces an increase in indole alkaloid biosynthesis in Catharanthus roseus

    PubMed Central

    Zhu, Wei; Yang, Bingxian; Komatsu, Setsuko; Lu, Xiaoping; Li, Ximin; Tian, Jingkui

    2015-01-01

    Catharanthus roseus is an important medicinal plant, which produces a variety of indole alkaloids of significant pharmaceutical relevance. In the present study, we aimed to investigate the potential stress-induced increase of indole alkaloid biosynthesis in C. roseus using proteomic technique. The contents of the detectable alkaloids ajmalicine, vindoline, catharanthine, and strictosidine in C. roseus were significantly increased under binary stress. Proteomic analysis revealed that the abundance of proteins related to tricarboxylic acid cycle and cell wall was largely increased; while, that of proteins related to tetrapyrrole synthesis and photosynthesis was decreased. Of note, 10-hydroxygeraniol oxidoreductase, which is involved in the biosynthesis of indole alkaloid was two-fold more abundant in treated group compared to the control. In addition, mRNA expression levels of genes involved in the indole alkaloid biosynthetic pathway indicated an up-regulation in their transcription in C. roseus under UV-B irradiation. These results suggest that binary stress might negatively affect the process of photosynthesis in C. roseus. In addition, the induction of alkaloid biosynthesis appears to be responsive to binary stress. PMID:26284098

  7. Selection and validation of reference genes for transcript normalization in gene expression studies in Catharanthus roseus.

    PubMed

    Pollier, Jacob; Vanden Bossche, Robin; Rischer, Heiko; Goossens, Alain

    2014-10-01

    Quantitative Real-Time PCR (qPCR), a sensitive and commonly used technique for gene expression analysis, requires stably expressed reference genes for normalization of gene expression. Up to now, only one reference gene for qPCR analysis, corresponding to 40S Ribosomal protein S9 (RPS9), was available for the medicinal plant Catharanthus roseus, the only source of the commercial anticancer drugs vinblastine and vincristine. Here, we screened for additional reference genes for this plant species by mining C. roseus RNA-Seq data for orthologs of 22 genes known to be stably expressed in Arabidopsis thaliana and qualified as superior reference genes for this model plant species. Based on this, eight candidate C. roseus reference genes were identified and, together with RPS9, evaluated by performing qPCR on a series of different C. roseus explants and tissue cultures. NormFinder, geNorm and BestKeeper analyses of the resulting qPCR data revealed that the orthologs of At2g28390 (SAND family protein, SAND), At2g32170 (N2227-like family protein, N2227) and At4g26410 (Expressed protein, EXP) had the highest expression stability across the different C. roseus samples and are superior as reference genes as compared to the traditionally used RPS9. Analysis of publicly available C. roseus RNA-Seq data confirmed the expression stability of SAND and N2227, underscoring their value as reference genes for C. roseus qPCR analysis. PMID:25058454

  8. Structural identification of putative USPs in Catharanthus roseus.

    PubMed

    Bahieldin, Ahmed; Atef, Ahmed; Shokry, Ahmed M; Al-Karim, Saleh; Al Attas, Sanaa G; Gadallah, Nour O; Edris, Sherif; Al-Kordy, Magdy A; Omer, Abdulkader M Shaikh; Sabir, Jamal S M; Ramadan, Ahmed M; Al-Hajar, Abdulrahman S M; Makki, Rania M; Hassan, Sabah M; El-Domyati, Fotouh M

    2015-10-01

    Nucleotide sequences of the C. roseus SRA database were assembled and translated in order to detect putative universal stress proteins (USPs). Based on the known conserved USPA domain, 24 Pfam putative USPA proteins in C. roseus were detected and arranged in six architectures. The USPA-like domain was detected in all architectures, while the protein kinase-like (or PK-like), (tyr)PK-like and/or U-box domains are shown downstream it. Three other domains were also shown to coexist with the USPA domain in C. roseus putative USPA sequences. These domains are tetratricopeptide repeat (or TPR), apolipophorin III (or apoLp-III) and Hsp90 co-chaperone Cdc37. Subsequent analysis divided USPA-like domains based on the ability to bind ATP. The multiple sequence alignment indicated the occurrence of eight C. roseus residues of known features of the bacterial 1MJH secondary structure. The data of the phylogenetic tree indicated several distinct groups of USPA-like domains confirming the presence of high level of sequence conservation between the plant and bacterial USPA-like sequences. PMID:26318047

  9. Subcellular Localization of Enzymes Involved in Indole Alkaloid Biosynthesis in Catharanthus roseus1

    PubMed Central

    De Luca, Vincenzo; Cutler, Adrian J.

    1987-01-01

    The subcellular localization of enzymes involved in indole alkaloid biosynthesis in leaves of Catharanthus roseus has been investigated. Tryptophan decarboxylase and strictosidine synthase which together produce strictosidine, the first indole alkaloid of this pathway, are both cytoplasmic enzymes. S-Adenosyl-l-methionine: 16-methoxy-2,3-dihydro-3-hydroxytabersonine-N-methyltransferase which catalyses the third to last step in vindoline biosynthesis could be localized in the chloroplasts of Catharanthus leaves and is specifically associated with thylakoids. Acetyl-coenzyme-A-deacetylvindoline-O-acetyltransferase which catalyses the last step in vindoline biosynthesis could also be localized in the cytoplasm. The participation of the chloroplast in this pathway suggests that indole alkaloid intermediates enter and exit this compartment during the biosynthesis of vindoline. PMID:16665811

  10. Development of a kinetic metabolic model: application to Catharanthus roseus hairy root

    PubMed Central

    Leduc, M.; Tikhomiroff, C.; Cloutier, M.; Perrier, M.

    2006-01-01

    A kinetic metabolic model describing Catharanthus roseus hairy root growth and nutrition was developed. The metabolic network includes glycolysis, pentose-phosphate pathway, TCA cycle and the catabolic reactions leading to cell building blocks such as amino acids, organic acids, organic phosphates, lipids and structural hexoses. The central primary metabolic network was taken at pseudo-steady state and metabolic flux analysis technique allowed reducing from 31 metabolic fluxes to 20 independent pathways. Hairy root specific growth rate was described as a function of intracellular concentration in cell building blocks. Intracellular transport and accumulation kinetics for major nutrients were included. The model uses intracellular nutrients as well as energy shuttles to describe metabolic regulation. Model calibration was performed using experimental data obtained from batch and medium exchange liquid cultures of C. roseus hairy root using a minimal medium in Petri dish. The model is efficient in estimating the growth rate. PMID:16453114

  11. Influence of Some Heavy Metals on Growth, Alkaloid Content and Composition in Catharanthus roseus L.

    PubMed Central

    Srivastava, N. K.; Srivastava, A. K.

    2010-01-01

    Shoot biomass production, alkaloid content and composition as influence by cadmium, manganese, nickel and lead at uniform dose of 5 mM were investigated in Catharanthus roseus plants grown in sand culture. Treatment with Mn, Ni, and Pb significantly enhanced total root alkaloid accumulation. Cd and Ni treatment resulted in two-fold where as Pb treatment resulted in three fold increase in serpentine content of roots. The non-significant affect on biomass suggests that plants can withstand metal stress at the level tested with positive affect on root alkaloid content. PMID:21969751

  12. Computational identification of microRNAs and their targets in Catharanthus roseus expressed sequence tags

    PubMed Central

    Pani, Alok; Mahapatra, Rajani Kanta

    2013-01-01

    No study has been performed on identifying microRNAs (miRNAs) and their targets in the medicinal plant, Catharanthus roseus. In the present study, using the comparative genomics approach, we have predicted two potential C. roseus miRNAs. Furthermore, twelve potential mRNA targets were identified in C. roseus genome based on the characteristics that miRNAs exhibit perfect or nearly perfect complementarity with their targeted mRNA sequences. Among them many of the targets were predicted to encode enzymes that regulate the biosynthesis of terpenoid indole alkaloids (TIA). In addition, most of the predicted targets were the gene coding for transcription factors which are mainly involved in cell growth and development, signaling and metabolism. This is the first in silico study to indicate that miRNA target gene encoding enzymes involved in vinblastine and vincristine biosynthesis, which may help to understand the miRNA-mediated regulation of TIA alkaloid biosynthesis in C. roseus. PMID:26484050

  13. UV-B induced transcript accumulation of DAHP synthase in suspension-cultured Catharanthus roseus cells

    PubMed Central

    2010-01-01

    The enzyme 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) synthase (EC 4.1.2.15) catalyzes the first committed step in the shikimate pathway of tryptophan synthesis, an important precursor for the production of terpenoid indole alkaloids (TIAs). A full-length cDNA encoding nuclear coded chloroplast-specific DAHP synthase transcript was isolated from a Catharanthus roseus cDNA library. This had high sequence similarity with other members of plant DAHP synthase family. This transcript accumulated in suspension cultured C. roseus cells on ultraviolet (UV-B) irradiation. Pretreatment of C.roseus cells with variety of agents such as suramin, N-acetyl cysteine, and inhibitors of calcium fluxes and protein kinases and MAP kinase prevented this effect of UV-B irriadiation. These data further show that the essential components of the signaling pathway involved in accumulation DAHP synthase transcript in C. roseus cells include suramin-sensitive cell surface receptor, staurosporine-sensitive protein kinase and MAP kinase. PMID:20704760

  14. Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities

    PubMed Central

    Ponarulselvam, S; Panneerselvam, C; Murugan, K; Aarthi, N; Kalimuthu, K; Thangamani, S

    2012-01-01

    Objective To develop a novel approach for the green synthesis of silver nanoparticles using aqueous leaves extracts of Catharanthus roseus (C. roseus) Linn. G. Don which has been proven active against malaria parasite Plasmodium falciparum (P. falciparum). Methods Characterizations were determined by using ultraviolet-visible (UV-Vis) spectrophotometry, scanning electron microscopy (SEM), energy dispersive X-ray and X-ray diffraction. Results SEM showed the formation of silver nanoparticles with an average size of 35–55 nm. X-ray diffraction analysis showed that the particles were crystalline in nature with face centred cubic structure of the bulk silver with the broad peaks at 32.4, 46.4 and 28.0. Conclusions It can be concluded that the leaves of C. roseus can be good source for synthesis of silver nanoparticle which shows antiplasmodial activity against P. falciparum. The important outcome of the study will be the development of value added products from medicinal plants C. roseus for biomedical and nanotechnology based industries. PMID:23569974

  15. Computational identification of microRNAs and their targets in Catharanthus roseus expressed sequence tags.

    PubMed

    Pani, Alok; Mahapatra, Rajani Kanta

    2013-12-01

    No study has been performed on identifying microRNAs (miRNAs) and their targets in the medicinal plant, Catharanthus roseus. In the present study, using the comparative genomics approach, we have predicted two potential C. roseus miRNAs. Furthermore, twelve potential mRNA targets were identified in C. roseus genome based on the characteristics that miRNAs exhibit perfect or nearly perfect complementarity with their targeted mRNA sequences. Among them many of the targets were predicted to encode enzymes that regulate the biosynthesis of terpenoid indole alkaloids (TIA). In addition, most of the predicted targets were the gene coding for transcription factors which are mainly involved in cell growth and development, signaling and metabolism. This is the first in silico study to indicate that miRNA target gene encoding enzymes involved in vinblastine and vincristine biosynthesis, which may help to understand the miRNA-mediated regulation of TIA alkaloid biosynthesis in C. roseus. PMID:26484050

  16. ‘Candidatus Phytoplasma hispanicum’, a novel taxon associated with Mexican periwinkle virescence disease of Catharanthus roseus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mexican periwinkle virescence (MPV) phytoplasma was originally discovered in diseased plants of Madagascar periwinkle (Catharanthus roseus) in Yucatán, Mexico. On the basis of results from RFLP analysis of PCR-amplified 16S rRNA gene sequences, strain MPV was previously classified as the first know...

  17. Development of efficient catharanthus roseus regeneration and transformation system using agrobacterium tumefaciens and hypocotyls as explants

    PubMed Central

    2012-01-01

    Background As a valuable medicinal plant, Madagascar periwinkle (Catharanthus roseus) produces many terpenoid indole alkaloids (TIAs), such as vindoline, ajamlicine, serpentine, catharanthine, vinblastine and vincristine et al. Some of them are important components of drugs treating cancer and hypertension. However, the yields of these TIAs are low in wild-type plants, and the total chemical synthesis is impractical in large scale due to high-cost and their complicated structures. The recent development of metabolic engineering strategy offers a promising solution. In order to improve the production of TIAs in C. roseus, the establishment of an efficient genetic transformation method is required. Results To develop a genetic transformation method for C. roseus, Agrobacterium tumefaciens strain EHA105 was employed which harbors a binary vector pCAMBIA2301 containing a report β-glucuronidase (GUS) gene and a selectable marker neomycin phosphotransferase II gene (NTPII). The influential factors were investigated systematically and the optimal transformation condition was achieved using hypocotyls as explants, including the sonication treatment of 10 min with 80 W, A. tumefaciens infection of 30 min and co-cultivation of 2 d in 1/2 MS medium containing 100 μM acetosyringone. With a series of selection in callus, shoot and root inducing kanamycin-containing resistance media, we successfully obtained stable transgenic regeneration plants. The expression of GUS gene was confirmed by histochemistry, polymerase chain reaction, and genomic southern blot analysis. To prove the efficiency of the established genetic transformation system, the rate-limiting gene in TIAs biosynthetic pathway, DAT, which encodes deacetylvindoline-4-O-acetyltransferase, was transferred into C. roseus using this established system and 9 independent transgenic plants were obtained. The results of metabolite analysis using high performance liquid chromatography (HPLC) showed that

  18. Antidiabetic and antioxidant properties of alkaloids from Catharanthus roseus (L.) G. Don.

    PubMed

    Tiong, Soon Huat; Looi, Chung Yeng; Hazni, Hazrina; Arya, Aditya; Paydar, Mohammadjavad; Wong, Won Fen; Cheah, Shiau-Chuen; Mustafa, Mohd Rais; Awang, Khalijah

    2013-01-01

    Catharanthus roseus (L.) G. Don is a herbal plant traditionally used by local populations in India, South Africa, China and Malaysia to treat diabetes. The present study reports the in vitro antioxidant and antidiabetic activities of the major alkaloids isolated from Catharanthus roseus (L.) G. Don leaves extract. Four alkaloids--vindoline I, vindolidine II, vindolicine III and vindolinine IV--were isolated and identified from the dichloromethane extract (DE) of this plant's leaves. DE and compounds I-III were not cytotoxic towards pancreatic β-TC6 cells at the highest dosage tested (25.0 µg/mL). All four alkaloids induced relatively high glucose uptake in pancreatic β-TC6 or myoblast C2C12 cells, with III showing the highest activity. In addition, compounds II-IV demonstrated good protein tyrosine phosphatase-1B (PTP-1B) inhibition activity, implying their therapeutic potential against type 2 diabetes. III showed the highest antioxidant potential in ORAC and DPPH assays and it also alleviated H₂O₂-induced oxidative damage in β-TC6 cells at 12.5 µg/mL and 25.0 µg/mL. PMID:23955322

  19. Immunological Detection and Quantitation of Tryptophan Decarboxylase in Developing Catharanthus roseus Seedlings 1

    PubMed Central

    Fernandez, Jesus Alvarez; Owen, Terence G.; Kurz, Wolfgang G. W.; De Luca, Vincenzo

    1989-01-01

    l-Tryptophan decarboxylase (TDC) (EC 4.2.1.27) enzyme activity was induced in cell suspension cultures of Catharanthus roseus after treatment with a Pythium aphanidermatum elicitor preparation. The enzyme was extracted from lyophilized cells containing high levels of TDC and the protein was purified to homogeneity. The pure protein was used to produce highly specific polyclonal antibodies, and an enzyme-linked immunosorbent assay (ELISA) was developed to quantitate the level of TDC antigen during seedling development and in leaves of the mature plant. Western immunoblotting of proteins after SDS-PAGE with anti-TDC antibodies detected several immunoreactive proteins (40, 44, 54.8, 55, and 67 kilodaltons) which appeared at different stages during seedling development and in leaves of the mature plant. The major 54.8 and 55 kilodalton antigenic proteins in immunoblots appeared transiently between days 1 to 5 and 5 to 8 of seedling development, respectively. The 54.8 kilodalton protein was devoid of TDC enzyme activity, whereas the appearance of the 55 kilodalton protein coincided with the appearance of this decarboxylase activity. The minor immunoreactive proteins (40, 44, and 67 kilodaltons) appeared after day 5 of seedling development and in older leaves of the mature plant, and their relationship, if any, to TDC is presently unknown. Results suggest that the synthesis and degradation of TDC protein is highly regulated in Catharanthus roseus and that this regulation follows a preset developmental program. Images Figure 3 Figure 5 PMID:16667047

  20. Characterization of an endophytic whorl-forming Streptomyces from Catharanthus roseus stems producing polyene macrolide antibiotic.

    PubMed

    Rakotoniriana, Erick Francisco; Chataigné, Gabrielle; Raoelison, Guy; Rabemanantsoa, Christian; Munaut, Françoise; El Jaziri, Mondher; Urveg-Ratsimamanga, Suzanne; Marchand-Brynaert, Jacqueline; Corbisier, Anne-Marie; Declerck, Stéphane; Quetin-Leclercq, Joëlle

    2012-05-01

    An endophytic whorl-forming Streptomyces sp. designated as TS3RO having antifungal activity against a large number of fungal pathogens, including Sclerotinia sclerotiorum, Rhizoctonia solani, Colletotrichum gloeosporioides, Cryphonectria parasitica, Fusarium oxysporum, Pyrenophora tritici-repentis, Epidermophyton floccosum, and Trichophyton rubrum, was isolated from surface-sterilized Catharanthus roseus stems. Preliminary identification showed that Streptomyces cinnamoneus subsp. sparsus was its closest related species. However, strain TS3RO could readily be distinguished from this species using a combination of phenotypic properties, 16S rDNA sequence similarity, and phylogenetic analyses. Thus, the whorl-forming Streptomyces sp. strain TS3RO is likely a new subspecies within the Streptomyces cinnamoneus group. Direct bioautography on a thin-layer chromatography plate with Cladosporium cucumerinum was conducted throughout the purification steps for bioassay-guided isolation of the active antifungal compounds from the crude extract. Structural elucidation of the isolated bioactive compound was obtained via LC-MS spectrometry, UV-visible spectra, and nuclear magnetic resonance data. It revealed that fungichromin, a known methylpentaene macrolide antibiotic, was the main antifungal component of TS3RO strain, as shown by thin-layer chromatography bioautography. This is the first report of an endophytic whorl-forming Streptomyces isolated from the medically important plant Catharanthus roseus. PMID:22524528

  1. The Leaf Epidermome of Catharanthus roseus Reveals Its Biochemical Specialization[W][OA

    PubMed Central

    Murata, Jun; Roepke, Jonathon; Gordon, Heather; De Luca, Vincenzo

    2008-01-01

    Catharanthus roseus is the sole commercial source of the monoterpenoid indole alkaloids (MIAs), vindoline and catharanthine, components of the commercially important anticancer dimers, vinblastine and vincristine. Carborundum abrasion technique was used to extract leaf epidermis–enriched mRNA, thus sampling the epidermome, or complement, of proteins expressed in the leaf epidermis. Random sequencing of the derived cDNA library established 3655 unique ESTs, composed of 1142 clusters and 2513 singletons. Virtually all known MIA pathway genes were found in this remarkable set of ESTs, while only four known genes were found in the publicly available Catharanthus EST data set. Several novel MIA pathway candidate genes were identified, as demonstrated by the cloning and functional characterization of loganic acid O-methyltransferase involved in secologanin biosynthesis. The pathways for triterpene biosynthesis were also identified, and metabolite analysis showed that oleanane-type triterpenes were localized exclusively to the cuticular wax layer. The pathways for flavonoid and very-long-chain fatty acid biosynthesis were also located in this cell type. The results illuminate the biochemical specialization of Catharanthus leaf epidermis for the production of multiple classes of metabolites. The value and versatility of this EST data set for biochemical and biological analysis of leaf epidermal cells is also discussed. PMID:18326827

  2. Purification and cDNA Cloning of Isochorismate Synthase from Elicited Cell Cultures of Catharanthus roseus

    PubMed Central

    van Tegelen, Léon J.P.; Moreno, Paolo R.H.; Croes, Anton F.; Verpoorte, Robert; Wullems, George J.

    1999-01-01

    Isochorismate is an important metabolite formed at the end of the shikimate pathway, which is involved in the synthesis of both primary and secondary metabolites. It is synthesized from chorismate in a reaction catalyzed by the enzyme isochorismate synthase (ICS; EC 5.4.99.6). We have purified ICS to homogeneity from elicited Catharanthus roseus cell cultures. Two isoforms with an apparent molecular mass of 64 kD were purified and characterized. The Km values for chorismate were 558 and 319 μm for isoforms I and II, respectively. The isoforms were not inhibited by aromatic amino acids and required Mg2+ for enzyme activity. Polymerase chain reaction on a cDNA library from elicited C. roseus cells with a degenerated primer based on the sequence of an internal peptide from isoform II resulted in an amplification product that was used to screen the cDNA library. This led to the first isolation, to our knowledge, of a plant ICS cDNA. The cDNA encodes a protein of 64 kD with an N-terminal chloroplast-targeting signal. The deduced amino acid sequence shares homology with bacterial ICS and also with anthranilate synthases from plants. Southern analysis indicates the existence of only one ICS gene in C. roseus. PMID:9952467

  3. Virus-induced gene silencing in Catharanthus roseus by biolistic inoculation of tobacco rattle virus vectors.

    PubMed

    Carqueijeiro, I; Masini, E; Foureau, E; Sepúlveda, L J; Marais, E; Lanoue, A; Besseau, S; Papon, N; Clastre, M; Dugé de Bernonville, T; Glévarec, G; Atehortùa, L; Oudin, A; Courdavault, V

    2015-11-01

    Catharanthus roseus constitutes the unique source of several valuable monoterpenoid indole alkaloids, including the antineoplastics vinblastine and vincristine. These alkaloids result from a complex biosynthetic pathway encompassing between 30 and 50 enzymatic steps whose characterisation is still underway. The most recent identifications of genes from this pathway relied on a tobacco rattle virus-based virus-induced gene silencing (VIGS) approach, involving an Agrobacterium-mediated inoculation of plasmids encoding the two genomic components of the virus. As an alternative, we developed a biolistic-mediated approach of inoculation of virus-encoding plasmids that can be easily performed by a simple bombardment of young C. roseus plants. After optimisation of the transformation conditions, we showed that this approach efficiently silenced the phytoene desaturase gene, leading to strong and reproducible photobleaching of leaves. This biolistic transformation was also used to silence a previously characterised gene from the alkaloid biosynthetic pathway, encoding iridoid oxidase. Plant bombardment caused down-regulation of the targeted gene (70%), accompanied by a correlated decreased in MIA biosynthesis (45-90%), similar to results obtained via agro-transformation. Thus, the biolistic-based VIGS approach developed for C. roseus appears suitable for gene function elucidation and can readily be used instead of the Agrobacterium-based approach, e.g. when difficulties arise with agro-inoculations or when Agrobacterium-free procedures are required to avoid plant defence responses. PMID:26284695

  4. Catharanthus roseus mitogen-activated protein kinase 3 confers UV and heat tolerance to Saccharomyces cerevisiae

    PubMed Central

    Raina, Susheel Kumar; Wankhede, Dhammaprakash Pandhari; Sinha, Alok Krishna

    2013-01-01

    Catharanthus roseus is an important source of pharmaceutically important Monoterpenoid Indole Alkaloids (MIAs). Accumulation of many of the MIAs is induced in response to abiotic stresses such as wound, ultra violet (UV) irradiations, etc. Recently, we have demonstrated a possible role of CrMPK3, a C. roseus mitogen-activated protein kinase in stress-induced accumulation of a few MIAs. Here, we extend our findings using Saccharomyces cerevisiae to investigate the role of CrMPK3 in giving tolerance to abiotic stresses. Yeast cells transformed with CrMPK3 was found to show enhanced tolerance to UV and heat stress. Comparison of CrMPK3 and SLT2, a MAPK from yeast shows high-sequence identity particularly at conserved domains. Additionally, heat stress is also shown to activate a 43 kDa MAP kinase, possibly CrMPK3 in C. roseus leaves. These findings indicate the role of CrMPK3 in stress-induced MIA accumulation as well as in stress tolerance. PMID:23221751

  5. Antimicrobial potentials of Catharanthus roseus by disc diffusion assay.

    PubMed

    Bakht, Jehan; Syed, Fatema; Shafi, Mohammad

    2015-05-01

    The present research work investigates the in vitro antimicrobial activity of different solvent extracted samples from the aerial parts (stem, leaf, fruit and flower) of C. roseus against different microbial species using disc diffusion assay at two different concentrations of 1 and 2 mg disc-1. Hexane extracted samples inhibited the growth of all tested microbial strains except S. typhi. Similarly, ethyl acetate extracted samples was effective to control the activity of all the tested microbial strains. E. coli and S. typhi showed resistance to chloroform extracted samples and the remaining eight microbial strains were susceptible to the same extract. Butanol extracted samples did not inhibit the growth of K. pneumonia and S. typhi at low concentration, however, at higher concentration the same extract reduced the growth of different microbes. Methanol extracted samples effectively controlled the growth of all tested microbes at both concentrations except for S. typhi. Water extracted samples did not inhibit the growth at low concentration except E. coli, K. pneumonia and S. aureus and were ineffective against P. aeroginosa at both concentration. C. albicans, showed resistance against chloroform and water extracted samples at low concentration and susceptible to other solvent extracted samples at both concentration. All fractions were effective against plant pathogens i.e. E. carotovora and A. tumefaciens. PMID:26004715

  6. Synthesis and characterization of palladium nanoparticles using Catharanthus roseus leaf extract and its application in the photo-catalytic degradation

    NASA Astrophysics Data System (ADS)

    Kalaiselvi, Aasaithambi; Roopan, Selvaraj Mohana; Madhumitha, Gunabalan; Ramalingam, C.; Elango, Ganesh

    2015-01-01

    The potential effect of Catharanthus roseus leaf extract for the formation of palladium nanoparticles and its application on dye degradation was discussed. The efficiency of C.roseus leaves are used as a bio-material for the first time as reducing agent. Synthesized palladium nanoparticles were supported by UV-vis spectrometry, XRD, FT-IR and TEM analysis. The secondary metabolites which are responsible for the formation of nanoparticles were identified by GC-MS. The results showed that effect of time was directly related to synthesized nanoparticles and functional groups has a critical role in reducing the metal ions and stabilizing the palladium nanoparticles in an eco-friendly process.

  7. Morphogenetic and chemical stability of long-term maintained Agrobacterium-mediated transgenic Catharanthus roseus plants.

    PubMed

    Verma, Priyanka; Sharma, Abhishek; Khan, Shamshad Ahmad; Mathur, Ajay Kumar; Shanker, Karuna

    2015-01-01

    Transgenic Catharanthus roseus plants (transgenic Dhawal [DT] and transgenic Nirmal [NT]) obtained from the Agrobacterium tumefaciens and Agrobacterium rhizognenes-mediated transformations, respectively, have been maintained in vitro for 5 years. Plants were studied at regular intervals for various parameters such as plant height, leaf size, multiplication rate, alkaloid profile and presence of marker genes. DT plant gradually lost the GUS gene expression and it was not detected in the fifth year while NT plant demonstrated the presence of genes rolA, rolB and rolC even in the fifth year, indicating the more stable nature of Ri transgene. Vindoline content in the DT was two times more than in non-transformed control plants. Alkaloid and tryptophan profiles were almost constant during the 5 years. The cluster analysis revealed that the DT plant is more close to the control Nirmal plant followed by NT plant. PMID:25102992

  8. Two new vinblastine-type N-oxide alkaloids from Catharanthus roseus.

    PubMed

    Zhang, Wei-Ku; Xu, Jie-Kun; Tian, Hai-Yan; Wang, Lei; Zhang, Xiao-Qi; Xiao, Xu-Zhi; Li, Ping; Ye, Wen-Cai

    2013-10-01

    Two new vinblastine-type N-oxide alkaloids, 17-desacetoxyvinblastine N'b-oxide (1) and 20'-deoxyvinblastine N'b-oxide (2), were isolated from the leaves of Catharanthus roseus. The structures of 1 and 2 were established by the analysis of their nuclear magnetic resonance and HR-ESI-MS spectroscopic data. All alkaloids were evaluated for their cytotoxic activities against the human hepatocellular carcinoma (HepG2) cell line, human colorectal carcinoma (Lovo) cell line and human breast carcinoma (MCF-7) cell line by the MTT method in vitro, respectively. The results showed that cytotoxic activities of alkaloids 1 and 2 exhibited moderate inhibitory activity on the proliferation of three cancer cells. PMID:23621523

  9. Strictosidine synthase from Catharanthus roseus: purification and characterization of multiple forms.

    PubMed Central

    de Waal, A; Meijer, A H; Verpoorte, R

    1995-01-01

    Multiple (six) forms of strictosidine synthase from Catharanthus roseus cell suspension cultures were purified and characterized. A purification protocol is presented composed of hydrophobic-interaction, gel-permeation and ion-exchange chromatography and chromatofocusing. Four of six isoforms were purified to apparent homogeneity, whereas two others were nearly homogeneous. All strictosidine synthase isoforms were found to be glycoproteins. The isoforms were also found in leaves and roots of the plant, in seedlings and in hairy root cultures. The ratio of the different isoforms differed slightly between these sources. The kinetic parameters of the isoforms showed no significant differences. The maximal velocity (300-400 nkat/mg of protein) is the highest reported so far. It was demonstrated that the apparent Michaelis constant for tryptamine (approx. 9 microM) is much lower than values reported previously. The presence of weak product inhibition (Kp approx. 35 times Km) was established, whereas substrate inhibition was not detected. PMID:7887913

  10. Developmental Regulation of Enzymes of Indole Alkaloid Biosynthesis in Catharanthus roseus1

    PubMed Central

    De Luca, Vincenzo; Fernandez, Jesus Alvarez; Campbell, Douglas; Kurz, Wolfgang G. W.

    1988-01-01

    Developing seedlings of Catharanthus roseus were analyzed for appearance of tryptophan decarboxylase (TDC), strictosidine synthase (SS), N-methyltransferase (NMT) and O-acetyltransferase (DAT) enzyme activities. SS enzyme activity appeared early after germination and was present throughout most of the developmental study. TDC activity was highly regulated and peaked over a 48 hour period achieving a maximum by day of 5 of seedling development. Both TDC and SS were present in all tissues of the seedling. NMT and DAT enzyme activities were induced after TDC and SS had peaked and these activities could only be found in hypocotyls and cotyledons. TDC, SS, and NMT did not require light for induction whereas DAT enzyme activity was increased approximately 10-fold after light treatment of dark grown seedlings. PMID:16665928

  11. Endophytic filamentous fungi from a Catharanthus roseus: Identification and its hydrolytic enzymes.

    PubMed

    Ayob, Farah Wahida; Simarani, Khanom

    2016-05-01

    This paper reported on the various filamentous fungi strains that were isolated from a wild grown Catharanthus roseus. Based on the morphological characteristics and molecular technique through a Polymerase Chain Reaction and DNA sequencing method using internal transcribed spacer (ITS), these fungi had been identified as a Colletotrichum sp., Macrophomina phaseolina, Nigrospora sphaerica and Fusarium solani. The ultrastructures of spores and hyphae were observed under a Scanning Electron Microscope. The hydrolytic enzyme test showed that all strains were positive in secreting cellulase. Colletotrichum sp. and F. solani strains also gave a positive result for amylase while only F. solani was capable to secrete protease. These fungi were putatively classified as endophytic fungi since they produced extracellular enzymes that allow them to penetrate plant cell walls and colonize with symbiotic properties. PMID:27275114

  12. Uptake and metabolism of sugars by suspension-cultured catharanthus roseus cells

    SciTech Connect

    Ashihara, Hiroshi; Sagishima, Kyoko; Kubota, Kaoru )

    1989-04-01

    The Uptake and metabolism of sugars by suspension-cultured Catharanthus roseus cells were investigated. Substantially all the sucrose in the culture medium was hydrolyzed to glucose and fructose before being taken up by the cells. The activity of invertase bound to cell walls, determined in situ, was high at the early stage of culture. Glucose was more easily taken up by the cells than was fructose. Tracer experiments using (U-{sup 14}C)glucose and (U-{sup 14}C)fructose indicated that glucose is a better precursor for respiration than fructose, while fructose is preferentially utilized for the synthesis of sucrose, especially in the early phase of cell growth. These results suggest that fructose is utilized for the synthesis of sucrose via the reaction catalyzed by sucrose synthase, prior to the phosphorylation by hexokinase or fructokinase.

  13. Synthesis of silver nanoparticles using Catharanthus roseus root extract and its larvicidal effects.

    PubMed

    Rajagopal, Thangavel; Jemimah, Irudayaraj Anto Amal; Ponmanickam, Ponnirul; Ayyanar, Muniappan

    2015-11-01

    Phytosynthesis of silver nanoparticles has attracted considerable attention due to their biocompatibility, low toxicity, cost-effectiveness and being a novel method has an eco-friendly approach. Biological activity of root extracts as well as synthesized silver nanoparticles of Catharanthus roseus were evaluated against larvae of Aedes aegyptiand Culex quinquefasciatus. The structure and proportion of the synthesized nanoparticles was defined by exploitation ultraviolet spectrophotometry, X-ray diffraction, fourier transform infrared spectroscopy, energy dispersive X-ray spectroscopy and scanning electron microscopy methods. Reduction of silver ions occurred when silver nitrate solution was treated with aqueous root extract at 60°C. Synthesized silver nanoparticles (AgNPs) were confirmed by analyzing the excitation of surface plasmon resonance (SPR) using UV-vis spectrophotometer at 423 nm. FTIR showed aliphatic amines and alkanes corresponding peaks to be presence of responsible compounds to produced nanoparticles in the reaction mixture. Spherical shaped and crystalline nature of particles was recorded under XRD analysis. Presence of silver metal and 35-55nm sized particles were recorded using EDAX and SEM respectively. Larvicidal activitywas observed after24 hrs of exposure to root extracts and synthesized silver nanoparticles. The highest larval mortality was observed in synthesized silver nanopartiucles against Aedes aegypti (LC50= 2.01 ± 0.34; LC90= 5.29 ± 0.07 at 5.0 mg(-1) concentration) and Culex quinquefasciatus (LC50= 1.18 ± 0.15; LC90= 2.55 ± 0.76 at 3.5 to 5.0 mgl(-1) concentration) respectively. The present study provides evidence that synthesized silver nanoparticles of Catharanthus roseus offer potential source for larvicidal activity againstthe larvae of both dengue and filariasis vectors. PMID:26688962

  14. Growth and photosynthetic pigments responses of two varieties of Catharanthus roseus to triadimefon treatment.

    PubMed

    Jaleel, Cheruth Abdul; Gopi, Ragupathi; Panneerselvam, Rajaram

    2008-04-01

    Triadimefon, potential fungicide cum plant-growth retardant was used in this study to investigate its effect on the growth and the photosynthetic pigment contents of two varieties of Catharanthus roseus (L.) G. Don. The plants of both varieties were subjected to 15 mg l(-1) triadimefon treatment by soil drenching 30, 45, 60, and 75 days after planting (DAP). Plants were uprooted on 90 DAP, and morphological parameters, like plant height, number of leaves, leaf area, root length and fresh and dry weights were determined. The photosynthetic pigments, like chlorophylls a and b, total chlorophyll, carotenoids, floral pigment, anthocyanin, were extracted and estimated. It was observed that plant height, number of leaves and leaf area were decreased and that root length, fresh and dry weights were increased under triadimefon treatment. The photosynthetic and floral pigments were increased under triadimefon treatment in both varieties. The results suggest that the application of this plant-growth retardant (triadimefon) has favourable effects on the reduction of plant height; it can thus be used for replacing manual hand pruning and for improving floral and vegetation colour in bedding plants like C. roseus. PMID:18355749

  15. Gene-to-metabolite networks for terpenoid indole alkaloid biosynthesis in Catharanthus roseus cells

    PubMed Central

    Rischer, Heiko; Orešič, Matej; Seppänen-Laakso, Tuulikki; Katajamaa, Mikko; Lammertyn, Freya; Ardiles-Diaz, Wilson; Van Montagu, Marc C. E.; Inzé, Dirk; Oksman-Caldentey, Kirsi-Marja; Goossens, Alain

    2006-01-01

    Rational engineering of complicated metabolic networks involved in the production of biologically active plant compounds has been greatly impeded by our poor understanding of the regulatory and metabolic pathways underlying the biosynthesis of these compounds. Whereas comprehensive genome-wide functional genomics approaches can be successfully applied to analyze a select number of model plants, these holistic approaches are not yet available for the study of nonmodel plants that include most, if not all, medicinal plants. We report here a comprehensive profiling analysis of the Madagascar periwinkle (Catharanthus roseus), a source of the anticancer drugs vinblastine and vincristine. Genome-wide transcript profiling by cDNA-amplified fragment-length polymorphism combined with metabolic profiling of elicited C. roseus cell cultures yielded a collection of known and previously undescribed transcript tags and metabolites associated with terpenoid indole alkaloids. Previously undescribed gene-to-gene and gene-to-metabolite networks were drawn up by searching for correlations between the expression profiles of 417 gene tags and the accumulation profiles of 178 metabolite peaks. These networks revealed that the different branches of terpenoid indole alkaloid biosynthesis and various other metabolic pathways are subject to differing hormonal regulation. These networks also served to identify a select number of genes and metabolites likely to be involved in the biosynthesis of terpenoid indole alkaloids. This study provides the basis for a better understanding of periwinkle secondary metabolism and increases the practical potential of metabolic engineering of this important medicinal plant. PMID:16565214

  16. A Stereoselective Hydroxylation Step of Alkaloid Biosynthesis by a Unique Cytochrome P450 in Catharanthus roseus*

    PubMed Central

    Giddings, Lesley-Ann; Liscombe, David K.; Hamilton, John P.; Childs, Kevin L.; DellaPenna, Dean; Buell, C. Robin; O'Connor, Sarah E.

    2011-01-01

    Plant cytochrome P450s are involved in the production of over a hundred thousand metabolites such as alkaloids, terpenoids, and phenylpropanoids. Although cytochrome P450 genes constitute one of the largest superfamilies in plants, many of the catalytic functions of the enzymes they encode remain unknown. Here, we report the identification and functional characterization of a cytochrome P450 gene in a new subfamily of CYP71, CYP71BJ1, involved in alkaloid biosynthesis. Co-expression analysis of putative cytochrome P450 genes in the Catharanthus roseus transcriptome identified candidate genes with expression profiles similar to known terpene indole alkaloid biosynthetic genes. Screening of these candidate genes by functional expression in Saccharomyces cerevisiae yielded a unique P450-dependent enzyme that stereoselectively hydroxylates the alkaloids tabersonine and lochnericine at the 19-position of the aspidosperma-type alkaloid scaffold. Tabersonine, which can be converted to either vindoline or 19-O-acetylhörhammericine, represents a branch point in alkaloid biosynthesis. The discovery of CYP71BJ1, which forms part of the pathway leading to 19-O-acetylhörhammericine, will help illuminate how this branch point is controlled in C. roseus. PMID:21454651

  17. A vacuolar class III peroxidase and the metabolism of anticancer indole alkaloids in Catharanthus roseus

    PubMed Central

    Duarte, Patrícia; Figueiredo, Raquel; Ros Barceló, Alfonso

    2008-01-01

    Plants possess a unique metabolic diversity commonly designated as secondary metabolism, of which the anticancer alkaloids from Catharanthus roseus are among the most studied. Recently, in a classical function-to-protein-to-gene approach, we have characterized the main class III peroxidase (Prx) expressed in C. roseus leaves, CrPrx1, implicated in a key biosynthetic step of the anticancer alkaloids. We have shown the vacuolar sorting determination of CrPrx1 using GFP fusions and we have obtained further evidence supporting the role of this enzyme in alkaloid biosynthesis, indicating the potential of CrPrx1 as a molecular tool for the manipulation of alkaloid metabolism. Here, we discuss how plant cells may regulate Prx reactions. In fact, Prxs form a large multigenic family whose members accept a broad range of substrates and, in their two subcellular localizations, the cell wall and the vacuole, Prxs co-locate with a large variety of secondary metabolites which can be accepted as substrates. How then, are Prx reactions regulated? Localization data obtained in our lab suggest that arabinogalactan proteins (AGPs) and Prxs may be associated in membrane microdomains, evocative of lipid rafts. Whether plasma membrane and/or tonoplast microcompartmentation involve AGPs and Prxs and whether this enables metabolic channeling determining Prx substrate selection are challenging questions ahead. PMID:19704535

  18. Characterization of 10-hydroxygeraniol dehydrogenase from Catharanthus roseus reveals cascaded enzymatic activity in iridoid biosynthesis.

    PubMed

    Krithika, Ramakrishnan; Srivastava, Prabhakar Lal; Rani, Bajaj; Kolet, Swati P; Chopade, Manojkumar; Soniya, Mantri; Thulasiram, Hirekodathakallu V

    2015-01-01

    Catharanthus roseus [L.] is a major source of the monoterpene indole alkaloids (MIAs), which are of significant interest due to their therapeutic value. These molecules are formed through an intermediate, cis-trans-nepetalactol, a cyclized product of 10-oxogeranial. One of the key enzymes involved in the biosynthesis of MIAs is an NAD(P)(+) dependent oxidoreductase system, 10-hydroxygeraniol dehydrogenase (Cr10HGO), which catalyses the formation of 10-oxogeranial from 10-hydroxygeraniol via 10-oxogeraniol or 10-hydroxygeranial. This work describes the cloning and functional characterization of Cr10HGO from C. roseus and its role in the iridoid biosynthesis. Substrate specificity studies indicated that, Cr10HGO has good activity on substrates such as 10-hydroxygeraniol, 10-oxogeraniol or 10-hydroxygeranial over monohydroxy linear terpene derivatives. Further it was observed that incubation of 10-hydroxygeraniol with Cr10HGO and iridoid synthase (CrIDS) in the presence of NADP(+) yielded a major metabolite, which was characterized as (1R, 4aS, 7S, 7aR)-nepetalactol by comparing its retention time, mass fragmentation pattern, and co-injection studies with that of the synthesized compound. These results indicate that there is concerted activity of Cr10HGO with iridoid synthase in the formation of (1R, 4aS, 7S, 7aR)-nepetalactol, an important intermediate in iridoid biosynthesis. PMID:25651761

  19. Indole alkaloids from Catharanthus roseus: bioproduction and their effect on human health.

    PubMed

    Almagro, Lorena; Fernández-Pérez, Francisco; Pedreño, Maria Angeles

    2015-01-01

    Catharanthus roseus is a medicinal plant belonging to the family Apocynaceae which produces terpenoid indole alkaloids (TIAs) of high medicinal importance. Indeed, a number of activities like antidiabetic, bactericide and antihypertensive are linked to C. roseus. Nevertheless, the high added value of this plant is based on its enormous pharmaceutical interest, producing more than 130 TIAs, some of which exhibit strong pharmacological activities. The most striking biological activity investigated has been the antitumour effect of dimeric alkaloids such as anhydrovinblastine, vinblastine and vincristine which are already in pre-, clinical or in use. The great pharmacological importance of these indole alkaloids, contrasts with the small amounts of them found in this plant, making their extraction a very expensive process. To overcome this problem, researches have looked for alternative sources and strategies to produce them in higher amounts. In this sense, intensive research on the biosynthesis of TIAs and the regulation of their pathways has been developed with the aim to increase by biotechnological approaches, the production of these high added value compounds. This review is focused on the different strategies which improve TIA production, and in the analysis of the beneficial effects that these compounds exert on human health. PMID:25685907

  20. Study of the effect of nickel heavy metals on some physiological parameters of Catharanthus roseus.

    PubMed

    Arefifard, Matin; Mahdieh, Majid; Amirjani, Mohammadreza

    2014-01-01

    Plants, in their life cycle, are usually exposed to various kinds of non-biological stresses including heavy metals. One of these heavy metals is nickel which affects many physiological processes of plants. Studies have shown that the changes in planting conditions can affect the qualitative and quantitative features of Catharanthus roseus; therefore, creating stressful conditions (e.g. NiCl2) can be an effective way to investigate the changes. In this research, we investigated the effect of 0, 2.5, 5, 10, 25 and 50 mM concentrations of NiCl2 on the degree of catalase enzyme activity, amount of proline aggregation and photosynthetic parameters on seeds of pink variety of C. roseus. The results indicated that the degree of catalase enzyme activity and the amount of proline aggregation increased in plants which were exposed to NiCl2 treatments, especially in high concentrations, while the total protein decreased. The stress of Ni also affected photosynthetic parameters, and decreased the amount of pigments, as well as the efficiency of photosystem II. PMID:24870880

  1. Differential Network Analysis Reveals Evolutionary Complexity in Secondary Metabolism of Rauvolfia serpentina over Catharanthus roseus.

    PubMed

    Pathania, Shivalika; Bagler, Ganesh; Ahuja, Paramvir S

    2016-01-01

    Comparative co-expression analysis of multiple species using high-throughput data is an integrative approach to determine the uniformity as well as diversification in biological processes. Rauvolfia serpentina and Catharanthus roseus, both members of Apocyanacae family, are reported to have remedial properties against multiple diseases. Despite of sharing upstream of terpenoid indole alkaloid pathway, there is significant diversity in tissue-specific synthesis and accumulation of specialized metabolites in these plants. This led us to implement comparative co-expression network analysis to investigate the modules and genes responsible for differential tissue-specific expression as well as species-specific synthesis of metabolites. Toward these goals differential network analysis was implemented to identify candidate genes responsible for diversification of metabolites profile. Three genes were identified with significant difference in connectivity leading to differential regulatory behavior between these plants. These genes may be responsible for diversification of secondary metabolism, and thereby for species-specific metabolite synthesis. The network robustness of R. serpentina, determined based on topological properties, was also complemented by comparison of gene-metabolite networks of both plants, and may have evolved to have complex metabolic mechanisms as compared to C. roseus under the influence of various stimuli. This study reveals evolution of complexity in secondary metabolism of R. serpentina, and key genes that contribute toward diversification of specific metabolites. PMID:27588023

  2. Differential Network Analysis Reveals Evolutionary Complexity in Secondary Metabolism of Rauvolfia serpentina over Catharanthus roseus

    PubMed Central

    Pathania, Shivalika; Bagler, Ganesh; Ahuja, Paramvir S.

    2016-01-01

    Comparative co-expression analysis of multiple species using high-throughput data is an integrative approach to determine the uniformity as well as diversification in biological processes. Rauvolfia serpentina and Catharanthus roseus, both members of Apocyanacae family, are reported to have remedial properties against multiple diseases. Despite of sharing upstream of terpenoid indole alkaloid pathway, there is significant diversity in tissue-specific synthesis and accumulation of specialized metabolites in these plants. This led us to implement comparative co-expression network analysis to investigate the modules and genes responsible for differential tissue-specific expression as well as species-specific synthesis of metabolites. Toward these goals differential network analysis was implemented to identify candidate genes responsible for diversification of metabolites profile. Three genes were identified with significant difference in connectivity leading to differential regulatory behavior between these plants. These genes may be responsible for diversification of secondary metabolism, and thereby for species-specific metabolite synthesis. The network robustness of R. serpentina, determined based on topological properties, was also complemented by comparison of gene-metabolite networks of both plants, and may have evolved to have complex metabolic mechanisms as compared to C. roseus under the influence of various stimuli. This study reveals evolution of complexity in secondary metabolism of R. serpentina, and key genes that contribute toward diversification of specific metabolites. PMID:27588023

  3. Characterization of 10-Hydroxygeraniol Dehydrogenase from Catharanthus roseus Reveals Cascaded Enzymatic Activity in Iridoid Biosynthesis

    PubMed Central

    Krithika, Ramakrishnan; Srivastava, Prabhakar Lal; Rani, Bajaj; Kolet, Swati P.; Chopade, Manojkumar; Soniya, Mantri; Thulasiram, Hirekodathakallu V.

    2015-01-01

    Catharanthus roseus [L.] is a major source of the monoterpene indole alkaloids (MIAs), which are of significant interest due to their therapeutic value. These molecules are formed through an intermediate, cis-trans-nepetalactol, a cyclized product of 10-oxogeranial. One of the key enzymes involved in the biosynthesis of MIAs is an NAD(P)+ dependent oxidoreductase system, 10-hydroxygeraniol dehydrogenase (Cr10HGO), which catalyses the formation of 10-oxogeranial from 10-hydroxygeraniol via 10-oxogeraniol or 10-hydroxygeranial. This work describes the cloning and functional characterization of Cr10HGO from C. roseus and its role in the iridoid biosynthesis. Substrate specificity studies indicated that, Cr10HGO has good activity on substrates such as 10-hydroxygeraniol, 10-oxogeraniol or 10-hydroxygeranial over monohydroxy linear terpene derivatives. Further it was observed that incubation of 10-hydroxygeraniol with Cr10HGO and iridoid synthase (CrIDS) in the presence of NADP+ yielded a major metabolite, which was characterized as (1R, 4aS, 7S, 7aR)-nepetalactol by comparing its retention time, mass fragmentation pattern, and co-injection studies with that of the synthesized compound. These results indicate that there is concerted activity of Cr10HGO with iridoid synthase in the formation of (1R, 4aS, 7S, 7aR)-nepetalactol, an important intermediate in iridoid biosynthesis. PMID:25651761

  4. CathaCyc, a metabolic pathway database built from Catharanthus roseus RNA-Seq data.

    PubMed

    Van Moerkercke, Alex; Fabris, Michele; Pollier, Jacob; Baart, Gino J E; Rombauts, Stephane; Hasnain, Ghulam; Rischer, Heiko; Memelink, Johan; Oksman-Caldentey, Kirsi-Marja; Goossens, Alain

    2013-05-01

    The medicinal plant Madagascar periwinkle (Catharanthus roseus) synthesizes numerous terpenoid indole alkaloids (TIAs), such as the anticancer drugs vinblastine and vincristine. The TIA pathway operates in a complex metabolic network that steers plant growth and survival. Pathway databases and metabolic networks reconstructed from 'omics' sequence data can help to discover missing enzymes, study metabolic pathway evolution and, ultimately, engineer metabolic pathways. To date, such databases have mainly been built for model plant species with sequenced genomes. Although genome sequence data are not available for most medicinal plant species, next-generation sequencing is now extensively employed to create comprehensive medicinal plant transcriptome sequence resources. Here we report on the construction of CathaCyc, a detailed metabolic pathway database, from C. roseus RNA-Seq data sets. CathaCyc (version 1.0) contains 390 pathways with 1,347 assigned enzymes and spans primary and secondary metabolism. Curation of the pathways linked with the synthesis of TIAs and triterpenoids, their primary metabolic precursors, and their elicitors, the jasmonate hormones, demonstrated that RNA-Seq resources are suitable for the construction of pathway databases. CathaCyc is accessible online (http://www.cathacyc.org) and offers a range of tools for the visualization and analysis of metabolic networks and 'omics' data. Overlay with expression data from publicly available RNA-Seq resources demonstrated that two well-characterized C. roseus terpenoid pathways, those of TIAs and triterpenoids, are subject to distinct regulation by both developmental and environmental cues. We anticipate that databases such as CathaCyc will become key to the study and exploitation of the metabolism of medicinal plants. PMID:23493402

  5. Alterations in seedling vigour and antioxidant enzyme activities in Catharanthus roseus under seed priming with native diazotrophs

    PubMed Central

    Karthikeyan, B.; Jaleel, C.A.; Gopi, R.; Deiveekasundaram, M.

    2007-01-01

    An experiment was conducted on Catharanthus roseus to study the effect of seed treatments with native diazotrophs on its seedling growth and antioxidant enzyme activities. The treatments had significant influence on various seedling parameters. There is no significant influence on dry matter production with the diazotrophs, Azospirillum and Azotobacter. However, the vital seedling parameters such as germination percentage and vigour index were improved. Azotobacter treatment influenced maximum of 50% germination, whereas Azospirillum and Azotobacter were on par with C. roseus with respect to their vigour index. There was significant difference in the population of total diazotrophs. Azospirillum and Azotobacter between rhizosphere and non-rhizosphere soils of C. roseus had the same trend and were observed at various locations of the study. The activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POX) and catalase (CAT) were increased to a significant extent due to the treatment with diazotrophs. PMID:17610323

  6. The juice of fresh leaves of Catharanthus roseus Linn. reduces blood glucose in normal and alloxan diabetic rabbits

    PubMed Central

    Nammi, Srinivas; Boini, Murthy K; Lodagala, Srinivas D; Behara, Ravindra Babu S

    2003-01-01

    Background The leaf juice or water decoction of Catharanthus roseus L. (Apocyanaceae) is used as a folk medicine for the treatment of diabetes all over the world. In the present investigation, the leaf juice of C. roseus has been evaluated for its hypoglycemic activity in normal and alloxan-induced diabetic rabbits. Methods The blood glucose lowering activity of the leaf juice was studied in normal and alloxan-induced (100 mg/kg, i.v.) diabetic rabbits, after oral administration at doses of 0.5, 0.75 and 1.0 ml/kg body weight. Blood samples were collected from the marginal ear vein before and also at 4, 6, 8, 10, 12, 16, 18, 20 & 24 h after drug administration and blood glucose was analyzed by Nelson-Somogyi's method using a visible spectrophotometer. The data was compared statistically by using Student's t-test. Results The leaf juice of C. roseus produced dose-dependent reduction in blood glucose of both normal and diabetic rabbits and comparable with that of the standard drug, glibenclamide. The results indicate a prolonged action in reduction of blood glucose by C. roseus and the mode of action of the active compound(s) of C. roseus is probably mediated through enhance secretion of insulin from the β-cells of Langerhans or through extrapancreatic mechanism. Conclusions The present study clearly indicated a significant antidiabetic activity with the leaf juice of Catharanthus roseus and supports the traditional usage of the fresh leaves by Ayurvedic physicians for the control of diabetes. PMID:12950994

  7. Adaptation of lettuce mosaic virus to Catharanthus roseus involves mutations in the central domain of the VPg.

    PubMed

    Svanella-Dumas, Laurence; Verdin, Eric; Faure, Chantal; German-Retana, Sylvie; Gognalons, Patrick; Danet, Jean Luc; Marais, Armelle; Candresse, Thierry

    2014-05-01

    An isolate of Lettuce mosaic virus (LMV, a Potyvirus) infecting Madagascar periwinckle (Catharanthus roseus) was identified and characterized by Illumina deep sequencing. LMV-Cr has no close affinities to previously sequenced LMV isolates and represents a novel, divergent LMV clade. Inoculation experiments with other representative LMV isolates showed that they are unable to infect C. roseus, which was not known to be a host for LMV. However, three C. roseus variants of one of these isolates, LMV-AF199, could be selected and partially or completely sequenced. These variants are characterized by the accumulation of mutations affecting the C-terminal part of the cylindrical inclusion (CI) helicase and the central part of the VPg. In particular, a serine to proline mutation at amino acid 143 of the VPg was observed in all three independently selected variants and is also present in the LMV-Cr isolate, making it a prime candidate as a host-range determinant. Other mutations at VPg positions 65 and 144 could also contribute to the ability to infect C. roseus. Inoculation experiments involving a recombinant LMV expressing a permissive lettuce eukaryotic translation initiation factor 4E (eIF4E) suggest that eIF4E does not contribute to the interaction of most LMV isolates with C. roseus. PMID:24400938

  8. Metabolic Discrimination of Catharanthus roseus Leaves Infected by Phytoplasma Using 1H-NMR Spectroscopy and Multivariate Data Analysis1

    PubMed Central

    Choi, Young Hae; Tapias, Elisabet Casas; Kim, Hye Kyong; Lefeber, Alfons W.M.; Erkelens, Cornelis; Verhoeven, Jacobus Th.J.; Brzin, Jernej; Zel, Jana; Verpoorte, Robert

    2004-01-01

    A comprehensive metabolomic profiling of Catharanthus roseus L. G. Don infected by 10 types of phytoplasmas was carried out using one-dimensional and two-dimensional NMR spectroscopy followed by principal component analysis (PCA), an unsupervised clustering method requiring no knowledge of the data set and used to reduce the dimensionality of multivariate data while preserving most of the variance within it. With a combination of these techniques, we were able to identify those metabolites that were present in different levels in phytoplasma-infected C. roseus leaves than in healthy ones. The infection by phytoplasma in C. roseus leaves causes an increase of metabolites related to the biosynthetic pathways of phenylpropanoids or terpenoid indole alkaloids: chlorogenic acid, loganic acid, secologanin, and vindoline. Furthermore, higher abundance of Glc, Glu, polyphenols, succinic acid, and Suc were detected in the phytoplasma-infected leaves. The PCA of the 1H-NMR signals of healthy and phytoplasma-infected C. roseus leaves shows that these metabolites are major discriminating factors to characterize the phytoplasma-infected C. roseus leaves from healthy ones. Based on the NMR and PCA analysis, it might be suggested that the biosynthetic pathway of terpenoid indole alkaloids, together with that of phenylpropanoids, is stimulated by the infection of phytoplasma. PMID:15286294

  9. Cell-specific localization of alkaloids in Catharanthus roseus stem tissue measured with Imaging MS and Single-cell MS.

    PubMed

    Yamamoto, Kotaro; Takahashi, Katsutoshi; Mizuno, Hajime; Anegawa, Aya; Ishizaki, Kimitsune; Fukaki, Hidehiro; Ohnishi, Miwa; Yamazaki, Mami; Masujima, Tsutomu; Mimura, Tetsuro

    2016-04-01

    Catharanthus roseus (L.) G. Don is a medicinal plant well known for producing antitumor drugs such as vinblastine and vincristine, which are classified as terpenoid indole alkaloids (TIAs). The TIA metabolic pathway in C. roseus has been extensively studied. However, the localization of TIA intermediates at the cellular level has not been demonstrated directly. In the present study, the metabolic pathway of TIA in C. roseus was studied with two forefront metabolomic techniques, that is, Imaging mass spectrometry (MS) and live Single-cell MS, to elucidate cell-specific TIA localization in the stem tissue. Imaging MS indicated that most TIAs localize in the idioblast and laticifer cells, which emit blue fluorescence under UV excitation. Single-cell MS was applied to four different kinds of cells [idioblast (specialized parenchyma cell), laticifer, parenchyma, and epidermal cells] in the stem longitudinal section. Principal component analysis of Imaging MS and Single-cell MS spectra of these cells showed that similar alkaloids accumulate in both idioblast cell and laticifer cell. From MS/MS analysis of Single-cell MS spectra, catharanthine, ajmalicine, and strictosidine were found in both cell types in C. roseus stem tissue, where serpentine was also accumulated. Based on these data, we discuss the significance of TIA synthesis and accumulation in the idioblast and laticifer cells of C. roseus stem tissue. PMID:27001858

  10. Characterization of Alkaloid Uptake by Catharanthus roseus (L.) G. Don Protoplasts 1

    PubMed Central

    McCaskill, David G.; Martin, DeAndra L.; Scott, A. Ian

    1988-01-01

    The accumulation of alkaloids by protoplasts of Catharanthus roseus (L.) G. Don var. Little Bright Eye was studied to determine the specificity of uptake and the role of ion trapping in the storage of alkaloids. Accumulation of the indole alkaloids vindoline, ajmalicine, tabersonine, and vinblastine was found to be biphasic, with an initial burst of uptake followed by a slow, prolonged phase of accumulation. The concentration and pH dependence of the initial burst of uptake for vindoline suggested that uptake occurred by simple diffusion. Uptake of nicotine was monophasic, with a half life of 5.2 minutes. The accumulation ratio (Ci/Ce) for nicotine at steady state and for the initial burst of uptake for vindoline and ajmalicine suggested that accumulation was driven by the pH gradient between the vacuole and the external assay medium. The second, sustained phase of uptake of vindoline was sensitive to inhibition by either 20 millimolar NaN3 or 0.5 millimolar Cu2+. In azide-treated protoplasts, the uptake for vindoline conformed to the kinetics of simple diffusion, with a half life of 4 minutes. The second phase of uptake for ajmalicine, although sensitive to inhibition by Cu2+, was insensitive to inhibition by NaN3. The biphasic uptake of the indole alkaloids was not due to any significant metabolism. It is concluded that accumulation and storage of the indole alkaloids is due only partly to ion trapping of the alkaloids by the low pH of the vacuole lumen. In the case of vindoline, there appears to be a specific energy-requiring uptake that is not seen with nicotine (which is not endogenous to Catharanthus). Accumulation of ajmalicine appears to involve both ion trapping and an azide-insensitive component, which may be due to complexation with organic counterions and phenolics. PMID:16666154

  11. Abnormalities in carbohydrate and lipid metabolisms in high-fructose dietfed insulin-resistant rats: amelioration by Catharanthus roseus treatments.

    PubMed

    Rasineni, Karuna; Bellamkonda, Ramesh; Singareddy, Sreenivasa Reddy; Desireddy, Saralakumari

    2013-09-01

    High intake of dietary fructose has been shown to exert a number of adverse metabolic effects in humans and experimental animals. The present study was proposed to elucidate the effect of Catharanthus roseus (C. roseus) leaf powder treatment on alterations in carbohydrate and lipid metabolisms in rats fed with high-fructose diet. Male Wistar rats of body weight around 180 g were divided into four groups, two of these groups (groups C and C+CR) were fed with standard pellet diet and the other two groups (groups F and F+CR) were fed with high-fructose (66 %) diet. C. roseus leaf powder suspension in water (100 mg/kg body weight/day) was administered orally to group C+CR and group F+CR. At the end of a 60-day experimental period, biochemical parameters related to carbohydrate and lipid metabolisms were assayed. C. roseus treatment completely prevented the fructose-induced increased body weight, hyperglycemia, and hypertriglyceridemia. Hyperinsulinemia and insulin resistance observed in group F was significantly decreased with C. roseus treatment in group F+CR. The alterations observed in the activities of enzymes of carbohydrate and lipid metabolisms and contents of hepatic tissue lipids in group F rats were significantly restored to near normal values by C. roseus treatment in group F+CR. In conclusion, our study demonstrates that C. roseus treatment is effective in preventing fructose-induced insulin resistance and hypertriglyceridemia while attenuating the fructose-induced alterations in carbohydrate and lipid metabolisms. This study suggests that the plant can be used as an adjuvant for the prevention and/or management of insulin resistance and disorders related to it. PMID:23334857

  12. Development of SSR and gene-targeted markers for construction of a framework linkage map of Catharanthus roseus

    PubMed Central

    Shokeen, Bhumika; Choudhary, Shalu; Sethy, Niroj Kumar; Bhatia, Sabhyata

    2011-01-01

    Background and Aims Catharanthus roseus is a plant of great medicinal importance, yet inadequate knowledge of its genome structure and the unavailability of genomic resources have been major impediments in the development of improved varieties. The aims of this study were to develop co-dominant sequence-tagged microsatellite sites (STMS) and gene-targeted markers (GTMs) and utilize them for the construction of a framework intraspecific linkage map of C. roseus. Methods For simple sequence repeat (SSR) isolation, a genomic library enriched for (GA)n repeats was constructed from C. roseus ‘Nirmal’ (CrN1). In addition, GTMs were also designed from 12 genes of the TIA (terpenoid indole alkaloid) pathway – the medicinally most significant pathway in C. roseus. An F2 mapping population was also generated by crossing two diverse accessions of C. roseus CrN1 (Nirmal)×CrN82 (Kew). Key Results A new set of 314 STMS markers and 64 GTMs were developed in this study. A segregating F2 mapping population consisting of 111 F2 individuals was generated. For generating the linkage map, a set of 423 co-dominant markers (378 newly developed and 45 published earlier) were screened for polymorphism between the parental genotypes, of which 134 were identified to be polymorphic. A total of 114 markers were mapped on eight linkage groups that spanned a 632·7 cM region of the genome with an average marker distance of 5·55 cM. Further, the mechanism of hypervariability at the gene-targeted loci was investigated at the sequence level. Conclusions For the first time, a large array of STMS markers and GTMs was generated in the model medicinal plant C. roseus. Moreover, the first microsatellite marker-based linkage map was described in this study. Together, these will serve as a foundation for future genomics studies related to quantitative trait loci analysis and molecular breeding in C. roseus. PMID:21788377

  13. Polyamines and the Cell Cycle of Catharanthus roseus Cells in Culture 1

    PubMed Central

    Maki, Hisae; Ando, Satoshi; Kodama, Hiroaki; Komamine, Atsushi

    1991-01-01

    Investigation was made on the effect of partial depletion of polyamines (PAs), induced by treatment with inhibitors of the biosynthesis of PAs, on the distribution of cells at each phase of the cell cycle in Catharanthus roseus (L.) G. Don. cells in suspension cultures, using flow cytometry. More cells treated with inhibitors of arginine decarboxylase (ADC) and ornithine decarboxylase (ODC) were accumulated in the G1 phase than those in the control, while the treatment with an inhibitor of spermidine (SPD) synthase showed no effect on the distribution of cells. The endogenous levels of the PAs, putrescine (PUT), SPD, and spermine (SPM), were determined during the cell cycle in synchronous cultures of C. roseus. Two peaks of endogenous level of PAs, in particular, of PUT and SPD, were observed during the cell cycle. Levels of PAs increased markedly prior to synthesis of DNA in the S phase and prior to cytokinesis. Activities of ADC and ODC were also assayed during the cell cycle. Activities of ADC was much higher than that of ODC throughout the cell cycle, but both activities of ODC and ADC changed in concert with changes in levels of PAs. Therefore, it is suggested that these enzymes may regulate PA levels during the cell cycle. These results indicate that inhibitors of PUT biosynthesis caused the suppression of cell proliferation by prevention of the progression of the cell cycle, probably from the G1 to the S phase, and PUT may play more important roles in the progression of the cell cycle than other PAs. PMID:16668290

  14. Influence of Precursor Availability on Alkaloid Accumulation by Transgenic Cell Line of Catharanthus roseus1

    PubMed Central

    Whitmer, Serap; Canel, Camilo; Hallard, Didier; Gonçalves, Cecilia; Verpoorte, Robert

    1998-01-01

    We have used a transgenic cell line of Catharanthus roseus (L.) G. Don to study the relative importance of the supply of biosynthetic precursors for the synthesis of terpenoid indole alkaloids. Line S10 carries a recombinant, constitutively overexpressed version of the endogenous strictosidine synthase (Str) gene. Various concentrations and combinations of the substrate tryptamine and of loganin, the immediate precursor of secologanin, were added to suspension cultures of S10. Our results indicate that high rates of tryptamine synthesis can take place under conditions of low tryptophan decarboxylase activity, and that high rates of strictosidine synthesis are possible in the presence of a small tryptamine pool. It appears that the utilization of tryptamine for alkaloid biosynthesis enhances metabolic flux through the indole pathway. However, a deficiency in the supply of either the iridoid or the indole precursor can limit flux through the step catalyzed by strictosidine synthase. Precursor utilization for the synthesis of strictosidine depends on the availability of the cosubstrate; the relative abundance of these precursors is a cell-line-specific trait that reflects the metabolic status of the cultures. PMID:9490777

  15. ATP-binding cassette transporter controls leaf surface secretion of anticancer drug components in Catharanthus roseus

    PubMed Central

    Yu, Fang; De Luca, Vincenzo

    2013-01-01

    The Madagascar periwinkle (Catharanthus roseus) is highly specialized for the biosynthesis of many different monoterpenoid indole alkaloids (MIAs), many of which have powerful biological activities. Such MIAs include the commercially important chemotherapy drugs vinblastine, vincristine, and other synthetic derivatives that are derived from the coupling of catharanthine and vindoline. However, previous studies have shown that biosynthesis of these MIAs involves extensive movement of metabolites between specialized internal leaf cells and the leaf epidermis that require the involvement of unknown secretory processes for mobilizing catharanthine to the leaf surface and vindoline to internal leaf cells. Spatial separation of vindoline and catharanthine provides a clear explanation for the low levels of dimers that accumulate in intact plants. The present work describes the molecular cloning and functional identification of a unique catharanthine transporter (CrTPT2) that is expressed predominantly in the epidermis of young leaves. CrTPT2 gene expression is activated by treatment with catharanthine, and its in planta silencing redistributes catharanthine to increase the levels of catharanthine–vindoline drug dimers in the leaves. Phylogenetic analysis shows that CrTPT2 is closely related to a key transporter involved in cuticle assembly in plants and that may be unique to MIA-producing plant species, where it mediates secretion of alkaloids to the plant surface. PMID:24019465

  16. Vindogentianine, a hypoglycemic alkaloid from Catharanthus roseus (L.) G. Don (Apocynaceae).

    PubMed

    Tiong, Soon Huat; Looi, Chung Yeng; Arya, Aditya; Wong, Won Fen; Hazni, Hazrina; Mustafa, Mohd Rais; Awang, Khalijah

    2015-04-01

    Vindogentianine, a new indole alkaloid together with six known alkaloids, vindoline, vindolidine, vindolicine, vindolinine, perivine and serpentine were isolated from leaf extract (DA) of Catharanthus roseus (L.) G. Don. Their structures were elucidated by spectroscopic methods; NMR, MS, UV and IR. Vindogentianine is a dimer containing a vindoline moiety coupled to a gentianine moiety. After 24h incubation, vindogentianine exhibited no cytotoxic effect in C2C12 mouse myoblast and β-TC6 mouse pancreatic cells (IC50>50μg/mL). Real-time cell proliferation monitoring also indicated vindogentianine had little or no effect on C2C12 mouse myoblast cell growth at the highest dose tested (200μg/mL), without inducing cell death. Vindogentianine exhibited potential hypoglycemic activity in β-TC6 and C2C12 cells by inducing higher glucose uptake and significant in vitro PTP-1B inhibition. However, in vitro α-amylase and α-glucosidase inhibition assay showed low inhibition under treatment of vindogentianine. This suggests that hypoglycemic activity of vindogentianine may be due to the enhancement of glucose uptake and PTP-1B inhibition, implying its therapeutic potential against type 2 diabetes. PMID:25665941

  17. Kinetic Analysis of Phospholipase C from Catharanthus roseus Transformed Roots Using Different Assays1

    PubMed Central

    Hernández-Sotomayor, S.M. Teresa; De Los Santos-Briones, César; Muñoz-Sánchez, J. Armando; Loyola-Vargas, Victor M.

    1999-01-01

    The properties of phospholipase C (PLC) partially purified from Catharanthus roseus transformed roots were analyzed using substrate lipids dispersed in phospholipid vesicles, phospholipid-detergent mixed micelles, and phospholipid monolayers spread at an air-water interface. Using [33P]phosphatidylinositol 4,5-bisphosphate (PIP2) of high specific radioactivity, PLC activity was monitored directly by measuring the loss of radioactivity from monolayers as a result of the release of inositol phosphate and its subsequent dissolution on quenching in the subphase. PLC activity was markedly affected by the surface pressure of the monolayer, with reduced activity at extremes of initial pressure. The optimum surface pressure for PIP2 hydrolysis was 20 mN/m. Depletion of PLC from solution by incubation with sucrose-loaded PIP2 vesicles followed by ultracentrifugation demonstrated stable attachment of PLC to the vesicles. A mixed micellar system was established to assay PLC activity using deoxycholate. Kinetic analyses were performed to determine whether PLC activity was dependent on both bulk PIP2 and PIP2 surface concentrations in the micelles. The interfacial Michaelis constant was calculated to be 0.0518 mol fraction, and the equilibrium dissociation constant of PLC for the lipid was 45.5 μm. These findings will add to our understanding of the mechanisms of regulation of plant PLC. PMID:10444091

  18. Multicellular compartmentation of catharanthus roseus alkaloid biosynthesis predicts intercellular translocation of a pathway intermediate

    PubMed Central

    St-Pierre, B; Vazquez-Flota, FA; De Luca V

    1999-01-01

    In situ RNA hybridization and immunocytochemistry were used to establish the cellular distribution of monoterpenoid indole alkaloid biosynthesis in Madagascar periwinkle (Catharanthus roseus). Tryptophan decarboxylase (TDC) and strictosidine synthase (STR1), which are involved in the biosynthesis of the central intermediate strictosidine, and desacetoxyvindoline 4-hydroxylase (D4H) and deacetylvindoline 4-O-acetyltransferase (DAT), which are involved in the terminal steps of vindoline biosynthesis, were localized. tdc and str1 mRNAs were present in the epidermis of stems, leaves, and flower buds, whereas they appeared in most protoderm and cortical cells around the apical meristem of root tips. In marked contrast, d4h and dat mRNAs were associated with the laticifer and idioblast cells of leaves, stems, and flower buds. Immunocytochemical localization for TDC, D4H, and DAT proteins confirmed the differential localization of early and late stages of vindoline biosynthesis. Therefore, we concluded that the elaboration of the major leaf alkaloids involves the participation of at least two cell types and requires the intercellular translocation of a pathway intermediate. A basipetal gradient of expression in maturing leaves also was shown for all four genes by in situ RNA hybridization studies and by complementary studies with dissected leaves, suggesting that expression of the vindoline pathway occurs transiently during early leaf development. These results partially explain why attempts to produce vindoline by cell culture technology have failed. PMID:10330473

  19. Biochemical and Ultrastructural Changes in Sida cordifolia L. and Catharanthus roseus L. to Auto Pollution.

    PubMed

    Verma, Vijeta; Chandra, Neelam

    2014-01-01

    Auto pollution is the by-product of our mechanized mobility, which adversely affects both plant and human life. However, plants growing in the urban locations provide a great respite to us from the brunt of auto pollution by absorbing the pollutants at their foliar surface. Foliar surface configuration and biochemical changes in plant species, namely, Sida cordifolia L. and Catharanthus roseus L. grown at roadside (polluted site 1, Talkatora; polluted site 2, Charbagh) in Lucknow city and in the garden of the university campus, which has been taken as reference site, were investigated. It was observed that air pollution caused by auto exhaust showed marked alterations in photosynthetic pigments (chlorophyll, carotenoid, and phaeophytin), and relative water content was reduced while antioxidative enzymes like catalase and peroxidase were found to be enhanced. The changes in the foliar configuration reveal marked alteration in epidermal traits, with decreased number of stomata, stomatal indices, and epidermal cells per unit area, while length and breadth of stomata and epidermal cells were found to be increased in leaves samples wich can be used as biomarkers of auto pollution. PMID:27355010

  20. Colonization of Madagascar periwinkle (Catharanthus roseus), by endophytes encoding gfp marker.

    PubMed

    Torres, Adalgisa Ribeiro; Araújo, Welington Luiz; Cursino, Luciana; de Barros Rossetto, Priscilla; Mondin, Mateus; Hungria, Mariangela; Azevedo, João Lúcio

    2013-07-01

    This study reports the introduction of gfp marker in two endophytic bacterial strains (Pantoea agglomerans C33.1, isolated from cocoa, and Enterobacter cloacae PR2/7, isolated from citrus) to monitor the colonization in Madagascar perinwinkle (Catharanthus roseus). Stability of the plasmid encoding gfp was confirmed in vitro for at least 72 h of bacterial growth and after the colonization of tissues, under non-selective conditions. The colonization was observed using fluorescence microscopy and enumeration of culturable endophytes in inoculated perinwinkle plants that grew for 10 and 20 days. Gfp-expressing strains were re-isolated from the inner tissues of surface-sterilized roots and stems of inoculated plants, and the survival of the P. agglomerans C33:1gfp in plants 20 days after inoculation, even in the absence of selective pressure, suggests that is good colonizer. These results indicated that both gfp-tagged strains, especially P. agglomerans C33.1, may be useful tools to deliver enzymes or other proteins in plant. PMID:23695435

  1. Cytoplasmic Acidification Induced by Inorganic Phosphate Uptake in Suspension Cultured Catharanthus roseus Cells

    PubMed Central

    Sakano, Katsuhiro; Yazaki, Yoshiaki; Mimura, Tetsuro

    1992-01-01

    Cytoplasmic acidification during inorganic phosphate (Pi) absorption by Catharanthus roseus cells were studied by means of a fluorescent pH indicator, 2′,7′-bis-(2-carboxyethyl)-5 carboxyfluorescein (acetomethylester) (BCECF), and 31P-nuclear magnetic resonance spectroscopy. Cytoplasmic acidification measured by decrease in the fluorescence intensity started immediately after Pi application. Within a minute or so, a stable state was attained and no further acidification occurred, whereas Pi absorption was still proceeding. As soon as Pi in the medium was exhausted, cytoplasmic pH started to recover. Coincidentally, the medium pH started to recover toward the original acidic pH. The Pi-induced changes in the cytoplasmic pH were confirmed by 31P-nuclear magnetic resonance study. Maximum acidification of the cytoplasm induced by 1.7 millimolar Pi was 0.2 pH units. Vacuolar pH was also affected by Pi. In some experiments, but not all, pH decreased reversibly by 0.2 to 0.3 pH units during Pi absorption. Results suggest that the cytoplasmic pH is regulated by proton pumps in the plasma membrane and in the tonoplast. In addition, other mechanisms that could consume extra protons in the cytoplasm are suggested. ImagesFigure 1 PMID:16668939

  2. ATP-binding cassette transporter controls leaf surface secretion of anticancer drug components in Catharanthus roseus.

    PubMed

    Yu, Fang; De Luca, Vincenzo

    2013-09-24

    The Madagascar periwinkle (Catharanthus roseus) is highly specialized for the biosynthesis of many different monoterpenoid indole alkaloids (MIAs), many of which have powerful biological activities. Such MIAs include the commercially important chemotherapy drugs vinblastine, vincristine, and other synthetic derivatives that are derived from the coupling of catharanthine and vindoline. However, previous studies have shown that biosynthesis of these MIAs involves extensive movement of metabolites between specialized internal leaf cells and the leaf epidermis that require the involvement of unknown secretory processes for mobilizing catharanthine to the leaf surface and vindoline to internal leaf cells. Spatial separation of vindoline and catharanthine provides a clear explanation for the low levels of dimers that accumulate in intact plants. The present work describes the molecular cloning and functional identification of a unique catharanthine transporter (CrTPT2) that is expressed predominantly in the epidermis of young leaves. CrTPT2 gene expression is activated by treatment with catharanthine, and its in planta silencing redistributes catharanthine to increase the levels of catharanthine-vindoline drug dimers in the leaves. Phylogenetic analysis shows that CrTPT2 is closely related to a key transporter involved in cuticle assembly in plants and that may be unique to MIA-producing plant species, where it mediates secretion of alkaloids to the plant surface. PMID:24019465

  3. Negative-pressure cavitation extraction of four main vinca alkaloids from Catharanthus roseus leaves.

    PubMed

    Mu, Fansong; Yang, Liuqing; Wang, Wei; Luo, Meng; Fu, Yujie; Guo, Xiaorui; Zu, Yuangang

    2012-01-01

    In the present study, an improved method termed negative-pressure cavitation extraction (NPCE) followed by reverse phase high-performance liquid chromatography (RP-HPLC) was developed for the extraction and quantification of vindoline (VDL), catharanthine (CTR), vincristine (VCR) and vinblastine (VLB) from Catharanthus roseus leaves. The optimized method employed 60-mesh particles, 80% ethanol, a negative pressure of -0.075 MPa, a solid to liquid ratio of 1:20, 30 min of extraction and three extraction cycles. Under these optimized conditions, the extraction yields of VDL, CTR, VCR and VLB are 0.5783, 0.2843, 0.018 and 0.126 mg/g DW, respectively. These extraction yields are equivalent to those from the well-known ultrasonic extraction method and higher than the yields from maceration extraction and heating reflux extraction. Our results suggest that NPCE-RP-HPLC represents an excellent alternative for the extraction and quantification of vinca alkaloids for pilot- and industrial-scale applications. PMID:22832876

  4. Biochemical and Ultrastructural Changes in Sida cordifolia L. and Catharanthus roseus L. to Auto Pollution

    PubMed Central

    Verma, Vijeta; Chandra, Neelam

    2014-01-01

    Auto pollution is the by-product of our mechanized mobility, which adversely affects both plant and human life. However, plants growing in the urban locations provide a great respite to us from the brunt of auto pollution by absorbing the pollutants at their foliar surface. Foliar surface configuration and biochemical changes in plant species, namely, Sida cordifolia L. and Catharanthus roseus L. grown at roadside (polluted site 1, Talkatora; polluted site 2, Charbagh) in Lucknow city and in the garden of the university campus, which has been taken as reference site, were investigated. It was observed that air pollution caused by auto exhaust showed marked alterations in photosynthetic pigments (chlorophyll, carotenoid, and phaeophytin), and relative water content was reduced while antioxidative enzymes like catalase and peroxidase were found to be enhanced. The changes in the foliar configuration reveal marked alteration in epidermal traits, with decreased number of stomata, stomatal indices, and epidermal cells per unit area, while length and breadth of stomata and epidermal cells were found to be increased in leaves samples wich can be used as biomarkers of auto pollution. PMID:27355010

  5. Synthesis and characterization of palladium nanoparticles using Catharanthus roseus leaf extract and its application in the photo-catalytic degradation.

    PubMed

    Kalaiselvi, Aasaithambi; Roopan, Selvaraj Mohana; Madhumitha, Gunabalan; Ramalingam, C; Elango, Ganesh

    2015-01-25

    The potential effect of Catharanthus roseus leaf extract for the formation of palladium nanoparticles and its application on dye degradation was discussed. The efficiency of C.roseus leaves are used as a bio-material for the first time as reducing agent. Synthesized palladium nanoparticles were supported by UV-vis spectrometry, XRD, FT-IR and TEM analysis. The secondary metabolites which are responsible for the formation of nanoparticles were identified by GC-MS. The results showed that effect of time was directly related to synthesized nanoparticles and functional groups has a critical role in reducing the metal ions and stabilizing the palladium nanoparticles in an eco-friendly process. PMID:25062057

  6. Subcellular localization of tryptophan decarboxylase, strictosidine synthase and strictosidine glucosidase in suspension cultured cells of Catharanthus roseus and Tabernaemontana divaricata.

    PubMed

    Stevens, L H; Blom, T J; Verpoorte, R

    1993-08-01

    The subcellular localization of tryptophan decarboxylase, strictosidine synthase and strictosidine glucosidase in suspension cultured cells of Catharanthus roseus (L.) G. Don and Tabernaemontana divaricata (L.) R. Br. ex Roem. et Schult, was investigated. It was found that tryptophan decarboxylase is an extra-vacuolar enzyme, whereas strictosidine synthase is active inside the vacuole. Strong indications were obtained for the localization of strictosidine glucosidase on the outside of the tonoplast. The results suggest that tryptamine is transported into the vacuole where it is condensed with secologanin to form strictosidine, and that strictosidine passes the tonoplast and is subsequently hydrolysed outside the vacuole. PMID:24201788

  7. Epidermis is a pivotal site of at least four secondary metabolic pathways in Catharanthus roseus aerial organs.

    PubMed

    Mahroug, Samira; Courdavault, Vincent; Thiersault, Martine; St-Pierre, Benoit; Burlat, Vincent

    2006-05-01

    Catharanthus roseus produces a wide range of secondary metabolites, some of which present high therapeutic values such as antitumoral monoterpenoid indole alkaloids (MIAs), vinblastine and vincristine, and the hypotensive MIA, ajmalicine. We have recently shown that a complex multicellular organisation of the MIA biosynthetic pathway occurred in C. roseus aerial organs. In particular, the final steps of both the secoiridoid-monoterpene and indole pathways specifically occurred in the epidermis of leaves and petals. Chorismate is the common precursor of indole and phenylpropanoid pathways. In an attempt to better map the spatio-temporal organisation of diverse secondary metabolisms in Catharanthus roseus aerial organs, we studied the expression pattern of genes encoding enzymes of the phenylpropanoid pathway (phenylalanine ammonia-lyase [PAL, E.C. 4.3.1.5], cinnamate 4-hydroxylase [C4H, E.C. 1.14.13.11] and chalcone synthase [CHS, E.C. 2.3.1.74]). In situ hybridisation experiments revealed that CrPAL and CrC4H were specifically localised to lignifying xylem, whereas CrPAL, CrC4H and CrCHS were specifically expressed in the flavonoid-rich upper epidermis. Interestingly, these three genes were co-expressed in the epidermis (at least the upper, adaxial one) together with three MIA-related genes, indicating that single epidermis cells were capable of concomitantly producing a wide range of diverse secondary metabolites (e.g. flavonoïds, indoles, secoiridoid-monoterpenes and MIAs). These results, and data showing co-accumulation of flavonoids and alkaloids in single cells of C. roseus cell lines, indicated the spatio-temporal feasibility of putative common regulation mechanisms for the expression of these genes involved in at least four distinct secondary metabolisms. PMID:16322983

  8. Evaluation of the nutritive and organoleptic values of food products developed by incorporated Catharanthus roseus (Sadabahar) fresh leaves explore their hypoglycemic potential.

    PubMed

    Bisla, Gita; Choudhary, Shailza; Chaudhary, Vijeta

    2014-01-01

    Diabetes becomes a real problem of public health in developing countries, where its prevalence is increasing steadily. Diabetes mellitus can be found in almost every population in the world. Since the Ayurvedic practice started in India, plants are being used in the cure of diseases. Although the Catharanthus roseus have been used for their alleged health benefits and avail their hypoglycemic effect, used as medicine by diabetics. Medicinal plants have rarely been incorporated in food preparations. To fill these lacunae, food products were prepared by using Catharanthus roseus (Sadabahar) fresh leaves with hypoglycemic properties. Commonly consumed recipes in India are prepared for diabetic patients and were developed at different levels at 3 g, 4 g, and 6 g per serving. Food product development and their acceptability appraisal through organoleptic evaluation were carried out by semitrained panel comprising 15 trained panelists from the department of Food Science and Nutrition, Banasthali University. Seven products were developed by incorporating Catharanthus roseus fresh leaves. Nine point hedonic scale was used as a medium to know about the product acceptability at various variances. All products are moderately acceptable at different concentrations except product fare "6 g" which was more acceptable than the standard. Among the three variations of incorporating the Catharanthus roseus (Sadabahar) Leaves, 3 g variation is more acceptable than other variations. PMID:24790561

  9. Evaluation of the Nutritive and Organoleptic Values of Food Products Developed by Incorporated Catharanthus roseus (Sadabahar) Fresh Leaves Explore Their Hypoglycemic Potential

    PubMed Central

    Bisla, Gita; Choudhary, Shailza; Chaudhary, Vijeta

    2014-01-01

    Diabetes becomes a real problem of public health in developing countries, where its prevalence is increasing steadily. Diabetes mellitus can be found in almost every population in the world. Since the Ayurvedic practice started in India, plants are being used in the cure of diseases. Although the Catharanthus roseus have been used for their alleged health benefits and avail their hypoglycemic effect, used as medicine by diabetics. Medicinal plants have rarely been incorporated in food preparations. To fill these lacunae, food products were prepared by using Catharanthus roseus (Sadabahar) fresh leaves with hypoglycemic properties. Commonly consumed recipes in India are prepared for diabetic patients and were developed at different levels at 3 g, 4 g, and 6 g per serving. Food product development and their acceptability appraisal through organoleptic evaluation were carried out by semitrained panel comprising 15 trained panelists from the department of Food Science and Nutrition, Banasthali University. Seven products were developed by incorporating Catharanthus roseus fresh leaves. Nine point hedonic scale was used as a medium to know about the product acceptability at various variances. All products are moderately acceptable at different concentrations except product fare “6 g” which was more acceptable than the standard. Among the three variations of incorporating the Catharanthus roseus (Sadabahar) Leaves, 3 g variation is more acceptable than other variations. PMID:24790561

  10. Artemisinic Acid Serves as a Novel ORCA3 Inducer to Enhance Biosynthesis of Terpenoid Indole Alkaloids in Catharanthus roseus Cambial Meristematic Cells.

    PubMed

    Wang, Mingxuan; Zi, Jiachen; Zhu, Jianhua; Chen, Shan; Wang, Pu; Song, Liyan; Yu, Rongmin

    2016-06-01

    To investigate the effect of artemisinic acid (AA) on improving the production of terpenoid indole alkaloids (TIAs) of Catharanthus roseus cambial meristematic cells (CMCs), feeding AA to C. roseus CMCs caused 2.35-fold and 2.51-fold increases in the production of vindoline and catharanthine, respectively, compared with those of the untreated CMCs. qRT-PCR experiments showed that AA resulted in a 1.36-8.52 fold increase in the transcript levels of several related genes, including octadecanoid-derivative responsive Catharanthus AP2-domain protein 3 (ORCA3), tryptophan decarboxylase (TDC), strictosidine synthase (STR) and desacetoxyvindoline 4-hydroxylase (D4H). However, no effect was observed on the concentration of either jasmonic acid (JA), or the octadecanoid-pathway inhibitors block TIA accumulation caused by AA. The results indicated that AA might serve as a novel ORCA3 inducer to manipulate biosynthesis of TIAs in C. roseus CMCs via an unknown mechanism. PMID:27534099

  11. Somatic embryo mediated mass production of Catharanthus roseus in culture vessel (bioreactor) – A comparative study

    PubMed Central

    Mujib, A.; Ali, Muzamil; Isah, Tasiu; Dipti

    2014-01-01

    The purpose of this study was to evaluate and compare the use of liquid and solid Murashige and Skoog (MS) medium in different culture vessels for mass production of Catharanthus roseus, an important source of anticancerous compounds, vincristine and vinblastine. Three media conditions i.e. agar-solidified medium (S), liquid medium in agitated conical flask (L) and growtek bioreactor (B) were used. Rapid propagation was achieved through in vitro somatic embryogenesis pathway. The process of embryogenesis has been categorized into induction, proliferation, maturation and germination stages. All in vitro embryogenesis stages were conducted by withdrawing spent liquid medium and by adding fresh MS medium. In optimized 4.52 μM 2,4-D added MS, the callus biomass growth was low in solid (1.65 g) compared to liquid medium in agitated conical flask (1.95 g) and in bioreactor (2.11 g). The number of normal somatic embryos was more in solid medium (99.75/50 mg of callus mass) compared to liquid medium used in conical flask (83.25/callus mass) and growtek bioreactor (84.88/callus mass). The in vitro raised embryos maturated in GA3 (2.60 μM) added medium; and in bioreactor the embryo growth was high, a maximum length of 9.82 mm was observed at the end of four weeks. These embryos germinated into seedlings in BAP (2.22 μM) added medium and the embryo germination ability was more (59.41%) in bioreactor compared to liquid medium in conical flask (55.5%). Shoot length (11.25 mm) was also high in bioreactor compared to agitated conical flask. The liquid medium used in agitated conical flask and bioreactor increased seedling production efficiency, at the same time it also reduced plant recovery time. The embryo generated plants grew normally in outdoor conditions. The exploitation of medium to large culture vessel or bioreactor may make the process more efficient in getting large number of Catharanthus plant as it is the only source of anti-cancerous alkaloids

  12. Somatic embryo mediated mass production of Catharanthus roseus in culture vessel (bioreactor) - A comparative study.

    PubMed

    Mujib, A; Ali, Muzamil; Isah, Tasiu; Dipti

    2014-11-01

    The purpose of this study was to evaluate and compare the use of liquid and solid Murashige and Skoog (MS) medium in different culture vessels for mass production of Catharanthus roseus, an important source of anticancerous compounds, vincristine and vinblastine. Three media conditions i.e. agar-solidified medium (S), liquid medium in agitated conical flask (L) and growtek bioreactor (B) were used. Rapid propagation was achieved through in vitro somatic embryogenesis pathway. The process of embryogenesis has been categorized into induction, proliferation, maturation and germination stages. All in vitro embryogenesis stages were conducted by withdrawing spent liquid medium and by adding fresh MS medium. In optimized 4.52 μM 2,4-D added MS, the callus biomass growth was low in solid (1.65 g) compared to liquid medium in agitated conical flask (1.95 g) and in bioreactor (2.11 g). The number of normal somatic embryos was more in solid medium (99.75/50 mg of callus mass) compared to liquid medium used in conical flask (83.25/callus mass) and growtek bioreactor (84.88/callus mass). The in vitro raised embryos maturated in GA3 (2.60 μM) added medium; and in bioreactor the embryo growth was high, a maximum length of 9.82 mm was observed at the end of four weeks. These embryos germinated into seedlings in BAP (2.22 μM) added medium and the embryo germination ability was more (59.41%) in bioreactor compared to liquid medium in conical flask (55.5%). Shoot length (11.25 mm) was also high in bioreactor compared to agitated conical flask. The liquid medium used in agitated conical flask and bioreactor increased seedling production efficiency, at the same time it also reduced plant recovery time. The embryo generated plants grew normally in outdoor conditions. The exploitation of medium to large culture vessel or bioreactor may make the process more efficient in getting large number of Catharanthus plant as it is the only source of anti-cancerous alkaloids

  13. Exploiting EST databases for the mining and characterization of short sequence repeat (SSR) markers in Catharanthus roseus L.

    PubMed Central

    Joshi, Raj Kumar; Kar, Basudeba; Nayak, Sanghamitra

    2011-01-01

    Periwinkle (Catharanthus roseus L.) (Family: Apocyanaceae) is a ornamental plants with great medicinal properties. Although it is represented by seven species, little work has been carried out on its genetic characterization due to non-availability of reliable molecular markers. Simple sequence repeats (SSRs) have been widely applied as molecular markers in genetic studies. With the rapid increase in the deposition of nucleotide sequences in the public databases and advent of bioinformatics tools, it has become a cost effective and fast approach to scan for microsatellite repeats and exploit the possibility of converting it into potential genetic markers. Expressed sequence tags (EST's) from Catharanthus roseus were used for the screening of Class I (hyper variable) simple sequence repeats (SSR's). A total of 502 microsatellite repeats were detected from 21730 EST sequences of turmeric after redundancy elimination. The average density of Class I SSRs account to 1 SSR per 10.21 kb of EST. Mononucleotides was the most abundant class of microsatellite motifs. It accounted for 44.02% of the total, followed by the trinucleotide (26.09%) and dinucleotide repeats (14.34%). Among all the repeat motifs, (A/T)n accounted for the highest Proportion (36.25%) followed by (AAG)n. These detected SSRs can be used to design primers that have functional importance and should also facilitate the analysis of genetic diversity, variability, linkage mapping and evolutionary relationships in plants especially medicinal plants. PMID:21383904

  14. UV-B-induced signaling events leading to enhanced-production of catharanthine in Catharanthus roseus cell suspension cultures

    PubMed Central

    Ramani, Shilpa; Chelliah, Jayabaskaran

    2007-01-01

    Background Elicitations are considered to be an important strategy towards improved in vitro production of secondary metabolites. In cell cultures, biotic and abiotic elicitors have effectively stimulated the production of plant secondary metabolites. However, molecular basis of elicitor-signaling cascades leading to increased production of secondary metabolites of plant cell is largely unknown. Exposure of Catharanthus roseus cell suspension culture to low dose of UV-B irradiation was found to increase the amount of catharanthine and transcription of genes encoding tryptophan decarboxylase (Tdc) and strictosidine synthase (Str). In the present study, the signaling pathway mediating UV-B-induced catharanthine accumulation in C. roseus suspension cultures were investigated. Results Here, we investigate whether cell surface receptors, medium alkalinization, Ca2+ influx, H2O2, CDPK and MAPK play required roles in UV-B signaling leading to enhanced production of catharanthine in C. roseus cell suspension cultures. C. roseus cells were pretreated with various agonists and inhibitors of known signaling components and their effects on the accumulation of Tdc and Str transcripts as well as amount of catharanthine production were investigated by various molecular biology techniques. It has been found that the catharanthine accumulation and transcription of Tdc and Str were inhibited by 3–4 fold upon pretreatment of various inhibitors like suramin, N-acetyl cysteine, inhibitors of calcium fluxes, staurosporine etc. Conclusion Our results demonstrate that cell surface receptor(s), Ca2+ influx, medium alkalinization, CDPK, H2O2 and MAPK play significant roles in UV-B signaling leading to stimulation of Tdc and Str genes and the accumulation of catharanthine in C. roseus cell suspension cultures. Based on these findings, a model for signal transduction cascade has been proposed. PMID:17988378

  15. Developmental and Light Regulation of Desacetoxyvindoline 4-Hydroxylase in Catharanthus roseus (L.) G. Don.1

    PubMed Central

    Vazquez-Flota, Felipe A.; De Luca, Vincenzo

    1998-01-01

    The expression of desacetoxyvindoline 4-hydroxylase (D4H), which catalyzes the second to the last reaction in vindoline biosynthesis in Catharanthus roseus, appears to be under complex, multilevel developmental and light regulation. Developmental studies with etiolated and light-treated seedlings suggested that although light had variable effects on the levels of d4h transcripts, those of D4H protein and enzyme activity could be increased, depending on seedling development, up to 9- and 8-fold, respectively, compared with etiolated seedlings. However, light treatment of etiolated seedlings could stop and reverse the decline of d4h transcripts at later stages of seedling development. Repeated exposure of seedlings to light was also required to maintain the full spectrum of enzyme activity observed during seedling development. Further studies showed that a photoreversible phytochrome appeared to be involved in the activation of D4H, since red-light treatment of etiolated seedlings increased the detectable levels of d4h transcripts, D4H protein, and D4H enzyme activity, whereas far-red-light treatment completely reversed this process. Additional studies also confirmed that different major isoforms of D4H protein exist in etiolated (isoelectric point, 4.7) and light-grown (isoelectric point, 4.6) seedlings, suggesting that a component of the light-mediated activation of D4H may involve an undetermined posttranslational modification. The biological reasons for this complex control of vindoline biosynthesis may be related to the need to produce structures that could sequester away from cellular activities the cytotoxic vinblastine and vincristine dimers that are derived partially from vindoline. PMID:9701591

  16. Interaction between abscisic acid and nitric oxide in PB90-induced catharanthine biosynthesis of catharanthus roseus cell suspension cultures.

    PubMed

    Chen, Qian; Chen, Zunwei; Lu, Li; Jin, Haihong; Sun, Lina; Yu, Qin; Xu, Hongke; Yang, Fengxia; Fu, Mengna; Li, Shengchao; Wang, Huizhong; Xu, Maojun

    2013-01-01

    Elicitations are considered to be an important strategy to improve production of secondary metabolites of plant cell cultures. However, mechanisms responsible for the elicitor-induced production of secondary metabolites of plant cells have not yet been fully elucidated. Here, we report that treatment of Catharanthus roseus cell suspension cultures with PB90, a protein elicitor from Phytophthora boehmeriae, induced rapid increases of abscisic acid (ABA) and nitric oxide (NO), subsequently followed by the enhancement of catharanthine production and up-regulation of Str and Tdc, two important genes in catharanthine biosynthesis. PB90-induced catharanthine production and the gene expression were suppressed by the ABA inhibitor and NO scavenger respectively, showing that ABA and NO are essential for the elicitor-induced catharanthine biosynthesis. The relationship between ABA and NO in mediating catharanthine biosynthesis was further investigated. Treatment of the cells with ABA triggered NO accumulation and induced catharanthine production and up-regulation of Str and Tdc. ABA-induced catharanthine production and gene expressions were suppressed by the NO scavenger. Conversely, exogenous application of NO did not stimulate ABA generation and treatment with ABA inhibitor did not suppress NO-induced catharanthine production and gene expressions. Together, the results showed that both NO and ABA were involved in PB90-induced catharanthine biosynthesis of C. roseus cells. Furthermore, our data demonstrated that ABA acted upstream of NO in the signaling cascade leading to PB90-induced catharanthine biosynthesis of C. roseus cells. PMID:23554409

  17. A Cytochrome P-450 Monooxygenase Catalyzes the First Step in the Conversion of Tabersonine to Vindoline in Catharanthus roseus.

    PubMed Central

    St-Pierre, B.; De Luca, V.

    1995-01-01

    Hydroxylation at the C-16 position of the indole alkaloid tabersonine has been suggested as the first step toward vindoline biosynthesis in Catharanthus roseus. Tabersonine 16-hydroxylase (16-OH) activity was detected in total protein extracts from young leaves of C. roseus using a novel coupled assay system. Enzyme activity was dependent on NADPH and molecular oxygen and was inhibited by CO, clotrimazole, miconazole, and cytochrome c. 16-OH was localized to the endoplasmic reticulum by linear sucrose density gradient centrifugation. These data suggest that 16-OH is a cytochrome P-450-dependent monooxygenase. The activity of 16-OH reached a maximum in seedlings 9 d postimbibition and was induced by light. The leaf-specific distribution of 16-OH in the mature plant is consistent with the localization of other enzymes in the tabersonine to vindoline pathway. However, in contrast to enzymes that catalyze the last four steps of vindoline biosynthesis, enzymes responsible for the first two steps from tabersonine (16-OH and 16-O-methyltransfersase) were detected in C. roseus cell-suspension cultures. These data complement the complex model of vindoline biosynthesis that has evolved with respect to enzyme compartmentalization, metabolic transport, and control mechanisms. PMID:12228585

  18. Effect of Gloriosa superba and Catharanthus roseus Extracts on IFN-γ-Induced Keratin 17 Expression in HaCaT Human Keratinocytes.

    PubMed

    Pattarachotanant, Nattaporn; Rakkhitawatthana, Varaporn; Tencomnao, Tewin

    2014-01-01

    Gloriosa superba and Catharanthus roseus are useful in traditional medicine for treatment of various skin diseases and cancer. However, their molecular effect on psoriasis has not been investigated. In this study, the effect of ethanol extracts derived from G. superba leaves and C. roseus stems on the expression of psoriatic marker, keratin 17 (K17), was investigated in human keratinocytes using biochemical and molecular experimental approaches. Both extracts could reduce the expression of K17 in a dose-dependent manner through JAK/STAT pathway as demonstrated by an observation of reduced phosphorylation of STAT3 (p-STAT3). The inhibitory activity of G. superba extract was more potent than that of C. roseus. The Pearson's correlation between K17 and cell viability was shown positive. Taken together, the extracts of G. superba and C. roseus may be developed as alternative therapies for psoriasis. PMID:25435888

  19. Effect of Gloriosa superba and Catharanthus roseus Extracts on IFN-γ-Induced Keratin 17 Expression in HaCaT Human Keratinocytes

    PubMed Central

    Pattarachotanant, Nattaporn; Rakkhitawatthana, Varaporn

    2014-01-01

    Gloriosa superba and Catharanthus roseus are useful in traditional medicine for treatment of various skin diseases and cancer. However, their molecular effect on psoriasis has not been investigated. In this study, the effect of ethanol extracts derived from G. superba leaves and C. roseus stems on the expression of psoriatic marker, keratin 17 (K17), was investigated in human keratinocytes using biochemical and molecular experimental approaches. Both extracts could reduce the expression of K17 in a dose-dependent manner through JAK/STAT pathway as demonstrated by an observation of reduced phosphorylation of STAT3 (p-STAT3). The inhibitory activity of G. superba extract was more potent than that of C. roseus. The Pearson's correlation between K17 and cell viability was shown positive. Taken together, the extracts of G. superba and C. roseus may be developed as alternative therapies for psoriasis. PMID:25435888

  20. Induction and Flow Cytometry Identification of Tetraploids from Seed-Derived Explants through Colchicine Treatments in Catharanthus roseus (L.) G. Don

    PubMed Central

    Xing, Shi-Hai; Guo, Xin-Bo; Wang, Quan; Pan, Qi-Fang; Tian, Yue-Sheng; Liu, Pin; Zhao, Jing-Ya; Wang, Guo-Feng; Sun, Xiao-Fen; Tang, Ke-Xuan

    2011-01-01

    The tetraploid plants of Catharanthus roseus (L.) G. Don was obtained by colchicine induction from seeds explants, and the ploidy of the plants was identified by flow cytometry. The optimal treatment is 0.2% colchicine solution treated for 24 hours, and the induction rate reaches up to 30%. Comparing with morphological characteristics and growth habits between tetraploids and the control, we found that tetraploids of C. roseus had larger stoma and more branches and leaves. HPLC analysis showed tetraploidization could increase the contents of terpenoid indole alkaloids in C. roseus. Thus, tetraploidization could be used to produce higher alkaloids lines for commercial use. QRT-PCR results showed that the expression of enzymes involved in terpenoid indole alkaloids biosynthesis pathway had increased in the tetraploid plants. To our knowledge, this was the first paper to explore the secondary metabolism in autotetraploid C. roseus induced by colchicine. PMID:21660143

  1. Induction and flow cytometry identification of tetraploids from seed-derived explants through colchicine treatments in Catharanthus roseus (L.) G. Don.

    PubMed

    Xing, Shi-Hai; Guo, Xin-Bo; Wang, Quan; Pan, Qi-Fang; Tian, Yue-Sheng; Liu, Pin; Zhao, Jing-Ya; Wang, Guo-Feng; Sun, Xiao-Fen; Tang, Ke-Xuan

    2011-01-01

    The tetraploid plants of Catharanthus roseus (L.) G. Don was obtained by colchicine induction from seeds explants, and the ploidy of the plants was identified by flow cytometry. The optimal treatment is 0.2% colchicine solution treated for 24 hours, and the induction rate reaches up to 30%. Comparing with morphological characteristics and growth habits between tetraploids and the control, we found that tetraploids of C. roseus had larger stoma and more branches and leaves. HPLC analysis showed tetraploidization could increase the contents of terpenoid indole alkaloids in C. roseus. Thus, tetraploidization could be used to produce higher alkaloids lines for commercial use. QRT-PCR results showed that the expression of enzymes involved in terpenoid indole alkaloids biosynthesis pathway had increased in the tetraploid plants. To our knowledge, this was the first paper to explore the secondary metabolism in autotetraploid C. roseus induced by colchicine. PMID:21660143

  2. Molecular Analysis and Heterologous Expression of an Inducible Cytochrome P-450 Protein from Periwinkle (Catharanthus roseus L.) 1

    PubMed Central

    Vetter, Hans-Peter; Mangold, Ursula; Schröder, Gudrun; Marner, Franz-Josef; Werck-Reichhart, Danielle; Schröder, Joachim

    1992-01-01

    We screened cDNA libraries from periwinkle (Catharanthus roseus) cell cultures induced for indole alkaloid synthesis and selected clones for induced cytochrome P-450 (P-450) proteins by differential hybridization, size of the hybridizing mRNA, and presence of amino acid motifs conserved in many P-450 families. Four cDNAs satisfying these criteria were analyzed in detail. They were grouped in two classes (pCros1, pCros2) that represented two closely related genes of a new P-450 family designated CYP72. Antiserum against a cDNA fusion protein overexpressed in Escherichia coli recognized in C. roseus a protein band of 56 kD. Quantification of western blots showed that it represented 1.5 ± 0.5 and 6 ± 1 μg/mg of protein in the membranes from noninduced and induced cells, respectively, and analysis of the total P-450 content suggested that the cDNA-encoded protein was one of the dominant P-450 proteins. The pathway to indole alkaloids contains two known P-450 enzymes, geraniol-10-hydroxylase (GE10H) and nerol-10-hydroxylase (NE10H). The induction kinetics of the cloned P-450 protein and of GE10H activity were similar, but those of NE10H were different. Western blots with membranes from other plants suggested that P-450 CYP72 is specific for C. roseus and other plants with GE10H activity. A tentative assignment of CYP72 as GE10H is discussed. The cDNA was recloned for expression in Saccharomyces cerevisiae, and the presence of the protein was demonstrated by western blots. Assays for GE10H failed to detect enzyme activity, and the same negative result was obtained for NE10H and other P-450 enzymes that are present in C. roseus. Images Figure 5 Figure 7 PMID:16653087

  3. A pair of tabersonine 16-hydroxylases initiates the synthesis of vindoline in an organ-dependent manner in Catharanthus roseus.

    PubMed

    Besseau, Sébastien; Kellner, Franziska; Lanoue, Arnaud; Thamm, Antje M K; Salim, Vonny; Schneider, Bernd; Geu-Flores, Fernando; Höfer, René; Guirimand, Grégory; Guihur, Anthony; Oudin, Audrey; Glevarec, Gaëlle; Foureau, Emilien; Papon, Nicolas; Clastre, Marc; Giglioli-Guivarc'h, Nathalie; St-Pierre, Benoit; Werck-Reichhart, Danièle; Burlat, Vincent; De Luca, Vincenzo; O'Connor, Sarah E; Courdavault, Vincent

    2013-12-01

    Hydroxylation of tabersonine at the C-16 position, catalyzed by tabersonine 16-hydroxylase (T16H), initiates the synthesis of vindoline that constitutes the main alkaloid accumulated in leaves of Catharanthus roseus. Over the last decade, this reaction has been associated with CYP71D12 cloned from undifferentiated C. roseus cells. In this study, we isolated a second cytochrome P450 (CYP71D351) displaying T16H activity. Biochemical characterization demonstrated that CYP71D12 and CYP71D351 both exhibit high affinity for tabersonine and narrow substrate specificity, making of T16H, to our knowledge, the first alkaloid biosynthetic enzyme displaying two isoforms encoded by distinct genes characterized to date in C. roseus. However, both genes dramatically diverge in transcript distribution in planta. While CYP71D12 (T16H1) expression is restricted to flowers and undifferentiated cells, the CYP71D351 (T16H2) expression profile is similar to the other vindoline biosynthetic genes reaching a maximum in young leaves. Moreover, transcript localization by carborundum abrasion and RNA in situ hybridization demonstrated that CYP71D351 messenger RNAs are specifically located to leaf epidermis, which also hosts the next step of vindoline biosynthesis. Comparison of high- and low-vindoline-accumulating C. roseus cultivars also highlights the direct correlation between CYP71D351 transcript and vindoline levels. In addition, CYP71D351 down-regulation mediated by virus-induced gene silencing reduces vindoline accumulation in leaves and redirects the biosynthetic flux toward the production of unmodified alkaloids at the C-16 position. All these data demonstrate that tabersonine 16-hydroxylation is orchestrated in an organ-dependent manner by two genes including CYP71D351, which encodes the specific T16H isoform acting in the foliar vindoline biosynthesis. PMID:24108213

  4. CrMPK3, a mitogen activated protein kinase from Catharanthus roseus and its possible role in stress induced biosynthesis of monoterpenoid indole alkaloids

    PubMed Central

    2012-01-01

    Background Mitogen activated protein kinase (MAPK) cascade is an important signaling cascade that operates in stress signal transduction in plants. The biologically active monoterpenoid indole alkaloids (MIA) produced in Catharanthus roseus are known to be induced under several abiotic stress conditions such as wounding, UV-B etc. However involvement of any signaling component in the accumulation of MIAs remains poorly investigated so far. Here we report isolation of a novel abiotic stress inducible Catharanthus roseus MAPK, CrMPK3 that may have role in accumulation of MIAs in response to abiotic stress. Results CrMPK3 expressed in bacterial system is an active kinase as it showed auto-phosphorylation and phosphorylation of Myelin Basic Protein. CrMPK3 though localized in cytoplasm, moves to nucleus upon wounding. Wounding, UV treatment and MeJA application on C. roseus leaves resulted in the transcript accumulation of CrMPK3 as well as activation of MAPK in C. roseus leaves. Immuno-precipitation followed by immunoblot analysis revealed that wounding, UV treatment and methyl jasmonate (MeJA) activate CrMPK3. Transient over-expression of CrMPK3 in C. roseus leaf tissue showed enhanced expression of key MIA biosynthesis pathway genes and also accumulation of specific MIAs. Conclusion Results from our study suggest a possible involvement of CrMPK3 in abiotic stress signal transduction towards regulation of transcripts of key MIA biosynthetic pathway genes, regulators and accumulation of major MIAs. PMID:22871174

  5. 7-deoxyloganetic acid synthase catalyzes a key 3 step oxidation to form 7-deoxyloganetic acid in Catharanthus roseus iridoid biosynthesis.

    PubMed

    Salim, Vonny; Wiens, Brent; Masada-Atsumi, Sayaka; Yu, Fang; De Luca, Vincenzo

    2014-05-01

    Iridoids are key intermediates required for the biosynthesis of monoterpenoid indole alkaloids (MIAs), as well as quinoline alkaloids. Although most iridoid biosynthetic genes have been identified, one remaining three step oxidation required to form the carboxyl group of 7-deoxyloganetic acid has yet to be characterized. Here, it is reported that virus-induced gene silencing of 7-deoxyloganetic acid synthase (7DLS, CYP76A26) in Catharanthus roseus greatly decreased levels of secologanin and the major MIAs, catharanthine and vindoline in silenced leaves. Functional expression of this gene in Saccharomyces cerevisiae confirmed its function as an authentic 7DLS that catalyzes the 3 step oxidation of iridodial-nepetalactol to form 7-deoxyloganetic acid. The identification of CYP76A26 removes a key bottleneck for expression of iridoid and related MIA pathways in various biological backgrounds. PMID:24594312

  6. Screening and kinetic studies of catharanthine and ajmalicine accumulation and their correlation with growth biomass in Catharanthus roseus hairy roots.

    PubMed

    Benyammi, Roukia; Paris, Cédric; Khelifi-Slaoui, Majda; Zaoui, Djamila; Belabbassi, Ouarda; Bakiri, Nouara; Meriem Aci, Myassa; Harfi, Boualem; Malik, Sonia; Makhzoum, Abdullah; Desobry, Stéphane; Khelifi, Lakhdar

    2016-10-01

    Context Catharanthus roseus (L.) G. Don (Apocynaceae) is still one of the most important sources of terpene indole alkaloids including anticancer and hypertensive drugs as vincristine and vinblastine. These final compounds have complex pathway and many enzymes are involved in their biosynthesis. Indeed, ajmalicine and catharanthine are important precursors their increase can lead to enhance levels of molecules of interest. Objective This study aims at selecting the highest yield of hairy root line(s) and at identifying best times for further treatments. We study kinetics growth and alkaloids (ajmalicine and catharanthine) accumulation of three selected hairy root lines during the culture cycle in order to determine the relationship between biomass production and alkaloids accumulation. Materials and methods Comparative analysis has been carried out on three selected lines of Catharanthus roseus hairy roots (LP10, LP21 and L54) for their kinetics of growth and the accumulation of ajamalicine and catharanthine, throughout a 35-day culture cycle. The methanolic extract for each line in different times during culture cycle is analyzed using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Results Maximum accumulation of the alkaloids is recorded for LP10 line in which the peak of ajmalicine and catharanthine accumulation reached to 3.8 and 4.3 mg/g dry weight (DW), respectively. This increase coincides with an exponential growth phase. Discussion and conclusion Our results suggest that the evolution of accumulation of ajmalicine and catharanthine are positively correlated with the development of the biomass growth. Significantly, for LP10 line the most promising line to continue optimizing the production of TIAs. Additionally, the end of exponential phase remains the best period for elicitor stimuli. PMID:26983347

  7. Fungal endophytes of Catharanthus roseus enhance vindoline content by modulating structural and regulatory genes related to terpenoid indole alkaloid biosynthesis

    PubMed Central

    Pandey, Shiv S.; Singh, Sucheta; Babu, C. S. Vivek; Shanker, Karuna; Srivastava, N. K.; Shukla, Ashutosh K.; Kalra, Alok

    2016-01-01

    Not much is known about the mechanism of endophyte-mediated induction of secondary metabolite production in Catharanthus roseus. In the present study two fungal endophytes, Curvularia sp. CATDLF5 and Choanephora infundibulifera CATDLF6 were isolated from the leaves of the plant that were found to enhance vindoline content by 229–403%. The isolated endophytes did not affect the primary metabolism of the plant as the maximum quantum efficiency of PSII, net CO2 assimilation, plant biomass and starch content of endophyte-inoculated plants was similar to endophyte-free control plants. Expression of terpenoid indole alkaloid (TIA) pathway genes, geraniol 10-hydroxylase (G10H), tryptophan decarboxylase (TDC), strictosidine synthase (STR), 16-hydoxytabersonine-O-methyltransferase (16OMT), desacetoxyvindoline-4-hydroxylase (D4H), deacetylvindoline-4-O-acetyltransferase (DAT) were upregulated in endophyte-inoculated plants. Endophyte inoculation upregulated the expression of the gene for transcriptional activator octadecanoid-responsive Catharanthus AP2-domain protein (ORCA3) and downregulated the expression of Cys2/His2-type zinc finger protein family transcriptional repressors (ZCTs). The gene for the vacuolar class III peroxidase (PRX1), responsible for coupling vindoline and catharanthine, was upregulated in endophyte-inoculated plants. These endophytes may enhance vindoline production by modulating the expression of key structural and regulatory genes of vindoline biosynthesis without affecting the primary metabolism of the host plant. PMID:27220774

  8. Fungal endophytes of Catharanthus roseus enhance vindoline content by modulating structural and regulatory genes related to terpenoid indole alkaloid biosynthesis.

    PubMed

    Pandey, Shiv S; Singh, Sucheta; Babu, C S Vivek; Shanker, Karuna; Srivastava, N K; Shukla, Ashutosh K; Kalra, Alok

    2016-01-01

    Not much is known about the mechanism of endophyte-mediated induction of secondary metabolite production in Catharanthus roseus. In the present study two fungal endophytes, Curvularia sp. CATDLF5 and Choanephora infundibulifera CATDLF6 were isolated from the leaves of the plant that were found to enhance vindoline content by 229-403%. The isolated endophytes did not affect the primary metabolism of the plant as the maximum quantum efficiency of PSII, net CO2 assimilation, plant biomass and starch content of endophyte-inoculated plants was similar to endophyte-free control plants. Expression of terpenoid indole alkaloid (TIA) pathway genes, geraniol 10-hydroxylase (G10H), tryptophan decarboxylase (TDC), strictosidine synthase (STR), 16-hydoxytabersonine-O-methyltransferase (16OMT), desacetoxyvindoline-4-hydroxylase (D4H), deacetylvindoline-4-O-acetyltransferase (DAT) were upregulated in endophyte-inoculated plants. Endophyte inoculation upregulated the expression of the gene for transcriptional activator octadecanoid-responsive Catharanthus AP2-domain protein (ORCA3) and downregulated the expression of Cys2/His2-type zinc finger protein family transcriptional repressors (ZCTs). The gene for the vacuolar class III peroxidase (PRX1), responsible for coupling vindoline and catharanthine, was upregulated in endophyte-inoculated plants. These endophytes may enhance vindoline production by modulating the expression of key structural and regulatory genes of vindoline biosynthesis without affecting the primary metabolism of the host plant. PMID:27220774

  9. The effects of UV-B stress on the production of terpenoid indole alkaloids in Catharanthus roseus hairy roots.

    PubMed

    Binder, Bernard Y K; Peebles, Christie A M; Shanks, Jacqueline V; San, Ka-Yiu

    2009-01-01

    In nature, plants generate protective secondary metabolites in response to environmental stresses. Such metabolites include terpenoid indole alkaloids (TIAs), which absorb UV-B light and serve putatively to protect the plant from harmful radiation. Catharanthus roseus plants, multiple shoot cultures, and cell suspension cultures exposed to UV-B light show significant increases in the production of TIAs, including precursors to vinblastine and vincristine, which have proven effective in the treatment of leukemia and lymphoma. Here, the effect of UV-B light on C. roseus hairy roots was examined. Analysis of alkaloid concentrations up to 168 h after UV-B exposure shows significant increases in the concentrations of lochnericine and significant decreases in the concentration of hörhammericine over time (ANOVA, P < 0.05). Our results also indicate that increasing UV-B exposure time up to 20 min caused significant increases in lochnericine, serpentine, and ajmalicine and a decrease in hörhammericine (t-test, p < 0.05). PMID:19479674

  10. Effect of Chromium on Antioxidant Potential of Catharanthus roseus Varieties and Production of Their Anticancer Alkaloids: Vincristine and Vinblastine

    PubMed Central

    Tandon, Pramod Kumar; Khatoon, Sayyada

    2014-01-01

    Catharanthus roseus (L.) G. Don, a medicinal plant, has a very important place in the traditional as well as modern pharmaceutical industry. Two common varieties of this plant rosea and alba are named so because of pink and white coloured flowers, respectively. This plant comprises of about 130 terpenoid indole alkaloids and two of them, vincristine and vinblastine, are common anticancer drugs. The effect of chromium (Cr) on enzymatic and non-enzymatic antioxidant components and on secondary metabolites vincristine and vinblastine was studied under pot culture conditions of both varieties of C. roseus. Antioxidant responses of these varieties were analyzed under 0, 10, 50, and 100 μM chromium (Cr) level in order to investigate the plant's protective mechanisms against Cr induced oxidative stress. The results indicated that Cr affects all the studied parameters and decreases growth performance. However, vincristine and vinblastine contents were increased under Cr stress. Results are quite encouraging, as this plant shows good antioxidant potential and increased the level of active constituents under Cr stress. PMID:24734252

  11. Identification and quantification of active alkaloids in Catharanthus roseus by liquid chromatography-ion trap mass spectrometry.

    PubMed

    Chen, Qinhua; Zhang, Wenpeng; Zhang, Yulin; Chen, Jing; Chen, Zilin

    2013-08-15

    Catharanthus roseus is an important dicotyledonous medicinal plant that produces anticancer compounds. The active alkaloids vinblastine, vindoline, ajmalicine, catharanthine, and vinleurosine were identified by direct-injection ion trap-mass spectrometry (IT-MS) for collecting MS(1-2) spectra. The determinations of five alkaloids were accomplished by liquid chromatography (LC) with UV and MS detections. The analytes provided good signals corresponding to the protonated molecular ions [M+H](+) and product ions. The precursor ions and product ions for quantification of vinblastine, vindoline, ajmalicine, catharanthine, and vinleurosine were m/z 825→807, 457→397, 353→144, 337→144 and 809→748 by LC-IT-MS, respectively. Two methods were used to evaluate a number of validation characteristics (repeatability, LOD, calibration range, and recovery). MS provided a high selectivity and sensitivity for determination of five alkaloids in positive mode. After optimisation of the methods, separation, identification and quantification of the five components in C. roseus were comprehensively accomplished by HPLC with UV and MS detection. PMID:23561180

  12. Effect of chromium on antioxidant potential of Catharanthus roseus varieties and production of their anticancer alkaloids: vincristine and vinblastine.

    PubMed

    Rai, Vartika; Tandon, Pramod Kumar; Khatoon, Sayyada

    2014-01-01

    Catharanthus roseus (L.) G. Don, a medicinal plant, has a very important place in the traditional as well as modern pharmaceutical industry. Two common varieties of this plant rosea and alba are named so because of pink and white coloured flowers, respectively. This plant comprises of about 130 terpenoid indole alkaloids and two of them, vincristine and vinblastine, are common anticancer drugs. The effect of chromium (Cr) on enzymatic and non-enzymatic antioxidant components and on secondary metabolites vincristine and vinblastine was studied under pot culture conditions of both varieties of C. roseus. Antioxidant responses of these varieties were analyzed under 0, 10, 50, and 100  μM chromium (Cr) level in order to investigate the plant's protective mechanisms against Cr induced oxidative stress. The results indicated that Cr affects all the studied parameters and decreases growth performance. However, vincristine and vinblastine contents were increased under Cr stress. Results are quite encouraging, as this plant shows good antioxidant potential and increased the level of active constituents under Cr stress. PMID:24734252

  13. Investigation of a substrate-specifying residue within Papaver somniferum and Catharanthus roseus aromatic amino acid decarboxylases.

    PubMed

    Torrens-Spence, Michael P; Lazear, Michael; von Guggenberg, Renee; Ding, Haizhen; Li, Jianyong

    2014-10-01

    Plant aromatic amino acid decarboxylases (AAADs) catalyze the decarboxylation of aromatic amino acids with either benzene or indole rings. Because the substrate selectivity of AAADs is intimately related to their physiological functions, primary sequence data and their differentiation could provide significant physiological insights. However, due to general high sequence identity, plant AAAD substrate specificities have been difficult to identify through primary sequence comparison. In this study, bioinformatic approaches were utilized to identify several active site residues within plant AAAD enzymes that may impact substrate specificity. Next a Papaver somniferum tyrosine decarboxylase (TyDC) was selected as a model to verify our putative substrate-dictating residues through mutation. Results indicated that mutagenesis of serine 372 to glycine enables the P. somniferum TyDC to use 5-hydroxytryptophan as a substrate, and reduces the enzyme activity toward 3,4-dihydroxy-L-phenylalanine (dopa). Additionally, the reverse mutation in a Catharanthus roseus tryptophan decarboxylase (TDC) enables the mutant enzyme to utilize tyrosine and dopa as substrates with a reduced affinity toward tryptophan. Molecular modeling and molecular docking of the P. somniferum TyDC and the C. roseus TDC enzymes provided a structural basis to explain alterations in substrate specificity. Identification of an active site residue that impacts substrate selectivity produces a primary sequence identifier that may help differentiate the indolic and phenolic substrate specificities of individual plant AAADs. PMID:25107664

  14. Correspondence between flowers and leaves in terpenoid indole alkaloid metabolism of the phytoplasma-infected Catharanthus roseus plants.

    PubMed

    Srivastava, Suchi; Pandey, Richa; Kumar, Sushil; Nautiyal, Chandra Shekhar

    2014-11-01

    Several plants of Catharanthus roseus cv 'leafless inflorescence (lli)' showing phenotype of phytoplasma infection were observed for symptoms of early flowering, virescence, phyllody, and apical clustering of branches. Symptomatic plants were studied for the presence/absence and identity of phytoplasma in flowers. Transcription levels of several genes involved in plants' metabolism and development, accumulation of pharmaceutically important terpenoid indole alkaloids in flowers and leaves and variation in the root-associated microbial flora were examined. The expression profile of 12 genes studied was semi-quantitatively similar in control leaves and phytoplasma-infected leaves and flowers, in agreement with the symptoms of virescence and phyllody in phytoplasma-infected plants. The flowers of phytoplasma-infected plants possessed the TIA profile of leaves and accumulated catharanthine, vindoline, and vincristine and vinblastine in higher concentrations than leaves. The roots of the infected plants displayed lower microbial diversity than those of normal plants. In conclusion, phytoplasma affected the biology of C. roseus lli plants multifariously, it reduced the differences between the metabolite accumulates of the leaves and flowers and restrict the microbial diversity of rhizosphere. PMID:24658891

  15. Silencing the Transcriptional Repressor, ZCT1, Illustrates the Tight Regulation of Terpenoid Indole Alkaloid Biosynthesis in Catharanthus roseus Hairy Roots

    PubMed Central

    Rizvi, Noreen F.; Weaver, Jessica D.; Cram, Erin J.; Lee-Parsons, Carolyn W. T.

    2016-01-01

    The Catharanthus roseus plant is the source of many valuable terpenoid indole alkaloids (TIAs), including the anticancer compounds vinblastine and vincristine. Transcription factors (TFs) are promising metabolic engineering targets due to their ability to regulate multiple biosynthetic pathway genes. To increase TIA biosynthesis, we elicited the TIA transcriptional activators (ORCAs and other unidentified TFs) with the plant hormone, methyl jasmonate (MJ), while simultaneously silencing the expression of the transcriptional repressor ZCT1. To silence ZCT1, we developed transgenic hairy root cultures of C. roseus that expressed an estrogen-inducible Zct1 hairpin for activating RNA interference. The presence of 17β-estradiol (5μM) effectively depleted Zct1 in hairy root cultures elicited with MJ dosages that either optimize or inhibit TIA production (250 or 1000μM). However, silencing Zct1 was not sufficient to increase TIA production or the expression of the TIA biosynthetic genes (G10h, Tdc, and Str), illustrating the tight regulation of TIA biosynthesis. The repression of the TIA biosynthetic genes at the inhibitory MJ dosage does not appear to be solely regulated by ZCT1. For instance, while Zct1 and Zct2 levels decreased through activating the Zct1 hairpin, Zct3 levels remained elevated. Since ZCT repressors have redundant yet distinct functions, silencing all three ZCTs may be necessary to relieve their repression of alkaloid biosynthesis. PMID:27467510

  16. Silencing the Transcriptional Repressor, ZCT1, Illustrates the Tight Regulation of Terpenoid Indole Alkaloid Biosynthesis in Catharanthus roseus Hairy Roots.

    PubMed

    Rizvi, Noreen F; Weaver, Jessica D; Cram, Erin J; Lee-Parsons, Carolyn W T

    2016-01-01

    The Catharanthus roseus plant is the source of many valuable terpenoid indole alkaloids (TIAs), including the anticancer compounds vinblastine and vincristine. Transcription factors (TFs) are promising metabolic engineering targets due to their ability to regulate multiple biosynthetic pathway genes. To increase TIA biosynthesis, we elicited the TIA transcriptional activators (ORCAs and other unidentified TFs) with the plant hormone, methyl jasmonate (MJ), while simultaneously silencing the expression of the transcriptional repressor ZCT1. To silence ZCT1, we developed transgenic hairy root cultures of C. roseus that expressed an estrogen-inducible Zct1 hairpin for activating RNA interference. The presence of 17β-estradiol (5μM) effectively depleted Zct1 in hairy root cultures elicited with MJ dosages that either optimize or inhibit TIA production (250 or 1000μM). However, silencing Zct1 was not sufficient to increase TIA production or the expression of the TIA biosynthetic genes (G10h, Tdc, and Str), illustrating the tight regulation of TIA biosynthesis. The repression of the TIA biosynthetic genes at the inhibitory MJ dosage does not appear to be solely regulated by ZCT1. For instance, while Zct1 and Zct2 levels decreased through activating the Zct1 hairpin, Zct3 levels remained elevated. Since ZCT repressors have redundant yet distinct functions, silencing all three ZCTs may be necessary to relieve their repression of alkaloid biosynthesis. PMID:27467510

  17. Heteromeric and homomeric geranyl diphosphate synthases from Catharanthus roseus and their role in monoterpene indole alkaloid biosynthesis.

    PubMed

    Rai, Avanish; Smita, Shachi S; Singh, Anup Kumar; Shanker, Karuna; Nagegowda, Dinesh A

    2013-09-01

    Catharanthus roseus is the sole source of two most important monoterpene indole alkaloid (MIA) anti-cancer agents: vinblastine and vincristine. MIAs possess a terpene and an indole moiety derived from terpenoid and shikimate pathways, respectively. Geranyl diphosphate (GPP), the entry point to the formation of terpene moiety, is a product of the condensation of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) by GPP synthase (GPPS). Here, we report three genes encoding proteins with sequence similarity to large subunit (CrGPPS.LSU) and small subunit (CrGPPS.SSU) of heteromeric GPPSs, and a homomeric GPPSs. CrGPPS.LSU is a bifunctional enzyme producing both GPP and geranyl geranyl diphosphate (GGPP), CrGPPS.SSU is inactive, whereas CrGPPS is a homomeric enzyme forming GPP. Co-expression of both subunits in Escherichia coli resulted in heteromeric enzyme with enhanced activity producing only GPP. While CrGPPS.LSU and CrGPPS showed higher expression in older and younger leaves, respectively, CrGPPS.SSU showed an increasing trend and decreased gradually. Methyl jasmonate (MeJA) treatment of leaves significantly induced the expression of only CrGPPS.SSU. GFP localization indicated that CrGPPS.SSU is plastidial whereas CrGPPS is mitochondrial. Transient overexpression of AmGPPS.SSU in C. roseus leaves resulted in increased vindoline, immediate monomeric precursor of vinblastine and vincristine. Although C. roseus has both heteromeric and homomeric GPPS enzymes, our results implicate the involvement of only heteromeric GPPS with CrGPPS.SSU regulating the GPP flux for MIA biosynthesis. PMID:23543438

  18. Cytosine hypomethylation at CHG and CHH sites in the pleiotropic mutants of Mendelian inheritance in Catharanthus roseus.

    PubMed

    Kumari, Renu; Yadav, Gitanjali; Sharma, Vishakha; Sharma, Vinay; Kumar, Sushil

    2013-12-01

    The 5S and 18S rDNA sequences of Catharanthus roseus cv 'Nirmal' (wild type) and its leafless inflorescence (lli), evergreen dwarf (egd) and irregular leaf lamina (ill) single mutants and lli egd, lli ill and egd ill double mutants were characterized. The lli, egd and ill mutants of Mendelian inheritance bore the names after their most conspicuous morphological feature(s). They had been chemically induced and isolated for their salt tolerance. The double mutants were isolated as morphological segregants from crosses between single mutants. The morphological features of the two parents accompanied salt tolerance in the double mutants. All the six mutants were hypomethylated at repeat sequences, upregulated and downregulated for many genes and carried pleiotropic alterations for several traits. Here the 5S and 18S rDNAs of C. roseus were found to be relatively low in cytosine content. Cytosines were preponderantly in CG context (53%) and almost all of them were methylated (97%). The cytosines in CHH and CHG (where H = A, T or C) contexts were largely demethylated (92%) in mutants. The demethylation was attributable to reduced expression of RDR2 and DRM2 led RNA dependant DNA methylation and CMT3 led maintenance methylation pathways. Mutants had gained some cytosines by substitution of C at T sites. These perhaps arose on account of errors in DNA replication, mediated by widespread cytosine demethylation at CHG and CHH sites. It was concluded that the regulation of cytosine ethylation mechanisms was disturbed in the mutants. ILL, EGD and LLI genes were identified as the positive regulators of other genes mediating the RdDM and CMT3 pathways, for establishment and maintenance of cytosine methylation in C. roseus. PMID:24371171

  19. Overexpression of ORCA3 and G10H in Catharanthus roseus Plants Regulated Alkaloid Biosynthesis and Metabolism Revealed by NMR-Metabolomics

    PubMed Central

    Pan, Qifang; Wang, Quan; Yuan, Fang; Xing, Shihai; Zhao, Jingya; Choi, Young Hae; Verpoorte, Robert; Tian, Yuesheng; Wang, Guofeng; Tang, Kexuan

    2012-01-01

    In order to improve the production of the anticancer dimeric indole alkaloids in Catharanthuse roseus, much research has been dedicated to culturing cell lines, hairy roots, and efforts to elucidate the regulation of the monoterpenoid indole alkaloid (MIA) biosynthesis. In this study, the ORCA3 (Octadecanoid-derivative Responsive Catharanthus AP2-domain) gene alone or integrated with the G10H (geraniol 10-hydroxylase) gene were first introduced into C. roseus plants. Transgenic C. roseus plants overexpressing ORCA3 alone (OR lines), or co-overexpressing G10H and ORCA3 (GO lines) were obtained by genetic modification. ORCA3 overexpression induced an increase of AS, TDC, STR and D4H transcripts but did not affect CRMYC2 and G10H transcription. G10H transcripts showed a significant increase under G10H and ORCA3 co-overexpression. ORCA3 and G10H overexpression significantly increased the accumulation of strictosidine, vindoline, catharanthine and ajmalicine but had limited effects on anhydrovinblastine and vinblastine levels. NMR-based metabolomics confirmed the higher accumulation of monomeric indole alkaloids in OR and GO lines. Multivariate data analysis of 1H NMR spectra showed change of amino acid, organic acid, sugar and phenylpropanoid levels in both OR and GO lines compared to the controls. The result indicated that enhancement of MIA biosynthesis by ORCA3 and G10H overexpression might affect other metabolic pathways in the plant metabolism of C. roseus. PMID:22916202

  20. Large scale in-silico identification and characterization of simple sequence repeats (SSRs) from de novo assembled transcriptome of Catharanthus roseus (L.) G. Don.

    PubMed

    Kumar, Santosh; Shah, Niraj; Garg, Vanika; Bhatia, Sabhyata

    2014-06-01

    Transcriptomic data of C. roseus offering ample sequence resources for providing better insights into gene diversity: large resource of genic SSR markers to accelerate genomic studies and breeding in Catharanthus . Next-generation sequencing is an efficient system for generating high-throughput complete transcripts/genes and developing molecular markers. We present here the transcriptome sequencing of a 26-day-old Catharanthus roseus seedling tissue using Illumina GAIIX platform that resulted in a total of 3.37 Gb of nucleotide sequence data comprising 29,964,104 reads which were de novo assembled into 26,581 unigenes. Based on similarity searches 58 % of the unigenes were annotated of which 13,580 unique transcripts were assigned 5016 gene ontology terms. Further, 7,687 of the unigenes were found to have Cluster of Orthologous Group classifications, and 4,006 were assigned to 289 Kyoto Encyclopedia of Genes and Genome pathways. Also, 5,221 (19.64 %) of transcripts were distributed to 81 known transcription factor (TF) families. In-silico analysis of the transcriptome resulted in identification of 11,004 SSRs in 26.62 % transcripts from which 2,520 SSR markers were designed which exhibited a non-random pattern of distribution. The most abundant was the trinucleotide repeats (AAG/CTT) followed by the dinucleotide repeats (AG/CT). Location specific analysis of SSRs revealed that SSRs were preferentially associated with the 5'-UTRs with a predicted role in regulation of gene expression. A PCR validation of a set of 48 primers revealed 97.9 % successful amplification, and 76.6 % of them showed polymorphism across different Catharanthus species as well as accessions of C. roseus. In summary, this study will provide an insight into understanding the seedling development and resources for novel gene discovery and SSR development for utilization in marker-assisted selective breeding in C. roseus. PMID:24482265

  1. Precursor feeding studies and molecular characterization of geraniol synthase establish the limiting role of geraniol in monoterpene indole alkaloid biosynthesis in Catharanthus roseus leaves.

    PubMed

    Kumar, Krishna; Kumar, Sarma Rajeev; Dwivedi, Varun; Rai, Avanish; Shukla, Ashutosh K; Shanker, Karuna; Nagegowda, Dinesh A

    2015-10-01

    The monoterpene indole alkaloids (MIAs) are generally derived from strictosidine, which is formed by condensation of the terpene moiety secologanin and the indole moiety tryptamine. There are conflicting reports on the limitation of either terpene or indole moiety in the production of MIAs in Catharanthus roseus cell cultures. Formation of geraniol by geraniol synthase (GES) is the first step in secologanin biosynthesis. In this study, feeding of C. roseus leaves with geraniol, but not tryptophan (precursor for tryptamine), increased the accumulation of the MIAs catharanthine and vindoline, indicating the limitation of geraniol in MIA biosynthesis. This was further validated by molecular and in planta characterization of C. roseus GES (CrGES). CrGES transcripts exhibited leaf and shoot specific expression and were induced by methyl jasmonate. Virus-induced gene silencing (VIGS) of CrGES significantly reduced the MIA content, which was restored to near-WT levels upon geraniol feeding. Moreover, over-expression of CrGES in C. roseus leaves increased MIA content. Further, CrGES exhibited correlation with MIA levels in leaves of different C. roseus cultivars and has significantly lower expression relative to other pathway genes. These results demonstrated that the transcriptional regulation of CrGES and thus, the in planta geraniol availability plays crucial role in MIA biosynthesis. PMID:26398791

  2. A simple and rapid HPLC-DAD method for simultaneously monitoring the accumulation of alkaloids and precursors in different parts and different developmental stages of Catharanthus roseus plants.

    PubMed

    Pan, Qifang; Saiman, Mohd Zuwairi; Mustafa, Natali Rianika; Verpoorte, Robert; Tang, Kexuan

    2016-03-01

    A rapid and simple reversed phase liquid chromatographic system has been developed for simultaneous analysis of terpenoid indole alkaloids (TIAs) and their precursors. This method allowed separation of 11 compounds consisting of eight TIAs (ajmalicine, serpentine, catharanthine, vindoline, vindolinine, vincristine, vinblastine, and anhydrovinblastine) and three related precursors i.e., tryptophan, tryptamine and loganin. The system has been applied for screening the TIAs and precursors in Catharanthus roseus plant extracts. In this study, different organs i.e., flowers, leaves, stems, and roots of C. roseus were investigated. The results indicate that TIAs and precursor accumulation varies qualitatively and quantitatively in different organs of C. roseus. The precursors showed much lower levels than TIAs in all organs. Leaves and flowers accumulate higher level of vindoline, catharanthine and anhydrovinblastine while roots have higher level of ajmalicine, vindolinine and serpentine. Moreover, the alkaloid profiles of leaves harvested at different ages and different growth stages were studied. The results show that the levels of monoindole alkaloids decreased while bisindole alkaloids increased with leaf aging and upon plant growth. The HPLC method has been successfully applied to detect TIAs and precursors in different types of C. roseus samples to facilitate further study of the TIA pathway and its regulation in C. roseus plants. PMID:26854826

  3. Effects of β-cyclodextrin and methyl jasmonate on the production of vindoline, catharanthine, and ajmalicine in Catharanthus roseus cambial meristematic cell cultures.

    PubMed

    Zhou, Pengfei; Yang, Jiazeng; Zhu, Jianhua; He, Shuijie; Zhang, Wenjin; Yu, Rongmin; Zi, Jiachen; Song, Liyan; Huang, Xuesong

    2015-09-01

    Long-term stable cell growth and production of vindoline, catharanthine, and ajmalicine of cambial meristematic cells (CMCs) from Catharanthus roseus were observed after 2 years of culture. C. roseus CMCs were treated with β-cyclodextrin (β-CD) and methyl jasmonate (MeJA) individually or in combination and were cultured both in conventional Erlenmeyer flasks (100, 250, and 500 mL) and in a 5-L stirred hybrid airlift bioreactor. CMCs of C. roseus cultured in the bioreactor showed higher yields of vindoline, catharanthine, and ajmalicine than those cultured in flasks. CMCs of C. roseus cultured in the bioreactor and treated with 10 mM β-CD and 150 μM MeJA gave the highest yields of vindoline (7.45 mg/L), catharanthine (1.76 mg/L), and ajmalicine (58.98 mg/L), concentrations that were 799, 654, and 426 % higher, respectively, than yields of CMCs cultured in 100-mL flasks without elicitors. Quantitative reverse transcription (RT)-PCR showed that β-CD and MeJA upregulated transcription levels of genes related to the biosynthesis of terpenoid indole alkaloids (TIAs). This is the first study to report that β-CD induced the generation of NO, which plays an important role in mediating the production of TIAs in C. roseus CMCs. These results suggest that β-CD and MeJA can enhance the production of TIAs in CMCs of C. roseus, and thus, CMCs of C. roseus have significant potential to be an industrial platform for production of bioactive alkaloids. PMID:25981997

  4. An Endophytic Fungus, Talaromyces radicus, Isolated from Catharanthus roseus, Produces Vincristine and Vinblastine, Which Induce Apoptotic Cell Death

    PubMed Central

    Jayabaskaran, Chelliah

    2015-01-01

    Endophytic fungi isolated from Catharanthus roseus were screened for the production of vincristine and vinblastine. Twenty-two endophytic fungi isolated from various tissues of C. roseus were characterized taxonomically by sequence analysis of the internal transcribed spacer (ITS) region of rDNA and grouped into 10 genera: Alternaria, Aspergillus, Chaetomium, Colletotrichum, Dothideomycetes, Eutypella, Eutypa, Flavodon, Fusarium and Talaromyces. The antiproliferative activity of these fungi was assayed in HeLa cells using the MTT assay. The fungal isolates Eutypella sp—CrP14, obtained from stem tissues, and Talaromyces radicus—CrP20, obtained from leaf tissues, showed the strongest antiproliferative activity, with IC50 values of 13.5 μg/ml and 20 μg/ml, respectively. All 22 endophytic fungi were screened for the presence of the gene encoding tryptophan decarboxylase (TDC), the key enzyme in the terpenoid indole alkaloid biosynthetic pathway, though this gene could only be amplified from T. radicus—CrP20 (NCBI GenBank accession number KC920846). The production of vincristine and vinblastine by T. radicus—CrP20 was confirmed and optimized in nine different liquid media. Good yields of vincristine (670 μg/l) in modified M2 medium and of vinblastine (70 μg/l) in potato dextrose broth medium were obtained. The cytotoxic activity of partially purified fungal vincristine was evaluated in different human cancer cell lines, with HeLa cells showing maximum susceptibility. The apoptosis-inducing activity of vincristine derived from this fungus was established through cell cycle analysis, loss of mitochondrial membrane potential and DNA fragmentation patterns. PMID:26697875

  5. Vindoline Formation in Shoot Cultures of Catharanthus roseus is Synchronously Activated with Morphogenesis Through the Last Biosynthetic Step

    PubMed Central

    Campos-Tamayo, Freddy; Hernández-Domínguez, Elizabeta; Vázquez-Flota, Felipe

    2008-01-01

    Background and Aims The Madagascar periwinkle (Catharanthus roseus) produces the monoterpenoid alkaloid vindoline, which requires a specialized cell organization present only in the aerial tissues. Vindoline content can be affected by photoperiod and this effect seems to be associated with the morphogenetic capacity of branches; this association formed the basis of the study reported here. Methods Vindoline-producing in vitro shoot cultures were exposed either to continuous light or a 16-h photoperiod regime. New plantlet formation and alkaloid biosynthesis were analysed throughout a culture cycle. Key Results In cultures under the photoperiod, the formation of new plantlets occurred in a more synchronized fashion as compared to those under continuous light. The accumulation of vindoline in cultures under the photoperiod occurred in co-ordination with plantlet formation, in constrast to cultures under continuous light, and coincided with a peak of activity of deacetylvindoline acetyl CoA acetyltransferase (DAT), the enzyme that catalyses the last step in vindoline biosynthesis. When new plantlet formation was blocked in cultures under the photoperiod by treatment with phytoregulators, vindoline synthesis was also reduced via an effect on DAT activity. No association between plantlet formation and other biosynthetic enzymes, such as tryptophan decarboxylase (TDC) and deacetoxyvindoline 4-hydroxylase (D4H), was found. Effects of light treatment on vindoline synthesis were not mediated by ORCA-3 proteins (which are involved in the induction of alkaloid synthesis in response to elicitation), suggesting that the presence of a different set of regulatory proteins. Conclusions The data suggest that vindoline biosynthesis is associated with morphogenesis in shoot cultures of C. roseus. PMID:18587132

  6. Enzyme Inhibitor Studies Reveal Complex Control of Methyl-D-Erythritol 4-Phosphate (MEP) Pathway Enzyme Expression in Catharanthus roseus

    PubMed Central

    Han, Mei; Heppel, Simon C.; Su, Tao; Bogs, Jochen; Zu, Yuangang; An, Zhigang; Rausch, Thomas

    2013-01-01

    In Catharanthus roseus, the monoterpene moiety exerts a strong flux control for monoterpene indole alkaloid (MIA) formation. Monoterpene synthesis depends on the methyl-D-erythritol 4-phosphate (MEP) pathway. Here, we have explored the regulation of this pathway in response to developmental and environmental cues and in response to specific enzyme inhibitors. For the MEP pathway entry enzyme 1-deoxy-D-xylulose 5-phosphate synthase (DXS), a new (type I) DXS isoform, CrDXS1, has been cloned, which, in contrast to previous reports on type II CrDXS, was not transcriptionally activated by the transcription factor ORCA3. Regulation of the MEP pathway in response to metabolic perturbations has been explored using the enzyme inhibitors clomazone (precursor of 5-ketochlomazone, inhibitor of DXS) and fosmidomycin (inhibitor of deoxyxylulose 5-phosphate reductoisomerase (DXR)), respectively. Young leaves of non-flowering plants were exposed to both inhibitors, adopting a non-invasive in vivo technique. Transcripts and proteins of DXS (3 isoforms), DXR, and hydroxymethylbutenyl diphosphate synthase (HDS) were monitored, and protein stability was followed in isolated chloroplasts. Transcripts for DXS1 were repressed by both inhibitors, whereas transcripts for DXS2A&B, DXR and HDS increased after clomazone treatment but were barely affected by fosmidomycin treatment. DXS protein accumulated in response to both inhibitors, whereas DXR and HDS proteins were less affected. Fosmidomycin-induced accumulation of DXS protein indicated substantial posttranscriptional regulation. Furthermore, fosmidomycin effectively protected DXR against degradation in planta and in isolated chloroplasts. Thus our results suggest that DXR protein stability may be affected by substrate binding. In summary, the present results provide novel insight into the regulation of DXS expression in C. roseus in response to MEP-pathway perturbation. PMID:23650515

  7. An Endophytic Fungus, Talaromyces radicus, Isolated from Catharanthus roseus, Produces Vincristine and Vinblastine, Which Induce Apoptotic Cell Death.

    PubMed

    Palem, Padmini P C; Kuriakose, Gini C; Jayabaskaran, Chelliah

    2015-01-01

    Endophytic fungi isolated from Catharanthus roseus were screened for the production of vincristine and vinblastine. Twenty-two endophytic fungi isolated from various tissues of C. roseus were characterized taxonomically by sequence analysis of the internal transcribed spacer (ITS) region of rDNA and grouped into 10 genera: Alternaria, Aspergillus, Chaetomium, Colletotrichum, Dothideomycetes, Eutypella, Eutypa, Flavodon, Fusarium and Talaromyces. The antiproliferative activity of these fungi was assayed in HeLa cells using the MTT assay. The fungal isolates Eutypella sp--CrP14, obtained from stem tissues, and Talaromyces radicus--CrP20, obtained from leaf tissues, showed the strongest antiproliferative activity, with IC50 values of 13.5 μg/ml and 20 μg/ml, respectively. All 22 endophytic fungi were screened for the presence of the gene encoding tryptophan decarboxylase (TDC), the key enzyme in the terpenoid indole alkaloid biosynthetic pathway, though this gene could only be amplified from T. radicus--CrP20 (NCBI GenBank accession number KC920846). The production of vincristine and vinblastine by T. radicus--CrP20 was confirmed and optimized in nine different liquid media. Good yields of vincristine (670 μg/l) in modified M2 medium and of vinblastine (70 μg/l) in potato dextrose broth medium were obtained. The cytotoxic activity of partially purified fungal vincristine was evaluated in different human cancer cell lines, with HeLa cells showing maximum susceptibility. The apoptosis-inducing activity of vincristine derived from this fungus was established through cell cycle analysis, loss of mitochondrial membrane potential and DNA fragmentation patterns. PMID:26697875

  8. The bHLH transcription factor BIS1 controls the iridoid branch of the monoterpenoid indole alkaloid pathway in Catharanthus roseus.

    PubMed

    Van Moerkercke, Alex; Steensma, Priscille; Schweizer, Fabian; Pollier, Jacob; Gariboldi, Ivo; Payne, Richard; Vanden Bossche, Robin; Miettinen, Karel; Espoz, Javiera; Purnama, Purin Candra; Kellner, Franziska; Seppänen-Laakso, Tuulikki; O'Connor, Sarah E; Rischer, Heiko; Memelink, Johan; Goossens, Alain

    2015-06-30

    Plants make specialized bioactive metabolites to defend themselves against attackers. The conserved control mechanisms are based on transcriptional activation of the respective plant species-specific biosynthetic pathways by the phytohormone jasmonate. Knowledge of the transcription factors involved, particularly in terpenoid biosynthesis, remains fragmentary. By transcriptome analysis and functional screens in the medicinal plant Catharanthus roseus (Madagascar periwinkle), the unique source of the monoterpenoid indole alkaloid (MIA)-type anticancer drugs vincristine and vinblastine, we identified a jasmonate-regulated basic helix-loop-helix (bHLH) transcription factor from clade IVa inducing the monoterpenoid branch of the MIA pathway. The bHLH iridoid synthesis 1 (BIS1) transcription factor transactivated the expression of all of the genes encoding the enzymes that catalyze the sequential conversion of the ubiquitous terpenoid precursor geranyl diphosphate to the iridoid loganic acid. BIS1 acted in a complementary manner to the previously characterized ethylene response factor Octadecanoid derivative-Responsive Catharanthus APETALA2-domain 3 (ORCA3) that transactivates the expression of several genes encoding the enzymes catalyzing the conversion of loganic acid to the downstream MIAs. In contrast to ORCA3, overexpression of BIS1 was sufficient to boost production of high-value iridoids and MIAs in C. roseus suspension cell cultures. Hence, BIS1 might be a metabolic engineering tool to produce sustainably high-value MIAs in C. roseus plants or cultures. PMID:26080427

  9. The bHLH transcription factor BIS1 controls the iridoid branch of the monoterpenoid indole alkaloid pathway in Catharanthus roseus

    PubMed Central

    Van Moerkercke, Alex; Steensma, Priscille; Schweizer, Fabian; Pollier, Jacob; Gariboldi, Ivo; Payne, Richard; Vanden Bossche, Robin; Miettinen, Karel; Espoz, Javiera; Purnama, Purin Candra; Kellner, Franziska; Seppänen-Laakso, Tuulikki; O’Connor, Sarah E.; Rischer, Heiko; Memelink, Johan; Goossens, Alain

    2015-01-01

    Plants make specialized bioactive metabolites to defend themselves against attackers. The conserved control mechanisms are based on transcriptional activation of the respective plant species-specific biosynthetic pathways by the phytohormone jasmonate. Knowledge of the transcription factors involved, particularly in terpenoid biosynthesis, remains fragmentary. By transcriptome analysis and functional screens in the medicinal plant Catharanthus roseus (Madagascar periwinkle), the unique source of the monoterpenoid indole alkaloid (MIA)-type anticancer drugs vincristine and vinblastine, we identified a jasmonate-regulated basic helix–loop–helix (bHLH) transcription factor from clade IVa inducing the monoterpenoid branch of the MIA pathway. The bHLH iridoid synthesis 1 (BIS1) transcription factor transactivated the expression of all of the genes encoding the enzymes that catalyze the sequential conversion of the ubiquitous terpenoid precursor geranyl diphosphate to the iridoid loganic acid. BIS1 acted in a complementary manner to the previously characterized ethylene response factor Octadecanoid derivative-Responsive Catharanthus APETALA2-domain 3 (ORCA3) that transactivates the expression of several genes encoding the enzymes catalyzing the conversion of loganic acid to the downstream MIAs. In contrast to ORCA3, overexpression of BIS1 was sufficient to boost production of high-value iridoids and MIAs in C. roseus suspension cell cultures. Hence, BIS1 might be a metabolic engineering tool to produce sustainably high-value MIAs in C. roseus plants or cultures. PMID:26080427

  10. Volatile composition of Catharanthus roseus (L.) G. Don using solid-phase microextraction and gas chromatography/mass spectrometry.

    PubMed

    De Pinho, P Guedes; Gonçalves, Rui F; Valentão, Patrícia; Pereira, David M; Seabra, Rosa M; Andrade, Paula B; Sottomayor, Mariana

    2009-04-01

    A total of 88 volatile and semi-volatile components were formally or tentatively identified in flowers, leaves and stems of Catharanthus roseus (L.) G. Don (cv. Little Bright Eye), by headspace solid-phase microextraction (HS-SPME) and by dichloromethane extraction, combined with gas chromatography-mass spectrometry (GC-MS). These include some diterpenic compounds (manool and manoyl oxides), a sesquiterpen (alpha-bisabolol), and some pyridine, pyrazine, indol and carotenoid derivatives. Applying multivariate analysis (principal component analysis and agglomerative hierarchic cluster analysis) to the HS-SPME-GC-MS data, it was possible to characterize each part of the vegetal material using a relative small number of compounds. Hence, flowers were richer in terpenic molecules (including limonene), alpha-bisabolol, methyljasmonate, cis-jasmone, 2-phenylethanol, phenylacetaldehyde, trans-2-octenal, benzylic alcohol and 2-isobutyl-3-methoxypyrazine. Leaves can be characterized by the methyl and propyl esters of fatty acids, mono- and disaturated, trans-phytol, carotenoid derivative compounds, hydrofarnesylacetone, methylanthranilate, manool and epi-manool oxide, while stems have high levels of volatile aldehydes, such as hexanal, octanal, cis-2-nonenal, cis-2-decenal, cis, trans-2,6-nonadienal, trans, trans-2,4-decadienal and cis, trans-2,4-decadienal. Dichloromethane extraction allowed also the identification of some alkaloid-like compounds that were not detected by HS-SPME. PMID:19186019

  11. Phosphatidate Kinase, A Novel Enzyme in Phospholipid Metabolism (Characterization of the Enzyme from Suspension-Cultured Catharanthus roseus Cells).

    PubMed Central

    Wissing, J. B.; Kornak, B.; Funke, A.; Riedel, B.

    1994-01-01

    Phosphatidate kinase (adenosine 5[prime]-triphosphate:phosphatidic acid phosphotransferase), a novel enzyme of phospholipid metabolism, was detected recently in the plasma membranes of suspension-cultured Catharanthus roseus cells and purified (J.B. Wissing, H. Behrbohm [1993] Plant Physiol 102: 1243-1249). In the present work the properties of phosphatidate kinase are described. The enzyme showed a pH optimum of 6.1 and an isoelectric point of 4.8, and was rather stable in the presence of its substrates. Although the kinase accepted both ATP and GTP, with Km values of about 12 and 18 [mu]M, respectively, the only lipid substrate was phosphatidic acid; neither lysophosphatidic acid nor any other lipid tested was phosphorylated. With 32P- and 14C-labeled diacylglycerol pyrophosphate, the product of the enzyme, it was shown that the kinase catalyzes a reversible reaction. The activity of the extracted enzyme depended on the presence of surfactants such as Triton X-100 or [beta]-octylglucoside, whereas deoxycholate was strongly inhibitory. Kinetic analysis with Triton X-100/phosphatidate mixed micelles performed according to the "surface dilution" kinetic model showed saturation kinetics with respect to both bulk and surface concentration of phosphatidate. The interfacial Michaelis constant for phosphatidate was determined as 0.6 mol %. PMID:12232252

  12. Isolation, Purification and Characterization of Vinblastine and Vincristine from Endophytic Fungus Fusarium oxysporum Isolated from Catharanthus roseus

    PubMed Central

    Kumar, Ashutosh; Patil, Deepak; Rajamohanan, Pattuparambil Ramanpillai; Ahmad, Absar

    2013-01-01

    Endophytic fungi reside in a symbiotic fashion inside their host plants, mimic their chemistry and interestingly, produce the same natural products as their hosts and are thus being screened for the production of valuable compounds like taxol, camptothecin, podophyllotoxin, etc. Vinblastine and vincristine are excellent anti-cancer drugs but their current production using plants is non-abundant and expensive. In order to make these drugs readily available to the patients at affordable prices, we isolated the endophytic fungi from Catharanthus roseus plant and found a fungus AA-CRL-6 which produces vinblastine and vincristine in appreciable amounts. These drugs were purified by TLC and HPLC and characterized using UV-Vis spectroscopy, ESI-MS, MS/MS and 1H NMR. One liter of culture filtrate yielded 76 µg and 67 µg of vinblastine and vincristine respectively. This endophytic fungal strain was identified as Fusarium oxysporum based upon its cultural and morphological characteristics and internal transcribed spacer (ITS) sequence analysis. PMID:24066024

  13. Salicylic acid restrains nickel toxicity, improves antioxidant defence system and enhances the production of anticancer alkaloids in Catharanthus roseus (L.).

    PubMed

    Idrees, Mohd; Naeem, M; Aftab, Tariq; Khan, M Masroor A; Moinuddin

    2013-05-15

    Salicylic acid (SA) has been reported to ameliorate various stresses in plants. In order to explore the role of SA under nickel (Ni) stress, thirty-days old plants of periwinkle (Catharanthus roseus L.) were supplied with eight treatments comprising basal application of Ni (0, 50, 100 and 150 mg kg(-1)) and foliar application of SA (0 and 10(-5)M) under net house conditions. Ni application significantly reduced the growth attributes including plant height, leaf-area index and fresh and dry weights of shoot and root. Increasing Ni concentration led to a gradual decrease in photosynthetic parameters and activities of nitrate reductase and carbonic anhydrase. The plants, undergoing Ni stress, exhibited a significant increase in the activity of superoxide dismutase, catalase and peroxidase together with an increase in electrolyte leakage and proline content. Total alkaloid content was also declined in Ni-treated plants. Foliar application of SA (10(-5)M) reduced the deleterious effects of Ni on plant growth, accelerating the restoration of growth processes. SA also improved the total alkaloid content under normal as well as adverse conditions. Foliar spray of SA significantly improved the content of anticancer alkaloids vincristine (by 22.2%) and vinblastine (by 50.0%) in plants treated with 150 mg kg(-1) of Ni. PMID:23597961

  14. Proton/Phosphate Stoichiometry in Uptake of Inorganic Phosphate by Cultured Cells of Catharanthus roseus (L.) G. Don

    PubMed Central

    Sakano, Katsuhiro

    1990-01-01

    Upon absorption of phosphate, cultured cells of Catharanthus roseus (L.) G. Don caused a rapid alkalinization of the medium in which they were suspended. The alkalinization continued until the added phosphate was completely exhausted from the medium, at which time the pH of the medium started to drop sharply toward the original pH value. Phosphate exposure caused the pH of the medium to increase from pH 3.5 to values as high as 5.8, while the rate of phosphate uptake was constant throughout (10-17 micromoles per hour per gram fresh weight). This indicates that no apparent pH optimum exists for the phosphate uptake by the cultured cells. The amount of protons cotransported with phosphate was calculated from the observed pH change up to the maximum alkalinization and the titration curve of the cell suspension. Proton/phosphate transport stoichiometry ranged from less than unity to 4 according to the amount of phosphate applied. At low phosphate doses, the stoichiometries were close to 4, while at high phosphate doses, smaller stoichiometries were observed. This suggests that, at high phosphate doses, activation of the proton pump is induced by the longer lasting proton influx acidifying the cytoplasm. The increased H+ efflux due to the proton pump could partially compensate protons taken up via the proton-phosphate cotransport system. Thus, the H+/H2PO4− stoichiometry of the cotransport is most likely to be 4. PMID:16667491

  15. Ornamental exterior versus therapeutic interior of Madagascar periwinkle (Catharanthus roseus): the two faces of a versatile herb.

    PubMed

    Nejat, Naghmeh; Valdiani, Alireza; Cahill, David; Tan, Yee-How; Maziah, Mahmood; Abiri, Rambod

    2015-01-01

    Catharanthus roseus (L.) known as Madagascar periwinkle (MP) is a legendary medicinal plant mostly because of possessing two invaluable antitumor terpenoid indole alkaloids (TIAs), vincristine and vinblastine. The plant has also high aesthetic value as an evergreen ornamental that yields prolific blooms of splendid colors. The plant possesses yet another unique characteristic as an amiable experimental host for the maintenance of the smallest bacteria found on earth, the phytoplasmas and spiroplasmas, and serves as a model for their study. Botanical information with respect to synonyms, vernacular names, cultivars, floral morphology, and reproduction adds to understanding of the plant while the geography and ecology of periwinkle illustrate the organism's ubiquity. Good agronomic practices ensure generous propagation of healthy plants that serve as a source of bioactive compounds and multitudinous horticultural applications. The correlation between genetic diversity, variants, and TIA production exists. MP is afflicted with a whole range of diseases that have to be properly managed. The ethnobotanical significance of MP is exemplified by its international usage as a traditional remedy for abundant ailments and not only for cancer. TIAs are present only in micro quantities in the plant and are highly poisonous per se rendering a challenge for researchers to increase yield and reduce toxicity. PMID:25667940

  16. A polymorphic (GA/CT)n- SSR influences promoter activity of Tryptophan decarboxylase gene in Catharanthus roseus L. Don.

    PubMed

    Kumar, Santosh; Bhatia, Sabhyata

    2016-01-01

    Simple Sequence Repeats (SSRs) of polypurine-polypyrimidine type motifs occur very frequently in the 5' flanks of genes in plants and have recently been implicated to have a role in regulation of gene expression. In this study, 2 accessions of Catharanthus roseus having (CT)8 and (CT)21 varying motifs in the 5'UTR of Tryptophan decarboxylase (Tdc) gene, were investigated for its role in regulation of gene expression. Extensive Tdc gene expression analysis in the 2 accessions was carried out both at the level of transcription and translation. Transcript abundance was estimated using Northern analysis and qRT-PCR, whereas the rate of Tdc gene transcription was assessed using in-situ nuclear run-on transcription assay. Translation status of Tdc gene was monitored by quantification of polysome associated Tdc mRNA using qRT-PCR. These observations were validated through transient expression analysis using the fusion construct [CaM35S:(CT)8-21:GUS]. Our study demonstrated that not only does the length of (CT)n -SSRs influences the promoter activity, but the presence of SSRs per se in the 5'-UTR significantly enhances the level of gene expression. We termed this phenomenon as "microsatellite mediated enhancement" (MME) of gene expression. Results presented here will provide leads for engineering plants with enhanced amounts of medicinally important alkaloids. PMID:27623355

  17. Ornamental Exterior versus Therapeutic Interior of Madagascar Periwinkle (Catharanthus roseus): The Two Faces of a Versatile Herb

    PubMed Central

    Valdiani, Alireza; Cahill, David; Tan, Yee-How; Maziah, Mahmood; Abiri, Rambod

    2015-01-01

    Catharanthus roseus (L.) known as Madagascar periwinkle (MP) is a legendary medicinal plant mostly because of possessing two invaluable antitumor terpenoid indole alkaloids (TIAs), vincristine and vinblastine. The plant has also high aesthetic value as an evergreen ornamental that yields prolific blooms of splendid colors. The plant possesses yet another unique characteristic as an amiable experimental host for the maintenance of the smallest bacteria found on earth, the phytoplasmas and spiroplasmas, and serves as a model for their study. Botanical information with respect to synonyms, vernacular names, cultivars, floral morphology, and reproduction adds to understanding of the plant while the geography and ecology of periwinkle illustrate the organism's ubiquity. Good agronomic practices ensure generous propagation of healthy plants that serve as a source of bioactive compounds and multitudinous horticultural applications. The correlation between genetic diversity, variants, and TIA production exists. MP is afflicted with a whole range of diseases that have to be properly managed. The ethnobotanical significance of MP is exemplified by its international usage as a traditional remedy for abundant ailments and not only for cancer. TIAs are present only in micro quantities in the plant and are highly poisonous per se rendering a challenge for researchers to increase yield and reduce toxicity. PMID:25667940

  18. The Transcription Factor CrWRKY1 Positively Regulates the Terpenoid Indole Alkaloid Biosynthesis in Catharanthus roseus1[W][OA

    PubMed Central

    Suttipanta, Nitima; Pattanaik, Sitakanta; Kulshrestha, Manish; Patra, Barunava; Singh, Sanjay K.; Yuan, Ling

    2011-01-01

    Catharanthus roseus produces a large array of terpenoid indole alkaloids (TIAs) that are an important source of natural or semisynthetic anticancer drugs. The biosynthesis of TIAs is tissue specific and induced by certain phytohormones and fungal elicitors, indicating the involvement of a complex transcriptional control network. However, the transcriptional regulation of the TIA pathway is poorly understood. Here, we describe a C. roseus WRKY transcription factor, CrWRKY1, that is preferentially expressed in roots and induced by the phytohormones jasmonate, gibberellic acid, and ethylene. The overexpression of CrWRKY1 in C. roseus hairy roots up-regulated several key TIA pathway genes, especially Tryptophan Decarboxylase (TDC), as well as the transcriptional repressors ZCT1 (for zinc-finger C. roseus transcription factor 1), ZCT2, and ZCT3. However, CrWRKY1 overexpression repressed the transcriptional activators ORCA2, ORCA3, and CrMYC2. Overexpression of a dominant-repressive form of CrWRKY1, created by fusing the SRDX repressor domain to CrWRKY1, resulted in the down-regulation of TDC and ZCTs but the up-regulation of ORCA3 and CrMYC2. CrWRKY1 bound to the W box elements of the TDC promoter in electrophoretic mobility shift, yeast one-hybrid, and C. roseus protoplast assays. Up-regulation of TDC increased TDC activity, tryptamine concentration, and resistance to 4-methyl tryptophan inhibition of CrWRKY1 hairy roots. Compared with control roots, CrWRKY1 hairy roots accumulated up to 3-fold higher levels of serpentine. The preferential expression of CrWRKY1 in roots and its interaction with transcription factors including ORCA3, CrMYC2, and ZCTs may play a key role in determining the root-specific accumulation of serpentine in C. roseus plants. PMID:21988879

  19. Differential induction of meristematic stem cells of Catharanthus roseus and their characterization.

    PubMed

    Moon, So Hyun; Venkatesh, Jelli; Yu, Jae-Woong; Park, Se Won

    2015-11-01

    Plant cell culture technology has been introduced for the mass production of the many useful components. A variety of plant-derived compounds is being used in various fields, such as pharmaceuticals, foods, and cosmetics. Plant cell cultures are believed to be derived from the dedifferentiation process. In the present study, an undifferentiated cambial meristematic cell (CMCs) of Catharanthus is isolated using histological and genetic methods, and compared with dedifferentiation-derived callus (DDCs) cultures. Furthermore, differential culture conditions for both DDCs- and CMCs-derived cell lines were established. A suitable media for the increased accumulation of terpenoid indole alkaloids (TIAs) was also standardized. Compared with DDCs, CMCs showed marked accumulation of TIAs in cell lines grown on media with 1.5 mg·mL(-1) of NAA and 0.5 mg·mL(-1) of kinetin. CMCs-derived cultures of Catharanthus, as a source of key anticancer drugs (viblastine and vincristine), would overcome the obstacles usually associated with the production of natural metabolites through the use of DDCs. Cell culture systems that are derived from CMCs may also provide a cost-effective and eco-friendly basis for the sustainable production of a number of important plant natural products. PMID:26298518

  20. The Complete Plastid Genome Sequence of Madagascar Periwinkle Catharanthus roseus (L.) G. Don: Plastid Genome Evolution, Molecular Marker Identification, and Phylogenetic Implications in Asterids

    PubMed Central

    Ku, Chuan; Chung, Wan-Chia; Chen, Ling-Ling; Kuo, Chih-Horng

    2013-01-01

    The Madagascar periwinkle (Catharanthusroseus in the family Apocynaceae) is an important medicinal plant and is the source of several widely marketed chemotherapeutic drugs. It is also commonly grown for its ornamental values and, due to ease of infection and distinctiveness of symptoms, is often used as the host for studies on phytoplasmas, an important group of uncultivated plant pathogens. To gain insights into the characteristics of apocynaceous plastid genomes (plastomes), we used a reference-assisted approach to assemble the complete plastome of C. roseus, which could be applied to other C. roseus-related studies. The C. roseus plastome is the second completely sequenced plastome in the asterid order Gentianales. We performed comparative analyses with two other representative sequences in the same order, including the complete plastome of Coffeaarabica (from the basal Gentianales family Rubiaceae) and the nearly complete plastome of Asclepiassyriaca (Apocynaceae). The results demonstrated considerable variations in gene content and plastome organization within Apocynaceae, including the presence/absence of three essential genes (i.e., accD, clpP, and ycf1) and large size changes in non-coding regions (e.g., rps2-rpoC2 and IRb-ndhF). To find plastome markers of potential utility for Catharanthus breeding and phylogenetic analyses, we identified 41 C. roseus-specific simple sequence repeats. Furthermore, five intergenic regions with high divergence between C. roseus and three other euasterids I taxa were identified as candidate markers. To resolve the euasterids I interordinal relationships, 82 plastome genes were used for phylogenetic inference. With the addition of representatives from Apocynaceae and sampling of most other asterid orders, a sister relationship between Gentianales and Solanales is supported. PMID:23825699

  1. The Complete Plastid Genome Sequence of Madagascar Periwinkle Catharanthus roseus (L.) G. Don: Plastid Genome Evolution, Molecular Marker Identification, and Phylogenetic Implications in Asterids.

    PubMed

    Ku, Chuan; Chung, Wan-Chia; Chen, Ling-Ling; Kuo, Chih-Horng

    2013-01-01

    The Madagascar periwinkle (Catharanthusroseus in the family Apocynaceae) is an important medicinal plant and is the source of several widely marketed chemotherapeutic drugs. It is also commonly grown for its ornamental values and, due to ease of infection and distinctiveness of symptoms, is often used as the host for studies on phytoplasmas, an important group of uncultivated plant pathogens. To gain insights into the characteristics of apocynaceous plastid genomes (plastomes), we used a reference-assisted approach to assemble the complete plastome of C. roseus, which could be applied to other C. roseus-related studies. The C. roseus plastome is the second completely sequenced plastome in the asterid order Gentianales. We performed comparative analyses with two other representative sequences in the same order, including the complete plastome of Coffeaarabica (from the basal Gentianales family Rubiaceae) and the nearly complete plastome of Asclepiassyriaca (Apocynaceae). The results demonstrated considerable variations in gene content and plastome organization within Apocynaceae, including the presence/absence of three essential genes (i.e., accD, clpP, and ycf1) and large size changes in non-coding regions (e.g., rps2-rpoC2 and IRb-ndhF). To find plastome markers of potential utility for Catharanthus breeding and phylogenetic analyses, we identified 41 C. roseus-specific simple sequence repeats. Furthermore, five intergenic regions with high divergence between C. roseus and three other euasterids I taxa were identified as candidate markers. To resolve the euasterids I interordinal relationships, 82 plastome genes were used for phylogenetic inference. With the addition of representatives from Apocynaceae and sampling of most other asterid orders, a sister relationship between Gentianales and Solanales is supported. PMID:23825699

  2. Carrier-Mediated Uptake of 1-(Malonylamino)cyclopropane-1-Carboxylic Acid in Vacuoles Isolated from Catharanthus roseus Cells 1

    PubMed Central

    Bouzayen, Mondher; Latché, Alain; Pech, Jean-Claude; Marigo, Gérard

    1989-01-01

    The uptake of 1-(malonylamino)cyclopropane-1-carboxylic acid (MACC), the conjugated form of the ethylene precursor, into vacuoles isolated from Catharanthus roseus cells has been studied by silicone layer floatation filtering. The transport across the tonoplast of MACC is stimulated fourfold by 5 millimolar MgATP, has a Km of about 2 millimolar, an optimum pH around 7, and an optimum temperature at 30°C. Several effectors known to inhibit ATPase (N,N′-dicyclohexylcarbodiimide) and to collapse the transtonoplastic H+ electrochemical gradient (carbonylcyanide m-chlorophenylhydrazone, gramicidin, and benzylamine) all reduced MACC uptake. Abolishing the membrane potential with SCN− and valinomycin also greatly inhibited MACC transport. Our data demonstrate that MACC accumulates in the vacuole against a concentration gradient by means of a proton motive force generated by a tonoplastic ATPase. The involvement of a protein carrier is suggested by the strong inhibition of uptake by compounds known to block SH—, OH—, and NH2— groups. MACC uptake is antagonized competitively by malonyl-d-tryptophan, indicating that the carrier also accepts malonyl-d-amino acids. Neither the moities of these compounds taken separately [1-aminocyclopropane-1-carboxylic acid, malonate, d-tryptophan or d-phenylalanine] nor malate act as inhibitors of MACC transport. The absence of inhibition of malate uptake by MACC suggests that MACC and malate are taken up by two different carriers. We propose that the carrier identified here plays an important physiological role in withdrawing from the cytosol MACC and malonyl-d-amino acids generated under stress conditions. PMID:16667182

  3. Jasmonic acid effect on the fatty acid and terpenoid indole alkaloid accumulation in cell suspension cultures of Catharanthus roseus.

    PubMed

    Goldhaber-Pasillas, Guitele Dalia; Mustafa, Natali Rianika; Verpoorte, Robert

    2014-01-01

    The stress response after jasmonic acid (JA) treatment was studied in cell suspension cultures of Catharanthus roseus. The effect of JA on the primary and secondary metabolism was based on changes in profiles of fatty acids (FA) and terpenoid indole alkaloids (TIA). According to multivariate data analyses (MVDA), three major time events were observed and characterized according to the variations of specific FA and TIA: after 0-30 min of induction FA such as C18:1, C20:0, C22:0 and C24:0 were highly induced by JA; 90-360 min after treatment was characterized by variations of C14:0 and C15:0; and 1440 min after induction JA had the largest effect on both group of metabolites were C18:1, C18:2, C18:3, C16:0, C20:0, C22:0, C24:0, catharanthine, tabersonine-like 1, serpentine, tabersonine and ajmalicine-like had the most significant variations. These results unambiguously demonstrate the profound effect of JA particularly on the accumulation of its own precursor, C18:3 and the accumulation of TIA, which can be considered as late stress response events to JA since they occurred only after 1440 min. These observations show that the early events in the JA response do not involve the de novo biosynthesis of neither its own precursor nor TIA, but is due to an already present biochemical system. PMID:25029072

  4. The improved resistance to high salinity induced by trehalose is associated with ionic regulation and osmotic adjustment in Catharanthus roseus.

    PubMed

    Chang, Bowen; Yang, Lei; Cong, Weiwei; Zu, Yuangang; Tang, Zhonghua

    2014-04-01

    The effects of exogenous trehalose (Tre) on salt tolerance of pharmaceutical plant Catharanthus roseus and the physiological mechanisms were both investigated in this study. The results showed that the supplement of Tre in saline condition (250 mM NaCl) largely alleviated the inhibitory effects of salinity on plant growth, namely biomass accumulation and total leaf area per plant. In this saline condition, the decreased level of relative water content (RWC) and photosynthetic rate were also greatly rescued by exogenous Tre. This improved performance of plants under high salinity induced by Tre could be partly ascribed to its ability to decrease accumulation of sodium, and increase potassium in leaves. The exogenous Tre led to high levels of fructose, glucose, sucrose and Tre inside the salt-stressed plants during whole the three-week treatment. The major free amino acids such as proline, arginine, threonine and glutamate were also largely elevated in the first two-week course of treatment with Tre in saline solution. It was proposed here that Tre might act as signal to make the salt-stressed plants actively increase internal compatible solutes, including soluble sugars and free amino acids, to control water loss, leaf gas exchange and ionic flow at the onset of salt stress. The application of Tre in saline condition also promoted the accumulation of alkaloids. The regulatory role of Tre in improving salt tolerance was optimal with an exogenous concentration of 10 mM Tre. Larger concentrations of Tre were supra-optimum and adversely affected plant growth. PMID:24589477

  5. Evaluation of Catharanthus roseus leaf extract-mediated biosynthesis of titanium dioxide nanoparticles against Hippobosca maculata and Bovicola ovis.

    PubMed

    Velayutham, Kanayairam; Rahuman, Abdul Abdul; Rajakumar, Govindasamy; Santhoshkumar, Thirunavukkarasu; Marimuthu, Sampath; Jayaseelan, Chidambaram; Bagavan, Asokan; Kirthi, Arivarasan Vishnu; Kamaraj, Chinnaperumal; Zahir, Abdul Abduz; Elango, Gandhi

    2012-12-01

    The purpose of the present study was based on assessments of the antiparasitic activities of synthesized titanium dioxide nanoparticles (TiO(2) NPs) utilizing leaf aqueous extract of Catharanthus roseus against the adults of hematophagous fly, Hippobosca maculata Leach (Diptera: Hippoboscidae), and sheep-biting louse, Bovicola ovis Schrank (Phthiraptera: Trichodectidae). The synthesized TiO(2) NPs were analyzed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The formation of the TiO(2) NPs synthesized from the XRD spectrum compared with the standard confirmed spectrum of titanium particles formed in the present experiments were in the form of nanocrystals, as evidenced by the peaks at 2θ values of 27.43°, 36.03°, and 54.32°. The FTIR spectra of TiO(2) NPs exhibited prominent peaks at 714 (Ti-O-O bond), 1,076 (C-N stretch aliphatic amines), 1,172 (C-O stretching vibrations in alcoholic groups), 1,642 (N-H bend bond), and 3,426 (O-H stretching due to alcoholic group). SEM analysis of the synthesized TiO(2) NPs clearly showed the clustered and irregular shapes, mostly aggregated and having the size of 25-110 nm. By Bragg's law and Scherrer's constant, it is proved that the mean size of synthesized TiO(2) NPs was 65 nm. The AFM obviously depicts the formation of the rutile and anatase forms in the TiO(2) NPs and also, the surface morphology of the particles is uneven due to the presence of some of the aggregates and individual particles. Adulticidal parasitic activity was observed in varying concentrations of aqueous leaf extract of C. roseus, TiO(2) solution, and synthesized TiO(2) NPs for 24 h. The maximum parasitic activity was observed in aqueous crude leaf extracts of C. roseus against the adults of H. maculata and B. ovis with LD(50) values of 36.17 and 30.35 mg/L, and r (2) values of 0.948 and 0.908, respectively. The highest efficacy was reported in 5 mM TiO(2

  6. Isolation of Catharanthus roseus (L.) G. Don Nuclei and Measurement of Rate of Tryptophan decarboxylase Gene Transcription Using Nuclear Run-On Transcription Assay

    PubMed Central

    Kumar, Santosh; Bhatia, Sabhyata

    2015-01-01

    Background An accurate assessment of transcription ‘rate’ is often desired to describe the promoter activity. In plants, isolation of transcriptionally active nuclei and their subsequent use in nuclear run-on assays has been challenging and therefore limit an accurate measurement of gene transcription ‘rate’. Catharanthus roseus has emerged as a model medicinal plant as it exhibits an unsurpassed spectrum of chemodiversity, producing over 130 alkaloids through the terpenoid indole alkaloid (TIA) pathway and therefore serves as a ‘molecular hub’ to understand gene expression profiles. Results The protocols presented here streamline, adapt and optimize the existing methods of nuclear run-on assay for use in C. roseus. Here, we fully describe all the steps to isolate transcriptionally active nuclei from C. roseus leaves and utilize them to perform nuclear run-on transcription assay. Nuclei isolated by this method transcribed at a level consistent with their response to external stimuli, as transcription rate of TDC gene was found to be higher in response to external stimuli i.e. when seedlings were subjected to UV-B light or to methyl jasmonate (MeJA). However, the relative transcript abundance measured parallel through qRT-PCR was found to be inconsistent with the synthesis rate indicating that some post transcriptional events might have a role in transcript stability in response to stimuli. Conclusions Our study provides an optimized, efficient and inexpensive method of isolation of intact nuclei and nuclear ‘run-on’ transcription assay to carry out in-situ measurement of gene transcription rate in Catharanthus roseus. This would be valuable in investigating the transcriptional and post transcriptional response of other TIA pathway genes in C. roseus. Isolated nuclei may also provide a resource that could be used for performing the chip assay as well as serve as the source of nuclear proteins for in-vitro EMSA studies. Moreover, nascent nuclear run

  7. A Pair of Tabersonine 16-Hydroxylases Initiates the Synthesis of Vindoline in an Organ-Dependent Manner in Catharanthus roseus1[C][W

    PubMed Central

    Besseau, Sébastien; Kellner, Franziska; Lanoue, Arnaud; Thamm, Antje M.K.; Salim, Vonny; Schneider, Bernd; Geu-Flores, Fernando; Höfer, René; Guirimand, Grégory; Guihur, Anthony; Oudin, Audrey; Glevarec, Gaëlle; Foureau, Emilien; Papon, Nicolas; Clastre, Marc; Giglioli-Guivarc’h, Nathalie; St-Pierre, Benoit; Werck-Reichhart, Danièle; Burlat, Vincent; De Luca, Vincenzo; O’Connor, Sarah E.; Courdavault, Vincent

    2013-01-01

    Hydroxylation of tabersonine at the C-16 position, catalyzed by tabersonine 16-hydroxylase (T16H), initiates the synthesis of vindoline that constitutes the main alkaloid accumulated in leaves of Catharanthus roseus. Over the last decade, this reaction has been associated with CYP71D12 cloned from undifferentiated C. roseus cells. In this study, we isolated a second cytochrome P450 (CYP71D351) displaying T16H activity. Biochemical characterization demonstrated that CYP71D12 and CYP71D351 both exhibit high affinity for tabersonine and narrow substrate specificity, making of T16H, to our knowledge, the first alkaloid biosynthetic enzyme displaying two isoforms encoded by distinct genes characterized to date in C. roseus. However, both genes dramatically diverge in transcript distribution in planta. While CYP71D12 (T16H1) expression is restricted to flowers and undifferentiated cells, the CYP71D351 (T16H2) expression profile is similar to the other vindoline biosynthetic genes reaching a maximum in young leaves. Moreover, transcript localization by carborundum abrasion and RNA in situ hybridization demonstrated that CYP71D351 messenger RNAs are specifically located to leaf epidermis, which also hosts the next step of vindoline biosynthesis. Comparison of high- and low-vindoline-accumulating C. roseus cultivars also highlights the direct correlation between CYP71D351 transcript and vindoline levels. In addition, CYP71D351 down-regulation mediated by virus-induced gene silencing reduces vindoline accumulation in leaves and redirects the biosynthetic flux toward the production of unmodified alkaloids at the C-16 position. All these data demonstrate that tabersonine 16-hydroxylation is orchestrated in an organ-dependent manner by two genes including CYP71D351, which encodes the specific T16H isoform acting in the foliar vindoline biosynthesis. PMID:24108213

  8. Rapid and simultaneous determination of five vinca alkaloids in Catharanthus roseus and human serum using trilinear component modeling of liquid chromatography-diode array detection data.

    PubMed

    Liu, Zhi; Wu, Hai-Long; Li, Yong; Gu, Hui-Wen; Yin, Xiao-Li; Xie, Li-Xia; Yu, Ru-Qin

    2016-07-15

    A novel chemometrics-assisted high performance liquid chromatography method coupled with diode array detector (HPLC-DAD) was proposed for the simultaneous determination of vincristine (VCR), vinblastine (VLB), vindoline (VDL), catharanthine (CAT) and yohimbine (YHB) in Catharanthus roseus (C. roseus) and human serum samples. With the second-order advantage of the alternating trilinear decomposition (ATLD) method, the resolution and rapid determination of five components of interest in complex matrices were performed, even in the present of heavy overlaps and unknown interferences. Therefore, multi-step purification was omitted and five components could be fast eluted out within 7.5min under simple isocratic elution condition (acetonitrile/0.2% formic acid water, 37:63, v/v). Statistical parameters, such as the linear correlation coefficient (R(2)), root-mean-square error of prediction (RMSEP), limit of detection (LOD) and limit of quantitation (LOQ) had been calculated to investigate the accuracy and reliability of the method. The average recoveries of five vinca alkaloids ranged from 97.1% to 101.9% and 98.8% to 103.0% in C. roseus and human serum samples, respectively. The five vinca alkaloids were adequately determined with limits of detection (LODs) of 29.5-49.3ngmL(-1) in C. roseus and 12.4-27.2ngmL(-1) in human serum samples, respectively. The obtained results demonstrated that the analytical strategy provided a feasible alternative for synchronously monitoring the quality of raw herb and the concentration of blood drugs. PMID:26321366

  9. High-throughput transcriptome analysis of the leafy flower transition of Catharanthus roseus induced by peanut witches'-broom phytoplasma infection.

    PubMed

    Liu, Li-Yu Daisy; Tseng, Hsin-I; Lin, Chan-Pin; Lin, Yen-Yu; Huang, Yuan-Hung; Huang, Chien-Kang; Chang, Tean-Hsu; Lin, Shih-Shun

    2014-05-01

    Peanut witches'-broom (PnWB) phytoplasma are obligate bacteria that cause leafy flower symptoms in Catharanthus roseus. The PnWB-mediated leafy flower transitions were studied to understand the mechanisms underlying the pathogen-host interaction; however, our understanding is limited because of the lack of information on the C. roseus genome. In this study, the whole-transcriptome profiles from healthy flowers (HFs) and stage 4 (S4) PnWB-infected leafy flowers of C. roseus were investigated using next-generation sequencing (NGS). More than 60,000 contigs were generated using a de novo assembly approach, and 34.2% of the contigs (20,711 genes) were annotated as putative genes through name-calling, open reading frame determination and gene ontology analyses. Furthermore, a customized microarray based on this sequence information was designed and used to analyze samples further at various stages of PnWB infection. In the NGS profile, 87.8% of the genes showed expression levels that were consistent with those in the microarray profiles, suggesting that accurate gene expression levels can be detected using NGS. The data revealed that defense-related and flowering gene expression levels were altered in S4 PnWB-infected leafy flowers, indicating that the immunity and reproductive stages of C. roseus were compromised. The network analysis suggested that the expression levels of >1,000 candidate genes were highly associated with CrSVP1/2 and CrFT expression, which might be crucial in the leafy flower transition. In conclusion, this study provides a new perspective for understanding plant pathology and the mechanisms underlying the leafy flowering transition caused by host-pathogen interactions through analyzing bioinformatics data obtained using a powerful, rapid high-throughput technique. PMID:24492256

  10. Effects of Adding Vindoline and MeJA on Production of Vincristine and Vinblastine, and Transcription of their Biosynthetic Genes in the Cultured CMCs of Catharanthus roseus.

    PubMed

    Zhang, Wenjin; Yang, Jiazeng; Zi, Jiachen; Zhu, Jianhua; Song, Liyan; Yu, Rongmin

    2015-12-01

    Vincristine and vinblastine were found by Liquid Chromatography-Mass Spectrometry (LC-MS) in Catharanthus roseuscambial meristem cells (CMCs) jointly treated with 0.25 mM vindoline and methyl jasmonate (MeJA), suggesting that C. roseus CMCs contain a complete set of the enzymes which are in response to convert vindoline into vincristine and vinblastine. Based on the facts that the transcript levels of vindoline-biosynthetic genes (STR, SGD and D4H) were up-regulated instead of being down-regulated by adding itself to the culture, and that the transcriptional factor ORCA3 was up-regulated simultaneously, we further confirmed that the transcription of STR, SGD, D4H was manipulated by ORCA3. PMID:26882673

  11. Lack of Control in Inorganic Phosphate Uptake by Catharanthus roseus (L.) G. Don Cells (Cytoplasmic Inorganic Phosphate Homeostasis Depends on the Tonoplast Inorganic Phosphate Transport System?).

    PubMed Central

    Sakano, K.; Yazaki, Y.; Okihara, K.; Mimura, T.; Kiyota, S.

    1995-01-01

    Inorganic phosphate (Pi) uptake by Catharanthus roseus (L.) G. Don cells was studied in relation to its apparent uncontrolled uptake using 31P-nuclear magnetic resonance spectroscopy. Kinetics of Pi uptake by the cells indicated that apparent Km and Vm were about 7 [mu]M and 20 [mu]mol g-1 fresh weight h-1, respectively. Pi uptake in Murashige-Skoog medium under different Pi concentrations and different initial cell densities followed basically the same kinetics. When supplied with abundant Pi, cells absorbed Pi at a constant rate (Vm) for the first hours and accumulated it in the vacuole. As the endogenous pool expanded, the rate of Pi uptake gradually decreased to nil. Maximum Pi accumulation was 100 to 120 [mu]mol g-1 fresh weight if cell swelling during Pi uptake (about 2-fold in cell volume) was not considered. Results indicated that (a) the rate of Pi uptake by Catharanthus cells was independent of initial cell density and was constant over a wide range of Pi concentrations (2 mM to about 10 [mu]M) unless the cells were preloaded with excess Pi, and (b) there was no apparent feedback control over the Pi uptake process in the plasma membrane to avoid Pi toxicity. The importance of the tonoplast Pi transport system in cytoplasmic Pi homeostasis is discussed. PMID:12228474

  12. Promoter analysis reveals cis-regulatory motifs associated with the expression of the WRKY transcription factor CrWRKY1 in Catharanthus roseus.

    PubMed

    Yang, Zhirong; Patra, Barunava; Li, Runzhi; Pattanaik, Sitakanta; Yuan, Ling

    2013-12-01

    WRKY transcription factors (TFs) are emerging as an important group of regulators of plant secondary metabolism. However, the cis-regulatory elements associated with their regulation have not been well characterized. We have previously demonstrated that CrWRKY1, a member of subgroup III of the WRKY TF family, regulates biosynthesis of terpenoid indole alkaloids in the ornamental and medicinal plant, Catharanthus roseus. Here, we report the isolation and functional characterization of the CrWRKY1 promoter. In silico analysis of the promoter sequence reveals the presence of several potential TF binding motifs, indicating the involvement of additional TFs in the regulation of the TIA pathway. The CrWRKY1 promoter can drive the expression of a β-glucuronidase (GUS) reporter gene in native (C. roseus protoplasts and transgenic hairy roots) and heterologous (transgenic tobacco seedlings) systems. Analysis of 5'- or 3'-end deletions indicates that the sequence located between positions -140 to -93 bp and -3 to +113 bp, relative to the transcription start site, is critical for promoter activity. Mutation analysis shows that two overlapping as-1 elements and a CT-rich motif contribute significantly to promoter activity. The CrWRKY1 promoter is induced in response to methyl jasmonate (MJ) treatment and the promoter region between -230 and -93 bp contains a putative MJ-responsive element. The CrWRKY1 promoter can potentially be used as a tool to isolate novel TFs involved in the regulation of the TIA pathway. PMID:23979312

  13. Catharanthus roseus Aqueous Extract is Cytotoxic to Jurkat Leukaemic T-cells but Induces the Proliferation of Normal Peripheral Blood Mononuclear Cells

    PubMed Central

    Ahmad, Nor Hazwani; Rahim, Rohanizah Abdul; Mat, Ishak

    2010-01-01

    Research on natural products has been widely used as a strategy to discover new drugs with potential for applications in complementary medicines because they have fewer side effects than conventional drugs. The aim of the present study was to evaluate the in vitro cytotoxic effects of crude aqueous Catharanthus roseus extract on Jurkat cells and normal peripheral blood mononuclear cells (PBMCs). The aqueous extract was standardised to vinblastine by high performance liquid chromatography (HPLC) and was used to determine cytotoxicity by the MTS [3-(4,5-dimethylthiazol-2-yl)-5(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay. DNA fragmentation assay was employed to determine if cell death was due to apoptosis. The results showed that the aqueous extract induced cell death of Jurkat cells at 24, 48 and 72 hours post-treatment in a time- and dose-dependent manner. However, cells treated at 48 and 72 hours produced higher cytotoxic effects with half maximal inhibitory concentration (IC50) values of 2.55 μg/ml and 2.38 μg/ml, respectively. In contrast, the extract induced normal PBMC proliferation, especially after 24 hours treatment with 1000 μg/ml. This result indicates that the C. roseus crude aqueous extract showed differential effects of inhibiting the proliferation of the Jurkat cell line and promoting the growth of PBMCs. These data suggest that the extract may be applicable for modulating the normal and transformed immune cells in leukaemia patients. PMID:24575203

  14. Molecular Cloning and Characterization of a Vacuolar Class III Peroxidase Involved in the Metabolism of Anticancer Alkaloids in Catharanthus roseus1[C

    PubMed Central

    Costa, Maria Manuela R.; Hilliou, Frederique; Duarte, Patrícia; Pereira, Luís Gustavo; Almeida, Iolanda; Leech, Mark; Memelink, Johan; Barceló, Alfonso Ros; Sottomayor, Mariana

    2008-01-01

    Catharanthus roseus produces low levels of two dimeric terpenoid indole alkaloids, vinblastine and vincristine, which are widely used in cancer chemotherapy. The dimerization reaction leading to α-3′,4′-anhydrovinblastine is a key regulatory step for the production of the anticancer alkaloids in planta and has potential application in the industrial production of two semisynthetic derivatives also used as anticancer drugs. In this work, we report the cloning, characterization, and subcellular localization of an enzyme with anhydrovinblastine synthase activity identified as the major class III peroxidase present in C. roseus leaves and named CrPrx1. The deduced amino acid sequence corresponds to a polypeptide of 363 amino acids including an N-terminal signal peptide showing the secretory nature of CrPrx1. CrPrx1 has a two-intron structure and is present as a single gene copy. Phylogenetic analysis indicates that CrPrx1 belongs to an evolutionary branch of vacuolar class III peroxidases whose members seem to have been recruited for different functions during evolution. Expression of a green fluorescent protein-CrPrx1 fusion confirmed the vacuolar localization of this peroxidase, the exact subcellular localization of the alkaloid monomeric precursors and dimeric products. Expression data further supports the role of CrPrx1 in α-3′,4′-anhydrovinblastine biosynthesis, indicating the potential of CrPrx1 as a target to increase alkaloid levels in the plant. PMID:18065566

  15. Identification of conserved and novel microRNAs in Catharanthus roseus by deep sequencing and computational prediction of their potential targets.

    PubMed

    Prakash, Pravin; Ghosliya, Dolly; Gupta, Vikrant

    2015-01-10

    MicroRNAs are small endogenous non-coding RNAs of ~19-24 nucleotides and perform regulatory roles in many plant processes. To identify miRNAs involved in regulatory networks controlling diverse biological processes including secondary metabolism in Catharanthus roseus, an important medicinal plant, we employed deep sequencing of small RNA from leaf tissue. A total of 88 potential miRNAs comprising of 81 conserved miRNAs belonging to 35 families and seven novel miRNAs were identified. Precursors for 16 conserved and seven novel cro-miRNAs were identified, and their stem-loop hairpin structures were predicted. Selected cro-miRNAs were analyzed by stem-loop qRT-PCR and differential expression patterns were observed in different vegetative tissues of C. roseus. Targets were predicted for conserved and novel cro-miRNAs, which were found to be involved in diverse biological role(s) including secondary metabolism. Our study enriches available resources and information regarding miRNAs and their potential targets for better understanding of miRNA-mediated gene regulation in plants. PMID:25445288

  16. The Combined Effects of Ethylene and MeJA on Metabolic Profiling of Phenolic Compounds in Catharanthus roseus Revealed by Metabolomics Analysis.

    PubMed

    Liu, Jia; Liu, Yang; Wang, Yu; Zhang, Zhong-Hua; Zu, Yuan-Gang; Efferth, Thomas; Tang, Zhong-Hua

    2016-01-01

    Phenolic compounds belong to a class of secondary metabolites and are implicated in a wide range of responsive mechanisms in plants triggered by both biotic and abiotic elicitors. In this study, we approached the combinational effects of ethylene and MeJA (methyl jasmonate) on phenolic compounds profiles and gene expressions in the medicinal plant Catharanthus roseus. In virtue of a widely non-targeted metabolomics method, we identified a total of 34 kinds of phenolic compounds in the leaves, composed by 7 C6C1-, 11 C6C3-, and 16 C6C3C6 compounds. In addition, 7 kinds of intermediates critical for the biosynthesis of phenolic compounds and alkaloids were identified and discussed with phenolic metabolism. The combinational actions of ethylene and MeJA effectively promoted the total phenolic compounds, especially the C6C1 compounds (such as salicylic acid, benzoic acid) and C6C3 ones (such as cinnamic acid, sinapic acid). In contrast, the C6C3C6 compounds displayed a notably inhibitory trend in this case. Subsequently, the gene-to-metabolite networks were drawn up by searching for correlations between the expression profiles of 5 gene tags and the accumulation profiles of 41 metabolite peaks. Generally, we provide an insight into the controlling mode of ethylene-MeJA combination on phenolic metabolism in C. roseus leaves. PMID:27375495

  17. Involvement of the Octadecanoid Pathway and Protein Phosphorylation in Fungal Elicitor-Induced Expression of Terpenoid Indole Alkaloid Biosynthetic Genes in Catharanthus roseus

    PubMed Central

    Menke, Frank L.H.; Parchmann, Stefanie; Mueller, Martin J.; Kijne, Jan W.; Memelink, Johan

    1999-01-01

    Two key genes in terpenoid indole alkaloid biosynthesis, Tdc and Str, encoding tryptophan decarboxylase and strictosidine synthase, respectively, are coordinately induced by fungal elicitors in suspension-cultured Catharanthus roseus cells. We have studied the roles of the jasmonate biosynthetic pathway and of protein phosphorylation in signal transduction initiated by a partially purified elicitor from yeast extract. In addition to activating Tdc and Str gene expression, the elicitor also induced the biosynthesis of jasmonic acid. The jasmonate precursor α-linolenic acid or methyl jasmonate (MeJA) itself induced Tdc and Str gene expression when added exogenously . Diethyldithiocarbamic acid, an inhibitor of jasmonate biosynthesis, blocked both the elicitor-induced formation of jasmonic acid and the activation of terpenoid indole alkaloid biosynthetic genes. The protein kinase inhibitor K-252a abolished both elicitor-induced jasmonate biosynthesis and MeJA-induced Tdc and Str gene expression. Analysis of the expression of Str promoter/gusA fusions in transgenic C. roseus cells showed that the elicitor and MeJA act at the transcriptional level. These results demonstrate that the jasmonate biosynthetic pathway is an integral part of the elicitor-triggered signal transduction pathway that results in the coordinate expression of the Tdc and Str genes and that protein kinases act both upstream and downstream of jasmonates. PMID:10198087

  18. The Combined Effects of Ethylene and MeJA on Metabolic Profiling of Phenolic Compounds in Catharanthus roseus Revealed by Metabolomics Analysis

    PubMed Central

    Liu, Jia; Liu, Yang; Wang, Yu; Zhang, Zhong-Hua; Zu, Yuan-Gang; Efferth, Thomas; Tang, Zhong-Hua

    2016-01-01

    Phenolic compounds belong to a class of secondary metabolites and are implicated in a wide range of responsive mechanisms in plants triggered by both biotic and abiotic elicitors. In this study, we approached the combinational effects of ethylene and MeJA (methyl jasmonate) on phenolic compounds profiles and gene expressions in the medicinal plant Catharanthus roseus. In virtue of a widely non-targeted metabolomics method, we identified a total of 34 kinds of phenolic compounds in the leaves, composed by 7 C6C1-, 11 C6C3-, and 16 C6C3C6 compounds. In addition, 7 kinds of intermediates critical for the biosynthesis of phenolic compounds and alkaloids were identified and discussed with phenolic metabolism. The combinational actions of ethylene and MeJA effectively promoted the total phenolic compounds, especially the C6C1 compounds (such as salicylic acid, benzoic acid) and C6C3 ones (such as cinnamic acid, sinapic acid). In contrast, the C6C3C6 compounds displayed a notably inhibitory trend in this case. Subsequently, the gene-to-metabolite networks were drawn up by searching for correlations between the expression profiles of 5 gene tags and the accumulation profiles of 41 metabolite peaks. Generally, we provide an insight into the controlling mode of ethylene-MeJA combination on phenolic metabolism in C. roseus leaves. PMID:27375495

  19. Jasmonate-dependent alkaloid biosynthesis in Catharanthus Roseus hairy root cultures is correlated with the relative expression of Orca and Zct transcription factors.

    PubMed

    Goklany, Sheba; Rizvi, Noreen F; Loring, Ralph H; Cram, Erin J; Lee-Parsons, Carolyn W T

    2013-01-01

    The effects of methyl jasmonate (MJ) dosage on terpenoid indole alkaloid (TIA) biosynthesis in Catharanthus roseus are correlated with the relative levels of specific MJ-responsive transcription factors. In this study, the expression of transcription factors (Orca, Zct, Gbf, Myc2, At-hook, and Wrky1), TIA pathway genes (G10h, Tdc, Str, and Sgd), and TIA metabolites (secologanin, strictosidine, and tabersonine) were investigated in C. roseus hairy root cultures elicited with a range of MJ dosages (0-1,000 µM) during mid-exponential growth. The highest production of TIA metabolites occurs at 250 μM MJ, increasing by 150-370% compared with untreated controls. At this MJ dosage, the expression of the transcriptional activators (Orca) is dramatically increased (29-40 fold) while the levels of the transcriptional repressors (Zct) remain low (2-7 fold). Simultaneously, the expression of genes coding for key enzymes involved in TIA biosynthesis increases by 8-15 fold. In contrast, high MJ dosages (1,000 µM) inhibit the production of TIA metabolites. This dosage is correlated with elevated expression levels of Zct (up to 40-fold) relative to Orca (13-19-fold) and minimal induction of the TIA biosynthetic genes (0-6 fold). The significant changes in the expression of Orca and Zct with MJ dosage do not correspond to changes in the expression of the early-response transcription factors (AT-hook, Myc2, and Wrky1) believed to regulate Orca and Zct. In summary, these observations suggest that the dependence of alkaloid production on MJ dosage in C. roseus may be partly mediated through the relative levels of Orca and Zct family transcription factors. PMID:23970483

  20. Suppression of aggressive strains of 'Candidatus phytoplasma mali' by mild strains in Catharanthus roseus and Nicotiana occidentalis and indication of similar action in apple trees.

    PubMed

    Schneider, Bernd; Sule, Sandor; Jelkmann, Wilhelm; Seemüller, Erich

    2014-05-01

    To study antagonistic interactions of 'Candidatus Phytoplasma mali' strains, graft inoculation of Catharanthus roseus and Nicotiana occidentalis was performed with mild strains 1/93Vin and 1/93Tab as suppressors and three aggressive strains as challengers. Inoculation of the suppressors was carried out in either the cross-protection modus prior to grafting of the challengers or by co-inoculating suppressors and challengers. Monitoring using multiplex real-time polymerase chain reaction assays revealed that, in long-term cross-protection trials with C. roseus, suppressor 1/93Vin was present in all root and randomly collected stem samples over the entire observation period. In contrast, the challengers were never detected in such stem samples and rarely in the roots. Following simultaneous inoculation, the suppressor successively colonized all stem and root regions whereas detection of challenger AT steadily decreased. However, this strain remained detectable in up to 13 and 27% of stem and root samples, respectively. The cross-protection trials with N. occidentalis yielded results similar to that of the cross-protection experiments with C. roseus. Comparison of the symptomatology of infected apple trees with the presence of putatively suppressive strains indicated that suppression of severe strains also occurs in apple. Phylogenetic analysis using a variable fragment of AAA+ ATPase gene AP460 of 'Ca. P. mali' revealed that suppressors 1/93Vin and 1/93Tab, together with several other mild strains maintained in apple, cluster distantly from obviously nonsuppressive strains that were predominantly highly virulent. PMID:24724815

  1. Gene transcript profiles of the TIA biosynthetic pathway in response to ethylene and copper reveal their interactive role in modulating TIA biosynthesis in Catharanthus roseus.

    PubMed

    Pan, Ya-Jie; Liu, Jia; Guo, Xiao-Rui; Zu, Yuan-Gang; Tang, Zhong-Hua

    2015-05-01

    Research on transcriptional regulation of terpenoid indole alkaloid (TIA) biosynthesis of the medicinal plant, Catharanthus roseus, has largely been focused on gene function and not clustering analysis of multiple genes at the transcript level. Here, more than ten key genes encoding key enzyme of alkaloid synthesis in TIA biosynthetic pathways were chosen to investigate the integrative responses to exogenous elicitor ethylene and copper (Cu) at both transcriptional and metabolic levels. The ethylene-induced gene transcripts in leaves and roots, respectively, were subjected to principal component analysis (PCA) and the results showed the overall expression of TIA pathway genes indicated as the Q value followed a standard normal distribution after ethylene treatments. Peak gene expression was at 15-30 μM of ethephon, and the pre-mature leaf had a higher Q value than the immature or mature leaf and root. Treatment with elicitor Cu found that Cu up-regulated overall TIA gene expression more in roots than in leaves. The combined effects of Cu and ethephon on TIA gene expression were stronger than their separate effects. It has been documented that TIA gene expression is tightly regulated by the transcriptional factor (TF) ethylene responsive factor (ERF) and mitogen-activated protein kinase (MAPK) cascade. The loading plot combination with correlation analysis for the genes of C. roseus showed that expression of the MPK gene correlated with strictosidine synthase (STR) and strictosidine b-D-glucosidase(SGD). In addition, ERF expression correlated with expression of secologanin synthase (SLS) and tryptophan decarboxylase (TDC), specifically in roots, whereas MPK and myelocytomatosis oncogene (MYC) correlated with STR and SGD genes. In conclusion, the ERF regulates the upstream pathway genes in response to heavy metal Cu mainly in C. roseus roots, while the MPK mainly participates in regulating the STR gene in response to ethylene in pre-mature leaf. Interestingly, the

  2. Antagonism of Ca2+ influx via L-type Ca2+ channels mediates the vasorelaxant effect of Catharanthus roseus-derived vindorosine in rat renal artery.

    PubMed

    Wu, Xiao-Lin; Cheang, Wai San; Zhang, Dong-Mei; Li, Yong; Lau, Chi-Wai; Wang, Guo-Cai; Huang, Yu; Ye, Wen-Cai

    2014-12-01

    Catharanthus roseus is a traditional herbal medicine used in Asian and African countries for the treatment of various diseases including hypertension. The present study examined possible cellular mechanisms for the relaxation of rat renal arteries induced by vindorosine extracted from C. roseus. Intrarenal arteries were isolated from 200-300 g male Sprague-Dawley rats and treated with different pharmacological blockers and inhibitors for the measurement of vascular reactivity on a Multi Myograph System. Fluorescence imaging by laser scanning confocal microscopy was utilized to determine the intracellular Ca(2+) level in the vascular smooth muscles of the renal arteries. Vindorosine in micromolar concentrations relaxes renal arteries precontracted by KCl, phenylephrine, 11-dideoxy-9α,11α-epoxymethanoprostaglandin F2α, and serotonin. Vindorosine-induced relaxations were unaffected by endothelium denudation or by treatment with the nitric oxide synthase inhibitor N (G)-nitro-L-arginine methyl ester hydrochloride, the guanylyl cyclase inhibitor 1H-[1, 2, 4]oxadiazolo[4,3-a]quinoxalin-1-one, the cyclooxygenase inhibitor indomethacin, or K(+) channel blockers such as tetraethylammonium ions, glibenclamide, and BaCl2. Vindorosine-induced relaxations were attenuated in the presence of 0.1 µM nifedipine (an L-type Ca(2+) channel blocker). Vindorosine also concentration-dependently suppressed contractions induced by CaCl2 (0.01-5 mM) in Ca-free 60 mM KCl solution. Furthermore, fluorescence imaging using fluo-4 demonstrated that 30 min incubation with 100 µM vindorosine reduced the 60 mM KCl-stimulated Ca(2+) influx in the smooth muscles of rat renal arteries. The present study is probably the first report of blood vessel relaxation by vindorosine and the possible underlying mechanisms involving the inhibition of Ca(2+) entry via L-type Ca(2+) channels in vascular smooth muscles. PMID:25340466

  3. Pleiotropic phenotypes of the salt-tolerant and cytosine hypomethylated leafless inflorescence, evergreen dwarf and irregular leaf lamina mutants of Catharanthus roseus possessing Mendelian inheritance.

    PubMed

    Kumari, Renu; Sharma, Vishakha; Sharma, Vinay; Kumar, Sushil

    2013-12-01

    In Catharanthus roseus, three morphological cum salt-tolerant chemically induced mutants of Mendelian inheritance and their wild-type parent cv Nirmal were characterized for overall cytosine methylation at DNA repeats, expression of 119 protein coding and seven miRNA-coding genes and 50 quantitative traits. The mutants, named after their principal morphological feature(s), were leafless inflorescence (lli), evergreen dwarf (egd) and irregular leaf lamina (ill). The Southern-blot analysis of MspI digested DNAs of mutants probed with centromeric and 5S and 18S rDNA probes indicated that, in comparison to wild type, the mutants were extensively demethylated at cytosine sites. Among the 126 genes investigated for transcriptional expression, 85 were upregulated and 41 were downregulated in mutants. All of the five genes known to be stress responsive had increased expression in mutants. Several miRNA genes showed either increased or decreased expression in mutants. The C. roseus counterparts of CMT3, DRM2 and RDR2 were downregulated in mutants. Among the cell, organ and plant size, photosynthesis and metabolism related traits studied, 28 traits were similarly affected in mutants as compared to wild type. Each of the mutants also expressed some traits distinctively. The egd mutant possessed superior photosynthesis and water retention abilities. Biomass was hyperaccumulated in roots, stems, leaves and seeds of the lli mutant. The ill mutant was richest in the pharmaceutical alkaloids catharanthine, vindoline, vincristine and vinblastine. The nature of mutations, origins of mutant phenotypes and evolutionary importance of these mutants are discussed. PMID:24371160

  4. Phase-Specific Polypeptides and Poly(A)+ RNAs during the Cell Cycle in Synchronous Cultures of Catharanthus roseus Cells 1

    PubMed Central

    Kodama, Hiroaki; Kawakami, Naoto; Watanabe, Akira; Komamine, Atsushi

    1989-01-01

    This study shows an overall analysis of gene expression during the cell cycle in synchronous suspension cultures of Catharanthus roseus cells. First, the cellular cytoplasmic proteins were fractionated by two-dimensional gel electrophoresis and visualized by staining with silver. Seventeen polypeptides showed qualitative or quantitative changes during the cell cycle. Second, the rates of synthesis of cytoplasmic proteins were also investigated by autoradiography by labeling cells with [35S]methionine at each phase of the cell cycle. The rates of synthesis of 13 polypeptides were found to vary during the cell cycle. The silverstained electrophoretic pattern of proteins in the G2 phase in particular showed characteristic changes in levels of polypeptides, while the rates of synthesis of polypeptides synthesized during the G2 phase did not show such phase-specific changes. This result suggests that posttranslational processing of polypeptides occurs during or prior to the G2 phase. In the G1 and S phases and during cytokinesis, several other polypeptides were specifically synthesized. Finally, the variation of mRNAs was analyzed from the autoradiograms of in vitro translation products of poly(A)+ RNA isolated at each phase. Three poly(A)+ RNAs increased in amount from the G1 to the S phase and one poly (A)+ RNA increased preferentially from the G2 phase to cytokinesis. Images Figure 1 Figure 3 Figure 4 Figure 6 Figure 7 Figure 8 Figure 10 Figure 11 Figure 12 PMID:16666641

  5. Virus-induced gene silencing identifies Catharanthus roseus 7-deoxyloganic acid-7-hydroxylase, a step in iridoid and monoterpene indole alkaloid biosynthesis.

    PubMed

    Salim, Vonny; Yu, Fang; Altarejos, Joaquín; De Luca, Vincenzo

    2013-12-01

    Iridoids are a major group of biologically active molecules that are present in thousands of plant species, and one versatile iridoid, secologanin, is a precursor for the assembly of thousands of monoterpenoid indole alkaloids (MIAs) as well as a number of quinoline alkaloids. This study uses bioinformatics to screen large databases of annotated transcripts from various MIA-producing plant species to select candidate genes that may be involved in iridoid biosynthesis. Virus-induced gene silencing of the selected genes combined with metabolite analyses of silenced plants was then used to identify the 7-deoxyloganic acid 7-hydroxylase (CrDL7H) that is involved in the 3rd to last step in secologanin biosynthesis. Silencing of CrDL7H reduced secologanin levels by at least 70%, and increased the levels of 7-deoxyloganic acid to over 4 mg g(-1) fresh leaf weight compared to control plants in which this iridoid is not detected. Functional expression of this CrDL7H in yeast confirmed its biochemical activity, and substrate specificity studies showed its preference for 7-deoxyloganic acid over other closely related substrates. Together, these results suggest that hydroxylation precedes carboxy-O-methylation in the secologanin pathway in Catharanthus roseus. PMID:24103035

  6. Molecular characterization of recombinant T1, a non-allergenic periwinkle (Catharanthus roseus) protein, with sequence similarity to the Bet v 1 plant allergen family.

    PubMed Central

    Laffer, Sylvia; Hamdi, Said; Lupinek, Christian; Sperr, Wolfgang R; Valent, Peter; Verdino, Petra; Keller, Walter; Grote, Monika; Hoffmann-Sommergruber, Karin; Scheiner, Otto; Kraft, Dietrich; Rideau, Marc; Valenta, Rudolf

    2003-01-01

    More than 25% of the population suffer from Type I allergy, an IgE-mediated hypersensitivity disease. Allergens with homology to the major birch ( Betula verrucosa ) pollen allergen, Bet v 1, belong to the most potent elicitors of IgE-mediated allergies. T1, a cytokinin-inducible cytoplasmic periwinkle ( Catharanthus roseus ) protein, with significant sequence similarity to members of the Bet v 1 plant allergen family, was expressed in Escherichia coli. Recombinant T1 (rT1) did not react with IgE antibodies from allergic patients, and failed to induce basophil histamine release and immediate-type skin reactions in Bet v 1-allergic patients. Antibodies raised against purified rT1 could be used for in situ localization of natural T1 by immunogold electron microscopy, but did not cross-react with most of the Bet v 1-related allergens. CD analysis showed significant differences regarding secondary structure and thermal denaturation behaviour between rT1 and recombinant Bet v 1, suggesting that these structural differences are responsible for the different allergenicity of the proteins. T1 represents a non-allergenic member of the Bet v 1 family that may be used to study structural requirements of allergenicity and to engineer hypo-allergenic plants by replacing Bet v 1-related allergens for primary prevention of allergy. PMID:12656672

  7. Identification of a human ABCC10 orthologue in Catharanthus roseus reveals a U12-type intron determinant for the N-terminal domain feature.

    PubMed

    El-Guizani, Taissir; Guibert, Clotilde; Triki, Saida; St-Pierre, Benoit; Ducos, Eric

    2014-04-01

    ABC (ATP-binding cassette) transporters are members of a large superfamily of proteins that utilize ATP hydrolysis to translocate a wide range of substrates across biological membranes. In general, members of C subfamily (ABCC) are structurally characterized by an additional (N-terminal) transmembrane domain (TMD0). Phylogenetic analysis of plant ABCCs separates their protein sequences into three distinct clusters: I and II are plant specific whereas cluster III contains both human and plant ABCCs. Screening of the Plant Medicinal Genomics Resource database allowed us to identify 16 ABCCs partial sequences in Catharanthus roseus; two of which belong to the unique CrABCC1 transcript that we identified in cluster III. Genomic organization of CrABCC1 TMD0 coding sequence displays an AT-AC U12-type intron that is conserved in higher plant orthologues. We showed that CrABCC1, like its human orthologue ABCC10, produces alternative transcripts that encode protein sequences with a truncated form of TMD0 without the first transmembrane span (TM1). Subcellular localization of CrABCC1 TMD0 variants using yellow fluorescent protein fusions reveals that the TM1 is required for a correct routing of the TMD0 to the tonoplast. Finally, the specific repartition of CrABCC1 orthologues in some species suggests that this gene was lost several times during evolution and that its physiological function may, rely on a common feature of multicellular eukaryotes. PMID:24840820

  8. Application of natural deep eutectic solvents to the extraction of anthocyanins from Catharanthus roseus with high extractability and stability replacing conventional organic solvents.

    PubMed

    Dai, Yuntao; Rozema, Evelien; Verpoorte, Robert; Choi, Young Hae

    2016-02-19

    Natural deep eutectic solvents (NADES) have attracted a great deal of attention in recent times as promising green media. They are generally composed of neutral, acidic or basic compounds that form liquids of high viscosity when mixed in certain molar ratio. Despite their potential, viscosity and acid or basic nature of some ingredients may affect the extraction capacity and stabilizing ability of the target compounds. To investigate these effects, extraction with a series of NADES was employed for the analysis of anthocyanins in flower petals of Catharanthus roseus in combination with HPLC-DAD-based metabolic profiling. Along with the extraction yields of anthocyanins their stability in NADES was also studied. Multivariate data analysis indicates that the lactic acid-glucose (LGH), and 1,2-propanediol-choline chloride (PCH) NADES present a similar extraction power for anthocyanins as conventional organic solvents. Furthermore, among the NADES employed, LGH exhibits an at least three times higher stabilizing capacity for cyanidins than acidified ethanol, which facilitates their extraction and analysis process. Comparing NADES to the conventional organic solvents, in addition to their reduced environmental impact, they proved to provide higher stability for anthocyanins, and therefore have a great potential as possible alternatives to those organic solvents in health related areas such as food, pharmaceuticals and cosmetics. PMID:26822320

  9. Isolation of Genes that Are Preferentially Expressed at the G1/S Boundary during the Cell Cycle in Synchronized Cultures of Catharanthus roseus Cells 1

    PubMed Central

    Kodama, Hiroaki; Ito, Masaki; Hattori, Tsukaho; Nakamura, Kenzo; Komamine, Atsushi

    1991-01-01

    A cDNA library was screened for genes that may be involved in the progression of the cell cycle of cells of higher plants. The Catharanthus roseus L. (G) Don. cells were synchronized by the double phosphate starvation method, and a λgt11 cDNA library was prepared using poly(A)+ RNA from cells in the S phase of the cell cycle. Two independent sequences, cyc02 and cyc07, were identified by differential screening. The levels of cyc02 and cyc07 mRNAs increased dramatically, but transiently, at the G1/S boundary of the cell cycle. High levels of cyc02 mRNA, but not of cyc07 mRNA, were also present in cells arrested at the G1 phase by phosphate starvation. In an asynchronous batch culture, cyc02 and cyc07 mRNAs accumulated transiently at different stages of the growth cycle, cyc02 mRNA early in the stationary phase, and cyc07 mRNA in the midlogarithmic phase. When the proliferation of cells was arrested by nutrient starvation, i.e. by sucrose or nitrogen starvation, the relative amounts of the cyc02 and cyc07 mRNAs decreased. These results indicate that cyc02 and cyc07 contain nucleotide sequences from growth-related genes. The analysis of nucleotide sequence of cyc02 shows that the predicted product of this gene is basic and is composed of 101 amino acids. No significant homology to other known proteins was detected. Images Figure 1 Figure 4 Figure 5 PMID:16667998

  10. Three non-autonomous signals collaborate for nuclear targeting of CrMYC2, a Catharanthus roseus bHLH transcription factor

    PubMed Central

    2010-01-01

    Background CrMYC2 is an early jasmonate-responsive bHLH transcription factor involved in the regulation of the expression of the genes of the terpenic indole alkaloid biosynthesis pathway in Catharanthus roseus. In this paper, we identified the amino acid domains necessary for the nuclear targeting of CrMYC2. Findings We examined the intracellular localization of whole CrMYC2 and of various deletion mutants, all fused with GFP, using a transient expression assay in onion epidermal cells. Sequence analysis of this protein revealed the presence of four putative basic nuclear localization signals (NLS). Assays showed that none of the predicted NLS is active alone. Further functional dissection of CrMYC2 showed that the nuclear targeting of this transcription factor involves the cooperation of three domains located in the C-terminal region of the protein. The first two domains are located at amino acid residues 454-510 and 510-562 and contain basic classical monopartite NLSs; these regions are referred to as NLS3 (KRPRKR) and NLS4 (EAERQRREK), respectively. The third domain, between residues 617 and 652, is rich in basic amino acids that are well conserved in other phylogenetically related bHLH transcription factors. Our data revealed that these three domains are inactive when isolated but act cooperatively to target CrMYC2 to the nucleus. Conclusions This study identified three amino acid domains that act in cooperation to target the CrMYC2 transcription factor to the nucleus. Further fine structure/function analysis of these amino acid domains will allow the identification of new NLS domains and will allow the investigation of the related molecular mechanisms involved in the nuclear targeting of the CrMYC2 bHLH transcription factor. PMID:21073696

  11. Ethylene-Induced Vinblastine Accumulation Is Related to Activated Expression of Downstream TIA Pathway Genes in Catharanthus roseus

    PubMed Central

    Wang, Xi; Pan, Ya-Jie; Chang, Bo-Wen; Hu, Yan-Bo; Guo, Xiao-Rui; Tang, Zhong-Hua

    2016-01-01

    We selected different concentrations of ethephon, to stress C. roseus. We used qRT-PCR and HPLC followed by PCA to obtain comprehensive profiling of the vinblastine biosynthesis in response to ethephon. Based on our findings, the results showed that the high concentration of ethephon had a positive effect at both transcriptional and metabolite level. Meanwhile, there was a remarkable decrease of hydrogen peroxide content and a promoted peroxidase activity in leaves. The loading plot combination with correlation analysis suggested that CrPrx1 could be regarded as a positive regulator and interacts with ethylene response factor (ERF) to play a key role in vinblastine content and peroxidase (POD) activity. This study provides the foundation for a better understanding of the regulation and accumulation of vinblastine in response to ethephon. PMID:27314017

  12. Ethylene-Induced Vinblastine Accumulation Is Related to Activated Expression of Downstream TIA Pathway Genes in Catharanthus roseus.

    PubMed

    Wang, Xi; Pan, Ya-Jie; Chang, Bo-Wen; Hu, Yan-Bo; Guo, Xiao-Rui; Tang, Zhong-Hua

    2016-01-01

    We selected different concentrations of ethephon, to stress C. roseus. We used qRT-PCR and HPLC followed by PCA to obtain comprehensive profiling of the vinblastine biosynthesis in response to ethephon. Based on our findings, the results showed that the high concentration of ethephon had a positive effect at both transcriptional and metabolite level. Meanwhile, there was a remarkable decrease of hydrogen peroxide content and a promoted peroxidase activity in leaves. The loading plot combination with correlation analysis suggested that CrPrx1 could be regarded as a positive regulator and interacts with ethylene response factor (ERF) to play a key role in vinblastine content and peroxidase (POD) activity. This study provides the foundation for a better understanding of the regulation and accumulation of vinblastine in response to ethephon. PMID:27314017

  13. Over-expression of Catharanthus roseus tryptophan decarboxylase and strictosidine synthase in rol gene integrated transgenic cell suspensions of Vinca minor.

    PubMed

    Verma, Priyanka; Sharma, Abhishek; Khan, Shamshad Ahmad; Shanker, Karuna; Mathur, Ajay K

    2015-01-01

    Tryptophan decarboxylase (TDC) and strictosidine synthase (STR) genes from Catharanthus roseus have been successfully over-expressed in the rol gene integrated cell suspensions of V. minor. Thirty seconds SAAT (sonication-assisted Agrobacterium transformation) treatment of plant cell suspension with LBA1119 having construct () generated three stable TDC + STR over-expressing cell lines--PVG1, PVG2, and PVG3. The transgenes were confirmed by β-glucuronidase GUS histochemical assay and PCR amplification of rol genes/GUS gene. All the three cell suspension lines were found to be slow growing. In comparison to the control cell suspensions (GI = 241.0 ± 5.8), PVG3 cell line registered a growth index (GI) of 208.0 ± 10.0 followed by PVG1 (GI = 140.0 ± 14.2) and PVG2 (GI = 85.0 ± 9.6). The PVG3 cell line was also up-scaled in the 5-l stirred tank bioreactor with GI of 745.6 ± 35.3 under optimized parameters. Only PVG3 line registered a twofold increase in total alkaloid content (2.1 ± 0.1% dry wt.) and showed vincamine presence (0.003 ± 0.001% dry wt.) which was further enhanced at the bioreactor level (2.7 ± 0.3 and 0.005 ± 0.001% dry wt., respectively). Real-time (RT) qPCR analysis of PVG3 showed more than sevenfold to eightfold increase in TDC and STR expression [relative quantity value (RQ) = 7.6 ± 0.8 (TDC); RQ = 8.5 ± 0.9 (STR)]. PMID:25106473

  14. Identification of a Bipartite Jasmonate-Responsive Promoter Element in the Catharanthus roseus ORCA3 Transcription Factor Gene That Interacts Specifically with AT-Hook DNA-Binding Proteins1[W

    PubMed Central

    Vom Endt, Débora; Soares e Silva, Marina; Kijne, Jan W.; Pasquali, Giancarlo; Memelink, Johan

    2007-01-01

    Jasmonates are plant signaling molecules that play key roles in defense against certain pathogens and insects, among others, by controlling the biosynthesis of protective secondary metabolites. In Catharanthus roseus, the APETALA2-domain transcription factor ORCA3 is involved in the jasmonate-responsive activation of terpenoid indole alkaloid biosynthetic genes. ORCA3 gene expression is itself induced by jasmonate. By loss- and gain-of-function experiments, we located a 74-bp region within the ORCA3 promoter, which contains an autonomous jasmonate-responsive element (JRE). The ORCA3 JRE is composed of two important sequences: a quantitative sequence responsible for a high level of expression and a qualitative sequence that appears to act as an on/off switch in response to methyl jasmonate. We isolated 12 different DNA-binding proteins having one of four different types of DNA-binding domains, using the ORCA3 JRE as bait in a yeast (Saccharomyces cerevisiae) one-hybrid transcription factor screening. The binding of one class of proteins bearing a single AT-hook DNA-binding motif was affected by mutations in the quantitative sequence within the JRE. Two of the AT-hook proteins tested had a weak activating effect on JRE-mediated reporter gene expression, suggesting that AT-hook family members may be involved in determining the level of expression of ORCA3 in response to jasmonate. PMID:17496112

  15. Effects of ambient and elevated CO2 on growth, chlorophyll fluorescence, photosynthetic pigments, antioxidants, and secondary metabolites of Catharanthus roseus (L.) G Don. grown under three different soil N levels.

    PubMed

    Singh, Aradhana; Agrawal, Madhoolika

    2015-03-01

    Catharanthus roseus L. plants were grown under ambient (375 ± 30 ppm) and elevated (560 ± 25 ppm) concentrations of atmospheric CO2 at different rates of N supply (without supplemental N, 0 kg N ha(-1); recommended N, 50 kg N ha(-1); and double recommended N, 100 kg N ha(-1)) in open top chambers under field condition. Elevated CO2 significantly increased photosynthetic pigments, photosynthetic efficiency, and organic carbon content in leaves at recommended (RN) and double recommended N (DRN), while significantly decreased total nitrogen content in without supplemental N (WSN). Activities of superoxide dismutase, catalase, and ascorbate peroxidase were declined, while glutathione reductase, peroxidase, and phenylalanine-ammonia lyase were stimulated under elevated CO2. However, the responses of the above enzymes were modified with different rates of N supply. Elevated CO2 significantly reduced superoxide production rate, hydrogen peroxide, and malondialdehyde contents in RN and DRN. Compared with ambient, total alkaloids content increased maximally at recommended level of N, while total phenolics in WSN under elevated CO2. Elevated CO2 stimulated growth of plants by increasing plant height and numbers of branches and leaves, and the magnitude of increment were maximum in DRN. The study suggests that elevated CO2 has positively affected plants by increasing growth and alkaloids production and reducing the level of oxidative stress. However, the positive effects of elevated CO2 were comparatively lesser in plants grown under limited N availability than in moderate and higher N availability. Furthermore, the excess N supply in DRN has stimulated the growth but not the alkaloids production under elevated CO2. PMID:25304238

  16. Phytic Acid Synthesis and Vacuolar Accumulation in Suspension-Cultured Cells of Catharanthus roseus Induced by High Concentration of Inorganic Phosphate and Cations1[w

    PubMed Central

    Mitsuhashi, Naoto; Ohnishi, Miwa; Sekiguchi, Yoko; Kwon, Yong-Uk; Chang, Young-Tae; Chung, Sung-Kee; Inoue, Yoshinori; Reid, Robert J.; Yagisawa, Hitoshi; Mimura, Tetsuro

    2005-01-01

    We have established a new system for studying phytic acid, myo-inositol hexakisphosphate (InsP6) synthesis in suspension-cultured cells of Catharanthus. InsP6 and other intermediates of myo-inositol (Ins) phosphate metabolism were measured using an ion chromatography method. The detection limit for InsP6 was less than 50 nm, which was sufficient to analyze Ins phosphates in living cells. Synthesis of Ins phosphates was induced by incubation in high inorganic phosphate medium. InsP6 was mainly accumulated in vacuoles and was enhanced when cells were grown in high concentration of inorganic phosphates with the cations K+, Ca2+, or Zn2+. However, there was a strong tendency for InsP6 to accumulate in the vacuole in the presence of Ca2+ and in nonvacuolar compartments when supplied with Zn2+, possibly due to precipitation of InsP6 with Zn2+ in the cytosol. A vesicle transport inhibitor, brefeldin A, stimulated InsP6 accumulation. The amounts of both Ins(3)P1 myo-inositol monophosphate synthase, a key enzyme for InsP6 synthesis, and Ins(1,4,5)P3 kinase were unrelated to the level of accumulation of InsP6. The mechanisms for InsP6 synthesis and localization into vacuoles in plant cells are discussed. PMID:15965017

  17. Tryptophan over-producing cell suspensions of Catharanthus roseus (L) G. Don and their up-scaling in stirred tank bioreactor: detection of a phenolic compound with antioxidant potential.

    PubMed

    Verma, Priyanka; Mathur, Ajay K; Masood, Nusrat; Luqman, Suaib; Shanker, Karuna

    2013-02-01

    Five cell suspension lines of Catharanthus roseus resistant to 5-methyl tryptophan (5-MT; an analogue of tryptophan) were selected and characterized for growth, free tryptophan content and terpenoid indole alkaloid accumulation. These lines showed differential tolerance to analogue-induced growth inhibition by 30 to 70 mg/l 5-MT supplementation (LD(50) = 7-15 mg/l). Lines P40, D40, N30, D50 and P70 recorded growth indices (i.e. percent increment over the initial inoculum weight) of 840.9, 765.0, 643.9, 585.7 and 356.5 in the absence and, 656.7, 573.9, 705.8, 489.0 and 236.0 in the presence of 5-MT after 40 days of culture, respectively. A corresponding increment in the free tryptophan level ranging from 46.7 to 160.0 μg/g dry weight in the absence and 168.0 to 468.0 μg/g dry weight in the presence was noted in the variant lines. Higher tryptophan accumulation of 368.0 and 468.0 g/g dry weight in lines N30 and P40 in 5-MT presence also resulted in higher alkaloid accumulation (0.65 to 0.90 % dry weight) in them. High-performance liquid chromatography (HPLC) analysis of the crude alkaloid extracts of the selected lines did not show the presence of any pharmaceutically important monomeric or dimeric alkaloids except catharanthine in traces in the N30 line that was also unique in terms of a chlorophyllous green phenotype. The N30 line under optimized up-scaling conditions in a 7-l stirred tank bioreactor using Murashige and Skoog medium containing 2 mg/l α-naphthalene acetic acid and 0.2 mg/l kinetin attained 18-folds biomass accumulation within 8 weeks. Interestingly, the cell biomass yield was enhanced to 30-folds if 30 mg/l 5-MT was added in the bioreactor vessel one week prior to harvest. Crude alkaloid extract of the cells grown in shake flask and this bioreactor batch also showed the formation of yellow-coloured crystals which upon (1)HNMR and ESI-MS analysis indicated a phenolic identity. This crude alkaloid extract of bioreactor-harvested cells containing

  18. Phytochrome Is Involved in the Light-Regulation of Vindoline Biosynthesis in Catharanthus1

    PubMed Central

    Aerts, Rob J.; De Luca, Vincenzo

    1992-01-01

    The enzyme acetylcoenzyme A:deacetylvindoline 4-O-acetyl-transferase (DAT) catalyzes the final step in the biosynthesis of the monoterpenoid indole alkaloid, vindoline. Previous studies have shown that the appearance of DAT activity in etiolated seedlings of Catharanthus roseus is induced by exposure of seedlings to light and that enzyme activity is restricted principally to the cotyledons. Evidence is now presented that phytochrome is involved in the light-mediated induction of DAT activity in Catharanthus cotyledons. PMID:16653011

  19. A look inside an alkaloid multisite plant: the Catharanthus logistics.

    PubMed

    Courdavault, Vincent; Papon, Nicolas; Clastre, Marc; Giglioli-Guivarc'h, Nathalie; St-Pierre, Benoit; Burlat, Vincent

    2014-06-01

    Environmental pressures forced plants to diversify specialized metabolisms to accumulate noxious molecules such as alkaloids constituting one of the largest classes of defense metabolites. Catharanthus roseus produces monoterpene indole alkaloids via a highly elaborated biosynthetic pathway whose characterization greatly progressed with the recent expansion of transcriptomic resources. The complex architecture of this pathway, sequentially distributed in at least four cell types and further compartmentalized into several organelles, involves partially identified inter-cellular and intra-cellular translocation events acting as potential key-regulators of metabolic fluxes. The description of this spatial organization and the inherent secretion and sequestration of metabolites not only provide new insight into alkaloid cell biology and its involvement in plant defense processes but also present new biotechnological challenges for synthetic biology. PMID:24727073

  20. Estimating Mesophyll Conductance in the Tropical Rainforest

    NASA Astrophysics Data System (ADS)

    Coughlin, I.

    2015-12-01

    In the current research modeling the carbon cycle, some of the biggest setbacks are methodological barriers to calculating the gross primary production (GPP) in the terrestrial biosphere. However, recent developments in high precision gas measurements now allow the use of COS as a potential tracer for determination of GPP, independently of CO2 .Since the tropics are implicated as being the source of the most significant reduction of carbon uptake by the majority of models, making accurate GPP measurements in the tropics is particularly important for carbon modeling. In order to constrain measurements of GPP in the tropics, carbonyl sulfide fluxes on a leaf chamber scale and a canopy-wide scale will be analyzed in a field site in the central Amazon. Accompanying this experiment, I am measuring the resistance of CO2 passing through the intercellular airspaces in the leaf to the sites of carboxylation, known as mesophyll conductance. Mesophyll conductance is poorly documented in the tropics, and remains a centrally limiting factor in plant uptake of COS and CO2 - with upward estimates of 40% of the CO2 diffusional limitation of photosynthesis hinging on mesophyll conductance (Warren, 2008). This makes mesophyll conductance comparable in magnitude to that of the stomatal conductance, suggesting that mesophyll conductance is one of the most fundamental measurements necessary for developing the predictive capacity of plants' response to ecosystem changes. Accurate measurements of the mesophyll conductance also lead to better informed models that can upscale assimilation measurements from leaf chambers, by providing quantitative constraints for modeling the uptake of carbonyl sulfide and carbon dioxide by the leaf. Additionally, since mesophyll conductance reacts to environmental variation, it can be used as an indicator for leaf stress. Measurements are taken using the 'variable J' technique, involving the use of combined fluorescence measurements and gas exchange data

  1. Auxins Induce Tryptophan Decarboxylase Activity in Radicles of Catharanthus Seedlings 1

    PubMed Central

    Aerts, Rob J.; Alarco, Anne-Marie; De Luca, Vincenzo

    1992-01-01

    Germinating seedlings of Catharanthus roseus produce monoterpenoid indole alkaloids as a result of a transient increase of tryptophan decarboxylase (TDC) activity. The influence of auxins on this transient rise of TDC activity was studied. External application of indolebutyric acid or 2,4-dichlorophenoxyacetic acid at a concentration of 20 to 40 μm enhanced and prolonged the rise in TDC activity in developing seedlings. Auxin treatment also influenced the morphology of the seedlings; it induced a shortening and thickening of the hypocotyl and the radicle and promoted the initiation of lateral roots in the radicle. During development, the radicles of auxin-treated seedlings displayed a gradual increase in TDC activity that was absent in the radicles of untreated controls. Examination of immunoblots revealed anti-TDC reactive proteins in extracts from radicles of auxin-treated seedlings, but none in extracts from radicles of control seedlings. In contrast, TDC activity and immunoreactive protein levels in the aerial parts of controls and auxin-treated seedlings were comparable. Our results indicate that externally applied auxins induce both abnormal development and TDC activity in the radicles of Catharanthus seedlings. Although auxins slightly delayed the light-mediated induction of the cotyledon-specific last step in vindoline biosynthesis (i.e. acetylcoenzyme A: deacetylvindolin-O-acetyltransferase activity), seedlings still synthesized vindoline, one of the major alkaloid end products. Images Figure 2 PMID:16653009

  2. Molecular pharmacokinetics of catharanthus (vinca) alkaloids.

    PubMed

    Levêque, Dominique; Jehl, François

    2007-05-01

    This review focuses on the published data regarding the molecular determinants (enzymes, transporters, orphan nuclear receptors) of Catharanthus (vinca) alkaloids pharmacokinetics in humans. The clinical impact of these determinants (drug disposition, drug-drug interactions) is also discussed. PMID:17442684

  3. Unlocking the diversity of alkaloids in Catharanthus roseus: nuclear localization suggests metabolic channeling in secondary metabolism.

    PubMed

    Stavrinides, Anna; Tatsis, Evangelos C; Foureau, Emilien; Caputi, Lorenzo; Kellner, Franziska; Courdavault, Vincent; O'Connor, Sarah E

    2015-03-19

    The extraordinary chemical diversity of the plant-derived monoterpene indole alkaloids, which include vinblastine, quinine, and strychnine, originates from a single biosynthetic intermediate, strictosidine aglycone. Here we report for the first time the cloning of a biosynthetic gene and characterization of the corresponding enzyme that acts at this crucial branchpoint. This enzyme, an alcohol dehydrogenase homolog, converts strictosidine aglycone to the heteroyohimbine-type alkaloid tetrahydroalstonine. We also demonstrate how this enzyme, which uses a highly reactive substrate, may interact with the upstream enzyme of the pathway. PMID:25772467

  4. Unlocking the Diversity of Alkaloids in Catharanthus roseus: Nuclear Localization Suggests Metabolic Channeling in Secondary Metabolism

    PubMed Central

    Stavrinides, Anna; Tatsis, Evangelos C.; Foureau, Emilien; Caputi, Lorenzo; Kellner, Franziska; Courdavault, Vincent; O’Connor, Sarah E.

    2015-01-01

    Summary The extraordinary chemical diversity of the plant-derived monoterpene indole alkaloids, which include vinblastine, quinine, and strychnine, originates from a single biosynthetic intermediate, strictosidine aglycone. Here we report for the first time the cloning of a biosynthetic gene and characterization of the corresponding enzyme that acts at this crucial branchpoint. This enzyme, an alcohol dehydrogenase homolog, converts strictosidine aglycone to the heteroyohimbine-type alkaloid tetrahydroalstonine. We also demonstrate how this enzyme, which uses a highly reactive substrate, may interact with the upstream enzyme of the pathway. PMID:25772467

  5. Candidatus Phytoplasma malaysianum, a novel taxon associated with virescence and phyllody of Madagascar periwinkle (Catharanthus roseus)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study addressed the taxonomic position and group classification of a phytoplasma responsible for virescence and phyllody symptoms in naturally diseased Madagascar periwinkle plants in western Malaysia. Unique regions in the 16S rRNA gene from the Malaysian periwinkle virescence (MaPV) phytopla...

  6. Production of Annual Vinca (Catharanthus roseus) in WholeTree Substrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to evaluate the potential use of container substrates composed of processed whole pine trees (WholeTree). Three species [loblolly pine (Pinus taeda), slash pine (Pinus elliottii) and longleaf pine (Pinus palustris)] of 8-10 year old pine trees were harvested at groun...

  7. 'Candidatus Phytoplasma malaysianum', a novel taxon associated with virescence and phyllody of Madagascar periwinkle (Catharanthus roseus).

    PubMed

    Nejat, Naghmeh; Vadamalai, Ganesan; Davis, Robert E; Harrison, Nigel A; Sijam, Kamaruzaman; Dickinson, Matthew; Abdullah, Siti Nor Akmar; Zhao, Yan

    2013-02-01

    This study addressed the taxonomic position and group classification of a phytoplasma responsible for virescence and phyllody symptoms in naturally diseased Madagascar periwinkle plants in western Malaysia. Unique regions in the 16S rRNA gene from the Malaysian periwinkle virescence (MaPV) phytoplasma distinguished the phytoplasma from all previously described 'Candidatus Phytoplasma' species. Pairwise sequence similarity scores, calculated through alignment of full-length 16S rRNA gene sequences, revealed that the MaPV phytoplasma 16S rRNA gene shared 96.5 % or less sequence similarity with that of previously described 'Ca. Phytoplasma' species, justifying the recognition of the MaPV phytoplasma as a reference strain of a novel taxon, 'Candidatus Phytoplasma malaysianum'. The 16S rRNA gene F2nR2 fragment from the MaPV phytoplasma exhibited a distinct restriction fragment length polymorphism (RFLP) profile and the pattern similarity coefficient values were lower than 0.85 with representative phytoplasmas classified in any of the 31 previously delineated 16Sr groups; therefore, the MaPV phytoplasma was designated a member of a new 16Sr group, 16SrXXXII. Phytoplasmas affiliated with this novel taxon and the new group included diverse strains infecting periwinkle, coconut palm and oil palm in Malaysia. Three phytoplasmas were characterized as representatives of three distinct subgroups, 16SrXXXII-A, 16SrXXXII-B and 16SrXXXII-C, respectively. PMID:22523165

  8. Phytoremediation of TNT: C. roseus hairy roots as a model system

    SciTech Connect

    Lauritzen, J.R.; Hughes, J.B.; Shanks, J.V.

    1996-12-31

    Widespread contamination by 2,4,6-trinitrotoluene (TNT) of Soil exists at former munitions production and handling facilities. Phytoremediation may be an effective alternative to existing methods of TNT remediation: incineration is highly expensive and recalcitrant reduction products are formed in composting. Recently, the intrinsic ability of plants to transform TNT has been demonstrated using hairy root cultures of Catharanthus roseus as a model system. Kinetic studies were performed at concentrations of 30 and 50 mg/L TNT in growth medium. The pseudo-first order rate constants for disappearance ranged from 0.0103 to 0.0161 (L/g-day); TNT disappears completely within seven to ten days of exposure. The fate of the TNT molecule in plants is also currently under study, mass balance studies were performed with 1-{sup 14}C TNT. After a seven day exposure period, 72% of the label was associated with the roots and 30% was associated with the medium. However, HPLC analysis shows that less than 5% (wt%) of the TNT added is recoverable from both the plants and the media in the form of reduction products. 11 refs., 2 figs.

  9. TEMPRANILLO Reveals the Mesophyll as Crucial for Epidermal Trichome Formation.

    PubMed

    Matías-Hernández, Luis; Aguilar-Jaramillo, Andrea E; Osnato, Michela; Weinstain, Roy; Shani, Eilon; Suárez-López, Paula; Pelaz, Soraya

    2016-03-01

    Plant trichomes are defensive specialized epidermal cells. In all accepted models, the epidermis is the layer involved in trichome formation, a process controlled by gibberellins (GAs) in Arabidopsis rosette leaves. Indeed, GA activates a genetic cascade in the epidermis for trichome initiation. Here we report that TEMPRANILLO (TEM) genes negatively control trichome initiation not only from the epidermis but also from the leaf layer underneath the epidermis, the mesophyll. Plants over-expressing or reducing TEM specifically in the mesophyll, display lower or higher trichome numbers, respectively. We surprisingly found that fluorescently labeled GA3 accumulates exclusively in the mesophyll of leaves, but not in the epidermis, and that TEM reduces its accumulation and the expression of several newly identified GA transporters. This strongly suggests that TEM plays an essential role, not only in GA biosynthesis, but also in regulating GA distribution in the mesophyll, which in turn directs epidermal trichome formation. Moreover, we show that TEM also acts as a link between GA and cytokinin signaling in the epidermis by negatively regulating downstream genes of both trichome formation pathways. Overall, these results call for a re-evaluation of the present theories of trichome formation as they reveal mesophyll essential during epidermal trichome initiation. PMID:26802039

  10. Variable rsponses of mesophyll conductance to substomatal carbon dioxide concentration in common bean and soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some reports indicate that mesophyll conductance to carbon dioxide varies greatly with the sub-stomatal carbon dioxide concentration during the measurement, while other reports indicate little or no change. I used the oxygen sensitivity of photosynthesis to determine the response of mesophyll condu...

  11. Evaluation of antimicrobial activity of extracts of in vivo and in vitro grown Vinca rosea L. (Catharanthus roseus) against pathogens.

    PubMed

    Naz, Shagufta; Haq, Rukhama; Aslam, Farah; Ilyas, Saiqa

    2015-05-01

    The antimicrobial activity of Vinca rosea was evaluated against pathogenic bacterial strains (Bacillus subtilis, B. licheniformis and Azotobacter sp.) and fungal strains (Asprgillus niger, Alternaria solani and Rhizopus oryzae) using agar well diffusion method. Methanolic extracts of in vivo leaf, in vitro leaf, in vitro calluses of leaf, nodal and fruit explants were used and exhibited antimicrobial activity as indicated by minimum inhibitory concentration (MIC). In vitro extracts showed better results as compared to the in vivo extracts for both the antibacterial as well as the antifungal activity. Among all the extracts, maximum zone of inhibition (30.3 mm ± 0.58(a)) was formed by in vitro leaf callus extract concentration of 2.0mg/ml against B. licheniformis. Similarly in case of antifungal activity, maximum zone of inhibition (34.6mm ± 0.57(a)) was formed by in vitro leaf callus extract and MIC value is 6.0mg/ml against A. niger. Hence these results clearly depicts that V. rosea possess a great strength to fight against the microbial activity and can be used against various infections. PMID:26004716

  12. Enhancement of vindoline and vinblastine production in suspension-cultured cells of Catharanthus roseus by artemisinic acid elicitation.

    PubMed

    Liu, Jinwei; Zhu, Jianhua; Tang, Le; Wen, Wei; Lv, Shuangshuang; Yu, Rongmin

    2014-01-01

    Elicitation is an important strategy to improve production of secondary metabolites in vitro. Artemisinic acid was studied as a novel elicitor to enhance the yield of terpenoid indole alkaloids in the present paper. Our results demonstrated that the concentrations of vindoline and vinblastine were increased by sixfold and twofold, respectively, compared to those of the control group after treatment with artemisinic acid. To elucidate the underlying mechanism, we investigated the gene expression of four enzymes involved in the biosynthetic pathway of vinblastine in the suspension-cultured cells of Catharanthu sroseus. RT-PCR experiment showed that artemisinic acid was able to up-regulate the transcriptions of tryptophan decarboxylase, geraniol 10-hydroxylase, tabersonine 16-hydroxylase and deacetoxyvindoline 4-hydroxylase. PMID:23864440

  13. Expression Patterns of Genes Involved in the Defense and Stress Response of Spiroplasma citri Infected Madagascar Periwinkle Catharanthus roseus

    PubMed Central

    Nejat, Naghmeh; Vadamalai, Ganesan; Dickinson, Matthew

    2012-01-01

    Madagascar periwinkle is an ornamental and a medicinal plant, and is also an indicator plant that is highly susceptible to phytoplasma and spiroplasma infections from different crops. Periwinkle lethal yellows, caused by Spiroplasma citri, is one of the most devastating diseases of periwinkle. The response of plants to S. citri infection is very little known at the transcriptome level. In this study, quantitative real-time PCR (RT-qPCR) was used to investigate the expression levels of four selected genes involved in defense and stress responses in naturally and experimentally Spiroplasma citri infected periwinkles. Strictosidine β-glucosidase involved in terpenoid indole alkaloids (TIAs) biosynthesis pathway showed significant upregulation in experimentally and naturally infected periwinkles. The transcript level of extensin increased in leaves of periwinkles experimentally infected by S. citri in comparison to healthy ones. A similar level of heat shock protein 90 and metallothionein expression was observed in healthy, naturally and experimentally spiroplasma-diseased periwinkles. Overexpression of Strictosidine β-glucosidase demonstrates the potential utility of this gene as a host biomarker to increase the fidelity of S. citri detection and can also be used in breeding programs to develop stable disease-resistance varieties. PMID:22408455

  14. Genotypically Identifying Wheat Mesophyll Conductance Regulation under Progressive Drought Stress.

    PubMed

    Olsovska, Katarina; Kovar, Marek; Brestic, Marian; Zivcak, Marek; Slamka, Pavol; Shao, Hong Bo

    2016-01-01

    Photosynthesis limitation by CO2 flow constraints from sub-stomatal cavities to carboxylation sites in chloroplasts under drought stress conditions is, at least in some plant species or crops not fully understood, yet. Leaf mesophyll conductance for CO2 (gm) may considerably affect both photosynthesis and water use efficiency (WUE) in plants under drought conditions. The aim of our study was to detect the responses of gm in leaves of four winter wheat (Triticum aestivum L.) genotypes from different origins under long-term progressive drought. Based on the measurement of gas-exchange parameters the variability of genotypic responses was analyzed at stomatal (stomata closure) and non-stomatal (diffusional and biochemical) limits of net CO2 assimilation rate (AN). In general, progressive drought caused an increasing leaf diffusion resistance against CO2 flow leading to the decrease of AN, gm and stomatal conductance (gs), respectively. Reduction of gm also led to inhibition of carboxylation efficiency (Vcmax). On the basis of achieved results a strong positive relationship between gm and gs was found out indicating a co-regulation and mutual independence of the relationship under the drought conditions. In severely stressed plants, the stomatal limitation of the CO2 assimilation rate was progressively increased, but to a less extent in comparison to gm, while a non-stomatal limitation became more dominant due to the prolonged drought. Mesophyll conductance (gm) seems to be a suitable mechanism and parameter for selection of improved diffusional properties and photosynthetic carbon assimilation in C3 plants, thus explaining their better photosynthetic performance at a whole plant level during periods of drought. PMID:27551283

  15. Genotypically Identifying Wheat Mesophyll Conductance Regulation under Progressive Drought Stress

    PubMed Central

    Olsovska, Katarina; Kovar, Marek; Brestic, Marian; Zivcak, Marek; Slamka, Pavol; Shao, Hong Bo

    2016-01-01

    Photosynthesis limitation by CO2 flow constraints from sub-stomatal cavities to carboxylation sites in chloroplasts under drought stress conditions is, at least in some plant species or crops not fully understood, yet. Leaf mesophyll conductance for CO2 (gm) may considerably affect both photosynthesis and water use efficiency (WUE) in plants under drought conditions. The aim of our study was to detect the responses of gm in leaves of four winter wheat (Triticum aestivum L.) genotypes from different origins under long-term progressive drought. Based on the measurement of gas-exchange parameters the variability of genotypic responses was analyzed at stomatal (stomata closure) and non-stomatal (diffusional and biochemical) limits of net CO2 assimilation rate (AN). In general, progressive drought caused an increasing leaf diffusion resistance against CO2 flow leading to the decrease of AN, gm and stomatal conductance (gs), respectively. Reduction of gm also led to inhibition of carboxylation efficiency (Vcmax). On the basis of achieved results a strong positive relationship between gm and gs was found out indicating a co-regulation and mutual independence of the relationship under the drought conditions. In severely stressed plants, the stomatal limitation of the CO2 assimilation rate was progressively increased, but to a less extent in comparison to gm, while a non-stomatal limitation became more dominant due to the prolonged drought. Mesophyll conductance (gm) seems to be a suitable mechanism and parameter for selection of improved diffusional properties and photosynthetic carbon assimilation in C3 plants, thus explaining their better photosynthetic performance at a whole plant level during periods of drought. PMID:27551283

  16. Programmed Cell Death Progresses Differentially in Epidermal and Mesophyll Cells of Lily Petals.

    PubMed

    Mochizuki-Kawai, Hiroko; Niki, Tomoko; Shibuya, Kenichi; Ichimura, Kazuo

    2015-01-01

    In the petals of some species of flowers, programmed cell death (PCD) begins earlier in mesophyll cells than in epidermal cells. However, PCD progression in each cell type has not been characterized in detail. We separately constructed a time course of biochemical signs and expression patterns of PCD-associated genes in epidermal and mesophyll cells in Lilium cv. Yelloween petals. Before visible signs of senescence could be observed, we found signs of PCD, including DNA degradation and decreased protein content in mesophyll cells only. In these cells, the total proteinase activity increased on the day after anthesis. Within 3 days after anthesis, the protein content decreased by 61.8%, and 22.8% of mesophyll cells was lost. A second peak of proteinase activity was observed on day 6, and the number of mesophyll cells decreased again from days 4 to 7. These biochemical and morphological results suggest that PCD progressed in steps during flower life in the mesophyll cells. PCD began in epidermal cells on day 5, in temporal synchrony with the time course of visible senescence. In the mesophyll cells, the KDEL-tailed cysteine proteinase (LoCYP) and S1/P1 nuclease (LoNUC) genes were upregulated before petal wilting, earlier than in epidermal cells. In contrast, relative to that in the mesophyll cells, the expression of the SAG12 cysteine proteinase homolog (LoSAG12) drastically increased in epidermal cells in the final stage of senescence. These results suggest that multiple PCD-associated genes differentially contribute to the time lag of PCD progression between epidermal and mesophyll cells of lily petals. PMID:26605547

  17. Programmed Cell Death Progresses Differentially in Epidermal and Mesophyll Cells of Lily Petals

    PubMed Central

    Mochizuki-Kawai, Hiroko; Niki, Tomoko; Shibuya, Kenichi; Ichimura, Kazuo

    2015-01-01

    In the petals of some species of flowers, programmed cell death (PCD) begins earlier in mesophyll cells than in epidermal cells. However, PCD progression in each cell type has not been characterized in detail. We separately constructed a time course of biochemical signs and expression patterns of PCD-associated genes in epidermal and mesophyll cells in Lilium cv. Yelloween petals. Before visible signs of senescence could be observed, we found signs of PCD, including DNA degradation and decreased protein content in mesophyll cells only. In these cells, the total proteinase activity increased on the day after anthesis. Within 3 days after anthesis, the protein content decreased by 61.8%, and 22.8% of mesophyll cells was lost. A second peak of proteinase activity was observed on day 6, and the number of mesophyll cells decreased again from days 4 to 7. These biochemical and morphological results suggest that PCD progressed in steps during flower life in the mesophyll cells. PCD began in epidermal cells on day 5, in temporal synchrony with the time course of visible senescence. In the mesophyll cells, the KDEL-tailed cysteine proteinase (LoCYP) and S1/P1 nuclease (LoNUC) genes were upregulated before petal wilting, earlier than in epidermal cells. In contrast, relative to that in the mesophyll cells, the expression of the SAG12 cysteine proteinase homolog (LoSAG12) drastically increased in epidermal cells in the final stage of senescence. These results suggest that multiple PCD-associated genes differentially contribute to the time lag of PCD progression between epidermal and mesophyll cells of lily petals. PMID:26605547

  18. Unbiased estimation of chloroplast number in mesophyll cells: advantage of a genuine three-dimensional approach

    PubMed Central

    Kubínová, Zuzana

    2014-01-01

    Chloroplast number per cell is a frequently examined quantitative anatomical parameter, often estimated by counting chloroplast profiles in two-dimensional (2D) sections of mesophyll cells. However, a mesophyll cell is a three-dimensional (3D) structure and this has to be taken into account when quantifying its internal structure. We compared 2D and 3D approaches to chloroplast counting from different points of view: (i) in practical measurements of mesophyll cells of Norway spruce needles, (ii) in a 3D model of a mesophyll cell with chloroplasts, and (iii) using a theoretical analysis. We applied, for the first time, the stereological method of an optical disector based on counting chloroplasts in stacks of spruce needle optical cross-sections acquired by confocal laser-scanning microscopy. This estimate was compared with counting chloroplast profiles in 2D sections from the same stacks of sections. Comparing practical measurements of mesophyll cells, calculations performed in a 3D model of a cell with chloroplasts as well as a theoretical analysis showed that the 2D approach yielded biased results, while the underestimation could be up to 10-fold. We proved that the frequently used method for counting chloroplasts in a mesophyll cell by counting their profiles in 2D sections did not give correct results. We concluded that the present disector method can be efficiently used for unbiased estimation of chloroplast number per mesophyll cell. This should be the method of choice, especially in coniferous needles and leaves with mesophyll cells with lignified cell walls where maceration methods are difficult or impossible to use. PMID:24336344

  19. Metabolomic Responses of Guard Cells and Mesophyll Cells to Bicarbonate.

    PubMed

    Misra, Biswapriya B; de Armas, Evaldo; Tong, Zhaohui; Chen, Sixue

    2015-01-01

    Anthropogenic CO2 presently at 400 ppm is expected to reach 550 ppm in 2050, an increment expected to affect plant growth and productivity. Paired stomatal guard cells (GCs) are the gate-way for water, CO2, and pathogen, while mesophyll cells (MCs) represent the bulk cell-type of green leaves mainly for photosynthesis. We used the two different cell types, i.e., GCs and MCs from canola (Brassica napus) to profile metabolomic changes upon increased CO2 through supplementation with bicarbonate (HCO3-). Two metabolomics platforms enabled quantification of 268 metabolites in a time-course study to reveal short-term responses. The HCO3- responsive metabolomes of the cell types differed in their responsiveness. The MCs demonstrated increased amino acids, phenylpropanoids, redox metabolites, auxins and cytokinins, all of which were decreased in GCs in response to HCO3-. In addition, the GCs showed differential increases of primary C-metabolites, N-metabolites (e.g., purines and amino acids), and defense-responsive pathways (e.g., alkaloids, phenolics, and flavonoids) as compared to the MCs, indicating differential C/N homeostasis in the cell-types. The metabolomics results provide insights into plant responses and crop productivity under future climatic changes where elevated CO2 conditions are to take center-stage. PMID:26641455

  20. Metabolomic Responses of Guard Cells and Mesophyll Cells to Bicarbonate

    PubMed Central

    Misra, Biswapriya B.; de Armas, Evaldo; Tong, Zhaohui; Chen, Sixue

    2015-01-01

    Anthropogenic CO2 presently at 400 ppm is expected to reach 550 ppm in 2050, an increment expected to affect plant growth and productivity. Paired stomatal guard cells (GCs) are the gate-way for water, CO2, and pathogen, while mesophyll cells (MCs) represent the bulk cell-type of green leaves mainly for photosynthesis. We used the two different cell types, i.e., GCs and MCs from canola (Brassica napus) to profile metabolomic changes upon increased CO2 through supplementation with bicarbonate (HCO3-). Two metabolomics platforms enabled quantification of 268 metabolites in a time-course study to reveal short-term responses. The HCO3- responsive metabolomes of the cell types differed in their responsiveness. The MCs demonstrated increased amino acids, phenylpropanoids, redox metabolites, auxins and cytokinins, all of which were decreased in GCs in response to HCO3-. In addition, the GCs showed differential increases of primary C-metabolites, N-metabolites (e.g., purines and amino acids), and defense-responsive pathways (e.g., alkaloids, phenolics, and flavonoids) as compared to the MCs, indicating differential C/N homeostasis in the cell-types. The metabolomics results provide insights into plant responses and crop productivity under future climatic changes where elevated CO2 conditions are to take center-stage. PMID:26641455

  1. Hymenobacter roseus sp. nov., isolated from sand.

    PubMed

    Subhash, Y; Sasikala, Ch; Ramana, Ch V

    2014-12-01

    Strain JC245(T) was isolated from a sand sample, and appeared as dark pink colonies on agar plates with cells staining Gram-negative. Catalase and oxidase activities were positive. Casein was hydrolysed while chitin, gelatin and starch were not. Major (>5 %) fatty acids were iso-C15 : 0, iso-C15 : 0 3-OH, C16 : 1ω5c, C16 : 1ω6c/C16 : 1ω7c, anteiso-C17 : 1 B/iso-C17 : 1 I and iso-C17 : 0 3-OH. Strain JC245(T) contained phosphatidylethanolamine and two unidentified lipids as the major polar lipids, with minor amounts of four unidentified lipids and an unidentified amino lipid. Bacterial hopane derivatives and adenosylhopane were the major hopanoids. Hydroxyflexixanthin was identified as one of the major carotenoids of strain JC245(T) along with five unidentified carotenoids. The genomic DNA G+C content was 52.5 mol%. 16S rRNA gene sequence comparisons indicated that strain JC245(T) represents a member of the genus Hymenobacter within the family Cytophagaceae of the phylum Bacteroidetes. Strain JC245(T) shared the highest 16S rRNA gene sequence similarity with Hymenobacter roseosalivarius AA-718(T) (98.3 %) and other members of the genus Hymenobacter (<95.1 %). However, strain JC245(T) showed 21±2 % relatedness (based on DNA-DNA hybridization) with H. roseosalivarius DSM 11622(T). Distinct morphological, physiological and genotypic differences from previously described taxa support the classification of strain JC245(T) as a representative of a novel species in the genus Hymenobacter, for which the name Hymenobacter roseus sp. nov. is proposed. The type strain is JC245(T) ( = KCTC 42090(T) = LMG 28260(T)). PMID:25242537

  2. Biodegradation of a synthetic lubricant by Micrococcus roseus

    SciTech Connect

    Wright, M.A.; Taylor, F.; Brown, D.E.; Higgins, I.J. ); Randles, S.J. )

    1993-04-01

    The loss of large quantities of lubricants, both synthetic and mineral oil based, is causing increasing concern because they are not only an unquantified hazard to the environment, but also a potential hazard to the long-term health of people. This study examines the metabolic pathways and eventual fate of synthetic lubricants in micoorganisms involved in biodegradation. The synthetic ester Emkarate 1550 (E1550), which includes a tertiary alcohol (TMP), and the bacterium, Micrococcus roseus were used in the experiments. The results indicate that M. roseus cleaves the E1550 ester by the action of esterases bound to the surface of the cell, with the products released into the surrounding medium. The organic acids, octaoate and decanoate, are taken up and metabolized, whereas the TMP (1,1,1-tri(hydroxymethyl)propane) component is not metabolized and accumulates in the medium. 16 refs., 5 figs., 1 tab.

  3. TEMPRANILLO Reveals the Mesophyll as Crucial for Epidermal Trichome Formation1[OPEN

    PubMed Central

    Aguilar-Jaramillo, Andrea E.; Osnato, Michela; Shani, Eilon

    2016-01-01

    Plant trichomes are defensive specialized epidermal cells. In all accepted models, the epidermis is the layer involved in trichome formation, a process controlled by gibberellins (GAs) in Arabidopsis rosette leaves. Indeed, GA activates a genetic cascade in the epidermis for trichome initiation. Here we report that TEMPRANILLO (TEM) genes negatively control trichome initiation not only from the epidermis but also from the leaf layer underneath the epidermis, the mesophyll. Plants over-expressing or reducing TEM specifically in the mesophyll, display lower or higher trichome numbers, respectively. We surprisingly found that fluorescently labeled GA3 accumulates exclusively in the mesophyll of leaves, but not in the epidermis, and that TEM reduces its accumulation and the expression of several newly identified GA transporters. This strongly suggests that TEM plays an essential role, not only in GA biosynthesis, but also in regulating GA distribution in the mesophyll, which in turn directs epidermal trichome formation. Moreover, we show that TEM also acts as a link between GA and cytokinin signaling in the epidermis by negatively regulating downstream genes of both trichome formation pathways. Overall, these results call for a re-evaluation of the present theories of trichome formation as they reveal mesophyll essential during epidermal trichome initiation. PMID:26802039

  4. Apoplastic mesophyll signals induce rapid stomatal responses to CO2 in Commelina communis.

    PubMed

    Fujita, Takashi; Noguchi, Ko; Terashima, Ichiro

    2013-07-01

    Previous studies have suggested that the mesophyll contributes to stomatal CO(2) responses. The effects of changes in CO(2) concentration (100 or 700 ppm) on stomatal responses in red or white light were examined microscopically in a leaf segment, an epidermal strip and an epidermal strip placed on a mesophyll segment of Commelina communis, all mounted on a buffer-containing gel. In both red and white light, stomata of the leaf segment opened/closed rapidly at low/high CO(2). In red light, epidermal strip stomata barely responded to CO(2). In white light, they opened at low CO(2), but hardly closed at high CO(2). Stomata of the epidermal strip placed on the mesophyll responded in the same manner as those on the leaf segment. Insertion of a doughnut-shaped cellophane spacer (but not polyethylene spacer) between the epidermal strip and the mesophyll hardly altered these responses. Stomata in leaf segments treated with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), a photosynthesis inhibitor, did not open in red light, but opened/closed at low/high CO(2) in white light. These results indicate that the apoplast transfer of 'mesophyll signals' and the stomatal opening at low CO(2) are dependent on photosynthesis, whereas the stomatal closure at high CO(2) is independent of photosynthesis. PMID:23560389

  5. Photorespiratory Properties of Mesophyll Protoplasts of Nicotiana plumbaginifolia

    PubMed Central

    Rey, Pascal; Peltier, Gilles

    1989-01-01

    The photorespiratory activity of mesophyll protoplasts of Nicotiana plumbaginifolia has been clearly demonstrated by the presence of a Warburg-effect, the occurrence of an important CO2-sensitive O2 uptake and the effect of some photorespiratory inhibitors on photosynthetic activity. At a nonsaturating dissolved inorganic carbon (DIC) concentration (0.1 millimolar), we observed that the rate of CO2 fixation was 60% lower at 50% O2 compared to that measured at 2% O2. Using 18O2 and mass spectrometry, we measured O2 exchange as a function of light intensity and of DIC concentration. Oxygen uptake measured at the CO2 compensation point (47.4 micromoles O2 per hour per milligram chlorophyll) was three-fold higher than that measured at a saturating CO2 concentration. Cyanide or iodoacetamide, inhibitors of the Calvin cycle, were found to reduce the O2 uptake to the same extent as CO2 saturation. We conclude from these results that the major part of the CO2-sensitive O2 uptake is due to photorespiration. Further, we investigated the effect on net photosynthesis of some inhibitors of the glycolate pathway. At CO2 saturation (10 millimolar DIC), 5 millimolar aminoacetonitrile (AAN), and 1 millimolar aminooxyacetate (AOA) did not cause any significant decrease in net photosynthesis. However, when these two inhibitors were added under a period of active photorespiration (10 minutes at the CO2 compensation point at 20% O2), we observed a decrease in the rate of net photosynthesis at 10 millimolar DIC measured afterward (respectively, 18 and 29%). This inhibition did not appear at 2% O2, but was stronger at 50% O2 (40% for AAN and 47% for AOA). With 0.05 millimolar butyl 2-hydroxy-3-butynoate (BHB) or 0.5 millimolar l-methionine-dl-sulfoximine (l-MSO), rates of net photosynthesis at 10 millimolar DIC were decreased by 10 to 15%. Additional decreases were observed after a period at the CO2 compensation point at 20% O2 (30% for BHB and 20% for l-MSO). From the sites of action of

  6. Leaf light reflectance, transmittance, absorptance, and optical and geometrical parameters for eleven plant genera with different leaf mesophyll arrangements.

    NASA Technical Reports Server (NTRS)

    Gausman, H. W.; Allen, W. A.; Wiegand, C. L.; Escobar, D. E.; Rodriguez, R. R.

    1971-01-01

    Review of research on radiation interactions within plant canopies and communities and interactions of various leaf structures (mesophyll arrangements) with electromagnetic radiation involved in the interpretation of data sensed from air or spacecraft. The hypothesis underlying the research reported is that leaf mesophyll arrangements influence spectral energy measurements of leaves.

  7. Isolation of Cells Specialized in Anticancer Alkaloid Metabolism by Fluorescence-Activated Cell Sorting.

    PubMed

    Carqueijeiro, Inês; Guimarães, Ana Luísa; Bettencourt, Sara; Martínez-Cortés, Teresa; Guedes, Joana G; Gardner, Rui; Lopes, Telma; Andrade, Cláudia; Bispo, Cláudia; Martins, Nuno Pimpão; Andrade, Paula; Valentão, Patrícia; Valente, Inês M; Rodrigues, José A; Duarte, Patrícia; Sottomayor, Mariana

    2016-08-01

    Plant specialized metabolism often presents a complex cell-specific compartmentation essential to accomplish the biosynthesis of valuable plant natural products. Hence, the disclosure and potential manipulation of such pathways may depend on the capacity to isolate and characterize specific cell types. Catharanthus roseus is the source of several medicinal terpenoid indole alkaloids, including the low-level anticancer vinblastine and vincristine, for which the late biosynthetic steps occur in specialized mesophyll cells called idioblasts. Here, the optical, fluorescence, and alkaloid-accumulating properties of C. roseus leaf idioblasts are characterized, and a methodology for the isolation of idioblast protoplasts by fluorescence-activated cell sorting is established, taking advantage of the distinctive autofluorescence of these cells. This achievement represents a crucial step for the development of differential omic strategies leading to the identification of candidate genes putatively involved in the biosynthesis, pathway regulation, and transmembrane transport leading to the anticancer alkaloids from C. roseus. PMID:27356972

  8. Catharanthus mosaic virus: A potyvirus from a gymnosperm, Welwitschia mirabilis.

    PubMed

    Koh, Shu Hui; Li, Hua; Admiraal, Ryan; Jones, Michael G K; Wylie, Stephen J

    2015-05-01

    A virus from a symptomatic plant of the gymnosperm Welwitschia mirabilis Hook. growing as an ornamental plant in a domestic garden in Western Australia was inoculated to a plant of Nicotiana benthamiana where it established a systemic infection. The complete genome sequence of 9636 nucleotides was determined using high-throughput and Sanger sequencing technologies. The genome sequence shared greatest identity (83% nucleotides and 91% amino acids) with available partial sequences of catharanthus mosaic virus, indicating that the new isolate belonged to that taxon. Analysis of the phylogeny of the complete virus sequence placed it in a monotypic group in the genus Potyvirus. This is the first record of a virus from W. mirabilis, the first complete genome sequence of catharanthus mosaic virus determined, and the first record from Australia. This finding illustrates the risk to natural and managed systems posed by the international trade in live plants and propagules, which enables viruses to establish in new regions and infect new hosts. PMID:25804761

  9. Single Walled Carbon Nanotubes Exhibit Dual-Phase Regulation to Exposed Arabidopsis Mesophyll Cells

    PubMed Central

    2011-01-01

    Herein we are the first to report that single-walled carbon nanotubes (SWCNTs) exhibit dual-phase regulation to Arabidopsis mesophyll cells exposed to different concentration of SWCNTs. The mesophyll protoplasts were prepared by enzyme digestion, and incubated with 15, 25, 50, 100 μg/ml SWCNTs for 48 h, and then were observed by optical microscopy and transmission electron microscopy, the reactive oxygen species (ROS) generation was measured. Partial protoplasts were stained with propidium iodide and 4'-6- diamidino-2-phenylindole, partial protoplasts were incubated with fluorescein isothiocyanate-labeled SWCNTs, and observed by fluorescence microscopy. Results showed that SWCNTs could traverse both the plant cell wall and cell membrane, with less than or equal to 50 μg/ml in the culture medium, SWCNTs stimulated plant cells to grow out trichome clusters on their surface, with more than 50 μg/ml SWCNTs in the culture medium, SWCNTs exhibited obvious toxic effects to the protoplasts such as increasing generation of ROS, inducing changes of protoplast morphology, changing green leaves into yellow, and inducing protoplast cells' necrosis and apoptosis. In conclusion, single walled carbon nanotubes can get through Arabidopsis mesophyll cell wall and membrane, and exhibit dose-dependent dual-phase regulation to Arabidopsis mesophyll protoplasts such as low dose stimulating cell growth, and high dose inducing cells' ROS generation, necrosis or apoptosis.

  10. Factors affecting polyhydroxybutyrate accumulation in mesophyll cells of sugarcane and switchgrass

    PubMed Central

    2014-01-01

    Background Polyhydroxyalkanoates are linear biodegradable polyesters produced by bacteria as a carbon store and used to produce a range of bioplastics. Widespread polyhydroxyalkanoate production in C4 crops would decrease petroleum dependency by producing a renewable supply of biodegradable plastics along with residual biomass that could be converted into biofuels or energy. Increasing yields to commercial levels in biomass crops however remains a challenge. Previously, lower accumulation levels of the short side chain polyhydroxyalkanoate, polyhydroxybutyrate (PHB), were observed in the chloroplasts of mesophyll (M) cells compared to bundle sheath (BS) cells in transgenic maize (Zea mays), sugarcane (Saccharum sp.), and switchgrass (Panicum virgatum L.) leading to a significant decrease in the theoretical yield potential. Here we explore various factors which might affect polymer accumulation in mesophyll cells, including targeting of the PHB pathway enzymes to the mesophyll plastid and their access to substrate. Results The small subunit of Rubisco from pea effectively targeted the PHB biosynthesis enzymes to both M and BS chloroplasts of sugarcane and switchgrass. PHB enzyme activity was retained following targeting to M plastids and was equivalent to that found in the BS plastids. Leaf total fatty acid content was not affected by PHB production. However, when fatty acid synthesis was chemically inhibited, polymer accumulated in M cells. Conclusions In this study, we provide evidence that access to substrate and neither poor targeting nor insufficient activity of the PHB biosynthetic enzymes may be the limiting factor for polymer production in mesophyll chloroplasts of C4 plants. PMID:25209261

  11. The response of mesophyll conductance to nitrogen and water availability differs between wheat genotypes.

    PubMed

    Barbour, Margaret M; Kaiser, Brent N

    2016-10-01

    Increased mesophyll conductance (gm) has been suggested as a target for selection for high productivity and high water-use efficiency in crop plants, and genotypic variability in gm has been reported in several important crop species. However, effective selection requires an understanding of how gm varies with growth conditions, to ensure that the ranking of genotypes is consistent across environments. We assessed the genotypic variability in gm and other leaf gas exchange traits, as well as growth and biomass allocation for six wheat genotypes under different water and nitrogen availabilities. The wheat genotypes differed in their response of gm to growth conditions, resulting in genotypic differences in the mesophyll limitation to photosynthesis and a significant increase in the mesophyll limitation to photosynthesis under drought. In this experiment, leaf intrinsic water-use efficiency was more closely related to stomatal conductance than to mesophyll conductance, and stomatal limitation to photosynthesis increased more in some genotypes than in others in response to drought. Screening for gm should be carried out under a range of growth conditions. PMID:27593470

  12. Single Walled Carbon Nanotubes Exhibit Dual-Phase Regulation to Exposed Arabidopsis Mesophyll Cells

    NASA Astrophysics Data System (ADS)

    Yuan, Hengguang; Hu, Shanglian; Huang, Peng; Song, Hua; Wang, Kan; Ruan, Jing; He, Rong; Cui, Daxiang

    2011-12-01

    Herein we are the first to report that single-walled carbon nanotubes (SWCNTs) exhibit dual-phase regulation to Arabidopsis mesophyll cells exposed to different concentration of SWCNTs. The mesophyll protoplasts were prepared by enzyme digestion, and incubated with 15, 25, 50, 100 μg/ml SWCNTs for 48 h, and then were observed by optical microscopy and transmission electron microscopy, the reactive oxygen species (ROS) generation was measured. Partial protoplasts were stained with propidium iodide and 4'-6- diamidino-2-phenylindole, partial protoplasts were incubated with fluorescein isothiocyanate-labeled SWCNTs, and observed by fluorescence microscopy. Results showed that SWCNTs could traverse both the plant cell wall and cell membrane, with less than or equal to 50 μg/ml in the culture medium, SWCNTs stimulated plant cells to grow out trichome clusters on their surface, with more than 50 μg/ml SWCNTs in the culture medium, SWCNTs exhibited obvious toxic effects to the protoplasts such as increasing generation of ROS, inducing changes of protoplast morphology, changing green leaves into yellow, and inducing protoplast cells' necrosis and apoptosis. In conclusion, single walled carbon nanotubes can get through Arabidopsis mesophyll cell wall and membrane, and exhibit dose-dependent dual-phase regulation to Arabidopsis mesophyll protoplasts such as low dose stimulating cell growth, and high dose inducing cells' ROS generation, necrosis or apoptosis.

  13. Effects of shading on the photosynthetic characteristics and mesophyll cell ultrastructure of summer maize.

    PubMed

    Ren, Baizhao; Cui, Haiyan; Camberato, James J; Dong, Shuting; Liu, Peng; Zhao, Bin; Zhang, Jiwang

    2016-08-01

    A field experiment was conducted to study the effects of shading on the photosynthetic characteristics and mesophyll cell ultrastructure of two summer maize hybrids Denghai605 (DH605) and Zhengdan958 (ZD958). The ambient sunlight treatment was used as control (CK) and shading treatments (40 % of ambient sunlight) were applied at different growth stages from silking (R1) to physiological maturity (R6) (S1), from the sixth leaf stage (V6) to R1 (S2), and from seeding to R6 (S3), respectively. The net photosynthetic rate (P n) was significantly decreased after shading. The greatest reduction of P n was found at S3 treatment, followed by S1 and S2 treatments. P n of S3 was decreased by 59 and 48 % for DH605, and 39 and 43 % for ZD958 at tasseling and milk-ripe stages, respectively, compared to that of CK. Additionally, leaf area index (LAI) and chlorophyll content decreased after shading. In terms of mesophyll cell ultrastructure, chloroplast configuration of mesophyll cells dispersed, and part of chloroplast swelled and became circular. Meanwhile, the major characteristics of chloroplasts showed poorly developed thylakoid structure at the early growth stage, blurry lamellar structure, loose grana, and a large gap between slices and warping granum. Then, plasmolysis occurred in mesophyll cells and the endomembrane system was destroyed, which resulted in the dissolution of cell membrane, karyotheca, mitochondria, and some membrane structures. The damaged mesophyll cell ultrastructure led to the decrease of photosynthetic capacity, and thus resulted in significant yield reduction by 45, 11, and 84 % in S1, S2, and S3 treatments, respectively, compared to that of CK. PMID:27437706

  14. Biodegradation of a synthetic lubricant by Micrococcus roseus.

    PubMed Central

    Wright, M A; Taylor, F; Randles, S J; Brown, D E; Higgins, I J

    1993-01-01

    A bacterium that was able to utilize Emkarate 1550 (E1550), a synthetic lubricant ester, as the sole source of carbon was isolated. The isolate was tentatively identified as Micrococcus roseus. The components of the E1550 ester, octanoate, decanoate, and 1,1,1-tris(hydroxymethyl)propane (TMP), were detected in the culture medium of cells growing on the ester. The TMP tertiary alcohol accumulated during growth and was not utilized by this isolate. The detection of the components of the ester in the supernatant of cultures indicated that one of the first steps in its degradation was cleavage of the ester bonds. Esterase activity was significantly enhanced in cells grown on E1550 compared with esterase activity measured in cells grown on acetate. PMID:8476283

  15. Impact of Mesophyll Diffusion on Estimated Global Land CO2 Fertilization

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Gu, L.; Dickinson, R. E.

    2014-12-01

    In C3 plants, CO2 concentrations drop considerably along mesophyll diffusion pathways from substomatal cavities to chloroplasts where CO2 assimilation occurs. Global carbon cycle models have not explicitly represented this internal drawdown and so overestimate CO2 available for carboxylation and underestimate photosynthetic responsiveness to atmospheric CO2. An explicit consideration of mesophyll diffusion increases the modeled cumulative CO2 fertilization effect (CFE) for global gross primary production (GPP) from 915 PgC to 1057 PgC for the period of 1901 to 2010. This increase represents a 16% correction large enough to explain the persistent overestimation of growth rates of historical atmospheric CO2 by Earth System Models. Without this correction, the CFE for global GPP is underestimated by 0.05 PgC yr-1ppm-1. This finding implies that the contemporary terrestrial biosphere is more CO2-limited than previously thought.

  16. Impact of mesophyll diffusion on estimated global land CO2 fertilization

    DOE PAGESBeta

    Sun, Ying; Gu, Lianhong; Dickinson, Robert E.; Norby, Richard J.; Pallardy, Stephen G.; Hoffman, Forrest M.

    2014-10-13

    In C3 plants, CO2 concentrations drop considerably along mesophyll diffusion pathways from substomatal cavities to chloroplasts where CO2 assimilation occurs. Global carbon cycle models have not explicitly represented this internal drawdown and so overestimate CO2 available for carboxylation and underestimate photosynthetic responsiveness to atmospheric CO2. An explicit consideration of mesophyll diffusion increases the modeled cumulative CO2 fertilization effect (CFE) for global gross primary production (GPP) from 915 PgC to 1057 PgC for the period of 1901 to 2010. This increase represents a 16% correction, large enough to explain the persistent overestimation of growth rates of historical atmospheric CO2 by Earthmore » System Models. Without this correction, the CFE for global GPP is underestimated by 0.05 PgC yr-1ppm-1. This finding implies that the contemporary terrestrial biosphere is more CO2-limited than previously thought.« less

  17. [Signal function of cytokinin 6-benzylaminopurine in the reaction of Triticum aestivum L. mesophyll cells to hyperthermia].

    PubMed

    Musiienko, M M; Zhuk, V V; Batsmanova, L M

    2014-01-01

    The signaling effect of 6-benzylaminopurine (BAP) on leaf mesophyll cells of Triticum aestivum L. under hyperthermic conditions was studied. It was found that BAP regulated photosynthetic pigment, hydrogen peroxide content and activity of antioxidant enzymes, namely superoxide dismutase, ascorbate peroxidase and catalase under high-temperature conditions. The additive effect of BAP and high temperature on the activation of cell antioxidant systems was demonstrated. BAP regulated reducing processes in mesophyll leaf cells under high-temperature conditions. PMID:25816607

  18. Rhabdobacter roseus gen. nov., sp. nov., isolated from soil.

    PubMed

    Dahal, Ram Hari; Kim, Jaisoo

    2016-01-01

    An aerobic, Gram-stain-negative, oxidase- and catalase-positive, non-motile, non-spore-forming, rod-shaped, pink-pigmented bacterium, designated strain R49T, was isolated from soil. Flexirubin-type pigments were absent. Phylogenetic analysis based on its 16S rRNA gene sequence revealed that strain R49T formed a lineage within the family Cytophagaceae of the phylum Bacteroidetes that was distinct from the most closely related genera Dyadobacter (91.98-93.85 % sequence similarity), Persicitalea (88.69 %) and Runella (84.79-85.81 %). The major isoprenoid quinone was menaquinone-7 (MK-7) and the major polar lipid was phosphatidylethanolamine. The major cellular fatty acids were summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), iso-C15 : 0, C16 : 1ω5c, C16 : 0 and iso-C17 : 0 3-OH. The DNA G+C content of strain R49T was 53.9 mol%. On the basis of phenotypic, genotypic and phylogenetic analysis, strain R49T represents a novel species of a new genus in the family Cytophagaceae, for which the name Rhabdobacter roseus gen. nov., sp. nov. is proposed. The type strain of Rhabdobacter roseus is R49T ( = KEMB 9005-318T = KACC 18395T = JCM 30685T). PMID:26508300

  19. Comparative Studies of Fluorescence from Mesophyll and Guard Cell Chloroplasts in Saxifraga cernua1

    PubMed Central

    Mawson, Bruce T.; Franklin, Angus; Filion, W. Gary; Cummins, W. Raymond

    1984-01-01

    The chlorophyll fluorescence induction curves from mesophyll and guard cell chloroplasts of Saxifraga cernua, including both the fast (O to P, the transients involved in the rise in variable fluorescence) and slow (P to steady state fluorescence due to quenching) components, were characterized over a range of excitation intensities using microspectrophotometry (with epi-lumination) equipped with apertures designed to eliminate cross contamination of the fluorescence signal between the two chloroplast types. At low excitation intensities, the fast fluorescence kinetics from guard cell plastids showed an extended I to D phase and a more rapid appearance of P while minimal quenching from P to steady state fluorescence was observed compared to the transients from mesophyll chloroplasts suggesting a lower activity of photochemical (electron movement via carriers between donor and acceptor sites) and nonphotochemical (such as membrane conformational changes) events which regulate the fluorescence induction curve kinetics. As the excitation intensity was increased, the quenching rates of guard cells were faster at initiating conditions for photophosphorylation and the fast and slow fluorescence kinetics from guard cells resembled those of the mesophyll cells. Guard cell chloroplasts of S. cernua from intact epidermal peels showed a low temperature (77 K) fluorescence emission spectrum having three major peaks (at 685, 695, and 730 nanometers when excited at 440 nanometers) which were qualitatively similar to those in the spectrum obtained from mesophyll tissue. These data suggest that S. cernua guard cell chloroplast photosystems I and II contribute to light-dependent stomatal activity only at high light intensities. Images Fig. 1 Fig. 3 PMID:16663448

  20. Auxin Reduces the Synthesis of Major Vacuolar Proteins in Tobacco Mesophyl Protoplast

    PubMed Central

    Meyer, Yves; Chartier, Yvette; Alibert, Gilbert

    1987-01-01

    We have established that polypeptides whose synthesis is reduced by 2,4-dichlorophenoxyacetic acid during in vitro culture of tobacco mesophyll protoplasts are secreted into the vacuole where they constitute the bulk of labeled proteins. In addition, these proteins continue to be synthesized in protoplast-derived cultured cells and their synthesis is strictly correlated with the size of the cell, i.e. with vacuolar size. Images Fig. 1 Fig. 2 Fig. 3 PMID:16665313

  1. The arc mutants of Arabidopsis with fewer large chloroplasts have a lower mesophyll conductance.

    PubMed

    Weise, Sean E; Carr, David J; Bourke, Ashley M; Hanson, David T; Swarthout, Debbie; Sharkey, Thomas D

    2015-04-01

    Photosynthetic cells of most land plant lineages have numerous small chloroplasts even though most algae, and even the early diverging land plant group the hornworts, tend to have one or a few large chloroplasts. One constraint that small chloroplasts could improve is the resistance to CO2 diffusion from the atmosphere to the chloroplast stroma. We examined the mesophyll conductance (inverse of the diffusion resistance) of mutant Arabidopsis thaliana plants with one or only a few large chloroplasts per cell. The accumulation and replication of chloroplasts (arc) mutants of A. thaliana were studied by model fitting to gas exchange data and (13)CO2 discrimination during carbon fixation. The two methods generally agreed, but the value of the CO2 compensation point of Rubisco (Γ *) used in the model had a large impact on the estimated photosynthetic parameters, including mesophyll conductance. We found that having only a few large chloroplasts per cell resulted in a 25-50 % reduction in the mesophyll conductance at ambient CO2. PMID:25733184

  2. Marked changes in volume of mesophyll protoplasts of pea (Pisum sativum) on exposure to growth hormones.

    PubMed

    Kolla, Venkat Apparao; Suhita, Dontamala; Raghavendra, Agepati S

    2004-05-01

    The present study reports quick and significant changes induced by plant hormones in the volume of mesophyll protoplasts of pea (Pisum sativum). Four plant hormones: gibberellic acid (GA3), indole 3-acetic acid (IAA), abscisic acid (ABA)(+/-) and methyl jasmonate (MJ), caused marked changes in the volume of mesophyll protoplasts. GA3 and IAA increased the volume of the protoplasts (up to 90%) whereas the ABA and MJ decreased (by about 40%) the volume. Aquaporins or water channels appear to play an important role in swelling/shrinkage of the protoplasts as indicated by the suppression of volume changes by HgCl2 and reversal by mercaptoethanol. The possible role of secondary messengers in volume changes induced by GA3 was investigated by using selected pharmacological reagents. The GA3 induced swelling was restricted by GDP-beta-S (G-protein antagonist), U73122 (phospholipase C inhibitor), and TFP (calmodulin antagonist), but was not affected by 1-butanol (phospholipase D inhibitor), GTP-gamma-S (G-protein agonist), or verapamil (calcium channel blocker). The results suggest that the mesophyll protoplasts can be a simple and useful system for further studies on volume changes in plant tissues. PMID:15202712

  3. Proteasome targeting of proteins in Arabidopsis leaf mesophyll, epidermal and vascular tissues

    PubMed Central

    Svozil, Julia; Gruissem, Wilhelm; Baerenfaller, Katja

    2015-01-01

    Protein and transcript levels are partly decoupled as a function of translation efficiency and protein degradation. Selective protein degradation via the Ubiquitin-26S proteasome system (UPS) ensures protein homeostasis and facilitates adjustment of protein abundance during changing environmental conditions. Since individual leaf tissues have specialized functions, their protein composition is different and hence also protein level regulation is expected to differ. To understand UPS function in a tissue-specific context we developed a method termed Meselect to effectively and rapidly separate Arabidopsis thaliana leaf epidermal, vascular and mesophyll tissues. Epidermal and vascular tissue cells are separated mechanically, while mesophyll cells are obtained after rapid protoplasting. The high yield of proteins was sufficient for tissue-specific proteome analyses after inhibition of the proteasome with the specific inhibitor Syringolin A (SylA) and affinity enrichment of ubiquitylated proteins. SylA treatment of leaves resulted in the accumulation of 225 proteins and identification of 519 ubiquitylated proteins. Proteins that were exclusively identified in the three different tissue types are consistent with specific cellular functions. Mesophyll cell proteins were enriched for plastid membrane translocation complexes as targets of the UPS. Epidermis enzymes of the TCA cycle and cell wall biosynthesis specifically accumulated after proteasome inhibition, and in the vascular tissue several enzymes involved in glucosinolate biosynthesis were found to be ubiquitylated. Our results demonstrate that protein level changes and UPS protein targets are characteristic of the individual leaf tissues and that the proteasome is relevant for tissue-specific functions. PMID:26074939

  4. Changes of mesophyll and the rubisco activity in pea plants grown in clinostat

    NASA Astrophysics Data System (ADS)

    Adamchuk, N. I.

    In earlier research, it was found that microgravity causes alteration of mesophyll cell parameters and dislication at the ultrastructural level (Kordyum et al., 1989, Nedukha et al., 1991, Kordyum, 1997, Adamchuk et al., 2002). Also, destruction of the fine structure of chloroplasts was reported by Abilov et al. (1986), Aliev et al. (1987), Kordyum et al. (1989), and Adamchuk et al. (1999). In addition, Abilov et al. (1986), Aliev et al. (1987), Brown et al. (1993) have discovered the decrease in starch volume. The objective of this work was to compare quantitative ultrastructural parameters of mesophyll cells (including properties of their chloroplasts) and the level of Rubisco activity detected in clinorotated and control plants of pea (Pisum sativum L.). Plants were grown for 12 days in the nutritional medium of Hogland on a clinostat (with 2 rev. min-1 speed of rotation) at a temperature of 23-25°C and illumination 230 μ mol per m-2s-1. The comparison of transversal cross-sections of leaves has revealed a significant increase of mesophyll cell volume and intercellular space under experimental conditions. This expansion of mesophyll cells has correlated with an increase of the number of chloroplasts. Essential ultrastructural changes have affected the total volume of thylakoids. Also, the value of the photosynthetic membranes development in the clinorotated plants was higher 17.11 ± 1.94 μ m3 then in control -- 12.65 ± 1.83 μ m3 due to extension of destacking thylakoids. Increase of the volume density of plastoglobuli in the clinorotated plants on the 1.63-fold suggested the effect of either greater accumulation of lipid or acceleration of chloroplasts senescence. Under influence of clinorotation, the partial volume of starch inclusions significantly decreased in the spongy mesophyll chloroplasts -- 10.46 ± 1.80 % to compare with control -- 31.34 ± 2.37 %. However, the clinorotation of plants resulted in an increase of the Rubisco activity. Intensities

  5. Effects of Nitrogen on Mesophyll Cell Division and Epidermal Cell Elongation in Tall Fescue Leaf Blades 1

    PubMed Central

    MacAdam, Jennifer W.; Volenec, Jeffrey J.; Nelson, Curtis J.

    1989-01-01

    Leaf elongation rate (LER) in grasses is dependent on epidermal cell supply (number) and on rate and duration of epidermal cell elongation. Nitrogen (N) fertilization increases LER. Longitudinal sections from two genotypes of tall fescue (Festuca arundinacea Schreb.), which differ by 50% in LER, were used to quantify the effects of N on the components of epidermal cell elongation and on mesophyll cell division. Rate and duration of epidermal cell elongation were determined by using a relationship between cell length and displacement velocity derived from the continuity equation. Rate of epidermal cell elongation was exponential. Relative rates of epidermal cell elongation increased by 9% with high N, even though high N increased LER by 89%. Duration of cell elongation was approximately 20 h longer in the high- than in the low-LER genotype regardless of N treatment. The percentage of mesophyll cells in division was greater in the high- than in the low-LER genotype. This increased with high N in both genotypes, indicating that LER increased with cell supply. Division of mesophyll cells adjacent to abaxial epidermal cells continued after epidermal cell division stopped, until epidermal cells had elongated to a mean length of 40 micrometers in the high-LER and a mean length of 50 micrometers in the low-LER genotype. The cell cycle length for mesophyll cells was calculated to be 12 to 13 hours. Nitrogen increased mesophyll cell number more than epidermal cell number: in both genotypes, the final number of mesophyll cells adjacent to each abaxial epidermal cell was 10 with low N and 14 with high N. A spatial model is used to describe three cell development processes relevant to leaf growth. It illustrates the overlap of mesophyll cell division and epidermal cell elongation, and the transition from epidermal cell elongation to secondary cell wall deposition. PMID:16666581

  6. Simple and rapid biosynthesis of stable silver nanoparticles using dried leaves of Catharanthus roseus. Linn. G. Donn and its anti microbial activity.

    PubMed

    Kotakadi, Venkata Subbaiah; Rao, Y Subba; Gaddam, Susmila Aparna; Prasad, T N V K V; Reddy, A Varada; Gopal, D V R Sai

    2013-05-01

    Nanoparticles have been used to alter and improve the pharmacokinetic and pharmacodynamic properties of various types of drug molecules. The plant extracts are eco-friendly, economical and cost effective for synthesis of large scale of nanoparticles. In this paper we represent the synthesis of silver nanoparticles (AgNPs) from room dried leaves of Vinca rosea. The AgNPs were characterized by UV-vis spectroscopy. The AgNPs are crystalline in nature, were determined from scanning electron microscopy (SEM) coupled with energy dispersive X-ray (EDX), X-ray diffraction patterns (XRD), and also the size of the NPs was calculated by using Hariba Nanoparticle analyzer and the stability was calculated by using the Zetapotential. The nanoparticles obtained from leaf extracts were of size 27±2 and 30±2 respectively and Zetapotential of AgNPs was found to be -63.1 mV, so it indicates the dispersion and stability. The synthesized AgNPs have very good antimicrobial activity. PMID:23376746

  7. Accumulation of Monoterpenoid Indole Alkaloids in Periwinkle Seedlings ("Catharanthus roseus") as a Model for the Study of Plant-Environment Interactions

    ERIC Educational Resources Information Center

    Miranda-Ham, Maria de Lourdes; Islas-Flores, Ignacio; Vazquez-Flota, Felipe

    2007-01-01

    Alkaloids are part of the chemical arsenal designed to protect plants against an adverse environment. Therefore, their synthesis and accumulation are frequently induced in response to certain environmental conditions and are mediated by chemical signals, which are formed as the first responses to the external stimulus. A set of experiments using…

  8. Screening molecules for control of citrus huanglongbing using an optimized regeneration system for 'Candidatus Liberibacter asiaticus'-infected periwinkle (Catharanthus roseus) cuttings.

    PubMed

    Zhang, Muqing; Duan, Yongping; Zhou, Lijuan; Turechek, William W; Stover, Ed; Powell, Charles A

    2010-03-01

    Citrus huanglongbing is one of the most destructive diseases of citrus worldwide. The disease is associated with three different species of 'Candidatus Liberibacter', of which 'Ca. L. asiaticus' is the most widely distributed. An optimized system using 'Ca. L. asiaticus'-infected periwinkle cuttings was developed to screen chemical compounds effective for controlling the bacterial population while simultaneously assessing their phytotoxicity. The optimal regeneration conditions were determined to be the use of vermiculite as a growth medium for the cuttings, and a fertilization routine using half-strength Murashige and Tucker medium supplemented with both naphthalene acetic acid (4 microg/ml) and indole-3-butyric acid (4 microg/ml). This system allowed a plant regeneration rate of 60.6% for 'Ca. L. asiaticus'-infected cuttings in contrast to the <1% regeneration rate with water alone. Two chemical agents, penicillin G sodium and 2,2-dibromo-3-nitrilopropionamide (DBNPA), were found to be effective at eliminating or suppressing the 'Ca. L. asiaticus' bacterium in this periwinkle regeneration system. When treated with penicillin G sodium at 50 microg/ml, all plants regenerated from 'Ca. L. asiaticus'-infected cuttings were 'Ca. L. asiaticus' negative as determined by both nested polymerase chain reaction (PCR) and quantitative real-time PCR. In addition, DBNPA was also able to significantly reduce the percentage of 'Ca. L. asiaticus'-positive plants and the titer of the 'Ca. L. asiaticus' bacterium at 200 microl/liter. PMID:20128697

  9. Online CO2 and H2 O oxygen isotope fractionation allows estimation of mesophyll conductance in C4 plants, and reveals that mesophyll conductance decreases as leaves age in both C4 and C3 plants.

    PubMed

    Barbour, Margaret M; Evans, John R; Simonin, Kevin A; von Caemmerer, Susanne

    2016-05-01

    Mesophyll conductance significantly, and variably, limits photosynthesis but we currently have no reliable method of measurement for C4 plants. An online oxygen isotope technique was developed to allow quantification of mesophyll conductance in C4 plants and to provide an alternative estimate in C3 plants. The technique is compared to an established carbon isotope method in three C3 species. Mesophyll conductance of C4 species was similar to that in the C3 species measured, and declined in both C4 and C3 species as leaves aged from fully expanded to senescing. In cotton leaves, simultaneous measurement of carbon and oxygen isotope discrimination allowed the partitioning of total conductance to the chloroplasts into cell wall and plasma membrane versus chloroplast membrane components, if CO2 was assumed to be isotopically equilibrated with cytosolic water, and the partitioning remained stable with leaf age. The oxygen isotope technique allowed estimation of mesophyll conductance in C4 plants and, when combined with well-established carbon isotope techniques, may provide additional information on mesophyll conductance in C3 plants. PMID:26778088

  10. Distinct abscisic acid signaling pathways for modulation of guard cell versus mesophyll cell potassium channels revealed by expression studies in Xenopus laevis oocytes.

    PubMed

    Sutton, F; Paul, S S; Wang, X Q; Assmann, S M

    2000-09-01

    Regulation of guard cell ion transport by abscisic acid (ABA) and in particular ABA inhibition of a guard cell inward K(+) current (I(Kin)) is well documented. However, little is known concerning ABA effects on ion transport in other plant cell types. Here we applied patch clamp techniques to mesophyll cell protoplasts of fava bean (Vicia faba cv Long Pod) plants and demonstrated ABA inhibition of an outward K(+) current (I(Kout)). When mesophyll cell protoplast mRNA (mesophyll mRNA) was expressed in Xenopus laevis oocytes, I(Kout) was generated that displayed similar properties to I(Kout) observed from direct analysis of mesophyll cell protoplasts. I(Kout) expressed by mesophyll mRNA-injected oocytes was inhibited by ABA, indicating that the ABA signal transduction pathway observed in mesophyll cells was preserved in the frog oocytes. Co-injection of oocytes with guard cell protoplast mRNA and cRNA for KAT1, an inward K(+) channel expressed in guard cells, resulted in I(Kin) that was similarly inhibited by ABA. However, oocytes co-injected with mesophyll mRNA and KAT1 cRNA produced I(Kin) that was not inhibited by ABA. These results demonstrate that the mesophyll-encoded signaling mechanism could not substitute for the guard cell pathway. These findings indicate that mesophyll cells and guard cells use distinct and different receptor types and/or signal transduction pathways in ABA regulation of K(+) channels. PMID:10982437

  11. Distinct abscisic acid signaling pathways for modulation of guard cell versus mesophyll cell potassium channels revealed by expression studies in Xenopus laevis oocytes

    NASA Technical Reports Server (NTRS)

    Sutton, F.; Paul, S. S.; Wang, X. Q.; Assmann, S. M.; Evans, M. L. (Principal Investigator)

    2000-01-01

    Regulation of guard cell ion transport by abscisic acid (ABA) and in particular ABA inhibition of a guard cell inward K(+) current (I(Kin)) is well documented. However, little is known concerning ABA effects on ion transport in other plant cell types. Here we applied patch clamp techniques to mesophyll cell protoplasts of fava bean (Vicia faba cv Long Pod) plants and demonstrated ABA inhibition of an outward K(+) current (I(Kout)). When mesophyll cell protoplast mRNA (mesophyll mRNA) was expressed in Xenopus laevis oocytes, I(Kout) was generated that displayed similar properties to I(Kout) observed from direct analysis of mesophyll cell protoplasts. I(Kout) expressed by mesophyll mRNA-injected oocytes was inhibited by ABA, indicating that the ABA signal transduction pathway observed in mesophyll cells was preserved in the frog oocytes. Co-injection of oocytes with guard cell protoplast mRNA and cRNA for KAT1, an inward K(+) channel expressed in guard cells, resulted in I(Kin) that was similarly inhibited by ABA. However, oocytes co-injected with mesophyll mRNA and KAT1 cRNA produced I(Kin) that was not inhibited by ABA. These results demonstrate that the mesophyll-encoded signaling mechanism could not substitute for the guard cell pathway. These findings indicate that mesophyll cells and guard cells use distinct and different receptor types and/or signal transduction pathways in ABA regulation of K(+) channels.

  12. Distinct Abscisic Acid Signaling Pathways for Modulation of Guard Cell versus Mesophyll Cell Potassium Channels Revealed by Expression Studies in Xenopus laevis Oocytes1

    PubMed Central

    Sutton, Fedora; Paul, Sunil S.; Wang, Xi-Qing; Assmann, Sarah M.

    2000-01-01

    Regulation of guard cell ion transport by abscisic acid (ABA) and in particular ABA inhibition of a guard cell inward K+ current (IKin) is well documented. However, little is known concerning ABA effects on ion transport in other plant cell types. Here we applied patch clamp techniques to mesophyll cell protoplasts of fava bean (Vicia faba cv Long Pod) plants and demonstrated ABA inhibition of an outward K+ current (IKout). When mesophyll cell protoplast mRNA (mesophyll mRNA) was expressed in Xenopus laevis oocytes, IKout was generated that displayed similar properties to IKout observed from direct analysis of mesophyll cell protoplasts. IKout expressed by mesophyll mRNA-injected oocytes was inhibited by ABA, indicating that the ABA signal transduction pathway observed in mesophyll cells was preserved in the frog oocytes. Co-injection of oocytes with guard cell protoplast mRNA and cRNA for KAT1, an inward K+ channel expressed in guard cells, resulted in IKin that was similarly inhibited by ABA. However, oocytes co-injected with mesophyll mRNA and KAT1 cRNA produced IKin that was not inhibited by ABA. These results demonstrate that the mesophyll-encoded signaling mechanism could not substitute for the guard cell pathway. These findings indicate that mesophyll cells and guard cells use distinct and different receptor types and/or signal transduction pathways in ABA regulation of K+ channels. PMID:10982437

  13. A Modeling Approach to Quantify the Effects of Stomatal Behavior and Mesophyll Conductance on Leaf Water Use Efficiency.

    PubMed

    Moualeu-Ngangue, Dany P; Chen, Tsu-Wei; Stützel, Hartmut

    2016-01-01

    Water use efficiency (WUE) is considered as a determinant of yield under stress and a component of crop drought resistance. Stomatal behavior regulates both transpiration rate and net assimilation and has been suggested to be crucial for improving crop WUE. In this work, a dynamic model was used to examine the impact of dynamic properties of stomata on WUE. The model includes sub-models of stomatal conductance dynamics, solute accumulation in the mesophyll, mesophyll water content, and water flow to the mesophyll. Using the instantaneous value of stomatal conductance, photosynthesis, and transpiration rate were simulated using a biochemical model and Penman-Monteith equation, respectively. The model was parameterized for a cucumber leaf and model outputs were evaluated using climatic data. Our simulations revealed that WUE was higher on a cloudy than a sunny day. Fast stomatal reaction to light decreased WUE during the period of increasing light (e.g., in the morning) by up to 10.2% and increased WUE during the period of decreasing light (afternoon) by up to 6.25%. Sensitivity of daily WUE to stomatal parameters and mesophyll conductance to CO2 was tested for sunny and cloudy days. Increasing mesophyll conductance to CO2 was more likely to increase WUE for all climatic conditions (up to 5.5% on the sunny day) than modifications of stomatal reaction speed to light and maximum stomatal conductance. PMID:27379150

  14. A Modeling Approach to Quantify the Effects of Stomatal Behavior and Mesophyll Conductance on Leaf Water Use Efficiency

    PubMed Central

    Moualeu-Ngangue, Dany P.; Chen, Tsu-Wei; Stützel, Hartmut

    2016-01-01

    Water use efficiency (WUE) is considered as a determinant of yield under stress and a component of crop drought resistance. Stomatal behavior regulates both transpiration rate and net assimilation and has been suggested to be crucial for improving crop WUE. In this work, a dynamic model was used to examine the impact of dynamic properties of stomata on WUE. The model includes sub-models of stomatal conductance dynamics, solute accumulation in the mesophyll, mesophyll water content, and water flow to the mesophyll. Using the instantaneous value of stomatal conductance, photosynthesis, and transpiration rate were simulated using a biochemical model and Penman-Monteith equation, respectively. The model was parameterized for a cucumber leaf and model outputs were evaluated using climatic data. Our simulations revealed that WUE was higher on a cloudy than a sunny day. Fast stomatal reaction to light decreased WUE during the period of increasing light (e.g., in the morning) by up to 10.2% and increased WUE during the period of decreasing light (afternoon) by up to 6.25%. Sensitivity of daily WUE to stomatal parameters and mesophyll conductance to CO2 was tested for sunny and cloudy days. Increasing mesophyll conductance to CO2 was more likely to increase WUE for all climatic conditions (up to 5.5% on the sunny day) than modifications of stomatal reaction speed to light and maximum stomatal conductance. PMID:27379150

  15. Roles of mesophyll conductance and plant functional diversities in tropical photosynthesis

    NASA Astrophysics Data System (ADS)

    Gu, L.

    2013-12-01

    Tropical photosynthesis dominates global terrestrial gross primary production (GPP) and will likely play a defining role in determining how global GPP will respond to climate change. Yet, our current understanding of biological, ecological, edaphic and environmental controls on tropical photosynthesis is poor. The overly simplistic schemes that current Earth System Models use to simulate tropical photosynthesis cannot capture the functional diversities associated with high species diversities in the tropics. New approaches that explicitly represent the functional diversities of tropical photosynthesis in Earth System Models are needed in order to realistically model responses of tropical photosynthesis to increased atmospheric CO2 concentrations and associated climate changes. To establish a basis for such approaches, we conducted intensive field measurements of leaf photosynthesis at three forest sites along a strong rainfall gradient in Panama in 2012-2013. The three sites are Parque Natural Metropolitano, Gamboa, and Parque Nacional San Lorenzo. The Parque Natural Metropolitano receives an annual precipitation of less than 1800mm and Parque Nacional San Lorenzo over 3300 mm with Gamboa in between. The three sites differ in species diversity with Parque Nacional San Lorenzo having the highest species diversity and Parque Nacional San Lorenzo the lowest. At the three contrasting sites, we measured A/Ci curves, leaf traits and leaf nutrient (N and P) contents of about 100 species. We determined mesophyll conductance with the LeafWeb approach. From these measurements, we developed practical but realistic parameterizations of functional diversities of tropical plant species at the three sites and implemented these parameterizations in the latest version of the Community Land Model. We found that mesophyll conductance is key to representing functional diversities of tropical forest species. Without it, responses of tropical photosynthesis to increased atmospheric CO2

  16. Abscisic Acid Induces Rapid Reductions in Mesophyll Conductance to Carbon Dioxide.

    PubMed

    Sorrentino, Giuseppe; Haworth, Matthew; Wahbi, Said; Mahmood, Tariq; Zuomin, Shi; Centritto, Mauro

    2016-01-01

    The rate of photosynthesis (A) of plants exposed to water deficit is a function of stomatal (gs) and mesophyll (gm) conductance determining the availability of CO2 at the site of carboxylation within the chloroplast. Mesophyll conductance often represents the greatest impediment to photosynthetic uptake of CO2, and a crucial determinant of the photosynthetic effects of drought. Abscisic acid (ABA) plays a fundamental role in signalling and co-ordination of plant responses to drought; however, the effect of ABA on gm is not well-defined. Rose, cherry, olive and poplar were exposed to exogenous ABA and their leaf gas exchange parameters recorded over a four hour period. Application with ABA induced reductions in values of A, gs and gm in all four species. Reduced gm occurred within one hour of ABA treatment in three of the four analysed species; indicating that the effect of ABA on gm occurs on a shorter timescale than previously considered. These declines in gm values associated with ABA were not the result of physical changes in leaf properties due to altered turgor affecting movement of CO2, or caused by a reduction in the sub-stomatal concentration of CO2 (Ci). Increased [ABA] likely induces biochemical changes in the properties of the interface between the sub-stomatal air-space and mesophyll layer through the actions of cooporins to regulate the transport of CO2. The results of this study provide further evidence that gm is highly responsive to fluctuations in the external environment, and stress signals such as ABA induce co-ordinated modifications of both gs and gm in the regulation of photosynthesis. PMID:26862904

  17. Abscisic Acid Induces Rapid Reductions in Mesophyll Conductance to Carbon Dioxide

    PubMed Central

    Sorrentino, Giuseppe; Haworth, Matthew; Wahbi, Said; Mahmood, Tariq; Zuomin, Shi; Centritto, Mauro

    2016-01-01

    The rate of photosynthesis (A) of plants exposed to water deficit is a function of stomatal (gs) and mesophyll (gm) conductance determining the availability of CO2 at the site of carboxylation within the chloroplast. Mesophyll conductance often represents the greatest impediment to photosynthetic uptake of CO2, and a crucial determinant of the photosynthetic effects of drought. Abscisic acid (ABA) plays a fundamental role in signalling and co-ordination of plant responses to drought; however, the effect of ABA on gm is not well-defined. Rose, cherry, olive and poplar were exposed to exogenous ABA and their leaf gas exchange parameters recorded over a four hour period. Application with ABA induced reductions in values of A, gs and gm in all four species. Reduced gm occurred within one hour of ABA treatment in three of the four analysed species; indicating that the effect of ABA on gm occurs on a shorter timescale than previously considered. These declines in gm values associated with ABA were not the result of physical changes in leaf properties due to altered turgor affecting movement of CO2, or caused by a reduction in the sub-stomatal concentration of CO2 (Ci). Increased [ABA] likely induces biochemical changes in the properties of the interface between the sub-stomatal air-space and mesophyll layer through the actions of cooporins to regulate the transport of CO2. The results of this study provide further evidence that gm is highly responsive to fluctuations in the external environment, and stress signals such as ABA induce co-ordinated modifications of both gs and gm in the regulation of photosynthesis. PMID:26862904

  18. Purification and properties of urease from Sporobolomyces roseus.

    PubMed

    Jahns, T

    1995-10-01

    Urease (EC 3.5.1.5) catalyses the hydrolysis of urea to ammonia and carbon dioxide. The enzyme from Sporobolomyces roseus was enriched 780-fold and purified to apparent homogeneity using heat treatment, ion exchange chromatography on Q-Sepharose fast flow, hydrophobic interaction chromatography on Phenyl-Sepharose, size exclusion chromatography on Sephacryl S 300 HR, and ion exchange chromatography on MonoQ. Analysis of the purified enzyme by SDS-PAGE demonstrated the presence of subunits with a molecular weight of 90 (+/- 4) kDa. The M(r) of the native enzyme was estimated by size exclusion chromatography to be 340 (+/- 30) kDa, suggesting a tetrameric structure different from other ureases isolated so far from both prokaryotes and eukaryotes. The enzyme was heat-stable, showing no loss of activity after incubation at 70 degrees C for 15 min. The highest urease activities were observed after growth on media containing urea as the sole source of nitrogen. PMID:8572678

  19. Co-transport of Potassium and Sugars across the Plasmalemma of Mesophyll Protoplasts 1

    PubMed Central

    Huber, Steven C.; Moreland, Donald E.

    1981-01-01

    Sugars (sucrose + hexoses) produced photosynthetically by isolated mesophyll protoplasts of wheat and tobacco were effluxed across the plasma membrane (3 to 10 micromoles hexose equivalents per milligram chlorophyll per hour). The efflux was sensitive to uncouplers and oligomycin which indicated a requirement for energy. A proton gradient was probably not coupled directly to the transport because changing the proton gradient across the plasma membrane by varying the pH of the medium or by adding sodium acetate had no significant effect on the rate of sugar release. A release of K+ was associated with sugar efflux from the protoplasts. The molar ratio of K+ to sugar varied between 1.5 and 2.5, depending on the species. Exogenous CKl, RbCl, and LiCl (50 millimolar each), but not NaCl or CsCl, significantly inhibited sugar efflux. Conditions that reduced sugar efflux (exogenous KCl, LiCl, mersalyl, or oligomycin) also reduced K+ release and caused a time-dependent reduction in photosynthetic sucrose formation and increased amino acid and starch formation. Results obtained support the postulate that a K+ symport is involved in the transport of sugar across the energized plasmalemma of photosynthetically active mesophyll cells. PMID:16661619

  20. Impact of mesophyll diffusion on estimated global land CO2 fertilization

    SciTech Connect

    Sun, Ying; Gu, Lianhong; Dickinson, Robert E.; Norby, Richard J.; Pallardy, Stephen G.; Hoffman, Forrest M.

    2014-10-13

    In C3 plants, CO2 concentrations drop considerably along mesophyll diffusion pathways from substomatal cavities to chloroplasts where CO2 assimilation occurs. Global carbon cycle models have not explicitly represented this internal drawdown and so overestimate CO2 available for carboxylation and underestimate photosynthetic responsiveness to atmospheric CO2. An explicit consideration of mesophyll diffusion increases the modeled cumulative CO2 fertilization effect (CFE) for global gross primary production (GPP) from 915 PgC to 1057 PgC for the period of 1901 to 2010. This increase represents a 16% correction, large enough to explain the persistent overestimation of growth rates of historical atmospheric CO2 by Earth System Models. Without this correction, the CFE for global GPP is underestimated by 0.05 PgC yr-1ppm-1. This finding implies that the contemporary terrestrial biosphere is more CO2-limited than previously thought.

  1. Rapid and simple isolation of vascular, epidermal and mesophyll cells from plant leaf tissue.

    PubMed

    Endo, Motomu; Shimizu, Hanako; Araki, Takashi

    2016-08-01

    To understand physiological phenomena at the tissue level, elucidation of tissue-specific molecular functions in vivo is required. As an example of the current state of affairs, many genes in plants have been reported to have discordant levels of expression between bulk tissues and the specific tissues in which the respective gene product is principally functional. The principal challenge in deciphering such tissue-specific functions lies in separating tissues with high spatiotemporal resolution to evaluate accurate gene expression profiles. Here, we provide a simple and rapid tissue isolation protocol to isolate all three major leaf tissues (mesophyll, vasculature and epidermis) from Arabidopsis within 30 min with high purity. On the basis of the different cell-to-cell connectivities of tissues, the mesophyll isolation is achieved by making protoplasts, and the vasculature and epidermis isolation is achieved through sonication and enzymatic digestion of leaves. We have successfully tested the protocol on several other plant species, including crop plants such as soybean, tomato and wheat. Furthermore, isolated tissues can be used not only for tissue-specific transcriptome assays but also potentially for tissue-specific proteome and methylome assays. PMID:27388555

  2. Evidence for a specific glutamate/H/sup +/ cotransport in isolated mesophyll cells. [Asparagus sprengeri

    SciTech Connect

    McCutcheon, S.L.; Bown, A.W.

    1987-03-01

    Mechanically isolated Asparagus sprengeri Regel mesophyll cells were suspended in 1 millimolar CaSO/sub 4/. Immediate alkalinization of the medium occurred on the addition of 1 millimolar concentrations of L-glutamate (Glu) and its analog L-methionine-D,L-sulfoximine (L-MSO). D-Glu and the L isomers of the protein amino acids did not elicit alkalinization. L-Glu dependent alkalinization was transient and acidification resumed after approximately 30 to 45 minutes. At pH 6.0, 5 millimolar L-Glu stimulated initial rates of alkalinization that varied between 1.3 to 4.1 nmol H/sup +//10/sup 6/ cells minute. L-Glu dependent alkalinization was saturable, increased with decreasing pH, was inhibited by carbonyl cyanide-p-trichloromethoxyphenyl hydrazone (CCCP), and was not stimulated by light. Uptake of L-(U-/sup 14/C)glutamate increased as the pH decreased from 6.5 to 5.5, and was inhibited by L-MSO. L-Glu had no influence on K/sup +/ efflux. Although evidence for multiple amino acid/proton cotransport systems has been found in other tissues, the present report indicates that a highly specific L-Glu/proton uptake process is present in Asparagus mesophyll cells.

  3. Methods of mesophyll conductance estimation: its impact on key biochemical parameters and photosynthetic limitations in phosphorus-stressed soybean across CO2.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Photosynthetic potential in C3 plants is largely limited by CO2 diffusion through stomata (Ls) and mesophyll (Lm) and photo-biochemical (Lb) processes. Accurate estimation of mesophyll conductance (gm) using gas exchange (GE) and chlorophyll fluorescence (CF) parameters of the photosynthetic proces...

  4. Mucilaginibacter roseus sp. nov., isolated from a freshwater river.

    PubMed

    Chen, Wen-Ming; Chen, Yi-Ling; Sheu, Shih-Yi

    2016-03-01

    A bacterial strain, designated TTM-1T, was isolated from a water sample taken from the Caohu River in Taiwan and characterized in a taxonomic study using a polyphasic approach. Cells of strain TTM-1T were Gram-stain-negative, aerobic, non-motile, rod-shaped and covered by large capsules, and formed pink-coloured colonies. Growth occurred at 10-37 °C (optimum 30-37 °C), at pH 6-8 (optimum pH 6-7) and with 0-2 % NaCl (optimum 0.5 %). Phylogenetic analyses based on 16S rRNA gene sequences showed that strain TTM-1T belonged to the genus Mucilaginibacter and was most closely related to Mucilaginibacter defluvii A5T with a 16S rRNA gene sequence similarity of 97.3 %. The predominant fatty acids of strain TTM-1T were summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c; 37.1 %) and iso-C15 : 0 (30.7 %). The polar lipid profile consisted of phosphatidylethanolamine and several uncharacterized aminophospholipids and phospholipids. The major isoprenoid quinone was MK-7. The DNA G+C content of the genomic DNA was 45.1 mol%. The DNA-DNA relatedness of strain TTM-1T with respect to recognized species of the genus Mucilaginibacter was less than 70 %. On the basis of the phylogenetic inference and phenotypic data, strain TTM-1T represents a novel species of the genus Mucilaginibacter, for which the name Mucilaginibacter roseus sp. nov. is proposed. The type strain is TTM-1T ( = LMG 28454T = KCTC 42273T). PMID:26652650

  5. Characterization of Blue-Green Fluorescence in the Mesophyll of Sugar Beet (Beta vulgaris L.) Leaves Affected by Iron Deficiency.

    PubMed Central

    Morales, F.; Cerovic, Z. G.; Moya, I.

    1994-01-01

    The mesophyll of sugar beet (Beta vulgaris L.) leaves emits red (chlorophyll a) fluorescence and blue-green fluorescence when excited with ultraviolet light. The intensity of blue-green fluorescence was increased in mesophylls affected by iron deficiency. This increase was large and progressive. It was concomitant with a decrease of photosynthetic pigments per unit of leaf area. Most of the increase in blue-green fluorescence can be explained by the decrease of the screening of ultraviolet light by chlorophylls and carotenoids. In addition, chlorophylls selectively reabsorb blue fluorescence, which leads to a change in the form of the fluorescence emission spectra. This effect induces an increase of the blue-to-green fluorescence ratio in control mesophylls that was concomitant with the decrease of chlorophyll per unit of leaf area. Iron deficiency induced a decrease of the blue-to-green fluorescence ratio that may be attributed to an accumulation of flavins fluorescing in the green. Time-resolved fluorescence measurements indicate that they are mostly riboflavin and/or flavin mononucleotide phosphate. Our data also indicate that the blue-green fluorescence emitted from the mesophyll contains fluorescence of nicotinamide nucleotides. PMID:12232310

  6. Asymmetrical effects of mesophyll conductance on fundamental photosynthetic parameters and their relationships estimated from leaf gas exchange measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most previous analyses of leaf gas exchange measurements assumed an infinite value of mesophyll conductance (gm) and thus equaled CO2 partial pressures in the substomatal cavity and chloroplast. Yet an increasing number of studies have recognized that gm is finite and there is a drawdown of CO2 part...

  7. Ultrastructural analyses of somatic embryo initiation, development and polarity establishment from mesophyll cells of Dactylis glomerata

    NASA Technical Reports Server (NTRS)

    Vasilenko, A.; McDaniel, J. K.; Conger, B. V.

    2000-01-01

    Somatic embryos initiate and develop directly from single mesophyll cells in in vitro-cultured leaf segments of orchardgrass (Dactylis glomerata L.). Embryogenic cells establish themselves in the predivision stage by formation of thicker cell walls and dense cytoplasm. Electron microscopy observations for embryos ranging from the pre-cell-division stage to 20-cell proembryos confirm previous light microscopy studies showing a single cell origin. They also confirm that the first division is predominantly periclinal and that this division plane is important in establishing embryo polarity and in determining the embryo axis. If the first division is anticlinal or if divisions are in random planes after the first division, divisions may not continue to produce an embryo. This result may produce an embryogenic cell mass, callus formation, or no structure at all. Grant numbers: NAGW-3141, NAG10-0221.

  8. Kinetics of determination in the differentiation of isolated mesophyll cells of Zinnia elegans to tracheary elements

    NASA Technical Reports Server (NTRS)

    Church, D. L.; Galston, A. W.

    1988-01-01

    Mechanically isolated mesophyll cells of Zinnia elegans L. cv Envy differentiate to tracheary elements when cultured in inductive medium containing 0.5 micromolar alpha-naphthaleneacetic acid and 0.5 micromolar benzyladenine. The cells do not differentiate when cultured in medium in which the concentration of auxin and/or cytokinin has been reduced to 0.005 micromolar. Cells require an initial 24-hour exposure to inductive cytokinin and 56-hour exposure to inductive auxin for differentiation at 72 hours of culture. Freshly isolated Zinnia cells can be maintained in medium having low concentrations of both auxin and cytokinin for only 1 day without significant loss of potential to differentiate upon transfer to inductive medium. Initial culture for up to 2 days in medium having high auxin and low cytokinin, or low auxin and high cytokinin, allows full differentiation on the third day after transfer to inductive medium and potentiates the early differentiation of some cells.

  9. Highly Efficient Isolation of Populus Mesophyll Protoplasts and Its Application in Transient Expression Assays

    PubMed Central

    Guo, Jianjun; Morrell-Falvey, Jennifer L.; Labbé, Jessy L.; Muchero, Wellington; Kalluri, Udaya C.; Tuskan, Gerald A.; Chen, Jin-Gui

    2012-01-01

    Background Populus is a model woody plant and a promising feedstock for lignocellulosic biofuel production. However, its lengthy life cycle impedes rapid characterization of gene function. Methodology/Principal Findings We optimized a Populus leaf mesophyll protoplast isolation protocol and established a Populus protoplast transient expression system. We demonstrated that Populus protoplasts are able to respond to hormonal stimuli and that a series of organelle markers are correctly localized in the Populus protoplasts. Furthermore, we showed that the Populus protoplast transient expression system is suitable for studying protein-protein interaction, gene activation, and cellular signaling events. Conclusions/Significance This study established a method for efficient isolation of protoplasts from Populus leaf and demonstrated the efficacy of using Populus protoplast transient expression assays as an in vivo system to characterize genes and pathways. PMID:23028673

  10. Cold Transiently Activates Calcium-Permeable Channels in Arabidopsis Mesophyll Cells1[W

    PubMed Central

    Carpaneto, Armando; Ivashikina, Natalya; Levchenko, Victor; Krol, Elzbieta; Jeworutzki, Elena; Zhu, Jian-Kang; Hedrich, Rainer

    2007-01-01

    Living organisms are capable of discriminating thermal stimuli from noxious cold to noxious heat. For more than 30 years, it has been known that plant cells respond to cold with a large and transient depolarization. Recently, using transgenic Arabidopsis (Arabidopsis thaliana) expressing the calcium-sensitive protein aequorin, an increase in cytosolic calcium following cold treatment was observed. Applying the patch-clamp technique to Arabidopsis mesophyll protoplasts, we could identify a transient plasma membrane conductance induced by rapid cooling. This cold-induced transient conductance was characterized as an outward rectifying 33 pS nonselective cation channel. The permeability ratio between calcium and cesium was 0.7, pointing to a permeation pore >3.34 Å (ø of cesium). Our experiments thus provide direct evidence for the predicted but not yet measured cold-activated calcium-permeable channel in plants. PMID:17114272