Science.gov

Sample records for cathedral rapids fault

  1. An earthquake mechanism based on rapid sealing of faults

    USGS Publications Warehouse

    Blanpied, M.L.; Lockner, D.A.; Byerlee, J.D.

    1992-01-01

    RECENT seismological, heat flow and stress measurements in active fault zones such as the San Andreas have led to the suggestion1,2 that such zones can be relatively weak. One explanation for this may be the presence of overpressured fluids along the fault3-5, which would reduce the shear stress required for sliding by partially 'floating' the rock. Although several mechanisms have been proposed for overpressurizing fault fluids3,4,6,7, we recall that 'pressure seals' are known to form in both sedimentary8 and igneous9 rocks by the redistribution of materials in solution; the formation of such a seal along the boundaries of a fault will prevent the communication of fluids between the porous, deforming fault zone and the surrounding country rock. Compaction of fault gouge, under hydrostatic loading and/or during shear, elevates pore pressure in the sealed fault and allows sliding at low shear stress. We report the results of laboratory sliding experiments on granite, which demonstrate that the sliding resistance of faults can be significantly decreased by sealing and compaction. The weakening that results from shear-induced compaction can be rapid, and may provide an instability mechanism for earthquakes.

  2. An example of complex fault geometries in a young, rapidly deforming transform fault system: The Maacama Fault in northern California

    NASA Astrophysics Data System (ADS)

    Schroeder, R. D.; Brady, R. J.

    2009-12-01

    The Maacama Fault Zone (MFZ) in northern California is a young transform system that developed behind the northward migrating Mendocino Triple Junction, and comprises a complex set of active, linked fault strands that form a series of pull-apart basins within the rapidly slipping (~13.9 mm/yr) right-lateral fault system. Surface fault traces within the MFZ are defined by geomorphic features, shallow resistivity profiles, and previously published surface creep and paleoseismic trenching studies. The surface traces of these faults outline classic pull-apart rhomohedrons, with all of the bounding faults inferred to be kinematically linked and currenty active. This activity is supported not only by paleoseismic and surface creep studies, which have tended to focus on the single main strand of the Maacama Fault, but also by the location of tabular seismogenic zones that project from the subsurface into several of the mapped surface fault traces. For each of the 3 mapped pull-apart basins, at least two of the interpreted bounding faults can be shown to be currently active, requiring near-synchronous activity on all of the kinematically linked faults. Historically, active displacement across the MFZ has been assigned to only one relatively well-studied main strand of the fault zone, which slips at ~6.5 mm/yr, resulting in an apparent slip deficit of ~7.4 mm/yr. However, the newly studied adjacent faults in this complex system could accommodate as much or more slip than the historically defined main fault trace, thus resulting in a possibly broader zone of seismic hazard, but less risk of major earthquakes on the main trace. Timing of pull-apart basin initiations is not well constrained, with data permitting either the interpretation that basins formed due to oblique subduction and are currently being reactivated by similar stresses, or that they are newly formed and rapidly evolving. Limited data even allows that the largest pull-apart system may be a reactivated pre

  3. Megalithic plan underlying canterbury cathedral.

    PubMed

    Borst, L B

    1969-02-01

    Woodhenge and the Trinity chapel, Canterbury, are strikingly similar in outline. One is megalithic, the other Norman Christian over Saxon Christian. An analysis of the geometry shows that both are based on Pythagorean triangles: Woodhenge with sides, 6, 17.5, and 18.5, and Canterbury with sides 12, 72, and 73 in megalithic yards. The structurally more recent eastern end of Canterbury Cathedral may have been built over and around an older megalithic site. The longitudinal axes of the composite cathedral differ by 2 degrees , and these, if aligned on Betelgeuse, would indicate buried megalithic structures dating from 2300, 1900, and 1500 B.C. PMID:17750891

  4. Cathedral house & crocker fence, Taylor Street east and north ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Cathedral house & crocker fence, Taylor Street east and north elevations, perspective view from the northeast - Grace Cathedral, George William Gibbs Memorial Hall, 1051 Taylor Street, San Francisco, San Francisco County, CA

  5. Fault structures in rapidly quenched Ni-Mo binary alloys

    NASA Technical Reports Server (NTRS)

    Jayaraman, N.; Tewari, S. N.

    1986-01-01

    Fault structures in two Ni-Mo alloy ribbons (Ni-28 at. pct Mo and Ni-35 at. pct Mo) cast by a free jet chill block melt spinning process were studied. Thin foils for TEM studies were made by electrochemical thinning using an alcohol/butyl cellosolve/perchloric acid mixture in a twin jet electropolishing device. The samples displayed typical grains containing linear faulted regions on the wheelside of the two alloy ribbons. However, an anomalous diffraction behavior was observed upon continuous tilting of the sample: the network of diffraction spots from a single grain appeared to expand or contract and rotate. This anomalous diffraction behavior was explained by assuming extended spike formation at reciprocal lattice points, resulting in a network of continuous rel rods. The validity of the model was confirmed by observations of a cross section of the reciprocal lattice parallel to the rel rods.

  6. The Mendocino triple junction: Active faults, episodic coastal emergence, and rapid uplift

    NASA Astrophysics Data System (ADS)

    Merritts, Dorothy J.

    1996-03-01

    A complex zone of rapid Holocene surface uplift and deformation occurs at the Mendocino triple junction, the juncture of three plate-bounding faults: the Cascadia subduction zone, San Andreas fault, and Mendocino fault. Within this mountainous structural knot, up to 1.4 m of coastal emergence occurred during the 1992 Cape Mendocino MS 7.1 earthquake. Surveying and radiometric dating of ancient marine strandlines (<8000 years) along the trace of the southernmost Cascadia subduction zone indicate that the Holocene pattern of net surface uplift is very similar to the 1992 coseismic uplift pattern. Results of this investigation also indicate that episodic emergence occurred at least four times between about 600 and 7000 years ago and that some past events might have resulted in larger amounts of uplift (˜2.5 m) than the 1992 earthquake, perhaps during great earthquakes (M>7.5) along the Cascadia subduction zone megathrust. However, another plausible interpretation of the data is that multiple earthquakes resulting in smaller amounts of net surface uplift per event (similar to the 1992 earthquake) occurred closely spaced in time, giving the appearance in the geologic record of less frequent and larger events. Regardless of the number and timing of paleoearthquakes, the number of platforms is a minimum of the number of events that resulted in sudden, rapid uplift, because platform preservation is also a function of rising Holocene sea level. At present, rates and patterns of net surface uplift are better constrained than the timing and magnitude of paleoearthquakes. Periods of rapid Holocene emergence also are identified as far south of the area of 1992 uplift and the Mendocino fault as ˜30 km, along the unlocated San Andreas fault. These also might be associated with coseismic uplift. Based on new mapping of active faults in the region, it is proposed here that this uplift is the result of multiple discontinuous thrust and strike-slip fault segments which distribute

  7. Rapid Assessment of Earthquakes with Radar and Optical Geodetic Imaging and Finite Fault Models (Invited)

    NASA Astrophysics Data System (ADS)

    Fielding, E. J.; Sladen, A.; Simons, M.; Rosen, P. A.; Yun, S.; Li, Z.; Avouac, J.; Leprince, S.

    2010-12-01

    Earthquake responders need to know where the earthquake has caused damage and what is the likely intensity of damage. The earliest information comes from global and regional seismic networks, which provide the magnitude and locations of the main earthquake hypocenter and moment tensor centroid and also the locations of aftershocks. Location accuracy depends on the availability of seismic data close to the earthquake source. Finite fault models of the earthquake slip can be derived from analysis of seismic waveforms alone, but the results can have large errors in the location of the fault ruptures and spatial distribution of slip, which are critical for estimating the distribution of shaking and damage. Geodetic measurements of ground displacements with GPS, LiDAR, or radar and optical imagery provide key spatial constraints on the location of the fault ruptures and distribution of slip. Here we describe the analysis of interferometric synthetic aperture radar (InSAR) and sub-pixel correlation (or pixel offset tracking) of radar and optical imagery to measure ground coseismic displacements for recent large earthquakes, and lessons learned for rapid assessment of future events. These geodetic imaging techniques have been applied to the 2010 Leogane, Haiti; 2010 Maule, Chile; 2010 Baja California, Mexico; 2008 Wenchuan, China; 2007 Tocopilla, Chile; 2007 Pisco, Peru; 2005 Kashmir; and 2003 Bam, Iran earthquakes, using data from ESA Envisat ASAR, JAXA ALOS PALSAR, NASA Terra ASTER and CNES SPOT5 satellite instruments and the NASA/JPL UAVSAR airborne system. For these events, the geodetic data provided unique information on the location of the fault or faults that ruptured and the distribution of slip that was not available from the seismic data and allowed the creation of accurate finite fault source models. In many of these cases, the fault ruptures were on previously unknown faults or faults not believed to be at high risk of earthquakes, so the area and degree of

  8. DISTANT VIEW OF ST. FRANCIS DE SALES CATHEDRAL, LOOKING NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DISTANT VIEW OF ST. FRANCIS DE SALES CATHEDRAL, LOOKING NORTH ALONG MARTIN LUTHER KING JR. WAY FROM 14TH STREET - St. Francis de Sales Church, 2100 Martin Luther King, Jr. Way, Oakland, Alameda County, CA

  9. Rapid mapping of ultrafine fault zone topography with structure from motion

    USGS Publications Warehouse

    Johnson, Kendra; Nissen, Edwin; Saripalli, Srikanth; Arrowsmith, J. Ramón; McGarey, Patrick; Scharer, Katherine M.; Williams, Patrick; Blisniuk, Kimberly

    2014-01-01

    Structure from Motion (SfM) generates high-resolution topography and coregistered texture (color) from an unstructured set of overlapping photographs taken from varying viewpoints, overcoming many of the cost, time, and logistical limitations of Light Detection and Ranging (LiDAR) and other topographic surveying methods. This paper provides the first investigation of SfM as a tool for mapping fault zone topography in areas of sparse or low-lying vegetation. First, we present a simple, affordable SfM workflow, based on an unmanned helium balloon or motorized glider, an inexpensive camera, and semiautomated software. Second, we illustrate the system at two sites on southern California faults covered by existing airborne or terrestrial LiDAR, enabling a comparative assessment of SfM topography resolution and precision. At the first site, an ∼0.1 km2 alluvial fan on the San Andreas fault, a colored point cloud of density mostly >700 points/m2 and a 3 cm digital elevation model (DEM) and orthophoto were produced from 233 photos collected ∼50 m above ground level. When a few global positioning system ground control points are incorporated, closest point vertical distances to the much sparser (∼4 points/m2) airborne LiDAR point cloud are mostly 530 points/m2 and a 2 cm DEM and orthophoto were produced from 450 photos taken from ∼60 m above ground level. Closest point vertical distances to existing terrestrial LiDAR data of comparable density are mostly <6 cm. Each SfM survey took ∼2 h to complete and several hours to generate the scene topography and texture. SfM greatly facilitates the imaging of subtle geomorphic offsets related to past earthquakes as well as rapid response mapping or long-term monitoring of faulted landscapes.

  10. Rapid and simultaneous estimation of fault slip and heterogeneous lithospheric viscosity from post-seismic deformation

    NASA Astrophysics Data System (ADS)

    Hines, T. T.; Hetland, E. A.

    2016-01-01

    Post-seismic deformation is commonly attributed to viscoelastic relaxation and/or afterslip, although discerning between the two driving mechanisms can be difficult. A major complication in modeling post-seismic deformation is that forward models can be computationally expensive, making it difficult to adequately search model space to find the optimal fault slip distribution and lithospheric viscosity structure that can explain observable post-seismic deformation. We propose an inverse method which uses coseismic and early post-seismic deformation to rapidly and simultaneously estimate a fault slip history and an arbitrarily discretized viscosity structure of the lithosphere. Our method is based on an approximation which is applicable to the early post-seismic period and expresses surface deformation resulting from viscoelastic relaxation as a linearized function with respect to lithospheric fluidity. We demonstrate this approximation using two-dimensional earthquake models. We validate the approximation and our inverse method using two three-dimensional synthetic tests. The success of our synthetic tests suggests that our method is capable of distinguishing the mechanisms driving early post-seismic deformation and recovering an effective viscosity structure of the lithosphere.

  11. Similar Fracture Patterns in Human Nose and Gothic Cathedral.

    PubMed

    Lee, Shu Jin; Tse, Kwong Ming; Lee, Heow Pueh

    2015-10-01

    This study proposes that the bony anatomy of the human nose and masonry structure of the Gothic cathedral are geometrically similar, and have common fracture patterns. We also aim to correlate the fracture patterns observed in patients' midface structures with those seen in the Gothic cathedral using computational approach. CT scans of 33 patients with facial fractures were examined and compared with computer simulations of both the Gothic cathedral and human nose. Three similar patterns were found: (1) Cracks of the nasal arch with crumpling of the vertical buttresses akin to the damage seen during minor earthquakes; (2) lateral deviation of the central nasal arch and collapse of the vertical buttresses akin to those due to lateral forces from wind and in major earthquakes; and (3) Central arch collapse seen as a result of collapse under excessive dead weight. Interestingly, the finding of occult nasal and septal fractures in the mandible fractures with absence of direct nasal trauma highlights the possibility of transmission of forces from the foundation to the arch leading to structural failure. It was also found that the structural buttresses of the Gothic cathedral delineate the vertical buttresses in the human midface structure. These morphologic similarities between the human nose and Gothic cathedral will serve as a basis to study the biomechanics of nasal fractures. Identification of structural buttresses in a skeletal structure has important implications for reconstruction as reestablishment of structural continuity restores normal anatomy and architectural stability of the human midface structure. PMID:26579871

  12. Acoustic Coupling Effects in ST Paul's Cathedral, London

    NASA Astrophysics Data System (ADS)

    ANDERSON, J. S.; BRATOS-ANDERSON, M.

    2000-09-01

    In St Paul's Cathedral there are many arches, columns and cornices which enable the internal space to be divided into subspaces. The subspaces may be considered to be acoustically coupled via areas which connect the rooms. Two of the most acoustically important subspaces in the Cathedral are the choir and the space under the dome. The choir, the space within the wooden choir stalls, has more sound absorption than the rest of the building, which is mostly marble and Portland stone. In the model of coupled subspaces an acoustic energy balance equation, applied to a diffuse field, is derived for each subspace. In St Paul's Cathedral the internal space is divided into 70 acoustical subspaces. The initial-value problem which is formulated by the system of 70 acoustic energy balance equations with initial conditions has been reduced to the eigenvalue problem. The decay of sound energy density has been obtained for different locations in the Cathedral and for different positions of the sound source. Experimentally obtained sound decay curves are in good agreement with numerical results. Both the experimental and numerical results demonstrate the fine structure of reverberation.

  13. Rapid kinematic finite-fault inversion for an Mw 7+ scenario earthquake in the Marmara Sea: an uncertainty study

    NASA Astrophysics Data System (ADS)

    Diao, Faqi; Wang, Rongjiang; Aochi, Hideo; Zhang, Yong; Walter, Thomas R.

    2016-04-01

    During the last century, the North Anatolian Fault (NAF) generated a series of devastating earthquakes, which generally propagated westwards, such that the main Marmara fault segment as a seismic gap. For the nearby megacity Istanbul, rapid seismic hazard assessment is currently of great importance. A key issue is how a strong earthquake in the Marmara Sea can be characterized reliably and rapidly using the seismic network currently operating in this region. In the frame of the MARsite project, several scenario earthquakes on the main Marmara fault are simulated through dynamic modelling based on a 3-D structure model. The synthetic datasets are then used to reconstruct the source processes of the causal events with a recently developed iterative deconvolution and stacking method based on simplified 1-D Earth structure models. The results indicate that, by using certain a priori information about the fault geometry and focal mechanism, the tempo-spatial slip patterns of the input scenarios can be well resolved robustly. If reasonable uncertainties are considered for the a priori information, the key source parameters, such as moment magnitude, fault size and slip centroid, can still be estimated robustly, while the detailed tempo-spatial rupture pattern may reveal significant variations. To reduce the effect induced by employing the inaccurate event location and focal mechanism, a new approach for absolute source imaging is proposed and tested for near real-time source inversion under the current network configuration in the Marmara Sea region. The results obtained are meaningful particularly for developing the rapid earthquake response system for the megacity Istanbul.

  14. Rapid kinematic finite-fault inversion for an Mw 7+ scenario earthquake in the Marmara Sea: an uncertainty study

    NASA Astrophysics Data System (ADS)

    Diao, Faqi; Wang, Rongjiang; Aochi, Hideo; Walter, Thomas R.; Zhang, Yong; Zheng, Yong; Xiong, Xiong

    2016-02-01

    During the 20th century, a series of devastating earthquakes occurred along the North Anatolian Fault. These generally propagated westwards, such that the main fault segment beneath the Marmara Sea appears as a seismic gap. For the nearby megacity Istanbul, rapid seismic hazard assessment is currently of great importance. A key issue is how a strong earthquake in the Marmara Sea can be characterized reliably and rapidly using the seismic network currently operating in this region. In order to investigate this issue, several scenario earthquakes on the main Marmara fault are simulated through dynamic modelling based on a 3-D structure model. The synthetic datasets are then used to reconstruct the source processes of the causal events with a recently developed iterative deconvolution and stacking method based on simplified 1-D Earth structure models. The results indicate that, by using certain a priori information about the fault geometry and focal mechanism, the tempo-spatial slip patterns of the input scenarios can be well resolved. If reasonable uncertainties are considered for the a priori information, the key source parameters, such as moment magnitude, fault size and slip centroid, can still be estimated reliably, while the detailed tempo-spatial rupture pattern may reveal significant variations. To reduce the effect induced by employing the inaccurate event location and focal mechanism, a new approach for absolute source imaging is proposed and tested. We also investigate the performance of the new source imaging tool for near real-time source inversion under the current network configuration in the Marmara Sea region. The results obtained are meaningful particularly for developing the rapid earthquake response system for the megacity Istanbul.

  15. Automated rapid finite fault inversion for megathrust earthquakes: Application to the Maule (2010), Iquique (2014) and Illapel (2015) great earthquakes

    NASA Astrophysics Data System (ADS)

    Benavente, Roberto; Cummins, Phil; Dettmer, Jan

    2016-04-01

    Rapid estimation of the spatial and temporal rupture characteristics of large megathrust earthquakes by finite fault inversion is important for disaster mitigation. For example, estimates of the spatio-temporal evolution of rupture can be used to evaluate population exposure to tsunami waves and ground shaking soon after the event by providing more accurate predictions than possible with point source approximations. In addition, rapid inversion results can reveal seismic source complexity to guide additional, more detailed subsequent studies. This work develops a method to rapidly estimate the slip distribution of megathrust events while reducing subjective parameter choices by automation. The method is simple yet robust and we show that it provides excellent preliminary rupture models as soon as 30 minutes for three great earthquakes in the South-American subduction zone. This may slightly change for other regions depending on seismic station coverage but method can be applied to any subduction region. The inversion is based on W-phase data since it is rapidly and widely available and of low amplitude which avoids clipping at close stations for large events. In addition, prior knowledge of the slab geometry (e.g. SLAB 1.0) is applied and rapid W-phase point source information (time delay and centroid location) is used to constrain the fault geometry and extent. Since the linearization by multiple time window (MTW) parametrization requires regularization, objective smoothing is achieved by the discrepancy principle in two fully automated steps. First, the residuals are estimated assuming unknown noise levels, and second, seeking a subsequent solution which fits the data to noise level. The MTW scheme is applied with positivity constraints and a solution is obtained by an efficient non-negative least squares solver. Systematic application of the algorithm to the Maule (2010), Iquique (2014) and Illapel (2015) events illustrates that rapid finite fault inversion with

  16. GPR survey to confirm the location of ancient structures under the Valencian Cathedral (Spain)

    NASA Astrophysics Data System (ADS)

    Pérez Gracia, Vega; Canas, José Antonio; Pujades, Lluis G.; Clapés, Jaume; Caselles, Oriol; García, Francesc; Osorio, Raul

    2000-03-01

    This paper describes the ground-penetrating radar (GPR) survey performed inside the Cathedral of Valencia, Spain. It is part of historical studies performed in the Cathedral in order to add information to old maps and documents in the Cathedral Archives and also to analyze the extent and importance of potentially destructive moisture areas that were appearing on the floor. The construction of the Cathedral of Valencia occurred in three stages, all of which are well-documented in the Cathedral Archives with detailed drawings, maps, and charts. The radar data were successful in locating crypts, ossuaries, sepulchers, and graves, and the location of ancient walls that existed before the final Cathedral expansion. Three cultural layers corresponding to the three periods of construction were also identified corresponding to the Roman, Arabian and Middle Age Epochs. Measurements of relative sub-floor moisture were obtained by comparing dielectric permittivity changes and radar velocity differences between materials in humid and non-humid areas.

  17. A teleseismic study of the 2002 Denali fault, Alaska, earthquake and implications for rapid strong-motion estimation

    USGS Publications Warehouse

    Ji, C.; Helmberger, D.V.; Wald, D.J.

    2004-01-01

    Slip histories for the 2002 M7.9 Denali fault, Alaska, earthquake are derived rapidly from global teleseismic waveform data. In phases, three models improve matching waveform data and recovery of rupture details. In the first model (Phase I), analogous to an automated solution, a simple fault plane is fixed based on the preliminary Harvard Centroid Moment Tensor mechanism and the epicenter provided by the Preliminary Determination of Epicenters. This model is then updated (Phase II) by implementing a more realistic fault geometry inferred from Digital Elevation Model topography and further (Phase III) by using the calibrated P-wave and SH-wave arrival times derived from modeling of the nearby 2002 M6.7 Nenana Mountain earthquake. These models are used to predict the peak ground velocity and the shaking intensity field in the fault vicinity. The procedure to estimate local strong motion could be automated and used for global real-time earthquake shaking and damage assessment. ?? 2004, Earthquake Engineering Research Institute.

  18. Strain on the san andreas fault near palmdale, california: rapid, aseismic change.

    PubMed

    Savage, J C; Prescott, W H; Lisowski, M; King, N E

    1981-01-01

    Frequently repeated strain measurements near Palmdale, California, during the period from 1971 through 1980 indicate that, in addition to a uniform accumulation of right-lateral shear strain (engineering shear, 0.35 microradian per year) across the San Andreas fault, a 1-microstrain contraction perpendicular to the fault that accumulated gradually during the interval 1974 through 1978 was aseismically released between February and November 1979. Subsequently (November 1979 to March 1980), about half of the contraction was recovered. This sequence of strain changes can be explained in terms of south-southwestward migration of a slip event consisting of the south-southwestward movement of the upper crust on a horizontal detachment surface at a depth of 10 to 30 kilometers. The large strain change in 1979 corresponds to the passage of the slip event beneath the San Andreas fault. PMID:17731244

  19. Materials Physics of Faults in Rapid Shear and Consequences for Earthquake Dynamics (Louis Néel Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Rice, J. R.

    2012-04-01

    Field observations of maturely slipped faults show that despite a generally broad zone of damage by cracking and granulation, large shear deformation, and therefore heat generation, in individual earthquakes takes place with extreme localization to a zone of order 1 mm or less width within a finely granulated fault core. Relevant fault weakening processes during large crustal events are therefore likely to be thermally influenced, although a constraint to be met, from scarcity of pseudotachylite, is that melting within fault zones seems relatively rare, at least in the up per crust. Further, given the porosit y of damage zones, it seems reasonable to assume in-situ water presence. The lecture reviews current understanding of the materials physics underlying rapid shear of such fault zones, addressing questions like: Why is there severe localization? What are the dynamic relations between shear stress sustained by the fault and its slip history? How do those relations, taken to provide the boundary conditions on a rupturing interface between elastic regions of the earth, control key features of the dynamics of earthquakes? Primary dynamic weakening mechanisms, expected active in at least the early phases of nearly all crustal events, are flash heating at highly stressed frictional micro-contacts and thermal pressurization of native fault-zone pore fluid, the latter with a net effect that depends on interactions with dilatancy. Other weakening processes may also become active at large enough T rise, still prior to bulk melting, including endothermic decomposition reactions releasing a CO2 or H2O fluid phase under conditions that the fluid and solid products would, at the same p and T , occupy more volume than the parent rock, so that the pore fluid is forced to undergo severe pressure increase. The endothermic nature of the reactions buffers against melting because frictional work is absorbed into enthalpy increase of the reactants. There may also be a contribution

  20. "Friends" of Anglican Cathedrals: Norms and Values. Befriending, Friending or Misnomer?

    ERIC Educational Resources Information Center

    Muskett, Judith A.

    2013-01-01

    Loyal supporters of Anglican cathedrals first subscribed to "Friends" associations in the late 1920s. Yet, in 1937, a journalist in "The Times" portrayed cathedrals as a "queer thing to be a friend of." Drawing on theories of friendship from a range of disciplines, and surveys of what has been proclaimed in the public…

  1. The Sagrada Familia Cathedral where Gaudi envisaged his bell music

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Shigeru; Narita, Takafumi

    2001-05-01

    The Sagrada Familia Cathedral in Barcelona, Spain was constructed in 1882. According to Antoni Gaudi, who worked over its grand plan, the Cathedral was supposed to be a huge musical instrument as a whole in the event of completion. As as result, the music of bells was expected to echo through the air of Barcelona from the belfries. However, Gaudi's true intention cannot be exactly known because the materials prepared by him were destroyed by war fire. If his idea of the Sagrada Familia as an architechtural music instrument is true, an acoustical balance should be considered between the roles of the Cathedral: bell music from the belfries and quiet service in the chapel. Basic structure of the Sagrada Familia seems to be an ensemble of twin towers. Following such speculation, we made a simplified acrylic 1/25-scale model of the lower structure of a twin tower located at the left side of the Birth Gate. The higher structure of this twin tower corresponds to the pinnacle where the bells should be arranged. The lower structure (about 43 m in actual height) has five passages connecting two towers. One of two towers includes five or six tandem columns whose ends are both squeezed to about 1.5 m in diameter. These columns seem to function as a kind of muffler. The location and shape of the roof over the nave is indefinite and tentatively supposed at the top of the lower structure. Based on our scale model, acoustical characteristics of the lower twin-tower structure as a muffler and acoustical differences between the exterior field and nave field will be reported and discussed.

  2. Rapid fault model estimation based on RTK-GPS and its application to near-field tsunami forecasting

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Ohta, Y.; Miura, S.; Tsushima, H.; Hino, R.; Takasu, T.; Fujimoto, H.

    2011-12-01

    The 2011 off the Pacific coast of Tohoku Earthquake (Mw 9.0) generated a huge tsunami that inflicted enormous damage on the Pacific side of Tohoku region. Three minutes after the earthquake, the Japan Meteorological Agency issued a tsunami warning based on the seismic data. The estimated maximum tsunami heights (up to 6 m), however, were clearly smaller than the observed one (more than 10 m) because of underestimation of the earthquake magnitude. The magnitude can be derived within a short period following the earthquake, which can saturate for such great earthquakes. This example clearly shows necessity of accurate tsunami early warning system and importance of the rapid determination of reliable earthquake sizes. Blewitt et al. [GRL, 2006] already pointed out that a true earthquake size and its tsunamigenic potential could be determined using GPS data. The permanent displacement directly tells us the true earthquake size information. It is the great advantage of the GPS compared with the seismometer even though the signal-to-noise ratio is lower than it. Based on these backgrounds, we newly developed an algorithm to detect/estimate static ground displacement due to earthquake faulting from real time kinematic GPS (RTK-GPS) time series for quasi real-time determination of seismic fault model. We use the method using comparison between short-term and long-term average, which is generally used for automatic detection of seismic waves. Before its practical application, we assessed the noise property of the RTK-GPS time series with various conditions such as baseline lengths, GPS satellites ephemerides, etc., with analysis software "RTKLIB 2.4.0" [http://www.rtklib.com] to show that the ultra-rapid ephemerides distributed by the international GNSS Service result in enough precision for the crustal deformation monitoring with long baselines up to 1,000 km. We applied the algorithm to the GPS data obtained in the Tohoku Earthquake to assess its ability of event

  3. Rapid, decimeter-resolution fault zone topography mapped with Structure from Motion

    NASA Astrophysics Data System (ADS)

    Johnson, K. L.; Nissen, E.; Saripalli, S.; Arrowsmith, R.; McGarey, P.; Scharer, K. M.; Williams, P. L.

    2013-12-01

    Recent advances in the generation of high-resolution topography have revolutionized our ability to detect subtle geomorphic features related to ground-rupturing earthquakes. Currently, the most popular topographic mapping methods are airborne Light Detection And Ranging (LiDAR) and terrestrial laser scanning (TLS). Though powerful, these laser scanning methods have some inherent drawbacks: airborne LiDAR is expensive and can be logistically complicated, while TLS is time consuming even for small field sites and suffers from patchy coverage due to its restricted field-of-view. An alternative mapping technique, called Structure from Motion (SfM), builds upon traditional photogrammetry to reproduce the topography and texture of a scene from photographs taken at varying viewpoints. The improved availability of cheap, unmanned aerial vehicles (UAVs) as camera platforms further expedites data collection by covering large areas efficiently with optimal camera angles. Here, we introduce a simple and affordable UAV- or balloon-based SfM mapping system which can produce dense point clouds and sub-decimeter resolution digital elevation models (DEMs) registered to geospatial coordinates using either the photograph's GPS tags or a few ground control points across the scene. The system is ideally suited for studying ruptures of prehistoric, historic, and modern earthquakes in areas of sparse or low-lying vegetation. We use two sites from southern California faults to illustrate. The first is the ~0.1 km2 Washington Street site, located on the Banning strand of the San Andreas fault near Thousand Palms. A high-resolution DEM with ~700 point/m2 was produced from 230 photos collected on a balloon platform flying at 50 m above the ground. The second site is the Galway Lake Road site, which spans a ~1 km strip of the 1992 Mw 7.3 Landers earthquake on the Emerson Fault. The 100 point/m2 DEM was produced from 267 photos taken with a balloon platform at a height of 60 m above the ground

  4. The role of dyking and fault control in the rapid onset of eruption at Chaitén volcano, Chile.

    PubMed

    Wicks, Charles; de la Llera, Juan Carlos; Lara, Luis E; Lowenstern, Jacob

    2011-10-20

    Rhyolite is the most viscous of liquid magmas, so it was surprising that on 2 May 2008 at Chaitén Volcano, located in Chile's southern Andean volcanic zone, rhyolitic magma migrated from more than 5 km depth in less than 4 hours (ref. 1) and erupted explosively with only two days of detected precursory seismic activity. The last major rhyolite eruption before that at Chaitén was the largest volcanic eruption in the twentieth century, at Novarupta volcano, Alaska, in 1912. Because of the historically rare and explosive nature of rhyolite eruptions and because of the surprisingly short warning before the eruption of the Chaitén volcano, any information about the workings of the magmatic system at Chaitén, and rhyolitic systems in general, is important from both the scientific and hazard perspectives. Here we present surface deformation data related to the Chaitén eruption based on radar interferometry observations from the Japan Aerospace Exploration Agency (JAXA) DAICHI (ALOS) satellite. The data on this explosive rhyolite eruption indicate that the rapid ascent of rhyolite occurred through dyking and that melt segregation and magma storage were controlled by existing faults. PMID:22012396

  5. Clastic dikes of Heart Mountain fault breccia, northwestern Wyoming, and their significance

    USGS Publications Warehouse

    Pierce, W.G.

    1979-01-01

    extending upward for several tens of meters. North of Republic Mountain a small 25-m-high upper-plate mass, brecciated to some degree throughout, apparently moved some distance along the Heart Mountain fault as brecciated rock. Calcibreccia dikes intrude upward from the underlying 2 m of fault breccia into the lower part of the mass and also from its top into the overlying volcanic rocks; an earthquake-related mechanism most likely accounts for the observed features of this deformed body. Calcibreccia dikes are more common within the bedding-plane phase of the Heart Mountain fault but also occur in its transgressive and former land-surface phases. Evidence that the Wapiti Formation almost immediately buried loose, unconsolidated fault breccia that was the source of the dike rock strongly suggests a rapid volcanic deposition over the area in which clastic dikes occur, which is at least 75 km long. Clastic dikes were injected into both the upper-plate and the volcanic rocks at about the same time, after movement on the Heart Mouuntain fault had ceased, and therefore do not indicate a fluid-flotation mechanism for the Heart Mountain fault. The difference between contacts of the clastic dikes with both indurated and unconsolidated country rock is useful in field mapping at localities where it is difficult to distinguish between volcanic rocks of the Cathedral Cliffs and Lamar River Formations, and the Wapiti Formation. Thus, calcibreccia dikes in the Cathedral Cliffs and Lamar River Formations show a sharp contact because the country rock solidified prior to fault movement, whereas calcibreccia dikes in the Wapiti Formation in many instances show a transitional or semifluid contact because the country rock was still unconsolidated or semifluid at the time of dike injection.

  6. Nanometer quartz grains and rapid cooling melt in fault gouge during earthquake process - observed from the WFSD-1 drilling core sample

    NASA Astrophysics Data System (ADS)

    Wang, H.; Li, H.; Janssen, C.; Wirth, R.

    2014-12-01

    Drilling into active faults is an effective way to get data and materials at depth that help to understand the material properties, physical mechanisms and healing processes of the faults. The Wenchuan earthquake fault scientific drilling project (WFSD) was conducted immediately after the 2008 Wenchuan earthquake (Mw 7.9). The first borehole of the project (WFSD-1) penetrates the Yingxiu-Beichuan fault with a final depth of 1201.15 m and meet the principal slip zone (PSZ) of Wenchuan earthquake at depth of 589.2 m. About 183.3 m-thick fault rocks are recognized in the WFSD-1 drilling core from 575.7 to 759 m-depth, which was confirmed as the Yingxiu-Beichuan fault zone with a real thickness of about 100 m due to the borehole inclination of 11°. In this research we got samples from WFSD-1 drilling core at the depth of 732.4-732.8 m, in which black gouge, gray gouge, fine-grained fault breccia and coarse-grained fault breccia layers can be distinguished clearly. Slickensides were developed in the surface of the black gouge layer. The protolith of this segment is sandstone. Based on detailed microstructural analysis using electron optical microscope, scanning electron microscope (SEM) and transmission electron microscope (TEM). An about 1 mm-thick amorphous material layer containing small quartz grains was observed. Circles with different densities were observed in the amorphous material indicate a melt-origin. Cracks are developed in the amorphous material, which are suggested to be caused by general volume reduction as a result of rapid cooling contraction. TEM-EDX analysis of the amorphous material indicates mainly feldspar composition, implying the melting temperature was >1230℃, while quartz grains did not melt indicating a temperature <1700℃. Nano-scale quartz grains were observed in a very small layer showing a different structure at the edge of the amorphous layer, indicating that nano quartz grains were formed by the comminution during earthquake, which

  7. CATHEDRAL: A Fast and Effective Algorithm to Predict Folds and Domain Boundaries from Multidomain Protein Structures

    PubMed Central

    Dallman, Tim; Pearl, Frances M. G; Orengo, Christine A

    2007-01-01

    We present CATHEDRAL, an iterative protocol for determining the location of previously observed protein folds in novel multidomain protein structures. CATHEDRAL builds on the features of a fast secondary-structure–based method (using graph theory) to locate known folds within a multidomain context and a residue-based, double-dynamic programming algorithm, which is used to align members of the target fold groups against the query protein structure to identify the closest relative and assign domain boundaries. To increase the fidelity of the assignments, a support vector machine is used to provide an optimal scoring scheme. Once a domain is verified, it is excised, and the search protocol is repeated in an iterative fashion until all recognisable domains have been identified. We have performed an initial benchmark of CATHEDRAL against other publicly available structure comparison methods using a consensus dataset of domains derived from the CATH and SCOP domain classifications. CATHEDRAL shows superior performance in fold recognition and alignment accuracy when compared with many equivalent methods. If a novel multidomain structure contains a known fold, CATHEDRAL will locate it in 90% of cases, with <1% false positives. For nearly 80% of assigned domains in a manually validated test set, the boundaries were correctly delineated within a tolerance of ten residues. For the remaining cases, previously classified domains were very remotely related to the query chain so that embellishments to the core of the fold caused significant differences in domain sizes and manual refinement of the boundaries was necessary. To put this performance in context, a well-established sequence method based on hidden Markov models was only able to detect 65% of domains, with 33% of the subsequent boundaries assigned within ten residues. Since, on average, 50% of newly determined protein structures contain more than one domain unit, and typically 90% or more of these domains are already

  8. Rapid Slip-Rate and Low Shear Strength of a High Finite-Slip Low-Angle Normal Fault: Normanby Island, Woodlark Rift, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Little, T. A.; Monteleone, B.; Baldwin, S. L.; Fitzgerald, P. G.

    2006-12-01

    juxtapose them against wider rheologic domains containing more uniform-strength normal faults of smaller offset. The rapidly exhumed mylonites are ideal candidates for recrystallised grain-size paleopiezometry on quartz. The calibration of Stipp and Tullis (2003) was applied to 7 samples to obtain flow stress estimates of 27 ±7 MPa (1σ). We infer that these record differential stress at the time of quenching-in of the fabrics, when they were overprinted by extension gashes near the brittle-ductile transition. For assumed depths of >8 km, these observations require pore fluid pressure ratios >0.85. Prolonged, rapid slip on the Normanby Island fault at low dip was thus assisted by high fluid pressure, perhaps in response to the discharge of hot metamorphic fluids at depth. Because the detachment fault is inferred to reactivate the base of the Papuan ultramafic body, talc-serpentine gouge may also have contributed an intrinsic frictional weakness to this low-angle fault.

  9. Evidence for rapid displacement on Himalayan normal faults and the importance of tectonic denudation in the evolution of mountain ranges

    NASA Astrophysics Data System (ADS)

    Hodges, Kip; Bowring, Samuel; Davidek, Kathleen; Hawkins, David; Krol, Michael

    1998-06-01

    East-striking, low-angle normal faults of the South Tibetan detachment system have played an important role in exposing the high-grade metamorphic core of the Himalayan orogen. In the Mount Everest region of southern Tibet, granites both pre- and postdate an important fault of the system, the Qomolangma detachment. New U-Pb and 40Ar/39Ar geochronologic data for these rocks constrain the age of brittle faulting to between 16.67 ± 0.04 and 16.37 ± 0.40 Ma, significantly expanding the known age range for extension in the central Himalaya (widely regarded as ca. 20 22 Ma). More importantly, they indicate an average displacement rate of ≥47 mm/yr and a consequent tectonic unroofing rate of ≥8.2 mm/yr. Such unroofing is faster than all but the highest estimates of combined physical and chemical erosion rates in mountainous regions, suggesting that large-displacement normal faulting can be an extremely efficient agent of mass redistribution in orogenic systems.

  10. The Grammar School at the Cathedral of the Canary Islands (1563-1851)

    ERIC Educational Resources Information Center

    Vera-Cazorla, Maria Jesus

    2013-01-01

    From 1563 until the death of the last teacher in 1851, there was a prebendary in the Cathedral of the Canary Islands in charge of the education of children. In fact, it could be said that this prebendary was the only continuous secondary school teacher there was in the Canary Islands until the beginning of the nineteenth century when the High…

  11. Delineating recharge areas for Onondaga and Cathedral Caves using groundwater tracing techniques

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Onondaga Cave and Cathedral Cave are two large, significant cave systems with active streams located along the Meramec River in the Ozarks ecoregion of Missouri. Groundwater dye tracing has delineated recharge areas for both caves in order to aid in the management of the cave systems by Onondaga Cav...

  12. An App for the Cathedral in Freiberg--An Interdisciplinary Project Seminar

    ERIC Educational Resources Information Center

    Kröber, Cindy; Münster, Sander

    2014-01-01

    This project seminar aims at creating and evaluating a manual for interdisciplinary projects as part of a learning process. Working together, pedagogies and students from different disciplines assess tools and recommendations for successful collaborations while developing an app for the cathedral in Freiberg. As part of the project the students…

  13. Unusual Rebuilding Method of Historic St Mary's Cathedral in the Capital of Western Australia

    NASA Astrophysics Data System (ADS)

    Wysokowski, Adam

    2016-06-01

    St Mary's Cathedral is the Archbishop church of the Archdiocese in Perth in Western Australia. The presented sacral building was built in neo-Gothic style during the years 1863-1865. Cathedral was officially dedicated and opened for the service on 29th January, 1865. In 1973 was proclaimed the Marian Sanctuary and now represents one of the largest religious facilities in Perth. In 2005, the city authorities, together with the Archdiocese took a collective decision on the necessity of a comprehensive renovation of this sacred object. The renovation was due to the technical condition and the lack of usability of the object. The author of the paper had the opportunity to experience these problems by visiting this place several times, first time in 1989 and next years. Thus, the renovation of the present Cathedral was in its assumption not only to perform maintenance of the building and its specific architectural elements but also to increase its functional features - usable for the faithful and tourists. Reconstruction of St Mary's Cathedral in Perth can be a good example increasing the wider functionality of such facilities while keeping their antique and historical qualities. In this paper the above-mentioned issues will be more widely developed by the author.

  14. The effect of air pollution on the stone decay of the Cologne Cathedral

    NASA Astrophysics Data System (ADS)

    Graue, B.; Siegesmund, S.; Licha, T.; Simon, K.; Oyhantcabal, P.; Middendorf, B.

    2012-04-01

    Different building stones of the Cologne Cathedral show a large variation of weathering phenomena. The Drachenfels trachyte, which was the construction material for the medieval part of the cathedral, shows significant surface deterioration, back-weathering coexisting with flaking, crumbling or the massive formation of gypsum crusts. Wolff (1992) first mentioned the negative interferences between the Schlaitdorfer sandstone and the Londorfer basalt lava or the Drachenfels trachyte and the Krensheimer muschelkalk. Crust formation on limestone, sandstone, and volcanic rock from the Cologne Cathedral as well as from the Xanten and Altenberg Cathedral are investigated. These three buildings are located in different areas and exposed to varying industrial, urban, and rural environmental situations. The material investigated range from dark grey to black framboidal crusts. This 3 to 10 mm thick cauliflower-like form of gypsum crust incorporates particles from the pollution fluxes. It covers the stone surface and mainly occurs at sites protected from wind and direct rain. Secondly, thin laminar black crusts trace the stone surface and may cover complete sections of the building's structure not necessarily preferring protected sites. This kind of crust seems to have very strong bonds between the thin black crust and the stone surface. Major and trace element distribution show an enrichment of sulfur, indicating the presence of gypsum, lead and other typical pollutants (arsenic, antimony, bismuth, tin etc.), which generally can be linked to traffic and industry. This indicates that even though the SO2 emission has decreased due to i.e. stronger regulations of waste incineration plants and the ban of leaded petrol, the pollutants are still present in the crusts on the building stones. From systematic SEM observations it becomes evident that the total amount of pollution is less pronounced in the Altenberg and Xanten Cathedrals as compared with the Cologne Cathedral. The

  15. Rapid estimation of fault parameters for tsunami warning along the Mexican subduction zone based on real-time GPS (Invited)

    NASA Astrophysics Data System (ADS)

    Perez-Campos, X.; Singh, S. K.; Melgar, D.; Cruz Atienza, V. M.; Iglesias, A.; Hjorleifsdottir, V.

    2013-12-01

    A reliable and robust tsunami early warning is now possible thanks to the availability of real-time GPS data. With few assumptions regarding the characteristics of the geometry of the subduction interface (dip, width of the seismogenic zone, and maximum depth of the seismically-coupled interface), we can estimate the length, L, and the width, W, of the rupture, as well as its downdip extension, C (Singh et al., 2008; 2012). These are estimated from the amplitude of the observed horizontal displacement along the coast and its fall off with distance, as well as the polarity of the vertical displacement. Based on Okada's (1992) model, we compute the slip D on the fault, to finally obtain the seismic moment, Mo. Pérez-Campos et al. (2013) showed the feasibility of such tsunami early warning for the Mexican subduction zone. Mo could be obtained in ~2 min after origin time from a dense distribution of real-time high-rate GPS stations along the coast. However, the current GPS network is sparse. Despite this, a robust estimate of magnitude Mw can be obtained. For this work, we perform sensitivity tests for Mw and position of the fault with respect to the trench.

  16. Soundscape evaluation in a Catholic cathedral and Buddhist temple precincts through social surveys and soundwalks.

    PubMed

    Jeon, Jin Yong; Hwang, In Hwan; Hong, Joo Young

    2014-04-01

    Religious precincts in urban spaces have their own religious spatiality formed by their sociocultural and historical background. It is necessary to identify the spatiality of urban religious precincts in their sociocultural contexts because soundscape perception is determined largely by context. In the present study, social surveys and soundwalks were performed in a Catholic cathedral and in Buddhist temple precincts in Seoul. In the surveys, important spatial functions, sound, and visual components of the Catholic cathedral and Buddhist temple precincts were investigated by principal component analysis. The results showed that the cathedral precincts play a more important role in social functions related to mainly visual components than the temple precincts do, whereas the functions for religious activities related to sound elements are more stressed in the temple precincts. In the soundwalk evaluation, contributions of soundscape and landscape components to tranquility in the two religious precincts were explored. It was found that pleasantness of soundscape and attractiveness of landscape significantly affected the perception of tranquility. In addition, it was revealed that a sense of enclosure could enhance tranquility in urban religious precincts. PMID:25234985

  17. Seismogeodesy of the 2014 Mw6.1 Napa earthquake, California: Rapid response and modeling of fast rupture on a dipping strike-slip fault

    NASA Astrophysics Data System (ADS)

    Melgar, Diego; Geng, Jianghui; Crowell, Brendan W.; Haase, Jennifer S.; Bock, Yehuda; Hammond, William C.; Allen, Richard M.

    2015-07-01

    Real-time high-rate geodetic data have been shown to be useful for rapid earthquake response systems during medium to large events. The 2014 Mw6.1 Napa, California earthquake is important because it provides an opportunity to study an event at the lower threshold of what can be detected with GPS. We show the results of GPS-only earthquake source products such as peak ground displacement magnitude scaling, centroid moment tensor (CMT) solution, and static slip inversion. We also highlight the retrospective real-time combination of GPS and strong motion data to produce seismogeodetic waveforms that have higher precision and longer period information than GPS-only or seismic-only measurements of ground motion. We show their utility for rapid kinematic slip inversion and conclude that it would have been possible, with current real-time infrastructure, to determine the basic features of the earthquake source. We supplement the analysis with strong motion data collected close to the source to obtain an improved postevent image of the source process. The model reveals unilateral fast propagation of slip to the north of the hypocenter with a delayed onset of shallow slip. The source model suggests that the multiple strands of observed surface rupture are controlled by the shallow soft sediments of Napa Valley and do not necessarily represent the intersection of the main faulting surface and the free surface. We conclude that the main dislocation plane is westward dipping and should intersect the surface to the east, either where the easternmost strand of surface rupture is observed or at the location where the West Napa fault has been mapped in the past.

  18. Integration of constrained electrical and seismic tomographies to study the landslide affecting the cathedral of Agrigento

    NASA Astrophysics Data System (ADS)

    Capizzi, P.; Martorana, R.

    2014-08-01

    The Cathedral of Saint Gerland, located on the top of the hill of Agrigento, is an important historical church, which dates back to the Arab-Norman period (XI century). Unfortunately throughout its history the Cathedral and the adjacent famous Archaeological Park of the ‘Valley of the Temples’ have been affected by landslides. In this area the interleaving of calcarenites, silt, sand and clay is complicated by the presence of dislocated rock blocks and cavities and by a system of fractures partly filled with clay or water. Integrated geophysical surveys were carried out on the north side of the hill, on which the Cathedral of Agrigento is founded, to define lithological structures involved in the failure process. Because of the landslide, the cathedral has been affected by fractures, which resulted in the overall instability of the structure. Along each of four footpaths a combination of 2D electrical resistivity tomographies (ERT) and 2D seismic refraction tomographies (SRT) was performed. Moreover, along two of these footpaths microtremor (HVSR) and surface wave soundings (MASW) were carried out to reconstruct 2D sections of shear waves velocity. Furthermore a 3D electrical resistivity tomography was carried out in a limited area characterized by gentle slopes. After a preliminary phase, in which the data were processed independently, a subsequent inversion of seismic and electrical data was constrained with stratigraphic information obtained from geognostic continuous core boreholes located along the geophysical lines. This process allowed us to significantly increase the robustness of the geophysical models. The acquired data were interpolated to construct 3D geophysical models of the electrical resistivity and of the P-wave velocity. The interpolation algorithm took into account the average direction and immersion of geological strata. Results led to a better understanding of the complexity of the subsoil in the investigated area. The use of integrated

  19. Characteristics of On-fault and Off-fault displacement of various fault types based on numerical simulation

    NASA Astrophysics Data System (ADS)

    Inoue, N.; Kitada, N.; Takemura, K.

    2015-12-01

    There are two types of fault displacement related to the earthquake fault: on-fault displacement and off-fault displacement. Off-fault displacement should be evaluated in important facilities, such as Nuclear Installations. Probabilistic Fault Displacement Hazard Analysis (PFDHA) is developing on the basis of PSHA. PFDHA estimates on-fault and off-fault displacement. For estimation, PFDHA uses distance-displacement functions, which are constructed from field measurement data. However, observed displacement data are still sparse, especially off-fault displacement. In Nuclear Installations, estimation of off-fault displacement is more important than that of on-fault. We carried out numerical fault displacement simulations to assist in understanding distance-displacement relations of on-fault and off-fault according to fault types, normal, reverse and strike fault. We used Okada's dislocation method. The displacements were calculated based on the single fault model with several rakes of slip. On-fault displacements (along the fault profile) of each fault types show a similar trend. Off-fault displacements (cross profile to the fault) of vertical (reverse and normal) fault types show the rapid decreasing displacement on the foot wall side. In the presentation, we will show the displacement profile and also stress, strain and so on. The dislocation model can not express discontinuous displacements. In the future, we will apply various numerical simulations (Finite Element Method, Distinct Element Method) in order to evaluate off-fault displacements. We will also compare numerical simulation results with observed data.

  20. The South Fork detachment fault, Park County, Wyoming: discussion and reply ( USA).

    USGS Publications Warehouse

    Pierce, W.G.

    1986-01-01

    Blackstone (1985) published an interpretation of South form detachment fault and related features. His interpretation of the area between Castle and Hardpan transverse faults is identical to mine of 1941. Subsequent detailed mapping has shown that the structure between the transverse faults is more complicated than originally envisioned and resurrected by Blackstone. The present paper describes and discusses geologic features that are the basis for my interpretations; also discussed are differences between my interpretations and those of Blackstone. Most data are shown on the geologic map of the Wapiti Quadrangle (Pierce and Nelson, 1969). Blackstone's 'allochthonous' masses are part of the South Form fault. Occurrences of Sundance Formation, which he interpreted as the upper plate of his 'North Fork fault', are related to Heart Mountain fault. Volcaniclastic rocks south of Jim Mountain mapped as Aycross Formation by Torres and Gingerich may be Cathedral Cliffs Formation, emplaced by movement of the Heart Mountain fault. - Author

  1. Using DART-recorded Rayleigh waves for rapid CMT and finite fault analyses of large megathrust earthquakes.

    NASA Astrophysics Data System (ADS)

    Thio, H. K.; Polet, J.; Ryan, K. J.

    2015-12-01

    We study the use of long-period Rayleigh waves recorded by the DART-type ocean bottom pressure sensors. The determination of accurate moment and slip distribution after a megathrust subduction zone earthquake is essential for tsunami early warning. The two main reasons why the DART data are o interest to this problem are; 1 - contrary to the broadband data used in the early stages of earthquake analysis, the DART data do not saturate for large magnitude earthquakes, and 2 - DART stations are located offshore and thus often fill gaps in the instrumental coverage at local and regional distances. Thus, by including DART recorded Rayleigh waves into the rapid response systems we may be able to gain valuable time in determining accurate moment estimates and slip distributions needed for tsunami warning and other rapid response products. Large megathrust earthquakes are among the most destructive natural disasters in history but also pose a significant challenge real-time analysis. The scales involved in such large earthquakes, with ruptures as long as a thousand kilometers and durations of several minutes are formidable. There are still issues with rapid analysis at the short timescales, such as minutes after the event since many of the nearby seismic stations will saturate due to the large ground motions. Also, on the seaward side of megathrust earthquakes, the nearest seismic stations are often thousands of kilometers away on oceanic islands. The deployment of DART buoys can fill this gap, since these instruments do not saturate and are located close in on the seaward side of the megathrusts. We are evaluating the use of DART-recorded Rayleigh waves, by including them in the dataset used for Centroid Moment Tensor analyses, and by using the near-field DART stations to constrain source finiteness for megathrust earthquakes such as the recent Tohoku, Haida Gwaii and Chile earthquakes.

  2. Heat and moisture response of vented and compact cathedral ceilings: A test house evaluation

    SciTech Connect

    Hens, H.; Janssens, A.

    1999-07-01

    In the last decade, public awareness of the greenhouse effect has pushed the building sector toward higher energy efficiencies. This move has had consequences for roofs with a cathedral ceiling. A U-factor in the vicinity of 0.2 W/(m{sup 2}{center{underscore}dot}K) instead of 0.6 W/(m{sup 2}{center{underscore}dot}K) became the new target value. The move toward such a low U-factor for cathedral ceilings was evaluated in an extended test house program. The major objective of the research was to find answers to the following three questions: (1) What is the impact of air ingress and wind washing on the hygrothermal performance and durability of such well-insulated roofs? (2) Is a vented air space above the normal insulation needed to prevent concealed condensation? (3) Is a vapor retarder underneath the insulation equally efficient? The traditional answer to questions (2) and (3) is built on five assumptions: (1) heat is transported through all materials by conduction only, (2) moisture moves through the materials by diffusion only, (3) air ingress is restricted to the air space, (4) outside air ventilation functions under all circumstances, and (5) it always means additional drying capacity. The test house measurements confirmed that in the cool, maritime climate of Western Europe, air ingress and wind washing overthrow assumptions (1), (2), and (3). Also, assumptions (4) and (5) are not true under all circumstances. The research resulted in the redrafting of the performance requirements for highly insulated roofs with a cathedral ceiling.

  3. Polyphase exhumation in the western Qinling Mountains, China: Rapid Early Cretaceous cooling along a lithospheric-scale tear fault and pulsed Cenozoic uplift

    NASA Astrophysics Data System (ADS)

    Heberer, Bianca; Anzenbacher, Thomas; Neubauer, Franz; Genser, Johann; Dong, Yunpeng; Dunkl, István

    2014-03-01

    The western sector of the Qinling-Dabie orogenic belt plays a key role in both Late Jurassic to Early Cretaceous "Yanshanian" intracontinental tectonics and Cenozoic lateral escape triggered by India-Asia collision. The Taibai granite in the northern Qinling Mountains is located at the westernmost tip of a Yanshanian granite belt. It consists of multiple intrusions, constrained by new Late Jurassic and Early Cretaceous U-Pb zircon ages (156 ± 3 Ma and 124 ± 1 Ma). Applying various geochronometers (40Ar/39Ar on hornblende, biotite and K-feldspar, apatite fission-track, apatite [U-Th-Sm]/He) along a vertical profile of the Taibai Mountain refines the cooling and exhumation history. The new age constraints record the prolonged pre-Cenozoic intracontinental deformation as well as the cooling history mostly related to India-Asia collision. We detected rapid cooling for the Taibai granite from ca. 800 to 100 °C during Early Cretaceous (ca. 123 to 100 Ma) followed by a period of slow cooling from ca. 100 Ma to ca. 25 Ma, and pulsed exhumation of the low-relief Cretaceous peneplain during Cenozoic times. We interpret the Early Cretaceous rapid cooling and exhumation as a result from activity along the southern sinistral lithospheric scale tear fault of the recently postulated intracontinental subduction of the Archean/Palaeoproterozoic North China Block beneath the Alashan Block. A Late Oligocene to Early Miocene cooling phase might be triggered either by the lateral motion during India-Asia collision and/or the Pacific subduction zone. Late Miocene intensified cooling is ascribed to uplift of the Tibetan Plateau.

  4. Polyphase exhumation in the western Qinling Mountains, China: Rapid Early Cretaceous cooling along a lithospheric-scale tear fault and pulsed Cenozoic uplift

    PubMed Central

    Heberer, Bianca; Anzenbacher, Thomas; Neubauer, Franz; Genser, Johann; Dong, Yunpeng; Dunkl, István

    2014-01-01

    The western sector of the Qinling–Dabie orogenic belt plays a key role in both Late Jurassic to Early Cretaceous “Yanshanian” intracontinental tectonics and Cenozoic lateral escape triggered by India–Asia collision. The Taibai granite in the northern Qinling Mountains is located at the westernmost tip of a Yanshanian granite belt. It consists of multiple intrusions, constrained by new Late Jurassic and Early Cretaceous U–Pb zircon ages (156 ± 3 Ma and 124 ± 1 Ma). Applying various geochronometers (40Ar/39Ar on hornblende, biotite and K-feldspar, apatite fission-track, apatite [U–Th–Sm]/He) along a vertical profile of the Taibai Mountain refines the cooling and exhumation history. The new age constraints record the prolonged pre-Cenozoic intracontinental deformation as well as the cooling history mostly related to India–Asia collision. We detected rapid cooling for the Taibai granite from ca. 800 to 100 °C during Early Cretaceous (ca. 123 to 100 Ma) followed by a period of slow cooling from ca. 100 Ma to ca. 25 Ma, and pulsed exhumation of the low-relief Cretaceous peneplain during Cenozoic times. We interpret the Early Cretaceous rapid cooling and exhumation as a result from activity along the southern sinistral lithospheric scale tear fault of the recently postulated intracontinental subduction of the Archean/Palaeoproterozoic North China Block beneath the Alashan Block. A Late Oligocene to Early Miocene cooling phase might be triggered either by the lateral motion during India–Asia collision and/or the Pacific subduction zone. Late Miocene intensified cooling is ascribed to uplift of the Tibetan Plateau. PMID:27065503

  5. 3D modeling of the Strasbourg's Cathedral basements for interdisciplinary research and virtual visits

    NASA Astrophysics Data System (ADS)

    Landes, T.; Kuhnle, G.; Bruna, R.

    2015-08-01

    On the occasion of the millennium celebration of Strasbourg Cathedral, a transdisciplinary research group composed of archaeologists, surveyors, architects, art historians and a stonemason revised the 1966-1972 excavations under the St. Lawrence's Chapel of the Cathedral having remains of Roman and medieval masonry. The 3D modeling of the Chapel has been realized based on the combination of conventional surveying techniques for the network creation, laser scanning for the model creation and photogrammetric techniques for the texturing of a few parts. According to the requirements and the end-user of the model, the level of detail and level of accuracy have been adapted and assessed for every floor. The basement has been acquired and modeled with more details and a higher accuracy than the other parts. Thanks to this modeling work, archaeologists can confront their assumptions to those of other disciplines by simulating constructions of other worship edifices on the massive stones composing the basement. The virtual reconstructions provided evidence in support of these assumptions and served for communication via virtual visits.

  6. The Cathedral and the Bazaar of E-Repository Development: Encouraging Community Engagement with Moving Pictures and Sound

    ERIC Educational Resources Information Center

    Wong, Denis; Shephard, Kerry L.; Phillips, Peter

    2008-01-01

    This paper offers an insight into the development, use and governance of e-repositories for learning and teaching, illustrated by Eric Raymond's bazaar and cathedral analogies and by a comparison of collection strategies that focus on content coverage or on the needs of users. It addresses in particular the processes that encourage and achieve…

  7. Zipper Faults

    NASA Astrophysics Data System (ADS)

    Platt, J. P.; Passchier, C. W.

    2015-12-01

    Intersecting simultaneously active pairs of faults with different orientations and opposing slip sense ("conjugate faults") present geometrical and kinematic problems. Such faults rarely offset each other, even when they have displacements of many km. A simple solution to the problem is that the two faults merge, either zippering up or unzippering, depending on the relationship between the angle of intersection and the slip senses. A widely recognized example of this is the so-called blind front developed in some thrust belts, where a backthrust branches off a decollement surface at depth. The decollement progressively unzippers, so that its hanging wall becomes the hanging wall of the backthrust, and its footwall becomes the footwall of the active decollement. The opposite situation commonly arises in core complexes, where conjugate low-angle normal faults merge to form a single detachment; in this case the two faults zipper up. Analogous situations may arise for conjugate pairs of strike-slip faults. We present kinematic and geometrical analyses of the Garlock and San Andreas faults in California, the Najd fault system in Saudi Arabia, the North and East Anatolian faults, the Karakoram and Altyn Tagh faults in Tibet, and the Tonale and Guidicarie faults in the southern Alps, all of which appear to have undergone zippering over distances of several tens to hundreds of km. The zippering process may produce complex and significant patterns of strain and rotation in the surrounding rocks, particularly if the angle between the zippered faults is large. A zippering fault may be inactive during active movement on the intersecting faults, or it may have a slip rate that differs from either fault. Intersecting conjugate ductile shear zones behave in the same way on outcrop and micro-scales.

  8. Fault finder

    DOEpatents

    Bunch, Richard H.

    1986-01-01

    A fault finder for locating faults along a high voltage electrical transmission line. Real time monitoring of background noise and improved filtering of input signals is used to identify the occurrence of a fault. A fault is detected at both a master and remote unit spaced along the line. A master clock synchronizes operation of a similar clock at the remote unit. Both units include modulator and demodulator circuits for transmission of clock signals and data. All data is received at the master unit for processing to determine an accurate fault distance calculation.

  9. The Observation of Fault Finiteness and Rapid Velocity Variation in Pnl Waveforms for the Mw 6.5, San Simeon, California Earthquake

    NASA Astrophysics Data System (ADS)

    Konca, A. O.; Ji, C.; Helmberger, D. V.

    2004-12-01

    We observed the effect of the fault finiteness in the Pnl waveforms from regional distances (4° to 12° ) for the Mw6.5 San Simeon Earthquake on 22 December 2003. We aimed to include more of the high frequencies (2 seconds and longer periods) than the studies that use regional data for focal solutions (5 to 8 seconds and longer periods). We calculated 1-D synthetic seismograms for the Pn_l portion for both a point source, and a finite fault solution. The comparison of the point source and finite fault waveforms with data show that the first several seconds of the point source synthetics have considerably higher amplitude than the data, while finite fault does not have a similar problem. This can be explained by reversely polarized depth phases overlapping with the P waves from the later portion of the fault, and causing smaller amplitudes for the beginning portion of the seismogram. This is clearly a finite fault phenomenon; therefore, can not be explained by point source calculations. Moreover, the point source synthetics, which are calculated with a focal solution from a long period regional inversion, are overestimating the amplitude by three to four times relative to the data amplitude, while finite fault waveforms have the similar amplitudes to the data. Hence, a moment estimation based only on the point source solution of the regional data could have been wrong by half of magnitude. We have also calculated the shifts of synthetics relative to data to fit the seismograms. Our results reveal that the paths from Central California to the south are faster than to the paths to the east and north. The P wave arrival to the TUC station in Arizona is 4 seconds earlier than the predicted Southern California model, while most stations to the east are delayed around 1 second. The observed higher uppermost mantle velocities to the south are consistent with some recent tomographic models. Synthetics generated with these models significantly improves the fits and the

  10. Solar-energy-system performance evaluation, Cathedral Square, Burlington, Vermont, July-December 1981

    SciTech Connect

    Welch, K.M.

    1981-01-01

    The Cathedral Square solar site is a 10-story multiunit apartment building in Vermont. Its active solar energy system is designed to supply 51% of the hot water load, and consists of 1798 square feet of flat plate collectors, 2699-gallon water tank in an enclosed mechanical room on the roof, and two auxiliary natural gas boilers to supply hot water to immersed heat exchanger in an auxiliary storage tank. The measured solar fraction was only 28%, not 51%, which, it is concluded, is an unreasonable expectation. Other performance data include the solar savings ratio, conventional fuel savings, system performance factor, and solar system coefficient of performance. Monthly performance data are given for the solar system overall, and for the collector, storage, and hot water subsystems. Also included are insolation data, typical storage fluid temperatures, domestic hot water consumption, and solar heat exchangers inlet/outlet temperatures, and typical domestic hot water subsystem temperatures. In addition, the system operating sequence and solar energy utilization are given. Appended are a system description, performance evaluation techniques, long-term weather data. (LEW)

  11. Monitoring of the Heat and Moisture Transport through Walls of St. Martin Cathedral Tower in Bratislava

    NASA Astrophysics Data System (ADS)

    Kubičár, Ľudovít; Hudec, Ján; Fidríková, Danica; Štofanik, Vladimír; Dieška, Peter; Vretenár, Viliam

    2014-05-01

    Historic monuments are subject to degradation due to exposition to surrounding meteorological conditions and groundwater. Construction of buildings consists of the plaster and material components that have porous structure. Processes like heat transport, moisture diffusion, moisturizing and drying; freezing and thawing can be found in such structures depending on environmental conditions. Monitoring of the temperature - moisture regime gives a picture on the processes running in the structure. Long term monitoring of the tower of St. Martin Cathedral in Bratislava have been performed under window sill of the belfry in exterior in south orientation. Principle of the hot-ball method is used for monitoring of the temperature and thermal conductivity. The thermal conductivity of the porous system depends on the pore content. Moisture sensors are constructed from the parent material in a form of cylinder. Sensors are calibrated for dry and water saturated stage prior installation in the walls. Monitoring has been carried out in plaster and in the masonry in a distance about 10 cm from the wall surface, where sensors are installed. Information on temperature, moisture and thermal conductivity can be gained from measured signal. Use of two sensors allows estimation on heat and moisture transport through the wall. Monitoring has been performed in the period from April 2013 up to July 2013. Monitored data are correlated to the meteorological data. Details of various effects will be discussed.

  12. Acoustic conditioning of the metropolitan cathedral of Porto Alegre, RS, Brazil

    NASA Astrophysics Data System (ADS)

    Simoes, Flavio M.; Nabinger, Luciano B.; Ramalho, Aline I.

    2002-11-01

    In the acoustic study of the Metropolitan Cathedral of Porto Alegre, RS, Brazil, initially background noise and reverberation time were measured. A digital model was built using acoustic simulation software AcustaCadd, applying the values of the measured reverberation time. Then reverberation time, speech intelligibility, and geometric acoustics were analyzed. As a result the Project of Acoustic Conditioning was developed to correct the high reverberation time, by increasing absorption with the installation of 65000 m of panels of glass wool (100 mm, 60 kg/m). Advantage was taken of existing details in the plaster to embed the panels in the walls. Also the volume of the choir and of the lateral balcony to the altar was reduced and the interior of this was covered with the same glass wool. Special care was taken to minimize alterations to the architectural characteristics of the place, because it is a construction of historical importance. The measured values of background noise were also analyzed and appropriate acoustic isolation considered. The final measure of the reverberation time showed an average reduction of 5 seconds and better speech intelligibility, long demanded by the users. [Work supported by FAIR/FUNDATEC, BR; IUCC-US, SP.

  13. Ancient descriptions of movement disorders: Cathedral el Burgo de Osma (Soria, Spain).

    PubMed

    Garcia Ruiz, Pedro J; Ruiz Ezquerro, Juan J; Garcia Torres, Araceli; Fanjul, Samira

    2006-06-01

    El Burgo de Osma (Soria, Spain) offers one of the best preserved medieval structures in Spain. The interior of the building conserves abundant samples of Romanesque art, and the tomb in polychromatic stone of the founder, San Pedro de Osma. We have classified those pieces of art that could represent descriptions of movement disorders. In the main façade of the Cathedral, several statues representing prophets can be seen one of them is clearly different to the rest. This statue represents a man with abnormal cervical posture characterized by right rotation, head tilt and elevation of right shoulder. The tomb includes several statues representing fragments of the life of San Pedro de Osma. Some of these figures show movement disorders. First, a woman with a baby in her arms who has marked head tilt to the left. Second a peasant without hands, perhaps amputated, this man has a head tilt to the right. We suggest that in the latter case ergotism can explain both manifestations: peripheral vascular disease leading to amputation, and cervical dystonia.Finally, a statue of polychromatic wood represents a priest with stooped posture, half open mouth, staring expression and a very notorious anterocollis. The author probably depicted a man with parkinsonism. PMID:16511653

  14. An in situ corrosion study of Middle Ages wrought iron bar chains in the Amiens Cathedral

    NASA Astrophysics Data System (ADS)

    Grassini, S.; Angelini, E.; Parvis, M.; Bouchar, M.; Dillmann, P.; Neff, D.

    2013-12-01

    The corrosion behaviour of Middle Ages wrought iron bar chains exposed to indoor atmospheric corrosion for hundred of years in the Notre Dame Cathedral of Amiens (France) has been evaluated by means of Electrochemical Impedance Spectroscopy (EIS), a well-established electrochemical technique extensively used for testing anticorrosive properties of metal coatings. The measurements have been performed in situ with a portable EIS instrument designed to work as a standalone device, in six different areas of the wrought iron bar chains characterized by different aesthetical appearance. Moreover, a properly designed electrochemical cell has been employed to carry out the impedance measurements without affecting the artefacts surfaces. The wrought iron bar chains, as evidenced by μ-Raman and microscopic analyses, are covered by corrosion products constituted by iron oxides and oxyhydroxides, such as goethite, lepidocrocite, maghemite, akaganeite, organized in complex layered structures. In situ EIS allows one to investigate the phenomena involved at the electrochemical interfaces among the various corrosion products and to assess and predict their corrosion behaviour. From the analysis of the experimental findings of this monitoring campaign, EIS measurements can be proposed to restorers/conservators as a reliable indicator of dangerous situations on which they must act for the preservation of the iron artefacts.

  15. Creeping along the Ismetpasa section of the North Anatolian fault (Western Turkey): Rate and extent from InSAR [rapid communication

    NASA Astrophysics Data System (ADS)

    Cakir, Ziyadin; Akoglu, Ahmet M.; Belabbes, Samir; Ergintav, Semih; Meghraoui, Mustapha

    2005-09-01

    Creeping along the North Anatolian fault (NAF) at Ismetpasa (Turkey) was discovered some thirty years ago, about a decade after the first observations of the phenomenon along the San Andreas fault in California. However, little is known about its lateral extent and rate. In order to study its three dimensional nature and rupture characteristics, we use Synthetic Aperture Radar Interferometry (InSAR) and elastic dislocation models compared also with field observations. Interferograms with temporal baselines ranging between 1.25 and 5 years show that the creeping section starts at the western termination of the 1943 ( M = 7.6) earthquake rupture. It continues about 70-km to the west, overlapping with the eastern part of the 1944 ( M = 7.3) earthquake rupture. Offsets along strike indicate a maximum creep rate of 11 ± 3 mm/year near the mid point of the creeping section decreasing gradually towards the edges. Near Ismetpasa, InSAR data yield 8 ± 3 mm/year of creep rate, consistent with recent instrumental (triangulation and creepmeter) measurements. Modeling of the InSAR and GPS data suggests that the fault-creep occurs most probably at a shallow depth (0-7 km). Our analysis combined with previous studies suggests that creeping might have commenced following the 1944 earthquake, and thus may be a long-lasting, but transient slip episode.

  16. Fault diagnosis

    NASA Technical Reports Server (NTRS)

    Abbott, Kathy

    1990-01-01

    The objective of the research in this area of fault management is to develop and implement a decision aiding concept for diagnosing faults, especially faults which are difficult for pilots to identify, and to develop methods for presenting the diagnosis information to the flight crew in a timely and comprehensible manner. The requirements for the diagnosis concept were identified by interviewing pilots, analyzing actual incident and accident cases, and examining psychology literature on how humans perform diagnosis. The diagnosis decision aiding concept developed based on those requirements takes abnormal sensor readings as input, as identified by a fault monitor. Based on these abnormal sensor readings, the diagnosis concept identifies the cause or source of the fault and all components affected by the fault. This concept was implemented for diagnosis of aircraft propulsion and hydraulic subsystems in a computer program called Draphys (Diagnostic Reasoning About Physical Systems). Draphys is unique in two important ways. First, it uses models of both functional and physical relationships in the subsystems. Using both models enables the diagnostic reasoning to identify the fault propagation as the faulted system continues to operate, and to diagnose physical damage. Draphys also reasons about behavior of the faulted system over time, to eliminate possibilities as more information becomes available, and to update the system status as more components are affected by the fault. The crew interface research is examining display issues associated with presenting diagnosis information to the flight crew. One study examined issues for presenting system status information. One lesson learned from that study was that pilots found fault situations to be more complex if they involved multiple subsystems. Another was pilots could identify the faulted systems more quickly if the system status was presented in pictorial or text format. Another study is currently under way to

  17. Fault mechanics

    SciTech Connect

    Segall, P. )

    1991-01-01

    Recent observational, experimental, and theoretical modeling studies of fault mechanics are discussed in a critical review of U.S. research from the period 1987-1990. Topics examined include interseismic strain accumulation, coseismic deformation, postseismic deformation, and the earthquake cycle; long-term deformation; fault friction and the instability mechanism; pore pressure and normal stress effects; instability models; strain measurements prior to earthquakes; stochastic modeling of earthquakes; and deep-focus earthquakes. Maps, graphs, and a comprehensive bibliography are provided. 220 refs.

  18. Linking groundwater pollution to the decay of 15th-century sculptures in Burgos Cathedral (northern Spain).

    PubMed

    Gázquez, Fernando; Rull, Fernando; Medina, Jesús; Sanz-Arranz, Aurelio; Sanz, Carlos

    2015-10-01

    Precipitation of salts-mainly hydrated Mg-Na sulfates-in building materials is rated as one of the most severe threats to the preservation of our architectural and cultural heritage. Nevertheless, the origin of this pathology is still unknown in many cases. Proper identification of the cause of damage is crucial for correct planning of future restoration actions. The goal of this study is to identify the source of the degradation compounds that are affecting the 15th-century limestone sculptures that decorate the retro-choir of Burgos Cathedral (northern Spain). To this end, detailed characterization of minerals by in situ (Raman spectroscopy) and laboratory techniques (XRD, Raman and FTIR) was followed by major elements (ICP and IC) and isotopic analysis (δ(34)S and δ(15)N) of both the mineral phases precipitated on the retro-choir and the dissolved salts in groundwater in the vicinity of the cathedral. The results reveal unequivocal connection between the damage observed and capillary rise of salts-bearing water from the subsoil. The multianalytical methodology used is widely applicable to identify the origin of common affections suffered by historical buildings and masterpieces. PMID:26018286

  19. The Cathedral of St. Giorgio in Ragusa Ibla (Italy): a case study of the use of protective products

    NASA Astrophysics Data System (ADS)

    Barone, Germana; Campani, Elisa; Casoli, Antonella; La Russa, Mauro Francesco; Lo Giudice, Antonino; Mazzoleni, Paolo; Pezzino, Antonino

    2008-06-01

    The Cathedral of St. Giorgio in Ragusa Ibla like the majority of historic buildings in the Ragusa area is constructed mainly from locally outcropping calcarenite belonging to the Ragusa Formation. Through the years, the cathedral has undergone diverse restoration procedures using different protective products , the nature of which was determined by means of Fourier transform infrared spectroscopy (FT-IR) and gas chromatography coupled with mass spectrometry (GC MS). Regardless of these interventions, the materials used today are still subject to diverse forms of alterations and degradation (alveolitation, differential degradation, decohesions, chromatic alterations and the formation of biological patinas correlated to lichen activity), which cause considerable damage to the façade. In this paper, three protective products were tested on the calcarenite of the Ragusa Formation taken from a quarry: a fluorurated elastomer , a fluorurated anionic polyurethane and linseed oil. The protective efficiency was determined, after undergoing UV radiation aging by means of capillary water absorption, porosimetric and colorimetric procedures. The results highlighted a good and persistent protective capability of both the elastomer and the fluorurated polyurethane, whereas, the linseed oil not only provoked strong chromatic variations but also quickly lost its hydro-repellant capacity with aging.

  20. How do normal faults grow?

    NASA Astrophysics Data System (ADS)

    Jackson, Christopher; Bell, Rebecca; Rotevatn, Atle; Tvedt, Anette

    2016-04-01

    Normal faulting accommodates stretching of the Earth's crust, and it is arguably the most fundamental tectonic process leading to continent rupture and oceanic crust emplacement. Furthermore, the incremental and finite geometries associated with normal faulting dictate landscape evolution, sediment dispersal and hydrocarbon systems development in rifts. Displacement-length scaling relationships compiled from global datasets suggest normal faults grow via a sympathetic increase in these two parameters (the 'isolated fault model'). This model has dominated the structural geology literature for >20 years and underpins the structural and tectono-stratigraphic models developed for active rifts. However, relatively recent analysis of high-quality 3D seismic reflection data suggests faults may grow by rapid establishment of their near-final length prior to significant displacement accumulation (the 'coherent fault model'). The isolated and coherent fault models make very different predictions regarding the tectono-stratigraphic evolution of rift basin, thus assessing their applicability is important. To-date, however, very few studies have explicitly set out to critically test the coherent fault model thus, it may be argued, it has yet to be widely accepted in the structural geology community. Displacement backstripping is a simple graphical technique typically used to determine how faults lengthen and accumulate displacement; this technique should therefore allow us to test the competing fault models. However, in this talk we use several subsurface case studies to show that the most commonly used backstripping methods (the 'original' and 'modified' methods) are, however, of limited value, because application of one over the other requires an a priori assumption of the model most applicable to any given fault; we argue this is illogical given that the style of growth is exactly what the analysis is attempting to determine. We then revisit our case studies and demonstrate

  1. Rule-based fault diagnosis of hall sensors and fault-tolerant control of PMSM

    NASA Astrophysics Data System (ADS)

    Song, Ziyou; Li, Jianqiu; Ouyang, Minggao; Gu, Jing; Feng, Xuning; Lu, Dongbin

    2013-07-01

    Hall sensor is widely used for estimating rotor phase of permanent magnet synchronous motor(PMSM). And rotor position is an essential parameter of PMSM control algorithm, hence it is very dangerous if Hall senor faults occur. But there is scarcely any research focusing on fault diagnosis and fault-tolerant control of Hall sensor used in PMSM. From this standpoint, the Hall sensor faults which may occur during the PMSM operating are theoretically analyzed. According to the analysis results, the fault diagnosis algorithm of Hall sensor, which is based on three rules, is proposed to classify the fault phenomena accurately. The rotor phase estimation algorithms, based on one or two Hall sensor(s), are initialized to engender the fault-tolerant control algorithm. The fault diagnosis algorithm can detect 60 Hall fault phenomena in total as well as all detections can be fulfilled in 1/138 rotor rotation period. The fault-tolerant control algorithm can achieve a smooth torque production which means the same control effect as normal control mode (with three Hall sensors). Finally, the PMSM bench test verifies the accuracy and rapidity of fault diagnosis and fault-tolerant control strategies. The fault diagnosis algorithm can detect all Hall sensor faults promptly and fault-tolerant control algorithm allows the PMSM to face failure conditions of one or two Hall sensor(s). In addition, the transitions between health-control and fault-tolerant control conditions are smooth without any additional noise and harshness. Proposed algorithms can deal with the Hall sensor faults of PMSM in real applications, and can be provided to realize the fault diagnosis and fault-tolerant control of PMSM.

  2. Pseudotachylite Bearing Cretaceous Fault in the Saddlebag Lake Pendant, Central Sierra Nevada, CA

    NASA Astrophysics Data System (ADS)

    Whitesides, A. S.; Cao, W.; Paterson, S. R.

    2010-12-01

    Over the past several years the undergraduate researchers and mentors in the University of Southern California’s Undergraduate Team Research program has mapped the northern continuation of the Gem Lake shear zone from Gem Lake to Virginia Canyon near the north end of the Saddlebag pendant. In the center of this dominantly dextral, ductile shear zone we now recognize a pseudotachylite bearing brittle fault that often juxtaposes Triassic metavolcanics to the east of the fault with a Jurassic metasedimentary package to the west of the fault. Kinematic indicators such as slickenlines, steps, and offset dikes found within the brittle fault zone also suggest dextral oblique motion, similar to the motion of the ductile shear zone. The brittle fault dips steeply and strikes N-NW with the fault zone width varying from narrow (sub m scale) to a 100-200 m wide fracture zone as seen in the Sawmill area. Jurrasic metasediments (> 177Ma) and Cretaceous metavolcanics (110-95Ma) lie to the West of the fault and Triassic metavolcanics (219Ma) lie to the East of the fault in the Virginia Canyon, Saddlebag Lake, and Sawmill areas. The absence of ~45 million years of Jurassic metavolcanics along the contact of the fault in each area, suggests tectonic removal of the sequence. Pseudotachylite, quartz vein rich breccias, gouge, fault scarps, and truncated Cathedral Peak dikes (~88 Ma) originating from the Tuolumne Batholith (TB), are common features associated with the brittle fault. The truncated, 88 Ma Cathedral Peak dikes plus nearby biotite cooling ages of 82 Ma indicate that displacement on the brittle fault continued well after TB emplacement and cooling and likely continued after ~80 Ma. The pseudotachylite suggests earthquakes occurred on the brittle fault during the Cretaceous. Movement also occurred along the fault at fairly shallow depths as indicated by the presence of vugs, or cavities with free euhedral crystal growth, within the quartz vein breccias. In the Sawmill

  3. Physiochemical Evidence of Faulting Processes and Modeling of Fluid in Evolving Fault Systems in Southern California

    SciTech Connect

    Boles, James

    2013-05-24

    Our study targets recent (Plio-Pleistocene) faults and young (Tertiary) petroleum fields in southern California. Faults include the Refugio Fault in the Transverse Ranges, the Ellwood Fault in the Santa Barbara Channel, and most recently the Newport- Inglewood in the Los Angeles Basin. Subsurface core and tubing scale samples, outcrop samples, well logs, reservoir properties, pore pressures, fluid compositions, and published structural-seismic sections have been used to characterize the tectonic/diagenetic history of the faults. As part of the effort to understand the diagenetic processes within these fault zones, we have studied analogous processes of rapid carbonate precipitation (scaling) in petroleum reservoir tubing and manmade tunnels. From this, we have identified geochemical signatures in carbonate that characterize rapid CO2 degassing. These data provide constraints for finite element models that predict fluid pressures, multiphase flow patterns, rates and patterns of deformation, subsurface temperatures and heat flow, and geochemistry associated with large fault systems.

  4. Seismicity and fault geometry of the San Andreas fault around Parkfield, California and their implications

    NASA Astrophysics Data System (ADS)

    Kim, Woohan; Hong, Tae-Kyung; Lee, Junhyung; Taira, Taka'aki

    2016-05-01

    Fault geometry is a consequence of tectonic evolution, and it provides important information on potential seismic hazards. We investigated fault geometry and its properties in Parkfield, California on the basis of local seismicity and seismic velocity residuals refined by an adaptive-velocity hypocentral-parameter inversion method. The station correction terms from the hypocentral-parameter inversion present characteristic seismic velocity changes around the fault, suggesting low seismic velocities in the region east of the fault and high seismic velocities in the region to the west. Large seismic velocity anomalies are observed at shallow depths along the whole fault zone. At depths of 3-8 km, seismic velocity anomalies are small in the central fault zone, but are large in the northern and southern fault zones. At depths > 8 km, low seismic velocities are observed in the northern fault zone. High seismicity is observed in the Southwest Fracture Zone, which has developed beside the creeping segment of the San Andreas fault. The vertical distribution of seismicity suggests that the fault has spiral geometry, dipping NE in the northern region, nearly vertical in the central region, and SW in the southern region. The rapid twisting of the fault plane occurs in a short distance of approximately 50 km. The seismic velocity anomalies and fault geometry suggest location-dependent piecewise faulting, which may cause the periodic M6 events in the Parkfield region.

  5. Fault interactions and growth in an outcrop-scale system

    NASA Astrophysics Data System (ADS)

    Nicol, Andy; Walsh, John; Childs, Conrad; Manzocchi, Tom; Schoepfer, Martin

    2015-04-01

    Fault geometries and strike-slip displacements in a moderately dipping (~50°) multi-layer sequence have been analysed to constrain the evolution of an outcrop-scale fault system in coastal New Zealand. Displacements and geometries of small faults (lengths 1-200 m and maximum displacements 0.007-3 m) were sampled from a horizontal shore platform up to 120 m wide and 1.5 km long with near 100% exposure. Displacement profiles have variable shapes that mainly reflect fault interactions, with individual faults being both hard- and soft-linked. Variable displacement profiles produce an average profile for all faults that is near-triangular, with displacement gradients (and displacement-length ratios) increasing by an order of magnitude from smallest to largest faults. Within fault zones these gradients are accompanied by secondary faults, which are typically of greatest density close to fault intersections, in relay zones and at fault tips. Horsetail and synthetic splays confined to the regions around fault tips are incompatible with gradual fault propagation for the duration of growth. Instead, fault displacements and tip geometries are consistent with growth initially dominated by fault propagation followed by displacement accumulation and approximately stationary fault tips. Retardation of propagation is thought to arise due to fault interactions and associated reduction of tip stresses, with the early change from propagation- to displacement-dominated growth stages produced by fault-system saturation (i.e., all faults are interacting). Initial rapid fault propagation succeeded by displacement-dominated growth accounts for different fault types over a range of scales suggesting that this fault growth model has wide application.

  6. Ground-penetrating radar investigation of St. Leonard's Crypt under the Wawel Cathedral (Cracow, Poland) - COST Action TU1208

    NASA Astrophysics Data System (ADS)

    Benedetto, Andrea; Pajewski, Lara; Dimitriadis, Klisthenis; Avlonitou, Pepi; Konstantakis, Yannis; Musiela, Małgorzata; Mitka, Bartosz; Lambot, Sébastien; Żakowska, Lidia

    2016-04-01

    The Wawel ensemble, including the Royal Castle, the Wawel Cathedral and other monuments, is perched on top of the Wawel hill immediately south of the Cracow Old Town, and is by far the most important collection of buildings in Poland. St. Leonard's Crypt is located under the Wawel Cathedral of St Stanislaus BM and St Wenceslaus M. It was built in the years 1090-1117 and was the western crypt of the pre-existing Romanesque Wawel Cathedral, so-called Hermanowska. Pope John Paul II said his first Mass on the altar of St. Leonard's Crypt on November 2, 1946, one day after his priestly ordination. The interior of the crypt is divided by eight columns into three naves with vaulted ceiling and ended with one apse. The tomb of Bishop Maurus, who died in 1118, is in the middle of the crypt under the floor; an inscription "+ MAVRVS EPC MCXVIII +" indicates the burial place and was made in 1938 after the completion of archaeological works which resulted in the discovery of this tomb. Moreover, the crypt hosts the tombs of six Polish kings and heroes: Michał Korybut Wiśniowiecki (King of the Polish-Lithuanian Commonwealth), Jan III Sobieski (King of the Polish-Lithuanian Commonwealth and Commander at the Battle of Vienna), Maria Kazimiera (Queen of the Polish-Lithuanian Commonwealth and consort to Jan III Sobieski), Józef Poniatowski (Prince of Poland and Marshal of France), Tadeusz Kościuszko (Polish general, revolutionary and a Brigadier General in the American Revolutionary War) and Władysław Sikorski (Prime Minister of the Polish Government in Exile and Commander-in-Chief of the Polish Armed Forces). The adjacent six crypts and corridors host the tombs of the other Polish kings, from Sigismund the Old to Augustus II the Strong, their families and several Polish heroes. In May 2015, the COST (European COoperation in Science and Technology) Action TU1208 "Civil engineering applications of Ground Penetrating Radar" organised and offered a Training School (TS) on the

  7. A new intelligent hierarchical fault diagnosis system

    SciTech Connect

    Huang, Y.C.; Huang, C.L.; Yang, H.T.

    1997-02-01

    As a part of a substation-level decision support system, a new intelligent Hierarchical Fault Diagnosis System for on-line fault diagnosis is presented in this paper. The proposed diagnosis system divides the fault diagnosis process into two phases. Using time-stamped information of relays and breakers, phase 1 identifies the possible fault sections through the Group Method of Data Handling (GMDH) networks, and phase 2 recognizes the types and detailed situations of the faults identified in phase 1 by using a fast bit-operation logical inference mechanism. The diagnosis system has been practically verified by testing on a typical Taiwan power secondary transmission system. Test results show that rapid and accurate diagnosis can be obtained with flexibility and portability for fault diagnosis purpose of diverse substations.

  8. Early weakening processes inside thrust fault

    NASA Astrophysics Data System (ADS)

    Lacroix, B.; Tesei, T.; Oliot, E.; Lahfid, A.; Collettini, C.

    2015-07-01

    Observations from deep boreholes at several locations worldwide, laboratory measurements of frictional strength on quartzo-feldspathic materials, and earthquake focal mechanisms indicate that crustal faults are strong (apparent friction μ ≥ 0.6). However, friction experiments on phyllosilicate-rich rocks and some geophysical data have demonstrated that some major faults are considerably weaker. This weakness is commonly considered to be characteristic of mature faults in which rocks are altered by prolonged deformation and fluid-rock interaction (i.e., San Andreas, Zuccale, and Nankai Faults). In contrast, in this study we document fault weakening occurring along a marly shear zone in its infancy (<30 m displacement). Geochemical mass balance calculation and microstructural data show that a massive calcite departure (up to 50 vol %) from the fault rocks facilitated the concentration and reorganization of weak phyllosilicate minerals along the shear surfaces. Friction experiments carried out on intact foliated samples of host marls and fault rocks demonstrated that this structural reorganization lead to a significant fault weakening and that the incipient structure has strength and slip behavior comparable to that of the major weak faults previously documented. These results indicate that some faults, especially those nucleating in lithologies rich of both clays and high-solubility minerals (such as calcite), might experience rapid mineralogical and structural alteration and become weak even in the early stages of their activity.

  9. Ground-penetrating radar investigation of St. Leonard's Crypt under the Wawel Cathedral (Cracow, Poland) - COST Action TU1208

    NASA Astrophysics Data System (ADS)

    Benedetto, Andrea; Pajewski, Lara; Dimitriadis, Klisthenis; Avlonitou, Pepi; Konstantakis, Yannis; Musiela, Małgorzata; Mitka, Bartosz; Lambot, Sébastien; Żakowska, Lidia

    2016-04-01

    The Wawel ensemble, including the Royal Castle, the Wawel Cathedral and other monuments, is perched on top of the Wawel hill immediately south of the Cracow Old Town, and is by far the most important collection of buildings in Poland. St. Leonard's Crypt is located under the Wawel Cathedral of St Stanislaus BM and St Wenceslaus M. It was built in the years 1090-1117 and was the western crypt of the pre-existing Romanesque Wawel Cathedral, so-called Hermanowska. Pope John Paul II said his first Mass on the altar of St. Leonard's Crypt on November 2, 1946, one day after his priestly ordination. The interior of the crypt is divided by eight columns into three naves with vaulted ceiling and ended with one apse. The tomb of Bishop Maurus, who died in 1118, is in the middle of the crypt under the floor; an inscription "+ MAVRVS EPC MCXVIII +" indicates the burial place and was made in 1938 after the completion of archaeological works which resulted in the discovery of this tomb. Moreover, the crypt hosts the tombs of six Polish kings and heroes: Michał Korybut Wiśniowiecki (King of the Polish-Lithuanian Commonwealth), Jan III Sobieski (King of the Polish-Lithuanian Commonwealth and Commander at the Battle of Vienna), Maria Kazimiera (Queen of the Polish-Lithuanian Commonwealth and consort to Jan III Sobieski), Józef Poniatowski (Prince of Poland and Marshal of France), Tadeusz Kościuszko (Polish general, revolutionary and a Brigadier General in the American Revolutionary War) and Władysław Sikorski (Prime Minister of the Polish Government in Exile and Commander-in-Chief of the Polish Armed Forces). The adjacent six crypts and corridors host the tombs of the other Polish kings, from Sigismund the Old to Augustus II the Strong, their families and several Polish heroes. In May 2015, the COST (European COoperation in Science and Technology) Action TU1208 "Civil engineering applications of Ground Penetrating Radar" organised and offered a Training School (TS) on the

  10. Geometry and growth of an inner rift fault pattern: the Kino Sogo Fault Belt, Turkana Rift (North Kenya)

    NASA Astrophysics Data System (ADS)

    Vétel, William; Le Gall, Bernard; Walsh, John J.

    A quantitative analysis is presented of the scaling properties of faults within the exceptionally well-exposed Kino Sogo Fault Belt (KSFB) from the eastern part of the 200-km-wide Turkana rift, Northern Kenya. The KSFB comprises a series of horsts and grabens within an arcuate 40-km-wide zone that dissects Miocene-Pliocene lavas overlying an earlier asymmetric fault block. The fault belt is ˜150 km long and is bounded to the north and south by transverse (N50°E and N140°E) fault zones. An unusual feature of the fault system is that it accommodates very low strains (<1%) and since it is no older than 3 Ma, it could be characterised by extension rates and strain rates that are as low as ˜0.1 mm/yr and 10 -16 s -1, respectively. Despite its immaturity, the fault system comprises segmented fault arrays with lengths of up to 40 km, with individual fault segments ranging up to ˜9 km in length. Fault length distributions subscribe to a negative exponential scaling law, as opposed to the power law scaling typical of other fault systems. The relatively long faults and segments are, however, characterised by maximum throws of no more than 100 m, providing displacement/length ratios that are significantly below those of other fault systems. The under-displaced nature of the fault system is attributed to early stage rapid fault propagation possibly arising from reactivation of earlier underlying basement fabrics/faults or magmatic-related fractures. Combined with the structural control exercised by pre-existing transverse structures, the KSFB demonstrates the strong influence of older structures on rift fault system growth and the relatively rapid development of under-displaced fault geometries at low strains.

  11. The Cathedral of S. Giorgio in Ragusa Ibla (Italy): characterization of construction materials and their chromatic alteration

    NASA Astrophysics Data System (ADS)

    Barone, Germana; La Russa, Mauro Francesco; Lo Giudice, Antonino; Mazzoleni, Paolo; Pezzino, Antonino

    2008-08-01

    The Cathedral of St. Giorgio in Ragusa Ibla (Sicily) is one of the most important Baroque monuments of eastern Sicily. The restoration of the monument underway has put forward notable questions regarding the stone materials used and their state of degradation. The façade appears to be made mainly of a creamy white calcarenite, and of mortars and plasters. However, detailed analysis has highlighted a more complex use of the raw material. The mortar and plaster have a different composition in regards to their architectural use while the natural stone material is distinguished not only by a creamy-white calcarenite but also by a dark coloured bituminous calcarenite (pitch rock), which now appears whiter because of superficial chromatic alterations. This process was reproduced in the laboratory using an accelerated aging technique on samples of bituminous calcarenite, which allowed the cause of the alternation to be identified as photo-oxidation of the asphaltenes. Following this process of photo-oxidation, other forms of chromatic alterations affected the façade (brown orange-coloured patinas). FTIR, Scanning Electron Microscope and thin section microscopic observation allowed the characterization of also the products of this process to be carried out, highlighting the complex mechanism which the processes underwent.

  12. Fault slip distribution and fault roughness

    NASA Astrophysics Data System (ADS)

    Candela, Thibault; Renard, François; Schmittbuhl, Jean; Bouchon, Michel; Brodsky, Emily E.

    2011-11-01

    We present analysis of the spatial correlations of seismological slip maps and fault topography roughness, illuminating their identical self-affine exponent. Though the complexity of the coseismic spatial slip distribution can be intuitively associated with geometrical or stress heterogeneities along the fault surface, this has never been demonstrated. Based on new measurements of fault surface topography and on statistical analyses of kinematic inversions of slip maps, we propose a model, which quantitatively characterizes the link between slip distribution and fault surface roughness. Our approach can be divided into two complementary steps: (i) Using a numerical computation, we estimate the influence of fault roughness on the frictional strength (pre-stress). We model a fault as a rough interface where elastic asperities are squeezed. The Hurst exponent ?, characterizing the self-affinity of the frictional strength field, approaches ?, where ? is the roughness exponent of the fault surface in the direction of slip. (ii) Using a quasi-static model of fault propagation, which includes the effect of long-range elastic interactions and spatial correlations in the frictional strength, the spatial slip correlation is observed to scale as ?, where ? represents the Hurst exponent of the slip distribution. Under the assumption that the origin of the spatial fluctuations in frictional strength along faults is the elastic squeeze of fault asperities, we show that self-affine geometrical properties of fault surface roughness control slip correlations and that ?. Given that ? for a wide range of faults (various accumulated displacement, host rock and slip movement), we predict that ?. Even if our quasi-static fault model is more relevant for creeping faults, the spatial slip correlations observed are consistent with those of seismological slip maps. A consequence is that the self-affinity property of slip roughness may be explained by fault geometry without considering

  13. Segmentation and growth of an obliquely reactivated normal fault

    NASA Astrophysics Data System (ADS)

    Giba, M.; Walsh, J. J.; Nicol, A.

    2012-06-01

    Detailed kinematic analysis of a large (1800 m maximum displacement) reactivated normal fault in the Taranaki Basin, New Zealand, has been conducted using high quality 3D seismic data. The Parihaka Fault is approximately north-south striking in basement, where it accrued Late Cretaceous to Early Eocene displacements in response to east-west extension, and was obliquely reactivated by NW-SE extension in the Pliocene. Reactivation resulted in upward propagation, newly formed segmentation and up-dip clockwise rotation of the fault surface by up to ˜20° from the strike of the basement fault. Fault segmentation, and map-view soft-linkage by relay zones in post Miocene strata, was synchronous with the formation of antithetic faults in Late Miocene strata at bends in the fault surface. Fault segment lengths, antithetic faults and relay zone dimensions were formed geologically instantaneously during initial reactivation of the main fault at 3.7-3.4 Ma (i.e. within the first ˜10% of faulting). Rapid formation of Pliocene fault segments is followed by displacement accumulation without an increase in fault segment length until eventual relay breaching when continued ramp rotation is unsustainable. This evolutionary history is consistent with a model in which arrays of fault segments are, from inception, components of a single coherent structure.

  14. Rupture interaction with fault jogs

    NASA Astrophysics Data System (ADS)

    Sibson, Richard H.

    Propagation of moderate to large earthquake ruptures within major transcurrent fault systems is affected by their large-scale brittle infrastructure, comprising echelon segmentation and curvature of principal slip surfaces (PSS) within typically ˜1 km wide main fault zones. These PSS irregularities are classified into dilational and antidilational fault jogs depending on the tendency for areal increase or reduction, respectively, across the jog structures. High precision microearthquake studies show that the jogs often extend throughout the seismogenic regime to depths of around 10 km. On geomorphic evidence, the larger jogs may persist for periods >105 years. While antidilational jogs form obstacles to both short- and long-term displacements, dilational jogs appear to act as kinetic barriers capable of perturbing or arresting earthquake ruptures, but allowing time-dependent slip transfer. In the case of antidilational jogs slip transfer is accommodated by widespread subsidiary faulting, but for dilational jogs it additionally involves extensional fracture opening localized in the echelon stepover. In fluid-saturated crust, the rapid opening of linking extensional fracture systems to allow passage of earthquake ruptures is opposed by induced suctions which scale with the width of the jog. Rupture arrest at dilational jogs may then be followed by delayed slip transfer as fluid pressures reequilibrate by diffusion. Aftershock distributions associated with the different fault jogs reflect these contrasts in their internal structure and mechanical response.

  15. Flight elements: Fault detection and fault management

    NASA Technical Reports Server (NTRS)

    Lum, H.; Patterson-Hine, A.; Edge, J. T.; Lawler, D.

    1990-01-01

    Fault management for an intelligent computational system must be developed using a top down integrated engineering approach. An approach proposed includes integrating the overall environment involving sensors and their associated data; design knowledge capture; operations; fault detection, identification, and reconfiguration; testability; causal models including digraph matrix analysis; and overall performance impacts on the hardware and software architecture. Implementation of the concept to achieve a real time intelligent fault detection and management system will be accomplished via the implementation of several objectives, which are: Development of fault tolerant/FDIR requirement and specification from a systems level which will carry through from conceptual design through implementation and mission operations; Implementation of monitoring, diagnosis, and reconfiguration at all system levels providing fault isolation and system integration; Optimize system operations to manage degraded system performance through system integration; and Lower development and operations costs through the implementation of an intelligent real time fault detection and fault management system and an information management system.

  16. Fault damage zones

    NASA Astrophysics Data System (ADS)

    Kim, Young-Seog; Peacock, David C. P.; Sanderson, David J.

    2004-03-01

    Damage zones show very similar geometries across a wide range of scales and fault types, including strike-slip, normal and thrust faults. We use a geometric classification of damage zones into tip-, wall-, and linking-damage zones, based on their location around faults. These classes can be sub-divided in terms of fault and fracture patterns within the damage zone. A variety of damage zone structures can occur at mode II tips of strike-slip faults, including wing cracks, horsetail fractures, antithetic faults, and synthetic branch faults. Wall damage zones result from the propagation of mode II and mode III fault tips through a rock, or from damage associated with the increase in slip on a fault. Wall damage zone structures include extension fractures, antithetic faults, synthetic faults, and rotated blocks with associated triangular openings. The damage formed at the mode III tips of strike-slip faults (e.g. observed in cliff sections) are classified as wall damage zones, because the damage zone structures are distributed along a fault trace in map view. Mixed-mode tips are likely to show characteristics of both mode II and mode III tips. Linking damage zones are developed at steps between two sub-parallel faults, and the structures developed depend on whether the step is extensional or contractional. Extension fractures and pull-aparts typically develop in extensional steps, whilst solution seams, antithetic faults and synthetic faults commonly develop in contractional steps. Rotated blocks, isolated lenses or strike-slip duplexes may occur in both extensional and contractional steps. Damage zone geometries and structures are strongly controlled by the location around a fault, the slip mode at a fault tip, and by the evolutionary stage of the fault. Although other factors control the nature of damage zones (e.g. lithology, rheology and stress system), the three-dimensional fault geometry and slip mode at each tip must be considered to gain an understanding of

  17. Monitoring of the temperature - moisture regime of critical parts in the tower of the St. Martin Cathedral in Bratislava.

    NASA Astrophysics Data System (ADS)

    Kubicar, L.; Fidríková, D.; Štofanik, V.; Vretenár, V.

    2012-04-01

    Historic monuments are subject to degradation due to exposition to surrounding meteorological conditions and groundwater. Degradation is most often manifested by deterioration of plaster, walls structure and building elements like stones. A significant attention measures are undertaken to prevent degradation of the cultural heritage throughout the world. Our contribution is to monitor the objects for recognition of the critical state when it is necessary to make adjustments to avoid destruction. Buildings consisting from the listed elements belong to porous materials. Moisture diffusion, condensation, etc. attack structure stability of the buildings. Then the moisture diffusion and effects like drying, freezing / thawing belong to the control mechanisms of the degradation. In addition to laboratory experiments concerning the mentioned effects, we simultaneously studied processes by monitoring of the cultural monuments. During monitoring we have identified diffusion of moisture associated with cycle day / night and cycle moisture /drying caused by meteorological precipitation. Long term monitoring is performed in the tower of St. Martin Cathedral in Bratislava under the window sill of the belfry in exterior at three orientations, the north, south and the west. Monitoring is carried out in plaster and in masonry about 10 cm from the wall surface. The thermal conductivity sensors are used for monitoring that operate on the principle of the hot ball method. Then thermal conductivity of porous material is a function of pore content. The sensor has shape of a ball in diameter up to 2 mm in which a heat source as well as a thermometer is integrated into one component. A small heat output is delivered into the surrounding material. The temperature response of the sensor gives information on the thermal conductivity. For use in the preservation of cultural heritage a number of measuring devices have been developed for automatic registration of temperature and moisture in

  18. The central tower of the cathedral of Schleswig - New investigations to understand the alcali-silica reaction of historical mortars

    NASA Astrophysics Data System (ADS)

    Wedekind, Wanja; Protz, Andreas

    2016-04-01

    The damaging alcali-silica reaction leads to crack-formation and structural destruction at noumerous, constructed with cement mortar, buildings worldwide. The ASR-reaction causes the expansion of altered aggregates by the formation of a swelling gel. This gel consists of calcium silicate hydrate (C-S-H) that increases in volume with water, which exerts an expansive pressure inside the material. The cathedral of Schleswig is one of the oldest in northern Germany. The first church was built in 985-965. The Romanesque building part was erected around 1180 and the Gothic nave at the end of the 13th century. The central tower was constructed between 1888 and 1894 with brick and cement mortar. With 112 meters, the tower is the second-largest church spire of the country of Schleswig-Holstein in northern Germany. Due to the formation of cracks and damages from 1953 to 1956 first restoration works took place. Further developments of cracks are making restoration necessary again today. For developing a suitable conservation strategy, different investigations were done. The investigation included the determination of the pore space properties, the hygric and thermal dilatation and mercury porosimetry measurements. Furthermore, the application of cathodoluminescence microscopy may give information about the alteration process and microstructures present and reveal the differences between unaltered and altered mortars. An obvious relation between the porosity and the swelling intensity could be detected. Furthermore it becomes apparent, that a clear zonation of the mortar took place. The mortar near the surface is denser with a lower porosity and has a significantly lower swelling or dilatation.

  19. Fault tree handbook

    SciTech Connect

    Haasl, D.F.; Roberts, N.H.; Vesely, W.E.; Goldberg, F.F.

    1981-01-01

    This handbook describes a methodology for reliability analysis of complex systems such as those which comprise the engineered safety features of nuclear power generating stations. After an initial overview of the available system analysis approaches, the handbook focuses on a description of the deductive method known as fault tree analysis. The following aspects of fault tree analysis are covered: basic concepts for fault tree analysis; basic elements of a fault tree; fault tree construction; probability, statistics, and Boolean algebra for the fault tree analyst; qualitative and quantitative fault tree evaluation techniques; and computer codes for fault tree evaluation. Also discussed are several example problems illustrating the basic concepts of fault tree construction and evaluation.

  20. Loading of the San Andreas fault by flood-induced rupture of faults beneath the Salton Sea

    USGS Publications Warehouse

    Brothers, Daniel; Kilb, Debi; Luttrell, Karen; Driscoll, Neal W.; Kent, Graham

    2011-01-01

    The southern San Andreas fault has not experienced a large earthquake for approximately 300 years, yet the previous five earthquakes occurred at ~180-year intervals. Large strike-slip faults are often segmented by lateral stepover zones. Movement on smaller faults within a stepover zone could perturb the main fault segments and potentially trigger a large earthquake. The southern San Andreas fault terminates in an extensional stepover zone beneath the Salton Sea—a lake that has experienced periodic flooding and desiccation since the late Holocene. Here we reconstruct the magnitude and timing of fault activity beneath the Salton Sea over several earthquake cycles. We observe coincident timing between flooding events, stepover fault displacement and ruptures on the San Andreas fault. Using Coulomb stress models, we show that the combined effect of lake loading, stepover fault movement and increased pore pressure could increase stress on the southern San Andreas fault to levels sufficient to induce failure. We conclude that rupture of the stepover faults, caused by periodic flooding of the palaeo-Salton Sea and by tectonic forcing, had the potential to trigger earthquake rupture on the southern San Andreas fault. Extensional stepover zones are highly susceptible to rapid stress loading and thus the Salton Sea may be a nucleation point for large ruptures on the southern San Andreas fault.

  1. Fault zone hydrogeology

    NASA Astrophysics Data System (ADS)

    Bense, V. F.; Gleeson, T.; Loveless, S. E.; Bour, O.; Scibek, J.

    2013-12-01

    Deformation along faults in the shallow crust (< 1 km) introduces permeability heterogeneity and anisotropy, which has an important impact on processes such as regional groundwater flow, hydrocarbon migration, and hydrothermal fluid circulation. Fault zones have the capacity to be hydraulic conduits connecting shallow and deep geological environments, but simultaneously the fault cores of many faults often form effective barriers to flow. The direct evaluation of the impact of faults to fluid flow patterns remains a challenge and requires a multidisciplinary research effort of structural geologists and hydrogeologists. However, we find that these disciplines often use different methods with little interaction between them. In this review, we document the current multi-disciplinary understanding of fault zone hydrogeology. We discuss surface- and subsurface observations from diverse rock types from unlithified and lithified clastic sediments through to carbonate, crystalline, and volcanic rocks. For each rock type, we evaluate geological deformation mechanisms, hydrogeologic observations and conceptual models of fault zone hydrogeology. Outcrop observations indicate that fault zones commonly have a permeability structure suggesting they should act as complex conduit-barrier systems in which along-fault flow is encouraged and across-fault flow is impeded. Hydrogeological observations of fault zones reported in the literature show a broad qualitative agreement with outcrop-based conceptual models of fault zone hydrogeology. Nevertheless, the specific impact of a particular fault permeability structure on fault zone hydrogeology can only be assessed when the hydrogeological context of the fault zone is considered and not from outcrop observations alone. To gain a more integrated, comprehensive understanding of fault zone hydrogeology, we foresee numerous synergistic opportunities and challenges for the discipline of structural geology and hydrogeology to co-evolve and

  2. Fault recovery characteristics of the fault tolerant multi-processor

    NASA Technical Reports Server (NTRS)

    Padilla, Peter A.

    1990-01-01

    The fault handling performance of the fault tolerant multiprocessor (FTMP) was investigated. Fault handling errors detected during fault injection experiments were characterized. In these fault injection experiments, the FTMP disabled a working unit instead of the faulted unit once every 500 faults, on the average. System design weaknesses allow active faults to exercise a part of the fault management software that handles byzantine or lying faults. It is pointed out that these weak areas in the FTMP's design increase the probability that, for any hardware fault, a good LRU (line replaceable unit) is mistakenly disabled by the fault management software. It is concluded that fault injection can help detect and analyze the behavior of a system in the ultra-reliable regime. Although fault injection testing cannot be exhaustive, it has been demonstrated that it provides a unique capability to unmask problems and to characterize the behavior of a fault-tolerant system.

  3. Load-strengthening versus load-weakening faulting

    NASA Astrophysics Data System (ADS)

    Sibson, Richard H.

    1993-02-01

    Increases in shear stress (τ) along a fault during loading to failure cannot generally occur without changes in the normal stress across the fault (σ n). The fault loading parameter ( ∂δ' n/ ∂τ = ∂δn/ ∂τ - ∂Pf/ ∂τ) distinguishes situations of load-strengthening ( ∂δ' n/ ∂τ > 0), where the frictional shear strength of faults increases as tectonic shear stress rises, from load-weakening environments ( ∂δ' n/ t6 τ < 0) where it decreases. Compressional faulting in tectonic regimes with δv = δ3 is always load-strengthening unless fluid pressure is rapidly increasing. Extensional faulting in regimes where δv = δ1 is load-weakening unless fluid pressure is dropping rapidly. Strike-slip faulting in terrains where δv = δ2 can be either load-weakening or load-strengthening. The particular case where ∂δ' n/ ∂τ = 0, so that frictional shear strength stays constant during fault loading, is a very special situation corresponding to direct shear. Load-strengthening strike-slip faulting appears to correlate with tectonic transpression and load-weakening with transtension. Differing loading characteristics of faults in different tectonic regimes must induce varying patterns of cyclic fluid redistribution accompanying the seismic cycle, with implications for earthquake recurrence and precursory groundwater phenomena.

  4. Fault tolerant control of spacecraft

    NASA Astrophysics Data System (ADS)

    Godard

    Autonomous multiple spacecraft formation flying space missions demand the development of reliable control systems to ensure rapid, accurate, and effective response to various attitude and formation reconfiguration commands. Keeping in mind the complexities involved in the technology development to enable spacecraft formation flying, this thesis presents the development and validation of a fault tolerant control algorithm that augments the AOCS on-board a spacecraft to ensure that these challenging formation flying missions will fly successfully. Taking inspiration from the existing theory of nonlinear control, a fault-tolerant control system for the RyePicoSat missions is designed to cope with actuator faults whilst maintaining the desirable degree of overall stability and performance. Autonomous fault tolerant adaptive control scheme for spacecraft equipped with redundant actuators and robust control of spacecraft in underactuated configuration, represent the two central themes of this thesis. The developed algorithms are validated using a hardware-in-the-loop simulation. A reaction wheel testbed is used to validate the proposed fault tolerant attitude control scheme. A spacecraft formation flying experimental testbed is used to verify the performance of the proposed robust control scheme for underactuated spacecraft configurations. The proposed underactuated formation flying concept leads to more than 60% savings in fuel consumption when compared to a fully actuated spacecraft formation configuration. We also developed a novel attitude control methodology that requires only a single thruster to stabilize three axis attitude and angular velocity components of a spacecraft. Numerical simulations and hardware-in-the-loop experimental results along with rigorous analytical stability analysis shows that the proposed methodology will greatly enhance the reliability of the spacecraft, while allowing for potentially significant overall mission cost reduction.

  5. Off-fault damage and acoustic emission distributions during the evolution of structurally complex faults over series of stick-slip events

    NASA Astrophysics Data System (ADS)

    Goebel, T. H. W.; Becker, T. W.; Sammis, C. G.; Dresen, G.; Schorlemmer, D.

    2014-06-01

    Variations in fault structure, for example, surface roughness and deformation zone width, influence the location and dynamics of large earthquakes as well as the distribution of small seismic events. In nature, changes in fault roughness and seismicity characteristics can rarely be studied simultaneously, so that little is known about their interaction and evolution. Here, we investigate the connection between fault structure and near-fault distributions of seismic events over series of stick-slip cycles in the laboratory. We conducted a set of experiments on rough faults that developed from incipient fracture surfaces. We monitored stress and seismic activity which occurred in the form of acoustic emissions (AEs). We determined AE density distributions as a function of fault normal distance based on high-accuracy hypocentre locations during subsequent interslip periods. The characteristics of these distributions were closely connected to different structural units of the faults, that is, the fault core, off-fault and background damage zone. The core deformation zone was characterized by consistently high seismic activity, whereas the off-fault damage zone displayed a power-law decay of seismic activity with increasing distance from the fault core. The exponents of the power-law-distributed off-fault activity increased with successive stick-slip events so that later interslip periods showed a more rapid spatial decay of seismic activity from the fault. The increase in exponents was strongest during the first one to three interslip periods and reached approximately constant values thereafter. The relatively rapid spatial decay of AE events during later interslip periods is likely an expression of decreasing fault zone complexity and roughness. Our results indicate a close relationship between fault structure, stress and seismic off-fault activity. A more extensive mapping of seismic off-fault activity-decay has the potential to significantly advance the

  6. Fault model development for fault tolerant VLSI design

    NASA Astrophysics Data System (ADS)

    Hartmann, C. R.; Lala, P. K.; Ali, A. M.; Visweswaran, G. S.; Ganguly, S.

    1988-05-01

    Fault models provide systematic and precise representations of physical defects in microcircuits in a form suitable for simulation and test generation. The current difficulty in testing VLSI circuits can be attributed to the tremendous increase in design complexity and the inappropriateness of traditional stuck-at fault models. This report develops fault models for three different types of common defects that are not accurately represented by the stuck-at fault model. The faults examined in this report are: bridging faults, transistor stuck-open faults, and transient faults caused by alpha particle radiation. A generalized fault model could not be developed for the three fault types. However, microcircuit behavior and fault detection strategies are described for the bridging, transistor stuck-open, and transient (alpha particle strike) faults. The results of this study can be applied to the simulation and analysis of faults in fault tolerant VLSI circuits.

  7. FTAPE: A fault injection tool to measure fault tolerance

    NASA Technical Reports Server (NTRS)

    Tsai, Timothy K.; Iyer, Ravishankar K.

    1995-01-01

    The paper introduces FTAPE (Fault Tolerance And Performance Evaluator), a tool that can be used to compare fault-tolerant computers. The tool combines system-wide fault injection with a controllable workload. A workload generator is used to create high stress conditions for the machine. Faults are injected based on this workload activity in order to ensure a high level of fault propagation. The errors/fault ratio and performance degradation are presented as measures of fault tolerance.

  8. FTAPE: A fault injection tool to measure fault tolerance

    NASA Technical Reports Server (NTRS)

    Tsai, Timothy K.; Iyer, Ravishankar K.

    1994-01-01

    The paper introduces FTAPE (Fault Tolerance And Performance Evaluator), a tool that can be used to compare fault-tolerant computers. The tool combines system-wide fault injection with a controllable workload. A workload generator is used to create high stress conditions for the machine. Faults are injected based on this workload activity in order to ensure a high level of fault propagation. The errors/fault ratio and performance degradation are presented as measures of fault tolerance.

  9. FTAPE: A fault injection tool to measure fault tolerance

    NASA Astrophysics Data System (ADS)

    Tsai, Timothy K.; Iyer, Ravishankar K.

    1994-07-01

    The paper introduces FTAPE (Fault Tolerance And Performance Evaluator), a tool that can be used to compare fault-tolerant computers. The tool combines system-wide fault injection with a controllable workload. A workload generator is used to create high stress conditions for the machine. Faults are injected based on this workload activity in order to ensure a high level of fault propagation. The errors/fault ratio and performance degradation are presented as measures of fault tolerance.

  10. The initiation of brittle faults in crystalline rock

    NASA Astrophysics Data System (ADS)

    Crider, Juliet G.

    2015-08-01

    Faults in the upper crust initiate from pre-existing (inherited) or precursory (early-formed) structures and typically grow by the mechanical interaction and linkage of these structures. In crystalline rock, rock architecture, composition, cooling, and exhumation influence the initiation of faults, with contrasting styles observed in plutonic rocks, extrusive igneous rocks, and foliated metamorphic rocks. Brittle fault growth in granitic rock is commonly controlled by the architecture of inherited joints or preexisting dikes. In basalt, abundant joints control the surface expression of faulting, and enhanced compliance due to abundant joints leads to folding and deformation asymmetry in the fault zone. Highly reactive mafic minerals likely become rapidly evolving fault rocks. In foliated metamorphic rocks, fault initiation style is strongly influenced by strength anisotropy relative to the principal stress directions, with fracturing favored when the foliation is aligned with the directions of principal stress. The continuity of micas within the foliation also influences the micromechanics of fault initiation. Brittle kink bands are an example of a strain-hardening precursory structure unique to foliated rock. Each of these fault initiation processes produces different initial fault geometry and spatial heterogeneity that influence such properties as fault permeability and seismogenesis.

  11. Isolability of faults in sensor fault diagnosis

    NASA Astrophysics Data System (ADS)

    Sharifi, Reza; Langari, Reza

    2011-10-01

    A major concern with fault detection and isolation (FDI) methods is their robustness with respect to noise and modeling uncertainties. With this in mind, several approaches have been proposed to minimize the vulnerability of FDI methods to these uncertainties. But, apart from the algorithm used, there is a theoretical limit on the minimum effect of noise on detectability and isolability. This limit has been quantified in this paper for the problem of sensor fault diagnosis based on direct redundancies. In this study, first a geometric approach to sensor fault detection is proposed. The sensor fault is isolated based on the direction of residuals found from a residual generator. This residual generator can be constructed from an input-output or a Principal Component Analysis (PCA) based model. The simplicity of this technique, compared to the existing methods of sensor fault diagnosis, allows for more rational formulation of the isolability concepts in linear systems. Using this residual generator and the assumption of Gaussian noise, the effect of noise on isolability is studied, and the minimum magnitude of isolable fault in each sensor is found based on the distribution of noise in the measurement system. Finally, some numerical examples are presented to clarify this approach.

  12. Stress sensitivity of fault seismicity: A comparison between limited-offset oblique and major strike-slip faults

    USGS Publications Warehouse

    Parsons, T.; Stein, R.S.; Simpson, R.W.; Reasenberg, P.A.

    1999-01-01

    We present a new three-dimensional inventory of the southern San Francisco Bay area faults and use it to calculate stress applied principally by the 1989 M = 7.1 Loma Prieta earthquake and to compare fault seismicity rates before and after 1989. The major high-angle right-lateral faults exhibit a different response to the stress change than do minor oblique (right-lateral/thrust) faults. Seismicity on oblique-slip faults in the southern Santa Clara Valley thrust belt increased where the faults were unclamped. The strong dependence of seismicity change on normal stress change implies a high coefficient of static friction. In contrast, we observe that faults with significant offset (>50-100 km) behave differently; microseismicity on the Hayward fault diminished where right-lateral shear stress was reduced and where it was unclamped by the Loma Prieta earthquake. We observe a similar response on the San Andreas fault zone in southern California after the Landers earthquake sequence. Additionally, the offshore San Gregorio fault shows a seismicity rate increase where right-lateral/oblique shear stress was increased by the Loma Prieta earthquake despite also being clamped by it. These responses are consistent with either a low coefficient of static friction or high pore fluid pressures within the fault zones. We can explain the different behavior of the two styles of faults if those with large cumulative offset become impermeable through gouge buildup; coseismically pressurized pore fluids could be trapped and negate imposed normal stress changes, whereas in more limited offset faults, fluids could rapidly escape. The difference in behavior between minor and major faults may explain why frictional failure criteria that apply intermediate coefficients of static friction can be effective in describing the broad distributions of aftershocks that follow large earthquakes, since many of these events occur both inside and outside major fault zones.

  13. A new approach for fault identification in computer networks

    NASA Astrophysics Data System (ADS)

    Zhao, Dong; Wang, Tao

    2004-04-01

    Effective management of computer networks has become a more and more difficult job because of the rapid development of the network systems. Fault identification is to find where is the problem of the network and what is it. Data mining generally refers to the process of extracting models from large stores of data. We can use data mining techniques to help us in the fault identification task. Existing approaches of fault identification are introduced and a new approach of fault identification is proposed. This approach improves MSDD algorithm but it need more computation. So some new techniques are used to increase the efficiency.

  14. Hydrogen Gas Emissions from Active Faults and Identification of Flow Pathway in a Fault Zone

    NASA Astrophysics Data System (ADS)

    Ishimaru, T.; Niwa, M.; Kurosawa, H.; Shimada, K.

    2010-12-01

    It has been observed that hydrogen gas emissions from the subsurface along active faults exceed atmospheric concentrations (e.g. Sugisaki et. al., 1983). Experimental studies have shown that hydrogen gas is generated in a radical reaction of water with fractured silicate minerals due to rock fracturing caused by fault movement (e.g. Kita et al., 1982). Based on such research, we are studying an investigation method for an assessment of fault activity using hydrogen gas emissions from fracture zones. To start, we have devised portable equipment for rapid and simple in situ measurement of hydrogen gas emissions (Shimada et al., 2008). The key component of this equipment is a commercially available and compact hydrogen gas sensor with an integral data logger operable at atmospheric pressure. In the field, we have drilled shallow boreholes into incohesive fault rocks to depths ranging from 15 to 45 cm using a hand-operated drill with a 9mm drill-bit. Then, we have measured the hydrogen gas concentrations in emissions from active faults such as: the western part of the Atotsugawa fault zone, the Atera fault zone and the Neodani fault in central Japan; the Yamasaki fault zone in southwest Japan; and the Yamagata fault zone in northeast Japan. In addition, we have investigated the hydrogen gas concentrations in emissions from other major geological features such as tectonic lines: the Butsuzo Tectonic Line in the eastern Kii Peninsula and the Atokura Nappe in the Northeastern Kanto Mountains. As a result of the investigations, hydrogen gas concentration in emissions from the active faults was measured to be in the approximate range from 6,000 ppm to 26,000 ppm in two to three hours after drilling. A tendency for high concentrations of hydrogen gas in active faults was recognized, in contrast with low concentrations in emissions from tectonic lines that were observed to be in the range from 730 ppm to 2,000 ppm. It is inferred that the hydrogen gas migrates to ground

  15. Three-Dimensional Fault Morphology and its Causes

    NASA Astrophysics Data System (ADS)

    Tanner, D. C.; Prüfer, S.; Kuhn, D.; Krawczyk, C. M.

    2009-12-01

    We mapped an extremely well-exposed fault surface (dimensions: 120 m long and 20 m high) with a LIDAR device (Optech Ilris 3D Laser scanner), using a point spacing of 4 cm, with an accuracy of better than 4 mm. The fault cuts flat-bedded carbonates of Triassic Muschelkalk age. From the resulting three-dimensional surface scan, we were able to statistically analyse the geometrical morphology of the fault. There are five morphological aspects of the fault. 1/ It is split into long (ca. 50 m) N-S striking segments by shorter (ca. 5 m) SE-NW striking segments. 2/ Bedding traces can be seen through the fault surface, because individual beds with different stiffnesses cause the fault plane to rapidly change dip between 35 and 75 degrees. 3/ From north to south the longer fault traces become steeper, so that each segment possess a helicoidal shape. 4/ There are a multitude of asperities (10-40 cm wide) elongated in the dip-slip direction. These asperities are parallel to the intersections of the (1) segments. 5/ A subtle change between negative and positive curvature, on the scale of 1-2 m, can be shown to exist by comparing the fault surface to median surfaces that were created from the fault surface at different grid scales (0.65 to 10 m). These are probably fossil remnants of the small original faults that merged to form the major fault. We postulate that the fault first developed as long and short segments, which represent en-échelon R-, with bridging P-Reidel shears, respectively, due to sinistral strike-slip movement. Each R-shear segment developed from small, 1-2 m spaced shear fractures. As the fractures grew across bedding, the growth direction was influenced by the stiffness of the beds. These scales are hardwired and were purely determined by the rock properties. Later dip-slip movement caused new asperities to be created, parallel to the new fault transport direction. These are the effect of friction between the fault blocks, as they are more apparent on

  16. Three-dimensional fault drawing

    SciTech Connect

    Dongan, L. )

    1992-01-01

    In this paper, the author presents a structure interpretation based on three-dimensional fault drawing. It is required that fault closure must be based on geological theory, spacial plotting principle and restrictions in seismic exploration. Geological structure can be well ascertained by analysing the shapes and interrelation of the faults which have been drawn through reasonable fault point closure and fault point correlation. According to this method, the interrelation of fault points is determined by first closing corresponding fault points in intersecting sections, then reasonably correlating the relevant fault points. Fault point correlation is not achieved in base map, so its correctness can be improved greatly. Three-dimensional fault closure is achieved by iteratively revising. The closure grid should be densified gradually. The distribution of major fault system is determined prior to secondary faults. Fault interpretation by workstation also follows this procedure.

  17. The influence of indoor microclimate on thermal comfort and conservation of artworks: the case study of the cathedral of Matera (South Italy)

    NASA Astrophysics Data System (ADS)

    Cardinale, Tiziana; Rospi, Gianluca; Cardinale, Nicola; Paterino, Lucia; Persia, Ivan

    2014-05-01

    The Matera Cathedral was built in Apulian-Romanesque style in the thirteenth century on the highest spur of the "Civita" that divides "Sassi" district in two parts. The constructive material is the calcareous stone of the Vaglia, extracted from quarries in the area of Matera. The interior is Baroque and presents several artworks, including: mortars covered with a golden patina, a wooden ceiling, painted canvas and painting frescoes, three minor altars and a major altar of precious white marble, a nativity scene made of local painted limestone. The research had to evaluate the indoor microclimate during and after the restoration works, that also concern the installation of floor heating system to heat the indoor environments. Specifically, we have analyzed the thermal comfort and the effect that the artwork and construction materials inside the Cathedral of Matera have undergone. This evaluation was carried out in two different phases: in the first one we have investigated the state of the art (history of the site, constructive typology and artworks); in the second one we have done a systematic diagnosis and an instrumental one. The analysis were carried out in a qualitative and quantitative way and have allowed us to test indoor microclimatic parameters (air temperature, relative humidity and indoor air velocity), surface temperatures of the envelope and also Fanger's comfort indices (PMV and PPD) according to the UNI EN ISO 7730. The thermal mapping of the wall surface and of the artworks, carried out through thermal imaging camera, and the instrumental measurement campaigns were made both before restoration and after installation of the heating system; in addition measurements were taken with system on and off. The analysis thus made possible to verify that the thermo-hygrometric parameters found, as a result of the recovery operations, meet the limits indicated by the regulations and international studies. In this way, we can affirm that the indoor environment

  18. How Faults Shape the Earth.

    ERIC Educational Resources Information Center

    Bykerk-Kauffman, Ann

    1992-01-01

    Presents fault activity with an emphasis on earthquakes and changes in continent shapes. Identifies three types of fault movement: normal, reverse, and strike faults. Discusses the seismic gap theory, plate tectonics, and the principle of superposition. Vignettes portray fault movement, and the locations of the San Andreas fault and epicenters of…

  19. Fault detection and fault tolerance in robotics

    NASA Technical Reports Server (NTRS)

    Visinsky, Monica; Walker, Ian D.; Cavallaro, Joseph R.

    1992-01-01

    Robots are used in inaccessible or hazardous environments in order to alleviate some of the time, cost and risk involved in preparing men to endure these conditions. In order to perform their expected tasks, the robots are often quite complex, thus increasing their potential for failures. If men must be sent into these environments to repair each component failure in the robot, the advantages of using the robot are quickly lost. Fault tolerant robots are needed which can effectively cope with failures and continue their tasks until repairs can be realistically scheduled. Before fault tolerant capabilities can be created, methods of detecting and pinpointing failures must be perfected. This paper develops a basic fault tree analysis of a robot in order to obtain a better understanding of where failures can occur and how they contribute to other failures in the robot. The resulting failure flow chart can also be used to analyze the resiliency of the robot in the presence of specific faults. By simulating robot failures and fault detection schemes, the problems involved in detecting failures for robots are explored in more depth.

  20. Complex Paleotopography and Faulting near the Elsinore Fault, Coyote Mountains, southern California

    NASA Astrophysics Data System (ADS)

    Brenneman, M. J.; Bykerk-Kauffman, A.

    2012-12-01

    The Coyote Mountains of southern California are bounded on the southwest by the Elsinore Fault, an active dextral fault within the San Andreas Fault zone. According to Axen and Fletcher (1998) and Dorsey and others (2011), rocks exposed in these mountains comprise a portion of the hanging wall of the east-vergent Salton Detachment Fault, which was active from the late Miocene-early Pliocene to Ca. 1.1-1.3 Ma. Detachment faulting was accompanied by subsidence, resulting in deposition of a thick sequence of marine and nonmarine sedimentary rocks. Regional detachment faulting and subsidence ceased with the inception of the Elsinore Fault, which has induced uplift of the Coyote Mountains. Detailed geologic mapping in the central Coyote Mountains supports the above interpretation and adds some intriguing details. New discoveries include a buttress unconformity at the base of the Miocene/Pliocene section that locally cuts across strata at an angle so high that it could be misinterpreted as a fault. We thus conclude that the syn-extension strata were deposited on a surface with very rugged topography. We also discovered that locally-derived nonmarine gravel deposits exposed near the crest of the range, previously interpreted as part of the Miocene Split Mountain Group by Winker and Kidwell (1996), unconformably overlie units of the marine Miocene/Pliocene Imperial Group and must therefore be Pliocene or younger. The presence of such young gravel deposits on the crest of the range provides evidence for its rapid uplift. Additional new discoveries flesh out details of the structural history of the range. We mapped just two normal faults, both of which were relatively minor, thus supporting Axen and Fletcher's assertion that the hanging wall block of the Salton Detachment Fault had not undergone significant internal deformation during extension. We found abundant complex synthetic and antithetic strike-slip faults throughout the area, some of which offset Quaternary alluvial

  1. The Maradi fault zone: 3-D imagery of a classic wrench fault in Oman

    SciTech Connect

    Neuhaus, D. )

    1993-09-01

    The Maradi fault zone extends for almost 350 km in a north-northwest-south-southeast direction from the Oman Mountain foothills into the Arabian Sea, thereby dissecting two prolific hydrocarbon provinces, the Ghaba and Fahud salt basins. During its major Late Cretaceous period of movement, the Maradi fault zone acted as a left-lateral wrench fault. An early exploration campaign based on two-dimensional seismic targeted at fractured Cretaceous carbonates had mixed success and resulted in the discovery of one producing oil field. The structural complexity, rapidly varying carbonate facies, and uncertain fracture distribution prevented further drilling activity. In 1990 a three-dimensional (3-D) seismic survey covering some 500 km[sup 2] was acquired over the transpressional northern part of the Maradi fault zone. The good data quality and the focusing power of 3-D has enabled stunning insight into the complex structural style of a [open quotes]textbook[close quotes] wrench fault, even at deeper levels and below reverse faults hitherto unexplored. Subtle thickness changes within the carbonate reservoir and the unconformably overlying shale seal provided the tool for the identification of possible shoals and depocenters. Horizon attribute maps revealed in detail the various structural components of the wrench assemblage and highlighted areas of increased small-scale faulting/fracturing. The results of four recent exploration wells will be demonstrated and their impact on the interpretation discussed.

  2. Hydrogeological properties of fault zones in a karstified carbonate aquifer (Northern Calcareous Alps, Austria)

    NASA Astrophysics Data System (ADS)

    Bauer, H.; Schröckenfuchs, T. C.; Decker, K.

    2016-08-01

    This study presents a comparative, field-based hydrogeological characterization of exhumed, inactive fault zones in low-porosity Triassic dolostones and limestones of the Hochschwab massif, a carbonate unit of high economic importance supplying 60 % of the drinking water of Austria's capital, Vienna. Cataclastic rocks and sheared, strongly cemented breccias form low-permeability (<1 mD) domains along faults. Fractured rocks with fracture densities varying by a factor of 10 and fracture porosities varying by a factor of 3, and dilation breccias with average porosities >3 % and permeabilities >1,000 mD form high-permeability domains. With respect to fault-zone architecture and rock content, which is demonstrated to be different for dolostone and limestone, four types of faults are presented. Faults with single-stranded minor fault cores, faults with single-stranded permeable fault cores, and faults with multiple-stranded fault cores are seen as conduits. Faults with single-stranded impermeable fault cores are seen as conduit-barrier systems. Karstic carbonate dissolution occurs along fault cores in limestones and, to a lesser degree, dolostones and creates superposed high-permeability conduits. On a regional scale, faults of a particular deformation event have to be viewed as forming a network of flow conduits directing recharge more or less rapidly towards the water table and the springs. Sections of impermeable fault cores only very locally have the potential to create barriers.

  3. Hydrogeological properties of fault zones in a karstified carbonate aquifer (Northern Calcareous Alps, Austria)

    NASA Astrophysics Data System (ADS)

    Bauer, H.; Schröckenfuchs, T. C.; Decker, K.

    2016-03-01

    This study presents a comparative, field-based hydrogeological characterization of exhumed, inactive fault zones in low-porosity Triassic dolostones and limestones of the Hochschwab massif, a carbonate unit of high economic importance supplying 60 % of the drinking water of Austria's capital, Vienna. Cataclastic rocks and sheared, strongly cemented breccias form low-permeability (<1 mD) domains along faults. Fractured rocks with fracture densities varying by a factor of 10 and fracture porosities varying by a factor of 3, and dilation breccias with average porosities >3 % and permeabilities >1,000 mD form high-permeability domains. With respect to fault-zone architecture and rock content, which is demonstrated to be different for dolostone and limestone, four types of faults are presented. Faults with single-stranded minor fault cores, faults with single-stranded permeable fault cores, and faults with multiple-stranded fault cores are seen as conduits. Faults with single-stranded impermeable fault cores are seen as conduit-barrier systems. Karstic carbonate dissolution occurs along fault cores in limestones and, to a lesser degree, dolostones and creates superposed high-permeability conduits. On a regional scale, faults of a particular deformation event have to be viewed as forming a network of flow conduits directing recharge more or less rapidly towards the water table and the springs. Sections of impermeable fault cores only very locally have the potential to create barriers.

  4. Normal faults, normal friction?

    NASA Astrophysics Data System (ADS)

    Collettini, Cristiano; Sibson, Richard H.

    2001-10-01

    Debate continues as to whether normal faults may be seismically active at very low dips (δ < 30°) in the upper continental crust. An updated compilation of dip estimates (n = 25) has been prepared from focal mechanisms of shallow, intracontinental, normal-slip earthquakes (M > 5.5; slip vector raking 90° ± 30° in the fault plane) where the rupture plane is unambiguously discriminated. The dip distribution for these moderate-to-large normal fault ruptures extends from 65° > δ > 30°, corresponding to a range, 25° < θr < 60°, for the reactivation angle between the fault and inferred vertical σ1. In a comparable data set previously obtained for reverse fault ruptures (n = 33), the active dip distribution is 10° < δ = θr < 60°. For vertical and horizontal σ1 trajectories within extensional and compressional tectonic regimes, respectively, dip-slip reactivation is thus restricted to faults oriented at θr ≤ 60° to inferred σ1. Apparent lockup at θr ≈ 60° in each dip distribution and a dominant 30° ± 5° peak in the reverse fault dip distribution, are both consistent with a friction coefficient μs ≈ 0.6, toward the bottom of Byerlee's experimental range, though localized fluid overpressuring may be needed for reactivation of less favorably oriented faults.

  5. High and Low Temperature Oceanic Detachment Faults

    NASA Astrophysics Data System (ADS)

    Titarenko, Sofya; McCaig, Andrew

    2013-04-01

    One of the most important discoveries in Plate Tectonics in the last ten years is a "detachment mode" of seafloor spreading. Up to 50% of the Atlantic seafloor has formed by a combination of magmatism and slip on long-lived, convex-up detachment faults, forming oceanic core complexes (OCC). Two end-member types of OCC can be defined: The Atlantis Bank on the Southwest Indian Ridge is a high temperature OCC sampled by ODP Hole 735b. Deformation was dominated by crystal-plastic flow both above and below the solidus at 800-950 °C, over a period of around 200 ka. In contrast, the Atlantis Massif at 30 °N in the Atlantic, sampled by IODP Hole 1309D, is a low temperature OCC in which crystal plastic deformation of gabbro is very rare and greenschist facies deformation was localised onto talc-tremolite-chlorite schists in serpentinite, and breccia zones in gabbro and diabase. The upper 100m of Hole 1309D contains about 43% diabase intruded into hydrated fault breccias. This detachment fault zone can be interpreted as a dyke-gabbro transition, which was originally (before flexural unroofing) a lateral boundary between active hydrothermal circulation in the fault zone and hangingwall, and intrusion of gabbroic magma in the footwall. Thus a major difference between high and low temperature detachment faults may be cooling of the latter by active hydrothermal circulation. 2-D thermal modelling suggests that if a detachment fault is formed in a magmatically robust segment of a slow spreading ridge, high temperature mylonites can be formed for 1-2 ka provided there is no significant hydrothermal cooling of the fault zone. In contrast, if the fault zone is held at temperatures of 400 °C by fluid circulation, cooling of the upper 1 km of the fault footwall occurs far too rapidly for extensive mylonites to form. Our models are consistent with published cooling rate data from geospeedometry and isotopic closure temperatures. The control on this process is likely a combination of

  6. Solar system fault detection

    DOEpatents

    Farrington, R.B.; Pruett, J.C. Jr.

    1984-05-14

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  7. Solar system fault detection

    DOEpatents

    Farrington, Robert B.; Pruett, Jr., James C.

    1986-01-01

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  8. How clays weaken faults.

    NASA Astrophysics Data System (ADS)

    van der Pluijm, Ben A.; Schleicher, Anja M.; Warr, Laurence N.

    2010-05-01

    The weakness of upper crustal faults has been variably attributed to (i) low values of normal stress, (ii) elevated pore-fluid pressure, and (iii) low frictional strength. Direct observations on natural faults rocks provide new evidence for the role of frictional properties on fault strength, as illustrated by our recent work on samples from the San Andreas Fault Observatory at Depth (SAFOD) drillhole at Parkfield, California. Mudrock samples from fault zones at ~3066 m and ~3296 m measured depth show variably spaced and interconnected networks of displacement surfaces that consist of host rock particles that are abundantly coated by polished films with occasional striations. Transmission electron microscopy and X-ray diffraction study of the surfaces reveal the occurrence of neocrystallized thin-film clay coatings containing illite-smectite (I-S) and chlorite-smectite (C-S) phases. X-ray texture goniometry shows that the crystallographic fabric of these faults rocks is characteristically low, in spite of an abundance of clay phases. 40Ar/39Ar dating of the illitic mix-layered coatings demonstrate recent crystallization and reveal the initiation of an "older" fault strand (~8 Ma) at 3066 m measured depth, and a "younger" fault strand (~4 Ma) at 3296 m measured depth. Today, the younger strand is the site of active creep behavior, reflecting continued activation of these clay-weakened zones. We propose that the majority of slow fault creep is controlled by the high density of thin (< 100nm thick) nano-coatings on fracture surfaces, which become sufficiently smectite-rich and interconnected at low angles to allow slip with minimal breakage of stronger matrix clasts. Displacements are accommodated by localized frictional slip along coated particle surfaces and hydrated smectitic phases, in combination with intracrystalline deformation of the clay lattice, associated with extensive mineral dissolution, mass transfer and continued growth of expandable layers. The

  9. Structurally controlled fluid flow and diagenesis along the Moab fault, SE Utah: Organic-inorganic interactions and their effects on fault cementation

    NASA Astrophysics Data System (ADS)

    Eichhubl, P.; Davatzes, N. C.; Aydin, A.

    2002-12-01

    The hydraulic properties of faults in clastic sedimentary sequences are traditionally considered a function of stratigraphic juxtaposition and fault rock composition. Diagenetic effects, in particular organic-inorganic interactions, and their spatial association with the fault architecture, are only rudimentarily explored. Here, we mapped the type and extent of diagenetic alteration along the Moab fault to assess the interrelationships among fault architecture, fault hydraulic properties, and fault rock diagenesis. The Moab fault, a normal fault with up to 1 km of throw and a small strike-slip component, is segmented along strike by branch points and relays. Fault branch points are associated with extensive carbonate cementation of faulted eolian Jurassic sandstone. Within the fault damage zone the abundance of concretions and veins and the diameter of concretions decrease with distance from the fault. Carbonate is spatially associated with bleaching of the reddish hematite-cemented sandstones. Pore and fracture-filling dead oil in bleached and carbonate cemented zones is indicative of bleaching due to reducing aqueous fluids in association with hydrocarbon migration along the fault. Fault-related cementation was potentially controlled by two processes: (1) rapid upward fluid flow along the fault and (2) microbially mediated degradation of hydrocarbons in contact with meteoric water. Evidence for rapid fluid flow is provided by clastic dikes associated with the fault. A drop in CO2 partial pressure during rapidly upward flowing fluid flow would favor carbonate precipitation. Evidence for carbonate precipitation due to hydrocarbon degradation is inferred through the close association of residual oil and calcite or malachite. Release of CO2 by the microbial degradation of oil in the presence of organic acids can increase alkalinity resulting in carbonate precipitation. The involvement of organic acids in fault cementation is suggested by feldspar dissolution and by

  10. West Coast Tsunami: Cascadia's Fault?

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Bernard, E. N.; Titov, V.

    2013-12-01

    The tragedies of 2004 Sumatra and 2011 Japan tsunamis exposed the limits of our knowledge in preparing for devastating tsunamis. The 1,100-km coastline of the Pacific coast of North America has tectonic and geological settings similar to Sumatra and Japan. The geological records unambiguously show that the Cascadia fault had caused devastating tsunamis in the past and this geological process will cause tsunamis in the future. Hypotheses of the rupture process of Cascadia fault include a long rupture (M9.1) along the entire fault line, short ruptures (M8.8 - M9.1) nucleating only a segment of the coastline, or a series of lesser events of M8+. Recent studies also indicate an increasing probability of small rupture occurring at the south end of the Cascadia fault. Some of these hypotheses were implemented in the development of tsunami evacuation maps in Washington and Oregon. However, the developed maps do not reflect the tsunami impact caused by the most recent updates regarding the Cascadia fault rupture process. The most recent study by Wang et al. (2013) suggests a rupture pattern of high- slip patches separated by low-slip areas constrained by estimates of coseismic subsidence based on microfossil analyses. Since this study infers that a Tokohu-type of earthquake could strike in the Cascadia subduction zone, how would such an tsunami affect the tsunami hazard assessment and planning along the Pacific Coast of North America? The rapid development of computing technology allowed us to look into the tsunami impact caused by above hypotheses using high-resolution models with large coverage of Pacific Northwest. With the slab model of MaCrory et al. (2012) (as part of the USGS slab 1.0 model) for the Cascadia earthquake, we tested the above hypotheses to assess the tsunami hazards along the entire U.S. West Coast. The modeled results indicate these hypothetical scenarios may cause runup heights very similar to those observed along Japan's coastline during the 2011

  11. The Kunlun Fault

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Kunlun fault is one of the gigantic strike-slip faults that bound the north side of Tibet. Left-lateral motion along the 1,500-kilometer (932-mile) length of the Kunlun has occurred uniformly for the last 40,000 years at a rate of 1.1 centimeter per year, creating a cumulative offset of more than 400 meters. In this image, two splays of the fault are clearly seen crossing from east to west. The northern fault juxtaposes sedimentary rocks of the mountains against alluvial fans. Its trace is also marked by lines of vegetation, which appear red in the image. The southern, younger fault cuts through the alluvium. A dark linear area in the center of the image is wet ground where groundwater has ponded against the fault. Measurements from the image of displacements of young streams that cross the fault show 15 to 75 meters (16 to 82 yards) of left-lateral offset. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) acquired the visible light and near infrared scene on July 20, 2000. Image courtesy NASA/GSFC/MITI/ERSDAC/JAROS, and the U.S./Japan ASTER Science Team

  12. Fault detection and isolation

    NASA Technical Reports Server (NTRS)

    Bernath, Greg

    1994-01-01

    In order for a current satellite-based navigation system (such as the Global Positioning System, GPS) to meet integrity requirements, there must be a way of detecting erroneous measurements, without help from outside the system. This process is called Fault Detection and Isolation (FDI). Fault detection requires at least one redundant measurement, and can be done with a parity space algorithm. The best way around the fault isolation problem is not necessarily isolating the bad measurement, but finding a new combination of measurements which excludes it.

  13. Measuring fault tolerance with the FTAPE fault injection tool

    NASA Technical Reports Server (NTRS)

    Tsai, Timothy K.; Iyer, Ravishankar K.

    1995-01-01

    This paper describes FTAPE (Fault Tolerance And Performance Evaluator), a tool that can be used to compare fault-tolerant computers. The major parts of the tool include a system-wide fault-injector, a workload generator, and a workload activity measurement tool. The workload creates high stress conditions on the machine. Using stress-based injection, the fault injector is able to utilize knowledge of the workload activity to ensure a high level of fault propagation. The errors/fault ratio, performance degradation, and number of system crashes are presented as measures of fault tolerance.

  14. Measuring fault tolerance with the FTAPE fault injection tool

    NASA Astrophysics Data System (ADS)

    Tsai, Timothy K.; Iyer, Ravishankar K.

    1995-05-01

    This paper describes FTAPE (Fault Tolerance And Performance Evaluator), a tool that can be used to compare fault-tolerant computers. The major parts of the tool include a system-wide fault-injector, a workload generator, and a workload activity measurement tool. The workload creates high stress conditions on the machine. Using stress-based injection, the fault injector is able to utilize knowledge of the workload activity to ensure a high level of fault propagation. The errors/fault ratio, performance degradation, and number of system crashes are presented as measures of fault tolerance.

  15. Immunity-Based Aircraft Fault Detection System

    NASA Technical Reports Server (NTRS)

    Dasgupta, D.; KrishnaKumar, K.; Wong, D.; Berry, M.

    2004-01-01

    In the study reported in this paper, we have developed and applied an Artificial Immune System (AIS) algorithm for aircraft fault detection, as an extension to a previous work on intelligent flight control (IFC). Though the prior studies had established the benefits of IFC, one area of weakness that needed to be strengthened was the control dead band induced by commanding a failed surface. Since the IFC approach uses fault accommodation with no detection, the dead band, although it reduces over time due to learning, is present and causes degradation in handling qualities. If the failure can be identified, this dead band can be further A ed to ensure rapid fault accommodation and better handling qualities. The paper describes the application of an immunity-based approach that can detect a broad spectrum of known and unforeseen failures. The approach incorporates the knowledge of the normal operational behavior of the aircraft from sensory data, and probabilistically generates a set of pattern detectors that can detect any abnormalities (including faults) in the behavior pattern indicating unsafe in-flight operation. We developed a tool called MILD (Multi-level Immune Learning Detection) based on a real-valued negative selection algorithm that can generate a small number of specialized detectors (as signatures of known failure conditions) and a larger set of generalized detectors for unknown (or possible) fault conditions. Once the fault is detected and identified, an adaptive control system would use this detection information to stabilize the aircraft by utilizing available resources (control surfaces). We experimented with data sets collected under normal and various simulated failure conditions using a piloted motion-base simulation facility. The reported results are from a collection of test cases that reflect the performance of the proposed immunity-based fault detection algorithm.

  16. OpenStudio - Fault Modeling

    Energy Science and Technology Software Center (ESTSC)

    2014-09-19

    This software record documents the OpenStudio fault model development portion of the Fault Detection and Diagnostics LDRD project.The software provides a suite of OpenStudio measures (scripts) for modeling typical HVAC system faults in commercial buildings and also included supporting materials: example projects and OpenStudio measures for reporting fault costs and energy impacts.

  17. Hayward Fault, California Interferogram

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This image of California's Hayward fault is an interferogram created using a pair of images taken by Synthetic Aperture Radar(SAR) combined to measure changes in the surface that may have occurred between the time the two images were taken.

    The images were collected by the European Space Agency's Remote Sensing satellites ERS-1 and ERS-2 in June 1992 and September 1997 over the central San Francisco Bay in California.

    The radar image data are shown as a gray-scale image, with the interferometric measurements that show the changes rendered in color. Only the urbanized area could be mapped with these data. The color changes from orange tones to blue tones across the Hayward fault (marked by a thin red line) show about 2-3centimeters (0.8-1.1 inches) of gradual displacement or movement of the southwest side of the fault. The block west of the fault moved horizontally toward the northwest during the 63 months between the acquisition of the two SAR images. This fault movement is called a seismic creep because the fault moved slowly without generating an earthquake.

    Scientists are using the SAR interferometry along with other data collected on the ground to monitor this fault motion in an attempt to estimate the probability of earthquake on the Hayward fault, which last had a major earthquake of magnitude 7 in 1868. This analysis indicates that the northern part of the Hayward fault is creeping all the way from the surface to a depth of 12 kilometers (7.5 miles). This suggests that the potential for a large earthquake on the northern Hayward fault might be less than previously thought. The blue area to the west (lower left) of the fault near the center of the image seemed to move upward relative to the yellow and orange areas nearby by about 2 centimeters (0.8 inches). The cause of this apparent motion is not yet confirmed, but the rise of groundwater levels during the time between the images may have caused the reversal of a small portion of the subsidence that

  18. Cable-fault locator

    NASA Technical Reports Server (NTRS)

    Cason, R. L.; Mcstay, J. J.; Heymann, A. P., Sr.

    1979-01-01

    Inexpensive system automatically indicates location of short-circuited section of power cable. Monitor does not require that cable be disconnected from its power source or that test signals be applied. Instead, ground-current sensors are installed in manholes or at other selected locations along cable run. When fault occurs, sensors transmit information about fault location to control center. Repair crew can be sent to location and cable can be returned to service with minimum of downtime.

  19. Fault rupture segmentation

    NASA Astrophysics Data System (ADS)

    Cleveland, Kenneth Michael

    A critical foundation to earthquake study and hazard assessment is the understanding of controls on fault rupture, including segmentation. Key challenges to understanding fault rupture segmentation include, but are not limited to: What determines if a fault segment will rupture in a single great event or multiple moderate events? How is slip along a fault partitioned between seismic and seismic components? How does the seismicity of a fault segment evolve over time? How representative are past events for assessing future seismic hazards? In order to address the difficult questions regarding fault rupture segmentation, new methods must be developed that utilize the information available. Much of the research presented in this study focuses on the development of new methods for attacking the challenges of understanding fault rupture segmentation. Not only do these methods exploit a broader band of information within the waveform than has traditionally been used, but they also lend themselves to the inclusion of even more seismic phases providing deeper understandings. Additionally, these methods are designed to be fast and efficient with large datasets, allowing them to utilize the enormous volume of data available. Key findings from this body of work include demonstration that focus on fundamental earthquake properties on regional scales can provide general understanding of fault rupture segmentation. We present a more modern, waveform-based method that locates events using cross-correlation of the Rayleigh waves. Additionally, cross-correlation values can also be used to calculate precise earthquake magnitudes. Finally, insight regarding earthquake rupture directivity can be easily and quickly exploited using cross-correlation of surface waves.

  20. Fault lubrication during earthquakes.

    PubMed

    Di Toro, G; Han, R; Hirose, T; De Paola, N; Nielsen, S; Mizoguchi, K; Ferri, F; Cocco, M; Shimamoto, T

    2011-03-24

    The determination of rock friction at seismic slip rates (about 1 m s(-1)) is of paramount importance in earthquake mechanics, as fault friction controls the stress drop, the mechanical work and the frictional heat generated during slip. Given the difficulty in determining friction by seismological methods, elucidating constraints are derived from experimental studies. Here we review a large set of published and unpublished experiments (∼300) performed in rotary shear apparatus at slip rates of 0.1-2.6 m s(-1). The experiments indicate a significant decrease in friction (of up to one order of magnitude), which we term fault lubrication, both for cohesive (silicate-built, quartz-built and carbonate-built) rocks and non-cohesive rocks (clay-rich, anhydrite, gypsum and dolomite gouges) typical of crustal seismogenic sources. The available mechanical work and the associated temperature rise in the slipping zone trigger a number of physicochemical processes (gelification, decarbonation and dehydration reactions, melting and so on) whose products are responsible for fault lubrication. The similarity between (1) experimental and natural fault products and (2) mechanical work measures resulting from these laboratory experiments and seismological estimates suggests that it is reasonable to extrapolate experimental data to conditions typical of earthquake nucleation depths (7-15 km). It seems that faults are lubricated during earthquakes, irrespective of the fault rock composition and of the specific weakening mechanism involved. PMID:21430777

  1. Packaged Fault Model for Geometric Segmentation of Active Faults Into Earthquake Source Faults

    NASA Astrophysics Data System (ADS)

    Nakata, T.; Kumamoto, T.

    2004-12-01

    In Japan, the empirical formula proposed by Matsuda (1975) mainly based on the length of the historical surface fault ruptures and magnitude, is generally applied to estimate the size of future earthquakes from the extent of existing active faults for seismic hazard assessment. Therefore validity of the active fault length and defining individual segment boundaries where propagating ruptures terminate are essential and crucial to the reliability for the accurate assessments. It is, however, not likely for us to clearly identify the behavioral earthquake segments from observation of surface faulting during the historical period, because most of the active faults have longer recurrence intervals than 1000 years in Japan. Besides uncertainties of the datasets obtained mainly from fault trenching studies are quite large for fault grouping/segmentation. This is why new methods or criteria should be applied for active fault grouping/segmentation, and one of the candidates may be geometric criterion of active faults. Matsuda (1990) used _gfive kilometer_h as a critical distance for grouping and separation of neighboring active faults. On the other hand, Nakata and Goto (1998) proposed the geometric criteria such as (1) branching features of active fault traces and (2) characteristic pattern of vertical-slip distribution along the fault traces as tools to predict rupture length of future earthquakes. The branching during the fault rupture propagation is regarded as an effective energy dissipation process and could result in final rupture termination. With respect to the characteristic pattern of vertical-slip distribution, especially with strike-slip components, the up-thrown sides along the faults are, in general, located on the fault blocks in the direction of relative strike-slip. Applying these new geometric criteria to the high-resolution active fault distribution maps, the fault grouping/segmentation could be more practically conducted. We tested this model

  2. Rapid acceleration leads to rapid weakening in earthquake-like laboratory experiments

    USGS Publications Warehouse

    Chang, Jefferson C.; Lockner, David A.; Reches, Z.

    2012-01-01

    After nucleation, a large earthquake propagates as an expanding rupture front along a fault. This front activates countless fault patches that slip by consuming energy stored in Earth’s crust. We simulated the slip of a fault patch by rapidly loading an experimental fault with energy stored in a spinning flywheel. The spontaneous evolution of strength, acceleration, and velocity indicates that our experiments are proxies of fault-patch behavior during earthquakes of moment magnitude (Mw) = 4 to 8. We show that seismically determined earthquake parameters (e.g., displacement, velocity, magnitude, or fracture energy) can be used to estimate the intensity of the energy release during an earthquake. Our experiments further indicate that high acceleration imposed by the earthquake’s rupture front quickens dynamic weakening by intense wear of the fault zone.

  3. Rapid Acceleration Leads to Rapid Weakening in Earthquake-Like Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Chang, J. C.; Lockner, D. A.; Reches, Z.

    2012-10-01

    After nucleation, a large earthquake propagates as an expanding rupture front along a fault. This front activates countless fault patches that slip by consuming energy stored in Earth’s crust. We simulated the slip of a fault patch by rapidly loading an experimental fault with energy stored in a spinning flywheel. The spontaneous evolution of strength, acceleration, and velocity indicates that our experiments are proxies of fault-patch behavior during earthquakes of moment magnitude (Mw) = 4 to 8. We show that seismically determined earthquake parameters (e.g., displacement, velocity, magnitude, or fracture energy) can be used to estimate the intensity of the energy release during an earthquake. Our experiments further indicate that high acceleration imposed by the earthquake’s rupture front quickens dynamic weakening by intense wear of the fault zone.

  4. Fault Roughness Records Strength

    NASA Astrophysics Data System (ADS)

    Brodsky, E. E.; Candela, T.; Kirkpatrick, J. D.

    2014-12-01

    Fault roughness is commonly ~0.1-1% at the outcrop exposure scale. More mature faults are smoother than less mature ones, but the overall range of roughness is surprisingly limited which suggests dynamic control. In addition, the power spectra of many exposed fault surfaces follow a single power law over scales from millimeters to 10's of meters. This is another surprising observation as distinct structures such as slickenlines and mullions are clearly visible on the same surfaces at well-defined scales. We can reconcile both observations by suggesting that the roughness of fault surfaces is controlled by the maximum strain that can be supported elastically in the wallrock. If the fault surface topography requires more than 0.1-1% strain, it fails. Invoking wallrock strength explains two additional observations on the Corona Heights fault for which we have extensive roughness data. Firstly, the surface is isotropic below a scale of 30 microns and has grooves at larger scales. Samples from at least three other faults (Dixie Valley, Mount St. Helens and San Andreas) also are isotropic at scales below 10's of microns. If grooves can only persist when the walls of the grooves have a sufficiently low slope to maintain the shape, this scale of isotropy can be predicted based on the measured slip perpendicular roughness data. The observed 30 micron scale at Corona Heights is consistent with an elastic strain of 0.01 estimated from the observed slip perpendicular roughness with a Hurst exponent of 0.8. The second observation at Corona Heights is that slickenlines are not deflected around meter-scale mullions. Yielding of these mullions at centimeter to meter scale is predicted from the slip parallel roughness as measured here. The success of the strain criterion for Corona Heights supports it as the appropriate control on fault roughness. Micromechanically, the criterion implies that failure of the fault surface is a continual process during slip. Macroscopically, the

  5. Fault reactivation control on normal fault growth: an experimental study

    NASA Astrophysics Data System (ADS)

    Bellahsen, Nicolas; Daniel, Jean Marc

    2005-04-01

    Field studies frequently emphasize how fault reactivation is involved in the deformation of the upper crust. However, this phenomenon is generally neglected (except in inversion models) in analogue and numerical models performed to study fault network growth. Using sand/silicon analogue models, we show how pre-existing discontinuities can control the geometry and evolution of a younger fault network. The models show that the reactivation of pre-existing discontinuities and their orientation control: (i) the evolution of the main fault orientation distribution through time, (ii) the geometry of relay fault zones, (iii) the geometry of small scale faulting, and (iv) the geometry and location of fault-controlled basins and depocenters. These results are in good agreement with natural fault networks observed in both the Gulf of Suez and Lake Tanganyika. They demonstrate that heterogeneities such as pre-existing faults should be included in models designed to understand the behavior and the tectonic evolution of sedimentary basins.

  6. Profiles of volumetric water content in fault zones retrieved from hole B of the Taiwan Chelungpu-fault Drilling Project (TCDP)

    NASA Astrophysics Data System (ADS)

    Lin, Weiren; Matsubayashi, Osamu; Yeh, En-Chao; Hirono, Tetsuro; Tanikawa, Wataru; Soh, Wonn; Wang, Chien-Ying; Song, Sheng-Rong; Murayama, Masafumi

    2008-01-01

    To determine the distribution pattern of water content in the three major fault zones penetrated by the Taiwan Chelungpu-fault Drilling Project (TCDP) hole B, and to assess a rapid, nondestructive water content measurement technique, time domain reflectometry (TDR), we determined the volumetric water content of sequential core samples and found that water content increased toward the center of each of the three fault zones, except in the disk-shaped black material. We observed distinct anomalies in the water content and resistivity profiles, particularly in the shallowest major fault zone (FZB1136), supporting the hypothesis that FZB1136 ruptured during the 1999 Chi-Chi earthquake. This study, the first successful application of the TDR technique to determine water content of core samples, including fault zone samples, collected by an active-fault drilling project, showed that this technique is suitable for measuring water content of fault core samples.

  7. Shear heating and clumped isotope reordering in carbonate faults

    NASA Astrophysics Data System (ADS)

    Siman-Tov, Shalev; Affek, Hagit P.; Matthews, Alan; Aharonov, Einat; Reches, Ze'ev

    2016-07-01

    Natural faults are expected to heat rapidly during seismic slip and to cool quite quickly after the slip event. Here we examine clumped isotope thermometry for its ability to identify such short duration elevated temperature events along frictionally heated carbonate faults. Our approach is based on measured Δ47 values that reflect the distribution of oxygen and carbon isotopes in the calcite lattice, measuring the abundance of 13Csbnd 18O bonds, which is affected by temperature. We examine three types of calcite rock samples: (1) crushed limestone grains that were rapidly heated and then cooled in static laboratory experiments, simulating the temperature cycle experienced by fault rock during an earthquake slip; (2) limestone samples that were experimentally sheared to simulate earthquake slip events; and (3) samples from Fault Mirrors (FMs) collected from principle slip surfaces of three natural carbonate faults. Extensive FM surfaces are believed to form during earthquake slip. Our experimental results show that Δ47 values decrease rapidly (in the course of seconds) with increasing temperature and shear velocity. On the other hand, carbonate shear zones from natural faults do not show such Δ47 decrease. We suggest that the Δ47 response may be controlled by nano-size grains, the high abundance of defects, and highly stressed/strained grain boundaries within the carbonate fault zone that can reduce the activation energy for diffusion, and thus lead to an increased rate of isotopic disordering during shear experiments. In our laboratory experiments the high stress and strain on grain contacts and the presence of nanograins thus allows for rapid disordering so that a change in Δ47 occurs in a very short and relatively low intensity heating events. In natural faults it may also lead to isotopic ordering after the cessation of frictional heating thus erasing the high temperature signature of Δ47.

  8. Long-Term Monitoring of Fresco Paintings in the Cathedral of Valencia (Spain) Through Humidity and Temperature Sensors in Various Locations for Preventive Conservation

    PubMed Central

    Zarzo, Manuel; Fernández-Navajas, Angel; García-Diego, Fernando-Juan

    2011-01-01

    We describe the performance of a microclimate monitoring system that was implemented for the preventive conservation of the Renaissance frescoes in the apse vault of the Cathedral of Valencia, that were restored in 2006. This system comprises 29 relative humidity (RH) and temperature sensors: 10 of them inserted into the plaster layer supporting the fresco paintings, 10 sensors in the walls close to the frescoes and nine sensors measuring the indoor microclimate at different points of the vault. Principal component analysis was applied to RH data recorded in 2007. The analysis was repeated with data collected in 2008 and 2010. The resulting loading plots revealed that the similarities and dissimilarities among sensors were approximately maintained along the three years. A physical interpretation was provided for the first and second principal components. Interestingly, sensors recording the highest RH values correspond to zones where humidity problems are causing formation of efflorescence. Recorded data of RH and temperature are discussed according to Italian Standard UNI 10829 (1999). PMID:22164100

  9. Indoor damage of aged porous natural stone due to thermohygric stress: a case study of opuka stone altar from the St. Vitus Cathedral, Prague (Czech Republic)

    NASA Astrophysics Data System (ADS)

    Prikryl, Richard; Prikrylova, Jirina; Racek, Martin; Kreislova, Kateřina; Weishauptova, Zuzana

    2016-04-01

    Opuka stone (extremely fine-grained clayey-calcareous silicite) used for a carved stone altar located in the interior of the St. Vitus Cathedral (Prague, Czech Republic) was affected by decay phenomena (formation of the case-hardened surface, its later blistering, flaking and/or powdering of stone substrate) which are similar to those observed in outdoor environments. Through the detailed analytical study (optical microscopy and scanning electron microscopy with energy dispersive spectrometry and x-ray elemental mapping of cross-sections of surface layers, x-ray diffraction of surface layers, ion-exchange chromatography for water-soluble salts, mercury porosimetry) and analysis of long-term indoor environmental monitoring (temperature, relative humidity, sulphur and nitrogen oxides deposition), it has been found that observed decay phenomena, which are manifested on microscale by brittle damage and formation of mode I (tensile) cracks along the exposed surface of the stone, can be interpreted as a result from thermohygric stress occurring on the interface between case hardened surface layer and stone substrate.

  10. Bearing Fault Diagnosis Based on Statistical Locally Linear Embedding

    PubMed Central

    Wang, Xiang; Zheng, Yuan; Zhao, Zhenzhou; Wang, Jinping

    2015-01-01

    Fault diagnosis is essentially a kind of pattern recognition. The measured signal samples usually distribute on nonlinear low-dimensional manifolds embedded in the high-dimensional signal space, so how to implement feature extraction, dimensionality reduction and improve recognition performance is a crucial task. In this paper a novel machinery fault diagnosis approach based on a statistical locally linear embedding (S-LLE) algorithm which is an extension of LLE by exploiting the fault class label information is proposed. The fault diagnosis approach first extracts the intrinsic manifold features from the high-dimensional feature vectors which are obtained from vibration signals that feature extraction by time-domain, frequency-domain and empirical mode decomposition (EMD), and then translates the complex mode space into a salient low-dimensional feature space by the manifold learning algorithm S-LLE, which outperforms other feature reduction methods such as PCA, LDA and LLE. Finally in the feature reduction space pattern classification and fault diagnosis by classifier are carried out easily and rapidly. Rolling bearing fault signals are used to validate the proposed fault diagnosis approach. The results indicate that the proposed approach obviously improves the classification performance of fault pattern recognition and outperforms the other traditional approaches. PMID:26153771

  11. Bearing Fault Diagnosis Based on Statistical Locally Linear Embedding.

    PubMed

    Wang, Xiang; Zheng, Yuan; Zhao, Zhenzhou; Wang, Jinping

    2015-01-01

    Fault diagnosis is essentially a kind of pattern recognition. The measured signal samples usually distribute on nonlinear low-dimensional manifolds embedded in the high-dimensional signal space, so how to implement feature extraction, dimensionality reduction and improve recognition performance is a crucial task. In this paper a novel machinery fault diagnosis approach based on a statistical locally linear embedding (S-LLE) algorithm which is an extension of LLE by exploiting the fault class label information is proposed. The fault diagnosis approach first extracts the intrinsic manifold features from the high-dimensional feature vectors which are obtained from vibration signals that feature extraction by time-domain, frequency-domain and empirical mode decomposition (EMD), and then translates the complex mode space into a salient low-dimensional feature space by the manifold learning algorithm S-LLE, which outperforms other feature reduction methods such as PCA, LDA and LLE. Finally in the feature reduction space pattern classification and fault diagnosis by classifier are carried out easily and rapidly. Rolling bearing fault signals are used to validate the proposed fault diagnosis approach. The results indicate that the proposed approach obviously improves the classification performance of fault pattern recognition and outperforms the other traditional approaches. PMID:26153771

  12. Fault-rock Magnetism from Wenchuan earthquake Fault Scientific Drilling project (WFSD) Implies the Different Slip Dynamics

    NASA Astrophysics Data System (ADS)

    Liu, D.; Li, H.; Lee, T. Q.; Sun, Z.

    2015-12-01

    The 2008 Mw 7.9 Wenchuan Earthquake had caused great human and financial loss, and it had induced two major earthquake surface rupture zones, including the Yingxiu-Beichuan earthquake fault (Y-B F.) and Guanxian-Anxian earthquake fault (G-A F.) earthquake surface rupture zones. After main shock, the Wenchuan earthquake Fault Scientific Drilling project (WFSD) was co-organized by the Ministry of Science and Technology, Ministry of Land and Resources and China Bureau of Seismology, and this project focused on earthquake fault mechanics, earthquake slip process, fault physical and chemical characteristics, mechanical behavior, fluid behavior, fracture energy, and so on. Fault-rocks magnetism is an effective method for the earthquake fault research, such as earthquake slip dynamics. In this study, the fault-rocks from the drilling-hole cores and close to the Wenchuan Earthquake surface rupture zone were used to do the rock-magnetism and discuss the earthquake slip dynamics. The measurement results of magnetic susceptibility (MS) show that the relative high or low MS values are corresponded to the fault-rocks from the Y-B F. and G-A F., respectively. Other rock-magnetism gives more evidence to the magnetic mineral assemblage of fault-rocks from the two earthquake fault zones. The relative high MS in the drilling-holes and trench along the Y-B F. was caused by the new-formed ferrimagnetic minerals during the high temperature and rapid speed earthquake slip process, such as magnetite and hematite, so the Y-B F. had experienced high temperature and rapid speed thermal pressurization earthquake slip mechanism. The relative low MS in the trench along the G-A F. was possible caused by high content of Fe-sulfides, and the G-A F. had possibly experienced the low temperature and slow speed mechanical lubrication earthquake slip mechanism. The different earthquake slip mechanism was possibly controlled by the deep structure of the two earthquake faults, such as the fault

  13. Validated Fault Tolerant Architectures for Space Station

    NASA Technical Reports Server (NTRS)

    Lala, Jaynarayan H.

    1990-01-01

    Viewgraphs on validated fault tolerant architectures for space station are presented. Topics covered include: fault tolerance approach; advanced information processing system (AIPS); and fault tolerant parallel processor (FTPP).

  14. Insurance Applications of Active Fault Maps Showing Epistemic Uncertainty

    NASA Astrophysics Data System (ADS)

    Woo, G.

    2005-12-01

    Insurance loss modeling for earthquakes utilizes available maps of active faulting produced by geoscientists. All such maps are subject to uncertainty, arising from lack of knowledge of fault geometry and rupture history. Field work to undertake geological fault investigations drains human and monetary resources, and this inevitably limits the resolution of fault parameters. Some areas are more accessible than others; some may be of greater social or economic importance than others; some areas may be investigated more rapidly or diligently than others; or funding restrictions may have curtailed the extent of the fault mapping program. In contrast with the aleatory uncertainty associated with the inherent variability in the dynamics of earthquake fault rupture, uncertainty associated with lack of knowledge of fault geometry and rupture history is epistemic. The extent of this epistemic uncertainty may vary substantially from one regional or national fault map to another. However aware the local cartographer may be, this uncertainty is generally not conveyed in detail to the international map user. For example, an area may be left blank for a variety of reasons, ranging from lack of sufficient investigation of a fault to lack of convincing evidence of activity. Epistemic uncertainty in fault parameters is of concern in any probabilistic assessment of seismic hazard, not least in insurance earthquake risk applications. A logic-tree framework is appropriate for incorporating epistemic uncertainty. Some insurance contracts cover specific high-value properties or transport infrastructure, and therefore are extremely sensitive to the geometry of active faulting. Alternative Risk Transfer (ART) to the capital markets may also be considered. In order for such insurance or ART contracts to be properly priced, uncertainty should be taken into account. Accordingly, an estimate is needed for the likelihood of surface rupture capable of causing severe damage. Especially where a

  15. Cable fault locator research

    NASA Astrophysics Data System (ADS)

    Cole, C. A.; Honey, S. K.; Petro, J. P.; Phillips, A. C.

    1982-07-01

    Cable fault location and the construction of four field test units are discussed. Swept frequency sounding of mine cables with RF signals was the technique most thoroughly investigated. The swept frequency technique is supplemented with a form of moving target indication to provide a method for locating the position of a technician along a cable and relative to a suspected fault. Separate, more limited investigations involved high voltage time domain reflectometry and acoustical probing of mine cables. Particular areas of research included microprocessor-based control of the swept frequency system, a microprocessor based fast Fourier transform for spectral analysis, and RF synthesizers.

  16. Fault tolerant linear actuator

    DOEpatents

    Tesar, Delbert

    2004-09-14

    In varying embodiments, the fault tolerant linear actuator of the present invention is a new and improved linear actuator with fault tolerance and positional control that may incorporate velocity summing, force summing, or a combination of the two. In one embodiment, the invention offers a velocity summing arrangement with a differential gear between two prime movers driving a cage, which then drives a linear spindle screw transmission. Other embodiments feature two prime movers driving separate linear spindle screw transmissions, one internal and one external, in a totally concentric and compact integrated module.

  17. Computer hardware fault administration

    DOEpatents

    Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.

    2010-09-14

    Computer hardware fault administration carried out in a parallel computer, where the parallel computer includes a plurality of compute nodes. The compute nodes are coupled for data communications by at least two independent data communications networks, where each data communications network includes data communications links connected to the compute nodes. Typical embodiments carry out hardware fault administration by identifying a location of a defective link in the first data communications network of the parallel computer and routing communications data around the defective link through the second data communications network of the parallel computer.

  18. Ius Chasma Fault

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-415, 8 July 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a 'text-book example' of an offset in layered rock caused by a fault. The offset is most easily seen near the upper right of the image. The martian crust is faulted, and the planet has probably experienced 'earthquakes' (or, marsquakes) in the past. This scene is located on the floor of Ius Chasma near 7.8oS, 80.6oW. Sunlight illuminates the scene from the upper left.

  19. DIFFERENTIAL FAULT SENSING CIRCUIT

    DOEpatents

    Roberts, J.H.

    1961-09-01

    A differential fault sensing circuit is designed for detecting arcing in high-voltage vacuum tubes arranged in parallel. A circuit is provided which senses differences in voltages appearing between corresponding elements likely to fault. Sensitivity of the circuit is adjusted to some level above which arcing will cause detectable differences in voltage. For particular corresponding elements, a group of pulse transformers are connected in parallel with diodes connected across the secondaries thereof so that only voltage excursions are transmitted to a thyratron which is biased to the sensitivity level mentioned.

  20. Fault terminations, Seminoe Mountains, Wyoming

    SciTech Connect

    Dominic, J.B.; McConnell, D.A. . Dept. of Geology)

    1992-01-01

    Two basement-involved faults terminate in folds in the Seminoe Mountains. Mesoscopic and macroscopic structures in sedimentary rocks provide clues to the interrelationship of faults and folds in this region, and on the linkage between faulting and folding in general. The Hurt Creek fault trends 320[degree] and has maximum separation of 1.5 km measured at the basement/cover contact. Separation on the fault decreases upsection to zero within the Jurassic Sundance Formation. Unfaulted rock units form an anticline around the fault tip. The complementary syncline is angular with planar limbs and a narrow hinge zone. The syncline axial trace intersects the fault in the footwall at the basement/cover cut-off. Map patterns are interpreted to show thickening of Mesozoic units adjacent to the syncline hinge. In contrast, extensional structures are common in the faulted anticline within the Permian Goose Egg and Triassic Chugwater Formations. A hanging wall splay fault loses separation into the Goose Egg formation which is thinned by 50% at the fault tip. Mesoscopic normal faults are oriented 320--340[degree] and have an average inclination of 75[degree] SW. Megaboudins of Chugwater are present in the footwall of the Hurt Creek fault, immediately adjacent to the fault trace. The Black Canyon fault transported Precambrian-Pennsylvanian rocks over Pennsylvanian Tensleep sandstone. This fault is layer-parallel at the top of the Tensleep and loses separation along strike into an unfaulted syncline in the Goose Egg Formation. Shortening in the pre-Permian units is accommodated by slip on the basement-involved Black Canyon fault. Equivalent shortening in Permian-Cretaceous units occurs on a system of thin-skinned'' thrust faults.

  1. Fault displacement hazard for strike-slip faults

    USGS Publications Warehouse

    Petersen, M.D.; Dawson, T.E.; Chen, R.; Cao, T.; Wills, C.J.; Schwartz, D.P.; Frankel, A.D.

    2011-01-01

    In this paper we present a methodology, data, and regression equations for calculating the fault rupture hazard at sites near steeply dipping, strike-slip faults. We collected and digitized on-fault and off-fault displacement data for 9 global strikeslip earthquakes ranging from moment magnitude M 6.5 to M 7.6 and supplemented these with displacements from 13 global earthquakes compiled byWesnousky (2008), who considers events up to M 7.9. Displacements on the primary fault fall off at the rupture ends and are often measured in meters, while displacements on secondary (offfault) or distributed faults may measure a few centimeters up to more than a meter and decay with distance from the rupture. Probability of earthquake rupture is less than 15% for cells 200 m??200 m and is less than 2% for 25 m??25 m cells at distances greater than 200mfrom the primary-fault rupture. Therefore, the hazard for off-fault ruptures is much lower than the hazard near the fault. Our data indicate that rupture displacements up to 35cm can be triggered on adjacent faults at distances out to 10kmor more from the primary-fault rupture. An example calculation shows that, for an active fault which has repeated large earthquakes every few hundred years, fault rupture hazard analysis should be an important consideration in the design of structures or lifelines that are located near the principal fault, within about 150 m of well-mapped active faults with a simple trace and within 300 m of faults with poorly defined or complex traces.

  2. Fault tree models for fault tolerant hypercube multiprocessors

    NASA Technical Reports Server (NTRS)

    Boyd, Mark A.; Tuazon, Jezus O.

    1991-01-01

    Three candidate fault tolerant hypercube architectures are modeled, their reliability analyses are compared, and the resulting implications of these methods of incorporating fault tolerance into hypercube multiprocessors are discussed. In the course of performing the reliability analyses, the use of HARP and fault trees in modeling sequence dependent system behaviors is demonstrated.

  3. Normal-fault development in two-phase experimental models of shortening followed by extension and comparison to natural examples

    NASA Astrophysics Data System (ADS)

    Warrell, K. F.; Withjack, M. O.; Schlische, R. W.

    2014-12-01

    Field- and seismic-reflection-based studies have documented the influence of pre-existing thrust faults on normal-fault development during subsequent extension. Published experimental (analog) models of shortening followed by extension with dry sand as the modeling medium show limited extensional reactivation of moderate-angle thrust faults (dipping > 40º). These dry sand models provide insight into the influence of pre-existing thrusts on normal-fault development, but these models have not reactivated low-angle (< 35º) thrust faults as seen in nature. New experimental (analog) models, using wet clay over silicone polymer to simulate brittle upper crust over ductile lower crust, suggest that low-angle thrust faults from an older shortening phase can reactivate as normal faults. In two-phase models of shortening followed by extension, normal faults nucleate above pre-existing thrust faults and likely link with thrusts at depth to create listric faults, movement on which produces rollover folds. Faults grow and link more rapidly in two-phase than in single-phase (extension-only) models. Fewer faults with higher displacements form in two-phase models, likely because, for a given displacement magnitude, a low-angle normal fault accommodates more horizontal extension than a high-angle normal fault. The resulting rift basins are wider and shallower than those forming along high-angle normal faults. Features in these models are similar to natural examples. Seismic-reflection profiles from the outer Hebrides, offshore Scotland, show listric faults partially reactivating pre-existing thrust faults with a rollover fold in the hanging wall; in crystalline basement, the thrust is reactivated, and in overlying sedimentary strata, a new, high-angle normal fault forms. Profiles from the Chignecto subbasin of the Fundy basin, offshore Canada, show full reactivation of thrust faults as low-angle normal faults where crystalline basement rocks make up the footwall.

  4. The property of fault zone and fault activity of Shionohira Fault, Fukushima, Japan

    NASA Astrophysics Data System (ADS)

    Seshimo, K.; Aoki, K.; Tanaka, Y.; Niwa, M.; Kametaka, M.; Sakai, T.; Tanaka, Y.

    2015-12-01

    The April 11, 2011 Fukushima-ken Hamadori Earthquake (hereafter the 4.11 earthquake) formed co-seismic surface ruptures trending in the NNW-SSE direction in Iwaki City, Fukushima Prefecture, which were newly named as the Shionohira Fault by Ishiyama et al. (2011). This earthquake was characterized by a westward dipping normal slip faulting, with a maximum displacement of about 2 m (e.g., Kurosawa et al., 2012). To the south of the area, the same trending lineaments were recognized to exist even though no surface ruptures occurred by the earthquake. In an attempt to elucidate the differences of active and non-active segments of the fault, this report discusses the results of observation of fault outcrops along the Shionohira Fault as well as the Coulomb stress calculations. Only a few outcrops have basement rocks of both the hanging-wall and foot-wall of the fault plane. Three of these outcrops (Kyodo-gawa, Shionohira and Betto) were selected for investigation. In addition, a fault outcrop (Nameishi-minami) located about 300 m south of the southern tip of the surface ruptures was investigated. The authors carried out observations of outcrops, polished slabs and thin sections, and performed X-ray diffraction (XRD) to fault materials. As a result, the fault zones originating from schists were investigated at Kyodo-gawa and Betto. A thick fault gouge was cut by a fault plane of the 4.11 earthquake in each outcrop. The fault materials originating from schists were fault bounded with (possibly Neogene) weakly deformed sandstone at Shionohira. A thin fault gouge was found along the fault plane of 4.11 earthquake. A small-scale fault zone with thin fault gouge was observed in Nameishi-minami. According to XRD analysis, smectite was detected in the gouges from Kyodo-gawa, Shionohira and Betto, while not in the gouge from Nameishi-minami.

  5. Towards Fault Resilient Global Arrays

    SciTech Connect

    Tipparaju, Vinod; Krishnan, Manoj Kumar; Palmer, Bruce J.; Petrini, Fabrizio; Nieplocha, Jaroslaw

    2007-09-03

    The focus of the current paper is adding fault resiliency to the Global Arrays. We extended the GA toolkit to provide a minimal level of capabilities to enable programmer to implement fault resiliency at the user level. Our fault-recovery approach is programmer assisted and based on frequent incremental checkpoints and rollback recovery. In addition, it relies of pool of spare nodes that are used to replace the failing node. We demonstrate usefulness of fault resilient Global Arrays in application context.

  6. Row fault detection system

    DOEpatents

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2012-02-07

    An apparatus, program product and method check for nodal faults in a row of nodes by causing each node in the row to concurrently communicate with its adjacent neighbor nodes in the row. The communications are analyzed to determine a presence of a faulty node or connection.

  7. Row fault detection system

    DOEpatents

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2010-02-23

    An apparatus and program product check for nodal faults in a row of nodes by causing each node in the row to concurrently communicate with its adjacent neighbor nodes in the row. The communications are analyzed to determine a presence of a faulty node or connection.

  8. Dynamic Fault Detection Chassis

    SciTech Connect

    Mize, Jeffery J

    2007-01-01

    Abstract The high frequency switching megawatt-class High Voltage Converter Modulator (HVCM) developed by Los Alamos National Laboratory for the Oak Ridge National Laboratory's Spallation Neutron Source (SNS) is now in operation. One of the major problems with the modulator systems is shoot-thru conditions that can occur in a IGBTs H-bridge topology resulting in large fault currents and device failure in a few microseconds. The Dynamic Fault Detection Chassis (DFDC) is a fault monitoring system; it monitors transformer flux saturation using a window comparator and dV/dt events on the cathode voltage caused by any abnormality such as capacitor breakdown, transformer primary turns shorts, or dielectric breakdown between the transformer primary and secondary. If faults are detected, the DFDC will inhibit the IGBT gate drives and shut the system down, significantly reducing the possibility of a shoot-thru condition or other equipment damaging events. In this paper, we will present system integration considerations, performance characteristics of the DFDC, and discuss its ability to significantly reduce costly down time for the entire facility.

  9. Row fault detection system

    SciTech Connect

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2008-10-14

    An apparatus, program product and method checks for nodal faults in a row of nodes by causing each node in the row to concurrently communicate with its adjacent neighbor nodes in the row. The communications are analyzed to determine a presence of a faulty node or connection.

  10. Fault-Related Sanctuaries

    NASA Astrophysics Data System (ADS)

    Piccardi, L.

    2001-12-01

    Beyond the study of historical surface faulting events, this work investigates the possibility, in specific cases, of identifying pre-historical events whose memory survives in myths and legends. The myths of many famous sacred places of the ancient world contain relevant telluric references: "sacred" earthquakes, openings to the Underworld and/or chthonic dragons. Given the strong correspondence with local geological evidence, these myths may be considered as describing natural phenomena. It has been possible in this way to shed light on the geologic origin of famous myths (Piccardi, 1999, 2000 and 2001). Interdisciplinary researches reveal that the origin of several ancient sanctuaries may be linked in particular to peculiar geological phenomena observed on local active faults (like ground shaking and coseismic surface ruptures, gas and flames emissions, strong underground rumours). In many of these sanctuaries the sacred area is laid directly above the active fault. In a few cases, faulting has affected also the archaeological relics, right through the main temple (e.g. Delphi, Cnidus, Hierapolis of Phrygia). As such, the arrangement of the cult site and content of relative myths suggest that specific points along the trace of active faults have been noticed in the past and worshiped as special `sacred' places, most likely interpreted as Hades' Doors. The mythological stratification of most of these sanctuaries dates back to prehistory, and points to a common derivation from the cult of the Mother Goddess (the Lady of the Doors), which was largely widespread since at least 25000 BC. The cult itself was later reconverted into various different divinities, while the `sacred doors' of the Great Goddess and/or the dragons (offspring of Mother Earth and generally regarded as Keepers of the Doors) persisted in more recent mythologies. Piccardi L., 1999: The "Footprints" of the Archangel: Evidence of Early-Medieval Surface Faulting at Monte Sant'Angelo (Gargano, Italy

  11. Quantifying Anderson's fault types

    USGS Publications Warehouse

    Simpson, R.W.

    1997-01-01

    Anderson [1905] explained three basic types of faulting (normal, strike-slip, and reverse) in terms of the shape of the causative stress tensor and its orientation relative to the Earth's surface. Quantitative parameters can be defined which contain information about both shape and orientation [Ce??le??rier, 1995], thereby offering a way to distinguish fault-type domains on plots of regional stress fields and to quantify, for example, the degree of normal-faulting tendencies within strike-slip domains. This paper offers a geometrically motivated generalization of Angelier's [1979, 1984, 1990] shape parameters ?? and ?? to new quantities named A?? and A??. In their simple forms, A?? varies from 0 to 1 for normal, 1 to 2 for strike-slip, and 2 to 3 for reverse faulting, and A?? ranges from 0?? to 60??, 60?? to 120??, and 120?? to 180??, respectively. After scaling, A?? and A?? agree to within 2% (or 1??), a difference of little practical significance, although A?? has smoother analytical properties. A formulation distinguishing horizontal axes as well as the vertical axis is also possible, yielding an A?? ranging from -3 to +3 and A?? from -180?? to +180??. The geometrically motivated derivation in three-dimensional stress space presented here may aid intuition and offers a natural link with traditional ways of plotting yield and failure criteria. Examples are given, based on models of Bird [1996] and Bird and Kong [1994], of the use of Anderson fault parameters A?? and A?? for visualizing tectonic regimes defined by regional stress fields. Copyright 1997 by the American Geophysical Union.

  12. Earthquakes and fault creep on the northern San Andreas fault

    USGS Publications Warehouse

    Nason, R.

    1979-01-01

    At present there is an absence of both fault creep and small earthquakes on the northern San Andreas fault, which had a magnitude 8 earthquake with 5 m of slip in 1906. The fault has apparently been dormant after the 1906 earthquake. One possibility is that the fault is 'locked' in some way and only produces great earthquakes. An alternative possibility, presented here, is that the lack of current activity on the northern San Andreas fault is because of a lack of sufficient elastic strain after the 1906 earthquake. This is indicated by geodetic measurements at Fort Ross in 1874, 1906 (post-earthquake), and 1969, which show that the strain accumulation in 1969 (69 ?? 10-6 engineering strain) was only about one-third of the strain release (rebound) in the 1906 earthquake (200 ?? 10-6 engineering strain). The large difference in seismicity before and after 1906, with many strong local earthquakes from 1836 to 1906, but only a few strong earthquakes from 1906 to 1976, also indicates a difference of elastic strain. The geologic characteristics (serpentine, fault straightness) of most of the northern San Andreas fault are very similar to the characteristics of the fault south of Hollister, where fault creep is occurring. Thus, the current absence of fault creep on the northern fault segment is probably due to a lack of sufficient elastic strain at the present time. ?? 1979.

  13. An empirical comparison of software fault tolerance and fault elimination

    NASA Technical Reports Server (NTRS)

    Shimeall, Timothy J.; Leveson, Nancy G.

    1991-01-01

    Reliability is an important concern in the development of software for modern systems. Some researchers have hypothesized that particular fault-handling approaches or techniques are so effective that other approaches or techniques are superfluous. The authors have performed a study that compares two major approaches to the improvement of software, software fault elimination and software fault tolerance, by examination of the fault detection obtained by five techniques: run-time assertions, multi-version voting, functional testing augmented by structural testing, code reading by stepwise abstraction, and static data-flow analysis. This study has focused on characterizing the sets of faults detected by the techniques and on characterizing the relationships between these sets of faults. The results of the study show that none of the techniques studied is necessarily redundant to any combination of the others. Further results reveal strengths and weakness in the fault detection by the techniques studied and suggest directions for future research.

  14. An analysis of the black crusts from the Seville Cathedral: a challenge to deepen the understanding of the relationships among microstructure, microchemical features and pollution sources.

    PubMed

    Ruffolo, Silvestro A; Comite, Valeria; La Russa, Mauro F; Belfiore, Cristina M; Barca, Donatella; Bonazza, Alessandra; Crisci, Gino M; Pezzino, Antonino; Sabbioni, Cristina

    2015-01-01

    The Cathedral of Seville is one of the most important buildings in the whole of southern Spain. It suffers, like most of the historical buildings located in urban environments, from several degradation phenomena related to the high pollution level. Undoubtedly, the formation of black crusts plays a crucial role in the decay of the stone materials belonging to the church. Their formation occurs mainly on carbonate building materials, whose interaction with a sulfur oxide-enriched atmosphere leads to the transformation of calcium carbonate (calcite) into calcium sulfate dihydrate (gypsum) which, together with embedded carbonaceous particles, forms the black crusts on the stone surface. To better understand the composition and the formation dynamics of this degradation product and to identify the pollutant sources and evaluate their impact on the stone material, an analytical study was carried out on the black crust samples collected from different areas of the building. For a complete characterization of the black crusts, several techniques were used, including laser ablation inductively coupled plasma mass spectrometry, Fourier transform infrared spectroscopy, micro infrared spectroscopy, optical and scanning electron microscopy. This battery of tests provided information about the nature and distribution of the mineralogical phases and the elements within the crusts and the crust-substrate interface, contributing to the identification of the major pollution sources responsible for the deterioration of the monument over time. In addition, the results revealed a relation among the height of sampling, the surface exposure and the concentration of heavy metals. Finally, information has been provided about the origin of the concentration gradients of some metals. PMID:25260161

  15. Older drivers' risks of at-fault motor vehicle collisions.

    PubMed

    Ichikawa, Masao; Nakahara, Shinji; Taniguchi, Ayako

    2015-08-01

    In aging societies, increasing numbers of older drivers are involved in motor vehicle collisions (MVCs), and preserving their safety is a growing concern. In this study, we focused on whether older drivers were more likely to cause MVCs and injuries than drivers in other age groups. To do so we compared at-fault MVC incidence and resulting injury risks by drivers' ages, using data from Japan, a country with a rapidly aging population. The at-fault MVC incidence was calculated based on distance traveled made for non-commercial purposes, and the injury risks posed to at-fault drivers and other road users per at-fault MVCs. We used MVC data for 2010 from the National Police Agency of Japan and driving exposure data from the Nationwide Person Trip Survey conducted by a Japanese governmental ministry in 2010. The at-fault MVC incidence showed a U-shaped curve across the drivers' ages, where teenage and the oldest drivers appeared to be the highest risk groups in terms of causing MVCs, and the incidence was higher for female drivers after age 25. The injury risk older drivers posed to other vehicle occupants because of their at-fault MVCs was lower than for drivers in other age groups, while their own injury risk appeared much higher. As the number of older drivers is increasing, efforts to reduce their at-fault MVCs appear justified. PMID:25980917

  16. Symbiosis of Uas Photogrammetry and Tls for Surveying and 3d Modeling of Cultural Heritage Monuments - a Case Study about the Cathedral of ST. Nicholas in the City of Greifswald

    NASA Astrophysics Data System (ADS)

    Grenzdörffer, G. J.; Naumann, M.,; Niemeyer, F.; Frank, A.

    2015-08-01

    In this contribution the possibility to combine terrestrial laser scanner (TLS) measurements and UAS photogrammetry for the detailed description and high quality surveying of a cultural monument will be illustrated by the example of the Cathedral of St. Nicholas in the city of Greifswald. Due to the different nature of UAS photogrammetry and TLS walls and windows as well as portions of roofs are captured with a different level of completeness and accuracy. The average deviations of the test areas on the overlap between the two measurement methods ranges from 0.015 m to 0.033 m with standard deviations of 0.025 m to 0.088 m.

  17. Fault diagnosis of analog circuits

    SciTech Connect

    Bandler, J.W.; Salama, A.E.

    1985-08-01

    In this paper, various fault location techniques in analog networks are described and compared. The emphasis is on the more recent developments in the subject. Four main approaches for fault location are addressed, examined, and illustrated using simple network examples. In particular, we consider the fault dictionary approach, the parameter identification approach, the fault verification approach, and the approximation approach. Theory and algorithms that are associated with these approaches are reviewed and problems of their practical application are identified. Associated with the fault dictionary approach we consider fault dictionary construction techniques, methods of optimum measurement selection, different fault isolation criteria, and efficient fault simulation techniques. Parameter identification techniques that either utilize linear or nonlinear systems of equations to identify all network elements are examined very thoroughly. Under fault verification techniques we discuss node-fault diagnosis, branch-fault diagnosis, subnetwork testability conditions as well as combinatorial techniques, the failure bound technique, and the network decomposition technique. For the approximation approach we consider probabilistic methods and optimization-based methods. The artificial intelligence technique and the different measures of testability are also considered. The main features of the techniques considered are summarized in a comparative table. An extensive, but not exhaustive, bibliography is provided.

  18. Fault Scarp Offsets and Fault Population Analysis on Dione

    NASA Astrophysics Data System (ADS)

    Tarlow, S.; Collins, G. C.

    2010-12-01

    Cassini images of Dione show several fault zones cutting through the moon’s icy surface. We have measured the displacement and length of 271 faults, and estimated the strain occurring in 6 different fault zones. These measurements allow us to quantify the total amount of surface strain on Dione as well as constrain what processes might have caused these faults to form. Though we do not have detailed topography across fault scarps on Dione, we can use their projected size on the camera plane to estimate their heights, assuming a reasonable surface slope. Starting with high resolution images of Dione obtained by the Cassini ISS, we marked points at the top to the bottom of each fault scarp to measure the fault’s projected displacement and its orientation along strike. Line and sample information for the measurements were then processed through ISIS to derive latitude/longitude information and pixel dimensions. We then calculate the three dimensional orientation of a vector running from the bottom to the top of the fault scarp, assuming a 45 degree angle with respect to the surface, and project this vector onto the spacecraft camera plane. This projected vector gives us a correction factor to estimate the actual vertical displacement of the fault scarp. This process was repeated many times for each fault, to show variations of displacement along the length of the fault. To compare each fault to its neighbors and see how strain was accommodated across a population of faults, we divided the faults into fault zones, and created new coordinate systems oriented along the central axis of each fault zone. We could then quantify the amount of fault overlap and add the displacement of overlapping faults to estimate the amount of strain accommodated in each zone. Faults in the southern portion of Padua have a strain of 0.031(+/-) 0.0097, central Padua exhibits a strain of .032(+/-) 0.012, and faults in northern Padua have a strain of 0.025(+/-) 0.0080. The western faults of

  19. Fault intersections along the Hosgri Fault Zone, Central California

    NASA Astrophysics Data System (ADS)

    Watt, J. T.; Johnson, S. Y.; Langenheim, V. E.

    2011-12-01

    It is well-established that stresses concentrate at fault intersections or bends when subjected to tectonic loading, making focused studies of these areas particularly important for seismic hazard analysis. In addition, detailed fault models can be used to investigate how slip on one fault might transfer to another during an earthquake. We combine potential-field, high-resolution seismic-reflection, and multibeam bathymetry data with existing geologic and seismicity data to investigate the fault geometry and connectivity of the Hosgri, Los Osos, and Shoreline faults offshore of San Luis Obispo, California. The intersection of the Hosgri and Los Osos faults in Estero Bay is complex. The offshore extension of the Los Osos fault, as imaged with multibeam and high-resolution seismic data, is characterized by a west-northwest-trending zone (1-3 km wide) of near vertical faulting. Three distinct strands (northern, central, and southern) are visible on shallow seismic reflection profiles. The steep dip combined with dramatic changes in reflection character across mapped faults within this zone suggests horizontal offset of rock units and argues for predominantly strike-slip motion, however, the present orientation of the fault zone suggests oblique slip. As the Los Osos fault zone approaches the Hosgri fault, the northern and central strands become progressively more northwest-trending in line with the Hosgri fault. The northern strand runs subparallel to the Hosgri fault along the edge of a long-wavelength magnetic anomaly, intersecting the Hosgri fault southwest of Point Estero. Geophysical modeling suggests the northern strand dips 70° to the northeast, which is in agreement with earthquake focal mechanisms that parallel this strand. The central strand bends northward and intersects the Hosgri fault directly west of Morro Rock, corresponding to an area of compressional deformation visible in shallow seismic-reflection profiles. The southern strand of the Los Osos

  20. Abnormal fault-recovery characteristics of the fault-tolerant multiprocessor uncovered using a new fault-injection methodology

    NASA Astrophysics Data System (ADS)

    Padilla, Peter A.

    1991-03-01

    An investigation was made in AIRLAB of the fault handling performance of the Fault Tolerant MultiProcessor (FTMP). Fault handling errors detected during fault injection experiments were characterized. In these fault injection experiments, the FTMP disabled a working unit instead of the faulted unit once in every 500 faults, on the average. System design weaknesses allow active faults to exercise a part of the fault management software that handles Byzantine or lying faults. Byzantine faults behave such that the faulted unit points to a working unit as the source of errors. The design's problems involve: (1) the design and interface between the simplex error detection hardware and the error processing software, (2) the functional capabilities of the FTMP system bus, and (3) the communication requirements of a multiprocessor architecture. These weak areas in the FTMP's design increase the probability that, for any hardware fault, a good line replacement unit (LRU) is mistakenly disabled by the fault management software.

  1. Abnormal fault-recovery characteristics of the fault-tolerant multiprocessor uncovered using a new fault-injection methodology

    NASA Technical Reports Server (NTRS)

    Padilla, Peter A.

    1991-01-01

    An investigation was made in AIRLAB of the fault handling performance of the Fault Tolerant MultiProcessor (FTMP). Fault handling errors detected during fault injection experiments were characterized. In these fault injection experiments, the FTMP disabled a working unit instead of the faulted unit once in every 500 faults, on the average. System design weaknesses allow active faults to exercise a part of the fault management software that handles Byzantine or lying faults. Byzantine faults behave such that the faulted unit points to a working unit as the source of errors. The design's problems involve: (1) the design and interface between the simplex error detection hardware and the error processing software, (2) the functional capabilities of the FTMP system bus, and (3) the communication requirements of a multiprocessor architecture. These weak areas in the FTMP's design increase the probability that, for any hardware fault, a good line replacement unit (LRU) is mistakenly disabled by the fault management software.

  2. Holocene faulting on the Mission fault, northwest Montana

    SciTech Connect

    Ostenaa, D.A.; Klinger, R.E.; Levish, D.R. )

    1993-04-01

    South of Flathead Lake, fault scarps on late Quaternary surfaces are nearly continuous for 45 km along the western flank of the Mission Range. On late Pleistocene alpine lateral moraines, scarp heights reach a maximum of 17 m. Scarp heights on post glacial Lake Missoula surfaces range from 2.6--7.2 m and maximum scarp angles range from 10[degree]--24[degree]. The stratigraphy exposed in seven trenches across the fault demonstrates that the post glacial Lake Missoula scarps resulted from at least two surface-faulting events. Larger scarp heights on late Pleistocene moraines suggests a possible third event. This yields an estimated recurrence of 4--8 kyr. Analyses of scarp profiles show that the age of the most surface faulting is middle Holocene, consistent with stratigraphic evidence found in the trenches. Rupture length and displacement imply earthquake magnitudes of 7 to 7.5. Previous studies have not identified geologic evidence of late Quaternary surface faulting in the Rocky Mountain Trench or on faults north of the Lewis and Clark line despite abundant historic seismicity in the Flathead Lake area. In addition to the Mission fault, reconnaissance studies have located late Quaternary fault scarps along portions of faults bordering Jocko and Thompson Valleys. These are the first documented late Pleistocene/Holocene faults north of the Lewis and Clark line in Montana and should greatly revise estimates of earthquake hazards in this region.

  3. Managing Fault Management Development

    NASA Technical Reports Server (NTRS)

    McDougal, John M.

    2010-01-01

    As the complexity of space missions grows, development of Fault Management (FM) capabilities is an increasingly common driver for significant cost overruns late in the development cycle. FM issues and the resulting cost overruns are rarely caused by a lack of technology, but rather by a lack of planning and emphasis by project management. A recent NASA FM Workshop brought together FM practitioners from a broad spectrum of institutions, mission types, and functional roles to identify the drivers underlying FM overruns and recommend solutions. They identified a number of areas in which increased program and project management focus can be used to control FM development cost growth. These include up-front planning for FM as a distinct engineering discipline; managing different, conflicting, and changing institutional goals and risk postures; ensuring the necessary resources for a disciplined, coordinated approach to end-to-end fault management engineering; and monitoring FM coordination across all mission systems.

  4. Dynamic faulting on a conjugate fault system detected by near-fault tilt measurements

    NASA Astrophysics Data System (ADS)

    Fukuyama, Eiichi

    2015-03-01

    There have been reports of conjugate faults that have ruptured during earthquakes. However, it is still unclear whether or not these conjugate faults ruptured coseismically during earthquakes. In this paper, we investigated near-fault ground tilt motions observed at the IWTH25 station during the 2008 Iwate-Miyagi Nairiku earthquake ( M w 6.9). Since near-fault tilt motion is very sensitive to the fault geometry on which the slip occurs during an earthquake, these data make it possible to distinguish between the main fault rupture and a rupture on the conjugate fault. We examined several fault models that have already been proposed and confirmed that only the models with a conjugated fault could explain the tilt data observed at IWTH25. The results support the existence of simultaneous conjugate faulting during the main rupture. This will contribute to the understanding of earthquake rupture dynamics because the conjugate rupture releases the same shear strain as that released on the main fault, and thus it has been considered quite difficult for both ruptures to accelerate simultaneously.

  5. Rheological transitions in high-temperature volcanic fault zones

    NASA Astrophysics Data System (ADS)

    Okumura, Satoshi; Uesugi, Kentaro; Nakamura, Michihiko; Sasaki, Osamu

    2015-05-01

    Silicic magma experiences shear-induced brittle fracturing during its ascent, resulting in the formation of a magmatic fault at the conduit margin. Once the fault is formed, frictional behavior of the fault controls the magma ascent process. We observed torsional deformation of a magmatic fault gouge in situ at temperatures of 800 and 900°C using synchrotron radiation X-ray radiography. The torsional deformation rate was set at 0.1-10 rpm, corresponding to equivalent slip velocities of 2.27 × 10-5-1.74 × 10-3 m s-1 and shear strain rates of 0.014-1.16 s-1. The normal stresses used were 1, 5, and 10 MPa. The magmatic fault showed frictional sliding as well as viscous flow even above the glass transition temperature. The transition between frictional sliding and viscous flow depends on temperature, deformation rate, and normal stress on the fault. At 900°C, the fault showed viscous deformation at a normal stress of 10 MPa, while frictional sliding was predominant at 800°C. We propose the ratio of timescales of fault healing and deformation as a criterion for transition between frictional sliding and viscous flow. The experimentally calibrated criterion infers that frictional sliding is predominant from ~500 m in depth during explosive eruption; this may explain rapid magma ascent without efficient outgassing. Frictional heating would in turn enhance fault healing, resulting in the reverse transition from frictional sliding to viscous flow, followed by deceleration of magma ascent. Therefore, cyclic transitions between frictional sliding and viscous flow are a possible explanation for the cyclic behavior of lava effusion.

  6. Tectonic history and setting of a seismogenic intraplate fault system that lacks microseismicity: The Saline River fault system, southern United States

    NASA Astrophysics Data System (ADS)

    Cox, Randel Tom; Hall, J. Luke; Gardner, Chris S.

    2013-11-01

    Although the northwest-striking Saline River fault system of southeastern Arkansas is not defined by microseismicity, it is associated with sand blows and shows evidence of Pleistocene and Holocene surface ruptures, suggesting a significant seismogenic potential. This fault system is within the northern Gulf of Mexico interior coastal plain, a region only recently recognized as containing seismogenic faults. To better characterize this active fault system, we reconstructed its post-Paleozoic history using petroleum and coal industry wire-line well log and seismic reflection subsurface data. The Saline river fault system initiated as a series of northwest-striking grabens during Triassic/Jurassic uplift and incipient Gulf of Mexico rifting along the basement Alabama-Oklahoma transform margin of the North American Proterozoic craton. During post-rift subsidence, these grabens were buried by Gulf sediments until mid-Cretaceous uplift and igneous activity resulted in minor extensional reactivation of graben faults. Faulting style changed from extension to transpression during the Late Cretaceous due to compression of eastern North America as the North Atlantic rapidly widened and due to thermal weakening of the Alabama-Oklahoma transform lithospheric discontinuity as it obliquely crossed a mantle hot spot. In the Late Cretaceous, graben faults experienced contractional reactivation and steep, deeply-rooted transpressional faults developed within and parallel to the graben system. These transpressional faults locally displace Eocene, Pleistocene, and Holocene sediments. Fault activity continues on the Saline River fault system due to thin crust along the Alabama-Oklahoma transform and to high heat flow, which act together to weaken the crust and promote seismogenic tectonism. The fault system may lack appreciable microseismicity because the aftershock sequence of the last large earthquake has had time to dissipate.

  7. An expert system for fault diagnosis in a Space Shuttle main engine

    NASA Technical Reports Server (NTRS)

    Ali, Moonis; Gupta, U. K.

    1990-01-01

    The detection and diagnosis of SSME faults in an early stage is important in order to allow enough time for fault preventive or corrective measurements. Since most of the faults in a complex system like SSME develop rapidly, early detection and diagnosis of faults is critical for the survival of space vehicles. An expert system has been designed for automatic learning, detection, identification, verification, and correction of anomalous propulsion system operations. This paper describes an innovative machine learning approach which is employed for the automatic training of this expert system.

  8. The San Andreas Fault 'Supersite' (Invited)

    NASA Astrophysics Data System (ADS)

    Hudnut, K. W.

    2013-12-01

    struck in 1992 (Landers), 1994 (Northridge) and 1999 (Hector Mine) as well as the 2010 El Mayor - Cucapah (EM-C) earthquake (just south of the US-Mexico border). Of these four notable events, all produced extensive surface faulting except for the 1994 Northridge event, which was close to the Los Angeles urban area on a buried thrust fault. Northridge caused by far the most destruction, topping $20B (US) and resulting in 57 fatalities due to its location under an urban area. The Landers, Hector Mine and EM-C events occurred in desert areas away from major urban centers, and each proved to be a new and unique test-bed for making rapid progress in earthquake science and creative use of geodetic imagery. InSAR studies were linked to GPS deformation and mapping of surface ruptures and seismicity in a series of important papers about these earthquakes. The hazard in California remains extremely high, with tens of millions of people living in close proximity to the San Andreas Fault system as it runs past both San Francisco and Los Angeles. Dense in-situ networks of seismic and geodetic instruments are continually used for research and earthquake monitoring, as well as development of an earthquake early warning capability. Principles of peer review from funding agencies and open data availability will be observed for all data. For all of these reasons, the San Andreas Fault system is highly appropriate for consideration as a world-class permanent Supersite in the GEO framework.

  9. Fluid involvement in normal faulting

    NASA Astrophysics Data System (ADS)

    Sibson, Richard H.

    2000-04-01

    Evidence of fluid interaction with normal faults comes from their varied role as flow barriers or conduits in hydrocarbon basins and as hosting structures for hydrothermal mineralisation, and from fault-rock assemblages in exhumed footwalls of steep active normal faults and metamorphic core complexes. These last suggest involvement of predominantly aqueous fluids over a broad depth range, with implications for fault shear resistance and the mechanics of normal fault reactivation. A general downwards progression in fault rock assemblages (high-level breccia-gouge (often clay-rich) → cataclasites → phyllonites → mylonite → mylonitic gneiss with the onset of greenschist phyllonites occurring near the base of the seismogenic crust) is inferred for normal fault zones developed in quartzo-feldspathic continental crust. Fluid inclusion studies in hydrothermal veining from some footwall assemblages suggest a transition from hydrostatic to suprahydrostatic fluid pressures over the depth range 3-5 km, with some evidence for near-lithostatic to hydrostatic pressure cycling towards the base of the seismogenic zone in the phyllonitic assemblages. Development of fault-fracture meshes through mixed-mode brittle failure in rock-masses with strong competence layering is promoted by low effective stress in the absence of thoroughgoing cohesionless faults that are favourably oriented for reactivation. Meshes may develop around normal faults in the near-surface under hydrostatic fluid pressures to depths determined by rock tensile strength, and at greater depths in overpressured portions of normal fault zones and at stress heterogeneities, especially dilational jogs. Overpressures localised within developing normal fault zones also determine the extent to which they may reutilise existing discontinuities (for example, low-angle thrust faults). Brittle failure mode plots demonstrate that reactivation of existing low-angle faults under vertical σ1 trajectories is only likely if

  10. Fault management for data systems

    NASA Technical Reports Server (NTRS)

    Boyd, Mark A.; Iverson, David L.; Patterson-Hine, F. Ann

    1993-01-01

    Issues related to automating the process of fault management (fault diagnosis and response) for data management systems are considered. Substantial benefits are to be gained by successful automation of this process, particularly for large, complex systems. The use of graph-based models to develop a computer assisted fault management system is advocated. The general problem is described and the motivation behind choosing graph-based models over other approaches for developing fault diagnosis computer programs is outlined. Some existing work in the area of graph-based fault diagnosis is reviewed, and a new fault management method which was developed from existing methods is offered. Our method is applied to an automatic telescope system intended as a prototype for future lunar telescope programs. Finally, an application of our method to general data management systems is described.

  11. Experimental Fault Reactivation on Favourably and Unfavourably Oriented Faults

    NASA Astrophysics Data System (ADS)

    Mitchell, T. M.; Sibson, R. H.; Renner, J.; Toy, V. G.; di Toro, G.; Smith, S. A.

    2010-12-01

    In this study, we introduce work which aims assess the loading of faults to failure under different stress regimes in a triaxial deformation apparatus. We explore experimentally the reshear of an existing fault in various orientations for particular values of (σ1 - σ3) and σ3' for contrasting loading systems - load-strengthening (equivalent to a thrust fault) with σ1' increasing at constant σ3', versus load-weakening (equivalent to a normal fault) with reducing σ3' under constant σ1'. Experiments are conducted on sawcut granite samples with fault angles at a variety of orientations relative to σ1 , ranging from an optimal orientation for reactivation to lockup angles where new faults are formed in preference to reactivating the existing sawcut orientation. Prefailure and postfailure behaviour is compared in terms of damage zone development via monitoring variations in ultrasonic velocity and acoustic emission behaviour. For example, damage surrounding unfavourably oriented faults is significantly higher than that seen around favourably orientated faults due to greater maximum stresses attained prior to unstable slip, which is reflected by the increased acoustic emission activity leading up to failure. In addition, we also experimentally explore the reshear of natural pseudotachylytes (PSTs) from two different fault zones; the Gole Larghe Fault, Adamello, Italy in which the PSTs are in relatively isotropic Tonalite (at lab sample scale) and the Alpine Fault, New Zealand in which the PSTs are in highly anisotropic foliated shist. We test whether PSTs will reshear in both rock types under the right conditions, or whether new fractures in the wall rock will form in preference to reactivating the PST (PST shear strength is higher than that of the host rock). Are PSTs representative of one slip event?

  12. Fault welding by pseudotachylyte generation

    NASA Astrophysics Data System (ADS)

    Mitchell, T. M.; Toy, V. G.; Di Toro, G.; Renner, J.

    2014-12-01

    During earthquakes, frictional melts can localize on slip surfaces and dramatically weaken faults by melt lubrication. Once seismic slip is arrested, the melt cools and solidifies to form pseudotachylyte (PST), the presence of which is commonly used to infer earthquake slip on ancient exhumed faults. Little is known about the effect of solidified melt on the strength of faults directly preceding a subsequent earthquake. We performed triaxial deformation experiments on cores of tonalite (Gole Larghe fault zone, N. Italy) and mylonite (Alpine fault, New Zealand) in order to assess the strength of PST bearing faults in the lab. Three types of sample were prepared for each rock type; intact, sawcut and PST bearing, and were cored so that the sawcut, PST and foliation planes were orientated at 35° to the length of the core and direction of σ1, i.e., a favorable orientation for reactivation. This choice of samples allowed us to compare the strength of 'pre-earthquake' fault (sawcut) to a 'post-earthquake' fault with solidified frictional melt, and assess their strength relative to intact samples. Our results show that PST veins effectively weld fault surfaces together, allowing previously faulted rocks to regain cohesive strengths comparable to that of an intact rock. Shearing of the PST is not favored, but subsequent failure and slip is accommodated on new faults nucleating at other zones of weakness. Thus, the mechanism of coseismic weakening by melt lubrication does not necessarily facilitate long-term interseismic deformation localization, at least at the scale of these experiments. In natural fault zones, PSTs are often found distributed over multiple adjacent fault planes or other zones of weakness such as foliation planes. We also modeled the temperature distribution in and around a PST using an approximation for cooling of a thin, infinite sheet by conduction perpendicular to its margins at ambient temperatures commensurate with the depth of PST formation

  13. Fault-tolerant processing system

    NASA Technical Reports Server (NTRS)

    Palumbo, Daniel L. (Inventor)

    1996-01-01

    A fault-tolerant, fiber optic interconnect, or backplane, which serves as a via for data transfer between modules. Fault tolerance algorithms are embedded in the backplane by dividing the backplane into a read bus and a write bus and placing a redundancy management unit (RMU) between the read bus and the write bus so that all data transmitted by the write bus is subjected to the fault tolerance algorithms before the data is passed for distribution to the read bus. The RMU provides both backplane control and fault tolerance.

  14. Fault interaction near Hollister, California

    SciTech Connect

    Mavko, G.M.

    1982-09-10

    A numerical model is used to study fault stress slip near Hollister, California. The geometrically complex system of interacting faults, including the San Andreas, Calaveras, Sargent, and Busch faults, is approximated with a two-dimensional distribution of short planar fault segments in an elastic medium. The steady stress and slip rate are simulated by specifying frictional strength and stepping the remote stress ahead in time. The resulting computed fault stress is roughly proportional to the observed spatial density of small earthquakes, suggesting that the distinction between segments characterized by earthquakes and those with aseismic creep results, in part, from geometry. A nonsteady simulation is made by introducing, in addition, stress drops for individual moderate earthquakes. A close fit of observed creep with calculated slip on the Calaveras and San Andreas faults suggests that many changes in creep rate (averaged over several months) are caused by local moderate earthquakes. In particular, a 3-year creep lag preceding the August 6, 1979, Coyote Lake earthquake on the Calaveras fault seems to have been a direct result of the November 28, 1974, Thanksgiving Day earthquake on the Busch fault. Computed lags in slip rate preceding some other moderate earthquakes in the area are also due to earlier earthquakes. Although the response of the upper 1 km of the fault zone may cause some individual creep events and introduce delays in others, the long-term rate appears to reflect deep slip.

  15. Fault interaction near Hollister, California

    NASA Astrophysics Data System (ADS)

    Mavko, Gerald M.

    1982-09-01

    A numerical model is used to study fault stress and slip near Hollister, California. The geometrically complex system of interacting faults, including the San Andreas, Calaveras, Sargent, and Busch faults, is approximated with a two-dimensional distribution of short planar fault segments in an elastic medium. The steady stress and slip rate are simulated by specifying frictional strength and stepping the remote stress ahead in time. The resulting computed fault stress is roughly proportional to the observed spatial density of small earthquakes, suggesting that the distinction between segments characterized by earthquakes and those with aseismic creep results, in part, from geometry. A nosteady simulation is made by introducing, in addition, stress drops for individual moderate earthquakes. A close fit of observed creep with calculated slip on the Calaveras and San Andreas faults suggests that many changes in creep rate (averaged over several months) are caused by local moderate earthquakes. In particular, a 3-year creep lag preceding the August 6, 1979, Coyote Lake earthquake on the Calaveras fault seems to have been a direct result of the November 28, 1974, Thanksgiving Day earthquake on the Busch fault. Computed lags in slip rate preceding some other moderate earthquakes in the area are also due to earlier earthquakes. Although the response of the upper 1 km of the fault zone may cause some individual creep events and introduce delays in others, the long-term rate appears to reflect deep slip.

  16. Perspective View, Garlock Fault

    NASA Technical Reports Server (NTRS)

    2000-01-01

    California's Garlock Fault, marking the northwestern boundary of the Mojave Desert, lies at the foot of the mountains, running from the lower right to the top center of this image, which was created with data from NASA's shuttle Radar Topography Mission (SRTM), flown in February 2000. The data will be used by geologists studying fault dynamics and landforms resulting from active tectonics. These mountains are the southern end of the Sierra Nevada and the prominent canyon emerging at the lower right is Lone Tree canyon. In the distance, the San Gabriel Mountains cut across from the leftside of the image. At their base lies the San Andreas Fault which meets the Garlock Fault near the left edge at Tejon Pass. The dark linear feature running from lower right to upper left is State Highway 14 leading from the town of Mojave in the distance to Inyokern and the Owens Valley in the north. The lighter parallel lines are dirt roads related to power lines and the Los Angeles Aqueduct which run along the base of the mountains.

    This type of display adds the important dimension of elevation to the study of land use and environmental processes as observed in satellite images. The perspective view was created by draping a Landsat satellite image over an SRTM elevation model. Topography is exaggerated 1.5 times vertically. The Landsat image was provided by the United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11,2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast

  17. Fault current limiter

    DOEpatents

    Darmann, Francis Anthony

    2013-10-08

    A fault current limiter (FCL) includes a series of high permeability posts for collectively define a core for the FCL. A DC coil, for the purposes of saturating a portion of the high permeability posts, surrounds the complete structure outside of an enclosure in the form of a vessel. The vessel contains a dielectric insulation medium. AC coils, for transporting AC current, are wound on insulating formers and electrically interconnected to each other in a manner such that the senses of the magnetic field produced by each AC coil in the corresponding high permeability core are opposing. There are insulation barriers between phases to improve dielectric withstand properties of the dielectric medium.

  18. Final Technical Report: PV Fault Detection Tool.

    SciTech Connect

    King, Bruce Hardison; Jones, Christian Birk

    2015-12-01

    The PV Fault Detection Tool project plans to demonstrate that the FDT can (a) detect catastrophic and degradation faults and (b) identify the type of fault. This will be accomplished by collecting fault signatures using different instruments and integrating this information to establish a logical controller for detecting, diagnosing and classifying each fault.

  19. 20 CFR 404.507 - Fault.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Officer § 404.507 Fault. Fault as used in without fault (see § 404.506 and 42 CFR 405.355) applies only to the individual. Although the Administration may have been at fault in making the overpayment, that... 20 Employees' Benefits 2 2014-04-01 2014-04-01 false Fault. 404.507 Section 404.507...

  20. 20 CFR 404.507 - Fault.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Officer § 404.507 Fault. Fault as used in without fault (see § 404.506 and 42 CFR 405.355) applies only to the individual. Although the Administration may have been at fault in making the overpayment, that... 20 Employees' Benefits 2 2012-04-01 2012-04-01 false Fault. 404.507 Section 404.507...

  1. 20 CFR 404.507 - Fault.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Officer § 404.507 Fault. Fault as used in without fault (see § 404.506 and 42 CFR 405.355) applies only to the individual. Although the Administration may have been at fault in making the overpayment, that... 20 Employees' Benefits 2 2013-04-01 2013-04-01 false Fault. 404.507 Section 404.507...

  2. 20 CFR 404.507 - Fault.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Officer § 404.507 Fault. Fault as used in without fault (see § 404.506 and 42 CFR 405.355) applies only to the individual. Although the Administration may have been at fault in making the overpayment, that... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Fault. 404.507 Section 404.507...

  3. Internal structure, fault rocks, and inferences regarding deformation, fluid flow, and mineralization in the seismogenic Stillwater normal fault, Dixie Valley, Nevada

    USGS Publications Warehouse

    Caine, J.S.; Bruhn, R.L.; Forster, C.B.

    2010-01-01

    Outcrop mapping and fault-rock characterization of the Stillwater normal fault zone in Dixie Valley, Nevada are used to document and interpret ancient hydrothermal fluid flow and its possible relationship to seismic deformation. The fault zone is composed of distinct structural and hydrogeological components. Previous work on the fault rocks is extended to the map scale where a distinctive fault core shows a spectrum of different fault-related breccias. These include predominantly clast-supported breccias with angular clasts that are cut by zones containing breccias with rounded clasts that are also clast supported. These are further cut by breccias that are predominantly matrix supported with angular and rounded clasts. The fault-core breccias are surrounded by a heterogeneously fractured damage zone. Breccias are bounded between major, silicified slip surfaces, forming large pod-like structures, systematically oriented with long axes parallel to slip. Matrix-supported breccias have multiply brecciated, angular and rounded clasts revealing episodic deformation and fluid flow. These breccias have a quartz-rich matrix with microcrystalline anhedral, equant, and pervasively conformable mosaic texture. The breccia pods are interpreted to have formed by decompression boiling and rapid precipitation of hydrothermal fluids whose flow was induced by coseismic, hybrid dilatant-shear deformation and hydraulic connection to a geothermal reservoir. The addition of hydrothermal silica cement localized in the core at the map scale causes fault-zone widening, local sealing, and mechanical heterogeneities that impact the evolution of the fault zone throughout the seismic cycle. ?? 2010.

  4. Central Asia Active Fault Database

    NASA Astrophysics Data System (ADS)

    Mohadjer, Solmaz; Ehlers, Todd A.; Kakar, Najibullah

    2014-05-01

    The ongoing collision of the Indian subcontinent with Asia controls active tectonics and seismicity in Central Asia. This motion is accommodated by faults that have historically caused devastating earthquakes and continue to pose serious threats to the population at risk. Despite international and regional efforts to assess seismic hazards in Central Asia, little attention has been given to development of a comprehensive database for active faults in the region. To address this issue and to better understand the distribution and level of seismic hazard in Central Asia, we are developing a publically available database for active faults of Central Asia (including but not limited to Afghanistan, Tajikistan, Kyrgyzstan, northern Pakistan and western China) using ArcGIS. The database is designed to allow users to store, map and query important fault parameters such as fault location, displacement history, rate of movement, and other data relevant to seismic hazard studies including fault trench locations, geochronology constraints, and seismic studies. Data sources integrated into the database include previously published maps and scientific investigations as well as strain rate measurements and historic and recent seismicity. In addition, high resolution Quickbird, Spot, and Aster imagery are used for selected features to locate and measure offset of landforms associated with Quaternary faulting. These features are individually digitized and linked to attribute tables that provide a description for each feature. Preliminary observations include inconsistent and sometimes inaccurate information for faults documented in different studies. For example, the Darvaz-Karakul fault which roughly defines the western margin of the Pamir, has been mapped with differences in location of up to 12 kilometers. The sense of motion for this fault ranges from unknown to thrust and strike-slip in three different studies despite documented left-lateral displacements of Holocene and late

  5. Fault Management Design Strategies

    NASA Technical Reports Server (NTRS)

    Day, John C.; Johnson, Stephen B.

    2014-01-01

    Development of dependable systems relies on the ability of the system to determine and respond to off-nominal system behavior. Specification and development of these fault management capabilities must be done in a structured and principled manner to improve our understanding of these systems, and to make significant gains in dependability (safety, reliability and availability). Prior work has described a fundamental taxonomy and theory of System Health Management (SHM), and of its operational subset, Fault Management (FM). This conceptual foundation provides a basis to develop framework to design and implement FM design strategies that protect mission objectives and account for system design limitations. Selection of an SHM strategy has implications for the functions required to perform the strategy, and it places constraints on the set of possible design solutions. The framework developed in this paper provides a rigorous and principled approach to classifying SHM strategies, as well as methods for determination and implementation of SHM strategies. An illustrative example is used to describe the application of the framework and the resulting benefits to system and FM design and dependability.

  6. SFT: Scalable Fault Tolerance

    SciTech Connect

    Petrini, Fabrizio; Nieplocha, Jarek; Tipparaju, Vinod

    2006-04-15

    In this paper we will present a new technology that we are currently developing within the SFT: Scalable Fault Tolerance FastOS project which seeks to implement fault tolerance at the operating system level. Major design goals include dynamic reallocation of resources to allow continuing execution in the presence of hardware failures, very high scalability, high efficiency (low overhead), and transparency—requiring no changes to user applications. Our technology is based on a global coordination mechanism, that enforces transparent recovery lines in the system, and TICK, a lightweight, incremental checkpointing software architecture implemented as a Linux kernel module. TICK is completely user-transparent and does not require any changes to user code or system libraries; it is highly responsive: an interrupt, such as a timer interrupt, can trigger a checkpoint in as little as 2.5μs; and it supports incremental and full checkpoints with minimal overhead—less than 6% with full checkpointing to disk performed as frequently as once per minute.

  7. Colorado Regional Faults

    DOE Data Explorer

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Originator: Colorado Geological Survey (CGS) Publication Date: 2012 Title: Regional Faults Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains the regional faults of Colorado Spatial Domain: Extent: Top: 4543192.100000 m Left: 144385.020000 m Right: 754585.020000 m Bottom: 4094592.100000 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS ’984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  8. Dynamics of fault interaction - Parallel strike-slip faults

    NASA Astrophysics Data System (ADS)

    Harris, Ruth A.; Day, Steven M.

    1993-03-01

    We use a 2D finite difference computer program to study the effect of fault steps on dynamic ruptures. Our results indicate that a strike-slip earthquake is unlikely to jump a fault step wider than 5 km, in correlation with field observations of moderate to great-sized earthquakes. We also find that dynamically propagating ruptures can jump both compressional and dilational fault steps, although wider dilational fault steps can be jumped. Dilational steps tend to delay the rupture for a longer time than compressional steps do. This delay leads to a slower apparent rupture velocity in the vicinity of dilational steps. These 'dry' cases assumed hydrostatic or greater pore-pressures but did not include the effects of changing pore pressures. In an additional study, we simulated the dynamic effects of a fault rupture on 'undrained' pore fluids to test Sibson's (1985, 1986) suggestion that 'wet' dilational steps are a barrier to rupture propagation. Our numerical results validate Sibson's hypothesis.

  9. Fault deformation mechanisms and fault rocks in micritic limestones: Examples from Corinth rift normal faults

    NASA Astrophysics Data System (ADS)

    Bussolotto, M.; Benedicto, A.; Moen-Maurel, L.; Invernizzi, C.

    2015-08-01

    A multidisciplinary study investigates the influence of different parameters on fault rock architecture development along normal faults affecting non-porous carbonates of the Corinth rift southern margin. Here, some fault systems cut the same carbonate unit (Pindus), and the gradual and fast uplift since the initiation of the rift led to the exhumation of deep parts of the older faults. This exceptional context allows superficial active fault zones and old exhumed fault zones to be compared. Our approach includes field studies, micro-structural (optical microscope and cathodoluminescence), geochemical analyses (δ13C, δ18O, trace elements) and fluid inclusions microthermometry of calcite sin-kinematic cements. Our main results, in a depth-window ranging from 0 m to about 2500 m, are: i) all cements precipitated from meteoric fluids in a close or open circulation system depending on depth; ii) depth (in terms of P/T condition) determines the development of some structures and their sealing; iii) lithology (marly levels) influences the type of structures and its cohesive/non-cohesive nature; iv) early distributed rather than final total displacement along the main fault plane is the responsible for the fault zone architecture; v) petrophysical properties of each fault zone depend on the variable combination of these factors.

  10. The Growth of Simple Mountain Ranges: 2. Geomorphic Evolution at Fault Linkage Sites

    NASA Astrophysics Data System (ADS)

    Dawers, N. H.; Densmore, A. L.; Davis, A. M.; Gupta, S.

    2002-12-01

    Large normal faults grow partly through linkage of fault segments and partly by fault tip propagation. The process by which fault segments interact and link is critical to understanding how topography is created along fault-bounded ranges. Structural studies and numerical models have shown that fault linkage is accompanied by localised increased displacement rate, which in turn drives rapid base level fall at the evolving range front. The changes in both along-strike fault structure and base level are most pronounced at and adjacent to sites of fault linkage. These areas, known as relay zones, thus preserve clues to both the tectonic history and the geomorphic evolution of large fault-bounded mountain ranges. We discuss the temporal and spatial constraints on the evolution of footwall-range topography, by comparing a number of active fault linkage sites, using field and DEM observations of the spatial pattern of footwall denudation. In particular, we focus on sites in Pleasant Valley, Nevada (Pearce and Tobin fault segments) and in the northeastern Basin and Range (the Beaverhead fault, Idaho, and the Star Valley fault, Wyoming). The study areas represent different stages in the structural and geomorphic evolution of relay zones, and allow us to propose a developmental model of large fault evolution and landscape response. Early in the growth of fault segments into an overlapping geometry, catchments may form within the evolving relay. However, increasing displacement rate associated with fault interaction and linkage makes these catchments prone to capture by streams that have incised headward from the range front. This scenario leads to locally increased footwall denudation in the vicinity of the capture site. Longitudinal profiles of streams differ with respect to position along relays and whether or not any particular stream has been able to capture early-formed drainages. The restricted space between interacting en echelon fault segments helps preserve close

  11. A survey of an introduction to fault diagnosis algorithms

    NASA Technical Reports Server (NTRS)

    Mathur, F. P.

    1972-01-01

    This report surveys the field of diagnosis and introduces some of the key algorithms and heuristics currently in use. Fault diagnosis is an important and a rapidly growing discipline. This is important in the design of self-repairable computers because the present diagnosis resolution of its fault-tolerant computer is limited to a functional unit or processor. Better resolution is necessary before failed units can become partially reuseable. The approach that holds the greatest promise is that of resident microdiagnostics; however, that presupposes a microprogrammable architecture for the computer being self-diagnosed. The presentation is tutorial and contains examples. An extensive bibliography of some 220 entries is included.

  12. 20 CFR 404.507 - Fault.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Officer § 404.507 Fault. Fault as used in without fault (see § 404.506 and 42 CFR 405.355) applies only to..., educational, or linguistic limitations (including any lack of facility with the English language)...

  13. Chip level simulation of fault tolerant computers

    NASA Technical Reports Server (NTRS)

    Armstrong, J. R.

    1982-01-01

    Chip-level modeling techniques in the evaluation of fault tolerant systems were researched. A fault tolerant computer was modeled. An efficient approach to functional fault simulation was developed. Simulation software was also developed.

  14. Accelerometer having integral fault null

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1995-01-01

    An improved accelerometer is introduced. It comprises a transducer responsive to vibration in machinery which produces an electrical signal related to the magnitude and frequency of the vibration; and a decoding circuit responsive to the transducer signal which produces a first fault signal to produce a second fault signal in which ground shift effects are nullified.

  15. Experimental Fault Reactivation on Favourably and Unfavourably Oriented Faults

    NASA Astrophysics Data System (ADS)

    Mitchell, T. M.; Renner, J.; Sibson, R. H.

    2011-12-01

    In this study, we assess the loading of faults to failure under different stress regimes in a triaxial deformation apparatus, both in dry and saturated conditions. We explore experimentally the reshear of an existing fault in various orientations for particular values of (σ_1 - σ_3) and σ_3' for contrasting loading systems - load-strengthening (equivalent to a thrust fault) with σ1' increasing at constant σ_3', versus load-weakening (equivalent to a normal fault) with reducing σ_3' under constant σ_1'. Experiments are conducted on sawcut granite samples with fault angles at a variety of orientations relative to σ_1, ranging from an optimal orientation for reactivation to lockup angles where new faults are formed in preference to reactivating the existing sawcut orientation. Prefailure and postfailure behaviour is compared in terms of damage zone development via monitoring variations in ultrasonic velocity and acoustic emission behaviour. For example, damage surrounding unfavourably oriented faults is significantly higher than that seen around favourably orientated faults due to greater maximum stresses attained prior to unstable slip, which is reflected by the increased acoustic emission activity leading up to failure. In addition, we explore reshear conditions under an initial condition of (σ_1' = σ_3'), then inducing reshear on the existing fault first by increasing σ_1'(load-strengthening), then by decreasing σ_3' (load-weakening), again comparing relative damage zone development and acoustic emission levels. In saturated experiments, we explore the values of pore fluid pressure (P_f) needed for re-shear to occur in preference to the formation of a new fault. Typically a limiting factor in conventional triaxial experiments performed in compression is that P_f cannot exceed the confining pressure (σ_2 and σ_3). By employing a sample assembly that allows deformation while the loading piston is in extension, it enables us to achieve pore pressures in

  16. Differential Fault Analysis of Rabbit

    NASA Astrophysics Data System (ADS)

    Kircanski, Aleksandar; Youssef, Amr M.

    Rabbit is a high speed scalable stream cipher with 128-bit key and a 64-bit initialization vector. It has passed all three stages of the ECRYPT stream cipher project and is a member of eSTREAM software portfolio. In this paper, we present a practical fault analysis attack on Rabbit. The fault model in which we analyze the cipher is the one in which the attacker is assumed to be able to fault a random bit of the internal state of the cipher but cannot control the exact location of injected faults. Our attack requires around 128 - 256 faults, precomputed table of size 241.6 bytes and recovers the complete internal state of Rabbit in about 238 steps.

  17. The Lawanopo Fault, central Sulawesi, East Indonesia

    NASA Astrophysics Data System (ADS)

    Natawidjaja, Danny Hilman; Daryono, Mudrik R.

    2015-04-01

    The dominant tectonic-force factor in the Sulawesi Island is the westward Bangga-Sula microplate tectonic intrusion, driven by the 12 mm/year westward motion of the Pacific Plate relative to Eurasia. This tectonic intrusion are accommodated by a series of major left-lateral strike-slip fault zones including Sorong Fault, Sula-Sorong Fault, Matano Fault, Palukoro Fault, and Lawanopo Fault zones. The Lawanopo fault has been considered as an active left-lateral strike-slip fault. The natural exposures of the Lawanopo Fault are clear, marked by the breaks and liniemants of topography along the fault line, and also it serves as a tectonic boundary between the different rock assemblages. Inpections of IFSAR 5m-grid DEM and field checks show that the fault traces are visible by lineaments of topographical slope breaks, linear ridges and stream valleys, ridge neckings, and they are also associated with hydrothermal deposits and hot springs. These are characteristics of young fault, so their morphological expressions can be seen still. However, fault scarps and other morpho-tectonic features appear to have been diffused by erosions and young sediment depositions. No fresh fault scarps, stream deflections or offsets, or any influences of fault movements on recent landscapes are observed associated with fault traces. Hence, the faults do not show any evidence of recent activity. This is consistent with lack of seismicity on the fault.

  18. Faulted Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    27 June 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows some of the layered, sedimentary rock outcrops that occur in a crater located at 8oN, 7oW, in western Arabia Terra. Dark layers and dark sand have enhanced the contrast of this scene. In the upper half of the image, one can see numerous lines that off-set the layers. These lines are faults along which the rocks have broken and moved. The regularity of layer thickness and erosional expression are taken as evidence that the crater in which these rocks occur might once have been a lake. The image covers an area about 1.9 km (1.2 mi) wide. Sunlight illuminates the scene from the lower left.

  19. Fault Tolerant State Machines

    NASA Technical Reports Server (NTRS)

    Burke, Gary R.; Taft, Stephanie

    2004-01-01

    State machines are commonly used to control sequential logic in FPGAs and ASKS. An errant state machine can cause considerable damage to the device it is controlling. For example in space applications, the FPGA might be controlling Pyros, which when fired at the wrong time will cause a mission failure. Even a well designed state machine can be subject to random errors us a result of SEUs from the radiation environment in space. There are various ways to encode the states of a state machine, and the type of encoding makes a large difference in the susceptibility of the state machine to radiation. In this paper we compare 4 methods of state machine encoding and find which method gives the best fault tolerance, as well as determining the resources needed for each method.

  20. Arc fault detection system

    DOEpatents

    Jha, K.N.

    1999-05-18

    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard. 1 fig.

  1. Arc fault detection system

    DOEpatents

    Jha, Kamal N.

    1999-01-01

    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard.

  2. Improving Multiple Fault Diagnosability using Possible Conflicts

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew J.; Bregon, Anibal; Biswas, Gautam; Koutsoukos, Xenofon; Pulido, Belarmino

    2012-01-01

    Multiple fault diagnosis is a difficult problem for dynamic systems. Due to fault masking, compensation, and relative time of fault occurrence, multiple faults can manifest in many different ways as observable fault signature sequences. This decreases diagnosability of multiple faults, and therefore leads to a loss in effectiveness of the fault isolation step. We develop a qualitative, event-based, multiple fault isolation framework, and derive several notions of multiple fault diagnosability. We show that using Possible Conflicts, a model decomposition technique that decouples faults from residuals, we can significantly improve the diagnosability of multiple faults compared to an approach using a single global model. We demonstrate these concepts and provide results using a multi-tank system as a case study.

  3. Comparison of Cenozoic Faulting at the Savannah River Site to Fault Characteristics of the Atlantic Coast Fault Province: Implications for Fault Capability

    SciTech Connect

    Cumbest, R.J.

    2000-11-14

    This study compares the faulting observed on the Savannah River Site and vicinity with the faults of the Atlantic Coastal Fault Province and concludes that both sets of faults exhibit the same general characteristics and are closely associated. Based on the strength of this association it is concluded that the faults observed on the Savannah River Site and vicinity are in fact part of the Atlantic Coastal Fault Province. Inclusion in this group means that the historical precedent established by decades of previous studies on the seismic hazard potential for the Atlantic Coastal Fault Province is relevant to faulting at the Savannah River Site. That is, since these faults are genetically related the conclusion of ''not capable'' reached in past evaluations applies.In addition, this study establishes a set of criteria by which individual faults may be evaluated in order to assess their inclusion in the Atlantic Coast Fault Province and the related association of the ''not capable'' conclusion.

  4. Subaru FATS (fault tracking system)

    NASA Astrophysics Data System (ADS)

    Winegar, Tom W.; Noumaru, Junichi

    2000-07-01

    The Subaru Telescope requires a fault tracking system to record the problems and questions that staff experience during their work, and the solutions provided by technical experts to these problems and questions. The system records each fault and routes it to a pre-selected 'solution-provider' for each type of fault. The solution provider analyzes the fault and writes a solution that is routed back to the fault reporter and recorded in a 'knowledge-base' for future reference. The specifications of our fault tracking system were unique. (1) Dual language capacity -- Our staff speak both English and Japanese. Our contractors speak Japanese. (2) Heterogeneous computers -- Our computer workstations are a mixture of SPARCstations, Macintosh and Windows computers. (3) Integration with prime contractors -- Mitsubishi and Fujitsu are primary contractors in the construction of the telescope. In many cases, our 'experts' are our contractors. (4) Operator scheduling -- Our operators spend 50% of their work-month operating the telescope, the other 50% is spent working day shift at the base facility in Hilo, or day shift at the summit. We plan for 8 operators, with a frequent rotation. We need to keep all operators informed on the current status of all faults, no matter the operator's location.

  5. ANNs pinpoint underground distribution faults

    SciTech Connect

    Glinkowski, M.T.; Wang, N.C.

    1995-10-01

    Many offline fault location techniques in power distribution circuits involve patrolling along the lines or cables. In overhead distribution lines, most of the failures can be located quickly by visual inspection without the aid of special equipment. However, locating a fault in underground cable systems is more difficult. It involves additional equipment (e.g., thumpers, radars, etc.) to transform the invisibility of the cable into other forms of signals, such as acoustic sound and electromagnetic pulses. Trained operators must carry the equipment above the ground, follow the path of the signal, and draw lines on their maps in order to locate the fault. Sometimes, even smelling the burnt cable faults is a way of detecting the problem. These techniques are time consuming, not always reliable, and, as in the case of high-voltage dc thumpers, can cause additional damage to the healthy parts of the cable circuit. Online fault location in power networks that involve interconnected lines (cables) and multiterminal sources continues receiving great attention, with limited success in techniques that would provide simple and practical solutions. This article features a new online fault location technique that: uses the pattern recognition feature of artificial neural networks (ANNs); utilizes new capabilities of modern protective relaying hardware. The output of the neural network can be graphically displayed as a simple three-dimensional (3-D) chart that can provide an operator with an instantaneous indication of the location of the fault.

  6. The Dynamics of Fault Zones

    NASA Astrophysics Data System (ADS)

    Mooney, W. D.; Beroza, G.; Kind, R.

    2006-05-01

    Geophysical studies of the Earth's crust, including fault zones, have developed over the past 80 years. Among the first methods to be employed, seismic refraction and reflection profiles were recorded in the North American Gulf Coast to detect salt domes which were known to trap hydrocarbons. Seismic methods continue to be the most important geophysical technique in use today due to the methods' relatively high accuracy, high resolution, and great depth of penetration. However, in the past decade, a much expanded repertoire of seismic and non-seismic techniques have been brought to bear on studies of the Earth's crust and uppermost mantle. Important insights have also been obtained using seismic tomography, measurements of seismic anisotropy, fault zone guided waves, borehole surveys, and geo-electrical, magnetic, and gravity methods. In this presentation, we briefly review recent geophysical progress in the study of the structure and internal properties of faults zones, from their surface exposures to their lower limit. We focus on the structure of faults within continental crystalline and competent sedimentary rock rather than within the overlying, poorly consolidated sedimentary rocks. A significant body of literature exists for oceanic fracture zones, however, due to space limitations we restrict this review to faults within and at the margins of the continents. We also address some unanswered questions, including: 1) Does fault-zone complexity, as observed at the surface, extend to great depth, or do active faults become thin simple planes at depth? and 2) How is crustal deformation accommodated within the lithospheric mantle?

  7. Aerial photographic interpretation of lineaments and faults in late Cenozoic deposits in the eastern parts of the Saline Valley 1:100, 000 quadrangle, Nevada and California, and the Darwin Hills 1:100, 000 quadrangle, California

    SciTech Connect

    Reheis, M.C.

    1991-09-01

    Faults and fault-related lineaments in Quaternary and late Tertiary deposits in the southern part of the Walker Lane are potentially active and form patterns that are anomalous compared to those in most other areas of the Great Basin. Two maps at a scale of 1:100,000 summarize information about lineaments and faults in the area around and southwest of the Death Valley-Furnace Creek fault system based on extensive aerial-photo interpretation, limited field interpretation, limited field investigations, and published geologic maps. There are three major fault zones and two principal faults in the Saline Valley and Darwin Hills 1:100,000 quadrangles. (1) The Death Valley-Furnace Creek fault system and (2) the Hunter Mountain fault zone are northwest-trending right-lateral strike-slip fault zones. (3) The Panamint Valley fault zone and associated Towne Pass and Emigrant faults are north-trending normal faults. The intersection of the Hunter Mountain and Panamint Valley fault zones is marked by a large complex of faults and lineaments on the floor of Panamint Valley. Additional major faults include (4) the north-northwest-trending Ash Hill fault on the west side of Panamint Valley, and (5) the north-trending range-front Tin Mountain fault on the west side of the northern Cottonwood Mountains. The most active faults at present include those along the Death Valley-Furnace Creek fault system, the Tin Mountain fault, the northwest and southeast ends of the Hunter Mountain fault zone, the Ash Hill fault, and the fault bounding the west side of the Panamint Range south of Hall Canyon. Several large Quaternary landslides on the west sides of the Cottonwood Mountains and the Panamint Range apparently reflect slope instability due chiefly to rapid uplift of these ranges. 16 refs.

  8. Fault Injection Campaign for a Fault Tolerant Duplex Framework

    NASA Technical Reports Server (NTRS)

    Sacco, Gian Franco; Ferraro, Robert D.; von llmen, Paul; Rennels, Dave A.

    2007-01-01

    Fault tolerance is an efficient approach adopted to avoid or reduce the damage of a system failure. In this work we present the results of a fault injection campaign we conducted on the Duplex Framework (DF). The DF is a software developed by the UCLA group [1, 2] that uses a fault tolerant approach and allows to run two replicas of the same process on two different nodes of a commercial off-the-shelf (COTS) computer cluster. A third process running on a different node, constantly monitors the results computed by the two replicas, and eventually restarts the two replica processes if an inconsistency in their computation is detected. This approach is very cost efficient and can be adopted to control processes on spacecrafts where the fault rate produced by cosmic rays is not very high.

  9. Finding faults with the data

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Rudolph Giuliani and Hillary Rodham Clinton are crisscrossing upstate New York looking for votes in the U.S. Senate race. Also cutting back and forth across upstate New York are hundreds of faults of a kind characterized by very sporadic seismic activity according to Robert Jacobi, professor of geology at the University of Buffalo (UB), who conducted research with fellow UB geology professor John Fountain."We have proof that upstate New York is crisscrossed by faults," Jacobi said. "In the past, the Appalachian Plateau—which stretches from Albany to Buffalo—was considered a pretty boring place structurally without many faults or folds of any significance."

  10. Method of locating ground faults

    NASA Astrophysics Data System (ADS)

    Patterson, Richard L.; Rose, Allen H.; Cull, Ronald C.

    1994-11-01

    The present invention discloses a method of detecting and locating current imbalances such as ground faults in multiwire systems using the Faraday effect. As an example, for 2-wire or 3-wire (1 ground wire) electrical systems, light is transmitted along an optical path which is exposed to magnetic fields produced by currents flowing in the hot and neutral wires. The rotations produced by these two magnetic fields cancel each other, therefore light on the optical path does not read the effect of either. However, when a ground fault occurs, the optical path is exposed to a net Faraday effect rotation due to the current imbalance thereby exposing the ground fault.

  11. Method of locating ground faults

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L. (Inventor); Rose, Allen H. (Inventor); Cull, Ronald C. (Inventor)

    1994-01-01

    The present invention discloses a method of detecting and locating current imbalances such as ground faults in multiwire systems using the Faraday effect. As an example, for 2-wire or 3-wire (1 ground wire) electrical systems, light is transmitted along an optical path which is exposed to magnetic fields produced by currents flowing in the hot and neutral wires. The rotations produced by these two magnetic fields cancel each other, therefore light on the optical path does not read the effect of either. However, when a ground fault occurs, the optical path is exposed to a net Faraday effect rotation due to the current imbalance thereby exposing the ground fault.

  12. Granular packings and fault zones

    PubMed

    Astrom; Herrmann; Timonen

    2000-01-24

    The failure of a two-dimensional packing of elastic grains is analyzed using a numerical model. The packing fails through formation of shear bands or faults. During failure there is a separation of the system into two grain-packing states. In a shear band, local "rotating bearings" are spontaneously formed. The bearing state is favored in a shear band because it has a low stiffness against shearing. The "seismic activity" distribution in the packing has the same characteristics as that of the earthquake distribution in tectonic faults. The directions of the principal stresses in a bearing are reminiscent of those found at the San Andreas Fault. PMID:11017335

  13. Geometry and Kinematics of Wrinkle Ridges on Lunae and Solis Plana, Mars: Implications for Fault/Fold Growth History

    NASA Technical Reports Server (NTRS)

    Tate, A.; Mueller, K. J.; Golombek, M. P.

    2002-01-01

    The three dimensional geometry of wrinkle ridges on Lunae and Solis Plana suggest they form by rapid lateral propagation and linkage of fault-propagation fold segments above reactivated blind thrust faults. Additional information is contained in the original extended abstract.

  14. Fault-free performance validation of fault-tolerant multiprocessors

    NASA Technical Reports Server (NTRS)

    Czeck, Edward W.; Feather, Frank E.; Grizzaffi, Ann Marie; Segall, Zary Z.; Siewiorek, Daniel P.

    1987-01-01

    A validation methodology for testing the performance of fault-tolerant computer systems was developed and applied to the Fault-Tolerant Multiprocessor (FTMP) at NASA-Langley's AIRLAB facility. This methodology was claimed to be general enough to apply to any ultrareliable computer system. The goal of this research was to extend the validation methodology and to demonstrate the robustness of the validation methodology by its more extensive application to NASA's Fault-Tolerant Multiprocessor System (FTMP) and to the Software Implemented Fault-Tolerance (SIFT) Computer System. Furthermore, the performance of these two multiprocessors was compared by conducting similar experiments. An analysis of the results shows high level language instruction execution times for both SIFT and FTMP were consistent and predictable, with SIFT having greater throughput. At the operating system level, FTMP consumes 60% of the throughput for its real-time dispatcher and 5% on fault-handling tasks. In contrast, SIFT consumes 16% of its throughput for the dispatcher, but consumes 66% in fault-handling software overhead.

  15. Normal faults geometry and morphometry on Mars

    NASA Astrophysics Data System (ADS)

    Vaz, D. A.; Spagnuolo, M. G.; Silvestro, S.

    2014-04-01

    In this report, we show how normal faults scarps geometry and degradation history can be accessed using high resolution imagery and topography. We show how the initial geometry of the faults can be inferred from faulted craters and we demonstrate how a comparative morphometric analysis of faults scarps can be used to study erosion rates through time on Mars.

  16. 20 CFR 410.561b - Fault.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Fault. 410.561b Section 410.561b Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, TITLE IV-BLACK LUNG BENEFITS (1969- ) Payment of Benefits § 410.561b Fault. Fault as used in without fault (see §...

  17. 22 CFR 17.3 - Fault.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Fault. 17.3 Section 17.3 Foreign Relations...) § 17.3 Fault. A recipient of an overpayment is without fault if he or she performed no act of... agency may have been at fault in initiating an overpayment will not necessarily relieve the...

  18. 22 CFR 17.3 - Fault.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Fault. 17.3 Section 17.3 Foreign Relations...) § 17.3 Fault. A recipient of an overpayment is without fault if he or she performed no act of... agency may have been at fault in initiating an overpayment will not necessarily relieve the...

  19. 22 CFR 17.3 - Fault.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Fault. 17.3 Section 17.3 Foreign Relations...) § 17.3 Fault. A recipient of an overpayment is without fault if he or she performed no act of... agency may have been at fault in initiating an overpayment will not necessarily relieve the...

  20. 22 CFR 17.3 - Fault.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Fault. 17.3 Section 17.3 Foreign Relations...) § 17.3 Fault. A recipient of an overpayment is without fault if he or she performed no act of... agency may have been at fault in initiating an overpayment will not necessarily relieve the...

  1. 22 CFR 17.3 - Fault.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Fault. 17.3 Section 17.3 Foreign Relations...) § 17.3 Fault. A recipient of an overpayment is without fault if he or she performed no act of... agency may have been at fault in initiating an overpayment will not necessarily relieve the...

  2. 20 CFR 410.561b - Fault.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Fault. 410.561b Section 410.561b Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, TITLE IV-BLACK LUNG BENEFITS (1969- ) Payment of Benefits § 410.561b Fault. Fault as used in without fault (see §...

  3. Velocity Structure of the Alpine Fault Zone, New Zealand: Laboratory and Log-Based Fault Rock Acoustic Properties at Elevated Pressures

    NASA Astrophysics Data System (ADS)

    Jeppson, T.; Graham, J. L., II; Tobin, H. J.; Paris Cavailhes, J.; Celerier, B. P.; Doan, M. L.; Nitsch, O.; Massiot, C.

    2015-12-01

    The elastic properties of fault zone rocks at seismogenic depth play a key role in rupture nucleation, propagation, and damage associated with fault slip. In order to understand the seismic hazard posed by a fault we need to both measure these properties and understand how they govern that particular fault's behavior. The Alpine Fault is the principal component of the active transpressional plate boundary through the South Island of New Zealand. Rapid exhumation along the fault provides an opportunity to study near-surface rocks that have experienced similar histories to those currently deforming at mid-crustal depths. In this study, we examine the acoustic properties of the Alpine Fault in Deep Fault Drilling Project (DFDP)-1 drill core samples and borehole logs from the shallow fault zone, DFDP-2 borehole logs from the hanging wall, and outcrop samples from a number of field localities along the central Alpine Fault. P- and S-wave velocities were measured at ultrasonic frequencies on saturated 2.5 cm-diameter core plugs taken from DFDP-1 core and outcrops. Sampling focused on mylonites, cataclasites, and fault gouge from both the hanging and foot walls of the fault in order to provide a 1-D seismic velocity transect across the entire fault zone. Velocities were measured over a range of effective pressures between 1 and 68 MPa to determine the variation in acoustic properties with depth and pore pressure. When possible, samples were cut in three orthogonal directions and S-waves were measured in two polarization directions on all samples to constrain velocity anisotropy. XRD and petrographic characterization were used to examine how fault-related alteration and deformation change the composition and texture of the rock, and to elucidate how these changes affect the measured velocities. The ultrasonic velocities were compared to sonic logs from DFDP to examine the potential effects of frequency dispersion, brittle deformation, and temperature on the measured

  4. A fault-tolerant clock

    NASA Technical Reports Server (NTRS)

    Daley, W. P.; Mckenna, J. F., Jr.

    1973-01-01

    Computers must operate correctly even though one or more of components have failed. Electronic clock has been designed to be insensitive to occurrence of faults; it is substantial advance over any known clock.

  5. Spontaneous rupture on irregular faults

    NASA Astrophysics Data System (ADS)

    Liu, C.

    2014-12-01

    It is now know (e.g. Robinson et al., 2006) that when ruptures propagate around bends, the rupture velocity decrease. In the extreme case, a large bend in the fault can stop the rupture. We develop a 2-D finite difference method to simulate spontaneous dynamic rupture on irregular faults. This method is based on a second order leap-frog finite difference scheme on a uniform mesh of triangles. A relaxation method is used to generate an irregular fault geometry-conforming mesh from the uniform mesh. Through this numerical coordinate mapping, the elastic wave equations are transformed and solved in a curvilinear coordinate system. Extensive numerical experiments using the linear slip-weakening law will be shown to demonstrate the effect of fault geometry on rupture properties. A long term goal is to simulate the strong ground motion near the vicinity of bends, jogs, etc.

  6. The fault-tree compiler

    NASA Technical Reports Server (NTRS)

    Martensen, Anna L.; Butler, Ricky W.

    1987-01-01

    The Fault Tree Compiler Program is a new reliability tool used to predict the top event probability for a fault tree. Five different gate types are allowed in the fault tree: AND, OR, EXCLUSIVE OR, INVERT, and M OF N gates. The high level input language is easy to understand and use when describing the system tree. In addition, the use of the hierarchical fault tree capability can simplify the tree description and decrease program execution time. The current solution technique provides an answer precise (within the limits of double precision floating point arithmetic) to the five digits in the answer. The user may vary one failure rate or failure probability over a range of values and plot the results for sensitivity analyses. The solution technique is implemented in FORTRAN; the remaining program code is implemented in Pascal. The program is written to run on a Digital Corporation VAX with the VMS operation system.

  7. Cell boundary fault detection system

    DOEpatents

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2009-05-05

    A method determines a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.

  8. Fault Creep and Kinematics of the Chihshang Fault in Eastern Taiwan Derived from the PSInSAR and Geodetic Techniques

    NASA Astrophysics Data System (ADS)

    Lai, Y. P.; Ching, K. E.; Chen, K. H.; Lee, J. C.; Chang, C. P.; Yen, J. Y.

    2014-12-01

    The Chihshang fault, one segment of the plate suture between the Eurasian and the Philippine Sea plates in eastern Taiwan, is a rapid creeping reverse fault, which has been considered to show interseismic creep near the surface while contemporaneously being capable of producing large earthquakes at depth. In order to understand its seismic hazard, we integrate the near-fault total station measurements and the data from 10 campaign GPS stations for analyzing the nature of creep with 25 continuous GPS observations and the data from PsInSAR method for recognizing the kinematics of deep seismogenic zone. The GPS coordinate daily solution is calculated using the software Bernese v.5.0 under the ITRF2008. Horizontal velocity field is relative to the station S01R located in Penghu island. The average velocity of six campaign-mode GPS stations is about 47.9 mm/yr with the azimuth of 296° at southern segment of the Chihshang fault. The average velocity of the other four campaign-mode GPS stations is about 67.5 mm/yr with the azimuth of 307° at the central segment of the fault. Continuous GPS stations show a great horizontal velocity decreases from hanging wall (eastern side) to footwall (western side). Velocities for stations on the eastern side of the Chihshang fault are 62.5-84.4 mm/yr in directions 291°-314°, whereas those on the western side of the Chihshang fault hanging wall are 24.8-45.3 mm/yr in directions 294°-304°. A major discontinuity about 30 mm/yr on the rate of crustal motion across the Chihshang fault is believed to be the aseismic slip along the fault. Next step, the PSInSAR methods and total station data will be used and integrated with other geodetic data to monitor a wide range of surface activities in the Eastern Taiwan. Finally we hope to reveal the spatiotemporal nature of the creep on the Chihshang fault for helping us associating the creep with potential lithological controls, and providing a new perspective to better understand the underlying

  9. Fluid transport by solitary waves along growing faults. A field example from the South Eugene Island Basin, Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Revil, A.; Cathles, L. M.

    2002-09-01

    The Red Fault system is one of the main growth faults found in the South Eugene Island Basin, a salt withdrawal minibasin located offshore Louisiana, in the Gulf of Mexico. This fault system corresponds to a lateral boundary between fluid overpressured compartments. In addition, there is a set of observations indicating that the Red Fault system exhibits rapid episodic migration of fluids. This fault represents an example of preferential pathway for the upward episodic migration of overpressured hydrocarbons from deep, heavily pressured, compartments on time scales of years. The migrations of fluids into active growing faults could take the form of propagating surges (solitary waves) that propagate upward along the fault planes in a wave-like manner at km/yr. Solitary waves represent a very efficient mechanism for the upward transport of fluids along growth faults in sedimentary basins generating its own permeability. In addition, this mechanism is compatible with the fact that the fault plane is observed to sustain a static pore fluid pressure difference between its two sides. The propagation of solitary waves in active growth faults appears as a fundamental mechanism to understand the nature of upward fast migration of fluids along active growth faults in compartimentalized sedimentary basins.

  10. Weakening inside incipient thrust fault

    NASA Astrophysics Data System (ADS)

    Lacroix, B.; Tesei, T.; Collettini, C.; Oliot, E.

    2013-12-01

    In fold-and-thrust belts, shortening is mainly accommodated by thrust faults that nucleate along décollement levels. Geological and geophysical evidence suggests that these faults might be weak because of a combination of processes such as pressure-solution, phyllosilicates reorientation and delamination, and fluid pressurization. In this study we aim to decipher the processes and the kinetics responsible for weakening of tectonic décollements. We studied the Millaris thrust (Southern Pyrenees): a fault representative of a décollement in its incipient stage. This fault accommodated a total shortening of about 30 meters and is constituted by a 10m thick, intensively foliated phyllonite developed inside a homogeneous marly unit. Detailed chemical and mineralogical analyses have been carried out to characterize the mineralogical change, the chemical transfers and volume change in the fault zone compared to non-deformed parent sediments. We also carried out microstructural analysis on natural and experimentally deformed rocks. Illite and chlorite are the main hydrous minerals. Inside fault zone, illite minerals are oriented along the schistosity whereas chlorite coats the shear surfaces. Mass balance calculations demonstrated a volume loss of up to 50% for calcite inside fault zone (and therefore a relative increase of phyllosilicates contents) because of calcite pressure solution mechanisms. We performed friction experiments in a biaxial deformation apparatus using intact rocks sheared in the in-situ geometry from the Millaris fault and its host sediments. We imposed a range of normal stresses (10 to 50 MPa), sliding velocity steps (3-100 μm/s) and slide-hold slide sequences (3 to 1000 s hold) under saturated conditions. Mechanical results demonstrate that both fault rocks and parent sediments are weaker than average geological materials (friction μ<<0.6) and have velocity-strengthening behavior because of the presence of phyllosilicate horizons. Fault rocks are

  11. Seismic fault zone trapped noise

    NASA Astrophysics Data System (ADS)

    Hillers, G.; Campillo, M.; Ben-Zion, Y.; Roux, P.

    2014-07-01

    Systematic velocity contrasts across and within fault zones can lead to head and trapped waves that provide direct information on structural units that are important for many aspects of earthquake and fault mechanics. Here we construct trapped waves from the scattered seismic wavefield recorded by a fault zone array. The frequency-dependent interaction between the ambient wavefield and the fault zone environment is studied using properties of the noise correlation field. A critical frequency fc ≈ 0.5 Hz defines a threshold above which the in-fault scattered wavefield has increased isotropy and coherency compared to the ambient noise. The increased randomization of in-fault propagation directions produces a wavefield that is trapped in a waveguide/cavity-like structure associated with the low-velocity damage zone. Dense spatial sampling allows the resolution of a near-field focal spot, which emerges from the superposition of a collapsing, time reversed wavefront. The shape of the focal spot depends on local medium properties, and a focal spot-based fault normal distribution of wave speeds indicates a ˜50% velocity reduction consistent with estimates from a far-field travel time inversion. The arrival time pattern of a synthetic correlation field can be tuned to match properties of an observed pattern, providing a noise-based imaging tool that can complement analyses of trapped ballistic waves. The results can have wide applicability for investigating the internal properties of fault damage zones, because mechanisms controlling the emergence of trapped noise have less limitations compared to trapped ballistic waves.

  12. Fault Tree Analysis: A Bibliography

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Fault tree analysis is a top-down approach to the identification of process hazards. It is as one of the best methods for systematically identifying an graphically displaying the many ways some things can go wrong. This bibliography references 266 documents in the NASA STI Database that contain the major concepts. fault tree analysis, risk an probability theory, in the basic index or major subject terms. An abstract is included with most citations, followed by the applicable subject terms.

  13. Hardware Fault Simulator for Microprocessors

    NASA Technical Reports Server (NTRS)

    Hess, L. M.; Timoc, C. C.

    1983-01-01

    Breadboarded circuit is faster and more thorough than software simulator. Elementary fault simulator for AND gate uses three gates and shaft register to simulate stuck-at-one or stuck-at-zero conditions at inputs and output. Experimental results showed hardware fault simulator for microprocessor gave faster results than software simulator, by two orders of magnitude, with one test being applied every 4 microseconds.

  14. Fault-tolerant rotary actuator

    DOEpatents

    Tesar, Delbert

    2006-10-17

    A fault-tolerant actuator module, in a single containment shell, containing two actuator subsystems that are either asymmetrically or symmetrically laid out is provided. Fault tolerance in the actuators of the present invention is achieved by the employment of dual sets of equal resources. Dual resources are integrated into single modules, with each having the external appearance and functionality of a single set of resources.

  15. Hayward Fault rate constraints at Berkeley: Evaluation of the 335-meter Strawberry Creek offset

    NASA Astrophysics Data System (ADS)

    Williams, P. L.

    2007-12-01

    At UC Berkeley the active channel of Strawberry Creek is offset 335 meters by the Hayward fault and two abandoned channels of Strawberry Creek are laterally offset 580 and 730 meters. These relationships record the displacement of the northern Hayward fault at Berkeley over a period of tens of millennia. The Strawberry Creek site has a similar geometry to the central San Andreas fault's Wallace Creek site, which arguably provides the best geological evidence of "millennial" fault kinematics in California (Sieh and Jahns, 1984). Slip rate determinations are an essential component of overall hazard evaluation for the Hayward fault, and this site is ripe to disclose a long-term form of this parameter, to contrast with geodetic and other geological rate evidence. Large offsets at the site may lower uncertainty in the rate equation relative to younger sites, as the affect of stream abandonment age, generally the greatest source of rate uncertainty, is greatly reduced. This is helpful here because it more-than-offsets uncertainties resulting from piercing projections to the fault. Strawberry Creek and its ancestral channels suggest west-side-up vertical deformation across the Hayward fault at this location. The development of the vertical deformation parameter will complement ongoing geodetic measurements, particularly InSAR, and motivate testing of other geological constraints. Up-to-the-west motion across the Hayward fault at Berkeley has important implications for the partitioning of strain and kinematics of the northern Hayward fault, and may explain anomalous up-on-the-west landforms elsewhere along the fault. For example, geological features of the western Berkeley Hills are consistent with rapid and recent uplift to the west of the fault. On the basis of a preliminary analysis of the offset channels of Strawberry Creek, up-to-the-west uplift is about 0.5mm/yr across the Hayward fault at Berkeley. If this is in fact the long-term rate, the 150 m height of the Hills

  16. ARGES: an Expert System for Fault Diagnosis Within Space-Based ECLS Systems

    NASA Technical Reports Server (NTRS)

    Pachura, David W.; Suleiman, Salem A.; Mendler, Andrew P.

    1988-01-01

    ARGES (Atmospheric Revitalization Group Expert System) is a demonstration prototype expert system for fault management for the Solid Amine, Water Desorbed (SAWD) CO2 removal assembly, associated with the Environmental Control and Life Support (ECLS) System. ARGES monitors and reduces data in real time from either the SAWD controller or a simulation of the SAWD assembly. It can detect gradual degradations or predict failures. This allows graceful shutdown and scheduled maintenance, which reduces crew maintenance overhead. Status and fault information is presented in a user interface that simulates what would be seen by a crewperson. The user interface employs animated color graphics and an object oriented approach to provide detailed status information, fault identification, and explanation of reasoning in a rapidly assimulated manner. In addition, ARGES recommends possible courses of action for predicted and actual faults. ARGES is seen as a forerunner of AI-based fault management systems for manned space systems.

  17. Software Fault Tolerance: A Tutorial

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo

    2000-01-01

    Because of our present inability to produce error-free software, software fault tolerance is and will continue to be an important consideration in software systems. The root cause of software design errors is the complexity of the systems. Compounding the problems in building correct software is the difficulty in assessing the correctness of software for highly complex systems. After a brief overview of the software development processes, we note how hard-to-detect design faults are likely to be introduced during development and how software faults tend to be state-dependent and activated by particular input sequences. Although component reliability is an important quality measure for system level analysis, software reliability is hard to characterize and the use of post-verification reliability estimates remains a controversial issue. For some applications software safety is more important than reliability, and fault tolerance techniques used in those applications are aimed at preventing catastrophes. Single version software fault tolerance techniques discussed include system structuring and closure, atomic actions, inline fault detection, exception handling, and others. Multiversion techniques are based on the assumption that software built differently should fail differently and thus, if one of the redundant versions fails, it is expected that at least one of the other versions will provide an acceptable output. Recovery blocks, N-version programming, and other multiversion techniques are reviewed.

  18. Passive fault current limiting device

    DOEpatents

    Evans, D.J.; Cha, Y.S.

    1999-04-06

    A passive current limiting device and isolator is particularly adapted for use at high power levels for limiting excessive currents in a circuit in a fault condition such as an electrical short. The current limiting device comprises a magnetic core wound with two magnetically opposed, parallel connected coils of copper, a high temperature superconductor or other electrically conducting material, and a fault element connected in series with one of the coils. Under normal operating conditions, the magnetic flux density produced by the two coils cancel each other. Under a fault condition, the fault element is triggered to cause an imbalance in the magnetic flux density between the two coils which results in an increase in the impedance in the coils. While the fault element may be a separate current limiter, switch, fuse, bimetal strip or the like, it preferably is a superconductor current limiter conducting one-half of the current load compared to the same limiter wired to carry the total current of the circuit. The major voltage during a fault condition is in the coils wound on the common core in a preferred embodiment. 6 figs.

  19. Passive fault current limiting device

    DOEpatents

    Evans, Daniel J.; Cha, Yung S.

    1999-01-01

    A passive current limiting device and isolator is particularly adapted for use at high power levels for limiting excessive currents in a circuit in a fault condition such as an electrical short. The current limiting device comprises a magnetic core wound with two magnetically opposed, parallel connected coils of copper, a high temperature superconductor or other electrically conducting material, and a fault element connected in series with one of the coils. Under normal operating conditions, the magnetic flux density produced by the two coils cancel each other. Under a fault condition, the fault element is triggered to cause an imbalance in the magnetic flux density between the two coils which results in an increase in the impedance in the coils. While the fault element may be a separate current limiter, switch, fuse, bimetal strip or the like, it preferably is a superconductor current limiter conducting one-half of the current load compared to the same limiter wired to carry the total current of the circuit. The major voltage during a fault condition is in the coils wound on the common core in a preferred embodiment.

  20. Aeromagnetic anomalies over faulted strata

    USGS Publications Warehouse

    Grauch, V.J.S.; Hudson, Mark R.

    2011-01-01

    High-resolution aeromagnetic surveys are now an industry standard and they commonly detect anomalies that are attributed to faults within sedimentary basins. However, detailed studies identifying geologic sources of magnetic anomalies in sedimentary environments are rare in the literature. Opportunities to study these sources have come from well-exposed sedimentary basins of the Rio Grande rift in New Mexico and Colorado. High-resolution aeromagnetic data from these areas reveal numerous, curvilinear, low-amplitude (2–15 nT at 100-m terrain clearance) anomalies that consistently correspond to intrasedimentary normal faults (Figure 1). Detailed geophysical and rock-property studies provide evidence for the magnetic sources at several exposures of these faults in the central Rio Grande rift (summarized in Grauch and Hudson, 2007, and Hudson et al., 2008). A key result is that the aeromagnetic anomalies arise from the juxtaposition of magnetically differing strata at the faults as opposed to chemical processes acting at the fault zone. The studies also provide (1) guidelines for understanding and estimating the geophysical parameters controlling aeromagnetic anomalies at faulted strata (Grauch and Hudson), and (2) observations on key geologic factors that are favorable for developing similar sedimentary sources of aeromagnetic anomalies elsewhere (Hudson et al.).

  1. Normal fault earthquakes or graviquakes

    PubMed Central

    Doglioni, C.; Carminati, E.; Petricca, P.; Riguzzi, F.

    2015-01-01

    Earthquakes are dissipation of energy throughout elastic waves. Canonically is the elastic energy accumulated during the interseismic period. However, in crustal extensional settings, gravity is the main energy source for hangingwall fault collapsing. Gravitational potential is about 100 times larger than the observed magnitude, far more than enough to explain the earthquake. Therefore, normal faults have a different mechanism of energy accumulation and dissipation (graviquakes) with respect to other tectonic settings (strike-slip and contractional), where elastic energy allows motion even against gravity. The bigger the involved volume, the larger is their magnitude. The steeper the normal fault, the larger is the vertical displacement and the larger is the seismic energy released. Normal faults activate preferentially at about 60° but they can be shallower in low friction rocks. In low static friction rocks, the fault may partly creep dissipating gravitational energy without releasing great amount of seismic energy. The maximum volume involved by graviquakes is smaller than the other tectonic settings, being the activated fault at most about three times the hypocentre depth, explaining their higher b-value and the lower magnitude of the largest recorded events. Having different phenomenology, graviquakes show peculiar precursors. PMID:26169163

  2. Normal fault earthquakes or graviquakes.

    PubMed

    Doglioni, C; Carminati, E; Petricca, P; Riguzzi, F

    2015-01-01

    Earthquakes are dissipation of energy throughout elastic waves. Canonically is the elastic energy accumulated during the interseismic period. However, in crustal extensional settings, gravity is the main energy source for hangingwall fault collapsing. Gravitational potential is about 100 times larger than the observed magnitude, far more than enough to explain the earthquake. Therefore, normal faults have a different mechanism of energy accumulation and dissipation (graviquakes) with respect to other tectonic settings (strike-slip and contractional), where elastic energy allows motion even against gravity. The bigger the involved volume, the larger is their magnitude. The steeper the normal fault, the larger is the vertical displacement and the larger is the seismic energy released. Normal faults activate preferentially at about 60° but they can be shallower in low friction rocks. In low static friction rocks, the fault may partly creep dissipating gravitational energy without releasing great amount of seismic energy. The maximum volume involved by graviquakes is smaller than the other tectonic settings, being the activated fault at most about three times the hypocentre depth, explaining their higher b-value and the lower magnitude of the largest recorded events. Having different phenomenology, graviquakes show peculiar precursors. PMID:26169163

  3. Fault diagnosis of power systems

    SciTech Connect

    Sekine, Y. ); Akimoto, Y. ); Kunugi, M. )

    1992-05-01

    Fault diagnosis of power systems plays a crucial role in power system monitoring and control that ensures stable supply of electrical power to consumers. In the case of multiple faults or incorrect operation of protective devices, fault diagnosis requires judgment of complex conditions at various levels. For this reason, research into application of knowledge-based systems go an early start and reports of such systems have appeared in may papers. In this paper, these systems are classified by the method of inference utilized in the knowledge-based systems for fault diagnosis of power systems. The characteristics of each class and corresponding issues as well as the state-of-the-art techniques for improving their performance are presented. Additional topics covered are user interfaces, interfaces with energy management systems (EMS's), and expert system development tools for fault diagnosis. Results and evaluation of actual operation in the field are also discussed. Knowledge-based fault diagnosis of power systems will continue to disseminate.

  4. Rapid Prototyping

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Javelin, a Lone Peak Engineering Inc. Company has introduced the SteamRoller(TM) System as a commercial product. The system was designed by Javelin during a Phase II NASA funded small commercial product. The purpose of the invention was to allow automated-feed of flexible ceramic tapes to the Laminated Object Manufacturing rapid prototyping equipment. The ceramic material that Javelin was working with during the Phase II project is silicon nitride. This engineered ceramic material is of interest for space-based component.

  5. Fault weakening and onset of aseismic creep on mature strike-slip faults

    NASA Astrophysics Data System (ADS)

    Çakir, Z.; Ergintav, S.; Ozener, H.; Dogan, U.; Akoglu, A. M.; Meghraoui, M.; Reilinger, R.

    2012-04-01

    Persistent Scatterer InSAR time series analysis of the radar images of the Envisat satellite of the European Space Agency, GPS measurements and field observations reveal that central section of the Izmit fault is now creeping at a steady-state rate reaching to its full speed of up to ~2 cm/yr, that is, its geodetically determined pre-earthquake slip rate. GPS measurements and InSAR time series west of Lake Sapanca show that rapid postseismic afterslip started immediately after the earthquake following the coseismic movement of ~3 m. As expected, it decays logarithmically with time and appears to be in a steady-state stage over the last 5-6 years, implying that it will likely continue for decades and possibly until late in the earthquake cycle. In other words, postseismic afterslip turns into surface creep with time, which is what might also have happened along the Hayward segment of the San Andreas fault and Ismetpasa segment of the North Anatolian fault following the large earthquakes in 1857 and 1944, respectively. Therefore, the 1999 Izmit earthquake demonstrates for the first time how postseismic afterslip evolves in to stable surface creep. We attribute the triggering of surface creep to trapped pore-fluid overpressures induced by the supershear rupture propagation during the Izmit earthquake, and to the oceanic and metamorphic rocks outcropping in the earthquake region as they are largely made up of weak phyllosilicates. The aseismic slip explains the relative seismic quiescence along supershear rupture segments observed after the 1999 Izmit and possibly various other large earthquakes elsewhere in the world, suggesting that supershear fault segments might be potential sites for aseismic surface creep.

  6. Tutorial: Advanced fault tree applications using HARP

    NASA Technical Reports Server (NTRS)

    Dugan, Joanne Bechta; Bavuso, Salvatore J.; Boyd, Mark A.

    1993-01-01

    Reliability analysis of fault tolerant computer systems for critical applications is complicated by several factors. These modeling difficulties are discussed and dynamic fault tree modeling techniques for handling them are described and demonstrated. Several advanced fault tolerant computer systems are described, and fault tree models for their analysis are presented. HARP (Hybrid Automated Reliability Predictor) is a software package developed at Duke University and NASA Langley Research Center that is capable of solving the fault tree models presented.

  7. Nonlinear Network Dynamics on Earthquake Fault Systems

    SciTech Connect

    Rundle, Paul B.; Rundle, John B.; Tiampo, Kristy F.; Sa Martins, Jorge S.; McGinnis, Seth; Klein, W.

    2001-10-01

    Earthquake faults occur in interacting networks having emergent space-time modes of behavior not displayed by isolated faults. Using simulations of the major faults in southern California, we find that the physics depends on the elastic interactions among the faults defined by network topology, as well as on the nonlinear physics of stress dissipation arising from friction on the faults. Our results have broad applications to other leaky threshold systems such as integrate-and-fire neural networks.

  8. Fault Management Guiding Principles

    NASA Technical Reports Server (NTRS)

    Newhouse, Marilyn E.; Friberg, Kenneth H.; Fesq, Lorraine; Barley, Bryan

    2011-01-01

    Regardless of the mission type: deep space or low Earth orbit, robotic or human spaceflight, Fault Management (FM) is a critical aspect of NASA space missions. As the complexity of space missions grows, the complexity of supporting FM systems increase in turn. Data on recent NASA missions show that development of FM capabilities is a common driver for significant cost overruns late in the project development cycle. Efforts to understand the drivers behind these cost overruns, spearheaded by NASA's Science Mission Directorate (SMD), indicate that they are primarily caused by the growing complexity of FM systems and the lack of maturity of FM as an engineering discipline. NASA can and does develop FM systems that effectively protect mission functionality and assets. The cost growth results from a lack of FM planning and emphasis by project management, as well the maturity of FM as an engineering discipline, which lags behind the maturity of other engineering disciplines. As a step towards controlling the cost growth associated with FM development, SMD has commissioned a multi-institution team to develop a practitioner's handbook representing best practices for the end-to-end processes involved in engineering FM systems. While currently concentrating primarily on FM for science missions, the expectation is that this handbook will grow into a NASA-wide handbook, serving as a companion to the NASA Systems Engineering Handbook. This paper presents a snapshot of the principles that have been identified to guide FM development from cradle to grave. The principles range from considerations for integrating FM into the project and SE organizational structure, the relationship between FM designs and mission risk, and the use of the various tools of FM (e.g., redundancy) to meet the FM goal of protecting mission functionality and assets.

  9. Automatic Fault Extraction at Mid-Ocean Ridges: Effects of Bathymetry Resolution and Extraction Method

    NASA Astrophysics Data System (ADS)

    Schnur, S.; Escartin, J.; Purves, R. S.; Frueh-Green, G. L.; Soule, S. A.

    2011-12-01

    to the axis. The best overall results are achieved by the edge detection method, which maximizes fault line continuity and detects a large number of faults overall. The main disadvantage of this method is that it produces fault lines rather than polygons. These initial results are promising and suggest that with further work automatic fault extraction can be sufficiently optimized to be useful for rapid initial analysis of fault patterns.

  10. Fault Analysis in Solar Photovoltaic Arrays

    NASA Astrophysics Data System (ADS)

    Zhao, Ye

    Fault analysis in solar photovoltaic (PV) arrays is a fundamental task to increase reliability, efficiency and safety in PV systems. Conventional fault protection methods usually add fuses or circuit breakers in series with PV components. But these protection devices are only able to clear faults and isolate faulty circuits if they carry a large fault current. However, this research shows that faults in PV arrays may not be cleared by fuses under some fault scenarios, due to the current-limiting nature and non-linear output characteristics of PV arrays. First, this thesis introduces new simulation and analytic models that are suitable for fault analysis in PV arrays. Based on the simulation environment, this thesis studies a variety of typical faults in PV arrays, such as ground faults, line-line faults, and mismatch faults. The effect of a maximum power point tracker on fault current is discussed and shown to, at times, prevent the fault current protection devices to trip. A small-scale experimental PV benchmark system has been developed in Northeastern University to further validate the simulation conclusions. Additionally, this thesis examines two types of unique faults found in a PV array that have not been studied in the literature. One is a fault that occurs under low irradiance condition. The other is a fault evolution in a PV array during night-to-day transition. Our simulation and experimental results show that overcurrent protection devices are unable to clear the fault under "low irradiance" and "night-to-day transition". However, the overcurrent protection devices may work properly when the same PV fault occurs in daylight. As a result, a fault under "low irradiance" and "night-to-day transition" might be hidden in the PV array and become a potential hazard for system efficiency and reliability.

  11. Spatial and temporal variations in fault activity during early development of rift polarity within the offshore Corinth rift, central Greece

    NASA Astrophysics Data System (ADS)

    Nixon, C. W.; Moyle, A.; McNeill, L. C.; Bell, R. E.; Bull, J. M.; Henstock, T.

    2014-12-01

    The Corinth rift, Greece, is a young, highly active rift. A combined dense network of marine geophysical data and onshore exposure makes Corinth a natural laboratory for investigating early rift and fault formation. Rifts commonly develop a primary polarity during their formation resulting from a dominant fault set. However, how this occurs and develops is less clear. Here we characterise this process by establishing how a dominant fault set develops within the Corinth rift. Using a high spatio-temporal resolution chronostratigraphic and rift fault model, we investigate the variations in the distribution of displacement and faulting along and across the rift axis; focussing on the partitioning of deformation between N- and S-dipping faults, at a temporal resolution of ca. 100 kyr or less. Along-strike cumulative fault displacement profiles indicate overall equal distribution of strain between major S- and N-dipping faults over the last ca. 1.5 Myr. In detail, two peaks in cumulative displacement coincide with the early development of two discrete depocentres before ca. 600 ka. Since this time, displacement has become focussed on N-dipping faults with S-dipping faults becoming less active. Syn-rift isochore maps illuminate this change: a switch in rift polarity from a dominant N-thickening depocentre to a dominant S-thickening depocentre between ca. 530-420 kyr (a rapid change in rift structure and strain distribution). This change is accommodated by transfer of activity between major faults but also by formation of numerous non-basement cutting small faults. As major S-dipping faults decrease in slip rate from ca. 600 ka, they become segmented into smaller faults with variable slip rates. In contrast, N-dipping faults on the rift's southern margin, with increased activity post ~0.5-0.4 Ma, become kinematically and geometrically linked with almost equal slip rates along strike by ca. 130 kyr, controlling the single major depocentre of the present day. Our results

  12. Faulting processes at high fluid pressures: An example of fault valve behavior from the Wattle Gully Fault, Victoria, Australia

    NASA Astrophysics Data System (ADS)

    Cox, Stephen F.

    1995-07-01

    The internal structures of the Wattle Gully Fault provide insights about the mechanics and dynamics of fault systems exhibiting fault valve behavior in high fluid pressure regimes. This small, high-angle reverse fault zone developed at temperatures near 300°C in the upper crust, late during mid-Devonian regional crustal shortening in central Victoria, Australia. The Wattle Gully Fault forms part of a network of faults that focused upward migration of fluids generated by metamorphism and devolatilisation at deeper crustal levels. The fault has a length of around 800 m and a maximum displacement of 50 m and was oriented at 60° to 80° to the maximum principal stress during faulting. The structure was therefore severely misoriented for frictional reactivation. This factor, together with the widespread development of steeply dipping fault fill quartz veins and associated subhorizontal extension veins within the fault zone, indicates that faulting occurred at low shear stresses and in a near-lithostatic fluid pressure regime. The internal structures of these veins, and overprinting relationships between veins and faults, indicate that vein development was intimately associated with faulting and involved numerous episodes of fault dilatation and hydrothermal sealing and slip, together with repeated hydraulic extension fracturing adjacent to slip surfaces. The geometries, distribution and internal structures of veins in the Wattle Gully Fault Zone are related to variations in shear stress, fluid pressure, and near-field principal stress orientations during faulting. Vein opening is interpreted to have been controlled by repeated fluid pressure fluctuations associated with cyclic, deformation-induced changes in fault permeability during fault valve behavior. Rates of recovery of shear stress and fluid pressure after rupture events are interpreted to be important factors controlling time dependence of fault shear strength and slip recurrence. Fluctuations in shear stress

  13. Ground fault location on a transmission line using high frequency transient voltages

    NASA Astrophysics Data System (ADS)

    Almteiri, Haifaa Abdulla

    This thesis addresses two different problems in the location of ground faults on transmission lines. The first problem is related to the reflected waves which arise for near faults to the busses. The second problem is utilizing wavelet in some special studies that required the manual measurement for determining the time difference between two consecutives signals of initial waves. Novel method is presented by using traveling wave approach with no exploiting of reflected waves to overcome the aforementioned difficulties. A simple effective approach to accurately and rapidly obtain the ground fault location along a transmission line during fault transients is presented. The objective of the presented method is to eliminate the need to use the reflected in ground fault measurement especially for a case of one-end measurement where there is no synchronization required for initial signals at both sides. This is accomplished by developing a new automatic technique for the time measurement to determine the time difference between the initial waves of ground and aerial mode voltages. Proposed approach is implemented in different environments such as electromagnetic Transients Program ATP/EMTP and MATLAB. High voltage transmission system will be modeled and different ground faults will be generated at different locations in the entire length of the transmission line. Further, a study of different factors that may have a remarkable effect to the accuracy is obtained such as the fault resistance and fault type. Simulation results and further statistical analysis show high correlation between the actual and estimated fault locations for all the studied cases. An extended comparative study between former method of fault location and the proposed method is obtained for better understanding and pinpointing the difficulties concerning the accuracy and rapid fault computations. The proposed approach has added a main advantage of requiring high frequency transient fault signals only

  14. Evidence of predominatly reverse-slip on Billefjorden fault zone, northern Dickensonland, Spitsbergen

    SciTech Connect

    Lamar, D.L.; Reed, W.E.; Douglass, D.N.

    1985-01-01

    The Billefjorden fault zone is a 0.5 to 1.0 km wide zone of parallel and branching faults trending N4/sup 0/W. The Balliolbreen fault, the principal strand, has reverse separation and displaces Hecla Hoek metamorphic rocks on the east against Devonian Old Red Sandstone on the west. Large displacement is not required to explain the absence of Old Red Sandstone east of the fault because the Old Red Sandstone thins rapidly to the east. Prior to being overlain by Carboniferous rocks, the Balliolbreen fault dipped about 60/sup 0/ and other fault strands dip 39/sup 0/ to 68/sup 0/. Folds in Old red Sandstone are tight and overturned adjacent to the fault zone and become open and upright to the west. Fold axes and thrusts with separations not exceeding a few hundred meters have sinuous patterns and trends ranging from N40/sup 0/E to N45/sup 0/W; they do not intersect the fault zone with consistent trend characteristic of strike-slip faults. The gentle dip of individual fault strands and the pattern of folds and thrusts suggest east-west compression and predominatly reverse-slip. Eight samples of Old Red Sandstone have yielded a paleomagnetic pole of 32/sup 0/N, 160/sup 0/E, similar (within errors) to others determined for Spitsbergen. Comparison with paleopoles in upper Silurian and lower Devonian rocks in Norway indicates either no movement or right-slip of Spitsbergen with respect to Norway. These results do not support earlier suggestions of post-Old Red Sandstone left-slip of 200 to 1000 km on the Billefjorden fault zone.

  15. Software reliability through fault-avoidance and fault-tolerance

    NASA Technical Reports Server (NTRS)

    Vouk, Mladen A.; Mcallister, David F.

    1991-01-01

    Twenty independently developed but functionally equivalent software versions were used to investigate and compare empirically some properties of N-version programming, Recovery Block, and Consensus Recovery Block, using the majority and consensus voting algorithms. This was also compared with another hybrid fault-tolerant scheme called Acceptance Voting, using dynamic versions of consensus and majority voting. Consensus voting provides adaptation of the voting strategy to varying component reliability, failure correlation, and output space characteristics. Since failure correlation among versions effectively reduces the cardinality of the space in which the voter make decisions, consensus voting is usually preferable to simple majority voting in any fault-tolerant system. When versions have considerably different reliabilities, the version with the best reliability will perform better than any of the fault-tolerant techniques.

  16. Detection and diagnosis of bearing and cutting tool faults using hidden Markov models

    NASA Astrophysics Data System (ADS)

    Boutros, Tony; Liang, Ming

    2011-08-01

    Over the last few decades, the research for new fault detection and diagnosis techniques in machining processes and rotating machinery has attracted increasing interest worldwide. This development was mainly stimulated by the rapid advance in industrial technologies and the increase in complexity of machining and machinery systems. In this study, the discrete hidden Markov model (HMM) is applied to detect and diagnose mechanical faults. The technique is tested and validated successfully using two scenarios: tool wear/fracture and bearing faults. In the first case the model correctly detected the state of the tool (i.e., sharp, worn, or broken) whereas in the second application, the model classified the severity of the fault seeded in two different engine bearings. The success rate obtained in our tests for fault severity classification was above 95%. In addition to the fault severity, a location index was developed to determine the fault location. This index has been applied to determine the location (inner race, ball, or outer race) of a bearing fault with an average success rate of 96%. The training time required to develop the HMMs was less than 5 s in both the monitoring cases.

  17. Complexity of the deep San Andreas Fault zone defined by cascading tremor

    NASA Astrophysics Data System (ADS)

    Shelly, David R.

    2015-02-01

    Weak seismic vibrations--tectonic tremor--can be used to delineate some plate boundary faults. Tremor on the deep San Andreas Fault, located at the boundary between the Pacific and North American plates, is thought to be a passive indicator of slow fault slip. San Andreas Fault tremor migrates at up to 30 m s-1, but the processes regulating tremor migration are unclear. Here I use a 12-year catalogue of more than 850,000 low-frequency earthquakes to systematically analyse the high-speed migration of tremor along the San Andreas Fault. I find that tremor migrates most effectively through regions of greatest tremor production and does not propagate through regions with gaps in tremor production. I interpret the rapid tremor migration as a self-regulating cascade of seismic ruptures along the fault, which implies that tremor may be an active, rather than passive participant in the slip propagation. I also identify an isolated group of tremor sources that are offset eastwards beneath the San Andreas Fault, possibly indicative of the interface between the Monterey Microplate, a hypothesized remnant of the subducted Farallon Plate, and the North American Plate. These observations illustrate a possible link between the central San Andreas Fault and tremor-producing subduction zones.

  18. Fault zone connectivity: slip rates on faults in the san francisco bay area, california.

    PubMed

    Bilham, R; Bodin, P

    1992-10-01

    The slip rate of a fault segment is related to the length of the fault zone of which it is part. In turn, the slip rate of a fault zone is related to its connectivity with adjoining or contiguous fault zones. The observed variation in slip rate on fault segments in the San Francisco Bay area in California is consistent with connectivity between the Hayward, Calaveras, and San Andreas fault zones. Slip rates on the southern Hayward fault taper northward from a maximum of more than 10 millimeters per year and are sensitive to the active length of the Maacama fault. PMID:17835127

  19. Reconsidering Fault Slip Scaling

    NASA Astrophysics Data System (ADS)

    Gomberg, J. S.; Wech, A.; Creager, K. C.; Obara, K.; Agnew, D. C.

    2015-12-01

    The scaling of fault slip events given by the relationship between the scalar moment M0, and duration T, potentially provides key constraints on the underlying physics controlling slip. Many studies have suggested that measurements of M0 and T are related as M0=KfT3 for 'fast' slip events (earthquakes) and M0=KsT for 'slow' slip events, in which Kf and Ks are proportionality constants, although some studies have inferred intermediate relations. Here 'slow' and 'fast' refer to slip front propagation velocities, either so slow that seismic radiation is too small or long period to be measurable or fast enough that dynamic processes may be important for the slip process and measurable seismic waves radiate. Numerous models have been proposed to explain the differing M0-T scaling relations. We show that a single, simple dislocation model of slip events within a bounded slip zone may explain nearly all M0-T observations. Rather than different scaling for fast and slow populations, we suggest that within each population the scaling changes from M0 proportional to T3 to T when the slipping area reaches the slip zone boundaries and transitions from unbounded, 2-dimensional to bounded, 1-dimensional growth. This transition has not been apparent previously for slow events because data have sampled only the bounded regime and may be obscured for earthquakes when observations from multiple tectonic regions are combined. We have attempted to sample the expected transition between bounded and unbounded regimes for the slow slip population, measuring tremor cluster parameters from catalogs for Japan and Cascadia and using them as proxies for small slow slip event characteristics. For fast events we employed published earthquake slip models. Observations corroborate our hypothesis, but highlight observational difficulties. We find that M0-T observations for both slow and fast slip events, spanning 12 orders of magnitude in M0, are consistent with a single model based on dislocation

  20. Permeability of the San Andreas Fault Zone at Depth

    NASA Astrophysics Data System (ADS)

    Rathbun, A. P.; Song, I.; Saffer, D.

    2010-12-01

    to 90 MPa axial stress. In these tests, axial stress is increased via a constant rate of displacement, and the excess pore pressure build up at the base of the sample is measured. Stress, pore pressure and strain are monitored to calculate coefficient of consolidation and volumetric compressibility in addition to permeability. In triaxial experiments, permeability is measured from by flow through tests under constant head boundary conditions. Permeability of the CDZ rapidly decreases to ~10-19 m2 by 20 MPa axial stress in our CRS tests. Over axial stresses from 20-85 MPa, permeability decreases log-linearly with effective stress from 8x10-20 m2 to 1x10-20 m2. Flow-through tests in the triaxial system under isostatic conditions yield permeabilities of 2.2x10-19 m2 and 1x10-20 m2 at 5 and 10 MPa, respectively. Our results are consistent with published geochemical data from SAFOD mud gas samples and inferred pore pressures during drilling [Zoback et al., 2010], which together suggest that the fault is a barrier to regional fluid flow. Our results indicate that the permeability of the fault core is sufficiently low to result in effectively undrained behavior during slip, thus allowing dynamic processes including thermal pressurization and dilatancy hardening to affect slip behavior.

  1. Fault Diagnosis for the Heat Exchanger of the Aircraft Environmental Control System Based on the Strong Tracking Filter

    PubMed Central

    Ma, Jian; Lu, Chen; Liu, Hongmei

    2015-01-01

    The aircraft environmental control system (ECS) is a critical aircraft system, which provides the appropriate environmental conditions to ensure the safe transport of air passengers and equipment. The functionality and reliability of ECS have received increasing attention in recent years. The heat exchanger is a particularly significant component of the ECS, because its failure decreases the system’s efficiency, which can lead to catastrophic consequences. Fault diagnosis of the heat exchanger is necessary to prevent risks. However, two problems hinder the implementation of the heat exchanger fault diagnosis in practice. First, the actual measured parameter of the heat exchanger cannot effectively reflect the fault occurrence, whereas the heat exchanger faults are usually depicted by utilizing the corresponding fault-related state parameters that cannot be measured directly. Second, both the traditional Extended Kalman Filter (EKF) and the EKF-based Double Model Filter have certain disadvantages, such as sensitivity to modeling errors and difficulties in selection of initialization values. To solve the aforementioned problems, this paper presents a fault-related parameter adaptive estimation method based on strong tracking filter (STF) and Modified Bayes classification algorithm for fault detection and failure mode classification of the heat exchanger, respectively. Heat exchanger fault simulation is conducted to generate fault data, through which the proposed methods are validated. The results demonstrate that the proposed methods are capable of providing accurate, stable, and rapid fault diagnosis of the heat exchanger. PMID:25823010

  2. Fault diagnosis for the heat exchanger of the aircraft environmental control system based on the strong tracking filter.

    PubMed

    Ma, Jian; Lu, Chen; Liu, Hongmei

    2015-01-01

    The aircraft environmental control system (ECS) is a critical aircraft system, which provides the appropriate environmental conditions to ensure the safe transport of air passengers and equipment. The functionality and reliability of ECS have received increasing attention in recent years. The heat exchanger is a particularly significant component of the ECS, because its failure decreases the system's efficiency, which can lead to catastrophic consequences. Fault diagnosis of the heat exchanger is necessary to prevent risks. However, two problems hinder the implementation of the heat exchanger fault diagnosis in practice. First, the actual measured parameter of the heat exchanger cannot effectively reflect the fault occurrence, whereas the heat exchanger faults are usually depicted by utilizing the corresponding fault-related state parameters that cannot be measured directly. Second, both the traditional Extended Kalman Filter (EKF) and the EKF-based Double Model Filter have certain disadvantages, such as sensitivity to modeling errors and difficulties in selection of initialization values. To solve the aforementioned problems, this paper presents a fault-related parameter adaptive estimation method based on strong tracking filter (STF) and Modified Bayes classification algorithm for fault detection and failure mode classification of the heat exchanger, respectively. Heat exchanger fault simulation is conducted to generate fault data, through which the proposed methods are validated. The results demonstrate that the proposed methods are capable of providing accurate, stable, and rapid fault diagnosis of the heat exchanger. PMID:25823010

  3. Faulting in porous carbonate grainstones

    NASA Astrophysics Data System (ADS)

    Tondi, Emanuele; Agosta, Fabrizio

    2010-05-01

    In the recent past, a new faulting mechanism has been documented within porous carbonate grainstones. This mechanism is due to strain localization into narrow tabular bands characterized by both volumetric and shear strain; for this reason, these features are named compactive shear bands. In the field, compactive shear bands are easily recognizable because they are lightly coloured with respect to the parent rock, and/or show a positive relief because of their increased resistance to weathering. Both characteristics, light colours and positive relief, are a consequence of the compaction processes that characterize these bands, which are the simplest structure element that form within porous carbonate grainstones. With ongoing deformation, the single compactive shear bands, which solve only a few mm of displacement, may evolve into zone of compactive shear bands and, finally, into well-developed faults characterized by slip surfaces and fault rocks. Field analysis conducted in key areas of Italy allow us to documented different modalities of interaction and linkage among the compactive shear bands: (i) a simple divergence of two different compactive shear bands from an original one, (ii) extensional and contractional jogs formed by two continuous, interacting compactive shear bands, and (iii) eye structures formed by collinear interacting compactive shear bands, which have been already described for deformation bands in sandstones. The last two types of interaction may localize the formation of compaction bands, which are characterized by pronounced component of compaction and negligible components of shearing, and/or pressure solution seams. All the aforementioned types of interaction and linkage could happen at any deformation stage, single bands, zone of bands or well developed faults. The transition from one deformation process to another, which is likely to be controlled by the changes in the material properties, is recorded by different ratios and

  4. Intelligent fault-tolerant controllers

    NASA Technical Reports Server (NTRS)

    Huang, Chien Y.

    1987-01-01

    A system with fault tolerant controls is one that can detect, isolate, and estimate failures and perform necessary control reconfiguration based on this new information. Artificial intelligence (AI) is concerned with semantic processing, and it has evolved to include the topics of expert systems and machine learning. This research represents an attempt to apply AI to fault tolerant controls, hence, the name intelligent fault tolerant control (IFTC). A generic solution to the problem is sought, providing a system based on logic in addition to analytical tools, and offering machine learning capabilities. The advantages are that redundant system specific algorithms are no longer needed, that reasonableness is used to quickly choose the correct control strategy, and that the system can adapt to new situations by learning about its effects on system dynamics.

  5. Transient Faults in Computer Systems

    NASA Technical Reports Server (NTRS)

    Masson, Gerald M.

    1993-01-01

    A powerful technique particularly appropriate for the detection of errors caused by transient faults in computer systems was developed. The technique can be implemented in either software or hardware; the research conducted thus far primarily considered software implementations. The error detection technique developed has the distinct advantage of having provably complete coverage of all errors caused by transient faults that affect the output produced by the execution of a program. In other words, the technique does not have to be tuned to a particular error model to enhance error coverage. Also, the correctness of the technique can be formally verified. The technique uses time and software redundancy. The foundation for an effective, low-overhead, software-based certification trail approach to real-time error detection resulting from transient fault phenomena was developed.

  6. Approximate Entropy Based Fault Localization and Fault Type Recognition for Non-solidly Earthed Network

    NASA Astrophysics Data System (ADS)

    Pang, Qingle; Liu, Xinyun; Sun, Bo; Ling, Qunli

    2012-12-01

    For non-solidly earthed network, the fault localization of single phase grounding fault has been a problem. A novel fault localization and fault type recognition method of single phase grounding fault based on approximate entropy is presented. The approximate entropies of transient zero sequence current at both ends of healthy section are approximately equal, and the ratio is close to 1. On the contrary, the approximate entropies at both ends of fault section are different, and the ratio is far from 1. So, the fault section is located. At the same fault section, the smaller is the fault resistance, the larger is the approximate entropy of transient zero sequence current. According to the function between approximate entropy and fault resistance, the fault type is determined. The method has the advantages of transferring less data and unneeded synchronous sampling accurately. The simulation results show that the proposed method is feasible and accurate.

  7. InSAR measurements around active faults: creeping Philippine Fault and un-creeping Alpine Fault

    NASA Astrophysics Data System (ADS)

    Fukushima, Y.

    2013-12-01

    Recently, interferometric synthetic aperture radar (InSAR) time-series analyses have been frequently applied to measure the time-series of small and quasi-steady displacements in wide areas. Large efforts in the methodological developments have been made to pursue higher temporal and spatial resolutions by using frequently acquired SAR images and detecting more pixels that exhibit phase stability. While such a high resolution is indispensable for tracking displacements of man-made and other small-scale structures, it is not necessarily needed and can be unnecessarily computer-intensive for measuring the crustal deformation associated with active faults and volcanic activities. I apply a simple and efficient method to measure the deformation around the Alpine Fault in the South Island of New Zealand, and the Philippine Fault in the Leyte Island. I use a small-baseline subset (SBAS) analysis approach (Berardino, et al., 2002). Generally, the more we average the pixel values, the more coherent the signals are. Considering that, for the deformation around active faults, the spatial resolution can be as coarse as a few hundred meters, we can severely 'multi-look' the interferograms. The two applied cases in this study benefited from this approach; I could obtain the mean velocity maps on practically the entire area without discarding decorrelated areas. The signals could have been only partially obtained by standard persistent scatterer or single-look small-baseline approaches that are much more computer-intensive. In order to further increase the signal detection capability, it is sometimes effective to introduce a processing algorithm adapted to the signal of interest. In an InSAR time-series processing, one usually needs to set the reference point because interferograms are all relative measurements. It is difficult, however, to fix the reference point when one aims to measure long-wavelength deformation signals that span the whole analysis area. This problem can be

  8. Quantifying Morphologic Changes in a Low Gradient River Crossing Southeast Louisiana Fault Zones

    NASA Astrophysics Data System (ADS)

    Fischer, G.; Gasparini, N. M.; Dawers, N. H.

    2011-12-01

    impact on the river, it is likely that that fluvial migration rates are rapid enough to erase any signature of the accumulated throw from the faults. With continued analysis, our goal is to develop a reliable method for using alluvial rivers to help unravel the history of fault systems in low gradient landscapes, with possible applications for detecting regions vulnerable to fault-related subsidence.

  9. Update: San Andreas Fault experiment

    NASA Technical Reports Server (NTRS)

    Christodoulidis, D. C.; Smith, D. E.

    1984-01-01

    Satellite laser ranging techniques are used to monitor the broad motion of the tectonic plates comprising the San Andreas Fault System. The San Andreas Fault Experiment, (SAFE), has progressed through the upgrades made to laser system hardware and an improvement in the modeling capabilities of the spaceborne laser targets. Of special note is the launch of the Laser Geodynamic Satellite, LAGEOS spacecraft, NASA's only completely dedicated laser satellite in 1976. The results of plate motion projected into this 896 km measured line over the past eleven years are summarized and intercompared.

  10. Faulting at Mormon Point, Death Valley, California: A low-angle normal fault cut by high-angle faults

    NASA Astrophysics Data System (ADS)

    Keener, Charles; Serpa, Laura; Pavlis, Terry L.

    1993-04-01

    New geophysical and fault kinematic studies indicate that late Cenozoic basin development in the Mormon Point area of Death Valley, California, was accommodated by fault rotations. Three of six fault segments recognized at Mormon Point are now inactive and have been rotated to low dips during extension. The remaining three segments are now active and moderately to steeply dipping. From the geophysical data, one active segment appears to offset the low-angle faults in the subsurface of Death Valley.

  11. Maximum Magnitude in Relation to Mapped Fault Length and Fault Rupture

    NASA Astrophysics Data System (ADS)

    Black, N.; Jackson, D.; Rockwell, T.

    2004-12-01

    Earthquake hazard zones are highlighted using known fault locations and an estimate of the fault's maximum magnitude earthquake. Magnitude limits are commonly determined from fault geometry, which is dependent on fault length. Over the past 30 years it has become apparent that fault length is often poorly constrained and that a single event can rupture across several individual fault segments. In this study fault geometries are analyzed before and after several moderate to large magnitude earthquakes to determine how well fault length can accurately assess seismic hazard. Estimates of future earthquake magnitudes are often inferred from prior determinations of fault length, but use magnitude regressions based on rupture length. However, rupture length is not always limited to the previously estimated fault length or contained on a single fault. Therefore, the maximum magnitude for a fault may be underestimated, unless the geometry and segmentation of faulting is completely understood. This study examines whether rupture/fault length can be used to accurately predict the maximum magnitude for a given fault. We examine earthquakes greater than 6.0 that occurred after 1970 in Southern California. Geologic maps, fault evaluation reports, and aerial photos that existed prior to these earthquakes are used to obtain the pre-earthquake fault lengths. Pre-earthquake fault lengths are compared with rupture lengths to determine: 1) if fault lengths are the same before and after the ruptures and 2) to constrain the geology and geometry of ruptures that propagated beyond the originally recognized endpoints of a mapped fault. The ruptures examined in this study typically follow one of the following models. The ruptures are either: 1) contained within the dimensions of the original fault trace, 2) break through one or both end points of the originally mapped fault trace, or 3) break through multiple faults, connecting segments into one large fault line. No rupture simply broke a

  12. Matching pursuit of an adaptive impulse dictionary for bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Cui, Lingli; Wang, Jing; Lee, Seungchul

    2014-05-01

    The sparse decomposition based on matching pursuit is an adaptive sparse expression of the signals. An adaptive matching pursuit algorithm that uses an impulse dictionary is introduced in this article for rolling bearing vibration signal processing and fault diagnosis. First, a new dictionary model is established according to the characteristics and mechanism of rolling bearing faults. The new model incorporates the rotational speed of the bearing, the dimensions of the bearing and the bearing fault status, among other parameters. The model can simulate the impulse experienced by the bearing at different bearing fault levels. A simulation experiment suggests that a new impulse dictionary used in a matching pursuit algorithm combined with a genetic algorithm has a more accurate effect on bearing fault diagnosis than using a traditional impulse dictionary. However, those two methods have some weak points, namely, poor stability, rapidity and controllability. Each key parameter in the dictionary model and its influence on the analysis results are systematically studied, and the impulse location is determined as the primary model parameter. The adaptive impulse dictionary is established by changing characteristic parameters progressively. The dictionary built by this method has a lower redundancy and a higher relevance between each dictionary atom and the analyzed vibration signal. The matching pursuit algorithm of an adaptive impulse dictionary is adopted to analyze the simulated signals. The results indicate that the characteristic fault components could be accurately extracted from the noisy simulation fault signals by this algorithm, and the result exhibited a higher efficiency in addition to an improved stability, rapidity and controllability when compared with a matching pursuit approach that was based on a genetic algorithm. We experimentally analyze the early-stage fault signals and composite fault signals of the bearing. The results further demonstrate the

  13. What can satellite geodesy tell us about fault zone mechanics and seismic hazard in the continents?

    NASA Astrophysics Data System (ADS)

    Wright, Tim

    2015-04-01

    Reliable assessment of hazard from short-term geodetic observations requires physical models that can explain any time-dependent surface deformation. In this lectures, I will review the observations, show models that are consistent with all the data, and discuss the implications for the mechanics of fault zones and the strength of the continental lithosphere. The last twenty years has seen a dramatic growth in our ability to measure surface deformation in fault zones using satellite geodesy. Collectively, these observations require any successful model to be capable of producing rapid postseismic deformation transients that decay with a 1/t dependency, and steady strain focussed in relatively narrow regions around the fault later in the cycle. I will show that these observations require (i) the lower crust outside of fault zones to have a viscosity greater than ~1020 Pa s, (ii) a region beneath the seismogenic upper crust that can respond rapidly to a stress perturbation. Rapid postseismic relaxation can occur through afterslip on a downward continuation of the fault, or by viscoelastic relaxation in a weak zone beneath the fault. If the relaxation is occurring viscoelastically, explaining the 1/t dependency requires a non-linear power-law relationship between stress and strain, and/or a viscosity that varies spatially due to temperature. It has been shown that such rheologies concentrate lower-crustal shear into narrow zones, a few kilometres wide. A model with narrow shear in the lower crust beneath major faults is also consistent with geological observations and results from a recent seismic experiment on the North Anatolian Fault conducted by the University of Leeds with Turkish partners at Kandilli Observatory and Sakarya University. I will conclude by discussing the implications of this synthesis for the use of satellite geodesy for seismic hazard assessment, the mechanics of continental deformation, and the strength of the continental lithosphere, and by

  14. Brecciation processes in fault zones: Inferences from earthquake rupturing

    NASA Astrophysics Data System (ADS)

    Sibson, Richard H.

    1986-01-01

    Surface-rupture patterns and aftershock distributions accompanying moderate to large shallow earthquakes reveal a residual brittle infrastructure for established crustal fault zones, the complexity of which is likely to be largely scale-invariant. In relation to such an infrastructure, continued displacement along a particular master fault may involve three dominant mechanical processes of rock brecciation: (a) attrition brecciation, from progressive frictional wear along principal slip surfaces during both seismic and aseismic sliding, (b) distributed crush brecciation, involving microfracturing over broad regions when slip on the principal slip surfaces is impeded by antidilational jogs or other obstructions, and (c) implosion brecciation, associated with the sudden creation of void space and fluid-pressure differentials at dilational fault jogs during earthquake rupture propagation. These last, high-dilation breccias are particularly favorable sites for hydrothermal mineral deposition, forming transitory low-pressure channels for the rapid passage of hydrothermal fluids. Long-lived fault zones often contain an intermingling of breccias derived from all three processes.

  15. Heat flow and energetics of the San Andreas fault zone.

    USGS Publications Warehouse

    Lachenbruch, A.H.; Sass, J.H.

    1980-01-01

    Approximately 100 heat flow measurements in the San Andreas fault zone indicate 1) there is no evidence for local frictional heating of the main fault trace at any latitude over a 1000-km length from Cape Mendocino to San Bernardino, 2) average heat flow is high (ca.2 HFU, ca.80 mW m-2) throughout the 550-km segment of the Coast Ranges that encloses the San Andreas fault zone in central California; this broad anomaly falls off rapidly toward the Great Valley to the east, and over a 200-km distance toward the Mendocino Triple Junction to the northwest. As others have pointed out, a local conductive heat flow anomaly would be detectable unless the frictional resistance allocated to heat production on the main trace were less than 100 bars. Frictional work allocated to surface energy of new fractures is probably unimportant, and hydrologic convection is not likely to invalidate the conduction assumption, since the heat discharge by thermal springs near the fault is negligible. -Authors

  16. Continuous creep measurements on the North Anatolian fault

    NASA Astrophysics Data System (ADS)

    Mencin, D.; Bilham, R. G.; Ozener, H.; Aktug, B.; Dogru, A.; Ergintav, S.; Cakir, Z.; Aytun, A.

    2014-12-01

    Surface creep was recognized as early as 1969 on the North Anatolian fault near Ismetpasa and continues to the present day at rates of the order of 5 mm/yr. Although subsurface creep is currently monitored using Insar and GPS, continuous creep measurements on the surface fault have been intermittent. In 2014 we installed a carbon-fiber rod creepmeter at Ismetpasa and a second creepmeter across the surface rupture of the 1999 Izmit earthquake, which is also known to be creeping at depth. The creepmeters have a resolution of 5 μm and a range of 2.2 m. Each creepmeter uses two sensors- a subsurface LVDT (resolution 5 μm range 10 mm) and an above-ground rotary Hall effect sensor (resolution 25 μm and range 2.2 m) and their data are transmitted via the Iridium satellite as 30 minute samples every 2 hours. The hybrid sensors on the creepmeters are similar to others currently operating on the Hayward, Calaveras, and San Andreas faults. Their ability to capture slow slip, coseismic rupture or afterslip has been tested in deployments on the rapidly creeping Jackson, Wyoming landslide (1-3 mm/day). Installed creepmeters will be a powerful tool to search the possibilities of the transient or episodic creep and they will be used to validate the results of on-going monthly InSAR and campaign GPS studies, along the north Anatolian fault.

  17. Active fault traces along Bhuj Fault and Katrol Hill Fault, and trenching survey at Wandhay, Kachchh, Gujarat, India

    NASA Astrophysics Data System (ADS)

    Morino, Michio; Malik, Javed N.; Mishra, Prashant; Bhuiyan, Chandrashekhar; Kaneko, Fumio

    2008-06-01

    Several new active fault traces were identified along Katrol Hill Fault (KHF). A new fault (named as Bhuj Fault, BF) that extends into the Bhuj Plain was also identified. These fault traces were identified based on satellite photo interpretation and field survey. Trenches were excavated to identify the paleoseismic events, pattern of faulting and the nature of deformation. New active fault traces were recognized about 1km north of the topographic boundary between the Katrol Hill and the plain area. The fault exposure along the left bank of Khari River with 10m wide shear zone in the Mesozoic rocks and showing displacement of the overlying Quaternary deposits is indicative of continued tectonic activity along the ancient fault. The E-W trending active fault traces along the KHF in the western part changes to NE-SW or ENE-WSW near Wandhay village. Trenching survey across a low scarp near Wandhay village reveals three major fault strands F1, F2, and F3. These fault strands displaced the older terrace deposits comprising Sand, Silt and Gravel units along with overlying younger deposits from units 1 to 5 made of gravel, sand and silt. Stratigraphic relationship indicates at least three large magnitude earthquakes along KHF during Late Holocene or recent historic past.

  18. Late Quaternary Deformation Along the Wairarapa Fault, North Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Schermer, E. R.; Little, T. A.

    2006-12-01

    strike-slip fault splay. New14C ages are consistent with the most recent event occurring in 1855 and suggest one earlier event. The range-bounding trace of the WH thrust appears to have been abandoned in the Holocene, with deformation occuring both west and east of this fault. Thus southern end of the Wairarapa fault consists of at least three active structures: 1) A western oblique-slip fault (or fault zone) that has ruptured repeatedly in the Holocene, including 1855, uplifting the Rimutaka anticline and accommodating large-magnitude strike-slip. Details of the 1855 event are obscured by landsliding in the Rimutaka range but the uplift is recorded by a flight of beach ridges at Turakirae Head; 2) a middle strike-slip strand that in part coincides with the projected trace of the abandoned WH thrust: 3) an eastern blind thrust that initiated after 9 ka and that has an unknown rupture history. Uplift with respect to sea level on the middle and eastern strands of the WH fault zone totals ~1mm/yr over the last 125 ka, and is indistinguishable in rate from that measured along the main (strike- slip) part of the Wairarapa fault to the north. To the west of the WH fault, the crest of the Rimutaka anticline at the coast is uplifting at 3 times this rate, (McSaveny et al., in press). The relationship between this locally enhanced rate of coastal uplift at the southern end of the Wairarapa fault zone, and the WH fault is apparently complex and changing rapidly in time, but has important implications for understanding seismic hazard and tectonics of this part of the Hikurangi margin.

  19. Parametric Modeling and Fault Tolerant Control

    NASA Technical Reports Server (NTRS)

    Wu, N. Eva; Ju, Jianhong

    2000-01-01

    Fault tolerant control is considered for a nonlinear aircraft model expressed as a linear parameter-varying system. By proper parameterization of foreseeable faults, the linear parameter-varying system can include fault effects as additional varying parameters. A recently developed technique in fault effect parameter estimation allows us to assume that estimates of the fault effect parameters are available on-line. Reconfigurability is calculated for this model with respect to the loss of control effectiveness to assess the potentiality of the model to tolerate such losses prior to control design. The control design is carried out by applying a polytopic method to the aircraft model. An error bound on fault effect parameter estimation is provided, within which the Lyapunov stability of the closed-loop system is robust. Our simulation results show that as long as the fault parameter estimates are sufficiently accurate, the polytopic controller can provide satisfactory fault-tolerance.

  20. Detection of faults and software reliability analysis

    NASA Technical Reports Server (NTRS)

    Knight, J. C.

    1987-01-01

    Specific topics briefly addressed include: the consistent comparison problem in N-version system; analytic models of comparison testing; fault tolerance through data diversity; and the relationship between failures caused by automatically seeded faults.

  1. Solar Dynamic Power System Fault Diagnosis

    NASA Technical Reports Server (NTRS)

    Momoh, James A.; Dias, Lakshman G.

    1996-01-01

    The objective of this research is to conduct various fault simulation studies for diagnosing the type and location of faults in the power distribution system. Different types of faults are simulated at different locations within the distribution system and the faulted waveforms are monitored at measurable nodes such as at the output of the DDCU's. These fault signatures are processed using feature extractors such as FFT and wavelet transforms. The extracted features are fed to a clustering based neural network for training and subsequent testing using previously unseen data. Different load models consisting of constant impedance and constant power are used for the loads. Open circuit faults and short circuit faults are studied. It is concluded from present studies that using features extracted from wavelet transforms give better success rates during ANN testing. The trained ANN's are capable of diagnosing fault types and approximate locations in the solar dynamic power distribution system.

  2. Fault seals in oil fields in Nevada

    SciTech Connect

    Foster, N.H.; Veal, H.K.; Bortz, L.C.

    1987-08-01

    Faults forms seals for oil accumulations in the Eagle Springs, Trap Spring, and Blackburn fields, and probably in the Grant Canyon field, in Nevada. The main boundary fault on the east side of the Pine Valley graben forms a seal in the Blackburn field. A fault on the west side of the trap Spring field forms a seal. In Grant Canyon field, it is interpreted that the main boundary fault on the east side of the Railroad Valley graben forms a seal. Calcite is deposited by hot spring activity, plugging up many fault zones and, in some cases, forming seals. Some fault zones have calcite mineralization up to several thousand feet wide. Within the Eagle Springs field on the east side of the Railroad Valley graben, a northeast-trending fault separates oil accumulations with different oil-water contacts. This separation indicates that the fault forms at least a partial seal within the accumulation.

  3. Seismology: Diary of a wimpy fault

    NASA Astrophysics Data System (ADS)

    Bürgmann, Roland

    2015-05-01

    Subduction zone faults can slip slowly, generating tremor. The varying correlation between tidal stresses and tremor occurring deep in the Cascadia subduction zone suggests that the fault is inherently weak, and gets weaker as it slips.

  4. Shear heating and solid state diffusion: Constraints from clumped isotope thermometry in carbonate faults

    NASA Astrophysics Data System (ADS)

    Siman-Tov, S.; Affek, H. P.; Matthews, A.; Aharonov, E.; Reches, Z.

    2015-12-01

    Natural faults are expected to heat rapidly during seismic slip and to cool quite quickly after the event. Here we examine clumped isotope thermometry for its ability to identify short duration elevated temperature events along frictionally heated carbonate faults. This method is based on measured Δ47 values that indicate the relative atomic order of oxygen and carbon stable isotopes in the calcite lattice, which is affected by heat and thus can serve as a thermometer. We examine three types of calcite rock samples: (1) samples that were rapidly heated and then cooled in static laboratory experiments, simulating the temperature cycle experienced by fault rock during earthquake slip; (2) limestone samples that were experimentally sheared to simulate earthquake slip events; and (3) samples taken from principle slip zones of natural carbonate faults that likely experienced earthquake slip. Experimental results show that Δ47 values decrease rapidly (in the course of seconds) and systematically both with increasing temperature and shear velocity. On the other hand, carbonate shear zone from natural faults do not show such Δ47 reduction. We propose that the experimental Δ47 response is controlled by the presence of high-stressed nano-grains within the fault zone that can reduce the activation energy for diffusion by up to 60%, and thus lead to an increased rate of solid-state diffusion in the experiments. However, the lowering of activation energy is a double-edged sword in terms of clumped isotopes: In laboratory experiments, it allows for rapid disordering so that isotopic signal appears after very short heating, but in natural faults it also leads to relatively fast isotopic re-ordering after the cessation of frictional heating, thus erasing the high temperature signature in Δ47 values within relatively short geological times (<1 Ma).

  5. Mapping Active Faults and Tectonic Geomorphology offshore central California

    NASA Astrophysics Data System (ADS)

    Johnson, S. Y.; Watt, J. T.; Hart, P. E.; Sliter, R. W.; Wong, F. L.

    2009-12-01

    In June 2008, and July 2009, the USGS conducted two high-resolution, marine, seismic-reflection surveys across the continental shelf and upper slope between Piedras Blancas and Point Sal, central California, in order to better characterize regional earthquake sources. More than 1,300 km of single-channel seismic data were acquired aboard the USGS R/V Parke Snavely using a 500-joule mini-sparker source fired at a 0.5-second shot interval and recorded with a 15-meter streamer. Most tracklines were run perpendicular to the coast at 800-meter spacing, extending from the nearshore (~ 10-15 m water depth) to as far as 20 km offshore. Sub-bottom imaging varies with substrate, ranging from outstanding (100 to 150 m of penetration) in inferred Quaternary shallow marine, shelf and upper slope deposits to poor (0 to 10 m) in the Mesozoic basement rocks. Marine magnetic data were collected simultaneously on this survey, and both data sets are being integrated with new aeromagnetic data, publicly available industry seismic-reflection data, onshore geology, seismicity, and high-resolution bathymetry. Goals of the study are to map geology, structure, and sediment distribution; to document fault location, length, segmentation, shallow geometry and structure; and to identify possible sampling targets for constraining fault slip rates, earthquake recurrence, and tsunami hazard potential. The structure and tectonic geomorphology of the >100-km-long, right-lateral, Hosgri fault zone and its connections to the Los Osos, Pecho, Oceano and other northwest-trending inboard faults are the focus of this ongoing work. The Hosgri fault forms the eastern margin of the offshore Santa Maria basin and coincides in places with the outer edge of the narrow (5- to 15-km-wide), structurally complex continental shelf. The Hosgri is imaged as a relatively continuous, vertical fault zone that extends upward to the seafloor; varies significantly and rapidly along strike; and incorporates numerous

  6. A Dynamic Finite Element Method for Simulating the Physics of Faults Systems

    NASA Astrophysics Data System (ADS)

    Saez, E.; Mora, P.; Gross, L.; Weatherley, D.

    2004-12-01

    We introduce a dynamic Finite Element method using a novel high level scripting language to describe the physical equations, boundary conditions and time integration scheme. The library we use is the parallel Finley library: a finite element kernel library, designed for solving large-scale problems. It is incorporated as a differential equation solver into a more general library called escript, based on the scripting language Python. This library has been developed to facilitate the rapid development of 3D parallel codes, and is optimised for the Australian Computational Earth Systems Simulator Major National Research Facility (ACcESS MNRF) supercomputer, a 208 processor SGI Altix with a peak performance of 1.1 TFlops. Using the scripting approach we obtain a parallel FE code able to take advantage of the computational efficiency of the Altix 3700. We consider faults as material discontinuities (the displacement, velocity, and acceleration fields are discontinuous at the fault), with elastic behavior. The stress continuity at the fault is achieved naturally through the expression of the fault interactions in the weak formulation. The elasticity problem is solved explicitly in time, using the Saint Verlat scheme. Finally, we specify a suitable frictional constitutive relation and numerical scheme to simulate fault behaviour. Our model is based on previous work on modelling fault friction and multi-fault systems using lattice solid-like models. We adapt the 2D model for simulating the dynamics of parallel fault systems described to the Finite-Element method. The approach uses a frictional relation along faults that is slip and slip-rate dependent, and the numerical integration approach introduced by Mora and Place in the lattice solid model. In order to illustrate the new Finite Element model, single and multi-fault simulation examples are presented.

  7. Scandinavian postglacial faults and their physical connection to present day seismicity

    NASA Astrophysics Data System (ADS)

    Arvidsson, R.

    2015-12-01

    In Scandinavia large earthquakes up to M~8.2 occurred 9500 yBP due to rapid deglaciation leaving fault scarps with lengths up to 160km and vertical offsets of at least 10 m. Today a lion share of local earthquakes are located to the vicinity of the faults. I show here from Coulomb failure stress modeling a physical connection between clustering of recent earthquakes and high Coulomb failure stresses around the faults. This can be interpreted In such a fashion that the location of the current earthquakes resembles locations of aftershock sequences. The explanation is that when these faults where formed it was due to state of stress in the crust at time of deglaciation, different from today's conditions. The crust was heavily depressed at deglaciation about 250 m in the region and due of the receding icesheet the crust was subjected to high stresses resulting in fault motion. This fault motion occurred in order to minimize state of stress at deglaciation. However, this state of stress has since changed with the regional postglacial uplift and thus today these faults remain as perturbations in the crust with concentrations of high stresses. I elaborate on this mechanism. I also advocate that this correlation between high stressed fault areas and locations of earthquakes indicates that seismicity within stable continental regions like Scandinavia might be caused by previous crustal disturbances that show local perturbations of the stress field. Therefore if faults are favorably oriented in the present stress field they can be released by brittle earthquake faulting . Thus past transient tectonic events can explain part of the stable continental region's seismicity. This may be of large importance to assessment of seismic hazard within stable continental regions particularly for critical structures like e.g., nuclear waste deposits and hydroelectric dams.

  8. Implementing fault-tolerant sensors

    NASA Technical Reports Server (NTRS)

    Marzullo, Keith

    1989-01-01

    One aspect of fault tolerance in process control programs is the ability to tolerate sensor failure. A methodology is presented for transforming a process control program that cannot tolerate sensor failures to one that can. Additionally, a hierarchy of failure models is identified.

  9. Cell boundary fault detection system

    DOEpatents

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2011-04-19

    An apparatus and program product determine a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.

  10. MOS integrated circuit fault modeling

    NASA Technical Reports Server (NTRS)

    Sievers, M.

    1985-01-01

    Three digital simulation techniques for MOS integrated circuit faults were examined. These techniques embody a hierarchy of complexity bracketing the range of simulation levels. The digital approaches are: transistor-level, connector-switch-attenuator level, and gate level. The advantages and disadvantages are discussed. Failure characteristics are also described.

  11. FAULT & COORDINATION STUDY FOR T PLANT COMPLEX

    SciTech Connect

    MCDONALD, G.P.; BOYD-BODIAU, E.A.

    2004-09-01

    A short circuit study is performed to determine the maximum fault current that the system protective devices, transformers, and interconnections would he subject to in event of a three phase, phase-to-phase, or phase-to-ground fault. Generally, the short circuit study provides the worst case fault current levels at each bus or connection point of the system.

  12. High temperature superconducting fault current limiter

    DOEpatents

    Hull, J.R.

    1997-02-04

    A fault current limiter for an electrical circuit is disclosed. The fault current limiter includes a high temperature superconductor in the electrical circuit. The high temperature superconductor is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter. 15 figs.

  13. High temperature superconducting fault current limiter

    DOEpatents

    Hull, John R.

    1997-01-01

    A fault current limiter (10) for an electrical circuit (14). The fault current limiter (10) includes a high temperature superconductor (12) in the electrical circuit (14). The high temperature superconductor (12) is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter (10).

  14. Fault-related clay authigenesis along the Moab Fault: Implications for calculations of fault rock composition and mechanical and hydrologic fault zone properties

    NASA Astrophysics Data System (ADS)

    Solum, John G.; Davatzes, Nicholas C.; Lockner, David A.

    2010-12-01

    The presence of clays in fault rocks influences both the mechanical and hydrologic properties of clay-bearing faults, and therefore it is critical to understand the origin of clays in fault rocks and their distributions is of great importance for defining fundamental properties of faults in the shallow crust. Field mapping shows that layers of clay gouge and shale smear are common along the Moab Fault, from exposures with throws ranging from 10 to ˜1000 m. Elemental analyses of four locations along the Moab Fault show that fault rocks are enriched in clays at R191 and Bartlett Wash, but that this clay enrichment occurred at different times and was associated with different fluids. Fault rocks at Corral and Courthouse Canyons show little difference in elemental composition from adjacent protolith, suggesting that formation of fault rocks at those locations is governed by mechanical processes. Friction tests show that these authigenic clays result in fault zone weakening, and potentially influence the style of failure along the fault (seismogenic vs. aseismic) and potentially influence the amount of fluid loss associated with coseismic dilation. Scanning electron microscopy shows that authigenesis promotes that continuity of slip surfaces, thereby enhancing seal capacity. The occurrence of the authigenesis, and its influence on the sealing properties of faults, highlights the importance of determining the processes that control this phenomenon.

  15. Fault tolerant software modules for SIFT

    NASA Technical Reports Server (NTRS)

    Hecht, M.; Hecht, H.

    1982-01-01

    The implementation of software fault tolerance is investigated for critical modules of the Software Implemented Fault Tolerance (SIFT) operating system to support the computational and reliability requirements of advanced fly by wire transport aircraft. Fault tolerant designs generated for the error reported and global executive are examined. A description of the alternate routines, implementation requirements, and software validation are included.

  16. 5 CFR 845.302 - Fault.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 2 2012-01-01 2012-01-01 false Fault. 845.302 Section 845.302... EMPLOYEES RETIREMENT SYSTEM-DEBT COLLECTION Standards for Waiver of Overpayments § 845.302 Fault. A recipient of an overpayment is without fault if he or she performed no act of commission or omission...

  17. 5 CFR 831.1402 - Fault.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 2 2014-01-01 2014-01-01 false Fault. 831.1402 Section 831.1402...) RETIREMENT Standards for Waiver of Overpayments § 831.1402 Fault. A recipient of an overpayment is without fault if he/she performed no act of commission or omission which resulted in the overpayment. The...

  18. 5 CFR 831.1402 - Fault.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Fault. 831.1402 Section 831.1402...) RETIREMENT Standards for Waiver of Overpayments § 831.1402 Fault. A recipient of an overpayment is without fault if he/she performed no act of commission or omission which resulted in the overpayment. The...

  19. 20 CFR 255.11 - Fault.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 1 2013-04-01 2012-04-01 true Fault. 255.11 Section 255.11 Employees... § 255.11 Fault. (a) Before recovery of an overpayment may be waived, it must be determined that the overpaid individual was without fault in causing the overpayment. If recovery is sought from other than...

  20. 5 CFR 831.1402 - Fault.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 2 2013-01-01 2013-01-01 false Fault. 831.1402 Section 831.1402...) RETIREMENT Standards for Waiver of Overpayments § 831.1402 Fault. A recipient of an overpayment is without fault if he/she performed no act of commission or omission which resulted in the overpayment. The...

  1. 20 CFR 255.11 - Fault.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 1 2011-04-01 2011-04-01 false Fault. 255.11 Section 255.11 Employees... § 255.11 Fault. (a) Before recovery of an overpayment may be waived, it must be determined that the overpaid individual was without fault in causing the overpayment. If recovery is sought from other than...

  2. 5 CFR 845.302 - Fault.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 2 2013-01-01 2013-01-01 false Fault. 845.302 Section 845.302... EMPLOYEES RETIREMENT SYSTEM-DEBT COLLECTION Standards for Waiver of Overpayments § 845.302 Fault. A recipient of an overpayment is without fault if he or she performed no act of commission or omission...

  3. 5 CFR 845.302 - Fault.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 2 2014-01-01 2014-01-01 false Fault. 845.302 Section 845.302... EMPLOYEES RETIREMENT SYSTEM-DEBT COLLECTION Standards for Waiver of Overpayments § 845.302 Fault. A recipient of an overpayment is without fault if he or she performed no act of commission or omission...

  4. 5 CFR 845.302 - Fault.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 2 2011-01-01 2011-01-01 false Fault. 845.302 Section 845.302... EMPLOYEES RETIREMENT SYSTEM-DEBT COLLECTION Standards for Waiver of Overpayments § 845.302 Fault. A recipient of an overpayment is without fault if he or she performed no act of commission or omission...

  5. 40 CFR 258.13 - Fault areas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Fault areas. 258.13 Section 258.13... SOLID WASTE LANDFILLS Location Restrictions § 258.13 Fault areas. (a) New MSWLF units and lateral expansions shall not be located within 200 feet (60 meters) of a fault that has had displacement in...

  6. 20 CFR 255.11 - Fault.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 1 2014-04-01 2012-04-01 true Fault. 255.11 Section 255.11 Employees... § 255.11 Fault. (a) Before recovery of an overpayment may be waived, it must be determined that the overpaid individual was without fault in causing the overpayment. If recovery is sought from other than...

  7. 5 CFR 845.302 - Fault.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Fault. 845.302 Section 845.302... EMPLOYEES RETIREMENT SYSTEM-DEBT COLLECTION Standards for Waiver of Overpayments § 845.302 Fault. A recipient of an overpayment is without fault if he or she performed no act of commission or omission...

  8. 20 CFR 255.11 - Fault.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Fault. 255.11 Section 255.11 Employees... § 255.11 Fault. (a) Before recovery of an overpayment may be waived, it must be determined that the overpaid individual was without fault in causing the overpayment. If recovery is sought from other than...

  9. 5 CFR 831.1402 - Fault.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 2 2012-01-01 2012-01-01 false Fault. 831.1402 Section 831.1402...) RETIREMENT Standards for Waiver of Overpayments § 831.1402 Fault. A recipient of an overpayment is without fault if he/she performed no act of commission or omission which resulted in the overpayment. The...

  10. 40 CFR 258.13 - Fault areas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Fault areas. 258.13 Section 258.13... SOLID WASTE LANDFILLS Location Restrictions § 258.13 Fault areas. (a) New MSWLF units and lateral expansions shall not be located within 200 feet (60 meters) of a fault that has had displacement in...

  11. 40 CFR 258.13 - Fault areas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Fault areas. 258.13 Section 258.13... SOLID WASTE LANDFILLS Location Restrictions § 258.13 Fault areas. (a) New MSWLF units and lateral expansions shall not be located within 200 feet (60 meters) of a fault that has had displacement in...

  12. 5 CFR 831.1402 - Fault.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 2 2011-01-01 2011-01-01 false Fault. 831.1402 Section 831.1402...) RETIREMENT Standards for Waiver of Overpayments § 831.1402 Fault. A recipient of an overpayment is without fault if he/she performed no act of commission or omission which resulted in the overpayment. The...

  13. 20 CFR 255.11 - Fault.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 1 2012-04-01 2012-04-01 false Fault. 255.11 Section 255.11 Employees... § 255.11 Fault. (a) Before recovery of an overpayment may be waived, it must be determined that the overpaid individual was without fault in causing the overpayment. If recovery is sought from other than...

  14. Fault-related clay authigenesis along the Moab Fault: Implications for calculations of fault rock composition and mechanical and hydrologic fault zone properties

    USGS Publications Warehouse

    Solum, J.G.; Davatzes, N.C.; Lockner, D.A.

    2010-01-01

    The presence of clays in fault rocks influences both the mechanical and hydrologic properties of clay-bearing faults, and therefore it is critical to understand the origin of clays in fault rocks and their distributions is of great importance for defining fundamental properties of faults in the shallow crust. Field mapping shows that layers of clay gouge and shale smear are common along the Moab Fault, from exposures with throws ranging from 10 to ???1000 m. Elemental analyses of four locations along the Moab Fault show that fault rocks are enriched in clays at R191 and Bartlett Wash, but that this clay enrichment occurred at different times and was associated with different fluids. Fault rocks at Corral and Courthouse Canyons show little difference in elemental composition from adjacent protolith, suggesting that formation of fault rocks at those locations is governed by mechanical processes. Friction tests show that these authigenic clays result in fault zone weakening, and potentially influence the style of failure along the fault (seismogenic vs. aseismic) and potentially influence the amount of fluid loss associated with coseismic dilation. Scanning electron microscopy shows that authigenesis promotes that continuity of slip surfaces, thereby enhancing seal capacity. The occurrence of the authigenesis, and its influence on the sealing properties of faults, highlights the importance of determining the processes that control this phenomenon. ?? 2010 Elsevier Ltd.

  15. Ground Fault--A Health Hazard

    ERIC Educational Resources Information Center

    Jacobs, Clinton O.

    1977-01-01

    A ground fault is especially hazardous because the resistance through which the current is flowing to ground may be sufficient to cause electrocution. The Ground Fault Circuit Interrupter (G.F.C.I.) protects 15 and 25 ampere 120 volt circuits from ground fault condition. The design and examples of G.F.C.I. functions are described in this article.…

  16. Reliability computation using fault tree analysis

    NASA Technical Reports Server (NTRS)

    Chelson, P. O.

    1971-01-01

    A method is presented for calculating event probabilities from an arbitrary fault tree. The method includes an analytical derivation of the system equation and is not a simulation program. The method can handle systems that incorporate standby redundancy and it uses conditional probabilities for computing fault trees where the same basic failure appears in more than one fault path.

  17. Fault-Tolerant Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Crowley, Christopher J.

    2005-01-01

    A compact, lightweight heat exchanger has been designed to be fault-tolerant in the sense that a single-point leak would not cause mixing of heat-transfer fluids. This particular heat exchanger is intended to be part of the temperature-regulation system for habitable modules of the International Space Station and to function with water and ammonia as the heat-transfer fluids. The basic fault-tolerant design is adaptable to other heat-transfer fluids and heat exchangers for applications in which mixing of heat-transfer fluids would pose toxic, explosive, or other hazards: Examples could include fuel/air heat exchangers for thermal management on aircraft, process heat exchangers in the cryogenic industry, and heat exchangers used in chemical processing. The reason this heat exchanger can tolerate a single-point leak is that the heat-transfer fluids are everywhere separated by a vented volume and at least two seals. The combination of fault tolerance, compactness, and light weight is implemented in a unique heat-exchanger core configuration: Each fluid passage is entirely surrounded by a vented region bridged by solid structures through which heat is conducted between the fluids. Precise, proprietary fabrication techniques make it possible to manufacture the vented regions and heat-conducting structures with very small dimensions to obtain a very large coefficient of heat transfer between the two fluids. A large heat-transfer coefficient favors compact design by making it possible to use a relatively small core for a given heat-transfer rate. Calculations and experiments have shown that in most respects, the fault-tolerant heat exchanger can be expected to equal or exceed the performance of the non-fault-tolerant heat exchanger that it is intended to supplant (see table). The only significant disadvantages are a slight weight penalty and a small decrease in the mass-specific heat transfer.

  18. Fault Diagnosis in HVAC Chillers

    NASA Technical Reports Server (NTRS)

    Choi, Kihoon; Namuru, Setu M.; Azam, Mohammad S.; Luo, Jianhui; Pattipati, Krishna R.; Patterson-Hine, Ann

    2005-01-01

    Modern buildings are being equipped with increasingly sophisticated power and control systems with substantial capabilities for monitoring and controlling the amenities. Operational problems associated with heating, ventilation, and air-conditioning (HVAC) systems plague many commercial buildings, often the result of degraded equipment, failed sensors, improper installation, poor maintenance, and improperly implemented controls. Most existing HVAC fault-diagnostic schemes are based on analytical models and knowledge bases. These schemes are adequate for generic systems. However, real-world systems significantly differ from the generic ones and necessitate modifications of the models and/or customization of the standard knowledge bases, which can be labor intensive. Data-driven techniques for fault detection and isolation (FDI) have a close relationship with pattern recognition, wherein one seeks to categorize the input-output data into normal or faulty classes. Owing to the simplicity and adaptability, customization of a data-driven FDI approach does not require in-depth knowledge of the HVAC system. It enables the building system operators to improve energy efficiency and maintain the desired comfort level at a reduced cost. In this article, we consider a data-driven approach for FDI of chillers in HVAC systems. To diagnose the faults of interest in the chiller, we employ multiway dynamic principal component analysis (MPCA), multiway partial least squares (MPLS), and support vector machines (SVMs). The simulation of a chiller under various fault conditions is conducted using a standard chiller simulator from the American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE). We validated our FDI scheme using experimental data obtained from different types of chiller faults.

  19. Fault-crossing P delays, epicentral biasing, and fault behavior in Central California

    USGS Publications Warehouse

    Marks, S.M.; Bufe, C.G.

    1979-01-01

    The P delays across the San Andreas fault zone in central California have been determined from travel-time differences at station pairs spanning the fault, using off-fault local earthquake or quarry blast sources. Systematic delays as large as 0.4 sec have been observed for paths crossing the fault at depths of 5-10 km. These delays can account for the apparent deviation of epicenters from the mapped fault trace. The largest delays occur along the San Andreas fault between San Juan Bautista and Bear Valley and Between Bitterwater Valley and Parkfield. Spatial variations in fault behavior correlate with the magnitude of the fault-crossing P delay. The delay decreases to the northwest of San Juan Bautista across the "locked" section of the San Andreas fault and also decreases to the southeast approaching Parkfield. Where the delay is large, seismicity is relatively high and the fault is creeping. ?? 1979.

  20. Architecture of small-scale fault zones in the context of the Leinetalgraben Fault System

    NASA Astrophysics Data System (ADS)

    Reyer, Dorothea; Philipp, Sonja L.

    2010-05-01

    Understanding fault zone properties in different geological settings is important to better assess the development and propagation of faults. In addition this allows better evaluation and permeability estimates of potential fault-related geothermal reservoirs. The Leinetalgraben fault system provides an outcrop analogue for many fault zones in the subsurface of the North German Basin. The Leinetalgraben is a N-S-trending graben structure, initiated in the Jurassic, in the south of Lower Saxony and as such part of the North German Basin. The fault system was reactivated and inverted during Alpine compression in the Tertiary. This complex geological situation was further affected by halotectonics. Therefore we can find different types of fault zones, that is normal, reverse, strike-slip an oblique-slip faults, surrounding the major Leinetalgraben boundary faults. Here we present first results of structural geological field studies on the geometry and architecture of fault zones in the Leinetalgraben Fault System in outcrop-scale. We measured the orientations and displacements of 17 m-scale fault zones in limestone (Muschelkalk) outcrops, the thicknesses of their fault cores and damage zones, as well as the fracture densities and geometric parameters of the fracture systems therein. We also analysed the effects of rock heterogeneities, particularly stiffness variations between layers (mechanical layering) on the propagation of natural fractures and fault zones. The analysed fault zones predominantly show similar orientations as the major fault zones they surround. Other faults are conjugate or perpendicular to the major fault zones. The direction of predominant joint strike corresponds to the orientation of the fault zones in the majority of cases. The mechanical layering of the limestone and marlstone stratification obviously has great effects on fracture propagation. Already thin layers (mm- to cm-scale) of low stiffness - here marl - seem to suffice to change the

  1. Active uplift and normal faulting in the eastern flank of Taiwan Central Range

    NASA Astrophysics Data System (ADS)

    Chang, Chung-Pai; Hsu, Yi-Chun; Kang, Chu-Chun

    2015-04-01

    As the backbone range of Taiwan orogen, the highest peaks of the Central Range have been uplifted to nearly 4 km above sea level. A rapid exhumation rate of about 6 mm/yr over the past several million years has been determined by many previous thermochronological studies in the eastern flank of the Central Range. However, the uplift mechanism of the Central Range is still in debate. Especially, the most important structural component, the Central Range Fault in the eastern boundary of the Central Range, has never been clearly observed in the previous studies. An east-vergent "backthrusting" or "backfolding" was firstly proposed by Ernst in 1977. However, normal faulting and oblique faulting with a normal component were also proposed by the following field workers (e.g., Crespi et al., 1996; Fisher, 1999). In this study, we use the geomorphic, stratigraphic, and structural analyses to figure out the near surface geometry of the Central Range Fault, and as well use the recent earthquake data to understand the deeper structures beneath the Central Range. By combining these results, we propose a doubly vergent model with a roll-back Central Range fault to explain the local structure and the rapid uplift of the eastern flank of the Central Range. The normal faults along the eastern flank of Central Range can also be separated into three segments form the north to the south. This late-stage structure suggests that the rotation-accommodating structure is extensional in nature.

  2. Three-dimensional Geology of the Hayward Fault and its Correlation with Fault Behavior, Northern California

    NASA Astrophysics Data System (ADS)

    Ponce, D. A.; Graymer, R. C.; Jachens, R. C.; Simpson, R. W.; Phelps, G. A.; Wentworth, C. M.

    2004-12-01

    Relationships between fault behavior and geology along the Hayward Fault were investigated using a three-dimensional geologic model of the Hayward fault and vicinity. The three-dimensional model, derived from geologic, geophysical, and seismicity data, allowed the construction of a `geologic map' of east- and west-side surfaces, maps that show the distribution of geologic units on either side of the fault that truncate against the fault surface. These two resulting geologic maps were compared with seismicity and creep along the Hayward Fault using three-dimensional visualization software. The seismic behavior of the Hayward Fault correlates with rock unit contacts along the fault, rather than in rock types across the fault. This suggests that fault activity is, in part, controlled by the physical properties of the rocks that abut the fault and not by properties of the fault zone itself. For example, far fewer earthquakes occur along the northern part of the fault where an intensely sheared Franciscan mélange on the west side abuts the fault face, compared to the region to the south where more coherent rocks of other Franciscan terranes or the Coast Range Ophiolite are present. More locally, clusters of earthquakes correlate spatially with some of the contacts between Franciscan terranes as well as mafic rocks of the Coast Range Ophiolite. Steady creep rates along the fault correlate with the lateral extent of the San Leandro gabbro, and changes in creep rate correlate with changes in geology. Although preliminary, the results of comparing fault behavior with the inferred three-dimensional geology adjacent to the Hayward Fault suggest that any attempt to understand the detailed distribution of earthquakes or creep along the fault should include consideration of the rock types that abut the fault surface. Such consideration would benefit greatly from incorporating into the three-dimensional geologic model the physical properties of the rock types along the fault.

  3. Dislocation model for aseismic fault slip in the transverse ranges of Southern California

    NASA Technical Reports Server (NTRS)

    Cheng, A.; Jackson, D. D.; Matsuura, M.

    1985-01-01

    Geodetic data at a plate boundary can reveal the pattern of subsurface displacements that accompany plate motion. These displacements are modelled as the sum of rigid block motion and the elastic effects of frictional interaction between blocks. The frictional interactions are represented by uniform dislocation on each of several rectangular fault patches. The block velocities and fault parameters are then estimated from geodetic data. Bayesian inversion procedure employs prior estimates based on geological and seismological data. The method is applied to the Transverse Ranges, using prior geological and seismological data and geodetic data from the USGS trilateration networks. Geodetic data imply a displacement rate of about 20 mm/yr across the San Andreas Fault, while the geologic estimates exceed 30 mm/yr. The prior model and the final estimates both imply about 10 mm/yr crustal shortening normal to the trend of the San Andreas Fault. Aseismic fault motion is a major contributor to plate motion. The geodetic data can help to identify faults that are suffering rapid stress accumulation; in the Transverse Ranges those faults are the San Andreas and the Santa Susana.

  4. Numerical model of formation of a 3-D strike-slip fault system

    NASA Astrophysics Data System (ADS)

    Chemenda, Alexandre I.; Cavalié, Olivier; Vergnolle, Mathilde; Bouissou, Stéphane; Delouis, Bertrand

    2016-01-01

    The initiation and the initial evolution of a strike-slip fault are modeled within an elastoplasticity constitutive framework taking into account the evolution of the hardening modulus with inelastic straining. The initial and boundary conditions are similar to those of the Riedel shear experiment. The models first deform purely elastically. Then damage (inelastic deformation) starts at the model surface. The damage zone propagates both normal to the forming fault zone and downwards. Finally, it affects the whole layer thickness, forming flower-like structure in cross-section. At a certain stage, a dense set of parallel Riedel shears forms at shallow depth. A few of these propagate both laterally and vertically, while others die. The faults first propagate in-plane, but then rapidly change direction to make a larger angle with the shear axis. New fault segments form as well, resulting in complex 3-D fault zone architecture. Different fault segments accommodate strike-slip and normal displacements, which results in the formation of valleys and rotations along the fault system.

  5. Seismic slip on an upper-plate normal fault during a large subduction megathrust rupture

    NASA Astrophysics Data System (ADS)

    Hicks, Stephen P.; Rietbrock, Andreas

    2016-04-01

    Quantification of stress accumulation and release during subduction zone seismic cycles requires an understanding of the distribution of fault slip during earthquakes. Reconstructions of slip are typically constrained to a single, known fault plane. Yet, slip has been shown to occur on multiple faults within the subducting plate owing to stress triggering, resulting in phenomena such as earthquake doublets. However, rapid stress triggering from the plate interface to faults in the overriding plate has not been documented before. We have analysed seismic data from the magnitude 7.1 Araucania earthquake that occurred in the Chilean subduction zone in January 2011. We find that the earthquake, which was reported as a single event in global moment tensor solutions, was instead composed of two ruptures on two separate faults. We use 3-D full waveform simulations to better constrain the centroid of the second rupture. Within 12 s, a thrust earthquake (Mw 6.8) on the plate interface triggered a second large rupture on a normal fault 30 km away in the overriding plate (Mw 6.7). We define this set of events as a 'closely spaced doublet' (CSD). This configuration of partitioned rupture is consistent with normal-faulting mechanisms in the ensuing aftershock sequence. We conclude that plate interface rupture can trigger almost instantaneous slip in the overriding plate of a subduction zone. This shallow upper-plate rupture may be masked from teleseismic data, posing a challenge for real-time tsunami warning systems.

  6. Stopping of earthquake ruptures at dilational fault jogs

    NASA Astrophysics Data System (ADS)

    Sibson, Richard H.

    1985-07-01

    Palaeoseismic studies over the past several years have indicated that segments of certain major faults tend to rupture at fairly regular intervals in characteristic earthquakes of about the same size1. This implies the presence of local structural controls which govern the nucleation and stopping of ruptures. Understanding rupture arrest is important, not only because it governs the size of characteristic earthquakes, but also because deceleration of ruptures results in the radiation of high-frequency energy leading to strong ground motion2. I show here that rapid opening of linking extensional fracture systems to allow passage of earthquake ruptures through dilational fault jogs in fluid-saturated crusts is opposed by transient suctional forces induced near the rupture tips3. Rupture arrest may then be followed by delayed slip transfer as fluid pressures re-equilibrate by diffusion.

  7. The Heart Mountain fault: Implications for the dynamics of decollement

    NASA Technical Reports Server (NTRS)

    Melosh, H. J.

    1985-01-01

    The Hart Mountain docollement in Northwestern Wyoming originally comprised a plate of rock up to 750m thick and 1300 sq kilometers in area. This plate moved rapidly down a slope no steeper than 2 deg. during Early Eocene time, transporting some blocks at least 50m from their original positions. Sliding occurred just before a volcanic erruption and was probably accompanied by seismic events. The initial movement was along a bedding plane fault in the Bighorn Dolomite, 2 to 3 meters above its contact with the Grove Creek member of the Snowy Range formation. The major pecularity of this fault is that it lies in the strong, cliff-forming Bighorn Dolomite, rather than in the weaker underlying shales. The dynamics of decollement are discussed.

  8. Rapid weight loss

    MedlinePlus

    ... loss-rapid weight loss; Overweight-rapid weight loss; Obesity-rapid weight loss; Diet-rapid weight loss ... for people who have health problems because of obesity. For these people, losing a lot of weight ...

  9. Recurrent late Quaternary surface faulting along the southern Mohawk Valley fault zone, NE California

    SciTech Connect

    Sawyer, T.L.; Hemphill-Haley, M.A. ); Page, W.D. )

    1993-04-01

    The Mohawk Valley fault zone comprises NW- to NNW-striking, normal and strike-slip( ) faults that form the western edge of the Plumas province, a diffuse transitional zone between the Basin and Range and the northern Sierra Nevada. The authors detailed evaluation of the southern part of the fault zone reveals evidence for recurrent late Pleistocene to possibly Holocene, moderate to large surface-faulting events. The southern Mohawk fault zone is a complex, 6-km-wide zone of faults and related features that extends from near the crest of the Sierra Nevada to the middle of southern Sierra Valley. The fault zone has two distinct and generally parallel subzones, 3 km apart, that are delineated by markedly different geomorphic characteristics and apparently different styles of faulting. Paleoseismic activity of the western subzone was evaluated in two trenches: one across a fault antithetic to the main range-bounding fault, and the other across a splay fault delineated by a 3.7-m-high scarp in alluvium. Stratigraphic relations, soil development, and radiocarbon dates indicate that at least four mid- to late-Pleistocene surface-faulting events, having single-event displacements in excess of 1.6 to 2.6 m, occurred along the splay fault prior to 12 ka. The antithetic fault has evidence of three late Pleistocene events that may correspond to event documented on the splay fault, and a Holocene event that is inferred from youthful scarplets and small closed depressions.

  10. Novel neural networks-based fault tolerant control scheme with fault alarm.

    PubMed

    Shen, Qikun; Jiang, Bin; Shi, Peng; Lim, Cheng-Chew

    2014-11-01

    In this paper, the problem of adaptive active fault-tolerant control for a class of nonlinear systems with unknown actuator fault is investigated. The actuator fault is assumed to have no traditional affine appearance of the system state variables and control input. The useful property of the basis function of the radial basis function neural network (NN), which will be used in the design of the fault tolerant controller, is explored. Based on the analysis of the design of normal and passive fault tolerant controllers, by using the implicit function theorem, a novel NN-based active fault-tolerant control scheme with fault alarm is proposed. Comparing with results in the literature, the fault-tolerant control scheme can minimize the time delay between fault occurrence and accommodation that is called the time delay due to fault diagnosis, and reduce the adverse effect on system performance. In addition, the FTC scheme has the advantages of a passive fault-tolerant control scheme as well as the traditional active fault-tolerant control scheme's properties. Furthermore, the fault-tolerant control scheme requires no additional fault detection and isolation model which is necessary in the traditional active fault-tolerant control scheme. Finally, simulation results are presented to demonstrate the efficiency of the developed techniques. PMID:25014982

  11. Predeployment validation of fault-tolerant systems through software-implemented fault insertion

    NASA Technical Reports Server (NTRS)

    Czeck, Edward W.; Siewiorek, Daniel P.; Segall, Zary Z.

    1989-01-01

    Fault injection-based automated testing (FIAT) environment, which can be used to experimentally characterize and evaluate distributed realtime systems under fault-free and faulted conditions is described. A survey is presented of validation methodologies. The need for fault insertion based on validation methodologies is demonstrated. The origins and models of faults, and motivation for the FIAT concept are reviewed. FIAT employs a validation methodology which builds confidence in the system through first providing a baseline of fault-free performance data and then characterizing the behavior of the system with faults present. Fault insertion is accomplished through software and allows faults or the manifestation of faults to be inserted by either seeding faults into memory or triggering error detection mechanisms. FIAT is capable of emulating a variety of fault-tolerant strategies and architectures, can monitor system activity, and can automatically orchestrate experiments involving insertion of faults. There is a common system interface which allows ease of use to decrease experiment development and run time. Fault models chosen for experiments on FIAT have generated system responses which parallel those observed in real systems under faulty conditions. These capabilities are shown by two example experiments each using a different fault-tolerance strategy.

  12. Multiple Fault Isolation in Redundant Systems

    NASA Technical Reports Server (NTRS)

    Pattipati, Krishna R.; Patterson-Hine, Ann; Iverson, David

    1997-01-01

    Fault diagnosis in large-scale systems that are products of modern technology present formidable challenges to manufacturers and users. This is due to large number of failure sources in such systems and the need to quickly isolate and rectify failures with minimal down time. In addition, for fault-tolerant systems and systems with infrequent opportunity for maintenance (e.g., Hubble telescope, space station), the assumption of at most a single fault in the system is unrealistic. In this project, we have developed novel block and sequential diagnostic strategies to isolate multiple faults in the shortest possible time without making the unrealistic single fault assumption.

  13. Detection of faults and software reliability analysis

    NASA Technical Reports Server (NTRS)

    Knight, J. C.

    1986-01-01

    Multiversion or N-version programming was proposed as a method of providing fault tolerance in software. The approach requires the separate, independent preparation of multiple versions of a piece of software for some application. Specific topics addressed are: failure probabilities in N-version systems, consistent comparison in N-version systems, descriptions of the faults found in the Knight and Leveson experiment, analytic models of comparison testing, characteristics of the input regions that trigger faults, fault tolerance through data diversity, and the relationship between failures caused by automatically seeded faults.

  14. Multiple Fault Isolation in Redundant Systems

    NASA Technical Reports Server (NTRS)

    Pattipati, Krishna R.

    1997-01-01

    Fault diagnosis in large-scale systems that are products of modem technology present formidable challenges to manufacturers and users. This is due to large number of failure sources in such systems and the need to quickly isolate and rectify failures with minimal down time. In addition, for fault-tolerant systems and systems with infrequent opportunity for maintenance (e.g., Hubble telescope, space station), the assumption of at most a single fault in the system is unrealistic. In this project, we have developed novel block and sequential diagnostic strategies to isolate multiple faults in the shortest possible time without making the unrealistic single fault assumption.

  15. Managing Space System Faults: Coalescing NASA's Views

    NASA Technical Reports Server (NTRS)

    Muirhead, Brian; Fesq, Lorraine

    2012-01-01

    Managing faults and their resultant failures is a fundamental and critical part of developing and operating aerospace systems. Yet, recent studies have shown that the engineering "discipline" required to manage faults is not widely recognized nor evenly practiced within the NASA community. Attempts to simply name this discipline in recent years has been fraught with controversy among members of the Integrated Systems Health Management (ISHM), Fault Management (FM), Fault Protection (FP), Hazard Analysis (HA), and Aborts communities. Approaches to managing space system faults typically are unique to each organization, with little commonality in the architectures, processes and practices across the industry.

  16. The origin of detachment fault systems in core complexes

    SciTech Connect

    Scott, R.J.; Lister, G.S. . Dept. of Earth Sciences)

    1992-01-01

    At Planet Peak in the Buckskin Mountains, AZ, lower plate rocks are cut by numerous faults, the largest being moderate to gently, N to NE dipping normal faults with displacements from 10--100 meters. Superficially the structure of the lower plate appears similar to that of the upper plate, emphasizing the importance of brittle deformation in the evolution of the lower plate. This feature is inconsistent with recent models for core complexes in which the lower plate has low flexural strength. Mylonitic fabrics are best developed in the vicinity of Tertiary, mafic to intermediate intrusives. Where the intrusives are absent, lower plate rocks preserve the steeply dipping, NE-trending Proterozoic fabric. Typically the intrusives are far more intensely deformed than the adjacent wallrocks, indicating strain was localized within them. Local discordance between the mylonitic fabric in the intrusives and that in the wallrocks is the result of both intrusives cross-cutting earlier mylonitic fabrics and fault localization along intrusive contacts. The authors infer the association of mylonites and Tertiary intrusives to imply transient ductile deformation occurred in the thermal aureoles of shallow level intrusives, at less sand possibly much less than 10 km depth. Although thin igneous bodies implaced at shallow levels would be expected to cool extremely rapidly, the initial localization of strain may result in strain softening [+-] shear heating sufficient to enable further localized strain well after the initial heat input should have dissipated. Along the western Planet Peak, the Buckskin fault forms the upper contact to a thick suite of syn-extensional intrusives, lithologically similar to those of the Oligocene-Miocene lutonic complex that comprises 30% of the exposed lower plate in the Buckskin and Rawhide Mountains. They propose that core complex formation and detachment faulting are related to shallow level intrusion during Oligocene-Miocene extension of the region.

  17. On-line fault diagnosis of power substation using connectionist expert system

    SciTech Connect

    Yang, H.T.; Chang, W.Y.; Huang, C.L.

    1995-02-01

    This paper proposes a new connectionist (or neural network) expert system for on-line fault diagnosis of a power substation. The Connectionist Expert Diagnosis System has similar profile of an expert system, but can be constructed much more easily from elemental samples. These samples associate the faults with their protective relays and breakers as well as the bus voltages and feeder currents. Through an elaborately designed structure, alarm signals are processed by different connectionist models. The output of the connectionist models is then integrated to provide the final conclusion with a confidence level. The proposed approach has been practically verified by testing on a typical Taiwan Power (Taipower) secondary substation. The test results show that rapid and exactly correct diagnosis is obtained even for the fault conditions involving multiple faults or failure operation of protective relay and circuit breaker. Moreover, the system can be transplanted into various substations with little additional implementation effort.

  18. Frictional strength and heat flow of southern San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Zhu, P. P.

    2016-01-01

    Frictional strength and heat flow of faults are two related subjects in geophysics and seismology. To date, the investigation on regional frictional strength and heat flow still stays at the stage of qualitative estimation. This paper is concentrated on the regional frictional strength and heat flow of the southern San Andreas Fault (SAF). Based on the in situ borehole measured stress data, using the method of 3D dynamic faulting analysis, we quantitatively determine the regional normal stress, shear stress, and friction coefficient at various seismogenic depths. These new data indicate that the southern SAF is a weak fault within the depth of 15 km. As depth increases, all the regional normal and shear stresses and friction coefficient increase. The former two increase faster than the latter. Regional shear stress increment per kilometer equals 5.75 ± 0.05 MPa/km for depth ≤15 km; regional normal stress increment per kilometer is equal to 25.3 ± 0.1 MPa/km for depth ≤15 km. As depth increases, regional friction coefficient increment per kilometer decreases rapidly from 0.08 to 0.01/km at depths less than ~3 km. As depth increases from ~3 to ~5 km, it is 0.01/km and then from ~5 to 15 km, and it is 0.002/km. Previously, frictional strength could be qualitatively determined by heat flow measurements. It is difficult to obtain the quantitative heat flow data for the SAF because the measured heat flow data exhibit large scatter. However, our quantitative results of frictional strength can be employed to investigate the heat flow in the southern SAF. We use a physical quantity P f to describe heat flow. It represents the dissipative friction heat power per unit area generated by the relative motion of two tectonic plates accommodated by off-fault deformation. P f is called "fault friction heat." On the basis of our determined frictional strength data, utilizing the method of 3D dynamic faulting analysis, we quantitatively determine the regional long-term fault

  19. Experiments in fault tolerant software reliability

    NASA Technical Reports Server (NTRS)

    Mcallister, David F.; Vouk, Mladen A.

    1989-01-01

    Twenty functionally equivalent programs were built and tested in a multiversion software experiment. Following unit testing, all programs were subjected to an extensive system test. In the process sixty-one distinct faults were identified among the versions. Less than 12 percent of the faults exhibited varying degrees of positive correlation. The common-cause (or similar) faults spanned as many as 14 components. However, a majority of these faults were trivial, and easily detected by proper unit and/or system testing. Only two of the seven similar faults were difficult faults, and both were caused by specification ambiguities. One of these faults exhibited variable identical-and-wrong response span, i.e. response span which varied with the testing conditions and input data. Techniques that could have been used to avoid the faults are discussed. For example, it was determined that back-to-back testing of 2-tuples could have been used to eliminate about 90 percent of the faults. In addition, four of the seven similar faults could have been detected by using back-to-back testing of 5-tuples. It is believed that most, if not all, similar faults could have been avoided had the specifications been written using more formal notation, the unit testing phase was subject to more stringent standards and controls, and better tools for measuring the quality and adequacy of the test data (e.g. coverage) were used.

  20. Model-Based Fault Tolerant Control

    NASA Technical Reports Server (NTRS)

    Kumar, Aditya; Viassolo, Daniel

    2008-01-01

    The Model Based Fault Tolerant Control (MBFTC) task was conducted under the NASA Aviation Safety and Security Program. The goal of MBFTC is to develop and demonstrate real-time strategies to diagnose and accommodate anomalous aircraft engine events such as sensor faults, actuator faults, or turbine gas-path component damage that can lead to in-flight shutdowns, aborted take offs, asymmetric thrust/loss of thrust control, or engine surge/stall events. A suite of model-based fault detection algorithms were developed and evaluated. Based on the performance and maturity of the developed algorithms two approaches were selected for further analysis: (i) multiple-hypothesis testing, and (ii) neural networks; both used residuals from an Extended Kalman Filter to detect the occurrence of the selected faults. A simple fusion algorithm was implemented to combine the results from each algorithm to obtain an overall estimate of the identified fault type and magnitude. The identification of the fault type and magnitude enabled the use of an online fault accommodation strategy to correct for the adverse impact of these faults on engine operability thereby enabling continued engine operation in the presence of these faults. The performance of the fault detection and accommodation algorithm was extensively tested in a simulation environment.

  1. Tool for Viewing Faults Under Terrain

    NASA Technical Reports Server (NTRS)

    Siegel, Herbert, L.; Li, P. Peggy

    2005-01-01

    Multi Surface Light Table (MSLT) is an interactive software tool that was developed in support of the QuakeSim project, which has created an earthquake- fault database and a set of earthquake- simulation software tools. MSLT visualizes the three-dimensional geometries of faults embedded below the terrain and animates time-varying simulations of stress and slip. The fault segments, represented as rectangular surfaces at dip angles, are organized into collections, that is, faults. An interface built into MSLT queries and retrieves fault definitions from the QuakeSim fault database. MSLT also reads time-varying output from one of the QuakeSim simulation tools, called "Virtual California." Stress intensity is represented by variations in color. Slips are represented by directional indicators on the fault segments. The magnitudes of the slips are represented by the duration of the directional indicators in time. The interactive controls in MSLT provide a virtual track-ball, pan and zoom, translucency adjustment, simulation playback, and simulation movie capture. In addition, geographical information on the fault segments and faults is displayed on text windows. Because of the extensive viewing controls, faults can be seen in relation to one another, and to the terrain. These relations can be realized in simulations. Correlated slips in parallel faults are visible in the playback of Virtual California simulations.

  2. A Quaternary fault database for central Asia

    NASA Astrophysics Data System (ADS)

    Mohadjer, Solmaz; Ehlers, Todd Alan; Bendick, Rebecca; Stübner, Konstanze; Strube, Timo

    2016-02-01

    Earthquakes represent the highest risk in terms of potential loss of lives and economic damage for central Asian countries. Knowledge of fault location and behavior is essential in calculating and mapping seismic hazard. Previous efforts in compiling fault information for central Asia have generated a large amount of data that are published in limited-access journals with no digital maps publicly available, or are limited in their description of important fault parameters such as slip rates. This study builds on previous work by improving access to fault information through a web-based interactive map and an online database with search capabilities that allow users to organize data by different fields. The data presented in this compilation include fault location, its geographic, seismic, and structural characteristics, short descriptions, narrative comments, and references to peer-reviewed publications. The interactive map displays 1196 fault traces and 34 000 earthquake locations on a shaded-relief map. The online database contains attributes for 123 faults mentioned in the literature, with Quaternary and geodetic slip rates reported for 38 and 26 faults respectively, and earthquake history reported for 39 faults. All data are accessible for viewing and download via http://www.geo.uni-tuebingen.de/faults/. This work has implications for seismic hazard studies in central Asia as it summarizes important fault parameters, and can reduce earthquake risk by enhancing public access to information. It also allows scientists and hazard assessment teams to identify structures and regions where data gaps exist and future investigations are needed.

  3. Arc burst pattern analysis fault detection system

    NASA Technical Reports Server (NTRS)

    Russell, B. Don (Inventor); Aucoin, B. Michael (Inventor); Benner, Carl L. (Inventor)

    1997-01-01

    A method and apparatus are provided for detecting an arcing fault on a power line carrying a load current. Parameters indicative of power flow and possible fault events on the line, such as voltage and load current, are monitored and analyzed for an arc burst pattern exhibited by arcing faults in a power system. These arcing faults are detected by identifying bursts of each half-cycle of the fundamental current. Bursts occurring at or near a voltage peak indicate arcing on that phase. Once a faulted phase line is identified, a comparison of the current and voltage reveals whether the fault is located in a downstream direction of power flow toward customers, or upstream toward a generation station. If the fault is located downstream, the line is de-energized, and if located upstream, the line may remain energized to prevent unnecessary power outages.

  4. Multiple Fault Isolation in Redundant Systems

    NASA Technical Reports Server (NTRS)

    Shakeri, M.; Pattipati, Krishna R.; Raghavan, V.; Patterson-Hine, Ann; Iverson, David L.

    1997-01-01

    We consider the problem of sequencing tests to isolate multiple faults in redundant (fault-tolerant) systems with minimum expected testing cost (time). It can be shown that single faults and minimal faults, i.e., minimum number of failures with a failure signature different from the union of failure signatures of individual failures, together with their failure signatures, constitute the necessary information for fault diagnosis in redundant systems. In this paper, we develop an algorithm to find all the minimal faults and their failure signatures. Then, we extend the Sure diagnostic strategies [1] of our previous work to diagnose multiple faults in redundant systems. The proposed algorithms and strategies are illustrated using several examples.

  5. Parallel fault-tolerant robot control

    NASA Technical Reports Server (NTRS)

    Hamilton, D. L.; Bennett, J. K.; Walker, I. D.

    1992-01-01

    A shared memory multiprocessor architecture is used to develop a parallel fault-tolerant robot controller. Several versions of the robot controller are developed and compared. A robot simulation is also developed for control observation. Comparison of a serial version of the controller and a parallel version without fault tolerance showed the speedup possible with the coarse-grained parallelism currently employed. The performance degradation due to the addition of processor fault tolerance was demonstrated by comparison of these controllers with their fault-tolerant versions. Comparison of the more fault-tolerant controller with the lower-level fault-tolerant controller showed how varying the amount of redundant data affects performance. The results demonstrate the trade-off between speed performance and processor fault tolerance.

  6. Alp Transit: Crossing Faults 44 and 49

    NASA Astrophysics Data System (ADS)

    El Tani, M.; Bremen, R.

    2014-05-01

    This paper describes the crossing of faults 44 and 49 when constructing the 57 km Gotthard base tunnel of the Alp Transit project. Fault 44 is a permeable fault that triggered significant surface deformations 1,400 m above the tunnel when it was reached by the advancing excavation. The fault runs parallel to the downstream face of the Nalps arch dam. Significant deformations were measured at the dam crown. Fault 49 is sub-vertical and permeable, and runs parallel at the upstream face of the dam. It was necessary to assess the risk when crossing fault 49, as a limit was put on the acceptable dam deformation for structural safety. The simulation model, forecasts and action decided when crossing over the faults are presented, with a brief description of the tunnel, the dam, and the monitoring system.

  7. A “mesh” of crossing faults: Fault networks of southern California

    NASA Astrophysics Data System (ADS)

    Janecke, S. U.

    2009-12-01

    Detailed geologic mapping of active fault systems in the western Salton Trough and northern Peninsular Ranges of southern California make it possible to expand the inventory of mapped and known faults by compiling and updating existing geologic maps, and analyzing high resolution imagery, LIDAR, InSAR, relocated hypocenters and other geophysical datasets. A fault map is being compiled on Google Earth and will ultimately discriminate between a range of different fault expressions: from well-mapped faults to subtle lineaments and geomorphic anomalies. The fault map shows deformation patterns in both crystalline and basinal deposits and reveals a complex fault mesh with many curious and unexpected relationships. Key findings are: 1) Many fault systems have mutually interpenetrating geometries, are grossly coeval, and allow faults to cross one another. A typical relationship reveals a dextral fault zone that appears to be continuous at the regional scale. In detail, however, there are no continuous NW-striking dextral fault traces and instead the master dextral fault is offset in a left-lateral sense by numerous crossing faults. Left-lateral faults also show small offsets where they interact with right lateral faults. Both fault sets show evidence of Quaternary activity. Examples occur along the Clark, Coyote Creek, Earthquake Valley and Torres Martinez fault zones. 2) Fault zones cross in other ways. There are locations where active faults continue across or beneath significant structural barriers. Major fault zones like the Clark fault of the San Jacinto fault system appears to end at NE-striking sinistral fault zones (like the Extra and Pumpkin faults) that clearly cross from the SW to the NE side of the projection of the dextral traces. Despite these blocking structures, there is good evidence for continuation of the dextral faults on the opposite sides of the crossing fault array. In some instances there is clear evidence (in deep microseismic alignments of

  8. Evolution of the Permeability Architecture of the Baton Rouge Fault Zone, Louisiana Gulf Coastal Plain

    NASA Astrophysics Data System (ADS)

    Hanor, J. S.; Chamberlain, E. L.; Tsai, F. T.

    2011-12-01

    The Baton Rouge fault is a west-east trending, south-dipping listric fault in Louisiana, which offsets a thick sequence of unconsolidated siliciclastic sediments, the upper kilometer of which includes the Baton Rouge aquifer system. The Baton Rouge aquifer system consists of a series of complexly interbedded fluvial-deltaic sands and mudstones ranging in age from the late Miocene to the Pleistocene and dipping to the south. The high proportion of mudstones in the stratigraphic section, approximately 55 percent, reflects deposition in a rapidly aggrading setting. The fault was reactivated in the early Pleistocene, and the aquifer sands are offset by the same slip, 120 m. The fault is of significant hydrogeologic and environmental importance because it marks a sharp boundary between fresh water sands to the north and brackish water sands to the south. Large withdrawal of fresh water has resulted in the migration of brackish waters to the north from the fault and the progressive salinization of the groundwater supply. Migration of salt water up the fault and/or across the fault have been proposed as causes. Understanding the permeability architecture of the fault zone is of critical importance in developing strategies for controlling salinization. We have made an evaluation of the possible present permeability of the fault zone using an algorithm developed by Bense and Person [2006] which is based on the amount of slip on a fault and the clay-content of the sedimentary units flanking a fault. The algorithm provides an estimation of the present width and permeability of the fault zone and how the permeability architecture has evolved with time as offset on the fault has progressively increased. The basic geologic input is lithostratigraphy derived from SP-resistivity logs from wells immediately north and south of the fault over a 425 m high by 34 km wide area of the fault plane. The results of our calculations are as follows: the average fault zone width increases as a

  9. Tracing the Geomorphic Signature of Lateral Faulting

    NASA Astrophysics Data System (ADS)

    Duvall, A. R.; Tucker, G. E.

    2012-12-01

    Active strike-slip faults are among the most dangerous geologic features on Earth. Unfortunately, it is challenging to estimate their slip rates, seismic hazard, and evolution over a range of timescales. An under-exploited tool in strike-slip fault characterization is quantitative analysis of the geomorphic response to lateral fault motion to extract tectonic information directly from the landscape. Past geomorphic work of this kind has focused almost exclusively on vertical motion, despite the ubiquity of horizontal motion in crustal deformation and mountain building. We seek to address this problem by investigating the landscape response to strike-slip faulting in two ways: 1) examining the geomorphology of the Marlborough Fault System (MFS), a suite of parallel strike-slip faults within the actively deforming South Island of New Zealand, and 2) conducting controlled experiments in strike-slip landscape evolution using the CHILD landscape evolution model. The MFS offers an excellent natural experiment site because fault initiation ages and cumulative displacements decrease from north to south, whereas slip rates increase over four fold across a region underlain by a single bedrock unit (Torlesse Greywacke). Comparison of planform and longitudinal profiles of rivers draining the MFS reveals strong disequilibrium within tributaries that drain to active fault strands, and suggests that river capture related to fault activity may be a regular process in strike-slip fault zones. Simple model experiments support this view. Model calculations that include horizontal motion as well as vertical uplift demonstrate river lengthening and shortening due to stream capture in response to shutter ridges sliding in front of stream outlets. These results suggest that systematic variability in fluvial knickpoint location, drainage area, and incision rates along different faults or fault segments may be expected in catchments upstream of strike-slip faults and could act as useful

  10. Has the San Gabriel fault been offset

    SciTech Connect

    Sheehan, J.R.

    1988-03-01

    The San Gabriel fault (SGF) in southern California is a right-lateral, strike-slip fault extending for 85 mi in an arcuate, southwestward-bowing curve from near the San Andreas fault at Frazier Mountain to its intersection with the left-lateral San Antonio Canyon fault (SACF) in the eastern San Gabriel Mountains. Termination of the SGF at the presently active SACF is abrupt and prompts the question Has the San Gabriel Fault been offset. Tectonic and geometric relationships in the area suggest that the SGF has been offset approximately 6 mi in a left-lateral sense and that the offset continuation of the SGF, across the SACF, is the right-lateral, strike-slip San Jacinto fault (SJF), which also terminates at the SACF. Reversing the left-lateral movement on the SACF to rejoin the offset ends of the SGF and SJF reveals a fault trace that is remarkably similar in geometry and movement (and perhaps in tectonic history), to the trace of the San Andreas fault through the southern part of the San Bernardino Mountains. The relationship of the Sierra Madre-Cucamonga fault system to the restored SGF-SJF fault is strikingly similar to the relationship of the Banning fault to the Mission Creek-Mill Creek portion of the San Andreas fault. Structural relations suggest that the San Gabriel-San Jacinto system predates the San Andreas fault in the eastern San Gabriel Mountains and that continuing movement on the SACF is currently affecting the trace of the San Andreas fault in the Cajon Pass area.

  11. Fault trees and imperfect coverage

    NASA Technical Reports Server (NTRS)

    Dugan, Joanne B.

    1989-01-01

    A new algorithm is presented for solving the fault tree. The algorithm includes the dynamic behavior of the fault/error handling model but obviates the need for the Markov chain solution. As the state space is expanded in a breadth-first search (the same is done in the conversion to a Markov chain), the state's contribution to each future state is calculated exactly. A dynamic state truncation technique is also presented; it produces bounds on the unreliability of the system by considering only part of the state space. Since the model is solved as the state space is generated, the process can be stopped as soon as the desired accuracy is reached.

  12. Perspective View, San Andreas Fault

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The prominent linear feature straight down the center of this perspective view is California's famous San Andreas Fault. The image, created with data from NASA's Shuttle Radar Topography Mission (SRTM), will be used by geologists studying fault dynamics and landforms resulting from active tectonics. This segment of the fault lies west of the city of Palmdale, Calif., about 100 kilometers (about 60 miles) northwest of Los Angeles. The fault is the active tectonic boundary between the North American plate on the right, and the Pacific plate on the left. Relative to each other, the Pacific plate is moving away from the viewer and the North American plate is moving toward the viewer along what geologists call a right lateral strike-slip fault. Two large mountain ranges are visible, the San Gabriel Mountains on the left and the Tehachapi Mountains in the upper right. Another fault, the Garlock Fault lies at the base of the Tehachapis; the San Andreas and the Garlock Faults meet in the center distance near the town of Gorman. In the distance, over the Tehachapi Mountains is California's Central Valley. Along the foothills in the right hand part of the image is the Antelope Valley, including the Antelope Valley California Poppy Reserve. The data used to create this image were acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000.

    This type of display adds the important dimension of elevation to the study of land use and environmental processes as observed in satellite images. The perspective view was created by draping a Landsat satellite image over an SRTM elevation model. Topography is exaggerated 1.5 times vertically. The Landsat image was provided by the United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota.

    SRTM uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space

  13. Heat flow, strong near-fault seismic waves, and near-fault tectonics on the central San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Sleep, Norman H.

    2016-05-01

    The main San Andreas Fault strikes subparallel to compressional folds and thrust faults. Its fault-normal traction is on average a factor of γ=1+2μthr>(√(1+μthr2)+μthr>), where μthr is the coefficient of friction for thrust faults, times the effective lithostatic pressure. A useful upper limit for μthr of 0.6 (where γ is 3.12) is obtained from the lack of heat flow anomalies by considering off-fault convergence at a rate of 1 mm/yr for 10 km across strike. If the fault-normal traction is in fact this high, the well-known heat flow constraint of average stresses of 10-20 MPa during strike slip on the main fault becomes more severe. Only a few percent of the total slip during earthquakes can occur at the peak stress before dynamic mechanisms weaken the fault. The spatial dimension of the high-stress rupture-tip zone is ˜10 m for γ = 3.12 and, for comparison, ˜100 m for γ = 1. High dynamic stresses during shaking occur within these distances of the fault plane. In terms of scalars, fine-scale tectonic stresses cannot exceed the difference between failure stress and dynamic stress. Plate-scale slip causes stresses to build up near geometrical irregularities of the fault plane. Strong dynamic stresses near the rupture tip facilitate anelastic deformation with the net effects of relaxing the local deviatoric tectonic stress and accommodating deformation around the irregularities. There also is a mild tendency for near-fault material to extrude upward. Slip on minor thrust faults causes the normal traction on the main fault to be spatially variable.

  14. New insights on Southern Coyote Creek Fault and Superstition Hills Fault

    NASA Astrophysics Data System (ADS)

    van Zandt, A. J.; Mellors, R. J.; Rockwell, T. K.; Burgess, M. K.; O'Hare, M.

    2007-12-01

    Recent field work has confirmed an extension of the southern Coyote Creek (CCF) branch of the San Jacinto fault in the western Salton trough. The fault marks the western edge of an area of subsidence caused by groundwater extraction, and field measurements suggest that recent strike-slip motion has occurred on this fault as well. We attempt to determine whether this fault connects at depth with the Superstition Hills fault (SHF) to the southeast by modeling observed surface deformation between the two faults measured by InSAR. Stacked ERS (descending) InSAR data from 1992 to 2000 is initially modeled using a finite fault in an elastic half-space. Observed deformation along the SHF and Elmore Ranch fault is modeled assuming shallow (< 5 km) creep. We test various models to explain surface deformation between the two faults.

  15. Fault growth and interactions in a multiphase rift fault network: Horda Platform, Norwegian North Sea

    NASA Astrophysics Data System (ADS)

    Duffy, Oliver B.; Bell, Rebecca E.; Jackson, Christopher A.-L.; Gawthorpe, Rob L.; Whipp, Paul S.

    2015-11-01

    Physical models predict that multiphase rifts that experience a change in extension direction between stretching phases will typically develop non-colinear normal fault sets. Furthermore, multiphase rifts will display a greater frequency and range of styles of fault interactions than single-phase rifts. Although these physical models have yielded useful information on the evolution of fault networks in map view, the true 3D geometry of the faults and associated interactions are poorly understood. Here, we use an integrated 3D seismic reflection and borehole dataset to examine a range of fault interactions that occur in a natural multiphase fault network in the northern Horda Platform, northern North Sea. In particular we aim to: i) determine the range of styles of fault interaction that occur between non-colinear faults; ii) examine the typical geometries and throw patterns associated with each of these different styles; and iii) highlight the differences between single-phase and multiphase rift fault networks. Our study focuses on a ca. 350 km2 region around the >60 km long, N-S-striking Tusse Fault, a normal fault system that was active in the Permian-Triassic and again in the Late Jurassic-to-Early Cretaceous. The Tusse Fault is one of a series of large (>1500 m throw) N-S-striking faults forming part of the northern Horda Platform fault network, which includes numerous smaller (2-10 km long), lower throw (<100 m), predominantly NW-SE-striking faults that were only active during the Late Jurassic to Early Cretaceous. We examine how the 2nd-stage NW-SE-striking faults grew, interacted and linked with the N-S-striking Tusse Fault, documenting a range of interaction styles including mechanical and kinematic isolation, abutment, retardation and reactivated relays. Our results demonstrate that: i) isolated, and abutting interactions are the most common fault interaction styles in the northern Horda Platform; ii) pre-existing faults can act as sites of nucleation for

  16. Inverter Ground Fault Overvoltage Testing

    SciTech Connect

    Hoke, Andy; Nelson, Austin; Chakraborty, Sudipta; Chebahtah, Justin; Wang, Trudie; McCarty, Michael

    2015-08-12

    This report describes testing conducted at NREL to determine the duration and magnitude of transient overvoltages created by several commercial PV inverters during ground fault conditions. For this work, a test plan developed by the Forum on Inverter Grid Integration Issues (FIGII) has been implemented in a custom test setup at NREL. Load rejection overvoltage test results were reported previously in a separate technical report.

  17. Fault detection using genetic programming

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; B. Jack, Lindsay; Nandi, Asoke K.

    2005-03-01

    Genetic programming (GP) is a stochastic process for automatically generating computer programs. GP has been applied to a variety of problems which are too wide to reasonably enumerate. As far as the authors are aware, it has rarely been used in condition monitoring (CM). In this paper, GP is used to detect faults in rotating machinery. Featuresets from two different machines are used to examine the performance of two-class normal/fault recognition. The results are compared with a few other methods for fault detection: Artificial neural networks (ANNs) have been used in this field for many years, while support vector machines (SVMs) also offer successful solutions. For ANNs and SVMs, genetic algorithms have been used to do feature selection, which is an inherent function of GP. In all cases, the GP demonstrates performance which equals or betters that of the previous best performing approaches on these data sets. The training times are also found to be considerably shorter than the other approaches, whilst the generated classification rules are easy to understand and independently validate.

  18. Watching Faults Grow in Sand

    NASA Astrophysics Data System (ADS)

    Cooke, M. L.

    2015-12-01

    Accretionary sandbox experiments provide a rich environment for investigating the processes of fault development. These experiments engage students because 1) they enable direct observation of fault growth, which is impossible in the crust (type 1 physical model), 2) they are not only representational but can also be manipulated (type 2 physical model), 3) they can be used to test hypotheses (type 3 physical model) and 4) they resemble experiments performed by structural geology researchers around the world. The structural geology courses at UMass Amherst utilize a series of accretionary sandboxes experiments where students first watch a video of an experiment and then perform a group experiment. The experiments motivate discussions of what conditions they would change and what outcomes they would expect from these changes; hypothesis development. These discussions inevitably lead to calculations of the scaling relationships between model and crustal fault growth and provide insight into the crustal processes represented within the dry sand. Sketching of the experiments has been shown to be a very effective assessment method as the students reveal which features they are analyzing. Another approach used at UMass is to set up a forensic experiment. The experiment is set up with spatially varying basal friction before the meeting and students must figure out what the basal conditions are through the experiment. This experiment leads to discussions of equilibrium and force balance within the accretionary wedge. Displacement fields can be captured throughout the experiment using inexpensive digital image correlation techniques to foster quantitative analysis of the experiments.

  19. CONTROL AND FAULT DETECTOR CIRCUIT

    DOEpatents

    Winningstad, C.N.

    1958-04-01

    A power control and fault detectcr circuit for a radiofrequency system is described. The operation of the circuit controls the power output of a radio- frequency power supply to automatically start the flow of energizing power to the radio-frequency power supply and to gradually increase the power to a predetermined level which is below the point where destruction occurs upon the happening of a fault. If the radio-frequency power supply output fails to increase during such period, the control does not further increase the power. On the other hand, if the output of the radio-frequency power supply properly increases, then the control continues to increase the power to a maximum value. After the maximumn value of radio-frequency output has been achieved. the control is responsive to a ''fault,'' such as a short circuit in the radio-frequency system being driven, so that the flow of power is interrupted for an interval before the cycle is repeated.

  20. Data and Visualizations in the Southern California Earthquake Center's Fault Information System

    NASA Astrophysics Data System (ADS)

    Perry, S.

    2003-12-01

    The Southern California Earthquake Center's Fault Information System (FIS) provides a single point of access to fault-related data and models from multiple databases and datasets. The FIS is built of computer code, metadata and Web interfaces based on Web services technology, which enables queries and data interchange irrespective of computer software or platform. Currently we have working prototypes of programmatic and browser-based access. The first generation FIS may be searched and downloaded live, by automated processes, as well as interactively, by humans using a browser. Users get ascii data in plain text or encoded in XML. Via the Earthquake Information Technology (EIT) Interns (Juve and others, this meeting), we are also testing the effectiveness of querying multiple databases using a fault database ontology. For more than a decade, the California Geological Survey (CGS), SCEC, and the U. S. Geological Survey (USGS) have put considerable, shared resources into compiling and assessing published fault data, then providing the data on the Web. Several databases now exist, with different formats, datasets, purposes, and users, in various stages of completion. When fault databases were first envisioned, the full power of today's internet was not yet recognized, and the databases became the Web equivalents of review papers, where one could read an overview summation of a fault, then copy and paste pertinent data. Today, numerous researchers also require rapid queries and downloads of data. Consequently, the first components of the FIS are MySQL databases that deliver numeric values from earlier, text-based databases. Another essential service provided by the FIS is visualizations of fault representations such as those in SCEC's Community Fault Model. The long term goal is to provide a standardized, open-source, platform-independent visualization technique. Currently, the FIS makes available fault model viewing software for users with access to Matlab or Java3D

  1. Total Vertical Offset for the Beichuan Fault (Longmen Shan, Sichuan, China) Deduced from Metamorphic Minerals

    NASA Astrophysics Data System (ADS)

    Airaghi, L.; de Sigoyer, J.; Vidal, O.; Lanari, P.; Tan, X. B.; Xu, X.; Guillot, S.

    2015-12-01

    The paradox of high topography but low convergence rates in the Longmen Shan mountain belt, at the eastern margin of Tibetan plateau (Sichuan, China) leaded to an underestimation of the seismic hazard prior to the Wenchuan earthquake Mw 7.9 (2008). The rupture affected the crustal Beichuan fault, with both thrusting and dextral slide slip components. This fault is responsible for the exhumation of the basement over Triassic sediments. Several paleoseismological studies have well constrained the Quaternary activity of this fault, and thermochronological data show a rapid exhumation starting from Oligocene. The total offset of the Beichuan fault remains unknown. Samples collected in the hanging wall of the Beichuan fault, yield stable white mica, chlorite, epidote and quartz. Chemical and thermobarometric analyses of metamorphic minerals yield metamorphic peak conditions at 300±50°C and 7-8 kbar. Such P,T conditions suggest burial to 18-20 km depth, and represent the maximum vertical offset of the Beichuan fault. Comparison of results from distant sampled sites along the Beichuan fault reveals the spatial continuity of this offset along the Beichuan fault. The attainment of peak pressure conditions will be dated using in-situ laser ablation 40Ar/39Ar dating of the metamorphic micas. This will help constrain the onset of Beichuan fault activation, which corresponds to the onset of thick skin deformation in the Longmen Shan. [CW1]I deleted all this stuff below because I thought it was too much information for a conference abstract - but you do have space to put it back.

  2. Earthquake nucleation on faults with rate-and state-dependent strength

    USGS Publications Warehouse

    Dieterich, J.H.

    1992-01-01

    Dieterich, J.H., 1992. Earthquake nucleation on faults with rate- and state-dependent strength. In: T. Mikumo, K. Aki, M. Ohnaka, L.J. Ruff and P.K.P. Spudich (Editors), Earthquake Source Physics and Earthquake Precursors. Tectonophysics, 211: 115-134. Faults with rate- and state-dependent constitutive properties reproduce a range of observed fault slip phenomena including spontaneous nucleation of slip instabilities at stresses above some critical stress level and recovery of strength following slip instability. Calculations with a plane-strain fault model with spatially varying properties demonstrate that accelerating slip precedes instability and becomes localized to a fault patch. The dimensions of the fault patch follow scaling relations for the minimum critical length for unstable fault slip. The critical length is a function of normal stress, loading conditions and constitutive parameters which include Dc, the characteristic slip distance. If slip starts on a patch that exceeds the critical size, the length of the rapidly accelerating zone tends to shrink to the characteristic size as the time of instability approaches. Solutions have been obtained for a uniform, fixed-patch model that are in good agreement with results from the plane-strain model. Over a wide range of conditions, above the steady-state stress, the logarithm of the time to instability linearly decreases as the initial stress increases. Because nucleation patch length and premonitory displacement are proportional to Dc, the moment of premonitory slip scales by D3c. The scaling of Dc is currently an open question. Unless Dc for earthquake faults is significantly greater than that observed on laboratory faults, premonitory strain arising from the nucleation process for earthquakes may by too small to detect using current observation methods. Excluding the possibility that Dc in the nucleation zone controls the magnitude of the subsequent earthquake, then the source dimensions of the smallest

  3. Elevated time-dependent strengthening rates observed in San Andreas Fault drilling samples

    NASA Astrophysics Data System (ADS)

    Ikari, Matt J.; Carpenter, Brett M.; Vogt, Christoph; Kopf, Achim J.

    2016-09-01

    The central San Andreas Fault in California is known as a creeping fault, however recent studies have shown that it may be accumulating a slip deficit and thus its seismogenic potential should be seriously considered. We conducted laboratory friction experiments measuring time-dependent frictional strengthening (healing) on fault zone and wall rock samples recovered during drilling at the San Andreas Fault Observatory at Depth (SAFOD), located near the southern edge of the creeping section and in the direct vicinity of three repeating microearthquake clusters. We find that for hold times of up to 3000 s, frictional healing follows a log-linear dependence on hold time and that the healing rate is very low for a sample of the actively shearing fault core, consistent with previous results. However, considering longer hold times up to ∼350,000 s, the healing rate accelerates such that the data for all samples are better described by a power law relation. In general, samples having a higher content of phyllosilicate minerals exhibit low log-linear healing rates, and the notably clay-rich fault zone sample also exhibits strong power-law healing when longer hold times are included. Our data suggest that weak faults, such as the creeping section of the San Andreas Fault, can accumulate interseismic shear stress more rapidly than expected from previous friction data. Using the power-law dependence of frictional healing on hold time, calculations of recurrence interval and stress drop based on our data accurately match observations of discrete creep events and repeating Mw = 2 earthquakes on the San Andreas Fault.

  4. Dynamic Modelling of Fault Slip Induced by Stress Waves due to Stope Production Blasts

    NASA Astrophysics Data System (ADS)

    Sainoki, Atsushi; Mitri, Hani S.

    2016-01-01

    Seismic events can take place due to the interaction of stress waves induced by stope production blasts with faults located in close proximity to stopes. The occurrence of such seismic events needs to be controlled to ensure the safety of the mine operators and the underground mine workings. This paper presents the results of a dynamic numerical modelling study of fault slip induced by stress waves resulting from stope production blasts. First, the calibration of a numerical model having a single blast hole is performed using a charge weight scaling law to determine blast pressure and damping coefficient of the rockmass. Subsequently, a numerical model of a typical Canadian metal mine encompassing a fault parallel to a tabular ore deposit is constructed, and the simulation of stope extraction sequence is carried out with static analyses until the fault exhibits slip burst conditions. At that point, the dynamic analysis begins by applying the calibrated blast pressure to the stope wall in the form of velocities generated by the blast holes. It is shown from the results obtained from the dynamic analysis that the stress waves reflected on the fault create a drop of normal stresses acting on the fault, which produces a reduction in shear stresses while resulting in fault slip. The influence of blast sequences on the behaviour of the fault is also examined assuming several types of blast sequences. Comparison of the blast sequence simulation results indicates that performing simultaneous blasts symmetrically induces the same level of seismic events as separate blasts, although seismic energy is more rapidly released when blasts are performed symmetrically. On the other hand when nine blast holes are blasted simultaneously, a large seismic event is induced, compared to the other two blasts. It is concluded that the separate blasts might be employed under the adopted geological conditions. The developed methodology and procedure to arrive at an ideal blast sequence can

  5. From fissure to fault: A model of fault growth in the Krafla Fissure System, NE Iceland

    NASA Astrophysics Data System (ADS)

    Bramham, Emma; Paton, Douglas; Wright, Tim

    2015-04-01

    Current models of fault growth examine the relationship of fault length (L) to vertical displacement (D) where the faults exhibit the classic fault shape of gradually increasing vertical displacement from zero at the fault tips to a maximum displacement (Dmax) at the middle of the fault. These models cannot adequately explain displacement-length observations at the Krafla fissure swarm, in Iceland's northern volcanic zone, where we observe that many of the faults with significant vertical displacements still retain fissure-like features, with no vertical displacement, along portions of their lengths. We have created a high resolution digital elevation model (DEM) of the Krafla region using airborne LiDAR and measured the displacement/length profiles of 775 faults, with lengths ranging from 10s to 1000s of metres. We have categorised the faults based on the proportion of the profile that was still fissure-like. Fully-developed faults (no fissure-like regions) were further grouped into those with profiles that had a flat-top geometry (i.e. significant proportion of fault length with constant throw), those with a bell-shaped throw profile and those that show regions of fault linkage. We suggest that a fault can most easily accommodate stress by displacing regions that are still fissure-like, and that a fault would be more likely to accommodate stress by linkage once it has reached the maximum displacement for its fault length. Our results demonstrate that there is a pattern of growth from fissure to fault in the Dmax/L ratio of the categorised faults and propose a model for this growth. These data better constrain our understanding of how fissures develop into faults but also provide insights into the discrepancy in D/L profiles from a typical bell-shaped distribution.

  6. Delineating a shallow fault zone and dipping bed rock strata using multichannal analysis of surface waves with a land streamer

    USGS Publications Warehouse

    Ivanov, J.; Miller, R.D.; Lacombe, P.; Johnson, C.D.; Lane, J.W., Jr.

    2006-01-01

    The multichannel analysis of surface waves (MASW) seismic method was used to delineate a fault zone and gently dipping sedimentary bedrock at a site overlain by several meters of regolith. Seismic data were collected rapidly and inexpensively using a towed 30-channel land streamer and a rubberband-accelerated weight-drop seismic source. Data processed using the MASW method imaged the subsurface to a depth of about 20 m and allowed detection of the overburden, gross bedding features, and fault zone. The fault zone was characterized by a lower shear-wave velocity (Vs) than the competent bedrock, consistent with a large-scale fault, secondary fractures, and in-situ weathering. The MASW 2D Vs section was further interpreted to identify dipping beds consistent with local geologic mapping. Mapping of shallow-fault zones and dipping sedimentary rock substantially extends the applications of the MASW method. ?? 2006 Society of Exploration Geophysicists.

  7. Influence of fault trend, fault bends, and fault convergence on shallow structure, geomorphology, and hazards, Hosgri strike-slip fault, offshore central California

    NASA Astrophysics Data System (ADS)

    Johnson, S. Y.; Watt, J. T.; Hartwell, S. R.

    2012-12-01

    We mapped a ~94-km-long portion of the right-lateral Hosgri Fault Zone from Point Sal to Piedras Blancas in offshore central California using high-resolution seismic reflection profiles, marine magnetic data, and multibeam bathymetry. The database includes 121 seismic profiles across the fault zone and is perhaps the most comprehensive reported survey of the shallow structure of an active strike-slip fault. These data document the location, length, and near-surface continuity of multiple fault strands, highlight fault-zone heterogeneity, and demonstrate the importance of fault trend, fault bends, and fault convergences in the development of shallow structure and tectonic geomorphology. The Hosgri Fault Zone is continuous through the study area passing through a broad arc in which fault trend changes from about 338° to 328° from south to north. The southern ~40 km of the fault zone in this area is more extensional, resulting in accommodation space that is filled by deltaic sediments of the Santa Maria River. The central ~24 km of the fault zone is characterized by oblique convergence of the Hosgri Fault Zone with the more northwest-trending Los Osos and Shoreline Faults. Convergence between these faults has resulted in the formation of local restraining and releasing fault bends, transpressive uplifts, and transtensional basins of varying size and morphology. We present a hypothesis that links development of a paired fault bend to indenting and bulging of the Hosgri Fault by a strong crustal block translated to the northwest along the Shoreline Fault. Two diverging Hosgri Fault strands bounding a central uplifted block characterize the northern ~30 km of the Hosgri Fault in this area. The eastern Hosgri strand passes through releasing and restraining bends; the releasing bend is the primary control on development of an elongate, asymmetric, "Lazy Z" sedimentary basin. The western strand of the Hosgri Fault Zone passes through a significant restraining bend and

  8. Building the GEM Faulted Earth database

    NASA Astrophysics Data System (ADS)

    Litchfield, N. J.; Berryman, K. R.; Christophersen, A.; Thomas, R. F.; Wyss, B.; Tarter, J.; Pagani, M.; Stein, R. S.; Costa, C. H.; Sieh, K. E.

    2011-12-01

    The GEM Faulted Earth project is aiming to build a global active fault and seismic source database with a common set of strategies, standards, and formats, to be placed in the public domain. Faulted Earth is one of five hazard global components of the Global Earthquake Model (GEM) project. A key early phase of the GEM Faulted Earth project is to build a database which is flexible enough to capture existing and variable (e.g., from slow interplate faults to fast subduction interfaces) global data, and yet is not too onerous to enter new data from areas where existing databases are not available. The purpose of this talk is to give an update on progress building the GEM Faulted Earth database. The database design conceptually has two layers, (1) active faults and folds, and (2) fault sources, and automated processes are being defined to generate fault sources. These include the calculation of moment magnitude using a user-selected magnitude-length or magnitude-area scaling relation, and the calculation of recurrence interval from displacement divided by slip rate, where displacement is calculated from moment and moment magnitude. The fault-based earthquake sources defined by the Faulted Earth project will then be rationalised with those defined by the other GEM global components. A web based tool is being developed for entering individual faults and folds, and fault sources, and includes capture of additional information collected at individual sites, as well as descriptions of the data sources. GIS shapefiles of individual faults and folds, and fault sources will also be able to be uploaded. A data dictionary explaining the database design rationale, definitions of the attributes and formats, and a tool user guide is also being developed. Existing national databases will be uploaded outside of the fault compilation tool, through a process of mapping common attributes between the databases. Regional workshops are planned for compilation in areas where existing

  9. Fault tolerant operation of switched reluctance machine

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    The energy crisis and environmental challenges have driven industry towards more energy efficient solutions. With nearly 60% of electricity consumed by various electric machines in industry sector, advancement in the efficiency of the electric drive system is of vital importance. Adjustable speed drive system (ASDS) provides excellent speed regulation and dynamic performance as well as dramatically improved system efficiency compared with conventional motors without electronics drives. Industry has witnessed tremendous grow in ASDS applications not only as a driving force but also as an electric auxiliary system for replacing bulky and low efficiency auxiliary hydraulic and mechanical systems. With the vast penetration of ASDS, its fault tolerant operation capability is more widely recognized as an important feature of drive performance especially for aerospace, automotive applications and other industrial drive applications demanding high reliability. The Switched Reluctance Machine (SRM), a low cost, highly reliable electric machine with fault tolerant operation capability, has drawn substantial attention in the past three decades. Nevertheless, SRM is not free of fault. Certain faults such as converter faults, sensor faults, winding shorts, eccentricity and position sensor faults are commonly shared among all ASDS. In this dissertation, a thorough understanding of various faults and their influence on transient and steady state performance of SRM is developed via simulation and experimental study, providing necessary knowledge for fault detection and post fault management. Lumped parameter models are established for fast real time simulation and drive control. Based on the behavior of the faults, a fault detection scheme is developed for the purpose of fast and reliable fault diagnosis. In order to improve the SRM power and torque capacity under faults, the maximum torque per ampere excitation are conceptualized and validated through theoretical analysis and

  10. A Log-Scaling Fault Tolerant Agreement Algorithm for a Fault Tolerant MPI

    SciTech Connect

    Hursey, Joshua J; Naughton, III, Thomas J; Vallee, Geoffroy R; Graham, Richard L

    2011-01-01

    The lack of fault tolerance is becoming a limiting factor for application scalability in HPC systems. The MPI does not provide standardized fault tolerance interfaces and semantics. The MPI Forum's Fault Tolerance Working Group is proposing a collective fault tolerant agreement algorithm for the next MPI standard. Such algorithms play a central role in many fault tolerant applications. This paper combines a log-scaling two-phase commit agreement algorithm with a reduction operation to provide the necessary functionality for the new collective without any additional messages. Error handling mechanisms are described that preserve the fault tolerance properties while maintaining overall scalability.

  11. Learning and diagnosing faults using neural networks

    NASA Technical Reports Server (NTRS)

    Whitehead, Bruce A.; Kiech, Earl L.; Ali, Moonis

    1990-01-01

    Neural networks have been employed for learning fault behavior from rocket engine simulator parameters and for diagnosing faults on the basis of the learned behavior. Two problems in applying neural networks to learning and diagnosing faults are (1) the complexity of the sensor data to fault mapping to be modeled by the neural network, which implies difficult and lengthy training procedures; and (2) the lack of sufficient training data to adequately represent the very large number of different types of faults which might occur. Methods are derived and tested in an architecture which addresses these two problems. First, the sensor data to fault mapping is decomposed into three simpler mappings which perform sensor data compression, hypothesis generation, and sensor fusion. Efficient training is performed for each mapping separately. Secondly, the neural network which performs sensor fusion is structured to detect new unknown faults for which training examples were not presented during training. These methods were tested on a task of fault diagnosis by employing rocket engine simulator data. Results indicate that the decomposed neural network architecture can be trained efficiently, can identify faults for which it has been trained, and can detect the occurrence of faults for which it has not been trained.

  12. A Quaternary Fault Database for Central Asia

    NASA Astrophysics Data System (ADS)

    Mohadjer, S.; Ehlers, T. A.; Bendick, R.; Stübner, K.; Strube, T.

    2015-09-01

    Earthquakes represent the highest risk in terms of potential loss of lives and economic damage for Central Asian countries. Knowledge of fault location and behavior is essential in calculating and mapping seismic hazard. Previous efforts in compiling fault information for Central Asia have generated a large amount of data that are published in limited-access journals with no digital maps publicly available, or are limited in their description of important fault parameters such as slip rates. This study builds on previous work by improving access to fault information through a web-based interactive map and an online database with search capabilities that allow users to organize data by different fields. The data presented in this compilation include fault location, its geographic, seismic and structural characteristics, short descriptions, narrative comments and references to peer-reviewed publications. The interactive map displays 1196 fault segments and 34 000 earthquake locations on a shaded-relief map. The online database contains attributes for 122 faults mentioned in the literature, with Quaternary and geodetic slip rates reported for 38 and 26 faults respectively, and earthquake history reported for 39 faults. This work has implications for seismic hazard studies in Central Asia as it summarizes important fault parameters, and can reduce earthquake risk by enhancing public access to information. It also allows scientists and hazard assessment teams to identify structures and regions where data gaps exist and future investigations are needed.

  13. Determining Fault Orientation with Sagnac Interferometers

    NASA Astrophysics Data System (ADS)

    Gruenwald, Konstantin; Dunn, Robert

    2014-03-01

    Typically, earthquake fault ruptures emit seismic waves in directions dependent on the fault's orientation. Specifically, as the fault slips to release strain, compressional P-waves propagate parallel and perpendicular to the fault plane, and transverse S-waves propagate at 45 degree angles to the fault-a result of the double-couple model of fault slippage. Sagnac Interferometers (ring-lasers) have been used to study wave components of several natural phenomena. We used the initial responses of a ring-laser from transverse S-waves to determine the orientation of the nearby Guy/Greenbrier fault, the source of an earthquake swarm in 2010-11 purportedly caused by hydraulic fracturing. This orientation was compared to the structure of the fault extracted by nearby seismogram responses. Our goal was to determine if ring-lasers could reinforce or add to the models of fault orientation constructed from seismographs. The results indicate that the ring-laser's responses can aid in constructing fault orientation in a manner similar to traditional seismographs. Funded by the Arkansas Space Grant Consortium and the National Science Foundation.

  14. Perspective View, San Andreas Fault

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The prominent linear feature straight down the center of this perspective view is the San Andreas Fault in an image created with data from NASA's shuttle Radar Topography Mission (SRTM), which will be used by geologists studying fault dynamics and landforms resulting from active tectonics. This segment of the fault lies west of the city of Palmdale, California, about 100 kilometers (about 60 miles) northwest of Los Angeles. The fault is the active tectonic boundary between the North American plate on the right, and the Pacific plate on the left. Relative to each other, the Pacific plate is moving away from the viewer and the North American plate is moving toward the viewer along what geologists call a right lateral strike-slip fault. This area is at the junction of two large mountain ranges, the San Gabriel Mountains on the left and the Tehachapi Mountains on the right. Quail Lake Reservoir sits in the topographic depression created by past movement along the fault. Interstate 5 is the prominent linear feature starting at the left edge of the image and continuing into the fault zone, passing eventually over Tejon Pass into the Central Valley, visible at the upper left.

    This type of display adds the important dimension of elevation to the study of land use and environmental processes as observed in satellite images. The perspective view was created by draping a Landsat satellite image over an SRTM elevation model. Topography is exaggerated 1.5 times vertically. The Landsat image was provided by the United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11,2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994

  15. The evolution of fabric with displacement in natural brittle faults

    NASA Astrophysics Data System (ADS)

    Mittempergher, S.; Di Toro, G.; Gratier, J.; Aretusini, S.; Boullier-Bertrand, A.

    2011-12-01

    and titanite in the foliation planes. The cataclasites are cemented by pervasive precipitation of K-feldspar plagues and idiomorphic, randomly oriented, epidote and chlorite. We conclude that the textures of these small displacement (< 500 mm) faults are controlled by brittle processes (fracture propagation and cataclastic comminution) similar to those reproduced in friction experiments performed on granite gouge (e.g., Beeler et al., 1996; Logan, 2007). Then progressively, stress driven fluid-rock reactions develop as fracturing and grain size reduction allows the kinetics of these reactions to be more efficient and fracture interconnection allows fluid infiltration. Healing of microfractures and fault rock cementation caused a rapid posteismic recovery of fault strength. References Beeler, N.M., Tullis, T.E., Blanpied, L., Weeks, J.D., 1996. Frictional behaviour of large displacement experimental faults. Journal of Geophysical Research 101, B4, 8697-8715. Logan, J.M., 2007. The progression from damage to localization of displacement observed in laboratory testing of porous rocks, in Lewis, H., and Couples, G.D. (eds.) The relationship between damage and localization. Geological Society of London Special Publication 289, 75-87.

  16. Modelling evolving fault zones: Fragmentation processes, products and potential implications

    NASA Astrophysics Data System (ADS)

    Mair, K.; Abe, S.

    2011-12-01

    Exhumed fault rocks display a wide variety of textural fabrics whose signatures may provide clues to the deformation processes operating during a fault's life. In an active fault, the products of intense fracturing or the development of strong fabrics can themselves be game changers in terms of macroscopic mechanical behaviour. Here we investigate the fragmentation processes operating in evolving faults during shear and the signatures they leave behind, using a numerical model. We consider: (i) what drives the production and evolution of granular debris commonly found along faults; (ii) the nature of the fragmentation products; and (iii) the potential influence of these features on subsequent sliding. Our discrete element (DEM) 3D fault gouge fragmentation models consist of aggregate grains, composed of several thousand spherical particles stuck together with breakable elastic bonds. The aggregate grains are confined between rough fault walls that can themselves potentially breakup leading to fault roughness evolution. During shear, under a given normal stress, the aggregate gouge grains can fragment and evolve in a somewhat natural way. The grain breakage in our models appears to be driven by two distinct comminution mechanisms: grain splitting and grain abrasion. The relative importance of these mechanisms changes with the applied normal stress, the accumulated slip and the boundary roughness in the model. Grain splitting contributes significantly to comminution at higher normal stresses, particularly during the initial stages of simulations. Conversely, grain abrasion prevails at lower normal stresses and is the main comminution mechanism operating in the later stages of all simulations. In terms of fragmentation products, the different mechanisms generate distinct grain size distributions. Grain splitting rapidly generates a power law size distribution, whereas grain abrasion (acting alone) tends to produce a bimodal size distribution (lacking intermediate

  17. Off-fault tip splay networks: A genetic and generic property of faults indicative of their long-term propagation

    NASA Astrophysics Data System (ADS)

    Perrin, Clément; Manighetti, Isabelle; Gaudemer, Yves

    2016-01-01

    We use fault maps and fault propagation evidences available in the literature to examine geometrical relations between parent faults and off-fault splays. The population includes 47 worldwide crustal faults with lengths from millimetres to thousands of kilometres and of different slip modes. We show that fault splays form adjacent to any propagating fault tip, whereas they are absent at non-propagating fault ends. Independent of fault length, slip mode, context, etc., tip splay networks have a similar fan shape widening in direction of long-term propagation, a similar relative length and width (∼ 30 and ∼ 10% of parent fault length, respectively), and a similar range of mean angles to parent fault (10-20°). We infer that tip splay networks are a genetic and a generic property of faults indicative of their long-term propagation. Their generic geometrical properties suggest they result from generic off-fault stress distribution at propagating fault ends.

  18. Mantle convection with plates and mobile, faulted plate margins.

    PubMed

    Zhong, S; Gurnis, M

    1995-02-10

    A finite-element formulation of faults has been incorporated into time-dependent models of mantle convection with realistic rheology, continents, and phase changes. Realistic tectonic plates naturally form with self-consistent coupling between plate and mantle dynamics. After the initiation of subduction, trenches rapidly roll back with subducted slabs temporarily laid out along the base of the transition zone. After the slabs have penetrated into the lower mantle, the velocity of trench migration decreases markedly. The inhibition of slab penetration into the lower mantle by the 670-kilometer phase change is greatly reduced in these models as compared to models without tectonic plates. PMID:17813909

  19. Distributed multisensor fusion for machine condition monitoring fault diagnosis

    NASA Astrophysics Data System (ADS)

    Wang, Xue; Zhao, Guohua; Xie, Xin

    2001-09-01

    This paper presents a new general framework for multisensor fusion based on a distributed detection. Parallel processing and distributed multisensor fusion, as rapidly emerging and promising technologies, provides powerful tools for solving this difficult problem, The distribution and parallelism of proposing and confirming of hypothesis in condition and diagnostic is prosed. A combination serial and parallel reconfiguration of n sensors for decision fusion is analyzed. It shows the result for a real-time parallel distributed complex machine condition monitor and fault diagnostic system.

  20. Paleomagnetic Data From the Rinconada Fault in Central California: Evidence for Off-fault Deformation

    NASA Astrophysics Data System (ADS)

    Crump, S.; Titus, S.; McGuire, Z.; Housen, B. A.

    2009-12-01

    The Rinconada fault is one of three major sub-parallel faults of the San Andreas fault system in central California. The fault has 18 km of dextral displacement since the Pliocene and up to 60 km of total displacement for the Tertiary. A fold and thrust best is well developed in Miocene and younger sedimentary rocks on either side of the Rinconada fault. We sampled ~150 sites from the Miocene Monterey Formation within this fold and thrust belt, a unit that is often used in regional paleomagnetic studies. The sites were located within 15 km of the fault trace along a segment of the Rinconada fault that stretches from Greenfield to Paso Robles. Because this unit was deposited while the San Andreas fault system was active at this latitude, any deformation recorded by these rocks is related to plate boundary deformation. Unlike the large (>90°) rotations observed in the Transverse Ranges to the south, vertical axis rotations adjacent to the Rinconada fault are smaller (<15°) and vary with distance from the fault as well as along strike. Thus, the model for rotations from the Transverse Ranges, where large fault-bound panels rotate within a system of conjugate strike-slip faults, does not apply for this region in central California. Instead, we believe rotations occur in small fault blocks and the magnitude of rotation may be affected by local parameters such as fault geometries, specific rock types, and structural complexities. One implication of these vertical axis rotations adjacent to the Riconada fault is that off-fault regions are accommodating some of the fault-parallel plate motion. This is important for our understanding of the partitioning of plate boundary deformation in California.

  1. Fault geometries in basement-induced wrench faulting under different initial stress states

    NASA Astrophysics Data System (ADS)

    Naylor, M. A.; Mandl, G.; Supesteijn, C. H. K.

    Scaled sandbox experiments were used to generate models for relative ages, dip, strike and three-dimensional shape of faults in basement-controlled wrench faulting. The basic fault sequence runs from early en échelon Riedel shears and splay faults through 'lower-angle' shears to P shears. The Riedel shears are concave upwards and define a tulip structure in cross-section. In three dimensions, each Riedel shear has a helicoidal form. The sequence of faults and three-dimensional geometry are rationalized in terms of the prevailing stress field and Coulomb-Mohr theory of shear failure. The stress state in the sedimentary overburden before wrenching begins has a substantial influence on the fault geometries and on the final complexity of the fault zone. With the maximum compressive stress (∂ 1) initially parallel to the basement fault (transtension), Riedel shears are only slightly en échelon, sub-parallel to the basement fault, steeply dipping with a reduced helicoidal aspect. Conversely, with ∂ 1 initially perpendicular to the basement fault (transpression), Riedel shears are strongly oblique to the basement fault strike, have lower dips and an exaggerated helicoidal form; the final fault zone is both wide and complex. We find good agreement between the models and both mechanical theory and natural examples of wrench faulting.

  2. Geometrical effects of fault bends on fault frictional and mechanical behavior: insights from Distinct Element simulations

    NASA Astrophysics Data System (ADS)

    Guo, Y.; Morgan, J.

    2006-12-01

    Strike slip and transform faults often consist of nonlinear segments, i.e., restraining bends and releasing bends that have significant impacts on stress pattern, strain accumulation, slip rate, and therefore the variation of seismicity along these faults. In order to study the geometrical effects of nonlinear faults on fault frictional and mechanical behavior during fault loading and slip, we simulate the rupture process of faults with bends using the Distinct Element Method (DEM) in 2-dimensions. Breakable elastic bonds were added between adjacent, closely packed circular particles to generate fault blocks. A nonlinear fault surface with a restraining bend and a releasing bend that are symmetrically distributed was defined in the middle of the fault blocks. Deformation was introduced by pulling a spring attached on one of fault zone boundaries at a constant velocity and keeping another boundary fixed, producing compression and contraction along the restraining bend, and tension and dilation along the releasing bend. Significant strain is accommodated adjacent to the restraining bend by formation of secondary faults and slip along them. The slip rates, fault frictional strengths, and rupture processes are affected by multiple parameters, including bond strength, loading velocity, bend angle and amplitude. Among these parameters, bend geometry plays a more important role in determining spatial and temporal distribution of contact slip and failure of our simulated nonlinear faults.

  3. Surface faulting along the Superstition Hills fault zone and nearby faults associated with the earthquakes of 24 November 1987

    USGS Publications Warehouse

    Sharp, R.V.

    1989-01-01

    The M6.2 Elmore Desert Ranch earthquake of 24 November 1987 was associated spatially and probably temporally with left-lateral surface rupture on many northeast-trending faults in and near the Superstition Hills in western Imperial Valley. Three curving discontinuous principal zones of rupture among these breaks extended northeastward from near the Superstition Hills fault zone as far as 9km; the maximum observed surface slip, 12.5cm, was on the northern of the three, the Elmore Ranch fault, at a point near the epicenter. Twelve hours after the Elmore Ranch earthquake, the M6.6 Superstition Hills earthquake occurred near the northwest end of the right-lateral Superstition Hills fault zone. We measured displacements over 339 days at as many as 296 sites along the Superstition Hills fault zone, and repeated measurements at 49 sites provided sufficient data to fit with a simple power law. The overall distributions of right-lateral displacement at 1 day and the estimated final slip are nearly symmetrical about the midpoint of the surface rupture. The average estimated final right-lateral slip for the Superstition Hills fault zone is ~54cm. The average left-lateral slip for the conjugate faults trending northeastward is ~23cm. The southernmost ruptured member of the Superstition Hills fault zone, newly named the Wienert fault, extends the known length of the zone by about 4km. -from Authors

  4. Software reliability through fault-avoidance and fault-tolerance

    NASA Technical Reports Server (NTRS)

    Vouk, Mladen A.; Mcallister, David F.

    1990-01-01

    The use of back-to-back, or comparison, testing for regression test or porting is examined. The efficiency and the cost of the strategy is compared with manual and table-driven single version testing. Some of the key parameters that influence the efficiency and the cost of the approach are the failure identification effort during single version program testing, the extent of implemented changes, the nature of the regression test data (e.g., random), and the nature of the inter-version failure correlation and fault-masking. The advantages and disadvantages of the technique are discussed, together with some suggestions concerning its practical use.

  5. Networking of Near Fault Observatories in Europe

    NASA Astrophysics Data System (ADS)

    Vogfjörd, Kristín; Bernard, Pascal; Chiraluce, Lauro; Fäh, Donat; Festa, Gaetano; Zulficar, Can

    2014-05-01

    Networking of six European near-fault observatories (NFO) was established In the FP7 infrastructure project NERA (Network of European Research Infrastructures for Earthquake Risk Assessment and Mitigation). This networking has included sharing of expertise and know-how among the observatories, distribution of analysis tools and access to data. The focus of the NFOs is on research into the active processes of their respective fault zones through acquisition and analysis of multidisciplinary data. These studies include the role of fluids in fault initiation, site effects, derived processes such as earthquake generated tsunamis and landslides, mapping the internal structure of fault systems and development of automatic early warning systems. The six fault zones are in different tectonic regimes: The South Iceland Seismic Zone (SISZ) in Iceland, the Marmara Sea in Turkey and the Corinth Rift in Greece are at plate boundaries, with strike-slip faulting characterizing the SISZ and the Marmara Sea, while normal faulting dominates in the Corinth Rift. The Alto Tiberina and Irpinia faults, dominated by low- and medium-angle normal faulting, respectively are in the Apennine mountain range in Italy and the Valais Region, characterized by both strike-slip and normal faulting is located in the Swiss Alps. The fault structures range from well-developed long faults, such as in the Marmara Sea, to more complex networks of smaller, book-shelf faults such as in the SISZ. Earthquake hazard in the fault zones ranges from significant to substantial. The Marmara Sea and Corinth rift are under ocean causing additional tsunami hazard and steep slopes and sediment-filled valleys in the Valais give rise to hazards from landslides and liquefaction. Induced seismicity has repeatedly occurred in connection with geothermal drilling and water injection in the SISZ and active volcanoes flanking the SISZ also give rise to volcanic hazard due to volcano-tectonic interaction. Organization among the

  6. Clumped isotopes reveal the influence of deformation style on fluid flow and cementation along the Moab Fault, Paradox Basin, Utah

    NASA Astrophysics Data System (ADS)

    Huntington, K. W.; Bergman, S.; Crider, J. G.

    2012-12-01

    distribution of low-temperature cements argues for rapid penetration of surface waters flowing down intensely-jointed fault intersections and suggests that deformation-band faults served as low-permeability baffles, preventing lateral migration of cold fluids. This interpretation is consistent with the cathodoluminescence patterns and δ18O and δ13C values of the samples, and confirms the important role of structures in transmission and compartmentalization of fluids in porous rocks. Our study illustrates how clumped isotope thermometry can aid in understanding interactions of mechanical, chemical, and transport processes associated with fractures and faults.

  7. Constraints on the stress state of the San Andreas Fault with analysis based on core and cuttings from San Andreas Fault Observatory at Depth (SAFOD) drilling phases 1 and 2

    USGS Publications Warehouse

    Tembe, S.; Lockner, D.; Wong, T.-F.

    2009-01-01

    Analysis of field data has led different investigators to conclude that the San Andreas Fault (SAF) has either anomalously low frictional sliding strength (?? 0.6). Arguments for the apparent weakness of the SAF generally hinge on conceptual models involving intrinsically weak gouge or elevated pore pressure within the fault zone. Some models assert that weak gouge and/or high pore pressure exist under static conditions while others consider strength loss or fluid pressure increase due to rapid coseismic fault slip. The present paper is composed of three parts. First, we develop generalized equations, based on and consistent with the Rice (1992) fault zone model to relate stress orientation and magnitude to depth-dependent coefficient of friction and pore pressure. Second, we present temperature-and pressure-dependent friction measurements from wet illite-rich fault gouge extracted from San Andreas Fault Observatory at Depth (SAFOD) phase 1 core samples and from weak minerals associated with the San Andreas Fault. Third, we reevaluate the state of stress on the San Andreas Fault in light of new constraints imposed by SAFOD borehole data. Pure talc (?????0.1) had the lowest strength considered and was sufficiently weak to satisfy weak fault heat flow and stress orientation constraints with hydrostatic pore pressure. Other fault gouges showed a systematic increase in strength with increasing temperature and pressure. In this case, heat flow and stress orientation constraints would require elevated pore pressure and, in some cases, fault zone pore pressure in excess of vertical stress. Copyright 2009 by the American Geophysical Union.

  8. Performance Analysis on Fault Tolerant Control System

    NASA Technical Reports Server (NTRS)

    Shin, Jong-Yeob; Belcastro, Christine

    2005-01-01

    In a fault tolerant control (FTC) system, a parameter varying FTC law is reconfigured based on fault parameters estimated by fault detection and isolation (FDI) modules. FDI modules require some time to detect fault occurrences in aero-vehicle dynamics. In this paper, an FTC analysis framework is provided to calculate the upper bound of an induced-L(sub 2) norm of an FTC system with existence of false identification and detection time delay. The upper bound is written as a function of a fault detection time and exponential decay rates and has been used to determine which FTC law produces less performance degradation (tracking error) due to false identification. The analysis framework is applied for an FTC system of a HiMAT (Highly Maneuverable Aircraft Technology) vehicle. Index Terms fault tolerant control system, linear parameter varying system, HiMAT vehicle.

  9. Fault-tolerant dynamic task graph scheduling

    SciTech Connect

    Kurt, Mehmet C.; Krishnamoorthy, Sriram; Agrawal, Kunal; Agrawal, Gagan

    2014-11-16

    In this paper, we present an approach to fault tolerant execution of dynamic task graphs scheduled using work stealing. In particular, we focus on selective and localized recovery of tasks in the presence of soft faults. We elicit from the user the basic task graph structure in terms of successor and predecessor relationships. The work stealing-based algorithm to schedule such a task graph is augmented to enable recovery when the data and meta-data associated with a task get corrupted. We use this redundancy, and the knowledge of the task graph structure, to selectively recover from faults with low space and time overheads. We show that the fault tolerant design retains the essential properties of the underlying work stealing-based task scheduling algorithm, and that the fault tolerant execution is asymptotically optimal when task re-execution is taken into account. Experimental evaluation demonstrates the low cost of recovery under various fault scenarios.

  10. Probable origin of the Livingston Fault Zone

    NASA Astrophysics Data System (ADS)

    Monroe, Watson H.

    1991-09-01

    Most faulting in the Coastal Plain is high angle and generally normal, but the faults in the Livingston Fault Zone are all medium-angle reverse, forming a series of parallel horsts and grabens. Parallel to the fault zone are a number of phenomena all leading to the conclusion that the faults result from the solution of a late Cretaceous salt anticline by fresh groundwater, which then migrated up to the Eutaw and perhaps Tuscaloosa aquifers, causing an anomalous elongated area of highly saline water. The origin of the Livingston Fault Zone and the association of salt water in underlying aquifers is of particular importance at this time in relation to environmental concerns associated with hazardous waste management in the area.

  11. Holocene fault scarps near Tacoma, Washington, USA

    USGS Publications Warehouse

    Sherrod, B.L.; Brocher, T.M.; Weaver, C.S.; Bucknam, R.C.; Blakely, R.J.; Kelsey, H.M.; Nelson, A.R.; Haugerud, R.

    2004-01-01

    Airborne laser mapping confirms that Holocene active faults traverse the Puget Sound metropolitan area, northwestern continental United States. The mapping, which detects forest-floor relief of as little as 15 cm, reveals scarps along geophysical lineaments that separate areas of Holocene uplift and subsidence. Along one such line of scarps, we found that a fault warped the ground surface between A.D. 770 and 1160. This reverse fault, which projects through Tacoma, Washington, bounds the southern and western sides of the Seattle uplift. The northern flank of the Seattle uplift is bounded by a reverse fault beneath Seattle that broke in A.D. 900-930. Observations of tectonic scarps along the Tacoma fault demonstrate that active faulting with associated surface rupture and ground motions pose a significant hazard in the Puget Sound region.

  12. The fault-tolerant multiprocessor computer

    NASA Technical Reports Server (NTRS)

    Smith, T. B., III (Editor); Lala, J. H. (Editor); Goldberg, J. (Editor); Kautz, W. H. (Editor); Melliar-Smith, P. M. (Editor); Green, M. W. (Editor); Levitt, K. N. (Editor); Schwartz, R. L. (Editor); Weinstock, C. B. (Editor); Palumbo, D. L. (Editor)

    1986-01-01

    The development and evaluation of fault-tolerant computer architectures and software-implemented fault tolerance (SIFT) for use in advanced NASA vehicles and potentially in flight-control systems are described in a collection of previously published reports prepared for NASA. Topics addressed include the principles of fault-tolerant multiprocessor (FTMP) operation; processor and slave regional designs; FTMP executive, facilities, acceptance-test/diagnostic, applications, and support software; FTM reliability and availability models; SIFT hardware design; and SIFT validation and verification.

  13. Hydrogen Embrittlement And Stacking-Fault Energies

    NASA Technical Reports Server (NTRS)

    Parr, R. A.; Johnson, M. H.; Davis, J. H.; Oh, T. K.

    1988-01-01

    Embrittlement in Ni/Cu alloys appears related to stacking-fault porbabilities. Report describes attempt to show a correlation between stacking-fault energy of different Ni/Cu alloys and susceptibility to hydrogen embrittlement. Correlation could lead to more fundamental understanding and method of predicting susceptibility of given Ni/Cu alloy form stacking-fault energies calculated from X-ray diffraction measurements.

  14. Fault system polarity: A matter of chance?

    NASA Astrophysics Data System (ADS)

    Schöpfer, Martin; Childs, Conrad; Manzocchi, Tom; Walsh, John; Nicol, Andy; Grasemann, Bernhard

    2015-04-01

    Many normal fault systems and, on a smaller scale, fracture boudinage exhibit asymmetry so that one fault dip direction dominates. The fraction of throw (or heave) accommodated by faults with the same dip direction in relation to the total fault system throw (or heave) is a quantitative measure of fault system asymmetry and termed 'polarity'. It is a common belief that the formation of domino and shear band boudinage with a monoclinic symmetry requires a component of layer parallel shearing, whereas torn boudins reflect coaxial flow. Moreover, domains of parallel faults are frequently used to infer the presence of a common décollement. Here we show, using Distinct Element Method (DEM) models in which rock is represented by an assemblage of bonded circular particles, that asymmetric fault systems can emerge under symmetric boundary conditions. The pre-requisite for the development of domains of parallel faults is however that the medium surrounding the brittle layer has a very low strength. We demonstrate that, if the 'competence' contrast between the brittle layer and the surrounding material ('jacket', or 'matrix') is high, the fault dip directions and hence fault system polarity can be explained using a random process. The results imply that domains of parallel faults are, for the conditions and properties used in our models, in fact a matter of chance. Our models suggest that domino and shear band boudinage can be an unreliable shear-sense indicator. Moreover, the presence of a décollement should not be inferred on the basis of a domain of parallel faults only.

  15. 31 CFR 29.522 - Fault.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Fault. 29.522 Section 29.522 Money... Overpayments § 29.522 Fault. (a) General rule. A debtor is considered to be at fault if he or she, or any other... requirement. (3) The following factors may affect the decision as to whether the debtor is or is not at...

  16. 31 CFR 29.522 - Fault.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance: Treasury 1 2013-07-01 2013-07-01 false Fault. 29.522 Section 29.522 Money... Overpayments § 29.522 Fault. (a) General rule. A debtor is considered to be at fault if he or she, or any other... requirement. (3) The following factors may affect the decision as to whether the debtor is or is not at...

  17. 31 CFR 29.522 - Fault.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance: Treasury 1 2011-07-01 2011-07-01 false Fault. 29.522 Section 29.522 Money... Overpayments § 29.522 Fault. (a) General rule. A debtor is considered to be at fault if he or she, or any other... requirement. (3) The following factors may affect the decision as to whether the debtor is or is not at...

  18. 31 CFR 29.522 - Fault.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance: Treasury 1 2014-07-01 2014-07-01 false Fault. 29.522 Section 29.522 Money... Overpayments § 29.522 Fault. (a) General rule. A debtor is considered to be at fault if he or she, or any other... requirement. (3) The following factors may affect the decision as to whether the debtor is or is not at...

  19. 31 CFR 29.522 - Fault.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance: Treasury 1 2012-07-01 2012-07-01 false Fault. 29.522 Section 29.522 Money... Overpayments § 29.522 Fault. (a) General rule. A debtor is considered to be at fault if he or she, or any other... requirement. (3) The following factors may affect the decision as to whether the debtor is or is not at...

  20. Diagnosing process faults using neural network models

    SciTech Connect

    Buescher, K.L.; Jones, R.D.; Messina, M.J.

    1993-11-01

    In order to be of use for realistic problems, a fault diagnosis method should have the following three features. First, it should apply to nonlinear processes. Second, it should not rely on extensive amounts of data regarding previous faults. Lastly, it should detect faults promptly. The authors present such a scheme for static (i.e., non-dynamic) systems. It involves using a neural network to create an associative memory whose fixed points represent the normal behavior of the system.

  1. Fault Zone Guided Wave generation on the locked, late interseismic Alpine Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Eccles, J. D.; Gulley, A. K.; Malin, P. E.; Boese, C. M.; Townend, J.; Sutherland, R.

    2015-07-01

    Fault Zone Guided Waves (FZGWs) have been observed for the first time within New Zealand's transpressional continental plate boundary, the Alpine Fault, which is late in its typical seismic cycle. Ongoing study of these phases provides the opportunity to monitor interseismic conditions in the fault zone. Distinctive dispersive seismic codas (~7-35 Hz) have been recorded on shallow borehole seismometers installed within 20 m of the principal slip zone. Near the central Alpine Fault, known for low background seismicity, FZGW-generating microseismic events are located beyond the catchment-scale partitioning of the fault indicating lateral connectivity of the low-velocity zone immediately below the near-surface segmentation. Initial modeling of the low-velocity zone indicates a waveguide width of 60-200 m with a 10-40% reduction in S wave velocity, similar to that inferred for the fault core of other mature plate boundary faults such as the San Andreas and North Anatolian Faults.

  2. Focused fault injection testing of software implemented fault tolerance mechanisms of Voltan TMR nodes

    NASA Astrophysics Data System (ADS)

    Tao, S.; Ezhilchelvan, P. D.; Shrivastava, S. K.

    1995-03-01

    One way of gaining confidence in the adequacy of fault tolerance mechanisms of a system is to test the system by injecting faults and see how the system performs under faulty conditions. This paper presents an application of the focused fault injection method that has been developed for testing software implemented fault tolerance mechanisms of distributed systems. The method exploits the object oriented approach of software implementation to support the injection of specific classes of faults. With the focused fault injection method, the system tester is able to inject specific classes of faults (including malicious ones) such that the fault tolerance mechanisms of a target system can be tested adequately. The method has been applied to test the design and implementation of voting, clock synchronization, and ordering modules of the Voltan TMR (triple modular redundant) node. The tests performed uncovered three flaws in the system software.

  3. Identifiability of Additive Actuator and Sensor Faults by State Augmentation

    NASA Technical Reports Server (NTRS)

    Joshi, Suresh; Gonzalez, Oscar R.; Upchurch, Jason M.

    2014-01-01

    A class of fault detection and identification (FDI) methods for bias-type actuator and sensor faults is explored in detail from the point of view of fault identifiability. The methods use state augmentation along with banks of Kalman-Bucy filters for fault detection, fault pattern determination, and fault value estimation. A complete characterization of conditions for identifiability of bias-type actuator faults, sensor faults, and simultaneous actuator and sensor faults is presented. It is shown that FDI of simultaneous actuator and sensor faults is not possible using these methods when all sensors have unknown biases. The fault identifiability conditions are demonstrated via numerical examples. The analytical and numerical results indicate that caution must be exercised to ensure fault identifiability for different fault patterns when using such methods.

  4. Distributed bearing fault diagnosis based on vibration analysis

    NASA Astrophysics Data System (ADS)

    Dolenc, Boštjan; Boškoski, Pavle; Juričić, Đani

    2016-01-01

    Distributed bearing faults appear under various circumstances, for example due to electroerosion or the progression of localized faults. Bearings with distributed faults tend to generate more complex vibration patterns than those with localized faults. Despite the frequent occurrence of such faults, their diagnosis has attracted limited attention. This paper examines a method for the diagnosis of distributed bearing faults employing vibration analysis. The vibrational patterns generated are modeled by incorporating the geometrical imperfections of the bearing components. Comparing envelope spectra of vibration signals shows that one can distinguish between localized and distributed faults. Furthermore, a diagnostic procedure for the detection of distributed faults is proposed. This is evaluated on several bearings with naturally born distributed faults, which are compared with fault-free bearings and bearings with localized faults. It is shown experimentally that features extracted from vibrations in fault-free, localized and distributed fault conditions form clearly separable clusters, thus enabling diagnosis.

  5. Detrital zircon provenance evidence for large-scale extrusion along the Altyn Tagh fault

    USGS Publications Warehouse

    Yue, Y.; Graham, S.A.; Ritts, B.D.; Wooden, J.L.

    2005-01-01

    rapidly growing evidence for Cenozoic strike-slip activity on the Alxa-East Mongolia fault and mid-Miocene exhumation of northern Tibet supports it. ?? 2005 Elsevier B.V. All rights reserved.

  6. Fault imprint in clay units: magnetic fabric, structural and mineralogical signature

    NASA Astrophysics Data System (ADS)

    Moreno, Eva; Homberg, Catherine; Schnyder, Johann; Person, Alain; du Peloux1, Arthur; Dick, Pierre

    2014-05-01

    Fault-induced deformations in clay units can be difficult to decipher because strain markers are not always visible at outcrop scale or using geophysical methods. Previous studies have indicated that the anisotropy of magnetic susceptibility (ASM) provides a powerful and rapid technique to investigate tectonic deformation in clay units even when they appear quite homogenous and undeformed at the outcrop scale (Lee et al. 1990, Mattei et al. 1997). We report here a study based on ASM, structural analysis and magnetic and clay mineralogy from two boreholes (TF1 and ASM1)drilled horizontally in the Experimental Station of Tournemire of the Institute for Radiological Protection and Nuclear Safety (IRSN) in Aveyron (France). The boreholes intersect a N-S trending strike-slip fault from west to east. The ASM study indicates the evolution of the magnetic fabric from the undeformed host rock to the fault core. Also, all the fractures cutting the studied interval of the core have been measured as well as the slip vectors which are generally well preserved. In the two boreholes, the undeformed sediments outside the fault zone are characterized by an oblate fabric, a sub-vertical minimum susceptibility axis (k3) perpendicular to the bedding plane and without magnetic lineation. Within the fault zone, a tilt in the bedding plane has been observed in two boreholes TF1 and ASM1. In addition, in the TF1 core, the fault area presents a tectonic fabric characterized by a triaxial AMS ellipsoid. Moreover, the magnetic lineation increases and k3 switches from a vertical to a sub-horizontal plane. This kind of fabric has not been observed in borehole ASM1. The structural analysis of the individual fractures making the fault zone indicates a complex tectonic history with different imprint in the two fault segments cut by the two boreholes. The large majority of fractures correspond to dextral strike-slip faults but normal and reverse movements were observed and are more or less

  7. Rapid shallow breathing

    MedlinePlus

    Tachypnea; Breathing - rapid and shallow; Fast shallow breathing; Respiratory rate - rapid and shallow ... Shallow, rapid breathing has many possible medical causes, including: Asthma Blood clot in an artery in the lung Choking Chronic obstructive ...

  8. Evidence for Late Oligocene-Early Miocene episode of transtension along San Andreas Fault system in central California

    SciTech Connect

    Stanley, R.G.

    1986-04-01

    The San Andreas is one of the most intensely studied fault systems in the world, but many aspects of its kinematic history remain controversial. For example, the period from the late Eocene to early Miocene is widely believed to have been a time of negligible strike-slip movement along the San Andreas fault proper, based on the rough similarity of offset of the Eocene Butano-Point of rocks Submarine Fan, the early Miocene Pinnacles-Neenach volcanic center, and an early Miocene shoreline in the northern Gabilan Range and San Emigdio Mountains. Nonetheless, evidence indicates that a late Oligocene-early Miocene episode of transtension, or strike-slip motion with a component of extension, occurred within the San Andreas fault system. The evidence includes: (1) about 22-24 Ma, widespread, synchronous volcanic activity occurred at about 12 volcanic centers along a 400-km long segment of the central California coast; (2) most of these volcanic centers are located along faults of the San Andreas system, including the San Andreas fault proper, the San Gregorio-Hosgri fault, and the Zayante-Vergeles fault, suggesting that these and other faults were active and served as conduits for magmas rising from below; (3) during the late Oligocene and early Miocene, a pull-apart basin developed adjacent to the San Andreas fault proper in the La Honda basin near Santa Cruz; and (4) during the late Oligocene and early Miocene, active faulting, rapid subsidence, and marine transgression occurred in the La Honda and other sedimentary basins in central California. The amount of right-lateral displacement along the San Andreas fault proper during this transtentional episode is unknown but was probably about 7.5-35 km, based on model studies of pull-apart basin formation. This small amount of movement is well within the range of error in published estimates of the offset of the Eocene to early Miocene geologic features noted.

  9. Software reliability through fault-avoidance and fault-tolerance

    NASA Technical Reports Server (NTRS)

    Vouk, Mladen A.; Mcallister, David F.

    1993-01-01

    Strategies and tools for the testing, risk assessment and risk control of dependable software-based systems were developed. Part of this project consists of studies to enable the transfer of technology to industry, for example the risk management techniques for safety-concious systems. Theoretical investigations of Boolean and Relational Operator (BRO) testing strategy were conducted for condition-based testing. The Basic Graph Generation and Analysis tool (BGG) was extended to fully incorporate several variants of the BRO metric. Single- and multi-phase risk, coverage and time-based models are being developed to provide additional theoretical and empirical basis for estimation of the reliability and availability of large, highly dependable software. A model for software process and risk management was developed. The use of cause-effect graphing for software specification and validation was investigated. Lastly, advanced software fault-tolerance models were studied to provide alternatives and improvements in situations where simple software fault-tolerance strategies break down.

  10. Fault rheology beyond frictional melting.

    PubMed

    Lavallée, Yan; Hirose, Takehiro; Kendrick, Jackie E; Hess, Kai-Uwe; Dingwell, Donald B

    2015-07-28

    During earthquakes, comminution and frictional heating both contribute to the dissipation of stored energy. With sufficient dissipative heating, melting processes can ensue, yielding the production of frictional melts or "pseudotachylytes." It is commonly assumed that the Newtonian viscosities of such melts control subsequent fault slip resistance. Rock melts, however, are viscoelastic bodies, and, at high strain rates, they exhibit evidence of a glass transition. Here, we present the results of high-velocity friction experiments on a well-characterized melt that demonstrate how slip in melt-bearing faults can be governed by brittle fragmentation phenomena encountered at the glass transition. Slip analysis using models that incorporate viscoelastic responses indicates that even in the presence of melt, slip persists in the solid state until sufficient heat is generated to reduce the viscosity and allow remobilization in the liquid state. Where a rock is present next to the melt, we note that wear of the crystalline wall rock by liquid fragmentation and agglutination also contributes to the brittle component of these experimentally generated pseudotachylytes. We conclude that in the case of pseudotachylyte generation during an earthquake, slip even beyond the onset of frictional melting is not controlled merely by viscosity but rather by an interplay of viscoelastic forces around the glass transition, which involves a response in the brittle/solid regime of these rock melts. We warn of the inadequacy of simple Newtonian viscous analyses and call for the application of more realistic rheological interpretation of pseudotachylyte-bearing fault systems in the evaluation and prediction of their slip dynamics. PMID:26124123

  11. Fault rheology beyond frictional melting

    PubMed Central

    Lavallée, Yan; Hirose, Takehiro; Kendrick, Jackie E.; Hess, Kai-Uwe; Dingwell, Donald B.

    2015-01-01

    During earthquakes, comminution and frictional heating both contribute to the dissipation of stored energy. With sufficient dissipative heating, melting processes can ensue, yielding the production of frictional melts or “pseudotachylytes.” It is commonly assumed that the Newtonian viscosities of such melts control subsequent fault slip resistance. Rock melts, however, are viscoelastic bodies, and, at high strain rates, they exhibit evidence of a glass transition. Here, we present the results of high-velocity friction experiments on a well-characterized melt that demonstrate how slip in melt-bearing faults can be governed by brittle fragmentation phenomena encountered at the glass transition. Slip analysis using models that incorporate viscoelastic responses indicates that even in the presence of melt, slip persists in the solid state until sufficient heat is generated to reduce the viscosity and allow remobilization in the liquid state. Where a rock is present next to the melt, we note that wear of the crystalline wall rock by liquid fragmentation and agglutination also contributes to the brittle component of these experimentally generated pseudotachylytes. We conclude that in the case of pseudotachylyte generation during an earthquake, slip even beyond the onset of frictional melting is not controlled merely by viscosity but rather by an interplay of viscoelastic forces around the glass transition, which involves a response in the brittle/solid regime of these rock melts. We warn of the inadequacy of simple Newtonian viscous analyses and call for the application of more realistic rheological interpretation of pseudotachylyte-bearing fault systems in the evaluation and prediction of their slip dynamics. PMID:26124123

  12. Acoustic fault injection tool (AFIT)

    NASA Astrophysics Data System (ADS)

    Schoess, Jeffrey N.

    1999-05-01

    On September 18, 1997, Honeywell Technology Center (HTC) successfully completed a three-week flight test of its rotor acoustic monitoring system (RAMS) at Patuxent River Flight Test Center. This flight test was the culmination of an ambitious 38-month proof-of-concept effort directed at demonstrating the feasibility of detecting crack propagation in helicopter rotor components. The program was funded as part of the U.S. Navy's Air Vehicle Diagnostic Systems (AVDS) program. Reductions in Navy maintenance budgets and available personnel have dictated the need to transition from time-based to 'condition-based' maintenance. Achieving this will require new enabling diagnostic technologies. The application of acoustic emission for the early detection of helicopter rotor head dynamic component faults has proven the feasibility of the technology. The flight-test results demonstrated that stress-wave acoustic emission technology can detect signals equivalent to small fatigue cracks in rotor head components and can do so across the rotating articulated rotor head joints and in the presence of other background acoustic noise generated during flight operation. During the RAMS flight test, 12 test flights were flown from which 25 Gbyte of digital acoustic data and about 15 hours of analog flight data recorder (FDR) data were collected from the eight on-rotor acoustic sensors. The focus of this paper is to describe the CH-46 flight-test configuration and present design details about a new innovative machinery diagnostic technology called acoustic fault injection. This technology involves the injection of acoustic sound into machinery to assess health and characterize operational status. The paper will also address the development of the Acoustic Fault Injection Tool (AFIT), which was successfully demonstrated during the CH-46 flight tests.

  13. Chip level simulation of fault tolerant computers

    NASA Technical Reports Server (NTRS)

    Armstrong, J. R.

    1983-01-01

    Chip level modeling techniques, functional fault simulation, simulation software development, a more efficient, high level version of GSP, and a parallel architecture for functional simulation are discussed.

  14. Sequential Test Strategies for Multiple Fault Isolation

    NASA Technical Reports Server (NTRS)

    Shakeri, M.; Pattipati, Krishna R.; Raghavan, V.; Patterson-Hine, Ann; Kell, T.

    1997-01-01

    In this paper, we consider the problem of constructing near optimal test sequencing algorithms for diagnosing multiple faults in redundant (fault-tolerant) systems. The computational complexity of solving the optimal multiple-fault isolation problem is super-exponential, that is, it is much more difficult than the single-fault isolation problem, which, by itself, is NP-hard. By employing concepts from information theory and Lagrangian relaxation, we present several static and dynamic (on-line or interactive) test sequencing algorithms for the multiple fault isolation problem that provide a trade-off between the degree of suboptimality and computational complexity. Furthermore, we present novel diagnostic strategies that generate a static diagnostic directed graph (digraph), instead of a static diagnostic tree, for multiple fault diagnosis. Using this approach, the storage complexity of the overall diagnostic strategy reduces substantially. Computational results based on real-world systems indicate that the size of a static multiple fault strategy is strictly related to the structure of the system, and that the use of an on-line multiple fault strategy can diagnose faults in systems with as many as 10,000 failure sources.

  15. Faults Discovery By Using Mined Data

    NASA Technical Reports Server (NTRS)

    Lee, Charles

    2005-01-01

    Fault discovery in the complex systems consist of model based reasoning, fault tree analysis, rule based inference methods, and other approaches. Model based reasoning builds models for the systems either by mathematic formulations or by experiment model. Fault Tree Analysis shows the possible causes of a system malfunction by enumerating the suspect components and their respective failure modes that may have induced the problem. The rule based inference build the model based on the expert knowledge. Those models and methods have one thing in common; they have presumed some prior-conditions. Complex systems often use fault trees to analyze the faults. Fault diagnosis, when error occurs, is performed by engineers and analysts performing extensive examination of all data gathered during the mission. International Space Station (ISS) control center operates on the data feedback from the system and decisions are made based on threshold values by using fault trees. Since those decision-making tasks are safety critical and must be done promptly, the engineers who manually analyze the data are facing time challenge. To automate this process, this paper present an approach that uses decision trees to discover fault from data in real-time and capture the contents of fault trees as the initial state of the trees.

  16. Mantle fault zone beneath Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Wolfe, C.J.; Okubo, P.G.; Shearer, P.M.

    2003-01-01

    Relocations and focal mechanism analyses of deep earthquakes (???13 kilometers) at Kilauea volcano demonstrate that seismicity is focused on an active fault zone at 30-kilometer depth, with seaward slip on a low-angle plane, and other smaller, distinct fault zones. The earthquakes we have analyzed predominantly reflect tectonic faulting in the brittle lithosphere rather than magma movement associated with volcanic activity. The tectonic earthquakes may be induced on preexisting faults by stresses of magmatic origin, although background stresses from volcano loading and lithospheric flexure may also contribute.

  17. Outer Rise Faulting And Mantle Serpentinization

    NASA Astrophysics Data System (ADS)

    Ranero, C. R.; Phipps Morgan, J.; McIntosh, K.; Reichert, C.

    Dehydration of serpentinized mantle of the downgoing slab has been proposed to cause both intermediate depth earthquakes (50-300 km) and arc volcanism at sub- duction zones. It has been suggested that most of this serpentinization occurs beneath the outer rise; where normal faulting earthquakes due to bending cut > 20 km deep into the lithosphere, allowing seawater to reach and react with underlying mantle. However, little is known about flexural faulting at convergent margins; about how many normal faults cut across the crust and how deeply they penetrate into the man- tle; about the true potential of faults as conduits for fluid flow and how much water can be added through this process. We present evidence that pervasive flexural faulting may cut deep into the mantle and that the amount of faulting vary dramatically along strike at subduction zones. Flexural faulting increases towards the trench axis indicat- ing that active extension occurs in a broad area. Multibeam bathymetry of the Pacific margin of Costa Rica and Nicaragua shows a remarkable variation in the amount of flexural faulting along the incoming ocean plate. Several parameters seem to control lateral variability. Off south Costa Rica thick crust of the Cocos Ridge flexes little, and little to no faulting develops near the trench. Off central Costa Rica, normal thick- ness crust with magnetic anomalies striking oblique to the trench displays small offset faults (~200 m) striking similar to the original seafloor fabric. Off northern Costa Rica, magnetic anomalies strike perpendicular to the trench axis, and a few ~100m-offset faults develop parallel to the trench. Further north, across the Nicaraguan margin, magnetic anomalies strike parallel to the trench and the most widespread faulting de- velops entering the trench. Multichannel seismic reflection images in this area show a pervasive set of trenchward dipping reflections that cross the ~6 km thick crust and extend into the mantle to depths of at

  18. Block rotations, fault domains and crustal deformation

    NASA Technical Reports Server (NTRS)

    Nur, A.; Ron, H.

    1987-01-01

    Much of the earth's crust is broken by sets of parallel strike-slip faults which are organized in domains. A simple kinematic model suggests that when subject to tectonic strain, the faults, and the blocks bound by them, rotate. The rotation can be estimated from the structurally-determined fault slip and fault spacing, and independently from local deviations of paleomagnetic declinations from global values. A rigorous test of this model was carried out in northern Israel, where good agreement was found between the two rotations.

  19. Applications of Fault Detection in Vibrating Structures

    NASA Technical Reports Server (NTRS)

    Eure, Kenneth W.; Hogge, Edward; Quach, Cuong C.; Vazquez, Sixto L.; Russell, Andrew; Hill, Boyd L.

    2012-01-01

    Structural fault detection and identification remains an area of active research. Solutions to fault detection and identification may be based on subtle changes in the time series history of vibration signals originating from various sensor locations throughout the structure. The purpose of this paper is to document the application of vibration based fault detection methods applied to several structures. Overall, this paper demonstrates the utility of vibration based methods for fault detection in a controlled laboratory setting and limitations of applying the same methods to a similar structure during flight on an experimental subscale aircraft.

  20. Development and implementation of a power system fault diagnosis expert system

    SciTech Connect

    Minakawa, T.; Ichikawa, Y.; Kunugi, M.; Wada, N.; Shimada, K.; Utsunomiya, M.

    1995-05-01

    This paper describes a fault diagnosis expert system installed at the tohoku Electric Power Company. The main features of this system are careful selection of the inferencing input data, rapid inferencing, integration of the expert system with other systems in a practical structure, and the adoption of a domain shell. This system aims for improved practicability by using time-tagged data from circuit breakers, protective relays, and automatic reclosing relays in addition to the input data used in earlier systems. Furthermore, this system also uses data from fault detection systems that locate fault points within electric stations. This system uses an AI-specific back-end processor to perform inferencing rapidly. Additionally, this fault diagnosis expert system is interfaced and integrated with a restorative operations expert system, an intelligent alarm processing system, and a protective relay setting and management system. Authors developed and adopted a power system fault diagnosis domain shell to ease system development, and used the protective relay operation simulation function of a protective relay setting and management system for system verification.

  1. Fault tolerant filtering and fault detection for quantum systems driven by fields in single photon states

    NASA Astrophysics Data System (ADS)

    Gao, Qing; Dong, Daoyi; Petersen, Ian R.; Rabitz, Herschel

    2016-06-01

    The purpose of this paper is to solve the fault tolerant filtering and fault detection problem for a class of open quantum systems driven by a continuous-mode bosonic input field in single photon states when the systems are subject to stochastic faults. Optimal estimates of both the system observables and the fault process are simultaneously calculated and characterized by a set of coupled recursive quantum stochastic differential equations.

  2. The morphology of strike-slip faults - Examples from the San Andreas Fault, California

    NASA Technical Reports Server (NTRS)

    Bilham, Roger; King, Geoffrey

    1989-01-01

    The dilatational strains associated with vertical faults embedded in a horizontal plate are examined in the framework of fault kinematics and simple displacement boundary conditions. Using boundary element methods, a sequence of examples of dilatational strain fields associated with commonly occurring strike-slip fault zone features (bends, offsets, finite rupture lengths, and nonuniform slip distributions) is derived. The combinations of these strain fields are then used to examine the Parkfield region of the San Andreas fault system in central California.

  3. Fault-tolerant parallel processor

    SciTech Connect

    Harper, R.E.; Lala, J.H. )

    1991-06-01

    This paper addresses issues central to the design and operation of an ultrareliable, Byzantine resilient parallel computer. Interprocessor connectivity requirements are met by treating connectivity as a resource that is shared among many processing elements, allowing flexibility in their configuration and reducing complexity. Redundant groups are synchronized solely by message transmissions and receptions, which aslo provide input data consistency and output voting. Reliability analysis results are presented that demonstrate the reduced failure probability of such a system. Performance analysis results are presented that quantify the temporal overhead involved in executing such fault-tolerance-specific operations. Empirical performance measurements of prototypes of the architecture are presented. 30 refs.

  4. Large-magnitude transient strain accumulation on the Blackwater fault, Eastern California shear zone

    NASA Astrophysics Data System (ADS)

    Oskin, Michael; Iriondo, Alex

    2004-04-01

    We investigate the Quaternary slip rate for the Blackwater fault, Eastern California shear zone, through mapping and geochronology of offset volcanic rocks. Basalt flows of the Black Mountains support the presence of faulting at 3.77 ± 0.11 Ma, 1.8 ± 0.1 km of subsequent slip, and a well-constrained long-term slip rate of 0.49 ± 0.04 mm/yr. Total slip diminishes northward, evidenced by a 0.3 1.8 km offset of a 7.23 ± 1.07 Ma dacite flow in the Black Hills and fault termination in the Lava Mountains, 5 km short of the Garlock fault. Slow long-term slip rate together with sparse evidence for Holocene rupture contradict predictions of rapid slip rate from tectonic geodesy. These results support the conclusion that as much as 95% of geodetic strain accumulation across the Blackwater fault, and thus from 1 to 6 mm/yr of geodetic strain measured across the Eastern California shear zone, is a transitory phenomenon. Discrepant geologic and geodetic results may indicate an increased near-term seismic hazard, but merit caution for interpretation of fault slip rates from geodesy alone.

  5. Application of padmounted fault interrupters to single-phase URD systems

    SciTech Connect

    Israel, W.F.

    1995-12-31

    Underground distribution has proven itself to be a highly effective means of eliminating the temporary faults that plague overhead distribution, however, the permanent faults that do occur are often cable or splice failures which are unpredictable, difficult to locate and require a lot of time and expense to repair. One of the ways that the designer seeks to minimize the impact of such events on service reliability is by incorporating an overcurrent protection scheme which removes the faulted section from the rest of the system and contingency scheme which allows isolation of the faulted section and restoration of service in the shortest possible time with a minimal number of switching operations. As a result there has been a continuing interest in the development of devices, equipment, and methods which help to realize the ideals of rapid service restoration and isolation of faults to the smallest segment of the system. Overcurrent protection of the single-phase URD system has, traditionally, been the province of fused cutouts and fused padmounted sectionalizing terminals and switchgear. Recently however, padmounted vacuum fault interrupters, that utilize electronic controls for tripping, have become available from several manufacturers and are beginning to make inroads into this portion of the distribution system. This paper will discuss the characteristics and potential applications of a new product offered by Cooper Power Systems, the Shrubline VFI, which was designed specifically for use in single phase residential underground distribution.

  6. Estimating the distribution of fault latency in a digital processor

    NASA Technical Reports Server (NTRS)

    Ellis, Erik L.; Butler, Ricky W.

    1987-01-01

    Presented is a statistical approach to measuring fault latency in a digital processor. The method relies on the use of physical fault injection where the duration of the fault injection can be controlled. Although a specific fault's latency period is never directly measured, the method indirectly determines the distribution of fault latency.

  7. Depositional history and fault-related studies, Bolinas Lagoon, California

    USGS Publications Warehouse

    Berquist, Joel R.

    1978-01-01

    Studies of core sediments and seismic reflection profiles elucidate the structure and depositional history of Bolinas Lagoon, Calif., which covers 4.4 km 2 and lies in the San Andreas fault zone at the southeast corner of the Point Reyes Peninsula 20 km northwest of San Francisco. The 1906 trace of the San Andreas fault crosses the west side of the lagoon and was determined from (1) tectonically caused salt-marsh destruction indicated by comparison of 1854 and 1929 U.S. Coast and Geodetic Survey (U.S.C. & G.S.) topographic surveys, (2) formation of a tidal channel along the border of destroyed salt marshes, and (3) azimuths of the trend of the fault measured in 1907. Subsidence in the lagoon of 30 cm occurred east of the San Andreas fault in 1906. Near the east shore, seismic-reflection profiling indicates the existence of a graben fault that may connect to a graben fault on the Golden Gate Platform. Comparison of radiocarbon dates on shells and plant debris from boreholes drilled on Stinson Beach spit with a relative sea-level curve constructed for southern San Francisco Bay indicates 5.8 to more than 17.9 m of tectonic subsidence of sediments now located 33 m below mean sea level. Cored sediments indicate a marine transgression dated at 7770?65 yrs B.P. overlying freshwater organic-rich lake deposits. Fossil pollen including 2 to 8 percent Picea (spruce) indicate a late Pleistocene (?)-Early Holocene climate, cooler, wetter, and foggier than at present. Above the transgression are discontinuous and interfingering sequences of transgressive-regressive marine, estuarine, and barrier sediments that reflect rapid lateral and vertical shifts of successive depositional environments. Fossil megafauna indicate (1) accumulation in a protected, shallow-water estuary or bay, and (2) that the lagoon was probably continuously shallow and never a deep-water embayment. Analysis of grain-size parameters, pollen frequencies, and organic remains from a core near the north end of

  8. Frictional heating, fluid pressure, and the resistance to fault motion

    NASA Astrophysics Data System (ADS)

    Lachenbruch, Arthur H.

    1980-11-01

    Expansion of pore fluid caused by frictional heating might have an important effect on the factional resistance and temperature during an earthquake and a controlling influence on the physics of the earthquake process. When confined water is heated, the pressure increases rapidly (≳10 bars/°C). As Sibson (1973) has pointed out, this could cause a sharp reduction of effective normal stress and dynamic friction on the fault surface. Whether or not this transient stress reduction occurs depends upon the tandem operation of several processes, any of which can break the chain that links frictional heat to frictional stress: the friction must cause an appreciable temperature rise (imposing conditions on the width of the shear zone and rate of conductive transport); the temperature rise must cause an appreciable fluid pressure rise (imposing conditions on the rate of pore dilatation or hydrofracturing, and the rate of Darcian transport); the fluid pressure rise must cause an appreciable reduction of friction (requiring the presence of a continuous fluid phase). Each process depends upon event duration, particle velocity, and the initial value of dynamic friction. With the present uncertainty in the controlling parameters (principally permeability, width of the shear zone, initial stress, and factors controlling transient hydrofracture and pore dilatation) a wide variety of fault behavior is possible. Limits to fault behavior for various ranges of the controlling parameters can be estimated from the governing equations, however, and results can be summarized graphically. If the effective stress law applies and pore dilatation is unimportant, dynamic friction would drop from an initial value of 1 kbar to ˜100 bars when shear strain reached 10 for most earthquakes if the permeability were less than 0.1 μdarcy; the maximum temperature rise would be only ˜150°C irrespective of final strain. If the permeability were ≳100 mdarcies, however, friction would be unaffected

  9. Continuous creep measurements on the North Anatolian fault

    NASA Astrophysics Data System (ADS)

    Bilham, Roger; Mencin, David; Mattioli, Glen; Ozner, Haluk; Dogru, Asli; Ergintav, Semih; Cakir, Ziyadin; Aytun, Alkut; Hodgkinson, Kathleen; Johnson, Wade; Gottlieb, Mike; VanBoskirk, Liz

    2015-04-01

    Surface creep was observed as early as 1969 on the North Anatolian fault near Ismetpasa and continues to the present day at rates of the order of 5 mm/yr. Although subsurface creep is currently monitored using INSAR and GPS, continuous creep measurements on the trace of the surface fault have been intermittent. In 2014, we installed a carbon-fiber rod creepmeter at Ismetpasa and a second creepmeter across the surface rupture of the 1999 Izmit earthquake, which is also known to be creeping at depth. The creepmeters have a resolution of 5 µm and a dynamic range of 2.2 m. Each creepmeter uses two sensors: 1) a subsurface LVDT (resolution 5 µm, range 10 mm) and an above-ground rotary Hall effect sensor (resolution 25 µm, range 2.2 m) and the data are transmitted via Iridium satellite communications as 30 minute samples every 2 hours. The hybrid sensors on the creepmeters are similar to others currently operating on the Hayward, Calaveras, and San Andreas faults. The sensor's ability to capture slow slip, coseismic rupture or afterslip has been tested in deployments on the rapidly creeping Jackson, Wyoming landslide (1-3 mm/day). In addition, we have installed six borehole strainmeters to measure creep on the Princess Island segment of the North Anatolian fault to the west of Ismetpasa. The tensor strainmeters are able to measure strain events on 10e-10 strain and they can resolve 1 mm creep events on the order of 500 m2 at distances of 4 km away based on observations from deployed instruments along the San Andreas Fault in Southern California. The tensor strainmeters are unique geodetic instruments in that they are capable of imaging the creep in high resolution where the North Anatolian fault (NAF) is submarine in the Sea of Marmara. The newly installed creepmeters and strainmeters will be powerful tools to examine the possibilities of the transient or episodic creep along the NAF and they will be used to validate the results of on-going monthly INSAR, continuous

  10. Polyscale, polymodal fault geometries: evolution and predictive capability

    NASA Astrophysics Data System (ADS)

    Blenkinsop, T. G.; Carvell, J.; Clarke, G.; Tonelli, M.

    2012-12-01

    The Late Permian Rangal coal measures on the edge of the Nebo synclinorium in the Bowen basin, NE Queensland, Australia, are cut by normal faults. Mining operations allow 13 faults to be mapped in some detail to depths of 200m. These faults cut Tertiary intrusions and a reverse fault as well as the coal seams, and show no obvious signs of reactivation. The steeply dipping faults are clustered into groups of two to four, separated by hundreds of meters. The faults trend ENE and NE; both trends of faults dip in both directions, defining a quadrimodal geometry. The odd axis construction for these faults suggests that vertical shortening was accompanied by horizontal extension along both principal directions of 153° and 063°. The mapped extents of the faults are limited by erosion and the depth to which the faults have been drilled, but displacement profiles along the lengths of the faults show maxima within the fault planes. The displacement profiles suggest that the currently mapped faults have similar lengths to the total preserved lengths of the faults, and that they will continue into the unmined ground to a limited, but predictable extent. The fault planes have a complex geometry, with segments of individual faults showing a similar variability in orientation to the ensemble of fault planes: the fault planes themselves are polymodal. Displacement profiles show a good correlation with segment orientation. An odd axis construction based on fault segments, rather than individual faults, gives principal extension directions within 4° of the above results. The variable orientation of fault segments, the correlation of the displacement profiles with fault orientation, and the similarity between the segment and ensemble fault kinematics suggest that the faults have evolved by propagation and linking of smaller polymodal faults in the same bulk strain field.ross section of polymodal fault at Hail Creek coal mine

  11. Heating and Weakening of Major Faults During Seismic Rupture

    NASA Astrophysics Data System (ADS)

    Rice, J. R.

    2007-12-01

    The absence of significant heat flow from major fault zones, and scarcity of evidence for their seismic melting, means that during earthquake slip such zones could not retain shear strength comparable to the typically high static friction strength of rocks. One line of explanation is that they are actually statically weak, which could be because materials of exceptionally low friction (smectites, talc) accumulate along fault zones, or perhaps because pore pressure within the fault core is far closer to lithostatic than hydrostatic. Without dismissing either, the focus here is on how thermal processes during the rapid slips of seismic rupture can weaken a fault which is indeed statically strong. (The discussion also leaves aside another kind of non- thermal dynamic weakening, possible when there is dissimilarity in seismic properties across the fault, and/or in poroelastic properties and permeability within fringes of damaged material immediately adjoining the slip surface. Spatially nonuniform mode II slip like near a propagating rupture front may then induce a substantial reduction in the effective normal stress \\barσ.) The heating and weakening processes to be discussed divide roughly into two camps: (1) Those which are expected to be active from the start of seismic slip, and hence will be present in all earthquakes; and (2) Those that kick-in after threshold conditions of rise of temperature T or accumulation of slip are reached, and hence become a feature of larger, or at least deeper slipping, earthquakes. It has been argued that the two major players of (1) are as follows: (1.1) Flash heating and weakening of frictional contact asperities in rapid slip [Rice, 1999, 2006; Tullis and Goldsby, 2003; Goldsby and Hirth, 2006; Beeler et al., 2007; Yuan and Prakash, 2007]. That gives a strong velocity-weakening character to the friction coefficient, which is consistent with inducing self-healing rupture modes [Noda et al., 2006; Lu et al., 2007]. It is a process

  12. A novel KFCM based fault diagnosis method for unknown faults in satellite reaction wheels.

    PubMed

    Hu, Di; Sarosh, Ali; Dong, Yun-Feng

    2012-03-01

    Reaction wheels are one of the most critical components of the satellite attitude control system, therefore correct diagnosis of their faults is quintessential for efficient operation of these spacecraft. The known faults in any of the subsystems are often diagnosed by supervised learning algorithms, however, this method fails to work correctly when a new or unknown fault occurs. In such cases an unsupervised learning algorithm becomes essential for obtaining the correct diagnosis. Kernel Fuzzy C-Means (KFCM) is one of the unsupervised algorithms, although it has its own limitations; however in this paper a novel method has been proposed for conditioning of KFCM method (C-KFCM) so that it can be effectively used for fault diagnosis of both known and unknown faults as in satellite reaction wheels. The C-KFCM approach involves determination of exact class centers from the data of known faults, in this way discrete number of fault classes are determined at the start. Similarity parameters are derived and determined for each of the fault data point. Thereafter depending on the similarity threshold each data point is issued with a class label. The high similarity points fall into one of the 'known-fault' classes while the low similarity points are labeled as 'unknown-faults'. Simulation results show that as compared to the supervised algorithm such as neural network, the C-KFCM method can effectively cluster historical fault data (as in reaction wheels) and diagnose the faults to an accuracy of more than 91%. PMID:22035775

  13. Transform fault earthquakes in the North Atlantic: Source mechanisms and depth of faulting

    NASA Technical Reports Server (NTRS)

    Bergman, Eric A.; Solomon, Sean C.

    1987-01-01

    The centroid depths and source mechanisms of 12 large earthquakes on transform faults of the northern Mid-Atlantic Ridge were determined from an inversion of long-period body waveforms. The earthquakes occurred on the Gibbs, Oceanographer, Hayes, Kane, 15 deg 20 min, and Vema transforms. The depth extent of faulting during each earthquake was estimated from the centroid depth and the fault width. The source mechanisms for all events in this study display the strike slip motion expected for transform fault earthquakes; slip vector azimuths agree to 2 to 3 deg of the local strike of the zone of active faulting. The only anomalies in mechanism were for two earthquakes near the western end of the Vema transform which occurred on significantly nonvertical fault planes. Secondary faulting, occurring either precursory to or near the end of the main episode of strike-slip rupture, was observed for 5 of the 12 earthquakes. For three events the secondary faulting was characterized by reverse motion on fault planes striking oblique to the trend of the transform. In all three cases, the site of secondary reverse faulting is near a compression jog in the current trace of the active transform fault zone. No evidence was found to support the conclusions of Engeln, Wiens, and Stein that oceanic transform faults in general are either hotter than expected from current thermal models or weaker than normal oceanic lithosphere.

  14. Implications of fault constitutive properties for earthquake prediction.

    PubMed Central

    Dieterich, J H; Kilgore, B

    1996-01-01

    The rate- and state-dependent constitutive formulation for fault slip characterizes an exceptional variety of materials over a wide range of sliding conditions. This formulation provides a unified representation of diverse sliding phenomena including slip weakening over a characteristic sliding distance Dc, apparent fracture energy at a rupture front, time-dependent healing after rapid slip, and various other transient and slip rate effects. Laboratory observations and theoretical models both indicate that earthquake nucleation is accompanied by long intervals of accelerating slip. Strains from the nucleation process on buried faults generally could not be detected if laboratory values of Dc apply to faults in nature. However, scaling of Dc is presently an open question and the possibility exists that measurable premonitory creep may precede some earthquakes. Earthquake activity is modeled as a sequence of earthquake nucleation events. In this model, earthquake clustering arises from sensitivity of nucleation times to the stress changes induced by prior earthquakes. The model gives the characteristic Omori aftershock decay law and assigns physical interpretation to aftershock parameters. The seismicity formulation predicts large changes of earthquake probabilities result from stress changes. Two mechanisms for foreshocks are proposed that describe observed frequency of occurrence of foreshock-mainshock pairs by time and magnitude. With the first mechanism, foreshocks represent a manifestation of earthquake clustering in which the stress change at the time of the foreshock increases the probability of earthquakes at all magnitudes including the eventual mainshock. With the second model, accelerating fault slip on the mainshock nucleation zone triggers foreshocks. Images Fig. 3 PMID:11607666

  15. On Identifiability of Bias-Type Actuator-Sensor Faults in Multiple-Model-Based Fault Detection and Identification

    NASA Technical Reports Server (NTRS)

    Joshi, Suresh M.

    2012-01-01

    This paper explores a class of multiple-model-based fault detection and identification (FDI) methods for bias-type faults in actuators and sensors. These methods employ banks of Kalman-Bucy filters to detect the faults, determine the fault pattern, and estimate the fault values, wherein each Kalman-Bucy filter is tuned to a different failure pattern. Necessary and sufficient conditions are presented for identifiability of actuator faults, sensor faults, and simultaneous actuator and sensor faults. It is shown that FDI of simultaneous actuator and sensor faults is not possible using these methods when all sensors have biases.

  16. Fault Management Techniques in Human Spaceflight Operations

    NASA Technical Reports Server (NTRS)

    O'Hagan, Brian; Crocker, Alan

    2006-01-01

    This paper discusses human spaceflight fault management operations. Fault detection and response capabilities available in current US human spaceflight programs Space Shuttle and International Space Station are described while emphasizing system design impacts on operational techniques and constraints. Preflight and inflight processes along with products used to anticipate, mitigate and respond to failures are introduced. Examples of operational products used to support failure responses are presented. Possible improvements in the state of the art, as well as prioritization and success criteria for their implementation are proposed. This paper describes how the architecture of a command and control system impacts operations in areas such as the required fault response times, automated vs. manual fault responses, use of workarounds, etc. The architecture includes the use of redundancy at the system and software function level, software capabilities, use of intelligent or autonomous systems, number and severity of software defects, etc. This in turn drives which Caution and Warning (C&W) events should be annunciated, C&W event classification, operator display designs, crew training, flight control team training, and procedure development. Other factors impacting operations are the complexity of a system, skills needed to understand and operate a system, and the use of commonality vs. optimized solutions for software and responses. Fault detection, annunciation, safing responses, and recovery capabilities are explored using real examples to uncover underlying philosophies and constraints. These factors directly impact operations in that the crew and flight control team need to understand what happened, why it happened, what the system is doing, and what, if any, corrective actions they need to perform. If a fault results in multiple C&W events, or if several faults occur simultaneously, the root cause(s) of the fault(s), as well as their vehicle-wide impacts, must be

  17. Kanda fault: A major seismogenic element west of the Rukwa Rift (Tanzania, East Africa)

    NASA Astrophysics Data System (ADS)

    Vittori, Eutizio; Delvaux, Damien; Kervyn, François

    1997-09-01

    The NW-SE trending Rukwa Rift, part of the East African Rift System, links the approximately N-S oriented Tanganyika and Nyassa (Malawi) depressions. The rift has a complex half-graben structure, generally interpreted as the result of normal and strike-slip faulting. Morphological and structural data (e.g. fault scarps, faceted spurs, tilting of Quaternary continental deposits, volcanism, seismicity) indicate Late Quaternary activity within the rift. In 1910 an earthquake of M = 7.4 (historically the largest felt in Africa) struck the Rukwa region. The epicentre was located near the Kanda fault, which affects the Ufipa plateau, separating the Rukwa depression from the south-Tanganyika basin. The geomorphic expression of the Kanda fault is a prominent fresh-looking scarp more than 180 km long, from Tunduma to north of Sumbawanga, that strikes roughly NW-SE, and dips constantly northeast. No evidence for horizontal slip was observed. Generally, the active faulting affects a very narrow zone, and is only locally distributed over several subparallel scarps. The height of the scarp progressively decreases towards the northwest, from about 40-50 m to a few metres north of Sumbawanga. Faulted lacustrine deposits exposed in a road cut near Kaengesa were dated as 8340 ± 700 and 13 600 ± 1240 radiocarbon years. These low-energy deposits now hang more than 15 m above the present-day valley floor, suggesting rapid uplift during the Holocene. Due to its high rate of activity in very recent times, the Kanda Fault could have produced the 1910 earthquake. Detailed paleoseismological studies are used to characterize its recent history. In addition, the seismic hazard posed by this fault, which crosses the fast growing town of Sumbawanga, must be seriously considered in urban planning.

  18. Time-Dependent Coulomb Stres along the San Andreas Fault System

    NASA Astrophysics Data System (ADS)

    Smith, B. R.; Sandwell, D. T.

    2003-12-01

    Many questions remain regarding the evolution of stress along the San Andreas Fault System: Which segments of the San Andreas System are approaching failure? What is the stress interaction along different fault segments for likely slip scenarios? To what extent does locking depth influence the regional stress field? To better address these questions, we have developed and tested a semi-analytic, time-dependent model for 3-D displacement and stress caused by a dislocation in an elastic layer over a viscoelastic half-space. Our model is remarkably efficient: a single time-step computation of 2048 by 2048 horizontal grid cells, containing over 400 fault elements within a 900 x 1700 km fault zone, requires approximately 1 minute of CPU time on an ordinary workstation. This speed enables us to rapidly explore various full 3-D viscoelastic models with realistic 1000-year faulting scenarios. Our approach for investigating time-dependent deformation and stress evolution of the San Andreas Fault System is as follows: We represent far-field plate motion by continuous slip in the lower portion of a 50 km thick elastic layer. Earthquakes are modeled by episodic slip along individual faults using spatially-variable locking depth and geologically-estimated recurrence intervals. Each co-seismic event results in an instantaneous change of stress within the viscoelastic half-space that slowly relaxes with time and is coupled with the evolution of stresses within the elastic plate. We investigate such evolving stresses by computing time-dependent Coulomb stress within the seismogenic zone. We find that the evolving stress field is sensitive to plate thickness, half-space viscosity, and faulting scenario. We are currently establishing a suite of models, consistent with both geodetic and geological observations, that will increase our understanding of how temporal plate-boundary deformation and stress variations within the seismogenic crust can result from different tectonic settings

  19. Inferred relation of Miocene Bealville Fanglomerate to Edison Fault, Caliente Canyon area, Kern County, California

    SciTech Connect

    Dibblee, T.W. Jr.; Warne, A.H.

    1986-04-01

    The Bealville Fanglomerate is a very coarse, local, eastern torrential facies of the middle Tertiary marine sedimentary sequence of southern San Joaquin basin. This fanglomerate is exposed in lower Caliente Canyon east of Bakersfield. It is composed of unsorted boulder-size detritus of granitic rocks now exposed in the highlands on the east and south. The fanglomerate intertongues northwestward into the overlying Miocene fluvial Bena Gravel and probably partly into the underlying Oligocene-Miocene fluvial Walker Formation. In its eastern exposure, the Bealville Fanglomerate laps onto granitic basement. The Bealville Fanglomerate, as thick as 7000 ft (2200 m), dips southward into the north-dipping Edison fault. Pre-Tertiary granitic basement was elevated on the Edison fault to the south when the fault was contemporaneously active during the Miocene. Both the fanglomerate terrane north of the fault and the adjacent granitic basement terrane south of it are now eroded to low relief, so the fault is not expressed physiographically and is inactive. In contrast, the active White Wolf fault to the southeast is expressed by the northwest-facing escarpment slope of Bear Mountain. The Bealville Fanglomerate was deposited during the early and middle Miocene as coarse alluvial detritus on the western base of the rising Sierra Nevada uplift of granitic terrane. This southward-dipping fanglomerate is coarser and thicker than other formations deposited on the eastern margin of the San Joaquin basin. These conditions indicate that the fanglomerate was deposited rapidly on a southward-tilting block against a block of granitic basement being elevated on the Edison fault to the south, and it was derived from the adjacent granitic terrane to the east and from that elevated on the Edison fault to the south.

  20. Effects of Fault Displacement on Emplacement Drifts

    SciTech Connect

    F. Duan

    2000-04-25

    The purpose of this analysis is to evaluate potential effects of fault displacement on emplacement drifts, including drip shields and waste packages emplaced in emplacement drifts. The output from this analysis not only provides data for the evaluation of long-term drift stability but also supports the Engineered Barrier System (EBS) process model report (PMR) and Disruptive Events Report currently under development. The primary scope of this analysis includes (1) examining fault displacement effects in terms of induced stresses and displacements in the rock mass surrounding an emplacement drift and (2 ) predicting fault displacement effects on the drip shield and waste package. The magnitude of the fault displacement analyzed in this analysis bounds the mean fault displacement corresponding to an annual frequency of exceedance of 10{sup -5} adopted for the preclosure period of the repository and also supports the postclosure performance assessment. This analysis is performed following the development plan prepared for analyzing effects of fault displacement on emplacement drifts (CRWMS M&O 2000). The analysis will begin with the identification and preparation of requirements, criteria, and inputs. A literature survey on accommodating fault displacements encountered in underground structures such as buried oil and gas pipelines will be conducted. For a given fault displacement, the least favorable scenario in term of the spatial relation of a fault to an emplacement drift is chosen, and the analysis is then performed analytically. Based on the analysis results, conclusions are made regarding the effects and consequences of fault displacement on emplacement drifts. Specifically, the analysis will discuss loads which can be induced by fault displacement on emplacement drifts, drip shield and/or waste packages during the time period of postclosure.

  1. The work budget of rough faults

    NASA Astrophysics Data System (ADS)

    Newman, Patrick J.; Ashley Griffith, W.

    2014-12-01

    Faults in nature have measurable roughness at many scales and are not planar as generally idealized. We utilize the boundary element method to model the geomechanical response of synthetic rough faults in an isotropic, linear elastic continuum to external tectonic loading in terms of the work budget. Faults are generated with known fractal roughness parameters, including the root mean square slope (β), a measure of roughness amplitude, and the Hurst exponent (H), a measure of geometric self-similarity. Energy within the fault models is partitioned into external work (Wext), internal elastic strain energy (Wint), gravitational work (Wgrav), frictional work (Wfric), and seismic energy (Wseis). Results confirm that Wext, or work done on the external model boundaries, is smallest for a perfectly planar fault, and steadily increases with increasing β. This pattern is also observed in Wint, the energy expended in deforming the host rock. The opposite is true for gravitational work, or work done against gravity in uplifting host rock, as well as with frictional work, or energy dissipated with frictional slip on the fault, and Wseis, or seismic energy released during slip events. Effects of variation in H are not as large as for β, but Wgrav, Wfric, and Wseis increase with increasing H, with Wint and Wext decreasing across the same range. Remarkably, however, for a narrow range of roughness amplitudes which are commonly observed along natural faults, the total work of the system remains approximately constant, while slightly larger than the total work of a planar fault. Faults evolve toward the most mechanically efficient configuration; therefore we argue that this range of roughness amplitudes may represent an energy barrier, preventing faults from removing asperities and evolving to smooth, planar discontinuities. A similar conclusion is drawn from simulations at relatively shallow depths, with results showing that shallower faults have larger energy barriers, and can

  2. Illuminating Northern California's Active Faults

    NASA Astrophysics Data System (ADS)

    Prentice, Carol S.; Crosby, Christopher J.; Whitehill, Caroline S.; Arrowsmith, J. Ramón; Furlong, Kevin P.; Phillips, David A.

    2009-02-01

    Newly acquired light detection and ranging (lidar) topographic data provide a powerful community resource for the study of landforms associated with the plate boundary faults of northern California (Figure 1). In the spring of 2007, GeoEarthScope, a component of the EarthScope Facility construction project funded by the U.S. National Science Foundation, acquired approximately 2000 square kilometers of airborne lidar topographic data along major active fault zones of northern California. These data are now freely available in point cloud (x, y, z coordinate data for every laser return), digital elevation model (DEM), and KMZ (zipped Keyhole Markup Language, for use in Google Earth™ and other similar software) formats through the GEON OpenTopography Portal (http://www.OpenTopography.org/data). Importantly, vegetation can be digitally removed from lidar data, producing high-resolution images (0.5- or 1.0-meter DEMs) of the ground surface beneath forested regions that reveal landforms typically obscured by vegetation canopy (Figure 2).

  3. Fault Tolerant Homopolar Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Li, Ming-Hsiu; Palazzolo, Alan; Kenny, Andrew; Provenza, Andrew; Beach, Raymond; Kascak, Albert

    2003-01-01

    Magnetic suspensions (MS) satisfy the long life and low loss conditions demanded by satellite and ISS based flywheels used for Energy Storage and Attitude Control (ACESE) service. This paper summarizes the development of a novel MS that improves reliability via fault tolerant operation. Specifically, flux coupling between poles of a homopolar magnetic bearing is shown to deliver desired forces even after termination of coil currents to a subset of failed poles . Linear, coordinate decoupled force-voltage relations are also maintained before and after failure by bias linearization. Current distribution matrices (CDM) which adjust the currents and fluxes following a pole set failure are determined for many faulted pole combinations. The CDM s and the system responses are obtained utilizing 1D magnetic circuit models with fringe and leakage factors derived from detailed, 3D, finite element field models. Reliability results are presented vs. detection/correction delay time and individual power amplifier reliability for 4, 6, and 7 pole configurations. Reliability is shown for two success criteria, i.e. (a) no catcher bearing contact following pole failures and (b) re-levitation off of the catcher bearings following pole failures. An advantage of the method presented over other redundant operation approaches is a significantly reduced requirement for backup hardware such as additional actuators or power amplifiers.

  4. South Virgin-White Hills detachment fault system of SE Nevada and NW Arizona: Applying apatite fission track thermochronology to constrain the tectonic evolution of a major continental detachment fault

    NASA Astrophysics Data System (ADS)

    Fitzgerald, Paul G.; Duebendorfer, Ernest M.; Faulds, James E.; O'Sullivan, Paul

    2009-04-01

    The South Virgin-White Hills detachment (SVWHD) in the central Basin and Range province with an along-strike extent of ˜60 km is a major continental detachment fault system. Displacement on the SVWHD decreases north to south from ˜17 to <6 km. This is accompanied by a change in fault and footwall rock type from mylonite overprinted by cataclasite to chlorite cataclasite and then fault breccia reflecting decreasing fault displacement and footwall exhumation. Apatite fission track (AFT) thermochronology was applied both along-strike and across-strike to assess this displacement gradient. The overall thermal history reflects Laramide cooling (˜75 Ma) and then rapid cooling beginning in the late early Miocene. Age patterns reflect some complexity but extension along the SVWHD appears synchronous with rapid cooling initiated at ˜17 Ma due to tectonic exhumation. Slip rate is more rapid (˜8.6 km/Ma) in the north compared to ˜1 km/Ma in the south. The displacement gradient results from penecontemporaneous along-strike motion and formation of the SVWHD by linkage of originally separate fault segments that have differential displacements and hence differential slip rates. East-west transverse structures likely play a role in linkage of different fault segments. The preextension paleogeothermal gradient is well constrained in the Gold Butte block as 18-20°C/km. We present a new thermochronologic approach to constrain fault dip during slip, treating the vertical exhumation rate and the slip as vectors, with the angle between them used to constrain fault dip during slip through the closure temperature of a particular thermochronometer. AFT data from the western rim of the Colorado Plateau constrain the initiation of timing of cooling associated with the Laramide Orogeny at ˜75 Ma, and a reheating event in the late Eocene/early Oligocene associated with burial by sediments ("rim gravels") most likely shed from the Kingman High to the west of the plateau.

  5. A poroplastic model of mature fault cores with biphasic pore fluids to investigate the role of gas on the onset of fault failure

    NASA Astrophysics Data System (ADS)

    Maury, V.; Fitzenz, D. D.; Piau, J.

    2011-12-01

    A poroplastic model of mature fault cores with biphasic pore fluids to investigate the role of gas on the onset of fault failure The effects of a rapid access of a fault to a source of overpressured fluids on effective stress and failure criterion have been recognized for a long time (Quattrocchi 1999), resulting in a decrease of the effective stress. We concentrate here on the case of the appearance/disappearance of gas in the pore fluid, and its effects on the loading path (Maury et al., 2011). Indeed, gas can appear continuously in a fault zone through dilatant deformation of the zones adjacent to the core fault (Kuo, 2006 ), due to fluid depressurization and degassing. Other source of gas e.g., mantle degasing (Miller et al, 2004), devolitization of coal or other organic matter during frictional sliding (O'Hara et al, 2006), may be remote, and diffuse through a fracture network, or local. Gas in a fault core reduces the Skempton's coefficient to almost 0, the total stress increase during tectonic loading induces a larger increase in effective stress than when pore fluid is fully liquid saturated, thus changing dramatically the loading path for that fault. Not only is failure delayed, but the shear stress at failure increases significantly. Before gas disappearance, the fault might not be critically stressed. However, a subsequent disappearance of gas may lead to failure for small increments of normal and shear stress: apparently strong faults can fail in response to small stress changes. Dilatant failure envelopes are often assumed for localized faults, whereas end-cap envelopes are usually used in association with compaction bands. Here we investigate a poroplastic model for mature fault cores acknowledging that these can be dilatant/contractant according to the state of stress at the plasticity criterion contact. We therefore use a Cam-Clay model as a first approximation. This model enables us to monitor the stability behavior and compute the jumps in stress

  6. Paleoseismicity of two historically quiescent faults in Australia: Implications for fault behavior in stable continental regions

    USGS Publications Warehouse

    Crone, A.J.; De Martini, P. M.; Machette, M.M.; Okumura, K.; Prescott, J.R.

    2003-01-01

    Paleoseismic studies of two historically aseismic Quaternary faults in Australia confirm that cratonic faults in stable continental regions (SCR) typically have a long-term behavior characterized by episodes of activity separated by quiescent intervals of at least 10,000 and commonly 100,000 years or more. Studies of the approximately 30-km-long Roopena fault in South Australia and the approximately 30-km-long Hyden fault in Western Australia document multiple Quaternary surface-faulting events that are unevenly spaced in time. The episodic clustering of events on cratonic SCR faults may be related to temporal fluctuations of fault-zone fluid pore pressures in a volume of strained crust. The long-term slip rate on cratonic SCR faults is extremely low, so the geomorphic expression of many cratonic SCR faults is subtle, and scarps may be difficult to detect because they are poorly preserved. Both the Roopena and Hyden faults are in areas of limited or no significant seismicity; these and other faults that we have studied indicate that many potentially hazardous SCR faults cannot be recognized solely on the basis of instrumental data or historical earthquakes. Although cratonic SCR faults may appear to be nonhazardous because they have been historically aseismic, those that are favorably oriented for movement in the current stress field can and have produced unexpected damaging earthquakes. Paleoseismic studies of modern and prehistoric SCR faulting events provide the basis for understanding of the long-term behavior of these faults and ultimately contribute to better seismic-hazard assessments.

  7. Rapid ductile afterslip from coseismic heating

    NASA Astrophysics Data System (ADS)

    Platt, J. D.; Meade, B. J.; Savage, H. M.; Rowe, C. D.

    2015-12-01

    Earthquakes are typically followed by months of afterslip, the total of which is generally an order of magnitude smaller than the seismic slip. The classic model for afterslip envisions seismic slip transferring stress to adjacent regions, driving accelerated stable sliding that expands the rupture area. However, a small proportion of earthquakes exhibit unusually large and rapid afterslip in the hours immediately following rupture. Here we present a new model that bridges the transition from seismic to postseismic deformation and may explain these observations of rapid afterslip. Seismic slip produces a significant temperature rise that slowly diffuses into the surrounding material following the cessation of seismic slip. Any process with strong temperature dependence is more sensitive to this heat transient than to the ambient temperatures present during the interseismic period. Coupling the temperature evolution of a fault to a ductile flow law we model postseismic deformation during the heat transient. Our idea of coseismic heating enhancing ductile flow is supported by field observations of micro-shear zones adjacent to psuedotachylyte veins. Enhanced ductility is largely confined to the zone that deformed seismically, making our model equivalent to rapid afterslip. Combining analytic and numerical methods we solve for the total afterslip in terms of the slip rate and fault strength during seismic slip and the ductile flow parameters. Our results are sensitive to the assumed rheology and deforming zone thickness, and while total afterslip is generally small some plausible parameter ranges predict afterslip comparable to or greater than the seismic slip developing over timescales shorter than an hour. We demonstrate that rapid afterslip can drive significant frictional heating, leading to a thermal runaway instability that produces a near total postseismic stress drop. To conclude we investigate the tsunami magnitude that rapid afterslip could produce.

  8. On-Board Real-Time State and Fault Identification for Rovers

    NASA Technical Reports Server (NTRS)

    Washington, Richard

    2000-01-01

    For extended autonomous operation, rovers must identify potential faults to determine whether its execution needs to be halted or not. At the same time, rovers present particular challenges for state estimation techniques: they are subject to environmental influences that affect senior readings during normal and anomalous operation, and the sensors fluctuate rapidly both because of noise and because of the dynamics of the rover's interaction with its environment. This paper presents MAKSI, an on-board method for state estimation and fault diagnosis that is particularly appropriate for rovers. The method is based on a combination of continuous state estimation, wing Kalman filters, and discrete state estimation, wing a Markov-model representation.

  9. Self-stabilizing byzantine-fault-tolerant clock synchronization system and method

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar R. (Inventor)

    2012-01-01

    Systems and methods for rapid Byzantine-fault-tolerant self-stabilizing clock synchronization are provided. The systems and methods are based on a protocol comprising a state machine and a set of monitors that execute once every local oscillator tick. The protocol is independent of specific application specific requirements. The faults are assumed to be arbitrary and/or malicious. All timing measures of variables are based on the node's local clock and thus no central clock or externally generated pulse is used. Instances of the protocol are shown to tolerate bursts of transient failures and deterministically converge with a linear convergence time with respect to the synchronization period as predicted.

  10. Fault-tolerant software - Experiment with the sift operating system. [Software Implemented Fault Tolerance computer

    NASA Technical Reports Server (NTRS)

    Brunelle, J. E.; Eckhardt, D. E., Jr.

    1985-01-01

    Results are presented of an experiment conducted in the NASA Avionics Integrated Research Laboratory (AIRLAB) to investigate the implementation of fault-tolerant software techniques on fault-tolerant computer architectures, in particular the Software Implemented Fault Tolerance (SIFT) computer. The N-version programming and recovery block techniques were implemented on a portion of the SIFT operating system. The results indicate that, to effectively implement fault-tolerant software design techniques, system requirements will be impacted and suggest that retrofitting fault-tolerant software on existing designs will be inefficient and may require system modification.

  11. Implementation of a model based fault detection and diagnosis technique for actuation faults of the SSME

    NASA Technical Reports Server (NTRS)

    Duyar, A.; Guo, T.-H.; Merrill, W.; Musgrave, J.

    1991-01-01

    In a previous study, Guo, Merrill and Duyar, 1990, reported a conceptual development of a fault detection and diagnosis system for actuation faults of the Space Shuttle main engine. This study, which is a continuation of the previous work, implements the developed fault detection and diagnosis scheme for the real time actuation fault diagnosis of the Space Shuttle Main Engine. The scheme will be used as an integral part of an intelligent control system demonstration experiment at NASA Lewis. The diagnosis system utilizes a model based method with real time identification and hypothesis testing for actuation, sensor, and performance degradation faults.

  12. Intermittent/transient fault phenomena in digital systems

    NASA Technical Reports Server (NTRS)

    Masson, G. M.

    1977-01-01

    An overview of the intermittent/transient (IT) fault study is presented. An interval survivability evaluation of digital systems for IT faults is discussed along with a method for detecting and diagnosing IT faults in digital systems.

  13. Shallow Faulting in Morelia, Mexico, Based on Seismic Tomography and Geodetically Detected Land Subsidence

    NASA Astrophysics Data System (ADS)

    Cabral-Cano, E.; Arciniega-Ceballos, A.; Vergara-Huerta, F.; Chaussard, E.; Wdowinski, S.; DeMets, C.; Salazar-Tlaczani, L.

    2013-12-01

    Subsidence has been a common occurrence in several cities in central Mexico for the past three decades. This process causes substantial damage to the urban infrastructure and housing in several cities and it is a major factor to be considered when planning urban development, land-use zoning and hazard mitigation strategies. Since the early 1980's the city of Morelia in Central Mexico has experienced subsidence associated with groundwater extraction in excess of natural recharge from rainfall. Previous works have focused on the detection and temporal evolution of the subsidence spatial distribution. The most recent InSAR analysis confirms the permanence of previously detected rapidly subsiding areas such as the Rio Grande Meander area and also defines 2 subsidence patches previously undetected in the newly developed suburban sectors west of Morelia at the Fraccionamiento Del Bosque along, south of Hwy. 15 and another patch located north of Morelia along Gabino Castañeda del Rio Ave. Because subsidence-induced, shallow faulting develops at high horizontal strain localization, newly developed a subsidence areas are particularly prone to faulting and fissuring. Shallow faulting increases groundwater vulnerability because it disrupts discharge hydraulic infrastructure and creates a direct path for transport of surface pollutants into the underlying aquifer. Other sectors in Morelia that have been experiencing subsidence for longer time have already developed well defined faults such as La Colina, Central Camionera, Torremolinos and La Paloma faults. Local construction codes in the vicinity of these faults define a very narrow swath along which housing construction is not allowed. In order to better characterize these fault systems and provide better criteria for future municipal construction codes we have surveyed the La Colina and Torremolinos fault systems in the western sector of Morelia using seismic tomographic techniques. Our results indicate that La Colina Fault

  14. New mapping and structural constraints on the Queen Charlotte-Fairweather Fault system, southeast Alaska

    NASA Astrophysics Data System (ADS)

    Levoir, M. A.; Roland, E. C.; Gulick, S. P.; Haeussler, P. J.; Christeson, G. L.; Van Avendonk, H. J.

    2013-12-01

    ) Pacific Plate underthrusting beneath North America; or 2) crustal shortening via smaller, localized thrust faults. The underthrusting model assumes oblique slip along fault planes that transition to a lesser dip with increasing depth, whereas the local-thrust model requires strain partitioning via a series of thrust faults proximal to and inland from the main strike-slip trace. We provide insight into this system with improved surficial fault geometries that illuminate Queen Charlotte Fault structure in the context of the two recent earthquakes. We present these data in conjunction with preliminary aftershock locations and focal mechanisms for the 05 January 2013 Craig earthquake (obtained from a joint University of Texas-USGS OBS rapid-response survey), which offer new information about the seemingly changing along-strike dip and planar structure of the southern Queen Charlotte Fault. Additionally, we can now better constrain the Queen Charlotte's northern structure in relation with the Chatham Strait and Fairweather transforms.

  15. Intermittent/transient faults in digital systems

    NASA Technical Reports Server (NTRS)

    Masson, G. M.; Glazer, R. E.

    1982-01-01

    Containment set techniques are applied to 8085 microprocessor controllers so as to transform a typical control system into a slightly modified version, shown to be crashproof: after the departure of the intermittent/transient fault, return to one proper control algorithm is assured, assuming no permanent faults occur.

  16. A Game Theoretic Fault Detection Filter

    NASA Technical Reports Server (NTRS)

    Chung, Walter H.; Speyer, Jason L.

    1995-01-01

    The fault detection process is modelled as a disturbance attenuation problem. The solution to this problem is found via differential game theory, leading to an H(sub infinity) filter which bounds the transmission of all exogenous signals save the fault to be detected. For a general class of linear systems which includes some time-varying systems, it is shown that this transmission bound can be taken to zero by simultaneously bringing the sensor noise weighting to zero. Thus, in the limit, a complete transmission block can he achieved, making the game filter into a fault detection filter. When we specialize this result to time-invariant system, it is found that the detection filter attained in the limit is identical to the well known Beard-Jones Fault Detection Filter. That is, all fault inputs other than the one to be detected (the "nuisance faults") are restricted to an invariant subspace which is unobservable to a projection on the output. For time-invariant systems, it is also shown that in the limit, the order of the state-space and the game filter can be reduced by factoring out the invariant subspace. The result is a lower dimensional filter which can observe only the fault to be detected. A reduced-order filter can also he generated for time-varying systems, though the computational overhead may be intensive. An example given at the end of the paper demonstrates the effectiveness of the filter as a tool for fault detection and identification.

  17. Intraplate rotational deformation induced by faults

    NASA Astrophysics Data System (ADS)

    Dembo, Neta; Hamiel, Yariv; Granot, Roi

    2015-11-01

    Vertical axis rotations provide important constraints on the tectonic history of plate boundaries. Geodetic measurements can be used to calculate interseismic rotations, whereas paleomagnetic remanence directions provide constraints on the long-term rotations accumulated over geological timescales. Here we present a new mechanical modeling approach that links between intraplate deformational patterns of these timescales. We construct mechanical models of active faults at their locked state to simulate the presumed to be elastic interseismic deformation rate observed by GPS measurements. We then apply a slip to the faults above the locking depth to simulate the long-term deformation of the crust from which we derive the accumulated rotations. We test this approach in northern Israel along the Dead Sea Fault and Carmel-Gilboa fault system. We use 12 years of interseismic GPS measurements to constrain a slip model of the major faults found in this region. Next, we compare the modeled rotations against long-term rotations determined based on new primary magnetic remanence directions from 29 sites with known age. The distributional pattern of site mean declinations is in general agreement with the vertical axis rotations predicted by the mechanical model, both showing anomalously high rotations near fault tips and bending points. Overall, the results from northern Israel validate the effectiveness of our approach and indicate that rotations induced by motion along faults may act in parallel (or alone) to rigid block rotations. Finally, the new suggested method unravels important insights on the evolution (timing, magnitude, and style) of deformation along major faults.

  18. 40 CFR 258.13 - Fault areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Fault areas. 258.13 Section 258.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Location Restrictions § 258.13 Fault areas. (a) New MSWLF units and...

  19. 40 CFR 258.13 - Fault areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Fault areas. 258.13 Section 258.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Location Restrictions § 258.13 Fault areas. (a) New MSWLF units and lateral expansions shall not be located within 200 feet...

  20. Measurement selection for parametric IC fault diagnosis

    NASA Technical Reports Server (NTRS)

    Wu, A.; Meador, J.

    1991-01-01

    Experimental results obtained with the use of measurement reduction for statistical IC fault diagnosis are described. The reduction method used involves data pre-processing in a fashion consistent with a specific definition of parametric faults. The effects of this preprocessing are examined.

  1. The Curiosity Mars Rover's Fault Protection Engine

    NASA Technical Reports Server (NTRS)

    Benowitz, Ed

    2014-01-01

    The Curiosity Rover, currently operating on Mars, contains flight software onboard to autonomously handle aspects of system fault protection. Over 1000 monitors and 39 responses are present in the flight software. Orchestrating these behaviors is the flight software's fault protection engine. In this paper, we discuss the engine's design, responsibilities, and present some lessons learned for future missions.

  2. Diagnostics Tools Identify Faults Prior to Failure

    NASA Technical Reports Server (NTRS)

    2013-01-01

    Through the SBIR program, Rochester, New York-based Impact Technologies LLC collaborated with Ames Research Center to commercialize the Center s Hybrid Diagnostic Engine, or HyDE, software. The fault detecting program is now incorporated into a software suite that identifies potential faults early in the design phase of systems ranging from printers to vehicles and robots, saving time and money.

  3. Tractable particle filters for robot fault diagnosis

    NASA Astrophysics Data System (ADS)

    Verma, Vandi

    Experience has shown that even carefully designed and tested robots may encounter anomalous situations. It is therefore important for robots to monitor their state so that anomalous situations may be detected in a timely manner. Robot fault diagnosis typically requires tracking a very large number of possible faults in complex non-linear dynamic systems with noisy sensors. Traditional methods either ignore the uncertainly or use linear approximations of nonlinear system dynamics. Such approximations are often unrealistic, and as a result faults either go undetected or become confused with non-fault conditions. Probability theory provides a natural representation for uncertainty, but an exact Bayesian solution for the diagnosis problem is intractable. Classical Monte Carlo methods, such as particle filters, suffer from substantial computational complexity. This is particularly true with the presence of rare, yet important events, such as many system faults. The thesis presents a set of complementary algorithms that provide an approach for computationally tractable fault diagnosis. These algorithms leverage probabilistic approaches to decision theory and information theory to efficiently track a large number of faults in a general dynamic system with noisy measurements. The problem of fault diagnosis is represented as hybrid (discrete/continuous) state estimation. Taking advantage of structure in the domain it dynamically concentrates computation in the regions of state space that are currently most relevant without losing track of less likely states. Experiments with a dynamic simulation of a six-wheel rocker-bogie rover show a significant improvement in performance over the classical approach.

  4. Is the Lishan fault of Taiwan active?

    NASA Astrophysics Data System (ADS)

    Kuo-Chen, Hao; Wu, Francis; Chang, Wu-Lung; Chang, Chih-Yu; Cheng, Ching-Yu; Hirata, Naoshi

    2015-10-01

    The Lishan fault has been characterized alternately as a major discontinuity in stratigraphy, structures and metamorphism, a ductile shear zone, a tectonic suture or non-existent. In addition to being a geological boundary, it also marks transitions in subsurface structures. Thus, the seismicity to the west of the fault permeates through the upper and mid-crust while beneath the Central Range it is noticeably less and largely concentrated in the upper 12 km. A prominent west-dipping conductive zone extends upward to meet the Lishan fault. Also, the eastward increase of crust thickness from ~ 30 km in the Taiwan Strait quickens under the Lishan fault to form a root of over 50 km under the Central Range. In the past, the small magnitude seismicity along the Lishan fault has been noticed but is too diffuse for definitive association with the fault. Recent processing of aftershock records of the 1999 Mw 7.6 Chi-Chi earthquake using Central Weather Bureau data and, especially, data from three post-Chi-Chi deployments of seismic stations across central Taiwan yielded hypocenters that appear to link directly to the Lishan structure. The presence of a near 4-km-long vertical seismic zone directly under the surface trace of the Lishan fault indicates that it is an active structure from the surface down to about 35 km, and the variety of focal mechanisms indicates that the fault motion can be complex and depth-dependent.

  5. Late Cenozoic intraplate faulting in eastern Australia

    NASA Astrophysics Data System (ADS)

    Babaahmadi, Abbas; Rosenbaum, Gideon

    2014-12-01

    The intensity and tectonic origin of late Cenozoic intraplate deformation in eastern Australia is relatively poorly understood. Here we show that Cenozoic volcanic rocks in southeast Queensland have been deformed by numerous faults. Using gridded aeromagnetic data and field observations, structural investigations were conducted on these faults. Results show that faults have mainly undergone strike-slip movement with a reverse component, displacing Cenozoic volcanic rocks ranging in ages from ˜31 to ˜21 Ma. These ages imply that faulting must have occurred after the late Oligocene. Late Cenozoic deformation has mostly occurred due to the reactivation of major faults, which were active during episodes of basin formation in the Jurassic-Early Cretaceous and later during the opening of the Tasman and Coral Seas from the Late Cretaceous to the early Eocene. The wrench reactivation of major faults in the late Cenozoic also gave rise to the occurrence of brittle subsidiary reverse strike-slip faults that affected Cenozoic volcanic rocks. Intraplate transpressional deformation possibly resulted from far-field stresses transmitted from the collisional zones at the northeast and southeast boundaries of the Australian plate during the late Oligocene-early Miocene and from the late Miocene to the Pliocene. These events have resulted in the hitherto unrecognized reactivation of faults in eastern Australia.

  6. Friction, overpressure and fault normal compression

    SciTech Connect

    Byerlee, J. )

    1990-11-01

    More than twenty-five years ago Miller and Low reported the existence of a threshold pore pressure gradient below which water would not flow through clay. Recent experimental observations of the shear strength of structured water on biotite surfaces have provided a physical basis for understanding this threshold gradient. The existence of this phenomenon has profound implications for the rheological properties of mature fault zones, such as the San Andreas, that contain large thickness of fault gouge. For example, a clay-filled fault zone about 1 km wide at the base of the surface could support core fluid pressure equal to the maximum principal stress over the entire seismogenic zone. As a result, the fault would have near-zero strength and the maximum principal stress measured on the flanks of the fault, would be oriented normal to the fault surface. Another consequence of the threshold gradient is that normal hydrostatic fluid pressures outside the fault zone could coexist with near-lithostatic fluid pressures in the interior of the fault zone without the need for continual replenishment of the overpressured fluid. In addition, the pore pressure at any point should never exceed the local minimum principal stress so that hydrofracture will not occur.

  7. The cost of software fault tolerance

    NASA Technical Reports Server (NTRS)

    Migneault, G. E.

    1982-01-01

    The proposed use of software fault tolerance techniques as a means of reducing software costs in avionics and as a means of addressing the issue of system unreliability due to faults in software is examined. A model is developed to provide a view of the relationships among cost, redundancy, and reliability which suggests strategies for software development and maintenance which are not conventional.

  8. Interactive Instruction in Solving Fault Finding Problems.

    ERIC Educational Resources Information Center

    Brooke, J. B.; And Others

    1978-01-01

    A training program is described which provides, during fault diagnosis, additional information about the relationship between the remaining faults and the available indicators. An interactive computer program developed for this purpose and the first results of experimental training are described. (Author)

  9. Training for Skill in Fault Diagnosis

    ERIC Educational Resources Information Center

    Turner, J. D.

    1974-01-01

    The Knitting, Lace and Net Industry Training Board has developed a training innovation called fault diagnosis training. The entire training process concentrates on teaching based on the experiences of troubleshooters or any other employees whose main tasks involve fault diagnosis and rectification. (Author/DS)

  10. Fault detection with principal component pursuit method

    NASA Astrophysics Data System (ADS)

    Pan, Yijun; Yang, Chunjie; Sun, Youxian; An, Ruqiao; Wang, Lin

    2015-11-01

    Data-driven approaches are widely applied for fault detection in industrial process. Recently, a new method for fault detection called principal component pursuit(PCP) is introduced. PCP is not only robust to outliers, but also can accomplish the objectives of model building, fault detection, fault isolation and process reconstruction simultaneously. PCP divides the data matrix into two parts: a fault-free low rank matrix and a sparse matrix with sensor noise and process fault. The statistics presented in this paper fully utilize the information in data matrix. Since the low rank matrix in PCP is similar to principal components matrix in PCA, a T2 statistic is proposed for fault detection in low rank matrix. And this statistic can illustrate that PCP is more sensitive to small variations in variables than PCA. In addition, in sparse matrix, a new monitored statistic performing the online fault detection with PCP-based method is introduced. This statistic uses the mean and the correlation coefficient of variables. Monte Carlo simulation and Tennessee Eastman (TE) benchmark process are provided to illustrate the effectiveness of monitored statistics.

  11. Geophysical characterization of buried active faults: the Concud Fault (Iberian Chain, NE Spain)

    NASA Astrophysics Data System (ADS)

    Pueyo Anchuela, Óscar; Lafuente, Paloma; Arlegui, Luis; Liesa, Carlos L.; Simón, José L.

    2015-12-01

    The Concud Fault is a ~14-km-long active fault that extends close to Teruel, a city with about 35,000 inhabitants in the Iberian Range (NE Spain). It shows evidence of recurrent activity during Late Pleistocene time, posing a significant seismic hazard in an area of moderate-to-low tectonic rates. A geophysical survey was carried out along the mapped trace of the southern branch of the Concud Fault to evaluate the geophysical signature from the fault and the location of paleoseismic trenches. The survey identified a lineation of inverse magnetic dipoles at residual and vertical magnetic gradient, a local increase in apparent conductivity, and interruptions of the underground sediment structure along GPR profiles. The origin of these anomalies is due to lateral contrast between both fault blocks and the geophysical signature of Quaternary materials located above and directly south of the fault. The spatial distribution of anomalies was successfully used to locate suitable trench sites and to map non-exposed segments of the fault. The geophysical anomalies are related to the sedimentological characteristics and permeability differences of the deposits and to deformation related to fault activity. The results illustrate the usefulness of geophysics to detect and map non-exposed faults in areas of moderate-to-low tectonic activity where faults are often covered by recent pediments that obscure geological evidence of the most recent earthquakes. The results also highlight the importance of applying multiple geophysical techniques in defining the location of buried faults.

  12. Spatial analysis of hypocenter to fault relationships for determining fault process zone width in Japan.

    SciTech Connect

    Arnold, Bill Walter; Roberts, Barry L.; McKenna, Sean Andrew; Coburn, Timothy C. (Abilene Christian University, Abilene, TX)

    2004-09-01

    Preliminary investigation areas (PIA) for a potential repository of high-level radioactive waste must be evaluated by NUMO with regard to a number of qualifying factors. One of these factors is related to earthquakes and fault activity. This study develops a spatial statistical assessment method that can be applied to the active faults in Japan to perform such screening evaluations. This analysis uses the distribution of seismicity near faults to define the width of the associated process zone. This concept is based on previous observations of aftershock earthquakes clustered near active faults and on the assumption that such seismic activity is indicative of fracturing and associated impacts on bedrock integrity. Preliminary analyses of aggregate data for all of Japan confirmed that the frequency of earthquakes is higher near active faults. Data used in the analysis were obtained from NUMO and consist of three primary sources: (1) active fault attributes compiled in a spreadsheet, (2) earthquake hypocenter data, and (3) active fault locations. Examination of these data revealed several limitations with regard to the ability to associate fault attributes from the spreadsheet to locations of individual fault trace segments. In particular, there was no direct link between attributes of the active faults in the spreadsheet and the active fault locations in the GIS database. In addition, the hypocenter location resolution in the pre-1983 data was less accurate than for later data. These pre-1983 hypocenters were eliminated from further analysis.

  13. Partial fault dictionary: A new approach for computer-aided fault localization

    SciTech Connect

    Hunger, A.; Papathanasiou, A.

    1995-12-31

    The approach described in this paper has been developed to address the computation time and problem size of localization methodologies in VLSI circuits in order to speed up the overall time consumption for fault localization. The reduction of the problem to solve is combined with the idea of the fault dictionary. In a pre-processing phase, a possibly faulty area is derived using the netlist and the actual test results as input data. The result is a set of cones originating from each faulty primary output. In the next step, the best cone is extracted for the fault dictionary methodology according to a heuristic formula. The circuit nodes, which are included in the intersection of the cones, are combined to a fault list. This fault list together with the best cone can be used by the fault simulator to generate a small and manageable fault dictionary related to one faulty output. In connection with additional algorithms for the reduction of stimuli and netlist a partial fault dictionary can be set up. This dictionary is valid only for the given faulty device together with the given and reduced stimuli, but offers important benefits: Practical results show a reduction of simulation time and size of the fault dictionary by factors around 100 or even more, depending on the actual circuit and assumed fault. The list of fault candidates is significantly reduced, and the required number of steps during the process of localization is reduced, too.

  14. Active faulting in the Walker Lane

    NASA Astrophysics Data System (ADS)

    Wesnousky, Steven G.

    2005-06-01

    Deformation across the San Andreas and Walker Lane fault systems accounts for most relative Pacific-North American transform plate motion. The Walker Lane is composed of discontinuous sets of right-slip faults that are located to the east and strike approximately parallel to the San Andreas fault system. Mapping of active faults in the central Walker Lane shows that right-lateral shear is locally accommodated by rotation of crustal blocks bounded by steep-dipping east striking left-slip faults. The left slip and clockwise rotation of crustal blocks bounded by the east striking faults has produced major basins in the area, including Rattlesnake and Garfield flats; Teels, Columbus and Rhodes salt marshes; and Queen Valley. The Benton Springs and Petrified Springs faults are the major northwest striking structures currently accommodating transform motion in the central Walker Lane. Right-lateral offsets of late Pleistocene surfaces along the two faults point to slip rates of at least 1 mm/yr. The northern limit of northwest trending strike-slip faults in the central Walker Lane is abrupt and reflects transfer of strike-slip to dip-slip deformation in the western Basin and Range and transformation of right slip into rotation of crustal blocks to the north. The transfer of strike slip in the central Walker Lane to dip slip in the western Basin and Range correlates to a northward broadening of the modern strain field suggested by geodesy and appears to be a long-lived feature of the deformation field. The complexity of faulting and apparent rotation of crustal blocks within the Walker Lane is consistent with the concept of a partially detached and elastic-brittle crust that is being transported on a continuously deforming layer below. The regional pattern of faulting within the Walker Lane is more complex than observed along the San Andreas fault system to the west. The difference is attributed to the relatively less cumulative slip that has occurred across the Walker

  15. Extreme multi-millennial slip rate variations on the Garlock fault, California: Strain super-cycles, potentially time-variable fault strength, and implications for system-level earthquake occurrence

    NASA Astrophysics Data System (ADS)

    Dolan, James F.; McAuliffe, Lee J.; Rhodes, Edward J.; McGill, Sally F.; Zinke, Robert

    2016-07-01

    Pronounced variations in fault slip rate revealed by new measurements along the Garlock fault have basic implications for understanding how faults store and release strain energy in large earthquakes. Specifically, dating of a series of 26.0+3.5/-2.5 m fault offsets with a newly developed infrared-stimulated luminescence method shows that the fault was slipping at >14.0+2.2/-1.8 mm /yr, approximately twice as fast as the long-term average rate, during a previously documented cluster of four earthquakes 0.5-2.0 ka. This elevated late Holocene rate must be balanced by periods of slow or no slip such as that during the ca. 3300-yr-long seismic lull preceding the cluster. Moreover, whereas a comparison of paleoseismic data and stress modeling results suggests that individual Garlock earthquakes may be triggered by periods of rapid San Andreas fault slip or very large-slip events, the "on-off" behavior of the Garlock suggests a longer-term mechanism that may involve changes in the rate of elastic strain accumulation on the fault over millennial time scales. This inference is consistent with most models of the geodetic velocity field, which yield slip-deficit rates that are much slower than the average latest Pleistocene-early Holocene (post-8-13 ka) Garlock slip rate of 6.5 ± 1.5 mm /yr. These observations indicate the occurrence of millennia-long strain "super-cycles" on the Garlock fault that may be associated with temporal changes in elastic strain accumulation rate, which may in turn be controlled by variations in relative strength of the various faults in the Garlock-San Andreas-Eastern California Shear Zone fault system and/or changes in relative plate motion rates.

  16. Architectural Characteristics and Distribution of Hydromechanical Properties within a Small Strike-Slip Fault Zone in a Carbonates Reservoir: Impact on fault stability, induced seismicity, and leakage during CO2 injection

    NASA Astrophysics Data System (ADS)

    Jeanne, P.; Cappa, F.; Guglielmi, Y.; Rinaldi, A. P.

    2014-12-01

    Within the LSBB National Underground Research Laboratory (France), we performed an in situ multidisciplinary and multi-scale analysis of a small fault zone intersecting a layered carbonates reservoir. The study area is located in a gallery at 250 m depth in the unsaturated and unaltered zone of the reservoir. In order to study the distribution of the fault zone properties, we took advantage of the gallery wall and of three vertical 20 m long boreholes located near the fault core, in the damage zone, and in the host rock. Geological, petrophysical (porosity observations and measurements), geotechnical (Q-value) and geophysical measurements (acoustic velocities, uniaxial compressive strength, electrical resistivity, borehole logging), and injection tests were conducted at various scales. We show that horizontal and vertical variations in hydromechanical properties within the damage zone are related to the initial petrophysical properties of the host rock. In the initial low-porosity and fractured layers, the deformations are accommodated by fractures and micro-cracks extending significantly from the fault core. In these layers, the Young modulus of the rock mass (Em) is low and the permeability of the rock mass (Km) is high. In the initial porous and low fractured layers, deformations are accommodated by micro-mechanical processes resulting in a decrease in micro-porosity near the fault core. There is a rapid attenuation of the damage zone. In these layers, Em is high and Km is low. The seismic signature of this kind of fault is complex and the seismic visibility low making them hard to detect. Finally, to assess fault zone stability in case of CO2 injection and the risk of CO2 leakage through the fault itself, we performed some geomechanical numerical simulations and some field hydromechanical tests. We show that the presence of hydromechanical heterogeneity favors the fluid accumulation but strengthen the fault zone and impede fluid migration upward along the fault.

  17. Strike-slip faulting and block rotation in the Lake Mead fault system

    NASA Astrophysics Data System (ADS)

    Ron, Hagai; Aydin, Atilla; Nur, Amos

    1986-12-01

    Strike-slip faults in the Basin and Range province have often been considered passive boundaries between differentially extended domains of tilted normal faults and are thus considered secondary in accommodating regional horizontal deformation. Paleomagnotic investigation of late Miocene age volcanic rocks, displaced by the left-lateral fault system of Lake Mead, Nevada, shows: (1) that these rocks have not been affected by significant structural tilt, the difference between observed and expected inclinations being only -0.6° ± 14.9° and (2) a significant horizontal counterclockwise rotation of -29.4° ± 8.5° about a vertical axis. This rotation was accommodated by slip on northwest-trending, right-lateral strike-slip faults; this implies significant west-northwest elongation. Results of the investigation indicate that strike-slip faulting is the primary process accommodating crustal deformation along the Lake Mead fault system and that tilting in response to normal faulting is secondary.

  18. High Resolution Interseismic Velocity Model of the San Andreas Fault From GPS and InSAR

    NASA Astrophysics Data System (ADS)

    Tong, X.; Sandwell, D. T.; Smith-Konter, B. R.

    2011-12-01

    We recover the interseismic deformation along the entire San Andreas Fault System (SAFS) at a spatial resolution of 200 meters by combining InSAR and GPS observations using a dislocation model. Previous efforts to compare 17 different GPS-derived strain rate models of the SAFS shows that GPS data alone cannot uniquely resolve the rapid velocity gradients near faults, which are critical for understanding the along-strike variations in stress accumulation rate and associated earthquake hazard. To improve the near-fault velocity resolution, we integrate new GPS observations with InSAR observations, initially from ALOS (Advanced Land Observation Satellite launched by Japan Aerospace Exploration Agency) ascending data (spanning 2006.5-2010), using a remove/restore approach. More than 1100 interferograms were processed with the newly developed InSAR processing software GMTSAR. The integration uses a dislocation-based velocity model to interpolate the Line-Of-Sight (LOS) velocity at the full resolution of the InSAR data in radar coordinates. The residual between the model and InSAR LOS velocity are stacked and high-pass filtered, then added back to the model. This LOS velocity map covers almost entire San Andreas Fault System (see Figure 1) from Maacama Fault to the north to the Superstition Hills Fault to the south. The average standard deviation of the LOS velocity model ranges from 2 to 4 mm/yr. Our initial results show previously unknown details in along-strike variations in surface fault creep. Moreover, the high resolution velocity field can resolve asperities in these "creeping" sections that are important for understanding moment accumulation rates and seismic hazards. We find that much of the high resolution velocity signal is related to non-tectonic processes (e.g., ground subsidence and uplift) sometimes very close to the fault zone. The near-fault deformation signal extracted from this velocity map can provide tighter constraints on fault slip rates and

  19. Fault Detection for Automotive Shock Absorber

    NASA Astrophysics Data System (ADS)

    Hernandez-Alcantara, Diana; Morales-Menendez, Ruben; Amezquita-Brooks, Luis

    2015-11-01

    Fault detection for automotive semi-active shock absorbers is a challenge due to the non-linear dynamics and the strong influence of the disturbances such as the road profile. First obstacle for this task, is the modeling of the fault, which has been shown to be of multiplicative nature. Many of the most widespread fault detection schemes consider additive faults. Two model-based fault algorithms for semiactive shock absorber are compared: an observer-based approach and a parameter identification approach. The performance of these schemes is validated and compared using a commercial vehicle model that was experimentally validated. Early results shows that a parameter identification approach is more accurate, whereas an observer-based approach is less sensible to parametric uncertainty.

  20. Mechanics of distributed fault and block rotation

    NASA Technical Reports Server (NTRS)

    Nur, A.; Scotti, O.; Ron, H.

    1989-01-01

    Paleomagnetic data, structural geology, and rock mechanics are used to explore the validity and significance of the block rotation concept. The analysis is based on data from Northern Israel, where fault slip and spacing are used to predict block rotation; the Mojave Desert, with well documented strike-slip sets; the Lake Mead, Nevada fault system with well-defined sets of strike-slip faults; and the San Gabriel Mountains domain with a multiple set of strike-slip faults. The results of the analysis indicate that block rotations can have a profound influence on the interpretation of geodetic measurments and the inversion of geodetic data. Furthermore, the block rotations and domain boundaries may be involved in creating the heterogeneities along active fault systems which may be responsible for the initiation and termination of earthquake rupture.

  1. Self-triggering superconducting fault current limiter

    DOEpatents

    Yuan, Xing; Tekletsadik, Kasegn

    2008-10-21

    A modular and scaleable Matrix Fault Current Limiter (MFCL) that functions as a "variable impedance" device in an electric power network, using components made of superconducting and non-superconducting electrically conductive materials. The matrix fault current limiter comprises a fault current limiter module that includes a superconductor which is electrically coupled in parallel with a trigger coil, wherein the trigger coil is magnetically coupled to the superconductor. The current surge doing a fault within the electrical power network will cause the superconductor to transition to its resistive state and also generate a uniform magnetic field in the trigger coil and simultaneously limit the voltage developed across the superconductor. This results in fast and uniform quenching of the superconductors, significantly reduces the burnout risk associated with non-uniformity often existing within the volume of superconductor materials. The fault current limiter modules may be electrically coupled together to form various "n" (rows).times."m" (columns) matrix configurations.

  2. Fault analysis of multichannel spacecraft power systems

    NASA Technical Reports Server (NTRS)

    Dugal-Whitehead, Norma R.; Lollar, Louis F.

    1990-01-01

    The NASA Marshall Space Flight Center proposes to implement computer-controlled fault injection into an electrical power system breadboard to study the reactions of the various control elements of this breadboard. Elements under study include the remote power controllers, the algorithms in the control computers, and the artificially intelligent control programs resident in this breadboard. To this end, a study of electrical power system faults is being performed to yield a list of the most common power system faults. The results of this study will be applied to a multichannel high-voltage DC spacecraft power system called the large autonomous spacecraft electrical power system (LASEPS) breadboard. The results of the power system fault study and the planned implementation of these faults into the LASEPS breadboard are described.

  3. Active Fault Topography and Fault Outcrops in the Central Part of the Nukumi fault, the 1891 Nobi Earthquake Fault System, Central Japan

    NASA Astrophysics Data System (ADS)

    Sasaki, T.; Ueta, K.; Inoue, D.; Aoyagi, Y.; Yanagida, M.; Ichikawa, K.; Goto, N.

    2010-12-01

    It is important to evaluate the magnitude of earthquake caused by multiple active faults, taking into account the simultaneous effects. The simultaneity of adjacent active faults are often decided on the basis of geometric distances except for known these paleoseismic records. We have been studied the step area between the Nukumi fault and the Neodani fault, which appeared as consecutive ruptures in the 1891 Nobi earthquake, since 2009. The purpose of this study is to establish innovation in valuation technique of the simultaneity of adjacent active faults in addition to the paleoseismic record and the geometric distance. Geomorphological, geological and reconnaissance microearthquake surveys are concluded. The present work is intended to clarify the distribution of tectonic geomorphology along the Nukumi fault and the Neodani fault by high-resolution interpretations of airborne LiDAR DEM and aerial photograph, and the field survey of outcrops and location survey. The study area of this work is the southeastern Nukumi fault and the northwestern Neodani fault. We interpret DEM using shaded relief map and stereoscopic bird's-eye view made from 2m mesh DEM data which is obtained by airborne laser scanner of Kokusai Kogyo Co., Ltd. Aerial photographic survey is for confirmation of DEM interpretation using 1/16,000 scale photo. As a result of topographic survey, we found consecutive tectonic topography which is left lateral displacement of ridge and valley lines and reverse scarplets along the Nukumi fault and the Neodani fault . From Ogotani 2km southeastern of Nukumi pass which is located at the southeastern end of surface rupture along the Nukumi fault by previous study to Neooppa 9km southeastern of Nukumi pass, we can interpret left lateral topographies and small uphill-facing fault scarps on the terrace surface by detail DEM investigation. These topographies are unrecognized by aerial photographic survey because of heavy vegetation. We have found several new

  4. Practical application of fault tree analysis

    SciTech Connect

    Prugh, R.W.

    1980-01-01

    A detailed survey of standard and novel approaches to Fault Tree construction, based on recent developments at Du Pont, covers the effect-to-cause procedure for control systems as in process plants; the effect-to-cause procedure for processes; source-of-hazard analysis, as in pressure vessel rupture; use of the ''fire triangle'' in a Fault Tree; critical combinations of safeguard failures; action points for automatic or operator control of a process; situations involving hazardous reactant ratios; failure-initiating and failure-enabling events and intervention by the operator; ''daisy-chain'' hazards, e.g., in batch processes and ship accidents; combining batch and continuous operations in a Fault Tree; possible future structure-development procedures for fault-tree construction; and the use of quantitative results (calculated frequencies of Top-Event occurrence) to restructure the Fault Tree after improving the process to any acceptable risk level.

  5. Neural networks for fault location in substations

    SciTech Connect

    Alves da Silva, A.P.; Silveira, P.M. da; Lambert-Torres, G.; Insfran, A.H.F.

    1996-01-01

    Faults producing load disconnections or emergency situations have to be located as soon as possible to start the electric network reconfiguration, restoring normal energy supply. This paper proposes the use of artificial neural networks (ANNs), of the associative memory type, to solve the fault location problem. The main idea is to store measurement sets representing the normal behavior of the protection system, considering the basic substation topology only, into associated memories. Afterwards, these memories are employed on-line for fault location using the protection system equipment status. The associative memories work correctly even in case of malfunction of the protection system and different pre-fault configurations. Although the ANNs are trained with single contingencies only, their generalization capability allows a good performance for multiple contingencies. The resultant fault location system is in operation at the 500 kV gas-insulated substation of the Itaipu system.

  6. Maneuver Classification for Aircraft Fault Detection

    NASA Technical Reports Server (NTRS)

    Oza, Nikunj C.; Tumer, Irem Y.; Tumer, Kagan; Huff, Edward M.

    2003-01-01

    Automated fault detection is an increasingly important problem in aircraft maintenance and operation. Standard methods of fault detection assume the availability of either data produced during all possible faulty operation modes or a clearly-defined means to determine whether the data provide a reasonable match to known examples of proper operation. In the domain of fault detection in aircraft, identifying all possible faulty and proper operating modes is clearly impossible. We envision a system for online fault detection in aircraft, one part of which is a classifier that predicts the maneuver being performed by the aircraft as a function of vibration data and other available data. To develop such a system, we use flight data collected under a controlled test environment, subject to many sources of variability. We explain where our classifier fits into the envisioned fault detection system as well as experiments showing the promise of this classification subsystem.

  7. Quantifying fault recovery in multiprocessor systems

    NASA Technical Reports Server (NTRS)

    Malek, Miroslaw; Harary, Frank

    1990-01-01

    Various aspects of reliable computing are formalized and quantified with emphasis on efficient fault recovery. The mathematical model which proves to be most appropriate is provided by the theory of graphs. New measures for fault recovery are developed and the value of elements of the fault recovery vector are observed to depend not only on the computation graph H and the architecture graph G, but also on the specific location of a fault. In the examples, a hypercube is chosen as a representative of parallel computer architecture, and a pipeline as a typical configuration for program execution. Dependability qualities of such a system is defined with or without a fault. These qualities are determined by the resiliency triple defined by three parameters: multiplicity, robustness, and configurability. Parameters for measuring the recovery effectiveness are also introduced in terms of distance, time, and the number of new, used, and moved nodes and edges.

  8. Classification of Aircraft Maneuvers for Fault Detection

    NASA Technical Reports Server (NTRS)

    Oza, Nikunj C.; Tumer, Irem Y.; Tumer, Kagan; Huff, Edward M.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Automated fault detection is an increasingly important problem in aircraft maintenance and operation. Standard methods of fault detection assume the availability of either data produced during all possible faulty operation modes or a clearly-defined means to determine whether the data is a reasonable match to known examples of proper operation. In our domain of fault detection in aircraft, the first assumption is unreasonable and the second is difficult to determine. We envision a system for online fault detection in aircraft, one part of which is a classifier that predicts the maneuver being performed by the aircraft as a function of vibration data and other available data. We explain where this subsystem fits into our envisioned fault detection system as well its experiments showing the promise of this classification subsystem.

  9. Classification of Aircraft Maneuvers for Fault Detection

    NASA Technical Reports Server (NTRS)

    Oza, Nikunj; Tumer, Irem Y.; Tumer, Kagan; Huff, Edward M.; Koga, Dennis (Technical Monitor)

    2002-01-01

    Automated fault detection is an increasingly important problem in aircraft maintenance and operation. Standard methods of fault detection assume the availability of either data produced during all possible faulty operation modes or a clearly-defined means to determine whether the data provide a reasonable match to known examples of proper operation. In the domain of fault detection in aircraft, the first assumption is unreasonable and the second is difficult to determine. We envision a system for online fault detection in aircraft, one part of which is a classifier that predicts the maneuver being performed by the aircraft as a function of vibration data and other available data. To develop such a system, we use flight data collected under a controlled test environment, subject to many sources of variability. We explain where our classifier fits into the envisioned fault detection system as well as experiments showing the promise of this classification subsystem.

  10. Lithography light source fault detection

    NASA Astrophysics Data System (ADS)

    Graham, Matthew; Pantel, Erica; Nelissen, Patrick; Moen, Jeffrey; Tincu, Eduard; Dunstan, Wayne; Brown, Daniel

    2010-04-01

    High productivity is a key requirement for today's advanced lithography exposure tools. Achieving targets for wafers per day output requires consistently high throughput and availability. One of the keys to high availability is minimizing unscheduled downtime of the litho cell, including the scanner, track and light source. From the earliest eximer laser light sources, Cymer has collected extensive performance data during operation of the source, and this data has been used to identify the root causes of downtime and failures on the system. Recently, new techniques have been developed for more extensive analysis of this data to characterize the onset of typical end-of-life behavior of components within the light source and allow greater predictive capability for identifying both the type of upcoming service that will be required and when it will be required. The new techniques described in this paper are based on two core elements of Cymer's light source data management architecture. The first is enhanced performance logging features added to newer-generation light source software that captures detailed performance data; and the second is Cymer OnLine (COL) which facilitates collection and transmission of light source data. Extensive analysis of the performance data collected using this architecture has demonstrated that many light source issues exhibit recognizable patterns in their symptoms. These patterns are amenable to automated identification using a Cymer-developed model-based fault detection system, thereby alleviating the need for detailed manual review of all light source performance information. Automated recognition of these patterns also augments our ability to predict the performance trending of light sources. Such automated analysis provides several efficiency improvements for light source troubleshooting by providing more content-rich standardized summaries of light source performance, along with reduced time-to-identification for previously

  11. Effects of Late Cretaceous and Cenozoic faulting on the geology and hydrology of the coastal plain near the Savannah River, Georgia and South Carolina

    USGS Publications Warehouse

    Faye, R.E.; Prowell, D.C.

    1982-01-01

    Geologic and hydrologic investigations by the U.S. Geological Survey have defined stratigraphic and hydraulic anomalies suggestive of faulting within Coastal Plain sediments between the Ogeechee River in east-central Georgia and the Edisto River in west-central South Carolina. Examination of borehole cuttings, cores, and geophysical logs from test wells indicate that Triassic rocks and Upper Cretaceous and lower Tertiary Coastal Plain sediments near the Barnwell-Allendale County line near Millett, South Carolina, are offset by a northeast-trending fault downthrown to the northwest. The location of this suspected Coastal Plain fault generally coincides with the location of an inferred fault in basement rocks as interpreted from aeromagnetic surveys. Apparent vertical offsets range from about 700 feet at the base of Upper Cretaceous sediments to about 20 feet in strata of Late Eocene age. As a result, the Upper Cretaceous Middendorf Formation which directly overlies crystalline and Triassic rocks updip (northwest) of this fault, is absent immediately downdip of the fault. The thickness of Tipper Cretaceous sediments is also sharply reduced from about 700 feet to about 180 feet across the fault. Sediments of the basal Coastal Plain aquifer are largely truncated by uplifted Triassic rocks at the fault near Millett, South Carolina. Lateral ground-water flow near the Savannah River Is consequently disrupted updip of the fault and ground water is transferred vertically into overlying sediments and possibly into the Savannah River. At several locations, abrupt changes in potentiometric head occur across this fault. Computed transmissivity of the basal Coastal Plain aquifer is also radically reduced downdip of the fault, sharply reversing a downdip trend of rapidly increasing aquifer transmissivity. Other anomalous potentiometric data along a northeast-trending line between Statesboro, Georgia, and Fairfax, South Carolina, suggest the possibility of similar faulting in

  12. Knowledge acquisition and rapid protyping of an expert system: Dealing with real world problems

    NASA Technical Reports Server (NTRS)

    Bailey, Patrick A.; Doehr, Brett B.

    1988-01-01

    The knowledge engineering and rapid prototyping phases of an expert system that does fault handling for a Solid Amine, Water Desorbed CO2 removal assembly for the Environmental Control and Life Support System for space based platforms are addressed. The knowledge acquisition phase for this project was interesting because it could not follow the textbook examples. As a result of this, a variety of methods were used during the knowledge acquisition task. The use of rapid prototyping and the need for a flexible prototype suggested certain types of knowledge representation. By combining various techniques, a representative subset of faults and a method for handling those faults was achieved. The experiences should prove useful for developing future fault handling expert systems under similar constraints.

  13. Methodology for Designing Fault-Protection Software

    NASA Technical Reports Server (NTRS)

    Barltrop, Kevin; Levison, Jeffrey; Kan, Edwin

    2006-01-01

    A document describes a methodology for designing fault-protection (FP) software for autonomous spacecraft. The methodology embodies and extends established engineering practices in the technical discipline of Fault Detection, Diagnosis, Mitigation, and Recovery; and has been successfully implemented in the Deep Impact Spacecraft, a NASA Discovery mission. Based on established concepts of Fault Monitors and Responses, this FP methodology extends the notion of Opinion, Symptom, Alarm (aka Fault), and Response with numerous new notions, sub-notions, software constructs, and logic and timing gates. For example, Monitor generates a RawOpinion, which graduates into Opinion, categorized into no-opinion, acceptable, or unacceptable opinion. RaiseSymptom, ForceSymptom, and ClearSymptom govern the establishment and then mapping to an Alarm (aka Fault). Local Response is distinguished from FP System Response. A 1-to-n and n-to- 1 mapping is established among Monitors, Symptoms, and Responses. Responses are categorized by device versus by function. Responses operate in tiers, where the early tiers attempt to resolve the Fault in a localized step-by-step fashion, relegating more system-level response to later tier(s). Recovery actions are gated by epoch recovery timing, enabling strategy, urgency, MaxRetry gate, hardware availability, hazardous versus ordinary fault, and many other priority gates. This methodology is systematic, logical, and uses multiple linked tables, parameter files, and recovery command sequences. The credibility of the FP design is proven via a fault-tree analysis "top-down" approach, and a functional fault-mode-effects-and-analysis via "bottoms-up" approach. Via this process, the mitigation and recovery strategy(s) per Fault Containment Region scope (width versus depth) the FP architecture.

  14. Fault Segmentation and its Implication to the Evaluation of Future Earthquakes from Active Faults in Japan

    NASA Astrophysics Data System (ADS)

    Awata, Y.; Yoshioka, T.

    2005-12-01

    Segmentation of active faults is essential for the evaluation both of past and future faulting using geologic data from paleoseismological sites. A behavioral segment is defined as the smallest segment of fault having a characteristic history of faulting. More over, we have to estimate the earthquake segments that can be consist of multiple faulting along a system of behavioral segments. Active fault strands in Japan are segmented into behavioral segments based on fault discontinuity of 2-3 km and larger (Active Fault Res. Group, GSJ, 2000), large bend of fault strand and paleoseismicity. 431 behavioral segments, >= 10 km in length and >= 0.1 m/ky in long-term slip-rate, are identified from a database of active faults in Japan, that is constructed at AFRC, GSJ/AIST. The length of the segments is averaged 21 km and approximately 70 km in maximum. Only 8 segments are exceed 45 km in length. These lengths are very similar to those of historical surface ruptures not only in Japan since 1891 Nobi earthquake, but also in other regions having different tectonic setting. According to the scaling law between fault length and amount of displacement of behavioral segment, a maximum length of ca. 70 km can estimate a slip of ca. 14 m. This amount of slip is as large as world largest slip occurred during the 1931 Fuyun earthquake of M 8, 1999 Chichi earthquake of M 7.4 and the 2001 Central Kunlun earthquake of M 7.9 in East Asia. Recent geological and seismological studies on large earthquakes have revealed that multiple-rupturing is very common during large earthquakes. Therefore, evaluation of simultaneous faulting along a system of active faults is indispensable for the estimation of earthquake size. A Matsuda's (1990) idea of "seismogenic faults", that is divided or grouped based on the geometric discontinuity of 5 km, may useful for the best estimation of earthquake segment. The Japanese behavioral segments are grouped into "seismogenic faults", each consists of about 2

  15. Fault reactivation: The Picuris-Pecos fault system of north-central New Mexico

    NASA Astrophysics Data System (ADS)

    McDonald, David Wilson

    The PPFS is a N-trending fault system extending over 80 km in the Sangre de Cristo Mountains of northern New Mexico. Precambrian basement rocks are offset 37 km in a right-lateral sense; however, this offset includes dextral strike-slip (Precambrian), mostly normal dip-slip (Pennsylvanian), mostly reverse dip-slip (Early Laramide), limited strike-slip (Late Laramide) and mostly normal dip-slip (Cenozoic). The PPFS is broken into at least 3 segments by the NE-trending Embudo fault and by several Laramide age NW-trending tear faults. These segments are (from N to S): the Taos, the Picuris, and the Pecos segments. On the east side of the Picuris segment in the Picuris Mountains, the Oligocene-Miocene age Miranda graben developed and represents a complex extension zone south of the Embudo fault. Regional analysis of remotely sensed data and geologic maps indicate that lineaments subparallel to the trace of the PPFS are longer and less frequent than lineaments that trend orthogonal to the PPFS. Significant cross cutting faults and subtle changes in fault trends in each segment are clear in the lineament data. Detailed mapping in the eastern Picuris Mountains showed that the favorably oriented Picuris segment was not reactivated in the Tertiary development of the Rio Grande rift. Segmentation of the PPFS and post-Laramide annealing of the Picuris segment are interpreted to have resulted in the development of the subparallel La Serna fault. The Picuris segment of the PPFS is offset by several E-ESE trending faults. These faults are Late Cenozoic in age and interpreted to be related to the uplift of the Picuris Mountains and the continuing sinistral motion on the Embudo fault. Differential subsidence within the Miranda graben caused the development of several synthetic and orthogonal faults between the bounding La Serna and Miranda faults. Analysis of over 10,000 outcrop scale brittle structures reveals a strong correlation between faults and fracture systems. The dominant

  16. Simulation of Fault Zone Dynamics

    NASA Astrophysics Data System (ADS)

    Mora, P.; Abe, S.; Place, D.

    2002-12-01

    Particle models such as the discrete element model for granular assemblies and the lattice solid model provide a means to study the dynamics of fault zones. The lattice solid model was developed with the aim of progressively building up the capacity to simulate all relevent physical processes in fault zones. The present implementation of the model is able to simulate the dynamics of a granular lattice consisting of bonded or unbonded circular (2D) or spherical (3D) particles. Thermal effects (frictional hear generation, thermal expansion, heat flow) and pore fluid effects (heat induced pore pressure gradients and the consequent Darcian flow and impact on effective friction) can be modelled. Past work involving both circular particles and non-circular grains constructed as groups of bonded particles have demonstrated that grain shape has a fundamental impact on zero-th order behaviour. When circular particles are used, rolling is the most efficient means to accomodate slip of a simulated fault gouge layer leading to unrealistically low friction, typically around 0.2. This is consistent with laboratory results by Mair and Marone which have demonstrated that gouge consisting entirely of spherical beads shows a lower coefficient of friction than gouge containing irregular shaped particles. Recent work comparing quasi-2D laboratory results using pasta (Marone) with 2D numerical results (Morgan) have confirmed that numerical and laboratory results with circular ``particles'' are in agreement. When irregular grains are modelled at the lowest scale, the friction of simulated gouge layers matches with laboratory observations of rock friction (μ ~ 0.6) and is insentitive to the value used for interparticle friction (Mora et al, 2000). This indicates a self-regulation mechanism is occurring in which the group behaviour of the gouge layer remains constant at around 0.6 by balancing the amount of slip and rolling of grains within the gouge layer. A limitation of these studies

  17. Magnetic fabric of brittle fault rocks

    NASA Astrophysics Data System (ADS)

    Pomella, Hannah

    2014-05-01

    The anisotropy of magnetic susceptibility (AMS) has been recognized as a highly sensitive indicator of rock fabric and is widely employed in the field of structural geology. Brittle faults are often characterized by fault breccia and gouge, fault rocks with clast-in-matrix textures. A noteworthy property of both gouge and breccia is the often observed presence of a fabric that is defined by the preferred orientation of clasts and grains in the matrix. In the very fine-grained gouge and in the matrix of the breccia the fabric is not visible in the field or in thin sections but can probably be detected by AMS analyses. For the present study different kinds of brittle fault rocks have been sampled on two faults with known tectonic settings, in order to allow for a structural interpretation of the measured AMS signal. The measurements were carried out with an AGICO MFK1-FA Kappabridge and a CS4 furnace apparatus at the Institute of Geology, University of Innsbruck. Fault gouge was sampled on the Naif fault located in the Southern Alps, E of Meran, South Tyrol, Italy. Along this fault the Permian Granodiorite overthrusts the Southalpine basement and its Permomesozoic cover. The Neoalpine thrust fault is characterised by a wide cataclastic zone and an up to 1 m thick fault gouge. The gouge was sampled using paleomagnetic sample boxes. Heating experiments indicate that the magnetic fabric is dominated by paramagnetic minerals (>95%). The samples provide a magnetic susceptibility in the range of +10*E-5 [SI]. The K-min axis of the magnetic ellipsoid corresponds approximately to the pol of the fault plane measured in the field. However the whole magnetic ellipsoid shows a variation in the inclination compared to the structural data. Fine-grained ultracataclasites were sampled on the Assergi fault, located in the Abruzzi Apennines, NE of L'Aquila, Italy. This normal fault was active in historical time and crosscuts limestones as well as talus deposits. An up to 20 cm thick

  18. Reconfigurable fault tolerant avionics system

    NASA Astrophysics Data System (ADS)

    Ibrahim, M. M.; Asami, K.; Cho, Mengu

    This paper presents the design of a reconfigurable avionics system based on modern Static Random Access Memory (SRAM)-based Field Programmable Gate Array (FPGA) to be used in future generations of nano satellites. A major concern in satellite systems and especially nano satellites is to build robust systems with low-power consumption profiles. The system is designed to be flexible by providing the capability of reconfiguring itself based on its orbital position. As Single Event Upsets (SEU) do not have the same severity and intensity in all orbital locations, having the maximum at the South Atlantic Anomaly (SAA) and the polar cusps, the system does not have to be fully protected all the time in its orbit. An acceptable level of protection against high-energy cosmic rays and charged particles roaming in space is provided within the majority of the orbit through software fault tolerance. Check pointing and roll back, besides control flow assertions, is used for that level of protection. In the minority part of the orbit where severe SEUs are expected to exist, a reconfiguration for the system FPGA is initiated where the processor systems are triplicated and protection through Triple Modular Redundancy (TMR) with feedback is provided. This technique of reconfiguring the system as per the level of the threat expected from SEU-induced faults helps in reducing the average dynamic power consumption of the system to one-third of its maximum. This technique can be viewed as a smart protection through system reconfiguration. The system is built on the commercial version of the (XC5VLX50) Xilinx Virtex5 FPGA on bulk silicon with 324 IO. Simulations of orbit SEU rates were carried out using the SPENVIS web-based software package.

  19. Fault failure with moderate earthquakes

    USGS Publications Warehouse

    Johnston, M.J.S.; Linde, A.T.; Gladwin, M.T.; Borcherdt, R.D.

    1987-01-01

    High resolution strain and tilt recordings were made in the near-field of, and prior to, the May 1983 Coalinga earthquake (ML = 6.7, ?? = 51 km), the August 4, 1985, Kettleman Hills earthquake (ML = 5.5, ?? = 34 km), the April 1984 Morgan Hill earthquake (ML = 6.1, ?? = 55 km), the November 1984 Round Valley earthquake (ML = 5.8, ?? = 54 km), the January 14, 1978, Izu, Japan earthquake (ML = 7.0, ?? = 28 km), and several other smaller magnitude earthquakes. These recordings were made with near-surface instruments (resolution 10-8), with borehole dilatometers (resolution 10-10) and a 3-component borehole strainmeter (resolution 10-9). While observed coseismic offsets are generally in good agreement with expectations from elastic dislocation theory, and while post-seismic deformation continued, in some cases, with a moment comparable to that of the main shock, preseismic strain or tilt perturbations from hours to seconds (or less) before the main shock are not apparent above the present resolution. Precursory slip for these events, if any occurred, must have had a moment less than a few percent of that of the main event. To the extent that these records reflect general fault behavior, the strong constraint on the size and amount of slip triggering major rupture makes prediction of the onset times and final magnitudes of the rupture zones a difficult task unless the instruments are fortuitously installed near the rupture initiation point. These data are best explained by an inhomogeneous failure model for which various areas of the fault plane have either different stress-slip constitutive laws or spatially varying constitutive parameters. Other work on seismic waveform analysis and synthetic waveforms indicates that the rupturing process is inhomogeneous and controlled by points of higher strength. These models indicate that rupture initiation occurs at smaller regions of higher strength which, when broken, allow runaway catastrophic failure. ?? 1987.

  20. Robot Position Sensor Fault Tolerance

    NASA Technical Reports Server (NTRS)

    Aldridge, Hal A.

    1997-01-01

    Robot systems in critical applications, such as those in space and nuclear environments, must be able to operate during component failure to complete important tasks. One failure mode that has received little attention is the failure of joint position sensors. Current fault tolerant designs require the addition of directly redundant position sensors which can affect joint design. A new method is proposed that utilizes analytical redundancy to allow for continued operation during joint position sensor failure. Joint torque sensors are used with a virtual passive torque controller to make the robot joint stable without position feedback and improve position tracking performance in the presence of unknown link dynamics and end-effector loading. Two Cartesian accelerometer based methods are proposed to determine the position of the joint. The joint specific position determination method utilizes two triaxial accelerometers attached to the link driven by the joint with the failed position sensor. The joint specific method is not computationally complex and the position error is bounded. The system wide position determination method utilizes accelerometers distributed on different robot links and the end-effector to determine the position of sets of multiple joints. The system wide method requires fewer accelerometers than the joint specific method to make all joint position sensors fault tolerant but is more computationally complex and has lower convergence properties. Experiments were conducted on a laboratory manipulator. Both position determination methods were shown to track the actual position satisfactorily. A controller using the position determination methods and the virtual passive torque controller was able to servo the joints to a desired position during position sensor failure.