Science.gov

Sample records for cathode channel dimensions

  1. 5. CHANNEL DIMENSIONS AND ALIGNMENT RESEARCH INSTRUMENTATION. VIDEOCONTROLED MODEL BOAT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. CHANNEL DIMENSIONS AND ALIGNMENT RESEARCH INSTRUMENTATION. VIDEO-CONTROLED MODEL BOAT IN MODEL NAVIGATION CHANNEL, HEADING INTO SHELTER AND TOWARD CONTROL TRAILER. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  2. 4. CHANNEL DIMENSIONS AND ALIGNMENT RESEARCH INSTRUMENTATION. VIDEOCONTROLED MODEL BOAT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. CHANNEL DIMENSIONS AND ALIGNMENT RESEARCH INSTRUMENTATION. VIDEO-CONTROLED MODEL BOAT AT FAR END OF MODEL NAVIGATION CHANNEL, HEADING INTO SHELTER AND TOWARD CONTROL TRAILER. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  3. 1. CHANNEL DIMENSIONS AND ALIGNMENT RESEARCH INSTRUMENTATION. ENGINEERING TECHNICIAN WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. CHANNEL DIMENSIONS AND ALIGNMENT RESEARCH INSTRUMENTATION. ENGINEERING TECHNICIAN WITH VIDEO-CONTROLED MODEL BOAT IN MODEL NAVIGATION CHANNEL. NOTE CONTROL TRAILER IN BACKGROUND. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  4. 3. CHANNEL DIMENSIONS AND ALIGNMENT RESEARCH INSTRUMENTATION. VIDEOCONTROLED MODEL BOAT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. CHANNEL DIMENSIONS AND ALIGNMENT RESEARCH INSTRUMENTATION. VIDEO-CONTROLED MODEL BOAT IN MODEL NAVIGATION CHANNEL, HEADING AWAY FROM SHELTER AND CONTROL TRAILER. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  5. 2. CHANNEL DIMENSIONS AND ALIGNMENT RESEARCH INSTRUMENTATION. HYDRAULIC ENGINEER PILOTING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. CHANNEL DIMENSIONS AND ALIGNMENT RESEARCH INSTRUMENTATION. HYDRAULIC ENGINEER PILOTING VIDEO-CONTROLED BOAT MODEL FROM CONTROL TRAILER. NOTE VIEW FROM BOAT-MOUNTED VIDEO CAMERA SHOWN ON MONITOR, AND MODEL WATERWAY VISIBLE THROUGH WINDOW AT LEFT. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  6. Modeling channelized and distributed subglacial drainage in two dimensions

    NASA Astrophysics Data System (ADS)

    Werder, Mauro A.; Hewitt, Ian J.; Schoof, Christian G.; Flowers, Gwenn E.

    2013-12-01

    We present a two-dimensional Glacier Drainage System model (GlaDS) that couples distributed and channelized subglacial water flow. Distributed flow occurs through linked cavities that are represented as a continuous water sheet of variable thickness. Channelized flow occurs through Röthlisberger channels that can form on any of the edges of a prescribed, unstructured network of potential channels. Water storage is accounted for in an englacial aquifer and in moulins, which also act as point sources of water to the subglacial system. Solutions are presented for a synthetic topography designed to mimic an ice sheet margin. For low discharge, all the flow is accommodated in the sheet, whereas for sufficiently high discharge, the model exhibits a channelization instability which leads to the formation of a self-organized channel system. The random orientation of the network edges allows the channel system geometry to be relatively unbiased, in contrast to previous structured grid-based models. Under steady conditions, the model supports the classical view of the subglacial drainage system, with low pressure regions forming around the channels. Under diurnally varying input, water flows in and out of the channels, and a rather complex spatiotemporal pattern of water pressures is predicted. We explore the effects of parameter variations on the channel system topology and mean effective pressure. The model is then applied to a mountain glacier and forced with meltwater calculated by a temperature index model. The results are broadly consistent with our current understanding of the glacier drainage system and demonstrate the applicability of the model to real settings.

  7. Water transportation across narrow channel of nanometer dimension

    NASA Astrophysics Data System (ADS)

    Wan, Rongzheng; Fang, Haiping

    2010-06-01

    Since the discovery of the carbon nanotube and aquaporin, the study of the transportation of water across nanochannels has become one of the hot subjects. When the radius of a nanochannel is only about one nanometer or a little larger, water confined in those nanoscale channels usually exhibits dynamics different from those in bulk system, such as the wet-dry transition due to the confinement, concerted hydrogen-bond orientations and flipping, concerted motion of water molecules, and strong interactions with external charges. Those dynamics correlate with the unique behavior of the water transportation across the channels, such as the extra-high permeability, excellent on-off gating behavior with response to the external mechanical and electrical signals and noises, enhancement by structure outside the channel, directional transportation driven by charges close to a channel or electric field. In this article, we review some of the recent progress on the study of the water molecules inside those narrow nanochannels.

  8. Liquid water quantification in the cathode side gas channels of a proton exchange membrane fuel cell through two-phase flow visualization

    NASA Astrophysics Data System (ADS)

    Banerjee, Rupak; Kandlikar, Satish G.

    2014-02-01

    Water management is crucial to the performance of PEM fuel cells. Water is generated as part of the electrochemical reaction, and is removed through the reactant channels. This results in two-phase flow in the reactant channels. Increased understanding of the behavior of the liquid water in the channels allows us to devise better strategies for managing the water content inside the fuel cell. Most previous work has been focused on qualitative information regarding flow pattern maps. The current work presents new algorithms developed in MATLAB® to quantify the liquid water and to identify the flow patterns in the cathode side reactant channels. Parallel channels with dimensions matching those of commercial stacks have been used in this study. The liquid water present in the reactant channels is quantified for different temperature, inlet RH and current density conditions, and the results are presented in terms of area coverage ratio. The dominant flow patterns for the different conditions have been mapped, and trends interpreted on the basis of air flow velocities and saturation conditions within the channels.

  9. Effect of flow pulsation on mass transport in a cathode channel of polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Han, Hun Sik; Kim, Yun Ho; Kim, Seo Young; Hyun, Jae Min

    2012-09-01

    An experimental and theoretical study on the cathode flow pulsation in a polymer electrolyte membrane (PEM) fuel cell is performed. A 10-cell PEM fuel cell stack with open-air cathode channels is employed to investigate the effects of the cathode flow pulsation on the overall performance. The polarization and corresponding power curves obtained show that both the limiting current density and the maximum power density are substantially enhanced when the pulsating component is added to the cathode mainstream flow. The flow pulsation at Re = 77 provides the maximum increment of 40% and 35.5% in the limiting current density and in the maximum power density, respectively. The enhancement of the overall performance is more pronounced at low Reynolds numbers. Also, the theoretical mass transport analysis in the pulsating cathode flow channel is carried out to verify the present experimental results. The momentum and species conservation equations are analytically solved, and the effective time-averaged dispersion coefficient is defined to account for the enhanced mass transport by the flow pulsation. Comprehensive analytical solutions show that the effect of the relevant parameters is in well accordance with the experimental results.

  10. Dimension-optimizing design method for annular-type cooling channel of thrust chamber

    NASA Astrophysics Data System (ADS)

    Chen, Jie

    1995-05-01

    The new-generation liquid oxygen/hydrocarbon propellant liquid fuel rocket engine will use a high-pressure combustion chamber arrangement. In this case, cooling the thrust chamber becomes a key technical problem. The article presents a design scheme for the geometric-dimension optimization of annular-type regenerative cooling channels. The aim of the optimization is minimum pressure losses as coolant passes through the cooling channel. As shown in typical computations and experiments, application of this optimizing design method can reduce 50 percent of pressure losses. In other words, the optimization design is advantageous in solving the cooling problem in high-pressure thrust chambers.

  11. Strong superadditivity conjecture holds for the quantum depolarizing channel in any dimension

    SciTech Connect

    Amosov, Grigori G.

    2007-06-15

    Given a quantum channel {phi} in a Hilbert space H, set H{sub {phi}}({rho})=min{sub {rho}{sub av}}{sub ={rho}}{sigma}{sub j=1}{sup k}{pi}{sub j}S({phi}({rho}{sub j})), where {rho}{sub av}={sigma}{sub j=1}{sup k}{pi}{sub j}{rho}{sub j}, the minimum is taken over all probability distributions {pi}=({pi}{sub j}) and states {rho}{sub j} in H, and S({rho})=-Tr{rho} log {rho} is the von Neumann entropy of a state {rho}. The strong superadditivity conjecture states that H{sub {phi}}{sub x{psi}}({rho}){>=}H{sub {phi}}(Tr{sub K}({rho}))+H{sub {psi}}(Tr{sub H}({rho})) for two channels {phi} and {psi} in Hilbert spaces H and K, respectively. We have proved the strong superadditivity conjecture for the quantum depolarizing channel in any dimensions.

  12. Measurement of groove features and dimensions of the vertical test cathode and the choke joint of the superconducting electron gun cavity of the Energy Recovery LINAC

    SciTech Connect

    Hammons, L.; Ke, M.

    2011-10-13

    vertical test cathode, the geometry of these grooves was altered, presenting the possibility that multipacting may, in fact, be occurring in this area and contributing to the low gradients that have been observed in the fine-grain cavity. Therefore, the Survey and Alignment group in C-AD engaged in measurements of the cavity joint, shown in Figure 2 and the cathode weldment, shown in Figure 3 for the purpose of characterizing the grooves in both the cavity and the vertical test cathode and comparing the dimensions of the cathode with those of the prints supplied by Advanced Energy Systems (AES), the original designer and manufacturer of both the test cathode and the electron gun cavity, in preparation to have a new one manufactured. The goal was to ensure that the articles as built matched the design prints in preparation for manufacturing a new vertical test cathode. This report describes the data collected by the Survey group in these efforts. The endeavor was challenging for the group given the millimeter-scale dimensions of the grooves and the requirement for high precision.

  13. The use of extremal hypotheses as a means of predicting alluvial channel dimensions for river restoration

    NASA Astrophysics Data System (ADS)

    Tranmer, A.; Goodwin, P.

    2013-12-01

    In designing fluvial infrastructure and restoration projects the question often arises, what are the cross sectional characteristics of width, depth, roughness, and slope necessary to ensure no net aggradation or degradation occurs within a given reach of river? Current fluvial design utilizes empirical and numerical methods to calculate the required slope and geometry of alluvial channels; however, no solution has been proposed that fully incorporates the necessary 3-dimensional mechanics of open channels due to the complicated processes and feedbacks that occur during mobile bed conditions. This is further compounded by numerous local geologic constraints and perturbations that must be considered, which interrupt the evolution towards a balance of deposition and erosion, or the condition of dynamic-equilibrium. However, given the moderate success of power law relations, such as regime theory and hydraulic geometry, it is evident self-organizing processes are present in watersheds that scale channel size and sinuosity to some average condition in order to maintain a balance of fluid and sediment flux from the upstream catchment. Extremal hypotheses have been developed as an alternative to solving the reach scale 3-dimensional conservation laws for fluid and sediment, to provide a first order means of predicting channel dimensions in an objective and reproducible manner. This study evaluates the performance of extremal hypotheses in identifying the trend towards dynamic-equilibrium over unique spatial gradients in 2 gravel-bed river systems. Using a location-for-time-substitution approach, extremal hypotheses were examined over a longitudinal gradient of channel evolution towards reaches found to be near equilibrium in an unconfined, transport-limited river in the undisturbed rain forest of Chilean Patagonia and a supply-limited, semi-confined canyon system in Central Idaho, USA. Field data from these two sites imply alluvial systems attempt to minimize their

  14. Riparian Vegetation Influence on Stream Channel Dimensions: Key Driving Mechanisms and Their Timescales

    NASA Astrophysics Data System (ADS)

    McBride, M.; Hession, W.; Rizzo, D. M.; Thompson, D. M.

    2006-05-01

    Combined results from field-based investigations and flume experiments demonstrated key mechanisms driving channel widening following the reforestation of riparian zones in small streams. Riparian reforestation is a common occurrence either due to restoration efforts, intended to improve water quality, temperature regimes, and in-stream physical habitat or due to passive reforestation that is common when agricultural land uses decline. Previous studies have documented the influence of riparian vegetation on channel size, but driving mechanisms and the timescales at which they operate have not been evaluated. Field-based investigations were conducted in the Sleepers River basin in northeastern Vermont to revisit streams that were previously surveyed in the 1960s. We measured channel dimensions, large woody debris (LWD), and steam velocities in reaches with non-forested and forested riparian vegetation, in reaches currently in transition between vegetation types, and reaches with no change in riparian vegetation over the last 40 years. Flume experiments were performed with a 1:5 scale, fixed-bed model of a tributary to Sleepers River. Two types of riparian vegetation scenarios were simulated: 1) forested, with rigid, wooden dowels; and 2) non-forested, with synthetic grass carpeting. Three-dimensional velocities were measured during flume runs to determine turbulent kinetic energy (TKE) during overbank flows. Results showed that stream reaches with recently reforested vegetation have widened since the mid 1960s, but are not as wide as reaches with older riparian forests. LWD was more abundant in reaches with older riparian forests than in reaches with younger forests; however, scour around LWD did not appear to be a significant driving mechanism for channel widening. Velocity and TKE measurements from the prototype stream and the flume model indicate that TKE was significantly elevated in reforested reaches. Given that bed and bank erosion can be amplified in flows

  15. Low temperature thin film transistors with hollow cathode plasma-assisted atomic layer deposition based GaN channels

    SciTech Connect

    Bolat, S. E-mail: aokyay@ee.bilkent.edu.tr; Tekcan, B.; Ozgit-Akgun, C.; Biyikli, N.; Okyay, A. K. E-mail: aokyay@ee.bilkent.edu.tr

    2014-06-16

    We report GaN thin film transistors (TFT) with a thermal budget below 250 °C. GaN thin films are grown at 200 °C by hollow cathode plasma-assisted atomic layer deposition (HCPA-ALD). HCPA-ALD-based GaN thin films are found to have a polycrystalline wurtzite structure with an average crystallite size of 9.3 nm. TFTs with bottom gate configuration are fabricated with HCPA-ALD grown GaN channel layers. Fabricated TFTs exhibit n-type field effect characteristics. N-channel GaN TFTs demonstrated on-to-off ratios (I{sub ON}/I{sub OFF}) of 10{sup 3} and sub-threshold swing of 3.3 V/decade. The entire TFT device fabrication process temperature is below 250 °C, which is the lowest process temperature reported for GaN based transistors, so far.

  16. Dimensions and ion selectivity of recombinant AMPA and kainate receptor channels and their dependence on Q/R site residues.

    PubMed Central

    Burnashev, N; Villarroel, A; Sakmann, B

    1996-01-01

    1. Recombinant alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor (AMPAR) subunits (GluR-A or GluR-B) and kainate receptor (KAR) subunit (GluR-6) in their unedited (Q)- and edited (R)-forms were expressed in HEK 293 cells. To estimate the dimensions of the narrow portion of these channels, biionic reversal potentials for organic cations of different mean diameters were determined with Cs+ as the internal reference ion. 2. Homomeric channels assembled from Q-form subunits were cation selective. The relation between the relative permeability and the mean size of different organic cations suggests that the diameter of the narrow portion of Q-form channels is approximately 0.78 nm for AMPAR and 0.75 nm for KAR channels. 3. Homomeric channels assembled from R-form subunits were permeant for anions and cations. When probed with CsC1 gradients the relative chloride permeability (PC1/PCs) was estimated as 0.14 for GluR-B(R) and 0.74 for GluR-6(R)-subunit channels. The permeability versus mean size relation for large cations measured with the weakly permeant F- as anion, indicates that for the R-form KAR channels the apparent pore diameter is close to 0.76 nm. 4. Heteromeric AMPAR and KAR channels co-assembled from Q- and R-form subunits were cation selective. The diameter of the narrow portion of these channels is estimated to be in the range between 0.70 and 0.74 nm. 5. The results indicated that the diameters of the narrow portion of AMPAR and KAR channels of different subunit composition and of widely different ion selectivity are comparable. Therefore, the differences in the anion versus cation selectivity, in Ca2+ permeability and in channel conductance are likely to be determined by the difference in charge density of the channel. PMID:8910205

  17. Motion of a virtual cathode in a cylindrical channel with electron beam transport in the "compressed" state

    NASA Astrophysics Data System (ADS)

    Belomyttsev, S. Ya.; Grishkov, A. A.; Kurkan, I. K.; Tsygankov, R. V.

    2014-03-01

    This paper studies the motion of a virtual cathode in a two-section drift tube with the formation and breakup of the "compressed" state of an electron beam. Experimental arrangements to intercept part of the injected current during the voltage pulse and to provide virtual cathode motion toward the collector are proposed. The arrangements were implemented on the SINUS-7 high-current electron accelerator. Theoretical and experimental dependences of the virtual cathode velocity on the injected current and cathode voltage are presented. The experimental data on virtual cathode motion agree with its theoretical model based on analytical solutions of equations assisted by computer simulation with the PIC code KARAT. The results of the work demonstrate the feasibility of controlling the virtual cathode motion which can be used in collective ion acceleration and microwave generation.

  18. Threshold voltage and transconductance shifting reliance on strained-SiGe channel dimension

    NASA Astrophysics Data System (ADS)

    Chang, Wen-Teng; Lin, Yu-Seng; Shih, Cheng-Ting

    2015-08-01

    Compared with a control Si p-channel, a compressive SiGe p-channel degrades as the width-to-length (W/L) ratio increases beyond a critical value. This ratio varies at different areas of a wafer. The threshold voltage and transconductance differences between a strained SiGe and a control Si p-channel augment as the W/L ratio increases. However, the transconductance difference in an n-channel diminishes as the ratio increases, which can be explained by the prominent longitudinal or transverse configuration of the piezoresistance coefficients of [1 1 0] SiGe. The interfacial stress between a capsulated Si and SiGe can be approximated by comparing the degradations of a strained SiGe and that of a control Si channel.

  19. Experimental investigation on a polymer electrolyte membrane fuel cell (PEMFC) parallel flow field design with external two-valve regulation on cathode channels

    NASA Astrophysics Data System (ADS)

    Tong, Shijie; Bachman, John C.; Santamaria, Anthony; Park, Jae Wan

    2013-11-01

    Parallel/interdigitated/serpentine flow field PEM fuel cells have similar performance under low overvoltage operation. At higher overvoltage, interdigitated/serpentine flow field performance may exceed parallel flow field designs due to better water removal and more uniform reactant distribution by convective reactant flow in the GDL under land area, i.e. cross flow. However, serpentine flow field design suffers from high pumping losses and the risk of local flooding at channel U-bends. Additionally, interdigitated flow field designs may have higher local flooding risk in the inlet channels and relatively large pumping requirement at low current densities. In this study, a novel parallel flow field design with external two-valve regulation on the cathode was presented. Two valves introduced continuous pressure differences to two separate manifolds in the cathode that induce cross flow across the land areas. Moreover, both valves remained partially open to maintain a good water removal from flow channels. Comparative test results showed the proposed design surpasses performance of both parallel and interdigitated flow field design at operation current density of 0.7 A cm-2 or higher. The performance enhancement is 10.9% at peak power density point (0.387 W cm-2 @ 0.99 A cm-2) compared to parallel flow field taking into account pumping losses.

  20. Pore dimensions and the role of occupancy in unitary conductance of Shaker K channels.

    PubMed

    Díaz-Franulic, Ignacio; Sepúlveda, Romina V; Navarro-Quezada, Nieves; González-Nilo, Fernando; Naranjo, David

    2015-08-01

    K channels mediate the selective passage of K(+) across the plasma membrane by means of intimate interactions with ions at the pore selectivity filter located near the external face. Despite high conservation of the selectivity filter, the K(+) transport properties of different K channels vary widely, with the unitary conductance spanning a range of over two orders of magnitude. Mutation of Pro475, a residue located at the cytoplasmic entrance of the pore of the small-intermediate conductance K channel Shaker (Pro475Asp (P475D) or Pro475Gln (P475Q)), increases Shaker's reported ∼ 20-pS conductance by approximately six- and approximately threefold, respectively, without any detectable effect on its selectivity. These findings suggest that the structural determinants underlying the diversity of K channel conductance are distinct from the selectivity filter, making P475D and P475Q excellent probes to identify key determinants of the K channel unitary conductance. By measuring diffusion-limited unitary outward currents after unilateral addition of 2 M sucrose to the internal solution to increase its viscosity, we estimated a pore internal radius of capture of ∼ 0.82 Å for all three Shaker variants (wild type, P475D, and P475Q). This estimate is consistent with the internal entrance of the Kv1.2/2.1 structure if the effective radius of hydrated K(+) is set to ∼ 4 Å. Unilateral exposure to sucrose allowed us to estimate the internal and external access resistances together with that of the inner pore. We determined that Shaker resistance resides mainly in the inner cavity, whereas only ∼ 8% resides in the selectivity filter. To reduce the inner resistance, we introduced additional aspartate residues into the internal vestibule to favor ion occupancy. No aspartate addition raised the maximum unitary conductance, measured at saturating [K(+)], beyond that of P475D, suggesting an ∼ 200-pS conductance ceiling for Shaker. This value is approximately one third of

  1. Pore dimensions and the role of occupancy in unitary conductance of Shaker K channels

    PubMed Central

    Díaz-Franulic, Ignacio; Sepúlveda, Romina V.; Navarro-Quezada, Nieves; González-Nilo, Fernando

    2015-01-01

    K channels mediate the selective passage of K+ across the plasma membrane by means of intimate interactions with ions at the pore selectivity filter located near the external face. Despite high conservation of the selectivity filter, the K+ transport properties of different K channels vary widely, with the unitary conductance spanning a range of over two orders of magnitude. Mutation of Pro475, a residue located at the cytoplasmic entrance of the pore of the small-intermediate conductance K channel Shaker (Pro475Asp (P475D) or Pro475Gln (P475Q)), increases Shaker’s reported ∼20-pS conductance by approximately six- and approximately threefold, respectively, without any detectable effect on its selectivity. These findings suggest that the structural determinants underlying the diversity of K channel conductance are distinct from the selectivity filter, making P475D and P475Q excellent probes to identify key determinants of the K channel unitary conductance. By measuring diffusion-limited unitary outward currents after unilateral addition of 2 M sucrose to the internal solution to increase its viscosity, we estimated a pore internal radius of capture of ∼0.82 Å for all three Shaker variants (wild type, P475D, and P475Q). This estimate is consistent with the internal entrance of the Kv1.2/2.1 structure if the effective radius of hydrated K+ is set to ∼4 Å. Unilateral exposure to sucrose allowed us to estimate the internal and external access resistances together with that of the inner pore. We determined that Shaker resistance resides mainly in the inner cavity, whereas only ∼8% resides in the selectivity filter. To reduce the inner resistance, we introduced additional aspartate residues into the internal vestibule to favor ion occupancy. No aspartate addition raised the maximum unitary conductance, measured at saturating [K+], beyond that of P475D, suggesting an ∼200-pS conductance ceiling for Shaker. This value is approximately one third of the maximum

  2. Search for large extra dimensions in the monojet+E(T) channel with the DØ detector.

    PubMed

    Abazov, V M; Abbott, B; Abdesselam, A; Abolins, M; Abramov, V; Acharya, B S; Adams, D L; Adams, M; Ahmed, S N; Alexeev, G D; Alton, A; Alves, G A; Anderson, E W; Arnoud, Y; Avila, C; Babintsev, V V; Babukhadia, L; Bacon, T C; Baden, A; Baffioni, S; Baldin, B; Balm, P W; Banerjee, S; Barberis, E; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Bean, A; Beaudette, F; Begel, M; Belyaev, A; Beri, S B; Bernardi, G; Bertram, I; Besson, A; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Bhattacharjee, M; Blazey, G; Blekman, F; Blessing, S; Boehnlein, A; Bojko, N I; Bolton, T A; Borcherding, F; Bos, K; Bose, T; Brandt, A; Breedon, R; Briskin, G; Brock, R; Brooijmans, G; Bross, A; Buchholz, D; Buehler, M; Buescher, V; Burtovoi, V S; Butler, J M; Canelli, F; Carvalho, W; Casey, D; Casilum, Z; Castilla-Valdez, H; Chakraborty, D; Chan, K M; Chekulaev, S V; Cho, D K; Choi, S; Chopra, S; Christenson, J H; Claes, D; Clark, A R; Coney, L; Connolly, B; Cooper, W E; Coppage, D; Crépé-Renaudin, S; Cummings, M A C; Cutts, D; da Motta, H; Davis, G A; De, K; de Jong, S J; Demarteau, M; Demina, R; Demine, P; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Doulas, S; Dudko, L V; Duensing, S; Duflot, L; Dugad, S R; Duperrin, A; Dyshkant, A; Edmunds, D; Ellison, J; Eltzroth, J T; Elvira, V D; Engelmann, R; Eno, S; Eppley, G; Ermolov, P; Eroshin, O V; Estrada, J; Evans, H; Evdokimov, V N; Fein, D; Ferbel, T; Filthaut, F; Fisk, H E; Fisyak, Y; Fleuret, F; Fortner, M; Fox, H; Fu, S; Fuess, S; Gallas, E; Galyaev, A N; Gao, M; Gavrilov, V; Genik, R J; Genser, K; Gerber, C E; Gershtein, Y; Ginther, G; Gómez, B; Goncharov, P I; Gordon, H; Goss, L T; Gounder, K; Goussiou, A; Graf, N; Grannis, P D; Green, J A; Greenlee, H; Greenwood, Z D; Grinstein, S; Groer, L; Grünendahl, S; Gurzhiev, S N; Gutierrez, G; Gutierrez, P; Hadley, N J; Haggerty, H; Hagopian, S; Hagopian, V; Hall, R E; Han, C; Hansen, S; Hauptman, J M; Hebert, C; Hedin, D; Heinmiller, J M; Heinson, A P; Heintz, U; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Huang, J; Huang, Y; Iashvili, I; Illingworth, R; Ito, A S; Jaffré, M; Jain, S; Jesik, R; Johns, K; Johnson, M; Jonckheere, A; Jöstlein, H; Juste, A; Kahl, W; Kahn, S; Kajfasz, E; Kalinin, A M; Karmanov, D; Karmgard, D; Kehoe, R; Khanov, A; Kharchilava, A; Klima, B; Knuteson, B; Ko, W; Kohli, J M; Kostritskiy, A V; Kotcher, J; Kothari, B; Kozelov, A V; Kozlovsky, E A; Krane, J; Krishnaswamy, M R; Krivkova, P; Krzywdzinski, S; Kubantsev, M; Kuleshov, S; Kulik, Y; Kunori, S; Kupco, A; Kuznetsov, V E; Landsberg, G; Lee, W M; Leflat, A; Leggett, C; Lehner, F; Leonidopoulos, C; Li, J; Li, Q Z; Lima, J G R; Lincoln, D; Linn, S L; Linnemann, J; Lipton, R; Lucotte, A; Lueking, L; Lundstedt, C; Luo, C; Maciel, A K A; Madaras, R J; Malyshev, V L; Manankov, V; Mao, H S; Marshall, T; Martin, M I; Mayorov, A A; McCarthy, R; McMahon, T; Melanson, H L; Merkin, M; Merritt, K W; Miao, C; Miettinen, H; Mihalcea, D; Mishra, C S; Mokhov, N; Mondal, N K; Montgomery, H E; Moore, R W; Mutaf, Y D; Nagy, E; Nang, F; Narain, M; Narasimham, V S; Naumann, N A; Neal, H A; Negret, J P; Nomerotski, A; Nunnemann, T; O'Neil, D; Oguri, V; Olivier, B; Oshima, N; Padley, P; Papageorgiou, K; Parashar, N; Partridge, R; Parua, N; Patwa, A; Peters, O; Pétroff, P; Piegaia, R; Pope, B G; Popkov, E; Prosper, H B; Protopopescu, S; Przybycien, M B; Qian, J; Raja, R; Rajagopalan, S; Rapidis, P A; Reay, N W; Reucroft, S; Ridel, M; Rijssenbeek, M; Rizatdinova, F; Rockwell, T; Royon, C; Rubinov, P; Ruchti, R; Rutherfoord, J; Sabirov, B M; Sajot, G; Santoro, A; Sawyer, L; Schamberger, R D; Schellman, H; Schwartzman, A; Shabalina, E; Shivpuri, R K; Shpakov, D; Shupe, M; Sidwell, R A; Simak, V; Sirotenko, V; Slattery, P; Smith, R P; Snow, G R; Snow, J; Snyder, S; Solomon, J; Song, Y; Sorín, V; Sosebee, M; Sotnikova, N; Soustruznik, K; Souza, M; Stanton, N R; Steinbrück, G; Stoker, D; Stolin, V; Stone, A; Stoyanova, D A; Strang, M A; Strauss, M; Strovink, M; Stutte, L; Sznajder, A; Talby, M; Taylor, W; Tentindo-Repond, S; Tripathi, S M; Trippe, T G; Turcot, A S; Tuts, P M; Van Kooten, R; Vaniev, V; Varelas, N; Vertogradov, L S; Villeneuve-Seguier, F; Volkov, A A; Vorobiev, A P; Wahl, H D; Wang, Z-M; Warchol, J; Watts, G; Wayne, M; Weerts, H; White, A; White, J T; Whiteson, D; Wijngaarden, D A; Willis, S; Wimpenny, S J; Womersley, J; Wood, D R; Xu, Q; Yamada, R; Yamin, P; Yasuda, T; Yatsunenko, Y A; Yip, K; Youssef, S; Yu, J; Zanabria, M; Zhang, X; Zheng, H; Zhou, B; Zhou, Z; Zielinski, M; Zieminska, D; Zieminski, A; Zutshi, V; Zverev, E G; Zylberstejn, A

    2003-06-27

    We present a search for large extra dimensions (ED) in pp collisions at a center-of-mass energy of 1.8 TeV using data collected by the DØ detector at the Fermilab Tevatron in 1994-1996. Data corresponding to 78.8+/-3.9 pb(-1) are examined for events with large missing transverse energy, one high-p(T) jet, and no isolated muons. There is no excess observed beyond expectation from the standard model, and we place lower limits on the fundamental Planck scale of 1.0 and 0.6 TeV for 2 and 7 ED, respectively. PMID:12857124

  3. Cooling channels design analysis with chaotic laminar trajectory for closed cathode air-cooled PEM fuel cells using non-reacting numerical approach

    NASA Astrophysics Data System (ADS)

    N, W. Mohamed W. A.

    2015-09-01

    The thermal management of Polymer Electrolyte Membrane (PEM) fuel cells contributes directly to the overall power output of the system. For a closed cathode PEM fuel cell design, the use of air as a cooling agent is a non-conventional method due to the large heat load involved, but it offers a great advantage for minimizing the system size. Geometrical aspects of the cooling channels have been identified as the basic parameter for improved cooling performance. Numerical investigation using STAR-CCM computational fluid dynamics platform was applied for non-reacting cooling effectiveness study of various channel geometries for fuel cell application. The aspect ratio of channels and the flow trajectory are the parametric variations. A single cooling plate domain was selected with an applied heat flux of 2400 W/m2 while the cooling air are simulated at Reynolds number of 400 that corresponds to normal air flow velocities using standard 6W fans. Three channel designs of similar number of channels (20 channels) are presented here to analyze the effects of having chaotic laminar flow trajectory compared to the usual straight path trajectory. The total heat transfer between the cooling channel walls and coolant were translated into temperature distribution, maximum temperature gradient, average plate temperature and overall cooling effectiveness analyses. The numerical analysis shows that the chaotic flow promotes a 5% to 10% improvement in cooling effectiveness, depending on the single-axis or multi-axis flow paths applied. Plate temperature uniformity is also more realizable using the chaotic flow designs.

  4. Early Search for Extra Dimensions in the Diphoton Channel at CMS

    NASA Astrophysics Data System (ADS)

    Nguyen, Duong

    2010-02-01

    The existence of extra dimensions (EDs) is an exciting new proposed solution of the hierarchy problem of the Standard Model. The evidence can be revealed in the diphoton mass spectrum either as a broad enhancement (Arkani-Hamed, Dimopoulos, Dvali, or ADD model) or as a narrow resonance (Randall-Sandrum, or RS model) over the continuum SM background. We present the search for these scenarios at CMS with early data. From simulation, we expect a 95% C.L. signal cross section limit of 0.053 pb assuming only the presence of SM processes with 100 pb-1 of pp collision data at √s = 10 TeV. This would translate in the most stringent limits on the ADD and RS model parameters to date. The discovery potential in the ADD and RS models is discussed in the expectation of rapidly increasing integrated luminosity. The status of this search using first LHC data is presented as well. )

  5. A Structured Approach to Analyze the Influence of Channel Dimensions on Heat Extraction via Superfluid Helium

    NASA Astrophysics Data System (ADS)

    Bielert, E. R.; ten Kate, H. H. J.; Verweij, A. P.

    For the luminosity upgrade of the LHC at CERN, the final focusing quadrupole magnets will be exposed to an increased energy deposition in their coil windings. To have a higher heat transfer rate between cable and superfluid helium bath, the cable insulation has been subject of many studies. Improved cable insulation designs, making use of several layers of Kapton tape wound around Rutherford type cables, allow helium to penetrate via micro-channels, which are left open between adjacent Kapton tape sections. To better understand the thermal behaviour at operating temperatures below and some degrees above the helium lambda transition, besides experimental work, several numerical models have been developed to study the influence of the cable insulation. Here we present a new numerical model based on an earlier presented FEM model, which makes use of coupling variables such that the user can easily and quickly change the parameters of interest, giving the possibility to analyse new ideas effectively.

  6. Search for large extra dimensions in the exclusive photon + missing energy channel in p anti-p collisions

    SciTech Connect

    Lazoflores, Jose A.; /Florida State U.

    2006-04-01

    A search was conducted for evidence of large extra dimensions (LED) at Fermi National Accelerator Laboratory's Tevatron using the D0 detector. The Tevatron is a p{bar p} collider at a center of mass energy of 1.96 TeV. Events with particles escaping into extra dimensions will have large missing energy. The search was carried out using data from a total luminosity of 197 {+-} 13 pb{sup -1} with an observable high transverse momentum photon and a large transverse missing energy. The 70 observed events are consistent with photons produced by standard known reactions plus other background processes produced by cosmic muons. The mass limits on the fundamental mass scale at 95% confidence level for large extra dimensions of 2, 4, 6 and 8 are 500 GeV, 581 GeV, 630 GeV, and 668 GeV respectively.

  7. Cathodic arcs

    SciTech Connect

    Anders, Andre

    2003-10-29

    Cathodic arc plasma deposition has become the technology of choice for hard, wear and corrosion resistant coatings for a variety of applications. The history, basic physics of cathodic arc operation, the infamous macroparticle problem and common filter solutions, and emerging high-tech applications are briefly reviewed. Cathodic arc plasmas standout due to their high degree of ionization, with important consequences for film nucleation, growth, and efficient utilization of substrate bias. Industrial processes often use cathodic arc plasma in reactive mode. In contrast, the science of arcs has focused on the case of vacuum arcs. Future research directions include closing the knowledge gap for reactive mode, large area coating, linear sources and filters, metal plasma immersion process, with application in high-tech and biomedical fields.

  8. Solvent induced channel interference in the two-photon absorption process--a theoretical study with a generalized few-state-model in three dimensions.

    PubMed

    Alam, Md Mehboob; Chattopadhyaya, Mausumi; Chakrabarti, Swapan

    2012-01-21

    For the first time, we report the effect of interference between different optical channels on the two-photon absorption (TPA) process in three dimensions. We have employed response theory as well as a sum-over-states (SOS) approach involving few intermediate states to calculate the TPA parameters like transition probabilities (δ(TP)) and TPA tensor elements. In order to use the limited SOS approach, we have derived a new formula for a generalized few-state-model (GFSM) in three dimensions. Due to the presence of additional terms related to the angle between different transition moment vectors, the channel interference associated with the TPA process in 3D is significantly different and much more complicated than that in 1D and 2D cases. The entire study has been carried out on the two simplest Reichardt's dyes, namely 2- and 4-(pyridinium-1-yl)-phenolate (ortho- and para-betain) in gas phase, THF, CH(3)CN and water solvents. We have meticulously inspected the effect of the additional angle related terms on the overall TPA transition probabilities of the two 3D isomeric molecules studied and found that the interfering terms involved in the δ(TP) expression contribute both constructively and destructively as well to the overall δ(TP) value. Moreover, the interfering term has a more conspicuous role in determining the net δ(TP) associated with charge transfer transition in comparison to that of π-π* transition of the studied systems. Interestingly, our model calculations suggest that, for o- and p-betain, the quenching of destructive interference associated with a particular two-photon process can be done with high polarity solvents while the enhancement of constructive interference will be achieved in solvents having relatively small polarity. All the one- and two-photon parameters are evaluated using a range separated CAMB3LYP functional. PMID:22127437

  9. Channel

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03693 Channel

    This channel is located south of Iani Chaos.

    Image information: VIS instrument. Latitude -10.9N, Longitude 345.5E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  10. Hollow cathode apparatus

    NASA Technical Reports Server (NTRS)

    Aston, G. (Inventor)

    1984-01-01

    A hollow cathode apparatus is described, which can be rapidly and reliably started. An ignitor positioned upstream from the hollow cathode, generates a puff of plasma that flows with the primary gas to be ionized through the cathode. The plasma puff creates a high voltage breakdown between the downstream end of the cathode and a keeper electrode, to heat the cathode to an electron-emitting temperature.

  11. Nanotube cathodes.

    SciTech Connect

    Overmyer, Donald L.; Lockner, Thomas Ramsbeck; Siegal, Michael P.; Miller, Paul Albert

    2006-11-01

    Carbon nanotubes have shown promise for applications in many diverse areas of technology. In this report we describe our efforts to develop high-current cathodes from a variety of nanotubes deposited under a variety of conditions. Our goal was to develop a one-inch-diameter cathode capable of emitting 10 amperes of electron current for one second with an applied potential of 50 kV. This combination of current and pulse duration significantly exceeds previously reported nanotube-cathode performance. This project was planned for two years duration. In the first year, we tested the electron-emission characteristics of nanotube arrays fabricated under a variety of conditions. In the second year, we planned to select the best processing conditions, to fabricate larger cathode samples, and to test them on a high-power relativistic electron beam generator. In the first year, much effort was made to control nanotube arrays in terms of nanotube diameter and average spacing apart. When the project began, we believed that nanotubes approximately 10 nm in diameter would yield sufficient electron emission properties, based on the work of others in the field. Therefore, much of our focus was placed on measured field emission from such nanotubes grown on a variety of metallized surfaces and with varying average spacing between individual nanotubes. We easily reproduced the field emission properties typically measured by others from multi-wall carbon nanotube arrays. Interestingly, we did this without having the helpful vertical alignment to enhance emission; our nanotubes were randomly oriented. The good emission was most likely possible due to the improved crystallinity, and therefore, electrical conductivity, of our nanotubes compared to those in the literature. However, toward the end of the project, we learned that while these 10-nm-diameter CNTs had superior crystalline structure to the work of others studying field emission from multi-wall CNT arrays, these nanotubes still

  12. Sintered wire cathode

    DOEpatents

    Falce, Louis R.; Ives, R. Lawrence

    2009-06-09

    A porous cathode structure is fabricated from a plurality of wires which are placed in proximity to each other in elevated temperature and pressure for a sintering time. The sintering process produces the porous cathode structure which may be divided into a plurality of individual porous cathodes, one of which may be placed into a dispenser cathode support which includes a cavity for containing a work function reduction material such as BaO, CaO, and Al.sub.2O.sub.3. The work function reduction material migrates through the pores of the porous cathode from a work replenishment surface adjacent to the cavity of the dispenser cathode support to an emitting cathode surface, thereby providing a dispenser cathode which has a uniform work function and therefore a uniform electron emission.

  13. Pressed boride cathodes

    NASA Technical Reports Server (NTRS)

    Wolski, W.

    1985-01-01

    Results of experimental studies of emission cathodes made from lanthanum, yttrium, and gadolinium hexaborides are presented. Maximum thermal emission was obtained from lanthanum hexaboride electrodes. The hexaboride cathodes operated stably under conditions of large current density power draw, at high voltages and poor vacuum. A microtron electron gun with a lanthanum hexaboride cathode is described.

  14. Development of plasma cathode electron guns

    NASA Astrophysics Data System (ADS)

    Oks, Efim M.; Schanin, Peter M.

    1999-05-01

    The status of experimental research and ongoing development of plasma cathode electron guns in recent years is reviewed, including some novel upgrades and applications to various technological fields. The attractiveness of this kind of e-gun is due to its capability of creating high current, broad or focused beams, both in pulsed and steady-state modes of operation. An important characteristic of the plasma cathode electron gun is the absence of a thermionic cathode, a feature which leads to long lifetime and reliable operation even in the presence of aggressive background gas media and at fore-vacuum gas pressure ranges such as achieved by mechanical pumps. Depending on the required beam parameters, different kinds of plasma discharge systems can be used in plasma cathode electron guns, such as vacuum arcs, constricted gaseous arcs, hollow cathode glows, and two kinds of discharges in crossed E×B fields: Penning and magnetron. At the present time, plasma cathode electron guns provide beams with transverse dimension from fractional millimeter up to about one meter, beam current from microamperes to kiloamperes, beam current density up to about 100 A/cm2, pulse duration from nanoseconds to dc, and electron energy from several keV to hundreds of keV. Applications include electron beam melting and welding, surface treatment, plasma chemistry, radiation technologies, laser pumping, microwave generation, and more.

  15. Rf Gun with High-Current Density Field Emission Cathode

    SciTech Connect

    Jay L. Hirshfield

    2005-12-19

    High current-density field emission from an array of carbon nanotubes, with field-emission-transistor control, and with secondary electron channel multiplication in a ceramic facing structure, have been combined in a cold cathode for rf guns and diode guns. Electrodynamic and space-charge flow simulations were conducted to specify the cathode configuration and range of emission current density from the field emission cold cathode. Design of this cathode has been made for installation and testing in an existing S-band 2-1/2 cell rf gun. With emission control and modulation, and with current density in the range of 0.1-1 kA/cm2, this cathode could provide performance and long-life not enjoyed by other currently-available cathodes

  16. Characterization of the startup transient electrokinetic flow in rectangular channels of arbitrary dimensions, zeta potential distribution, and time-varying pressure gradient.

    PubMed

    Miller, Andrew; Villegas, Arturo; Diez, F Javier

    2015-03-01

    The solution to the startup transient EOF in an arbitrary rectangular microchannel is derived analytically and validated experimentally. This full 2D transient solution describes the evolution of the flow through five distinct periods until reaching a final steady state. The derived analytical velocity solution is validated experimentally for different channel sizes and aspect ratios under time-varying pressure gradients. The experiments used a time resolved micro particle image velocimetry technique to calculate the startup transient velocity profiles. The measurements captured the effect of time-varying pressure gradient fields derived in the analytical solutions. This is tested by using small reservoirs at both ends of the channel which allowed a time-varying pressure gradient to develop with a time scale on the order of the transient EOF. Results showed that under these common conditions, the effect of the pressure build up in the reservoirs on the temporal development of the transient startup EOF in the channels cannot be neglected. The measurements also captured the analytical predictions for channel walls made of different materials (i.e., zeta potentials). This was tested in channels that had three PDMS and one quartz wall, resulting in a flow with an asymmetric velocity profile due to variations in the zeta potential between the walls. PMID:25502599

  17. Erosion of thermionic cathodes

    NASA Astrophysics Data System (ADS)

    Nemchinsky, Valerian

    2013-09-01

    Two types of the thermionic cathodes are used in industry: a) Tungsten (doped with thoria or pure) cathodes burning in a unreactive gas, and b) Thermo-chemical cathodes, such as a Hafnium cathode burning in oxygen plasma gas (mostly used plasma cutting). Both types of the cathodes experience cycle (arc on/off) erosion and constant current erosion. Available experimental data for both types of cathodes and both types of erosions (constant current and cycling) are presented and discussed. Based on the model the constant current erosion rate is calculated. Comparison of the results of the calculations with the experimental data show reasonable agreement. Existing hypotheses on cycling erosion are also discussed. For the Tungsten cathode, it is suggested that the start erosion is mainly due to the cold cathode mode (vacuum arc mode) of the arc operation that takes place just after the arc ignition. The presented estimation doesn't contradict this hypothesis. For the Hafnium cathode, the model of the ``open can'' erosion is supported by recently published observations.

  18. Design of Cathode Heater Assembly for High Power Gyrotron

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Ranajoy; Khatun, Hasina; Singh, Narendra Kr.; Singh, Udaybir; Sinha, A. K.

    2013-04-01

    A 3D model of dispenser cathode with toroid shape heater assembly is simulated using simulation software, ANSYS Multi-physics. The reported design study of cathode heater assembly of 1 MW 120 GHz gyrotron helps to optimize the input heater power with respect to cathode surface temperature. The simulation study shows that the input power depends strongly on the heater dimension as well as material properties including the potting material. The optimum input power helps to achieve desired current density (10 A/cm2) and cathode surface temperature (1000 °C). Further, the thermal and structural analyses are carried out to study the temperature distribution on the cathode assembly due to the heat dissipation and mechanical strength of the assembly.

  19. Improved Dispenser Cathodes

    NASA Astrophysics Data System (ADS)

    Ives, R. Lawrence; Falce, Lou

    2006-01-01

    Variations in emission current from dispenser cathodes can be caused by variations in temperature and work function over the surface. This paper described research to reduce these variations using improved mechanical designs and controlled porosity cathodes made from sintered tungsten wires. The program goal is to reduce current emission variations to less than 5% over the surface of magnetron injection guns operating temperature limited.

  20. Planar-focusing cathodes.

    SciTech Connect

    Lewellen, J. W.; Noonan, J.; Accelerator Systems Division

    2005-01-01

    Conventional {pi}-mode rf photoinjectors typically use magnetic solenoids for emittance compensation. This provides independent focusing strength but can complicate rf power feed placement, introduce asymmetries (due to coil crossovers), and greatly increase the cost of the photoinjector. Cathode-region focusing can also provide for a form of emittance compensation. Typically this method strongly couples focusing strength to the field gradient on the cathode, however, and usually requires altering the longitudinal position of the cathode to change the focusing. We propose a new method for achieving cathode-region variable-strength focusing for emittance compensation. The new method reduces the coupling to the gradient on the cathode and does not require a change in the longitudinal position of the cathode. Expected performance for an S-band system is similar to conventional solenoid-based designs. This paper presents the results of rf cavity and beam dynamics simulations of the new design. We have proposed a method for performing emittance compensation using a cathode-region focusing scheme. This technique allows the focusing strength to be adjusted somewhat independently of the on-axis field strength. Beam dynamics calculations indicate performance should be comparable to presently in-use emittance compensation schemes, with a simpler configuration and fewer possibilities for emittance degradation due to the focusing optics. There are several potential difficulties with this approach, including cathode material selection, cathode heating, and peak fields in the gun. We hope to begin experimenting with a cathode of this type in the near future, and several possibilities exist for reducing the peak gradients to more acceptable levels.

  1. Micro-engineered cathode interface studies

    SciTech Connect

    Doshi, R.; Kueper, T.; Nagy, Z.; Krumpelt, M.

    1997-08-01

    The aim of this work is to increase the performance of the cathode in solid oxide fuel cells (SOFCs) operating at 1,000 C by decreasing the polarization resistance from 0.2 {Omega}-cm{sup 2} at 300 mA/cm{sup 2}. Decreased polarization resistance will allow operation at higher current densities. This work is in support of the Westinghouse tubular SOFC technology using YSZ electrolyte and strontium doped lanthanum manganite (LSM) cathode. As a result of work performed last year at Argonne National Laboratory and information derived from the literature, the limitations at the cathode/electrolyte interface can be classified into two main areas. First, the ionic conductivity of the LSM cathode material is low which limits the reaction zone to an area very close to the interface, while the rest of the cathode thickness acts essentially as current collector with channels for gas access. Second, the electronic conductivity in YSZ is very low which limits the reaction zone to areas that are the boundaries between LSM and YSZ rather than the YSZ surface away from LSM at the interface. Possible solutions to this problem being pursued are: (1) introducing an ionic conducting YSZ phase in LSM to form a porous two-phase mixture of LSM and YSZ; (2) applying a thin interlayer between the electrolyte and the cathode where the interlayer has high ionic and electronic conductivity and high catalytic activity for reduction of O{sub 2}; (3) increasing the ionic conductivity in the LSM by suitable doping; and (4) increasing the electronic conductivity in the electrolyte by doping or by depositing an appropriate mixed conducting layer on the YSZ before applying the cathode.

  2. Lightweight Cathodes For Nickel Batteries

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.

    1996-01-01

    Lightweight cathodes for rechargeable nickel-based electrochemical cells undergoing development. In cathodes, mats of nickel fibers are substrates providing structural support of, and electrical contact with, active cathode material. Offers specific energies greater than sintered nickel plaque cathodes. Electrodes used in rechargeable batteries for applications in which weight major concern, including laptop computers, cellular phones, flashlights, soldiers' backpacks, and electric vehicles.

  3. Nanostructured sulfur cathodes.

    PubMed

    Yang, Yuan; Zheng, Guangyuan; Cui, Yi

    2013-04-01

    Rechargeable Li/S batteries have attracted significant attention lately due to their high specific energy and low cost. They are promising candidates for applications, including portable electronics, electric vehicles and grid-level energy storage. However, poor cycle life and low power capability are major technical obstacles. Various nanostructured sulfur cathodes have been developed to address these issues, as they provide greater resistance to pulverization, faster reaction kinetics and better trapping of soluble polysulfides. In this review, recent developments on nanostructured sulfur cathodes and mechanisms behind their operation are presented and discussed. Moreover, progress on novel characterization of sulfur cathodes is also summarized, as it has deepened the understanding of sulfur cathodes and will guide further rational design of sulfur electrodes. PMID:23325336

  4. Cathodes - Technological review

    NASA Astrophysics Data System (ADS)

    Cherkouk, Charaf; Nestler, Tina

    2014-06-01

    Lithium cobalt oxide (LiCoO2) was already used in the first commercialized Li-ion battery by SONY in 1990. Still, it is the most frequently used cathode material nowadays. However, LiCoO2 is intrinsically unstable in the charged state, especially at elevated temperatures and in the overcharged state causing volume changes and transport limitation for high power batteries. In this paper, some technological aspects with large impact on cell performance from the cathode material point of view will be reviewed. At first it will be focused on the degradation processes and life-time mechanisms of the cathode material LiCoO2. Electrochemical and structural results on commercial Li-ion batteries recorded during the cycling will be discussed. Thereafter, advanced nanomaterials for new cathode materials will be presented.

  5. Arcjet Cathode Phenomena

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Haag, Thomas W.; Raquet, John F.

    1989-01-01

    Cathode tips made from a number of different materials were tested in a modular arcjet thruster in order to examine cathode phenomena. Periodic disassembly and examination, along with the data collected during testing, indicated that all of the tungsten-based materials behaved similarly despite the fact that in one of these samples the percentage of thorium oxide was doubled and another was 25 percent rhenium. The mass loss rate from a 2 percent thoriated rhenium cathode was found to be an order of magnitude greater than that observed using 2 percent thoriated tungsten. Detailed analysis of one of these cathode tips showed that the molten crater contained pure tungsten to a depth of about 150 microns. Problems with thermal stress cracking were encountered in the testing of a hafnium carbide tip. Post test analysis showed that the active area of the tip had chemically reacted with the propellant. A 100 hour continuous test was run at about 1 kW. Post test analysis revealed no dendrite formation, such as observed in a 30 kW arcjet lifetest, near the cathode crater. The cathodes from both this test and a previously run 1000 hour cycled test displayed nearly identical arc craters. Data and calculations indicate that the mass losses observed in testing can be explained by evaporation.

  6. Arcjet cathode phenomena

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Haag, Thomas W.; Raquet, John F.

    1989-01-01

    Cathode tips made from a number of different materials were tested in a modular arcjet thruster in order to examine cathode phenomena. Periodic disassembly and examination, along with the data collected during testing, indicated that all of the tungsten-based materials behaved similarly despite the fact that in one of these samples the percentage of thorium oxide was doubled and another was 25 percent rhenium. The mass loss rate from a 2 percent thoriated rhenium cathode was found to be an order of magnitude greater than that observed using 2 percent thoriated tungsten. Detailed analysis of one of these cathode tips showed that the molten crater contained pure tungsten to a depth of about 150 microns. Problems with thermal stress cracking were encountered in the testing of a hafnium carbide tip. Post test analysis showed that the active area of the tip had chemically reacted with the propellant. A 100 hour continuous test was run at about 1 kW. Post test analysis revealed no dendrite formation, such as observed in a 30 kW arcjet lifetest, near the cathode crater. The cathodes from both this test and a previously run 1000 hour cycled test displayed nearly identical arc craters. Data and calculations indicate that the mass losses observed in testing can be explained by evaporation.

  7. High power laser and cathode structure thereof

    SciTech Connect

    Nam, K. H.; Seguin, H. J.; Tulip, J.

    1981-09-08

    A cathode structure for gas lasers is disclosed that is comprised of a flat plate of non-conducting material positioned in the laser in spaced relation to the laser anode to define a discharge region therebetween, a two-dimensional array of metal sub-electrode rods passing through the plate and having their upper ends lying flush with the surface of the plate, a block of dielectric material positioned below the plate and containing a series of transverse channels therein, electric current conductors lying in the channels and adapted for connection to a power supply, the lower ends of the said rods passing through openings in the block into the channels to define a predetermined uniform gap between the ends of the rods and the electrical conductor, and a liquid electrolyte solution filling the channels and electrically connecting the sub-electrode rods and the conductors.

  8. Cathode materials review

    SciTech Connect

    Daniel, Claus Mohanty, Debasish Li, Jianlin Wood, David L.

    2014-06-16

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO{sub 2} cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.

  9. Cathode materials review

    NASA Astrophysics Data System (ADS)

    Daniel, Claus; Mohanty, Debasish; Li, Jianlin; Wood, David L.

    2014-06-01

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO2 cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.

  10. Thermionic cathode life test studies

    NASA Technical Reports Server (NTRS)

    Forman, R.; Elmer, P.

    1980-01-01

    An update on the life testing of commerical, high current density impregnated tungsten cathodes is presented. The B-type cathodes, operated at a current density of 2 A/cm2 and a cathode temperature of 1100 C have now been run satisfactorily for more than four years. The M-cathode, at the same current density but at an operating temperature of only 1010 C, have been tested for more than three years. The M-cathodes show no degradation in current over their present operating life whereas the current from the B-cathodes degrade about 6 percent after four years of operation.

  11. Filtered cathodic arc source

    DOEpatents

    Falabella, Steven; Sanders, David M.

    1994-01-01

    A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45.degree. to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles.

  12. Filtered cathodic arc source

    DOEpatents

    Falabella, S.; Sanders, D.M.

    1994-01-18

    A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge is described. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45[degree] to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles. 3 figures.

  13. Filtered cathodic arc source

    SciTech Connect

    Falabella, S.; Sanders, D.M.

    1992-12-31

    Disclosed is a continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45{degrees} to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles.

  14. Effect of thermionic cathode heating current self-magnetic field on gaseous plasma generator characteristics

    NASA Astrophysics Data System (ADS)

    Lopatin, I. V.; Akhmadeev, Yu. H.; Koval, N. N.

    2015-10-01

    The performance capabilities of the PINK, a plasma generator with a thermionic cathode mounted in the cavity of a hollow cathode, depending for its operation on a non-self-sustained low-pressure gas discharge have been investigated. It has been shown that when a single-filament tungsten cathode 2 mm in diameter is used and the peak filament current is equal to or higher than 100 A, the self-magnetic field of the filament current significantly affects the discharge current and voltage waveforms. This effect is due to changes in the time and space distributions of the emission current density from the hot cathode. When the electron mean free path is close to the characteristic dimensions of the thermionic cathode, the synthesized plasma density distribution is nonuniform and the cathode is etched nonuniformly. The cathode lifetime in this case is 8-12 h. Using a cathode consisting of several parallel-connected tungsten filaments ˜0.8 mm in diameter moderates the effect of the self-magnetic field of the filament current and nearly doubles the cathode lifetime. The use of this type of cathode together with a discharge igniting electrode reduces the minimum operating pressure in the plasma generator to about one third of that required for the generator operation with a single-filament cathode (to 0.04 Pa).

  15. Effect of thermionic cathode heating current self-magnetic field on gaseous plasma generator characteristics.

    PubMed

    Lopatin, I V; Akhmadeev, Yu H; Koval, N N

    2015-10-01

    The performance capabilities of the PINK, a plasma generator with a thermionic cathode mounted in the cavity of a hollow cathode, depending for its operation on a non-self-sustained low-pressure gas discharge have been investigated. It has been shown that when a single-filament tungsten cathode 2 mm in diameter is used and the peak filament current is equal to or higher than 100 A, the self-magnetic field of the filament current significantly affects the discharge current and voltage waveforms. This effect is due to changes in the time and space distributions of the emission current density from the hot cathode. When the electron mean free path is close to the characteristic dimensions of the thermionic cathode, the synthesized plasma density distribution is nonuniform and the cathode is etched nonuniformly. The cathode lifetime in this case is 8-12 h. Using a cathode consisting of several parallel-connected tungsten filaments ∼0.8 mm in diameter moderates the effect of the self-magnetic field of the filament current and nearly doubles the cathode lifetime. The use of this type of cathode together with a discharge igniting electrode reduces the minimum operating pressure in the plasma generator to about one third of that required for the generator operation with a single-filament cathode (to 0.04 Pa). PMID:26520947

  16. Effect of thermionic cathode heating current self-magnetic field on gaseous plasma generator characteristics

    SciTech Connect

    Lopatin, I. V. Akhmadeev, Yu. H.; Koval, N. N.

    2015-10-15

    The performance capabilities of the PINK, a plasma generator with a thermionic cathode mounted in the cavity of a hollow cathode, depending for its operation on a non-self-sustained low-pressure gas discharge have been investigated. It has been shown that when a single-filament tungsten cathode 2 mm in diameter is used and the peak filament current is equal to or higher than 100 A, the self-magnetic field of the filament current significantly affects the discharge current and voltage waveforms. This effect is due to changes in the time and space distributions of the emission current density from the hot cathode. When the electron mean free path is close to the characteristic dimensions of the thermionic cathode, the synthesized plasma density distribution is nonuniform and the cathode is etched nonuniformly. The cathode lifetime in this case is 8–12 h. Using a cathode consisting of several parallel-connected tungsten filaments ∼0.8 mm in diameter moderates the effect of the self-magnetic field of the filament current and nearly doubles the cathode lifetime. The use of this type of cathode together with a discharge igniting electrode reduces the minimum operating pressure in the plasma generator to about one third of that required for the generator operation with a single-filament cathode (to 0.04 Pa)

  17. Effects of enhanced cathode electron emission on Hall thruster operation

    SciTech Connect

    Raitses, Y.; Smirnov, A.; Fisch, N. J.

    2009-05-15

    Interesting discharge phenomena are observed that have to do with the interaction between the magnetized Hall thruster plasma and the neutralizing cathode. The steady-state parameters of a highly ionized thruster discharge are strongly influenced by the electron supply from the cathode. The enhancement of the cathode electron emission above its self-sustained level affects the discharge current and leads to a dramatic reduction in the plasma divergence and a suppression of large amplitude, low frequency discharge current oscillations usually related to an ionization instability. These effects correlate strongly with the reduction in the voltage drop in the region with the fringing magnetic field between the thruster channel and the cathode. The measured changes in the plasma properties suggest that the electron emission affects the electron cross-field transport in the thruster discharge. These trends are generalized for Hall thrusters of various configurations.

  18. Miniaturized cathodic arc plasma source

    DOEpatents

    Anders, Andre; MacGill, Robert A.

    2003-04-15

    A cathodic arc plasma source has an anode formed of a plurality of spaced baffles which extend beyond the active cathode surface of the cathode. With the open baffle structure of the anode, most macroparticles pass through the gaps between the baffles and reflect off the baffles out of the plasma stream that enters a filter. Thus the anode not only has an electrical function but serves as a prefilter. The cathode has a small diameter, e.g. a rod of about 1/4 inch (6.25 mm) diameter. Thus the plasma source output is well localized, even with cathode spot movement which is limited in area, so that it effectively couples into a miniaturized filter. With a small area cathode, the material eroded from the cathode needs to be replaced to maintain plasma production. Therefore, the source includes a cathode advancement or feed mechanism coupled to cathode rod. The cathode also requires a cooling mechanism. The movable cathode rod is housed in a cooled metal shield or tube which serves as both a current conductor, thus reducing ohmic heat produced in the cathode, and as the heat sink for heat generated at or near the cathode. Cooling of the cathode housing tube is done by contact with coolant at a place remote from the active cathode surface. The source is operated in pulsed mode at relatively high currents, about 1 kA. The high arc current can also be used to operate the magnetic filter. A cathodic arc plasma deposition system using this source can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

  19. Cathode material for lithium batteries

    DOEpatents

    Park, Sang-Ho; Amine, Khalil

    2015-01-13

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  20. Cathode material for lithium batteries

    DOEpatents

    Park, Sang-Ho; Amine, Khalil

    2013-07-23

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  1. A Hollow Cathode Magnetron (HCM)

    SciTech Connect

    S.A. Cohen; Z. Wang

    1998-04-01

    A new type of plasma sputtering device, named the hollow cathode magnetron (HCM), has been developed by surrounding a planar magnetron cathode with a hollow cathode structure (HCS). Operating characteristics of HCMs, current-voltage ( I-V ) curves for fixed discharge pressure and voltage-pressure ( V-p ) curves for fixed cathode current, are measured. Such characteristics are compared with their planar magnetron counterparts. New operation regimes, such as substantially lower pressures (0.3 mTorr), were discovered for HCMs. Cathode erosion profiles show marked improvement over planar magnetron in terms of material utilization. The use of HCMs for thin film deposition are discussed.

  2. Hydrogen hollow cathode ion source

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J., Jr.; Sovey, J. S.; Roman, R. F. (Inventor)

    1980-01-01

    A source of hydrogen ions is disclosed and includes a chamber having at one end a cathode which provides electrons and through which hydrogen gas flows into the chamber. Screen and accelerator grids are provided at the other end of the chamber. A baffle plate is disposed between the cathode and the grids and a cylindrical baffle is disposed coaxially with the cathode at the one end of the chamber. The cylindrical baffle is of greater diameter than the baffle plate to provide discharge impedance and also to protect the cathode from ion flux. An anode electrode draws the electrons away from the cathode. The hollow cathode includes a tubular insert of tungsten impregnated with a low work function material to provide ample electrons. A heater is provided around the hollow cathode to initiate electron emission from the low work function material.

  3. Synopsis of Cathode #4 Activation

    SciTech Connect

    Kwan, Joe; Ekdahl, C.; Harrison, J.; Kwan, J.; Leitner, M.; McCruistian, T.; Mitchell, R.; Prichard, B.; Roy, P.

    2006-05-26

    The purpose of this report is to describe the activation of the fourth cathode installed in the DARHT-II Injector. Appendices have been used so that an extensive amount of data could be included without danger of obscuring important information contained in the body of the report. The cathode was a 612 M type cathode purchased from Spectra-Mat. Section II describes the handling and installation of the cathode. Section III is a narrative of the activation based on information located in the Control Room Log Book supplemented with time plots of pertinent operating parameters. Activation of the cathode was performed in accordance with the procedure listed in Appendix A. The following sections provide more details on the total pressure and constituent partial pressures in the vacuum vessel, cathode heater power/filament current, and cathode temperature.

  4. Air cathode structure manufacture

    DOEpatents

    Momyer, William R.; Littauer, Ernest L.

    1985-01-01

    An improved air cathode structure for use in primary batteries and the like. The cathode structure includes a matrix active layer, a current collector grid on one face of the matrix active layer, and a porous, nonelectrically conductive separator on the opposite face of the matrix active layer, the collector grid and separator being permanently bonded to the matrix active layer. The separator has a preselected porosity providing low IR losses and high resistance to air flow through the matrix active layer to maintain high bubble pressure during operation of the battery. In the illustrated embodiment, the separator was formed of porous polypropylene. A thin hydrophobic film is provided, in the preferred embodiment, on the current collecting metal grid.

  5. Thermionic emission cathodes

    SciTech Connect

    Misumi, A.; Saito, S.

    1981-07-21

    A thermionic emission cathode comprising a base metal made of nickel-tungsten series alloy, for example an alloy comprising 90 to 70% by weight of nickel and 10 to 30% by weight of tungsten, and an emitter layer, which is formed on the base, made from a mixture of tungsten powder or nickel-tungsten alloy powder comprising 90 to 70% by weight of nickel and 10 to 30% by weight of tungsten, Ba/sub 3/Wo/sub 6/ powder and (C) zirconium powder or ZrH/sub 2/ powder, and if necessary interposing a powder layer between the base and the emitter layer, said powder layer having the same composition as the base metal and a particle size of 1 to 10 ..mu..m sealed on the surface of the base with a distribution density of 0.5 to 5.0 mg/cm/sup 2/, can be applied to both directly and indirectly heated type cathodes. Said cathode has such advantages as being able to be miniaturized and to have high current density.

  6. Theoretical and experimental investigation into high current hollow cathode arc attachment

    NASA Astrophysics Data System (ADS)

    Downey, Ryan T.

    This research addresses several concerns of the mechanisms controlling performance and lifetime of high-current single-channel-hollow-cathodes, the central electrode and primary life-limiting component in Magnetoplasmadynamic thrusters. Specifically covered are the trends, and the theorized governing mechanisms, seen in the discharge efficiency and power, the size of the plasma attachment to the cathode (the active zone), cathode exit plume plasma density and energy, along with plasma property distributions of the internal plasma column (the IPC) of a single-channel-hollow-cathode. Both experiment and computational modeling were employed in the analysis of the cathodes. Employing Tantalum and Tungsten cathodes (of 2, 6 and 10 mm inner diameter), experiments were conducted to measure the temperature profile of operating cathodes, the width of the active zone, the discharge voltage, power, plasma arc resistance and efficiency, with mass flow rates of 50 to 300 sccm of Argon, and discharge currents of 15 to 50 Amps. Langmuir probing was used to obtain measurements for the electron temperature, plasma density and plasma potential at the cathode exit plane (down stream tip). A computational model was developed to predict the distribution of plasma inside the cathode, based upon experimentally determined boundary conditions. It was determined that the peak cathode temperature is a function of both interior cathode density and discharge current, though the location of the peak temperature is controlled gas density but not discharge current. The active zone width was found to be an increasing function of the discharge current, but a decreasing function of the mass flow rate. The width of the active zone was found to not be controlled by the magnitude of the peak cathode wall temperature. The discharge power consumed per unit of mass throughput is seen as a decreasing function of the mass flow rate, showing the increasing efficiency of the cathode. Finally, this new

  7. Cathodic protection: Theory and practice

    SciTech Connect

    Ashworth, V.; Booker, C.J.L.

    1986-01-01

    This book presents an account of cathodic protection. It covers the advances made over the past decade, both in terms of understanding the complexity of the systems to which cathodic protection has been applied and assuring the reliability of the designs which have evolved. It shows how computer-validated design is superseding empirical design. The use of field gradient measurements for current output, acoustic transmission of potential data, and monitoring and surveying of cathodic protection systems are included.

  8. Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells

    SciTech Connect

    WANG,Z.H.; WANG,C.Y.; CHEN,KEN S.

    2000-03-20

    Two-phase flow and transport of reactants and products in the air cathode of proton exchange membrane (PEM) fuel cells is studied analytically and numerically. Four regimes of water distribution and transport are classified by defining three threshold current densities and a maximum current density. They correspond to first appearance of liquid water at the membrane/cathode interface, extension of the gas-liquid two-phase zone to the cathode/channel interface, saturated moist air exiting the gas channel, and complete consumption of oxygen by the electrochemical reaction. When the cell operates above the first threshold current density, liquid water appears and a two-phase zone forms within the porous cathode. A two-phase, multi-component mixture model in conjunction with a finite-volume-based computational fluid dynamics (CFD) technique is applied to simulate the cathode operation in this regime. The model is able to handle the situation where a single-phase region co-exists with a two-phase zone in the air cathode. For the first time, the polarization curve as well as water and oxygen concentration distributions encompassing both single- and two-phase regimes of the air cathode are presented. Capillary action is found to be the dominant mechanism for water transport inside the two-phase zone. The liquid water saturation within the cathode is predicted to reach 6.3% at 1.4 A/cm{sup 2}.

  9. Emission from ferroelectric cathodes

    SciTech Connect

    Sampayan, S.E.; Caporaso, G.J.; Holmes, C.L.; Lauer, E.J.; Prosnitz, D.; Trimble, D.O.; Westenskow, G.A.

    1993-05-17

    We have recently initiated an investigation of electron emission from ferroelectric cathodes. Our experimental apparatus consisted of an electron diode and a 250 kV, 12 ohm, 70 ns pulsed high voltage power source. A planar triode modulator driven by a synthesized waveform generator initiates the polarization inversion and allows inversion pulse tailoring. The pulsed high voltage power source is capable of delivering two high voltage pulses within 50 ns of each other and is capable of operating at a sustained repetition rate of 5 Hz. Our initial measurements indicate that emission current densities above the Child-Langmuir Space Charge Limit are possible. We explain this effect to be based on a non-zero initial energy of the emitted electrons. We also determined that this effect is strongly coupled to relative timing between the inversion pulse and application of the main anode-cathode pulse. We also have initiated brightness measurements of the emitted beam. As in our previous measurements at this Laboratory, we performed the measurement using a pepper pot technique. Beam-let profiles are recorded with a fast phosphor and gated cameras. We describe our apparatus and preliminary measurements.

  10. Hot hollow cathode gun assembly

    DOEpatents

    Zeren, J.D.

    1983-11-22

    A hot hollow cathode deposition gun assembly includes a hollow body having a cylindrical outer surface and an end plate for holding an adjustable heat sink, the hot hollow cathode gun, two magnets for steering the plasma from the gun into a crucible on the heat sink, and a shutter for selectively covering and uncovering the crucible.

  11. Virtual cathode microwave devices: Basics

    NASA Astrophysics Data System (ADS)

    Thode, L. E.; Snell, C. M.

    Unlike a conventional microwave tube, a virtual-cathode device operates above the space-charge limit where the depth of the space-charge potential can cause electron reflection. The region associated with this electron reflection is referred to as a virtual cathode. Microwaves can be generated through oscillations in the position of the virtual cathode and through the bunching of electrons trapped in a potential well between the real and virtual cathodes. These two mechanisms are competitive. There are three basic classes of virtual cathode devices: (1) reflex triode; (2) reditron and side-shoot vircator; and (3) reflex diode or vircator. The reflex diode is the highest power virtual-cathode device. For the reflex diode the energy exchange between the beam and electromagnetic wave occurs in both the axial and radial directions. In some designs the oscillating virtual-cathode frequency exceeds the reflexing-electron frequency while in other designs the reflexing-electron frequency exceeds the oscillating virtual-cathode frequency. For the flex diode, a periodic disruption in magnetic insulation can modulate the high-frequency microwave power. Overall, particle-in-cell simulation predictions and axial reflex diode experiments are in good agreement. Although frequency stability and phase locking of the reflex diode have been demonstrated, little progress has been made in efficiency enhancement.

  12. Cheaper Hydride-Forming Cathodes

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Blue, Gary

    1990-01-01

    Hydride-forming cathodes for electrochemical experiments made of materials or combinations of materials cheaper and more abundant than pure palladium, according to proposal. Concept prompted by needs of experimenters in now-discredited concept of electrochemical nuclear fusion, cathodes useful in other electrochemical applications involving generation or storage of hydrogen, deuterium, or tritium.

  13. Virtual cathode microwave devices -- Basics

    SciTech Connect

    Thode, L.E.; Snell, C.M.

    1991-01-01

    Unlike a conventional microwave tube, a virtual-cathode device operates above the space-charge limit where the depth of the space-charge potential can cause electron reflection. The region associated with this electron reflection is referred to as a virtual cathode. Microwaves can be generated through oscillations in the position of the virtual cathode and through the bunching of electrons trapped in a potential well between the real and virtual cathodes. These two mechanisms are competitive. There are three basic classes of virtual cathode devices: (1) reflex triode; (2) reditron and side-shoot vircator; and (3) reflex diode or vircator. The reflex diode is the highest power virtual-cathode device. For the reflex diode the energy exchange between the beam and electromagnetic wave occurs in both the axial and radial directions. In some designs the oscillating-virtual-cathode frequency exceeds the reflexing-electron frequency exceeds the oscillating-virtual-cathode frequency. For the flex diode a periodic disruption in magnetic insulation can modulate the high- frequency microwave power. Overall, particle-in-cell simulation predictions and axial reflex diode experiments are in good agreement. Although frequency stability and phase locking of the reflex diode have been demonstrated, little progress has been made in efficiency enhancement. 58 refs., 11 figs.

  14. Miniature Reservoir Cathode: An Update

    NASA Technical Reports Server (NTRS)

    Vancil, Bernard K.; Wintucky, Edwin G.

    2002-01-01

    We report on recent work to produce a small low power, low cost reservoir cathode capable of long life (more than 100,000 hours) at high loading (> 5 A/sq cm). Our objective is a highly manufacturable, commercial device costing less than $30. Small highly loaded cathodes are needed, especially for millimeter wave tubes, where focusing becomes difficult when area convergence ratios are too high. We currently have 3 models ranging from .060-inch diameter to. 125-inch diameter. Reservoir type barium dispenser cathodes have a demonstrated capability for simultaneous high emission density and long life. Seven reservoir cathodes continue to operate on the cathode life test facility at NSWC, Crane, Indiana at 2 and 4 amps/sq cm. They have accumulated nearly 100,000 hours with practically no change in emission levels or knee temperature.

  15. Multiple Hollow Cathode Wear Testing

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    1994-01-01

    A hollow cathode-based plasma contactor has been baselined for use on the Space Station to reduce station charging. The plasma contactor provides a low impedance connection to space plasma via a plasma produced by an arc discharge. The hollow cathode of the plasma contactor is a refractory metal tube, through which xenon gas flows, which has a disk-shaped plate with a centered orifice at the downstream end of the tube. Within the cathode, arc attachment occurs primarily on a Type S low work function insert that is next to the orifice plate. This low work function insert is used to reduce cathode operating temperatures and energy requirements and, therefore, achieve increased efficiency and longevity. The operating characteristics and lifetime capabilities of this hollow cathode, however, are greatly reduced by oxygen bearing contaminants in the xenon gas. Furthermore, an optimized activation process, where the cathode is heated prior to ignition by an external heater to drive contaminants such as oxygen and moisture from the insert absorbed during exposure to ambient air, is necessary both for cathode longevity and a simplified power processor. In order to achieve the two year (approximately 17,500 hours) continuous operating lifetime requirement for the plasma contactor, a test program was initiated at NASA Lewis Research Center to demonstrate the extended lifetime capabilities of the hollow cathode. To date, xenon hollow cathodes have demonstrated extended lifetimes with one test having operated in excess of 8000 hours in an ongoing test utilizing contamination control protocols developed by Sarver-Verhey. The objectives of this study were to verify the transportability of the contamination control protocols developed by Sarver-Verhey and to evaluate cathode contamination control procedures, activation processes, and cathode-to-cathode dispersions in operating characteristics with time. These were accomplished by conducting a 2000 hour wear test of four hollow

  16. Gyrotron experiments employing a field emission array cathode

    SciTech Connect

    Garven, M.; Cooke, S.J.; Cross, A.W.; Phelps, A.D.R.; Spark, S.N.

    1995-12-31

    The design and operation of a field emission array (FEA) cathode for a millimeter wave gyrotron are presented. The FEA chip employed achieved 10mA reproducibly while operating in the environment of a gyrotron, namely in a vacuum of 1 {times} 10{sup {minus}8} mbar at voltages of up to 40kV. New methods are presented of mounting such FEA chips involving the shielding of the micron devices from voltages of up to 40kV, as experienced in a microwave device. The design parameters of the FEA gun were similar to those of a magnetron injection gun with cathode radius 12.5mm and slope angle 4{degree}. An electron beam current of up to 100mA was achievable from the FEA gyrotron cathode. An electrically isolated, fiber-optic, 10-channel control unit was developed to allow individual control of each chip. Electron beam powers of {approximately} 1kW were measured from the FEA cathode. To obtain oscillation, cavity inserts were employed in the electron beam-microwave interaction region to increase the cavity quality factor. Results are presented which verify the gyrotron interaction from the novel FEA cathode.

  17. Hollow-cathode evaporators

    SciTech Connect

    Saenko, V.A.; Kravatskii, V.A.; Veremeichenko, G.N.; Vladimirov, A.I.

    1985-08-01

    This paper describes devices for producing plasma from the vapor of a solid substance under vacuum and depositing films from the plasma. The plasma is produced by a discharge between a hollow cathode crucible and an anode, which are placed in a magnetic field longitudinal in relation to the vapor flow. The basic parameters are: film deposition rate 1-70 nm/sec, consumption of working substance 1-30 mg/sec, ionization factor for the working substance in the flow 1-10%, ion-current density at the substrate 0.1-10 mA/cm/sup 2/. Films of Cu, Au, Ag, Cr, and A1 have been made with parameters better than those of films deposited without ionization.

  18. Bar dimensions and bar shapes in estuaries

    NASA Astrophysics Data System (ADS)

    Leuven, Jasper; Kleinhans, Maarten; Weisscher, Steven; van der Vegt, Maarten

    2016-04-01

    Estuaries cause fascinating patterns of dynamic channels and shoals. Intertidal sandbars are valuable habitats, whilst channels provide access to harbors. We still lack a full explanation and classification scheme for the shapes and dimensions of bar patterns in natural estuaries, in contrast with bars in rivers. Analytical physics-based models suggest that bar length in estuaries increases with flow velocity, tidal excursion length or estuary width, depending on which model. However, these hypotheses were never validated for lack of data and experiments. We present a large dataset and determine the controls on bar shape and dimensions in estuaries, spanning bar lengths from centimeters (experiments) to 10s of kilometers length. First, we visually identified and classified 190 bars, measured their dimensions (width, length, height) and local braiding index. Data on estuarine geometry and tidal characteristics were obtained from governmental databases and literature on case studies. We found that many complex bars can be seen as simple elongated bars partly cut by mutually evasive ebb- and flood-dominated channels. Data analysis shows that bar dimensions scale with estuary dimensions, in particular estuary width. Breaking up the complex bars in simple bars greatly reduced scatter. Analytical bar theory overpredicts bar dimensions by an order of magnitude in case of small estuarine systems. Likewise, braiding index depends on local width-to-depth ratio, as was previously found for river systems. Our results suggest that estuary dimensions determine the order of magnitude of bar dimensions, while tidal characteristics modify this. We will continue to model bars numerically and experimentally. Our dataset on tidal bars enables future studies on the sedimentary architecture of geologically complex tidal deposits and enables studying effects of man-induced perturbations such as dredging and dumping on bar and channel patterns and habitats.

  19. Research on an improved explosive emission cathode

    NASA Astrophysics Data System (ADS)

    Liu, Guozhi; Sun, Jun; Shao, Hao; Chen, Changhua; Zhang, Xiaowei

    2009-06-01

    This paper presents a physical description of the cathode plasma process of an explosive emission cathode (EEC) and experimental results on a type of oil-immersed graphite EEC. It is believed that the generation of a cathode plasma is mainly dependent on the state of the cathode surface, and that adsorbed gases and dielectrics on the cathode surface play a leading role in the formation of the cathode plasma. Based on these ideas, a type of oil-immersed graphite EEC is proposed and fabricated. The experiments indicate that the oil-immersed cathodes have improved emissive properties and longer lifetimes.

  20. The pore dimensions of gramicidin A.

    PubMed Central

    Smart, O S; Goodfellow, J M; Wallace, B A

    1993-01-01

    The ion channel forming peptide gramicidin A adopts a number of distinct conformations in different environments. We have developed a new method to analyze and display the pore dimensions of ion channels. The procedure is applied to two x-ray crystal structures of gramicidin that adopt distinct antiparallel double helical dimer conformations and a nuclear magnetic resonance (NMR) structure for the beta6.3 NH2-terminal to NH2-terminal dimer. The results are discussed with reference to ion conductance properties and dependence of pore dimensions on the environment. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 PMID:7508762

  1. Wear Mechanisms in Electron Sources for Ion Propulsion, 1: Neutralizer Hollow Cathode

    NASA Technical Reports Server (NTRS)

    Mikellides, Ioannis G.; Katz, Ira

    2008-01-01

    Upon the completion of two long-duration life tests of a 30-cm ion engine, the orifice channel of the neutralizer hollow cathode was eroded away to as much as twice its original diameter. Whereas the neutralizer cathode orifice opened significantly, no noticeable erosion of the discharge cathode orifice was observed. Noquantitative explanation of these erosion trends has been established since the completion of the two life tests. A two-dimensional model of the partially ionized gas inside these devices has been developed and applied to the neutralizer hollow cathode. The numerical simulations show that the main mechanism responsible for the channel erosion is sputtering by Xe+. These ions are accelerated by the sheath along the channel and bombard the surface with kinetic energy/charge of about 17 V at the beginning of cathode life. The density of the ions inside the neutralizer orifice is computed to be as high as 2.1 x 10(sup 22) m(sup -3). Because of the 3.5-times larger diameter of the discharge cathode orifice, the ion density inside the orifice is more than 40 times lower and the sheath drop 7 V lower compared with the values in the neutralizer. At these conditions, Xe+ can cause no significant sputtering of the surface.

  2. Magnetic-cusp, cathodic-arc source

    DOEpatents

    Falabella, Steven

    1995-01-01

    A magnetic-cusp for a cathodic-arc source wherein the arc is confined to the desired cathode surface, provides a current path for electrons from the cathode to the anode, and utilizes electric and magnetic fields to guide ions from the cathode to a point of use, such as substrates to be coated. The magnetic-cusp insures arc stability by an easy magnetic path from anode to cathode, while the straight-through arrangement leads to high ion transmission.

  3. Hollow Cathode With Multiple Radial Orifices

    NASA Technical Reports Server (NTRS)

    Brophy, John R.

    1992-01-01

    Improved hollow cathode serving as source of electrons has multiple radial orifices instead of single axial orifice. Distributes ion current more smoothly, over larger area. Prototype of high-current cathodes for ion engines in spacecraft. On Earth, cathodes used in large-diameter ion sources for industrial processing of materials. Radial orientation of orifices in new design causes current to be dispersed radially in vicinity of cathode. Advantageous where desireable to produce plasma more nearly uniform over wider region around cathode.

  4. Cold cathode vacuum discharge tube

    DOEpatents

    Boettcher, Gordon E.

    1998-01-01

    A cold cathode vacuum discharge tube, and method for making same, with an interior surface of the trigger probe coated with carbon deposited by carbon vapor deposition (CVD) or diamond-like carbon (DLC) deposition. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging.

  5. Defect-Tolerant Diffusion Channels for Mg2+ Ions in Ribbon-Type Borates: Structural Insights into Potential Battery Cathodes MgVBO4 and Mgx Fe2–xB2O5

    DOE PAGESBeta

    Bo, Shou-Hang; Grey, Clare P.; Khalifah, Peter G.

    2015-06-10

    The reversible room temperature intercalation of Mg2+ ions is difficult to achieve, but may offer substantial advantages in the design of next-generation batteries if this electrochemical process can be successfully realized. Two types of quadruple ribbon-type transition metal borates (MgxFe2-xB2O5 and MgVBO4) with high theoretical capacities (186 mAh/g and 360 mAh/g) have been synthesized and structurally characterized through the combined Rietveld refinement of synchrotron and time-of-flight neutron diffraction data. Neither MgVBO4 nor MgxFe2-xB2O5 can be chemically oxidized at room temperature, though Mg can be dynamically removed from the latter phase at elevated temperatures (approximately 200 - 500 °C). Findingsmore » show that Mg diffusion in the MgxFe2-xB2O5 structure is more facile for the inner two octahedral sites than for the two outer octahedral sites in the ribbons, a result supported by both the refined site occupancies after Mg removal and by bond valence sum difference map calculations of diffusion paths in the pristine material. Mg diffusion in this pyroborate MgxFe2-xB2O5 framework is also found to be tolerant to the presence of Mg/Fe disorder since Mg ions can diffuse through interstitial channels which bypass Fe-containing sites.« less

  6. Cold cathode vacuum gauging system

    DOEpatents

    Denny, Edward C.

    2004-03-09

    A vacuum gauging system of the cold cathode type is provided for measuring the pressure of a plurality of separate vacuum systems, such as in a gas centrifuge cascade. Each casing is fitted with a gauge tube assembly which communicates with the vacuum system in the centrifuge casing. Each gauge tube contains an anode which may be in the form of a slender rod or wire hoop and a cathode which may be formed by the wall of the gauge tube. The tube is provided with an insulated high voltage connector to the anode which has a terminal for external connection outside the vacuum casing. The tube extends from the casing so that a portable magnet assembly may be inserted about the tube to provide a magnetic field in the area between the anode and cathode necessary for pressure measurements in a cold cathode-type vacuum gauge arrangement. The portable magnetic assembly is provided with a connector which engages the external high voltage terminal for providing power to the anode within in the gauge tube. Measurement is made in the same manner as the prior cold cathode gauges in that the current through the anode to the cathode is measured as an indication of the pressure. By providing the portable magnetic assembly, a considerable savings in cost, installation, and maintenance of vacuum gauges for pressure measurement in a gas centrifuge cascade is realizable.

  7. Pore Scale Modeling of the Reactive Transport of Chromium in the Cathode of a Solid Oxide Fuel Cell

    SciTech Connect

    Ryan, Emily M.; Tartakovsky, Alexandre M.; Recknagle, Kurtis P.; Khaleel, Mohammad A.; Amon, Cristina

    2011-01-01

    We present a pore scale model of a solid oxide fuel cell (SOFC) cathode. Volatile chromium species are known to migrate from the current collector of the SOFC into the cathode where over time they decrease the voltage output of the fuel cell. A pore scale model is used to investigate the reactive transport of chromium species in the cathode and to study the driving forces of chromium poisoning. A multi-scale modeling approach is proposed which uses a cell level model of the cathode, air channel and current collector to determine the boundary conditions for a pore scale model of a section of the cathode. The pore scale model uses a discrete representation of the cathode to explicitly model the surface reactions of oxygen and chromium with a cathode material. The pore scale model is used to study the reaction mechanisms of chromium by considering the effects of reaction rates, diffusion coefficients, chromium vaporization, and oxygen consumption on chromium’s deposition in the cathode. The study shows that chromium poisoning is most significantly affected by the chromium reaction rates in the cathode and that the reaction rates are a function of the local current density in the cathode.

  8. Equientangled bases in arbitrary dimensions

    SciTech Connect

    Karimipour, V.; Memarzadeh, L.

    2006-01-15

    For the space of two identical systems of arbitrary dimensions, we introduce a continuous family of bases with the following properties: (i) the bases are orthonormal (ii) in each basis, all the states have the same values of entanglement, and (iii) they continuously interpolate between the product basis and the maximally entangled basis. The states thus constructed may find applications in many areas related to the quantum information science including quantum cryptography, optimal Bell tests, and the investigation of the enhancement of channel capacity due to entanglement.

  9. Dimension of chaotic attractors

    SciTech Connect

    Farmer, J.D.; Ott, E.; Yorke, J.A.

    1982-09-01

    Dimension is perhaps the most basic property of an attractor. In this paper we discuss a variety of different definitions of dimension, compute their values for a typical example, and review previous work on the dimension of chaotic attractors. The relevant definitions of dimension are of two general types, those that depend only on metric properties, and those that depend on probabilistic properties (that is, they depend on the frequency with which a typical trajectory visits different regions of the attractor). Both our example and the previous work that we review support the conclusion that all of the probabilistic dimensions take on the same value, which we call the dimension of the natural measure, and all of the metric dimensions take on a common value, which we call the fractal dimension. Furthermore, the dimension of the natural measure is typically equal to the Lyapunov dimension, which is defined in terms of Lyapunov numbers, and thus is usually far easier to calculate than any other definition. Because it is computable and more physically relevant, we feel that the dimension of the natural measure is more important than the fractal dimension.

  10. Hollow cathodes for arcjet thrusters

    NASA Technical Reports Server (NTRS)

    Luebben, Craig R.; Wilbur, Paul J.

    1987-01-01

    In an attempt to prevent exterior spot emission, hollow cathode bodies and orifice plates were constructed from boron nitride which is an electrical insulator, but the orifice plates melted and/or eroded at high interelectrode pressures. The most suitable hollow cathodes tested included a refractory metal orifice plate in a boron nitride body, with the insert insulated electrically from the orifice plate. In addition, the hollow cathode interior was evacuated to assure a low pressure at the insert surface, thus promoting diffuse electron emission. At high interelectrode pressures, the electrons tended to flow through the orifice plate rather than through the orifice, which could result in overheating of the orifice plate. Using a carefully aligned centerline anode, electron flow through the orifice could be sustained at interelectrode pressures up to 500 torr - but the current flow path still occasionally jumped from the orifice to the orifice plate. Based on these tests, it appears that a hollow cathode would operate most effectively at pressures in the arcjet regime with a refractory, chemically stable, and electrically insulating cathode body and orifice plate.

  11. Localized cathodic protection of simulated prestressed concrete pilings in seawater

    SciTech Connect

    Chaix, O.; Hartt, W.H.; Kessler, R.; Powers, R.

    1995-05-01

    Corrosion-induced deterioration of prestressed concrete pilings in seawater has been established as the predominant failure mode. A technology involving localized impressed-current cathodic protection (CP) of the splash-zone region in association with conductive rubber anodes was developed to mitigate this deterioration. A series of experiments involving cathodic polarization of simulated prestressed concrete piling specimens partially immersed in seawater was performed. Variables included the concrete mix design, specimen cross section, anode dimensions, and water level. An interactive aspect of CP-operating parameters in association with water level was identified as important if excessively negative potentials and possible tendon embrittlement were to be avoided. The data were evaluated with regard to the interdependence between depolarization magnitude, potential, and concrete relative humidity. Results were reviewed within the context of CP utility for prestressed concrete bridge piling.

  12. Researching the characteristics of photo- and thermoemission cathodes

    NASA Astrophysics Data System (ADS)

    Balalykin, N. I.; Minashkin, V. Ph.; Nozdrin, M. A.; Shirkov, G. D.; Shabratov, V. G.

    2008-12-01

    The description of the stand for research photo-and thermoemission cathodes for an accelerator Linak-800 electronic gun is given. The structure of the equipment and the basic characteristics of the stand are described. The stand allows us to tune the control electronics, calibrate the operating and measuring channels, and debug the software. Introducing the structure of the equipment of the mass spectrometer stand with a leaking sub-system enables us to analyze the gas structure of vacuum volume and to change its structure, depending on the task at hand. Using the stand with a laser with 1064 nm, 532 nm, 355 nm, and 266 nm wavelengths allows us to investigate a wide spectrum of materials for photocathode. The cathode assembly model and the simulation results and their coordination with experimental data are described. Issue characteristics of the impregnated cathode (tungsten with 20% barium, calcium and aluminium oxides) are presented. Data on the research of this cathode as a photocathode (with heating and without it) with a 532 nm wavelength laser are given.

  13. Search for contact interactions and large extra dimensions in the dilepton channel using proton–proton collisions at √s = 8 TeV with the ATLAS detector

    SciTech Connect

    Aad, G.

    2014-12-11

    Research is conducted for non-resonant new phenomena in dielectron and dimuon final states, originating from either contact interactions or large extra spatial dimensions. The LHC 2012 proton–proton collision dataset recorded by the ATLAS detector is used, corresponding to 20 fb–1 at √s = 8 TeV. The dilepton invariant mass spectrum is a discriminating variable in both searches, with the contact interaction search additionally utilizing the dilepton forward-backward asymmetry. No significant deviations from the Standard Model expectation are observed. Lower limits are set on the ℓℓqq contact interaction scale Λ between 15.4 TeV and 26.3 TeV, at the 95% credibility level. For large extra spatial dimensions, lower limits are set on the string scale MS between 3.2 TeV to 5.0 TeV.

  14. Search for contact interactions and large extra dimensions in the dilepton channel using proton–proton collisions at √s = 8 TeV with the ATLAS detector

    DOE PAGESBeta

    Aad, G.

    2014-12-11

    Research is conducted for non-resonant new phenomena in dielectron and dimuon final states, originating from either contact interactions or large extra spatial dimensions. The LHC 2012 proton–proton collision dataset recorded by the ATLAS detector is used, corresponding to 20 fb–1 at √s = 8 TeV. The dilepton invariant mass spectrum is a discriminating variable in both searches, with the contact interaction search additionally utilizing the dilepton forward-backward asymmetry. No significant deviations from the Standard Model expectation are observed. Lower limits are set on the ℓℓqq contact interaction scale Λ between 15.4 TeV and 26.3 TeV, at the 95% credibility level.more » For large extra spatial dimensions, lower limits are set on the string scale MS between 3.2 TeV to 5.0 TeV.« less

  15. HIGH-CURRENT COLD CATHODE FIELD EMISSION ARRAY FOR ELECTRON LENS APPLICATION

    SciTech Connect

    Hirshfield, Jay L

    2012-12-28

    During Phase I, the following goals were achieved: (1) design and fabrication of a novel, nano-dimensional CNT field emitter assembly for high current density application, with high durability; (2) fabrication of a ceramic based micro channel plate (MCP) and characterization of its secondary electron emission; and (3) characterizing the CNT/MCP cathode for high field emission and durability. As a result of these achievements, a relatively high current density of ~ 1.2 A/cm2 from a CNT cathode and single channel MCP were measured. The emission current was also extremely stable with a peak-to-peak variation of only 1.8%. The emission current could be further enhanced to meet requirements for electron lens applications by increasing the number of MCP channels. A calculation for maximum possible current density with a 1200 channel/cm2 MCP, placed over a cathode with 1200 uniformly functioning CNTs, would be ~1.46 kA/cm2, neglecting space charge limitations. Clearly this level of emission is far greater than what is needed for the electron lens application, but it does offer a highly comforting margin to account for sub-standard emitters and/or to allow the lesser challenge of building a cathode with fewer channels/cm2. A satisfactory goal for the electron lens application would be a controllable emission of 2-4 mA per channel in an ensemble of 800-1200 uniformly-functioning channels/cm2, and a cathode with overall area of about 1 cm2.

  16. A phenomenological model for orificed hollow cathodes. Ph.D. Thesis, 1 Dec. 1981 - 1 Dec. 1982; [electrostatic thruster

    NASA Technical Reports Server (NTRS)

    Siegfried, D. E.

    1982-01-01

    A quartz hollow tube cathode was used to determine the operating conditions within a mercury orificed hollow cathode. Insert temperature profiles, cathode current distributions, plasma properties profile, and internal pressure-mass flow rate results are summarized and used in a phenomenological model which qualitatively describes electron emission and plasma production processes taking place within the cathode. By defining an idealized ion production region within which most of the plasma processes are concentrated, this model is expressed analytically as a simple set of equations which relate cathode dimensions and specifiable operating conditions, such as mass flow rate and discharge current, to such important parameters as emission surface temperature and internal plasma properties. Key aspects of the model are examined.

  17. Cold cathode vacuum discharge tube

    DOEpatents

    Boettcher, G.E.

    1998-03-10

    A cold cathode vacuum discharge tube, and method for making same, are disclosed with an interior surface of the trigger probe coated with carbon deposited by carbon vapor deposition (CVD) or diamond-like carbon (DLC) deposition. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging. 15 figs.

  18. Cold cathode vacuum discharge tube

    DOEpatents

    Boettcher, G.E.

    1998-04-14

    A cold cathode vacuum discharge tube, and method for making same, with an interior surface of the trigger probe coated with carbon deposited by chemical vapor deposition (CVD) or diamond-like carbon (DLC) deposition are disclosed. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging. 14 figs.

  19. Wave and transport studies utilizing dense plasma filaments generated with a lanthanum hexaboride cathode

    SciTech Connect

    Van Compernolle, B.; Gekelman, W.; Pribyl, P.; Cooper, C. M.

    2011-12-15

    A portable lanthanum hexaboride (LaB{sub 6}) cathode has been developed for use in the LArge Plasma Device (LAPD) at UCLA. The LaB{sub 6} cathode can be used as a tool for many different studies in experimental plasma physics. To date, the cathode has been used as a source of a plasma with a hot dense core for transport studies and diagnostics development, as a source of gradient driven modes, as a source of shear Alfven waves, and as a source of interacting current channels in reconnection experiments. The LaB{sub 6} cathode is capable of higher discharge current densities than the main barium oxide coated LAPD cathode and is therefore able to produce plasmas of higher densities and higher electron temperatures. The 8.25 cm diameter cathode can be introduced into the LAPD at different axial locations without the need to break vacuum. The cathode can be scaled up or down for use as a portable secondary plasma source in other machines.

  20. Improving lithium-ion battery performances by adding fly ash from coal combustion on cathode film

    NASA Astrophysics Data System (ADS)

    Dyartanti, Endah Retno; Jumari, Arif; Nur, Adrian; Purwanto, Agus

    2016-02-01

    A lithium battery is composed of anode, cathode and a separator. The performance of lithium battery is also influenced by the conductive material of cathode film. In this research, the use of fly ash from coal combustion as conductive enhancer for increasing the performances of lithium battery was investigated. Lithium iron phosphate (LiFePO4) was used as the active material of cathode. The dry fly ash passed through 200 mesh screen, LiFePO4 and acethylene black (AB), polyvinylidene fluoride (PVDF) as a binder and N-methyl-2-pyrrolidone (NMP) as a solvent were mixed to form slurry. The slurry was then coated, dried and hot pressed to obtain the cathode film. The ratio of fly ash and AB were varied at the values of 1%, 2%, 3%, 4% and 5% while the other components were at constant. The anode film was casted with certain thickness and composition. The performance of battery lithium was examined by Eight Channel Battery Analyzer, the composition of the cathode film was examined by XRD (X-Ray Diffraction), and the structure and morphology of the anode film was analyzed by SEM (Scanning Electron Microscope). The composition, structure and morphology of cathode film was only different when fly ash added was 4% of AB or more. The addition of 2% of AB on cathode film gave the best performance of 81.712 mAh/g on charging and 79.412 mAh/g on discharging.

  1. Vertical electron transistor (VET) in GaAs with a heterojunction (AlGaAs-GaAs) cathode

    NASA Astrophysics Data System (ADS)

    Mishra, U.; Maki, P. A.; Wendt, J. R.; Schaff, W.; Kohn, E.; Eastman, L. F.

    1984-02-01

    The successful fabrication of submicrometer channel length (0.75 micron) and gate length (0.15 micron) vertical electron transistors with AlGaAs cathodes is reported. Lack of electron velocity enhancement has been proposed to be due to high operating channel temperatures, and low temperature measurements were hindered by carrier freeze-out.

  2. Mechanistic Enhancement of SOFC Cathode Durability

    SciTech Connect

    Wachsman, Eric

    2015-08-31

    Durability of solid oxide fuel cells (SOFC) under “real world” conditions is an issue for commercial deployment. In particular cathode exposure to moisture, CO2, Cr vapor (from interconnects and BOP), and particulates results in long-term performance degradation issues. Here, we have conducted a multi-faceted fundamental investigation of the effect of these contaminants on cathode performance degradation mechanisms in order to establish cathode composition/structures and operational conditions to enhance cathode durability.

  3. Theory, Investigation and Stability of Cathode Electrocatalytic Activity

    SciTech Connect

    Ding, Dong; Liu, Mingfei; Lai, Samson; Blinn, Kevin; Liu, Meilin

    2012-09-30

    The main objective of this project is to systematically characterize the surface composition, morphology, and electro-catalytic properties of catalysts coated on LSCF, aiming to establish the scientific basis for rational design of high-performance cathodes by combining a porous backbone (such as LSCF) with a thin catalyst coating. The understanding gained will help us to optimize the composition and morphology of the catalyst layer and microstructure of the LSCF backbone for better performance. More specifically, the technical objectives include: (1) to characterize the surface composition, morphology, and electro-catalytic properties of catalysts coated on LSCF; (2) to characterize the microscopic details and stability of the LSCF-catalyst (e.g., LSM) interfaces; (3) to establish the scientific basis for rational design of high-performance cathodes by combining a porous backbone (such as LSCF) with a thin catalyst coating; and (4) to demonstrate that the performance and stability of porous LSCF cathodes can be enhanced by the application of a thin-film coating of LSM through a solution infiltration process in small homemade button cells and in commercially available cells of larger dimension. We have successfully developed dense, conformal LSM films with desired structure, composition, morphology, and thickness on the LSCF surfaces by two different infiltration processes: a non-aqueous and a water-based sol-gel process. It is demonstrated that the activity and stability of LSCF cathodes can be improved by the introduction of a thin-film LSM coating through an infiltration process. Surface and interface of the LSM-coated LSCF cathode were systematically characterized using advanced microscopy and spectroscopy techniques. TEM observation suggests that a layer of La and Sr oxide was formed on LSCF surfaces after annealing. With LSM infiltration, in contrast, we no longer observe such La/Sr oxide layer on the LSM-coated LSCF samples after annealing under similar

  4. Remote control for anode-cathode adjustment

    DOEpatents

    Roose, Lars D.

    1991-01-01

    An apparatus for remotely adjusting the anode-cathode gap in a pulse power machine has an electric motor located within a hollow cathode inside the vacuum chamber of the pulse power machine. Input information for controlling the motor for adjusting the anode-cathode gap is fed into the apparatus using optical waveguides. The motor, controlled by the input information, drives a worm gear that moves a cathode tip. When the motor drives in one rotational direction, the cathode is moved toward the anode and the size of the anode-cathode gap is diminished. When the motor drives in the other direction, the cathode is moved away from the anode and the size of the anode-cathode gap is increased. The motor is powered by batteries housed in the hollow cathode. The batteries may be rechargeable, and they may be recharged by a photovoltaic cell in combination with an optical waveguide that receives recharging energy from outside the hollow cathode. Alternatively, the anode-cathode gap can be remotely adjusted by a manually-turned handle connected to mechanical linkage which is connected to a jack assembly. The jack assembly converts rotational motion of the handle and mechanical linkage to linear motion of the cathode moving toward or away from the anode.

  5. Novel Cathodes Prepared by Impregnation Procedures

    SciTech Connect

    Eduardo Paz

    2006-09-30

    (1) We showed that similar results were obtained when using various LSM precursors to produce LSM-YSZ cathodes. (2) We showed that enhanced performance could be achieved by adding LSCo to LSMYSZ cathodes. (3) We have preliminary results showing that there is a slow deactivation with LSFYSZ cathodes.

  6. Flickering of thoriated and lanthanized tungsten cathodes

    NASA Astrophysics Data System (ADS)

    Hoebing, Thomas; Hermanns, Patrick; Bergner, Andre; Ruhrmann, Cornelia; Traxler, Hannes; Wesemann, Ingmar; Mentel, Juergen; Awakowicz, Peter

    2014-10-01

    Tungsten cathodes in HID-lamps are commonly doped with rare earth oxides to reduce the work function Φ. A popular dopant ThO2 decreases Φ from 4.55 eV to 3.0 eV and, therewith, reduces the cathode temperature. La2O3-cathodes seem to represent an alternative, since the reduction of Φ is comparable to that of thoriated cathodes. But a temporally unstable arc attachment can be observed at cathodes doped with La2O3. At thoriated cathodes, this flickering can also be detected, but less pronounced. It is attributed to a temporal increase of Φ, induced by a transient shortage of La at the cathode tip. The arc attachment moves from the tip to colder areas of the cathode, where a high amount of La is present. Reasons for a temporal increase of Φ can be attributed to an insufficient transport of oxides from the interior of the cathode and an insufficient return of vaporized La by an ion current from the arc plasma to the cathode. Enrichments of La/Th compounds are formed on the cathode surface providing emitter material in case of a shortage at the tip. Cathode coverage and diffusion in the interior of the electrode, ThO2- and La2O3-electrodes behave differently. Differences and their influence on the stability of the arc will be presented.

  7. High-current-density, high brightness cathodes for free electron laser applications

    SciTech Connect

    Green, M.C. . Palo Alto Microwave Tube Div.)

    1987-06-01

    This report discusses the following topics: brightness and emittance of electron beams and cathodes; general requirements for cathodes in high brightness electron guns; candidate cathode types; plasma and field emission cathodes; true field emission cathodes; oxide cathodes; lanthanum hexaborides cathodes; laser driven thermionic cathodes; laser driven photocathodes; impregnated porous tungsten dispenser cathodes; and choice of best performing cathode types.

  8. Cathodic protection diagnostic expert system

    SciTech Connect

    Van Blaricum, V.L.; Kumar, A. ); Park, Y.T. . Dept. of Computer Science)

    1994-12-01

    A knowledge-based diagnostic system has been developed for troubleshooting cathodic protection systems. The expert system is designed to work in conjunction with a database that stores inventory and field measurement information and flags problem areas. The system is described, and examples of troubleshooting using the system are presented.

  9. A metal-dielectric cathode

    NASA Astrophysics Data System (ADS)

    Fan, Yu-Wei; Zhong, Hui-Huang; Li, Zhi-Qiang; Yang, Han-Wu; Shu, Ting; Zhou, Heng; Yuan, Cheng-Wei; Zhang, Jun; Luo, Ling

    2008-07-01

    In order to improve the pulse repetition rate and the maintenance-free lifetime of an improved magnetically insulated transmission line oscillator (MILO) previously developed in our laboratory, a metal-dielectric cathode is investigated experimentally. It consists of three components: a stainless steel base, bronze foils, and double-sided printed boards. The experimental results show that the shot-to-shot reproducibility of the diode voltage and current is very good and the performances of the improved MILO are steady. In addition, no observable degradation could be detected in the emissive characteristic of the metal-dielectric cathode after 350 shots. The experimental results prove that the metal-dielectric cathode is a promising cathode for repetitively pulsed MILO operation. However, the leading edge of the radiated microwave pulse is gradually delayed during the repetition rate. A likely reason is that high pressure results in gas ionization in the beam-microwave interaction region, and plasma formation delays the time that the improved MILO achieves nonlinear steady state.

  10. Cathode for molten salt batteries

    DOEpatents

    Mamantov, Gleb; Marassi, Roberto

    1977-01-01

    A molten salt electrochemical system for battery applications comprises tetravalent sulfur as the active cathode material with a molten chloroaluminate solvent comprising a mixture of AlCl.sub.3 and MCl having a molar ratio of AlCl.sub.3 /MCl from greater than 50.0/50.0 to 80/20.

  11. Segmented cell testing for cathode parameter investigation

    NASA Astrophysics Data System (ADS)

    Tanasini, Pietro; Schuler, J. Andreas; Wuillemin, Zacharie; Ameur, Myriam L. Ben; Comninellis, Christos; Van herle, Jan

    The increasing quality and durability of solid oxide fuel cells (SOFCs) state-of-the-art materials renders the long-term testing of fuel cells difficult since considerably long equipment times are needed to obtain valuable results. Moreover, reproducibility issues are common due to the high sensitivity of the performance and degradation on the testing conditions. An original segmented cell configuration has been adopted in order to carry out four tests in parallel, thus decreasing the total experimental time and ensuring the same operating conditions for the four segments. The investigation has been performed on both anode-supported cells and symmetrical Lanthanum-Strontium Manganite-Yttria-stabilized Zirconia (LSM-YSZ) electrolyte-supported cells. In separate tests, the influence of variables like cathode thickness, current density and cathode composition on performance and degradation have been explored on anode-supported cells. Furthermore, the effect of chromium poisoning has been studied on electrolyte-supported symmetric cells by contacting one segment with a chromium-iron interconnect material. Long-term polarization of the segments is controlled with a multi-channel galvanostatic device designed in-house. Electrochemical characterization has been performed through electrochemical impedance spectroscopy (EIS) at different H 2 partial pressures, temperatures and bias current, effectively demonstrating the direct impact of each studied variable on the cell performance and degradation behavior. Segmented cell testing has been proven to be an effective strategy to achieve better reproducibility for SOFC measurements since it avoids the inevitable fluctuations found in a series of successively run tests. Moreover, simultaneous testing increased n-fold the data output per experiment, implying a considerable economy of time.

  12. Venus - Sinuous Channel

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This full resolution radar mosaic from Magellan at 49 degrees south latitude, 273 degrees east longitude of an area with dimensions of 130 by 190 kilometers (81 by 118 miles), shows a 200 kilometer (124 mile) segment of a sinuous channel on Venus. The channel is approximately 2 kilometers (1.2 miles) wide. These channel-like features are common on the plains of Venus. In some places they appear to have been formed by lava which may have melted or thermally eroded a path over the plains' surface. Most are 1 to 3 kilometers (0.6 to 2 miles) wide. They resemble terrestrial rivers in some respects, with meanders, cutoff oxbows, and abandoned channel segments. However, Venus channels are not as tightly sinuous as terrestrial rivers. Most are partly buried by younger lava plains, making their sources difficult to identify. A few have vast radar-dark plains units associated with them, suggesting large flow volumes. These channels appear to be older than other channel types on Venus, as they are crossed by fractures and wrinkle ridges, and are often buried by other volcanic materials. In addition, they appear to run both upslope and downslope, suggesting that the plains were warped by regional tectonism after channel formation. Resolution of the Magellan data is about 120 meters (400 feet).

  13. High-emission cold cathode

    DOEpatents

    Mancebo, L.

    1974-01-29

    A field-emission cathode having a multitude of field emission points for emitting a copious stream of electrons when subjected to a high field is described. The cathode is constructed by compressing a multitude of tungsten strips alternately arranged with molybdenum strips and copper ribbons or compressing alternately arranged copper plated tungsten and molybdenum strips, heating the arrangement to braze the tungsten and molybdenum strips together with the copper, machining and grinding the exposed strip edges of one side of the brazed arrangement to obtain a precisely planar surface, etching a portion of the molybdenum and copper to leave the edges of the tungsten strips protruding for electron emission, and subjecting the protruding edges of the tungsten strips to a high electric field to degas and roughen the surface to pnovide a large number of emitting points. The resulting structure is particularly useful as a cathode in a transversely excited gaseous laser where the cathode is mounted in a vacuum chamber for emitting electrons under the influence of a high electric field between the cathode and an extractor grid. The electrons pass through the extractor grid, a thin window in the wall of the laser chamber and into the laser chamber which is filled with a gaseous mixture of helium, nitrogen, and carbon dioxide. A second grid is mounted on the gaseous side of the window. The electrons pass into the laser chamber under the influence of a second electric field between the second grid and an anode in the laser chamber to raise selected gas atoms of the gaseous mixture to appropriately excited states so that a subsequent coherent light beam passing through the mixture transversely to the electron stream through windows in opposite ends of the laser chamber stimulates the excited atoms to amplify the beam. (Official Gazette)

  14. Cathode for aluminum producing electrolytic cell

    DOEpatents

    Brown, Craig W.

    2004-04-13

    A method of producing aluminum in an electrolytic cell comprising the steps of providing an anode in a cell, preferably a non-reactive anode, and also providing a cathode in the cell, the cathode comprised of a base material having low electrical conductivity reactive with molten aluminum to provide a highly electrically conductive layer on the base material. Electric current is passed from the anode to the cathode and alumina is reduced and aluminum is deposited at the cathode. The cathode base material is selected from boron carbide, and zirconium oxide.

  15. Nonaqueous battery with organic compound cathode

    SciTech Connect

    Yamaji, A.; Yamaki, J.

    1981-02-17

    A battery embodying this invention comprises: an anode including an anode-active material formed of one metal selected from the Group IA metals or preferably lithium metal; a cathode including a cathode-active material formed of metal or metal-free organic compounds having a phthalocyanine function or organic compounds having a porphin function; and an electrolyte prepared from a material which is chemically stable to the cathode and anode materials and permits the migration of the ion of the anode metal to the cathode for electrochemical reaction with the cathode-active material.

  16. Cathodes for ceria-based fuel cells

    SciTech Connect

    Doshi, R.; Krumpelt, M.; Ricvhards, V.L.

    1997-08-01

    Work is underway to develop a solid oxide fuel cell that has a ceria-based electrolyte and operates at lower temperatures (500-600{degrees}C) than conventional zirconia-based cells. At present the performance of this ceria-based solid oxide fuel cell is limited by the polarization of conventional cathode materials. The performance of alternative cathodes was measured by impedance spectroscopy and dc polarization. The performance was found to improve by using a thin dense interface layer and by using two-phase cathodes with an electrolyte and an electronic phase. The cathode performance was also found to increase with increasing ionic conductivity for single phase cathodes.

  17. Evolution of electrical discharge channel in isopropyl alcohol solution

    NASA Astrophysics Data System (ADS)

    Panov, V. A.; Vasilyak, L. M.; Pecherkin, V. Ya; Vetchinin, S. P.; Kulikov, Yu M.; Son, E. E.

    2015-11-01

    Evolution of the spark channel created by the high voltage pulse generator in 15% isopropyl alcohol solution in tap water was investigated experimentally. Fast camera images show the start of spark discharge channel with the anode region glowing, which is due to ionization-overheating instability near the surface of anode electrode. Measured propagation velocity is about 4 m/s and points to thermal process of channel evolution. Partial discharges in gas bubbles near the spark channel were observed. When the channel bridges the gap the cathode flash of lightning occurs which is much brighter than anode glowing and channel one. After destruction of the spark channel the cathode glowing stays for a longer period than anode one.

  18. Sensory nerves contribute to cutaneous vasodilator response to cathodal stimulation in healthy rats.

    PubMed

    Gohin, Stéphanie; Decorps, Johanna; Sigaudo-Roussel, Dominique; Fromy, Bérengère

    2015-09-01

    Cutaneous current-induced vasodilation (CIV) in response to galvanic current application is an integrative model of neurovascular interaction that relies on capsaicin-sensitive fiber activation. The upstream and downstream mechanisms related to the activation of the capsaicin-sensitive fibers involved in CIV are not elucidated. In particular, the activation of cutaneous transient receptor potential vanilloid type-1 (TRPV1) channels and/or acid-sensing ion channels (ASIC) (activators mechanisms) and the release of calcitonin gene-related peptide (CGRP) and substance P (SP) (effector mechanisms) have been tested. To assess cathodal CIV, we measured cutaneous blood flow using laser Doppler flowmetry for 20min following cathodal current application (240s, 100μA) on the skin of the thigh in anesthetized healthy rats for 20min. CIV was studied in rats treated with capsazepine and amiloride to inhibit TRPV1 and ASIC channels, respectively; CGRP8-37 and SR140333 to antagonize CGRP and neurokinin-1 (NK1) receptors, respectively; compared to their respective controls. Cathodal CIV was attenuated by capsazepine (12±2% vs 54±6%, P<0.001), amiloride (19±8% vs 61±6%, P<0.01), CGRP8-37 (15±6% vs 61±6%, P<0.001) and SR140333 (9±5% vs 54±6%, P<0.001) without changing local acidification. This is the first integrative study performed in healthy rats showing that cutaneous vasodilation in response to cathodal stimulation is initiated by activation of cutaneous TRPV1 and ASIC channels likely through local acidification. The involvement of CGRP and NK1 receptors suggests that cathodal CIV is the result of CGRP and SP released through activated capsaicin-sensitive fibers. Therefore cathodal CIV could be a valuable method to assess sensory neurovascular function in the skin, which would be particularly relevant to evaluate the presence of small nerve fiber disorders and the effectiveness of treatments. PMID:26205659

  19. Thermionic cathode life-test studies

    NASA Technical Reports Server (NTRS)

    Forman, R.; Smith, D. H.

    1979-01-01

    A NASA-Lewis Research Center program for life testing commercial, high-current-density thermionic cathodes has been in progress since 1971. The purpose of the program is to develop long-life power microwave tubes for space communications. Four commercial-type cathodes are being evaluated in this investigation. They are the 'Tungstate', 'S' type, 'B' type, and 'M' type cathodes, all of which are capable of delivering 1 A/ sq cm or more of emission current at an operating temperature in the range of 1000-1100 C. The life test vehicles used in these studies are similar in construction to that of a high-power microwave tube and employ a high-convergence electron-gun structure; in contrast to earlier studies that used close-space diodes. These guns were designed for operation at 2 A/sq cm of cathode loading. The 'Tungstate' cathodes failed at 700 h or less and the 'S' cathode exhibited a lifetime of about 20,000 h. One 'B' cathode has failed after 27,000 h, the remaining units continuing to operate after up to 30,000 h. Only limited data are now available for the 'M' cathode, because only one has been operated for as long as 19,000 h. However, the preliminary results indicate the emission current from the 'M' cathode is more stable than the 'B' cathode and that it can be operated at a true temperature approximately 100 C lower than for the 'B' cathode.

  20. Numerical simulation of cathode plasma dynamics in magnetically insulated vacuum transmission lines

    SciTech Connect

    Thoma, C.; Genoni, T. C.; Welch, D. R.; Rose, D. V.; Clark, R. E.; Miller, C. L.; Stygar, W. A.; Kiefer, M. L.

    2015-03-15

    A novel algorithm for the simulation of cathode plasmas in particle-in-cell codes is described and applied to investigate cathode plasma evolution in magnetically insulated transmission lines (MITLs). The MITL electron sheath is modeled by a fully kinetic electron species. Electron and ion macroparticles, both modeled as fluid species, form a dense plasma which is initially localized at the cathode surface. Energetic plasma electron particles can be converted to kinetic electrons to resupply the electron flux at the plasma edge (the “effective” cathode). Using this model, we compare results for the time evolution of the cathode plasma and MITL electron flow with a simplified (isothermal) diffusion model. Simulations in 1D show a slow diffusive expansion of the plasma from the cathode surface. But in multiple dimensions, the plasma can expand much more rapidly due to anomalous diffusion caused by an instability due to the strong coupling of a transverse magnetic mode in the electron sheath with the expanding resistive plasma layer.

  1. Geometrical Aspects of a Hollow-cathode Magnetron (HCM)

    SciTech Connect

    Cohen, Samuel, A.; Wang, Zhehui

    1998-11-01

    A hollow-cathode magnetron (HCM), built by surrounding a planar sputtering-magnetron cathode with a hollow-cathode structure (HCS), is operable at substantially lower pressures than its planar-magnetron counterpart. We have studied the dependence of magnetron operational parameters on the inner diameter D and length L of a cylindrical HCS. Only when L is greater than L sub zero, a critical length, is the HCM operable in the new low-pressure regime. The critical length varies with HCS inner diameter D. Explanations of the lower operational pressure regime, critical length, and plasma shape are proposed and compared with a one-dimension diffusion model for energetic or primary electron transport. At pressures above 1 mTorr, an electron-impact ionization model with Bohm diffusion at a temperature equivalent to one-half the primary electron energy and with an ambipolar constraint can explain the ion-electron pair creation required to sustain the discharge. The critical length L sub zero is determined by the magnetization length of the primary electrons.

  2. Navigating between the Dimensions

    ERIC Educational Resources Information Center

    Fleron, Julian F.; Ecke, Volker

    2011-01-01

    Generations have been inspired by Edwin A. Abbott's profound tour of the dimensions in his novella "Flatland: A Romance of Many Dimensions" (1884). This well-known satire is the story of a flat land inhabited by geometric shapes trying to navigate the subtleties of their geometric, social, and political positions. In this article, the authors…

  3. On homological dimensions

    SciTech Connect

    Gerko, A A

    2001-08-31

    For finite modules over a local ring the general problem is considered of finding an extension of the class of modules of finite projective dimension preserving various properties. In the first section the concept of a suitable complex is introduced, which is a generalization of both a dualizing complex and a suitable module. Several properties of the dimension of modules with respect to such complexes are established. In particular, a generalization of Golod's theorem on the behaviour of G{sub K}-dimension with respect to a suitable module K under factorization by ideals of a special kind is obtained and a new form of the Avramov-Foxby conjecture on the transitivity of G-dimension is suggested. In the second section a class of modules containing modules of finite CI-dimension is considered, which has some additional properties. A dimension constructed in the third section characterizes the Cohen-Macaulay rings in precisely the same way as the class of modules of finite projective dimension characterizes regular rings and the class of modules of finite CI-dimension characterizes complete intersections.

  4. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    SciTech Connect

    Harlan U. Anderson; Fatih Dogan; Vladimir Petrovsky

    2002-03-31

    This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and testing of Planar Single Cells. This period has continued to address the problem of making dense 1/2 to 5 {micro}m thick dense layers on porous substrates (the cathode LSM). Our current status is that we are making structures of 2-5 cm{sup 2} in area, which consist of either dense YSZ or CGO infiltrated into a 2-5 {micro}m thick 50% porous layer made of either nanoncrystalline CGO or YSZ powder. This composite structure coats a macroporous cathode or anode; which serves as the structural element of the bi-layer structure. These structures are being tested as SOFC elements. A number of structures have been evaluated both as symmetrical and as button cell configuration. Results of this testing indicates that the cathodes contribute the most to cell losses for temperatures below 750 C. In this investigation different cathode materials were studied using impedance spectroscopy of symmetric cells and IV characteristics of anode supported fuel cells. Cathode materials studied included La{sub 0.8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (LSCF), La{sub 0.7}Sr{sub 0.2}MnO{sub 3} (LSM), Pr{sub 0.8}Sr{sub 0.2}Fe{sub 0.8}O{sub 3} (PSCF), Sm{sub 0.8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (SSCF), and Yb{sub .8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (SSCF). A new technique for filtering the Fourier transform of impedance data was used to increase the sensitivity of impedance analysis. By creating a filter specifically for impedance spectroscopy the resolution was increased. The filter was tailored to look for specific circuit elements like R//C, Warburg, or constant phase elements. As many as four peaks can be resolved using the filtering technique on symmetric cells. It may be possible to relate the different peaks to material parameters, like the oxygen exchange coefficient. The cathode grouped in order from lowest to highest ASR is

  5. Nickel-titanium-phosphate cathodes

    DOEpatents

    Belharouak, Ilias; Amine, Khalil

    2008-12-16

    Cathode materials having an improved electronic conductivity allowing for faster kinetics in the electrochemical reaction, as well as higher conductivity to meet the power requirements for many consumer applications, especially at low temperatures. The cathode material comprises a compound from the family of compounds where the basic unit is generally represented by Li.sub.xNi.sub.0.5TiOPO.sub.4. The structure of Li.sub.xNi.sub.0.5TiOPO.sub.4 includes corner sharing octahedra [TiO.sub.6] running along the C-axis. The structure is such that nearly three Li atoms are being inserted in Li.sub.xNi.sub.0.5TiOPO.sub.4. A cell in accordance with the principles of the present invention is rechargable and demonstrates a high capacity of lithium intercalation and fast kinetics.

  6. Filters for cathodic arc plasmas

    DOEpatents

    Anders, Andre; MacGill, Robert A.; Bilek, Marcela M. M.; Brown, Ian G.

    2002-01-01

    Cathodic arc plasmas are contaminated with macroparticles. A variety of magnetic plasma filters has been used with various success in removing the macroparticles from the plasma. An open-architecture, bent solenoid filter, with additional field coils at the filter entrance and exit, improves macroparticle filtering. In particular, a double-bent filter that is twisted out of plane forms a very compact and efficient filter. The coil turns further have a flat cross-section to promote macroparticle reflection out of the filter volume. An output conditioning system formed of an expander coil, a straightener coil, and a homogenizer, may be used with the magnetic filter for expanding the filtered plasma beam to cover a larger area of the target. A cathodic arc plasma deposition system using this filter can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

  7. The TLWP cathodic protection system

    SciTech Connect

    Evans, S. )

    1992-08-01

    This paper details the subsea corrosion protection system of the tension leg well platform (TLWP), which comprises coatings and cathodic protection (CP). Postinstallation surveys reveal potentials of at least 150 mV more protective than the minimum potential required for protection. The TLWP protection system weighs 434,000 lbm less than the conventional CP design, with 286,000 lbm less on the floating portion of the TLWP.

  8. Cathodic phenomena in aluminum electrowinning

    NASA Astrophysics Data System (ADS)

    Bouteillon, J.; Poignet, J. C.; Rameau, J. J.

    1993-02-01

    Although aluminum is one of the world's highest production-volume primary metals, it is particularly costly to produce for a variety of factors, not the least of which are the expenses associated with electrolytic reduction. Based on the scale of global aluminum processing, even minor improvements in the electrowinning technology can result in significant savings of resources. Thus, from this perspective, the following reviews recent studies of cathodic phenomena in aluminum electrowinning.

  9. Barium-Dispenser Thermionic Cathode

    NASA Technical Reports Server (NTRS)

    Wintucky, Edwin G.; Green, M.; Feinleib, M.

    1989-01-01

    Improved reservoir cathode serves as intense source of electrons required for high-frequency and often high-output-power, linear-beam tubes, for which long operating lifetime important consideration. High emission-current densities obtained through use of emitting surface of relatively-low effective work function and narrow work-function distribution, consisting of coat of W/Os deposited by sputtering. Lower operating temperatures and enhanced electron emission consequently possible.

  10. Arc-cathode interaction study

    NASA Technical Reports Server (NTRS)

    Zhou, X.; Heberlein, J.

    1992-01-01

    Insufficient electrode life and uncertainties in that life are major problems hampering the development in many plasma application areas which make use of plasma torches, arc heaters, and arc jet thrusters. In spite of a considerable amount of work published dealing with arc-cathode phenomena, our present understanding is still incomplete because different physical phenomena dominate for different combinations of experimental parameters. The objective of our present research project is to gain a better understanding of the behavior of arc-cathode surface interaction over a wide range of parameters, and furthermore to develop guidelines for better thermal design of the electrode and the selection of materials. This report will present the research results and progress obtained on the arc-cathode interaction studies at the University of Minnesota. It includes results which have been obtained under programs other than the NASA funded program. Some of the results have been submitted in an informal interim progress report, and all of the results have been presented in a seminar during a visit to the NASA Lewis Research Center on October 16, 1992.

  11. RFI channels

    NASA Technical Reports Server (NTRS)

    Mceliece, R. J.

    1980-01-01

    A class of channel models is presented which exhibit varying burst error severity much like channels encountered in practice. An information-theoretic analysis of these channel models is made, and conclusions are drawn that may aid in the design of coded communication systems for realistic noisy channels.

  12. NEXIS Reservoir Cathode 2000 Hour Life Test

    NASA Technical Reports Server (NTRS)

    Vaughn, Jason; Schneider, Todd; Polk, Jay; Goebel, Dan; Ohlinger, Wayne; Hill, D. Norm

    2004-01-01

    The current design of the Nuclear Electric Xenon Ion System (NEXIS) employs a reservoir cathode as both the discharge and neutralizer cathode to meet the 10 yr thruster design life. The main difference between a reservoir cathode and a conventional discharge cathode is the source material (barium-containing compound) is contained within a reservoir instead of in an impregnated insert in the hollow tube. However, reservoir cathodes do not have much life test history associated with them. In order to demonstrate the feasibility of using a reservoir cathode as an integral part of the NEXIS ion thruster, a 2000 hr life test was performed. Several proof-of-concept (POC) reservoir cathodes were built early in the NEXIS program to conduct performance testing as well as life tests. One of the POC cathodes was sent to Marshall Space Flight Center (MSFC) where it was tested for 2000 hrs in a vacuum chamber. The cathode was operated at the NEXIS design point of 25 A discharge current and a xenon flow rate of 5.5 sccm during the 2000 hr test. The cathode performance parameters, including discharge current, discharge voltage, keeper current; keeper voltage, and flow rate were monitored throughout test. Also, the temperature upstream of cathode heater, the temperature downstream of the cathode heater, and the temperature of the orifice plate were monitored throughout the life of the test. The results of the 2000 hr test will be described in this paper. Included in the results will be time history of discharge current, discharge voltage, and flow rate. Also, a time history of the cathode temperature will be provided.

  13. Detecting Lower Bounds to Quantum Channel Capacities.

    PubMed

    Macchiavello, Chiara; Sacchi, Massimiliano F

    2016-04-01

    We propose a method to detect lower bounds to quantum capacities of a noisy quantum communication channel by means of a few measurements. The method is easily implementable and does not require any knowledge about the channel. We test its efficiency by studying its performance for most well-known single-qubit noisy channels and for the generalized Pauli channel in an arbitrary finite dimension. PMID:27104688

  14. Detecting Lower Bounds to Quantum Channel Capacities

    NASA Astrophysics Data System (ADS)

    Macchiavello, Chiara; Sacchi, Massimiliano F.

    2016-04-01

    We propose a method to detect lower bounds to quantum capacities of a noisy quantum communication channel by means of a few measurements. The method is easily implementable and does not require any knowledge about the channel. We test its efficiency by studying its performance for most well-known single-qubit noisy channels and for the generalized Pauli channel in an arbitrary finite dimension.

  15. A dual pore carbon aerogel based air cathode for a highly rechargeable lithium-air battery

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Xu, Yang-Hai; Luo, Zhong-Kuan; Pang, Yan; Wu, Qi-Xing; Liang, Chun-Sheng; Chen, Jing; Liu, Dong; Zhang, Xiang-hua

    2014-12-01

    Cathode structure plays a vital role in lithium-air battery for that it can provide space for discharged products accommodation and free path for oxygen, e- and Li+ transport. However, pore blockage, cathode passivation and degradation all result in low discharge rates and poor cycling capability. To get rid of these predicaments, a novel highly conductive dual pore carbon aerogel based air cathode is fabricated to construct a lithium-air battery, which exhibits 18 to 525 cycles in the LiTFSI/sulfolane electrolyte at a current density varying from 1.00 mA cm-2 to 0.05 mA cm-2, accompanied by a high energy efficiency of 78.32%. We postulate that the essence lies in that the as-prepared air cathode inventively create a suitable tri-phase boundary reaction zone, facilitating oxygen and Li+ diffusion in two independant pore channels, thus realizing a relative higher discharge rate capability, lower pore blockage and cathode passivation. Further, pore structure, carbon loading, rate capability, discharge depth and the air's effect are exploited and coordinated, targeting for a high power and reversible lithium-air battery. Such nano-porous carbon aerogel air cathode of novel dual pore structure and material design is expected to be an attractive alternative for lithium-air batteries and other lithium based batteries.

  16. Cathodic Protection of the Yaquina Bay Bridge

    SciTech Connect

    Bullard, Sophie J.; Cramer, Stephen D.; Covino, Bernard S., Jr.; Holcomb, Gordon R.; Russell, James H.; Laylor, H.M.; Cryer, C.B.

    2001-02-01

    The Yaquina Bay Bridge in Newport, Oregon, was designed by Conde B. McCullough and built in 1936. The 3,223-foot (982 m) structure is a combination of concrete arch approach spans and a steel through arch over the shipping channel. Cathodic protection is used to prevent corrosion damage to the concrete arches. The Oregon Department of Transportation (Oregon DOT) installed a carbon anode coating (DAC-85) on two of the north approach spans in 1985. This anode was operated at a current density of 6.6 mA/m2(0.6 mA/ft2). No failure of the conductive anode was observed in 1990, five years after application, or in 2000, 15 years after application. Thermal-sprayed zinc anodes 20 mils (0.5 mm) thick were applied to half the south approach spans beginning in 1990. Thermal-sprayed zinc anodes 15 mils (0.4 mm) thick were applied to the remaining spans in 1996. These anodes were operated at a current density of 2.2 mA/m2(0.2 mA/ft2). In 1999, four zones on the approach spans were included in a two-year field trial of humectants to improve zinc anode performance. The humectants LiNO3 and LiBr were applied to two zones; the two adjacent zones were left untreated as controls. The humectants substantially reduced circuit resistance compared to the controls.

  17. Polyhedra and Higher Dimensions.

    ERIC Educational Resources Information Center

    Scott, Paul

    1988-01-01

    Describes the definition and characteristics of a regular polyhedron, tessellation, and pseudopolyhedra with diagrams. Discusses the nature of simplex, hypercube, and cross-polytope in the fourth dimension and beyond. (YP)

  18. Dimensions of Aesthetic Perception.

    ERIC Educational Resources Information Center

    Biaggio, Mary Kay; Supplee, Katherine A.

    1983-01-01

    Examines the validity of three dimensions of aesthetic perception: hedonic value, arousal, and uncertainty. Hedonic interest and arousal factors were found to differ from factors previously reported, while the uncertainty factor paralleled that previously reported. (Author/RH)

  19. Intermittent cathodic protection using solar power

    SciTech Connect

    Kessler, R.J.; Powers, R.G.; Lasa, I.R.

    1998-12-31

    An intermittent impressed current cathodic protection technique using photovoltaic energy was evaluated to determine it`s ability to protect bridge concrete piles in marine environments against corrosion. The technique uses commercially available anode systems to deliver the cathodic protection current to the concrete and onto the reinforcing steel. Cathodic protection current is only applied during the daytime hours. The magnitude of the applied current was based on sunlight availability. An evaluation was conducted on laboratory specimens as well as in the field. The laboratory work was performed on steel reinforced concrete specimens placed in simulated salt water tanks. For the field evaluation, ten prestressed concrete piles of a bridge structure with an existing rectifier powered cathodic protection system were used. In both cases, intermittent cathodic protection was provided. Polarization and depolarization of the steel reinforcement as well as the protection current delivered were monitored to evaluate the cathodic protection performance as well as the behavior of periodic polarization-depolarization.

  20. Development program on a cold cathode electron gun

    NASA Technical Reports Server (NTRS)

    Spindt, C. A.; Holland, C. E.

    1985-01-01

    During this phase of the cathode development program, SRI improved the multiple electron beam exposure system used to print hole patterns for the cathode arrays, studied anisotropic etch processes, conducted cathode investigations using an emission microscope, reviewed possible alternate materials for cathode fabrication, studied cathode storage techniques, conducted high power operation experiments, and demonstrated high-current-density operation with small arrays of tips.

  1. Hollow cathode startup using a microplasma discharge

    NASA Technical Reports Server (NTRS)

    Aston, G.

    1981-01-01

    Attention is given to a microplasma discharge to initiate a hollow cathode discharge for such applications as plasma flow experiments, the electric propulsion of space vehicles, and as a replacement for filament cathodes in neutral beam injector ion sources. The technique results in a cathode that is easy to start, simple in design, and which does not require external RF exciters, inserts or heating elements. Future applications may include ion beam milling and ion implantation.

  2. Fractional-dimensional Child-Langmuir law for a rough cathode

    NASA Astrophysics Data System (ADS)

    Zubair, M.; Ang, L. K.

    2016-07-01

    This work presents a self-consistent model of space charge limited current transport in a gap combined of free-space and fractional-dimensional space (Fα), where α is the fractional dimension in the range 0 < α ≤ 1. In this approach, a closed-form fractional-dimensional generalization of Child-Langmuir (CL) law is derived in classical regime which is then used to model the effect of cathode surface roughness in a vacuum diode by replacing the rough cathode with a smooth cathode placed in a layer of effective fractional-dimensional space. Smooth transition of CL law from the fractional-dimensional to integer-dimensional space is also demonstrated. The model has been validated by comparing results with an experiment.

  3. Arc initiation in cathodic arc plasma sources

    DOEpatents

    Anders, Andre

    2002-01-01

    A "triggerless" arc initiation method and apparatus is based on simply switching the arc supply voltage to the electrodes (anode and cathode). Neither a mechanical trigger electrode nor a high voltage flashover from a trigger electrode is required. A conducting path between the anode and cathode is provided, which allows a hot spot to form at a location where the path connects to the cathode. While the conductive path is eroded by the cathode spot action, plasma deposition ensures the ongoing repair of the conducting path. Arc initiation is achieved by simply applying the relatively low voltage of the arc power supply, e.g. 500 V-1 kV, with the insulator between the anode and cathode coated with a conducting layer and the current at the layer-cathode interface concentrated at one or a few contact points. The local power density at these contact points is sufficient for plasma production and thus arc initiation. A conductive surface layer, such as graphite or the material being deposited, is formed on the surface of the insulator which separates the cathode from the anode. The mechanism of plasma production (and arc initiation) is based on explosive destruction of the layer-cathode interface caused by joule heating. The current flow between the thin insulator coating and cathode occurs at only a few contact points so the current density is high.

  4. Emission properties of explosive field emission cathodes

    SciTech Connect

    Roy, Amitava; Patel, Ankur; Menon, Rakhee; Sharma, Archana; Chakravarthy, D. P.; Patil, D. S.

    2011-10-15

    The research results of the explosive field emission cathode plasma expansion velocity and the initial emission area in the planar diode configuration with cathodes made of graphite, stainless steel, polymer velvet, carbon coated, and carbon fiber (needle type) cathodes are presented. The experiments have been performed at the electron accelerator LIA-200 (200 kV, 100 ns, and 4 kA). The diode voltage has been varied from 28-225 kV, whereas the current density has been varied from 86-928 A/cm{sup 2} with 100 ns pulse duration. The experimentally obtained electron beam diode perveance has been compared with the 1 dimensional Child-Langmuir- law. It was found that initially only a part of the cathode take part in the emission process. The plasma expands at 1.7-5.2 cm/{mu}s for 4 mm anode-cathode gap for various cathode materials. It was found that the plasma expansion velocity increases with the decrease in the cathode diameter. At the beginning of the accelerating pulse, the entire cathode area participates in the electron emission process only for the multiple needle type carbon fiber cathode.

  5. Phthalocyanine cathode materials for secondary lithium cells

    SciTech Connect

    Tamaki, J.; Yamaji, A.

    1982-01-01

    Discharge and charge characteristics of various phthalocyanine cathodes coupled with lithium metal are studied. The best capacity based only on cathode active material weight is 1440 A-hr/kg in the lithium/iron phthalocyanine system, and the cycle life of the lithium/Cu phthalocyanine system is more than 100 times at the discharge depth of 157 A-hr/kg. The cathode reaction mechanism is supposed to be lithium intercalation between phthalocyanine molecules. The results indicate that these phthalocyanines are promising cathode active materials for lithium secondary batteries.

  6. A Two Frequency Thermionic Cathode Electron Gun

    NASA Astrophysics Data System (ADS)

    Edelen, Jon; Biedron, Sandra; Harris, John; Lewellen, John; Milton, Stephen

    2014-03-01

    When an un-gated thermionic cathode is operated in an RF gun, some fraction of the emitted electrons will return to the cathode due to the change in sign of the electric field in the gun. This back-bombardment current causes heating of the cathode, and this reduces the ability of the cathode heater to control the bunch charge. In this paper, we investigate the use of a two frequency TM010 / TM020 electron gun to mitigate this effect. Simulations revealed that for a 100-pC bunch charge operating at 10MV/m gradient the harmonic field produced a 63% reduction in the back-bombardment power.

  7. Cathodic protection diagnostic expert system

    SciTech Connect

    Van Blaricum, V.L.; Kumar, A.; Park, Y.T.

    1994-12-31

    A knowledge-based diagnostic system called CP Diagnostic has been developed for troubleshooting sacrificial and impressed current cathodic protection systems. The expert system is designed to work in conjunction with the CP Diagnostic database system, which stores inventory and field measurement information for CP systems and flags problem areas. When a malfunction is detected, the expert system queries the user and the companion inventory and field measurement databases to determine its symptoms. The system will be described and examples of troubleshooting using the system will be presented.

  8. Processes For Cleaning a Cathode Tube and Assemblies In A Hollow Cathode Assembly

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J. (Inventor); Verhey, Timothy R. R. (Inventor); Soulas, George C. (Inventor)

    2001-01-01

    The present invention is a process for cleaning a cathode tube and other subassemblies in a hollow cathode assembly. In the disclosed process, hand covering elastomer gloves are used for handling all cathode assembly parts. The cathode tube and other subassemblies are cleaned with a lint-free cloth damped with acetone, then wiped with alcohol, immersed in ethyl alcohol or acetone, and ultrasonic agitation is applied, heating to 60 C. for ethyl alcohol or 56 C. for acetone. The cathode tube and other subassemblies are dried by blowing with nitrogen gas.

  9. Selective Attention to Perceptual Dimensions and Switching between Dimensions

    ERIC Educational Resources Information Center

    Meiran, Nachshon; Dimov, Eduard; Ganel, Tzvi

    2013-01-01

    In the present experiments, the question being addressed was whether switching attention between perceptual dimensions and selective attention to dimensions are processes that compete over a common resource? Attention to perceptual dimensions is usually studied by requiring participants to ignore a never-relevant dimension. Selection failure…

  10. Lowering the ignition voltage by the dual microhollow cathode configuration for multichannel flat panel lamp

    SciTech Connect

    Lee, Tae Il; Park, Ki Wan; Lee, Sung Won; Baik, Hong Koo

    2006-03-20

    We have developed a dual microhollow cathode configuration, employing one power supply circuit with a resistor that is suitable for lamp starting without additional power supplier. We also investigated their electrical characteristics and photo images, varying the applied voltage. The electrical and optical measurements showed that the discharge passed through four distinct stages: no discharges, the first microhollow cathode discharges, the both of the first and second microhollow cathode discharges, and finally the main discharge. As a result, the V{sub s} and E{sub s}/p of a dual microhollow configuration were lower by a factor of about 2 than those of a diode at 40 Torr. We have also observed that the parallel operation can be possible with a single resistor in nine channels flat panel lamp.

  11. Multi-cathode unbalanced magnetron sputtering systems

    NASA Technical Reports Server (NTRS)

    Sproul, William D.

    1991-01-01

    Ion bombardment of a growing film during deposition is necessary in many instances to ensure a fully dense coating, particularly for hard coatings. Until the recent advent of unbalanced magnetron (UBM) cathodes, reactive sputtering had not been able to achieve the same degree of ion bombardment as other physical vapor deposition processes. The amount of ion bombardment of the substrate depends on the plasma density at the substrate, and in a UBM system the amount of bombardment will depend on the degree of unbalance of the cathode. In multi-cathode systems, the magnetic fields between the cathodes must be linked to confine the fast electrons that collide with the gas atoms. Any break in this linkage results in electrons being lost and a low plasma density. Modeling of the magnetic fields in a UBM cathode using a finite element analysis program has provided great insight into the interaction between the magnetic fields in multi-cathode systems. Large multi-cathode systems will require very strong magnets or many cathodes in order to maintain the magnetic field strength needed to achieve a high plasma density. Electromagnets offer the possibility of independent control of the plasma density. Such a system would be a large-scale version of an ion beam enhanced deposition (IBED) system, but, for the UBM system where the plasma would completely surround the substrate, the acronym IBED might now stand for Ion Blanket Enhanced Deposition.

  12. Preliminary Results of Field Emission Cathode Tests

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Kovaleski, Scott D.

    2001-01-01

    Preliminary screening tests of field emission cathodes such as chemical vapor deposited (CVD) diamond, textured pyrolytic graphite, and textured copper were conducted at background pressures typical of electric thruster test facilities to assess cathode performance and stability. Very low power electric thrusters which provide tens to hundreds micronewtons of thrust may need field emission neutralizers that have a capability of tens to hundreds of microamperes. From current voltage characteristics, it was found that the CVD diamond and textured metals cathodes clearly satisfied the Fowler-Nordheim emission relation. The CVD diamond and a textured copper cathode had average current densities of 270 and 380 mA/sq cm, respectively, at the beginning-of-life. After a few hours of operation the cathode emission currents degraded by 40 to 75% at background pressures in the 10(exp -5) Pa to 10(exp -4) Pa range. The textured pyrolytic graphite had a modest current density at beginning-of-life of 84 mA/sq cm, but this cathode was the most stable of all. Extended testing of the most promising cathodes is warranted to determine if current degradation is a burn-in effect or whether it is a long-term degradation process. Preliminary experiments with ferroelectric emission cathodes, which are ceramics with spontaneous electric polarization, were conducted. Peak current densities of 30 to 120 mA/sq cm were obtained for pulse durations of about 500 ns in the 10(exp -4) Pa pressure range.

  13. Cathode Effects in Cylindrical Hall Thrusters

    SciTech Connect

    Granstedt, E.M.; Raitses, Y.; Fisch, N. J.

    2008-09-12

    Stable operation of a cylindrical Hall thruster (CHT) has been achieved using a hot wire cathode, which functions as a controllable electron emission source. It is shown that as the electron emission from the cathode increases with wire heating, the discharge current increases, the plasma plume angle reduces, and the ion energy distribution function shifts toward higher energies. The observed effect of cathode electron emission on thruster parameters extends and clarifies performance improvements previously obtained for the overrun discharge current regime of the same type of thruster, but using a hollow cathode-neutralizer. Once thruster discharge current saturates with wire heating, further filament heating does not affect other discharge parameters. The saturated values of thruster discharge parameters can be further enhanced by optimal placement of the cathode wire with respect to the magnetic field.

  14. Cathode effects in cylindrical Hall thrusters

    SciTech Connect

    Granstedt, E. M.; Raitses, Y.; Fisch, N. J.

    2008-11-15

    Stable operation of a cylindrical Hall thruster has been achieved using a hot wire cathode, which functions as a controllable electron emission source. It is shown that as the electron emission from the cathode increases with wire heating, the discharge current increases, the plasma plume angle reduces, and the ion energy distribution function shifts toward higher energies. The observed effect of cathode electron emission on thruster parameters extends and clarifies performance improvements previously obtained for the overrun discharge current regime of the same type of thruster, but using a hollow cathode neutralizer. Once thruster discharge current saturates with wire heating, further filament heating does not affect other discharge parameters. The saturated values of thruster discharge parameters can be further enhanced by optimal placement of the cathode wire with respect to the magnetic field.

  15. TRP Channels

    PubMed Central

    Venkatachalam, Kartik; Montell, Craig

    2011-01-01

    The TRP (Transient Receptor Potential) superfamily of cation channels is remarkable in that it displays greater diversity in activation mechanisms and selectivities than any other group of ion channels. The domain organizations of some TRP proteins are also unusual, as they consist of linked channel and enzyme domains. A unifying theme in this group is that TRP proteins play critical roles in sensory physiology, which include contributions to vision, taste, olfaction, hearing, touch, and thermo- and osmosensation. In addition, TRP channels enable individual cells to sense changes in their local environment. Many TRP channels are activated by a variety of different stimuli and function as signal integrators. The TRP superfamily is divided into seven subfamilies: the five group 1 TRPs (TRPC, TRPV, TRPM, TRPN, and TRPA) and two group 2 subfamilies (TRPP and TRPML). TRP channels are important for human health as mutations in at least four TRP channels underlie disease. PMID:17579562

  16. Solid oxide fuel cell power plant having a fixed contact oxidation catalyzed section of a multi-section cathode air heat exchanger

    DOEpatents

    Saito, Kazuo; Lin, Yao

    2015-02-17

    The multi-section cathode air heat exchanger (102) includes at least a first heat exchanger section (104), and a fixed contact oxidation catalyzed section (126) secured adjacent each other in a stack association. Cool cathode inlet air flows through cool air channels (110) of the at least first (104) and oxidation catalyzed sections (126). Hot anode exhaust flows through hot air channels (124) of the oxidation catalyzed section (126) and is combusted therein. The combusted anode exhaust then flows through hot air channels (112) of the first section (104) of the cathode air heat exchanger (102). The cool and hot air channels (110, 112) are secured in direct heat exchange relationship with each other so that temperatures of the heat exchanger (102) do not exceed 800.degree. C. to minimize requirements for using expensive, high-temperature alloys.

  17. Physics of thermionic dispenser cathode aging

    NASA Astrophysics Data System (ADS)

    Longo, R. T.

    2003-11-01

    A dispenser cathode life model (DCLM) was originally published in 1984. More recent life test data have substantiated the basic physics used in the DCLM. However, re-evaluation of the model with this latest data alters the numerical parameters used in the model. The most important modification is the incorporation of the shape factor, α, in the emission equation, so that accurate descriptions of the cathode activity curves (i.e., current versus temperature) can be made as a function of cathode age. The original model was fit only to the cathode current as a function of time for a fixed operating temperature. This revision fits the cathode activity curves as a function of both time and cathode temperature. Variation in cathode current as a function of temperature is quite dependent upon the underlying physics, and gives a better measure of how the internal parameters, such as work function and knee position and knee shape change with time. Knowing these details provides a more accurate measure of how the cathode current at the operating point will change over time. The modification made to the emission equation in this revision incorporates the shape factor, α, which is a single number that describes the shape of the cathode activity curves. The shape factor is found to be dependent on time: The knee softens and rounds with age. Even though the shape factor was originally introduced as an empirical factor, I will present a theoretical model for the shape factor that provides some insight into its physical interpretation. This theory will show that it can be related to the thermodynamics of the emitter surface. The re-evaluation of the DCLM, based on the latest life data, and including the theory for the shape factor yields a longer life expectancy for the M-type dispenser cathode then was predicted by the original more conservative life model. The DCLM matches the observed life data more accurately.

  18. Extra Dimensions of Space

    ERIC Educational Resources Information Center

    Lincoln, Don

    2013-01-01

    They say that there is no such thing as a stupid question. In a pedagogically pure sense, that's probably true. But some questions do seem to flirt dangerously close to being really quite ridiculous. One such question might well be, "How many dimensions of space are there?" I mean, it's pretty obvious that there are three:…

  19. Physics in One Dimension

    ERIC Educational Resources Information Center

    Bertel, Erminald

    2013-01-01

    Due to progress in nanotechnology high-quality quantum wires can nowadays be fabricated. The behavior of particles in one dimension differs significantly from that in three-dimensional (3D) systems, yet the physics of such low-dimensional systems is generally not very well represented in standard undergraduate or graduate curricula. For instance,…

  20. Big Mysteries: Extra Dimensions

    SciTech Connect

    Lincoln, Don

    2014-06-10

    The weakness of gravity compared to the other subatomic forces is a real mystery. While nobody knows the answer, one credible solution is that gravity has access to more spatial dimensions than the other three known forces. In this video, Fermilab's Dr. Don Lincoln describes this idea, with the help of some very urbane characters.

  1. Constructing gravitational dimensions

    NASA Astrophysics Data System (ADS)

    Schwartz, Matthew

    2003-07-01

    It would be extremely useful to know whether a particular low energy effective theory might have come from a compactification of a higher dimensional space. Here, this problem is approached from the ground up by considering theories with multiple interacting massive gravitons. It is actually very difficult to construct discrete gravitational dimensions which have a local continuum limit. In fact, any model with only nearest neighbor interactions is doomed. If we could find a non-linear extension for the Fierz-Pauli Lagrangian for a graviton of mass mg, which does not break down until the scale Λ2=(mgMPl), this could be used to construct a large class of models whose continuum limit is local in the extra dimension. But this is shown to be impossible: a theory with a single graviton must break down by Λ3=(m2gMPl)1/3. Next, we look at how the discretization prescribed by the truncation of the Kaluza-Klein tower of an honest extra dimension raises the scale of strong coupling. It dictates an intricate set of interactions among various fields which conspire to soften the strongest scattering amplitudes and allow for a local continuum limit, at least at the tree level. A number of candidate symmetries associated with locality in the discretized dimension are also discussed.

  2. Dimensions of Delinquency.

    ERIC Educational Resources Information Center

    Wunderlich, Richard A.

    1985-01-01

    In response to research questioning the utility of the Jesness Inventory in predicting and differentiating delinquency, this study isolated the personality dimensions of 422 adjudicated, noninstitutionalized adolescents by item level factor analysis. The resulting three factors--Mistrust, Social Pessimism, and Hypersensitivity--were compared with…

  3. Moving between Dimensions

    ERIC Educational Resources Information Center

    Stephenson, Paul

    2012-01-01

    The first word of this item is "imagine". This instruction has the potential to signal a journey through a world of geometry that might leave you spellbound. On the other hand, it could be the start of a roller-coaster ride through three dimensions that will tax both your imagination, and your powers of visualisation. It is likely that you will…

  4. Dimensions of Nonverbal Communication.

    ERIC Educational Resources Information Center

    Overmier, Mary; And Others

    After a brief description of the dimensions of nonverbal communication, this booklet presents 21 activities that deal with nonverbal communication. Activities in the booklet involve body movements (kinesics), facial expressions, eye movements, perception and use of space (proxemics), haptics (touch), paralinguistics (vocal elements that accompany…

  5. Big Mysteries: Extra Dimensions

    ScienceCinema

    Lincoln, Don

    2014-08-07

    The weakness of gravity compared to the other subatomic forces is a real mystery. While nobody knows the answer, one credible solution is that gravity has access to more spatial dimensions than the other three known forces. In this video, Fermilab's Dr. Don Lincoln describes this idea, with the help of some very urbane characters.

  6. Conflicting Roles Of Nickel In Controlling Cathode Performance In Lithium-ion Batteries

    SciTech Connect

    Gu, Meng; Belharouak, Ilias; Genc, Arda; Wang, Zhiguo; Wang, Dapeng; Amine, Khalil; Gao, Fei; Zhou, Guangwen; Thevuthasan, Suntharampillai; Baer, Donald R.; Zhang, Jiguang; Browning, Nigel D.; Liu, Jun; Wang, Chong M.

    2012-09-17

    A variety of approaches are being made to enhance the performance of lithium ion batteries. Incorporating multi-valence transition metal ions into metal oxide cathodes has been identified as an essential approach to achieve the necessary high voltage and high capacity. However, the fundamental mechanism that limits their power rate and cycling stability remains unclear. The power rate strongly depends on the lithium ion drift speed in the cathode. Crystallographically, these transition metal-based cathodes frequently have a layered structure. In the classic wisdom, it is accepted that lithium ion travels swiftly within the layers moving out/in of the cathode during the charge/discharge. Here, we report the unexpected discovery of a thermodynamically driven, yet kinetically controlled, surface modification in the widely explored lithium nickel manganese oxide cathode material, which may inhibit the battery charge/discharge rate. We found that during cathode synthesis and processing before electrochemical cycling in the cell nickel can preferentially move along the fast diffusion channels and selectively segregate at the surface facets terminated with a mix of anions and cations. This segregation essentially blocks the otherwise fast out/in pathways for lithium ions during the charge/discharge. Therefore, it appears that the transition metal dopant may help to provide high capacity and/or high voltage, but can be located in a “wrong” location that blocks or slows lithium diffusion, limiting battery performance. In this circumstance, limitations in the properties of Li-ion batteries using these cathode materials can be determined more by the materials synthesis issues than by the operation within the battery itself.

  7. Calcium Ion Flow Permeates Cells through SOCs to Promote Cathode-Directed Galvanotaxis

    PubMed Central

    Guo, Liang; Xu, Chunyan; Li, Dong; Zheng, Xiulan; Tang, Jiebing; Bu, Jingyi; Sun, Hui; Yang, Zhengkai; Sun, Wenjing; Yu, Xiaoguang

    2015-01-01

    Sensing and responding to endogenous electrical fields are important abilities for cells engaged in processes such as embryogenesis, regeneration and wound healing. Many types of cultured cells have been induced to migrate directionally within electrical fields in vitro using a process known as galvanotaxis. The underlying mechanism by which cells sense electrical fields is unknown. In this study, we assembled a polydimethylsiloxane (PDMS) galvanotaxis system and found that mouse fibroblasts and human prostate cancer PC3 cells migrated to the cathode. By comparing the effects of a pulsed direct current, a constant direct current and an anion-exchange membrane on the directed migration of mouse fibroblasts, we found that these cells responded to the ionic flow in the electrical fields. Taken together, the observed effects of the calcium content of the medium, the function of the store-operated calcium channels (SOCs) and the intracellular calcium content on galvanotaxis indicated that calcium ionic flow from the anode to the cathode within the culture medium permeated the cells through SOCs at the drift velocity, promoting migration toward the cathode. The RTK-PI3K pathway was involved in this process, but the ROCK and MAPK pathways were not. PC3 cells and mouse fibroblasts utilized the same mechanism of galvanotaxis. Together, these results indicated that the signaling pathway responsible for cathode-directed cellular galvanotaxis involved calcium ionic flow from the anode to the cathode within the culture medium, which permeated the cells through SOCs, causing cytoskeletal reorganization via PI3K signaling. PMID:26447479

  8. Calcium Ion Flow Permeates Cells through SOCs to Promote Cathode-Directed Galvanotaxis.

    PubMed

    Guo, Liang; Xu, Chunyan; Li, Dong; Zheng, Xiulan; Tang, Jiebing; Bu, Jingyi; Sun, Hui; Yang, Zhengkai; Sun, Wenjing; Yu, Xiaoguang

    2015-01-01

    Sensing and responding to endogenous electrical fields are important abilities for cells engaged in processes such as embryogenesis, regeneration and wound healing. Many types of cultured cells have been induced to migrate directionally within electrical fields in vitro using a process known as galvanotaxis. The underlying mechanism by which cells sense electrical fields is unknown. In this study, we assembled a polydimethylsiloxane (PDMS) galvanotaxis system and found that mouse fibroblasts and human prostate cancer PC3 cells migrated to the cathode. By comparing the effects of a pulsed direct current, a constant direct current and an anion-exchange membrane on the directed migration of mouse fibroblasts, we found that these cells responded to the ionic flow in the electrical fields. Taken together, the observed effects of the calcium content of the medium, the function of the store-operated calcium channels (SOCs) and the intracellular calcium content on galvanotaxis indicated that calcium ionic flow from the anode to the cathode within the culture medium permeated the cells through SOCs at the drift velocity, promoting migration toward the cathode. The RTK-PI3K pathway was involved in this process, but the ROCK and MAPK pathways were not. PC3 cells and mouse fibroblasts utilized the same mechanism of galvanotaxis. Together, these results indicated that the signaling pathway responsible for cathode-directed cellular galvanotaxis involved calcium ionic flow from the anode to the cathode within the culture medium, which permeated the cells through SOCs, causing cytoskeletal reorganization via PI3K signaling. PMID:26447479

  9. Sodium monolayers on thermionic cathodes

    NASA Astrophysics Data System (ADS)

    Almanstötter, Jürgen; Eberhard, Bernd; Günther, Klaus; Hartmann, Thomas

    2002-07-01

    Under certain conditions alkali vapours form dipole monolayers on metallic electrodes that can lower the work function of the bulk material. In this case, the power balance of the electrode, the electrode fall voltage and the electrode loss power can change considerably. To verify this effect a pyrometric technique was adapted and optimized for the diagnostics of tungsten electrodes in high pressure sodium discharges. Using an already verified model of thermally emitting cathodes the effect was observed in a Na DC discharge and the range of existence was investigated. An interpretation of the results is given using a Langmuir description of forming the Na monolayers and first-principles electronic structure calculations using a pseudopotential plane wave method to solve the Kohn-Sham equations of density-functional theory.

  10. Cathode for an electrochemical cell

    DOEpatents

    Bates, John B.; Dudney, Nancy J.; Gruzalski, Greg R.; Luck, Christopher F.

    2001-01-01

    Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode. Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between -15.degree. C. and 150.degree. C.

  11. Analysis of cathode geometry to minimize cathode erosion in direct current microplasma jet

    SciTech Connect

    Causa, Federica; Ghezzi, Francesco; Caniello, Roberto; Grosso, Giovanni; Dellasega, David

    2012-12-15

    Microplasma jets are now widely used for deposition, etching, and materials processing. The present study focuses on the investigation of the influence of cathode geometry on deposition quality, for microplasma jet deposition systems in low vacuum. The interest here is understanding the influence of hydrogen on sputtering and/or evaporation of the electrodes. Samples obtained with two cathode geometries with tapered and rectangular cross-sections have been investigated experimentally by scanning electron microscopy and energy dispersion X-ray spectroscopy. Samples obtained with a tapered-geometry cathode present heavy contamination, demonstrating cathode erosion, while samples obtained with a rectangular-cross-section cathode are free from contamination. These experimental characteristics were explained by modelling results showing a larger radial component of the electric field at the cathode inner wall of the tapered cathode. As a result, ion acceleration is larger, explaining the observed cathode erosion in this case. Results from the present investigation also show that the ratio of radial to axial field components is larger for the rectangular geometry case, thus, qualitatively explaining the presence of micro-hollow cathode discharge over a wide range of currents observed in this case. In the light of the above findings, the rectangular cathode geometry is considered to be more effective to achieve cleaner deposition.

  12. Vacuum arc with a distributed cathode spot as a plasma source for plasma separation of spent nuclear fuel and radioactive waste

    NASA Astrophysics Data System (ADS)

    Amirov, R. Kh.; Vorona, N. A.; Gavrikov, A. V.; Lizyakin, G. D.; Polishchuk, V. P.; Samoilov, I. S.; Smirnov, V. P.; Usmanov, R. A.; Yartsev, I. M.

    2015-10-01

    Results from experimental studies of a vacuum arc with a distributed cathode spot on the heated cathode are presented. Such an arc can be used as a plasma source for plasma separation of spent nuclear fuel and radioactive waste. The experiments were performed with a gadolinium cathode, the properties of which are similar to those of an uranium arc cathode. The heat flux from the plasma to the cathode (and its volt equivalent) at discharge voltages of 4-15 V and discharge currents of 44-81 A, the radial distribution of the emission intensity of gadolinium atoms and singly charged ions in the arc channel at a voltage of 4.3 V, and the plasma electron temperature behind the anode were measured. The average charge of plasma ions at arc voltages of 3.5-8 V and a discharge current of 52 A and the average rate of gadolinium evaporation in the discharge were also determined.

  13. Vacuum arc with a distributed cathode spot as a plasma source for plasma separation of spent nuclear fuel and radioactive waste

    SciTech Connect

    Amirov, R. Kh. Vorona, N. A.; Gavrikov, A. V.; Lizyakin, G. D.; Polishchuk, V. P.; Samoilov, I. S.; Smirnov, V. P.; Usmanov, R. A.; Yartsev, I. M.

    2015-10-15

    Results from experimental studies of a vacuum arc with a distributed cathode spot on the heated cathode are presented. Such an arc can be used as a plasma source for plasma separation of spent nuclear fuel and radioactive waste. The experiments were performed with a gadolinium cathode, the properties of which are similar to those of an uranium arc cathode. The heat flux from the plasma to the cathode (and its volt equivalent) at discharge voltages of 4-15 V and discharge currents of 44-81 A, the radial distribution of the emission intensity of gadolinium atoms and singly charged ions in the arc channel at a voltage of 4.3 V, and the plasma electron temperature behind the anode were measured. The average charge of plasma ions at arc voltages of 3.5-8 V and a discharge current of 52 A and the average rate of gadolinium evaporation in the discharge were also determined.

  14. Batteries: Overview of Battery Cathodes

    SciTech Connect

    Doeff, Marca M

    2010-07-12

    The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as hybrid

  15. Power balance at cathode in glow discharges

    SciTech Connect

    Suraj, K.S.; Mukherjee, S.

    2005-11-15

    When an electrode is biased negatively ({approx} few hundred volts) with respect to a metallic chamber, maintained at a subatmospheric pressure ({approx} few millibars), glow discharge plasma is formed around the electrode (cathode). The plasma supplies ions and other species to the cathode, along with other events at the cathode, and its temperature also rises. From the measurement of temporal temperature profile, in the pressure range of 0.5-5 mbars, the thermal influx at the cathode has been determined. Various modes of power input to the cathode are estimated from the discharge parameters. The contribution of ions and neutrals to the total input power is obtained theoretically from respective velocity distributions at the cathode considering charge exchange as the dominant collision mechanism inside the sheath region. The comparison of experimental and theoretical results suggests that in the pressure range being considered, which is typical of glow discharges, the major contribution to the energy input at the cathode comes from energetic neutrals generated by the charge-exchange collision inside the collisional ion sheath.

  16. Time-and-space resolved comparison of plasma expansion velocities in high-power diodes with velvet cathodes

    SciTech Connect

    Yang Jie; Shu Ting; Fan Yuwei

    2013-01-28

    Time-and-space resolved comparison of the expansion velocities of plasmas in the planar diode with cathodes made of carbon velvet and polymer velvet has been performed. The diode was powered by a 200 kV, 110 ns pulse, and the peak current density was nearly 477 A/cm{sup 2}. A four-channel high speed framing camera (HSFC) was used to observe the formation and subsequent movement of the cathode plasmas. More accurate and valuable information about the two-dimensional (radial and axial) velocity components of the cathode plasmas was also acquired by utilizing the digital image processing methods. Additionally, the perveance model based on the Child-Langmuir law was used to calculate the expansion velocities of the diode plasmas from voltage and current profiles. Results from the two diagnostics were compared. Comparing the average values of the radial and axial velocity components indicated that the former was much larger than the latter during the initial period of the current. It was also found that the radial velocity of the carbon velvet cathode (190 cm/{mu}s) was much larger than that (90 cm/{mu}s) of the polymer velvet cathode. Moreover, the average values of both the radial and axial velocity components of the carbon velvet cathode were typically in the range of 2.5 {+-} 1.5 cm/{mu}s, which were smaller than that of the polymer velvet cathode during the current flattop. These results, together with the comparison of calculated values from the perveance model, indicated that the diode with carbon velvet cathode was more robust as compared with the polymer velvet cathode for the same electron current densities.

  17. Cultural dimensions of learning

    NASA Astrophysics Data System (ADS)

    Eyford, Glen A.

    1990-06-01

    How, what, when and where we learn is frequently discussed, as are content versus process, or right brain versus left brain learning. What is usually missing is the cultural dimension. This is not an easy concept to define, but various aspects can be identified. The World Decade for Cultural Development emphasizes the need for a counterbalance to a quantitative, economic approach. In the last century poets also warned against brutalizing materialism, and Sorokin and others have described culture more recently in terms of cohesive basic values expressed through aesthetics and institutions. Bloom's taxonomy incorporates the category of affective learning, which internalizes values. If cultural learning goes beyond knowledge acquisition, perhaps the surest way of understanding the cultural dimension of learning is to examine the aesthetic experience. This can use myths, metaphors and symbols, and to teach and learn by using these can help to unlock the human potential for vision and creativity.

  18. Extra Dimensions in Photon or Jet plus Missing Transverse Energy

    SciTech Connect

    Cardaci, Marco

    2010-02-10

    Recent studies of the CMS collaboration are presented on the sensitivity to searches for large (ADD) extra dimensions in channels with missing transverse energy (MET), i.e. the channels jets plus MET and photon plus MET. These studies are based on detailed detector simulation, including all Standard Model backgrounds. Particular emphasis is given to possible early discoveries, i.e. with 100 pb{sup -1} or less. Projected 95% CL exclusion limits as function of luminosity are presented as well.

  19. Extra Dimensions in Photon or Jet plus Missing Transverse Energy

    NASA Astrophysics Data System (ADS)

    Cardaci, Marco

    2010-02-01

    Recent studies of the CMS collaboration are presented on the sensitivity to searches for large (ADD) extra dimensions in channels with missing transverse energy (MET), i.e. the channels jets plus MET and photon plus MET. These studies are based on detailed detector simulation, including all Standard Model backgrounds. Particular emphasis is given to possible early discoveries, i.e. with 100 pb-1 or less. Projected 95% CL exclusion limits as function of luminosity are presented as well.

  20. Introduction to Extra Dimensions

    SciTech Connect

    Rizzo, Thomas G.; /SLAC

    2010-04-29

    Extra dimensions provide a very useful tool in addressing a number of the fundamental problems faced by the Standard Model. The following provides a very basic introduction to this very broad subject area as given at the VIII School of the Gravitational and Mathematical Physics Division of the Mexican Physical Society in December 2009. Some prospects for extra dimensional searches at the 7 TeV LHC with {approx}1 fb{sup -1} of integrated luminosity are provided.

  1. Cells having cathodes containing polycarbon disulfide materials

    DOEpatents

    Okamoto, Y.; Skotheim, T.A.; Lee, H.S.

    1995-08-15

    The present invention relates to an electric current producing cell which contains an anode, a cathode having as a cathode-active material one or more carbon-sulfur compounds of the formula (CS{sub x}){sub n}, in which x takes values from 1.2 to 2.3 and n is greater or equal to 2, and where the redox process does not involve polymerization and de-polymerization by forming and breaking S--S bonds in the polymer backbone. The cell also contains an electrolyte which is chemically inert with respect to the anode and the cathode. 5 figs.

  2. Development of Lanthanum Ferrite SOFC Cathodes

    SciTech Connect

    Simner, Steve P.; Bonnett, Jeff F.; Canfield, Nathan L.; Meinhardt, Kerry D.; Shelton, Jayne P.; Sprenkle, Vince L.; Stevenson, Jeffry W.

    2003-01-01

    A number of studies have been conducted concerning compositional/microstructural modifications of a Sr-doped lanthanum ferrite (LSF) cathode and protective Sm-doped ceria (SDC) layer in an anode supported solid oxide fuel cell (SOFC). Emphasis was placed on achieving enhanced low temperature (700-800 degrees C) performance, and long-term cell stability. Investigations involved manipulation of the lanthanum ferrite chemistry, addition of noble metal oxygen reduction catalysts, incorporation of active cathode layer compositions containing Co, Fe and higher Sr contents, and attempts to optimize the ceria barrier layer between the LSF cathode and YSZ electrolyte.

  3. Measuring cathodic protection under unbonded coatings

    SciTech Connect

    Orton, M.D.

    1986-03-01

    Corrosion protection of pipe lines by cathodic protection where unbonded coatings exist has concerned engineers for decades. Without more than theoretical considerations available, it is nearly impossible for a pipe line operator to make relevant economic decisions whether to apply additional cathodic protection or to recondition existing pipe lines. The savings realized from additional protective current versus reconditioning large diameter pipe can be significant provided adequate potentials can be achieved beneath unbonded coatings. Arabian American Oil Co. has developed a test procedure to make field measurements to determine the effectiveness of cathodic protection under unbonded coatings. The test site is in the northern part of the Eastern Province of Saudi Arabia.

  4. Lithium batteries with organic slurry cathodes

    SciTech Connect

    Bruder, A.H.

    1984-08-21

    Electrical cells and batteries having lithium anodes and cathodes comprising an organic slurry of MnO/sub 2/ and carbon particles in an organic solvent in contact with a conductive plastic current collector, and a method of making the cathodes comprising the steps of heating MnO/sub 2/ to remove absorbed and adsorbed water and water of crystallization, cooling the dehydrated MnO/sub 2/, dispersing the cooled and dehydrated MnO/sub 2/ in an anhydrous solvent to form a slurry, depositing the slurry in discrete cathode patches on cell component substrates, and sealing the slurry patches into cells having substantially gas impervious cell enveloping boundaries.

  5. Cathode for molten carbonate fuel cell

    DOEpatents

    Kaun, Thomas D.; Mrazek, Franklin C.

    1990-01-01

    A porous sintered cathode for a molten carbonate fuel cell and method of making same, the cathode including a skeletal structure of a first electronically conductive material slightly soluble in the electrolyte present in the molten carbonate fuel cell covered by fine particles of a second material of possibly lesser electronic conductivity insoluble in the electrolyte present in the molten carbonate fuel cell, the cathode having a porosity in the range of from about 60% to about 70% at steady-state cell operating conditions consisting of both macro-pores and micro-pores.

  6. A hollow cathode hydrogen ion source

    NASA Technical Reports Server (NTRS)

    Sovey, J. S.; Mirtich, M. J.

    1977-01-01

    High current density ion sources have been used to heat plasmas in controlled thermonuclear reaction experiments. High beam currents imply relatively high emission currents from cathodes which have generally taken the form of tungsten filaments. A hydrogen ion source is described which was primarily developed to assess the emission current capability and design requirements for hollow cathodes for application in neutral injection devices. The hydrogen source produced ions by electron bombardment via a single hollow cathode. Source design followed mercury ion thruster technology, using a weak magnetic field to enhance ionization efficiency.

  7. Numerical study on rectangular microhollow cathode discharge

    SciTech Connect

    He Shoujie; Ouyang Jiting; He Feng; Li Shang

    2011-03-15

    Rectangular microhollow cathode discharge in argon is investigated by using two-dimensional time-dependent self-consistent fluid model. The electric potential, electric field, particle density, and mean electron energy are calculated. The results show that hollow cathode effect can be onset in the present configuration, with strong electric field and high mean electron energy in the cathode fall while high density and quasineutral plasma in the negative glow. The potential well and electric filed reversal are formed in the negative glow region. It is suggested that the presence of large electron diffusion flux necessitates the field reversal and potential well.

  8. 95 GHz gyrotron with ferroelectric cathode.

    PubMed

    Einat, M; Pilossof, M; Ben-Moshe, R; Hirshbein, H; Borodin, D

    2012-11-01

    Ferroelectric cathodes were reported as a feasible electron source for microwave tubes. However, due to the surface plasma emission characterizing this cathode, operation of millimeter wave tubes based on it remains questionable. Nevertheless, the interest in compact high power sources of millimeter waves and specifically 95 GHz is continually growing. In this experiment, a ferroelectric cathode is used as an electron source for a gyrotron with the output frequency extended up to 95 GHz. Power above a 5 kW peak and ~0.5 μs pulses are reported; a duty cycle of 10% is estimated to be achievable. PMID:23215293

  9. Cells having cathodes containing polycarbon disulfide materials

    DOEpatents

    Okamoto, Yoshi; Skotheim, Terje A.; Lee, Hung S.

    1995-08-15

    The present invention relates to an electric current producing cell which contains an anode, a cathode having as a cathode-active material one or more carbon-sulfur compounds of the formula (CS.sub.x).sub.n, in which x takes values from 1.2 to 2.3 and n is greater or equal to 2, and where the redox process does not involve polymerization and de-polymerization by forming and breaking S--S bonds in the polymer backbone. The cell also contains an electrolyte which is chemically inert with respect to the anode and the cathode.

  10. K2CsSb Cathode Development

    SciTech Connect

    Smedley,J.; Rao, T.; Wang, E.

    2008-10-01

    K{sub 2}CsSb is an attractive photocathode for high current applications. With a quantum efficiency of >4% at 532nm and >10% at 355nm, it is the only cathode to have demonstrated an average current of 35mA in an accelerator environment We describe ongoing cathode development work. for the energy recovery linac being constructed at BNL Several cathodes have been created on both copper and stainless steel substrates, and their spatial uniformity and spectral response have been characterized. Preliminary lifetime measurements have been performed at high average current densities (>1 mA/mm{sup 2}).

  11. Infinitely Large New Dimensions

    SciTech Connect

    Arkani-Hamed, Nima; Dimopoulos, Savas; Dvali, Gia; Kaloper, Nemanja

    1999-07-29

    We construct intersecting brane configurations in Anti-de-Sitter space localizing gravity to the intersection region, with any number n of extra dimensions. This allows us to construct two kinds of theories with infinitely large new dimensions, TeV scale quantum gravity and sub-millimeter deviations from Newton's Law. The effective 4D Planck scale M{sub Pl} is determined in terms of the fundamental Planck scale M{sub *} and the AdS radius of curvature L via the familiar relation M{sub Pl}{sup 2} {approx} M{sub *}{sup 2+n} L{sup n}; L acts as an effective radius of compactification for gravity on the intersection. Taking M{sub *} {approx} TeV and L {approx} sub-mm reproduces the phenomenology of theories with large extra dimensions. Alternately, taking M{sub *} {approx} L{sup -1} {approx} M{sub Pl}, and placing our 3-brane a distance {approx} 100M{sub Pl}{sup -1} away from the intersection gives us a theory with an exponential determination of the Weak/Planck hierarchy.

  12. A model for simulation of flow in singular and interconnected channels

    USGS Publications Warehouse

    Schaffranek, Raymond W.; Baltzer, R.A.; Goldberg, D.E.

    1981-01-01

    A one-dimensional numerical model is presented for simulating the unsteady flow in singular riverine or estuarine reaches and in networks of reaches composed of interconnected channels. The model is both general and flexible in that it can be used to simulate a wide range of flow conditions for various channel configurations. The channel geometry of the network to be modeled should be sufficiently simple so as to lend itself to characterization in one spatial dimension. The flow must be substantially homogenous in density, and hydrostatic pressure must prevail everywhere in the network channels. The slope of each channel bottom ought to be mild and reasonably constant over its length so that the flow remains subcritical. The model accommodates tributary inflows and diversions and includes the effects of wind shear on the water surface as a forcing function in the flow equations. Water-surface elevations and flow discharges are computed at channel junctions, as well as at specified intermediate locations within the network channels. The one-dimensional branch-network flow model uses a four-point, implicit, finite-difference approximation of the unsteady-flow equations. The flow equations are linearized over a time step, and branch transformations are formulated that describe the relationship between the unknowns at the end points of the channels. The resultant matrix of branch-transformation equations and required boundary-condition equations is solved by Gaussian elimination using maximum pivot strategy. Five example applications of the flow model are illustrated. The applications cover such diverse conditions as a singular upland river reach in which unsteady flow results from hydropower regulations, coastal rivers composed of sequentially connected reaches subject to unsteady tide-driven flow, and a multiply connected network of channels whose flow is principally governed by wind tides and seiches in adjoining lakes. The report includes a listing of the FORTRAN

  13. High power microwave generation from coaxial virtual cathode oscillator using graphite and velvet cathodes

    NASA Astrophysics Data System (ADS)

    Menon, Rakhee; Roy, Amitava; Singh, S. K.; Mitra, S.; Sharma, Vishnu; Kumar, Senthil; Sharma, Archana; Nagesh, K. V.; Mittal, K. C.; Chakravarthy, D. P.

    2010-05-01

    High power microwave (HPM) generation studies were carried out in KALI-5000 pulse power system. The intense relativistic electron beam was utilized to generate HPMs using a coaxial virtual cathode oscillator. The typical electron beam parameters were 350 kV, 25 kA, and 100 ns, with a few hundreds of ampere per centimeter square current density. Microwaves were generated with graphite and polymer velvet cathode at various diode voltage, current, and accelerating gaps. A horn antenna setup with diode detector and attenuators was used to measure the microwave power. It was observed that the microwave power increases with the diode voltage and current and reduces with the accelerating gap. It was found that both the peak power and width of the microwave pulse is larger for the velvet cathode compared to the graphite cathode. In a coaxial vircator, velvet cathode is superior to the graphite cathode due to its shorter turn on time and better electron beam uniformity.

  14. Low temperature aluminum reduction cell using hollow cathode

    DOEpatents

    Brown, Craig W.; Frizzle, Patrick B.

    2002-08-20

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte. A plurality of non-consumable anodes are disposed substantially vertically in the electrolyte along with a plurality of monolithic hollow cathodes. Each cathode has a top and bottom and the cathodes are disposed vertically in the electrolyte and the anodes and the cathodes are arranged in alternating relationship. Each of the cathodes is comprised of a first side facing a first opposing anode and a second side facing a second opposing anode. The first and second sides are joined by ends to form a reservoir in the hollow cathode for collecting aluminum therein deposited at the cathode.

  15. Understanding anode and cathode behaviour in high-pressure discharge lamps

    NASA Astrophysics Data System (ADS)

    Flesch, P.; Neiger, M.

    2005-09-01

    High-intensity discharge (HID) lamps have widespread and modern areas of application including general lighting, video/movie projection (e.g. UHP lamp), street/industrial lighting, and automotive headlight lamps (D2/xenon lamp). Even though HID lamps have been known for several decades now, the important plasma-electrode interactions are still not well understood. Because HID lamps are usually operated on ac (electrodes switch alternately from anode to cathode phase), time-dependent simulations including realistic and verified anode and cathode models are essential. Therefore, a recently published investigation of external laser heating of an electrode during anode and cathode phase in an operating HID lamp [28] provided the basis for our present paper. These measurements revealed impressive influences of the external laser heating on electrode fall voltage and electrode temperature. Fortunately, the effects are very different during anode and cathode phase. Thus, by comparing the experimental findings with results from our numerical simulations we can learn much about the principles of electrode behaviour and explain in detail the differences between anode and cathode phase. Furthermore, we can verify our model (which includes plasma column, hot plasma spots in front of the electrodes, constriction zones and near-electrode non-local thermal equilibrium-plasma as well as anode and cathode) that accounts for all relevant physical processes concerning plasma, electrodes and interactions between them. Moreover, we investigate the influence of two different notions concerning ionization and recombination in the near electrode plasma on the numerical results. This improves our physical understanding of near-electrode plasma likewise and further increases the confidence in the model under consideration. These results are important for the understanding and the further development of HID lamps which, due to their small dimensions, are often experimentally inaccessible

  16. Porous cathode design and optimization of lithium systems

    NASA Astrophysics Data System (ADS)

    Chen, Yen-Hung

    Narrowing the gap between theoretical and actual capacity in key Li-based battery systems can be achieved through improvements in both electronic and ionic conductivities of materials, via addition of conductive species. Additives do, however, penalize both volumetric and gravimetric properties, and also limit liquid transport and high rate performance. In this work, we developed techniques to design and optimize cathode system based directly on the relationships among ionic and electronic conductivities, and specific energy. We also investigated formation mechanisms, and resulting geometric characteristics in nanoparticle agglomerates, to systematically study percolation and conductivity in self-assembled structures. In our study of selection of conductive additives, architectures of model composite cathodes, comprised of active material, graphite, carbon black, and PVDF, were generated using our prior approach in simulating polydisperse arrangements. A key finding of this portion of the work, was that the conductive coatings strongly influence conductivity, via reduction of contact resistance. Thus, we conclude that neither surface nor bulk modifications of active material particles conductivities seem to be desirable targets for improvement of laminate conductivity, for the ranges of materials studied. In the cathode optimization study, our results quantified trade-offs among ionic and electronic conductivity, and conductivity and specific energy. We also provided quantitative relationships for improved utilization and specific power, with higher specific energy. Finally, we provided quantitative guidance for design of high energy density Li(Ni1/3Co1/3Mn1/3)O2 cells using conductive additives, and also provided guidelines for design of cathode systems, based directly on solid and liquid phase transport limitations. In the agglomeration and aggregation study, 3D, branch-like nanoparticle agglomerates were systematically studied via use of new algorithms in

  17. The temporal development of hollow cathode discharges

    NASA Technical Reports Server (NTRS)

    Ngo, Mai T.; Schoenbach, Karl H.; Gerdin, Glenn A.; Lee, Ja H.

    1990-01-01

    The temporal development of hollow cathode discharges was studied by means of electrical and optical diagnostic techniques. The results indicate that the discharge develops in two stages. The initial breakdown occurs along the longest straight path of the system, i.e., from the anode to the bottom of the cathode hole. This predischarge is confined to a narrow filament along the axis and carries a current of up to hundreds of milliamperes. The resulting distortion of the electric field in the cathode hole is assumed to cause a radial breakdown from the filamentary plasma on the axis to the edge of the cathode hole. After this second breakdown, an increase in current by more than three orders of magnitude is observed. Measurements with axial magnetic fields support the two-stage model.

  18. Quantum Yield of Gold-Cathode Photomultipliers

    NASA Technical Reports Server (NTRS)

    Childs, Charles B.

    1961-01-01

    Two gold-cathode EMI 6255G tubes have been investigated for their quantum yield between 3100 and 1900 A. The tubes had cathodes of different appearances. One of these, numbered 3012, had a slight bluish tinge and was very transparent to visible light; the other, numbered 3021, had a definite gold coloration. The relative quantum yield of each tube was determined with the aid of a Cary model 14 recording spectrophotometer used as a monochromator. The monochromator relative-energy output was determined from the current output of a sodium-salicylate-coated RCA 1P21 photomultiplier. Each gold-cathode tube was then operated at 3000 v, and the central 1.8 cm cube of the cathode was exposed to the monochromator output.

  19. Short pulse photoemission from a dispenser cathode

    NASA Astrophysics Data System (ADS)

    Bergeret, H.; Boussoukaya, M.; Chehab, R.; Leblond, B.; Le Duff, J.

    1991-03-01

    Pulsed photoemission in the picosecond regime has been obtained from a standard thermionic dispenser cathode (WBaCa) at temperatures below the measurable thermoemission threshold. A picosecond Nd : YAG mode locked laser has been used at both green and UV light. Micropulse charges up to 0.5 nC have been measured on a wideband coaxial pickup located behind the anode. They correspond to an electron saturation limit from an approximately 20 mm 2 illuminated cathode area with a surface field of 3 MV/m. The effective cathode efficiency at small laser energies, defined as the number of electrons impinging on the coaxial pickup divided by the number of photons impinging on the cathode, is about 2 × 10 -5.

  20. Ion bombardment investigations of impregnated cathodes

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaobing; Gaertner, Georg

    2003-06-01

    Ion bombardment is one of the important factors limiting the performance of impregnated cathodes (=Ba dispenser cathodes) in high end television tubes or in colour monitor tubes. Hence, when designing a new gun with, e.g. higher electron beam current density, it is important also to model the influence of ion bombardment. Therefore, relations between basic parameters as a function of temperature need to be known quantitatively. In this paper, the emission slump of impregnated cathodes has been analyzed in a diode configuration in UHV with a differentially pumped Ar ion gun. The emission degeneration during and regeneration periods after ion bombardment have been investigated as function of cathode temperature, ion current and ion energy. One of the important results is, that the degeneration time coefficient is only weakly dependent on ion energy. The data matrix obtained can be used to improve the ion bombardment model applied in new electron gun design.

  1. High current density cathode for electrorefining in molten electrolyte

    DOEpatents

    Li, Shelly X.

    2010-06-29

    A high current density cathode for electrorefining in a molten electrolyte for the continuous production and collection of loose dendritic or powdery deposits. The high current density cathode eliminates the requirement for mechanical scraping and electrochemical stripping of the deposits from the cathode in an anode/cathode module. The high current density cathode comprises a perforated electrical insulated material coating such that the current density is up to 3 A/cm.sup.2.

  2. Interfacial phenomena on selected cathode materials

    SciTech Connect

    Kostecki, Robert; Matsuo, Yoshiaki; McLarnon, Frank

    2001-06-22

    We have carried out a series of surface studies of selected cathode materials. Instrumental techniques such as Raman microscopy, surface enhanced Raman spectroscopy (SERS), and atomic force microscopy were used to investigate the cathode surfaces. The goal of this study was to identify detrimental processes which occur at the electrode/electrolyte interface and can lead to electrode degradation and failure during cycling and/or storage at elevated temperatures.

  3. Co-Flow Hollow Cathode Technology

    NASA Technical Reports Server (NTRS)

    Hofer, Richard R.; Goebel, Dan M.

    2011-01-01

    Hall thrusters utilize identical hollow cathode technology as ion thrusters, yet must operate at much higher mass flow rates in order to efficiently couple to the bulk plasma discharge. Higher flow rates are necessary in order to provide enough neutral collisions to transport electrons across magnetic fields so that they can reach the discharge. This higher flow rate, however, has potential life-limiting implications for the operation of the cathode. A solution to the problem involves splitting the mass flow into the hollow cathode into two streams, the internal and external flows. The internal flow is fixed and set such that the neutral pressure in the cathode allows for a high utilization of the emitter surface area. The external flow is variable depending on the flow rate through the anode of the Hall thruster, but also has a minimum in order to suppress high-energy ion generation. In the co-flow hollow cathode, the cathode assembly is mounted on thruster centerline, inside the inner magnetic core of the thruster. An annular gas plenum is placed at the base of the cathode and propellant is fed throughout to produce an azimuthally symmetric flow of gas that evenly expands around the cathode keeper. This configuration maximizes propellant utilization and is not subject to erosion processes. External gas feeds have been considered in the past for ion thruster applications, but usually in the context of eliminating high energy ion production. This approach is adapted specifically for the Hall thruster and exploits the geometry of a Hall thruster to feed and focus the external flow without introducing significant new complexity to the thruster design.

  4. CO2 laser cold cathode research results

    NASA Technical Reports Server (NTRS)

    Hochuli, U.

    1973-01-01

    The construction and processing of four test lasers are discussed, and the test results are assessed. Tests show that the best performance was obtained from cathodes made from internally oxidized Ag-Cu alloys or pure Cu. Due to the cold cathode technology developments, sealed-off 1 w CO2 lasers with gas volumes of only 50 cu cm were duplicated, and have performed satisfactorily for more than 6000 hours.

  5. Alternative cathodes for molten carbonate fuel cells

    SciTech Connect

    Bloom, I.; Lanagan, M.; Roche, M.F.; Krumpelt, M.

    1996-02-01

    Argonne National Laboratory (ANL) is developing advanced cathodes for pressurized operation of the molten carbonate fuel cell (MCFC). The present cathode, lithiated nickel oxide, tends to transport to the anode of the MCFC, where it is deposited as metallic nickel. The rate of transport increases with increasing CO{sub 2} pressure. This increase is due to an increased solubility of nickel oxide (NiO) in the molten carbonate electrolyte. An alternative cathode is lithium cobaltate (LiCoO{sub 2})-Solid solutions of LiCoO{sub 2} in LiFeO{sub 2} show promise for long-lived cathode materials. We have found that small additions of LiCoO{sub 2} to LiFeO{sub 2} markedly decrease the resistivity of the cathode material. Cells containing the LiCoO{sub 2}-LiFeO{sub 2} cathodes have stable performance for more than 2100 h of operation and display lower cobalt migration.

  6. Monochromatic imaging of cathodic arc plasma

    SciTech Connect

    Kinrot, U.; Goldsmith, S.; Boxman, R.L.

    1996-02-01

    Vacuum arc deposition (VAD) is an increasingly studied and applied technology that offers potential advantages such as high deposition rates, low deposition temperatures, and good adhesion. In the cathodic vacuum arc, minute hot areas on the cathode surface (``cathode spots``) emit highly ionized metallic plasma jets. Deposition of the cathode material is formed by placing a substrate in the plasma stream. Ceramic thin films such as TiN, SnO{sub 2}, and TiO{sub 2} can be deposited using VAD in the presence of a reactive gas. Plasma parameters such as the density of the various ionic components, ionic kinetic energy, electron temperature, and ion-excited state population densities, all have an important role in the film growth mechanism in VAD and largely affect the film characteristics (structure, morphology, stoichiometry, adhesion, uniformity, thickness, etc.). In the case of ceramic films, the interaction between the expanding plasma and the ambient gas is very important, but poorly understood. Here, monochromatic imaging is presented as a powerful tool for plasma diagnostics, and specifically for the investigation of cathodic vacuum arc plasma. Two-dimensional (2-D) monochromatic images in the visible region of an aluminum cathodic arc burning in helium background gas are presented. Inversion of Abel`s integral enables a reconstruction of the spatial distribution of the plasma emission coefficient. The qualitative and sometimes quantitative nature of the interaction between the expanding plasma and the ambient gas can be visualized with this technique.

  7. Ir-coated dispenser cathode for CRT

    NASA Astrophysics Data System (ADS)

    Kimura, Sakae; Yakabe, Toru; Matsumoto, Sadao; Miyazaki, Daisuke; Yoshii, Tsuyoshi

    1990-12-01

    A compact dispenser cathode has been developed for application to CRTs. A cathode emitter, comprising BaO, CaO, and Al2O3 in a molar ratio of 4:1:1, was impregnated into a porous tungsten pellet. An intermetallic compound of tungsten and iridium was formed on the cathode pellet. Heater ratings were 6.3 V x 0.2 A. Emission characteristics were measured by using color CRTs. As a result, a cathode peak loading of 15 A/sq cm was ensured in the space-charge region. Furthermore, life tests with a peak loading of 7.5 A/sq cm were conducted over 10,000 h. The decrease in emission current after 10 000 h was within only 10 percent of the initial value. Reliability of cathode performance was assured in terms of breakdown potential between the heater and the cathode, emission characteristics, life performance, grid emission, and the drift in cutoff potential. In addition, the effects of the coating thickness on the emission characteristics are discussed.

  8. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    SciTech Connect

    Harlan U. Anderson; Fatih Dogan; Vladimir Petrovsky

    2003-03-31

    This report represents a summary of the work carried out on this project which started October 1999 and ended March 2003. A list of the publications resulting from the work are contained in Appendix A. The most significant achievements are: (1) Dense nanocrystalline zirconia and ceria films were obtained at temperatures < 400 C. (2) Nanocrystalline films of both ceria and zirconia were characterized. (3) We showed that under anodic conditions 0.5 to 1 micron thick nanocrystalline films of Sc doped zirconia have sufficient electronic conductivity to prevent them from being useful as an electrolyte. (4) We have developed a process by which dense 0.5 to 5 micron thick dense films of either YSZ or ceria can be deposited on sintered porous substrates which serve as either the cathode or anode at temperatures as low as 400 C. (5) The program has provided the research to produce two PhD thesis for students, one is now working in the solid oxide fuel cell field. (6) The results of the research have resulted in 69 papers published, 3 papers submitted or being prepared for publication, 50 oral presentations and 3 patent disclosures.

  9. Plasma processes inside dispenser hollow cathodes

    NASA Astrophysics Data System (ADS)

    Mikellides, Ioannis G.; Katz, Ira; Goebel, Dan M.; Polk, James E.; Jameson, Kristina K.

    2006-06-01

    A two-dimensional fluid model of the plasma and neutral gas inside dispenser orificed hollow cathodes has been developed to quantify plasma processes that ultimately determine the life of the porous emitters inserted in these devices. The model self-consistently accounts for electron emission from the insert as well as for electron and ion flux losses from the plasma. Two cathodes, which are distinctively different in size and operating conditions, have been simulated numerically. It is found that the larger cathode, with outer tube diameter of 1.5cm and orifice diameter of 0.3cm, establishes an effective emission zone that spans approximately the full length of the emitter when operated at a discharge current of 25A and a flow rate of 5.5sccm. The net heating of the emitter is caused by ions that are produced by ionization of the neutral gas inside the tube and are then accelerated by the sheath along the emitter. The smaller cathode, with an outer diameter of 0.635cm and an orifice diameter of 0.1cm, does not exhibit the same operational characteristics. At a flow rate of 4.25sccm and discharge current of 12A, the smaller cathode requires 4.5 times the current density near the orifice and operates with more than 6 times the neutral particle density compared to the large cathode. As a result, the plasma particle density is almost one order of magnitude higher compared to the large cathode. The plasma density in this small cathode is high enough such that the Debye length is sufficiently small to allow "sheath funneling" into the pores of the emitter. By accessing areas deeper into the insert material, it is postulated that the overall emission of electrons is significantly enhanced. The maximum emission current density is found to be about 1A/mm2 in the small cathode, which is about one order of magnitude higher than attained in the large cathode. The effective emission zone in the small cathode extends to about 15% of the emitter length only, and the power

  10. Flying in Two Dimensions

    NASA Astrophysics Data System (ADS)

    Prakash, Manu; Bardon, Thibaut

    2012-11-01

    It has long been proposed that insect flight might have evolved on a fluid interface. Surface of a pond provides an ecological niche which is exploited by a large number of species capable of locomotion on a fluid interface. Here we describe the discovery of constrained flight in two dimensions as a novel mode of locomotion used by water lily beetles (genus Galerucella). Because water lily beetles are also capable of three-dimensional free flight, this novel two-dimensional locomotion provides us with a unique model system to explore both the transition between two and three dimensional flight and the associated energetics. Here we present a comparative analysis of this transition in terms of wing stroke angles associated with two and three dimensional flight, as well as modeling surface tension forces on both the horizontal and vertical axes. Special attention is paid to the dynamics and energetics of flight in two-dimensions, focusing on the interaction of the wing strokes with the fluid interface and the capillary-gravity wave drag associated with two-dimensional propulsion. Current Address: Ecole Polytechnique, France.

  11. Extra Dimensions and ``Branes''

    NASA Astrophysics Data System (ADS)

    Sundrum, Raman

    2011-04-01

    We do not yet know the nature of fundamental physics above the weak scale, but we are about to probe it this decade. It may come in the form of a few new weakly-coupled particles, captured by ordinary Feynman diagrams in standard spacetime, or alternatively in the form of large ``towers'' of new elementary or composite states, requiring a different set of concepts and analytic tools. Extra spatial dimensions provide the simplest, but very rich, class of such possibilities. I will explain how extra-dimensions can provide an elegant and intuitive geometrization of subtle physics, in particular flowing from the powerful AdS/CFT correspondence. This geometrization allows one to ``view'' central issues ranging from electroweak, grand unified, strongly-coupled, flavor, supersymmetry, or collider physics, in terms of the overlap of extra-dimensional wavefunctions, the curvature (``warping'') of the higher dimensional spacetime, and ``branes'' (3-dimensional defects). I will illustrate the kind of physics and experimental signals that flow from the most plausible extra-dimensional scenarios.

  12. Supergravity in twelve dimension

    NASA Astrophysics Data System (ADS)

    Choi, Kang-Sin

    2015-09-01

    We consider supergravity in twelve dimension, whose dimensional reduction yields eleven-dimensional, IIA, and IIB supergravities. This also provides the effective field theory of F-theory. We must take one direction as a compact circle, so that the Poincaré symmetry and the zero-mode field contents are identical to those of eleven-dimensional supergravity. We also have a tower of massive Kaluza-Klein states to be viewed as the wrapping modes of M2-branes. The twelfth dimension decompactifies only if other two directions are compactified on a torus, restoring different ten dimensional Poincaré symmetry of IIB supergravity, whose missing graviton is provided by components of the rank three tensor field. This condition prevents us from violating the condition on the maximal number of real supercharges, which should be thirty-two. The self-duality condition of the IIB four-form fields is understood from twelve-dimensional Hodge duality. In this framework T-duality is re-interpreted as taking different compactification routes.

  13. Segmented cold cathode display panel

    NASA Technical Reports Server (NTRS)

    Payne, Leslie (Inventor)

    1998-01-01

    The present invention is a video display device that utilizes the novel concept of generating an electronically controlled pattern of electron emission at the output of a segmented photocathode. This pattern of electron emission is amplified via a channel plate. The result is that an intense electronic image can be accelerated toward a phosphor thus creating a bright video image. This novel arrangement allows for one to provide a full color flat video display capable of implementation in large formats. In an alternate arrangement, the present invention is provided without the channel plate and a porous conducting surface is provided instead. In this alternate arrangement, the brightness of the image is reduced but the cost of the overall device is significantly lowered because fabrication complexity is significantly decreased.

  14. Localized cathodic protection of simulated prestressed concrete pilings in sea water

    SciTech Connect

    Hartt, W.H.; Chaix, O.; Kessler, R.J.; Powers, R.

    1994-12-31

    Corrosion induced deterioration of prestressed concrete pilings in sea water has been established as the predominant failure mode for structures in coastal Florida waters, and a technology involving localized impressed current cathodic protection of the splash zone region in association with conductive rubber anodes has been developed to mitigate this. In the present research a series of experiments involving simulated prestressed concrete piling specimens partially immersed in sea water while cathodically protected has been performed. Variables included (1) concrete mix design, (2) specimen cross section, (3) anode dimensions and (4) water level relative to the anode. An interactive aspect of cathodic protection operating parameters in association with water level was identified as important to avoid excessively negative potentials which might cause tendon embrittlement. An evaluation of the data was incitive with regard to the interrelationship between depolarization magnitude, potential and level of protection; and this was determined to be a function of moisture content within the concrete. The results are discussed within the context of prestressed concrete bridge piling cathodic protection.

  15. Experimental Investigation of Thruster Cathode Physics

    NASA Astrophysics Data System (ADS)

    Crofton, Mark

    2004-11-01

    Advanced ion propulsion technologies are being developed under the Nuclear Electric Xenon Ion System (NEXIS) program for use in outer planet exploration. A revolutionary approach to thruster cathode design is dictated by the very high lifetime and propellant throughput requirements for nuclear electric applications. In conventional dispenser hollow cathodes used in thrusters, processes leading to depletion, inadequate transport, or insufficient production of barium are among those limiting the lifetime. A reservoir hollow cathode is being developed to address each of these failure mechanisms, exploiting four design variables - matrix material, source material, geometry, and thermal design - to essentially eliminate established failure modes. The very long anticipated lifetime necessitates new life validation methods to augment or replace the conventional lifetest approach. One important tool for quickly evaluating design changes is the ability to measure barium density inside a hollow cathode and/or in the plume. The dependence of barium density on temperature and other factors is an extremely important indicator of cathode health, particularly if the ratio Ba:BaO is also obtained. Comparison of barium production for reservoir and conventional cathodes will enable an assessment of the efficacy of reservoir designs and the goal of reducing barium consumption at a given emission current level. This study describes benchmark measurements made on a conventional cathode previously operated in a 20-kW NEXIS laboratory engine. Data on cathode operation and life-limiting processes were obtained through direct, real-time monitoring of atoms and molecules. A high-resolution, tunable laser system was employed to detect absorption of the low-density barium atoms inside the cathode. The plume was monitored also, using a quadrupole mass spectrometer to monitor multiple species and measure ion charge ratios. Data obtained with retarding potential analyzers or other means are

  16. Holevo-Schumacher-Westmoreland channel capacity for a class of qudit unital channels

    SciTech Connect

    Cortese, John

    2004-02-01

    Using the unique nature of the average output state of an optimal signalling ensemble, we prove that for a special class of qudit unital channels, the Holevo-Schumacher-Westmoreland channel capacity is C=log{sub 2}(d)-min{sub {rho}}S(E({rho})), where d is the dimension of the qudit. The result is extended to products of the same class of unital qudit channels. Thus, the connection between the minimum von Neumann entropy at the channel output and the transmission rate for classical information over quantum channels extends beyond the qubit domain.

  17. Channel catfish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book chapter provides a comprehensive overview of channel catfish aquaculture. Sections include fish biology; commercial culture; culture facilities; production practices; water quality management; nutrition, feeding and feed formulation; infectious diseases; harvesting and processing; and the...

  18. Compact Rare Earth Emitter Hollow Cathode

    NASA Technical Reports Server (NTRS)

    Watkins, Ronald; Goebel, Dan; Hofer, Richard

    2010-01-01

    A compact, high-current, hollow cathode utilizing a lanthanum hexaboride (LaB6) thermionic electron emitter has been developed for use with high-power Hall thrusters and ion thrusters. LaB6 cathodes are being investigated due to their long life, high current capabilities, and less stringent xenon purity and handling requirements compared to conventional barium oxide (BaO) dispenser cathodes. The new cathode features a much smaller diameter than previously developed versions that permit it to be mounted on axis of a Hall thruster ( internally mounted ), as opposed to the conventional side-mount position external to the outer magnetic circuit ("externally mounted"). The cathode has also been reconfigured to be capable of surviving vibrational loads during launch and is designed to solve the significant heater and materials compatibility problems associated with the use of this emitter material. This has been accomplished in a compact design with the capability of high-emission current (10 to 60 A). The compact, high-current design has a keeper diameter that allows the cathode to be mounted on the centerline of a 6- kW Hall thruster, inside the iron core of the inner electromagnetic coil. Although designed for electric propulsion thrusters in spacecraft station- keeping, orbit transfer, and interplanetary applications, the LaB6 cathodes are applicable to the plasma processing industry in applications such as optical coatings and semiconductor processing where reactive gases are used. Where current electrical propulsion thrusters with BaO emitters have limited life and need extremely clean propellant feed systems at a significant cost, these LaB6 cathodes can run on the crudest-grade xenon propellant available without impact. Moreover, in a laboratory environment, LaB6 cathodes reduce testing costs because they do not require extended conditioning periods under hard vacuum. Alternative rare earth emitters, such as cerium hexaboride (CeB6) can be used in this

  19. Jamming of Cylindrical Grains in Vertical Channels

    NASA Astrophysics Data System (ADS)

    Baxter, G. William; Spier, Gregory; Barr, Nicholas; Steel, Fiona

    2012-02-01

    We study jamming of low aspect-ratio cylindrical Delrin grains in a vertical channel. These cylindrical grains resemble antacid tablets, poker chips, or coins since their height is less than their diameter. Grains are allowed to fall through a vertical channel with a square cross section where the channel width is greater than the diameter of a grain and constant throughout the length of the channel with no obstructions or constrictions. Within this channel, grains are sometimes observed to form jams, stable structures supported by the channel walls with no support beneath them. The probability of jam occurrence and the strength or robustness of a jam is effected by the grain dimensions and channel size. We will present experimental measurements of the jamming probability and jam strength in this system and discuss the relationship of these results to other experiments and theories.

  20. Virtual cathode microwave generator having annular anode slit

    SciTech Connect

    Kwan, T.J.T.; Snell, C.M.

    1988-03-08

    A microwave generator using an oscillating virtual cathode is described comprising: a cathode for emitting electrons; an anode for accelerating emitted electrons from the cathode, the anode having an annular slit therethrough effective for forming the virtual cathode and having at least one range thickness relative to electrons reflected from the virtual cathode; and magnet means for producing a magnetic field having a field strength effective to form an annular beam from the emitted electrons in substantial alignment with the annular anode slit and to enable the electrons reflected from the virtual cathode to axially diverge from the annular beam. The reflected electrons return toward the cathode diverge from the annular beam and are absorbed by the anode to substantially eliminate electrons reflexing between the cathode and the virtual cathode.

  1. Improved cathode materials for microbial electrosynthesis

    SciTech Connect

    Zhang, T; Nie, HR; Bain, TS; Lu, HY; Cui, MM; Snoeyenbos-West, OL; Franks, AE; Nevin, KP; Russell, TP; Lovley, DR

    2013-01-01

    Microbial electrosynthesis is a promising strategy for the microbial conversion of carbon dioxide to transportation fuels and other organic commodities, but optimization of this process is required for commercialization. Cathodes which enhance electrode-microbe electron transfer might improve rates of product formation. To evaluate this possibility, biofilms of Sporomusa ovata, which are effective in acetate electrosynthesis, were grown on a range of cathode materials and acetate production was monitored over time. Modifications of carbon cloth that resulted in a positive-charge enhanced microbial electrosynthesis. Functionalization with chitosan or cyanuric chloride increased acetate production rates 6-7 fold and modification with 3-aminopropyltriethoxysilane gave rates 3-fold higher than untreated controls. A 3-fold increase in electrosynthesis over untreated carbon cloth cathodes was also achieved with polyaniline cathodes. However, not all strategies to provide positively charged surfaces were successful, as treatment of carbon cloth with melamine or ammonia gas did not stimulate acetate electrosynthesis. Treating carbon cloth with metal, in particular gold, palladium, or nickel nanoparticles, also promoted electrosynthesis, yielding electrosynthesis rates that were 6-,4.7- or 4.5-fold faster than the untreated control, respectively. Cathodes comprised of cotton or polyester fabric treated with carbon nanotubes yielded cathodes that supported acetate electrosynthesis rates that were similar to 3-fold higher than carbon cloth controls. Recovery of electrons consumed in acetate was similar to 80% for all materials. The results demonstrate that one approach to increase rates of carbon dioxide reduction in microbial electrosynthesis is to modify cathode surfaces to improve microbe-electrode interactions.

  2. 2013 Estorm - Invited Paper - Cathode Materials Review

    SciTech Connect

    Daniel, Claus; Mohanty, Debasish; Li, Jianlin; Wood III, David L

    2014-01-01

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403 431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783 789) demonstrated a high-energy and high-power LiCoO2 cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.

  3. FRACTAL DIMENSION OF GALAXY ISOPHOTES

    SciTech Connect

    Thanki, Sandip; Rhee, George; Lepp, Stephen E-mail: grhee@physics.unlv.edu

    2009-09-15

    In this paper we investigate the use of the fractal dimension of galaxy isophotes in galaxy classification. We have applied two different methods for determining fractal dimensions to the isophotes of elliptical and spiral galaxies derived from CCD images. We conclude that fractal dimension alone is not a reliable tool but that combined with other parameters in a neural net algorithm the fractal dimension could be of use. In particular, we have used three parameters to segregate the ellipticals and lenticulars from the spiral galaxies in our sample. These three parameters are the correlation fractal dimension D {sub corr}, the difference between the correlation fractal dimension and the capacity fractal dimension D {sub corr} - D {sub cap}, and, thirdly, the B - V color of the galaxy.

  4. Multiple cathodic reaction mechanisms in seawater cathodic biofilms operating in sediment microbial fuel cells.

    PubMed

    Babauta, Jerome T; Hsu, Lewis; Atci, Erhan; Kagan, Jeff; Chadwick, Bart; Beyenal, Haluk

    2014-10-01

    In this study, multiple reaction mechanisms in cathodes of sediment microbial fuel cells (SMFCs) were characterized by using cyclic voltammetry and microelectrode measurements of dissolved oxygen and pH. The cathodes were acclimated in SMFCs with sediment and seawater from San Diego Bay. Two limiting current regions were observed with onset potentials of approximately +400 mVAg/AgCl for limiting current I and -120 mVAg/AgCl for limiting current II. The appearance of two catalytic waves suggests that multiple cathodic reaction mechanisms influence cathodic performance. Microscale oxygen concentration measurements showed a zero surface concentration at the electrode surface for limiting current II but not for limiting current I, which allowed us to distinguish limiting current II as the conventional oxygen reduction reaction and limiting current I as a currently unidentified cathodic reaction mechanism. Microscale pH measurements further confirmed these results. PMID:25154833

  5. Correlation dimension Wonderland theorems

    NASA Astrophysics Data System (ADS)

    Carvalho, Silas L.; de Oliveira, César R.

    2016-06-01

    Existence of generic sets of self-adjoint operators, related to correlation dimensions of spectral measures, is investigated in separable Hilbert spaces. Typical results say that, given an orthonormal basis, the set of operators whose corresponding spectral measures are both 0-lower and 1-upper correlation dimensional is generic. The proofs rely on details of the relations among Fourier transform of spectral measures and Hausdorff and packing measures on the real line. Then such results are naturally combined with the Wonderland theorem. Applications are to classes of discrete one-dimensional Schrödinger operators and general (bounded) self-adjoint operators as well. Physical consequences include a proof of exotic dynamical behavior of singular continuous spectrum in some settings.

  6. Action languages: Dimensions, effects

    NASA Technical Reports Server (NTRS)

    Hayes, Daniel G.; Streeter, Gordon

    1989-01-01

    Dimensions of action languages are discussed for communication between humans and machines, and the message handling capabilities of object oriented programming systems are examined. Design of action languages is seen to be very contextual. Economical and effective design will depend on features of situations, the tasks intended to be accomplished, and the nature of the devices themselves. Current object oriented systems turn out to have fairly simple and straightforward message handling facilities, which in themselves do little to buffer action or even in some cases to handle competing messages. Even so, it is possible to program a certain amount of discretion about how they react to messages. Such thoughtfulness and perhaps relative autonomy of program modules seems prerequisite to future systems to handle complex interactions in changing situations.

  7. Phenomenology of Extra Dimensions

    SciTech Connect

    Hewett, J.L.; /SLAC

    2006-11-07

    If the structure of spacetime is different than that readily observed, gravitational physics, particle physics and cosmology are all immediately affected. The physics of extra dimensions offers new insights and solutions to fundamental questions arising in these fields. Novel ideas and frameworks are continuously born and evolved. They make use of string theoretical features and tools and they may reveal if and how the 11-dimensional string theory is relevant to our four-dimensional world. We have outlined some of the experimental observations in particle and gravitational physics as well as astrophysical and cosmological considerations that can constrain or confirm these scenarios. These developing ideas and the wide interdisciplinary experimental program that is charted out to investigate them mark a renewed effort to describe the dynamics behind spacetime. We look forward to the discovery of a higher dimensional spacetime.

  8. Logical-rules and the classification of integral dimensions: individual differences in the processing of arbitrary dimensions

    PubMed Central

    Blunden, Anthea G.; Wang, Tony; Griffiths, David W.; Little, Daniel R.

    2015-01-01

    A variety of converging operations demonstrate key differences between separable dimensions, which can be analyzed independently, and integral dimensions, which are processed in a non-analytic fashion. A recent investigation of response time distributions, applying a set of logical rule-based models, demonstrated that integral dimensions are pooled into a single coactive processing channel, in contrast to separable dimensions, which are processed in multiple, independent processing channels. This paper examines the claim that arbitrary dimensions created by factorially morphing four faces are processed in an integral manner. In two experiments, 16 participants completed a categorization task in which either upright or inverted morph stimuli were classified in a speeded fashion. Analyses focused on contrasting different assumptions about the psychological representation of the stimuli, perceptual and decisional separability, and the processing architecture. We report consistent individual differences which demonstrate a mixture of some observers who demonstrate coactive processing with other observers who process the dimensions in a parallel self-terminating manner. PMID:25620941

  9. Information geometry of Gaussian channels

    SciTech Connect

    Monras, Alex; Illuminati, Fabrizio

    2010-06-15

    We define a local Riemannian metric tensor in the manifold of Gaussian channels and the distance that it induces. We adopt an information-geometric approach and define a metric derived from the Bures-Fisher metric for quantum states. The resulting metric inherits several desirable properties from the Bures-Fisher metric and is operationally motivated by distinguishability considerations: It serves as an upper bound to the attainable quantum Fisher information for the channel parameters using Gaussian states, under generic constraints on the physically available resources. Our approach naturally includes the use of entangled Gaussian probe states. We prove that the metric enjoys some desirable properties like stability and covariance. As a by-product, we also obtain some general results in Gaussian channel estimation that are the continuous-variable analogs of previously known results in finite dimensions. We prove that optimal probe states are always pure and bounded in the number of ancillary modes, even in the presence of constraints on the reduced state input in the channel. This has experimental and computational implications. It limits the complexity of optimal experimental setups for channel estimation and reduces the computational requirements for the evaluation of the metric: Indeed, we construct a converging algorithm for its computation. We provide explicit formulas for computing the multiparametric quantum Fisher information for dissipative channels probed with arbitrary Gaussian states and provide the optimal observables for the estimation of the channel parameters (e.g., bath couplings, squeezing, and temperature).

  10. Studies on an experimental quartz tube hollow cathode

    NASA Technical Reports Server (NTRS)

    Siegfried, D. E.; Wilbur, P. J.

    1979-01-01

    An experimental study is described in which a quartz tube, hollow cathode was operated in a test fixture allowing the simultaneous measurement of internal cathode pressure, insert temperature profiles, and the emission currents from various cathode components as a function of discharge current and propellant (mercury) mass flow rate for a number of different cathode orifice diameters. Results show that the insert temperature profile is essentially independent of orifice diameter but depends strongly on internal cathode pressure and emission current. The product of internal cathode pressure and insert diameter is shown to be important in determining the emission location and the minimum keeper voltage.

  11. Composite and diamond cold cathode materials

    SciTech Connect

    Worthington, M.S.; Wheeland, C.L.; Ramacher, K.; Doyle, E.

    1996-12-31

    Cold-cathode technology for Crossed-Field Amplifiers (CFAs) has not changed significantly over the last thirty years. The material typically used for cold cathode CFAs is either platinum (Pt) or beryllium (Be), although numerous other materials with higher secondary electron emission ratios have been tested. Beryllium cathodes display higher secondary emission ratios, {approximately} 3.4, than Pt, but require a partial pressure of oxygen to maintain a beryllium oxide (BeO) surface layer. These dispensers limit the life of the CFA, both directly, due to oxygen-source filament burnout, and indirectly, by the production of undesirable gases which adversely affect the performance of the CFA. In an attempt to reduce or eliminate the required oxygen dispenser output level, cathodes were constructed from three varieties of Be/BeO composite material and tested in L-4808s, standard forward-wave AEGIS CFAs. Diamond and diamond-like carbons are desirable as cathode materials because of their extremely high secondary electron emission ratio, greater than 20, but their use has previously been prohibitive because of cost, available, and physical characteristics. Because of recent advances in diamond growth technology it is now possible to deposit thin layers of diamond on a variety of geometric objects. In coordination with Penn State University four annular diamond emitters have been fabricated. The diamond emitters will be tested in a standard AEGIS CFA, both under vacuum and with a partial pressure of hydrogen.

  12. RHETT/EPDM Flight Hollow Cathode

    NASA Technical Reports Server (NTRS)

    Manzella, David; Patterson, Michael; Pastel, Michael

    1997-01-01

    Under the sponsorship of the BMDO Russian Hall Electric Thruster Technology program two xenon hollow cathodes, a flight unit and a flight spare were fabricated, acceptance tested and delivered to the Naval Research Laboratory for use on the Electric Propulsion Demonstration Module. These hollow cathodes, based on the International Space Station plasma contactor design, were fabricated at the NASA Lewis Research Center for use with a D-55 anode layer thruster in the first on-orbit operational application of this technology. The 2.2 Ampere nominal emission current of this device was obtained with a xenon flow rate of 0.6 mg/s. Ignition of the cathode discharge was accomplished through preheating the active electron emitter with a resistive heating element before application of a 650 volt ignition pulse between the emitter and an external starting electrode. The successful acceptance testing of the Electric Propulsion Demonstration Module utilizing these cathodes demonstrated the suitability of cathodes based on barium impregnated inserts in an enclosed keeper configuration for use with Hall thruster propulsion systems.

  13. A model of dispenser cathode activity

    NASA Astrophysics Data System (ADS)

    Lamartine, B. C.; Eyink, K. G.; Czarnecki, J. V.; Lampert, W. V.; Haas, T. W.

    1985-12-01

    A semiquantitative model of dispenser cathode activity based on recent work on the co-adsorption of Ba and O onto W surfaces is presented. The co-adsorption studies have determined the shape of a three-dimensional surface of work function as a function of θO and θBa, the surface coverages of O and Ba, respectively. Compositions of a variety of pedigreed dispenser cathodes were fitted to this surface and their composition changes during lifetime were modeled. Changes of surface composition with temperature and of workfunction, φ, with temperature were also found to fit these curves. The concept of a patchy surface implied by the co-adsorption measurements was used to explain earlier results on the shape of the X-ray excited Ba MNN Auger feature. Finally, SIMS measurements under UHV conditions was found to provide an extremely sensitive measurement of surface composition in the region of surface coverages of interest in the study of cathode phenomena. Extensions of this work to other types of cathodes such as M-types, and rhenium substrate cathodes is also discussed.

  14. Spindt cold cathode electron gun development program

    NASA Technical Reports Server (NTRS)

    Spindt, C. A.

    1983-01-01

    A thin film field emission cathode array and an electron gun based on this emitter array are summarized. Fabricating state of the art cathodes for testing at NASA and NRL, advancing the fabrication technology, developing wedge shaped emitters, and performing emission tests are covered. An anistropic dry etching process (reactive ion beam etching) developed that leads to increasing the packing density of the emitter tips to about 5 x 10 to the 6th power/square cm. Tests with small arrays of emitter tips having about 10 tips has demonstrated current densities of over 100 A/sq cm. Several times using cathodes having a packing density of 1.25 x 10 to the 6th power tips/sq cm. Indications are that the higher packing density achievable with the dry etch process may extend this capability to the 500 A/sq cm range and beyond. The wedge emitter geometry was developed and shown to produce emission. This geometry can (in principle) extend the current density capability of the cathodes beyond the 500 A/sq cm level. An emission microscope was built and tested for use with the cathodes.

  15. Nanoscale Surface Modification of Lithium-Rich Layered-Oxide Composite Cathodes for Suppressing Voltage Fade.

    PubMed

    Zheng, Fenghua; Yang, Chenghao; Xiong, Xunhui; Xiong, Jiawen; Hu, Renzong; Chen, Yu; Liu, Meilin

    2015-10-26

    Lithium-rich layered oxides are promising cathode materials for lithium-ion batteries and exhibit a high reversible capacity exceeding 250 mAh g(-1) . However, voltage fade is the major problem that needs to be overcome before they can find practical applications. Here, Li1.2 Mn0.54 Ni0.13 Co0.13 O2 (LLMO) oxides are subjected to nanoscale LiFePO4 (LFP) surface modification. The resulting materials combine the advantages of both bulk doping and surface coating as the LLMO crystal structure is stabilized through cationic doping, and the LLMO cathode materials are protected from corrosion induced by organic electrolytes. An LLMO cathode modified with 5 wt % LFP (LLMO-LFP5) demonstrated suppressed voltage fade and a discharge capacity of 282.8 mAh g(-1) at 0.1 C with a capacity retention of 98.1 % after 120 cycles. Moreover, the nanoscale LFP layers incorporated into the LLMO surfaces can effectively maintain the lithium-ion and charge transport channels, and the LLMO-LFP5 cathode demonstrated an excellent rate capacity. PMID:26335589

  16. A Li-O₂/air battery using an inorganic solid-state air cathode.

    PubMed

    Wang, Xiaofei; Zhu, Ding; Song, Ming; Cai, Shengrong; Zhang, Lei; Chen, Yungui

    2014-07-23

    The "(-) lithium (Li) anode|organic anolyte + inorganic catholyte|solid-state cathode (+)" Li-O2/air battery based on an inorganic solid-state air cathode was fabricated with a simple method. The electrochemical performance and reaction products of the Li-O2/air batteries under pure O2 and ambient air were investigated, respectively. The inorganic Li-ion conductive solid-state electrolyte Li1.3Al0.3Ti1.7(PO4)3 was stable during cycling and avoided the decomposition and volatilization problems that conventional organic electrolytes faced. Moreover, the porous air cathode provided a sufficient gas-phase O2-transport channel, facilitating the achievement of a high capacity of 14192 or 7869 mA h g(-1) under pure O2 or ambient air, respectively. Our results demonstrate that the Li-O2/air battery using an inorganic porous air cathode has a great potential for practical application. PMID:24959838

  17. Influence of the transverse dimension on the structure and properties of dc glow discharges

    SciTech Connect

    Bogdanov, E. A.; Adams, S. F.; Demidov, V. I.; Kudryavtsev, A. A.; Williamson, J. M.

    2010-10-15

    Two-dimensional (2D) simulations of a dc glow discharge with a cold cathode in argon have been performed for various radii of the discharge tube. It is shown that the loss of the charged particles to the walls can significantly affect plasma parameters as well as properties of the cathode sheath. The longitude dimensions of the negative glow and Faraday dark space depend on the transverse loss of the charge particles and are not consistently predicted with a 1D model. The common assumption that the cathode sheath can be analyzed independently of the plasma also may not be valid. The transverse inhomogeneity of the plasma leads to a change in the current density distribution over the cathode surface. The thickness of the cathode sheath can vary with radial distance from the discharge axis, even for the case of negligible radial loss of the charge particles. The 2D model results provide an analysis of the conditions of applicability of the 1D model.

  18. Field free, directly heated lanthanum boride cathode

    DOEpatents

    Leung, Ka-Ngo; Moussa, D.; Wilde, S.B.

    1987-02-02

    A directly heated cylindrical lanthanum boride cathode assembly is disclosed which minimizes generation of magnetic field which would interfere with electron emission from the cathode. The cathode assembly comprises a lanthanum boride cylinder in electrical contact at one end with a central support shaft which functions as one electrode to carry current to the lanthanum boride cylinder and in electrical contact, at its opposite end with a second electrode which is coaxially position around the central support shaft so that magnetic fields generated by heater current flowing in one direction through the central support shaft are cancelled by an opposite magnetic field generated by current flowing through the lanthanum boride cylinder and the coaxial electrode in a direction opposite to the current flow in the central shaft.

  19. Field free, directly heated lanthanum boride cathode

    DOEpatents

    Leung, Ka-Ngo; Moussa, David; Wilde, Stephen B.

    1991-01-01

    A directly heated cylindrical lanthanum boride cathode assembly is disclosed which minimizes generation of magnetic fields which would interfere with electron emission from the cathode. The cathode assembly comprises a lanthanum boride cylinder in electrical contact at one end with a central support shaft which functions as one electrode to carry current to the lanthanum boride cylinder and in electrical contact, at its opposite end with a second electrode which is coaxially position around the central support shaft so that magnetic fields generated by heater current flowing in one direction through the central support shaft are cancelled by an opposite magnetic field generated by current flowing through the lanthanum boride cylinder and the coaxial electrode in a direction opposite to the current flow in the central shaft.

  20. Filtered cathodic arc deposition apparatus and method

    DOEpatents

    Krauss, Alan R.

    1999-01-01

    A filtered cathodic arc deposition method and apparatus for the production of highly dense, wear resistant coatings which are free from macro particles. The filtered cathodic arc deposition apparatus includes a cross shaped vacuum chamber which houses a cathode target having an evaporable surface comprised of the coating material, means for generating a stream of plasma, means for generating a transverse magnetic field, and a macro particle deflector. The transverse magnetic field bends the generated stream of plasma in the direction of a substrate. Macro particles are effectively filtered from the stream of plasma by traveling, unaffected by the transverse magnetic field, along the initial path of the plasma stream to a macro particle deflector. The macro particle deflector has a preformed surface which deflects macro particles away from the substrate.

  1. Modeling dioxygen reduction at multicopper oxidase cathodes.

    PubMed

    Agbo, Peter; Heath, James R; Gray, Harry B

    2014-10-01

    We report a general kinetics model for catalytic dioxygen reduction on multicopper oxidase (MCO) cathodes. Our rate equation combines Butler-Volmer (BV) electrode kinetics and the Michaelis-Menten (MM) formalism for enzymatic catalysis, with the BV model accounting for interfacial electron transfer (ET) between the electrode surface and the MCO type 1 copper site. Extending the principles of MM kinetics to this system produced an analytical expression incorporating the effects of subsequent intramolecular ET and dioxygen binding to the trinuclear copper cluster into the cumulative model. We employed experimental electrochemical data on Thermus thermophilus laccase as benchmarks to validate our model, which we suggest will aid in the design of more efficient MCO cathodes. In addition, we demonstrate the model's utility in determining estimates for both the electronic coupling and average distance between the laccase type-1 active site and the cathode substrate. PMID:25188422

  2. Advanced rechargeable sodium batteries with novel cathodes

    NASA Technical Reports Server (NTRS)

    Distefano, S.; Ratnakumar, B. V.; Bankston, C. P.

    1989-01-01

    Various high energy density rechargeable batteries are being considered for future space applications. Of these, the sodium sulfur battery is one of the leading candidates. The primary advantage is the high energy density (760 Wh/kg theoretical). Energy densities in excess of 180 Wh/kg have been realized in practical batteries. More recently, cathodes other than sulfur are being evaluated. Researchers at JPL are evaluating various new cathode materials for use in high energy density sodium batteries for advanced space applications. The approach is to carry out basic electrochemical studies of these materials in a sodium cell configuration in order to understand their fundamental behaviors. Thus far studies have focused on alternate metal chlorides such as CuCl2 and organic cathode materials such as tetracyanoethylene (TCNE).

  3. Advanced rechargeable sodium batteries with novel cathodes

    NASA Technical Reports Server (NTRS)

    Di Stefano, S.; Ratnakumar, B. V.; Bankston, C. P.

    1990-01-01

    Various high energy density rechargeable batteries are being considered for future space applications. Of these, the sodium-sulfur battery is one of the leading candidates. The primary advantage is the high energy density (760 W h/kg theoretical). Energy densities in excess of 180 W h/kg have been realized in practical batteries. More recently, cathodes other than sulfur are being evaluated. Various new cathode materials are presently being evaluated for use in high energy density sodium batteries for advanced space applications. The approach is to carry out basic electrochemical studies of these materials in a sodium cell configuration in order to understand their fundamental behaviors. Thus far, the studies have focussed on alternative metal chlorides such as CuCl2 and organic cathode materials such as TCNE.

  4. Scientific Visualization of Extra Dimensions

    NASA Astrophysics Data System (ADS)

    Black, Don V.

    2010-10-01

    In the 21st Century, many theoretical physicists claim that higher dimensions may indeed exist. Arkani-Hamed, Dimopoulos, & Dvali (ADD) and Randall-Sundrum (RS), in addition to Kaluza-Klein (KK) and M-string theorists, have introduced reasonable explanations for the existence of heretofore ``invisible'' higher dimensions. Whether or not these extra dimensions actually exist is irrelevant to their contributions to the visionary conceptualization associated with novel and improved mathematical and physical analysis. Envisioning extra dimensions beyond the three of common experience is a daunting challenge for three dimensional observers. Intuition relies on experience gained in a three dimensional environment. Gaining experience with virtual four dimensional objects and virtual three manifolds in four-space on a personal computer may provide the basis for an intuitive grasp of four dimensions. This presentation is a video ``outtake'' of the author's research into ``Visualizing Extra Spatial Dimensions'' at the University of California at Irvine.

  5. TRP channels.

    PubMed

    Benemei, Silvia; Patacchini, Riccardo; Trevisani, Marcello; Geppetti, Pierangelo

    2015-06-01

    Evidence is accumulating on the role of transient receptor potential (TRP) channels, namely TRPV1, TRPA1, TRPV4 and TRPM8, expressed by C- and Aδ-fibres primary sensory neurons, in cough mechanism. Selective stimuli for these channels have been proven to provoke and, more rarely, to inhibit cough. More importantly, cough threshold to TRP agonists is increased by proinflammatory conditions, known to favour cough. Off-target effects of various drugs, such as tiotropium or desflurane, seem to produce their protective or detrimental actions on airway irritation and cough via TRPV1 and TRPA1, respectively. Thus, TRPs appear to encode the process that initiates or potentiates cough, activated by exogenous irritants and endogenous proinflammatory mediators. More research on TRP channels may result in innovative cough medicines. PMID:25725213

  6. Effects of cathodic disbonding and blistering on current demand for cathodic protection of coated steel

    SciTech Connect

    Knudsen, O.O.; Steinsmo, U.

    2000-03-01

    Cathodic disbonding, blistering, and current demand for cathodic protection were measured for nine commercial coatings for submerged steel structures. The ASTM-G8 standard test and a long-term test (2 years), simulating North Sea conditions, were used. The relevance of the ASTM-G8 test as a prequalification test was evaluated by comparing cathodic disbonding in the two tests. After 800 days in the long-term test, the correlation to ASTM-G8 was good. The correlation coefficient was 0.98. The current demand for cathodic protection increased when the coatings blistered. Examination of the blisters showed that they had cracked. After 2 years of testing, the current demand only had increased for the thin coatings (< 150 {micro}m). The current demand for the thicker coatings (> 450 {micro}m) had not increased, in spite of significant cathodic disbonding for some coatings. Coating breakdown factors, defined as the ratio between current demand for cathodic protection for the coated samples and samples of bare steel, were calculated. These factors were compared with the design values for cathodic protection in Det Norske Veritas (DNV) RP B401 and NORSOK M-CR-503. For all coatings, the coating breakdown rate was lower than the design values.

  7. Synchrotron Investigations of SOFC Cathode Degradation

    SciTech Connect

    Idzerda, Yves

    2013-09-30

    The atomic variations occurring in cathode/electrolyte interface regions of La{sub 1-x}Sr{sub x}Co{sub y}Fe{sub 1-y}O{sub 3-δ} (LSCF) cathodes and other SOFC related materials have been investigated and characterized using soft X-ray Absorption Spectroscopy (XAS) and diffuse soft X-ray Resonant Scattering (XRS). X-ray Absorption Spectroscopy in the soft X-ray region (soft XAS) is shown to be a sensitive technique to quantify the disruption that occurs and can be used to suggest a concrete mechanism for the degradation. For LSC, LSF, and LSCF films, a significant degradation mechanism is shown to be Sr out-diffusion. By using the XAS spectra of hexavalent Cr in SrCrO4 and trivalent Cr in Cr2O3, the driving factor for Sr segregation was identified to be the oxygen vacancy concentration at the anode and cathode side of of symmetric LSCF/GDC/LSCF heterostructures. This is direct evidence of vacancy induced cation diffusion and is shown to be a significant indicator of cathode/electrolyte interfacial degradation. X-ray absorption spectroscopy is used to identify the occupation of the A-sites and B-sites for LSC, LSF, and LSCF cathodes doped with other transition metals, including doping induced migration of Sr to the anti-site for Sr, a significant cathode degradation indicator. By using spatially resolved valence mapping of Co, a complete picture of the surface electrochemistry can be determined. This is especially important in identifying degradation phenomena where the degradation is spatially localized to the extremities of the electrochemistry and not the average. For samples that have electrochemical parameters that are measured to be spatially uniform, the Co valence modifications were correlated to the effects of current density, overpotential, and humidity.

  8. Beta function and anomalous dimensions

    SciTech Connect

    Pica, Claudio; Sannino, Francesco

    2011-06-01

    We demonstrate that it is possible to determine the coefficients of an all-orders beta-function linear in the anomalous dimensions using as data the 2-loop coefficients together with the first one of the anomalous dimensions which are universal. The beta function allows us to determine the anomalous dimension of the fermion masses at the infrared fixed point, and the resulting values compare well with the lattice determinations.

  9. Johannes Kepler and Extra Dimensions

    NASA Astrophysics Data System (ADS)

    Hendry, Archibald W.

    2004-02-01

    How many dimensions are there? The answer used to be four — three spatial and one time dimension. Maybe it still is, though nowadays we hear that the answer may be more, perhaps many more. Many of our students have heard about this on television or read about it. They want to know more. Why do physicists think we need more than three spatial dimensions? What's the point of it all?

  10. Physics in one dimension

    NASA Astrophysics Data System (ADS)

    van Houselt, A.; Schäfer, J.; Zandvliet, H. J. W.; Claessen, R.

    2013-01-01

    With modern microelectronics moving towards smaller and smaller length scales on the (sub-) nm scale, quantum effects (apart from band structure and band gaps) have begun to play an increasingly important role. This especially concerns dimensional confinement to 2D (high electron mobility transistors and integer/fractional quantum Hall effect physics, graphene and topological insulators) and 1D (with electrical connections eventually reaching the quantum limit). Recent developments in the above-mentioned areas have revealed that the properties of electron systems become increasingly exotic as one progresses from the 3D case into lower dimensions. As compared to 2D electron systems, much less experimental progress has been achieved in the field of 1D electron systems. The main reason for the lack of experimental results in this field is related to the difficulty of realizing 1D electron systems. Atom chains created in quantum mechanical break junction set-ups are too short to exhibit the typically 1D signatures. As an alternative, atomic chains can be produced on crystal surfaces, either via assembling them one-by-one using a scanning tunnelling microscope or via self-assembly. The drawback of the latter systems is that the atomic chains are not truly 1D since they are coupled to the underlying crystal and sometimes even to the neighbouring chains. In retrospect, this coupling turns out to be an absolute necessity in the experiment since true 1D systems are disordered at any non-zero temperature [1]. The coupling to the crystal and/or neighbouring chains shifts the phase transition, for example, a Peierls instability, to a non-zero temperature and thus allows experiments to be performed in the ordered state. Here, we want to emphasize that the electronic properties of the 1D electron system are fundamentally different from its 2D and 3D counterparts. The Fermi liquid theory, which is applicable to 2D and 3D electron systems, breaks down spectacularly in the 1D case