Science.gov

Sample records for cationic dimethyldioctadecylammonium liposomes

  1. Toxicity and immunomodulatory activity of liposomal vectors formulated with cationic lipids toward immune effector cells.

    PubMed

    Filion, M C; Phillips, N C

    1997-10-23

    Liposomal vectors formulated with cationic lipids (cationic liposomes) and fusogenic dioleoylphosphatidylethanolamine (DOPE) have potential for modulating the immune system by delivering gene or antisense oligonucleotide inside immune cells. The toxicity and the immunoadjuvant activity of cationic liposomes containing nucleic acids toward immune effector cells has not been investigated in detail. In this report, we have evaluated the toxicity of liposomes formulated with various cationic lipids towards murine macrophages and T lymphocytes and the human monocyte-like U937 cell line. The effect of these cationic liposomes on the synthesis of two immunomodulators produced by activated macrophages, nitric oxide (NO) and tumor necrosis factor-alpha (TNF-alpha), has also been determined. We have found that liposomes formulated from DOPE and cationic lipids based on diacyltrimethylammonium propane (dioleoyl-, dimyristoyl-, dipalmitoyl-, disteroyl-: DOTAP, DMTAP, DPTAP, DSTAP) or dimethyldioctadecylammonium bromide (DDAB) are highly toxic in vitro toward phagocytic cells (macrophages and U937 cells), but not towards non-phagocytic T lymphocytes. The rank order of toxicity was DOPE/DDAB > DOPE/DOTAP > DOPE/DMTAP > DOPE/DPTAP > DOPE/DSTAP. The ED50's for macrophage toxicity were < 10 nmol/ml for DOPE/DDAB, 12 nmol/ml for DOPE/DOTAP, 50 nmol/ml for DOPE/DMTAP, 400 nmol/ml for DOPE/DPTAP and > 1000 nmol/ml for DOPE/DSTAP. The incorporation of DNA (antisense oligonucleotide or plasmid vector) into the cationic liposomes marginally reduced their toxicity towards macrophages. Although toxicity was observed with cationic lipids alone, it was clearly enhanced by the presence of DOPE. The replacement of DOPE by dipalmitoylphosphatidylcholine (DPPC) significantly reduced liposome toxicity towards macrophages, and the presence of dipalmitoylphosphatidylethanolamine-PEG2000 (DPPE-PEG2000: 10 mol%) in the liposomes completely abolished this toxicity. Cationic liposomes, irrespective of

  2. Modulation of cellular immune response against hepatitis C virus nonstructural protein 3 by cationic liposome encapsulated DNA immunization.

    PubMed

    Jiao, Xuanmao; Wang, Richard Y-H; Feng, Zhiming; Alter, Harvey J; Shih, James Wai-Kuo

    2003-02-01

    A vaccine strategy directed to increase Th1 cellular immune responses, particularly to hepatitis C virus (HCV) nonstructural protein 3 (NS3), has considerable potential to overcome the infection with HCV. DNA vaccination can induce both humoral and cellular immune responses, but it became apparent that the cellular uptake of naked DNA injected into muscle was not very efficient, as much of the DNA is degraded by interstitial nucleases before it reaches the nucleus for transcription. In this paper, cationic liposomes composed of different cationic lipids, such as dimethyl-dioctadecylammonium bromide (DDAB), 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), or 1,2-dioleoyl-sn-glycerol-3-ethylphosphocholine (DOEPC), were used to improve DNA immunization in mice, and their efficiencies were compared. It was found that cationic liposome-mediated DNA immunization induced stronger HCV NS3-specific immune responses than immunization with naked DNA alone. Cationic liposomes composed of DDAB and equimolar of a neutral lipid, egg yolk phosphatidylcholine (EPC), induced the strongest antigen-specific Th1 type immune responses among the cationic liposome investigated, whereas the liposomes composed of 2 cationic lipids, DDAB and DOEPC, induced an antigen-specific Th2 type immune response. All cationic liposomes used in this study triggered high-level, nonspecific IL-12 production in mice, a feature important for the development of maximum Th1 immune responses. In conclusion, the cationic liposome-mediated gene delivery is a viable HCV vaccine strategy that should be further tested in the chimpanzee model. PMID:12540796

  3. Dendritic Cells Stimulated by Cationic Liposomes.

    PubMed

    Vitor, Micaela Tamara; Bergami-Santos, Patrícia Cruz; Cruz, Karen Steponavicius Piedade; Pinho, Mariana Pereira; Barbuto, José Alexandre Marzagão; De La Torre, Lucimara Gaziola

    2016-01-01

    Immunotherapy of cancer aims to harness the immune system to detect and destroy cancer cells. To induce an immune response against cancer, activated dendritic cells (DCs) must present tumor antigens to T lymphocytes of patients. However, cancer patients' DCs are frequently defective, therefore, they are prone to induce rather tolerance than immune responses. In this context, loading tumor antigens into DCs and, at the same time, activating these cells, is a tempting goal within the field. Thus, we investigated the effects of cationic liposomes on the DCs differentiation/maturation, evaluating their surface phenotype and ability to stimulate T lymphocytes proliferation in vitro. The cationic liposomes composed by egg phosphatidylcholine, 1,2-dioleoyl-3-trimethylammonium propane and 1,2-dioleoylphosphatidylethanolamine (50/25/25% molar) were prepared by the thin film method followed by extrusion (65 nm, polydispersity of 0.13) and by the dehydration-rehydration method (95% of the population 107 nm, polydispersity of 0.52). The phenotypic analysis of dendritic cells and the analysis of T lymphocyte proliferation were performed by flow cytometry and showed that both cationic liposomes were incorporated and activated dendritic cells. Extruded liposomes were better incorporated and induced higher CD86 expression for dendritic cells than dehydrated-rehydrated vesicles. Furthermore, dendritic cells which internalized extruded liposomes also provided stronger T lymphocyte stimulation. Thus, cationic liposomes with a smaller size and polydispersity seem to be better incorporated by dendritic cells. Hence, these cationic liposomes could be used as a potential tool in further cancer immunotherapy strategies and contribute to new strategies in immunotherapy. PMID:27398454

  4. Mechanism of oligonucleotide release from cationic liposomes.

    PubMed Central

    Zelphati, O; Szoka, F C

    1996-01-01

    We propose a mechanism for oligonucleotide (ODN) release from cationic lipid complexes in cells that accounts for various observations on cationic lipid-nucleic acid-cell interactions. Fluorescent confocal microscopy of cells treated with rhodamine-labeled cationic liposome/ fluorescein-labeled ODN (F-ODN) complexes show the F-ODN separates from the lipid after internalization and enters the nucleus leaving the fluorescent lipid in cytoplasmic structures. ODN displacement from the complex was studied by fluorescent resonance energy transfer. Anionic liposome compositions (e.g., phosphatidylserine) that mimic the cytoplasmic facing monolayer of the cell membrane released ODN from the complex at about a 1:1 (-/+) charge ratio. Release was independent of ionic strength and pH. Physical separation of the F-ODN from monovalent and multivalent cationic lipids was confirmed by gel electrophoresis. Fluid but not solid phase anionic liposomes are required, whereas the physical state of the cationic lipids does not effect the release. Water soluble molecules with a high negative linear charge density, dextran sulfate, or heparin also release ODN. However, ATP, spermidine, spermine, tRNA, DNA, polyglutamic acid, polylysine, bovine serum albumin, or histone did not release ODN, even at 100-fold charge excess (-/+). Based upon these results, we propose that the complex, after internalization by endocytosis, induces flip-flop of anionic lipids from the cytoplasmic facing monolayer. Anionic lipids laterally diffuse into the complex and form a charged neutralized ion-pair with the cationic lipids. This leads to displacement of the ODN from the cationic lipid and its release into the cytoplasm. Images Fig. 1 Fig. 3 PMID:8876163

  5. Preparation, characterization, and efficient transfection of cationic liposomes and nanomagnetic cationic liposomes

    PubMed Central

    Samadikhah, Hamid Reza; Majidi, Asia; Nikkhah, Maryam; Hosseinkhani, Saman

    2011-01-01

    Purpose Cationic liposomes (CLs) are composed of phospholipid bilayers. One of the most important applications of these particles is in drug and gene delivery. However, using CLs to deliver therapeutic nucleic acids and drugs to target organs has some problems, including low transfection efficiency in vivo. The aim of this study was to develop novel CLs containing magnetite to overcome the deficiencies. Materials and methods CLs and magnetic cationic liposomes (MCLs) were prepared using the freeze-dried empty liposome method. Luciferase-harboring vectors (pGL3) were transferred into liposomes and the transfection efficiencies were determined by luciferase assay. Firefly luciferase is one of most popular reporter genes often used to measure the efficiency of gene transfer in vivo and in vitro. Different formulations of liposomes have been used for delivery of different kinds of gene reporters. Lipoplex (liposome–plasmid DNA complexes) formation was monitored by gel retardation assay. Size and charge of lipoplexes were determined using particle size analysis. Chinese hamster ovary cells were transfected by lipoplexes (liposome-pGL3); transfection efficiency and gene expression level was evaluated by luciferase assay. Results High transfection efficiency of plasmid by CLs and novel nanomagnetic CLs was achieved. Moreover, lipoplexes showed less cytotoxicity than polyethyleneimine and Lipofectamine™. Conclusion Novel liposome compositions (1,2-dipalmitoyl-sn-glycero-3-phosphocholine [DPPC]/dioctadecyldimethylammonium bromide [DOAB] and DPPC/cholesterol/DOAB) with high transfection efficiency can be useful in gene delivery in vitro. MCLs can also be used for targeted gene delivery, due to magnetic characteristic for conduction of genes or drugs to target organs. PMID:22072865

  6. Cationic liposomes evoke proinflammatory mediator release and neutrophil extracellular traps (NETs) toward human neutrophils.

    PubMed

    Hwang, Tsong-Long; Hsu, Ching-Yun; Aljuffali, Ibrahim A; Chen, Chun-Han; Chang, Yuan-Ting; Fang, Jia-You

    2015-04-01

    Cationic liposomes are widely used as nanocarriers for therapeutic and diagnostic purposes. The cationic components of liposomes can induce inflammatory responses. This study examined the effect of cationic liposomes on human neutrophil activation. Cetyltrimethylammonium bromide (CTAB) or soyaethyl morpholinium ethosulfate (SME) was incorporated into liposomes as the cationic additive. The liposomes' cytotoxicity and their induction of proinflammatory mediators, intracellular calcium, and neutrophil extracellular traps (NETs) were investigated. The interaction of the liposomes with the plasma membrane triggered the stimulation of neutrophils. CTAB liposomes induced complete leakage of lactate dehydrogenase (LDH) at all concentrations tested, whereas SME liposomes released LDH in a concentration-dependent manner. CTAB liposomes proved to more effectively activate neutrophils compared with SME liposomes, as indicated by increased superoxide anion and elastase levels. Calcium influx increased 9-fold after treatment with CTAB liposomes. This influx was not changed by SME liposomes compared with the untreated control. Scanning electron microscopy (SEM) and immunofluorescence images indicated the presence of NETs after treatment with cationic liposomes. NETs could be quickly formed, within minutes, after CTAB liposomal treatment. In contrast to this result, NET formation was slowly and gradually increased by SME liposomes, within 4h. Based on the data presented here, it is important to consider the toxicity of cationic liposomes during administration in the body. This is the first report providing evidence of NET production induced by cationic liposomes. PMID:25731102

  7. Temperature-controlled interaction of thermosensitive polymer-modified cationic liposomes with negatively charged phospholipid membranes.

    PubMed

    Kono, K; Henmi, A; Takagishi, T

    1999-09-21

    To obtain cationic liposomes of which affinity to negatively charged membranes can be controlled by temperature, cationic liposomes consisting of 3beta-[N-(N', N'-dimethylaminoethane)carbamoyl]cholesterol and dioleoylphosphatidylethanolamine were modified with poly(N-acryloylpyrrolidine), which is a thermosensitive polymer exhibiting a lower critical solution temperature (LCST) at ca. 52 degrees C. The unmodified cationic liposomes did not change its zeta potential between 20-60 degrees C. The polymer-modified cationic liposomes revealed much lower zeta potential values below the LCST of the polymer than the unmodified cationic liposomes. However, their zeta potential increased significantly above this temperature. The unmodified cationic liposomes formed aggregates and fused intensively with anionic liposomes consisting of egg yolk phosphatidylcholine and phosphatidic acid in the region of 20-60 degrees C, due to the electrostatic interaction. In contrast, aggregation and fusion of the polymer-modified cationic liposomes with the anionic liposomes were strongly suppressed below the LCST. However, these interactions were enhanced remarkably above the LCST. In addition, the polymer-modified cationic liposomes did not cause leakage of calcein from the anionic liposomes below the LCST, but promoted the leakage above this temperature as the unmodified cationic liposomes did. Temperature-induced conformational change of the polymer chains from a hydrated coil to a dehydrated globule might affect the affinity of the polymer-modified cationic liposomes to the anionic liposomes. PMID:10561483

  8. Association between cationic liposomes and low molecular weight hyaluronic acid.

    PubMed

    Gasperini, Antonio A M; Puentes-Martinez, Ximena E; Balbino, Tiago Albertini; Rigoletto, Thais de Paula; Corrêa, Gabriela de Sá Cavalcanti; Cassago, Alexandre; Portugal, Rodrigo Villares; de La Torre, Lucimara Gaziola; Cavalcanti, Leide P

    2015-03-24

    This work presents a study of the association between low molecular weight hyaluronic acid (16 kDa HA) and cationic liposomes composed of egg phosphatidylcholine (EPC), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP). The cationic liposome/HA complexes were evaluated to determine their mesoscopic structure, average size, zeta potential, and morphology as a function of the amount of HA in the system. Small angle X-ray scattering results revealed that neighboring cationic liposomes either stick together after a partial coating of low concentration HA or disperse completely in excess of HA, but they never assemble as multilamellar vesicles. Cryo-transmission electron microscopy images confirm the existence of unilamellar vesicles and large aggregates of unilamellar vesicles for HA fractions up to 80% (w/w). High concentrations of HA (> 20% w/w) proved to be efficient for coating extruded liposomes, leading to particle complexes with sizes in the nanoscale range and a negative zeta potential. PMID:25730494

  9. Nanocomposite liposomes containing quantum dots and anticancer drugs for bioimaging and therapeutic delivery: a comparison of cationic, PEGylated and deformable liposomes

    NASA Astrophysics Data System (ADS)

    Wen, Chih-Jen; Sung, Calvin T.; Aljuffali, Ibrahim A.; Huang, Yu-Jie; Fang, Jia-You

    2013-08-01

    Multifunctional liposomes loaded with quantum dots (QDs) and anticancer drugs were prepared for simultaneous bioimaging and drug delivery. Different formulations, including cationic, PEGylated and deformable liposomes, were compared for their theranostic efficiency. We had evaluated the physicochemical characteristics of these liposomes. The developed liposomes were examined using experimental platforms of cytotoxicity, cell migration, cellular uptake, in vivo melanoma imaging and drug accumulation in tumors. The average size of various nanocomposite liposomes was found to be 92-134 nm. Transmission electron microscopy confirmed the presence of QDs within liposomal bilayers. The incorporation of polyethylene glycol (PEG) and Span 20 into the liposomes greatly increased the fluidity of the bilayers. The liposomes provided sustained release of camptothecin and irinotecan. The cytotoxicity and cell migration assay demonstrated superior activity of cationic liposomes compared with other carriers. Cationic liposomes also showed a significant fluorescence signal in melanoma cells after internalization. The liposomes were intratumorally administered to a melanoma-bearing mouse. Cationic liposomes showed the brightest fluorescence in tumors, followed by classical liposomes. This signal could last for up to 24 h for cationic nanosystems. Intratumoral accumulation of camptothecin from free control was 35 nmol g-1 it could be increased to 50 nmol g-1 after loading with cationic liposomes. However, encapsulation of irinotecan into liposomes did not further increase intratumoral drug accumulation. Cationic liposomes were preferable to other liposomes as nanocarriers in both bioimaging and therapeutic approaches.

  10. Nanocomposite liposomes containing quantum dots and anticancer drugs for bioimaging and therapeutic delivery: a comparison of cationic, PEGylated and deformable liposomes.

    PubMed

    Wen, Chih-Jen; Sung, Calvin T; Aljuffali, Ibrahim A; Huang, Yu-Jie; Fang, Jia-You

    2013-08-16

    Multifunctional liposomes loaded with quantum dots (QDs) and anticancer drugs were prepared for simultaneous bioimaging and drug delivery. Different formulations, including cationic, PEGylated and deformable liposomes, were compared for their theranostic efficiency. We had evaluated the physicochemical characteristics of these liposomes. The developed liposomes were examined using experimental platforms of cytotoxicity, cell migration, cellular uptake, in vivo melanoma imaging and drug accumulation in tumors. The average size of various nanocomposite liposomes was found to be 92–134 nm. Transmission electron microscopy confirmed the presence of QDs within liposomal bilayers. The incorporation of polyethylene glycol (PEG) and Span 20 into the liposomes greatly increased the fluidity of the bilayers. The liposomes provided sustained release of camptothecin and irinotecan. The cytotoxicity and cell migration assay demonstrated superior activity of cationic liposomes compared with other carriers. Cationic liposomes also showed a significant fluorescence signal in melanoma cells after internalization. The liposomes were intratumorally administered to a melanoma-bearing mouse. Cationic liposomes showed the brightest fluorescence in tumors, followed by classical liposomes. This signal could last for up to 24 h for cationic nanosystems. Intratumoral accumulation of camptothecin from free control was 35 nmol g(−1); it could be increased to 50 nmol g(−1) after loading with cationic liposomes. However, encapsulation of irinotecan into liposomes did not further increase intratumoral drug accumulation. Cationic liposomes were preferable to other liposomes as nanocarriers in both bioimaging and therapeutic approaches. PMID:23867977

  11. Enhanced localization of anticancer drug in tumor tissue using polyethylenimine-conjugated cationic liposomes

    NASA Astrophysics Data System (ADS)

    Han, Hee Dong; Byeon, Yeongseon; Jeon, Hat Nim; Shin, Byung Cheol

    2014-05-01

    Liposome-based drug delivery systems hold great potential for cancer therapy. However, to enhance the localization of payloads, an efficient method of systemic delivery of liposomes to tumor tissues is required. In this study, we developed cationic liposomes composed of polyethylenimine (PEI)-conjugated distearoylglycerophosphoethanolamine (DSPE) as an enhanced local drug delivery system. The particle size of DSPE-PEI liposomes was 130 ± 10 nm and the zeta potential of liposomes was increased from -25 to 30 mV by the incorporation of cationic PEI onto the liposomal membrane. Intracellular uptake of DSPE-PEI liposomes by tumor cells was 14-fold higher than that of DSPE liposomes. After intratumoral injection of liposomes into tumor-bearing mice, DSPE-PEI liposomes showed higher and sustained localization in tumor tissue compared to DSPE liposomes. Taken together, our findings suggest that DSPE-PEI liposomes have the potential to be used as effective drug carriers for enhanced intracellular uptake and localization of anticancer drugs in tumor tissue through intratumoral injection.

  12. Delivery of siRNA Using Cationic Liposomes Incorporating Stearic Acid-modified Octa-Arginine.

    PubMed

    Yang, Dongsheng; Li, Yuhuan; Qi, Yuhang; Chen, Yongzhen; Yang, Xuewei; Li, Yujing; Liu, Songcai; Lee, Robert J

    2016-07-01

    Cationic liposomes incorporating stearic acid-modified octa-arginine (StA-R8) were evaluated for survivin small interfering RNA (siRNA) delivery. StA-R8 was synthesized and incorporated into liposomes. The composition of liposomes was optimized. Physicochemical properties, cytotoxicity, cellular uptake and gene silencing activity of the liposomes complexed to survivin siRNA were investigated. The results showed that StA-R8-containing liposomes had reduced cytotoxicity and improved delivery efficiency of siRNA into cancer cells compared with StA-R8 by itself. PMID:27354583

  13. Predicting diffusive transport of cationic liposomes in 3-dimensional tumor spheroids

    PubMed Central

    Wientjes, Michael G.; Yeung, Bertrand Z.; Lu, Ze; Wientjes, M. Guillaume; Au, Jessie L.S.

    2014-01-01

    Nanotechnology is widely used in cancer research. Models that predict nanoparticle transport and delivery in tumors (including subcellular compartments) would be useful tools. This study tested the hypothesis that diffusive transport of cationic liposomes in 3-dimensional (3D) systems can be predicted based on liposome-cell biointerface parameters (binding, uptake, retention) and liposome diffusivity.Liposomes comprising different amounts of cationic and fusogenic lipids (10-30 mol% DOTAP or 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine,1-20 mol% DOPE or 1,2-dioleoyl-3-trimethylammonium-propane, +25 to +44 mV zeta potential) were studied. We (a) measured liposome-cell biointerface parameters in monolayer cultures, and (b) calculated effective diffusivity based on liposome size and spheroid composition. The resulting parameters were used to simulate the liposome concentration-depth profiles in 3D spheroids. The simulated results agreed with the experimental results for liposomes comprising 10-30 mol% DOTAP and ≤10 mol% DOPE, but not for liposomes with higher DOPE content. For the latter, model modifications to account for time-dependent extracellular concentration decrease and liposomesize increase did not improve the predictions. The difference among low- and high-DOPE liposomessuggestsconcentration-dependent DOPE properties in 3D systems that were not captured in monolayers. Taken together, our earlier and present studies indicate the diffusive transport of neutral, anionic and cationic nanoparticles (polystyrene beads and liposomes, 20-135 nm diameter, -49 to +44 mV) in 3D spheroids, with the exception of liposomes comprising >10 mol% DOPE, can be predicted based on the nanoparticle-cell biointerface and nanoparticle diffusivity. Applying the model to low-DOPE liposomes showed that changes in surface charge affected the liposome localization in intratumoralsubcompartments within spheroids. PMID:24995948

  14. A novel cationic liposome formulation for efficient gene delivery via a pulmonary route

    NASA Astrophysics Data System (ADS)

    Li, Peng; Liu, Donghua; Sun, Xiaoli; Liu, Chunxi; Liu, Yongjun; Zhang, Na

    2011-06-01

    The clinical success of gene therapy for lung cancer is not only dependent on efficient gene carriers but also on a suitable delivery route. A pulmonary delivery route can directly deliver gene vectors to the lung which is more efficient than a systemic delivery route. For gene carriers, cationic liposomes have recently emerged as leading non-viral vectors in worldwide gene therapy clinical trials. However, cytotoxic effects or apoptosis are often observed which is mostly dependent on the cationic lipid used. Therefore, an efficient and safe cationic lipid, 6-lauroxyhexyl lysinate (LHLN), previously synthesized by our group was first used to prepare cationic liposomes. Physicochemical and biological properties of LHLN-liposomes were investigated. LHLN-liposome/DNA complexes showed positive surface charge, spherical morphology, a relatively narrow particle size distribution and strong DNA binding capability. Compared with Lipofectamine2000, the new cationic liposome formulation using LHLN exhibited not only lower cytotoxicity (P < 0.05) but also similar transfection efficiency in A549 and HepG2 lung cancer cells for in vitro tests. When administered by intratracheal instillation into rat lungs for in vivo evaluation, LHLN-liposome/DNA complexes exhibited higher pulmonary gene transfection efficiency than Lipofectamine2000/DNA complexes (P < 0.05). These results suggested that LHLN-liposomes may have great potential for efficient pulmonary gene delivery.

  15. The role of surface charge density in cationic liposome-promoted dendritic cell maturation and vaccine-induced immune responses

    NASA Astrophysics Data System (ADS)

    Ma, Yifan; Zhuang, Yan; Xie, Xiaofang; Wang, Ce; Wang, Fei; Zhou, Dongmei; Zeng, Jianqiang; Cai, Lintao

    2011-05-01

    Cationic liposomes have emerged as a novel adjuvant and antigen delivery system to enhance vaccine efficacy. However, the role of surface charge density in cationic liposome-regulated immune responses has not yet been elucidated. In the present study, we prepared a series of DOTAP/DOPC cationic liposomes with different surface densities by incorporating varying amounts of DOPC (a neutral lipid) into DOTAP (a cationic lipid). The results showed that DOTAP/DOPC cationic liposome-regulated immune responses relied on the surface charge density, and might occur through ROS signaling. The liposomes with a relatively high charge density, such as DOTAP/DOPC 5 : 0 and 4 : 1 liposomes, potently enhanced dendritic cell maturation, ROS generaion, antigen uptake, as well as the production of OVA-specific IgG2a and IFN-γ. In contrast, low-charge liposomes, such as DOTAP/DOPC 1 : 4 liposome, failed to promote immune responses even at high concentrations, confirming that the immunoregulatory effect of cationic liposomes is mostly attributable to their surface charge density. Moreover, the DOTAP/DOPC 1 : 4 liposome suppressed anti-OVA antibody responses in vivo. Overall, maintaining an appropriate surface charge is crucial for optimizing the adjuvant effect of cationic liposomes and enhancing the efficacy of liposome-based vaccines.

  16. Surface area of lipid membranes regulates the DNA-binding capacity of cationic liposomes

    NASA Astrophysics Data System (ADS)

    Marchini, Cristina; Montani, Maura; Amici, Augusto; Pozzi, Daniela; Caminiti, Ruggero; Caracciolo, Giulio

    2009-01-01

    We have applied electrophoresis on agarose gels to investigate the DNA-binding capacity of cationic liposomes made of cationic DC-cholesterol and neutral dioleoylphosphatidylethanolamine as a function of membrane charge density and cationic lipid/DNA charge ratio. While each cationic liposome formulation exhibits a distinctive DNA-protection ability, here we show that such a capacity is universally regulated by surface area of lipid membranes available for binding in an aspecific manner. The relevance of DNA protection for gene transfection is also discussed.

  17. [Construction and evaluation of non-specific targeting cationic polymer lipid liposomes].

    PubMed

    Chen, Tao; Wang, Ru-tao; Wang, Zhao; Lu, Ting-li; Zhao, Wen

    2010-03-01

    A new class of dendrimer polylysine poly(ethylene glycol)-lipid was designed and synthesized. The cationic polymer liposomes were prepared by the lipid film-extrusion and post-insertion two methods with these dendrimer polylysine poly(ethylene glycol)-lipid and other lipids. The structural properties of obtained cationic polymer liposomes were studied by laser light scattering and fluorescence spectrometer. It was demonstrated that the nano sized liposomes with different density of surface cationic charges can be prepared by either lipid film-extrusion or post-insertion methods, but post-insertion process did not affect drug loading, did not influence drug loading capacity and did not induce liposomal morphology and particle size. The density of positive charge does not affect the size and distribution of different liposomes size and distribution. It was the better choice for manufacture because post-insertion method did not cause early release of drug and size changes. Cell binding experiments show that cationic polymer liposomes, especially dendrimer polymer liposomes had higher local charge density, and therefore have dramatic non specific cell targeting ability. PMID:21351513

  18. Interaction of cationic liposomes and their DNA complexes with monocytic leukemia cells.

    PubMed

    Pires, P; Simões, S; Nir, S; Gaspar, R; Düzgünes, N; Pedroso de Lima, M C

    1999-04-14

    Cationic liposomes complexed with DNA have been used extensively as non-viral vectors for the intracellular delivery of reporter or therapeutic genes in culture and in vivo. We examined the relationship between the characteristics of the lipoplexes, their mode of interaction with monocytic THP-1 cells and their ability to transfect these cells. We determined the size and zeta potential of cationic liposomes (composed of 1,2-dioleoyl-3-(trimethylammonium) propane (DOTAP) and its mixtures with neutral lipids), and lipoplexes at different (+/-) charge ratios. As the (+/-) charge ratio of the lipoplexes decreased to (1/1), a significant reduction in zeta potential and an increase in size was observed. The increase in size resulted from fusion between liposomes promoted by DNA, as demonstrated by a lipid mixing assay, and from aggregation of the complexes. Interaction of liposomes and lipoplexes with THP-1 cells was assessed by monitoring lipid mixing ('fusion') as well as binding and cell association. While no lipid mixing was observed with the 1/2 (+/-) lipid/DNA complexes, lipoplexes with higher (+/-) charge ratios underwent significant fusion in conjunction with extensive cell binding. Liposome binding to cells was dependent on the positive charge of the liposomes, and their fusion could be modulated by the co-lipid. DOTAP/phosphatidylethanolamine (1:1) liposomes fused with THP-1 cells, unlike DOTAP/phosphatidylcholine (1:1) liposomes, although both liposome types bound to the cells to a similar extent. The use of inhibitors of endocytosis indicated that fusion of the cationic liposomes with cells occurred mainly at the plasma membrane level. The presence of serum increased the size of the cationic liposomes, but not that of the lipoplexes. Low concentrations of serum (3%) completely inhibited the fusion of cationic liposomes with cells, while inhibiting binding by only 20%. Our results suggest that binding of cationic liposomes and lipoplexes to cells is governed

  19. Induction of CD8+ T-cell responses against subunit antigens by the novel cationic liposomal CAF09 adjuvant.

    PubMed

    Korsholm, Karen Smith; Hansen, Jon; Karlsen, Kasper; Filskov, Jonathan; Mikkelsen, Marianne; Lindenstrøm, Thomas; Schmidt, Signe Tandrup; Andersen, Peter; Christensen, Dennis

    2014-06-30

    Vaccines inducing cytotoxic T-cell responses are required to achieve protection against cancers and intracellular infections such as HIV and Hepatitis C virus. Induction of CD8+ T cell responses in animal models can be achieved by the use of viral vectors or DNA vaccines but so far without much clinical success. Here we describe the novel CD8+ T-cell inducing adjuvant, cationic adjuvant formulation (CAF) 09, consisting of dimethyldioctadecylammonium (DDA)-liposomes stabilized with monomycoloyl glycerol (MMG)-1 and combined with the TLR3 ligand, Poly(I:C). Different antigens from tuberculosis (TB10.3, H56), HIV (Gag p24), HPV (E7) and the model antigen ovalbumin were formulated with CAF09 and administering these vaccines to mice resulted in a high frequency of antigen-specific CD8+ T cells. CAF09 was superior in its ability to induce antigen-specific CD8+ T cells as compared to other previously described CTL-inducing adjuvants, CAF05 (DDA/trehalose dibehenate (TDB)/Poly(I:C)), Aluminium/monophosphoryl lipid-A (MPL) and Montanide/CpG/IL-2. The optimal effect was obtained when the CAF09-adjuvanted vaccine was administered by the i.p. route, whereas s.c. administration primed limited CD8+ T-cell responses. The CD4+ T cells induced by CAF09 were mainly of an effector-memory-like phenotype and the CD8+ T cells were highly cytotoxic. Finally, in a mouse therapeutic skin tumor model, the HPV-16 E7 antigen formulated in CAF09 significantly reduced the growth of already established subcutaneous E7-expressing TC-1 tumors in 38% of the mice and in a corresponding prophylactic model 100% of the mice were protected. Thus, CAF09 is a potent new adjuvant which is able to induce CD8+ T-cell responses against several antigens and to enhance the protective efficacy of an E7 vaccine both in a therapeutic and in a prophylactic tumor model. PMID:24877765

  20. Cationic Lipid Content in Liposome-Encapsulated Nisin Improves Sustainable Bactericidal Activity against Streptococcus mutans.

    PubMed

    Yamakami, Kazuo; Tsumori, Hideaki; Shimizu, Yoshitaka; Sakurai, Yutaka; Nagatoshi, Kohei; Sonomoto, Kenji

    2016-01-01

    An oral infectious disease, dental caries, is caused by the cariogenic streptococci Streptococcus mutans. The expected preventive efficiency for prophylactics against dental caries is not yet completely observed. Nisin, a bacteriocin, has been demonstrated to be microbicidal against S. mutans, and liposome-encapsulated nisin improves preventive features that may be exploited for human oral health. Here we examined the bactericidal effect of charged lipids on nisin-loaded liposomes against S. mutans and inhibitory efficiency for insoluble glucan synthesis by the streptococci for prevention of dental caries. Cationic liposome, nisin-loaded dipalmitoylphosphatidylcholine/phytosphingosine, exhibited higher bactericidal activities than those of electroneutral liposome and anionic liposome. Bactericidal efficiency of the cationic liposome revealed that the vesicles exhibited sustained inhibition of glucan synthesis and the lowest rate of release of nisin from the vesicles. The optimizing ability of cationic liposome-encapsulated nisin that exploit the sustained preventive features of an anti-streptococcal strategy may improve prevention of dental caries. PMID:27583045

  1. Cationic Lipid Content in Liposome-Encapsulated Nisin Improves Sustainable Bactericidal Activity against Streptococcus mutans

    PubMed Central

    Yamakami, Kazuo; Tsumori, Hideaki; Shimizu, Yoshitaka; Sakurai, Yutaka; Nagatoshi, Kohei; Sonomoto, Kenji

    2016-01-01

    An oral infectious disease, dental caries, is caused by the cariogenic streptococci Streptococcus mutans. The expected preventive efficiency for prophylactics against dental caries is not yet completely observed. Nisin, a bacteriocin, has been demonstrated to be microbicidal against S. mutans, and liposome-encapsulated nisin improves preventive features that may be exploited for human oral health. Here we examined the bactericidal effect of charged lipids on nisin-loaded liposomes against S. mutans and inhibitory efficiency for insoluble glucan synthesis by the streptococci for prevention of dental caries. Cationic liposome, nisin-loaded dipalmitoylphosphatidylcholine/phytosphingosine, exhibited higher bactericidal activities than those of electroneutral liposome and anionic liposome. Bactericidal efficiency of the cationic liposome revealed that the vesicles exhibited sustained inhibition of glucan synthesis and the lowest rate of release of nisin from the vesicles. The optimizing ability of cationic liposome-encapsulated nisin that exploit the sustained preventive features of an anti-streptococcal strategy may improve prevention of dental caries. PMID:27583045

  2. Delivery of Therapeutic siRNA to the CNS Using Cationic and Anionic Liposomes.

    PubMed

    Bender, Heather R; Kane, Sarah; Zabel, Mark D

    2016-01-01

    Prion diseases result from the misfolding of the normal, cellular prion protein (PrP(C)) to an abnormal protease resistant isomer called PrP(Res). The emergence of prion diseases in wildlife populations and their increasing threat to human health has led to increased efforts to find a treatment for these diseases. Recent studies have found numerous anti-prion compounds that can either inhibit the infectious PrP(Res) isomer or down regulate the normal cellular prion protein. However, most of these compounds do not cross the blood brain barrier to effectively inhibit PrP(Res) formation in brain tissue, do not specifically target neuronal PrP(C), and are often too toxic to use in animal or human subjects. We investigated whether siRNA delivered intravascularly and targeted towards neuronal PrP(C) is a safer and more effective anti-prion compound. This report outlines a protocol to produce two siRNA liposomal delivery vehicles, and to package and deliver PrP siRNA to neuronal cells. The two liposomal delivery vehicles are 1) complexed-siRNA liposome formulation using cationic liposomes (LSPCs), and 2) encapsulated-siRNA liposome formulation using cationic or anionic liposomes (PALETS). For the LSPCs, negatively charged siRNA is electrostatically bound to the cationic liposome. A positively charged peptide (RVG-9r [rabies virus glycoprotein]) is added to the complex, which specifically targets the liposome-siRNA-peptide complexes (LSPCs) across the blood brain barrier (BBB) to acetylcholine expressing neurons in the central nervous system (CNS). For the PALETS (peptide addressed liposome encapsulated therapeutic siRNA), the cationic and anionic lipids were rehydrated by the PrP siRNA. This procedure results in encapsulation of the siRNA within the cationic or anionic liposomes. Again, the RVG-9r neuropeptide was bound to the liposomes to target the siRNA/liposome complexes to the CNS. Using these formulations, we have successfully delivered PrP siRNA to Ach

  3. Anti-angiogenic therapy via cationic liposome-mediated systemic siRNA delivery.

    PubMed

    Tagami, Tatsuaki; Suzuki, Takuya; Matsunaga, Mariko; Nakamura, Kazuya; Moriyoshi, Naoto; Ishida, Tatsuhiro; Kiwada, Hiroshi

    2012-01-17

    siRNA has been touted as a therapeutic molecule against genetic diseases, which include cancers. But several challenging issues remain in order to achieve efficient systemic siRNA delivery and a sufficient therapeutic effect for siRNA in vivo. Cationic liposome shows promise as a carrier for nucleic acids, as it can selectively bind to angiogenic tumor blood vessels. In this way, anti-angiogenic therapy via cationic liposome-mediated systemic siRNA delivery could be achieved in cancer therapy. In the present study, we proved our assumption by preparing various kinds of polyethylene glycol (PEG)-coated siRNA/cationic liposome complexes (siRNA-lipoplexes) and screening the avidity of these siRNA-lipoplexes upon angiogenic tumor blood vessels by means of a murine dorsal air sac (DAS) model. The lipoplex, having a lipid composition of DC-6-14/POPC/CHOL/DOPE/mPEG(2000)-DSPE=20/30/30/20/5 (molar ratio) and a charge ratio of cationic liposome and siRNA=3.81 (+/-), showed a higher binding index to newly formed blood vessels. Systemic injection with the lipoplex containing siRNA for the Argonaute2 gene (apoptosis-inducible siRNA) resulted in significant anti-tumor effect without severe side effects in mice with Lewis lung carcinoma. Our results indicate that the PEGylated cationic liposome-mediated systemic delivery of cytotoxic siRNA achieves anti-angiogenesis, resulting in the suppression of tumor growth. PMID:22101286

  4. The role of helper lipids in cationic liposome-mediated gene transfer.

    PubMed Central

    Hui, S W; Langner, M; Zhao, Y L; Ross, P; Hurley, E; Chan, K

    1996-01-01

    In the procedure for cationic liposome-mediated transfection, the cationic lipid is usually mixed with a "helper lipid" to increase its transfection potency. The importance of helper lipids, including dioleoylphosphatidylcholine (DOPC) and phosphatidylethanolamine (dioleoyl PE), DO was examined. Freeze-fracture electron microscopy of DNA:cationic complexes containing the pSV-beta-GAL plasmid DNA, the cationic lipid dioleoyl trimethylammonium propane, and these helper lipids showed that the most efficient mixtures were aggregates of ensheathed DNA and fused liposomes. PE-containing complexes aggregated rapidly when added to culture media containing polyanions, whereas PC-containing complexes did not. However, more granules of PC-containing complexes were formed on cell surfaces after the complexes were added to Chinese hamster ovary (CHO) cells in transfection media. Pronase treatment inhibited transfection, whereas dilute poly-L-lysine enhanced transfection, indicating that the attachment of DNA:liposome complexes to cell surfaces was mediated by electrostatic interaction. Fluorescence spectroscopy studies confirmed that more PC-containing complexes than PE-containing complexes were associated with CHO cells, and that more PC-containing complexes were located in a low pH environment (likely to be within endosomes) with time. Cytochalasin-B had a stronger inhibitory effect on PC-containing liposome-mediated than on PE-containing liposome-mediated transfection. Confocal microscopic recording of the fluorescently label lipid and DNA uptake process indicated that many granules of DNA:cationic liposome complexes were internalized as a whole, whereas some DNA aggregates were left out on the cell surfaces after liposomes of the complexes fused with the plasma membranes. For CHO cells, endocytosis seems to be the main uptake pathway of DNA:cationic liposome complexes. More PC-containing granules than PE-containing granules were formed on cell surfaces by cytoskeleton

  5. Adjuvant Effect of Cationic Liposomes for Subunit Influenza Vaccine: Influence of Antigen Loading Method, Cholesterol and Immune Modulators

    PubMed Central

    Barnier-Quer, Christophe; Elsharkawy, Abdelrahman; Romeijn, Stefan; Kros, Alexander; Jiskoot, Wim

    2013-01-01

    Cationic liposomes are potential adjuvants for influenza vaccines. In a previous study we reported that among a panel of cationic liposomes loaded with influenza hemagglutinin (HA), DC-Chol:DPPC (1:1 molar ratio) liposomes induced the strongest immune response. However, it is not clear whether the cholesterol (Chol) backbone or the tertiary amine head group of DC-Chol was responsible for this. Therefore, in the present work we studied the influence of Chol in the lipid bilayer of cationic liposomes. Moreover, we investigated the effect of the HA loading method (adsorption versus encapsulation) and the encapsulation of immune modulators in DC-Chol liposomes on the immunogenicity of HA. Liposomes consisting of a neutral lipid (DPPC or Chol) and a cationic compound (DC-Chol, DDA, or eDPPC) were produced by film hydration-extrusion with/without an encapsulated immune modulator (CpG or imiquimod). The liposomes generally showed comparable size distribution, zeta potential and HA loading. In vitro studies with monocyte-derived human dendritic cells and immunization studies in C57Bl/6 mice showed that: (1) liposome-adsorbed HA is more immunogenic than encapsulated HA; (2) the incorporation of Chol in the bilayer of cationic liposomes enhances their adjuvant effect; and (3) CpG loaded liposomes are more efficient at enhancing HA-specific humoral responses than plain liposomes or Alhydrogel. PMID:24300513

  6. Dextran sulfate-dependent fusion of liposomes containing cationic stearylamine.

    PubMed

    Zschörnig, O; Arnold, K; Richter, W; Ohki, S

    1992-11-01

    The incorporation of the positively charged stearylamine into phosphatidylcholine liposomes was studied by measuring electrophoretic mobilities. Up to a molar ratio SA/PC = 0.5 an increase of the positive zeta potential can be observed. Addition of the negatively charged macromolecule dextran sulfate leads to a change of the sign of the surface potential of the PC/SA liposomes indicating binding of the macromolecule to the surface. This process is accompanied by an increase in turbidity, which is dependent on the molecular weight of the dextran sulfate and the SA concentration (measured by turbidimetry). Using the NBD/Rh and Pyr-PC fluorescence assays the fusion of SA containing liposomes was investigated. A strong influence of the SA content and molecular weight of dextran sulfate on the fusion extent was observed. The fusion extent is proportional to the SA content in the PC membrane and the molecular weight of dextran sulfate. PC/SA/PE liposomes exhibit a higher fusion extent after addition of dextran sulfate compared to PC/SA liposomes indicating that PE additionally destabilizes the bilayer. Freeze-fracture electron microscopy reveals that the reaction products are large complexes composed of multilamellar stacks of tightly packed, straight membranes and aggregated vesicles. The tight packing of the membranes in the stacks (and the narrow contact of the aggregated vesicles) indicates a strong adherence of opposite membrane surfaces induced by dextran sulfate. PMID:1486657

  7. Cationic liposomes containing antioxidants reduces pulmonary injury in experimental model of sepsis: Liposomes antioxidants reduces pulmonary damage.

    PubMed

    Galvão, Andre Martins; Galvão, Júlia Siqueira; Pereira, Marcela Araújo; Cadena, Pabyton Gonçalves; Magalhães, Nereide Stella Santos; Fink, James B; de Andrade, Armele Dornelas; Castro, Celia Maria Machado Barbosa de; de Sousa Maia, Maria Bernadete

    2016-09-01

    The intracellular redox state of alveolar cells is a determining factor for tolerance to oxidative and pro-inflammatory stresses. This study investigated the effects of intratracheal co-administration of antioxidants encapsulated in liposomes on the lungs of rats subjected to sepsis. For this, male rats subjected to sepsis induced by lipopolysaccharide from Escherichia coli or placebo operation were treated (intratracheally) with antibiotic, 0.9% saline and antioxidants encapsulated or non-encapsulated in liposomes. Experimental model of sepsis by cecal ligation and puncture (CLP) was performed in order to expose the cecum. The cecum was then gently squeezed to extrude a small amount of feces from the perforation site. As an index of oxidative damage, superoxide anions, lipid peroxidation, protein carbonyls, catalase activity, nitrates/nitrites, cell viability and mortality rate were measured. Infected animals treated with antibiotic plus antioxidants encapsulated in liposomes showed reduced levels of superoxide anion (54% or 7.650±1.263 nmol/min/mg protein), lipid peroxidation (33% or 0.117±0.041 nmol/mg protein), protein carbonyl (57% or 0.039 ± 0.022 nmol/mg protein) and mortality rate (3.3%), p value <0.001. This treatment also reduced the level of nitrite/nitrate and increased cell viability (90.7%) of alveolar macrophages. Taken togheter, theses results support that cationic liposomes containing antioxidants should be explored as coadjuvants in the treatment of pulmonary oxidative damage. PMID:27267466

  8. Arginine-based cationic liposomes for efficient in vitro plasmid DNA delivery with low cytotoxicity

    PubMed Central

    Sarker, Satya Ranjan; Aoshima, Yumiko; Hokama, Ryosuke; Inoue, Takafumi; Sou, Keitaro; Takeoka, Shinji

    2013-01-01

    Background Currently available gene delivery vehicles have many limitations such as low gene delivery efficiency and high cytotoxicity. To overcome these drawbacks, we designed and synthesized two cationic lipids comprised of n-tetradecyl alcohol as the hydrophobic moiety, 3-hydrocarbon chain as the spacer, and different counterions (eg, hydrogen chloride [HCl] salt or trifluoroacetic acid [TFA] salt) in the arginine head group. Methods Cationic lipids were hydrated in 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer to prepare cationic liposomes and characterized in terms of their size, zeta potential, phase transition temperature, and morphology. Lipoplexes were then prepared and characterized in terms of their size and zeta potential in the absence or presence of serum. The morphology of the lipoplexes was determined using transmission electron microscopy and atomic force microscopy. The gene delivery efficiency was evaluated in neuronal cells and HeLa cells and compared with that of lysine-based cationic assemblies and Lipofectamine™ 2000. The cytotoxicity level of the cationic lipids was investigated and compared with that of Lipofectamine™ 2000. Results We synthesized arginine-based cationic lipids having different counterions (ie, HCl-salt or TFA-salt) that formed cationic liposomes of around 100 nm in size. In the absence of serum, lipoplexes prepared from the arginine-based cationic liposomes and plasmid (p) DNA formed large aggregates and attained a positive zeta potential. However, in the presence of serum, the lipoplexes were smaller in size and negative in zeta potential. The morphology of the lipoplexes was vesicular. Arginine-based cationic liposomes with HCl-salt showed the highest transfection efficiency in PC-12 cells. However, arginine-based cationic liposomes with TFA salt showed the highest transfection efficiency in HeLa cells, regardless of the presence of serum, with very low associated cytotoxicity. Conclusion The gene

  9. Cationic liposomes as non-viral vector for RNA delivery in cancer immunotherapy.

    PubMed

    Vitor, Micaela T; Bergami-Santos, Patrícia C; Barbuto, José A M; de la Torre, Lucimara G

    2013-08-01

    This review presents the current status in the use of liposomes as non-viral vector for nucleic acid delivery in cancer immunotherapy. Currently, cancer treatment uses surgery, radiotherapy and/or chemotherapy. The search for new strategies to improve the efficiency of conventional treatments is a challenge, and biological therapy has emerged as a promising technique. Immunotherapy is a branch of biological therapy that uses the body's immune system to detect and destroy cancer cells. One immunotherapy approach is the activation of T lymphocytes from cancer patients by dendritic cells (DCs) loaded with tumor antigens. Among different antigens, mRNA coding the tumor antigens is advantageous due to its capability to be amplified from small amounts of tumor tissue, its safety because it is easily degraded without integrating into the host genome, and it does not need to cross the nuclear barrier to exert its biological activity. Nanotechnology is an approach to deliver tumor antigens into DCs. Specially; we review the use of nanoliposomes in the field of cancer therapy because cationic liposomes can be used as non-viral vectors for mRNA delivery. Aside from the promise of liposomes, the development of scalable processes and facilities to the use this individualized therapy is still a challenge. Thus, we also present the recent techniques used for liposome production. In this context, the integration between technological knowledge in the production of cationic liposomes and immunotherapy using mRNA may contribute to the development of new strategies for cancer therapy. PMID:23286512

  10. Effect of Mechanical Agitation on Cationic Liposome Transport across an Unstirred Water Layer in Caco-2 Cells.

    PubMed

    Kono, Yusuke; Iwasaki, Ayu; Matsuoka, Kenta; Fujita, Takuya

    2016-01-01

    To develop an effective oral delivery system for plasmid DNA (pDNA) using cationic liposomes, it is necessary to clarify the characteristics of uptake and transport of cationic liposome/pDNA complexes into the intestinal epithelium. In particular, evaluation of the involvement of an unstirred water layer (UWL), which is a considerable permeability barrier, in cationic liposome transport is very important. Here, we investigated the effects of a UWL on the transfection efficiency of cationic liposome/pDNA complexes into a Caco-2 cell monolayer. When Caco-2 cells were transfected with cationic liposome/pDNA complexes in shaking cultures to reduce the thickness of the UWL, gene expression was significantly higher in Caco-2 cells compared with static cultures. We also found that this enhancement of gene expression by shaking was not attributable to activation of transcription factors such as activator protein-1 and nuclear factor-kappaB (NF-κB). In addition, the increase in gene expression by mechanical agitation was observed at all charge ratios (1.5, 2.3, 3.1, 4.5) of cationic liposome/pDNA complexes. Transport experiments using Transwells demonstrated that mechanical agitation increased the uptake of cationic liposome/pDNA complexes by Caco-2 cells, whereas transport of the complexes across a Caco-2 cell monolayer did not occurr. Moreover, the augmentation of the gene expression of cationic liposome/pDNA complexes by shaking was observed in Madin-Darby canine kidney cells. These results indicate that a UWL greatly affects the uptake and transfection efficiency of cationic liposome/pDNA complexes into an epithelial monolayer in vitro. PMID:27476939

  11. Study of the release of a microencapsulated acid dye in polyamide dyeing using mixed cationic liposomes.

    PubMed

    de Sousa, Isabel S C; Castanheira, Elisabete M S; Rocha Gomes, Jaime I N; Real Oliveira, M Elisabete C D

    2011-06-01

    The main objective of this work was to increase the retarding effect of the acid dye Telon(®) Blue RR (C.I. Acid Blue 62; DyStar, Frankfurt, Germany) release on polyamide fibres dyeing by encapsulation of the dye in liposomes as an alternative to synthetic auxiliaries, in order to reduce effluent pollution. The retarding effect achieved with the use of mixed cationic liposomes of dioctadecyldimethylammonium bromide (DODAB)/soybean lecithin (containing a 10% molar fraction of DODAB) was better in comparison with either pure soybean lecithin liposomes or synthetic auxiliaries. The retarding effect of liposomes on the dye release was analysed through changes in the absorption and fluorescence spectra of the acid dye at different conditions. The effect of temperature (in the range of 25 °C - 70 °C) on the spectroscopic behaviour of the dye in the absence and in presence of polyamide was also studied, in order to simulate the dyeing conditions. Exhaustion curves obtained in dyeing experiments showed that, below 45 °C, the retarding effect of the mixed liposomes (lecithin/DODAB (9:1)) was similar to that of the auxiliaries, but better than the one of pure lecithin liposomes. At higher temperatures (above 45 °C), the system lecithin/DODAB presents a better performance, achieving a higher final exhaustion level when compared with the commercial leveling agent without losing the smoothing effect of lecithin. PMID:20550462

  12. Effectiveness, against tuberculosis, of pseudo-ternary complexes: peptide-DNA-cationic liposome.

    PubMed

    Rosada, Rogério Silva; Silva, Célio Lopes; Santana, Maria Helena Andrade; Nakaie, Clóvis Ryuichi; de la Torre, Lucimara Gaziola

    2012-05-01

    We report the effects of a synthetic peptide designed to act as a nuclear localization signal on the treatment of tuberculosis. The peptide contains 21 amino acid residues with the following specific domains: nuclear localization signal from SV 40T, cationic shuttle sequence, and cysteamide group at the C-terminus. The peptide was complexed with the plasmid DNAhsp65 and incorporated into cationic liposomes, forming a pseudo-ternary complex. The same cationic liposomes, composed of egg chicken L-α-phosphatidylcholine, 1,2-dioleoyl-3-trimethylammonium-propane, and 1,2-dioleoyl-3-trimethylammonium-propane (2:1:1M), were previously evaluated as a gene carrier for tuberculosis immunization protocols with DNAhsp65. The pseudo-ternary complex presented a controlled size (250 nm), spherical-like shape, and various lamellae in liposomes as evaluated by transmission electron microscopy. An assay of fluorescence probe accessibility confirmed insertion of the peptide/DNA into the liposome structure. Peptide addition conferred no cytotoxicity in vitro, and similar therapeutic effects against tuberculosis were seen with four times less DNA compared with naked DNA treatment. Taken together, the results indicate that the pseudo-ternary complex is a promising gene vaccine for tuberculosis treatment. This work contributes to the development of multifunctional nanostructures in the search for strategies for in vivo DNA delivery. PMID:21999959

  13. Codelivery of paclitaxel and small interfering RNA by octadecyl quaternized carboxymethyl chitosan-modified cationic liposome for combined cancer therapy.

    PubMed

    Zhang, Ran; Wang, Shi-Bin; Chen, Ai-Zheng; Chen, Wei-Guang; Liu, Yuan-Gang; Wu, Wen-Guo; Kang, Yong-Qiang; Ye, Shi-Fu

    2015-09-01

    Conventional therapeutic approaches for cancer are limited by cancer cell resistance, which has impeded their clinical applications. The main goal of this work was to investigate the combined antitumor effect of paclitaxel with small interfering RNA modified by cationic liposome formed from modified octadecyl quaternized carboxymethyl chitosan. The cationic liposome was composed of 3β-[N-(N', N'-dimethylaminoethane)-carbamoyl]-cholesterol, dioleoylphosphatidylethanolamine, and octadecyl quaternized carboxymethyl chitosan. The cationic liposome properties were characterized by Fourier transform infrared spectroscopy, dynamic light scattering and zeta potential measurements, transmission electron microscopy, atomic force microscopy, and gel retardation assay. The cationic liposome exhibited good properties, such as a small particle size, a narrow particle size distribution, a good spherical shape, a smooth surface, and a good binding ability with small interfering RNA. Most importantly, when combined with paclitaxel and small interfering RNA, the composite cationic liposome induced a great enhancement in the antitumor activity, which showed a significantly higher in vitro cytotoxicity in Bcap-37 cells than liposomal paclitaxel or small interfering RNA alone. In conclusion, the results indicate that cationic liposome could be further developed as a codelivery system for chemotherapy drugs and therapeutic small interfering RNAs. PMID:25838353

  14. Brain tumor-targeted delivery and therapy by focused ultrasound introduced doxorubicin-loaded cationic liposomes.

    PubMed

    Lin, Qian; Mao, Kai-Li; Tian, Fu-Rong; Yang, Jing-Jing; Chen, Pian-Pian; Xu, Jie; Fan, Zi-Liang; Zhao, Ya-Ping; Li, Wen-Feng; Zheng, Lei; Zhao, Ying-Zheng; Lu, Cui-Tao

    2016-02-01

    Brain tumor lacks effective delivery system for treatment. Focused ultrasound (FUS) can reversibly open BBB without impacts on normal tissues. As a potential drug carrier, cationic liposomes (CLs) have the ability to passively accumulate in tumor tissues for their positive charge. In this study, FUS introduced doxorubicin-loaded cationic liposomes (DOX-CLs) were applied to improve the efficiency of glioma-targeted delivery. Doxorubicin-loaded CLs (DOX-CLs) and quantum dot-loaded cationic liposomes (QD-CLs) were prepared using extrusion technology, and their characterizations were evaluated. With the advantage of QDs in tracing images, the glioma-targeted accumulation of FUS + CLs was evaluated by fluorescence imaging and flow cytometer. Cell survival rate, tumor volume, animal survival time, and brain histology in C6 glioma model were investigated to evaluate the glioma-targeted delivery of FUS + DOX-CLs. DOX-CLs and QD-CLs had suitable nanoscale sizes and high entrapment efficiency. The combined strategy of FUS introduced CLs significantly increased the glioma-targeted accumulation for load drugs. FUS + DOX-CLs showed the strongest inhibition on glioma based on glioma cell in vitro and glioma model in vivo experiments. From MRI and histological analysis, FUS + DOX-CLs group strongly suppressed the glioma progression and extended the animal survival time to 81.2 days. Among all the DOX treatment groups, FUS + DOX-CLs group showed the best cell viability and highest level of tumor apoptosis and necrosis. Combining the advantages of BBB reversible opening by FUS and glioma-targeted binding by CLs, ultrasound introduced cationic liposomes could achieve glioma-targeted delivery, which might be developed as a potential strategy for future brain tumor therapy. PMID:26666650

  15. Synthesis and validation of novel cholesterol-based fluorescent lipids designed to observe the cellular trafficking of cationic liposomes.

    PubMed

    Kim, Bieong-Kil; Seu, Young-Bae; Choi, Jong-Soo; Park, Jong-Won; Doh, Kyung-Oh

    2015-09-15

    Cholesterol-based fluorescent lipids with ether linker were synthesized using NBD (Chol-E-NBD) or Rhodamine B (Chol-E-Rh), and the usefulnesses as fluorescent probes for tracing cholesterol-based liposomes were validated. The fluorescent intensities of liposomes containing these modified lipids were measured and observed under a microscope. Neither compound interfered with the expression of GFP plasmid, and live cell images were obtained without interferences. Changes in the fluorescent intensity of liposomes containing Chol-E-NBD were followed by flow cytometry for up to 24h. These fluorescent lipids could be useful probes for trafficking of cationic liposome-mediated gene delivery. PMID:26243368

  16. Silicone-stabilized liposomes as a possible novel nanostructural drug carrier.

    PubMed

    Lewandowska-Łańcucka, Joanna; Mystek, Katarzyna; Gilarska, Adriana; Kamiński, Kamil; Romek, Marek; Sulikowski, Bogdan; Nowakowska, Maria

    2016-07-01

    Development of silicone stabilized liposomes which can serve as novel drug nanocarriers is presented. Silicone precursor 1,3,5,7-tetramethylcyclotetrasiloxane (D4(H)) was introduced into the bilayer of the cationic liposomes prepared from egg yolk phosphatidylocholine (PC) and double-tailed dimethyldioctadecylammonium bromide (DODAB). The silicone material was created inside of the liposomal bilayer in the base-catalyzed polycondensation process of the D4(H) what was confirmed employing (29)Si solid-state MAS NMR and FTIR measurements. Surfactant lysis experiments revealed that resulted systems can be effectively stabilized. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) measurements demonstrated that the silicone-stabilized liposomes have typical lipid vesicle's morphology and mean hydrodynamic diameters in the range of about 110nm. They have considerably lower tendency for aggregation than the pristine liposomes. The permeability of vesicles can be tuned by introducing various amounts of silicone precursor into the liposome bilayer, as confirmed in calcein-release studies. The effect of fetal bovine serum (FBS) on the stability of liposomes was also tested in in vitro studies. Biological studies revealed that resulted liposomes can be considered as possible drug nanocarriers because they are not toxic to human skin fibroblasts (HSFs) and mouse embryonic fibroblasts (MEFs). PMID:27022877

  17. Cationic liposome-hyaluronic acid hybrid nanoparticles for intranasal vaccination with subunit antigens

    PubMed Central

    Ochyl, Lukasz J.; Akerberg, Jonathan; Moon, James J.

    2015-01-01

    Here we report the development of a new cationic liposome-hyaluronic acid (HA) hybrid nanoparticle (NP) system and present our characterization of these NPs as an intranasal vaccine platform using a model antigen and F1-V, a candidate recombinant antigen for Yersinia pestis, the causative agent of plague. Incubation of cationic liposomes composed of DOTAP and DOPE with anionic HA biopolymer led to efficient ionic complexation and formation of homogenous liposome-polymer hybrid NPs, as evidenced by fluorescence resonance energy transfer, dynamic light scattering, and nanoparticle tracking analyses. Incorporation of cationic liposomes with thiolated HA allowed for facile surface decoration of NPs with thiol-PEG, resulting in the formation of DOTAP/HA core-PEG shell nanostructures. These NPs, termed DOTAP-HA NPs, exhibited improved colloidal stability and prolonged antigen release. In addition, cytotoxicity associated with DOTAP liposomes (LC50 ~0.2 mg/ml) was significantly reduced by at least 20-fold with DOTAP-HA NPs (LC50 > 4 mg/ml), as measured with bone marrow dendritic cells (BMDCs). Furthermore, NPs co-loaded with ovalbumin (OVA) and a molecular adjuvant, monophosphoryl lipid A (MPLA) promoted BMDC maturation and upregulation of co-stimulatory markers, including CD40, CD86, and MHC-II, and C57BL/6 mice vaccinated with NPs via intranasal route generated robust OVA-specific CD8+ T cell and antibody responses. Importantly, intranasal vaccination with NPs co-loaded with F1-V and MPLA induced potent humoral immune responses with 11-, 23-, and 15-fold increases in F1-V-specific total IgG, IgG1, and IgG2c titers in immune sera by day 77, respectively, and induced balanced Th1/Th2 humoral immune responses, compared with the lack of sero-conversion in mice immunized with the equivalent doses of soluble F1-V vaccine. Overall, these results suggest that liposome-polymer hybrid NPs may serve as a promising vaccine delivery platform for intranasal vaccination against Y

  18. Cationic liposome-hyaluronic acid hybrid nanoparticles for intranasal vaccination with subunit antigens.

    PubMed

    Fan, Yuchen; Sahdev, Preety; Ochyl, Lukasz J; J Akerberg, Jonathan; Moon, James J

    2015-06-28

    Here we report the development of a new cationic liposome-hyaluronic acid (HA) hybrid nanoparticle (NP) system and present our characterization of these NPs as an intranasal vaccine platform using a model antigen and F1-V, a candidate recombinant antigen for Yersinia pestis, the causative agent of plague. Incubation of cationic liposomes composed of DOTAP and DOPE with anionic HA biopolymer led to efficient ionic complexation and formation of homogenous liposome-polymer hybrid NPs, as evidenced by fluorescence resonance energy transfer, dynamic light scattering, and nanoparticle tracking analyses. Incorporation of cationic liposomes with thiolated HA allowed for facile surface decoration of NPs with thiol-PEG, resulting in the formation of DOTAP/HA core-PEG shell nanostructures. These NPs, termed DOTAP-HA NPs, exhibited improved colloidal stability and prolonged antigen release. In addition, cytotoxicity associated with DOTAP liposomes (LC50~0.2mg/ml) was significantly reduced by at least 20-fold with DOTAP-HA NPs (LC50>4mg/ml), as measured with bone marrow derived dendritic cells (BMDCs). Furthermore, NPs co-loaded with ovalbumin (OVA) and a molecular adjuvant, monophosphoryl lipid A (MPLA) promoted BMDC maturation and upregulation of co-stimulatory markers, including CD40, CD86, and MHC-II, and C57BL/6 mice vaccinated with NPs via intranasal route generated robust OVA-specific CD8(+) T cell and antibody responses. Importantly, intranasal vaccination with NPs co-loaded with F1-V and MPLA induced potent humoral immune responses with 11-, 23-, and 15-fold increases in F1-V-specific total IgG, IgG1, and IgG2c titers in immune sera by day 77, respectively, and induced balanced Th1/Th2 humoral immune responses, whereas mice immunized with the equivalent doses of soluble F1-V vaccine failed to achieve sero-conversion. Overall, these results suggest that liposome-polymer hybrid NPs may serve as a promising vaccine delivery platform for intranasal vaccination against Y

  19. Biosurfactant MEL-A enhances cellular association and gene transfection by cationic liposome.

    PubMed

    Igarashi, Saki; Hattori, Yoshiyuki; Maitani, Yoshie

    2006-05-30

    Mannnosylerythritol lipid A (MEL-A), a biosurfactant produced by microorganisms, has many biological activities. To enhance the gene transfection efficiency of a cationic liposome, we prepared a MEL-liposome (MEL-L) composed of 3beta-[N-(N',N'-dimethylaminoethane)-carbamoyl] cholesterol (DC-Chol), dioleoyl phosphatidylethanolamine (DOPE) and MEL-A, and investigated its transfection efficiency in human cervix carcinoma Hela cells. MEL-L was about 40 nm in size, and the MEL-L/plasmid DNA complex (MEL-lipoplex) remained an injectable size (169 nm). MEL-A induced a significantly higher level of gene expression, compared to commercially available Tfx20 and the liposome without MEL-A (Cont-L). Analysis of flow cytometric profiles clearly indicated that the amount of DNA associated with the cells was rapidly increased and sustained by addition of MEL-A to the liposome. Confocal microscopic observation indicated that the MEL-lipoplex distributed widely in the cytoplasm, and the DNA was detected strongly in the cytoplasm and around the nucleus, compared with Cont-L. These results suggested that MEL-A increased gene expression by enhancing the association of the lipoplexes with the cells in serum. MEL-L might prove a remarkable non-viral vector for gene transfection and gene therapy. PMID:16624437

  20. Endosomolytic activity of cationic liposomes enhances the delivery of human immunodeficiency virus-1 trans-activator protein (TAT) to mammalian cells.

    PubMed

    Huang, L; Farhood, H; Serbina, N; Teepe, A G; Barsoum, J

    1995-12-26

    We have explored the use of cationic liposomes to deliver the human immunodeficiency virus-1 trans-activator protein tat using a reporter gene expression assay. The human epidermoid carcinoma cell A431 stably transfected with a reporter gene under the control of human immunodeficiency virus-1 promoter was used as a target cell. Phosphatidylcholine-containing cationic liposomes had no detectable tat delivery activity. In contrast, delivery of tat was enhanced by up to 150-fold using cationic liposomes enriched with dioleoyl phosphatidylethanolamine (DOPE), a lipid which readily transforms a bilayer into a nonbilayer structure. Enhanced delivery of tat by DOPE-containing liposomes was most likely the result of the endosomolytic activity of the liposome. This phospholipid-rich formulation showed no toxicity at concentrations sufficient for maximal delivery of tat. A variety of cationic liposome formulations which contain DOPE were tested successfully for tat delivery. PMID:8554596

  1. Enhanced radiosensitization by the cationic liposome-encapsulated thymidine analogue BrdU through the increased intracellular BrdU-uptake on human melanoma as compared to anionic or nonionic liposomal or free BrdU.

    PubMed

    Kato, Shinya; Kimura, Masatsugu; Miwa, Nobuhiko

    2014-11-01

    The synthetic thymidine analogue, 5-bromo-2'-deoxy-uridine (BrdU) was encapsulated in cationic liposome composed of dipalmitoylphosphatidylcholine, cholesterol and stearylamine (molar ratio = 1/1/0.2; diameter = 120 nm), and the radiosensitization of cationic liposomal BrdU was assessed on human melanoma cells HMV-II, with comparing to anionic or nonionic liposomal BrdU and free-BrdU. HMV-II cells were pretreated by cationic liposomal BrdU or free-BrdU and then exposed to X-ray, followed by WST-8 assay to examine cell proliferation. The radiation-induced change of nuclei was defined with Hoechst33342 staining. The rates of thymidine replacement by BrdU and DNA double-strand breaks on HMV-II cells were determined with an anti-BrdU antibody and anti-53BP1 antibody, respectively. On 7th day after X-ray irradiation at 3 Gy, cell proliferation was suppressed more markedly in the administration of cationic liposomal BrdU than free-BrdU at equivalent BrdU doses. Giant polykaryocytes were observed in cationic liposomal BrdU-treated HMV-II cells. Radiosensitization was enhanced dose-dependently along with BrdU doses of 0.1-0.8 μM in the order: cationic liposomal BrdU > anionic liposomal BrdU > nonionic liposomal BrdU (see symbol) free-BrdU. Similarly, the cationic liposomal BrdU augmented the rate of thymidine-moiety replacement by BrdU and DNA double-strand breaks more appreciably than free-BrdU. Therefore, the cationic liposome-encapsulation of BrdU would be one of favorable drug deliveries for facilitating the X-ray therapy against cancer. PMID:26000387

  2. Plasmid DNA transfection using magnetite cationic liposomes for construction of multilayered gene-engineered cell sheet.

    PubMed

    Ino, Kosuke; Kawasumi, Tamayo; Ito, Akira; Honda, Hiroyuki

    2008-05-01

    Modification of cellular functions by overexpression of genes is being increasingly practiced for tissue engineering. In the present study, we investigated whether transfection efficiency could be enhanced by magnetofection that involves the use of plasmid DNA (pDNA)/magnetite cationic liposomes (MCLs) complexes (pDNA/MCL) and magnetic force. The transfection efficiencies of the magnetofection technique by pDNA/MCL in fibroblasts and keratinocytes using reporter genes were 36- and 10-fold higher, respectively, than those of a lipofection technique by cationic liposomes. Moreover, in vitro construction of three-dimensional (3D) tissues is an important challenge. We recently proposed a novel technique termed "magnetic force-based tissue engineering" (Mag-TE) to produce 3D tissues. Since the fibroblasts after magnetofection incorporated both magnetite nanoparticles and pDNA, we investigated whether multilayered heterotypic cell sheets expressing transgene could be fabricated by Mag-TE. First, the fibroblasts were seeded onto an ultra-low attachment culture plate. When a magnet was placed under the plate, the cells accumulated at the bottom of the culture plate. After 24 h of culture, the transgene-expressing cells formed a multilayered cell sheet-like structure. These results indicated that MCLs are a potent biomanipulation tool for both gene transfer and 3D tissue construction, suggesting that these techniques are useful for tissue engineering. PMID:18078300

  3. Cationic liposomes formulated with DMPC and a gemini surfactant traverse the cell membrane without causing a significant bio-damage.

    PubMed

    Stefanutti, E; Papacci, F; Sennato, S; Bombelli, C; Viola, I; Bonincontro, A; Bordi, F; Mancini, G; Gigli, G; Risuleo, G

    2014-10-01

    Cationic liposomes have been intensively studied both in basic and applied research because of their promising potential as non-viral molecular vehicles. This work was aimed to gain more information on the interactions between the plasmamembrane and liposomes formed by a natural phospholipid and a cationic surfactant of the gemini family. The present work was conducted with the synergistic use of diverse experimental approaches: electro-rotation measurements, atomic force microscopy, ζ-potential measurements, laser scanning confocal microscopy and biomolecular/cellular techniques. Electro-rotation measurements pointed out that the interaction of cationic liposomes with the cell membrane alters significantly its dielectric and geometric parameters. This alteration, being accompanied by significant changes of the membrane surface roughness as measured by atomic force microscopy, suggests that the interaction with the liposomes causes locally substantial modifications to the structure and morphology of the cell membrane. However, the results of electrophoretic mobility (ζ-potential) experiments show that upon the interaction the electric charge exposed on the cell surface does not vary significantly, pointing out that the simple adhesion on the cell surface of the cationic liposomes or their fusion with the membrane is to be ruled out. As a matter of fact, confocal microscopy images directly demonstrated the penetration of the liposomes inside the cell and their diffusion within the cytoplasm. Electro-rotation experiments performed in the presence of endocytosis inhibitors suggest that the internalization is mediated by, at least, one specific pathway. Noteworthy, the liposome uptake by the cell does not cause a significant biological damage. PMID:25017801

  4. Reduced cytotoxicity and enhanced bioactivity of cationic antimicrobial peptides liposomes in cell cultures and 3D epidermis model against HSV.

    PubMed

    Ron-Doitch, Sapir; Sawodny, Beate; Kühbacher, Andreas; David, Mirjam M Nordling; Samanta, Ayan; Phopase, Jaywant; Burger-Kentischer, Anke; Griffith, May; Golomb, Gershon; Rupp, Steffen

    2016-05-10

    Cationic antimicrobial peptides (AMPs) are part of the innate immunity, and act against a wide variety of pathogenic microorganisms by perturbation of the microorganism's plasma membrane. Although attractive for clinical applications, these agents suffer from limited stability and activity in vivo, as well as non-specific interaction with host biological membranes, leading to cytotoxic adverse effects. We hypothesized that encapsulation of AMPs within liposomes could result in reduced cytotoxicity, and with enhanced stability as well as bioactivity against herpes simplex virus 1 (HSV-1). We formulated nano-sized liposomal formulations of LL-37 and indolicidin, and their physicochemical properties, cellular uptake, in vitro cytotoxicity and antiviral efficacy have been determined. Lower cytotoxicity of LL-37 liposomes was found in comparison to indolicidin liposomes attributed to the superior physicochemical properties, and to the different degree of interaction with the liposomal membrane. The disc-like shaped LL-37 liposomes (106.8±10.1nm, shelf-life stability of >1year) were taken up more rapidly and to a significantly higher extent than the free peptide by human keratinocyte cell line (HaCaT), remained intact within the cells, followed by release of the active peptide within the cytoplasm and migration of the vesicles' lipids to the plasma membrane. LL-37 liposomes were found significantly less toxic than both the free agent and liposomal indolicidin. In the new 3D epidermis model (immortalized primary keratinocytes) liposomal LL-37 treatment (>20μM), but not free LL-37, efficiently protected the epidermis, inhibiting HSV-1 infection. This positive antiviral effect was obtained with no cytotoxicity even at very high concentrations (400μM). Thus, the antiviral activity of encapsulated LL-37 was significantly improved, expanding its therapeutic window. Liposomal LL-37 appears to be a promising delivery system for HSV therapy. PMID:27012977

  5. Cationic Liposomes Enhance the Rate of Transduction by a Recombinant Retroviral Vector In Vitro and In Vivo

    PubMed Central

    Porter, Colin D.; Lukacs, Katalin V.; Box, Gary; Takeuchi, Yasuhiro; Collins, Mary K. L.

    1998-01-01

    Cationic liposomes enhanced the rate of transduction of target cells with retroviral vectors. The greatest effect was seen with the formulation DC-Chol/DOPE, which gave a 20-fold increase in initial transduction rate. This allowed an efficiency of transduction after brief exposure of target cells to virus plus liposome that could be achieved only after extensive exposure to virus alone. Enhancement with DC-Chol/DOPE was optimal when stable virion-liposome complexes were preformed. The transduction rate for complexed virus, as for virus used alone or with the polycation Polybrene, showed first-order dependence on virus concentration. Cationic liposomes, but not Polybrene, were able to mediate envelope-independent transduction, but optimal efficiency required envelope-receptor interaction. When virus complexed with DC-Chol/DOPE was used to transduce human mesothelioma xenografts, transduction was enhanced four- to fivefold compared to that for virus alone. Since the efficacy of gene therapy is dependent on the number of cells modified, which is in turn dependent upon the balance between transduction and biological clearance of the vector, the ability of cationic liposomes to form stable complexes with retroviral vectors and enhance their rate of infection is likely to be important for in vivo application. PMID:9573249

  6. Targeting of small molecule anticancer drugs to the tumour and its vasculature using cationic liposomes: lessons from gene therapy

    PubMed Central

    Dass, Crispin R; Choong, Peter FM

    2006-01-01

    Cationic (positively charged) liposomes have been tested in various gene therapy clinical trials for neoplastic and other diseases. They have demonstrated selectivity for tumour vascular endothelial cells raising hopes for both antiangiogenic and antivascular therapies. They are also capable of being selectively delivered to the lungs and liver when administered intravenously. These vesicles are being targeted to the tumour in various parts of the body by using advanced liposomal systems such as ligand-receptor and antibody-antigen combinations. At present, the transferrin receptor is commonly used for cancer-targeted drug delivery systems including cationic liposomes. This review looks at the growing utility of these vesicles for delivery of small molecule anticancer drugs. PMID:16792817

  7. Cationic liposomes modified with non-ionic surfactants as effective non-viral carrier for gene transfer.

    PubMed

    Huang, Yong-Zhuo; Gao, Jian-Qing; Chen, Jin-Liang; Liang, Wen-Quan

    2006-05-01

    A defined change in formulation components affects the physical and chemical characteristics of cationic liposomes (CLs) carriers in many ways. Therefore, a great degree of control can be exercised over the structure by modifying the CLs with various materials, leading to new innovations for carrier improvement. In the present study, surface modifications of cationic liposomes with non-ionic surfactants--sorbitan monoesters serials (Span 85, 80, 40 and 20) were carried out for developing a new gene transfer carrier. Span modified cationic liposomes (Sp-CLs) were prepared by reverse phase evaporation method (RPV) and self-assemble complexes of antisense oligonucleotides/surfactant modifying cationic liposomes were prepared by auto-coacervation through electrostatic effect. Characterization of Sp-CLs and the self-assembled complex was performed by electron microscope, particle size, zeta potential, turbidity and agarose electrophoresis. Furthermore, in vitro cellular uptake experiment showed that Span plays a role in enhancing the cellular uptake of encapsulated oligonucleotides mediated by Sp-CLs by the endocytosis-dependent route. CLs modified with Span 40 significantly facilitated the cellular uptake by COS-7 cells and HeLa cells; also showed some positive effect on gene expression. That suggests it is a potential non-viral carrier for efficient gene transfer. PMID:16626948

  8. Oligonucleotide uptake in cultured keratinocytes: influence of confluence, cationic liposomes, and keratinocyte cell type.

    PubMed

    White, P J; Fogarty, R D; McKean, S C; Venables, D J; Werther, G A; Wraight, C J

    1999-05-01

    The success of anti-sense strategies has been limited, at least in part, by the poor uptake of these agents into the target cells. In keratinocytes, there is conflicting evidence as to the amount and location of oligonucleotide uptake into these cells, with variable proportions of cells reported to take up oligodeoxynucleotide, and also cytoplasmic and nuclear localization reported. In this study, the uptake of oligodeoxynucleotides in cultured normal human keratinocytes and the HaCaT cell line was quantitated in the presence of various lipids designed to enhance uptake and in varying culture conditions. About 12% of cells in a confluent normal human keratinocyte culture showed nuclear uptake, with a small and variable proportion showing cytoplasmic localization after 24 h incubation with 1 microM oligodeoxynucleotide. Uptake of oligodeoxynucleotide was found to be increased by liposome encapsulation (to a maximum of 28.1% +/- 2.1% of cells), low confluence (39.5% +/- 2.5%), and further increased by a combination of the two conditions (55.4% +/- 4.3%). HaCaT cell populations showed sparse but consistent uptake of oligodeoxynucleotide, with about 1% of cells showing nuclear localization in the presence of 1 microM oligodeoxynucleotide, increasing to 13.5% +/- 4.9% in the presence of cationic lipid (Tfx-50) in low confluence HaCaT monolayers. We conclude that normal keratinocytes exhibit reliable, substantial uptake of oligonucleotides in conditions controlled for confluence and aided by liposome encapsulation. PMID:10233759

  9. Cholesterol-based cationic liposome increases dsRNA protection of yellow head virus infection in Penaeus vannamei.

    PubMed

    Sanitt, Poohrawind; Apiratikul, Nuttapon; Niyomtham, Nattisa; Yingyongnarongkul, Boon-Ek; Assavalapsakul, Wanchai; Panyim, Sakol; Udomkit, Apinunt

    2016-06-20

    Protection of shrimp from yellow head virus (YHV) infection has been demonstrated by injection and oral delivery of dsRNA-YHV protease gene (dsYHV) or shrimp endogenous gene (dsRab7). However, to achieve complete viral suppression and to prolong dsRNA activity, the development of an effective dsRNA delivery system is required. In this study, four cationic liposomes were synthesized and tested for their ability to increase dsRNA efficiency. The results demonstrated that entrapping dsYHV in a cholesterol-based cationic liposome gave the best protection against YHV infection when compared with other cationic lipids. The cholesterol-based cationic liposome-dsYHV (Chol-dsYHV) complex conferred YHV protection in a dose-dependent manner. Injection with Chol-dsYHV at 0.05μg dsYHV/g shrimp could give comparable level of YHV protection to the injection with 1.25μg naked dsYHV/g shrimp. The shrimp injected with Chol- dsYHV at 1.25μg dsRNA/g shrimp showed only 50% mortality at 60days post injection whereas the naked dsYHV at the same concentration gave 90% mortality. Thus, the liposome-entrapped dsYHV could lower an effective dsRNA concentration in viral protection and prolong dsRNA activity. In addition, encapsulating dsRab7 in the cholesterol-based cationic liposome could protect the dsRab7 from enzymatic digestion, and continuous feeding the shrimp with the diet formulated with the liposome-entrapped dsRab7 for 4days in the total of 960μg dsRab7/g shrimp could enhance YHV protection efficiency compared with the naked dsRab7. Our studies reveal that cholesterol-based cationic liposome is a promising dsRNA carrier to enhance dsRNA efficiency in both injection and oral delivery systems. PMID:27140871

  10. siRNA-loaded cationic liposomes for cancer therapy: Development, characterization and efficacy evaluation

    NASA Astrophysics Data System (ADS)

    Ying, Bo

    . Pegylated cationic liposomes (PCLs) were selected as carriers for siRNA. Based on the silencing efficiency of siRNA formulated with different PCLs, DOPC based cationic liposomes, over DOPE based nanosystems, with a modest amount of polyetheleneglycol was selected to deliver KSP siRNA to tumor-bearing mice. Efficacy studies revealed that tumor suppression was observed when KSP siRNA was delivered using PCLs, but not in mice that received naked KSP siRNA or KSP siRNA in commercially available transfecting agents. The results were further supported by MRI (magnetic resonance imaging) analysis. To evaluate the role that vasculature supply plays in the development of the tumor, we also performed tumor response studies using a tumor model consisting of tumor cells which are resistant to KSP siRNA. The results showed that a prolonged suppression of tumor growth was achieved only when a large dose (5mg/kg) KSP siRNA was administered, but not with the administration of a relatively low dose (2mg/kg) of siRNA, suggesting that a combined treatment approach containing both anti-vasculature and anti-cancer agents should be considered to achieve the best treatment outcome. Finally, it was confirmed by qRT-PCR that the tumor growth inhibition was due to the successful knock-down of KSP mRNA.

  11. Preparation, characterisation and entrapment of a non-glycosidic threitol ceramide into liposomes for presentation to invariant natural killer T cells

    PubMed Central

    Kaur, Randip; Chen, Jili; Dawoodji, Amina; Cerundolo, Vincenzo; Garcia-Diaz, Yoel R.; Wojno, Justyna; Cox, Liam R.; Besra, Gurdyal S; Moghaddam, Behfar; Perrie, Yvonne

    2013-01-01

    Dendritic cells (DCs) are able to present glycolipids to invariant natural killer T (iNKT) cells in vivo. Very few compounds have been found that stimulate iNKT cells and of these the best-characterised is the glycolipid α-galactosylceramide (α-GalCer 1), which stimulates the production of large quantities of IFNγ and IL-4. However, αGalCer leads to overstimulation of iNKT cells. It has been demonstrated that the αGalCer analogue, threitol ceramide (ThrCer 2), successfully activates iNKT cells and overcomes the problematic iNKT cell activation-induced anergy. In this study, ThrCer 2 has been inserted into the bilayers of liposomes composed of a neutral lipid, 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) or dimethyldioctadecylammonium bromide (DDA), a cationic lipid. Incorporation efficiencies of ThrCer within the liposomes was 96 % for DSPC liposomes and 80 % for DDA liposomes with the vesicle size (large multilamellar vs small unilamellar vesicles) making no significant difference. Langmuir-Blodgett studies suggest both DSPC and DDA stack within the monolayer co-operatively with the ThrCer molecules with no condensing effect. In terms of cellular responses IFNγ secretion was higher for cells treated with small DDA liposomes compared to the other liposome formulations, suggesting that ThrCer encapsulation in this liposome formulation resulted in a higher uptake by DCs. PMID:21283989

  12. PEGylated Cationic Liposome – DNA Complexation in Brine is Pathway-Dependent

    PubMed Central

    Silva, Bruno F.B.; Majzoub, Ramsey N.; Chan, Chia-Ling; Li, Youli; Olsson, Ulf; Safinya, Cyrus R.

    2013-01-01

    Cationic liposome-DNA (CL-DNA) complexes, are regarded as promising materials for safe and efficient delivery of genes for therapeutical applications. In order to be used in vivo, these complexes may be coated with a hydrophilic polymer (e.g. polyethylene-glycol, PEG) that provides steric stabilization towards adhesion of proteins and removal by the immune system. In this work we study the influence of the initial salt concentration (Cs) – which modulates the electrostatic interaction between oppositely charged vesicles and DNA – on the structure and stability of PEGylated CL-DNA particles. Previous small-angle X-ray scattering has shown that if non-PEGylated or PEGylated CL-DNA lamellar complexes are prepared in water, their structure is well defined with a high number of lipid membrane-DNA layers (larger than 20). Here we show that if these complexes are transferred to saline media (150 mM NaCl or DMEM, both near physiological conditions), this structure remains nearly unchanged. Conversely, if PEGylated complexes are prepared in saline media, their lamellar structure is much looser, with fewer number of layers. This pathway dependent behavior of PEGylated complex formation in brine is modulated by the liposome membrane charge density and the mole fraction of PEG 2000 in the membranes, with the average number of layers decreasing with increasing Cs and in going from 5 mol% to 10 mol% PEG-lipid. Each of these structures (high and low number of layers) is stable with time, suggesting that despite complex formation being thermodynamically favored, the complexation process in PEGylated membranes, which determines the number of layers per particle, is kinetically controlled. In the extreme case (when polymer repulsions from 10 mol% PEG-lipid are maximized and electrostatic attraction between PEGylated CLs and DNA are minimized at low membrane charge density) complex formation is suppressed at high Cs=150 mM. PMID:24060564

  13. Liposomes.

    PubMed

    Posner, Robert

    2002-09-01

    Robert Posner has 40 years of experience in skin care bench chemistry, product development, and sales and marketing. Working closely with dermatologists and plastic surgeons, Posner is a former member of the NY State Hospital Pharmacists Association, the American Pharmaceutical Association, and the American Association of Hospital Pharmacists. Currently, Posner sits on the Board of Directors of EMDA (Esthetic Manufacturers and Distributors Association). Posner has written numerous articles for Les Nouvelles Esthetiques Magazine, is presently a consultant for Day Spa Magazine, and had been one of only two non-dermatologists on a consultant basis with Cosmetic Dermatology Journal. Posner's company--ABBE Cosmetic Group International in Farmingdale, NY--formulates and manufactures skin care products for many well-known companies in the beauty industry. For many years, both the bench chemist and the dermatologist have been concerned with developing an ideal base for deliverance of 'actives' to the human epidermis. As is common knowledge, the skin is a protective organ which allows very few materials to penetrate. Some bases are unable to work effectively because of their relative inability to penetrate the stratum corneum; for example, some notable actives such as collagen and elastin are molecules too large to penetrate effectively. With the liposome at our command however, we can carry and then release an active into several layers of epidermis. We can release both oil- and water-soluble actives, and at the same time control the feel and effectiveness of a topical application. This article will examine the liposome: what it is, how it works, and how products made with liposomes can benefit dermatology. PMID:12847740

  14. Cationic liposome-nucleic acid nanoparticle assemblies with applications in gene delivery and gene silencing.

    PubMed

    Majzoub, Ramsey N; Ewert, Kai K; Safinya, Cyrus R

    2016-07-28

    Cationic liposomes (CLs) are synthetic carriers of nucleic acids in gene delivery and gene silencing therapeutics. The introduction will describe the structures of distinct liquid crystalline phases of CL-nucleic acid complexes, which were revealed in earlier synchrotron small-angle X-ray scattering experiments. When mixed with plasmid DNA, CLs containing lipids with distinct shapes spontaneously undergo topological transitions into self-assembled lamellar, inverse hexagonal, and hexagonal CL-DNA phases. CLs containing cubic phase lipids are observed to readily mix with short interfering RNA (siRNA) molecules creating double gyroid CL-siRNA phases for gene silencing. Custom synthesis of multivalent lipids and a range of novel polyethylene glycol (PEG)-lipids with attached targeting ligands and hydrolysable moieties have led to functionalized equilibrium nanoparticles (NPs) optimized for cell targeting, uptake or endosomal escape. Very recent experiments are described with surface-functionalized PEGylated CL-DNA NPs, including fluorescence microscopy colocalization with members of the Rab family of GTPases, which directly reveal interactions with cell membranes and NP pathways. In vitro optimization of CL-DNA and CL-siRNA NPs with relevant primary cancer cells is expected to impact nucleic acid therapeutics in vivo. This article is part of the themed issue 'Soft interfacial materials: from fundamentals to formulation'. PMID:27298431

  15. pH-Sensitive carboxymethyl chitosan-modified cationic liposomes for sorafenib and siRNA co-delivery

    PubMed Central

    Yao, Yao; Su, Zhihui; Liang, Yanchao; Zhang, Na

    2015-01-01

    Combination of chemotherapeutic drug and small interfering RNA (siRNA) can affect multiple disease pathways and has been proven effective in suppressing tumor progression. Co-delivery of drug and siRNA within a same nanocarrier is a vital means in this field. The present study aimed at the development of a pH-sensitive liposome to co-deliver drug and siRNA to tumor region. Driven by the electrostatic interaction, the pH-sensitive material, carboxymethyl chitosan (CMCS), was coated onto the surface of the cationic liposome (CL) preloaded with sorafenib (Sf) and siRNA (Si). To evaluate whether the resulting CMCS-modified Sf and siRNA co-delivery cationic liposome (CMCS-SiSf-CL) enhanced antitumor efficiency after systematic administration, in vitro and in vivo experiments were evaluated in HepG2 cells and the H22 cells-bearing Kunming mice model. The experimental results demonstrated that CMCS-SiSf-CL was able to condense siRNA efficiently and protect siRNA from being degraded by serum and RNase. The release rate of Sf from CMCS-modified liposome exhibited pH-sensitive release behavior. Furthermore, in vitro cellular uptake results showed that CMCS-SiSf-CL yielded higher fluorescence intensity at pH 6.5 than at pH 7.4, and that siRNA could be delivered to tumor site by CMCS-SiSf-CL in vivo. The in vivo antitumor efficacy showed that CMCS-Sf-CL inhibits tumor growth effectively when compared with free Sf solution. In current experimental conditions, this liposomal formulation did not show significant toxicity both in vitro and in vivo. Therefore, co-delivering Sf with siRNA by CMCS-SiSf-CL might provide a promising approach for tumor therapy. PMID:26491291

  16. pH-Sensitive carboxymethyl chitosan-modified cationic liposomes for sorafenib and siRNA co-delivery.

    PubMed

    Yao, Yao; Su, Zhihui; Liang, Yanchao; Zhang, Na

    2015-01-01

    Combination of chemotherapeutic drug and small interfering RNA (siRNA) can affect multiple disease pathways and has been proven effective in suppressing tumor progression. Co-delivery of drug and siRNA within a same nanocarrier is a vital means in this field. The present study aimed at the development of a pH-sensitive liposome to co-deliver drug and siRNA to tumor region. Driven by the electrostatic interaction, the pH-sensitive material, carboxymethyl chitosan (CMCS), was coated onto the surface of the cationic liposome (CL) preloaded with sorafenib (Sf) and siRNA (Si). To evaluate whether the resulting CMCS-modified Sf and siRNA co-delivery cationic liposome (CMCS-SiSf-CL) enhanced antitumor efficiency after systematic administration, in vitro and in vivo experiments were evaluated in HepG2 cells and the H22 cells-bearing Kunming mice model. The experimental results demonstrated that CMCS-SiSf-CL was able to condense siRNA efficiently and protect siRNA from being degraded by serum and RNase. The release rate of Sf from CMCS-modified liposome exhibited pH-sensitive release behavior. Furthermore, in vitro cellular uptake results showed that CMCS-SiSf-CL yielded higher fluorescence intensity at pH 6.5 than at pH 7.4, and that siRNA could be delivered to tumor site by CMCS-SiSf-CL in vivo. The in vivo antitumor efficacy showed that CMCS-Sf-CL inhibits tumor growth effectively when compared with free Sf solution. In current experimental conditions, this liposomal formulation did not show significant toxicity both in vitro and in vivo. Therefore, co-delivering Sf with siRNA by CMCS-SiSf-CL might provide a promising approach for tumor therapy. PMID:26491291

  17. Comparison of BCG, MPL and cationic liposome adjuvant systems in leishmanial antigen vaccine formulations against murine visceral leishmaniasis

    PubMed Central

    2010-01-01

    Background The development of an effective vaccine against visceral leishmaniasis (VL) caused by Leishmania donovani is an essential aim for controlling the disease. Use of the right adjuvant is of fundamental importance in vaccine formulations for generation of effective cell-mediated immune response. Earlier we reported the protective efficacy of cationic liposome-associated L. donovani promastigote antigens (LAg) against experimental VL. The aim of the present study was to compare the effectiveness of two very promising adjuvants, Bacille Calmette-Guerin (BCG) and Monophosphoryl lipid A (MPL) plus trehalose dicorynomycolate (TDM) with cationic liposomes, in combination with LAg, to confer protection against murine VL. Results All the three formulations afforded significant protection against L. donovani in both the visceral organs, liver and spleen. Although comparable level of protection was observed in BCG+LAg and MPL-TDM+LAg immunized mice, highest level of protection was exhibited by the liposomal LAg immunized group. Significant increase in anti-LAg IgG levels were detected in both MPL-TDM+LAg and liposomal LAg immunized animals with higher levels of IgG2a than IgG1. But BCG+LAg failed to induce any antibody response. As an index of cell-mediated immunity DTH responses were measured and significant response was observed in mice vaccinated with all the three different formulations. However, highest responses were observed with liposomal vaccine immunization. Comparative evaluation of IFN-γ and IL-4 responses in immunized mice revealed that MPL-TDM+LAg group produced the highest level of IFN-γ but lowest IL-4 level, while BCG+LAg demonstrated generation of suboptimum levels of both IFN-γ and IL-4 response. Elicitation of moderate levels of prechallenge IFN-γ along with optimum IL-4 corresponds with successful vaccination with liposomal LAg. Conclusion This comparative study reveals greater effectiveness of the liposomal vaccine for protection against

  18. In vitro and in vivo transfection of melanoma cells B16-F10 mediated by cholesterol-based cationic liposomes.

    PubMed

    Reynier, P; Briane, D; Cao, A; Lievre, N; Naejus, R; Bissieres, P; Salzmann, J L; Taillandier, E

    2002-11-01

    In vitro and in vivo transgene expression in B16-F10 melanoma cells has been investigated using an original cationic liposome prepared with triethyl aminopropane carbamoyl cholesterol iodide (TEAPC-Chol) as carrier. TEAPC-Chol/DOPE (dioleoyl phosphatidyl ethanolamine) liposomes are unilamellar, very stable and not toxic in the used concentration range. The yield in complexation with plasmid DNA can reach 100% even in the presence of fetal calf serum. The transfection level has been evaluated by luminometric measurements of luciferase expression. With TEAPC-Chol/DOPE (1:1) liposomes, a relatively high transfection level in B16-F10 cells has been observed comparing to commercial reagents. For in vivo assays, the transfection level in tumors induced in Nude mice has been optimized by studying the effects of charge ratio, of the helper lipid and of the injection volume. Results showed that TEAPC-Chol/DOPE (1:1) liposomes have improved 10-fold transfection level versus direct gene transfer of free DNA. PMID:12683723

  19. Non-ionic surfactant modified cationic liposomes mediated gene transfection in vitro and in the mouse lung.

    PubMed

    Ding, Wuxiao; Izumisawa, Tomohiro; Hattori, Yoshiyuki; Qi, Xianrong; Kitamoto, Dai; Maitani, Yoshie

    2009-02-01

    As reported previously, cationic liposomes formulated with dioleoylphosphatidylethanolamine (DOPE) and N,N-methyl hydroxyethyl aminopropane carbamoyl cholesterol (MHAPC-liposomes) achieved efficient gene transfection in the mouse lung following intratracheal injection. We have studied here the role of surfactants, mannosylerythritol lipid-A (MEL-A) and polysorbate 80 (Tween 80), in affecting gene transfection of MHAPC-lipoplexes (complex with pCMV-luc DNA) in A549 cells and in the mouse lung. MEL-A increased gene transfection of MHAPC-lipoplexes significantly in vitro and slightly in the mouse lung, while Tween 80 decreased it both in vitro and in vivo. As assessed by confocal laser scanning microscopy and fluorescence imaging, MEL-A might faciliate gene dissociation from MHAPC-lipoplexes with fluorescein-labeled oligodeoxynucleotide (FITC-ODN) after internalization into the cells and retained the lipoplexes in the mouse lung for prolonged time, while Tween 80 was inefficient to deliver foreign gene into target cells and in the lung. These results demonstrated that MEL-A is advantageous to Tween 80 in the modification of cationic liposomes as gene delivery vectors in the lung. PMID:19182397

  20. Improvement in physicochemical parameters of DPPC liposomes and increase in skin permeation of aciclovir and minoxidil by the addition of cationic polymers.

    PubMed

    Hasanovic, Amra; Hollick, Caroline; Fischinger, Kerstin; Valenta, Claudia

    2010-06-01

    1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) liposomes were prepared by high-pressure homogeniser and coated with two cationic polymers, chitosan (CS) and for the first time Eudragit EPO (EU), respectively. Compared to the control liposomes, the polymeric liposomes showed greater physicochemical stability in terms of mean particle size and zeta potential at room temperature. In the present study, aciclovir and minoxidil have been used as hydrophilic and hydrophobic candidates. In the presence of the drugs, the polymeric liposomes still showed constant particle size and zeta potential. Influences of polymers and model drugs on thermotropic phase transition of DPPC liposomes were studied by micro-differential scanning calorimetry (microDSC). The influences on configuration of DPPC liposomes were investigated by Fourier transform infrared spectroscopy (FTIR). According to DSC results, cationic polymers had a stabilising effect, whereas aciclovir and minoxidil changed the physical properties of the DPPC bilayers by influencing the main phase transition temperature and erasing the pre-transition. The investigation of CO stretching bands of DPPC at 1736 cm(-1) in FTIR spectra showed that aciclovir has strong hydrogen bonding with CO groups of DPPC, whereas carbonyl groups were free in minoxidil presence. Moreover, the coating of liposomes with CS or EU led to higher skin diffusion for both drugs. This could be explained as an effect of positively charged liposomes to interact stronger with skin negatively charged surface and their possible interactions with structures below the stratum corneum. PMID:20332029

  1. Effect of incorporating cholesterol into DDA:TDB liposomal adjuvants on bilayer properties, biodistribution, and immune responses.

    PubMed

    Kaur, Randip; Henriksen-Lacey, Malou; Wilkhu, Jitinder; Devitt, Andrew; Christensen, Dennis; Perrie, Yvonne

    2014-01-01

    Cholesterol is an abundant component of mammalian cell membranes and has been extensively studied as an artificial membrane stabilizer in a wide range of phospholipid liposome systems. In this study, the aim was to investigate the role of cholesterol in cationic liposomal adjuvant system based on dimethyldioctadecylammonium (DDA) and trehalose 6,6'-dibehenate (TDB) which has been shown as a strong adjuvant system for vaccines against a wide range of diseases. Packaging of cholesterol within DDA:TDB liposomes was investigated using differential scanning calorimetery and surface pressure-area isotherms of lipid monolayers; incorporation of cholesterol into liposomal membranes promoted the formation of a liquid-condensed monolayer and removed the main phase transition temperature of the system, resulting in an increased bilayer fluidity and reduced antigen retention in vitro. In vivo biodistribution studies found that this increase in membrane fluidity did not alter deposition of liposomes and antigen at the site of injection. In terms of immune responses, early (12 days after immunization) IgG responses were reduced by inclusion of cholesterol; thereafter there were no differences in antibody (IgG, IgG1, IgG2b) responses promoted by DDA:TDB liposomes with and without cholesterol. However, significantly higher levels of IFN-gamma were induced by DDA:TDB liposomes, and liposome uptake by macrophages in vitro was also shown to be higher for DDA:TDB liposomes compared to their cholesterol-containing counterparts, suggesting that small changes in bilayer mechanics can impact both cellular interactions and immune responses. PMID:24171445

  2. Sucrose ester based cationic liposomes as effective non-viral gene vectors for gene delivery.

    PubMed

    Zhao, Yinan; Zhu, Jie; Zhou, Hengjun; Guo, Xin; Tian, Tian; Cui, Shaohui; Zhen, Yuhong; Zhang, Shubiao; Xu, Yuhong

    2016-09-01

    As sucrose esters (SEs) are natural and biodegradable excipients with excellent drug dissolution and drug absorption/permeation in controlled release systems, we firstly incorporated SE into liposomes for gene delivery in this article. A peptide-based lipid (CDO14), Gemini-based quaternary ammonium-based lipid (CTA14), and mono-head quaternary ammonium lipid (CPA14), and SE as helper lipid, were prepared into liposomes which could enhance the interactions between liposomes and pDNA. Most importantly, the liposomes with helper lipid SE showed higher transfection and lower cytotoxicity than those without SE in Hela and A549 cells. It was also found that the transfection efficiency increased with the increase of SE content. The selected liposome, CDO14/SE, was able to deliver siRNA against luciferase for silencing gene in lung tumors of mice, with little in vivo toxicity. The results convincingly demonstrated SEs could be highly desirable candidates for gene delivery systems. PMID:27232309

  3. The effects of salt on the physicochemical properties and immunogenicity of protein based vaccine formulated in cationic liposome.

    PubMed

    Yan, Weili; Huang, Leaf

    2009-02-23

    Recently, we have developed a simple and potent therapeutic cancer vaccine consisting of a cationic lipid and a peptide antigen. In this report, we expanded the utility of this formulation to protein based vaccines. First, we formulated the human papillomavirus (HPV) 16 E7 protein (E7) in different doses of DOTAP liposome. The results showed that these formulations failed to regress an established tumor. However, when sodium chloride (30 mM) was added to the DOTAP (100 nmol)/E7 (20 microg) formulation, anti-tumor activity was generated in the immunized mice. Correlatively, 30 mM NaCl in the DOTAP/E7 protein formulation increased the particle size from approximately 350 to 550 nm, decreased the protein loading capacity (from 95 to 90%), and finally increased the zeta potential (from 29 to 38 mV). Next, a model protein antigen ovalbumin (OVA) was formulated in different doses of DOTAP liposomes. Similarly, the results showed that 20 microg OVA formulated in 200 nmol DOTAP with 30 mM NaCl had the best OVA-specific antibody response, including both IgG(1) and IgG(2a), suggesting both Th1 and Th2 immune responses were generated by this formulation. In conclusion, we have expanded the application of cationic DOTAP liposome formulation to protein based vaccines and also identified that small amounts of salt could change the physicochemical properties of the vaccine formulation and enhance the activity of the DOTAP/protein based vaccine. The enhancement of immune responses by salt is possibly due to its interference of the electrostatic interaction between the cationic lipid and the protein antigen to facilitate the antigen release from the carrier and at the same time activate the antigen presenting cells. PMID:18992312

  4. Patterned Threadlike Micelles and DNA-Tethered Nanoparticles: A Structural Study of PEGylated Cationic Liposome-DNA Assemblies.

    PubMed

    Majzoub, Ramsey N; Ewert, Kai K; Jacovetty, Erica L; Carragher, Bridget; Potter, Clinton S; Li, Youli; Safinya, Cyrus R

    2015-06-30

    The self-assembly of oppositely charged biomacromolecules has been extensively studied due to its pertinence in the design of functional nanomaterials. Using cryo electron microscopy (cryo-EM), optical light scattering, and fluorescence microscopy, we investigated the structure and phase behavior of PEGylated (PEG: poly(ethylene glycol)) cationic liposome-DNA nanoparticles (CL-DNA NPs) as a function of DNA length, topology (linear and circular), and ρ(chg) (the molar charge ratio of cationic lipid to anionic DNA). Although all NPs studied exhibited lamellar internal nanostructure, NPs formed with short (∼2 kbps), linear, polydisperse DNA were defect-rich and contained smaller domains. Unexpectedly, we found distinctly different equilibrium structures away from the isoelectric point. At ρ(chg) > 1, in the excess cationic lipid regime, threadlike micelles rich in PEG-lipid were found to coexist with NPs, cationic liposomes, and spherical micelles. At high concentrations these PEGylated threadlike micelles formed a well-ordered, patterned morphology with highly uniform intermicellar spacing. At ρ(chg) < 1, in the excess DNA regime and with no added salt, individual NPs were tethered together via long, linear DNA (48 kbps λ-phage DNA) into a biopolymer-mediated floc. Our results provide insight into what equilibrium nanostructures can form when oppositely charged macromolecules self-assemble in aqueous media. Self-assembled, well-ordered threadlike micelles and tethered nanoparticles may have a broad range of applications in bionanotechnology, including nanoscale lithograpy and the development of lipid-based multifunctional nanoparticle networks. PMID:26048043

  5. Intranasal Immunization with DOTAP Cationic Liposomes Combined with DC-Cholesterol Induces Potent Antigen-Specific Mucosal and Systemic Immune Responses in Mice

    PubMed Central

    Iwase, Naoko; Takahashi, Saeko; Yamakita, Yuki; Iwata, Tomoko; Muto, Shoko; Sato, Emi; Takayama, Noriko; Honjo, Emi; Kiyono, Hiroshi; Kunisawa, Jun; Aramaki, Yukihiko

    2015-01-01

    Despite the progress made by modern medicine, infectious diseases remain one of the most important threats to human health. Vaccination against pathogens is one of the primary methods used to prevent and treat infectious diseases that cause illness and death. Vaccines administered by the mucosal route are potentially a promising strategy to combat infectious diseases since mucosal surfaces are a major route of entry for most pathogens. However, this route of vaccination is not widely used in the clinic due to the lack of a safe and effective mucosal adjuvant. Therefore, the development of safe and effective mucosal adjuvants is key to preventing infectious diseases by enabling the use of mucosal vaccines in the clinic. In this study, we show that intranasal administration of a cationic liposome composed of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and 3β-[N-(N',N'-dimethylaminoethane)-carbamoyl] (DC-chol) (DOTAP/DC-chol liposome) has a potent mucosal adjuvant effect in mice. Intranasal vaccination with ovalbumin (OVA) in combination with DOTAP/DC-chol liposomes induced the production of OVA-specific IgA in nasal tissues and increased serum IgG1 levels, suggesting that the cationic DOTAP/DC-chol liposome leads to the induction of a Th2 immune response. Additionally, nasal-associated lymphoid tissue and splenocytes from mice treated with OVA plus DOTAP/DC-chol liposome showed high levels of IL–4 expression. DOTAP/DC-chol liposomes also enhanced OVA uptake by CD11c+ dendritic cells in nasal-associated lymphoid tissue. These data demonstrate that DOTAP/DC-chol liposomes elicit immune responses via an antigen-specific Th2 reaction. These results suggest that cationic liposomes merit further development as a mucosal adjuvant for vaccination against infectious diseases. PMID:26440657

  6. Effect of the preparation procedure on the structural properties of oligonucleotide/cationic liposome complexes (lipoplexes) studied by electron spin resonance and Zeta potential.

    PubMed

    Ciani, Laura; Ristori, Sandra; Bonechi, Claudia; Rossi, Claudio; Martini, Giacomo

    2007-12-01

    Lipoplexes with different surface charge were prepared from a short oligonucleotide (20 mer, dsAT) inserted into liposomes of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and 1,2-dioleoyl-sn-glycero-3-phospho-ethanolamine (DOPE). The starting liposomes were prepared by two different procedures, i.e. progressive dsAT addition starting from plain liposomes (titration) and direct mixing of dsAT with pure liposomes (point to point preparation). Lipoplexes were characterized from a molecular point of view by Electron Spin Resonance (ESR) of a cationic spin probe and by Nuclear Magnetic Resonance. Structural and surface features were analysed by Zeta potential (zeta) measurements and Cryo-TEM micrographs. The complete set of results allowed to demonstrate that: i) the interactions between dsAT and cationic lipids were strong and occurred at the liposome surface; ii) the overall shape and physicochemical properties of liposomes did not change when short nucleic acid fragments were added before surface charge neutralization; iii) the bilayer structure of the lipids in lipoplexes was substantially preserved at all charge ratios; iv) the physical status of lipoplexes with electrical charge far from neutrality did not depend on the preparation method. PMID:17950520

  7. Tumor neovasculature-targeted cationic PEGylated liposomes of gambogic acid for the treatment of triple-negative breast cancer.

    PubMed

    Doddapaneni, Ravi; Patel, Ketan; Owaid, Ibtisam Hasan; Singh, Mandip

    2016-05-01

    Gambogic acid (GA) is a naturally derived potent anticancer agent with extremely poor aqueous solubility. In the present study, positively charged PEGylated liposomal formulation of GA (GAL) was developed for parenteral delivery for the treatment of triple-negative breast cancer (TNBC). The GAL was formulated with a particle size of 107.3 ± 10.6 nm with +32 mV zeta potential. GAL showed very minimal release of GA over 24 h period confirming the non-leakiness and stability of liposomes. In vitro cytotoxicity assays showed similar cell killing with GA and GAL against MDA-MB-231 cells but significantly higher inhibition of HUVEC growth was observed with GAL. Furthermore, GAL significantly (p < 0.05) inhibited the MDA-MB-231 orthotopic xenograft tumor growth with >50% reduction of tumor volume and reduction in tumor weight by 1.7-fold and 2.2-fold when compared to GA and controls, respectively. Results of western blot analysis indicated that GAL significantly suppressed the expression of apoptotic markers, bcl2, cyclinD1, survivin and microvessel density marker-CD31 and increased the expression of p53 and Bax compared to GA and control. Collectively, these data provide further support for the potential applications of cationic GAL in its intravenous delivery and its significant role in inhibiting angiogenesis against TNBC. PMID:26701717

  8. Negatively Charged Carbon Nanohorn Supported Cationic Liposome Nanoparticles: A Novel Delivery Vehicle for Anti-Nicotine Vaccine.

    PubMed

    Zheng, Hong; Hu, Yun; Huang, Wei; de Villiers, Sabina; Pentel, Paul; Zhang, Jianfei; Dorn, Harry; Ehrich, Marion; Zhang, Chenming

    2015-12-01

    Tobacco addiction is the second-leading cause of death in the world. Due to the nature of nicotine (a small molecule), finding ways to combat nicotine's deleterious effects has been a constant challenge to the society and the medical field. In the present work, a novel anti-nicotine vaccine based on nanohorn supported liposome nanoparticles (NsL NPs) was developed. The nano-vaccine was constructed by using negatively charged carbon nanohorns as a scaffold for the assembly of cationic liposomes, which allow the conjugation of hapten conjugated carrier proteins. The assembled bio-nanoparticles are stable. Mice were immunized subcutaneously with the nano-vaccine, which induced high titer and high affinity of nicotine specific antibodies in mice. Furthermore, no evidence of clinical signs or systemic toxicity followed multiple administrations of NsL-based anti-nicotine vaccine. These results suggest that NsL-based anti-nicotine vaccine is a promising candidate in treating nicotine dependence and could have potential to significantly contribute to smoking cessation. PMID:26510313

  9. Photodynamic therapy disinfection of carious tissue mediated by aluminum-chloride-phthalocyanine entrapped in cationic liposomes: an in vitro and clinical study.

    PubMed

    Longo, João Paulo F; Leal, Soraya C; Simioni, Andreza R; de Fátima Menezes Almeida-Santos, Maria; Tedesco, Antônio C; Azevedo, Ricardo B

    2012-05-01

    Photodynamic therapy (PDT) is a technique employed in the treatment of several superficial infections, such as caries. PDT uses a non-toxic drug termed photosensitizer (PS) followed by light irradiation. The cytotoxic effects of the therapy are related to the production of reactive species produced after light activation of a photosensitizer, which reacts with surrounding molecules and disrupts several of the cell's functions. Within this context, this study aimed to develop a clinical protocol involving PDT application mediated by aluminum-chloride-phthalocyanine (AlClPc) entrapped in cationic liposomes against cariogenic bacteria in caries lesions. Cationic liposomes were used to delivery AlClPc preferentially to bacterial cells due to the strong anionic superficial charges of these cell types. The results are represented in two fundamental steps: (1) in vitro evaluation of AlClPc delivery to cariogenic bacteria and pulp cells, as well as its potential phototoxicity; (2) a clinical study involving volunteer patients that were treated with the PDT protocol mediated by AlClPc-cationic liposome. The main results showed that the AlClPc-cationic liposome was preferentially absorbed by bacterial cells compared to eukaryotic dental pulp cells, and it was efficient in the reduction of microbial load from bacterial cultures. In addition, the clinical study showed a mean reduction of 82% of total bacterial in the treated cavities after PDT application. Taken together, the results presented in this study showed that the antimicrobial PDT protocol mediated by cationic liposomes containing AlClPc is safety for clinical application and is efficient in the reduction of bacterial load in caries lesions. PMID:21809069

  10. Enhanced non-inflammasome mediated immune responses by mannosylated zwitterionic-based cationic liposomes for HIV DNA vaccines.

    PubMed

    Qiao, Chenmeng; Liu, Jiandong; Yang, Jun; Li, Yan; Weng, Jie; Shao, Yiming; Zhang, Xin

    2016-04-01

    Human immunodeficiency virus (HIV) DNA vaccine can induce cellular and humoral immunity. A safe and effective HIV DNA vaccine is urgent need to prevent the spread of acquired immune deficiency syndrome (AIDS). The major drawback of DNA vaccines is the low immunogenicity, which is caused by the poor delivery to antigen presenting cells and insufficient antigen expression. Sparked by the capability of endosomal/lysosomal escape of the zwitterionic lipid distearoyl phosphoethanol-amine-polycarboxybetaine (DSPE-PCB), we attempted to develop a zwitterionic-based cationic liposome with enhanced immunogenicity of DNA vaccines. The mannosylated zwitterionic-based cationic liposome (man-ZCL) was constructed as a DNA vaccine adjuvant for HIV vaccination. Man-ZCL could complex with DNA antigens to form a tight structure and protect them from nuclei enzyme degradation. Benefited from the capability of the specific mannose receptor mediated antigen processing cells targeting and enhanced endosomal/lysosomal escape, the man-ZCL lipoplexes were supposed to promote antigen presentation and the immunogenicity of DNA vaccines. In vitro and in vivo results revealed that man-ZCL lipoplexes showed enhanced anti-HIV immune responses and lower toxicity compared with CpG/DNA and Lipo2k/DNA, and triggered a Th1/Th2 mixed immunity. An antigen-depot effect was observed in the administration site, and this resulted in enhanced retention of DNA antigens in draining lymph nodes. Most importantly, the man-ZCL could assist to activate T cells through a non-inflammasome pathway. These findings suggested that the man-ZCL could be potentially applied as a safe and efficient DNA adjuvant for HIV vaccines. PMID:26851653

  11. Insights into the therapeutic potential of hypoxia-inducible factor-1α small interfering RNA in malignant melanoma delivered via folate-decorated cationic liposomes

    PubMed Central

    Chen, Zhongjian; Zhang, Tianpeng; Wu, Baojian; Zhang, Xingwang

    2016-01-01

    Malignant melanoma (MM) represents the most dangerous form of skin cancer, and its incidence is expected to rise in the coming time. However, therapy for MM is limited by low topical drug concentration and multidrug resistance. This article aimed to develop folate-decorated cationic liposomes (fc-LPs) for hypoxia-inducible factor-1α (HIF-1α) small interfering (siRNA) delivery, and to evaluate the potential of such siRNA/liposome complexes in MM therapy. HIF-1α siRNA-loaded fc-LPs (siRNA-fc-LPs) were prepared by a film hydration method followed by siRNA incubation. Folate decoration of liposomes was achieved by incorporation of folate/oleic acid-diacylated oligochitosans. The resulting siRNA-fc-LPs were 95.3 nm in size with a ζ potential of 2.41 mV. The liposomal vectors exhibited excellent loading capacity and protective effect toward siRNA. The in vitro cell transfection efficiency was almost parallel to the commercially available Lipofectamine™ 2000. Moreover, the anti-melanoma activity of HIF-1α siRNA was significantly enhanced through fc-LPs. Western blot analysis and apoptosis test demonstrated that siRNA-fc-LPs substantially reduced the production of HIF-1α-associated protein and induced the apoptosis of hypoxia-tolerant melanoma cells. Our designed liposomal vectors might be applicable as siRNA delivery vehicle to systemically or topically treat MM. PMID:27042054

  12. DNA pre-condensation with an amino acid-based cationic amphiphile. A viable approach for liposome-based gene delivery.

    PubMed

    Rosa, Mónica; Penacho, Nuno; Simöes, Sérgio; Lima, Maria C P; Lindman, Björn; Miguel, Maria G

    2008-01-01

    A study related to the development and characterization of a new gene delivery system was performed. The approach consists in both the pre-condensation of plasmid DNA with an arginine-based cationic surfactant, arginine-N-lauroyl amide dihydrochloride (ALA), which was found not to be toxic, and the incorporation of the blood protein transferrin (Tf) into the formulations. Two cationic liposome formulations were used, one composed of a mixture of dioleoyl trimethylammoniopropane and cholesterol (DOTAP:Chol) and the other a pH sensitive formulation constituted of DOTAP, Chol, Dioleoyl phosphatidylethanolamine (DOPE) and cholesteryl hemisuccinate (CHEMS). Particles with different ALA/DNA and cationic lipid/DNA charge ratios were produced and a physicochemical characterization of the systems developed was performed. DNA conformational changes in the presence of ALA were studied by Circular Dichroism (CD) and the ALA binding to DNA was followed by surface tension measurements. Insight into the structure and morphology of the various ALA-complexes (complexes composed of ALA, DNA, Tf and liposomes) was obtained by cryogenic-Transmission Electron Microscopy (cryo-TEM) and the sizes of the ALA-complexes were determined through Photon Correlation Spectroscopy (PCS). We found that the transfection capacity of these systems is directly related with the presence of ALA and the lipidic composition. Complexes based on the pH sensitive liposome formulation present better transfection profiles. The correlation between the inner structure, density and size of the ALA-complexes and their biological activity is discussed. Overall, we demonstrate that the presence of ALA improves the transfection efficiency when conjugated with cationic liposome systems. PMID:18097953

  13. Synthesis of linear and cyclic peptide-PEG-lipids for stabilization and targeting of cationic liposome-DNA complexes.

    PubMed

    Ewert, Kai K; Kotamraju, Venkata Ramana; Majzoub, Ramsey N; Steffes, Victoria M; Wonder, Emily A; Teesalu, Tambet; Ruoslahti, Erkki; Safinya, Cyrus R

    2016-03-15

    Because nucleic acids (NAs) have immense potential value as therapeutics, the development of safe and effective synthetic NA vectors continues to attract much attention. In vivo applications of NA vectors require stabilized, nanometer-scale particles, but the commonly used approaches of steric stabilization with a polymer coat (e.g., PEGylation; PEG=poly(ethylene glycol)) interfere with attachment to cells, uptake, and endosomal escape. Conjugation of peptides to PEG-lipids can improve cell attachment and uptake for cationic liposome-DNA (CL-DNA) complexes. We present several synthetic approaches to peptide-PEG-lipids and discuss their merits and drawbacks. A lipid-PEG-amine building block served as the common key intermediate in all synthetic routes. Assembling the entire peptide-PEG-lipid by manual solid phase peptide synthesis (employing a lipid-PEG-carboxylic acid) allowed gram-scale synthesis but is mostly applicable to linear peptides connected via their N-terminus. Conjugation via thiol-maleimide or strain-promoted (copper-free) azide-alkyne cycloaddition chemistry is highly amenable to on-demand preparation of peptide-PEG-lipids, and the appropriate PEG-lipid precursors are available in a single chemical step from the lipid-PEG-amine building block. Azide-alkyne cycloaddition is especially suitable for disulfide-bridged peptides such as iRGD (cyclic CRGDKGPDC). Added at 10 mol% of a cationic/neutral lipid mixture, the peptide-PEG-lipids stabilize the size of CL-DNA complexes. They also affect cell attachment and uptake of nanoparticles in a peptide-dependent manner, thereby providing a platform for preparing stabilized, affinity-targeted CL-DNA nanoparticles. PMID:26874401

  14. Zwitterionic Poly(carboxybetaine)-based Cationic Liposomes for Effective Delivery of Small Interfering RNA Therapeutics without Accelerated Blood Clearance Phenomenon

    PubMed Central

    Li, Yan; Liu, Ruiyuan; Shi, Yuanjie; Zhang, Zhenzhong; Zhang, Xin

    2015-01-01

    For efficient delivery of small interfering RNA (siRNA) to the target diseased site in vivo, it is important to design suitable vehicles to control the blood circulation of siRNA. It has been shown that surface modification of cationic liposome/siRNA complexes (lipoplexes) with polyethylene glycol (PEG) could enhance the circulation time of lipoplexes. However, the first injection of PEGylated lipoplexes in vivo induces accelerated blood clearance and enhances hepatic accumulation of the following injected PEGylated lipoplexes, which is known as the accelerated blood clearance (ABC) phenomenon. Herein, we developed zwitterionic poly(carboxybetaine) (PCB) modified lipoplexes for the delivery of siRNA therapeutics, which could avoid protein adsorption and enhance the stability of lipoplexes as that for PEG. Quite different from the PEGylation, the PCBylated lipoplexes could avoid ABC phenomenon, which extended the blood circulation time and enhanced the tumor accumulation of lipoplexes in vivo. After accumulation in tumor site, the PCBylation could promote the cellular uptake and endosomal/lysosomal escape of lipoplexes due to its unique chemical structure and pH-sensitive ability. With excellent tumor accumulation, cellular uptake and endosomal/lysosomal escape abilities, the PCBylated lipoplexes significantly inhibited tumor growth and induced tumor cell apoptosis. PMID:25825598

  15. Zwitterionic poly(carboxybetaine)-based cationic liposomes for effective delivery of small interfering RNA therapeutics without accelerated blood clearance phenomenon.

    PubMed

    Li, Yan; Liu, Ruiyuan; Shi, Yuanjie; Zhang, Zhenzhong; Zhang, Xin

    2015-01-01

    For efficient delivery of small interfering RNA (siRNA) to the target diseased site in vivo, it is important to design suitable vehicles to control the blood circulation of siRNA. It has been shown that surface modification of cationic liposome/siRNA complexes (lipoplexes) with polyethylene glycol (PEG) could enhance the circulation time of lipoplexes. However, the first injection of PEGylated lipoplexes in vivo induces accelerated blood clearance and enhances hepatic accumulation of the following injected PEGylated lipoplexes, which is known as the accelerated blood clearance (ABC) phenomenon. Herein, we developed zwitterionic poly(carboxybetaine) (PCB) modified lipoplexes for the delivery of siRNA therapeutics, which could avoid protein adsorption and enhance the stability of lipoplexes as that for PEG. Quite different from the PEGylation, the PCBylated lipoplexes could avoid ABC phenomenon, which extended the blood circulation time and enhanced the tumor accumulation of lipoplexes in vivo. After accumulation in tumor site, the PCBylation could promote the cellular uptake and endosomal/lysosomal escape of lipoplexes due to its unique chemical structure and pH-sensitive ability. With excellent tumor accumulation, cellular uptake and endosomal/lysosomal escape abilities, the PCBylated lipoplexes significantly inhibited tumor growth and induced tumor cell apoptosis. PMID:25825598

  16. Efficient in vivo gene delivery by the negatively charged complexes of cationic liposomes and plasmid DNA.

    PubMed

    Son, K K; Tkach, D; Hall, K J

    2000-09-29

    We examined changes in zeta potential (the surface charge density, zeta) of the complexes of liposome (nmol)/DNA (microg) (L/D) formed in water at three different ratios (L/D=1, 10 and 20) by changing the ionic strength or pH to find an optimum formulation for in vivo gene delivery. At high DNA concentrations, zeta of the complexes formed in water at L/D=10 was significantly lowered by adding NaCl (zeta=+8.44+/-3.1 to -27.6+/-3.5 mV) or increasing pH from 5 (zeta=+15.3+/-1.0) to 9 (zeta=-22.5+/-2.5 mV). However, the positively charged complexes formed at L/D=20 (zeta=+6.2+/-3.5 mV) became negative as NaCl was added at alkaline pH as observed in medium (zeta=-19.7+/-9.9 mV). Thus, the complexes formed in water under the optimum condition were stable and largely negatively charged at L/D=1 (zeta=-58.1+/-3.9 mV), unstable and slightly positively charged at L/D=10 (zeta=+8.44+/-3.7 mV), and unstable and largely positively charged at L/D=20 (zeta=+24.3+/-3.6 mV). The negatively charged complexes efficiently delivered DNA into both solid and ascitic tumor cells. However, the positively charged complexes were very poor in delivering DNA into solid tumors, yet were efficient in delivering DNA into ascitic tumors grown in the peritoneum regardless of complex size. This slightly lower gene transfer efficiency of the negatively charged complexes can be as efficient as the positively charged ones when an injection is repeated (at least two injections), which is the most common case for therapy regimes. The results indicate that optimum in vivo lipofection may depend on the site of tumor growth. PMID:11018645

  17. Fused liposome and acid induced method for liposome fusion

    SciTech Connect

    Huang, L.; Connor, J.

    1988-12-06

    This patent describes a method of fusing liposomes. It comprises: preparing a suspension of liposomes containing at least one lipid which has a tendency to form the inverted hexagonal phase and at least 20 mol percent of palmitoylhomocysteine; and in the absence of externally added divalent cations, proteins or other macromolecules, acidifying the liposome suspension to reduce the pH of the liposomes to below pH 7, such that at least about 20% of the liposomes fuse to one another.

  18. Adjuvant Cationic Liposomes Presenting MPL and IL-12 Induce Cell Death, Suppress Tumor Growth, and Alter the Cellular Phenotype of Tumors in a Murine Model of Breast Cancer

    PubMed Central

    2015-01-01

    Dendritic cells (DC) process and present antigens to T lymphocytes, inducing potent immune responses when encountered in association with activating signals, such as pathogen-associated molecular patterns. Using the 4T1 murine model of breast cancer, cationic liposomes containing monophosphoryl lipid A (MPL) and interleukin (IL)-12 were administered by intratumoral injection. Combination multivalent presentation of the Toll-like receptor-4 ligand MPL and cytotoxic 1,2-dioleoyl-3-trmethylammonium-propane lipids induced cell death, decreased cellular proliferation, and increased serum levels of IL-1β and tumor necrosis factor (TNF)-α. The addition of recombinant IL-12 further suppressed tumor growth and increased expression of IL-1β, TNF-α, and interferon-γ. IL-12 also increased the percentage of cytolytic T cells, DC, and F4/80+ macrophages in the tumor. While single agent therapy elevated levels of nitric oxide synthase 3-fold above basal levels in the tumor, combination therapy with MPL cationic liposomes and IL-12 stimulated a 7-fold increase, supporting the observed cell cycle arrest (loss of Ki-67 expression) and apoptosis (TUNEL positive). In mice bearing dual tumors, the growth of distal, untreated tumors mirrored that of liposome-treated tumors, supporting the presence of a systemic immune response. PMID:25179345

  19. Nanoscale assemblies of gigantic molecular {Mo154}-rings: (dimethyldioctadecylammonium)20[Mo154O462H8(H2O)70].

    PubMed

    Akutagawa, Tomoyuki; Jin, Reina; Tunashima, Ryo; Noro, Shin-Ichiro; Cronin, Leroy; Nakamura, Takayoshi

    2008-01-01

    Clusters based on the mixed-valence gigantic inorganic ring [Mo154O462H14(H2O)70]14- ({Mo154}-ring) and dimethyldioctadecylammonium (DODA) were combined to form novel molecular assemblies of an inorganic-organic hybrid molecular system as Langmuir-Blodgett (LB) and cast films. (DODA)20[Mo154O462H8(H2O)70] (2) was prepared by cation exchange and was characterized by a combination of thermogravimetry, IR, UV-vis-NIR, 1H NMR, and XRD measurements. The salt 2 was soluble in common organic solvents, and the chemical stability of {Mo154}-ring encapsulated by DODA cationic surfactants in CHCl3 was found to be higher than that of the "native" sodium salt of the {Mo154}-ring in H2O. Uniform spherical vesicle-like molecular assemblies of (DODA)20[Mo154O462H8(H2O)70] were observed in dilute THF, whose average diameter of 95 nm and a normalized variance of 5.7% were confirmed by a X-ray small-angle scattering. Deposition of 2 as a cast film showed circular domains with a typical diameter of approximately 100 nm, indicating possible similarities between solution and surface-deposited structures. The resulting LB films of salt 2 were transferred from an acidic buffer subphase with pH = 1.5 onto mica, giving a two-dimensional film surface with a unity transfer ratio. Further, the electronic absorption spectra of the LB multilayer were consistent with the classic type II mixed-valence MoV/MoVI electronic state well know for molybdenum blue {Mo154}-ring systems, and it appears that on the surface the plane of the {Mo154}-ring is approximately parallel to the substrate surface, as indicated by polarized electronic spectra, while the alkyl chains of DODA were relatively normal to the substrate surface. Therefore, the layer between the {Mo154}-rings and DODA cations was alternately stacked along the direction of film propagation. Finally, it was found that the surface morphology of the cast and LB films was determined by the molecular assembly of (DODA)20[Mo154O462H8(H2O)70] in

  20. Small Cationic DDA:TDB Liposomes as Protein Vaccine Adjuvants Obviate the Need for TLR Agonists in Inducing Cellular and Humoral Responses

    PubMed Central

    Milicic, Anita; Kaur, Randip; Reyes-Sandoval, Arturo; Tang, Choon-Kit; Honeycutt, Jared

    2012-01-01

    Most subunit vaccines require adjuvants in order to induce protective immune responses to the targeted pathogen. However, many of the potent immunogenic adjuvants display unacceptable local or systemic reactogenicity. Liposomes are spherical vesicles consisting of single (unilamellar) or multiple (multilamellar) phospholipid bi-layers. The lipid membranes are interleaved with an aqueous buffer, which can be utilised to deliver hydrophilic vaccine components, such as protein antigens or ligands for immune receptors. Liposomes, in particular cationic DDA:TDB vesicles, have been shown in animal models to induce strong humoral responses to the associated antigen without increased reactogenicity, and are currently being tested in Phase I human clinical trials. We explored several modifications of DDA:TDB liposomes - including size, antigen association and addition of TLR agonists – to assess their immunogenic capacity as vaccine adjuvants, using Ovalbumin (OVA) protein as a model protein vaccine. Following triple homologous immunisation, small unilamellar vesicles (SUVs) with no TLR agonists showed a significantly higher capacity for inducing spleen CD8 IFNγ responses against OVA in comparison with the larger multilamellar vesicles (MLVs). Antigen-specific antibody reponses were also higher with SUVs. Addition of the TLR3 and TLR9 agonists significantly increased the adjuvanting capacity of MLVs and OVA-encapsulating dehydration-rehydration vesicles (DRVs), but not of SUVs. Our findings lend further support to the use of liposomes as protein vaccine adjuvants. Importantly, the ability of DDA:TDB SUVs to induce potent CD8 T cell responses without the need for adding immunostimulators would avoid the potential safety risks associated with the clinical use of TLR agonists in vaccines adjuvanted with liposomes. PMID:22470545

  1. Non-viral dried powders for respiratory gene delivery prepared by cationic and chitosan loaded liposomes.

    PubMed

    Colonna, C; Conti, B; Genta, I; Alpar, O H

    2008-11-19

    The aim of this work was to investigate lipid-based dried powders as transfection competent carriers capable of promoting the expression of therapeutic genes. The lipid-based vectors were prepared by combining different cationic lipids 1,2-dioleoyl-3-trimethylammoniumpropane chloride (DOTAP), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 3beta(N(N',N-dimethylaminoethane) carbamoyl) cholesterol hydrochloride (DC-Chol) or by mixing of anionic lipids (1,2-dimyristoyl-sn-glycero-3-phospocholine (DMPC), 1,2-dimyristoyl-sn-glycero-3-phospho-rac-glycerol sodium salt (DMPG) and chitosan salts. Spray drying of the formulations was performed using carbohydrates as thermoprotectant excipients and some amino acids as aerosolisation enhancers. Both the lipidic vectors and the dried powders were characterized for morphology, size, zeta potential (Z-potential) and a yield of the process. Agarose gel electrophoresis was used to examine the structural integrity of dehydrated plasmid DNA (pDNA). The biological functionality of the powders was quantified using the in vitro cell transfection. Among the several lipids and lipid-polymer mixtures tested, the best-selected formulations had spherical shape, narrow size distribution (mean diameter<220 nm, P.I.<0.250), a positive zeta-potential (>25 mV) with a good yield of the process (>65%). The set-up spray drying parameters allowed to obtain good yield of the process (>50%) and spherically shaped particles with the volume-weighted mean diameter (d[4,3])<6 microm in the respirable range. The set-up conditions for the preparation of the lipid dried powders did not adversely affect the structural integrity of the encapsulated pDNA. The powders kept a good transfection efficiency as compared to the fresh colloidal formulations. Lipid-based spray dried powders allowed the development of stable and viable formulations for respiratory gene delivery. In vitro dispersibility and

  2. A novel liposomal irinotecan formulation with significant anti-tumour activity: use of the divalent cation ionophore A23187 and copper-containing liposomes to improve drug retention.

    PubMed

    Ramsay, Euan; Alnajim, Jehan; Anantha, Malathi; Zastre, Jason; Yan, Hong; Webb, Murray; Waterhouse, Dawn; Bally, Marcel

    2008-03-01

    We determined whether the method used to encapsulate irinotecan into 1,2-distearoyl-sn-glycero-phosphocholine/cholesterol (DSPC/Chol; 55:45 mol%) liposomes influenced: (i) irinotecan release rate and (ii) therapeutic efficacy. DSPC/Chol (55:45 mol%) liposomes were prepared with: (i) unbuffered CuSO4; (ii) buffered (pH 7.5) CuSO4; (iii) unbuffered MnSO4 and the ionophore A23187 (exchanges internal metal2+ with external 2H+ to establish and maintain a transmembrane pH gradient); and (iv) unbuffered CuSO4 and ionophore A23187. All formulations exhibited >98% irinotecan encapsulation (0.2 drug-to-lipid molar ratio; 10 min incubation at 50 degrees C). Following a single intravenous injection (100mg/kg irinotecan) into Balb/c mice, the unbuffered CuSO4 plus A23187 formulation mediated a half-life of irinotecan release of 44.4h; a >or=4-fold increase compared to the other liposome formulations. This surprising observation demonstrated that the CuSO4 plus A23187 formulation enhanced irinotecan retention compared to the MnSO4 plus A23187 formulation, indicating the importance of the divalent metal. A single dose of the CuSO4 plus A23187 formulation (50mg/kg irinotecan) mediated an 18-fold increase in median T-C (the difference in days for treated and control subcutaneous human LS 180 adenocarcinoma xenografts to increase their initial volume by 400%) when compared to a comparable dose of Camptosar. Improved irinotecan retention was associated with increased therapeutic activity. PMID:17904831

  3. Development and evaluation of bevacizumab-modified pegylated cationic liposomes using cellular and in vivo models of human pancreatic cancer

    NASA Astrophysics Data System (ADS)

    Kuesters, Geoffrey M.

    Targeting the tumor vascular supply in a homogenous manner is a difficult task to achieve with the use of pegylated cationic liposomes (PCLs) alone. Our formulation consisting of bevacizumab conjugated to the distal end of PEG on PCLs was thus developed in an effort to eliminate some of this heterogeneity as well as to increase tumor targeting overall. This study focuses on pancreatic cancer, which has the poorest five-year survival rate of all cancers because of its late diagnosis. The addition of bevacizumab will target tumor areas because it binds to VEGF which is secreted by tumors in high levels. In vitro, we showed that pancreatic cancer cells (Capan-1, HPAF-II and PANC-1) all secrete VEGF into media at different levels, with Capan-1 producing the most and HPAF-II producing the least. A murine endothelial cell line, MS1-VEGF, produces and secretes the most VEGF. A human microvascular endothelial cell line (HMEC-1) was grown in two different conditions, with and without VEGF in the media. Modifying PCLs with bevacizumab enhanced the binding and uptake of PCLs by some pancreatic and endothelial cells in vitro, particularly the cells that had or secreted the most significant amount of VEGF in the media. This translated into enhanced tumor targeting in a biodistribution study using a Capan-1 subcutaneous pancreatic tumor model. This also showed enhanced blood retention compared to the unmodified PCLs while it diminished uptake by the spleen and increased uptake by the kidney. To test the therapeutic benefit of this enhanced uptake and targeting, an anti-angiogenic agent, 2-methoxyestradiol was incorporated into the formulation with 20% incorporation efficiency. Both the unmodified and modified drug-loaded PCLs were the least efficacious against Capan-1, moderately effective against HPAF-II, PANC-1, MS1-VEGF and HMEC-1 grown without VEGF in the media and most efficacious against HMEC-1 grown with VEGF which had the most VEGF present in the media. Multiple in vivo

  4. Long-term silencing of intersectin-1s in mouse lungs by repeated delivery of a specific siRNA via cationic liposomes. Evaluation of knockdown effects by electron microscopy.

    PubMed

    Bardita, Cristina; Predescu, Dan; Predescu, Sanda

    2013-01-01

    Previous studies showed that knockdown of ITSN-1s (KDITSN), an endocytic protein involved in regulating lung vascular permeability and endothelial cells (ECs) survival, induced apoptotic cell death, a major obstacle in developing a cell culture system with prolonged ITSN-1s inhibition(1). Using cationic liposomes as carriers, we explored the silencing of ITSN-1s gene in mouse lungs by systemic administration of siRNA targeting ITSN-1 gene (siRNAITSN). Cationic liposomes offer several advantages for siRNA delivery: safe with repeated dosing, nonimmunogenic, nontoxic, and easy to produce(2). Liposomes performance and biological activity depend on their size, charge, lipid composition, stability, dose and route of administration(3)Here, efficient and specific KDITSN in mouse lungs has been obtained using a cholesterol and dimethyl dioctadecyl ammonium bromide combination. Intravenous delivery of siRNAITSN/cationic liposome complexes transiently knocked down ITSN-1s protein and mRNA in mouse lungs at day 3, which recovered after additional 3 days. Taking advantage of the cationic liposomes as a repeatable safe carrier, the study extended for 24 days. Thus, retro-orbital treatment with freshly generated complexes was administered every 3rd day, inducing sustained KDITSN throughout the study(4). Mouse tissues collected at several time points post-siRNAITSN were subjected to electron microscopy (EM) analyses to evaluate the effects of chronic KDITSN, in lung endothelium. High-resolution EM imaging allowed us to evaluate the morphological changes caused by KDITSN in the lung vascular bed (i.e. disruption of the endothelial barrier, decreased number of caveolae and upregulation of alternative transport pathways), characteristics non-detectable by light microscopy. Overall these findings established an important role of ITSN-1s in the ECs function and lung homeostasis, while illustrating the effectiveness of siRNA-liposomes delivery in vivo. PMID:23851900

  5. Long-term Silencing of Intersectin-1s in Mouse Lungs by Repeated Delivery of a Specific siRNA via Cationic Liposomes. Evaluation of Knockdown Effects by Electron Microscopy

    PubMed Central

    Bardita, Cristina; Predescu, Dan; Predescu, Sanda

    2013-01-01

    Previous studies showed that knockdown of ITSN-1s (KDITSN), an endocytic protein involved in regulating lung vascular permeability and endothelial cells (ECs) survival, induced apoptotic cell death, a major obstacle in developing a cell culture system with prolonged ITSN-1s inhibition1. Using cationic liposomes as carriers, we explored the silencing of ITSN-1s gene in mouse lungs by systemic administration of siRNA targeting ITSN-1 gene (siRNAITSN). Cationic liposomes offer several advantages for siRNA delivery: safe with repeated dosing, nonimmunogenic, nontoxic, and easy to produce2. Liposomes performance and biological activity depend on their size, charge, lipid composition, stability, dose and route of administration3Here, efficient and specific KDITSN in mouse lungs has been obtained using a cholesterol and dimethyl dioctadecyl ammonium bromide combination. Intravenous delivery of siRNAITSN/cationic liposome complexes transiently knocked down ITSN-1s protein and mRNA in mouse lungs at day 3, which recovered after additional 3 days. Taking advantage of the cationic liposomes as a repeatable safe carrier, the study extended for 24 days. Thus, retro-orbital treatment with freshly generated complexes was administered every 3rd day, inducing sustained KDITSN throughout the study4. Mouse tissues collected at several time points post-siRNAITSN were subjected to electron microscopy (EM) analyses to evaluate the effects of chronic KDITSN, in lung endothelium. High-resolution EM imaging allowed us to evaluate the morphological changes caused by KDITSN in the lung vascular bed (i.e. disruption of the endothelial barrier, decreased number of caveolae and upregulation of alternative transport pathways), characteristics non-detectable by light microscopy. Overall these findings established an important role of ITSN-1s in the ECs function and lung homeostasis, while illustrating the effectiveness of siRNA-liposomes delivery in vivo. PMID:23851900

  6. Organization of mixed dimethyldioctadecylammonium and choline modifiers on the surface of synthetic hectorite.

    PubMed

    Andriani, Yosephine; Jack, Kevin S; Gilbert, Elliot P; Edwards, Grant A; Schiller, Tara L; Strounina, Ekaterina; Osman, Azlin F; Martin, Darren J

    2013-11-01

    Understanding the nature of mixed surfactant self-assembly on the surface of organoclays is an important step toward optimizing their performance in polymer nanocomposites and for other potential applications, where selective surface interactions are crucial. In segmented thermoplastic polyurethane nanocomposite systems, dual-modified organoclays have shown significantly better performance compared to their single-modified counterparts. Until now, we had not fully characterized the physical chemistry of these dual-modified layered silicates, but had hypothesized that the enhanced composite performance arises due to some degree of nanoscale phase separation on the nanofiller surface, which enables enhanced compatibilization and more specific and inclusive interactions with the nanoscale hard and soft domains in these thermoplastic elastomers. This work examines the organization of quaternary alkyl ammonium compounds on the surface of Lucentite SWN using X-ray diffraction (XRD), thermogravimetric analysis (TGA), attenuated total reflectance Fourier-transfer infrared (ATR FT-IR), (13)C cross-polarization (CP)/magic angle spinning (MAS) nuclear magnetic resonance (NMR), and small-angle neutron scattering (SANS). When used in combination with choline, dimethyldioctadecylammonium (DMDO) was observed to self-assemble into discontinuous hydrophobic domains. The inner part of these hydrophobic domains was essentially unaffected by the choline (CC); however, surfactant intermixing was observed either at the periphery or throughout the choline-rich phase surrounding those domains. PMID:23978291

  7. Inhibition of B16BL6 tumor progression by coadministration of recombinant angiostatin K1-3 and endostatin genes with cationic liposomes.

    PubMed

    Kim, Keun Sik; Kim, Hong Sung; Park, Jin Seu; Kwon, Young Guen; Park, Yong Serk

    2004-06-01

    Transfection of the antiangiogenic angiostatin and endostatin genes was shown to be an alternative to high-dose administration of angiostatin or endostatin proteins for cancer therapy. We have systematically investigated whether coadministration of the mouse angiostatin kringle 1-3 gene (pFLAG-AngioK1/3) and the endostatin gene (pFLAG-Endo) complexed with cationic liposomes exhibits enhanced therapeutic efficacy. In vitro, the coexpressed mixture of angiostatin K1-3 and endostatin more effectively reduced angiogenesis in chorioallantoic membranes than either angiostatin K1-3 or endostatin alone. In vivo, subcutaneous co-administration of pFLAG-AngioK1/3 and pFLAG-Endo lipoplexes more effectively inhibited vascularization in Matrigel plugs implanted in mice than either one alone. Additionally, subcutaneous administration of these genes inhibited the growth and formation of pulmonary metastases of B16BL6 melanoma cells in mice. Compared to treatment with an empty vector, treatment with pFLAG-AngioK1/3 plus pFLAG-Endo inhibited 81% of tumor growth, while treatment with pFLAG-AngioK1/3 or pFLAG-Endo inhibited tumor growth 70 and 69%, respectively. Cotreatment with the two plasmids after primary tumor excision induced a 90% inhibition of pulmonary metastases versus 79% for pFLAG-AngioK1/3 or 80% for pFLAG-Endo individually. These results suggest that combined administration of angiostatin K1-3 and endostatin genes complexed with cationic liposomes may be an innovated antiangiogenic strategy for cancer therapy. PMID:15118757

  8. Optimization of a cationic liposome-based gene delivery system for the application of miR-145 in anticancer therapeutics.

    PubMed

    Tao, Jin; Ding, Wei-Feng; Che, Xiao-Hang; Chen, Yi-Chen; Chen, Fang; Chen, Xiao-Dong; Ye, Xiao-Lei; Xiong, Su-Bin

    2016-05-01

    In order to improve the delivery efficiency of microRNA (miRNA or miR)-145, the present study examined several factors which may affect cationic liposome (CL)-based transfection, including the hydration medium used for the preparation of liposomes, the quantity of the plasmid, the molar ratio of N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTAP)/cholesterol (chol), or DOTAP/chol, and the weight ratio of DOTAP/DNA. In order to enhance the transfection efficiency, protamine was selected as a DNA-condensing agent to form liposome‑protamine‑DNA (LPD) ternary complexes. An agarose gel retardation assay was used to examine the DNA binding affinity of the CLs. Following transfection, GFP fluorescence images were captured and flow cytometry was performed to determine the transfection efficiency. Furthermore, an MTT assay was performed to determine the cytotoxicity of the liposome complexes. The final optimal conditions were as follows: 5% glucose as the hydration medium, a molar ratio of DOTAP/chol at 3:1 for the preparation of CLs, a weight ratio of DOTAP/protamine/DNA of 3:0.5:1, with 8 µg plasmid added for the preparation of the LPD complexes. In vitro, the LPD complexes exhibited an enhanced transfection efficiency and low cytotoxicity, which indicated that the presented LPD vector enhanced the transfection efficiency of the CLs. The HepG2 cells were found to have the lowest expression levels of miR‑145 out of the cell lines tested (A549, BGC-823, HepG2, HeLa, LoVo and MCF-7). Following the transient transfection of the HepG2 cells with miR‑145, the results revealed that the overexpression of miR‑145 inhibited the proliferation of the HepG2 cells and downregulated the expression of cyclin-dependent kinase 6 (CDK6), cyclinD1, c-myc, and Sp1 transcription factor (Sp1). In conclusion, in this study, we optimized a liposome‑based delivery system for the efficient delivery of miR‑145 into cancer cells. This may provide a foundation for

  9. Fluorescence anisotropy of diphenylhexatriene and its cationic Trimethylamino derivative in liquid dipalmitoylphosphatidylcholine liposomes: opposing responses to isoflurane

    PubMed Central

    2012-01-01

    Background The mechanism of action of volatile general anesthetics has not yet been resolved. In order to identify the effects of isoflurane on the membrane, we measured the steady-state anisotropy of two fluorescent probes that reside at different depths. Incorporation of anesthetic was confirmed by shifting of the main phase transition temperature. Results In liquid crystalline dipalmitoylphosphatidylcholine liposomes, isoflurane (7-25 mM in the bath) increases trimethylammonium-diphenylhexatriene fluorescence anisotropy by ~0.02 units and decreases diphenylhexatriene anisotropy by the same amount. Conclusions The anisotropy data suggest that isoflurane decreases non-axial dye mobility in the headgroup region, while increasing it in the tail region. We propose that these results reflect changes in the lateral pressure profile of the membrane. PMID:22444827

  10. Co-Delivery of Doxorubicin and SATB1 shRNA by Thermosensitive Magnetic Cationic Liposomes for Gastric Cancer Therapy

    PubMed Central

    Fang, Erhu; Lu, Xiaoming; Wang, Guobin; Tong, Qiang

    2014-01-01

    In previous a study, we had developed a novel thermosensitive magnetic delivery system based on liposomes. This study aimed to evaluate the efficiency of this system for the co-delivery of both drugs and genes to the same cell and its anti-tumor effects on gastric cancer. Doxorubicin (DOX) and SATB1 shRNA vector were loaded into the co-delivery system, and in vitro DOX thermosensitive release activity, targeted gene silencing efficiency, targeted cellular uptake, in vitro cytotoxicity, as well as in vivo anti-tumor activity were determined. The results showed that this co-delivery system had desirable targeted delivery efficacy, DOX thermosensitive release and SATB1 gene silencing. Moreover, the co-delivery of DOX and SATB1 shRNA exhibited enhanced activity to inhibit gastric cancer cell growth in vitro and in vivo, compared to single delivery. In conclusion, the novel thermosensitive magnetic drug and gene co-delivery system has promising application in combined chemotherapy and gene therapy for gastric cancer. PMID:24675979

  11. Electrostatically driven complexation of liposomes with a star-shaped polyelectrolyte to low-toxicity multi-liposomal assemblies.

    PubMed

    Yaroslavov, Alexander A; Sybachin, Andrey V; Zaborova, Olga V; Pergushov, Dmitry V; Zezin, Alexander B; Melik-Nubarov, Nikolay S; Plamper, Felix A; Müller, Axel H E; Menger, Frederic M

    2014-04-01

    Anionic liposomes are electrostatically complexed to a star-shaped cationic polyelectrolyte. Upon complexation, the liposomes retain their integrity and the resulting liposome-star complexes do not dissociate in a physiological solution with 0.15 M NaCl. This provides a multi-liposomal container for possible use as a high-capacity carrier. PMID:24243764

  12. Novel 1,3-diacylamidopropane-2-[bis-(2-dimethylaminoethane)] carbamate pH-sensitive lipids for cationic liposome-mediated transfection

    NASA Astrophysics Data System (ADS)

    Spelios, Michael G.

    A novel series of 1,3-diacylamidopropane-2-[bis(2-dimethylaminoethane)] carbamate analogs (1,3lb) were designed for cationic lipid-assisted transfection (lipofection). First, their physicochemical properties in self-assemblies with and without plasmid DNA (pDNA) were evaluated to examine the effects of hydrophobic tail length and degree of saturation on gene delivery and expression. Significant in vitro lipofection was induced at a nitrogen:phosphate ratio (N:P) of 4:1 by the dimyristoyl, dipalmitoyl, and dioleoyl analogs 1,3lb2, 1,3lb3, and 1,3lb5, respectively, without inclusion of neutral "lipofection enhancing" co-lipids in the cationic lipid formulations. Lipofection was reduced in the presence of co-lipids except for 1,3lb5 which maintained reporter gene expression levels at N:P 4:1 and yielded increased bioactivity at a lower NP of 2:1. Physicochemical characterization of the bioactive transfection agents (cytofectins) revealed: high hydration and in-plane elasticity of lipid monolayers by Langmuir film balance measurements; fluid lipid bilayers, with gel---liquid crystalline phase transitions below physiological temperature, by fluorescence anisotropy; lipid mixing with biomembrane-mimicking vesicles by fluorescence resonance energy transfer; efficient pDNA binding and compaction by ethidium bromide displacement; cationic liposome---nucleic acid complexes (lipoplexes) with large particle sizes (mean diameter ≥ 500 nm) and zeta potentials of positive values by dynamic light scattering and electrophoretic mobility, respectively. The results suggest that well hydrated and elastic cationic lipids forming fluid lamellar assemblies are extremely potent and minimally toxic cytofectins. Second, a comparison was made between 1,3lb2 and two derivatives, one an isomer with a shorter space between the myristoyl chains and the other the monovalent form, in an effort to delineate the biological effects of interchain distance and pH-induced polar headgroup expandability

  13. Cationic Liposomes Formulated with Synthetic Mycobacterial Cordfactor (CAF01): A Versatile Adjuvant for Vaccines with Different Immunological Requirements

    PubMed Central

    Agger, Else Marie; Rosenkrands, Ida; Hansen, Jon; Brahimi, Karima; Vandahl, Brian S.; Aagaard, Claus; Werninghaus, Kerstin; Kirschning, Carsten; Lang, Roland; Christensen, Dennis; Theisen, Michael; Follmann, Frank; Andersen, Peter

    2008-01-01

    Background It is now emerging that for vaccines against a range of diseases including influenza, malaria and HIV, the induction of a humoral response is insufficient and a substantial complementary cell-mediated immune response is necessary for adequate protection. Furthermore, for some diseases such as tuberculosis, a cellular response seems to be the sole effector mechanism required for protection. The development of new adjuvants capable of inducing highly complex immune responses with strong antigen-specific T-cell responses in addition to antibodies is therefore urgently needed. Methods and Findings Herein, we describe a cationic adjuvant formulation (CAF01) consisting of DDA as a delivery vehicle and synthetic mycobacterial cordfactor as immunomodulator. CAF01 primes strong and complex immune responses and using ovalbumin as a model vaccine antigen in mice, antigen specific cell-mediated- and humoral responses were obtained at a level clearly above a range of currently used adjuvants (Aluminium, monophosphoryl lipid A, CFA/IFA, Montanide). This response occurs through Toll-like receptor 2, 3, 4 and 7-independent pathways whereas the response is partly reduced in MyD88-deficient mice. In three animal models of diseases with markedly different immunological requirement; Mycobacterium tuberculosis (cell-mediated), Chlamydia trachomatis (cell-mediated/humoral) and malaria (humoral) immunization with CAF01-based vaccines elicited significant protective immunity against challenge. Conclusion CAF01 is potentially a suitable adjuvant for a wide range of diseases including targets requiring both CMI and humoral immune responses for protection. PMID:18776936

  14. Rab11 and Lysotracker Markers Reveal Correlation between Endosomal Pathways and Transfection Efficiency of Surface-Functionalized Cationic Liposome-DNA Nanoparticles.

    PubMed

    Majzoub, Ramsey N; Wonder, Emily; Ewert, Kai K; Kotamraju, Venkata Ramana; Teesalu, Tambet; Safinya, Cyrus R

    2016-07-01

    Cationic liposomes (CLs) are widely studied as carriers of DNA and short-interfering RNA for gene delivery and silencing, and related clinical trials are ongoing. Optimization of transfection efficiency (TE) requires understanding of CL-nucleic acid nanoparticle (NP) interactions with cells, NP endosomal pathways, endosomal escape, and events leading to release of active nucleic acid from the lipid carrier. Here, we studied endosomal pathways and TE of surface-functionalized CL-DNA NPs in PC-3 prostate cancer cells displaying overexpressed integrin and neuropilin-1 receptors. The NPs contained RGD-PEG-lipid or RPARPAR-PEG-lipid, targeting integrin, and neuropilin-1 receptors, respectively, or control PEG-lipid. Fluorescence colocalization using Rab11-GFP and Lysotracker enabled simultaneous colocalization of NPs with recycling endosome (Rab11) and late endosome/lysosome (Rab7/Lysotracker) pathways at increasing mole fractions of pentavalent MVL5 (+5 e) at low (10 mol %), high (50 mol %), and very high (70 mol %) membrane charge density (σM). For these cationic NPs (lipid/DNA molar charge ratio, ρchg = 5), the influence of membrane charge density on pathway selection and transfection efficiency is similar for both peptide-PEG NPs, although, quantitatively, the effect is larger for RGD-PEG compared to RPARPAR-PEG NPs. At low σM, peptide-PEG NPs show preference for the recycling endosome over the late endosome/lysosome pathway. Increases in σM, from low to high, lead to decreases in colocalization with recycling endosomes and simultaneous increases in colocalization with the late endosome/lysosome pathway. Combining colocalization and functional TE data at low and high σM shows that higher TE correlates with a larger fraction of NPs colocalized with the late endosome/lysosome pathway while lower TE correlates with a larger fraction of NPs colocalized with the Rab11 recycling pathway. The findings lead to a hypothesis that increases in σM, leading to enhanced

  15. Enhanced gene delivery efficiency of cationic liposomes coated with PEGylated hyaluronic acid for anti P-glycoprotein siRNA: a potential candidate for overcoming multi-drug resistance.

    PubMed

    Ran, Rui; Liu, Yayuan; Gao, Huile; Kuang, Qifang; Zhang, Qianyu; Tang, Jie; Huang, Kai; Chen, Xiaoxiao; Zhang, Zhirong; He, Qin

    2014-12-30

    RNA interference is an effective method to achieve highly specific gene regulation. However, the commonly used cationic liposomes have poor biocompatibility, which may lead to systematic siRNA delivery of no avail. PEGylation is a good strategy in shielding the positive charge of cationic liposomes, but the enhanced serum stability is often in company with compromised cellular uptake and endosome escape. In this study, PEG was covalently linked to negatively charged hyaluronic acid and it was used to coat the liposome-siRNA nanoparticles. The resulting PEG-HA-NP complex had a diameter of 188.6 ± 10.8 nm and a dramatically declined zeta-potential from +34.9 ± 4.0 mV to -18.2 ± 2.2 mV. Owing to the reversed surface charge, PEG-HA-NP could remain stable in fetal bovine serum (FBS) to up to 24h. In contrast with normal PEGylation, hyaluronic acid and PEG co-modified PEG-HA-NP provided comparable cellular uptake and P-glycoprotein downregulation efficacy in MCF-7/ADR cells compared with Lipofectamine RNAiMAX and naked NP regardless of its anionic charged surface. Because of its good biocompatibility in serum, PEG-HA-NP possessed the best tumor accumulation, cellular uptake and subsequently the strongest P-glycoprotein silencing capability in tumor bearing mice compared with naked NP and HA-NP after i.v. injection, with a 34% P-glycoprotein downregulation. Therefore, PEG-HA coated liposomal complex was demonstrated to be a promising siRNA delivery system in adjusting solid tumor P-glycoprotein expression, which may become a potential carrier in reversing MDR for breast cancer therapy. PMID:25448564

  16. Physico-chemical characterisation of cationic DOTAP liposomes as drug delivery system for a hydrophilic decapeptide before and after freeze-drying.

    PubMed

    Wieber, Alena; Selzer, Torsten; Kreuter, Jörg

    2012-02-01

    In the present study, positively charged 1,2-dioleoyloxy-3-trimethylammoniumpropane (DOTAP) liposomes as a delivery system for a hydrophilic decapeptide were developed. The main objective was the preparation of a stable, highly loaded, lyophilised formulation to yield the basis for an acceptable shelf life. The influences of addition of cholesterol, pH value, amounts of lipid and peptide, type and amount of sugar-based cryoprotective agent (trehalose and sucrose), and time point for cryoprotector addition as well as the freeze-drying process parameters were investigated. The collapse temperatures of the liposome dispersions in the presence of the disaccharides trehalose and sucrose were determined using a freeze-drying microscope (Lyostat 2). The liposome morphology before freeze-drying was determined by transmission electron microscopy (TEM). The evidence of intact liposomes after freeze-drying was shown by scanning electron microscope (SEM) imaging. In summary, this study demonstrated the successful development of DOTAP liposomes including their lyophilisation as a drug delivery system for small hydrophilic peptides. PMID:22119734

  17. Structure of DNA-liposome complexes

    SciTech Connect

    Lasic, D.D.; Strey, H.; Podgornik, R.; Stuart, M.C.A.; Frederik, P.M.

    1997-01-29

    Despite numerous studies and commericially available liposome kits, however, the structure of DNA-cationic liposome complexes is still not yet well understood. We have investigated the structure of these complexes using high-resolution cryo electron microscopy (EM) and small angle X-ray scattering (SAXS). 14 refs., 3 figs.

  18. Liposome size and charge optimization for intraarterial delivery to gliomas.

    PubMed

    Joshi, Shailendra; Cooke, Johann R N; Chan, Darren K W; Ellis, Jason A; Hossain, Shaolie S; Singh-Moon, Rajinder P; Wang, Mei; Bigio, Irving J; Bruce, Jeffrey N; Straubinger, Robert M

    2016-06-01

    Nanoparticles such as liposomes may be used as drug delivery vehicles for brain tumor therapy. Particle geometry and electrostatic properties have been hypothesized to be important determinants of effective tumor targeting after intraarterial injection. In this study, we investigate the combined roles of liposome size and surface charge on the effectiveness of delivery to gliomas after intraarterial injection. Intracarotid injection of liposomes was performed in separate cohorts of both healthy and C6 glioma-bearing Sprague Dawley rats after induction of transient cerebral hypoperfusion. Large (200 nm) and small (60-80 nm) fluorescent dye-loaded liposomes that were either cationic or neutral in surface charge were utilized. Delivery effectiveness was quantitatively measured both with real-time, in vivo and postmortem diffuse reflectance spectroscopy. Semi-quantitative multispectral fluorescence imaging was also utilized to assess the pattern and extent of liposome targeting within tumors. Large cationic liposomes demonstrated the most effective hemispheric and glioma targeting of all the liposomes tested. Selective large cationic liposome retention at the site of glioma growth was observed. The liposome deposition pattern within tumors after intraarterial injection was variable with both core penetration and peripheral deposition observed in specific tumors. This study provides evidence that liposome size and charge are important determinants of effective brain and glioma targeting after intraarterial injection. Our results support the future development of 200-nm cationic liposomal formulations of candidate intraarterial anti-glioma agents for further pre-clinical testing. PMID:27091339

  19. Construction of a novel cationic polymeric liposomes formed from PEGlated octadecyl-quaternized lysine modified chitosan/cholesterol for enhancing storage stability and cellular uptake efficiency.

    PubMed

    Wang, Hanjie; Zhao, Peiqi; Liang, Xiaofei; Song, Tao; Gong, Xiaoqun; Niu, Ruifang; Chang, Jin

    2010-08-15

    The design and construction of delivery vectors with high stability and effective cellular uptake efficiency is very important. In this study, a novel polymeric liposomes (PLs) formed from PEGlated octadecyl-quaternized lysine modified chitosan (OQLCS) and cholesterol with higher size stability and cellular uptake efficiency has been synthesized successfully. Compared to conventional liposomes (CLs; phosphatidyl choline/cholesterol), the calcein-loaded PLs exhibited a multi-lamellar structure with homogenous size diameter (200 nm) and high calcein encapsulation efficiency (about 92%). PLs could be stored at different temperature (25, 4, and -20 degrees C) and different medium (deionized water, phosphate-buffered saline, and human plasma solution) for up to 4 weeks without significant size change. The spectrophotometer fluorometry analysis and the flow cytometry analysis indicated that in comparison with CL, PLs with positive zeta potential facilitates the uptake of calcein by MCF-7 tumor cells. The data suggests that PLs may provide a new method to overcome the stability and enhance the uptake efficiency of CLs. PMID:20506161

  20. Transformation from Multilamellar to Unilamellar Vesicles by Addition of a Cationic Lipid to PEGylated Liposomes Explored with Synchrotron Small Angle X-ray Scattering

    NASA Astrophysics Data System (ADS)

    Sakuragi, Mina; Koiwai, Kazunori; Nakamura, Kouji; Masunaga, Hiroyasu; Ogawa, Hiroki; Sakurai, Kazuo

    2011-01-01

    PEGylated liposomes composed of a benzamidine derivative (TRX), hydrogenated soybean phosphatidylcholine (HSPC), and N-(monomethoxy-polyethyleneglycolcarbamyl) distearoyl phosphatidylethanolamine (PEG-PE) were examined in terms of how the addition of TRX affects their structures with small angle x-ray scattering (SAXS) as well as transmission electron microscopy (TEM). TEM images showed the presence of unilamella vesicles for both with and without TRX, though a small amount of multilamella vesicles were observed in absence of TRX. We analyzed SAXS profiles at contained TRX composition combined with contrast variation technique by adding PEG solution and unilamella vesicle model could be reproduced. Subsequently, we analyzed SAXS profiles at no TRX composition. The mixture model of unilamella and multilamella vesicle was reconstructed and we estimated about 10 % multilamella vesicles from a fitting parameter.

  1. A cationic liposome-DNA complexes adjuvant (JVRS-100) enhances the immunogenicity and cross-protective efficacy of pre-pandemic influenza A (H5N1) vaccine in ferrets.

    PubMed

    Liu, Feng; Sun, Xiangjie; Fairman, Jeffery; Lewis, David B; Katz, Jacqueline M; Levine, Min; Tumpey, Terrence M; Lu, Xiuhua

    2016-05-01

    Influenza A (H5N1) viruses continue to pose a public health threat. As inactivated H5N1 vaccines are poorly immunogenic, adjuvants are needed to improve the immunogenicity of H5N1 vaccine in humans. Here, we investigated the immunogenicity and cross-protective efficacy in ferrets of a clade 2.2-derived vaccine with addition of JVRS-100, an adjuvant consisting of cationic liposome-DNA complexes (CLDC). After the first vaccination, significantly higher levels of hemagglutination-inhibition (HAI) and neutralizing antibody titers were detected in ferrets immunized with adjuvanted vaccine compared to unadjuvanted vaccine. Following a second dose of adjuvanted vaccine, HAI antibody titers of ≥ 40 were detected against viruses from multiple H5N1 clades. HAI antibodies against newly isolated H5N2 and H5N8 viruses were also augmented by JVRS-100. Ferrets were challenged with a heterologous H5N1 virus. All ferrets that received two doses of adjuvanted vaccine exhibited mild illness, significantly reduced nasal wash virus titers and protection from lethal challenge. In contrast, ferrets that received unadjuvanted vaccine showed greater weight loss, high viral titers and 3 of 6 animals succumbed to the lethal challenge. Our results indicate that the addition of JVRS-100 to H5N1 vaccine enhanced immunogenicity and cross-protection against lethal H5N1 virus disease in ferrets. JVRS-100 warrants further investigation as a potential adjuvant for influenza vaccines. PMID:26967975

  2. Direct head-to-head comparison of cationic liposome-mediated gene delivery to mesenchymal stem/stromal cells of different human sources: a comprehensive study.

    PubMed

    Boura, Joana S; Santos, Francisco Dos; Gimble, Jeffrey M; Cardoso, Carla M P; Madeira, Catarina; Cabral, Joaquim M S; Silva, Cláudia Lobato da

    2013-02-01

    Nonviral gene delivery to human mesenchymal stem/stromal cells (MSC) can be considered a very promising strategy to improve their intrinsic features, amplifying the therapeutic potential of these cells for clinical applications. In this work, we performed a comprehensive comparison of liposome-mediated gene transfer efficiencies to MSC derived from different human sources-bone marrow (BM MSC), adipose tissue-derived cells (ASC), and umbilical cord matrix (UCM MSC). The results obtained using a green fluorescent protein (GFP)-encoding plasmid indicated that MSC isolated from BM and UCM are more amenable to genetic modification when compared to ASC as they exhibited superior levels of viable, GFP(+) cells 48 hr post-transfection, 58 ± 7.1% and 54 ± 3.8%, respectively, versus 33 ± 4.7%. For all cell sources, high cell recoveries (≈50%) and viabilities (>85%) were achieved, and the transgene expression was maintained for 10 days. Levels of plasmid DNA uptake, as well as kinetics of transgene expression and cellular division, were also determined. Importantly, modified cells were found to retain their characteristic immunophenotypic profile and multilineage differentiation capacity. By using the lipofection protocol optimized herein, we were able to maximize transfection efficiencies to human MSC (maximum of 74% total GFP(+) cells) and show that lipofection is a promising transfection strategy for MSC genetic modification, especially when a transient expression of a therapeutic gene is required. Importantly, we also clearly demonstrated that intrinsic features of MSC from different sources should be taken into consideration when developing and optimizing strategies for MSC engineering with a therapeutic gene. PMID:23360350

  3. Doped colorimetric assay liposomes

    DOEpatents

    Charych, Deborah; Stevens, Raymond C.

    2001-01-01

    The present invention provides compositions comprising colorimetric assay liposomes. The present invention also provides methods for producing colorimetric liposomes and calorimetric liposome assay systems. In preferred embodiments, these calorimetric liposome systems provide high levels of sensitivity through the use of dopant molecules. As these dopants allow the controlled destabilization of the liposome structure, upon exposure of the doped liposomes to analyte(s) of interest, the indicator color change is facilitated and more easily recognized.

  4. Inhibition of Vein Graft Stenosis in Rabbits with a c-jun Targeting DNAzyme in a Cationic Liposomal Formulation Containing 1,2-dioleoyl-3-trimethylammonium propane (DOTAP)/1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE)

    PubMed Central

    Li, Yue; Bhindi, Ravinay; Deng, Zhou J.; Morton, Stephen W.; Hammond, Paula T.; Khachigian, Levon M.

    2014-01-01

    Background/Objectives Coronary artery bypass grafting (CABG) is among the most commonly performed heart surgical procedures for the treatment of ischemic heart disease. Saphenous vein graft failure due to stenosis impedes the longer-term success of CABG. A key cellular event in the process of vein graft stenosis is smooth muscle cell (SMC) hyperplasia. In this study, we evaluated the effect of a DNAzyme (Dz13) targeting the transcription factor c-Jun in a rabbit model of vein graft stenosis after autologous transplantation in a cationic liposomal formulation containing 1,2-dioleoyl-3-trimethylammonium propane (DOTAP)/1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE). Dz13 in DOTAP/DOPE has undergone preclinical toxicological testing, and a Phase I clinical trial we recently conducted in skin cancer patients demonstrates that it is safe and well tolerated after local administration. Methods Effects of Dz13 in a formulation containing DOTAP/DOPE on SMC growth and c-Jun expression were assessed. Dz13 transfection was determined by cellular uptake of carboxyfluorescein-labeled Dz13. Autologous jugular vein to carotid artery transplantation was performed in New Zealand White rabbits to investigate the effect of the Dz13 in DOTAP/DOPE formulation on the extent of intimal hyperplasia. Results Dz13/DOTAP/DOPE reduced SMC proliferation and c-Jun protein expression in vitro compared with an impotent form of Dz13 bearing a point mutation in its catalytic domain (Dz13.G>C). The Dz13 (500 µg)/DOTAP/DOPE formed lipoplexes that were colloidally stable for up to 1 hour on ice (0°C) or 30 minutes at 37°C, allowing sufficient uptake by the veins. Dz13 (500µg) inhibited neointima formation 28 days after end-to-side transplantation. Conclusions This formulation applied to veins prior to transplantation may potentially be useful in efforts to reduce graft failure. PMID:23886527

  5. Efficacy of HGF carried by ultrasound microbubble-cationic nano-liposomes complex for treating hepatic fibrosis in a bile duct ligation rat model, and its relationship with the diffusion-weighted MRI parameters.

    PubMed

    Zhang, Shou-hong; Wen, Kun-ming; Wu, Wei; Li, Wen-yan; Zhao, Jian-nong

    2013-12-01

    Hepatic fibrosis is a major consequence of liver aggression. Finding novel ways for counteracting this damaging process, and for evaluating fibrosis with a non-invasive imaging approach, represent important therapeutic and diagnostic challenges. Hepatocyte growth factor (HGF) is an anti-fibrosis cell growth factor that induces apoptosis in activated hepatic stellate cells, reduces excessive collagen deposition, and stimulates hepatocyte regeneration. Thus, using HGF in gene therapy against liver fibrosis is an attractive approach. The aims of the present study were: (i) to explore the efficacy of treating liver fibrosis using HGF expression vector carried by a novel ultrasound microbubble delivery system; (ii) to explore the diagnostic interest of diffusion-weighted MRI (DWI-MRI) in evaluating liver fibrosis. We established a rat model of hepatic fibrosis. The rats were administered HGF linked to novel ultrasound micro-bubbles. Progression of hepatic fibrosis was evaluated by histopathology, hydroxyproline content, and DWI-MRI to determine the apparent diffusion coefficient (ADC). Our targeted gene therapy produced a significant anti-fibrosis effect, as shown by liver histology and significant reduction of hydroxyproline content. Moreover, using DWI-MRI, the b value (diffusion gradient factor) was equal to 300s/mm(2), and the ADC values significantly decreased as the severity of hepatic fibrosis increased. Using this methodology, F0-F2 could be distinguished from F3 and F4 (P<0.01). This is the first in vivo report of using an ultrasound microbubble-cationic nano-liposome complex for gene delivery. The data indicate that, this approach is efficient to counteract the fibrosis process. DWI-MRI appears a promising imaging technique for evaluating liver fibrosis. PMID:24012221

  6. Liposomal nanoparticles encapsulating iloprost exhibit enhanced vasodilation in pulmonary arteries

    PubMed Central

    Jain, Pritesh P; Leber, Regina; Nagaraj, Chandran; Leitinger, Gerd; Lehofer, Bernhard; Olschewski, Horst; Olschewski, Andrea; Prassl, Ruth; Marsh, Leigh M

    2014-01-01

    Prostacyclin analogues are standard therapeutic options for vasoconstrictive diseases, including pulmonary hypertension and Raynaud’s phenomenon. Although effective, these treatment strategies are expensive and have several side effects. To improve drug efficiency, we tested liposomal nanoparticles as carrier systems. In this study, we synthesized liposomal nanoparticles tailored for the prostacyclin analogue iloprost and evaluated their pharmacologic efficacy on mouse intrapulmonary arteries, using a wire myograph. The use of cationic lipids, stearylamine, or 1,2-di-(9Z-octadecenoyl)-3-trimethylammonium-propane (DOTAP) in liposomes promoted iloprost encapsulation to at least 50%. The addition of cholesterol modestly reduced iloprost encapsulation. The liposomal nanoparticle formulations were tested for toxicity and pharmacologic efficacy in vivo and ex vivo, respectively. The liposomes did not affect the viability of human pulmonary artery smooth muscle cells. Compared with an equivalent concentration of free iloprost, four out of the six polymer-coated liposomal formulations exhibited significantly enhanced vasodilation of mouse pulmonary arteries. Iloprost that was encapsulated in liposomes containing the polymer polyethylene glycol exhibited concentration-dependent relaxation of arteries. Strikingly, half the concentration of iloprost in liposomes elicited similar pharmacologic efficacy as nonencapsulated iloprost. Cationic liposomes can encapsulate iloprost with high efficacy and can serve as potential iloprost carriers to improve its therapeutic efficacy. PMID:25045260

  7. Conformation of oligodeoxynucleotides associated with anionic liposomes

    PubMed Central

    Patil, Siddhesh D.; Rhodes, David G.

    2000-01-01

    There has been significant progress in the development of antisense therapeutics for a wide range of medicinal applications. Further improvement will require better understanding of cellular internalization, intracellular distribution mechanisms and interactions of oligodeoxynucleotides with cellular organelles. In many of these processes interactions of oligodeoxynucleotides with lipid assemblies may have a significant influence on their function. Divalent cations have been shown to assist cellular internalization of certain oligodeoxynucleotides and to affect their conformation. In this work we have investigated conformational changes of phosphorothioate oligodeoxynucleotides upon divalent cation-mediated interaction with 1,2-dipalmitoyl-sn-glycero-3-phosphatidylglycerol (DPPG) liposomes. For the sequences investigated here the native conformation underwent significant change in the presence of anionic DPPG liposomes only when divalent cations were present. This change is sequence-specific, ion-selective and distinct from previously reported changes in oligodeoxynucleotide structure due to divalent cations alone. The conformation of one oligodeoxynucleotide in the presence of calcium and DPPG yields circular dichroism spectra which suggest C-DNA but which also have characteristics unlike any previously reported spectra of liposome-associated DNA structure. The data suggest the possibility of a unique conformation of liposome-associated ODNs and reflect a surprisingly strong tendency of single-stranded DNA to retain a characteristic conformation even when adsorbed to a surface. This conformation may be related to cellular uptake, transport of oligodeoxynucleotides in cells and/or function. PMID:11058108

  8. Development and characterization of an innovative heparin coating to stabilize and protect liposomes against adverse immune reactions.

    PubMed

    Duehrkop, Claudia; Leneweit, Gero; Heyder, Christoph; Fromell, Karin; Edwards, Katarina; Ekdahl, Kristina N; Nilsson, Bo

    2016-05-01

    Liposomes have been recognized as excellent drug delivery systems, but when they come in direct contact with different blood components they may trigger an immediate activation of the innate immune system. The aim of the present study was to produce long-circulating, blood-compatible liposomes by developing a construct of liposomes covered by a novel unique heparin complex (CHC; 70 heparin molecules per complex) to avoid recognition by the innate immune system. Unilamellar, cationic liposomes were produced by hand extrusion through a 100-nm polycarbonate membrane. Coating of liposomes with the macromolecular CHC was accomplished by electrostatic interactions. Dynamic light scattering as well as QCM-D measurements were used to verify the electrostatic deposition of the negatively charged CHC to cationic liposomes. The CHC-coated liposomes did not aggregate when in contact with lepirudin anti-coagulated plasma. Unlike previous attempts to coat liposomes with heparin, this technique produced freely moveable heparin strands sticking out from the liposome surface, which exposed AT binding sites reflecting the anticoagulant potentials of the liposomes. In experiments using lepirudin-anticoagulated plasma, CHC-coated liposomes, in contrast to non-coated control liposomes, did not activate the complement system, as evidenced by low C3a and sC5b-9 generation and reduced leakage from the liposomes. In conclusion, we show that liposomes can be successfully coated with the biopolymer CHC, resulting in biocompatible and stable liposomes that have significant application potential. PMID:26897551

  9. Topical and mucosal liposomes for vaccine delivery.

    PubMed

    Romero, Eder Lilia; Morilla, Maria Jose

    2011-01-01

    Mucosal (and in minor extent transcutanous) stimulation can induce local or distant mucosa secretory IgA. Liposomes and other vesicles as mucosal and transcutaneous adjuvants are attractive alternatives to parenteral vaccination. Liposomes can be massively produced under good manufacturing practices and stored for long periods, at high antigen/vesicle mass ratios. However, their uptake by antigen-presenting cells (APC) at the inductive sites remains as a major challenge. As neurotoxicity is a major concern in intranasal delivery, complexes between archaeosomes and calcium as well as cationic liposomes complexed with plasmids encoding for antigenic proteins could safely elicit secretory and systemic antigen-specific immune responses. Oral bilosomes generate intense immune responses that remain to be tested against challenge, but the admixing with toxins or derivatives is mandatory to reduce the amount of antigen. Most of the current experimental designs, however, underestimate the mucus blanket 100- to 1000-fold thicker than a 100-nm diameter liposome, which has first to be penetrated to access the underlying M cells. Overall, designing mucoadhesive chemoenzymatic resistant liposomes, or selectively targeted to M cells, has produced less relevant results than tailoring the liposomes to make them mucus penetrating. Opposing, the nearly 10 µm thickness stratum corneum interposed between liposomes and underlying APC can be surpassed by ultradeformable liposomes (UDL), with lipid matrices that penetrate up to the limit with the viable epidermis. UDL made of phospholipids and detergents, proved to be better transfection agents than conventional liposomes and niosomes, without the toxicity of ethosomes, in the absence of classical immunomodulators. PMID:21360692

  10. Characterization of biosurfactant-containing liposomes and their efficiency for gene transfection.

    PubMed

    Ueno, Yoshinobu; Hirashima, Naohide; Inoh, Yoshikazu; Furuno, Tadahide; Nakanishi, Mamoru

    2007-01-01

    Recently we showed significance of biosurfactants in the field of non-viral vectors for gene transfection. There, a biosurfactant, mannosylerythritol lipid A (MEL-A), especially increased the efficiency of gene transfection mediated with cationic liposomes. However, the molecular mechanism has not been well-understood yet. Here, through the examination of the ability of cationic liposomes containing an MEL (MEL-A, MEL-B or MEL-C) for important transfectional processes of the DNA capsulation and the membrane fusion with anionic liposomes, we found that MEL-A-containing liposomes increased both processes, but that MEL-B and MEL-C-containing liposomes just increased either of them. The results indicated that these kinds of the physicochemical properties in MEL-A-containing liposomes are able to increase the efficiency of liposome-mediated gene transfection. PMID:17202680

  11. Liposomes for Use in Gene Delivery

    PubMed Central

    Balazs, Daniel A.; Godbey, WT.

    2011-01-01

    Liposomes have a wide array of uses that have been continuously expanded and improved upon since first being observed to self-assemble into vesicular structures. These arrangements can be found in many shapes and sizes depending on lipid composition. Liposomes are often used to deliver a molecular cargo such as DNA for therapeutic benefit. The lipids used to form such lipoplexes can be cationic, anionic, neutral, or a mixture thereof. Herein physical packing parameters and specific lipids used for gene delivery will be discussed, with lipids classified according to overall charge. PMID:21490748

  12. Influence of trehalose 6,6'-diester (TDX) chain length on the physicochemical and immunopotentiating properties of DDA/TDX liposomes.

    PubMed

    Kallerup, Rie Selchau; Madsen, Cecilie Maria; Schiøth, Mikkel Lohmann; Franzyk, Henrik; Rose, Fabrice; Christensen, Dennis; Korsholm, Karen Smith; Foged, Camilla

    2015-02-01

    Linking physicochemical characterization to functional properties is crucial for defining critical quality attributes during development of subunit vaccines toward optimal safety and efficacy profiles. We investigated how the trehalose 6,6'-diester (TDX) chain length influenced the physicochemical and immunopotentiating properties of the clinically tested liposomal adjuvant composed of dimethyldioctadecylammonium (DDA) bromide and analogues of trehalose-6,6'-dibehenate (TDB). TDB analogues with symmetrically shortened acyl chains [denoted X: arachidate (A), stearate (S), palmitate (P), myristate (Myr) and laurate (L)] were incorporated into DDA liposomes and characterized with respect to size, polydispersity index, charge, thermotropic phase behavior and lipid-lipid interactions. Incorporation of 11 mol% TDX into DDA liposomes significantly decreased the polydispersity index when TDA, TDS, TDP and TDMyr were incorporated, whereas both the initial size and the charge of the liposomes were unaffected. The long-term colloidal stability was only decreased when including TDL in DDA liposomes. The fatty acid length of TDX affected the phase transition of the liposomes, and for the DDA/TDP and DDA/TDS liposomes a homogeneous distribution of the lipids in the bilayer was indicated. The membrane packing was studied further by using the Langmuir monolayer technique. Incorporation of TDS improved the packing of the lipid monolayer, as compared to the other analogues, suggesting the most favorable stability. Finally, immunization of mice with the recombinant tuberculosis fusion antigen Ag85B-ESAT-6-Rv2660c (H56) and the physicochemically most optimal formulations (DDA/TDB, DDA/TDS and DDA/TDP) induced comparable T-cell responses. In conclusion, of the investigated TDB analogues, incorporation of 11 mol% TDS or TDP into DDA liposomes resulted in an adjuvant system with the most favorable physicochemical properties and an immunological profile comparable to that of DDA/TDB. PMID

  13. Gold liposomes

    SciTech Connect

    Hainfeld, J.F.

    1996-12-31

    Lipids are an important class of molecules, being found in membranes, HDL, LDL, and other natural structures, serving essential roles in structure and with varied functions such as compartmentalization and transport. Synthetic liposomes are also widely used as delivery and release vehicles for drugs, cosmetics, and other chemicals; soap is made from lipids. Lipids may form bilayer or multilammellar vesicles, micelles, sheets, tubes, and other structures. Lipid molecules may be linked to proteins, carbohydrates, or other moieties. EM study of this essential ingredient of life has lagged, due to lack of direct methods to visualize lipids without extensive alteration. OsO4 reacts with double bonds in membrane phospholipids, forming crossbridges. This has been the method of choice to both fix and stain membranes, thus far. An earlier work described the use of tungstate clusters (W{sub 11}) attached to lipid moieties to form lipid structures and lipid probes. With the development of gold clusters, it is now possible to covalently and specifically link a dense gold sphere to a lipid molecule; for example, reacting a mono-N-hydroxysuccinimide Nanogold cluster with the amino group on phosphatidyl ethanolaminine. Examples of a gold-fatty acid and a gold-phospholipid are shown.

  14. Evaluation of asymmetric liposomal nanoparticles for encapsulation of polynucleotides.

    PubMed

    Whittenton, Jeremiah; Harendra, Sivaram; Pitchumani, Ramanan; Mohanty, Kishore; Vipulanandan, Cumaraswamy; Thevananther, Sundararajah

    2008-08-19

    Conventional lipid bilayer liposomes have similar inner and outer leaflet compositions; asymmetric liposomes have different lipid leaflet compositions. The goal of this work is to place cationic lipids in the inner leaflet to encapsulate negatively charged polynucleotides and to place neutral/anionic lipids on the outer leaflet to decrease nonspecific cellular uptake/toxicity. Inverse emulsion particles have been developed with a single lipid leaflet of cationic and neutral lipids surrounding an aqueous core containing a negatively charged 21-mer DNA oligo. The particles are accelerated through an oil-water interface, entrapping a second neutral lipid to form oligo encapsulated unilamellar liposome nanoparticles. Inverse emulsion particles can be consistently produced to encapsulate an aqueous environment containing negatively charged oligo. The efficiency of encapsulated liposome formation is low and depends on the hydrocarbon used as the oil phase. Dodecane, mineral oil, and squalene were tested, and squalene, a branched hydrocarbon, yielded the highest efficiency. PMID:18597508

  15. Effect of surface properties on liposomal siRNA delivery.

    PubMed

    Xia, Yuqiong; Tian, Jie; Chen, Xiaoyuan

    2016-02-01

    Liposomes are one of the most widely investigated carriers for siRNA delivery. The surface properties of liposomal carriers, including the surface charge, PEGylation, and ligand modification can significantly affect the gene silencing efficiency. Three barriers of systemic siRNA delivery (long blood circulation, efficient tumor penetration and efficient cellular uptake/endosomal escape) are analyzed on liposomal carriers with different surface charges, PEGylations and ligand modifications. Cationic formulations dominate siRNA delivery and neutral formulations also have good performance while anionic formulations are generally not proper for siRNA delivery. The PEG dilemma (prolonged blood circulation vs. reduced cellular uptake/endosomal escape) and the side effect of repeated PEGylated formulation (accelerated blood clearance) were discussed. Effects of ligand modification on cationic and neutral formulations were analyzed. Finally, we summarized the achievements in liposomal siRNA delivery, outlined existing problems and provided some future perspectives. PMID:26695117

  16. Liposome technology. Volume I: Preparation of liposomes

    SciTech Connect

    Gregoriadis, G.

    1984-01-01

    These three volumes cover liposome technology in pharmacology and medicine. Contributors emphasize methodology used in their own laboratories, and include a brief introduction, coverage of relevant literature, applications and critical evaluations for the methods they describe. Volume I examine methods for the preparation of liposomes and auxiliary techniques.

  17. Liposomes as nanomedical devices

    PubMed Central

    Bozzuto, Giuseppina; Molinari, Agnese

    2015-01-01

    Since their discovery in the 1960s, liposomes have been studied in depth, and they continue to constitute a field of intense research. Liposomes are valued for their biological and technological advantages, and are considered to be the most successful drug-carrier system known to date. Notable progress has been made, and several biomedical applications of liposomes are either in clinical trials, are about to be put on the market, or have already been approved for public use. In this review, we briefly analyze how the efficacy of liposomes depends on the nature of their components and their size, surface charge, and lipidic organization. Moreover, we discuss the influence of the physicochemical properties of liposomes on their interaction with cells, half-life, ability to enter tissues, and final fate in vivo. Finally, we describe some strategies developed to overcome limitations of the “first-generation” liposomes, and liposome-based drugs on the market and in clinical trials. PMID:25678787

  18. Liposomes as vaccine delivery systems: a review of the recent advances

    PubMed Central

    2014-01-01

    Liposomes and liposome-derived nanovesicles such as archaeosomes and virosomes have become important carrier systems in vaccine development and the interest for liposome-based vaccines has markedly increased. A key advantage of liposomes, archaeosomes and virosomes in general, and liposome-based vaccine delivery systems in particular, is their versatility and plasticity. Liposome composition and preparation can be chosen to achieve desired features such as selection of lipid, charge, size, size distribution, entrapment and location of antigens or adjuvants. Depending on the chemical properties, water-soluble antigens (proteins, peptides, nucleic acids, carbohydrates, haptens) are entrapped within the aqueous inner space of liposomes, whereas lipophilic compounds (lipopeptides, antigens, adjuvants, linker molecules) are intercalated into the lipid bilayer and antigens or adjuvants can be attached to the liposome surface either by adsorption or stable chemical linking. Coformulations containing different types of antigens or adjuvants can be combined with the parameters mentioned to tailor liposomal vaccines for individual applications. Special emphasis is given in this review to cationic adjuvant liposome vaccine formulations. Examples of vaccines made with CAF01, an adjuvant composed of the synthetic immune-stimulating mycobacterial cordfactor glycolipid trehalose dibehenate as immunomodulator and the cationic membrane forming molecule dimethyl dioctadecylammonium are presented. Other vaccines such as cationic liposome–DNA complexes (CLDCs) and other adjuvants like muramyl dipeptide, monophosphoryl lipid A and listeriolysin O are mentioned as well. The field of liposomes and liposome-based vaccines is vast. Therefore, this review concentrates on recent and relevant studies emphasizing current reports dealing with the most studied antigens and adjuvants, and pertinent examples of vaccines. Studies on liposome-based veterinary vaccines and experimental therapeutic

  19. Firefly bioluminescent assay of ATP in the presence of ATP extractant by using liposomes.

    PubMed

    Kamidate, Tamio; Yanashita, Kenji; Tani, Hirofumi; Ishida, Akihiko; Notani, Mizuyo

    2006-01-01

    Liposomes containing phosphatidylcholine (PC) and cholesterol (Chol) were applied to the enhancer for firefly bioluminescence (BL) assay for ATP in the presence of cationic surfactants using as an extractant for the release of ATP from living cells. Benzalkonium chloride (BAC) was used as an ATP extractant. However, BAC seriously inhibited the activity of luciferase, thus resulting in the remarkable decrease in the sensitivity of the BL assay for ATP. On the other hand, we found that BAC was associated with liposomes to form cationic liposomes containing BAC. The association rate of BAC with liposomes was faster than that of BAC with luciferase. As a result, the inhibitory effect of BAC on luciferase was eliminated in the presence of liposomes. In addition, cationic liposomes thus formed enhanced BL emission. BL measurement conditions were optimized in terms of liposome charge type, liposome size, and total concentration of PC and Chol. ATP can be sensitively determined without dilution of analytical samples by using liposomes. The detection limit of ATP with and without liposomes was 100 amol and 25 fmol in aqueous ATP standard solutions containing 0.06% BAC, respectively. The method was applied to the determination of ATP in Escherichia coli extracts. The BL intensity was linear from 4 x 10(4) to 1 x 10(7) cells mL(-1) in the absence of liposomes. On the other hand, the BL intensity was linear from 4 x 10(3) to 4 x 10(6) cells mL(-1) in the presence of liposomes. The detection limit of ATP in E. coli extracts was improved by a factor of 10 via use of liposomes. PMID:16383346

  20. Liposome/Graphene Oxide Interaction Studied by Isothermal Titration Calorimetry.

    PubMed

    Huang, Po-Jung Jimmy; Wang, Feng; Liu, Juewen

    2016-03-15

    The interaction between graphene oxide (GO) and lipid bilayers is important for fundamental surface science and many applications. In this work, isothermal titration calorimetry (ITC), cryo-TEM, and fluorescence spectroscopy were used to study the adsorption of three types of liposomes. Heat release was observed when GO was mixed with zwitterionic DOPC liposomes, while heat absorption occurred with cationic DOTAP liposomes. For comparison, anionic DOPG liposomes released heat when mixed with DOTAP. DOPC was adsorbed as intact liposomes, but DOTAP ruptured and induced stacking and folding of GO sheets. This study suggests the release of more water molecules from the GO surface when mixed with DOTAP liposomes. This can be rationalized by the full rupture of the DOTAP liposomes interacting with the whole GO surface, including hydrophobic regions, while DOPC liposomes only interact with a small area on GO near the edge, which is likely to be more hydrophilic. This interesting biointerfacial observation has enhanced our fundamental understanding of lipid/GO interactions. PMID:26908113

  1. Distribution and Inhibition of Liposomes on Staphylococcus aureus and Pseudomonas aeruginosa Biofilm

    PubMed Central

    Dong, Dong; Thomas, Nicky; Thierry, Benjamin; Vreugde, Sarah; Prestidge, Clive A.; Wormald, Peter-John

    2015-01-01

    Background Staphylococcus aureus and Pseudomonas aeruginosa are major pathogens in chronic rhinosinusitis (CRS) and their biofilms have been associated with poorer postsurgical outcomes. This study investigated the distribution and anti-biofilm effect of cationic (+) and anionic (-) phospholipid liposomes with different sizes (unilamellar and multilamellar vesicle, ULV and MLV respectively) on S. aureus and P. aeruginosa biofilms. Method Specific biofilm models for S. aureus ATCC 25923 and P. aeruginosa ATCC 15692 were established. Liposomal distribution was determined by observing SYTO9 stained biofilm exposed to DiI labeled liposomes using confocal scanning laser microscopy, followed by quantitative image analysis. The anti-biofilm efficacy study was carried out by using the alamarBlue assay to test the relative viability of biofilm treated with various liposomes for 24 hours and five minutes. Results The smaller ULVs penetrated better than larger MLVs in both S. aureus and P. aeruginosa biofilm. Except that +ULV and –ULV displayed similar distribution in S. aureus biofilm, the cationic liposomes adhered better than their anionic counterparts. Biofilm growth was inhibited at 24-hour and five-minute exposure time, although the decrease of viability for P. aeruginosa biofilm after liposomal treatment did not reach statistical significance. Conclusion The distribution and anti-biofilm effects of cationic and anionic liposomes of different sizes differed in S. aureus and P. aeruginosa biofilms. Reducing the liposome size and formulating liposomes as positively charged enhanced the penetration and inhibition of S. aureus and P. aeruginosa biofilms. PMID:26125555

  2. Lipid rafts-mediated endocytosis and physiology-based cell membrane traffic models of doxorubicin liposomes.

    PubMed

    Li, Yinghuan; Gao, Lei; Tan, Xi; Li, Feiyang; Zhao, Ming; Peng, Shiqi

    2016-08-01

    The clathrin-mediated endocytosis is likely a major mechanism of liposomes' internalization. A kinetic approach was used to assess the internalization mechanism of doxorubicin (Dox) loaded cationic liposomes and to establish physiology-based cell membrane traffic mathematic models. Lipid rafts-mediated endocytosis, including dynamin-dependent or -independent endocytosis of noncaveolar structure, was a dominant process. The mathematic models divided Dox loaded liposomes binding lipid rafts (B) into saturable binding (SB) and nonsaturable binding (NSB) followed by energy-driven endocytosis. The intracellular trafficking demonstrated early endosome-late endosome-lysosome or early/late endosome-cytoplasm-nucleus pathways. The three properties of liposome structures, i.e., cationic lipid, fusogenic lipid, and pegylation, were investigated to compare their contributions to cell membrane and intracellular traffic. The results revealed great contribution of cationic lipid DOTAP and fusogenic lipid DOPE to cell membrane binding and internalization. The valid Dox in the nuclei of HepG2 and A375 cells treated with cationic liposomes containing 40mol% of DOPE were 1.2-fold and 1.5-fold higher than that in the nuclei of HepG2 and A375 cells treated with liposomes containing 20mol% of DOPE, respectively, suggesting the dependence of cell type. This tendency was proportional to the increase of cell-associated total liposomal Dox. The mathematic models would be useful to predict intracellular trafficking of liposomal Dox. PMID:27117641

  3. Cationic lipid-mediated nucleic acid delivery: beyond being cationic.

    PubMed

    Rao, N Madhusudhana

    2010-03-01

    Realization of the potential of nucleic acids as drugs is intricately linked to their in vivo delivery. Cationic lipids demonstrated tremendous potential as safe, efficient and scalable in vitro carriers of nucleic acids. For in vivo delivery of nucleic acids, the extant two component liposomal preparations consisting of cationic lipids and nucleic acids have been largely found to be insufficient. Being a soft matter, liposomes readily respond to many physiological variables leading to complex component and morphological changes, thus confounding the efforts in a priori identification of a "competent" formulation. In the recent past many chemical moieties that provide advantage in facing the challenges of barriers in vivo, were incorporated into cationic lipids to improve the transfection efficiency. The cationic lipids, essential for DNA condensation and protection, definitely require additional components to be efficient in vivo. In addition, formulations of cationic lipid carriers with non-lipidic components, mainly peptides, have demonstrated success in in vivo transfection. The present review describes some recent successes of in vivo nucleic acid delivery by cationic lipids. PMID:20060819

  4. Enhanced bactericidal potency of nanoliposomes by modification of the fusion activity between liposomes and bacterium

    PubMed Central

    Ma, Yufan; Wang, Zhao; Zhao, Wen; Lu, Tingli; Wang, Rutao; Mei, Qibing; Chen, Tao

    2013-01-01

    Background Pseudomonas aeruginosa represents a good model of antibiotic resistance. These organisms have an outer membrane with a low level of permeability to drugs that is often combined with multidrug efflux pumps, enzymatic inactivation of the drug, or alteration of its molecular target. The acute and growing problem of antibiotic resistance of Pseudomonas to conventional antibiotics made it imperative to develop new liposome formulations to overcome these mechanisms, and investigate the fusion between liposome and bacterium. Methods The rigidity, stability and charge properties of phospholipid vesicles were modified by varying the cholesterol, 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE), and negatively charged lipids 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol sodium salt (DMPG), 1,2-dimyristoyl-sn-glycero-3-phopho-L-serine sodium salt (DMPS), 1,2-dimyristoyl-sn-glycero-3-phosphate monosodium salt (DMPA), nature phosphatidylserine sodium salt from brain and nature phosphatidylinositol sodium salt from soybean concentrations in liposomes. Liposomal fusion with intact bacteria was monitored using a lipid-mixing assay. Results It was discovered that the fluid liposomes-bacterium fusion is not dependent on liposomal size and lamellarity. A similar degree of fusion was observed for liposomes with a particle size from 100 to 800 nm. The fluidity of liposomes is an essential pre-request for liposomes fusion with bacteria. Fusion was almost completely inhibited by incorporation of cholesterol into fluid liposomes. The increase in the amount of negative charges in fluid liposomes reduces fluid liposomes-bacteria fusion when tested without calcium cations due to electric repulsion, but addition of calcium cations brings the fusion level of fluid liposomes to similar or higher levels. Among the negative phospholipids examined, DMPA gave the highest degree of fusion, DMPS and DMPG had intermediate fusion levels, and PI resulted in the lowest degree of fusion

  5. Innovative hybrid vs polymeric nanocapsules: The influence of the cationic lipid coating on the "4S".

    PubMed

    Carbone, C; Manno, D; Serra, A; Musumeci, T; Pepe, V; Tisserand, C; Puglisi, G

    2016-05-01

    Polymeric and hybrid aqueous-core nanocapsules were prepared using a low energy organic-solvent free procedure as innovative nanodevices for the ophthalmic delivery of melatonin. In order to evaluate how different cationic lipids could affect the main properties of the nanodevices, we focused our attention on mean particles size, surface charge, shape and stability (the "4S"). The results of our study confirmed the hypothesis that the coating material differently affects the overall nanoparticles properties, above all in terms of morphology: in particular, the cationic lipid dimethyldioctadecylammonium bromide allows the formation of very stable well-defined nanocapsules with non-spherical shape with sustained and prolonged drug release, thus representing a great advantage in ophthalmic application. PMID:26895507

  6. Liposomal formulations for inhalation.

    PubMed

    Cipolla, David; Gonda, Igor; Chan, Hak-Kim

    2013-08-01

    No marketed inhaled products currently use sustained release formulations such as liposomes to enhance drug disposition in the lung, but that may soon change. This review focuses on the interaction between liposomal formulations and the inhalation technology used to deliver them as aerosols. There have been a number of dated reviews evaluating nebulization of liposomes. While the information they shared is still accurate, this paper incorporates data from more recent publications to review the factors that affect aerosol performance. Recent reviews have comprehensively covered the development of dry powder liposomes for aerosolization and only the key aspects of those technologies will be summarized. There are now at least two inhaled liposomal products in late-stage clinical development: ARIKACE(®) (Insmed, NJ, USA), a liposomal amikacin, and Pulmaquin™ (Aradigm Corp., CA, USA), a liposomal ciprofloxacin, both of which treat a variety of patient populations with lung infections. This review also highlights the safety of inhaled liposomes and summarizes the clinical experience with liposomal formulations for pulmonary application. PMID:23919478

  7. Effect of vesicle size on tissue localization and immunogenicity of liposomal DNA vaccines.

    PubMed

    Carstens, Myrra G; Camps, Marcel G M; Henriksen-Lacey, Malou; Franken, Kees; Ottenhoff, Tom H M; Perrie, Yvonne; Bouwstra, Joke A; Ossendorp, Ferry; Jiskoot, Wim

    2011-06-24

    The formulation of plasmid DNA (pDNA) in cationic liposomes is a promising strategy to improve the potency of DNA vaccines. In this respect, physicochemical parameters such as liposome size may be important for their efficacy. The aim of the current study was to investigate the effect of vesicle size on the in vivo performance of liposomal pDNA vaccines after subcutaneous vaccination in mice. The tissue distribution of cationic liposomes of two sizes, 500 nm (PDI 0.6) and 140 nm (PDI 0.15), composed of egg PC, DOPE and DOTAP, with encapsulated OVA-encoding pDNA, was studied by using dual radiolabeled pDNA-liposomes. Their potency to elicit cellular and humoral immune responses was investigated upon application in a homologous and heterologous vaccination schedule with 3 week intervals. It was shown that encapsulation of pDNA into cationic lipsomes resulted in deposition at the site of injection, and strongest retention was observed at large vesicle size. The vaccination studies demonstrated a more robust induction of OVA-specific, functional CD8+ T-cells and higher antibody levels upon vaccination with small monodisperse pDNA-liposomes, as compared to large heterodisperse liposomes or naked pDNA. The introduction of a PEG-coating on the small cationic liposomes resulted in enhanced lymphatic drainage, but immune responses were not improved when compared to non-PEGylated liposomes. In conclusion, it was shown that the physicochemical properties of the liposomes are of crucial importance for their performance as pDNA vaccine carrier, and cationic charge and small size are favorable properties for subcutaneous DNA vaccination. PMID:21565240

  8. Multi-liposomal containers.

    PubMed

    Yaroslavov, A A; Sybachin, A V; Zaborova, O V; Zezin, A B; Talmon, Y; Ballauff, M; Menger, F M

    2015-12-01

    Small unilamellar liposomes, 40-60 nm in diameter, composed of anionic diphosphatidylglycerol (cardiolipin, CL(2-)) or phosphatidylcerine (PS(1-)) and zwitter-ionic egg yolk lecithin (EL) or dipalmitoylphosphatidylcholine (DPPC), electrostatically complex with polystyrene microspheres, ca. 100 nm in diameter, grafted by polycationic chains ("spherical polycationic brushes", SPBs). Polymer/liposome binding studies were carried out using electrophoretic mobility (EPM), dynamic light scattering (DLS), fluorescence, conductometry, differential scanning calorimetry (DSC), and cryogenic transmission electron microscopy (cryo-TEM) as the main analytical tools. By these means a remarkably detailed picture emerges of molecular events inside a membrane. The following are among the most important conclusions that arose from the experiments: (a) binding of liposomes to SPBs is accompanied by flip-flop of anionic lipids from the inner to the outer leaflet of the liposomal membrane along with lateral lipid segregation into "islands". (b) The SPB-induced structural reorganization of the liposomal membrane, together with the geometry of anionic lipid molecules, determines the maximum molar fraction of anionic lipid (a key parameter designated as ν) that ensures the structural integrity of liposomes upon complexation: ν=0.3 for liposomes with conically-shaped CL(2-) and ν=0.5 for liposomes with anionic cylindrically-shaped PS(1-). (c) The number of intact liposomes per SPB particle varies from 40 for (ν=0.1) to 13 (ν=0.5). (d) By using a mixture of liposomes with variety of encapsulated substances, multi-liposomal complexes can be prepared with a high loading capacity and a controlled ratio of the contents. (e) In order to make the mixed anionic liposomes pH-sensitive, they are additionally modified by 30 mol% of a morpholinocyclohexanol-based lipid that undergoes a conformational flip when changing pH. Being complexed with SPBs, such liposomes rapidly release their contents

  9. Gold nanoparticles decorated liposomes and their SERS performance in tumor cells

    NASA Astrophysics Data System (ADS)

    Zhu, D.; Wang, Z. Y.; Zong, S. F.; Chen, H.; Chen, P.; Li, M. Y.; Wu, L.; Cui, Y. P.

    2015-05-01

    Due to their unique properties, liposomes have been widely used as drug nanocarriers. Herein a liposome-Au nanohybrid has been demonstrated as a SERS active intracellular drug nanocarrier. In this study, cationic Raman reporter tagged gold nanoparticles (Au@4MBA@PAH) were anchored onto the surfaces of anionic liposomes via electrostatic interactions. Using SKBR3 cells as model cells, we revealed that the hybrid formulation can be effectively taken up by tumor cells and tracked by the SERS signals. Collectively, the liposome-Au nanohybrids hold great promise in biomedical applications.

  10. A new class of pegylated plasmonic liposomes: synthesis and characterization.

    PubMed

    Stiufiuc, Rares; Iacovita, Cristian; Stiufiuc, Gabriela; Florea, Adrian; Achim, Marcela; Lucaciu, Constantin M

    2015-01-01

    The multifunctional nanoobjects that can be controlled, manipulated and triggered using external stimuli represent very promising candidates for nanoscale therapeutic and diagnostic applications. In this study we report the successful synthesis and characterization of a new class of very stable multifunctional nanoobjects, containing cationic liposomes decorated with PEGylated gold nanoparticles (PEGAuNPs). The multifunctional hybrid nanoobjects (mHyNp) were prepared by taking advantage of the electrostatic interactions between small unilamelar cationic liposomes and negatively charged gold nanoparticles. The mHyNps have been investigated by UV-VIS absorption spectroscopy, Dynamic Light Scattering (DLS), Zeta Potential Measurements and Transmission Electron Microscopy (TEM). The TEM images clearly revealed the attachment of individual gold nanoparticles onto the spherical outer surface of the cationic liposomes which was also confirmed by DLS and UV-VIS data. Furthermore, the plasmonic properties of the hybrid complexes have been evaluated by using the Surface Enhanced Raman Spectroscopy (SERS) technique. It is shown that PEG mediated interaction between the liposomes and the gold nanoparticles enabled the recording of the SER spectra of the liposomes in aqueous environment, thus demonstrating the plasmonic properties of the hybrids. PMID:25310578

  11. Assessment of liposome disruption to quantify drug delivery in vitro.

    PubMed

    Nogueira, Eugénia; Cruz, Célia F; Loureiro, Ana; Nogueira, Patrícia; Freitas, Jaime; Moreira, Alexandra; Carmo, Alexandre M; Gomes, Andreia C; Preto, Ana; Cavaco-Paulo, Artur

    2016-02-01

    Efficient liposome disruption inside the cells is a key for success with any type of drug delivery system. The efficacy of drug delivery is currently evaluated by direct visualization of labeled liposomes internalized by cells, not addressing objectively the release and distribution of the drug. Here, we propose a novel method to easily assess liposome disruption and drug release into the cytoplasm. We propose the encapsulation of the cationic dye Hoechst 34580 to detect an increase in blue fluorescence due to its specific binding to negatively charged DNA. For that, the dye needs to be released inside the cell and translocated to the nucleus. The present approach correlates the intensity of detected fluorescent dye with liposome disruption and consequently assesses drug delivery within the cells. PMID:26589183

  12. Liposome formation in microgravity

    NASA Astrophysics Data System (ADS)

    Claassen, D. E.; Spooner, B. S.

    Liposomes are artificial vesicles with a phospholipid bilayer membrane. The formation of liposomes is a self-assembly process that is driven by the amphipathic nature of phospholipid molecules and can be observed during the removal of detergent from phospholipids dissolved in detergent micelles. As detergent concentration in the mixed micelles decreases, the non-polar tail regions of phospholipids produce a hydrophobic effect that drives the micelles to fuse and form planar bilayers in which phospholipids orient with tail regions to the center of the bilayer and polar head regions to the external surface. Remaining detergent molecules shield exposed edges of the bilayer sheet from the aqueous environment. Further removal of detergent leads to intramembrane folding and membrane vesiculation, forming liposomes. We have observed that the formation of liposomes is altered in microgravity. Liposomes that were formed at 1-g did not exceed 150 nm in diameter, whereas liposomes that were formed during spaceflight exhibited diameters up to 2000 nm. Using detergent-stabilized planar bilayers, we determined that the stage of liposome formation most influenced by gravity is membrane vesiculation. In addition, we found that small, equipment-induced fluid disturbances increased vesiculation and negated the size-enhancing effects of microgravity. However, these small disturbances had no effect on liposome size at 1-g, likely due to the presence of gravity-induced buoyancy-driven fluid flows (e.g., convection currents). Our results indicate that fluid disturbances, induced by gravity, influence the vesiculation of membranes and limit the diameter of forming liposomes.

  13. Preparation of novel capsosome with liposomal core by layer-by-Layer self-assembly of sodium hyaluronate and chitosan.

    PubMed

    Yoo, Cha Young; Seong, Joon Seob; Park, Soo Nam

    2016-08-01

    Multi-compartmentalized capsosomes are polyelectrolyte capsules with liposomes as cargo, and are prepared by combining liposomes and polymer capsules. They offer additional functionality while maintaining the advantages and compensating for the weak points of both systems. In this study, a polyelectrolyte multilayered liposome was prepared by alternating adsorption of negatively charged sodium hyaluronate (HA) and positively charged chitosan (CH) on the surface of a cationic core liposome (CL) via layer-by-layer (LbL) deposition. Then, smaller sized liposomes (L) were coated onto the multilayered liposome. Lastly, the particle surfaces were coated with HA as a capping layer to obtain a novel type of capsosome with a liposomal core. The amount of adsorbed liposome was measured for different pH values (pH 2-10) and with liposome solutions of different concentrations (1-3%). The highest liposome adsorption occurred at pH 10 in the 3% solution, respectively. Finally, capsosomes in the size range of 500nm to 2μm were observed and the attached liposomes were located both on the surface and within the polymer shell. In conclusion, the cell-mimicking, liposome-based capsosomes could have infinite applications in the field of medicine, pharmaceuticals, and cosmetics as compartmentalized microreactors, multi-drug delivery systems with controlled release, or functional artificial cells in the future. PMID:27085041

  14. Actinide cation-cation complexes

    SciTech Connect

    Stoyer, N.J.; Seaborg, G.T.

    1994-12-01

    The +5 oxidation state of U, Np, Pu, and Am is a linear dioxo cation (AnO{sub 2}{sup +}) with a formal charge of +1. These cations form complexes with a variety of other cations, including actinide cations. Other oxidation states of actinides do not form these cation-cation complexes with any cation other than AnO{sub 2}{sup +}; therefore, cation-cation complexes indicate something unique about AnO{sub 2}{sup +} cations compared to actinide cations in general. The first cation-cation complex, NpO{sub 2}{sup +}{center_dot}UO{sub 2}{sup 2+}, was reported by Sullivan, Hindman, and Zielen in 1961. Of the four actinides that form AnO{sub 2}{sup +} species, the cation-cation complexes of NpO{sub 2}{sup +} have been studied most extensively while the other actinides have not. The only PuO{sub 2}{sup +} cation-cation complexes that have been studied are with Fe{sup 3+} and Cr{sup 3+} and neither one has had its equilibrium constant measured. Actinides have small molar absorptivities and cation-cation complexes have small equilibrium constants; therefore, to overcome these obstacles a sensitive technique is required. Spectroscopic techniques are used most often to study cation-cation complexes. Laser-Induced Photacoustic Spectroscopy equilibrium constants for the complexes NpO{sub 2}{sup +}{center_dot}UO{sub 2}{sup 2+}, NpO{sub 2}{sup +}{center_dot}Th{sup 4+}, PuO{sub 2}{sup +}{center_dot}UO{sub 2}{sup 2+}, and PuO{sub 2}{sup +}{center_dot}Th{sup 4+} at an ionic strength of 6 M using LIPAS are 2.4 {plus_minus} 0.2, 1.8 {plus_minus} 0.9, 2.2 {plus_minus} 1.5, and {approx}0.8 M{sup {minus}1}.

  15. First In Vivo Evaluation of Liposome-encapsulated 223Ra as a Potential Alpha-particle-emitting Cancer Therapeutic Agent

    SciTech Connect

    Jonasdottir, Thora J.; Fisher, Darrell R.; Borrebaek, Jorgen; Bruland, Oyvind S.; Larsen, Roy H.

    2006-09-13

    Liposomes carrying chemotherapeutics have had some success in cancer treatment and may be suitable carriers for therapeutic radionuclides. This study was designed to evaluate the biodistribution of and to estimate the radiation doses from the alpha emitter 223Ra loaded into pegylated liposomes in selected tissues. 223Ra was encapsulated in pegylated liposomal doxorubicin by ionophore-mediated loading. The biodistribution of liposomal 223Ra was compared to free cationic 223Ra in Balb/C mice. We showed that liposomal 223 Ra circulated in the blood with an initial half-time in excess of 24 hours, which agreed well with that reported for liposomal doxorubicin in rodents, while the blood half-time of cationic 223Ra was considerably less than one hour. When liposomal 223 Ra was catabolized, the released 223Ra was either excreted or taken up in the skeleton. This skeletal uptake increased up to 14 days after treatment, but did not reach the level seen with free 223Ra. Pre-treatment with non-radioactive liposomal doxorubicin 4 days in advance lessened the liver uptake of liposomal 223 Ra. Dose estimates showed that the spleen, followed by bone surfaces, received the highest absorbed doses. Liposomal 223 Ra was relatively stable in vivo and may have potential for radionuclide therapy and combination therapy with chemotherapeutic agents.

  16. Anti-inflammatory activity of cationic lipids.

    PubMed

    Filion, M C; Phillips, N C

    1997-10-01

    1. The effect of liposome phospholipid composition has been assumed to be relatively unimportant because of the presumed inert nature of phospholipids. 2. We have previously shown that cationic liposome formulations used for gene therapy inhibit, through their cationic component, the synthesis by activated macrophages of the pro-inflammatory mediators nitric oxide (NO) and tumour necrosis factor-alpha (TNF-alpha). 3. In this study, we have evaluated the ability of different cationic lipids to reduce footpad inflammation induced by carrageenan and by sheep red blood cell challenge. 4. Parenteral (i.p. or s.c) or local injection of the positively charged lipids dimethyldioctadecylammomium bromide (DDAB), dioleyoltrimethylammonium propane (DOTAP), dimyristoyltrimethylammonium propane (DMTAP) or dimethylaminoethanecarbamoyl cholesterol (DC-Chol) significantly reduced the inflammation observed in both models in a dose-dependent manner (maximum inhibition: 70-95%). 5. Cationic lipids associated with dioleyol- or dipalmitoyl-phosphatidylethanolamine retained their anti-inflammatory activity while cationic lipids associated with dipalmitoylphosphatidylcholine (DPPC) or dimyristoylphosphatidylglycerol (DMPG) showed no anti-inflammatory activity, indicating that the release of cationic lipids into the macrophage cytoplasm is a necessary step for anti-inflammatory activity. The anti-inflammatory activity of cationic lipids was abrogated by the addition of dipalmitoylphosphatidylethanolamine-poly(ethylene)glycol-2000 (DPPE-PEG2000) which blocks the interaction of cationic lipids with macrophages. 6. Because of the significant role of protein kinase C (PKC) in the inflammatory process we have determined whether the cationic lipids used in this study inhibit PKC activity. The cationic lipids significantly inhibited the activity of PKC but not the activity of a non-related protein kinase, PKA. The synthesis of interleukin-6 (IL-6), which is not dependent on PKC activity for its

  17. The antibacterial properties of solid supported liposomes on Streptococcus oralis biofilms.

    PubMed

    Catuogno, Christelle; Jones, Malcolm N

    2003-05-12

    A novel system for the delivery of drugs to bacterial biofilms has been developed. The system is based on the use of anionic and cationic liposomes as drug carriers adsorbed on the surface of zinc citrate particles. The adsorption process results in the formation of solid supported vesicles (SSVs) which aids the stabilisation of the liposomes. Anionic liposomes have been prepared by incorporation of phosphatidylinositol (PI) into dipalmitoylphosphatidylcholine (DPPC) liposomes and cationic liposomes have been prepared by incorporation of dioctadecyldimethylammonium bromide (DDAB) into DPPC plus cholesterol liposomes. The liposomes were adsorbed onto zinc citrate particle and targeted to immobilised biofilms of the oral bacterium Streptococcus oralis. The liposomes were used to carry the bactericides, Triclosan, a lipid-soluble agent, and the aqueous-soluble penicillin-G, and their ability to inhibit bacterial growth from immobilised biofilms was accessed. Zinc citrate is itself a bactericide and is used in the formulation of toothpastes. The SSVs carrying the drugs have therapeutic properties. To trace the origin of these properties, each component of the SSV was investigated alone and in combination in binary systems. Some combinations showed synergistic (or additive) antibacterial effects while others showed regressive effects compared with their components. PMID:12711168

  18. Photo-triggered release from liposomes without membrane solubilization, based on binding to poly(vinyl alcohol) carrying a malachite green moiety.

    PubMed

    Uda, Ryoko M; Kato, Yutaka; Takei, Michiko

    2016-10-01

    When working with liposomes analogous to cell membranes, it is important to develop substrates that can regulate interactions with the liposome surface in response to light. We achieved a photo-triggered release from liposomes by using a copolymer of poly(vinyl alcohol) carrying a malachite green moiety (PVAMG). Although PVAMG is a neutral polymer under dark conditions, it is photoionized upon exposure to UV light, resulting in the formation of a cationic site for binding to liposomes with a negatively charged surface. Under UV irradiation, PVAMG showed effective interaction with liposomes, releasing the encapsulated compound; however, this release was negligible under dark conditions. The poly(vinyl alcohol) moiety of PVAMG played an important role in the photo-triggered release. This release was caused by membrane destabilization without lipid solubilization. We also investigated different aspects of liposome/PVAMG interactions, including PVAMG-induced fusion between the liposomes and the change in the liposome morphologies. PMID:27434159

  19. Bioaccumulation and toxicity of a cationic surfactant (DODMAC) in sediment dwelling freshwater invertebrates.

    PubMed

    Comber, S D W; Rule, K L; Conrad, A U; Höss, S; Webb, S F; Marshall, S

    2008-05-01

    Dimethyldioctadecylammonium chloride (DODMAC, CAS No. 107-64-2) is the principal active component of Di(hydrogenated tallow alkyl) dimethylammonium chloride (DHTDMAC, CAS No. 61789-80-8), a cationic surfactant formerly used principally in laundry fabric softeners. After discharge to water, DODMAC partitions strongly to sediment, therefore the assessment of the effects of DODMAC to benthic organisms is essential in any risk assessment. Chronic toxicity studies were conducted with Lumbriculus variegatus (Oligochaete), Tubifex tubifex (Oligochaete) and Caenorhabditis elegans (Nematode). NOECs were greater than 5738, 1515 and 1351 mg/kg dw, respectively, even for sub-lethal effects. Measurement of the route of uptake of DODMAC by L. variegatus demonstrated the relative importance of uptake via ingestion (86%) compared with direct contact with the sediment and via pore water (14%). The overall tendency of DODMAC to bioaccumulate, however, was low with measured accumulation factors of 0.22 and 0.78 for L. variegatus and T. tubifex, respectively. PMID:17889974

  20. Rapid delivery of small interfering RNA by biosurfactant MEL-A-containing liposomes

    SciTech Connect

    Inoh, Yoshikazu; Furuno, Tadahide; Hirashima, Naohide; Kitamoto, Dai; Nakanishi, Mamoru

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer We use MEL-A-containing cationic liposomes for siRNA delivery. Black-Right-Pointing-Pointer MEL-A-containing cationic liposomes can efficiently and rapidly deliver siRNA into the cytoplasm. Black-Right-Pointing-Pointer Rapid delivery of siRNA is due to the membrane fusion between liposomes and plasma membrane. -- Abstract: The downregulation of gene expression by RNA interference holds great potential for genetic analysis and gene therapy. However, a more efficient delivery system for small interfering RNA (siRNA) into the target cells is required for wide fields such as cell biology, physiology, and clinical application. Non-viral vectors are stronger candidates than viral vectors because they are safer and easier to prepare. We have previously used a new method for gene transfection by combining cationic liposomes with the biosurfactant mannosylerythritol lipid-A (MEL-A). The novel MEL-A-containing cationic liposomes rapidly delivered DNA (plasmids and oligonucleotides) into the cytosol and nucleus through membrane fusion between liposomes and the plasma membrane, and consequently, enhanced the gene transfection efficiency. In this study, we determined the efficiency of MEL-A-containing cationic liposomes for siRNA delivery. We observed that exogenous and endogenous protein expression was suppressed by approximately 60% at 24 h after brief (30 min) incubation of target cells with MEL-A-containing cationic liposome/siRNA complexes. Confocal microscopic analysis showed that suppression of protein expression was caused by rapid siRNA delivery into the cytosol. We found that the MEL-A-containing cationic liposomes directly delivered siRNA into the cytoplasm by the membrane fusion in addition to endocytotic pathway whereas Lipofectamine Trade-Mark-Sign RNAiMax delivered siRNA only by the endocytotic pathway. It seems that the ability to rapidly and directly deliver siRNA into the cytosol using MEL-A-containing cationic

  1. Interaction of Colistin and Colistin Methanesulfonate with Liposomes: Colloidal Aspects and Implications for Formulation

    PubMed Central

    WALLACE, STEPHANIE J.; LI, JIAN; NATION, ROGER L.; PRANKERD, RICHARD J.; BOYD, BEN J.

    2012-01-01

    Interaction of colistin and colistin methanesulfonate (CMS) with liposomes has been studied with the view to understanding the limitations to the use of liposomes as a more effective delivery system for pulmonary inhalation of this important class of antibiotic. Thus, in this study, liposomes containing colistin or CMS were prepared and characterized with respect to colloidal behavior and drug encapsulation and release. Association of anionic CMS with liposomes induced negative charge on the particles. However, degradation of the CMS to form cationic colistin over time was directly correlated with charge reversal and particle aggregation. The rate of degradation of CMS was significantly more rapid when associated with the liposome bilayer than when compared with the same concentration in aqueous solution. Colistin liposomes carried positive charge and were stable. Encapsulation efficiency for colistin was approximately 50%, decreasing with increasing concentration of colistin. Colistin was rapidly released from liposomes on dilution. Although the studies indicate limited utility of colistin or CMS liposomes for long duration controlled-release applications, colistin liposomes were highly stable and may present a potential opportunity for coformulation of colistin with a second antibiotic to colocalize the two drugs after pulmonary delivery. PMID:22623044

  2. Physical and Oxidative Stability of Uncoated and Chitosan-Coated Liposomes Containing Grape Seed Extract

    PubMed Central

    Gibis, Monika; Rahn, Nina; Weiss, Jochen

    2013-01-01

    Polyphenol-rich grape seed extract (0.1 w/w%) was incorporated in liposomes (1 w/w% soy lecithin) by high pressure homogenization (22,500 psi) and coated with chitosan (0.1 w/w%). Primary liposomes and chitosan-coated secondary liposomes containing grape seed extract showed good physical stability during 98 days of storage. Most of the polyphenols were incorporated in the shell of the liposomes (85.4%), whereas only 7.6% of the polyphenols of grape seed extract were located in the interior of the liposomes. Coating with chitosan did not change the polyphenol content in the liposomes (86.6%). The uncoated liposomes without grape seed extract were highly prone to lipid oxidation. The cationic chitosan coating, however, improved the oxidative stability to some extent, due to its ability to repel pro-oxidant metals. Encapsulated grape seed extract showed high antioxidant activity in both primary and secondary liposomes, which may be attributed to its polyphenol content. In conclusion, the best chemical stability of liposomes can be achieved using a combination of grape seed extract and chitosan. PMID:24300515

  3. Liposome-mediated DNA immunisation via the subcutaneous route.

    PubMed

    Perrie, Y; McNeil, S; Vangala, A

    2003-01-01

    Compared to naked DNA immunisation, entrapment of plasmid-based DNA vaccines into liposomes by the dehydration-rehydration method has shown to enhance both humoural and cell-mediated immune responses to encoded antigens administered by a variety of routes. In this paper, we have investigated the application of liposome-entrapped DNA and their cationic lipid composition on such potency after subcutaneous immunisation. Plasmid pI.18Sfi/NP containing the nucleoprotein (NP) gene of A/Sichuan/2/87 (H3N2) influenza virus in the pI.18 expression vector was incorporated by the dehydration-rehydration method into liposomes composed of 16 micromol egg phosphatidylcholine (PC), 8 micromoles dioleoyl phosphatidylethanolamine (DOPE) or cholesterol (Chol) and either the cationic lipid 1,2-diodeoyl-3-(trimethylammonium) propane (DOTAP) or cholesteryl 3-N-(dimethyl amino ethyl) carbamate (DC-Chol). This method, entailing mixing of small unilamellar vesicles (SUV) with DNA, followed by dehydration and rehydration, yielded incorporation values of 90-94% of the DNA used. Mixing or rehydration of preformed cationic liposomes with 100 microg plasmid DNA also led to similarly high complexation values (92-94%). In an attempt to establish differences in the nature of DNA association with these various liposome preparations their physico-chemical characteristics were investigated. Studies on vesicle size, zeta potential and gel electrophoresis in the presence of the anion sodium dodecyl sulphate (SDS) indicate that, under the conditions employed, formulation of liposomal DNA by the dehydration-rehydration generated submicron size liposomes incorporating most of the DNA in a manner that prevents DNA displacement through anion competition. The bilayer composition of these dehydration-rehydration vesicles (DRV(DNA)) can also further influence these physico-chemical characteristics with the presence of DOPE within the liposome bilayer resulting in a reduced vesicle zeta potential. Subcutaneous

  4. Rapid delivery of small interfering RNA by biosurfactant MEL-A-containing liposomes.

    PubMed

    Inoh, Yoshikazu; Furuno, Tadahide; Hirashima, Naohide; Kitamoto, Dai; Nakanishi, Mamoru

    2011-10-28

    The downregulation of gene expression by RNA interference holds great potential for genetic analysis and gene therapy. However, a more efficient delivery system for small interfering RNA (siRNA) into the target cells is required for wide fields such as cell biology, physiology, and clinical application. Non-viral vectors are stronger candidates than viral vectors because they are safer and easier to prepare. We have previously used a new method for gene transfection by combining cationic liposomes with the biosurfactant mannosylerythritol lipid-A (MEL-A). The novel MEL-A-containing cationic liposomes rapidly delivered DNA (plasmids and oligonucleotides) into the cytosol and nucleus through membrane fusion between liposomes and the plasma membrane, and consequently, enhanced the gene transfection efficiency. In this study, we determined the efficiency of MEL-A-containing cationic liposomes for siRNA delivery. We observed that exogenous and endogenous protein expression was suppressed by approximately 60% at 24h after brief (30 min) incubation of target cells with MEL-A-containing cationic liposome/siRNA complexes. Confocal microscopic analysis showed that suppression of protein expression was caused by rapid siRNA delivery into the cytosol. We found that the MEL-A-containing cationic liposomes directly delivered siRNA into the cytoplasm by the membrane fusion in addition to endocytotic pathway whereas Lipofectamine RNAiMax delivered siRNA only by the endocytotic pathway. It seems that the ability to rapidly and directly deliver siRNA into the cytosol using MEL-A-containing cationic liposomes is able to reduce immune responses, cytotoxicity, and other side effects caused by viral vectors in clinical applications. PMID:22001930

  5. Viscoelasticity measurements inside liposomes

    NASA Astrophysics Data System (ADS)

    Zhang, Shu; Gibson, Lachlan; Preece, Daryl; Nieminen, Timo A.; Rubinsztein-Dunlop, Halina

    2014-09-01

    Microrheology, the study of the behavior of fluids on the microscopic scale, has been and continues to be one of the most important subjects that can be applied to characterize the behavior of biological fluids. It is extremely difficult to make rapid measurement of the viscoelastic properties of the interior of living cells. Liposomes are widely used as model system for studying different aspects of cell biology. We propose to develop a microrheometer, based on real-time control of optical tweezers, in order to investigate the viscoelastic properties of the fluid inside liposomes. This will give greater understanding of the viscoelastic properties of the fluids inside cells. In our experiment, the liposomes are prepared by different methods to find out both a better way to make GUVs and achieve efficient encapsulation of particle. By rotating the vaterite inside a liposome via spin angular momentum, the optical torque can be measured by measuring the change of polarization of the transmitted light, which allows the direct measurement of viscous drag torque since the optical torque is balanced by the viscous drag. We present an initial feasibility demonstration of trapping and manipulation of a microscopic vaterite inside the liposome. The applied method is simple and can be extended to sensing within the living cells.

  6. On the phase diagram of reentrant condensation in polyelectrolyte-liposome complexation

    NASA Astrophysics Data System (ADS)

    Sennato, S.; Bordi, F.; Cametti, C.

    2004-09-01

    Complexation of polyions with oppositely charged spherical liposomes has been investigated by means of dynamic light scattering measurements and a well-defined reentrant condensation has been observed. The phase diagram of charge inversion, recently derived [T. T. Nguyen and B. I. Shklovskii, J. Chem. Phys. 115, 7298 (2001)] for the complexation of DNA with charged spherical macroions, has been employed in order to define the boundaries of the region where polyion-liposome complexes begin to condense, forming larger aggregates, and where aggregates dissolve again, towards isolated polyion-coated-liposome complexes. A reasonable good agreement is observed in the case of complexes formed by negatively charged polyacrylate sodium salt polyions and liposomes built up by cationic lipids (dioleoyltrimethylammoniumpropane), in an extended liposome concentration range.

  7. Temperature effect on the transport dynamics of a small molecule through a liposome bilayer.

    PubMed

    Kim, J H; Kim, M W

    2007-07-01

    An ion having hydrophobic parts can directly transport through the liposome bilayer without an ion channel and its transport mechanism can be explained by the free-volume theory. This was confirmed by investigating the temperature effect on the transport dynamics of organic cations through anionic liposome bilayers made of unsaturated and saturated lipids by using optical second-harmonic generation (SHG) technique. This study provides useful information to design practical temperature-controlled drug delivery systems. PMID:17665090

  8. Potential antitumor activity of novel DODAC/PHO-S liposomes

    PubMed Central

    Luna, Arthur Cássio de Lima; Saraiva, Greice Kelle Viegas; Filho, Otaviano Mendonça Ribeiro; Chierice, Gilberto Orivaldo; Neto, Salvador Claro; Cuccovia, Iolanda Midea; Maria, Durvanei Augusto

    2016-01-01

    In recent studies, we showed that synthetic phosphoethanolamine (PHO-S) has a great potential for inducing cell death in several tumor cell lines without damage to normal cells. However, its cytotoxic effect and selectivity against tumor cells could increase with encapsulation in cationic liposomes, such as dioctadecyldimethylammonium chloride (DODAC), due to electrostatic interactions between these liposomes and tumor cell membranes. Our aim was to use cationic liposomes to deliver PHO-S and to furthermore maximize the therapeutic effect of this compound. DODAC liposomes containing PHO-S (DODAC/PHO-S), at concentrations of 0.3–2.0 mM, prepared by ultrasonication, were analyzed by scanning electron microscopy (SEM) and dynamic light scattering. The cytotoxic effect of DODAC/PHO-S on B16F10 cells, Hepa1c1c7 cells, and human umbilical vein endothelial cells (HUVECs) was assessed by MTT assay. Cell cycle phases of B16F10 cells were analyzed by flow cytometry and the morphological changes by SEM, after treatment. The liposomes were spherical and polydisperse in solution. The liposomes were stable, presenting an average of ∼50% of PHO-S encapsulation, with a small reduction after 40 days. DODAC demonstrated efficient PHO-S delivery, with the lowest values of IC50% (concentration that inhibits 50% of the growth of cells) for tumor cells, compared with PHO-S alone, with an IC50% value of 0.8 mM for B16F10 cells and 0.2 mM for Hepa1c1c7 cells, and without significant effects on endothelial cells. The Hepa1c1c7 cells showed greater sensitivity to the DODAC/PHO-S formulation when compared to B16F10 cells and HUVECs. The use of DODAC/PHO-S on B16F10 cells induced G2/M-phase cell cycle arrest, with the proportion significantly greater than that treated with PHO-S alone. The morphological analysis of B16F10 cells by SEM showed changes such as “bleb” formation, cell detachment, cytoplasmic retraction, and apoptotic bodies after DODAC/PHO-S treatment. Cationic liposomal

  9. Studies on precellular evolution: The encapsulation of polyribonucleotides by liposomes

    NASA Astrophysics Data System (ADS)

    Baeza, I.; Ibañez, M.; Santiago, J. C.; Wong, C.; Lazcano, A.; Oró, J.

    Liposomes are 5 to 50 micron vesicles with an internal aqueous environment, whose amphiphilic lipidic components self-assemble into systems with at least one double-layered membrane. Liposomes have been suggested as possible models of precellular systems formed in the early Archean Earth from lipids of non-enzymatic origin. Since it is generally accepted that RNA molecules preceded double-stranded DNA molecules as genetic material, we have studied the encapsulation of polyribonucleotides within liposomes made from dipalmitoyl phosphatidylcholine, and from egg yolk phosphatidylcholine to which cholesterol was added in some cases. The liposomes were prepared under anoxic conditions following the reverse phase evaporation method described by Szoka and Papahadjopoulos /1/. Quantitative determinations show that approximately 50% of the available lipids form liposomes, and that up to 5% of the polyribonucleotides can be entrapped by them. We have also studied the encapsulation of polyribonucleotides in the presence of 1) urea and cyanamide, two non-electrolytes that have been used as prebiotic condensing agents, and 2) of Zn++ and Pb++, two cations employed in the non-enzymatic template-directed synthesis of polyribonucleotides from activated nucleotides.

  10. Targeted Liposomal Drug Delivery to Monocytes and Macrophages

    PubMed Central

    Kelly, Ciara; Jefferies, Caroline; Cryan, Sally-Ann

    2011-01-01

    As the role of monocytes and macrophages in a range of diseases is better understood, strategies to target these cell types are of growing importance both scientifically and therapeutically. As particulate carriers, liposomes naturally target cells of the mononuclear phagocytic system (MPS), particularly macrophages. Loading drugs into liposomes can therefore offer an efficient means of drug targeting to MPS cells. Physicochemical properties including size, charge and lipid composition can have a very significant effect on the efficiency with which liposomes target MPS cells. MPS cells express a range of receptors including scavenger receptors, integrins, mannose receptors and Fc-receptors that can be targeted by the addition of ligands to liposome surfaces. These ligands include peptides, antibodies and lectins and have the advantages of increasing target specificity and avoiding the need for cationic lipids to trigger intracellular delivery. The goal for targeting monocytes/macrophages using liposomes includes not only drug delivery but also potentially a role in cell ablation and cell activation for the treatment of conditions including cancer, atherosclerosis, HIV, and chronic inflammation. PMID:21512579

  11. Cholesterol derived cationic lipids as potential non-viral gene delivery vectors and their serum compatibility.

    PubMed

    Ju, Jia; Huan, Meng-Lei; Wan, Ning; Hou, Yi-Lin; Ma, Xi-Xi; Jia, Yi-Yang; Li, Chen; Zhou, Si-Yuan; Zhang, Bang-Le

    2016-05-15

    Cholesterol derivatives M1-M6 as synthetic cationic lipids were designed and the biological evaluation of the cationic liposomes based on them as non-viral gene delivery vectors were described. Plasmid pEGFP-N1, used as model gene, was transferred into 293T cells by cationic liposomes formed with M1-M6 and transfection efficiency and GFP expression were tested. Cationic liposomes prepared with cationic lipids M1-M6 exhibited good transfection activity, and the transfection activity was parallel (M2 and M4) or superior (M1 and M6) to that of DC-Chol derived from the same backbone. Among them, the transfection efficiency of cationic lipid M6 was parallel to that of the commercially available Lipofectamine2000. The optimal formulation of M1 and M6 were found to be at a mol ratio of 1:0.5 for cationic lipid/DOPE, and at a N/P charge mol ratio of 3:1 for liposome/DNA. Under optimized conditions, the efficiency of M1 and M6 is greater than that of all the tested commercial liposomes DC-Chol and Lipofectamine2000, even in the presence of serum. The results indicated that M1 and M6 exhibited low cytotoxicity, good serum compatibility and efficient transfection performance, having the potential of being excellent non-viral vectors for gene delivery. PMID:27072908

  12. Liposomes: Technologies and Analytical Applications

    NASA Astrophysics Data System (ADS)

    Jesorka, Aldo; Orwar, Owe

    2008-07-01

    Liposomes are structurally and functionally some of the most versatile supramolecular assemblies in existence. Since the beginning of active research on lipid vesicles in 1965, the field has progressed enormously and applications are well established in several areas, such as drug and gene delivery. In the analytical sciences, liposomes serve a dual purpose: Either they are analytes, typically in quality-assessment procedures of liposome preparations, or they are functional components in a variety of new analytical systems. Liposome immunoassays, for example, benefit greatly from the amplification provided by encapsulated markers, and nanotube-interconnected liposome networks have emerged as ultrasmall-scale analytical devices. This review provides information about new developments in some of the most actively researched liposome-related topics.

  13. The Structure of DNA within Cationic Lipid/DNA Complexes

    PubMed Central

    Braun, Chad S.; Jas, Gouri S.; Choosakoonkriang, Sirirat; Koe, Gary S.; Smith, Janet G.; Middaugh, C. Russell

    2003-01-01

    The structure of DNA within CLDCs used for gene delivery is controversial. Previous studies using CD have been interpreted to indicate that the DNA is converted from normal B to C form in complexes. This investigation reexamines this interpretation using CD of model complexes, FTIR as well as Raman spectroscopy and molecular dynamics simulations to address this issue. CD spectra of supercoiled plasmid DNA undergo a significant loss of rotational strength in the signal near 275 nm upon interaction with either the cationic lipid dimethyldioctadecylammonium bromide or 1,2-dioleoyltrimethylammonium propane. This loss of rotational strength is shown, however, by both FTIR and Raman spectroscopy to occur within the parameters of the B-type conformation. Contributions of absorption flattening and differential scattering to the CD spectra of complexes are unable to account for the observed spectra. Model studies of the CD of complexes prepared from synthetic oligonucleotides of varying length suggest that significant reductions in rotational strength can occur within short stretches of DNA. Furthermore, some alteration in the hydrogen bonding of bases within CLDCs is indicated in the FTIR and Raman spectroscopy results. In addition, alterations in base stacking interactions as well as hydrogen bonding are suggested by molecular dynamics simulations. A global interpretation of all of the data suggests the DNA component of CLDCs remains in a variant B form in which base/base interactions are perturbed. PMID:12547792

  14. Boronated liposome development and evaluation

    SciTech Connect

    Hawthorne, M.F.

    1995-11-01

    The boronated liposome development and evaluation effort consists of two separate tasks. The first is the development of new boron compounds and the synthesis of known boron species with BNCT potential. These compounds are then encapsulated within liposomes for the second task, biodistribution testing in tumor-bearing mice, which examines the potential for the liposomes and their contents to concentrate boron in cancerous tissues.

  15. Transformation pathways of liposomes.

    PubMed

    Hotani, H

    1984-09-01

    Liposomes undergoing transformation were observed by dark-field light microscopy in order to study the role of lipid in morphogenesis of biological vesicular structures. Liposomes were found to transform sequentially in a well-defined manner through one of several transformation pathways. A circular biconcave form was an initial shape in all the pathways and it transformed into a stable thin flexible filament or small spheres via a variety of regularly shaped vesicles which possessed geometrical symmetry. The transformation was reversible up to a certain point in each pathway. Osmotic pressure was found to be the driving force for the transformations. Biological membrane vesicles such as trypsinized red cell ghosts also transformed by similar pathways. PMID:6548263

  16. Liposomes for HIV prophylaxis

    PubMed Central

    Malavia, Nikita; Zurakowski, David; Schroeder, Avi; Princiotto, Amy; Laury, Anna Ray; Epstein-Barash, Hila; Sodroski, Joseph; Langer, Robert; Madani, Navid; Kohane, Daniel S.

    2012-01-01

    There are approximately 33.4 million adults living with HIV worldwide of which an estimated 15.7 million are women. Although there has been enormous progress in the therapy of HIV/AIDS, treatment is not curative. Prevention is therefore of paramount importance, but vaccine-based and microbicidal approaches are still in their infancy. Since women acquire the virus largely through sexual intercourse, we developed liposomal systems potentially suitable for intravaginal use to prevent HIV-1 infection. We formulated liposomes from a range of naturally-occurring and synthetic lipids with varying physicochemical properties, and tested their ability to inhibit infection of transformed cells that express receptors specific to the virus. We identified formulations with the most favorable balance between decreasing HIV infection and causing cytotoxicity (i.e. therapeutic index). The therapeutic index improved with increasing cardiolipin content, and degree of unsaturation. Tissue reaction to these formulations was benign after intravaginal instillation in an in vivo female mouse model. These results support the potential use of cardiolipin-based liposomes enriched with synthetic lipids as microbicides for the prevention of HIV infection in women. PMID:21862123

  17. Cell transfection in vitro and in vivo with nontoxic TAT peptide-liposome-DNA complexes

    NASA Astrophysics Data System (ADS)

    Torchilin, Vladimir P.; Levchenko, Tatyana S.; Rammohan, Ram; Volodina, Natalia; Papahadjopoulos-Sternberg, Brigitte; D'Souza, Gerard G. M.

    2003-02-01

    Liposomes modified with TAT peptide (TATp-liposomes) showed fast and efficient translocation into the cell cytoplasm with subsequent migration into the perinuclear zone. TATp-liposomes containing a small quantity (10 mol %) of a cationic lipid formed firm noncovalent complexes with DNA. Here, we present results demonstrating both in vitro and in vivo transfection with TATp-liposome-DNA complexes. Mouse NIH/3T3 fibroblasts and rat H9C2 cardiomyocytes were transfected with such complexes in vitro. The transfection with the TATp-liposome-associated pEGFP-N1 plasmid encoding for the green fluorescent protein (GFP) was high, whereas the cytotoxicity was lower than that of commonly used cationic lipid-based gene-delivery systems. Intratumoral injection of TATp-liposome-DNA complexes into the Lewis lung carcinoma tumor of mice also resulted in an expression of GFP in tumor cells. This transfection system should be useful for various protocols of cell treatment in vitro or ex vivo as well as for localized in vivo gene therapy.

  18. Liposomal nanoformulations of rhodamine for targeted photodynamic inactivation of multidrug resistant gram negative bacteria in sewage treatment plant.

    PubMed

    Vimaladevi, Mohan; Divya, Kurunchi Chellapathi; Girigoswami, Agnishwar

    2016-09-01

    The antimicrobial photodynamic therapy is an alternative method for killing bacterial cells in view of the rising problem of antibiotic resistance microorganisms. The present study examined the effect of a water soluble photosensitizer, Rhodamine 6G (R6G) in stealth liposomes on multidrug resistant Pseudomonas aeruginosa in the presence of visible light. Liposomes were prepared with cholesterol and phospholipids that extracted from hen eggs in a cost effective way and characterized by light microscopy, particle size analyzer, electron microscopy, steady state spectrophotometry and spectrofluorometry. The photoefficacies of R6G in polymer encapsulated liposomes and positively charged liposomes are much higher compared to the free R6G (R6G in water) in terms of singlet oxygen quantum yield. This high potential of producing more reactive oxygen species (ROS) by liposomal nanoformulated R6G leads to efficient photodynamic inactivation of multidrug resistant gram negative bacteria in waste water. Though the singlet oxygen quantum yield of polymer coated liposomal R6G was higher than the cationic liposomal formulation, a faster decrease in bacterial survival was observed for positively charged liposomal R6G treated bacteria due to electrostatic charge interactions. Therefore, it can be concluded that the positively charged liposomal nanoformulations of laser dyes are efficient for photodynamic inactivation of multiple drug resistant gram negative microorganisms. PMID:27371913

  19. Effects of the protein corona on liposome-liposome and liposome-cell interactions.

    PubMed

    Corbo, Claudia; Molinaro, Roberto; Taraballi, Francesca; Toledano Furman, Naama E; Sherman, Michael B; Parodi, Alessandro; Salvatore, Francesco; Tasciotti, Ennio

    2016-01-01

    A thorough understanding of interactions occurring at the interface between nanocarriers and biological systems is crucial to predict and interpret their biodistribution, targeting, and efficacy, and thus design more effective drug delivery systems. Upon intravenous injection, nanoparticles are coated by a protein corona (PC). This confers a new biological identity on the particles that largely determines their biological fate. Liposomes have great pharmaceutical versatility, so, as proof of concept, their PC has recently been implicated in the mechanism and efficiency of their internalization into the cell. In an attempt to better understand the interactions between nanocarriers and biological systems, we analyzed the plasma proteins adsorbed on the surface of multicomponent liposomes. Specifically, we analyzed the physical properties and ultrastructure of liposome/PC complexes and the aggregation process that occurs when liposomes are dispersed in plasma. The results of combined confocal microscopy and flow cytometry experiments demonstrated that the PC favors liposome internalization by both macrophages and tumor cells. This work provides insights into the effects of the PC on liposomes' physical properties and, consequently, liposome-liposome and liposome-cell interactions. PMID:27445473

  20. Liposomal pemetrexed: formulation, characterization and in vitro cytotoxicity studies for effective management of malignant pleural mesothelioma.

    PubMed

    Essam Eldin, Noha; Elnahas, Hanan Mohamed; Mahdy, Mahmoud Abd-Elghany; Ishida, Tatsuhiro

    2015-01-01

    Pemetrexed (PMX) is a newly developed multi-targeted anti-folate with promising clinical activity in many solid tumors including malignant pleural mesothelioma (MPM). However, PMX does not show sufficient anti-tumor activity in vivo when used alone either due to inefficient delivery of adequate concentrations to tumor tissue or dose-limiting side effects. In order to overcome these problems and to achieve potent anti-tumor activity, PMX was encapsulated into a liposomal delivery system. In the present study, various formulations of liposomal PMX were prepared. The effect of formulation parameters on the encapsulation efficiency of PMX within liposomes was evaluated. In addition, the influence of drug release rate on the in vitro cytotoxicity was investigated. Encapsulation of PMX within liposomes was remarkably increased by the incorporation of cholesterol within liposomal membranes and by increasing the total lipid concentration. Encapsulation efficiency was found to be unaffected by the type of phospholipid used or the inclusion of a cation lipid, DC-6-14. Interestingly, encapsulation of PMX within "fluid" liposomes was found to allow efficient release of PMX from liposomes resulting in a potent in vitro cytotoxicity against MPM MSTO-211H cell line. On the other hand, entrapment of PMX within "solid" liposomes substantially hindered PMX release from liposomes, and thus PMX failed to exert any in vitro cytotoxicity. These results suggest that encapsulation of PMX within "fluid" liposomes might represent a novel strategy to enhance the therapeutic efficacy of PMX while minimizing the side effect encountered by the non selective delivery of free PMX to various body tissues. PMID:25757929

  1. Monodisperse Uni- and Multicompartment Liposomes.

    PubMed

    Deng, Nan-Nan; Yelleswarapu, Maaruthy; Huck, Wilhelm T S

    2016-06-22

    Liposomes are self-assembled phospholipid vesicles with great potential in fields ranging from targeted drug delivery to artificial cells. The formation of liposomes using microfluidic techniques has seen considerable progress, but the liposomes formation process itself has not been studied in great detail. As a result, high throughput, high-yielding routes to monodisperse liposomes with multiple compartments have not been demonstrated. Here, we report on a surfactant-assisted microfluidic route to uniform, single bilayer liposomes, ranging from 25 to 190 μm, and with or without multiple inner compartments. The key of our method is the precise control over the developing interfacial energies of complex W/O/W emulsion systems during liposome formation, which is achieved via an additional surfactant in the outer water phase. The liposomes consist of single bilayers, as demonstrated by nanopore formation experiments and confocal fluorescence microscopy, and they can act as compartments for cell-free gene expression. The microfluidic technique can be expanded to create liposomes with a multitude of coupled compartments, opening routes to networks of multistep microreactors. PMID:27243596

  2. Liposome: classification, preparation, and applications

    NASA Astrophysics Data System (ADS)

    Akbarzadeh, Abolfazl; Rezaei-Sadabady, Rogaie; Davaran, Soodabeh; Joo, Sang Woo; Zarghami, Nosratollah; Hanifehpour, Younes; Samiei, Mohammad; Kouhi, Mohammad; Nejati-Koshki, Kazem

    2013-02-01

    Liposomes, sphere-shaped vesicles consisting of one or more phospholipid bilayers, were first described in the mid-60s. Today, they are a very useful reproduction, reagent, and tool in various scientific disciplines, including mathematics and theoretical physics, biophysics, chemistry, colloid science, biochemistry, and biology. Since then, liposomes have made their way to the market. Among several talented new drug delivery systems, liposomes characterize an advanced technology to deliver active molecules to the site of action, and at present, several formulations are in clinical use. Research on liposome technology has progressed from conventional vesicles to `second-generation liposomes', in which long-circulating liposomes are obtained by modulating the lipid composition, size, and charge of the vesicle. Liposomes with modified surfaces have also been developed using several molecules, such as glycolipids or sialic acid. This paper summarizes exclusively scalable techniques and focuses on strengths, respectively, limitations in respect to industrial applicability and regulatory requirements concerning liposomal drug formulations based on FDA and EMEA documents.

  3. Architectonics of phage-liposome nanowebs as optimized photosensitizer vehicles for photodynamic cancer therapy

    PubMed Central

    Sreeram, Kalarical Janardhanan; Narayan, Shoba; Gopal, Abbineni; Hayhurst, Andrew; Mao, Chuanbin

    2010-01-01

    Filamentous M13 phage can be engineered to display cancer cell-targeting or tumor-homing peptides through phage display. It would be highly desirable if the tumor targeting phage can also carry anti-cancer drugs to deliver them to the cancer cells. We studied the evolution of structures of the complexes between anionic filamentous M13 phage and cationic serum-stable liposomes which encapsulate the monomeric photosensitizer, zinc naphthalocyanine. At specific phage-liposome ratios, multiple phage nanofibers and liposomes are interwoven into a “nanoweb”. The chemical and biological properties of the phage-liposome nanoweb were evaluated for possible application in drug delivery. This study highlights the ability of phageliposome nanowebs to serve as efficient carriers to transport photosensitizers to cancer cells. PMID:20807781

  4. Biophysical characterization of V3-lipopeptide liposomes influencing HIV-1 infectivity

    SciTech Connect

    Rizos, Apostolos K. . E-mail: Rizos@iesl.forth.gr; Baritaki, Stavroula; Tsikalas, Ioannis; Doetschman, David C.; Spandidos, Demetrios A.; Krambovitis, Elias; E-mail: krambo@imbb.forth.gr

    2007-04-20

    The V3-loop of the HIV-1 gp120 alters host cell immune function and modulates infectivity. We investigated biophysical parameters of liposome constructs with embedded lipopeptides from the principle neutralizing domain of the V3-loop and their influence on viral infectivity. Dynamic light scattering measurements showed liposome supramolecular structures with hydrodynamic radius of the order of 900 and 1300 nm for plain and V3-lipopeptide liposomes. Electron paramagnetic resonance measurements showed almost identical local microenvironment. The difference in liposome hydrodynamic radius was attributed to the fluctuating ionic environment of the V3-lipopeptide liposomes. In vitro HIV-1 infectivity assays showed that plain liposomes reduced virus production in all cell cultures, probably due to the hydrophobic nature of the aggregates. Liposomes carrying V3-lipopeptides with different cationic potentials restored and even enhanced infectivity (p < 0.05). These results highlight the need for elucidation of the involvement of lipid bilayers as dynamic components in supramolecular structures and in HIV-1 fusion mechanisms.

  5. Fluorescent liposomes to probe how DOTAP lipid concentrations can change red blood cells homeostasis

    NASA Astrophysics Data System (ADS)

    Matos, Anna L. L.; Pereira, Goreti; Santos, Beate S.; Fontes, Adriana

    2015-06-01

    Liposomes have been used to deliver DNA, drugs and, more recently, nanoparticles such as quantum dots, into living cells. Their electrostatic interaction with cell's surface (negatively charged) can lead to membrane destabilization and/or fusion, facilitating intracellular release of those compounds. Nevertheless, cationic lipids can modify living cells homeostasis, depending on their concentration. In this study, we observed that the DOTAP cationic lipid concentrations influence the red blood cells (RBCs) homeostasis. We used fluorescent fusogenic liposomes composed by three lipids: DOPE, DOTAP and DPPE-Rhodamine (1:0.1/0.3/0.5/0.8/1:0.1 mM respectively), varying DOTAP from 0.1 to 1 mM. To probe liposomes ability to fuse with cells, RBCs (1% in saline) were utilized. Liposomes were characterized by zeta potential, dynamic light scattering (DLS), fluorescence and transmission electron microscopy. Their interaction with RBCs was evaluated by fluorescence microscopy and flow cytometry. Zeta potential results showed that, from 0.1 to 1 mM concentration, the charge increases, due to the addition of DOTAP. Liposomes' diameter does not vary significantly when more DOTAP was added, except for the one containing 0.1 mM of DOTAP, according to DLS results. Flow cytometry and microscopy analysis showed that for all DOTAP' concentration applied, the liposomes were capable to label RBCs. However, as higher the amount of DOTAP in liposomes, the more harmful they were to cells. Thus, the results showed that it is possible to use lower concentrations of DOTAP keeping the fusogenic liposomes's ability and cell homeostasis. This is important to guarantee a greater efficiency in the delivery of nanoparticles or other active samples into cells.

  6. pH-sensitive liposomes: characterization and application

    SciTech Connect

    Connor, J.

    1986-01-01

    It has been demonstrated that liposomes composed of dioleoylphosphatidylethanolamine (DOPE) and palmitoylhomocysteine (PHC) have the ability to fuse with adjacent membranes upon exposure to mildly acid pH. The ability of liposomes to fuse is absolutely dependent on the presence of DOPE and a weakly acidic amphiphile. The acid induced fusion event is a leaky process, but the leakage can be reduced by 50%, with only a small loss of fusion ability, by the inclusion of 40 mole percent cholesterol. Using an established monoclonal antibody targeting system. pH-sensitive immunoliposomes were prepared which successfully delivered entrapped calcein to the cytoplasm of target cells. The addition of chloroquine, which raises the internal pH of cellular vacuoles, blocks the cytoplasmic delivery of the pH-sensitive immunoliposomes. pH-insensitive immunoliposomes delivered calcein only to the endosome/lysosome system and not the cytoplasm. /sup 31/P-NMR and light scattering of DOPE:OA liposomes under acidic conditions demonstrate that the effect of the protons and the divalent cations is to force the DOPE to revert to the hexagonal II configuration. In vivo experiments with DOPE:OA immunoliposomes indicate that the liposomes rapidly aggregate and release their contents upon exposure to plasma. These results indicate that pH-sensitive immunoliposomes are an effective tool for in vitro cytoplasmic delivery but are ineffective for in vivo delivery at this point in development.

  7. LeciPlex, invasomes, and liposomes: A skin penetration study.

    PubMed

    Shah, Sanket M; Ashtikar, Mukul; Jain, Ankitkumar S; Makhija, Dinesh T; Nikam, Yuvraj; Gude, Rajiv P; Steiniger, Frank; Jagtap, Aarti A; Nagarsenker, Mangal S; Fahr, Alfred

    2015-07-25

    The present study compares three vesicular systems, cationic LeciPlex, invasomes, and conventional liposomes for their ability to deliver drugs deep into the skin. Skin penetration ability of the three vesicular systems was studied for two drugs namely idebenone (antioxidant/anticancer) and azelaic acid (antiacne). All systems showed sizes in nanometer range with small polydispersity indices. Vesicular systems were characterized by CryoTEM studies to understand the differences in morphology of the vesicular systems. Ex vivo human skin penetration studies suggested a pattern in penetration of drugs in different layers of the skin: LeciPlex showed higher penetration for idebenone whereas invasomes showed higher penetration of azelaic acid. Ex vivo study using a fluorescent dye (DiI) was performed to understand the differences in the penetration behavior of the three vesicular systems on excised human skin. In vitro cytotoxicity studies on B16F10 melanoma cell lines revealed, when loaded with idebenone, LeciPlex formulations had the superior activity followed by invasomes and liposomes. In vitro antimicrobial study of azelaic acid loaded systems on Propionibacterium acne revealed high antimicrobial activity for DDAB leciplex followed by almost equal activity for invasomes and CTAB LeciPlex followed by liposomes. Whereas antiacne efficacy study in rats for azelaic acid loaded systems, invasomes exhibited the best antiacne efficacy followed by liposomes and LeciPlex. PMID:26002568

  8. Carcinogenesis response modulation induced by gelonin encapsulated in liposome.

    PubMed

    Alam, Anis; Nakhuru, K S; Singha, L I

    2008-08-01

    The effectiveness of gelonin to arrest protein synthesis, thereby limiting the growth of cancer cells was studied by encapsulating it into liposomes. The protein was extracted from the seeds of Indian plant Gelonium multiflorum by ammonium sulfate precipitation and purified using cation-exchange and gel-filtration chromatography. Biological activity of purified gelonin was determined using a rabbit reticulocyte lysate assay in the cell-free translational experiments. Gelonin was encapsulated in conventional liposomes prepared by the dry film method in order to retain biological activity of the entrapped protein. Carcinogenesis was induced in Swiss albino mice by intravenous administration of DBN (10 mg kg(-1) body weight) at weekly intervals. Marker enzyme assays (GGT, AChE, and GST), GSH levels, cell proliferation assay, hepatocyte DNA analysis, histological examination of micro sections of liver tissues were parameters used to monitor carcinogenesis induction, and regression in mice. From the in vitro experiments conducted, it was observed that gelonin upon its encapsulation into liposome, resulted in significant destruction of the transformed liver cells by its cytotoxic effects that arrest protein synthesis. Various parameters studied to monitor regression also suggested mass cell destruction to liver upon administration of liposomal gelonin in mice exposed to DBN. PMID:18500656

  9. Properties of liposomes containing 212Pb.

    PubMed

    Rosenow, M K; Zucchini, G L; Bridwell, P M; Stuart, F P; Friedman, A M

    1983-01-01

    The reverse phase evaporation method was used to prepare lipid bilayer membrane vesicles containing 212Pb and other markers of high specific activity. Electron microscopy and microfiltration were used to measure the sizes of the liposomes. Isotopes were released from the liposomes during exposure to serum and this leakage was prevented by complexing of small molecules with proteins or by precipitating particulate complexes within the liposomes. The in vivo distribution of 212Pb liposomes differed from the distribution of free 212Pb in that the reticuloendothelial system cleared the liposomes. Liposomes with surface dinitrophenol hapten were highly immunogenic and the humoral response to dinitrophenol was nonspecifically suppressed by 212Pb liposomes. PMID:6363323

  10. Role of the charge, carbon chain length, and content of surfactant on the skin penetration of meloxicam-loaded liposomes

    PubMed Central

    Duangjit, Sureewan; Pamornpathomkul, Boonnada; Opanasopit, Praneet; Rojanarata, Theerasak; Obata, Yasuko; Takayama, Kozo; Ngawhirunpat, Tanasait

    2014-01-01

    The objective of this study was to investigate the influence of surfactant charge, surfactant carbon chain length, and surfactant content on the physicochemical characteristics (ie, vesicle size, zeta potential, elasticity, and entrapment efficiency), morphology, stability, and in vitro skin permeability of meloxicam (MX)-loaded liposome. Moreover, the mechanism for the liposome-enhanced skin permeation of MX was determined by Fourier transform infrared spectroscopy and differential scanning calorimetry. The model formulation used in this study was obtained using a response surface method incorporating multivariate spline interpolation (RSM-S). Liposome formulations with varying surfactant charge (anionic, neutral, and cationic), surfactant carbon chain length (C4, C12, and C16), and surfactant content (10%, 20%, and 29%) were prepared. The formulation comprising 29% cationic surfactant with a C16 chain length was found to be the optimal liposome for the transdermal delivery of MX. The skin permeation flux of the optimal formulation was 2.69-fold higher than that of a conventional liposome formulation. Our study revealed that surfactants affected the physicochemical characteristics, stability, and skin permeability of MX-loaded liposomes. These findings provide important fundamental information for the development of liposomes as transdermal drug delivery systems. PMID:24851047

  11. Liposome: classification, preparation, and applications

    PubMed Central

    2013-01-01

    Liposomes, sphere-shaped vesicles consisting of one or more phospholipid bilayers, were first described in the mid-60s. Today, they are a very useful reproduction, reagent, and tool in various scientific disciplines, including mathematics and theoretical physics, biophysics, chemistry, colloid science, biochemistry, and biology. Since then, liposomes have made their way to the market. Among several talented new drug delivery systems, liposomes characterize an advanced technology to deliver active molecules to the site of action, and at present, several formulations are in clinical use. Research on liposome technology has progressed from conventional vesicles to ‘second-generation liposomes’, in which long-circulating liposomes are obtained by modulating the lipid composition, size, and charge of the vesicle. Liposomes with modified surfaces have also been developed using several molecules, such as glycolipids or sialic acid. This paper summarizes exclusively scalable techniques and focuses on strengths, respectively, limitations in respect to industrial applicability and regulatory requirements concerning liposomal drug formulations based on FDA and EMEA documents. PMID:23432972

  12. Liposome Technology for Industrial Purposes

    PubMed Central

    Wagner, Andreas; Vorauer-Uhl, Karola

    2011-01-01

    Liposomes, spherical vesicles consisting of one or more phospholipid bilayers, were first described in the mid 60s by Bangham and coworkers. Since then, liposomes have made their way to the market. Today, numerous lab scale but only a few large-scale techniques are available. However, a lot of these methods have serious limitations in terms of entrapment of sensitive molecules due to their exposure to mechanical and/or chemical stress. This paper summarizes exclusively scalable techniques and focuses on strengths, respectively, limitations in respect to industrial applicability. An additional point of view was taken to regulatory requirements concerning liposomal drug formulations based on FDA and EMEA documents. PMID:21490754

  13. Block Liposomes: Vesicles of Charged Lipids with Distinctly Shaped Nanoscale Sphere-, Pear-, Tube-, or Rod-Segments

    PubMed Central

    Zidovska, Alexandra; Ewert, Kai K.; Quispe, Joel; Carragher, Bridget; Potter, Clinton S.; Safinya, Cyrus R.

    2016-01-01

    We describe the preparation and characterization of block liposomes, a new class of liquid vesicles, from mixtures of the highly charged (+16 e) multivalent cationic lipid MVLBG2 and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). Block liposomes (BLs) consist of distinct spherical, tubular, and micellar liposomes which remain connected, forming a single liposome. This is in contrast to typical vesicle systems, where distinctly shaped liposomes are macroscopically separated. In a narrow composition range (8-10 mol % MVLBG2), an abundance of micrometer-scale BLs (typically sphere-tube-sphere triblocks) was observed. Cryo-TEM revealed that BLs are also present at the nanometer scale, where the blocks consist of distinctly shaped nanoscale spheres, pears, tubes, or rods. Pear-tube diblock and pear-tube-pear triblock liposomes contain nanotubes with inner lumen diameter 10-50 nm. In addition, sphere-rod diblock liposomes are present, containing rigid micellar nanorods ≈4 nm in diameter and several μm in length. Block liposomes may find a range of applications in chemical and nucleic acid delivery and as building blocks in the design of templates for hierarchical structures. PMID:19913164

  14. A novel liposomal recombinant lipoimmunogen enhances anti-tumor immunity.

    PubMed

    Shen, Kuan-Yin; Liu, Hsin-Yu; Li, Hui-Ju; Wu, Chiao-Chieh; Liou, Gunn-Guang; Chang, Yuan-Chih; Leng, Chih-Hsiang; Liu, Shih-Jen

    2016-07-10

    Synthetic liposomes provide a biocompatible and biodegradable approach for delivering drugs and antigens. In addition, self-adjuvanting recombinant lipoproteins (rlipoproteins) can enhance Th1 anti-tumor immune responses via the TLR2 signaling pathway. To generate a liposomal rlipoprotein for a cancer immunotherapeutic vaccine, we assessed 3 types of synthetic liposomes for use with the rlipoproteins rlipoE7m and rlipoOVA. We determined that the cationic liposome DOTAP could stabilize anionic rlipoproteins and delay rlipoprotein release. Surprisingly, rlipoproteins and DOTAP could synergistically up-regulate CD83 expression in bone marrow-derived dendritic cells (BMDCs). Compared with other liposome formulations, the rlipoprotein/DOTAP formulation elicited higher cytotoxic T-lymphocyte (CTL) responses. To explore the mechanism of BMDC activation by rlipoprotein/DOTAP, we assessed the production of reactive oxygen species (ROS) and the TNF-α secretion of BMDCs. We observed that rlipoprotein/DOTAP induced ROS to the same extent as DOTAP did. In addition, TLR2 signaling was also required for the TNF-α secretion of rlipoprotein/DOTAP-treated BMDCs. Moreover, compared with rlipoOVA-treated BMDCs, rlipoOVA/DOTAP-treated BMDCs increased the levels of IFN-γ produced by OVA-specific T cells. We also observed that rlipoE7m/DOTAP treatment but not rlipoE7m treatment delayed tumor growth. These results indicate that the rlipoprotein/DOTAP formulation can synergistically activate BMDCs via ROS and the TLR2 signaling pathway. In summary, rlipoprotein/DOTAP is a novel and stable formulation for cancer immunotherapy. PMID:27164542

  15. Liposome encapsulation of chelating agents

    DOEpatents

    Rahman, Yueh Erh

    1976-01-13

    A method for transferring a chelating agent across a cellular membrane by encapsulating the charged chelating agent within liposomes and carrying the liposome-encapsulated chelating agent to the cellular membrane where the liposomes containing the chelating agent will be taken up by the cells, thereby transferring the chelating agent across the cellular membrane. A chelating agent can be introduced into the interior of a cell of a living organism wherein the liposomes will be decomposed, releasing the chelating agent to the interior of the cell. The released chelating agent will complex intracellularly deposited toxic heavy metals, permitting the more soluble metal complex to transfer across the cellular membrane from the cell and subsequently be removed from the living organism.

  16. 99m tc labeled liposomes

    SciTech Connect

    Phillips, W.T.; Klipper, R.W.; Timmons, J.H.; Rudolph, A.S.

    1992-10-27

    This patent describes a method of preparing stable gamma-emitting radionuclide-labeled alkyleneamine oxime, the incubating being for a period of time sufficient to form labeled liposome-encapsulated protein.

  17. Cell-Penetrating Peptide Induces Leaky Fusion of Liposomes Containing Late Endosome-Specific Anionic Lipid

    PubMed Central

    Yang, Sung-Tae; Zaitseva, Elena; Chernomordik, Leonid V.; Melikov, Kamran

    2010-01-01

    Cationic cell-penetrating peptides (CPPs) are a promising vehicle for the delivery of macromolecular drugs. Although many studies have indicated that CPPs enter cells by endocytosis, the mechanisms by which they cross endosomal membranes remain elusive. On the basis of experiments with liposomes, we propose that CPP escape into the cytosol is based on leaky fusion (i.e., fusion associated with the permeabilization of membranes) of the bis(monoacylglycero)phosphate (BMP)-enriched membranes of late endosomes. In our experiments, prototypic CPP HIV-1 TAT peptide did not interact with liposomes mimicking the outer leaflet of the plasma membrane, but it did induce lipid mixing and membrane leakage as it translocated into liposomes mimicking the lipid composition of late endosome. Both membrane leakage and lipid mixing depended on the BMP content and were promoted at acidic pH, which is characteristic of late endosomes. Substitution of BMP with its structural isomer, phosphatidylglycerol (PG), significantly reduced both leakage of the aqueous probe from liposomes and lipid mixing between liposomes. Although affinity of binding to TAT was similar for BMP and PG, BMP exhibited a higher tendency to support the inverted hexagonal phase than PG. Finally, membrane leakage and peptide translocation were both inhibited by inhibitors of lipid mixing, further substantiating the hypothesis that cationic peptides cross BMP-enriched membranes by inducing leaky fusion between them. PMID:20959093

  18. Biopharmaceutical evaluation of epigallocatechin gallate-loaded cationic lipid nanoparticles (EGCG-LNs): In vivo, in vitro and ex vivo studies.

    PubMed

    Fangueiro, Joana F; Calpena, Ana C; Clares, Beatriz; Andreani, Tatiana; Egea, Maria A; Veiga, Francisco J; Garcia, Maria L; Silva, Amélia M; Souto, Eliana B

    2016-04-11

    Cationic lipid nanoparticles (LNs) have been tested for sustained release and site-specific targeting of epigallocatechin gallate (EGCG), a potential polyphenol with improved pharmacological profile for the treatment of ocular pathologies, such as age-related macular edema, diabetic retinopathy, and inflammatory disorders. Cationic EGCG-LNs were produced by double-emulsion technique; the in vitro release study was performed in a dialysis bag, followed by the drug assay using a previously validated RP-HPLC method. In vitro HET-CAM study was carried out using chicken embryos to determine the potential risk of irritation of the developed formulations. Ex vivo permeation profile was assessed using rabbit cornea and sclera isolated and mounted in Franz diffusion cells. The results show that the use of cationic LNs provides a prolonged EGCG release, following a Boltzmann sigmoidal profile. In addition, EGCG was successfully quantified in both tested ocular tissues, demonstrating the ability of these formulations to reach both anterior and posterior segment of the eye. The pharmacokinetic study of the corneal permeation showed a first order kinetics for both cationic formulations, while EGCG-cetyltrimethylammonium bromide (CTAB) LNs followed a Boltzmann sigmoidal profile and EGCG-dimethyldioctadecylammonium bromide (DDAB) LNs a first order profile. Our studies also proved the safety and non-irritant nature of the developed LNs. Thus, loading EGCG in cationic LNs is recognised as a promising strategy for the treatment of ocular diseases related to anti-oxidant and anti-inflammatory pathways. PMID:26921515

  19. Stabilization of enzymes through encapsulation in liposomes.

    PubMed

    Yoshimoto, Makoto

    2011-01-01

    Phospholipid vesicle (liposome) offers an aqueous compartment surrounded by lipid bilayer membranes. Various enzyme molecules were reported to be encapsulated in liposomes. The liposomal enzyme shows peculiar catalytic activity and selectivity to the substrate in the bulk liquid, which are predominantly derived from the substrate permeation resistance through the membrane. We reported that the quaternary structure of bovine liver catalase and alcohol dehydrogenase was stabilized in liposomes through their interaction with lipid membranes. The method and condition for preparing the enzyme-containing liposomes with well-defined size, lipid composition, and enzyme content are of particular importance, because these properties dominate the catalytic performance and stability of the liposomal enzymes. PMID:20865384

  20. Liposomal nanocarriers for plasminogen activators.

    PubMed

    Koudelka, Stepan; Mikulik, Robert; Mašek, Josef; Raška, Milan; Turánek Knotigová, Pavlína; Miller, Andrew D; Turánek, Jaroslav

    2016-04-10

    Several plasminogen activators (PAs) have been found effective in treating different thromboembolic diseases. However, administration of conventional thrombolytic therapy is limited by a low efficacy of present formulations of PAs. Conventional treatments using these therapeutic proteins are associated with several limitations including rapid inactivation and clearance, short half-life, bleeding complications or non-specific tissue targeting. Liposome-based formulations of PAs such as streptokinase, tissue-plasminogen activator and urokinase have been developed to improve the therapeutic efficacy of these proteins. Resulting liposomal formulations were found to preserve the original activity of PAs, promote their selective delivery and improve thrombus targeting. Therapeutic potential of these liposome-based PAs has been demonstrated successfully in various pre-clinical models in vivo. Reductions in unwanted side effects (e.g., hemorrhage or immunogenicity) as well as enhancements of efficacy and safety were achieved in comparison to currently existing treatment options based on conventional formulations of PAs. This review summarizes present achievements in: (i) preparation of liposome-based formulations of various PAs, (ii) development of PEGylated and targeted liposomal PAs, (iii) physico-chemical characterization of these developed systems, and (iv) testing of their thrombolytic efficacy. We also look to the future and the imminent arrival of theranostic liposomal formulations to move this field forward. PMID:26876783

  1. Phospholipid liposomes functionalized by protein

    NASA Astrophysics Data System (ADS)

    Glukhova, O. E.; Savostyanov, G. V.; Grishina, O. A.

    2015-03-01

    Finding new ways to deliver neurotrophic drugs to the brain in newborns is one of the contemporary problems of medicine and pharmaceutical industry. Modern researches in this field indicate the promising prospects of supramolecular transport systems for targeted drug delivery to the brain which can overcome the blood-brain barrier (BBB). Thus, the solution of this problem is actual not only for medicine, but also for society as a whole because it determines the health of future generations. Phospholipid liposomes due to combination of lipo- and hydrophilic properties are considered as the main future objects in medicine for drug delivery through the BBB as well as increasing their bioavailability and toxicity. Liposomes functionalized by various proteins were used as transport systems for ease of liposomes use. Designing of modification oligosaccharide of liposomes surface is promising in the last decade because it enables the delivery of liposomes to specific receptor of human cells by selecting ligand and it is widely used in pharmacology for the treatment of several diseases. The purpose of this work is creation of a coarse-grained model of bilayer of phospholipid liposomes, functionalized by specific to the structural elements of the BBB proteins, as well as prediction of the most favorable orientation and position of the molecules in the generated complex by methods of molecular docking for the formation of the structure. Investigation of activity of the ligand molecule to protein receptor of human cells by the methods of molecular dynamics was carried out.

  2. Stability of dry liposomes in sugar glasses.

    PubMed Central

    Sun, W Q; Leopold, A C; Crowe, L M; Crowe, J H

    1996-01-01

    Sugars, particularly trehalose and sucrose, are used to stabilize liposomes during hydration (freeze-drying and air-drying). As a result, dry liposomes are trapped in a sugar glass, a supersaturated and thermodynamically unstable solid solution. We investigated the effects of the glassy state on liposome fusion and solute retention in the dry state. Solute leakage from dry liposomes was extremely slow at temperatures below the glass transition temperature (Tg); however, it increased exponentially as temperature increased to near or above the Tg, indicating that the glassy state had to be maintained for dry liposomes to retain trapped solutes. The leakage of solutes from dry liposomes followed the law of first-order kinetics and was correlated linearly with liposome fusion. The kinetics of solute leakage showed an excellent fit with the Arrhenius equation at temperatures both above and below the Tg, with a transitional break near the Tg. The activation energy of solute leakage was 1320 kJ/mol at temperatures above the Tg, but increased to 1991 kJ/mol at temperatures below the Tg. The stabilization effect of sugar glass on dry liposomes may be associated with the elevated energy barrier for liposome fusion and the physical separation of dry liposomes in the glassy state. The half-life of solute retention in dry liposomes may be prolonged by storing dry liposomes at temperatures below the Tg and by increasing the Tg of the dry liposome preparation. PMID:8785336

  3. Phospholipid-cationic lipid interactions: influences on membrane and vesicle properties.

    PubMed

    Campbell, R B; Balasubramanian, S V; Straubinger, R M

    2001-05-01

    Liposomes composed of synthetic dialkyl cationic lipids and zwitterionic phospholipids such as dioleoylphosphatidylethanolamine have been studied extensively as vehicles for gene delivery, but the broader potentials of these cationic liposomes for drug delivery have not. An understanding of phospholipid-cationic lipid interactions is essential for rational development of this potential. We evaluated the effect of the cationic lipid DOTAP (N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium) on liposome physical properties such as size and membrane domain structure. DSC (differential scanning calorimetry) showed progressive decrease and broadening of the phase transition temperature of dipalmitoylphosphatidylcholine (DPPC) with increasing fraction of DOTAP, in the range of 0.4-20 mol%. Laurdan (6-dodecanolyldimethylamino-naphthalene), a fluorescent probe of membrane domain structure, showed that DOTAP and DPPC remained miscible at all ratios tested. DOTAP reduced the size of spontaneously-forming PC-containing liposomes, regardless of the acyl chain length and degree of saturation. The anionic lipid DOPG (dioleoylphosphatidylglycerol) had similar effects on DPPC membrane fluidity and size. However, DOTAP/DOPC (50/50) vesicles were taken up avidly by OVCAR-3 human ovarian tumor cells, in contrast to DOPG/DOPC (50/50) liposomes. Overall, DOTAP exerts potent effects on bilayer physical properties, and may provide advantages for drug delivery. PMID:11334622

  4. Surface functionalization of doxorubicin-loaded liposomes with octa-arginine for enhanced anticancer activity

    PubMed Central

    Biswas, Swati; Dodwadkar, Namita S.; Deshpande, Pranali P.; Parab, Shruti; Torchilin, Vladimir P.

    2014-01-01

    Doxorubicin-loaded PEGylated liposomes (commercially available as DOXIL® or Lipodox®) were surface functionalized with a cell-penetrating peptide, octa-arginine (R8). For this purpose, R8-peptide was conjugated to the polyethylene glycol–dioleoyl phosphatidylethanolamine (PEG–DOPE) amphiphilic co-polymer. The resultant R8–PEG–PE conjugate was introduced into the lipid bilayer of liposomes at 2 mol% of total lipid amount via spontaneous micelle-transfer technique. The liposomal modification did not alter the particle size distribution, as measured by Particle Size Analyzer and transmission electron microscopy (TEM). However, surface-associated cationic peptide increased zeta potential of the modified liposomes. R8-functionalized liposomes (R8-Dox-L) markedly increased the intracellular and intratumoral delivery of doxorubicin as measured by flow cytometry and visualizing by confocal laser scanning microscopy (CLSM) compared to unmodified Doxorubicin-loaded PEGylated liposomes (Dox-L). R8-Dox-L delivered loaded Doxorubicin to the nucleus, being released from the endosomes at higher efficiency compared to unmodified liposomes, which had marked entrapment in the endosomes at tested time point of 1 h. The significantly higher accumulation of loaded drug to its site of action for R8-Dox-L resulted in improved cytotoxic activity in vitro (cell viability of 58.5 ± 7% for R8-Dox-L compared to 90.6 ± 2% for Dox-L at Dox dose of 50 μg/mL for 4 h followed by 24 h incubation) and enhanced suppression of tumor growth (348 ± 53 mm3 for R8-Dox-L, compared to 504 ± 54 mm3 for Dox-L treatment) in vivo compared to Dox-L. R8-modification has the potential for broadening the therapeutic window of pegylated liposomal doxorubicin treatment, which could lead to lower non-specific toxicity. PMID:23333899

  5. Delivering anti-cancer drugs with endosomal pH-sensitive anti-cancer liposomes.

    PubMed

    Moku, Gopikrishna; Gulla, Suresh Kumar; Nimmu, Narendra Varma; Khalid, Sara; Chaudhuri, Arabinda

    2016-04-01

    Numerous prior studies have been reported on the use of pH-sensitive drug carriers such as micelles, liposomes, peptides, polymers, nanoparticles, etc. that are sensitive to the acidic (pH = ∼6.5) microenvironments of tumor tissues. Such systems have been primarily used in the past as effective drug/gene/microRNA carriers for releasing their anti-cancer payloads selectively to tumor cells/tissues. Herein, we report on the development of new liposomal drug carriers prepared from glutamic acid backbone-based cationic amphiphiles containing both endosomal pH-sensitive histidine as well as cellular uptake & solubility enhancing guanidine moieties in their polar head-group regions. The most efficient one among the four presently described endosomal pH-sensitive liposomal drug carriers not only effectively delivers potent anti-cancer drugs (curcumin & paclitaxel) to mouse tumor, but also significantly contributes to inhibiting mouse tumor growth. The findings in the in vitro mechanistic studies are consistent with apoptosis of tumor cells being mediated through increased cell cycle arrest in the G2/M phase. Findings in the FRET assay and in vitro drug release studies conducted with the liposomes of the most efficient pH-sensitive lipid demonstrated its pH dependent fusogenic and controlled curcumin release properties. Importantly, the presently described liposomal formulation of curcumin & paclitaxel enhanced overall survivability of tumor bearing mice. To the best of our knowledge, the presently described system (curcumin, paclitaxel and liposomal carrier itself) is the first of its kind pH-sensitive liposomal formulation of potent chemotherapeutics in which the liposomal drug itself exhibits significant mouse tumor growth inhibition properties. PMID:26806172

  6. Environment-Responsive Multifunctional Liposomes

    PubMed Central

    Kale, Amit A.; Torchilin, Vladimir P.

    2012-01-01

    Liposomal nanocarriers modified with cell-penetrating peptide and a pH-sensitive PEG shield demonstrate simultaneously a better systemic circulation and site-specific exposure of the cell-penetrating peptide. PEG chains were incorporated into the liposome membrane via the PEG-attached phosphatidylethanolamine (PE) residue with PEG and PE being conjugated with the lowered pH-degradable hydrazone bond (PEG-HZ-PE), while cell-penetrating peptide (TATp) was added as TATp-PEG-PE conjugate. Under normal conditions, liposome-grafted PEG “shielded” liposome-attached TATp moieties, since the PEG spacer for TATp attachment (PEG(1000)) was shorter than protective PEG(2000). PEGylated liposomes accumulate in targets via the EPR effect, but inside the “acidified” tumor or ischemic tissues lose their PEG coating because of the lowered pH-induced hydrolysis of HZ and penetrate inside cells via the now-exposed TATp moieties. pH-responsive behavior of these constructs is successfully tested in cell cultures in vitro as well as in tumors in experimental mice in vivo. These nanocarriers also showed enhanced pGFP transfection efficiency upon intratumoral administration in mice, compared to control pH nonsensitive counterpart. These results can be considered as an important step in the development of tumor-specific stimuli-sensitive drug and gene delivery systems. PMID:20072884

  7. Preparation, characterization and in vitro antimicrobial activity of metronidazole bearing lectinized liposomes for intra-periodontal pocket delivery.

    PubMed

    Vyas, S P; Sihorkar, V; Dubey, P K

    2001-07-01

    Liposomes constructed of egg phosphatidylcholine (EPC), cholesterol (Chol) and stearoylamine (SA) were coated with lectin (Concanavalin-A). These lectinized liposomes were found to retain the ligand binding activity of surface coated concanavalin A (Con-A) as demonstrated by bovine submaxillary mucin (BSM) binding assay. Moreover the ligand specificity of Con-A was maintained even after coating the liposome surface because the presence of competing sugar alpha-methyl mannoside, significantly inhibited the interaction of lectinized liposomes and BSM. The significance of divalent cations for these interactions was studied. The Con-A coating was found to be stable in simulated salivary fluids (SSF, pH 7.2) and under various pH conditions. In vitro targeting studies of lectinized liposomes with gram-negative bacilli (Streptococcus mutans) that harbor in the periodontal pocket (biofilm) demonstrated nearly 100% bacterial growth inhibition (% BGI). The antimicrobial effect was maintained for 360 min. The results were compared with metronidazole bearing plain (protein free/uncoated) liposomes and the free drug at the same dose levels. Mechanisms involved are also discussed. These observations suggest that liposomes coated with lectin (Con-A) were able to maintain the sugar affinity and specificity of the associated ligand and could be targeted to the surface 'glyco-calyx' of bacterial bio-film. PMID:11487975

  8. Fortification of dark chocolate with spray dried black mulberry (Morus nigra) waste extract encapsulated in chitosan-coated liposomes and bioaccessability studies.

    PubMed

    Gültekin-Özgüven, Mine; Karadağ, Ayşe; Duman, Şeyma; Özkal, Burak; Özçelik, Beraat

    2016-06-15

    Fine-disperse anionic liposomes containing black mulberry (Morus nigra) extract (BME) were prepared by high pressure homogenization at 25,000 psi. Primary liposomes were coated with cationic chitosan (0.4, w/v%) using the layer-by-layer depositing method and mixed with maltodextrin (MD) (20, w/v%) prior to spray drying. After that, spray dried liposomal powders containing BME were added to chocolates with alkalization degrees (pH 4.5, 6, 7.5) at conching temperatures of 40 °C, 60 °C, and 80 °C. The results showed that, compared to spray dried extract, chitosan coated liposomal powders provided better protection of anthocyanin content in both increased temperature and pH. In addition, encapsulation in liposomes enhanced in vitro bioaccessability of anthocyanins. Chocolate was fortified with encapsulated anthocyanins maximum 76.8% depending on conching temperature and pH. PMID:26868567

  9. Multifunctional liposomes for enhanced anti-cancer therapy

    NASA Astrophysics Data System (ADS)

    Falcao, Claudio Borges

    2011-12-01

    Macromolecular drugs have great promises for cancer treatment, such as the pro-apoptotic peptide D-(KLAKLAK)2 and the bcl-2 antisense oligodeoxynucleotide G3139. However, these macromolecules require efficient drug carriers, like liposomes, to deliver them inside cells. Also, if these macromolecules can be combined in a single liposome, the cancer cell killing will be greater than using just one. With this possibility in mind, cationic liposomes (CLs) were elaborated to encapsulate both macromolecules and deliver them inside cells. Later, surface modification of CLs was investigated through the addition of polyethylene glycol (PEG) to obtain long-circulating liposomes. CLs were prepared through charge alternation among D-(KLAKLAK)2 , G3139 and DOTAP. These liposomes were characterized with particle size and zeta-potential measurements, antisense entrapment and peptide loading efficiency. The in vitro effects of CL formulations were tested with B16(F10) cells through viability studies, uptake assay and detection of apoptosis. CL formulations were also applied in vivo in B16(F10) tumor-bearing mice through intratumoral injections, and tumor growth inhibition and detection of apoptosis were evaluated. Next, the mechanism of action of the CL formulations was investigated by Western blotting. Later, PEG was incorporated at increasing amounts to the liposomes to determine which concentration can better prevent interactions between PEG-cationic liposomes (PCL) and B16(F10) cells. Next, pH-cleavable PEG was prepared and then added to the liposomes in the same amount that PEG in PCL could decrease interaction with cells. Finally, cell viability studies were performed with CL, PCL and pH-sensitive PCL (pH-PCL) formulations after pre-incubation at pH 7.4 or at pH 5.0. Positively charged CL particles were obtained after encapsulation of negatively charged D-(KLAKLAK)2/G3139 complexes. In vitro , CLs containing D-(KLAKLAK)2/G3139 complexes could reduce B16(F10) cell viability

  10. pH-sensitive polymer-liposome-based antigen delivery systems potentiated with interferon-γ gene lipoplex for efficient cancer immunotherapy.

    PubMed

    Yuba, Eiji; Kanda, Yuhei; Yoshizaki, Yuta; Teranishi, Ryoma; Harada, Atsushi; Sugiura, Kikuya; Izawa, Takeshi; Yamate, Jyoji; Sakaguchi, Naoki; Koiwai, Kazunori; Kono, Kenji

    2015-10-01

    Potentiation of pH-sensitive liposome-based antigen carriers with IFN-γ gene lipoplexes was attempted to achieve efficient induction of tumor-specific immunity. 3-Methylglutarylated poly(glycidol) (MGluPG)-modified liposomes and cationic liposomes were used, respectively, for the delivery of antigenic protein ovalbumin (OVA) and IFN-γ-encoding plasmid DNA (pDNA). The MGluPG-modified liposomes and the cationic liposome-pDNA complexes (lipoplexes) formed hybrid complexes via electrostatic interactions after their mixing in aqueous solutions. The hybrid complexes co-delivered OVA and IFN-γ-encoding pDNA into DC2.4 cells, a murine dendritic cell line, as was the case of MGluPG-modified liposomes for OVA or the lipoplexes for pDNA. Both the lipoplexes and the hybrid complexes transfected DC2.4 cells and induced IFN-γ protein production, but transfection activities of the hybrid complexes were lower than those of the parent lipoplexes. Subcutaneous administration of hybrid complexes to mice bearing E.G7-OVA tumor reduced tumor volumes, which might result from the induction of OVA-specific cytotoxic T lymphocytes (CTLs). However, the hybrid complex-induced antitumor effect was the same level of the MGluPG-modified liposome-mediated antitumor immunity. In contrast, an extremely strong antitumor immune response was derived when these liposomes and lipoplexes without complexation were injected subcutaneously at the same site of tumor-bearing mice. Immunohistochemical analysis of tumor sections revealed that immunization through the liposome-lipoplex combination promoted the infiltration of CTLs to tumors at an early stage of treatment compared with liposomes, resulting in strong therapeutic effects. PMID:26222284

  11. Fusion between fluid liposomes and intact bacteria: study of driving parameters and in vitro bactericidal efficacy

    PubMed Central

    Wang, Zhao; Ma, Yufan; Khalil, Hayssam; Wang, Rutao; Lu, Tingli; Zhao, Wen; Zhang, Yang; Chen, Jamin; Chen, Tao

    2016-01-01

    Background Pseudomonas aeruginosa represents a good model of antibiotic resistance. These organisms have an outer membrane with a low level of permeability to drugs that is often combined with multidrug efflux pumps, enzymatic inactivation of the drug, or alteration of its molecular target. The acute and growing problem of antibiotic resistance of bacteria to conventional antibiotics made it imperative to develop new liposome formulations for antibiotics, and investigate the fusion between liposome and bacterium. Methods In this study, the factors involved in fluid liposome interaction with bacteria have been investigated. We also demonstrated a mechanism of fusion between liposomes (1,2-dipa lmitoyl-sn-glycero-3-phosphocholine [DPPC]/dimyristoylphosphatidylglycerol [DMPG] 9:1, mol/mol) in a fluid state, and intact bacterial cells, by lipid mixing assay. Results The observed fusion process is shown to be mainly dependent on several key factors. Perturbation of liposome fluidity by addition of cholesterol dramatically decreased the degree of fusion with P. aeruginosa from 44% to 5%. It was observed that fusion between fluid liposomes and bacteria and also the bactericidal activities were strongly dependent upon the properties of the bacteria themselves. The level of fusion detected when fluid liposomes were mixed with Escherichia coli (66%) or P. aeruginosa (44%) seems to be correlated to their outer membrane phosphatidylethanolamine (PE) phospholipids composition (91% and 71%, respectively). Divalent cations increased the degree of fusion in the sequence Fe2+ > Mg2+ > Ca2+ > Ba2+ whereas temperatures lower than the phase transition temperature of DPPC/DMPG (9:1) vesicles decreased their fusion capacity. Acidic as well as basic pHs conferred higher degrees of fusion (54% and 45%, respectively) when compared to neutral pH (35%). Conclusion Based on the results of this study, a possible mechanism involving cationic bridging between bacterial negatively charged

  12. Liposome-like Nanostructures for Drug Delivery

    PubMed Central

    Gao, Weiwei; Hu, Che-Ming J.; Fang, Ronnie H.; Zhang, Liangfang

    2013-01-01

    Liposomes are a class of well-established drug carriers that have found numerous therapeutic applications. The success of liposomes, together with recent advancements in nanotechnology, has motivated the development of various novel liposome-like nanostructures with improved drug delivery performance. These nanostructures can be categorized into five major varieties, namely: (1) polymer-stabilized liposomes, (2) nanoparticle-stabilized liposomes, (3) core-shell lipid-polymer hybrid nanoparticles, (4) natural membrane-derived vesicles, and (5) natural membrane coated nanoparticles. They have received significant attention and have become popular drug delivery platforms. Herein, we discuss the unique strengths of these liposome-like platforms in drug delivery, with a particular emphasis on how liposome-inspired novel designs have led to improved therapeutic efficacy, and review recent progress made by each platform in advancing healthcare. PMID:24392221

  13. Design of liposomal formulations for cell targeting.

    PubMed

    Nogueira, Eugénia; Gomes, Andreia C; Preto, Ana; Cavaco-Paulo, Artur

    2015-12-01

    Liposomes have gained extensive attention as carriers for a wide range of drugs due to being both nontoxic and biodegradable as they are composed of substances naturally occurring in biological membranes. Active targeting for cells has explored specific modification of the liposome surface by functionalizing it with specific targeting ligands in order to increase accumulation and intracellular uptake into target cells. None of the Food and Drug Administration-licensed liposomes or lipid nanoparticles are coated with ligands or target moieties to delivery for homing drugs to target tissues, cells or subcellular organelles. Targeted therapies (with or without controlled drug release) are an emerging and relevant research area. Despite of the numerous liposomes reviews published in the last decades, this area is in constant development. Updates urgently needed to integrate new advances in targeted liposomes research. This review highlights the evolution of liposomes from passive to active targeting and challenges in the development of targeted liposomes for specific therapies. PMID:26454541

  14. Cationic lioposomes with folic acid as targeting ligand for gene delivery.

    PubMed

    Cui, Shao-Hui; Zhi, De-Fu; Zhao, Yi-Nan; Chen, Hui-Ying; Meng, Yao; Zhang, Chuan-Min; Zhang, Shu-Biao

    2016-08-15

    In our previous Letter, we have carried out the synthesis of a novel DDCTMA cationic lipid which was formulated with DOPE for gene delivery. Herein, we used folic acid (FA) as targeting ligand and cholesterol (Chol) as helper lipid instead of DOPE for enhancing the stability of the liposomes. These liposomes were characterized by dynamic laser scattering (DLS), transmission electron microscopy (TEM) and agarose gel electrophoresis assays of pDNA binding affinity. The lipoplexes were prepared by using different weight ratios of DDCTMA/Chol (1:1, 2:1, 3:1, 4:1) liposomes and different concentrations of FA (50-200μg/mL) combining with pDNA. The transfection efficiencies of the lipoplexes were evaluated using pGFP-N2 and pGL3 plasmid DNA against NCI-H460 cells in vitro. Among them, the optimum gene transfection efficiency with DDCTMA/Chol (3:1)/FA (100μg/mL) was obtained. The results showed that FA could improve the gene transfection efficiencies of DDCTMA/Chol cationic liposome. Our results also convincingly demonstrated FA (100μg/mL)-coated DDCTMA/Chol (3:1) cationic liposome could serve as a promising candidate for the gene delivery. PMID:27426864

  15. Effect of ionic liquids on the interaction between liposomes and common wastewater pollutants investigated by capillary electrophoresis.

    PubMed

    Ruokonen, Suvi-Katriina; Duša, Filip; Lokajová, Jana; Kilpeläinen, Ilkka; King, Alistair W T; Wiedmer, Susanne K

    2015-07-31

    The effect of three phosphonium and imidazolium ionic liquids (ILs) on the interaction between liposomes and common pharmaceuticals found in wastewaters was studied. The liposomes comprised zwitterionic phosphatidyl choline and negatively charged phosphatidyl glycerol. A set of common cationic, anionic, and neutral compounds with varying chemical composition and unique structures were included in the study. The electrophoretic mobilities of the analytes were determined using conventional capillary electrophoresis (CE), using CE under reversed electroosmotic flow mobility conditions, and in the presence of ILs in the background electrolyte (BGE) solution by electrokinetic chromatography (EKC). In order to evaluate the impact of ILs on the interaction between the compounds and the liposomes, EKC was performed with liposome dispersions, with and without ILs. The retention factors of the compounds were calculated using BGEs including liposome dispersions with and without ILs. Two phosphonium based ILs, namely tributyl(tetradecyl)phosphonium chloride ([P14444]Cl) and octyltributylphosphonium chloride ([P8444]Cl), were chosen due to their long alkyl chains and their low aggregation concentrations. Another IL, i.e. 1-ethyl-3-methylimidazolium acetate ([emim][OAc]), was chosen based on our previous study, which suggests that it has a minimal or even nonexistent effect on liposomes at the used concentrations. The results indicate that the studied ILs have an effect on the interactions between wastewater compounds and liposomes, but the effect is highly dependent on the concentration of the IL and on the IL alkyl chain lengths. Most of the ILs hindered the interactions between the liposomes and the compounds, indicating strong interaction between ILs and liposomes. In addition, the nature of the studied compounds themselves affected the interactions. PMID:26072299

  16. Glycosaminoglycan-mediated selective changes in the aggregation states, zeta potentials, and intrinsic stability of liposomes.

    PubMed

    Nyren-Erickson, Erin K; Haldar, Manas K; Totzauer, Jessica R; Ceglowski, Riley; Patel, Dilipkumar S; Friesner, Daniel L; Srivastava, D K; Mallik, Sanku

    2012-11-20

    Though the aggregation of glycosaminoglycans (GAGs) in the presence of liposomes and divalent cations has been previously reported, the effects of different GAG species and minor changes in GAG composition on the aggregates that are formed are yet unknown. If minor changes in GAG composition produce observable changes in the liposome aggregate diameter or zeta potential, such a phenomenon may be used to detect potentially dangerous oversulfated contaminants in heparin. We studied the mechanism of the interactions between heparin and its oversulfated glycosaminoglycan contaminants with liposomes. Herein, we demonstrate that Mg(2+) acts to shield the incoming glycosaminoglycans from the negatively charged phosphate groups of the phospholipids and that changes in the aggregate diameter and zeta potential are a function of the glycosaminoglycan species and concentration as well as the liposome bilayer composition. These observations are supported by TEM studies. We have shown that the organizational states of the liposome bilayers are influenced by the presence of GAG and excess Mg(2+), resulting in a stabilizing effect that increases the T(m) value of DSPC liposomes; the magnitude of this effect is also dependent on the GAG species and concentration present. There is an inverse relationship between the percent change in aggregate diameter and the percent change in aggregate zeta potential as a function of GAG concentration in solution. Finally, we demonstrate that the diameter and zeta potential changes in POPC liposome aggregates in the presence of different oversulfated heparin contaminants at low concentrations allow for an accurate detection of oversulfated chondroitin sulfate at concentrations of as low as 1 mol %. PMID:23102026

  17. Capacious and programmable multi-liposomal carriers

    NASA Astrophysics Data System (ADS)

    Yaroslavov, Alexander A.; Sybachin, Andrey V.; Zaborova, Olga V.; Migulin, Vasiliy A.; Samoshin, Vyacheslav V.; Ballauff, Matthias; Kesselman, Ellina; Schmidt, Judith; Talmon, Yeshayahu; Menger, Fredric M.

    2015-01-01

    Spherical polycationic brushes (SPBs) were synthesized by grafting polycationic chains onto 100 nm polystyrene particles. These particles were exposed to unilamellar egg-lecithin (EL) liposomes with a mean diameter of 40 nm that had been rendered anionic via the presence of 10 molar% of phosphatidylserine (PS1-). The liposomes also contained 30 mole% of a morpholinocyclohexanol-based lipid (MOCH) that undergoes a conformational flip when the pH is decreased from 7.0 to 5.0. Mixtures of SPBs and liposomes at pH 7 gave an electrostatically-driven complex possessing, on average, about 40 liposomes for each SPB particle. It was found that the bound liposomes rapidly release much of their contents when the pH is reduced from 7.0 to 5.0 owing mostly to a MOCH conformational change that creates defects in the bilayer membrane. The drop in pH does not, however, induce a separation of the liposomes from the SPBs. Around 50-60% of the liposome contents escape before, it is reasoned, lateral and transmembrane motion of the membrane components heals the defects and prevents further release. Remarkably, the liposomes complexed with SPB release their cargo much faster than the identical but non-complexed liposomes.Spherical polycationic brushes (SPBs) were synthesized by grafting polycationic chains onto 100 nm polystyrene particles. These particles were exposed to unilamellar egg-lecithin (EL) liposomes with a mean diameter of 40 nm that had been rendered anionic via the presence of 10 molar% of phosphatidylserine (PS1-). The liposomes also contained 30 mole% of a morpholinocyclohexanol-based lipid (MOCH) that undergoes a conformational flip when the pH is decreased from 7.0 to 5.0. Mixtures of SPBs and liposomes at pH 7 gave an electrostatically-driven complex possessing, on average, about 40 liposomes for each SPB particle. It was found that the bound liposomes rapidly release much of their contents when the pH is reduced from 7.0 to 5.0 owing mostly to a MOCH conformational

  18. Efficient Delivery of Plasmid DNA Using Cholesterol-Based Cationic Lipids Containing Polyamines and Ether Linkages

    PubMed Central

    Kim, Bieong-Kil; Seu, Young-Bae; Bae, Yun-Ui; Kwak, Tae-Won; Kang, Hyungu; Moon, Ik-Jae; Hwang, Guen-Bae; Park, So-Young; Doh, Kyung-Oh

    2014-01-01

    Cationic liposomes are broadly used as non-viral vectors to deliver genetic materials that can be used to treat various diseases including cancer. To circumvent problems associated with cationic liposome-mediated delivery systems such as low transfection efficiency and serum-induced inhibition, cholesterol-based cationic lipids have been synthesized that resist the effects of serum. The introduction of an ether-type linkage and extension of the aminopropyl head group on the cholesterol backbone increased the transfection efficiency and DNA binding affinity compared to a carbamoyl-type linkage and a mono aminopropyl head group, respectively. Under optimal conditions, each liposome formulation showed higher transfection efficiency in AGS and Huh-7 cells than commercially available cationic liposomes, particularly in the presence of serum. The following molecular structures were found to have a positive effect on transfection properties: (i) extended aminopropyl head groups for a strong binding affinity to plasmid DNA; (ii) an ether linkage that favors electrostatic binding to plasmid DNA; and (iii) a cholesterol backbone for serum resistance. PMID:24786091

  19. Safe and effective delivery of small interfering RNA with polymer- and liposomes-based complexes.

    PubMed

    Kodama, Yukinobu; Harauchi, Satoe; Kawanabe, Saki; Ichikawa, Nobuhiro; Nakagawa, Hiroo; Muro, Takahiro; Higuchi, Norihide; Nakamura, Tadahiro; Kitahara, Takashi; Sasaki, Hitoshi

    2013-01-01

    We developed binary and ternary complexes based on polymers and liposomes for safe and effective delivery of small interfering RNA (siRNA). Anti-luciferase siRNA was used as a model of nucleic acid medicine. The binary complexes of siRNA were prepared with cationic polymers and cationic liposomes such as polyethylenimine (PEI), polyamidoamine (PAMAM) dendrimer, poly-L-arginine (PLA), trimethyl[2,3-(dioleoxy)-propyl]ammonium chloride (DOTMA), and cholesteryl 3β-N-(dimetylaminnoethyl)carbamate hydrochloride (DC-Chol). The ternary complexes were constructed by the addition of γ-polyglutamic acid (γ-PGA) to the binary complexes. The complexes were approximately 54-153 nm in particle size. The binary complexes showed a cationic surface charge although an anionic surface charge was observed in the ternary complexes. The polymer-based complexes did not show a silencing effect in the mouse colon carcinoma cell line expressing luciferase regularly (Colon26/Luc cells). The binary complexes based on liposomes and their ternary complexes coated by γ-PGA showed a significant silencing effect. The binary complexes showed significant cytotoxicity although the ternary complexes coated by γ-PGA did not show significant cytotoxicity. The ternary complexes coated by γ-PGA suppressed luciferase activity in the tumor after their direct injection into the tumors of mice bearing Colon26/Luc cells. Thus, we have newly identified safe and efficient ternary complexes of siRNA for clinical use. PMID:23727920

  20. Application of Liposomes in Some Dairy Products.

    PubMed

    Khanniri, E; Bagheripoor-Fallah, N; Sohrabvandi, S; Mortazavian, A M; Khosravi-Darani, K; Mohammad, R

    2016-01-01

    The application of liposomes as potential carriers to deliver food components is considerably an innovative technology. While the application of liposome technology has been very limited to date, researches indicating the potential of liposomes for improving the flavor of ripened cheese using accelerated methods, the targeted delivery of functional food ingredients, the synergistic delivery of ascorbic acid and tocopherols for promoting antioxidant activity in foods, and the stabilization of minerals (such as iron) in milk have been performed. In the food industry, liposomes and nanoliposomes have been employed to encapsulate flavoring and nutritive agents, and also, they have been suitable candidates to deliver antimicrobials. In this paper, application of lipase, proteinase, nisin, and flavor-containing liposomes in products during the processing (such as cheese maturity) as well as the application of liposomes-encapsulated micronutrients (such as iron) in milk are reviewed. PMID:25574577

  1. Europium chelate-loaded liposomes: a tool for the study of binding and integrity of liposomes.

    PubMed

    Orellana, A; Laukkanen, M L; Keinänen, K

    1996-10-01

    Using the biotin-streptavidin interaction as a model, we investigated the suitability of lanthanide chelates as encapsulated liposomal labels in liposome-based binding assays. Large unilamellar phospholipid:cholesterol liposomes containing europium-DTPA chelate and biotinylated phosphatidylethanolamine were prepared by detergent dialysis. The resulting Eu-liposomes ([symbol: see text] 120 nm) bound specifically to streptavidin in microtiter wells as measured by time-resolved fluorometric assay (TRF). The intensity of fluorescence released from the bound liposomes was dependent on the concentration of biotin in the liposome membrane, the concentration of europium entrapped in the liposomes, the incubation time and the amount of liposomes used in the assay. The sensitivity of the TRF assay allowed the detection of binding of attomole quantities of liposomes. The streptavidin-immobilised liposomes subjected to porcine pancreatic phospholipase A2 (EC 3.1.1.4) and detergents displayed a dose-dependent release of the encapsulated europium. Lanthanide-chelate-liposomes should prove useful for studies addressing binding and stability of liposomes. PMID:8865811

  2. Development and In Vitro Evaluation of a Novel Drug Delivery System (Albumin Microspheres Containing Liposomes) Applied to Vancomycin.

    PubMed

    de Jesús Valle, María José; López Díaz, David; Velázquez Salicio, Mercedes; Sánchez Navarro, Amparo

    2016-07-01

    A pharmaceutical vehicle based on the encapsulation of liposomes with unmodified albumin has been designed, formulated, and in vitro characterized. Microscopy was used to investigate particle morphology and dynamic light scattering to determine the size and zeta potential. Vancomycin was selected as a model drug for water-soluble and moderately albumin-bound products. The results indicated that regardless of the zeta potential of the liposomes these can be trapped within albumin microspheres. The zeta potential, drug entrapment efficacy, and drug delivery profile of the resulting microspheres were found to depend on the liposome composition and the conditions of flocculation. The protein concentration was observed to influence drug entrapment efficiency (from 13.17 ± 5.0% to 61.27 ± 4.54%), as did the zeta potential of the microspheres, which was also seen to depend on the initial charge of the liposomes. The relationship between the microsphere zeta potential or entrapment efficacy and the protein concentration used for flocculation was established. Regarding drug delivery, differences between microspheres prepared from cationic or anionic liposomes were observed. The combination of liposome versatility together with the drug-binding ability of albumin provides to a vehicle with multiple choices for theranostic delivery. PMID:27290625

  3. Interaction of rotavirus particles with liposomes.

    PubMed

    Nandi, P; Charpilienne, A; Cohen, J

    1992-06-01

    We have studied the interactions of purified viral particles with liposomes as a model to understand the mechanism of entry of rotavirus into the cell. Liposomes, made from pure as well as mixed lipids, that contained encapsulated self-quenching concentrations of the fluorophore carboxyfluorescein (CF) were used. Rotavirus-liposome interactions were studied from the fluorescence dequenching of CF resulting from its release to the bulk solution. Purified infectious double-shelled virus particles induced a concentration- and temperature-dependent release of CF. The rate and extent of CF release was maximum between pH 7.3 and 7.6. The removal of outer structural proteins VP4 and VP7 from virus, which results in the formation of single-shelled particles, prevented virus interaction with liposomes. Rotavirus particles with uncleaved VP4 did not interact with liposomes, but treatment in situ of these particles with trypsin restored the interaction with the liposomes and resulted in CF dequenching. Our data support the view that rotavirus enters the cell through direct penetration of the plasma membrane. In contrast, adenovirus, the only other nonenveloped virus studied by this method, shows the optimum rate of marker release from liposomes at around pH 6 (R. Blumenthal, P. S. Seth, M. C. Willingham, and I. Pastan, Biochemistry 25:2231-2237, 1986). The interaction between rotavirus and liposomes is sensitive to specific divalent metal ions, unlike the adenovirus-liposome interaction, which is independent of them. PMID:1316453

  4. Tumor targeting using liposomal antineoplastic drugs

    PubMed Central

    Huwyler, Jörg; Drewe, Jürgen; Krähenbühl, Stephan

    2008-01-01

    During the last years, liposomes (microparticulate phospholipid vesicles) have been used with growing success as pharmaceutical carriers for antineoplastic drugs. Fields of application include lipid-based formulations to enhance the solubility of poorly soluble antitumor drugs, the use of pegylated liposomes for passive targeting of solid tumors as well as vector-conjugated liposomal carriers for active targeting of tumor tissue. Such formulation and drug targeting strategies enhance the effectiveness of anticancer chemotherapy and reduce at the same time the risk of toxic side-effects. The present article reviews the principles of different liposomal technologies and discusses current trends in this field of research. PMID:18488413

  5. Ligand-targeted liposomes for cancer treatment.

    PubMed

    Sapra, Puja; Tyagi, Pradeep; Allen, Theresa M

    2005-10-01

    Selective targeting of ligand-targeted liposomes containing anticancer drugs or therapeutic genes to cell surface receptors expressed on cancer cells is a recognized strategy for improving the therapeutic effectiveness of conventional chemotherapeutics or gene therapeutics. Some recent advances in the field of ligand-targeted liposomes for the treatment of cancer are summarized including: selection criteria for the receptors to be targeted, choice of targeting ligands and choice of encapsulated therapeutics. Targeting of liposomes to solid tumors, versus angiogenic endothelial cells versus vascular targets is discussed. Ligand-targeted liposomes have shown considerable promise in preclinical xenograft models and are poised for clinical development. PMID:16305440

  6. Liposome adhesion generates traction stress

    NASA Astrophysics Data System (ADS)

    Murrell, Michael P.; Voituriez, Raphaël; Joanny, Jean-François; Nassoy, Pierre; Sykes, Cécile; Gardel, Margaret L.

    2014-02-01

    Mechanical forces generated by cells modulate global shape changes required for essential life processes, such as polarization, division and spreading. Although the contribution of the cytoskeleton to cellular force generation is widely recognized, the role of the membrane is considered to be restricted to passively transmitting forces. Therefore, the mechanisms by which the membrane can directly contribute to cell tension are overlooked and poorly understood. To address this, we directly measure the stresses generated during liposome adhesion. We find that liposome spreading generates large traction stresses on compliant substrates. These stresses can be understood as the equilibration of internal, hydrostatic pressures generated by the enhanced membrane tension built up during adhesion. These results underscore the role of membranes in the generation of mechanical stresses on cellular length scales and that the modulation of hydrostatic pressure due to membrane tension and adhesion can be channelled to perform mechanical work on the environment.

  7. A simple interfacial pH detection method for cationic amphiphilic self-assemblies utilizing a Schiff-base molecule.

    PubMed

    Sarkar, Yeasmin; Das, Sanju; Ray, Ambarish; Jewrajka, Suresh K; Hirota, Shun; Parui, Partha Pratim

    2016-03-21

    A simple pH-sensing method for cationic micelle and vesicle interfaces is introduced, utilizing a Schiff-base molecule, 2-((4H-1,2,4-triazol-4-ylimino)methyl)-6-(hydroxymethyl)-4-methylphenol (AH). AH containing a phenolic moiety was obtained by the reaction between 4-amino-4H-1,2,4-triazole containing polar O- and N-centres with opposite polarity to the cationic interface and 2-hydroxy-3-(hydroxymethyl)-5-methylbenzaldehyde. The acid/base equilibrium of AH was investigated at the interfaces of cetrimonium bromide (CTAB) micelles, tri-block-copolymeric micelles (TBPs) and large unilamellar vesicles (LUVs) of different lipid compositions using steady state UV-Vis absorption spectroscopy. AH interacted strongly with the micelle and vesicle interfaces, according to the binding studies with LUV. A larger amount of AH proton dissociation was observed when localized at the interface of micelles and vesicles compared to that in the bulk phase, indicating that the pH values at the cationic interfaces are higher than in the bulk phase. The pH values were about 2.2 and 1.6 units higher at the CTAB and TBP micelle interfaces, respectively, than the bulk pH. The pH variation decreased from 2.4 to 1.5 units by increasing the neutral 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipid content from 0 to 50% in the cationic dimethyldioctadecylammonium (DDAB) LUV, indicating that the interfacial positive charges are responsible for the higher interfacial pH. Detailed structural and absorption characteristics of neutral AH and its anionic A(-) forms were investigated by fluorescence spectroscopic measurements and DFT based theoretical calculations. The present simple pH detection method may be applied to various biological micelle and vesicle interfaces. PMID:26891799

  8. Nanoparticle Stabilized Liposomes for Acne Therapy

    NASA Astrophysics Data System (ADS)

    Fu, Victoria

    Acne vulgaris is a common skin disease that affects over 40 million people in the United States alone. The main cause of acne vulgaris is Propionibacterium acnes (P. acnes), resides deep in the pores and follicles of the skin in order to feed on oil produced by the sebaceous glands. The liposome is a lipid based nanoparticle with numerous advantages over free drug molecules as an acne treatment alternative. Bare liposomes loaded with lauric acid (LipoLA) were found to show strong antimicrobial activity against P. acnes while generating minimal toxicity. However, the platform is limited by the spontaneous tendency of liposomes to fuse with each other. Attaching nanoparticles to the surface of liposomes can overcome this challenge by providing steric repulsion and reduce surface tension. Thus, carboxyl-functionalized gold nanoparticles (AuC) were attached to the surface of liposomes (AuC-liposomes) loaded with doxycycline, a general tetracycline antibiotic. These particles were found to have a diameter of 120 nm and a zeta potential of 20.0 mV. Both fluorescent and antimicrobial studies demonstrated that based on electrostatic interaction, negatively charged AuC attached to the liposome's positively charged surface and stabilized liposomes in a neutral pH environment (pH = 7.4). Upon entering the skin's acidic environment (pH = 4), AuC detached from the liposome's surface and liposomes could fuse with P. acnes residing in the pores. Furthermore, toxicity studies showed that AuC-liposomes did not induce any significant toxicity, while two of the leading over-the-counter therapies, benzoyl peroxide and salicylic acid, generated substantial skin irritation.

  9. Biophysical studies on chitosan-coated liposomes.

    PubMed

    Mady, Mohsen M; Darwish, Mirhane M; Khalil, Safaa; Khalil, Wafaa M

    2009-10-01

    Liposomes have been used as delivery vehicles for stabilizing drugs, overcoming barriers to cellular and tissue uptake, and for directing their contents toward specific sites in vivo. Chitosan is a biological macromolecule derived from crustacean shells and has several emerging applications in drug development, obesity control, and tissue engineering. In the present work, the interaction between chitosan and dipalmitoyl phosphatidylcholine (DPPC) liposomes was studied by transmission electron microscopy (TEM), zeta potential, solubilization using the nonionic detergent octylglucoside (OG), as well as Fourier transform infrared (FTIR) spectroscopy and viscosity measurements. The coating of DPPC liposomes by a chitosan layer was confirmed by electron microscope images and the zeta potential of liposomes. Coating of liposome by chitosan resulted in an increase in liposomal size by addition of a layer of 92 +/- 27.1 nm. The liposomal zeta potential became increasingly positive as chitosan concentration increased from 0.1 to 0.3% w/v, then it held at a relatively constant value. The amount of detergent needed to completely solubilize the liposomal membrane was increased after coating of liposomes with chitosan, indicating an increased membrane resistance to the detergent and hence a change in the natural membrane permeation properties. In the analysis of FTIR spectra of DPPC, the symmetric and antisymmetric CH(2) (at 2,800-3,000 cm(-1)) bands and the C=O (at 1,740 cm(-1)) stretching band were investigated in the absence and presence of the chitosan. It was concluded that appropriate combining of the liposomal and chitosan characteristics might be utilized for the improvement of the therapeutic efficacy of liposomes as a drug delivery system. PMID:19649627

  10. Development of the Liposomes Entrapped Ultrasound Imaging Gas (``Bubble Liposomes'') as Novel Gene Delivery Carriers

    NASA Astrophysics Data System (ADS)

    Suzuki, Ryo; Tanaka, Kumiko; Sawamura, Kaori; Takizawa, Tomoko; Utoguchi, Naoki; Negishi, Yoichi; Hagisawa, Kohsuke; Nishioka, Toshihiko; Maruyama, Kazuo

    2006-05-01

    Recently, microbubbles and ultrasound have been investigated with a view to improving the transfection efficiency of nonviral delivery systems for gene by cavitation. However, microbubbles had some problems in terms of stability and targeting ability. To solve these problems, we paid attention to liposomes that had many advantages such as stable and safe in vivo and easy to modify targeting ligand. Previously, we have represented that liposomes are good drug and gene delivery carriers. In addition, we developed that the liposomes ("Bubble liposomes") were entrapped with perfluoropropane known as ultrasound imaging gas. In this study, we assessed about feasibility of "Bubble liposomes" as gene delivery tool utilized cavitation by ultrasound irradiation. "Bubble liposomes" could effectively deliver plasmid DNA to cells by combination of ultrasound irradiation without cyototoxicity. This result suggested that "Bubble liposomes" might be a new class of tool for gene delivery.

  11. Remote Loading of (64)Cu(2+) into Liposomes without the Use of Ion Transport Enhancers.

    PubMed

    Henriksen, Jonas R; Petersen, Anncatrine L; Hansen, Anders E; Frankær, Christian G; Harris, Pernille; Elema, Dennis R; Kristensen, Annemarie T; Kjær, Andreas; Andresen, Thomas L

    2015-10-21

    Due to low ion permeability of lipid bilayers, it has been and still is common practice to use transporter molecules such as ionophores or lipophilic chelators to increase transmembrane diffusion rates and loading efficiencies of radionuclides into liposomes. Here, we report a novel and very simple method for loading the positron emitter (64)Cu(2+) into liposomes, which is important for in vivo positron emission tomography (PET) imaging. By this approach, copper is added to liposomes entrapping a chelator, which causes spontaneous diffusion of copper across the lipid bilayer where it is trapped. Using this method, we achieve highly efficient (64)Cu(2+) loading (>95%), high radionuclide retention (>95%), and favorable loading kinetics, excluding the use of transporter molecule additives. Therefore, clinically relevant activities of 200-400 MBq/patient can be loaded fast (60-75 min) and efficiently into preformed stealth liposomes avoiding subsequent purification steps. We investigate the molecular coordination of entrapped copper using X-ray absorption spectroscopy and demonstrate high adaptability of the loading method to pegylated, nonpegylated, gel- or fluid-like, cholesterol rich or cholesterol depleted, cationic, anionic, and zwitterionic lipid compositions. We demonstrate high in vivo stability of (64)Cu-liposomes in a large canine model observing a blood circulation half-life of 24 h and show a tumor accumulation of 6% ID/g in FaDu xenograft mice using PET imaging. With this work, it is demonstrated that copper ions are capable of crossing a lipid membrane unassisted. This method is highly valuable for characterizing the in vivo performance of liposome-based nanomedicine with great potential in diagnostic imaging applications. PMID:26426093

  12. Using Liposomes as Carriers for Polyphenolic Compounds: The Case of Trans-Resveratrol

    PubMed Central

    Bonechi, Claudia; Martini, Silvia; Ciani, Laura; Lamponi, Stefania; Rebmann, Herbert; Rossi, Claudio; Ristori, Sandra

    2012-01-01

    Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a polyphenol found in various plants, especially in the skin of red grapes. The effect of resveratrol on human health is the topic of numerous studies. In fact this molecule has shown anti-cancer, anti-inflammatory, blood-sugar-lowering ability and beneficial cardiovascular effects. However, for many polyphenol compounds of natural origin bioavailability is limited by low solubility in biological fluids, as well as by rapid metabolization in vivo. Therefore, appropriate carriers are required to obtain efficient therapeutics along with low administration doses. Liposomes are excellent candidates for drug delivery purposes, due to their biocompatibility, wide choice of physico-chemical properties and easy preparation. In this paper liposome formulations made by a saturated phosphatidyl-choline (DPPC) and cholesterol (or its positively charged derivative DC-CHOL) were chosen to optimize the loading of a rigid hydrophobic molecule such as resveratrol. Plain and resveratrol loaded liposomes were characterized for size, surface charge and structural details by complementary techniques, i.e. Dynamic Light Scattering (DLS), Zeta potential and Small Angle X-ray Scattering (SAXS). Nuclear and Electron Spin magnetic resonances (NMR and ESR, respectively) were also used to gain information at the molecular scale. The obtained results allowed to give an account of loaded liposomes in which resveratrol interacted with the bilayer, being more deeply inserted in cationic liposomes than in zwitterionic liposomes. Relevant properties such as the mean size and the presence of oligolamellar structures were influenced by the loading of RESV guest molecules. The toxicity of all these systems was tested on stabilized cell lines (mouse fibroblast NIH-3T3 and human astrocytes U373-MG), showing that cell viability was not affected by the administration of liposomial resveratrol. PMID:22936976

  13. Penetrating cations enhance uncoupling activity of anionic protonophores in mitochondria.

    PubMed

    Antonenko, Yuri N; Khailova, Ljudmila S; Knorre, Dmitry A; Markova, Olga V; Rokitskaya, Tatyana I; Ilyasova, Tatyana M; Severina, Inna I; Kotova, Elena A; Karavaeva, Yulia E; Prikhodko, Anastasia S; Severin, Fedor F; Skulachev, Vladimir P

    2013-01-01

    Protonophorous uncouplers causing a partial decrease in mitochondrial membrane potential are promising candidates for therapeutic applications. Here we showed that hydrophobic penetrating cations specifically targeted to mitochondria in a membrane potential-driven fashion increased proton-translocating activity of the anionic uncouplers 2,4-dinitrophenol (DNP) and carbonylcyanide-p-trifluorophenylhydrazone (FCCP). In planar bilayer lipid membranes (BLM) separating two compartments with different pH values, DNP-mediated diffusion potential of H(+) ions was enhanced in the presence of dodecyltriphenylphosphonium cation (C12TPP). The mitochondria-targeted penetrating cations strongly increased DNP- and carbonylcyanide m-chlorophenylhydrazone (CCCP)-mediated steady-state current through BLM when a transmembrane electrical potential difference was applied. Carboxyfluorescein efflux from liposomes initiated by the plastoquinone-containing penetrating cation SkQ1 was inhibited by both DNP and FCCP. Formation of complexes between the cation and CCCP was observed spectophotometrically. In contrast to the less hydrophobic tetraphenylphosphonium cation (TPP), SkQ1 and C12TPP promoted the uncoupling action of DNP and FCCP on isolated mitochondria. C12TPP and FCCP exhibited a synergistic effect decreasing the membrane potential of mitochondria in yeast cells. The stimulating action of penetrating cations on the protonophore-mediated uncoupling is assumed to be useful for medical applications of low (non-toxic) concentrations of protonophores. PMID:23626747

  14. Penetrating Cations Enhance Uncoupling Activity of Anionic Protonophores in Mitochondria

    PubMed Central

    Antonenko, Yuri N.; Khailova, Ljudmila S.; Knorre, Dmitry A.; Markova, Olga V.; Rokitskaya, Tatyana I.; Ilyasova, Tatyana M.; Severina, Inna I.; Kotova, Elena A.; Karavaeva, Yulia E.; Prikhodko, Anastasia S.; Severin, Fedor F.; Skulachev, Vladimir P.

    2013-01-01

    Protonophorous uncouplers causing a partial decrease in mitochondrial membrane potential are promising candidates for therapeutic applications. Here we showed that hydrophobic penetrating cations specifically targeted to mitochondria in a membrane potential-driven fashion increased proton-translocating activity of the anionic uncouplers 2,4-dinitrophenol (DNP) and carbonylcyanide-p-trifluorophenylhydrazone (FCCP). In planar bilayer lipid membranes (BLM) separating two compartments with different pH values, DNP-mediated diffusion potential of H+ ions was enhanced in the presence of dodecyltriphenylphosphonium cation (C12TPP). The mitochondria-targeted penetrating cations strongly increased DNP- and carbonylcyanide m-chlorophenylhydrazone (CCCP)-mediated steady-state current through BLM when a transmembrane electrical potential difference was applied. Carboxyfluorescein efflux from liposomes initiated by the plastoquinone-containing penetrating cation SkQ1 was inhibited by both DNP and FCCP. Formation of complexes between the cation and CCCP was observed spectophotometrically. In contrast to the less hydrophobic tetraphenylphosphonium cation (TPP), SkQ1 and C12TPP promoted the uncoupling action of DNP and FCCP on isolated mitochondria. C12TPP and FCCP exhibited a synergistic effect decreasing the membrane potential of mitochondria in yeast cells. The stimulating action of penetrating cations on the protonophore-mediated uncoupling is assumed to be useful for medical applications of low (non-toxic) concentrations of protonophores. PMID:23626747

  15. Localized drug delivery using crosslinked gelatin gels containing liposomes: factors influencing liposome stability and drug release.

    PubMed

    DiTizio, V; Karlgard, C; Lilge, L; Khoury, A E; Mittelman, M W; DiCosmo, F

    2000-07-01

    We describe a drug-delivery vehicle that combines the sustained release properties of liposomes with the structural advantages of crosslinked gelatin gels that can be implanted directly or coated onto medical devices. Liposome inclusion in gelatin gels does not compromise thermal stability nor does it interfere with the resiliency of gels to tensile force. However, electron spin resonance analysis of sequestered DPPC liposomes revealed a slight depression (ca. 1.0 degrees C) of the gel-to-fluid phase transition relative to liposomes in suspension. The level of liposome release from gels was determined by liposome concentration, liposome size, and the presence of poly(ethylene oxide) chains in the gel matrix or in the liposome membrane. Both neutral and charged liposomes displayed relatively high affinities for poly(ethylene glycol)gelatin gels, with only 10-15% release of initially sequestered liposomes while liposomes in which poly(ethylene glycol) was included within the membrane were not as well retained (approximately 65% release). The in vitro efflux of ciprofloxacin from liposomal gels immersed in serum was nearly complete after 24 h compared to 38% release of liposomal chlorhexidine after 6 days. The serum-induced destabilization of liposomal ciprofloxacin depended on the accessibility of serum components to gels as partly immersed gels retained approximately 50% of their load of drug after 24 h. In vivo experiments using a catheterized rabbit model of urinary tract infection revealed the absence of viable Escherichia coli on coated catheter surfaces in seven out of nine cases while all untreated catheter surfaces examined (n = 7) were contaminated. PMID:10813750

  16. The protein corona of circulating PEGylated liposomes.

    PubMed

    Palchetti, Sara; Colapicchioni, Valentina; Digiacomo, Luca; Caracciolo, Giulio; Pozzi, Daniela; Capriotti, Anna Laura; La Barbera, Giorgia; Laganà, Aldo

    2016-02-01

    Following systemic administration, liposomes are covered by a 'corona' of proteins, and preserving the surface functionality is challenging. Coating the liposome surface with polyethylene glycol (PEG) is the most widely used anti-opsonization strategy, but it cannot fully preclude protein adsorption. To date, protein binding has been studied following in vitro incubation to predict the fate of liposomes in vivo, while dynamic incubation mimicking in vivo conditions remains largely unexplored. The main aim of this investigation was to determine whether shear stress, produced by physiologically relevant dynamic flow, could influence the liposome-protein corona. The corona of circulating PEGylated liposome was thoroughly compared with that formed by incubation in vitro. Systematic comparison in terms of size, surface charge and quantitative composition was made by dynamic light scattering, microelectrophoresis and nano-liquid chromatography tandem mass spectrometry (nanoLC-MS/MS). Size of coronas formed under static vs. dynamic incubation did not appreciably differ from each other. On the other side, the corona of circulating liposomes was more negatively charged than its static counterpart. Of note, the variety of protein species in the corona formed in a dynamic flow was significantly wider. Collectively, these results demonstrated that the corona of circulating PEGylated liposomes can be considerably different from that formed in a static fluid. This seems to be a key factor to predict the biological activity of a liposomal formulation in a physiological environment. PMID:26607013

  17. Methods for using redox liposome biosensors

    DOEpatents

    Cheng, Quan; Stevens, Raymond C.

    2002-01-01

    The present invention provides methods and compositions for detecting the presence of biologically-important analytes by using redox liposome biosensors. In particular, the present invention provides liposome/sol-gel electrodes suitable for the detection of a wide variety of organic molecules, including but not limited to bacterial toxins.

  18. Comparison between liposomal formulations of amphotericin B.

    PubMed

    Adler-Moore, Jill P; Gangneux, Jean-Pierre; Pappas, Peter G

    2016-03-01

    Given the clinical success of commercial amphotericin B lipid products, investigators have begun making generic formulations of liposomal amphotericin B. Generic medicines are an attractive approach to help decrease the cost and accessibility to healthcare, provided that appropriate studies are performed to ensure bioequivalence with the parent product. This is of particular concern for liposomal drugs such as amphotericin B where liposomes are used as a carrier system to reduce the toxicity of the active agent. A favorable therapeutic profile for this form of the drug has to include the proper chemical composition along with strictly controlled manufacturing processes. Studies have shown that a comparison of liposomal amphotericin B products with different or the same chemical compositions, using different methods of production, will vary in size, and have significantly dissimilar in vitro and in vivo toxicities along with reduced efficacy. These results underscore the importance of establishing appropriate bioequivalence testing for liposome products to ensure uniformity of their therapeutic index. PMID:26768369

  19. The structure and behavior of the NA-CATH antimicrobial peptide with liposomes.

    PubMed

    Du, Haijuan; Samuel, Robin L; Massiah, Michael A; Gillmor, Susan D

    2015-10-01

    Naja atra cathelicidin (NA-CATH) is a 34-amino acid highly cationic peptide identified in Chinese cobras to possess potent toxicity against gram-negative and gram-positive bacteria and low toxicity against host cells. Here, we report the NMR solution structure of the full-length NA-CATH peptide and its interaction with liposomes. The structure shows a well-defined α-helix between residues Phe3 to Lys23, on which one surface is lined by the side-chains of one arginine and 11 lysine residues, while the other side is populated by hydrophobic residues. The last eleven amino acids, which are predominately aromatic and hydrophobic in nature, have no defined structure. NMR data reveal that these residues do not interact with the hydrophobic residues of the helix, indicating that the C-terminal residues have random conformations. Fluorescence requenching experiments, in which liposomes serve as a mimic of the bacterial membranes, result in fluorophore leakage that is consistent with a membrane thinning or transient pore formation mechanism. NMR titration studies of the peptide-liposome interaction reveal that the peptide is in fast exchange with the liposome, consistent with the fluorescent studies. These data indicate that full length NA-CATH possesses a helical segment and unstructured C-terminal tail that disrupts the bilayer to induce leakage and lysing. PMID:26205847

  20. Synthesis, characterization, and liposome partition of a novel tetracycline derivative using the ionic liquids framework.

    PubMed

    Alves, Filipa; Oliveira, Filipe S; Schröder, Bernd; Matos, Carla; Marrucho, Isabel M

    2013-05-01

    Recently, efforts have been put on the development of new drug formulations using ionic liquid framework. In this work, two different species of abroad-spectrum polyketide antibiotic, tetracycline, are studied in terms of some important properties for antibiotics such as solubility in water and hydrophilic-hydrophobic balance. Tetracycline was used as cation, whereas docusate, a biocompatible anion, which enables the tailoring of the hydrophilicity of salts, was chosen as the anion. The developed innovative ion pair, tetracycline docusate, was characterized in terms of its thermal stability, water solubility, octanol-water, and liposome-water partition coefficients, using UV-vis spectrophotometry because of the absorbance of tetracycline around 270 nm. Egg yolk phosphatidylcholine liposomes were used as cell membrane models, and the interactions of both tetracycline hydrochloride and tetracycline docusate with the liposomes were quantified by determination of the partition coefficient using derivative spectrophotometry. A theoretical model based on simple partition drugs between two different media was used to determine the partition coefficient in liposomes. PMID:23450634

  1. Elaboration of Sterically Stabilized Liposomes for S-Nitrosoglutathione Targeting to Macrophages.

    PubMed

    Diab, R; Virriat, A S; Ronzani, C; Fontanay, S; Grandemange, S; Elaissari, A; Foliguet, B; Maincent, P; Leroy, P; Duvaj, R E; Rihn, B H; Joubert, O

    2016-01-01

    S-nitrosoglutathione (GSNO) is a potential therapeutic for infectious disease treatment because of its pivotal role in macrophage-mediated inflammatory responses and host defense in addition to direct antibacterial activities. In this study, sterically stabilized cationic liposomes (SSCL) and sterically stabilized anionic liposomes (SSAL) were developed as nanocarriers for macrophage targeting. Elaborated liposomes were characterized in terms of size, zeta potential, morphology, encapsulation efficiency, in vitro drug release behavior and cytotoxicity. Their versatility in targeting monocytes/macrophages was determined by confocal laser scanning microscopy and transmission electron microscopy. Flow cytometry revealed that cellular uptake of both SSCL and SSAL was governed by several endocytic clathrin- and caveolae-dependent mechanisms. Quantitative assessments of intracellular nitric oxide demonstrated highly efficient uptake of GSNO-loaded SSCL that was twenty-fold higher than that of GSNO-free molecules. GSNO-loaded SSCL displayed strong bacteriostatic effects on Staphylococcus aureus and Pseudomonas aeruginosa, which can be involved in pulmonary infectious diseases. These results reveal the potential of liposomal GSNO as an anti-infective therapeutic due to its macrophage targeting capacity and direct antibacterial effects. PMID:27301185

  2. Solubilization, partial purification, and reconstitution of glutamate- and N-methyl-D-aspartate-activated cation channels from brain synaptic membranes

    SciTech Connect

    Ly, A.M.; Michaelis, E.K. )

    1991-04-30

    L-Glutamate-activated cation channel proteins from rat brain synaptic membranes were solubilized, partially purified, and reconstituted into liposomes. Optimal conditions for solubilization and reconstitution included treatment of the membranes with nonionic detergents in the presence of neutral phospholipids plus glycerol. Quench-flow procedures were developed to characterize the rapid kinetics of ion flux induced by receptor agonists. ({sup 14}C)Methylamine, a cation that permeates through the open channel of both vertebrate and invertebrate glutamate receptors, was used to measure the activity of glutamate receptor-ion channel complexes in reconstituted liposomes. L-Glutamate caused an increase in the rate of ({sup 14}C)methylamine influx into liposomes reconstituted with either solubilized membrane proteins or partially purified glutamate-binding proteins. Of the major glutamate receptor agonists, only N-methyl-D-aspartate activated cation fluxes in liposomes reconstituted with glutamate-binding proteins. In liposomes reconstituted with glutamate-binding proteins, N-methyl-D-aspartate- or glutamate-induced influx of NA{sup +} led to a transient increase in the influx of the lipid-permeable anion probe S{sup 14}CN{sup {minus}}. These results indicate the functional reconstitution of N-methyl-D-aspartate-sensitive glutamate receptors and the role of the {approximately}69-kDa protein in the function of these ion channels.

  3. Characterization and Investigation of Redox-Sensitive Liposomes for Gene Delivery.

    PubMed

    Pezzoli, Daniele; Tallarita, Elena; Rosini, Elena; Candiani, Gabriele

    2016-01-01

    A number of smart nonviral gene delivery vectors relying on bioresponsiveness have been introduced in the past few years to overcome the limits of the first generation of gene carriers. Among them, redox-sensitive lipidic and polymeric vectors exploit the presence of disulfide bonds in their structure to take advantage of the highly reductive intracellular milieu and to promote complex unpacking and nucleic acids release after cellular uptake (disulfide linker strategy). Glutathione (GSH) has been often identified as the leading actor in the intracellular reduction of bioreducible vectors but their actual mechanisms of action have been rarely investigated in depth and doubts about the real effectiveness of the disulfide linker strategy have been raised. Herein, we outline a simple protocol for the preparation and investigation of nano-sized reducible cationic liposomes, focusing on their thorough characterization and optimization as gene delivery vectors. In addition, we carefully describe the techniques and procedures necessary for the assessment of the bioreducibility of the vectors and to demonstrate that the GSH-mediated intracellular cleavage of disulfide bonds is a pivotal step in their transfection process. Liposomes composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE), and of the reducible cationic lipid SS14 are reported as a practical example but the proposed protocol can be easily shifted to other formulations of reducible lipids/liposomes and to reducible polymers. PMID:27436322

  4. Povidone-iodine liposomes--an overview.

    PubMed

    Reimer, K; Fleischer, W; Brögmann, B; Schreier, H; Burkhard, P; Lanzendörfer, A; Gümbel, H; Hoekstra, H; Behrens-Baumann, W

    1997-01-01

    In recent years, liposomes have been increasingly explored as novel drug delivery systems, and several liposome-based drug products have been approved in Europe, the USA and Japan. Depending on size, composition and surface characteristics, liposomes interact specifically with biological structures. Liposomal drug products provide a topical activity at the desired locus of action and are deemed more effective and less toxic than conventional drug formulations. The combination of povidone-iodine (PVP-I) and liposomes unites the exceptional microbicidal activity of the antiseptic substance with the excellent tolerability and lack of immunogenicity of liposomes; in addition, liposomes provide a moist molecular film for the wound environment. The multilamellar vesicles act as microreservoirs hence prolonging the release of the active ingredient. Although no commercial product for repeated application on the eye is currently available, PVP-I has been used in ophthalmology not only for pre- and postoperative antisepsis, but also for the treatment of bacterial and viral conjunctivitis and for prophylaxis against ophthalmia neonatorum. For these indications, liposomal formulations with 2.5 and 5.0% PVP-I were developed. These eye drops are isotonic with tear fluid at pH 6. First in vitro tests demonstrated an excellent antimicrobial efficacy, and a placebo-controlled clinical study on volunteers showed a very good local tolerability. A study on rabbits demonstrated positive results of the PVP-I liposome eye drops compared to placebo and the broadspectrum antibiotic Polyspectran in a standardized model of Staphylococcus aureus deep eye infection. The other aim is a well-tolerated liposomal PVP-I hydrogel for improved antiseptic wound treatment with moisturizer. It has been reported that liposomes are enriched at the wound bottom for direct action against infection and support of wound healing. An animal study on the efficacy and tolerability of different formulations of a

  5. Cationic Supramolecular Vesicular Aggregates for Pulmonary Tissue Selective Delivery in Anticancer Therapy.

    PubMed

    Licciardi, Mariano; Paolino, Donatella; Mauro, Nicolò; Cosco, Donato; Giammona, Gaetano; Fresta, Massimo; Cavallaro, Gennara; Celia, Christian

    2016-08-19

    The biopharmaceutical properties of supramolecular vesicular aggregates (SVAs) were characterized with regard to their physicochemical features and compared with cationic liposomes (CLs). Neutral and cationic SVAs were synthesized using two different copolymers of poly(aspartyl hydrazide) by thin-layer evaporation and extrusion techniques. Both copolymers were self-assembled in pre-formulated liposomes and formed neutral and cationic SVAs. Gemcitabine hydrochloride (GEM) was used as an anticancer drug and loaded by a pH gradient remote loading procedure, which significantly increased drug loading inside the SVAs. The resulting average size of the SVAs was 100 nm. The anticancer activity of GEM-loaded neutral and cationic SVAs was tested in human alveolar basal epithelial (A549) and colorectal cancer (CaCo-2) cells. GEM-loaded cationic SVAs increased the anticancer activity in A549 and CaCo-2 cells relative to free drug, neutral SVAs, and CLs. In vivo biodistribution in Wistar rats showed that cationic SVAs accumulate at higher concentrations in lung tissue than neutral SVAs and CLs. Cationic SVAs may therefore serve as an innovative future therapy for pulmonary carcinoma. PMID:27273893

  6. Electrostatics of PEGylated micelles and liposomes containing charged and neutral lipopolymers.

    PubMed

    Garbuzenko, Olga; Zalipsky, Samuel; Qazen, Masoud; Barenholz, Yechezkel

    2005-03-15

    The electrostatics of large unilamellar vesicles (LUVs) of various lipid compositions were determined and correlated with steric stabilization. The compositional variables studied include (a) degree of saturation, comparing the unsaturated egg phosphatidylcholine (EPC) and the fully hydrogenated soy phosphatidylcholine (HSPC) as liposome-forming lipids; (b) the effect of 40 mol % cholesterol; (c) the effect of mole % of three methyl poly(ethylene glycol) (mPEG)-lipids (the negatively charged mPEG-distearoyl phosphoethanolamine (DSPE) and two uncharged lipopolymers, mPEG-distearoyl glycerol (DSG) and mPEG-oxycarbonyl-3-amino-1,2-propanediol distearoyl ester (DS)); and (d) the negatively charged phosphatidyl glycerol (PG). The lipid phases were as follows: liquid disordered (LD) for the EPC-containing LUV, solid ordered (SO) for the HSPC-containing LUV, and liquid ordered (LO) for either of those LUV with the addition of 40 mol % cholesterol. The LUV zeta potential and electrical surface potential (psi(0)) were determined. It was found that progressive addition of mPEG(2k)-DSPE to liposomes increases negative surface potential and reduces surface pH to a similar extent as the addition of PG. However, due to the "hidden charge effect", zeta potential was more negative for liposomes containing PG than for those containing mPEG(2k)-DSPE. Replacing mPEG-DSPE with mPEG(2k)-DS or mPEG-DSG had no effect on surface pH and surface potential, and zeta potential was approximately zero. Addition of low concentrations of cationic peptides (protamine sulfate and melittin) to PG- or mPEG-DSPE-containing liposomes neutralized the liposome negative surface potential to a similar extent. However, only in liposomes containing PG, did liposome aggregation occur. Replacing the negatively charged lipopolymer mPEG-DSPE with the neutral lipopolymers mPEG-DS or mPEG-DSG eliminates or reduces such interactions. The relevance of this effect to the liposome performance in vivo is discussed

  7. Quantifying the effects of melittin on liposomes.

    PubMed

    Popplewell, J F; Swann, M J; Freeman, N J; McDonnell, C; Ford, R C

    2007-01-01

    Melittin, the soluble peptide of bee venom, has been demonstrated to induce lysis of phospholipid liposomes. We have investigated the dependence of the lytic activity of melittin on lipid composition. The lysis of liposomes, measured by following their mass and dimensions when immobilised on a solid substrate, was close to zero when the negatively charged lipids phosphatidyl glycerol or phosphatidyl serine were used as the phospholipid component of the liposome. Whilst there was significant binding of melittin to the liposomes, there was little net change in their diameter with melittin binding reversed upon salt injection. For the zwitterionic phosphatidyl choline the lytic ability of melittin is dependent on the degree of acyl chain unsaturation, with melittin able to induce lysis of liposomes in the liquid crystalline state, whilst those in the gel state showed strong resistance to lysis. By directly measuring the dimensions and mass changes of liposomes on exposure to melittin using Dual Polarisation Interferometry, rather than following the florescence of entrapped dyes we attained further information about the initial stages of melittin binding to liposomes. PMID:17092481

  8. Reversal of the multidrug resistance by drug combination using multifunctional liposomes

    NASA Astrophysics Data System (ADS)

    Patel, Niravkumar R.

    One of the major obstacles to the success of cancer chemotherapy is the multi-drug resistance (MDR) that results due mainly to the over-expression of drug efflux transporter pumps such as P-glycoprotein (P-gp). Highly efficacious third generation P-gp inhibitors, like tariquidar, have shown promising results against MDR. However, P-gp is also expressed in normal tissues like the blood-brain barrier, gastrointestinal tract, liver and kidney. It is therefore important to limit the exposure of P-gp inhibitors to normal tissues and increase their co-localization with anticancer agents in tumor tissues to maximize the efficacy of a P-gp inhibitor. To minimize non-specific binding and increase its delivery to tumor tissues, liposomes, self-assembling phospholipid vesicles, were chosen as a drug delivery vehicle. The liposome has been identified as a system capable of carrying molecules with diverse physicochemical properties. It can also alter the pharmacokinetic profile of loaded molecules which is a concern with both tariquidar and paclitaxel. Liposomes can easily be surface-modified rendering them cell-specific as well as organelle-specific. The main objective of present study was to develop an efficient liposomal delivery system which would deliver therapeutic molecules of interest to tumor tissues and avoid interaction with normal tissues. In this study, the co-delivery of tariquidar and paclitaxel into tumor cells to reverse the MDR using long-circulating cationic liposomes was investigated. SKOV-3TR, the resistant variant of SKOV-3 and MCF-7/ADR, the resistant variant of MCF-7 were used as model cell lines. Uniform liposomal formulations were generated with high incorporation efficiency and no apparent decrease in tariquidar potency towards P-gp. Tariquidar- and paclitaxel- co-loaded long-circulating liposomes showed significant re-sensitization of SKOV-3TR and MCF-7/ADR for paclitaxel in vitro. Further modification of these liposomes with antitumor 2C5 resulted

  9. Cidofovir-loaded liposomes: an intro-study using BCBL-1 cell line as a model for primary effusion lymphoma.

    PubMed

    Ruozi, B; Riva, G; Belletti, D; Tosi, G; Forni, F; Mucci, A; Barozzi, P; Luppi, M; Vandelli, M A

    2010-10-01

    Cidofovir (HPMPC) was recently reported to exert a valuable antineoplastic activity against primary effusion lymphoma (PEL), a B-cell neoplasm associated with Human Herpesvirus-8 (HHV-8) infection. In this study, we developed and characterized liposomes encapsulating HPMPC to increase drug efficacy reducing the administered dose and the related toxicity, which actually hamper its clinical therapeutic use in patients affected with PEL. The liposomes, obtained using different formulations of neutral and cationic lipids, were analyzed by microscopical (AFM) and spectroscopical (PCS and NMR) techniques. Using an in vitro model of PEL (BCBL-1 cell line), the carrier toxicity and the antineoplastic efficacy of liposomes were evaluated by flow cytometry applying apoptosis and cell death analysis. The in vitro study showed the applicability of the liposomes within a restricted range of lipidic concentrations according to the lipids used during the preparation. The moderate increases in the percentage of apoptotic/necrotic cells suggests that liposomal delivery allows the release of HPMPC into BCBL-1 cells enabling an unexpected antineoplastic activity of this drug even at lower doses. PMID:20600876

  10. Novel antisense therapeutics delivery systems: In vitro and in vivo studies of liposomes targeted with anti-CD20 antibody.

    PubMed

    Meissner, Justyna M; Toporkiewicz, Monika; Czogalla, Aleksander; Matusewicz, Lucyna; Kuliczkowski, Kazimierz; Sikorski, Aleksander F

    2015-12-28

    Antisense gene therapy using molecules such as antisense oligodeoxynucleotides, siRNA or miRNA is a very promising strategy for the treatment of neoplastic diseases. It can be combined with other treatment strategies to enhance therapeutic effect. In acute leukemias, overexpression of the antiapoptotic gene BCL2 is observed in more than 70% of cases. Therefore, reduction of the Bcl-2 protein level could, in itself, prevent the development of cancer or could possibly help sensitize cancer cells to apoptosis inducers. The main objective of our work is to develop therapeutic liposome formulations characterized by high transfection efficiency, stability in the presence of serum, as well as specificity and toxicity for target (leukemic) cells. Each of our liposomal formulations consists of a core composed of antisense oligonucleotides complexed by either cationic lipid, DOTAP, or a synthetic polycation, polyethyleneimine, encapsulated within liposomes modified with polyethylenoglycol. In addition, the liposomal shells are enriched with covalently-bound antibodies recognizing a well characterized bio-marker, CD20, exposed on the surface of leukemia cells. The resulting immunoliposomes selectively and effectively reduced the expression of BCL2 in target cells. Model animal experiments carried out on mice-engrafted tumors expressing the specific marker showed high efficiency of the liposome formulations against specific tumor development. In conclusion, we show that lipid formulations based on a polyplex or lipoplex backbone additionally equipped with antibodies are promising non-viral vectors for specific oligonucleotide transfer into human tumor cells. PMID:26585505

  11. Liposome-encapsulated actinomycin for cancer chemotherapy

    DOEpatents

    Rahman, Yueh-Erh; Cerny, Elizabeth A.

    1976-01-01

    An improved method is provided for chemotherapy of malignant tumors by injection of antitumor drugs. The antitumor drug is encapsulated within liposomes and the liposomes containing the encapsulated drug are injected into the body. The encapsulated drug penetrates into the tumor cells where the drug is slowly released and induces degeneration and death of the tumor cells, while any toxicity to the host body is reduced. Liposome encapsulation of actinomycin D has been found to be particularly effective in treating cancerous abdominal tumors, while drastically reducing the toxicity of actinomycin D to the host.

  12. Biodegradable liposome-encapsulated hydrogels for biomedical applications: a marriage of convenience.

    PubMed

    Grijalvo, Santiago; Mayr, Judith; Eritja, Ramon; Díaz, David Díaz

    2016-04-22

    Hydrogels are hydrophilic three-dimensional networks with demonstrated potential for medical and pharmaceutical applications. Specifically, biopolymer-based hydrogels offer certain advantages over synthetic polymers in terms of biocompatibility and biodegradability. Because of their inherent properties, hydrogels are able to efficiently encapsulate and liberate in a controlled release manner, different hydrophobic and hydrophilic therapeutic molecules, including nucleic acids, proteins and antibodies. Several strategies have been reported in the literature to minimize the potential burst release of encapsulated drugs, thus preventing their local accumulation and consequent toxic responses. Within this context, liposomes embedded in hydrogels have emerged as an attractive strategy to reduce this undesirable effect. This tutorial review covers a selection of the most promising cationic, neutral and anionic biopolymer-based hydrogels containing liposomes, niosomes or vesicles for drug delivery or tissue engineering applications. PMID:26818789

  13. Antitumoral effect of IL-12 gene transfected via liposomes into B16F0 cells.

    PubMed

    Speroni, Lucía; Gasparri, Julieta; de los A Bustuoabad, Victoria; Chiaramoni, Nadia S; Smagur, Andrzej; Szala, Stanisław; Taira, María C; del V Alonso, Silvia

    2009-01-01

    Murine melanoma B16F0 cells were transfected with SA:DPPC:DOPE (2:1:1 molar ratio) liposomes associated with a plasmid encoding murine IL-12. Stearylamine, a cationic lipid, showed a greater transfection efficiency compared to DOTAP-containing liposomes. The lipid:DNA ratio was 2:1 (w/w). Control groups were mock transfected or transfected with an empty plasmid (pNeo). pNeo or IL-12 transfected cells and controls were inoculated intradermically into the dorsal region of the foot or the lateral flank of C57BL6 mice. Results showed that IL-12 expression had a marked effect on in vivo growth of B16 melanoma tumors developed in both anatomic sites, significantly retarding their growth and prolonging host survival. PMID:19421429

  14. Are PEGylated liposomes better than conventional liposomes? A special case for vincristine.

    PubMed

    Wang, Xuling; Song, Yanzhi; Su, Yuqing; Tian, Qingjing; Li, Boqun; Quan, Jingjing; Deng, Yihui

    2016-05-01

    Cancer poses a significant threat to human health worldwide, and many therapies have been used for its palliative and curative treatments. Vincristine has been extensively used in chemotherapy. However, there are two major challenges concerning its applications in various tumors: (1) Vincristine's antitumor mechanism is cell-cycle-specific, and the duration of its exposure to tumor cells can significantly affect its antitumor activity and (2) Vincristine is widely bio-distributed and can be rapidly eliminated. One solution to these challenges is the encapsulation of vincristine into liposomes. Vincristine can be loaded into conventional liposomes, but it quickly leak out owing to its high membrane permeability. Numerous approaches have been attempted to overcome this problem. Vincristine has been loaded into PEGylated liposomes to prolong circulation time and improve tumor accumulation. These liposomes indeed prolong circulation time, but the payout characteristic of vincristine is severer, resulting in a compromised outcome rather than a better efficacy compared to conventional sphingomyelin (SM)/cholesterol (Chol) liposomes. In 2012, the USA Food and Drug Administration (FDA) approved SM/Chol liposomal vincristine (Marqibo®) for commercial use. In this review, we mainly focus on the drug's rapid leakage problem and the potentially relevant solutions that can be applied during the development of liposomal vincristine and the reason for conventional liposomal vincristine rather than PEGylated liposomes has access to the market. PMID:26024386

  15. Mitochondria-targeted penetrating cations as carriers of hydrophobic anions through lipid membranes.

    PubMed

    Rokitskaya, Tatyana I; Sumbatyan, Natalia V; Tashlitsky, Vadim N; Korshunova, Galina A; Antonenko, Yuri N; Skulachev, Vladimir P

    2010-09-01

    High negative electric potential inside mitochondria provides a driving force for mitochondria-targeted delivery of cargo molecules linked to hydrophobic penetrating cations. This principle is utilized in construction of mitochondria-targeted antioxidants (MTA) carrying quinone moieties which produce a number of health benefitting effects by protecting cells and organisms from oxidative stress. Here, a series of penetrating cations including MTA were shown to induce the release of the liposome-entrapped carboxyfluorescein anion (CF), but not of glucose or ATP. The ability to induce the leakage of CF from liposomes strongly depended on the number of carbon atoms in alkyl chain (n) of alkyltriphenylphosphonium and alkylrhodamine derivatives. In particular, the leakage of CF was maximal at n about 10-12 and substantially decreased at n=16. Organic anions (palmitate, oleate, laurylsulfate) competed with CF for the penetrating cation-induced efflux. The reduced activity of alkylrhodamines with n=16 or n=18 as compared to that with n=12 was ascribed to a lower rate of partitioning of the former into liposomal membranes, because electrical current relaxation studies on planar bilayer lipid membranes showed rather close translocation rate constants for alkylrhodamines with n=18 and n=12. Changes in the alkylrhodamine absorption spectra upon anion addition confirmed direct interaction between alkylrhodamines and the anion. Thus, mitochondria-targeted penetrating cations can serve as carriers of hydrophobic anions across bilayer lipid membranes. PMID:20510172

  16. The cubyl cation rearrangements.

    PubMed

    Jalife, Said; Mondal, Sukanta; Cabellos, Jose Luis; Martinez-Guajardo, Gerardo; Fernandez-Herrera, Maria A; Merino, Gabriel

    2016-02-25

    Born-Oppenheimer molecular dynamics simulations and high-level ab initio computations predict that the cage-opening rearrangement of the cubyl cation to the 7H(+)-pentalenyl cation is feasible in the gas phase. The rate-determining step is the formation of the cuneyl cation with an activation barrier of 25.3 kcal mol(-1) at the CCSD(T)/def2-TZVP//MP2/def2-TZVP level. Thus, the cubyl cation is kinetically stable enough to be formed and trapped at moderate temperatures, but it may be rearranged at higher temperatures. PMID:26880646

  17. Enhanced anticancer efficacy by ATP-mediated liposomal drug delivery.

    PubMed

    Mo, Ran; Jiang, Tianyue; Gu, Zhen

    2014-06-01

    A liposome-based co-delivery system composed of a fusogenic liposome encapsulating ATP-responsive elements with chemotherapeutics and a liposome containing ATP was developed for ATP-mediated drug release triggered by liposomal fusion. The fusogenic liposome had a protein-DNA complex core containing an ATP-responsive DNA scaffold with doxorubicin (DOX) and could release DOX through a conformational change from the duplex to the aptamer/ATP complex in the presence of ATP. A cell-penetrating peptide-modified fusogenic liposomal membrane was coated on the core, which had an acid-triggered fusogenic potential with the ATP-loaded liposomes or endosomes/lysosomes. Directly delivering extrinsic liposomal ATP promoted the drug release from the fusogenic liposome in the acidic intracellular compartments upon a pH-sensitive membrane fusion and anticancer efficacy was enhanced both in vitro and in vivo. PMID:24764317

  18. Enhancement of interleukin-2 activity by liposomes.

    PubMed

    Joffret, M L; Morgeaux, S; Laclerc, C; Oth, D; Zanetti, C; Sureau, P; Perrin, P

    1990-08-01

    The present report demonstrates that liposomes increase the interleukin-2 (IL-2) dependent proliferation of cytotoxic T-lymphocyte line (CTLL) cells used for the measurement of IL-2 activity. This effect was better observed with suboptimal doses of IL-2 and low concentrations of lipids. The increased IL-2 dependent proliferation is not due to a direct effect of liposomes on CTLL cells but rather to an interaction between IL-2 and liposomes. An interaction between IL-2 and components of fetal calf serum is also demonstrated. The results indicate that liposomes may interfere with IL-2 bioassay but also show the possibility of potentiating IL-2 activity for therapeutic purposes. PMID:2396476

  19. Liposomes as delivery systems for antineoplastic drugs

    NASA Astrophysics Data System (ADS)

    Medina, Luis Alberto

    2014-11-01

    Liposome drug formulations are defined as pharmaceutical products containing active drug substances encapsulated within the lipid bilayer or in the interior aqueous space of the liposomes. The main importance of this drug delivery system is based on its drastic reduction in systemic dose and concomitant systemic toxicity that in comparison with the free drug, results in an improvement of patient compliance and in a more effective treatment. There are several therapeutic drugs that are potential candidates to be encapsulated into liposomes; particular interest has been focused in therapeutic and antineoplastic drugs, which are characterized for its low therapeutic index and high systemic toxicity. The use of liposomes as drug carriers has been extensively justified and the importance of the development of different formulations or techniques to encapsulate therapeutic drugs has an enormous value in benefit of patients affected by neoplastic diseases.

  20. Radiolabeled liposome imaging determines an indication for liposomal anticancer agent in ovarian cancer mouse xenograft models.

    PubMed

    Ito, Ken; Hamamichi, Shusei; Asano, Makoto; Hori, Yusaku; Matsui, Junji; Iwata, Masao; Funahashi, Yasuhiro; Umeda, Izumi O; Fujii, Hirofumi

    2016-01-01

    Liposomal anticancer agents can effectively deliver drugs to tumor lesions, but their therapeutic effects are enhanced in only limited number of patients. Appropriate biomarkers to identify responder patients to these liposomal agents will improve their treatment efficacies. We carried out pharmacological and histopathological analyses of mouse xenograft models bearing human ovarian cancers (Caov-3, SK-OV-3, KURAMOCHI, and TOV-112D) to correlate the therapeutic effects of doxorubicin-encapsulated liposome (Doxil(®) ) and histological characteristics linked to the enhanced permeability and retention effect. We next generated (111) In-encapsulated liposomes to examine their capacities to determine indications for Doxil(®) treatment by single-photon emission computed tomography (SPECT)/CT imaging. Antitumor activities of Doxil(®) were drastically enhanced in Caov-3, moderately in SK-OV-3, and minimally in KURAMOCHI and TOV-112D when compared to doxorubicin. Microvessel density and vascular perfusion were high in Caov-3 and SK-OV-3, indicating a close relation with the enhanced antitumor effects. Next, (111) In-encapsulated liposomes were given i.v. to the animals. Their tumor accumulation and area under the curve values over 72 h were high in Caov-3, relatively high in SK-OV-3, and low in two other tumors. Importantly, as both Doxil(®) effects and liposomal accumulation varied in the SK-OV-3 group, we individually obtained SPECT/CT images of SK-OV-3-bearing mouse (n = 11) before Doxil(®) treatment. Clear correlation between liposomal tumor accumulation and effects of Doxil(®) was confirmed (R(2) = 0.73). Taken together, our experiments definitely verified that enhanced therapeutic effects through liposomal formulations of anticancer agents depend on tumor accumulation of liposomes. Tumor accumulation of the radiolabeled liposomes evaluated by SPECT/CT imaging is applicable to appropriately determine indications for liposomal antitumor agents. PMID:26509883

  1. The influence of liposomal formulation factors on the interactions between liposomes and hydroxyapatite.

    PubMed

    Nguyen, Sanko; Solheim, Lee; Bye, Ragnar; Rykke, Morten; Hiorth, Marianne; Smistad, Gro

    2010-03-01

    Liposomes may have potentials as a drug delivery system in the oral cavity; hence, the adsorption to, oral tissues may be of importance. The aim of this study was to find an optimal liposomal formulation with appropriate in vitro stability and which liposomal formulation parameters may be of importance for the interaction to tooth enamel surfaces. Charged liposomes were adsorbed in vitro onto hydroxyapatite (HA), used as a model substance for human dental enamel. For a systematic approach of lipid selection, statistical experimental design and multivariate analysis were conducted to interpret the data. The factors investigated were the type of charge (positive, negative), type of main phospholipid (egg-PC, DPPC, DMPC), type of charged lipid (diacyl-TAP, -ethylPC, -PA, -PG, -PS), the amount of charged component (2.5, 10mol%) and the inclusion of cholesterol in the lipid bilayer. The results indicated that positively charged liposomes expressed significantly higher adsorption levels than the negatively charged ones. The effect of incorporating cholesterol did not turn out to be significant. Both positive egg-PC and DPPC liposomes exhibited high adsorption levels; however egg-PC liposomes were unstable during storage. For positively charged liposomes, the factor "type of main lipid" was found to be of significance for the adsorption, whereas, for negatively charged liposomes, no such important factors were found. Based on the adsorption profile to HA and the in vitro stability in phosphate buffer, the most promising liposomal formulation to target for human enamel in this study was the positively charged DPPC liposomes with 10mol% charged lipid included. However, more experiments are needed to determine the optimum mol% of positively charged lipid for the adsorption onto HA. PMID:20022224

  2. Zinc ionophore activity of quercetin and epigallocatechin-gallate: from Hepa 1-6 cells to a liposome model.

    PubMed

    Dabbagh-Bazarbachi, Husam; Clergeaud, Gael; Quesada, Isabel M; Ortiz, Mayreli; O'Sullivan, Ciara K; Fernández-Larrea, Juan B

    2014-08-13

    Labile zinc, a tiny fraction of total intracellular zinc that is loosely bound to proteins and easily interchangeable, modulates the activity of numerous signaling and metabolic pathways. Dietary plant polyphenols such as the flavonoids quercetin (QCT) and epigallocatechin-gallate act as antioxidants and as signaling molecules. Remarkably, the activities of numerous enzymes that are targeted by polyphenols are dependent on zinc. We have previously shown that these polyphenols chelate zinc cations and hypothesized that these flavonoids might be also acting as zinc ionophores, transporting zinc cations through the plasma membrane. To prove this hypothesis, herein, we have demonstrated the capacity of QCT and epigallocatechin-gallate to rapidly increase labile zinc in mouse hepatocarcinoma Hepa 1-6 cells as well as, for the first time, in liposomes. In order to confirm that the polyphenols transport zinc cations across the plasma membrane independently of plasma membrane zinc transporters, QCT, epigallocatechin-gallate, or clioquinol (CQ), alone and combined with zinc, were added to unilamellar dipalmitoylphosphocholine/cholesterol liposomes loaded with membrane-impermeant FluoZin-3. Only the combinations of the chelators with zinc triggered a rapid increase of FluoZin-3 fluorescence within the liposomes, thus demonstrating the ionophore action of QCT, epigallocatechin-gallate, and CQ on lipid membrane systems. The ionophore activity of dietary polyphenols may underlay the raising of labile zinc levels triggered in cells by polyphenols and thus many of their biological actions. PMID:25050823

  3. Camptothecin-catalyzed phospholipid hydrolysis in liposomes.

    PubMed

    Saetern, Ann Mari; Skar, Merete; Braaten, Asmund; Brandl, Martin

    2005-01-01

    Hydrolysis of phospholipid (PL) within camptothecin (CPT)-containing liposomes was studied systematically, after elevated lyso-phosphatidylcholine (LPC)-concentrations in pH 5, CPT-containing liposomes (22.1+/-0.9 mol%) relative to control-liposomes (7.3+/-0.5 mol%) occasionally had been observed after four months storage in fridge. Liposomes were prepared by dispersing freeze-dried PL/CPT mixtures in 25 mM phosphate buffered saline (PBS) of varying pH (5.0-7.8) and CPT concentrations (0, 3 and 6 mM). PL-hydrolysis was monitored by HPTLC, quantifying LPC. In an accelerated stability study (60 degrees C), a catalytic effect of CPT on PL-hydrolysis was observed after 40 h, but not up to 30 h of incubation. The pH profile of the hydrolysis indicated a stability optimum at pH 6.0 for the liposomes independent of CPT. The equilibrium point between the more active lactone- and the carboxylate-form of CPT was found to be pH 6.8. As a compromise, pH 6.0 was chosen, assuring >85% CPT to be present in the lactone form. At this pH, both control- and CPT-liposomes showed only minor hydrolysis after autoclaving (121 degrees C, 15 min). Storage at room temperature and in fridge (2 months), as well as accelerated ageing (70 degrees C, 25 h), gave a significant elevation of LPC content in CPT-liposomes relative to control-liposomes. This study demonstrates a catalytic effect of CPT on PL-hydrolysis, the onset of which seems to require a certain threshold level of hydrolytic degradation. PMID:15607259

  4. Ehrlich tumor inhibition using doxorubicin containing liposomes.

    PubMed

    Elbialy, Nihal Saad; Mady, Mohsen Mahmoud

    2015-04-01

    Ehrlich tumors were grown in female balb mice by subcutaneous injection of Ehrlich ascites carcinoma cells. Mice bearing Ehrlich tumor were injected with saline, DOX in solution or DOX encapsulated within liposomes prepared from DMPC/CHOL/DPPG/PEG-PE (100:100:60:4) in molar ratio. Cytotoxicity assay showed that the IC50 of liposomes containing DOX was greater than that DOX only. Tumor growth inhibition curves in terms of mean tumor size (cm(3)) were presented. All the DOX formulations were effective in preventing tumor growth compared to saline. Treatment with DOX loaded liposomes displayed a pronounced inhibition in tumor growth than treatment with DOX only. Histopathological examination of the entire tumor sections for the various groups revealed marked differences in cellular features accompanied by varying degrees in necrosis percentage ranging from 12% for saline treated mice to 70% for DOX loaded liposome treated mice. The proposed liposomal formulation can efficiently deliver the drug into the tumor cells by endocytosis (or passive diffusion) and lead to a high concentration of DOX in the tumor cells. The study showed that the formulation of liposomal doxorubicin improved the therapeutic index of DOX and had increased anti-tumor activity against Ehrlich tumor models. PMID:25972739

  5. Octanol-assisted liposome assembly on chip

    PubMed Central

    Deshpande, Siddharth; Caspi, Yaron; Meijering, Anna E. C.; Dekker, Cees

    2016-01-01

    Liposomes are versatile supramolecular assemblies widely used in basic and applied sciences. Here we present a novel microfluidics-based method, octanol-assisted liposome assembly (OLA), to form monodisperse, cell-sized (5–20 μm), unilamellar liposomes with excellent encapsulation efficiency. Akin to bubble blowing, an inner aqueous phase and a surrounding lipid-carrying 1-octanol phase is pinched off by outer fluid streams. Such hydrodynamic flow focusing results in double-emulsion droplets that spontaneously develop a side-connected 1-octanol pocket. Owing to interfacial energy minimization, the pocket splits off to yield fully assembled solvent-free liposomes within minutes. This solves the long-standing fundamental problem of prolonged presence of residual oil in the liposome bilayer. We demonstrate the unilamellarity of liposomes with functional α-haemolysin protein pores in the membrane and validate the biocompatibility by inner leaflet localization of bacterial divisome proteins (FtsZ and ZipA). OLA offers a versatile platform for future analytical tools, delivery systems, nanoreactors and synthetic cells. PMID:26794442

  6. Plasmon resonant liposomes for controlled drug delivery

    NASA Astrophysics Data System (ADS)

    Knights-Mitchell, Shellie S.; Romanowski, Marek

    2015-03-01

    Nanotechnology use in drug delivery promotes a reduction in systemic toxicity, improved pharmacokinetics, and better drug bioavailability. Liposomes continue to be extensively researched as drug delivery systems (DDS) with formulations such as Doxil® and Ambisome® approved by FDA and successfully marketed in the United States. However, the limited ability to precisely control release of active ingredients from these vesicles continues to challenge the broad implementation of this technology. Moreover, the full potential of the carrier to sequester drugs until it can reach its intended target has yet to be realized. Here, we describe a liposomal DDS that releases therapeutic doses of an anticancer drug in response to external stimulus. Earlier, we introduced degradable plasmon resonant liposomes. These constructs, obtained by reducing gold on the liposome surface, facilitate spatial and temporal release of drugs upon laser light illumination that ultimately induces an increase in temperature. In this work, plasmon resonant liposomes have been developed to stably encapsulate and retain doxorubicin at physiological conditions represented by isotonic saline at 37o C and pH 7.4. Subsequently, they are stimulated to release contents either by a 5o C increase in temperature or by laser illumination (760 nm and 88 mW/cm2 power density). Successful development of degradable plasmon resonant liposomes responsive to near-infrared light or moderate hyperthermia can provide a new delivery method for multiple lipophilic and hydrophilic drugs with pharmacokinetic profiles that limit clinical utility.

  7. Octanol-assisted liposome assembly on chip

    NASA Astrophysics Data System (ADS)

    Deshpande, Siddharth; Caspi, Yaron; Meijering, Anna E. C.; Dekker, Cees

    2016-01-01

    Liposomes are versatile supramolecular assemblies widely used in basic and applied sciences. Here we present a novel microfluidics-based method, octanol-assisted liposome assembly (OLA), to form monodisperse, cell-sized (5-20 μm), unilamellar liposomes with excellent encapsulation efficiency. Akin to bubble blowing, an inner aqueous phase and a surrounding lipid-carrying 1-octanol phase is pinched off by outer fluid streams. Such hydrodynamic flow focusing results in double-emulsion droplets that spontaneously develop a side-connected 1-octanol pocket. Owing to interfacial energy minimization, the pocket splits off to yield fully assembled solvent-free liposomes within minutes. This solves the long-standing fundamental problem of prolonged presence of residual oil in the liposome bilayer. We demonstrate the unilamellarity of liposomes with functional α-haemolysin protein pores in the membrane and validate the biocompatibility by inner leaflet localization of bacterial divisome proteins (FtsZ and ZipA). OLA offers a versatile platform for future analytical tools, delivery systems, nanoreactors and synthetic cells.

  8. Octanol-assisted liposome assembly on chip.

    PubMed

    Deshpande, Siddharth; Caspi, Yaron; Meijering, Anna E C; Dekker, Cees

    2016-01-01

    Liposomes are versatile supramolecular assemblies widely used in basic and applied sciences. Here we present a novel microfluidics-based method, octanol-assisted liposome assembly (OLA), to form monodisperse, cell-sized (5-20 μm), unilamellar liposomes with excellent encapsulation efficiency. Akin to bubble blowing, an inner aqueous phase and a surrounding lipid-carrying 1-octanol phase is pinched off by outer fluid streams. Such hydrodynamic flow focusing results in double-emulsion droplets that spontaneously develop a side-connected 1-octanol pocket. Owing to interfacial energy minimization, the pocket splits off to yield fully assembled solvent-free liposomes within minutes. This solves the long-standing fundamental problem of prolonged presence of residual oil in the liposome bilayer. We demonstrate the unilamellarity of liposomes with functional α-haemolysin protein pores in the membrane and validate the biocompatibility by inner leaflet localization of bacterial divisome proteins (FtsZ and ZipA). OLA offers a versatile platform for future analytical tools, delivery systems, nanoreactors and synthetic cells. PMID:26794442

  9. Liposomal Formulation of Amphiphilic Fullerene Antioxidants

    PubMed Central

    Zhou, Zhiguo; Lenk, Robert P.; Dellinger, Anthony; Wilson, Stephen R.; Sadler, Robert; Kepley, Christopher L.

    2010-01-01

    Novel amphiphilic fullerene[70] derivatives that are rationally designed to intercalate in lipid bilayers are reported, as well as its vesicular formulation with surprisingly high loading capacity up to 65% by weight. The amphiphilic C70 bisadduct forms uniform and dimensionally stable liposomes with auxiliary natural phospholipids as demonstrated by buoyant density test, particle size distribution and 31P NMR. The antioxidant property of fullerenes is retained in the bipolarly functionalized C70 derivative, Amphiphilic Liposomal Malonylfullerene[70] (ALM) as well as in its liposomal formulations, as shown by both electron paramagnetic resonance (EPR) studies and in vitro reactive oxygen species (ROS) inhibition experiments. The liposomally formulated ALM efficiently quenched hydroxyl radicals and superoxide radicals. In addition, the fullerene liposome inhibited radical-induced lipid peroxidation and maintained the integrity of the lipid bilayer structure. This new class of liposomally formulated, amphipathic fullerene compounds represents a novel drug delivery system for fullerenes and provides a promising pathway to treat oxidative stress-related diseases. PMID:20839887

  10. Effect of surface-potential modulators on the opening of lipid pores in liposomal and mitochondrial inner membranes induced by palmitate and calcium ions.

    PubMed

    Belosludtsev, Konstantin N; Belosludtseva, Natalia V; Agafonov, Alexey V; Penkov, Nikita V; Samartsev, Victor N; Lemasters, John J; Mironova, Galina D

    2015-10-01

    The effect of surface-potential modulators on palmitate/Ca2+-induced formation of lipid pores was studied in liposomal and inner mitochondrial membranes. Pore formation was monitored by sulforhodamine B release from liposomes and swelling of mitochondria. ζ-potential in liposomes was determined from electrophoretic mobility. Replacement of sucrose as the osmotic agent with KCl decreased negative ζ-potential in liposomes and increased resistance of both mitochondria and liposomes to the pore inducers, palmitic acid, and Ca2+. Micromolar Mg2+ also inhibited palmitate/Ca2+-induced permeabilization of liposomes. The rate of palmitate/Ca2+-induced, cyclosporin A-insensitive swelling of mitochondria increased 22% upon increasing pH from 7.0 to 7.8. At below the critical micelle concentration, the cationic detergent cetyltrimethylammonium bromide (10 μM) and the anionic surfactant sodium dodecylsulfate (10-50 μM) made the ζ-potential less and more negative, respectively, and inhibited and stimulated opening of mitochondrial palmitate/Ca2+-induced lipid pores. Taken together, the findings indicate that surface potential regulates palmitate/Ca2+-induced lipid pore opening. PMID:26014488