Science.gov

Sample records for causada por burkholderia

  1. Pathogenesis of Burkholderia pseudomallei and Burkholderia mallei.

    PubMed

    Larsen, Joseph C; Johnson, Nathan H

    2009-06-01

    Burkholderia pseudomallei and mallei are biological agents of military significance. There has been significant research in recent years to develop medical countermeasures for these organisms. This review summarizes work which details aspects of the pathogenesis of B. pseudomallei and mallei and discusses key scientific questions and directions for future research. PMID:19585782

  2. Antibiotic resistance in Burkholderia species.

    PubMed

    Rhodes, Katherine A; Schweizer, Herbert P

    2016-09-01

    The genus Burkholderia comprises metabolically diverse and adaptable Gram-negative bacteria, which thrive in often adversarial environments. A few members of the genus are prominent opportunistic pathogens. These include Burkholderia mallei and Burkholderia pseudomallei of the B. pseudomallei complex, which cause glanders and melioidosis, respectively. Burkholderia cenocepacia, Burkholderia multivorans, and Burkholderia vietnamiensis belong to the Burkholderia cepacia complex and affect mostly cystic fibrosis patients. Infections caused by these bacteria are difficult to treat because of significant antibiotic resistance. The first line of defense against antimicrobials in Burkholderia species is the outer membrane penetration barrier. Most Burkholderia contain a modified lipopolysaccharide that causes intrinsic polymyxin resistance. Contributing to reduced drug penetration are restrictive porin proteins. Efflux pumps of the resistance nodulation cell division family are major players in Burkholderia multidrug resistance. Third and fourth generation β-lactam antibiotics are seminal for treatment of Burkholderia infections, but therapeutic efficacy is compromised by expression of several β-lactamases and ceftazidime target mutations. Altered DNA gyrase and dihydrofolate reductase targets cause fluoroquinolone and trimethoprim resistance, respectively. Although antibiotic resistance hampers therapy of Burkholderia infections, the characterization of resistance mechanisms lags behind other non-enteric Gram-negative pathogens, especially ESKAPE bacteria such as Acinetobacter baumannii, Klebsiella pneumoniae and Pseudomonas aeruginosa. PMID:27620956

  3. Phylogenomic Study of Burkholderia glathei-like Organisms, Proposal of 13 Novel Burkholderia Species and Emended Descriptions of Burkholderia sordidicola, Burkholderia zhejiangensis, and Burkholderia grimmiae

    PubMed Central

    Peeters, Charlotte; Meier-Kolthoff, Jan P.; Verheyde, Bart; De Brandt, Evie; Cooper, Vaughn S.; Vandamme, Peter

    2016-01-01

    Partial gyrB gene sequence analysis of 17 isolates from human and environmental sources revealed 13 clusters of strains and identified them as Burkholderia glathei clade (BGC) bacteria. The taxonomic status of these clusters was examined by whole-genome sequence analysis, determination of the G+C content, whole-cell fatty acid analysis and biochemical characterization. The whole-genome sequence-based phylogeny was assessed using the Genome Blast Distance Phylogeny (GBDP) method and an extended multilocus sequence analysis (MLSA) approach. The results demonstrated that these 17 BGC isolates represented 13 novel Burkholderia species that could be distinguished by both genotypic and phenotypic characteristics. BGC strains exhibited a broad metabolic versatility and developed beneficial, symbiotic, and pathogenic interactions with different hosts. Our data also confirmed that there is no phylogenetic subdivision in the genus Burkholderia that distinguishes beneficial from pathogenic strains. We therefore propose to formally classify the 13 novel BGC Burkholderia species as Burkholderia arvi sp. nov. (type strain LMG 29317T = CCUG 68412T), Burkholderia hypogeia sp. nov. (type strain LMG 29322T = CCUG 68407T), Burkholderia ptereochthonis sp. nov. (type strain LMG 29326T = CCUG 68403T), Burkholderia glebae sp. nov. (type strain LMG 29325T = CCUG 68404T), Burkholderia pedi sp. nov. (type strain LMG 29323T = CCUG 68406T), Burkholderia arationis sp. nov. (type strain LMG 29324T = CCUG 68405T), Burkholderia fortuita sp. nov. (type strain LMG 29320T = CCUG 68409T), Burkholderia temeraria sp. nov. (type strain LMG 29319T = CCUG 68410T), Burkholderia calidae sp. nov. (type strain LMG 29321T = CCUG 68408T), Burkholderia concitans sp. nov. (type strain LMG 29315T = CCUG 68414T), Burkholderia turbans sp. nov. (type strain LMG 29316T = CCUG 68413T), Burkholderia catudaia sp. nov. (type strain LMG 29318T = CCUG 68411T) and Burkholderia peredens sp. nov. (type strain LMG 29314T = CCUG

  4. CHROMOSOMAL MULTIPLICITY IN BURKHOLDERIA CEPACIA

    EPA Science Inventory

    We have used CHEF gel electrophoresis to screen preparations of large DNA from different Burkholderia cepacia isolates for the presence of DNA species corresponding to the linearized forms of the three chromosomes of 3.4,2.5, and 0.9 Mb identified in B. cepacia strain 17616. DNA ...

  5. Use of the phytopathogenic effect for studies of Burkholderia virulence.

    PubMed

    Molchanova, E V; Ageeva, N P

    2015-02-01

    The phytopathogenic effect of the pseudomallei group Burkholderia is demonstrated on the Peireskia aculeata model. A method for evaluation of the effect is suggested. The effect correlates with the levels of Burkholderia pseudomallei, Burkholderia mallei, and Burkholderia thailandensis virulence for laboratory animals. P. aculeata can be used as a model for preliminary studies of the virulence of the above species. PMID:25705037

  6. Volatile-sulfur-compound profile distinguishes Burkholderia pseudomallei from Burkholderia thailandensis.

    PubMed

    Inglis, Timothy J J; Hahne, Dorothee R; Merritt, Adam J; Clarke, Michael W

    2015-03-01

    Solid-phase microextraction gas chromatography-mass spectrometry (SPME-GCMS) was used to show that dimethyl sulfide produced by Burkholderia pseudomallei is responsible for its unusual truffle-like smell and distinguishes the species from Burkholderia thailandensis. SPME-GCMS can be safely used to detect dimethyl sulfide produced by agar-grown B. pseudomallei. PMID:25568444

  7. Volatile-Sulfur-Compound Profile Distinguishes Burkholderia pseudomallei from Burkholderia thailandensis

    PubMed Central

    Hahne, Dorothee R.; Merritt, Adam J.; Clarke, Michael W.

    2015-01-01

    Solid-phase microextraction gas chromatography-mass spectrometry (SPME-GCMS) was used to show that dimethyl sulfide produced by Burkholderia pseudomallei is responsible for its unusual truffle-like smell and distinguishes the species from Burkholderia thailandensis. SPME-GCMS can be safely used to detect dimethyl sulfide produced by agar-grown B. pseudomallei. PMID:25568444

  8. Burkholderia humisilvae sp. nov., Burkholderia solisilvae sp. nov. and Burkholderia rhizosphaerae sp. nov., isolated from forest soil and rhizosphere soil.

    PubMed

    Lee, Jae-Chan; Whang, Kyung-Sook

    2015-09-01

    Strains Y-12(T) and Y-47(T) were isolated from mountain forest soil and strain WR43(T) was isolated from rhizosphere soil, at Daejeon, Korea. The three strains grew at 10-55 °C (optimal growth at 28-30 °C), at pH 3.0-8.0 (optimal growth at pH 6.0) and in the presence of 0-4.0% (w/v) NaCl, growing optimally in the absence of added NaCl. On the basis of 16S rRNA gene sequence analysis, the three strains were found to belong to the genus Burkholderia, showing the closest phylogenetic similarity to Burkholderia diazotrophica JPY461(T) (97.2-97.7%); the similarity between the three sequences ranged from 98.3 to 98.7%. Additionally, the three strains formed a distinct group in phylogenetic trees based on the housekeeping genes recA and gyrB. The predominant ubiquinone was Q-8, the major fatty acids were C16 : 0 and C17  : 0 cyclo and the DNA G+C content of the novel isolates was 61.6-64.4 mol%. DNA-DNA relatedness among the three strains and the type strains of the closest species of the genus Burkholderia was less than 50%. On the basis of 16S rRNA, recA and gyrB gene sequence similarities, chemotaxonomic and phenotypic data, the three strains represent three novel species within the genus Burkholderia, for which the names Burkholderia humisilvae sp. nov. (type strain Y-12(T)= KACC 17601(T) = NBRC 109933(T) = NCAIM B 02543(T)), Burkholderia solisilvae sp. nov. (type strain Y-47(T) = KACC 17602(T)= NBRC 109934(T) = NCAIM B 02539(T)) and Burkholderia rhizosphaerae sp. nov. (type strain WR43(T) = KACC 17603(T) = NBRC 109935(T) = NCAIM B 02541(T)) are proposed. PMID:26031294

  9. 40 CFR 725.1075 - Burkholderia cepacia complex.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Burkholderia cepacia complex. 725.1075... Specific Microorganisms § 725.1075 Burkholderia cepacia complex. (a) Microorganism and significant new uses subject to reporting. (1) The microorganisms identified as the Burkholderia cepacia complex defined...

  10. Flagellar Glycosylation in Burkholderia pseudomallei and Burkholderia thailandensis▿

    PubMed Central

    Scott, Andrew E.; Twine, Susan M.; Fulton, Kelly M.; Titball, Richard W.; Essex-Lopresti, Angela E.; Atkins, Timothy P.; Prior, Joann L.

    2011-01-01

    Glycosylation of proteins is known to impart novel physical properties and biological roles to proteins from both eukaryotes and prokaryotes. In this study, gel-based glycoproteomics were used to identify glycoproteins of the potential biothreat agent Burkholderia pseudomallei and the closely related but nonpathogenic B. thailandensis. Top-down and bottom-up mass spectrometry (MS) analyses identified that the flagellin proteins of both species were posttranslationally modified by novel glycans. Analysis of proteins from two strains of each species demonstrated that B. pseudomallei flagellin proteins were modified with a glycan with a mass of 291 Da, while B. thailandensis flagellin protein was modified with related glycans with a mass of 300 or 342 Da. Structural characterization of the B. thailandensis carbohydrate moiety suggests that it is an acetylated hexuronic acid. In addition, we have identified through mutagenesis a gene from the lipopolysaccharide (LPS) O-antigen biosynthetic cluster which is involved in flagellar glycosylation, and inactivation of this gene eliminates flagellar glycosylation and motility in B. pseudomallei. This is the first report to conclusively demonstrate the presence of a carbohydrate covalently linked to a protein in B. pseudomallei and B. thailandensis, and it suggests new avenues to explore in order to examine the marked differences in virulence between these two species. PMID:21602339

  11. Misidentification of Burkholderia pseudomallei as Burkholderia cepacia by the VITEK 2 system.

    PubMed

    Zong, Zhiyong; Wang, Xiaohui; Deng, Yiyun; Zhou, Taoyou

    2012-10-01

    A previously healthy Chinese male returned from working in the Malaysian jungle with a fever. A blood culture grew Gram-negative bacilli that were initially identified as Burkholderia cepacia by the VITEK 2 system but were subsequently found to be Burkholderia pseudomallei by partial sequencing of the 16S rRNA gene. The identification of B. pseudomallei using commercially available automated systems is problematic and clinicians in non-endemic areas should be aware of the possibility of melioidosis in patients with a relevant travel history and blood cultures growing Burkholderia spp. PMID:22820689

  12. Host Evasion by Burkholderia cenocepacia

    PubMed Central

    Ganesan, Shyamala; Sajjan, Umadevi S.

    2012-01-01

    Burkholderia cenocepacia is an opportunistic respiratory pathogen of individuals with cystic fibrosis (CF). Some strains of B. cenocepacia are highly transmissible and resistant to almost all antibiotics. Approximately one-third of B. cenocepacia infected CF patients go on to develop fatal “cepacia syndrome.” During the last two decades, substantial progress has been made with regards to evasion of host innate defense mechanisms by B. cenocepacia. Almost all strains of B. cenocepacia have the capacity to survive and replicate intracellularly in both airway epithelial cells and macrophages, which are primary sentinels of the lung and play a pivotal role in clearance of infecting bacteria. Those strains of B. cenocepacia, which express both cable pili and the associated 22 kDa adhesin are also capable of transmigrating across airway epithelium and persist in mouse models of infection. In this review, we will discuss how this type of interaction between B. cenocepacia and host may lead to persistence of bacteria as well as lung inflammation in CF patients. PMID:22919590

  13. Host evasion by Burkholderia cenocepacia.

    PubMed

    Ganesan, Shyamala; Sajjan, Umadevi S

    2011-01-01

    Burkholderia cenocepacia is an opportunistic respiratory pathogen of individuals with cystic fibrosis (CF). Some strains of B. cenocepacia are highly transmissible and resistant to almost all antibiotics. Approximately one-third of B. cenocepacia infected CF patients go on to develop fatal "cepacia syndrome." During the last two decades, substantial progress has been made with regards to evasion of host innate defense mechanisms by B. cenocepacia. Almost all strains of B. cenocepacia have the capacity to survive and replicate intracellularly in both airway epithelial cells and macrophages, which are primary sentinels of the lung and play a pivotal role in clearance of infecting bacteria. Those strains of B. cenocepacia, which express both cable pili and the associated 22 kDa adhesin are also capable of transmigrating across airway epithelium and persist in mouse models of infection. In this review, we will discuss how this type of interaction between B. cenocepacia and host may lead to persistence of bacteria as well as lung inflammation in CF patients. PMID:22919590

  14. Burkholderia stagnalis sp. nov. and Burkholderia territorii sp. nov., two novel Burkholderia cepacia complex species from environmental and human sources.

    PubMed

    De Smet, Birgit; Mayo, Mark; Peeters, Charlotte; Zlosnik, James E A; Spilker, Theodore; Hird, Trevor J; LiPuma, John J; Kidd, Timothy J; Kaestli, Mirjam; Ginther, Jennifer L; Wagner, David M; Keim, Paul; Bell, Scott C; Jacobs, Jan A; Currie, Bart J; Vandamme, Peter

    2015-07-01

    Nine Burkholderia cepacia complex (Bcc) bacteria were isolated during environmental surveys for the ecological niche of Burkholderia pseudomallei, the aetiological agent of melioidosis, in the Northern Territory of Australia. They represented two multi-locus sequence analysis-based clusters, referred to as Bcc B and Bcc L. Three additional environmental and clinical Bcc B isolates were identified upon deposition of the sequences in the PubMLST database. Analysis of the concatenated nucleotide sequence divergence levels within both groups (1.4 and 1.9%, respectively) and towards established Bcc species (4.0 and 3.9%, respectively) demonstrated that the two taxa represented novel Bcc species. All 12 isolates were further characterized using 16S rRNA and recA gene sequence analysis, RAPD analysis, DNA base content determination, fatty acid methyl ester analysis and biochemical profiling. Analysis of recA gene sequences revealed a remarkable diversity within each of these taxa, but, together, the results supported the affiliation of the two taxa to the Bcc. Bcc B strains can be differentiated from most other Bcc members by the assimilation of maltose. Bcc L strains can be differentiated from other Bcc members by the absence of assimilation of N-acetylglucosamine. The names Burkholderia stagnalis sp. nov. with type strain LMG 28156(T) ( = CCUG 65686(T)) and Burkholderia territorii sp. nov. with type strain LMG 28158(T) ( = CCUG 65687(T)) are proposed for Bcc B and Bcc L bacteria, respectively. PMID:25872960

  15. Burkholderia vaccines: are we moving forward?

    PubMed Central

    Choh, Leang-Chung; Ong, Guang-Han; Vellasamy, Kumutha M.; Kalaiselvam, Kaveena; Kang, Wen-Tyng; Al-Maleki, Anis R.; Mariappan, Vanitha; Vadivelu, Jamuna

    2013-01-01

    The genus Burkholderia consists of diverse species which includes both “friends” and “foes.” Some of the “friendly” Burkholderia spp. are extensively used in the biotechnological and agricultural industry for bioremediation and biocontrol. However, several members of the genus including B. pseudomallei, B. mallei, and B. cepacia, are known to cause fatal disease in both humans and animals. B. pseudomallei and B. mallei are the causative agents of melioidosis and glanders, respectively, while B. cepacia infection is lethal to cystic fibrosis (CF) patients. Due to the high rate of infectivity and intrinsic resistance to many commonly used antibiotics, together with high mortality rate, B. mallei and B. pseudomallei are considered to be potential biological warfare agents. Treatments of the infections caused by these bacteria are often unsuccessful with frequent relapse of the infection. Thus, we are at a crucial stage of the need for Burkholderia vaccines. Although the search for a prophylactic therapy candidate continues, to date development of vaccines has not advanced beyond research to human clinical trials. In this article, we review the current research on development of safe vaccines with high efficacy against B. pseudomallei, B. mallei, and B. cepacia. It can be concluded that further research will enable elucidation of the potential benefits and risks of Burkholderia vaccines. PMID:23386999

  16. Natural Burkholderia mallei Infection in Dromedary, Bahrain

    PubMed Central

    Wernery, Ulrich; Wernery, Renate; Joseph, Marina; Al-Salloom, Fajer; Johnson, Bobby; Kinne, Joerg; Jose, Shanti; Jose, Sherry; Tappendorf, Britta; Hornstra, Heidie

    2011-01-01

    We confirm a natural infection of dromedaries with glanders. Multilocus variable number tandem repeat analysis of a Burkholderia mallei strain isolated from a diseased dromedary in Bahrain revealed close genetic proximity to strain Dubai 7, which caused an outbreak of glanders in horses in the United Arab Emirates in 2004. PMID:21762586

  17. GENOME ANALYSIS OF BURKHOLDERIA CEPACIA AC1100

    EPA Science Inventory

    Burkholderia cepacia is an important organism in bioremediation of environmental pollutants and it is also of increasing interest as a human pathogen. The genomic organization of B. cepacia is being studied in order to better understand its unusual adaptive capacity and genome pl...

  18. Members of the genus Burkholderia: good and bad guys

    PubMed Central

    Eberl, Leo; Vandamme, Peter

    2016-01-01

    In the 1990s several biocontrol agents on that contained Burkholderia strains were registered by the United States Environmental Protection Agency (EPA). After risk assessment these products were withdrawn from the market and a moratorium was placed on the registration of Burkholderia-containing products, as these strains may pose a risk to human health. However, over the past few years the number of novel Burkholderia species that exhibit plant-beneficial properties and are normally not isolated from infected patients has increased tremendously. In this commentary we wish to summarize recent efforts that aim at discerning pathogenic from beneficial Burkholderia strains. PMID:27303639

  19. Members of the genus Burkholderia: good and bad guys.

    PubMed

    Eberl, Leo; Vandamme, Peter

    2016-01-01

    In the 1990s several biocontrol agents on that contained Burkholderia strains were registered by the United States Environmental Protection Agency (EPA). After risk assessment these products were withdrawn from the market and a moratorium was placed on the registration of Burkholderia-containing products, as these strains may pose a risk to human health. However, over the past few years the number of novel Burkholderia species that exhibit plant-beneficial properties and are normally not isolated from infected patients has increased tremendously. In this commentary we wish to summarize recent efforts that aim at discerning pathogenic from beneficial Burkholderia strains. PMID:27303639

  20. Comparative metabolic systems analysis of pathogenic Burkholderia.

    PubMed

    Bartell, Jennifer A; Yen, Phillip; Varga, John J; Goldberg, Joanna B; Papin, Jason A

    2014-01-01

    Burkholderia cenocepacia and Burkholderia multivorans are opportunistic drug-resistant pathogens that account for the majority of Burkholderia cepacia complex infections in cystic fibrosis patients and also infect other immunocompromised individuals. While they share similar genetic compositions, B. cenocepacia and B. multivorans exhibit important differences in pathogenesis. We have developed reconciled genome-scale metabolic network reconstructions of B. cenocepacia J2315 and B. multivorans ATCC 17616 in parallel (designated iPY1537 and iJB1411, respectively) to compare metabolic abilities and contextualize genetic differences between species. The reconstructions capture the metabolic functions of the two species and give insight into similarities and differences in their virulence and growth capabilities. The two reconstructions have 1,437 reactions in common, and iPY1537 and iJB1411 have 67 and 36 metabolic reactions unique to each, respectively. After curating the extensive reservoir of metabolic genes in Burkholderia, we identified 6 genes essential to growth that are unique to iPY1513 and 13 genes uniquely essential to iJB1411. The reconstructions were refined and validated by comparing in silico growth predictions to in vitro growth capabilities of B. cenocepacia J2315, B. cenocepacia K56-2, and B. multivorans ATCC 17616 on 104 carbon sources. Overall, we identified functional pathways that indicate B. cenocepacia can produce a wider array of virulence factors compared to B. multivorans, which supports the clinical observation that B. cenocepacia is more virulent than B. multivorans. The reconciled reconstructions provide a framework for generating and testing hypotheses on the metabolic and virulence capabilities of these two related emerging pathogens. PMID:24163337

  1. Comparative Metabolic Systems Analysis of Pathogenic Burkholderia

    PubMed Central

    Bartell, Jennifer A.; Yen, Phillip; Varga, John J.; Goldberg, Joanna B.

    2014-01-01

    Burkholderia cenocepacia and Burkholderia multivorans are opportunistic drug-resistant pathogens that account for the majority of Burkholderia cepacia complex infections in cystic fibrosis patients and also infect other immunocompromised individuals. While they share similar genetic compositions, B. cenocepacia and B. multivorans exhibit important differences in pathogenesis. We have developed reconciled genome-scale metabolic network reconstructions of B. cenocepacia J2315 and B. multivorans ATCC 17616 in parallel (designated iPY1537 and iJB1411, respectively) to compare metabolic abilities and contextualize genetic differences between species. The reconstructions capture the metabolic functions of the two species and give insight into similarities and differences in their virulence and growth capabilities. The two reconstructions have 1,437 reactions in common, and iPY1537 and iJB1411 have 67 and 36 metabolic reactions unique to each, respectively. After curating the extensive reservoir of metabolic genes in Burkholderia, we identified 6 genes essential to growth that are unique to iPY1513 and 13 genes uniquely essential to iJB1411. The reconstructions were refined and validated by comparing in silico growth predictions to in vitro growth capabilities of B. cenocepacia J2315, B. cenocepacia K56-2, and B. multivorans ATCC 17616 on 104 carbon sources. Overall, we identified functional pathways that indicate B. cenocepacia can produce a wider array of virulence factors compared to B. multivorans, which supports the clinical observation that B. cenocepacia is more virulent than B. multivorans. The reconciled reconstructions provide a framework for generating and testing hypotheses on the metabolic and virulence capabilities of these two related emerging pathogens. PMID:24163337

  2. Complete genome sequences for 59 burkholderia isolates, both pathogenic and near neighbor.

    PubMed

    Johnson, Shannon L; Bishop-Lilly, Kimberly A; Ladner, Jason T; Daligault, Hajnalka E; Davenport, Karen W; Jaissle, James; Frey, Kenneth G; Koroleva, Galina I; Bruce, David C; Coyne, Susan R; Broomall, Stacey M; Li, Po-E; Teshima, Hazuki; Gibbons, Henry S; Palacios, Gustavo F; Rosenzweig, C Nicole; Redden, Cassie L; Xu, Yan; Minogue, Timothy D; Chain, Patrick S

    2015-01-01

    The genus Burkholderia encompasses both pathogenic (including Burkholderia mallei and Burkholderia pseudomallei, U.S. Centers for Disease Control and Prevention Category B listed), and nonpathogenic Gram-negative bacilli. Here we present full genome sequences for a panel of 59 Burkholderia strains, selected to aid in detection assay development. PMID:25931592

  3. Complete Genome Sequences for 59 Burkholderia Isolates, Both Pathogenic and Near Neighbor

    PubMed Central

    Bishop-Lilly, Kimberly A.; Ladner, Jason T.; Daligault, Hajnalka E.; Davenport, Karen W.; Jaissle, James; Frey, Kenneth G.; Koroleva, Galina I.; Bruce, David C.; Coyne, Susan R.; Broomall, Stacey M.; Li, Po-E; Teshima, Hazuki; Gibbons, Henry S.; Palacios, Gustavo F.; Rosenzweig, C. Nicole; Redden, Cassie L.; Xu, Yan; Minogue, Timothy D.; Chain, Patrick S.

    2015-01-01

    The genus Burkholderia encompasses both pathogenic (including Burkholderia mallei and Burkholderia pseudomallei, U.S. Centers for Disease Control and Prevention Category B listed), and nonpathogenic Gram-negative bacilli. Here we present full genome sequences for a panel of 59 Burkholderia strains, selected to aid in detection assay development. PMID:25931592

  4. Complete Genome Sequences for 59 Burkholderia Isolates, Both Pathogenic and Near Neighbor

    SciTech Connect

    Johnson, Shannon L.; Bishop-Lilly, Kimberly A.; Ladner, Jason T.; Daligault, Hajnalka E.; Davenport, Karen W.; Jaissle, James; Frey, Kenneth G.; Koroleva, Galina I.; Bruce, David C.; Coyne, Susan R.; Broomall, Stacey M.; Li, Po-E; Teshima, Hazuki; Gibbons, Henry S.; Palacios, Gustavo F.; Rosenzweig, C. Nicole; Redden, Cassie L.; Xu, Yan; Minogue, Timothy D.; Chain, Patrick S.

    2015-04-30

    The genus Burkholderia encompasses both pathogenic (including Burkholderia mallei and Burkholderia pseudomallei, U.S. Centers for Disease Control and Prevention Category B listed), and nonpathogenic Gram-negative bacilli. Presented in this document are full genome sequences for a panel of 59 Burkholderia strains, selected to aid in detection assay development.

  5. Whole-Genome Assemblies of 56 Burkholderia Species

    PubMed Central

    Daligault, H. E.; Davenport, K. W.; Minogue, T. D.; Bishop-Lilly, K. A.; Broomall, S. M.; Bruce, D. C.; Chain, P. S.; Coyne, S. R.; Frey, K. G.; Gibbons, H. S.; Jaissle, J.; Koroleva, G. I.; Ladner, J. T.; Lo, C.-C.; Munk, C.; Palacios, G. F.; Redden, C. L.; Rosenzweig, C. N.; Scholz, M. B.

    2014-01-01

    Burkholderia is a genus of betaproteobacteria that includes three notable human pathogens: B. cepacia, B. pseudomallei, and B. mallei. While B. pseudomallei and B. mallei are considered potential biowarfare agents, B. cepacia infections are largely limited to cystic fibrosis patients. Here, we present 56 Burkholderia genomes from 8 distinct species. PMID:25414490

  6. Whole-genome assemblies of 56 burkholderia species.

    PubMed

    Daligault, H E; Davenport, K W; Minogue, T D; Bishop-Lilly, K A; Broomall, S M; Bruce, D C; Chain, P S; Coyne, S R; Frey, K G; Gibbons, H S; Jaissle, J; Koroleva, G I; Ladner, J T; Lo, C-C; Munk, C; Palacios, G F; Redden, C L; Rosenzweig, C N; Scholz, M B; Johnson, S L

    2014-01-01

    Burkholderia is a genus of betaproteobacteria that includes three notable human pathogens: B. cepacia, B. pseudomallei, and B. mallei. While B. pseudomallei and B. mallei are considered potential biowarfare agents, B. cepacia infections are largely limited to cystic fibrosis patients. Here, we present 56 Burkholderia genomes from 8 distinct species. PMID:25414490

  7. Draft Genomes for Eight Burkholderia mallei Isolates from Turkey

    PubMed Central

    Daligault, H. E.; Davenport, K. W.; Minogue, T. D.; Bishop-Lilly, K. A.; Broomall, S. M.; Bruce, D. C.; Coyne, S. R.; Frey, K. G.; Gibbons, H. S.; Jaissle, J.; Koroleva, G. I.; Ladner, J. T.; Lo, C.-C.; Munk, C.; Wolcott, M. J.; Palacios, G. F.; Redden, C. L.; Rosenzweig, C. N.; Scholz, M. B.; Chain, P. S.

    2016-01-01

    Burkholderia mallei, the etiologic agent of glanders, is a Gram-negative, nonmotile, facultative intracellular pathogen. Although glanders has been eradicated from many parts of the world, the threat of B. mallei being used as a weapon is very real. Here we present draft genome assemblies of 8 Burkholderia mallei strains that were isolated in Turkey. PMID:26744368

  8. Draft Genomes for Eight Burkholderia mallei Isolates from Turkey.

    PubMed

    Daligault, H E; Johnson, S L; Davenport, K W; Minogue, T D; Bishop-Lilly, K A; Broomall, S M; Bruce, D C; Coyne, S R; Frey, K G; Gibbons, H S; Jaissle, J; Koroleva, G I; Ladner, J T; Lo, C-C; Munk, C; Wolcott, M J; Palacios, G F; Redden, C L; Rosenzweig, C N; Scholz, M B; Chain, P S

    2016-01-01

    Burkholderia mallei, the etiologic agent of glanders, is a Gram-negative, nonmotile, facultative intracellular pathogen. Although glanders has been eradicated from many parts of the world, the threat of B. mallei being used as a weapon is very real. Here we present draft genome assemblies of 8 Burkholderia mallei strains that were isolated in Turkey. PMID:26744368

  9. 40 CFR 725.1075 - Burkholderia cepacia complex.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CONTROL ACT REPORTING REQUIREMENTS AND REVIEW PROCESSES FOR MICROORGANISMS Significant New Uses for Specific Microorganisms § 725.1075 Burkholderia cepacia complex. (a) Microorganism and significant new uses subject to reporting. (1) The microorganisms identified as the Burkholderia cepacia complex defined...

  10. Draft Genomes for Eight Burkholderia mallei Isolates from Turkey

    DOE PAGESBeta

    Daligault, H. E.; Johnson, Shannon L.; Davenport, K. W.; Minogue, T. D.; Bishop-Lilly, K. A.; Broomall, S. M.; Bruce, D. C.; Coyne, S. R.; Frey, K. G.; Gibbons, H. S.; et al

    2016-01-07

    Burkholderia mallei, the etiologic agent of glanders, is a Gram-negative, nonmotile, facultative intracellular pathogen. Though glanders have been eradicated from many parts of the world, the threat ofB. malleibeing used as a weapon is very real. We, then, present draft genome assemblies of 8Burkholderia malleistrains that were isolated in Turkey.

  11. Genomic Sequence of Burkholderia multivorans NKI379, a Soil Bacterium That Inhibits the Growth of Burkholderia pseudomallei

    PubMed Central

    Hsueh, Pei-Tan; Liu, Jong-Kang; Chen, Ya-Lei; Liu, Pei-Ju; Ni, Wen-Fan; Chen, Yao-Shen; Wu, Keh-Ming

    2015-01-01

    Burkholderia multivorans NKI379 is a soil bacterium that exhibits an antagonistic effect against the growth of Burkholderia pseudomallei, the causative agent of the infectious disease melioidosis. We report the draft genomic sequence of B. multivorans NKI379, which has a G+C content of 67% and 5,203 candidate protein-encoding genes. PMID:26586873

  12. Genomic Sequence of Burkholderia multivorans NKI379, a Soil Bacterium That Inhibits the Growth of Burkholderia pseudomallei.

    PubMed

    Hsueh, Pei-Tan; Liu, Jong-Kang; Chen, Ya-Lei; Liu, Pei-Ju; Ni, Wen-Fan; Chen, Yao-Shen; Wu, Keh-Ming; Lin, Hsi-Hsun

    2015-01-01

    Burkholderia multivorans NKI379 is a soil bacterium that exhibits an antagonistic effect against the growth of Burkholderia pseudomallei, the causative agent of the infectious disease melioidosis. We report the draft genomic sequence of B. multivorans NKI379, which has a G+C content of 67% and 5,203 candidate protein-encoding genes. PMID:26586873

  13. Burkholderia thailandensis Is Virulent in Drosophila melanogaster

    PubMed Central

    Pilátová, Martina; Dionne, Marc S.

    2012-01-01

    Melioidosis is a serious infectious disease endemic to Southeast Asia and Northern Australia. This disease is caused by the Gram-negative bacterium Burkholderia pseudomallei; Burkholderia thailandensis is a closely-related organism known to be avirulent in humans. B. thailandensis has not previously been used to infect Drosophila melanogaster. We examined the effect of B. thailandensis infection on fly survival, on antimicrobial peptide expression, and on phagocytic cells. In the fruit fly, which possesses only an innate immune system, B. thailandensis is highly virulent, causing rapid death when injected or fed. One intriguing aspect of this infection is its temperature dependence: infected flies maintained at 25°C exhibit rapid bacterial proliferation and death in a few days, while infected animals maintained at 18°C exhibit very slow bacterial proliferation and take weeks to die; this effect is due in part to differences in immune activity of the host. Death in this infection is likely due at least in part to a secreted toxin, as injection of flies with sterile B. thailandensis-conditioned medium is able to kill. B. thailandensis infection strongly induces the expression of antimicrobial peptides, but this is insufficient to inhibit bacterial proliferation in infected flies. Finally, the function of fly phagocytes is not affected by B. thailandensis infection. The high virulence of B. thailandensis in the fly suggests the possibility that this organism is a natural pathogen of one or more invertebrates. PMID:23209596

  14. Antibacterial activity of a lectin-like Burkholderia cenocepacia protein.

    PubMed

    Ghequire, Maarten G K; De Canck, Evelien; Wattiau, Pierre; Van Winge, Iris; Loris, Remy; Coenye, Tom; De Mot, René

    2013-08-01

    Bacteriocins of the LlpA family have previously been characterized in the γ-proteobacteria Pseudomonas and Xanthomonas. These proteins are composed of two MMBL (monocot mannose-binding lectin) domains, a module predominantly and abundantly found in lectins from monocot plants. Genes encoding four different types of LlpA-like proteins were identified in genomes from strains belonging to the Burkholderia cepacia complex (Bcc) and the Burkholderia pseudomallei group. A selected recombinant LlpA-like protein from the human isolate Burkholderia cenocepacia AU1054 displayed narrow-spectrum genus-specific antibacterial activity, thus representing the first functionally characterized bacteriocin within this β-proteobacterial genus. Strain-specific killing was confined to other members of the Bcc, with mostly Burkholderia ambifaria strains being susceptible. In addition to killing planktonic cells, this bacteriocin also acted as an antibiofilm agent. PMID:23737242

  15. Environmental Transmission of the Gut Symbiont Burkholderia to Phloem-Feeding Blissus insularis.

    PubMed

    Xu, Yao; Buss, Eileen A; Boucias, Drion G

    2016-01-01

    The plant-phloem-feeding Blissus insularis possesses specialized midgut crypts, which harbor a dense population of the exocellular bacterial symbiont Burkholderia. Most individual B. insularis harbor a single Burkholderia ribotype in their midgut crypts; however, a diverse Burkholderia community exists within a host population. To understand the mechanism underlying the consistent occurrence of various Burkholderia in B. insularis and their specific association, we investigated potential gut symbiont transmission routes. PCR amplification detected a low titer of Burkholderia in adult reproductive tracts; however, fluorescence in situ hybridization assays failed to produce detectable signals in these tracts. Furthermore, no Burkholderia-specific PCR signals were detected in eggs and neonates, suggesting that it is unlikely that B. insularis prenatally transmits gut symbionts via ovarioles. In rearing experiments, most nymphs reared on St. Augustinegrass treated with cultured Burkholderia harbored the cultured Burkholderia strains. Burkholderia was detected in the untreated host grass of B. insularis, and most nymphs reared on untreated grass harbored a Burkholderia ribotype that was closely related to a plant-associated Burkholderia strain. These findings revealed that B. insularis neonates acquired Burkholderia primarily from the environment (i.e., plants and soils), even though the possibility of acquisition via egg surface cannot be excluded. In addition, our study explains how the diverse Burkholderia symbiont community in B. insularis populations can be maintained. PMID:27548682

  16. Environmental Transmission of the Gut Symbiont Burkholderia to Phloem-Feeding Blissus insularis

    PubMed Central

    Xu, Yao; Buss, Eileen A.; Boucias, Drion G.

    2016-01-01

    The plant-phloem-feeding Blissus insularis possesses specialized midgut crypts, which harbor a dense population of the exocellular bacterial symbiont Burkholderia. Most individual B. insularis harbor a single Burkholderia ribotype in their midgut crypts; however, a diverse Burkholderia community exists within a host population. To understand the mechanism underlying the consistent occurrence of various Burkholderia in B. insularis and their specific association, we investigated potential gut symbiont transmission routes. PCR amplification detected a low titer of Burkholderia in adult reproductive tracts; however, fluorescence in situ hybridization assays failed to produce detectable signals in these tracts. Furthermore, no Burkholderia-specific PCR signals were detected in eggs and neonates, suggesting that it is unlikely that B. insularis prenatally transmits gut symbionts via ovarioles. In rearing experiments, most nymphs reared on St. Augustinegrass treated with cultured Burkholderia harbored the cultured Burkholderia strains. Burkholderia was detected in the untreated host grass of B. insularis, and most nymphs reared on untreated grass harbored a Burkholderia ribotype that was closely related to a plant-associated Burkholderia strain. These findings revealed that B. insularis neonates acquired Burkholderia primarily from the environment (i.e., plants and soils), even though the possibility of acquisition via egg surface cannot be excluded. In addition, our study explains how the diverse Burkholderia symbiont community in B. insularis populations can be maintained. PMID:27548682

  17. Burkholderia cepacia Complex as Human Pathogens

    PubMed Central

    LiPuma, John J.

    2003-01-01

    Although sporadic human infection due to Burkholderia cepacia has been reported for many years, it has been only during the past few decades that species within the B. cepacia complex have emerged as significant opportunistic human pathogens. Individuals with cystic fibrosis, the most common inherited genetic disease in Caucasian populations, or chronic granulomatous disease, a primary immunodeficiency, are particularly at risk of life-threatening infection. Despite advances in our understanding of the taxonomy, microbiology, and epidemiology of B. cepacia complex, much remains unknown regarding specific human virulence factors. The broad-spectrum antimicrobial resistance demonstrated by most strains limits current therapy of infection. Recent research efforts are aimed at a better appreciation of the pathogenesis of human infection and the development of novel therapeutic and prophylactic strategies. PMID:19265997

  18. Development of Vaccines Against Burkholderia Pseudomallei

    PubMed Central

    Patel, Natasha; Conejero, Laura; De Reynal, Melanie; Easton, Anna; Bancroft, Gregory J.; Titball, Richard W.

    2011-01-01

    Burkholderia pseudomallei is a Gram-negative bacterium which is the causative agent of melioidosis, a disease which carries a high mortality and morbidity rate in endemic areas of South East Asia and Northern Australia. At present there is no available human vaccine that protects against B. pseudomallei, and with the current limitations of antibiotic treatment, the development of new preventative and therapeutic interventions is crucial. This review considers the multiple elements of melioidosis vaccine research including: (i) the immune responses required for protective immunity, (ii) animal models available for preclinical testing of potential candidates, (iii) the different experimental vaccine strategies which are being pursued, and (iv) the obstacles and opportunities for eventual registration of a licensed vaccine in humans. PMID:21991263

  19. Functional Characterization of Burkholderia pseudomallei Trimeric Autotransporters

    PubMed Central

    Campos, Cristine G.; Byrd, Matthew S.

    2013-01-01

    Burkholderia pseudomallei is a tier 1 select agent and the causative agent of melioidosis, a severe and often fatal disease with symptoms ranging from acute pneumonia and septic shock to a chronic infection characterized by abscess formation in the lungs, liver, and spleen. Autotransporters (ATs) are exoproteins belonging to the type V secretion system family, with many playing roles in pathogenesis. The genome of B. pseudomallei strain 1026b encodes nine putative trimeric AT proteins, of which only four have been described. Using a bioinformatic approach, we annotated putative domains within each trimeric AT protein, excluding the well-studied BimA protein, and found short repeated sequences unique to Burkholderia species, as well as an unexpectedly large proportion of ATs with extended signal peptide regions (ESPRs). To characterize the role of trimeric ATs in pathogenesis, we constructed disruption or deletion mutations in each of eight AT-encoding genes and evaluated the resulting strains for adherence to, invasion of, and plaque formation in A549 cells. The majority of the ATs (and/or the proteins encoded downstream) contributed to adherence to and efficient invasion of A549 cells. Using a BALB/c mouse model of infection, we determined the contributions of each AT to bacterial burdens in the lungs, liver, and spleen. At 48 h postinoculation, only one strain, Bp340::pDbpaC, demonstrated a defect in dissemination and/or survival in the liver, indicating that BpaC is required for wild-type virulence in this model. PMID:23716608

  20. Distinguishing species of the Burkholderia cepacia complex and Burkholderia gladioli by automated ribotyping.

    PubMed

    Brisse, S; Verduin, C M; Milatovic, D; Fluit, A; Verhoef, J; Laevens, S; Vandamme, P; Tümmler, B; Verbrugh, H A; van Belkum, A

    2000-05-01

    Several species belonging to the genus Burkholderia are clinically relevant, opportunistic pathogens that inhabit major environmental reservoirs. Consequently, the availability of means for adequate identification and epidemiological characterization of individual environmental or clinical isolates is mandatory. In the present communication we describe the use of the Riboprinter microbial characterization system (Qualicon, Warwick, United Kingdom) for automated ribotyping of 104 strains of Burkholderia species from diverse sources, including several publicly accessible collections. The main outcome of this analysis was that all strains were typeable and that strains of Burkholderia gladioli and of each species of the B. cepacia complex, including B. multivorans, B. stabilis, and B. vietnamiensis, were effectively discriminated. Furthermore, different ribotypes were discerned within each species. Ribotyping results were in general agreement with strain classification based on restriction fragment analysis of 16S ribosomal amplicons, but the resolution of ribotyping was much higher. This enabled automated molecular typing below the species level. Cluster analysis of the patterns obtained by ribotyping (riboprints) showed that within B. gladioli, B. multivorans, and B. cepacia genomovar VI, the different riboprints identified always clustered together. Riboprints of B. cepacia genomovars I and III, B. stabilis, and B. vietnamiensis did not show distinct clustering but rather exhibited the formation of loose assemblages within which several smaller, genomovar-specific clusters were delineated. Therefore, ribotyping proved useful for genomovar identification. Analysis of serial isolates from individual patients demonstrated that infection with a single ribotype had occurred, despite minor genetic differences that were detected by pulsed-field gel electrophoresis of DNA macrorestriction fragments. The automated approach allows very rapid and reliable identification and

  1. Contribution of Gene Loss to the Pathogenic Evolution of Burkholderia pseudomallei and Burkholderia mallei

    PubMed Central

    Moore, Richard A.; Reckseidler-Zenteno, Shauna; Kim, Heenam; Nierman, William; Yu, Yan; Tuanyok, Apichai; Warawa, Jonathan; DeShazer, David; Woods, Donald E.

    2004-01-01

    Burkholderia pseudomallei is the causative agent of melioidosis. Burkholderia thailandensis is a closely related species that can readily utilize l-arabinose as a sole carbon source, whereas B. pseudomallei cannot. We used Tn5-OT182 mutagenesis to isolate an arabinose-negative mutant of B. thailandensis. Sequence analysis of regions flanking the transposon insertion revealed the presence of an arabinose assimilation operon consisting of nine genes. Analysis of the B. pseudomallei chromosome showed a deletion of the operon from this organism. This deletion was detected in all B. pseudomallei and Burkholderia mallei strains investigated. We cloned the B. thailandensis E264 arabinose assimilation operon and introduced the entire operon into the chromosome of B. pseudomallei 406e via homologous recombination. The resultant strain, B. pseudomallei SZ5028, was able to utilize l-arabinose as a sole carbon source. Strain SZ5028 had a significantly higher 50% lethal dose for Syrian hamsters compared to the parent strain 406e. Microarray analysis revealed that a number of genes in a type III secretion system were down-regulated in strain SZ5028 when cells were grown in l-arabinose, suggesting a regulatory role for l-arabinose or a metabolite of l-arabinose. These results suggest that the ability to metabolize l-arabinose reduces the virulence of B. pseudomallei and that the genes encoding arabinose assimilation may be considered antivirulence genes. The increase in virulence associated with the loss of these genes may have provided a selective advantage for B. pseudomallei as these organisms adapted to survival in animal hosts. PMID:15213162

  2. rpsU-based discrimination within the genus Burkholderia.

    PubMed

    Frickmann, H; Neubauer, H; Loderstaedt, U; Derschum, H; Hagen, R M

    2014-06-01

    Sequencing of the gene rpsU reliably delineates saprophytic Burkholderia (B.) thailandensis from highly pathogenic B. mallei and B. pseudomallei. We analyzed the suitability of this technique for the delineation of the B. pseudomallei complex from other Burkholderia species. Both newly recorded and previously deposited sequences of well-characterized or reference strains (n = 84) of Azoarcus spp., B. ambifaria, B. anthina, B. caledonica, B. caribensis, B. caryophylli, B. cenocepacia, B. cepacia, B. cocovenenans, B. dolosa, B. fungorum, B. gladioli, B. glathei, B. glumae, B. graminis, B. hospita, B. kururensis, B. mallei, B. multivorans, B. phenazinium, B. phenoliruptrix, B. phymatum, B. phytofirmans, B. plantarii, B. pseudomallei, B. pyrrocinia, B. stabilis, B. thailandensis, B. ubonensis, B. vietnamiensis, B. xenovorans, not further defined Burkholderia spp., and the outliers Cupriavidus metallidurans, Laribacter hongkongensis, Pandorea norimbergensis, and Ralstonia pickettii were included in a multiple sequence analysis. Multiple sequence alignments led to the delineation of four major clusters, rpsU-I to rpsU-IV, with a sequence homology >92%. The B. pseudomallei complex formed the complex rpsU-II. Several Burkholderia species showed 100% sequence homology. This procedure is useful for the molecular confirmation or exclusion of glanders or melioidosis from primary patient material. Further discrimination within the Burkholderia genus requires other molecular approaches. PMID:24883196

  3. rpsU-based discrimination within the genus Burkholderia

    PubMed Central

    Neubauer, H.; Loderstaedt, U.; Derschum, H.; Hagen, R. M.

    2014-01-01

    Sequencing of the gene rpsU reliably delineates saprophytic Burkholderia (B.) thailandensis from highly pathogenic B. mallei and B. pseudomallei. We analyzed the suitability of this technique for the delineation of the B. pseudomallei complex from other Burkholderia species. Both newly recorded and previously deposited sequences of well-characterized or reference strains (n = 84) of Azoarcus spp., B. ambifaria, B. anthina, B. caledonica, B. caribensis, B. caryophylli, B. cenocepacia, B. cepacia, B. cocovenenans, B. dolosa, B. fungorum, B. gladioli, B. glathei, B. glumae, B. graminis, B. hospita, B. kururensis, B. mallei, B. multivorans, B. phenazinium, B. phenoliruptrix, B. phymatum, B. phytofirmans, B. plantarii, B. pseudomallei, B. pyrrocinia, B. stabilis, B. thailandensis, B. ubonensis, B. vietnamiensis, B. xenovorans, not further defined Burkholderia spp., and the outliers Cupriavidus metallidurans, Laribacter hongkongensis, Pandorea norimbergensis, and Ralstonia pickettii were included in a multiple sequence analysis. Multiple sequence alignments led to the delineation of four major clusters, rpsU-I to rpsU-IV, with a sequence homology >92%. The B. pseudomallei complex formed the complex rpsU-II. Several Burkholderia species showed 100% sequence homology. This procedure is useful for the molecular confirmation or exclusion of glanders or melioidosis from primary patient material. Further discrimination within the Burkholderia genus requires other molecular approaches. PMID:24883196

  4. Burkholderia rhizoxinica sp. nov. and Burkholderia endofungorum sp. nov., bacterial endosymbionts of the plant-pathogenic fungus Rhizopus microsporus.

    PubMed

    Partida-Martinez, Laila P; Groth, Ingrid; Schmitt, Imke; Richter, Walter; Roth, Martin; Hertweck, Christian

    2007-11-01

    Several strains of the fungus Rhizopus microsporus harbour endosymbiotic bacteria for the production of the causal agent of rice seedling blight, rhizoxin, and the toxic cyclopeptide rhizonin. R. microsporus and isolated endobacteria were selected for freeze-fracture electron microscopy, which allowed visualization of bacterial cells within the fungal cytosol by their two parallel-running envelope membranes and by the fine structure of the lipopolysaccharide layer of the outer membrane. Two representatives of bacterial endosymbionts were chosen for phylogenetic analyses on the basis of full 16S rRNA gene sequences, which revealed that the novel fungal endosymbionts formed a monophyletic group within the genus Burkholderia. Inter-sequence similarities ranged from 98.94 to 100%, and sequence similarities to members of the Burkholderia pseudomallei group, the closest neighbours, were 96.74-97.38%. In addition, the bacterial strains were distinguished from their phylogenetic neighbours by their fatty acid profiles and other biochemical characteristics. The phylogenetic studies based on 16S rRNA gene sequence data, together with conclusive DNA-DNA reassociation experiments, strongly support the proposal that these strains represent two novel species within the genus Burkholderia, for which the names Burkholderia rhizoxinica sp. nov. (type strain, HKI 454T=DSM 19002T=CIP 109453T) and Burkholderia endofungorum sp. nov. (type strain, HKI 456T=DSM 19003T=CIP 109454T) are proposed. PMID:17978222

  5. Outer Membrane Proteome of Burkholderia pseudomallei and Burkholderia mallei From Diverse Growth Conditions

    PubMed Central

    Schell, Mark A.; Zhao, Peng; Wells, Lance

    2016-01-01

    Burkholderia mallei and Burkholderia pseudomallei are closely related, aerosol-infective human pathogens that cause life-threatening diseases. Biochemical analyses requiring large-scale growth and manipulation at biosafety level 3 under select agent regulations are cumbersome and hazardous. We developed a simple, safe, and rapid method to prepare highly purified outer membrane (OM) fragments from these pathogens. Shotgun proteomic analyses of OMs by trypsin shaving and mass spectrometry identified >155 proteins, the majority of which are clearly outer membrane proteins (OMPs). These included: 13 porins, 4 secretins for virulence factor export, 11 efflux pumps, multiple components of a Type VI secreton, metal transport receptors, polysaccharide exporters, and hypothetical OMPs of unknown function. We also identified 20 OMPs in each pathogen that are abundant under a wide variety of conditions, including in serum and with macrophages, suggesting these are fundamental for growth and survival and may represent prime drug or vaccine targets. Comparison of the OM proteomes of B. mallei and B. pseudomallei showed many similarities but also revealed a few differences, perhaps reflecting evolution of B. mallei away from environmental survival toward host-adaptation. PMID:21391724

  6. Burkholderia cepacia Complex Vaccines: Where Do We Go from here?

    PubMed Central

    Pradenas, Gonzalo A.; Ross, Brittany N.; Torres, Alfredo G.

    2016-01-01

    Burkholderia comprises a wide variety of environmental Gram-negative bacteria. Burkholderia cepacia complex (Bcc) includes several Burkholderia species that pose a health hazard as they are able to cause respiratory infections in patients with chronic granulomatous disease and cystic fibrosis. Due to the intrinsic resistance to a wide array of antibiotics and naturally occurring immune evasion strategies, treatment of Bcc infections often proves to be unsuccessful. To date, limited work related to vaccine development has been performed for Bcc pathogens. In this review, we have gathered key aspects of Bcc research that have been reported in recent years related to vaccine efforts, virulence, immune responses, and animal models, and use this information to inform the research community of areas of opportunity toward development of a viable Bcc vaccine. PMID:27092530

  7. Prevalence of Burkholderia pseudomallei in Guangxi, China.

    PubMed

    Ma, G; Zheng, D; Cai, Q; Yuan, Z

    2010-01-01

    Melioidosis, an infectious disease caused by the Gram-negative bacterium Burkholderia pseudomallei, is now recognized as an important public health problem in Southeast Asia and tropical northern Australia. Although B. pseudomallei has been detected in various water and soil samples in southeast China, the enviromental distribution of B. pseudomallei in China is unclear. In the winter months of 2007, 154 and 130 soil and water samples, respectively, were collected from several locations in Guangxi, China. The samples were screened for B. pseudomallei by bacterial culture and identification and confirmed by PCR for species-specific 16S rDNA and flagellin genes. B. pseudomallei was detected in 8.4% of the soil samples but in none of the water samples. All positive samples were confined to a single low-lying region from rice paddy fields. Counts of B. pseudomallei ranged from 23 to 521 c.f.u./g soil. This is the first geographical distribution survey of B. pseudomallei in soil in Guangxi, China, and the data are of importance for further evaluating the impact of this pathogen on melioidosis in this region. PMID:19538822

  8. Strategies for Intracellular Survival of Burkholderia pseudomallei.

    PubMed

    Allwood, Elizabeth M; Devenish, Rodney J; Prescott, Mark; Adler, Ben; Boyce, John D

    2011-01-01

    Burkholderia pseudomallei is the causative agent of melioidosis, a disease with high mortality that is prevalent in tropical regions of the world. A key component of the pathogenesis of melioidosis is the ability of B. pseudomallei to enter, survive, and replicate within mammalian host cells. For non-phagocytic cells, bacterial adhesins have been identified both on the bacterial surface and associated with Type 4 pili. Cell invasion involves components of one or more of the three Type 3 Secretion System clusters, which also mediate, at least in part, the escape of bacteria from the endosome into the cytoplasm, where bacteria move by actin-based motility. The mechanism of actin-based motility is not clearly understood, but appears to differ from characterized mechanisms in other bacterial species. A small proportion of intracellular bacteria is targeted by host cell autophagy, involving direct recruitment of LC3 to endosomes rather than through uptake by canonical autophagosomes. However, the majority of bacterial cells are able to circumvent autophagy and other intracellular defense mechanisms such as the induction of inducible nitric oxide synthase, and then replicate in the cytoplasm and spread to adjacent cells via membrane fusion, resulting in the formation of multi-nucleated giant cells. A potential role for host cell ubiquitin in the autophagic response to bacterial infection has recently been proposed. PMID:22007185

  9. Experimental Phage Therapy for Burkholderia pseudomallei Infection

    PubMed Central

    Leang-Chung, Choh; Vellasamy, Kumutha Malar; Mariappan, Vanitha; Li-Yen, Chang; Vadivelu, Jamuna

    2016-01-01

    Burkholderia pseudomallei is an intracellular Gram-negative bacterial pathogen intrinsically resistant to a variety of antibiotics. Phages have been developed for use as an alternative treatment therapy, particularly for bacterial infections that do not respond to conventional antibiotics. In this study, we investigated the use of phages to treat cells infected with B. pseudomallei. Phage C34 isolated from seawater was purified and characterised on the basis of its host range and morphology using transmission electron microscopy (TEM). Phage C34 was able to lyse 39.5% of B. pseudomallei clinical strains. Due to the presence of contractile tail, phage C34 is classified as a member of the family Myoviridae, a tailed double-stranded DNA virus. When 2 × 105 A549 cells were exposed to 2 × 107 PFU of phage C34, 24 hours prior to infection with 2 × 106 CFU of B. pseudomallei, it was found that the survivability of the cells increased to 41.6 ± 6.8% as compared to 22.8 ± 6.0% in untreated control. Additionally, application of phage successfully rescued 33.3% of mice infected with B. pseudomallei and significantly reduced the bacterial load in the spleen of the phage-treated mice. These findings indicate that phage can be a potential antimicrobial agent for B. pseudomallei infections. PMID:27387381

  10. Efflux pump-mediated drug resistance in Burkholderia

    PubMed Central

    Podnecky, Nicole L.; Rhodes, Katherine A.; Schweizer, Herbert P.

    2015-01-01

    Several members of the genus Burkholderia are prominent pathogens. Infections caused by these bacteria are difficult to treat because of significant antibiotic resistance. Virtually all Burkholderia species are also resistant to polymyxin, prohibiting use of drugs like colistin that are available for treatment of infections caused by most other drug resistant Gram-negative bacteria. Despite clinical significance and antibiotic resistance of Burkholderia species, characterization of efflux pumps lags behind other non-enteric Gram-negative pathogens such as Acinetobacter baumannii and Pseudomonas aeruginosa. Although efflux pumps have been described in several Burkholderia species, they have been best studied in Burkholderia cenocepacia and B. pseudomallei. As in other non-enteric Gram-negatives, efflux pumps of the resistance nodulation cell division (RND) family are the clinically most significant efflux systems in these two species. Several efflux pumps were described in B. cenocepacia, which when expressed confer resistance to clinically significant antibiotics, including aminoglycosides, chloramphenicol, fluoroquinolones, and tetracyclines. Three RND pumps have been characterized in B. pseudomallei, two of which confer either intrinsic or acquired resistance to aminoglycosides, macrolides, chloramphenicol, fluoroquinolones, tetracyclines, trimethoprim, and in some instances trimethoprim+sulfamethoxazole. Several strains of the host-adapted B. mallei, a clone of B. pseudomallei, lack AmrAB-OprA, and are therefore aminoglycoside and macrolide susceptible. B. thailandensis is closely related to B. pseudomallei, but non-pathogenic to humans. Its pump repertoire and ensuing drug resistance profile parallels that of B. pseudomallei. An efflux pump in B. vietnamiensis plays a significant role in acquired aminoglycoside resistance. Summarily, efflux pumps are significant players in Burkholderia drug resistance. PMID:25926825

  11. Recent Advances in Burkholderia mallei and B. pseudomallei Research

    PubMed Central

    Hatcher, Christopher L.; Muruato, Laura A.

    2015-01-01

    Burkholderia mallei and Burkholderia pseudomallei are Gram-negative organisms, which are etiological agents of glanders and melioidosis, respectively. Although only B. pseudomallei is responsible for a significant number of human cases, both organisms are classified as Tier 1 Select Agents and their diseases lack effective diagnosis and treatment. Despite a recent resurgence in research pertaining to these organisms, there are still a number of knowledge gaps. This article summarizes the latest research progress in the fields of B. mallei and B. pseudomallei pathogenesis, vaccines, and diagnostics. PMID:25932379

  12. Burkholderia pseudomallei Isolates in 2 Pet Iguanas, California, USA

    PubMed Central

    Zehnder, Ashley M.; Hawkins, Michelle G.; Koski, Marilyn A.; Lifland, Barry; Byrne, Barbara A.; Swanson, Alexandra A.; Rood, Michael P.; Elrod, Mindy Glass; Beesley, Cari A.; Blaney, David D.; Ventura, Jean; Hoffmaster, Alex R.; Beeler, Emily S.

    2014-01-01

    Burkholderia pseudomallei, the causative agent of melioidosis, was isolated from abscesses of 2 pet green iguanas in California, USA. The international trade in iguanas may contribute to importation of this pathogen into countries where it is not endemic and put persons exposed to these animals at risk for infection. PMID:24447394

  13. Burkholderia pseudomallei isolates in 2 pet iguanas, California, USA.

    PubMed

    Zehnder, Ashley M; Hawkins, Michelle G; Koski, Marilyn A; Lifland, Barry; Byrne, Barbara A; Swanson, Alexandra A; Rood, Michael P; Gee, Jay E; Elrod, Mindy Glass; Beesley, Cari A; Blaney, David D; Ventura, Jean; Hoffmaster, Alex R; Beeler, Emily S

    2014-02-01

    Burkholderia pseudomallei, the causative agent of melioidosis, was isolated from abscesses of 2 pet green iguanas in California, USA. The international trade in iguanas may contribute to importation of this pathogen into countries where it is not endemic and put persons exposed to these animals at risk for infection. PMID:24447394

  14. Novel lytic bacteriophages from soil that lyse Burkholderia pseudomallei.

    PubMed

    Yordpratum, Umaporn; Tattawasart, Unchalee; Wongratanacheewin, Surasakdi; Sermswan, Rasana W

    2011-01-01

    Burkholderia pseudomallei is a Gram-negative saprophytic bacterium that causes severe sepsis with a high mortality rate in humans and a vaccine is not available. Bacteriophages are viruses of bacteria that are ubiquitous in nature. Several lysogenic phages of Burkholderia spp. have been found but information is scarce for lytic phages. Six phages, ST2, ST7, ST70, ST79, ST88 and ST96, which lyse B. pseudomallei, were isolated from soil in an endemic area. The phages belong to the Myoviridae family. The range of estimated genome sizes is 24.0-54.6 kb. Phages ST79 and ST96 lysed 71% and 67% of tested B. pseudomallei isolates and formed plaques on Burkholderia mallei but not other tested bacteria, with the exception of closely related Burkholderia thailandensis which was lysed by ST2 and ST96 only. ST79 and ST96 were observed to clear a mid-log culture by lysis within 6 h when infected at a multiplicity of infection of 0.1. As ST79 and ST96 phages effectively lysed B. pseudomallei, their potential use as a biocontrol of B. pseudomallei in the environment or alternative treatment in infected hosts could lead to benefits from phages that are available in nature. PMID:21091532

  15. Mycotic aneurysm caused by Burkholderia pseudomallei with negative blood cultures.

    PubMed

    Tanyaowalak, Wiriya; Sunthornyothin, Sarat; Luengtaviboon, Kittichai; Suankratay, Chusana; Kulwichit, Wanla

    2004-01-01

    We describe a case of bacterial aortitis caused by Burkholderia pseudomallei. This patient presented with prolonged fever and hoarseness of voice. Aneurysm removal with Dacron graft replacement was performed, followed by a prolonged course of antibiotics. The patient has progressed satisfactorily without recurrence of symptoms. Previous case reports are summarized. PMID:15000566

  16. Burkholderia thailandensis oacA Mutants Facilitate the Expression of Burkholderia mallei-Like O Polysaccharides▿

    PubMed Central

    Brett, Paul J.; Burtnick, Mary N.; Heiss, Christian; Azadi, Parastoo; DeShazer, David; Woods, Donald E.; Gherardini, Frank C.

    2011-01-01

    Previous studies have shown that the O polysaccharides (OPS) expressed by Burkholderia mallei are similar to those produced by Burkholderia thailandensis except that they lack the 4-O-acetyl modifications on their 6-deoxy-α-l-talopyranosyl residues. In the present study, we describe the identification and characterization of an open reading frame, designated oacA, expressed by B. thailandensis that accounts for this phenomenon. Utilizing the B. thailandensis and B. mallei lipopolysaccharide (LPS)-specific monoclonal antibodies Pp-PS-W and 3D11, Western immunoblot analyses demonstrated that the LPS antigens expressed by the oacA mutant, B. thailandensis ZT0715, were antigenically similar to those produced by B. mallei ATCC 23344. In addition, immunoblot analyses demonstrated that when B. mallei ATCC 23344 was complemented in trans with oacA, it synthesized B. thailandensis-like LPS antigens. To elucidate the structure of the OPS moieties expressed by ZT0715, purified samples were analyzed via nuclear magnetic resonance spectroscopy. As predicted, these studies demonstrated that the loss of OacA activity influenced the O acetylation phenotype of the OPS moieties. Unexpectedly, however, the results indicated that the O methylation status of the OPS antigens was also affected by the loss of OacA activity. Nonetheless, it was revealed that the LPS moieties expressed by the oacA mutant reacted strongly with the B. mallei LPS-specific protective monoclonal antibody 9C1-2. Based on these findings, it appears that OacA is required for the 4-O acetylation and 2-O methylation of B. thailandensis OPS antigens and that ZT0715 may provide a safe and cost-effective source of B. mallei-like OPS to facilitate the synthesis of glanders subunit vaccine candidates. PMID:21115721

  17. Burkholderia: an update on taxonomy and biotechnological potential as antibiotic producers.

    PubMed

    Depoorter, Eliza; Bull, Matt J; Peeters, Charlotte; Coenye, Tom; Vandamme, Peter; Mahenthiralingam, Eshwar

    2016-06-01

    Burkholderia is an incredibly diverse and versatile Gram-negative genus, within which over 80 species have been formally named and multiple other genotypic groups likely represent new species. Phylogenetic analysis based on the 16S rRNA gene sequence and core genome ribosomal multilocus sequence typing analysis indicates the presence of at least three major clades within the genus. Biotechnologically, Burkholderia are well-known for their bioremediation and biopesticidal properties. Within this review, we explore the ability of Burkholderia to synthesise a wide range of antimicrobial compounds ranging from historically characterised antifungals to recently described antibacterial antibiotics with activity against multiresistant clinical pathogens. The production of multiple Burkholderia antibiotics is controlled by quorum sensing and examples of quorum sensing pathways found across the genus are discussed. The capacity for antibiotic biosynthesis and secondary metabolism encoded within Burkholderia genomes is also evaluated. Overall, Burkholderia demonstrate significant biotechnological potential as a source of novel antibiotics and bioactive secondary metabolites. PMID:27115756

  18. Removal of Burkholderia cepacia biofilms with oxidants

    NASA Technical Reports Server (NTRS)

    Koenig, D. W.; Mishra, S. K.; Pierson, D. L.

    1995-01-01

    Iodine is used to disinfect the water system aboard US space shuttles and is the anticipated biocide for the international space station. Water quality on spacecraft must be maintained at the highest possible levels for the safety of the crew. Furthermore, the treatment process used to maintain the quality of water on research must be robust and operate for long periods with minimal crew intervention. Biofilms are recalcitrant and pose a major threat with regard to chronic contamination of spacecraft water systems. We measured the effectiveness of oxidizing biocides on the removal and regrowth of Burkholderia (Pseudomonas) cepacia biofilms. B. cepacia, isolated from the water distribution system of the space shuttle Discovery, was grown in continuous culture to produce a bacterial contamination source for biofilm formation and removal studies. A 10(7) CFU ml-1 B. cepacia suspension, in distilled water, was used to form biofilms on 3000 micrometers2 glass surfaces. Rates of attachment were measured directly with image analysis and were found to be 7.8, 15.2, and 22.8 attachment events h-1 for flow rates of 20.7, 15.2, and 9.8 ml min-1, respectively. After 18 h of formation, the B. cepacia biofilms were challenged with oxidants (ozone, chlorine, and iodine) and the rates of biofilm removal determined by image analysis. Fifty percent of the biofilm material was removed in the first hour of continous treatment with 24 mg l-1 chlorine or 2 mg l-1 ozone. Iodine (48 mg l-1) did not remove any measurable cellular material after 6 h continuous contact. After this first removal of biofilms by the oxidants, the surface was allowed to refoul and was again treated with the biocide. Iodine was the only compound that was unable to remove cellular debris from either primary or secondary biofilms. Moreover, treating primary biofilms with iodine increased the rate of formation of secondary biofilms, from 4.4 to 5.8 attachment events h-1. All the oxidants tested inactivated the B

  19. Species Distribution and Ribotype Diversity of Burkholderia cepacia Complex Isolates from French Patients with Cystic Fibrosis

    PubMed Central

    Brisse, Sylvain; Cordevant, Christophe; Vandamme, Peter; Bidet, Philippe; Loukil, Chawki; Chabanon, Gérard; Lange, Marc; Bingen, Edouard

    2004-01-01

    A total of 153 Burkholderia cepacia strains obtained from 153 French patients with cystic fibrosis were identified as Burkholderia multivorans (51.6%) or Burkholderia cenocepacia (45.1%). Eighty-two genotypes were identified using PvuII and EcoRI ribotyping. B. multivorans genotype A (found in 32 French patients) and two other genotypes were also identified among isolates from Austrian, German, Italian, and Canadian patients. PMID:15472352

  20. An ancient but promiscuous host-symbiont association between Burkholderia gut symbionts and their heteropteran hosts.

    PubMed

    Kikuchi, Yoshitomo; Hosokawa, Takahiro; Fukatsu, Takema

    2011-03-01

    Here, we investigated 124 stinkbug species representing 20 families and 5 superfamilies for their Burkholderia gut symbionts, of which 39 species representing 6 families of the superfamilies Lygaeoidea and Coreoidea were Burkholderia-positive. Diagnostic PCR surveys revealed high frequencies of Burkholderia infection in natural populations of the stinkbugs, and substantial absence of vertical transmission of Burkholderia infection to their eggs. In situ hybridization confirmed localization of the Burkholderia in their midgut crypts. In the lygaeoid and coreoid stinkbugs, development of midgut crypts in their alimentary tract was coincident with the Burkholderia infection, suggesting that the specialized morphological configuration is pivotal for establishment and maintenance of the symbiotic association. The Burkholderia symbionts were easily isolated as pure culture on standard microbiological media, indicating the ability of the gut symbionts to survive outside the host insects. Molecular phylogenetic analysis showed that the gut symbionts of the lygaeoid and coreoid stinkbugs belong to a β-proteobacterial clade together with Burkholderia isolates from soil environments and Burkholderia species that induce plant galls. On the phylogeny, the stinkbug-associated, environmental and gall-forming Burkholderia strains did not form coherent groups, indicating host-symbiont promiscuity among these stinkbugs. Symbiont culturing revealed that slightly different Burkholderia genotypes often coexist in the same insects, which is also suggestive of host-symbiont promiscuity. All these results strongly suggest an ancient but promiscuous host-symbiont relationship between the lygaeoid/coreoid stinkbugs and the Burkholderia gut symbionts. Possible mechanisms as to how the environmentally transmitted promiscuous symbiotic association has been stably maintained in the evolutionary course are discussed. PMID:20882057

  1. Vertical transmission explains the specific Burkholderia pattern in Sphagnum mosses at multi-geographic scale

    PubMed Central

    Bragina, Anastasia; Cardinale, Massimiliano; Berg, Christian; Berg, Gabriele

    2013-01-01

    The betaproteobacterial genus Burkholderia is known for its versatile interactions with its hosts that can range from beneficial to pathogenic. A plant-beneficial-environmental (PBE) Burkholderia cluster was recently separated from the pathogen cluster, yet still little is known about burkholderial diversity, distribution, colonization, and transmission patterns on plants. In our study, we applied a combination of high-throughput molecular and microscopic methods to examine the aforementioned factors for Burkholderia communities associated with Sphagnum mosses – model plants for long-term associations – in Austrian and Russian bogs. Analysis of 16S rRNA gene amplicons libraries revealed that most of the Burkholderia are part of the PBE group, but a minor fraction was closely related to B. glathei and B. andropogonis from the pathogen cluster. Notably, Burkholderia showed highly similar composition patterns for each moss species independent of the geographic region, and Burkholderia-specific fluorescent in situ hybridization of Sphagnum gametophytes exhibited similar colonization patterns in different Sphagnum species at multi-geographic scales. To explain these patterns, we compared the compositions of the surrounding water, gametophyte-, and sporophyte-associated microbiome at genus level and discovered that Burkholderia were present in the Sphagnum sporophyte and gametophyte, but were absent in the flark water. Therefore, Burkholderia is a part of the core microbiome transmitted from the moss sporophyte to the gametophyte. This suggests a vertical transmission of Burkholderia strains, and thus underlines their importance for the plants themselves. PMID:24391630

  2. A gold nanoparticle-linked glycoconjugate vaccine against Burkholderia mallei

    PubMed Central

    Gregory, Anthony E.; Judy, Barbara M.; Qazi, Omar; Blumentritt, Carla A.; Brown, Katherine A.; Shaw, Andrew M.; Torres, Alfredo G.; Titball, Richard W.

    2014-01-01

    Burkholderia mallei are Gram-negative bacteria, responsible for the disease glanders. B. mallei has recently been classified as a Tier 1 agent owing to the fact that this bacterial species can be weaponised for aerosol release, has a high mortality rate and demonstrates multi-drug resistance. Furthermore, there is no licensed vaccine available against this pathogen. Lipopolysaccharide (LPS) has previously been identified as playing an important role in generating host protection against Burkholderia infection. In this study, we present gold nanoparticles (AuNPs) functionalised with a glycoconjugate vaccine against glanders. AuNPs were covalently coupled with one of three different protein carriers (TetHc, Hcp1 and FliC) followed by conjugation to LPS purified from a non-virulent clonal relative, B. thailandensis. Glycoconjugated LPS generated significantly higher antibody titres and compared with LPS alone. Further, they improved protection against a lethal inhalation challenge of B. mallei in the murine model of infection. PMID:25194998

  3. More than skin deep: moisturizing body milk and Burkholderia cepacia

    PubMed Central

    Irwin, Amy E; Price, Connie Savor

    2008-01-01

    Alvarez-Lerma and colleagues observed over an 18-day period that five critically ill patients admitted to a multidisciplinary 18-bed intensive care unit contracted Burkholderia cepacia from unopened containers of moisturizing body milk, calling into question the use in critical care settings of cosmetic products that do not guarantee sterilization during the manufacturing process. Is this the answer to the problem, however, or should the use of lotions in such settings be re-examined? PMID:18304377

  4. Atypical presentation of chronic granulomatous disease with Burkholderia cepacia.

    PubMed

    Vining, Mac; Sharma, Nirupma; Guill, Margaret

    2014-01-01

    Chronic granulomatous disease (CGD) is a rare inherited disorder of neutrophil oxidative burst. In patients with CGD, phagocyte destruction of catalase-producing organisms is impaired, resulting in recurrent and potentially fatal infections. Burkholderia cepacia, a catalase-producing organism, is known to infect patients with dysfunctional immune systems. We report a case of a 3-year-old boy with this rare infection that unravelled the diagnosis of CGD. PMID:25103315

  5. Burkholderia pseudomallei traced to water treatment plant in Australia.

    PubMed Central

    Inglis, T. J.; Garrow, S. C.; Henderson, M.; Clair, A.; Sampson, J.; O'Reilly, L.; Cameron, B.

    2000-01-01

    Burkholderia pseudomallei was isolated from environmental specimens 1 year after an outbreak of acute melioidosis in a remote coastal community in northwestern Australia. B. pseudomallei was isolated from a water storage tank and from spray formed in a pH-raising aerator unit. Pulsed-field gel electrophoresis confirmed the aerator and storage tank isolates were identical to the outbreak strain, WKo97. PMID:10653571

  6. Atypical presentation of chronic granulomatous disease with Burkholderia cepacia

    PubMed Central

    Vining, Mac; Sharma, Nirupma; Guill, Margaret

    2014-01-01

    Chronic granulomatous disease (CGD) is a rare inherited disorder of neutrophil oxidative burst. In patients with CGD, phagocyte destruction of catalase-producing organisms is impaired, resulting in recurrent and potentially fatal infections. Burkholderia cepacia, a catalase-producing organism, is known to infect patients with dysfunctional immune systems. We report a case of a 3-year-old boy with this rare infection that unravelled the diagnosis of CGD. PMID:25103315

  7. Nodulation of Cyclopia spp. (Leguminosae, Papilionoideae) by Burkholderia tuberum

    PubMed Central

    Elliott, Geoffrey N.; Chen, Wen-Ming; Bontemps, Cyril; Chou, Jui-Hsing; Young, J. Peter W.; Sprent, Janet I.; James, Euan K.

    2007-01-01

    Background and Aims Species of the genus Burkholderia, from the Betaproteobacteria, have been isolated from legume nodules, but so far they have only been shown to form symbioses with species of Mimosa, sub-family Mimosoideae. This work investigates whether Burkholderia tuberum strains STM678 (isolated from Aspalathus carnosa) and DUS833 (from Aspalathus callosa) can nodulate species of the South African endemic papilionoid genera Cyclopia (tribe Podalyrieae) and Aspalathus (Crotalarieae) as well as the promiscuous legume Macroptilium atropurpureum (Phaseoleae). Method Bacterial strains and the phylogeny of their symbiosis-related (nod) genes were examined via 16S rRNA gene sequencing. Seedlings were grown in liquid culture and inoculated with one of the two strains of B. tuberum or with Sinorhizobium strain NGR 234 (from Lablab purpureus), Mesorhizobium strain DUS835 (from Aspalathus linearis) or Methylobacterium nodulans (from Crotalaria podocarpa). Some nodules, inoculated with green fluorescence protein (GFP)-tagged strains, were examined by light and electron microscopy coupled with immunogold labelling with a Burkholderia-specific antibody. The presence of active nitrogenase was checked by immunolabelling of nitrogenase and by the acetylene reduction assay. B. tuberum STM678 was also tested on a wide range of legumes from all three sub-families. Key Results Nodules were not formed on any of the Aspalathus spp. Only B. tuberum nodulated Cyclopia falcata, C. galioides, C. genistoides, C. intermedia and C. pubescens. It also effectively nodulated M. atropurpureum but no other species tested. GFP-expressing inoculant strains were located inside infected cells of C. genistoides, and bacteroids in both Cyclopia spp. and M. atropurpureum were immunogold-labelled with antibodies against Burkholderia and nitrogenase. Nitrogenase activity was also shown using the acetylene reduction assay. This is the first demonstration that a β-rhizobial strain can effectively

  8. Identification and enzymatic characterization of acid phosphatase from Burkholderia gladioli

    PubMed Central

    2014-01-01

    Background The genus Burkholderia is widespread in diverse ecological niches, the majority of known species are soil bacteria that exhibit different types of non-pathogenic interactions with plants. Burkholderia species are versatile organisms that solubilize insoluble minerals through the production of organic acids, which increase the availability of nutrients for the plant. Therefore these bacteria are promising candidates for biotechnological applications. Results Burkholderia sp. (R 3.25 isolate) was isolated from agricultural soil in Ponta Grossa-PR-Brazil and identified through analysis of the 16S rDNA as a strain classified as Burkholderia gladioli. The expression of membrane-bound acid phosphatase (MBAcP) was strictly regulated with optimal expression at a concentration of phosphorus 5 mM. The apparent optimum pH for the hydrolysis of p-nitrophenylphosphate (PNPP) was 6.0. The hydrolysis of PNPP by the enzyme exhibited a hyperbolic relationship with increasing concentration of substrate and no inhibition by excess of substrate was observed. Kinetic data revealed that the hydrolysis of PNPP exhibited cooperative kinetics with n = 1.3, Vm = 113.5 U/mg and K0.5 = 65 μM. The PNPPase activity was inhibited by vanadate, p-hydroxymercuribenzoate, arsenate and phosphate, however the activity was not inhibited by calcium, levamisole, sodium tartrate, EDTA, zinc, magnesium, cobalt, ouabain, oligomycin or pantoprazol. Conclusion The synthesis of membrane-bound non-specific acid phosphatase, strictly regulated by phosphate, and its properties suggest that this bacterium has a potential biotechnological application to solubilize phosphate in soils with low levels of this element, for specific crops. PMID:24713147

  9. Exploiting molecular virulence determinants in Burkholderia to develop vaccine antigens.

    PubMed

    Casey, William Thomas; McClean, Siobhán

    2015-01-01

    The Burkholderia genus is a highly diverse group of species that are distributed throughout a wide range of environments and habitats. Among this group, which is remarkable for its adaptability to a wider range of environmental conditions including disinfectants and organic solvents, are a subgroup that represents some of the most difficult to treat infections. This subgroup includes Burkholderia pseudomallei, the causative agent of melioidosis; B. mallei, the causative agent of glanders and B. cepacia complex (Bcc) which causes opportunistic infections in people with cystic fibrosis and immunocompromised patients. The latter pathogen is itself a group of 18 distinct, but, closely related species. The adaptability of this group allows the expression of a rich selection of molecular virulence determinants to facilitate its survival in the diverse habitats that it colonises. This review will describe a selection of these associated with human infection; comparing them across the three pathogens and highlighting their potential roles as vaccine candidates. Better integration of the knowledge on the pathogenesis and molecular determinants of virulence for these Burkholderia spp may allow the development of more efficacious vaccines. PMID:25850766

  10. Clinical Features and Laboratory Diagnosis of Infection with the Potential Bioterrorism Agents Burkholderia Mallei and Burkholderia Pseudomallei

    PubMed Central

    Gilad, Jacob; Schwartz, David; Amsalem, Yoram

    2007-01-01

    Burkholderia mallei and Burkholderia pseudomallei are the causative organisms of Glanders and Melioidosis, respectively. Although now rare in Western countries, both organisms have recently gained much interest because of their unique potential as bioterrorism agents. These organisms are less familiar to medical and laboratory personnel than other select bioterrorism bacterial agents and thus heightened awareness of Glanders and Melioidosis is crucial in order to enable adequate emergency preparedness and response to deliberate release of B. mallei and B. pseudomallei. The microbiological diagnosis of both species in the clinical laboratory is complicated. This paper reviews the various challenges and pitfalls associated with the diagnosis of Melioidosis and Glanders in the clinical setting, with emphasis on the role of sentinel laboratories. PMID:23675037

  11. Draft Genome Sequence of Burkholderia cenocepacia Strain CEIB S5-2, a Methyl Parathion- and p-Nitrophenol-Degrading Bacterium, Isolated from Agricultural Soils in Morelos, Mexico.

    PubMed

    Martínez-Ocampo, Fernando; Fernández López, Maikel Gilberto; Lozano-Aguirre Beltrán, Luis Fernando; Popoca-Ursino, Elida Carolina; Ortiz-Hernández, M Laura; Sánchez-Salinas, Enrique; Ramos Quintana, Fernando; Villalobos-López, Miguel A; Dantán-González, Edgar

    2016-01-01

    Burkholderia cenocepacia is an opportunistic pathogen that belongs to Burkholderia cepacia complex (BCC). Burkholderia cenocepacia strain CEIB S5-2 was isolated from agricultural soils in Morelos, Mexico, and previously has shown its abilities for bioremediation. In this study, we report the draft genome sequence of Burkholderia cenocepacia strain CEIB S5-2. PMID:27125479

  12. Draft Genome Sequence of Burkholderia cenocepacia Strain CEIB S5-2, a Methyl Parathion- and p-Nitrophenol-Degrading Bacterium, Isolated from Agricultural Soils in Morelos, Mexico

    PubMed Central

    Martínez-Ocampo, Fernando; Fernández López, Maikel Gilberto; Lozano-Aguirre Beltrán, Luis Fernando; Popoca-Ursino, Elida Carolina; Ortiz-Hernández, M. Laura; Sánchez-Salinas, Enrique; Ramos Quintana, Fernando; Villalobos-López, Miguel A.

    2016-01-01

    Burkholderia cenocepacia is an opportunistic pathogen that belongs to Burkholderia cepacia complex (BCC). Burkholderia cenocepacia strain CEIB S5-2 was isolated from agricultural soils in Morelos, Mexico, and previously has shown its abilities for bioremediation. In this study, we report the draft genome sequence of Burkholderia cenocepacia strain CEIB S5-2. PMID:27125479

  13. Burkholderia bacteria infectiously induce the proto-farming symbiosis of Dictyostelium amoebae and food bacteria.

    PubMed

    DiSalvo, Susanne; Haselkorn, Tamara S; Bashir, Usman; Jimenez, Daniela; Brock, Debra A; Queller, David C; Strassmann, Joan E

    2015-09-01

    Symbiotic associations can allow an organism to acquire novel traits by accessing the genetic repertoire of its partner. In the Dictyostelium discoideum farming symbiosis, certain amoebas (termed "farmers") stably associate with bacterial partners. Farmers can suffer a reproductive cost but also gain beneficial capabilities, such as carriage of bacterial food (proto-farming) and defense against competitors. Farming status previously has been attributed to amoeba genotype, but the role of bacterial partners in its induction has not been examined. Here, we explore the role of bacterial associates in the initiation, maintenance, and phenotypic effects of the farming symbiosis. We demonstrate that two clades of farmer-associated Burkholderia isolates colonize D. discoideum nonfarmers and infectiously endow them with farmer-like characteristics, indicating that Burkholderia symbionts are a major driver of the farming phenomenon. Under food-rich conditions, Burkholderia-colonized amoebas produce fewer spores than uncolonized counterparts, with the severity of this reduction being dependent on the Burkholderia colonizer. However, the induction of food carriage by Burkholderia colonization may be considered a conditionally adaptive trait because it can confer an advantage to the amoeba host when grown in food-limiting conditions. We observed Burkholderia inside and outside colonized D. discoideum spores after fruiting body formation; this observation, together with the ability of Burkholderia to colonize new amoebas, suggests a mixed mode of symbiont transmission. These results change our understanding of the D. discoideum farming symbiosis by establishing that the bacterial partner, Burkholderia, is an important causative agent of the farming phenomenon. PMID:26305954

  14. Whole-Genome Analysis of Quorum-Sensing Burkholderia sp. Strain A9

    PubMed Central

    Chen, Jian Woon; Tee, Kok Keng; Chang, Chien-Yi; Yin, Wai-Fong; Chan, Xin-Yue

    2015-01-01

    Burkholderia spp. rely on N-acyl homoserine lactone as quorum-sensing signal molecules which coordinate their phenotype at the population level. In this work, we present the whole genome of Burkholderia sp. strain A9, which enables the discovery of its N-acyl homoserine lactone synthase gene. PMID:25745000

  15. Reliability of automated biochemical identification of Burkholderia pseudomallei is regionally dependent.

    PubMed

    Podin, Yuwana; Kaestli, Mirjam; McMahon, Nicole; Hennessy, Jann; Ngian, Hie Ung; Wong, Jin Shyan; Mohana, Anand; Wong, See Chang; William, Timothy; Mayo, Mark; Baird, Robert W; Currie, Bart J

    2013-09-01

    Misidentifications of Burkholderia pseudomallei as Burkholderia cepacia by Vitek 2 have occurred. Multidimensional scaling ordination of biochemical profiles of 217 Malaysian and Australian B. pseudomallei isolates found clustering of misidentified B. pseudomallei isolates from Malaysian Borneo. Specificity of B. pseudomallei identification in Vitek 2 and potentially other automated identification systems is regionally dependent. PMID:23784129

  16. Mechanisms of Disease: Host-Pathogen Interactions between Burkholderia Species and Lung Epithelial Cells

    PubMed Central

    David, Jonathan; Bell, Rachel E.; Clark, Graeme C.

    2015-01-01

    Members of the Burkholderia species can cause a range of severe, often fatal, respiratory diseases. A variety of in vitro models of infection have been developed in an attempt to elucidate the mechanism by which Burkholderia spp. gain entry to and interact with the body. The majority of studies have tended to focus on the interaction of bacteria with phagocytic cells with a paucity of information available with regard to the lung epithelium. However, the lung epithelium is becoming more widely recognized as an important player in innate immunity and the early response to infections. Here we review the complex relationship between Burkholderia species and epithelial cells with an emphasis on the most pathogenic species, Burkholderia pseudomallei and Burkholderia mallei. The current gaps in knowledge in our understanding are highlighted along with the epithelial host-pathogen interactions that offer potential opportunities for therapeutic intervention. PMID:26636042

  17. Diversity and distribution of Burkholderia cepacia complex in the rhizosphere of rice and maize.

    PubMed

    Zhang, Lixin; Xie, Guanlin

    2007-01-01

    A survey of Burkholderia cepacia complex (Bcc) species was conducted in agricultural fields within Hangzhou, China. Out of the 251 bacterial isolates recovered on the selective media from the rhizosphere of rice and maize, 112 of them were assigned to Bcc by PCR assays. The species composition of the Bcc isolates was analyzed by a combination of recA-restriction fragment length polymorphism assays, species-specific PCR tests and recA gene sequencing. The results revealed that the majority belong to B. cepacia, Burkholderia cenocepacia recA lineage IIIB, Burkholderia vietnamiensis and Burkholderia pyrrocinia. Burkholderia cenocepacia and B. vietnamiensis dominated the rhizosphere of maize and rice, respectively, indicating that species composition and abundance of Bcc may vary dramatically in different crop rhizospheres. In addition, one isolate (R456) formed a single discrete cluster within the phylogenetic analysis of the Bcc recA gene, and it may belong to a new genomovar. PMID:17233735

  18. Characterization of an autotransporter adhesin protein shared by Burkholderia mallei and Burkholderia pseudomallei

    PubMed Central

    2014-01-01

    Background Autotransporters form a large family of outer membrane proteins specifying diverse biological traits of Gram-negative bacteria. In this study, we report the identification and characterization of a novel autotransporter gene product of Burkholderia mallei (locus tag BMA1027 in strain ATCC 23344). Results Database searches identified the gene in at least seven B. mallei isolates and the encoded proteins were found to be 84% identical. Inactivation of the gene encoding the autotransporter in the genome of strain ATCC 23344 substantially reduces adherence to monolayers of HEp-2 laryngeal cells and A549 type II pneumocytes, as well as to cultures of normal human bronchial epithelium (NHBE). Consistent with these findings, expression of the autotransporter on the surface of recombinant E. coli bacteria increases adherence to these cell types by 5–7 fold. The gene specifying the autotransporter was identified in the genome of 29 B. pseudomallei isolates and disruption of the gene in strain DD503 reduced adherence to NHBE cultures by 61%. Unlike B. mallei, the mutation did not impair binding of B. pseudomallei to A549 or HEp-2 cells. Analysis of sera from mice infected via the aerosol route with B. mallei and B. pseudomallei revealed that animals inoculated with as few as 10 organisms produce antibodies against the autotransporter, therefore indicating expression in vivo. Conclusions Our data demonstrate that we have identified an autotransporter protein common to the pathogenic species B. mallei and B. pseudomallei which mediates adherence to respiratory epithelial cells and is expressed in vivo during the course of aerosol infection. PMID:24731253

  19. Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species

    PubMed Central

    Sawana, Amandeep; Adeolu, Mobolaji; Gupta, Radhey S.

    2014-01-01

    The genus Burkholderia contains large number of diverse species which include many clinically important organisms, phytopathogens, as well as environmental species. However, currently, there is a paucity of biochemical or molecular characteristics which can reliably distinguish different groups of Burkholderia species. We report here the results of detailed phylogenetic and comparative genomic analyses of 45 sequenced species of the genus Burkholderia. In phylogenetic trees based upon concatenated sequences for 21 conserved proteins as well as 16S rRNA gene sequence based trees, members of the genus Burkholderia grouped into two major clades. Within these main clades a number of smaller clades including those corresponding to the clinically important Burkholderia cepacia complex (BCC) and the Burkholderia pseudomallei groups were also clearly distinguished. Our comparative analysis of protein sequences from Burkholderia spp. has identified 42 highly specific molecular markers in the form of conserved sequence indels (CSIs) that are uniquely found in a number of well-defined groups of Burkholderia spp. Six of these CSIs are specific for a group of Burkholderia spp. (referred to as Clade I in this work) which contains all clinically relevant members of the genus (viz. the BCC and the B. pseudomallei group) as well as the phytopathogenic Burkholderia spp. The second main clade (Clade II), which is composed of environmental Burkholderia species, is also distinguished by 2 identified CSIs that are specific for this group. Additionally, our work has also identified multiple CSIs that serve to clearly demarcate a number of smaller groups of Burkholderia spp. including 3 CSIs that are specific for the B. cepacia complex, 4 CSIs that are uniquely found in the B. pseudomallei group, 5 CSIs that are specific for the phytopathogenic Burkholderia spp. and 22 other CSI that distinguish two groups within Clade II. The described molecular markers provide highly specific means for

  20. Exploring the HME and HAE1 efflux systems in the genus Burkholderia

    PubMed Central

    2010-01-01

    Background The genus Burkholderia includes a variety of species with opportunistic human pathogenic strains, whose increasing global resistance to antibiotics has become a public health problem. In this context a major role could be played by multidrug efflux pumps belonging to Resistance Nodulation Cell-Division (RND) family, which allow bacterial cells to extrude a wide range of different substrates, including antibiotics. This study aims to i) identify rnd genes in the 21 available completely sequenced Burkholderia genomes, ii) analyze their phylogenetic distribution, iii) define the putative function(s) that RND proteins perform within the Burkholderia genus and iv) try tracing the evolutionary history of some of these genes in Burkholderia. Results BLAST analysis of the 21 Burkholderia sequenced genomes, using experimentally characterized ceoB sequence (one of the RND family counterpart in the genus Burkholderia) as probe, allowed the assembly of a dataset comprising 254 putative RND proteins. An extensive phylogenetic analysis revealed the occurrence of several independent events of gene loss and duplication across the different lineages of the genus Burkholderia, leading to notable differences in the number of paralogs between different genomes. A putative substrate [antibiotics (HAE1 proteins)/heavy-metal (HME proteins)] was also assigned to the majority of these proteins. No correlation was found between the ecological niche and the lifestyle of Burkholderia strains and the number/type of efflux pumps they possessed, while a relation can be found with genome size and taxonomy. Remarkably, we observed that only HAE1 proteins are mainly responsible for the different number of proteins observed in strains of the same species. Data concerning both the distribution and the phylogenetic analysis of the HAE1 and HME in the Burkholderia genus allowed depicting a likely evolutionary model accounting for the evolution and spreading of HME and HAE1 systems in the

  1. Characterization of the Poly-β-1,6-N-Acetylglucosamine Polysaccharide Component of Burkholderia Biofilms ▿

    PubMed Central

    Yakandawala, Nandadeva; Gawande, Purushottam V.; LoVetri, Karen; Cardona, Silvia T.; Romeo, Tony; Nitz, Mark; Madhyastha, Srinivasa

    2011-01-01

    We demonstrated the production of poly-β-1,6-N-acetylglucosamine (PNAG) polysaccharide in the biofilms of Burkholderia multivorans, Burkholderia vietnamiensis, Burkholderia ambifaria, Burkholderia cepacia, and Burkholderia cenocepacia using an immunoblot assay for PNAG. These results were confirmed by further studies, which showed that the PNAG hydrolase, dispersin B, eliminated immunoreactivity of extracts from the species that were tested (B. cenocepacia and B. multivorans). Dispersin B also inhibited biofilm formation and dispersed preformed biofilms of Burkholderia species. These results imply a role for PNAG in the maintenance of Burkholderia biofilm integrity. While PNAG was present in biofilms of all of the wild-type test organisms, a ΔpgaBC mutant of B. multivorans (Mu5) produced no detectable PNAG, indicating that these genes are needed for Burkholderia PNAG formation. Furthermore, restoration of PNAG production in PNAG negative E. coli TRXWMGΔC (ΔpgaC) by complementation with B. multivorans pgaBCD confirmed the involvement of these genes in Burkholderia PNAG production. While the confocal scanning laser microscopy of untreated wild-type B. multivorans showed thick, multilayered biofilm, Mu5 and dispersin B-treated wild-type biofilms were thin, poorly developed, and disrupted, confirming the involvement of PNAG in B. multivorans biofilm formation. Thus, PNAG appears to be an important component of Burkholderia biofilms, potentially contributing to its resistance to multiple antibiotics and persistence during chronic infections, including cystic fibrosis-associated infection. PMID:21984237

  2. [Comparative analysis of total cell protein electrophoregram of pathogenic Burkholderia].

    PubMed

    Budchenko, A A; Iliukhin, V I; Viktorov, D V

    2005-01-01

    Whole-cell proteins of 22 strain of Burkhoderia pseudomallei, including 13 B. mallei, 5 B. cepacia strains and 14 strains of opportunistically pathogenic Pseudomonas defined by 1D SDC-PAAG electrophoresis. Electrophoregrams contained 35 to 45 protein fractions sized 19 to 130 kDa, which were highly reproductive. On the basis of computer-aided comparative analysis of protein patterns the interspecies and intraspecies grouping of studied microorganisms was made. The cluster analysis of the similarity matrix of protein spectra made it possible to allocate two groups of strains at the level of similarity of 78%. Group I was formed by Burkholderia species that previously belonged to the II RNA-DNA homology group of Pseudomonas: B. pseudomallei, B. mallei, B. cepacia. All Pseudomonas species were added to the 2nd Group: P. aeruginosa, P. stutzeri, P. testosterone, P. fluorescens, P. putida, P. mendocina. Four phenons were isolated among the strains of B. pseudomallei and 2 phenons--among the strains of B. mallei at the threshold similarity level (89%). The authors conclude that the comparative analysis of electrophoregrams of whole-cell proteins can be useful in the identification and typing of pathogenic Burkholderia. PMID:15954473

  3. The chemical arsenal of Burkholderia pseudomallei is essential for pathogenicity.

    PubMed

    Biggins, John B; Kang, Hahk-Soo; Ternei, Melinda A; DeShazer, David; Brady, Sean F

    2014-07-01

    Increasing evidence has shown that small-molecule chemistry in microbes (i.e., secondary metabolism) can modulate the microbe-host response in infection and pathogenicity. The bacterial disease melioidosis is conferred by the highly virulent, antibiotic-resistant pathogen Burkholderia pseudomallei (BP). Whereas some macromolecular structures have been shown to influence BP virulence (e.g., secretion systems, cellular capsule, pili), the role of the large cryptic secondary metabolome encoded within its genome has been largely unexplored for its importance to virulence. Herein we demonstrate that BP-encoded small-molecule biosynthesis is indispensible for in vivo BP pathogenicity. Promoter exchange experiments were used to induce high-level molecule production from two gene clusters (MPN and SYR) found to be essential for in vivo virulence. NMR structural characterization of these metabolites identified a new class of lipopeptide biosurfactants/biofilm modulators (the malleipeptins) and syrbactin-type proteasome inhibitors, both of which represent overlooked small-molecule virulence factors for BP. Disruption of Burkholderia virulence by inhibiting the biosynthesis of these small-molecule biosynthetic pathways may prove to be an effective strategy for developing novel melioidosis-specific therapeutics. PMID:24884988

  4. Microbial degradation of quinoline by immobilized cells of Burkholderia pickettii.

    PubMed

    Jianlong, Wang; Xiangchun, Quan; Liping, Han; Yi, Qian; Hegemann, Werner

    2002-05-01

    A quinoline-biodegrading microorganism was isolated from activated sludge of coke-oven wastewater treatment plant using quinoline as sole carbon and nitrogen source. It is a gram negative, rod-shaped and aerobic strain, which was identified as Burkholderia pickettii. The biodegradation of quinoline was carried out with this isolated strain. Analysis by high performance liquid chromatography and gas chromatography/mass spectrum (GC/MS) revealed that 2-hydroxyquinoline (2-OH-Q) was the first intermediate in the course of quinoline biodegradation. A novel immobilization carrier, that is, polyvinyl alcohol (PVA)-gauze hybrid carrier, was developed. The isolated strain was immobilized by two different immobilizing techniques and used for the quinolinerdegradation. It was found that biodegradation rate of quinoline by the microorganisms immobilized on PVA-gauze hybrid carrier was faster than that by the microorganisms immobilized in PVA gel beads. Kinetics of quinoline biodegradation by cells of Burkholderia pickettii immobilized on PVA-gauze hybrid carrier was investigated. The results demonstrate that quinoline degradation could be described by zero-order reaction rate equation when the initial quinoline concentration was in the range of 50-500 mg l(-1). PMID:12108721

  5. Structure of a Burkholderia pseudomallei Trimeric Autotransporter Adhesin Head

    PubMed Central

    Edwards, Thomas E.; Phan, Isabelle; Abendroth, Jan; Dieterich, Shellie H.; Masoudi, Amir; Guo, Wenjin; Hewitt, Stephen N.; Kelley, Angela; Leibly, David; Brittnacher, Mitch J.; Staker, Bart L.; Miller, Samuel I.; Van Voorhis, Wesley C.; Myler, Peter J.; Stewart, Lance J.

    2010-01-01

    Background Pathogenic bacteria adhere to the host cell surface using a family of outer membrane proteins called Trimeric Autotransporter Adhesins (TAAs). Although TAAs are highly divergent in sequence and domain structure, they are all conceptually comprised of a C-terminal membrane anchoring domain and an N-terminal passenger domain. Passenger domains consist of a secretion sequence, a head region that facilitates binding to the host cell surface, and a stalk region. Methodology/Principal Findings Pathogenic species of Burkholderia contain an overabundance of TAAs, some of which have been shown to elicit an immune response in the host. To understand the structural basis for host cell adhesion, we solved a 1.35 Å resolution crystal structure of a BpaA TAA head domain from Burkholderia pseudomallei, the pathogen that causes melioidosis. The structure reveals a novel fold of an intricately intertwined trimer. The BpaA head is composed of structural elements that have been observed in other TAA head structures as well as several elements of previously unknown structure predicted from low sequence homology between TAAs. These elements are typically up to 40 amino acids long and are not domains, but rather modular structural elements that may be duplicated or omitted through evolution, creating molecular diversity among TAAs. Conclusions/Significance The modular nature of BpaA, as demonstrated by its head domain crystal structure, and of TAAs in general provides insights into evolution of pathogen-host adhesion and may provide an avenue for diagnostics. PMID:20862217

  6. Burkholderia cepacia lipase is a promising biocatalyst for biofuel production.

    PubMed

    Sasso, Francesco; Natalello, Antonino; Castoldi, Simone; Lotti, Marina; Santambrogio, Carlo; Grandori, Rita

    2016-07-01

    Lipases resistant to inhibition and denaturation by methanol are valuable tools for biotechnological applications, in particular for biofuel production. Microbial lipases have attracted a great deal of interest because of their stability at high concentrations of organic solvents. Burkholderia cepacia lipase (BCL) is tested here for robustness towards methanol in terms of conformational stability and catalytic activity in transesterification assays. This lipase turns out to be even more tolerant than the homologous and better characterized enzyme from Burkholderia glumae. BCL unfolding transition, as monitored by far-UV circular dichroism (CD) and intrinsic fluorescence, displays a Tm above 60°C in the presence of 50% methanol. The protein unfolds at low pH, and the organic solvent affects the nature of the denatured state under acidic conditions. The protein performs well in transesterification assays upon prolonged incubations at high methanol concentrations. BCL is highly tolerant to methanol and displays particularly high conformational stability under conditions employed for transesterification reactions. These features depict BCL as a promising enzyme for biofuel industry. PMID:27067648

  7. Bovine lactoferrin interacts with cable pili of Burkholderia cenocepacia.

    PubMed

    Ammendolia, Maria Grazia; Bertuccini, Lucia; Iosi, Francesca; Minelli, Fabio; Berlutti, Francesca; Valenti, Piera; Superti, Fabiana

    2010-06-01

    In this study we evaluated the ability of lactoferrin, the most abundant antimicrobial protein in airway secretions, to bind the surface structures of a Burkholderia strain cystic fibrosis-isolated. Burkholderia cenocepacia is a gram-negative bacterium involved as respiratory pathogen in cystic fibrosis patient infections. This bacterium possesses filamentous structures, named cable pili that have been proposed as virulence factors because of their ability to bind to respiratory epithelia and mucin. Previously, we demonstrated that bovine lactoferrin was able to influence the efficiency of invasion of different iron-regulated morphological forms of B. cenocepacia. Bovine lactoferrin showed to efficiently inhibit invasion of alveolar epithelial cells by free-living bacteria or iron-induced aggregates or biofilm. Results of the present study demonstrate that bovine lactoferrin is also able to specifically bind to B. cenocepacia cells and show that cable pili are involved in this interaction. The attachment of bovine lactoferrin to pili led to a reduced binding of bacterial cells to mucin. Since cable pili are implicated in mediating the bacterial interactions with mucin and epithelial cells, lactoferrin binding to these structures could play an important role in neutralizing bacterial infection in cystic fibrosis patients. PMID:20364433

  8. Interim report on updated microarray probes for the LLNL Burkholderia pseudomallei SNP array

    SciTech Connect

    Gardner, S; Jaing, C

    2012-03-27

    The overall goal of this project is to forensically characterize 100 unknown Burkholderia isolates in the US-Australia collaboration. We will identify genome-wide single nucleotide polymorphisms (SNPs) from B. pseudomallei and near neighbor species including B. mallei, B. thailandensis and B. oklahomensis. We will design microarray probes to detect these SNP markers and analyze 100 Burkholderia genomic DNAs extracted from environmental, clinical and near neighbor isolates from Australian collaborators on the Burkholderia SNP microarray. We will analyze the microarray genotyping results to characterize the genetic diversity of these new isolates and triage the samples for whole genome sequencing. In this interim report, we described the SNP analysis and the microarray probe design for the Burkholderia SNP microarray.

  9. TRACKING THE RESPONSE OF BURKHOLDERIA CEPACIA G4 5223-PR1 IN AQUIFER MICROCOSMS

    EPA Science Inventory

    The introduction of bacteria into the environment for bioremediation purposes (bioaugmentation) requires analysis and monitoring of microbial population dynamics to define persistence and activity from both efficacy and risk assessment perspectives, Burkholderia cepacia G4 5223-P...

  10. AQUIFER PROTIST RESPONSE AND THE POTENTIAL FOR TCE BIOREMEDIATION WITH BURKHOLDERIA CEPACIA G4 PR1

    EPA Science Inventory

    The introduction of bacteria into the environment for bioremediation purposes (bioaugmentation) requires analysis and monitoring of the persistence and activity of microbial population for efficacy and risk assessment purposes. Burkholderia cepacia G4 PR123 and PR131 constitutive...

  11. An ERp57-mediated disulphide exchange promotes the interaction between Burkholderia cenocepacia and epithelial respiratory cells

    PubMed Central

    Pacello, Francesca; D’Orazio, Melania; Battistoni, Andrea

    2016-01-01

    Previous studies have demonstrated that extracellular glutathione reduces the ability of the Cystic Fibrosis pathogen Burkholderia cenocepacia to infect primary or immortalized epithelial respiratory cells. We report here that the adhesion and invasion ability of B. cenocepacia is limited also by thiol-oxidizing and disulphide-reducing agents and by protein disulfide isomerase (PDI) inhibitors. PDI inhibitors also reduce the proinflammatory response elicited by cells in response to Burkholderia. These findings indicate that a membrane-associated PDI catalyzes thiol/disulphide exchange reactions which favor bacterial infection. The combined use of selective PDI inhibitors, RNA silencing and specific antibodies identified ERp57 as a major PDI involved in the interaction between B. cenocepacia and epithelial cells. This study contributes to the elucidation of the Burkholderia pathogenic mechanisms by showing that this microorganism exploits a membrane-associated host protein to infect epithelial cells and identifies ERp57 as a putative pharmacological target for the treatment of Burkholderia lung infections. PMID:26879174

  12. BIOAUGMENTATION WITH BURKHOLDERIA CEPACIA PR1301 FOR IN SITU BIOREMEDIATION OF TRICHLOROETHYLENE CONTAMINATED GROUNDWATER (RESEARCH BRIEF)

    EPA Science Inventory

    A pilot field study was conducted at the Moffett Federal Airfield, Mountain View, California, to determine whether effective in-situ aerobic cometabolic biodegradation of TCE could be accomplished through bioaugmentation with a genetically modified strain of Burkholderia cepacia ...

  13. The role of siderophores in metal homeostasis of members of the genus Burkholderia.

    PubMed

    Mathew, Anugraha; Jenul, Christian; Carlier, Aurelien L; Eberl, Leo

    2016-02-01

    Although members of the genus Burkholderia can utilize a high-affinity iron uptake system to sustain growth under iron-limiting conditions, many strains also produce siderophores, suggesting that they may serve alternative functions. Here we demonstrate that the two Burkholderia siderophores pyochelin and ornibactin can protect the cells from metal toxicity and thus play an alternative role in metal homeostasis. We also demonstrate that metals such as copper and zinc induce the production of ornibactin. PMID:26621188

  14. Burkholderia bacteria infectiously induce the proto-farming symbiosis of Dictyostelium amoebae and food bacteria

    PubMed Central

    DiSalvo, Susanne; Haselkorn, Tamara S.; Bashir, Usman; Jimenez, Daniela; Brock, Debra A.; Queller, David C.; Strassmann, Joan E.

    2015-01-01

    Symbiotic associations can allow an organism to acquire novel traits by accessing the genetic repertoire of its partner. In the Dictyostelium discoideum farming symbiosis, certain amoebas (termed “farmers”) stably associate with bacterial partners. Farmers can suffer a reproductive cost but also gain beneficial capabilities, such as carriage of bacterial food (proto-farming) and defense against competitors. Farming status previously has been attributed to amoeba genotype, but the role of bacterial partners in its induction has not been examined. Here, we explore the role of bacterial associates in the initiation, maintenance, and phenotypic effects of the farming symbiosis. We demonstrate that two clades of farmer-associated Burkholderia isolates colonize D. discoideum nonfarmers and infectiously endow them with farmer-like characteristics, indicating that Burkholderia symbionts are a major driver of the farming phenomenon. Under food-rich conditions, Burkholderia-colonized amoebas produce fewer spores than uncolonized counterparts, with the severity of this reduction being dependent on the Burkholderia colonizer. However, the induction of food carriage by Burkholderia colonization may be considered a conditionally adaptive trait because it can confer an advantage to the amoeba host when grown in food-limiting conditions. We observed Burkholderia inside and outside colonized D. discoideum spores after fruiting body formation; this observation, together with the ability of Burkholderia to colonize new amoebas, suggests a mixed mode of symbiont transmission. These results change our understanding of the D. discoideum farming symbiosis by establishing that the bacterial partner, Burkholderia, is an important causative agent of the farming phenomenon. PMID:26305954

  15. Developing Peptide Mimotopes of Capsular Polysaccharides and Lipopolysaccharides Protective Antigens of Pathogenic Burkholderia Bacteria.

    PubMed

    Guo, Pengfei; Zhang, Jing; Tsai, Shien; Li, Bingjie; Lo, Shyh-Ching

    2016-06-01

    Burkholderia pseudomallei (BP) and Burkholderia mallei (BM) are two species of pathogenic Burkholderia bacteria. Our laboratory previously identified four monoclonal antibodies (MAbs) that reacted against Burkholderia capsular polysaccharides (PS) and lipopolysaccharides (LPS) and effectively protected against a lethal dose of BP/BM infections in mice. In this study, we used phage display panning against three different phage peptide libraries to select phage clones specifically recognized by each of the four protective MAbs. After sequencing a total of 179 candidate phage clones, we examined in detail six selected phage clones carrying different peptide inserts for the specificity of binding by the respective target MAbs. Chemically synthesized peptides corresponding to those displayed by the six phage clones were conjugated to keyhole limpet hemocyanin carrier protein and tested for their binding specificity to the respective protective MAbs. The study revealed that four of the six peptides, all derived from the library displaying dodecapeptides, functioned well as "mimotopes" of Burkholderia PS and LPS as demonstrated by a high degree of specific competition against the binding of three protective MAbs to BP and BM. Our results suggest that the four selected peptide mimics corresponding to PS/LPS protective antigens of BP and BM could potentially be developed into peptide vaccines against pathogenic Burkholderia bacteria. PMID:27328059

  16. Burkholderia Species Are Major Inhabitants of White Lupin Cluster Roots▿†

    PubMed Central

    Weisskopf, Laure; Heller, Stefanie; Eberl, Leo

    2011-01-01

    The formation of cluster roots by plants represents a highly efficient strategy for acquisition of sparingly available phosphate. This particular root type is characterized by a densely branched structure and high exudation of organic acids and protons, which are likely to influence the resident bacterial community. Until now, the identity of the bacterial populations living in cluster roots has not been investigated. We applied cultivation-dependent and cultivation-independent methods to characterize the dominant bacterial genera inhabiting the growing cluster roots of white lupin. We observed a high relative abundance of Burkholderia species (up to 58% of all isolated strains and 44% of all retrieved 16S rRNA sequences) and a significant enrichment with increasing cluster root age. Most of the sequences retrieved clustered together with known plant- or fungus-associated Burkholderia species, while only one of 98 sequences was affiliated with the Burkholderia cepacia complex. In vitro assays revealed that Burkholderia strains were much more tolerant to low pH than non-Burkholderia strains. Moreover, many strains produced large amounts of siderophores and were able to utilize citrate and oxalate as carbon sources. These features seem to represent important traits for the successful colonization and maintenance of Burkholderia species in white lupin cluster roots. PMID:21908626

  17. Detection of cultured and uncultured Burkholderia cepacia complex bacteria naturally occurring in the maize rhizosphere.

    PubMed

    Pirone, Luisa; Chiarini, Luigi; Dalmastri, Claudia; Bevivino, Annamaria; Tabacchioni, Silvia

    2005-11-01

    The species composition of a Burkholderia cepacia complex population naturally occurring in the maize rhizosphere was investigated by using both culture-dependent and culture-independent methods. B. cepacia complex isolates were recovered from maize root slurry on the two selective media Pseudomonas cepacia azelaic acid tryptamine (PCAT) and trypan blue tetracycline (TB-T) and subjected to identification by a combination of restriction fragment length polymorphism (RFLP) analysis and species-specific polymerase chain reaction (PCR) tests of the recA gene. DNA extracted directly from root slurry was examined by means of nested PCR to amplify recA gene with species-specific B. cepacia complex primers and to obtain a library of PCR amplified recA genes. Using the culture-dependent method the species Burkholderia cepacia, Burkholderia cenocepacia, Burkholderia ambifaria and Burkholderia pyrrocinia were identified, whereas using the culture-independent method also the species Burkholderia vietnamiensis was detected. The latter method also allowed us to highlight a higher diversity within the B. cenocepacia species. In fact, by using the culture-independent method the species B. cenocepacia recA lineages IIIA and IIID besides B. cenocepacia recA lineage IIIB were detected. Moreover, higher heterogeneity of recA RFLP patterns was observed among clones assigned to the species B. cenocepacia than among B. cenocepacia isolates from selective media. PMID:16232288

  18. Molecular mechanisms underlying the close association between soil Burkholderia and fungi.

    PubMed

    Stopnisek, Nejc; Zühlke, Daniela; Carlier, Aurélien; Barberán, Albert; Fierer, Noah; Becher, Dörte; Riedel, Katharina; Eberl, Leo; Weisskopf, Laure

    2016-01-01

    Bacterial species belonging to the genus Burkholderia have been repeatedly reported to be associated with fungi but the extent and specificity of these associations in soils remain undetermined. To assess whether associations between Burkholderia and fungi are widespread in soils, we performed a co-occurrence analysis in an intercontinental soil sample collection. This revealed that Burkholderia significantly co-occurred with a wide range of fungi. To analyse the molecular basis of the interaction, we selected two model fungi frequently co-occurring with Burkholderia, Alternaria alternata and Fusarium solani, and analysed the proteome changes caused by cultivation with either fungus in the widespread soil inhabitant B. glathei, whose genome we sequenced. Co-cultivation with both fungi led to very similar changes in the B. glathei proteome. Our results indicate that B. glathei significantly benefits from the interaction, which is exemplified by a lower abundance of several starvation factors that were highly expressed in pure culture. However, co-cultivation also gave rise to stress factors, as indicated by the increased expression of multidrug efflux pumps and proteins involved in oxidative stress response. Our data suggest that the ability of Burkholderia to establish a close association with fungi mainly lies in the capacities to utilize fungal-secreted metabolites and to overcome fungal defense mechanisms. This work indicates that beneficial interactions with fungi might contribute to the survival strategy of Burkholderia species in environments with sub-optimal conditions, including acidic soils. PMID:25989372

  19. Genus-wide acid tolerance accounts for the biogeographical distribution of soil Burkholderia populations.

    PubMed

    Stopnisek, Nejc; Bodenhausen, Natacha; Frey, Beat; Fierer, Noah; Eberl, Leo; Weisskopf, Laure

    2014-06-01

    Bacteria belonging to the genus Burkholderia are highly versatile with respect to their ecological niches and lifestyles, ranging from nodulating tropical plants to causing melioidosis and fatal infections in cystic fibrosis patients. Despite the clinical importance and agronomical relevance of Burkholderia species, information about the factors influencing their occurrence, abundance and diversity in the environment is scarce. Recent findings have demonstrated that pH is the main predictor of soil bacterial diversity and community structure, with the highest diversity observed in neutral pH soils. As many Burkholderia species have been isolated from low pH environments, we hypothesized that acid tolerance may be a general feature of this genus, and pH a good predictor of their occurrence in soils. Using a combination of environmental surveys at trans-continental and local scales, as well as in vitro assays, we show that, unlike most bacteria, Burkholderia species have a competitive advantage in acidic soils, but are outcompeted in alkaline soils. Physiological assays and diversity analysis based on 16S rRNA clone libraries demonstrate that pH tolerance is a general phenotypic trait of the genus Burkholderia. Our results provide a basis for building a predictive understanding of the biogeographical patterns exhibited by Burkholderia sp. PMID:23945027

  20. Burkholderia pseudomallei Genotype Distribution in the Northern Territory, Australia.

    PubMed

    Chapple, Stephanie N J; Price, Erin P; Sarovich, Derek S; McRobb, Evan; Mayo, Mark; Kaestli, Mirjam; Spratt, Brian G; Currie, Bart J

    2016-01-01

    Melioidosis is a tropical disease of high mortality caused by the environmental bacterium, Burkholderia pseudomallei. We have collected clinical isolates from the highly endemic Northern Territory of Australia routinely since 1989, and animal and environmental B. pseudomallei isolates since 1991. Here we provide a complete record of all B. pseudomallei multilocus sequence types (STs) found in the Northern Territory to date, and distribution maps of the eight most common environmental STs. We observed surprisingly restricted geographic distributions of STs, which is contrary to previous reports suggesting widespread environmental dissemination of this bacterium. Our data suggest that B. pseudomallei from soil and water does not frequently disperse long distances following severe weather events or by migration of infected animals. PMID:26526925

  1. Aerosol Phage Therapy Efficacy in Burkholderia cepacia Complex Respiratory Infections

    PubMed Central

    Semler, Diana D.; Goudie, Amanda D.; Finlay, Warren H.

    2014-01-01

    Phage therapy has been suggested as a potential treatment for highly antibiotic-resistant bacteria, such as the species of the Burkholderia cepacia complex (BCC). To address this hypothesis, experimental B. cenocepacia respiratory infections were established in mice using a nebulizer and a nose-only inhalation device. Following infection, the mice were treated with one of five B. cenocepacia-specific phages delivered as either an aerosol or intraperitoneal injection. The bacterial and phage titers within the lungs were assayed 2 days after treatment, and mice that received the aerosolized phage therapy demonstrated significant decreases in bacterial loads. Differences in phage activity were observed in vivo. Mice that received phage treatment by intraperitoneal injection did not demonstrate significantly reduced bacterial loads, although phage particles were isolated from their lung tissue. Based on these data, aerosol phage therapy appears to be an effective method for treating highly antibiotic-resistant bacterial respiratory infections, including those caused by BCC bacteria. PMID:24798268

  2. Aerosol phage therapy efficacy in Burkholderia cepacia complex respiratory infections.

    PubMed

    Semler, Diana D; Goudie, Amanda D; Finlay, Warren H; Dennis, Jonathan J

    2014-07-01

    Phage therapy has been suggested as a potential treatment for highly antibiotic-resistant bacteria, such as the species of the Burkholderia cepacia complex (BCC). To address this hypothesis, experimental B. cenocepacia respiratory infections were established in mice using a nebulizer and a nose-only inhalation device. Following infection, the mice were treated with one of five B. cenocepacia-specific phages delivered as either an aerosol or intraperitoneal injection. The bacterial and phage titers within the lungs were assayed 2 days after treatment, and mice that received the aerosolized phage therapy demonstrated significant decreases in bacterial loads. Differences in phage activity were observed in vivo. Mice that received phage treatment by intraperitoneal injection did not demonstrate significantly reduced bacterial loads, although phage particles were isolated from their lung tissue. Based on these data, aerosol phage therapy appears to be an effective method for treating highly antibiotic-resistant bacterial respiratory infections, including those caused by BCC bacteria. PMID:24798268

  3. Strains from the Burkholderia cepacia Complex: Relationship to Opportunistic Pathogens

    PubMed Central

    Vandamme, Peter; Mahenthiralingam, Eshwar

    2003-01-01

    Burkholderia cepacia-like organisms attract much interest from the agricultural industry as natural promoters of plant growth and biological control agents, and for bioremediation. Some of these organisms, however, cause life-threatening infections, particularly in cystic fibrosis patients for whom this multi-resistant bacterium is a major pathogen. The biodiversity of this group of bacteria is severely underestimated, and current identification procedures are inadequate. Presumed B. cepacia isolates belong to at least nine distinct genomic species (genomovars), referred to collectively as the B. cepacia complex. All these B. cepacia complex genomovars have been isolated from clinical and environmental sources. There are no phenotypic, genomic, or taxonomic grounds to differentiate environmental and clinical strains of the B. cepacia complex or to use the source of isolation to assess the safety of biopesticides containing members of the B. cepacia complex. PMID:19265996

  4. Use of the Common Marmoset to Study Burkholderia mallei Infection

    PubMed Central

    Harvey, Stephen B.; Mead, Daniel G.; Shaffer, Teresa L.; Estes, D. Mark; Michel, Frank; Quinn, Frederick D.; Hogan, Robert J.; Lafontaine, Eric R.

    2015-01-01

    Burkholderia mallei is a host-adapted bacterium that does not persist outside of its equine reservoir. The organism causes the zoonosis glanders, which is endemic in Asia, Africa, the Middle East and South America. Infection by B. mallei typically occurs via the respiratory or percutaneous route, and the most common manifestations are life-threatening pneumonia and bacteremia. Glanders is difficult to diagnose and requires prolonged antibiotic therapy with low success rates. There is no vaccine to protect against B. mallei and there is concern regarding its use as a biothreat agent. Thus, experiments were performed to establish a non-human primate model of intranasal infection to study the organism and develop countermeasures. Groups of marmosets (Callithrix jacchus) were inoculated intranasally with B. mallei strain ATCC 23344 and monitored for clinical signs of illness for up to 13 days. We discovered that 83% of marmosets inoculated with doses of 2.5 X 104 to 2.5 X 105 bacteria developed acute lethal infection within 3–4 days. Signs of disease were severe and included lethargy, inappetence, conjunctivitis, mucopurulent and hemorrhagic nasal discharges, and increased respiratory effort with abdominal lifts. Burkholderia mallei was cultured from the lungs, spleen and liver of these animals, and pathologic examination of tissues revealed lesions characteristic of glanders. Challenge experiments also revealed that 91% of animals infected with doses ranging from 25 to 2.5 X 103 bacteria exhibited mild non-specific signs of illness and were culture negative. One marmoset inoculated with 2.5 X 103 organisms developed moderate signs of disease and reached humane end-points 8 days post-infection. The liver and spleen of this animal were colonized with the agent and pathological analysis of tissues showed nasal, splenic and hepatic lesions. Taken together, these data indicate that the marmoset is a suitable model to study respiratory infection by B. mallei. PMID

  5. High Confidence Prediction of Essential Genes in Burkholderia Cenocepacia

    PubMed Central

    Juhas, Mario; Stark, Manuel; von Mering, Christian; Lumjiaktase, Puthapoom; Crook, Derrick W.; Valvano, Miguel A.; Eberl, Leo

    2012-01-01

    Background Essential genes are absolutely required for the survival of an organism. The identification of essential genes, besides being one of the most fundamental questions in biology, is also of interest for the emerging science of synthetic biology and for the development of novel antimicrobials. New antimicrobial therapies are desperately needed to treat multidrug-resistant pathogens, such as members of the Burkholderia cepacia complex. Methodology/Principal Findings We hypothesize that essential genes may be highly conserved within a group of evolutionary closely related organisms. Using a bioinformatics approach we determined that the core genome of the order Burkholderiales consists of 649 genes. All but two of these identified genes were located on chromosome 1 of Burkholderia cenocepacia. Although many of the 649 core genes of Burkholderiales have been shown to be essential in other bacteria, we were also able to identify a number of novel essential genes present mainly, or exclusively, within this order. The essentiality of some of the core genes, including the known essential genes infB, gyrB, ubiB, and valS, as well as the so far uncharacterized genes BCAL1882, BCAL2769, BCAL3142 and BCAL3369 has been confirmed experimentally in B. cenocepacia. Conclusions/Significance We report on the identification of essential genes using a novel bioinformatics strategy and provide bioinformatics and experimental evidence that the large majority of the identified genes are indeed essential. The essential genes identified here may represent valuable targets for the development of novel antimicrobials and their detailed study may shed new light on the functions required to support life. PMID:22768221

  6. Production of bioactive volatiles by different Burkholderia ambifaria strains.

    PubMed

    Groenhagen, Ulrike; Baumgartner, Rita; Bailly, Aurélien; Gardiner, Amber; Eberl, Leo; Schulz, Stefan; Weisskopf, Laure

    2013-07-01

    Increasing evidence indicates that volatile compounds emitted by bacteria can influence the growth of other organisms. In this study, the volatiles produced by three different strains of Burkholderia ambifaria were analysed and their effects on the growth of plants and fungi, as well as on the antibiotic resistance of target bacteria, were assessed. Burkholderia ambifaria emitted highly bioactive volatiles independently of the strain origin (clinical environment, rhizosphere of pea, roots of maize). These volatile blends induced significant biomass increase in the model plant Arabidopsis thaliana as well as growth inhibition of two phytopathogenic fungi (Rhizoctonia solani and Alternaria alternata). In Escherichia coli exposed to the volatiles of B. ambifaria, resistance to the aminoglycoside antibiotics gentamicin and kanamycin was found to be increased. The volatile blends of the three strains were similar, and dimethyl disulfide was the most abundant compound. Sulfur compounds, ketones, and aromatic compounds were major groups in all three volatile profiles. When applied as pure substance, dimethyl disulfide led to increased plant biomass, as did acetophenone and 3-hexanone. Significant fungal growth reduction was observed with high concentrations of dimethyl di- and trisulfide, 4-octanone, S-methyl methanethiosulphonate, 1-phenylpropan-1-one, and 2-undecanone, while dimethyl trisulfide, 1-methylthio-3-pentanone, and o-aminoacetophenone increased resistance of E. coli to aminoglycosides. Comparison of the volatile profile produced by an engineered mutant impaired in quorum-sensing (QS) signalling with the corresponding wild-type led to the conclusion that QS is not involved in the regulation of volatile production in B. ambifaria LMG strain 19182. PMID:23832658

  7. Activity of Tobramycin against Cystic Fibrosis Isolates of Burkholderia cepacia Complex Grown as Biofilms

    PubMed Central

    Kennedy, Sarah; Beaudoin, Trevor; Yau, Yvonne C. W.; Caraher, Emma; Zlosnik, James E. A.; Speert, David P.; LiPuma, John J.; Tullis, Elizabeth

    2015-01-01

    Pulmonary infection with Burkholderia cepacia complex in cystic fibrosis (CF) patients is associated with more-rapid lung function decline and earlier death than in CF patients without this infection. In this study, we used confocal microscopy to visualize the effects of various concentrations of tobramycin, achievable with systemic and aerosolized drug administration, on mature B. cepacia complex biofilms, both in the presence and absence of CF sputum. After 24 h of growth, biofilm thickness was significantly reduced by exposure to 2,000 μg/ml of tobramycin for Burkholderia cepacia, Burkholderia multivorans, and Burkholderia vietnamiensis; 200 μg/ml of tobramycin was sufficient to reduce the thickness of Burkholderia dolosa biofilm. With a more mature 48-h biofilm, significant reductions in thickness were seen with tobramycin at concentrations of ≥100 μg/ml for all Burkholderia species. In addition, an increased ratio of dead to live cells was observed in comparison to control with tobramycin concentrations of ≥200 μg/ml for B. cepacia and B. dolosa (24 h) and ≥100 μg/ml for Burkholderia cenocepacia and B. dolosa (48 h). Although sputum significantly increased biofilm thickness, tobramycin concentrations of 1,000 μg/ml were still able to significantly reduce biofilm thickness of all B. cepacia complex species with the exception of B. vietnamiensis. In the presence of sputum, 1,000 μg/ml of tobramycin significantly increased the dead-to-live ratio only for B. multivorans compared to control. In summary, although killing is attenuated, high-dose tobramycin can effectively decrease the thickness of B. cepacia complex biofilms, even in the presence of sputum, suggesting a possible role as a suppressive therapy in CF. PMID:26503664

  8. Oxalotrophy, a widespread trait of plant-associated Burkholderia species, is involved in successful root colonization of lupin and maize by Burkholderia phytofirmans

    PubMed Central

    Kost, Thomas; Stopnisek, Nejc; Agnoli, Kirsty; Eberl, Leo

    2014-01-01

    Plant roots and shoots harbor complex bacterial communities. Early seed and plantlet colonization plays a key role in determining which bacterial populations will successfully invade plant tissues, yet the mechanisms enabling plants to select for beneficial rather than harmful populations are largely unknown. In this study, we demonstrate a role of oxalate as a determinant in this selection process, using members of the genus Burkholderia as model organisms. Oxalotrophy, i.e., the ability to use oxalate as a carbon source, was found to be a property strictly associated with plant-beneficial species of the Burkholderia genus, while plant pathogenic (B. glumae, B. plantarii) or human opportunistic pathogens (Burkholderia cepacia complex strains) were unable to degrade oxalate. We further show that oxalotrophy is required for successful plant colonization by the broad host endophyte Burkholderia phytofirmans PsJN: an engineered Δoxc mutant, which lost the ability to grow on oxalate, was significantly impaired in early colonization of both lupin and maize compared with the wild-type. This work suggests that in addition to the role of oxalate in heavy metal tolerance of plants and in virulence of phytopathogenic fungi, it is also involved in specifically recruiting plant-beneficial members from complex bacterial communities. PMID:24409174

  9. Oxalotrophy, a widespread trait of plant-associated Burkholderia species, is involved in successful root colonization of lupin and maize by Burkholderia phytofirmans.

    PubMed

    Kost, Thomas; Stopnisek, Nejc; Agnoli, Kirsty; Eberl, Leo; Weisskopf, Laure

    2014-01-01

    Plant roots and shoots harbor complex bacterial communities. Early seed and plantlet colonization plays a key role in determining which bacterial populations will successfully invade plant tissues, yet the mechanisms enabling plants to select for beneficial rather than harmful populations are largely unknown. In this study, we demonstrate a role of oxalate as a determinant in this selection process, using members of the genus Burkholderia as model organisms. Oxalotrophy, i.e., the ability to use oxalate as a carbon source, was found to be a property strictly associated with plant-beneficial species of the Burkholderia genus, while plant pathogenic (B. glumae, B. plantarii) or human opportunistic pathogens (Burkholderia cepacia complex strains) were unable to degrade oxalate. We further show that oxalotrophy is required for successful plant colonization by the broad host endophyte Burkholderia phytofirmans PsJN: an engineered Δoxc mutant, which lost the ability to grow on oxalate, was significantly impaired in early colonization of both lupin and maize compared with the wild-type. This work suggests that in addition to the role of oxalate in heavy metal tolerance of plants and in virulence of phytopathogenic fungi, it is also involved in specifically recruiting plant-beneficial members from complex bacterial communities. PMID:24409174

  10. Draft Genome Sequence of Burkholderia sp. MR1, a Methylarsenate-Reducing Bacterial Isolate from Florida Golf Course Soil.

    PubMed

    Pawitwar, Shashank S; Utturkar, Sagar M; Brown, Steven D; Yoshinaga, Masafumi; Rosen, Barry P

    2015-01-01

    To elucidate the environmental organoarsenical biocycle, we isolated a soil organism, Burkholderia sp. MR1, which reduces relatively nontoxic pentavalent methylarsenate to the more toxic trivalent methylarsenite, with the goal of identifying the gene for the reductase. Here, we report the draft genome sequence of Burkholderia sp. MR1. PMID:26044439

  11. The Organization of the Quorum Sensing luxI/R Family Genes in Burkholderia

    PubMed Central

    Choudhary, Kumari Sonal; Hudaiberdiev, Sanjarbek; Gelencsér, Zsolt; Coutinho, Bruna Gonçalves; Venturi, Vittorio; Pongor, Sándor

    2013-01-01

    Members of the Burkholderia genus of Proteobacteria are capable of living freely in the environment and can also colonize human, animal and plant hosts. Certain members are considered to be clinically important from both medical and veterinary perspectives and furthermore may be important modulators of the rhizosphere. Quorum sensing via N-acyl homoserine lactone signals (AHL QS) is present in almost all Burkholderia species and is thought to play important roles in lifestyle changes such as colonization and niche invasion. Here we present a census of AHL QS genes retrieved from public databases and indicate that the local arrangement (topology) of QS genes, their location within chromosomes and their gene neighborhoods show characteristic patterns that differ between the known Burkholderia clades. In sequence phylogenies, AHL QS genes seem to cluster according to the local gene topology rather than according to the species, which suggests that the basic topology types were present prior to the appearance of current Burkholderia species. The data are available at http://net.icgeb.org/burkholderia/. PMID:23820583

  12. Genome Annotation of Burkholderia sp. SJ98 with Special Focus on Chemotaxis Genes

    PubMed Central

    Kumar, Shailesh; Vikram, Surendra; Raghava, Gajendra Pal Singh

    2013-01-01

    Burkholderia sp. strain SJ98 has the chemotactic activity towards nitroaromatic and chloronitroaromatic compounds. Recently our group published draft genome of strain SJ98. In this study, we further sequence and annotate the genome of stain SJ98 to exploit the potential of this bacterium. We specifically annotate its chemotaxis genes and methyl accepting chemotaxis proteins. Genome of Burkholderia sp. SJ98 was annotated using PGAAP pipeline that predicts 7,268 CDSs, 52 tRNAs and 3 rRNAs. Our analysis based on phylogenetic and comparative genomics suggest that Burkholderia sp. YI23 is closest neighbor of the strain SJ98. The genes involved in the chemotaxis of strain SJ98 were compared with genes of closely related Burkholderia strains (i.e. YI23, CCGE 1001, CCGE 1002, CCGE 1003) and with well characterized bacterium E. coli K12. It was found that strain SJ98 has 37 che genes including 19 methyl accepting chemotaxis proteins that involved in sensing of different attractants. Chemotaxis genes have been found in a cluster along with the flagellar motor proteins. We also developed a web resource that provides comprehensive information on strain SJ98 that includes all analysis data (http://crdd.osdd.net/raghava/genomesrs/burkholderia/). PMID:23940608

  13. Phylogenetically Diverse Burkholderia Associated with Midgut Crypts of Spurge Bugs, Dicranocephalus spp. (Heteroptera: Stenocephalidae).

    PubMed

    Kuechler, Stefan Martin; Matsuura, Yu; Dettner, Konrad; Kikuchi, Yoshitomo

    2016-06-25

    Diverse phytophagous heteropteran insects, commonly known as stinkbugs, are associated with specific gut symbiotic bacteria, which have been found in midgut cryptic spaces. Recent studies have revealed that members of the stinkbug families Coreidae and Alydidae of the superfamily Coreoidea are consistently associated with a specific group of the betaproteobacterial genus Burkholderia, called the "stinkbug-associated beneficial and environmental (SBE)" group, and horizontally acquire specific symbionts from the environment every generation. However, the symbiotic system of another coreoid family, Stenocephalidae remains undetermined. We herein investigated four species of the stenocephalid genus Dicranocephalus. Examinations via fluorescence in situ hybridization (FISH) and transmission electron microscopy (TEM) revealed the typical arrangement and ultrastructures of midgut crypts and gut symbionts. Cloning and molecular phylogenetic analyses of bacterial genes showed that the midgut crypts of all species are colonized by Burkholderia strains, which were further assigned to different subgroups of the genus Burkholderia. In addition to the SBE-group Burkholderia, a number of stenocephalid symbionts belonged to a novel clade containing B. sordidicola and B. udeis, suggesting a specific symbiont clade for the Stenocephalidae. The symbiotic systems of stenocephalid bugs may provide a unique opportunity to study the ongoing evolution of symbiont associations in the stinkbug-Burkholderia interaction. PMID:27265344

  14. Divergent homologs of the predicted small RNA BpCand697 in Burkholderia spp.

    NASA Astrophysics Data System (ADS)

    Damiri, Nadzirah; Mohd-Padil, Hirzahida; Firdaus-Raih, Mohd

    2015-09-01

    The small RNA (sRNA) gene candidate, BpCand697 was previously reported to be unique to Burkholderia spp. and is encoded at 3' non-coding region of a putative AraC family transcription regulator gene. This study demonstrates the conservation of BpCand697 sequence across 32 Burkholderia spp. including B. pseudomallei, B. mallei, B. thailandensis and Burkholderia sp. by integrating both sequence homology and secondary structural analyses of BpCand697 within the dataset. The divergent sequence of BpCand697 was also used as a discriminatory power in clustering the dataset according to the potential virulence of Burkholderia spp., showing that B. thailandensis was clearly secluded from the virulent cluster of B. pseudomallei and B. mallei. Finally, the differential co-transcript expression of BpCand697 and its flanking gene, bpsl2391 was detected in Burkholderia pseudomallei D286 after grown under two different culture conditions using nutrient-rich and minimal media. It is hypothesized that the differential expression of BpCand697-bpsl2391 co-transcript between the two standard prepared media might correlate with nutrient availability in the culture media, suggesting that the physical co-localization of BpCand697 in B. pseudomallei D286 might be directly or indirectly involved with the transcript regulation of bpsl2391 under the selected in vitro culture conditions.

  15. A N2-fixing endophytic Burkholderia sp. associated with maize plants cultivated in Mexico.

    PubMed

    Estrada, Paulina; Mavingui, Patrick; Cournoyer, Benoit; Fontaine, Fanette; Balandreau, Jacques; Caballero-Mellado, Jesus

    2002-04-01

    In the frame of a survey of potentially endophytic N2-fixing Burkholderia associated with maize in Mexico, its country of origin, the soil of an indigenous maize field near Oaxaca was studied. Under laboratory conditions, plant seedlings of two ancient maize varieties were used as a trap to select endophyte candidates from the soil sample. Among the N2 fixers isolated from inside plant tissues and able to grow on PCAT medium, the most abundant isolates belonged to genus Burkholderia (API 20NE, rrs sequences). Representative isolates obtained from roots and shoots of different plants appeared identical (rrs and nifH RFLP), showing that they were closely related. In addition, their 16S rDNA sequences differed from described Burkholderia species and, phylogenetically, they constituted a separate deep-branching new lineage in genus Burkholderia. This indicated that these isolates probably constituted a new species. An inoculation experiment confirmed that these N2-fixing Burkholderia isolates could densely colonize the plant tissues of maize. More isolates of this group were subsequently obtained from field-grown maize and teosinte plants. It was hypothesized that strains of this species had developed a sort of primitive symbiosis with one of their host plants, teosinte, which persisted during the domestication of teosinte into maize. PMID:12030700

  16. The art of persistence-the secrets to Burkholderia chronic infections.

    PubMed

    Lewis, Eric R G; Torres, Alfredo G

    2016-08-01

    The Gram-negative proteobacteria genus Burkholderia encompasses multiple bacterial species that are pathogenic to humans and other vertebrates. Two pathogenic species of interest within this genus are Burkholderia pseudomallei (Bpm) and the B. cepacia complex (Bcc); the former is the causative agent of melioidosis in humans and other mammals, and the latter is associated with pneumonia in immunocompromised patients. One understudied and shared characteristic of these two pathogenic groups is their ability to persist and establish chronic infection within the host. In this review, we will explore the depth of knowledge about chronic infections caused by persistent Bpm and Bcc. We examine the host risk factors and immune responses associated with more severe chronic infections. We also discuss host adaptation and phenotypes associated with persistent Burkholderia species. Lastly, we survey how other intracellular bacteria associated with chronic infections are combatted and explore possible future applications to target Burkholderia Our goal is to highlight understudied areas that should be addressed for a more thorough understanding of chronic Burkholderia infections and how to combat them. PMID:27440810

  17. Plant-Associated Symbiotic Burkholderia Species Lack Hallmark Strategies Required in Mammalian Pathogenesis

    PubMed Central

    Fong, Stephanie; Yerrapragada, Shailaja; Estrada-de los Santos, Paulina; Yang, Paul; Song, Nannie; Kano, Stephanie; de Faria, Sergio M.; Dakora, Felix D.; Weinstock, George; Hirsch, Ann M.

    2014-01-01

    Burkholderia is a diverse and dynamic genus, containing pathogenic species as well as species that form complex interactions with plants. Pathogenic strains, such as B. pseudomallei and B. mallei, can cause serious disease in mammals, while other Burkholderia strains are opportunistic pathogens, infecting humans or animals with a compromised immune system. Although some of the opportunistic Burkholderia pathogens are known to promote plant growth and even fix nitrogen, the risk of infection to infants, the elderly, and people who are immunocompromised has not only resulted in a restriction on their use, but has also limited the application of non-pathogenic, symbiotic species, several of which nodulate legume roots or have positive effects on plant growth. However, recent phylogenetic analyses have demonstrated that Burkholderia species separate into distinct lineages, suggesting the possibility for safe use of certain symbiotic species in agricultural contexts. A number of environmental strains that promote plant growth or degrade xenobiotics are also included in the symbiotic lineage. Many of these species have the potential to enhance agriculture in areas where fertilizers are not readily available and may serve in the future as inocula for crops growing in soils impacted by climate change. Here we address the pathogenic potential of several of the symbiotic Burkholderia strains using bioinformatics and functional tests. A series of infection experiments using Caenorhabditis elegans and HeLa cells, as well as genomic characterization of pathogenic loci, show that the risk of opportunistic infection by symbiotic strains such as B. tuberum is extremely low. PMID:24416172

  18. Phylogenetically Diverse Burkholderia Associated with Midgut Crypts of Spurge Bugs, Dicranocephalus spp. (Heteroptera: Stenocephalidae)

    PubMed Central

    Kuechler, Stefan Martin; Matsuura, Yu; Dettner, Konrad; Kikuchi, Yoshitomo

    2016-01-01

    Diverse phytophagous heteropteran insects, commonly known as stinkbugs, are associated with specific gut symbiotic bacteria, which have been found in midgut cryptic spaces. Recent studies have revealed that members of the stinkbug families Coreidae and Alydidae of the superfamily Coreoidea are consistently associated with a specific group of the betaproteobacterial genus Burkholderia, called the “stinkbug-associated beneficial and environmental (SBE)” group, and horizontally acquire specific symbionts from the environment every generation. However, the symbiotic system of another coreoid family, Stenocephalidae remains undetermined. We herein investigated four species of the stenocephalid genus Dicranocephalus. Examinations via fluorescence in situ hybridization (FISH) and transmission electron microscopy (TEM) revealed the typical arrangement and ultrastructures of midgut crypts and gut symbionts. Cloning and molecular phylogenetic analyses of bacterial genes showed that the midgut crypts of all species are colonized by Burkholderia strains, which were further assigned to different subgroups of the genus Burkholderia. In addition to the SBE-group Burkholderia, a number of stenocephalid symbionts belonged to a novel clade containing B. sordidicola and B. udeis, suggesting a specific symbiont clade for the Stenocephalidae. The symbiotic systems of stenocephalid bugs may provide a unique opportunity to study the ongoing evolution of symbiont associations in the stinkbug-Burkholderia interaction. PMID:27265344

  19. Diversity of Cultivated Endophytic Bacteria from Sugarcane: Genetic and Biochemical Characterization of Burkholderia cepacia Complex Isolates▿

    PubMed Central

    Mendes, Rodrigo; Pizzirani-Kleiner, Aline A.; Araujo, Welington L.; Raaijmakers, Jos M.

    2007-01-01

    Bacteria were isolated from the rhizosphere and from inside the roots and stems of sugarcane plants grown in the field in Brazil. Endophytic bacteria were found in both the roots and the stems of sugarcane plants, with a significantly higher density in the roots. Many of the cultivated endophytic bacteria were shown to produce the plant growth hormone indoleacetic acid, and this trait was more frequently found among bacteria from the stem. 16S rRNA gene sequence analysis revealed that the selected isolates of the endophytic bacterial community of sugarcane belong to the genera of Burkholderia, Pantoea, Pseudomonas, and Microbacterium. Bacterial isolates belonging to the genus Burkholderia were the most predominant among the endophytic bacteria. Many of the Burkholderia isolates produced the antifungal metabolite pyrrolnitrin, and all were able to grow at 37°C. Phylogenetic analyses of the 16S rRNA gene and recA gene sequences indicated that the endophytic Burkholderia isolates from sugarcane are closely related to clinical isolates of the Burkholderia cepacia complex and clustered with B. cenocepacia (gv. III) isolates from cystic fibrosis patients. These results suggest that isolates of the B. cepacia complex are an integral part of the endophytic bacterial community of sugarcane in Brazil and reinforce the hypothesis that plant-associated environments may act as a niche for putative opportunistic human pathogenic bacteria. PMID:17905875

  20. Burkholderia of Plant-Beneficial Group are Symbiotically Associated with Bordered Plant Bugs (Heteroptera: Pyrrhocoroidea: Largidae)

    PubMed Central

    Takeshita, Kazutaka; Matsuura, Yu; Itoh, Hideomi; Navarro, Ronald; Hori, Tomoyuki; Sone, Teruo; Kamagata, Yoichi; Mergaert, Peter; Kikuchi, Yoshitomo

    2015-01-01

    A number of phytophagous stinkbugs (order Heteroptera: infraorder Pentatomomorpha) harbor symbiotic bacteria in a specific midgut region composed of numerous crypts. Among the five superfamilies of the infraorder Pentatomomorpha, most members of the Coreoidea and Lygaeoidea are associated with a specific group of the genus Burkholderia, called the “stinkbug-associated beneficial and environmental (SBE)” group, which is not vertically transmitted, but acquired from the environment every host generation. A recent study reported that, in addition to these two stinkbug groups, the family Largidae of the superfamily Pyrrhocoroidea also possesses a Burkholderia symbiont. Despite this recent finding, the phylogenetic position and biological nature of Burkholderia associated with Largidae remains unclear. Based on the combined results of fluorescence in situ hybridization, cloning analysis, Illumina deep sequencing, and egg inspections by diagnostic PCR, we herein demonstrate that the largid species are consistently associated with the “plant-associated beneficial and environmental (PBE)” group of Burkholderia, which are phylogenetically distinct from the SBE group, and that they maintain symbiosis through the environmental acquisition of the bacteria. Since the superfamilies Coreoidea, Lygaeoidea, and Pyrrhocoroidea are monophyletic in the infraorder Pentatomomorpha, it is plausible that the symbiotic association with Burkholderia evolved at the common ancestor of the three superfamilies. However, the results of this study strongly suggest that a dynamic transition from the PBE to SBE group, or vice versa, occurred in the course of stinkbug evolution. PMID:26657305

  1. [Phylogenetic analysis of the genes for naphthalene and phenanthrene degradation in Burkholderia sp. strains].

    PubMed

    Izmalkova, T Yu; Sazonova, O I; Kosheleva, I A; Boronin, A M

    2013-06-01

    The genetic systems responsible for naphthalene and phenanthrene catabolism have been analyzed in the five strains of Burkholderia sp. isolated from soil samples (West Siberia) contaminated by heavy residual fuel oil and in the strain Burkholderia sp. BS3702 from the laboratory collection isolated from soil samples of the coke gas works (Vidnoe, Moscow oblast). The results of this work demonstrate that naphthalene and phenanthrene degradation in the above strains is encoded by the sequences not homologous to the classical nah genes of pseudomonades. In the Burkholderia sp. BS3702 strain, the initial stages of phenanthrene degradation and the subsequent stages of salicylate degradation are controlled by the sequences of different evolutionary origins (phn and nag genes). PMID:24450193

  2. Naturally Occurring Class A ß-Lactamases from the Burkholderia cepacia Complex ▿

    PubMed Central

    Poirel, Laurent; Rodriguez-Martinez, José-Manuel; Plésiat, Patrick; Nordmann, Patrice

    2009-01-01

    Chromosomally encoded ß-lactamases from the Burkholderia cepacia complex species (formerly Pseudomonas cepacia) were characterized. Cloning and sequencing identified an Ambler class A ß-lactamase (PenB) from B. cenocepacia. It shares 82% amino acid identity with the PenA ß-lactamases previously identified from B. multivorans 249. Its expression was dependent upon a LysR-type regulatory protein. Its narrow-spectrum hydrolysis activity mostly included penicillins but also included expanded-spectrum cephalosporins and aztreonam at lower levels. In that study, Pen-like ß-lactamases (PenC, PenD, PenE, PenF) that shared 63 to 92% identity with PenB from B. cenocepacia were identified from other Burkholderia species. The corresponding ß-lactamase genes might be used as genetic tools for accurate Burkholderia species identification. PMID:19075063

  3. An ensemble of structures of Burkholderia pseudomallei 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase

    SciTech Connect

    Davies, Douglas R.; Staker, Bart L.; Abendroth, Jan A.; Edwards, Thomas E.; Hartley, Robert; Leonard, Jess; Kim, Hidong; Rychel, Amanda L.; Hewitt, Stephen N.; Myler, Peter J.; Stewart, Lance J.

    2011-12-07

    Burkholderia pseudomallei is a soil-dwelling bacterium endemic to Southeast Asia and Northern Australia. Burkholderia is responsible for melioidosis, a serious infection of the skin. The enzyme 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase (PGAM) catalyzes the interconversion of 3-phosphoglycerate and 2-phosphoglycerate, a key step in the glycolytic pathway. As such it is an extensively studied enzyme and X-ray crystal structures of PGAM enzymes from multiple species have been elucidated. Vanadate is a phosphate mimic that is a powerful tool for studying enzymatic mechanisms in phosphoryl-transfer enzymes such as phosphoglycerate mutase. However, to date no X-ray crystal structures of phosphoglycerate mutase have been solved with vanadate acting as a substrate mimic. Here, two vanadate complexes together with an ensemble of substrate and fragment-bound structures that provide a comprehensive picture of the function of the Burkholderia enzyme are reported.

  4. Evolving serodiagnostics by rationally designed peptide arrays: the Burkholderia paradigm in Cystic Fibrosis.

    PubMed

    Peri, Claudio; Gori, Alessandro; Gagni, Paola; Sola, Laura; Girelli, Daniela; Sottotetti, Samantha; Cariani, Lisa; Chiari, Marcella; Cretich, Marina; Colombo, Giorgio

    2016-01-01

    Efficient diagnosis of emerging and novel bacterial infections is fundamental to guide decisions on therapeutic treatments. Here, we engineered a novel rational strategy to design peptide microarray platforms, which combines structural and genomic analyses to predict the binding interfaces between diverse protein antigens and antibodies against Burkholderia cepacia complex infections present in the sera of Cystic Fibrosis (CF) patients. The predicted binding interfaces on the antigens are synthesized in the form of isolated peptides and chemically optimized for controlled orientation on the surface. Our platform displays multiple Burkholderia-related epitopes and is shown to diagnose infected individuals even in presence of superinfections caused by other prevalent CF pathogens, with limited cost and time requirements. Moreover, our data point out that the specific patterns determined by combined probe responses might provide a characterization of Burkholderia infections even at the subtype level (genomovars). The method is general and immediately applicable to other bacteria. PMID:27615705

  5. Genetic structure of a lotic population of Burkholderia (Pseudomonas) cepacia

    SciTech Connect

    Wise, M.G.; Shimkets, L.J.; McArthur, J.V.

    1995-05-01

    The genetic structure of a population of Burkholderia (Pseudomonas) cepacia isolated from a southeastern blackwater stream was investigated by using multilocus enzyme electrophoresis to examine the allelic variation in eight structural gene loci. Overall, 213 isolates were collected at transect points along the stream continuum, from both the sediments along the bank and the water column. Multilocus enzyme electrophoresis analysis revealed 164 distinct electrophoretic types, and the mean genetic diversity of the entire population was 0.574. Genetic diversity values did not vary spatially along the stream continuum. From a canonical discriminant analysis, Mahalonobis distances (measurements of genetic similarity between populations) revealed significant differences among the subpopulations at the sediment sampling points, suggesting bacterial adaptation to a heterogeneous (or patchy) microgeographical environment. Multilocus linkage disequilibrium analysis of the isolates revealed only limited association between alleles, suggesting frequent recombination, relative to binary fission, in this population. Furthermore, the dendrogram created from the data of this study and the allele mismatch distribution are typical of a population characterized by extensive genetic mixing. We suggest that B. cepacia be added to the growing list of bacteria that are not obligatorily clonal. 41 refs., 5 figs., 3 tabs.

  6. Ultrastructural effects and antibiofilm activity of LFchimera against Burkholderia pseudomallei.

    PubMed

    Puknun, Aekkalak; Kanthawong, Sakawrat; Anutrakunchai, Chitchanok; Nazmi, Kamran; Tigchelaar, Wikky; Hoeben, Kees A; Veerman, Enno C I; Bolscher, Jan G M; Taweechaisupapong, Suwimol

    2016-02-01

    Lactoferrin chimera (LFchimera), a hybrid peptide containing the two antimicrobial stretches of the innate immunity factor bovine lactoferrin, viz. LFampin265-284 and LFcin17-30, has strikingly high antimicrobial activity against the category B pathogen Burkholderia pseudomallei. The action mechanisms of LFchimera against B. pseudomallei is not fully understood. The aim of this study was to further investigate the effect of treated B. pseudomallei with LFchimera using (immune) electron microscopy. The effects of LFchimera on biofilm formation and against preformed biofilm of B. pseudomallei were also determined. After exposure to LFchimera, transmission electron microscopy revealed swelling of the periplasmic space of B. pseudomallei and a highly inhomogeneous electron density in the intracellular DNA region. Localization of LFchimera in B. pseudomallei using immunoelectron microscopy showed gold particles in intracellular structures without accumulation on the membranes. LFchimera also possessed stronger bactericidal activity than ceftazidime against B. pseudomallei grown in biofilm. Moreover, limited exposure of B. pseudomallei to LFchimera at subcidal concentration could reduce biofilm formation. Altogether, the results indicate that LFchimera possesses antibacterial and antibiofilm activities and can modulate B. pseudomallei colonization. Therefore, the efficacy of LFchimera merits further development of this agent for the therapy of melioidosis. PMID:26754671

  7. The Survival of Burkholderia pseudomallei in Liquid Media

    PubMed Central

    Robertson, Jeannie; Levy, Avram; Sagripanti, Jose-Luis; Inglis, Timothy J. J.

    2010-01-01

    We studied the effect of environmental parameters on the survival of Burkholderia pseudomallei. There was a small increase in bacterial count for up to 28 days in sterilized distilled water or rain water, in water at 20°C or 40°C, and in buffered solutions of pH 4 or higher. Counts of culturable B. pseudomallei declined at pH 3, in the presence of seawater or water with concentrations of 4% salt or higher, and under refrigeration. The morphological appearances of B. pseudomallei changed under conditions that maintained culturable numbers from bacilli to coccoid cells and spiral forms under pH or salt stress. These observations indicate that B. pseudomallei can endure nutrient-depleted environments as well as a wide range of pH, salt concentrations, and temperatures for periods of up to 28 days. The relative stability of B. pseudomallei under these conditions underlines the tenacity of this species and its potential for natural dispersal in water: in surface water collections, in managed water distribution systems, and through rainfall. These survival properties help explain the recent expansion of the known melioidosis endemic zone in Australia and may have played a part in recent melioidosis outbreaks. PMID:20065001

  8. Burkholderia Sepsis in Children as a Hospital-Acquired Infection

    PubMed Central

    Kim, Kyu Yeun; Yong, Dongeun; Lee, Kyungwon; Kim, Ho-Seong

    2016-01-01

    Purpose Hospital-acquired Burkholderia cepacia (B. cepacia) infection are not commonly recorded in patients without underlying lung disease, such as cystic fibrosis and chronic granulomatous disease. However, in 2014, B. cepacia appeared more frequently in pediatric blood samples than in any other year. In order to access this situation, we analyzed the clinical characteristics of B. cepacia infections in pediatric patients at our hospital. Materials and Methods We conducted a retrospective study of blood isolates of B. cepacia taken at our hospital between January 2004 and December 2014. Patient clinical data were obtained by retrospective review of electronic medical records. We constructed a dendrogram for B. cepacia isolates from two children and five adult patients. Results A total of 14 pediatric patients and 69 adult patients were identified as having B. cepacia bacteremia. In 2014, higher rates of B. cepacia bacteremia were observed in children. Most of them required Intensive Care Unit (ICU) care (12/14). In eleven children, sputum cultures were examined, and five of these children had the same strain of B. cepacia that grew out from their blood samples. Antibiotics were administered based on antibiotic sensitivity results. Four children expired despite treatment. Compared to children, there were no demonstrative differences in adults, except for history of ICU care. Conclusion Although there were not many pediatric cases at our hospital, awareness of colonization through hospital-acquired infection and effective therapy for infection of B. cepacia is needed, as it can cause mortality and morbidity. PMID:26632388

  9. Burkholderia pseudomallei induces IL-23 production in primary human monocytes.

    PubMed

    Kulsantiwong, Panthong; Pudla, Matsayapan; Boondit, Jitrada; Wikraiphat, Chanthiwa; Dunachie, Susanna J; Chantratita, Narisara; Utaisincharoen, Pongsak

    2016-06-01

    Burkholderia pseudomallei, a gram-negative intracellular bacterium, is a causative agent of melioidosis. The bacterium has been shown to induce the innate immune response, particularly pro-inflammatory cytokine production in several of both mouse and human cell types. In the present study, we investigate host immune response in B. pseudomallei-infected primary human monocytes. We discover that wild-type B. pseudomallei is able to survive and multiply inside the primary human monocytes. In contrast, B. pseudomallei LPS mutant, a less virulent strain, is susceptible to host killing during bacterial infection. Moreover, microarray result showed that wild-type B. pseudomallei but not B. pseudomallei LPS mutant is able to activate gene expression of IL-23 as demonstrated by the up-regulation of p19 and p40 subunit expression. Consistent with gene expression analysis, the secretion of IL-23 analyzed by ELISA also showed that wild-type B. pseudomallei induces a significantly higher level of IL-23 secretion than that of B. pseudomallei LPS mutant. These results implied that IL-23 may be an important cytokine for the innate immune response during B. pseudomallei infection. The regulation of IL-23 production may drive the different host innate immune responses between patients and may relate to the severity of melioidosis. PMID:26563410

  10. Identification of quorum sensing-controlled genes in Burkholderia ambifaria

    PubMed Central

    Chapalain, Annelise; Vial, Ludovic; Laprade, Natacha; Dekimpe, Valérie; Perreault, Jonathan; Déziel, Eric

    2013-01-01

    The Burkholderia cepacia complex (Bcc) comprises strains with a virulence potential toward immunocompromised patients as well as plant growth–promoting rhizobacteria (PGPR). Owing to the link between quorum sensing (QS) and virulence, most studies among Bcc species have been directed toward QS of pathogenic bacteria. We have investigated the QS of B. ambifaria, a PGPR only infrequently recovered from patients. The cepI gene, responsible for the synthesis of the main signaling molecule N-octanoylhomoserine lactone (C8-HSL), was inactivated. Phenotypes of the B. ambifaria cepI mutant we observed, such as increased production of siderophores and decreased proteolytic and antifungal activities, are in agreement with those of other Bcc cepI mutants. The cepI mutant was then used as background strain for a whole-genome transposon-insertion mutagenesis strategy, allowing the identification of 20 QS-controlled genes, corresponding to 17 loci. The main functions identified are linked to antifungal and antimicrobial properties, as we have identified QS-controlled genes implicated in the production of pyrrolnitrin, burkholdines (occidiofungin-like molecules), and enacyloxins. This study provides insights in the QS-regulated functions of a PGPR, which could lead to beneficial potential biotechnological applications. PMID:23382083

  11. Burkholderia pseudomallei: First case of melioidosis in Portugal.

    PubMed

    Pelerito, Ana; Nunes, Alexandra; Coelho, Susana; Piedade, Cátia; Paixão, Paulo; Cordeiro, Rita; Sampaio, Daniel; Vieira, Luís; Gomes, João Paulo; Núncio, Sofia

    2016-01-01

    Burkholderia pseudomallei is a Gram-negative bacillus and the causative agent of melioidosis, a serious infection associated with high mortality rate in humans. It can be naturally found as an environmental saprophyte in soil or stagnant water, and rice paddies that predominate in regions of endemicity such as Northeast Thailand. B. pseudomallei is a Biosafety Level 3 organism due to risks of aerosolization and severe disease and is now included in formal emergency preparedness plans and guidelines issued by various authorities in the United States and Europe. Here, we report the first case of imported melioidosis in Portugal. B. pseudomallei was isolated from the patient's blood as well as from a left gluteal abscess pus. The isolate strain showed the unusual resistance profile to first-line eradication therapy trimethroprim/sulfamethoxazole. Whole genome sequencing revealed its similarity with isolates from Southeast Asia, suggesting the Thai origin of this Portuguese isolate, which is in agreement with a recent patient's travel to Thailand. PMID:26962474

  12. Burkholderia Pseudomallei Causing Bone and Joint Infections: A Clinical Update.

    PubMed

    Raja, Nadeem Sajjad; Scarsbrook, Christine

    2016-03-01

    Burkholderia pseudomallei (B. pseudomallei), a causative agent of an emerging infectious disease melioidosis, is endemic in the tropical regions of the world. Due to increased international travel, the infection is now also seen outside of the tropics. The majority of patients with identified risk factors such as diabetes mellitus, heavy alcohol use, malignancy, chronic lung and kidney disease, corticosteroid use, thalassemia, rheumatic heart disease, systemic lupus erythematosus and cardiac failure acquire this organism through percutaneous inoculation or inhalation. The clinical manifestations are variable, ranging from localized abscess formation to septicemia. Melioidotic bone and joint infections are rarely reported but are an established entity. The knee joint is the most commonly affected joint in melioidosis, followed by the ankle, hip and shoulder joints. Melioidosis should be in the differential diagnosis of bone and joint infections in residents or returning travelers from the endemic area. Melioidosis diagnosis is missed in many parts of the world due to the lack of awareness of this infection and limited laboratory training and diagnostic techniques. It also mimics other diseases such as tuberculosis. Delay in the diagnosis, or the initiation of appropriate and effective treatment against melioidosis, could worsen the outcome. Initial therapy with ceftazidime, or carbapenem with or without cotrimoxazole is recommended, followed by the oral eradication therapy (based on the antimicrobial susceptibility) with amoxicillin/clavulanic acid or cotrimoxazole. Surgical intervention remains important. This paper reviews current literature on the epidemiology, clinical features, diagnosis, and management of melioidotic bone and joint infections. PMID:26728713

  13. Predicted global distribution of Burkholderia pseudomallei and burden of melioidosis

    PubMed Central

    Limmathurotsakul, Direk; Golding, Nick; Dance, David AB; Messina, Jane P; Pigott, David M; Moyes, Catherine L; Rolim, Dionne B; Bertherat, Eric; Day, Nicholas PJ; Peacock, Sharon J; Hay, Simon I

    2016-01-01

    Burkholderia pseudomallei, a highly pathogenic bacterium that causes melioidosis, is commonly found in soil in Southeast Asia and Northern Australia1,2. Melioidosis can be difficult to diagnose due to its diverse clinical manifestations and the inadequacy of conventional bacterial identification methods3. The bacterium is intrinsically resistant to a wide range of antimicrobials, and treatment with ineffective antimicrobials may result in case fatality rates (CFRs) exceeding 70%4,5. The importation of infected animals has, in the past, spread melioidosis to non-endemic areas6,7. The global distribution of B. pseudomallei and burden of melioidosis, however, remain poorly understood. Here, we map documented human and animal cases, and the presence of environmental B. pseudomallei, and combine this in a formal modelling framework8-10 to estimate the global burden of melioidosis. We estimate there to be 165,000 (95% credible interval 68,000-412,000) human melioidosis cases per year worldwide, of which 89,000 (36,000-227,000) die. Our estimates suggest that melioidosis is severely underreported in the 45 countries in which it is known to be endemic and that melioidosis is likely endemic in a further 34 countries which have never reported the disease. The large numbers of estimated cases and fatalities emphasise that the disease warrants renewed attention from public health officials and policy makers. PMID:26877885

  14. Incidence of Burkholderia mallei infection among indigenous equines in India

    PubMed Central

    Malik, Praveen; Singha, Harisankar; Goyal, Sachin K; Khurana, Sandip K; Tripathi, Badri Naryan; Dutt, Abha; Singh, Dabal; Sharma, Neeraj; Jain, Sanjay

    2015-01-01

    Burkholderia mallei is the causative agent of glanders which is a highly contagious and fatal disease of equines. Considering the nature and severity of the disease in equines, and potential of transmission to human beings, glanders is recognised as a ‘notifiable’ disease in many countries. An increasing number of glanders outbreaks throughout the Asian continents, including India, have been noticed recently. In view of the recent re-emergence of the disease, the present study was undertaken to estimate the prevalence of glanders among indigenous equines from different parts of India. Serum samples were analysed by complement fixation test (CFT) and ELISA for the detection of B mallei specific antibodies. A total of 7794 equines, which included 4720 horses, 1881 donkeys and 1193 mules were sampled from April 2011 to December 2014 from 10 states of India. Serologically, 36 equines (pony=7, mules=10, horses=19) were found to be positive for glanders by CFT and indirect-ELISA. The highest number of cases were detected in Uttar Pradesh (n=31) followed by Himachal Pradesh (n=4) and Chhattisgarh (n=1). Isolation of B mallei was attempted from nasal and abscess swabs collected from seropositive equines. Four isolates of B mallei were cultured from nasal swabs of two mules and two ponies. Identity of the isolates was confirmed by PCR and sequencing of fliP gene fragment. The study revealed circulation of B mallei in northern India and the need for continued surveillance to support the eradication. PMID:26457190

  15. Virulence of Burkholderia mallei Quorum-Sensing Mutants

    PubMed Central

    Majerczyk, Charlotte; Kinman, Loren; Han, Tony; Bunt, Richard

    2013-01-01

    Many Proteobacteria use acyl-homoserine lactone-mediated quorum-sensing (QS) to activate specific sets of genes as a function of cell density. QS often controls the virulence of pathogenic species, and in fact a previous study indicated that QS was important for Burkholderia mallei mouse lung infections. To gain in-depth information on the role of QS in B. mallei virulence, we constructed and characterized a mutant of B. mallei strain GB8 that was unable to make acyl-homoserine lactones. The QS mutant showed virulence equal to that of its wild-type parent in an aerosol mouse infection model, and growth in macrophages was indistinguishable from that of the parent strain. Furthermore, we assessed the role of QS in B. mallei ATCC 23344 by constructing and characterizing a mutant strain producing AiiA, a lactonase enzyme that degrades acyl-homoserine lactones. Although acyl-homoserine lactone levels in cultures of this strain are very low, it showed full virulence. Contrary to the previous report, we conclude that QS is not required for acute B. mallei infections of mice. QS may be involved in some stage of chronic infections in the natural host of horses, or the QS genes may be remnants of the QS network in B. pseudomallei from which this host-adapted pathogen evolved. PMID:23429539

  16. Burkholderia pseudomallei: First case of melioidosis in Portugal

    PubMed Central

    Pelerito, Ana; Nunes, Alexandra; Coelho, Susana; Piedade, Cátia; Paixão, Paulo; Cordeiro, Rita; Sampaio, Daniel; Vieira, Luís; Gomes, João Paulo; Núncio, Sofia

    2016-01-01

    Burkholderia pseudomallei is a Gram-negative bacillus and the causative agent of melioidosis, a serious infection associated with high mortality rate in humans. It can be naturally found as an environmental saprophyte in soil or stagnant water, and rice paddies that predominate in regions of endemicity such as Northeast Thailand. B. pseudomallei is a Biosafety Level 3 organism due to risks of aerosolization and severe disease and is now included in formal emergency preparedness plans and guidelines issued by various authorities in the United States and Europe. Here, we report the first case of imported melioidosis in Portugal. B. pseudomallei was isolated from the patient's blood as well as from a left gluteal abscess pus. The isolate strain showed the unusual resistance profile to first-line eradication therapy trimethroprim/sulfamethoxazole. Whole genome sequencing revealed its similarity with isolates from Southeast Asia, suggesting the Thai origin of this Portuguese isolate, which is in agreement with a recent patient's travel to Thailand. PMID:26962474

  17. Morphological Alteration and Survival of Burkholderia pseudomallei in Soil Microcosms.

    PubMed

    Kamjumphol, Watcharaporn; Chareonsudjai, Pisit; Taweechaisupapong, Suwimol; Chareonsudjai, Sorujsiri

    2015-11-01

    The resilience of Burkholderia pseudomallei, the causative agent of melioidosis, was evaluated in control soil microcosms and in soil microcosms containing NaCl or FeSO4 at 30°C. Iron (Fe(II)) promoted the growth of B. pseudomallei during the 30-day observation, contrary to the presence of 1.5% and 3% NaCl. Scanning electron micrographs of B. pseudomallei in soil revealed their morphological alteration from rod to coccoid and the formation of microcolonies. The smallest B. pseudomallei cells were found in soil with 100 μM FeSO4 compared with in the control soil or soil with 0.6% NaCl (P < 0.05). The colony count on Ashdown's agar and bacterial viability assay using the LIVE/DEAD(®) BacLight(™) stain combined with flow cytometry showed that B. pseudomallei remained culturable and viable in the control soil microcosms for at least 120 days. In contrast, soil with 1.5% NaCl affected their culturability at day 90 and their viability at day 120. Our results suggested that a low salinity and iron may influence the survival of B. pseudomallei and its ability to change from a rod-like to coccoid form. The morphological changes of B. pseudomallei cells may be advantageous for their persistence in the environment and may increase the risk of their transmission to humans. PMID:26324731

  18. Genetic Control of Weight Loss During Pneumonic Burkholderia pseudomallei Infection

    PubMed Central

    Emery, Felicia D.; Parvathareddy, Jyothi; Pandey, Ashutosh K.; Cui, Yan; Williams, Robert W.; Miller, Mark A.

    2014-01-01

    Burkholderia pseudomallei (Bp) is the causal agent of a high morbidity/mortality disease syndrome known as melioidosis. This syndrome can range from acute fulminate disease to chronic, local, and disseminated infections that are often difficult to treat because Bp exhibits resistance to many antibiotics. Bp is a prime candidate for use in biological warfare/terrorism and is classified as a Tier-1 Select Agent by HHS and APHIS. It is known that inbred mouse strains display a range of susceptibility to Bp and that the murine infection model is ideal for studying acute melioidosis. Here we exploit a powerful mouse genetics resource that consists of a large family of BXD type recombinant inbred strains, to perform genome-wide linkage analysis of the weight loss phenotype following pneumonic infection with Bp. We infected parental mice and 32 BXD strains with 50-100 CFU of Bp (strain 1026b) and monitored weight retention each day over an eleven-day time course. Using the computational tools in GeneNetwork, we performed genome-wide linkage analysis to identify an interval on chromosome 12 that appears to control the weight retention trait. We then analysed and ranked positional candidate genes in this interval, several of which have intriguing connections with innate immunity, calcium homeostasis, lipid transport, host cell growth and development, and autophagy. PMID:24687986

  19. Predicted global distribution of Burkholderia pseudomallei and burden of melioidosis.

    PubMed

    Limmathurotsakul, Direk; Golding, Nick; Dance, David A B; Messina, Jane P; Pigott, David M; Moyes, Catherine L; Rolim, Dionne B; Bertherat, Eric; Day, Nicholas P J; Peacock, Sharon J; Hay, Simon I

    2016-01-01

    Burkholderia pseudomallei, a highly pathogenic bacterium that causes melioidosis, is commonly found in soil in Southeast Asia and Northern Australia(1,2). Melioidosis can be difficult to diagnose due to its diverse clinical manifestations and the inadequacy of conventional bacterial identification methods(3). The bacterium is intrinsically resistant to a wide range of antimicrobials, and treatment with ineffective antimicrobials may result in case fatality rates (CFRs) exceeding 70%(4,5). The importation of infected animals has, in the past, spread melioidosis to non-endemic areas(6,7). The global distribution of B. pseudomallei and the burden of melioidosis, however, remain poorly understood. Here, we map documented human and animal cases and the presence of environmental B. pseudomallei and combine this in a formal modelling framework(8-10) to estimate the global burden of melioidosis. We estimate there to be 165,000 (95% credible interval 68,000-412,000) human melioidosis cases per year worldwide, from which 89,000 (36,000-227,000) people die. Our estimates suggest that melioidosis is severely underreported in the 45 countries in which it is known to be endemic and that melioidosis is probably endemic in a further 34 countries that have never reported the disease. The large numbers of estimated cases and fatalities emphasize that the disease warrants renewed attention from public health officials and policy makers. PMID:27571754

  20. Binding of protegrin-1 to Pseudomonas aeruginosa and Burkholderia cepacia

    PubMed Central

    Albrecht, Mark T; Wang, Wei; Shamova, Olga; Lehrer, Robert I; Schiller, Neal L

    2002-01-01

    Background Pseudomonas aeruginosa and Burkholderia cepacia infections of cystic fibrosis patients' lungs are often resistant to conventional antibiotic therapy. Protegrins are antimicrobial peptides with potent activity against many bacteria, including P. aeruginosa. The present study evaluates the correlation between protegrin-1 (PG-1) sensitivity/resistance and protegrin binding in P. aeruginosa and B. cepacia. Methods The PG-1 sensitivity/resistance and PG-1 binding properties of P. aeruginosa and B. cepacia were assessed using radial diffusion assays, radioiodinated PG-1, and surface plasmon resonance (BiaCore). Results The six P. aeruginosa strains examined were very sensitive to PG-1, exhibiting minimal active concentrations from 0.0625–0.5 μg/ml in radial diffusion assays. In contrast, all five B. cepacia strains examined were greater than 10-fold to 100-fold more resistant, with minimal active concentrations ranging from 6–10 μg/ml. When incubated with a radioiodinated variant of PG-1, a sensitive P. aeruginosa strain bound considerably more protegrin molecules per cell than a resistant B. cepacia strain. Binding/diffusion and surface plasmon resonance assays revealed that isolated lipopolysaccharide (LPS) and lipid A from the sensitive P. aeruginosa strains bound PG-1 more effectively than LPS and lipid A from resistant B. cepacia strains. Conclusion These findings support the hypothesis that the relative resistance of B. cepacia to protegrin is due to a reduced number of PG-1 binding sites on the lipid A moiety of its LPS. PMID:11980587

  1. Identification of sodium chloride-regulated genes in Burkholderia cenocepacia.

    PubMed

    Bhatt, Shantanu; Weingart, Christine L

    2008-05-01

    Previous studies have suggested that the airways of cystic fibrosis (CF) patients have elevated sodium chloride (NaCl) levels due to the malfunctioning of the CF transmembrane conductance regulator protein. For bacteria to survive in this high-salt environment, they must adjust by altering the regulation of gene expression. Among the different bacteria inhabiting the airways of CF patients is the opportunistic pathogen Burkholderia cenocepacia. Previous studies have indicated that B. cenocepacia produces a toxin and cable pili under high osmolar conditions. We used transposon mutagenesis to identify NaCl-regulated genes in the clinical strain B. cenocepacia K56-2. Six transconjugants were induced with increasing NaCl concentration. The DNA flanking the transposon was sequenced and five distinct open reading frames were identified encoding the following putative proteins: an integrase, an NAD-dependent deacetylase, TolB, an oxidoreductase, and a novel hypothetical protein. The collective results of this study provide important information about the physiology of B. cenocepacia when faced with osmotic stress and suggest the identity of significant virulence mechanisms in this opportunistic pathogen. PMID:18288523

  2. Identification of Burkholderia pseudomallei Near-Neighbor Species in the Northern Territory of Australia

    PubMed Central

    Ginther, Jennifer L.; Mayo, Mark; Warrington, Stephanie D.; Kaestli, Mirjam; Mullins, Travis; Wagner, David M.; Currie, Bart J.; Tuanyok, Apichai; Keim, Paul

    2015-01-01

    Identification and characterization of near-neighbor species are critical to the development of robust molecular diagnostic tools for biothreat agents. One such agent, Burkholderia pseudomallei, a soil bacterium and the causative agent of melioidosis, is lacking in this area because of its genomic diversity and widespread geographic distribution. The Burkholderia genus contains over 60 species and occupies a large range of environments including soil, plants, rhizospheres, water, animals and humans. The identification of novel species in new locations necessitates the need to identify the true global distribution of Burkholderia species, especially the members that are closely related to B. pseudomallei. In our current study, we used the Burkholderia-specific recA sequencing assay to analyze environmental samples from the Darwin region in the Northern Territory of Australia where melioidosis is endemic. Burkholderia recA PCR negative samples were further characterized using 16s rRNA sequencing for species identification. Phylogenetic analysis demonstrated that over 70% of the bacterial isolates were identified as B. ubonensis indicating that this species is common in the soil where B. pseudomallei is endemic. Bayesian phylogenetic analysis reveals many novel branches within the B. cepacia complex, one novel B. oklahomensis-like species, and one novel branch containing one isolate that is distinct from all other samples on the phylogenetic tree. During the analysis with recA sequencing, we discovered 2 single nucleotide polymorphisms in the reverse priming region of B. oklahomensis. A degenerate primer was developed and is proposed for future use. We conclude that the recA sequencing technique is an effective tool to classify Burkholderia and identify soil organisms in a melioidosis endemic area. PMID:26121041

  3. Burkholderia Species Are the Most Common and Preferred Nodulating Symbionts of the Piptadenia Group (Tribe Mimoseae)

    PubMed Central

    Bournaud, Caroline; de Faria, Sergio Miana; dos Santos, José Miguel Ferreira; Tisseyre, Pierre; Silva, Michele; Chaintreuil, Clémence; Gross, Eduardo; James, Euan K.; Prin, Yves; Moulin, Lionel

    2013-01-01

    Burkholderia legume symbionts (also called α-rhizobia) are ancient in origin and are the main nitrogen-fixing symbionts of species belonging to the large genus Mimosa in Brazil. We investigated the extent of the affinity between Burkholderia and species in the tribe Mimoseae by studying symbionts of the genera Piptadenia (P.), Parapiptadenia (Pp.), Pseudopiptadenia (Ps.), Pityrocarpa (Py.), Anadenanthera (A.) and Microlobius (Mi.), all of which are native to Brazil and are phylogenetically close to Mimosa, and which together with Mimosa comprise the “Piptadenia group”. We characterized 196 strains sampled from 18 species from 17 locations in Brazil using two neutral markers and two symbiotic genes in order to assess their species affiliations and the evolution of their symbiosis genes. We found that Burkholderia are common and highly diversified symbionts of species in the Piptadenia group, comprising nine Burkholderia species, of which three are new ones and one was never reported as symbiotic (B. phenoliruptrix). However, α-rhizobia were also detected and were occasionally dominant on a few species. A strong sampling site effect on the rhizobial nature of symbionts was detected, with the symbiont pattern of the same legume species changing drastically from location to location, even switching from β to α-rhizobia. Coinoculation assays showed a strong affinity of all the Piptadenia group species towards Burkholderia genotypes, with the exception of Mi. foetidus. Phylogenetic analyses of neutral and symbiotic markers showed that symbiosis genes in Burkholderia from the Piptadenia group have evolved mainly through vertical transfer, but also by horizontal transfer in two species. PMID:23691052

  4. Solubilization of insoluble inorganic phosphate by Burkholderia cepacia DA23 isolated from cultivated soil

    PubMed Central

    Song, Ok-Ryul; Lee, Seung-Jin; Lee, Yong-Seok; Lee, Sang-Cheol; Kim, Keun-Ki; Choi, Yong-Lark

    2008-01-01

    A mineral phosphate solubilizing bacterium, Burkholderia cepacia DA23 has been isolated from cultivated soils. Phosphate-solubilizing activities of the strain against three types of insoluble phosphate were quantitatively determined. When 3% of glucose concentration was used for carbon source, the strain had a marked mineral phosphate-solubilizing activity. Mineral phosphate solubilization was directly related to the pH drop by the strain. Analysis of the culture medium by high pressure liquid chromatography identified gluconic acid as the main organic acid released by Burkholderia cepacia DA23. Gluconic acid production was apparently the result of the glucose dehydrogenase activity and glucose dehydrogenase was affected by phosphate regulation. PMID:24031195

  5. Toluene 2-Monooxygenase-Dependent Growth of Burkholderia cepacia G4/PR1 on Diethyl Ether

    PubMed Central

    Hur, H.; Newman, L. M.; Wackett, L. P.; Sadowsky, M. J.

    1997-01-01

    Aerobic bacterial growth on aromatic hydrocarbons typically requires oxygenase enzymes, which are known to fortuitously oxidize nongrowth substrates. In this study, we found that oxidation of diethyl ether by toluene 2-monooxygenase supported more rapid growth of Burkholderia cepacia G4/PR1 than did the aromatic substrates n-propylbenzene and o-xylene. The wild-type Burkholderia cepacia G4 failed to grow on diethyl ether. Purified toluene 2-monooxygenase protein components oxidized diethyl ether stoichiometrically to ethanol and acetaldehyde. Butyl methyl ether, diethyl sulfide, and 2-chloroethyl ethyl ether were oxidized by B. cepacia G4/PR1. PMID:16535583

  6. Burkholderia cepacia septicemia in a patient with acute myeloid leukemia in postchemotherapy bone marrow aplasia

    PubMed Central

    Mihaila, Romeo-Gabriel; Blaga, Lucian

    2013-01-01

    The patients with hematologic malignancies are predisposed to develop infections with unusual bacteria, like Burkholderia cepacia, which is frequently resistant to many antibiotics and antiseptics. We present the case of a female patient with acute myeloid leukemia type 2 on the background of myelodysplastic syndrome, from whom Burkholderia cepacia was isolated in blood culture, after the 2nd cycle of induction. She was sensitive to ceftazidime, but its eradication was not easy. Five other patients were contaminated with this bacteria, but all of them had favourable evolution. The case is discussed in the context of those similar in literature. PMID:24353735

  7. Burkholderia ginsengiterrae sp. nov. and Burkholderia panaciterrae sp. nov., antagonistic bacteria against root rot pathogen Cylindrocarpon destructans, isolated from ginseng soil.

    PubMed

    Farh, Mohamed El-Agamy; Kim, Yeon-Ju; Van An, Hoang; Sukweenadhi, Johan; Singh, Priyanka; Huq, Md Amdadul; Yang, Deok-Chun

    2015-04-01

    Strain DCY85(T) and DCY85-1(T), isolated from rhizosphere of ginseng, were rod-shaped, Gram-reaction-negative, strictly aerobic, catalase positive and oxidase negative. 16S rRNA gene sequence analysis revealed that strain DCY85(T) as well as DCY85-1(T) belonged to the genus Burkholderia and were closely related to Burkholderia fungorum KACC 12023(T) (98.1 and 98.0 % similarity, respectively). The major polar lipids of strain DCY85(T) and DCY85-1(T) were phosphatidylethanolamine, one unidentified aminolipid and two unidentified phospholipids. The major fatty acids of both strains are C16:0, C18:1 ω7c and summed feature 3 (C16:1 ω6c and/or C16:1 ω7c). The predominant isoprenoid quinone of each strain DCY85(T) and DCY85-1(T) was ubiquinone (Q-8) and the G+C content of their genomic DNA was 66.0 and 59.4 mol%, respectively, which fulfill the characteristic range of the genus Burkholderia. The polyamine content of both DCY85(T) and DCY85-1(T) was putrescine. Although both DCY85(T) and DCY85-1(T) have highly similar 16S rRNA and identical RecA and gyrB sequences, they show differences in phenotypic and chemotaxonomic characteristics. DNA-DNA hybridization results proved the consideration of both strains as two different species. Based on the results from our polyphasic characterization, strain DCY85(T) and DCY85-1(T) are considered novel Burkholderia species for which the name Burkholderia ginsengiterrae sp. nov and Burkholderia panaciterrae sp. nov are, respectively, proposed. An emended description of those strains is also proposed. DCY85(T) and DCY85-1(T) showed antagonistic activity against the common root rot pathogen of ginseng, Cylindrocarpon destructans. The proposed type strains are DCY85(T) (KCTC 42054(T) = JCM 19888(T)) and DCY85-1(T) (KCTC 42055(T) = JCM 19889(T)). PMID:25537097

  8. Curcumin rescues Caenorhabditis elegans from a Burkholderia pseudomallei infection

    PubMed Central

    Eng, Su-Anne; Nathan, Sheila

    2015-01-01

    The tropical pathogen Burkholderia pseudomallei requires long-term parenteral antimicrobial treatment to eradicate the pathogen from an infected patient. However, the development of antibiotic resistance is emerging as a threat to this form of treatment. To meet the need for alternative therapeutics, we proposed a screen of natural products for compounds that do not kill the pathogen, but in turn, abrogate bacterial virulence. We suggest that the use of molecules or compounds that are non-bactericidal (bacteriostatic) will reduce or abolish the development of resistance by the pathogen. In this study, we adopted the established Caenorhabditis elegans-B. pseudomallei infection model to screen a collection of natural products for any that are able to extend the survival of B. pseudomallei infected worms. Of the 42 natural products screened, only curcumin significantly improved worm survival following infection whilst not affecting bacterial growth. This suggested that curcumin promoted B. pseudomallei-infected worm survival independent of pathogen killing. To validate that the protective effect of curcumin was directed toward the pathogen, bacteria were treated with curcumin prior to infection. Worms fed with curcumin-treated bacteria survived with a significantly extended mean-time-to-death (p < 0.0001) compared to the untreated control. In in vitro assays, curcumin reduced the activity of known virulence factors (lipase and protease) and biofilm formation. To determine if other bacterial genes were also regulated in the presence of curcumin, a genome-wide transcriptome analysis was performed on curcumin-treated pathogen. A number of genes involved in iron acquisition and transport as well as genes encoding hypothetical proteins were induced in the presence of curcumin. Thus, we propose that curcumin may attenuate B. pseudomallei by modulating the expression of a number of bacterial proteins including lipase and protease as well as biofilm formation whilst

  9. Variability of Burkholderia pseudomallei strain sensitivities to chlorine disinfection.

    PubMed

    O'Connell, Heather A; Rose, Laura J; Shams, Alicia; Bradley, Meranda; Arduino, Matthew J; Rice, Eugene W

    2009-08-01

    Burkholderia pseudomallei is a select agent and the causative agent of melioidosis. Variations in previously reported chlorine and monochloramine concentration time (Ct) values for disinfection of this organism make decisions regarding the appropriate levels of chlorine in water treatment systems difficult. This study identified the variation in Ct values for 2-, 3-, and 4-log(10) reductions of eight environmental and clinical isolates of B. pseudomallei in phosphate-buffered water. The greatest calculated Ct values for a 4-log(10) inactivation were 7.8 mg.min/liter for free available chlorine (FAC) at pH 8 and 5 degrees C and 550 mg.min/liter for monochloramine at pH 8 and 5 degrees C. Ionic strength of test solutions, culture hold times in water, and cell washing were ruled out as sources of the differences in prior observations. Tolerance to FAC was correlated with the relative amount of extracellular material produced by each isolate. Solid-phase cytometry analysis using an esterase-cleaved fluorochrome assay detected a 2-log(10)-higher level of organisms based upon metabolic activity than did culture, which in some cases increased Ct values by fivefold. Despite strain-to-strain variations in Ct values of 17-fold for FAC and 2.5-fold for monochloramine, standard FAC disinfection practices utilized in the United States should disinfect planktonic populations of these B. pseudomallei strains by 4 orders of magnitude in less than 10 min at the tested temperatures and pH levels. PMID:19542324

  10. The Condition-Dependent Transcriptional Landscape of Burkholderia pseudomallei

    PubMed Central

    Nandi, Tannistha; Kreisberg, Jason F.; Chua, Hui Hoon; Sun, Guangwen; Chen, Yahua; Mueller, Claudia; Conejero, Laura; Eshaghi, Majid; Ang, Roy Moh Lik; Liu, Jianhua; Sobral, Bruno W.; Korbsrisate, Sunee; Gan, Yunn Hwen; Titball, Richard W.; Bancroft, Gregory J.; Valade, Eric; Tan, Patrick

    2013-01-01

    Burkholderia pseudomallei (Bp), the causative agent of the often-deadly infectious disease melioidosis, contains one of the largest prokaryotic genomes sequenced to date, at 7.2 Mb with two large circular chromosomes (1 and 2). To comprehensively delineate the Bp transcriptome, we integrated whole-genome tiling array expression data of Bp exposed to >80 diverse physical, chemical, and biological conditions. Our results provide direct experimental support for the strand-specific expression of 5,467 Sanger protein-coding genes, 1,041 operons, and 766 non-coding RNAs. A large proportion of these transcripts displayed condition-dependent expression, consistent with them playing functional roles. The two Bp chromosomes exhibited dramatically different transcriptional landscapes — Chr 1 genes were highly and constitutively expressed, while Chr 2 genes exhibited mosaic expression where distinct subsets were expressed in a strongly condition-dependent manner. We identified dozens of cis-regulatory motifs associated with specific condition-dependent expression programs, and used the condition compendium to elucidate key biological processes associated with two complex pathogen phenotypes — quorum sensing and in vivo infection. Our results demonstrate the utility of a Bp condition-compendium as a community resource for biological discovery. Moreover, the observation that significant portions of the Bp virulence machinery can be activated by specific in vitro cues provides insights into Bp's capacity as an “accidental pathogen”, where genetic pathways used by the bacterium to survive in environmental niches may have also facilitated its ability to colonize human hosts. PMID:24068961

  11. Heme Oxygenase-1 and Carbon Monoxide Promote Burkholderia pseudomallei Infection.

    PubMed

    Stolt, Claudia; Schmidt, Imke H E; Sayfart, Yana; Steinmetz, Ivo; Bast, Antje

    2016-08-01

    The environmental bacterium and potential biothreat agent Burkholderia pseudomallei causes melioidosis, an often fatal infectious disease. Increased serum bilirubin has been shown to be a negative predictive factor in melioidosis patients. We therefore investigated the role of heme oxygenase-1 (HO-1), which catalyzes the degradation of heme into the bilirubin precursor biliverdin, ferrous iron, and CO during B. pseudomallei infection. We found that infection of murine macrophages induces HO-1 expression, involving activation of several protein kinases and the transcription factor nuclear erythroid-related factor 2 (Nrf2). Deficiency of Nrf2 improved B. pseudomallei clearance by macrophages, whereas Nrf2 activation by sulforaphane and tert-butylhydroquinone with subsequent HO-1 induction enhanced intracellular bacterial growth. The HO-1 inducer cobalt protoporphyrin IX diminished proinflammatory cytokine levels, leading to an increased bacterial burden in macrophages. In contrast, HO-1 gene knockdown reduced the survival of intramacrophage B. pseudomallei Pharmacological administration of cobalt protoporphyrin IX to mice resulted in an enhanced bacterial load in various organs and was associated with higher mortality of intranasally infected mice. The unfavorable outcome of B. pseudomallei infection after HO-1 induction was associated with higher serum IL-6, TNF-α, and MCP-1 levels but decreased secretion of IFN-γ. Finally, we demonstrate that the CO-releasing molecule CORM-2 increases the B. pseudomallei load in macrophages and mice. Thus, our data suggest that the B. pseudomallei-mediated induction of HO-1 and the release of its metabolite CO impair bacterial clearance in macrophages and during murine melioidosis. PMID:27316684

  12. In vitro activity of BAL30072 against Burkholderia pseudomallei.

    PubMed

    Mima, Takehiko; Kvitko, Brian H; Rholl, Drew A; Page, Malcolm G P; Desarbre, Eric; Schweizer, Herbert P

    2011-08-01

    Burkholderia pseudomallei is an intrinsically antibiotic-resistant Category B priority pathogen and the aetiological agent of melioidosis. Treatment of B. pseudomallei infection is biphasic and lengthy in order to combat the acute and chronic phases of the disease. Acute-phase treatment preferably involves an intravenous cephalosporin (ceftazidime) or a carbapenem (imipenem or meropenem). In this study, the anti-B. pseudomallei efficacy of a new monosulfactam, BAL30072, was tested against laboratory strains 1026b and 1710b and several isogenic mutant derivatives as well as a collection of clinical and environmental B. pseudomallei strains from Thailand. More than 93% of the isolates had minimal inhibitory concentrations (MICs) in the range 0.004-0.016 μg/mL. For the laboratory strain 1026b, the MIC of BAL30072 was 0.008 μg/mL, comparable with the MICs of 1.5 μg/mL for ceftazidime, 0.5 μg/mL for imipenem and 1 μg/mL for meropenem. Time-kill curves revealed that BAL30072 was rapidly bactericidal, killing >99% of bacteria in 2 h. BAL30072 activity was not significantly affected by efflux, it was only a marginal substrate of PenA β-lactamase, and activity was independent of malleobactin production and transport and the ability to transport pyochelin. In summary, BAL30072 has superior in vitro activity against B. pseudomallei compared with ceftazidime, meropenem or imipenem and it is rapidly bactericidal. PMID:21596528

  13. Investigation of the multifaceted iron acquisition strategies of Burkholderia cenocepacia.

    PubMed

    Tyrrell, J; Whelan, N; Wright, C; Sá-Correia, I; McClean, S; Thomas, M; Callaghan, Máire

    2015-04-01

    Burkholderia cenocepacia is a bacterial pathogen which causes severe respiratory infections in cystic fibrosis (CF). These studies were aimed at gaining an insight into the iron acquisition strategies of B. cenocepacia. In iron restricted conditions, genes associated with the synthesis and utilisation of ornibactin (pvdA, orbA, orb F) were significantly upregulated compared to the expression of pyochelin associated genes (pchD, fptA). In the absence of alternative iron sources, B. cenocepacia J2315 and 715j utilised ferritin and haemin, but not transferrin or lactoferrin for growth. Significantly, mutants unable to produce ornibactin, (715j-orbI) or ornibactin and pyochelin, (715j-pobA), utilised haemin and ferritin more efficiently than the wild-type. Moreover, both mutants were also able to utilise lactoferrin for growth (P ≤ 0.01) and additionally 715j-pobA utilised transferrin (P ≤ 0.01), potentially facilitating adaptation to the host environment. Furthermore, B. cenocepacia increased ornibactin gene expression in response to pyoverdine from Pseudomonas aeruginosa (P ≤ 0.01), demonstrating the capacity to compete for iron in co-colonised niches. Pyoverdine also significantly diminished the growth of B. cenocepacia (P < 0.001) which was related to its iron chelating activity. In a study of three B. cenocepacia sequential clonal isolates obtained from a CF patient over a 3.5 year period, ornibactin upregulation in response to pyoverdine was less pronounced in the last isolate compared to the earlier isolates, as was growth in the presence of haemin and ferritin, indicating alternative iron acquisition mechanism(s) may dominate as chronic infection progresses. These data demonstrate the multifaceted iron acquisition strategies of B. cenocepacia and their capacity to be differentially activated in the presence of P. aeruginosa and during chronic infection. PMID:25725797

  14. Groundwater Seeps Facilitate Exposure to Burkholderia pseudomallei ▿

    PubMed Central

    Baker, Anthony; Tahani, Donald; Gardiner, Christopher; Bristow, Keith L.; Greenhill, Andrew R.; Warner, Jeffrey

    2011-01-01

    Burkholderia pseudomallei is a saprophytic bacterium which is the causative agent of melioidosis, a common cause of fatal bacterial pneumonia and sepsis in the tropics. The incidence of melioidosis is clustered spatially and temporally and is heavily linked to rainfall and extreme weather events. Clinical case clustering has recently been reported in Townsville, Australia, and has implicated Castle Hill, a granite monolith in the city center, as a potential reservoir of infection. Topsoil and water from seasonal groundwater seeps were collected around the base of Castle Hill and analyzed by quantitative real-time PCR targeting the type III secretion system genes for the presence of B. pseudomallei. The organism was identified in 65% (95% confidence interval [CI], 49.5 to 80.4) of soil samples (n = 40) and 92.5% (95% CI, 83.9 to 100) of seasonal groundwater samples (n = 40). Further sampling of water collected from roads and gutters in nearby residential areas after an intense rainfall event found that 88.2% (95% CI, 72.9 to 100) of samples (n = 16) contained viable B. pseudomallei at concentrations up to 113 CFU/ml. Comparison of isolates using multilocus sequence typing demonstrated clinical matches and close associations between environmental isolates and isolates derived from clinical samples from patients in Townsville. This study demonstrated that waterborne B. pseudomallei from groundwater seeps around Castle Hill may facilitate exposure to B. pseudomallei and contribute to the clinical clustering at this site. Access to this type of information will advise the development and implementation of public health measures to reduce the incidence of melioidosis. PMID:21873480

  15. Polar Lipids of Burkholderia pseudomallei Induce Different Host Immune Responses

    PubMed Central

    Gonzalez-Juarrero, Mercedes; Mima, Naoko; Trunck, Lily A.; Schweizer, Herbert P.; Bowen, Richard A.; Dascher, Kyle; Mwangi, Waithaka; Eckstein, Torsten M.

    2013-01-01

    Melioidosis is a disease in tropical and subtropical regions of the world that is caused by Burkholderia pseudomallei. In endemic regions the disease occurs primarily in humans and goats. In the present study, we used the goat as a model to dissect the polar lipids of B. pseudomallei to identify lipid molecules that could be used for adjuvants/vaccines or as diagnostic tools. We showed that the lipidome of B. pseudomallei and its fractions contain several polar lipids with the capacity to elicit different immune responses in goats, namely rhamnolipids and ornithine lipids which induced IFN-γ, whereas phospholipids and an undefined polar lipid induced strong IL-10 secretion in CD4+ T cells. Autologous T cells co-cultured with caprine dendritic cells (cDCs) and polar lipids of B. pseudomallei proliferated and up-regulated the expression of CD25 (IL-2 receptor) molecules. Furthermore, we demonstrated that polar lipids were able to up-regulate CD1w2 antigen expression in cDCs derived from peripheral blood monocytes. Interestingly, the same polar lipids had only little effect on the expression of MHC class II DR antigens in the same caprine dendritic cells. Finally, antibody blocking of the CD1w2 molecules on cDCs resulted in decreased expression for IFN-γ by CD4+ T cells. Altogether, these results showed that polar lipids of B. pseudomallei are recognized by the caprine immune system and that their recognition is primarily mediated by the CD1 antigen cluster. PMID:24260378

  16. Construction and characterization of stable, constitutively expressed, chromosomal green and red fluorescent transcriptional fusions in the select agents, Bacillus anthracis, Yersinia pestis, Burkholderia mallei, and Burkholderia pseudomallei

    PubMed Central

    Su, Shengchang; Bangar, Hansraj; Saldanha, Roland; Pemberton, Adin; Aronow, Bruce; Dean, Gary E; Lamkin, Thomas J; Hassett, Daniel J

    2014-01-01

    Here, we constructed stable, chromosomal, constitutively expressed, green and red fluorescent protein (GFP and RFP) as reporters in the select agents, Bacillus anthracis, Yersinia pestis, Burkholderia mallei, and Burkholderia pseudomallei. Using bioinformatic approaches and other experimental analyses, we identified P0253 and P1 as potent promoters that drive the optimal expression of fluorescent reporters in single copy in B. anthracis and Burkholderia spp. as well as their surrogate strains, respectively. In comparison, Y. pestis and its surrogate strain need two chromosomal copies of cysZK promoter (P2cysZK) for optimal fluorescence. The P0253-, P2cysZK-, and P1-driven GFP and RFP fusions were first cloned into the vectors pRP1028, pUC18R6KT-mini-Tn7T-Km, pmini-Tn7-gat, or their derivatives. The resultant constructs were delivered into the respective surrogates and subsequently into the select agent strains. The chromosomal GFP- and RFP-tagged strains exhibited bright fluorescence at an exposure time of less than 200 msec and displayed the same virulence traits as their wild-type parental strains. The utility of the tagged strains was proven by the macrophage infection assays and lactate dehydrogenase release analysis. Such strains will be extremely useful in high-throughput screens for novel compounds that could either kill these organisms, or interfere with critical virulence processes in these important bioweapon agents and during infection of alveolar macrophages. PMID:25044501

  17. Polyphasic characterisation of Burkholderia cepacia complex species isolated from children with cystic fibrosis

    PubMed Central

    Vicenzi, Fernando José; Pillonetto, Marcelo; de Souza, Helena Aguilar Peres Homem de Mello; Palmeiro, Jussara Kasuko; Riedi, Carlos Antônio; Rosario-Filho, Nelson Augusto; Dalla-Costa, Libera Maria

    2016-01-01

    Cystic fibrosis (CF) patients with Burkholderia cepacia complex (Bcc) pulmonary infections have high morbidity and mortality. The aim of this study was to compare different methods for identification of Bcc species isolated from paediatric CF patients. Oropharyngeal swabs from children with CF were used to obtain isolates of Bcc samples to evaluate six different tests for strain identification. Conventional (CPT) and automatised (APT) phenotypic tests, polymerase chain reaction (PCR)-recA, restriction fragment length polymorphism-recA, recAsequencing, and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) were applied. Bacterial isolates were also tested for antimicrobial susceptibility. PCR-recA analysis showed that 36 out of the 54 isolates were Bcc. Kappa index data indicated almost perfect agreement between CPT and APT, CPT and PCR-recA, and APT and PCR-recA to identify Bcc, and MALDI-TOF and recAsequencing to identify Bcc species. The recAsequencing data and the MALDI-TOF data agreed in 97.2% of the isolates. Based on recA sequencing, the most common species identified were Burkholderia cenocepacia IIIA (33.4%),Burkholderia vietnamiensis (30.6%), B. cenocepaciaIIIB (27.8%), Burkholderia multivorans (5.5%), and B. cepacia (2.7%). MALDI-TOF proved to be a useful tool for identification of Bcc species obtained from CF patients, although it was not able to identify B. cenocepacia subtypes. PMID:26814642

  18. Draft Genome Sequence of the Rice Endophyte Burkholderia kururiensis M130

    PubMed Central

    Coutinho, Bruna Gonçalves; Passos da Silva, Daniel; Previato, José Osvaldo

    2013-01-01

    Burkholderia kururiensis M130 is one of the few characterized rice endophytes and was isolated from surface-sterilized rice roots. This bacterium shows strong growth-promoting effects, being able to increase rice yields. Here we present its draft genome sequence, which contains important traits for endophytic life and plant growth promotion. PMID:23558537

  19. Whole-Genome Sequences of Five Burkholderia pseudomallei Isolates from Australian Cystic Fibrosis Patients

    PubMed Central

    Kidd, Timothy J.; Bell, Scott C.; Currie, Bart J.

    2015-01-01

    We report here five improved high-quality draft genomes of Burkholderia pseudomallei isolated from Australian cystic fibrosis (CF) patients. This pathogen is rarely seen in CF patients. These genomes will be used to better understand chronic carriage of B. pseudomallei in the CF lung and the within-host evolution of longitudinal isolates from these patients. PMID:25883282

  20. Repeated Burkholderia cepacia Peritonitis in a Patient Undergoing Continuous Ambulatory Peritoneal Dialysis

    PubMed Central

    Apostolovic, BL; Velickovic-Radovanovic, RM; Andjelkovic-Apostolovic, MR; Cvetkovic, TP; Dinic, MM; Radivojevic, JD

    2015-01-01

    ABSTRACT Burkholderia cepacia (B cepacia) is a rare opportunistic pathogen in continuous ambulatory peritoneal dialysis (CAPD) peritonitis. We describe the first case of repeated B cepacia CAPD peritonitis, occurring in an outpatient environment, treated with antimicrobial medication without peritoneal catheter removal. B cepacia may lead to repeat infection, therefore, we should insist on catheter removal during each peritonitis episode. PMID:26426187

  1. Draft Genome Sequence of Burkholderia cenocepacia Strain 869T2, a Plant-Beneficial Endophytic Bacterium.

    PubMed

    Ho, Ying-Ning; Huang, Chieh-Chen

    2015-01-01

    An endophytic bacterium, Burkholderia cenocepacia 869T2, isolated from vetiver grass, has shown its abilities for both in planta biocontrol and plant growth promotion. Its draft genome sequence was determined to provide insights into those metabolic pathways involved in plant-beneficial activity. This is the first genome report for endophytic B. cenocepacia. PMID:26564046

  2. A bioinformatics approach to the determination of genes involved in endophytic behavior in Burkholderia spp.

    PubMed

    Ali, Shimaila; Duan, Jin; Charles, Trevor C; Glick, Bernard R

    2014-02-21

    The vast majority of plants harbor endophytic bacteria that colonize a portion of the plant's interior tissues without harming the plant. Like plant pathogens, endophytes gain entry into their plants hosts through various mechanisms. Bacterial endophytes display a broad range of symbiotic interactions with their host plants. The molecular bases of these plant-endophyte interactions are currently not fully understood. In the present study, a set of genes possibly responsible for endophytic behavior for genus Burkholderia was predicted and then compared and contrasted with a number (nine endophytes from different genera) of endophytes by comparative genome analysis. The nine endophytes included Burkholderia phytofirmans PsJN, Burkholderia spp. strain JK006, Azospirillum lipoferum 4B, Enterobacter cloacae ENHKU01, Klebsiella pneumoniae 342, Pseudomonas putida W619, Enterobacter spp. 638, Azoarcus spp. BH72, and Serratia proteamaculans 568. From the genomes of the analyzed bacterial strains, a set of bacterial genes orthologs was identified that are predicted to be involved in determining the endophytic behavior of Burkholderia spp. The genes and their possible functions were then investigated to establish a potential connection between their presence and the role they play in bacterial endophytic behavior. Nearly all of the genes identified by this bioinformatics procedure encode function previously suggested in other studies to be involved in endophytic behavior. PMID:24513137

  3. NOVEL ORGANIZATION OF THE GENES FOR PHTHALATE DEGRADATION FROM BURKHOLDERIA CEPACIA DBO1

    EPA Science Inventory

    Burkholderia cepacia DBO1 is able to utilize phthalate as the sole source of carbon and energy for growth. Two overlapping cosmid clones containing the genes for phthalate degradation were isolated from this strain. Subcloning and activity analysis localized the genes for phthala...

  4. The symbiotic role of O-antigen of Burkholderia symbiont in association with host Riptortus pedestris.

    PubMed

    Kim, Jiyeun Kate; Park, Ha Young; Lee, Bok Luel

    2016-07-01

    Riptortus pedestris harboring Burkholderia symbiont is a useful symbiosis model to study the molecular interactions between insects and bacteria. We recently reported that the lipopolysaccharide O-antigen is absent in the Burkholderia symbionts isolated from Riptortus guts. Here, we investigated the symbiotic role of O-antigen comprehensively in the Riptortus-Burkholderia model. Firstly, Burkholderia mutant strains deficient of O-antigen biosynthesis genes were generated and confirmed for their different patterns of the lipopolysaccharide by electrophoretic analysis. The O-antigen-deficient mutant strains initially exhibited a reduction of infectivity, having significantly lower level of symbiont population at the second-instar stage. However, both the wild-type and O-antigen mutant symbionts exhibited a similar level of symbiont population from the third-instar stage, indicating that the O-antigen deficiency did not affect the bacterial persistence in the host midgut. Taken together, we showed that the lipopolysaccharide O-antigen of gut symbiont plays an exclusive role in the initial symbiotic association. PMID:26875632

  5. The relationship of biofilm production to biocontrol activity of Burkholderia pyrrocinia FP62

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foliar biocontrol agent (BCA) efficacy is often inconsistent due to poor colonization and survival on plant surfaces. Burkholderia pyrrocinia FP62, a superior leaf colonist and BCA of Botrytis cinerea, forms unsaturated biofilms on plant surfaces. To determine the relationship between biocontrol act...

  6. Antimicrobial Properties of an Oxidizer Produced by Burkholderia cenocepacia P525

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A compound with both oxidizing properties and antibiotic properties was extracted and purified from broth cultures of Burkholderia cenocepacia strain P525. A four step purification procedure was used to increase its specific activity ~ 400 fold and to yield a HPLC- UV chromatogram containing a sing...

  7. Genome Sequence of the Historical Clinical Isolate Burkholderia pseudomallei PHLS 6

    DOE PAGESBeta

    D’haeseleer, Patrik; Johnson, Shannon L.; Davenport, Karen W.; Chain, Patrick S.; Schoeniger, Joe; Ray, Debjit; Sinha, Anupama; Williams, Kelly P.; Peña, José; Branda, Steven S.; et al

    2016-06-30

    We present the draft genome sequence ofBurkholderia pseudomalleiPHLS 6, a virulent clinical strain isolated from a melioidosis patient in Bangladesh in 1960. This draft genome consists of 39 contigs and is 7,322,181 bp long.

  8. Finished Annotated Genome Sequence of Burkholderia pseudomallei Strain Bp1651, a Multidrug-Resistant Clinical Isolate

    PubMed Central

    Sue, David; Hakovirta, Janetta; Loparev, Vladimir N.; Knipe, Kristen; Sammons, Scott A.; Ranganathan-Ganakammal, Satishkumar; Changayil, Shankar; Srinivasamoorthy, Ganesh; Weil, Michael R.; Tatusov, Roman L.; Gee, Jay E.; Elrod, Mindy G.; Hoffmaster, Alex R.; Weigel, Linda M.

    2015-01-01

    Burkholderia pseudomallei strain Bp1651, a human isolate, is resistant to all clinically relevant antibiotics. We report here on the finished genome sequence assembly and annotation of the two chromosomes of this strain. This genome sequence may assist in understanding the mechanisms of antimicrobial resistance for this pathogenic species. PMID:26634765

  9. Comparison of Whole-Genome Sequences from Two Colony Morphovars of Burkholderia pseudomallei

    PubMed Central

    Hsueh, Pei-Tan; Chen, Yao-Shen; Lin, Hsi-Hsu; Liu, Pei-Ju; Ni, Wen-Fan; Liu, Mei-Chun

    2015-01-01

    The entire genomes of two isogenic morphovars (vgh16W and vgh16R) of Burkholderia pseudomallei were sequenced. A comparison of the sequences from both strains indicates that they show 99.99% identity, are composed of 22 tandem repeated sequences with <100 bp of indels, and have 199 single-base variants. PMID:26472836

  10. Draft Genome Sequence of Burkholderia pseudomallei Strain 350105, Isolated in Hainan, China, in 1976.

    PubMed

    Song, Lihua; Yu, Yonghui; Feng, Le; He, Jun; Wang, Tao; Zhu, Hong; Duan, Qing

    2015-01-01

    Burkholderia pseudomallei is the etiological agent of the potentially fatal disease melioidosis. Here, we report the draft genome sequence of a virulent water isolate obtained from the Hainan Province of China in 1976, B. pseudomallei strain 350105. PMID:26472827

  11. Distinct colicin M-like bacteriocin-immunity pairs in Burkholderia

    PubMed Central

    Ghequire, Maarten G. K.; De Mot, René

    2015-01-01

    The Escherichia coli bacteriocin colicin M (ColM) acts via degradation of the cell wall precursor lipid II in target cells. ColM producers avoid self-inhibition by a periplasmic immunity protein anchored in the inner membrane. In this study, we identified colM-like bacteriocin genes in genomes of several β-proteobacterial strains belonging to the Burkholderia cepacia complex (Bcc) and the Burkholderia pseudomallei group. Two selected Burkholderia ambifaria proteins, designated burkhocins M1 and M2, were produced recombinantly and showed antagonistic activity against Bcc strains. In their considerably sequence-diverged catalytic domain, a conserved aspartate residue equally proved pivotal for cytotoxicity. Immunity to M-type burkhocins is conferred upon susceptible strains by heterologous expression of a cognate gene located either upstream or downstream of the toxin gene. These genes lack homology with currently known ColM immunity genes and encode inner membrane-associated proteins of two distinct types, differing in predicted transmembrane topology and moiety exposed to the periplasm. The addition of burkhocins to the bacteriocin complement of Burkholderia reveals a wider phylogenetic distribution of ColM-like bacteriotoxins, beyond the γ-proteobacterial genera Escherichia, Pectobacterium and Pseudomonas, and illuminates the diversified nature of immunity-providing proteins. PMID:26610609

  12. Draft Genome Sequence of Burkholderia pseudomallei Strain 350105, Isolated in Hainan, China, in 1976

    PubMed Central

    Yu, Yonghui; Feng, Le; He, Jun; Wang, Tao; Zhu, Hong; Duan, Qing

    2015-01-01

    Burkholderia pseudomallei is the etiological agent of the potentially fatal disease melioidosis. Here, we report the draft genome sequence of a virulent water isolate obtained from the Hainan Province of China in 1976, B. pseudomallei strain 350105. PMID:26472827

  13. Complete genome sequence of the lipase producing strain Burkholderia glumae PG1.

    PubMed

    Voget, Sonja; Knapp, Andreas; Poehlein, Anja; Vollstedt, Christel; Streit, Wolfgang; Daniel, Rolf; Jaeger, Karl-Erich

    2015-06-20

    The Gram-negative proteobacterium Burkholderia glumae PG1 produces a lipase of biotechnological interest, which is used for the production of enantiopure pharmaceuticals. In order to better understand the underlying mechanisms and provide a basis for further studies, we present here the complete genome sequence of B. glumae PG1. PMID:25848987

  14. Burkholderia phymatum Strains Capable of Nodulating Phaseolus vulgaris Are Present in Moroccan Soils ▿

    PubMed Central

    Talbi, C.; Delgado, M. J.; Girard, L.; Ramírez-Trujillo, A.; Caballero-Mellado, J.; Bedmar, E. J.

    2010-01-01

    Phylogenetic analysis of 16S rRNA, nodC, and nifH genes of four bacterial strains isolated from root nodules of Phaseolus vulgaris grown in Morocco soils were identified as Burkholderia phymatum. All four strains formed N2-fixing nodules on P. vulgaris and Mimosa, Acacia, and Prosopis species and reduced acetylene to ethylene when cultured ex planta. PMID:20472732

  15. Genome Sequence of the Historical Clinical Isolate Burkholderia pseudomallei PHLS 6.

    PubMed

    D'haeseleer, Patrik; Johnson, Shannon L; Davenport, Karen W; Chain, Patrick S; Schoeniger, Joe; Ray, Debjit; Sinha, Anupama; Williams, Kelly P; Peña, José; Branda, Steven S; El-Etr, Sahar

    2016-01-01

    Here, we present the draft genome sequence of Burkholderia pseudomallei PHLS 6, a virulent clinical strain isolated from a melioidosis patient in Bangladesh in 1960. The draft genome consists of 39 contigs and is 7,322,181 bp long. PMID:27365360

  16. Genome Sequence of the Historical Clinical Isolate Burkholderia pseudomallei PHLS 6

    PubMed Central

    Davenport, Karen W.; Chain, Patrick S.; Schoeniger, Joe; Ray, Debjit; Sinha, Anupama; Williams, Kelly P.; Peña, José; El-Etr, Sahar

    2016-01-01

    Here, we present the draft genome sequence of Burkholderia pseudomallei PHLS 6, a virulent clinical strain isolated from a melioidosis patient in Bangladesh in 1960. The draft genome consists of 39 contigs and is 7,322,181 bp long. PMID:27365360

  17. Pulsed-field gel electrophoresis as a discriminatory typing technique for the biothreat agent burkholderia mallei.

    PubMed

    Chantratita, Narisara; Vesaratchavest, Mongkol; Wuthiekanun, Vanaporn; Tiyawisutsri, Rachaneeporn; Ulziitogtokh, Tsedev; Akcay, Erhan; Day, Nicholas P J; Peacock, Sharon J

    2006-03-01

    Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) was used to type 21 laboratory strains of Burkholderia mallei. We demonstrated good resolution by PFGE together with clustering of some geographically related isolates, and confirmed previous observations that B. mallei is clonal as defined by MLST. PMID:16525089

  18. Polyphasic characterisation of Burkholderia cepaciacomplex species isolated from children with cystic fibrosis.

    PubMed

    Vicenzi, Fernando José; Pillonetto, Marcelo; Souza, Helena Aguilar Peres Homem de Mello de; Palmeiro, Jussara Kasuko; Riedi, Carlos Antônio; Rosario-Filho, Nelson Augusto; Dalla-Costa, Libera Maria

    2016-01-01

    Cystic fibrosis (CF) patients with Burkholderia cepacia complex (Bcc) pulmonary infections have high morbidity and mortality. The aim of this study was to compare different methods for identification of Bcc species isolated from paediatric CF patients. Oropharyngeal swabs from children with CF were used to obtain isolates of Bcc samples to evaluate six different tests for strain identification. Conventional (CPT) and automatised (APT) phenotypic tests, polymerase chain reaction (PCR)-recA, restriction fragment length polymorphism-recA, recA sequencing, and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) were applied. Bacterial isolates were also tested for antimicrobial susceptibility. PCR-recA analysis showed that 36 out of the 54 isolates were Bcc. Kappa index data indicated almost perfect agreement between CPT and APT, CPT and PCR-recA, and APT and PCR-recA to identify Bcc, and MALDI-TOF and recA sequencing to identify Bcc species. The recA sequencing data and the MALDI-TOF data agreed in 97.2% of the isolates. Based on recA sequencing, the most common species identified were Burkholderia cenocepacia IIIA (33.4%),Burkholderia vietnamiensis (30.6%), B. cenocepaciaIIIB (27.8%), Burkholderia multivorans (5.5%), and B. cepacia (2.7%). MALDI-TOF proved to be a useful tool for identification of Bcc species obtained from CF patients, although it was not able to identify B. cenocepacia subtypes. PMID:26814642

  19. Characterization of a novel two-component system in Burkholderia cenocepacia.

    PubMed

    Merry, Callie R; Perkins, Michael; Mu, Lin; Peterson, Bridget K; Knackstedt, Rebecca W; Weingart, Christine L

    2015-04-01

    Two-component systems are important regulatory systems that allow bacteria to adjust to environmental conditions, and in some bacteria are used in pathogenesis. We identified a novel two-component system in Burkholderia cenocepacia, an opportunistic pathogen that causes pneumonia in cystic fibrosis (CF) patients. The putative operon encodes BceS, a sensor kinase, and BceR, a response regulator. Our studies indicated that the bceR mutant showed a statistically significant decrease in protease, swimming motility, and quorum sensing when compared to the wild-type, but there was no significant difference in phospholipase C activity, swarming, and biofilm formation. In addition, the mutant showed a statistically significant reduction in virulence compared to the wild-type using the alfalfa plant model. Examination of the Burkholderia cepacia complex (a group of organisms that are phenotypically similar, but genotypically distinct) revealed that this system is prevalent in B. ambifaria, B. multivorans, B. vietnamiensis and B. dolosa. Interestingly, all these organisms have been associated with CF patients. The collective results indicate that BceSR influences various activities important in Burkholderia physiology and possibly pathogenesis. This information could be important in the design of novel therapeutics for Burkholderia infections. PMID:25519693

  20. Burkholderia tropica sp. nov., a novel nitrogen-fixing, plant-associated bacterium.

    PubMed

    Reis, V M; Estrada-de los Santos, P; Tenorio-Salgado, S; Vogel, J; Stoffels, M; Guyon, S; Mavingui, P; Baldani, V L D; Schmid, M; Baldani, J I; Balandreau, J; Hartmann, A; Caballero-Mellado, J

    2004-11-01

    In an ecological survey of nitrogen-fixing bacteria isolated from the rhizosphere and as endophytes of sugarcane, maize and teosinte plants in Brazil, Mexico and South Africa, a new phylogenetically homogeneous group of N(2)-fixing bacteria was identified within the genus Burkholderia. This polyphasic taxonomic study included microscopic and colony morphology, API 20NE tests and growth on different culture media at different pH and temperatures, as well as carbon source assimilation tests and whole-cell protein pattern analysis. Analysis of 16S rRNA gene sequences showed 99.2-99.9 % similarity within the novel species and 97.2 % similarity to the closest related species, Burkholderia sacchari. The novel species was composed of four distinct amplified 16S rDNA restriction analysis groups. The DNA-DNA reassociation values within the novel species were greater than 70 % and less than 42 % for the closest related species, B. sacchari. Based on these results and on many phenotypic characteristics, a novel N(2)-fixing species is proposed for the genus Burkholderia, Burkholderia tropica sp. nov., with the type strain Ppe8(T) (=ATCC BAA-831(T)=LMG 22274(T)=DSM 15359(T)). B. tropica was isolated from plants grown in geographical regions with climates ranging from temperate subhumid to hot humid. PMID:15545451

  1. Draft Genome Sequence of Burkholderia gladioli Strain UCD-UG_CHAPALOTE (Phylum Proteobacteria).

    PubMed

    Ettinger, Cassandra L; Shehata, Hanan R; Johnston-Monje, David; Raizada, Manish N; Eisen, Jonathan A

    2015-01-01

    Here, we present the draft genome of Burkholderia gladioli strain UCD-UG_CHAPALOTE. This strain is an endophyte isolated from surface sterilized seeds of an ancient Mexican landrace of corn, Chapalote. The genome contains 8,527,129 bp in 109 scaffolds. PMID:25614570

  2. Draft Genome Sequence of Burkholderia cenocepacia Strain 869T2, a Plant-Beneficial Endophytic Bacterium

    PubMed Central

    Ho, Ying-Ning

    2015-01-01

    An endophytic bacterium, Burkholderia cenocepacia 869T2, isolated from vetiver grass, has shown its abilities for both in planta biocontrol and plant growth promotion. Its draft genome sequence was determined to provide insights into those metabolic pathways involved in plant-beneficial activity. This is the first genome report for endophytic B. cenocepacia. PMID:26564046

  3. Burkholderia mallei and Burkholderia pseudomallei Cluster 1 Type VI Secretion System Gene Expression Is Negatively Regulated by Iron and Zinc

    PubMed Central

    Burtnick, Mary N.; Brett, Paul J.

    2013-01-01

    Burkholderia mallei is a facultative intracellular pathogen that causes glanders in humans and animals. Previous studies have demonstrated that the cluster 1 type VI secretion system (T6SS-1) expressed by this organism is essential for virulence in hamsters and is positively regulated by the VirAG two-component system. Recently, we have shown that T6SS-1 gene expression is up-regulated following internalization of this pathogen into phagocytic cells and that this system promotes multinucleated giant cell formation in infected tissue culture monolayers. In the present study, we further investigated the complex regulation of this important virulence factor. To assess T6SS-1 expression, B. mallei strains were cultured in various media conditions and Hcp1 production was analyzed by Western immunoblotting. Transcript levels of several VirAG-regulated genes (bimA, tssA, hcp1 and tssM) were also determined using quantitative real time PCR. Consistent with previous observations, T6SS-1 was not expressed during growth of B. mallei in rich media. Curiously, growth of the organism in minimal media (M9G) or minimal media plus casamino acids (M9CG) facilitated robust expression of T6SS-1 genes whereas growth in minimal media plus tryptone (M9TG) did not. Investigation of this phenomenon confirmed a regulatory role for VirAG in this process. Additionally, T6SS-1 gene expression was significantly down-regulated by the addition of iron and zinc to M9CG. Other genes under the control of VirAG did not appear to be as tightly regulated by these divalent metals. Similar results were observed for B. pseudomallei, but not for B. thailandensis. Collectively, our findings indicate that in addition to being positively regulated by VirAG, B. mallei and B. pseudomallei T6SS-1 gene expression is negatively regulated by iron and zinc. PMID:24146925

  4. The In vitro Antibiotic Tolerant Persister Population in Burkholderia pseudomallei is Altered by Environmental Factors

    PubMed Central

    Nierman, William C.; Yu, Yan; Losada, Liliana

    2015-01-01

    Bacterial persistence due to antibiotic tolerance is a critical aspect of antibiotic treatment failure, disease latency, and chronic or reemergent infections. The levels of persisters is especially notable for the opportunistic Gram-negative pathogens from the Burkholderia and Pseudomonas genera. We examined the rate of drug tolerant persisters in Burkholderia pseudomallei, Burkholderia thailandensis, Burkholderia cepacia complex organisms, and Pseudomonas aeruginosa at mid-log growth in LB broth culture. We found that a fraction of the antibiotic-sensitive cells from every species were tolerant to a 24 h high-dose antibiotic challenge. All tested Burkholderia strains demonstrated a drug tolerant persister population at a rate that was at least 100–500 times higher than P. aeruginosa. When challenged with at least a 10X minimum inhibitory concentration (MIC) 24 h exposure to three different antibiotics with different modes of action we found that in B. pseudomallei Bp82 each of the tree antibiotics revealed different persister fractions at each of two different growth states. This observation suggests that our assay is detecting heterogeneous persister subpopulations. Persistence in B. pseudomallei Bp82 was highly dependent on growth stage, with a surprisingly high persister fraction of >64% of the late stationary phase cells being antibiotic tolerant to 100XMIC cefotaxime. Adaptation of B. pseudomallei to distilled water storage resulted in a population of drug tolerant cells up to 100% of the non-drug-challenged viable cell count in the same cefotaxime assay. Cultivation of B. pseudomallei with a sub-inhibitory concentration of several antibiotics resulted in altered persister fractions within the population relative to cultures lacking the antibiotic. Our study provides insight into the sensitivity of the persister fraction within the population of B. pseudomallei due to environmental variables and suggests diversity within the persister population revealed by

  5. The In vitro Antibiotic Tolerant Persister Population in Burkholderia pseudomallei is Altered by Environmental Factors.

    PubMed

    Nierman, William C; Yu, Yan; Losada, Liliana

    2015-01-01

    Bacterial persistence due to antibiotic tolerance is a critical aspect of antibiotic treatment failure, disease latency, and chronic or reemergent infections. The levels of persisters is especially notable for the opportunistic Gram-negative pathogens from the Burkholderia and Pseudomonas genera. We examined the rate of drug tolerant persisters in Burkholderia pseudomallei, Burkholderia thailandensis, Burkholderia cepacia complex organisms, and Pseudomonas aeruginosa at mid-log growth in LB broth culture. We found that a fraction of the antibiotic-sensitive cells from every species were tolerant to a 24 h high-dose antibiotic challenge. All tested Burkholderia strains demonstrated a drug tolerant persister population at a rate that was at least 100-500 times higher than P. aeruginosa. When challenged with at least a 10X minimum inhibitory concentration (MIC) 24 h exposure to three different antibiotics with different modes of action we found that in B. pseudomallei Bp82 each of the tree antibiotics revealed different persister fractions at each of two different growth states. This observation suggests that our assay is detecting heterogeneous persister subpopulations. Persistence in B. pseudomallei Bp82 was highly dependent on growth stage, with a surprisingly high persister fraction of >64% of the late stationary phase cells being antibiotic tolerant to 100XMIC cefotaxime. Adaptation of B. pseudomallei to distilled water storage resulted in a population of drug tolerant cells up to 100% of the non-drug-challenged viable cell count in the same cefotaxime assay. Cultivation of B. pseudomallei with a sub-inhibitory concentration of several antibiotics resulted in altered persister fractions within the population relative to cultures lacking the antibiotic. Our study provides insight into the sensitivity of the persister fraction within the population of B. pseudomallei due to environmental variables and suggests diversity within the persister population revealed by

  6. Insecticide applications to soil contribute to the development of Burkholderia mediating insecticide resistance in stinkbugs.

    PubMed

    Tago, Kanako; Kikuchi, Yoshitomo; Nakaoka, Sinji; Katsuyama, Chie; Hayatsu, Masahito

    2015-07-01

    Some soil Burkholderia strains are capable of degrading the organophosphorus insecticide, fenitrothion, and establish symbiosis with stinkbugs, making the host insects fenitrothion-resistant. However, the ecology of the symbiotic degrading Burkholderia adapting to fenitrothion in the free-living environment is unknown. We hypothesized that fenitrothion applications affect the dynamics of fenitrothion-degrading Burkholderia, thereby controlling the transmission of symbiotic degrading Burkholderia from the soil to stinkbugs. We investigated changes in the density and diversity of culturable Burkholderia (i.e. symbiotic and nonsymbiotic fenitrothion degraders and nondegraders) in fenitrothion-treated soil using microcosms. During the incubation with five applications of pesticide, the density of the degraders increased from less than the detection limit to around 10(6)/g of soil. The number of dominant species among the degraders declined with the increasing density of degraders; eventually, one species predominated. This process can be explained according to the competitive exclusion principle using V(max) and K(m) values for fenitrothion metabolism by the degraders. We performed a phylogenetic analysis of representative strains isolated from the microcosms and evaluated their ability to establish symbiosis with the stinkbug Riptortus pedestris. The strains that established symbiosis with R. pedestris were assigned to a cluster including symbionts commonly isolated from stinkbugs. The strains outside the cluster could not necessarily associate with the host. The degraders in the cluster predominated during the initial phase of degrader dynamics in the soil. Therefore, only a few applications of fenitrothion could allow symbiotic degraders to associate with their hosts and may cause the emergence of symbiont-mediated insecticide resistance. PMID:26059639

  7. Epidemiology of Burkholderia cepacia complex species recovered from cystic fibrosis patients: issues related to patient segregation.

    PubMed

    McDowell, Andrew; Mahenthiralingam, Eshwar; Dunbar, Kerstin E A; Moore, John E; Crowe, Mary; Elborn, J Stuart

    2004-07-01

    Studies of the prevalence of Burkholderia cepacia complex species amongst cystic fibrosis (CF) patients in different geographical regions, and the association between cross-infection and putative transmissibility markers, will further our understanding of these organisms and help to address infection-control issues. In this study, B. cepacia complex isolates from CF patients in different regions of Europe were analysed. Isolates were examined for B. cepacia complex species and putative transmissibility markers [cable pilin subunit gene (cblA) and the B. cepacia epidemic strain marker (BCESM)]. Sporadic and cross-infective strains were identified by random amplification of polymorphic DNA (RAPD). In total, 79% of patients were infected with Burkholderia cenocepacia (genomovar III), 18% with Burkholderia multivorans (genomovar II) and less than 5% of patients with B. cepacia (genomovar I), Burkholderia stabilis (genomovar IV) or Burkholderia vietnamiensis (genomovar V). The cblA and BCESM transmissibility markers were only detected in strains of B. cenocepacia. The BCESM was a more sensitive marker for transmissible B. cenocepacia strains than cblA, although sporadic B. cenocepacia strains containing the BCESM, but lacking cblA, were also observed. Furthermore, clusters of cross-infection with transmissibility marker-negative strains of B. multivorans were identified. In conclusion, B. cenocepacia was the greatest cause of cross-infection, and the most widely distributed B. cepacia complex species, within these CF populations. However, cross-infection was not exclusive to B. cenocepacia and cblA and the BCESM were not absolute markers for transmissible B. cenocepacia, or other B. cepacia complex strains. It is therefore suggested that CF centres cohort patients based on the presence or absence of B. cepacia complex infection and not on the basis of transmissibility marker-positive B. cenocepacia as previously suggested. PMID:15184539

  8. Complete genome sequence of Burkholderia sp. strain PAMC28687, a potential octopine-utilizing bacterium isolated from Antarctica lichen.

    PubMed

    Han, So-Ra; Yu, Sang-Cheol; Ahn, Do-Hwan; Park, Hyun; Oh, Tae-Jin

    2016-05-20

    We report the complete genome sequence of Burkholderia sp. PAMC28687, which was isolated from the Antarctica lichen Useea sp., for better understanding of its catabolic traits in utilizing octopine as a source of carbon/nitrogen between Burkholderia and lichen. The genome consists of three circular chromosomes with five circular plasmids for the total 6,881,273bp sized genome with a G+C content of 58.14%. PMID:27034021

  9. Draft Genome Sequences of Two Burkholderia multivorans Sequential Isolates from a Chronic Lung Infection of a Cystic Fibrosis Patient

    PubMed Central

    Silva, Inês N.; Santos, Pedro M.

    2015-01-01

    Burkholderia multivorans belongs to the Burkholderia cepacia complex, which comprises opportunistic pathogens infecting cystic fibrosis (CF) patients. Here, we report the genome sequences and annotations of two sequential B. multivorans clinical isolates (D2095 and D2214) displaying different traits. The differences in the genomic contents of these isolates may provide clues regarding the evolution of B. multivorans within the airways of a CF patient. PMID:25676757

  10. Porin Involvement in Cephalosporin and Carbapenem Resistance of Burkholderia pseudomallei

    PubMed Central

    Aunkham, Anuwat; Schulte, Albert; Winterhalter, Mathias; Suginta, Wipa

    2014-01-01

    Background Burkholderia pseudomallei (Bps) is a Gram-negative bacterium that causes frequently lethal melioidosis, with a particularly high prevalence in the north and northeast of Thailand. Bps is highly resistant to many antimicrobial agents and this resistance may result from the low drug permeability of outer membrane proteins, known as porins. Principal Findings Microbiological assays showed that the clinical Bps strain was resistant to most antimicrobial agents and sensitive only to ceftazidime and meropenem. An E. coli strain defective in most porins, but expressing BpsOmp38, exhibited considerably lower antimicrobial susceptibility than the control strain. In addition, mutation of Tyr119, the most prominent pore-lining residue in BpsOmp38, markedly altered membrane permeability, substitution with Ala (mutant BpsOmp38Y119A) enhanced uptake of the antimicrobial agents, while substitution with Phe (mutant BpsOmp38Y119F) inhibited uptake. Channel recordings of BpsOmp38 reconstituted in a planar black lipid membrane (BLM) suggested that the higher permeability of BpsOmp38Y119A was caused by widening of the pore interior through removal of the bulky side chain. In contrast, the lower permeability of BpsOmp38Y119F was caused by introduction of the hydrophobic side chain (Phe), increasing the ‘greasiness’ of the pore lumen. Significantly, liposome swelling assays showed no permeation through the BpsOmp38 channel by antimicrobial agents to which Bps is resistant (cefoxitin, cefepime, and doripenem). In contrast, high permeability to ceftazidime and meropenem was observed, these being agents to which Bps is sensitive. Conclusion/Significance Our results, from both in vivo and in vitro studies, demonstrate that membrane permeability associated with BpsOmp38 expression correlates well with the antimicrobial susceptibility of the virulent bacterium B. pseudomallei, especially to carbapenems and cephalosporins. In addition, substitution of the residue Tyr119 affects

  11. Burkholderia pseudomallei: Its Detection in Soil and Seroprevalence in Bangladesh

    PubMed Central

    Robayet, Jamshedul Alam Mohammad; Mohiuddin, Md.; Hasan, Md. Rokib

    2016-01-01

    Background Melioidosis, caused by Burkholderia pseudomallei, is an endemic disease in Bangladesh. No systematic study has yet been done to detect the environmental source of the organism and its true extent in Bangladesh. The present study attempted to isolate B. pseudomallei in soil samples and to determine its seroprevalence in several districts in Bangladesh. Methodology and Results Soil samples were collected from rural areas of four districts of Bangladesh from where culture confirmed melioidosis cases were detected earlier. Multiple soil samples, collected from 5–7 sampling points of 3–5 sites of each district, were cultured in Ashdown selective media. Suspected colonies of B. pseudomallei were identified by biochemical and serological test, and by polymerase chain reaction (PCR) using 16s rRNA specific primers. Blood samples were collected from 940 healthy individuals of four districts to determine anti- B. pseudomallei IgG antibody levels by indirect enzyme linked immunosorbent assay (ELISA) using sonicated crude antigen. Out of 179 soil samples, B. pseudomallei was isolated from two samples of Gazipur district which is located 58 km north of capital Dhaka city. Both the isolates were phenotypically identical, arabinose negative and showed specific 550bp band in PCR. Out of 940 blood samples, anti- B. pseudomallei IgG antibody, higher than the cut-off value (>0.8), was detected in 21.5% individuals. Seropositivity rate was 22.6%-30.8% in three districts from where melioidosis cases were detected earlier, compared to 9.8% in a district where no melioidosis case was either detected or reported (p<0.01). Seropositivity increased with the advancement of age from 5.3% to 30.4% among individuals aged 1–10 years and > 50 years respectively. The seropositivity rates were 26.0% and 20.6% in male and female respectively, while it was 20–27% among different occupational groups. No significant association was observed with gender (χ2 = 3.441, p = 0.064) or any

  12. Burkholderia cepacia XXVI siderophore with biocontrol capacity against Colletotrichum gloeosporioides.

    PubMed

    de Los Santos-Villalobos, Sergio; Barrera-Galicia, Guadalupe Coyolxauhqui; Miranda-Salcedo, Mario Alberto; Peña-Cabriales, Juan José

    2012-08-01

    Colletotrichum gloeosporioides is the causal agent of anthracnose in mango. Burkholderia cepacia XXVI, isolated from mango rhizosphere and identified by 16S rDNA sequencing as a member of B. cepacia complex, was more effective than 6 other mango rhizosphere bacteria in inhibiting the model mango pathogen, C. gloeosporioides ATCC MYA 456. Biocontrol of this pathogen was demonstrated on Petri-dishes containing PDA by > 90 % reduction of surface colonization. The nature of the biocontrol metabolite(s) was characterized via a variety of tests. The inhibition was almost exclusively due to production of agar-diffusible, not volatile, metabolite(s). The diffusible metabolite(s) underwent thermal degradation at 70 and 121 °C (1 atm). Tests for indole acetic acid production and lytic enzyme activities (cellulase, glucanase and chitinase) by B. cepacia XXVI were negative, indicating that these metabolites were not involved in the biocontrol effect. Based on halo formation and growth inhibition of the pathogen on the diagnostic medium, CAS-agar, as well as colorimetric tests we surmised that strain XXVI produced a hydroxamate siderophore involved in the biocontrol effect observed. The minimal inhibitory concentration test showed that 0.64 μg ml(-1) of siderophore (Deferoxamine mesylate salt-equivalent) was sufficient to achieve 91.1 % inhibition of the pathogen growth on Petri-dishes containing PDA. The biocontrol capacity against C. gloeosporioides ATCC MYA 456 correlated directly with the siderophore production by B. cepacia XXVI: the highest concentration of siderophore production in PDB on day 7, 1.7 μg ml(-1) (Deferoxamine mesylate salt-equivalent), promoted a pathogen growth inhibition of 94.9 %. The growth of 5 additional strains of C. gloeosporioides (isolated from mango "Ataulfo" orchards located in the municipality of Chahuites, State of Oaxaca in Mexico) was also inhibited when confronted with B. cepacia XXVI. Results indicate that B. cepacia XXVI or its

  13. Molecular evidence of Burkholderia pseudomallei genotypes based on geographical distribution

    PubMed Central

    Zulkefli, Noorfatin Jihan; Mariappan, Vanitha; Vellasamy, Kumutha Malar; Chong, Chun Wie; Thong, Kwai Lin; Ponnampalavanar, Sasheela; Vadivelu, Jamuna

    2016-01-01

    Background. Central intermediary metabolism (CIM) in bacteria is defined as a set of metabolic biochemical reactions within a cell, which is essential for the cell to survive in response to environmental perturbations. The genes associated with CIM are commonly found in both pathogenic and non-pathogenic strains. As these genes are involved in vital metabolic processes of bacteria, we explored the efficiency of the genes in genotypic characterization of Burkholderia pseudomallei isolates, compared with the established pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) schemes. Methods. Nine previously sequenced B. pseudomallei isolates from Malaysia were characterized by PFGE, MLST and CIM genes. The isolates were later compared to the other 39 B. pseudomallei strains, retrieved from GenBank using both MLST and sequence analysis of CIM genes. UniFrac and hierachical clustering analyses were performed using the results generated by both MLST and sequence analysis of CIM genes. Results. Genetic relatedness of nine Malaysian B. pseudomallei isolates and the other 39 strains was investigated. The nine Malaysian isolates were subtyped into six PFGE profiles, four MLST profiles and five sequence types based on CIM genes alignment. All methods demonstrated the clonality of OB and CB as well as CMS and THE. However, PFGE showed less than 70% similarity between a pair of morphology variants, OS and OB. In contrast, OS was identical to the soil isolate, MARAN. To have a better understanding of the genetic diversity of B. pseudomallei worldwide, we further aligned the sequences of genes used in MLST and genes associated with CIM for the nine Malaysian isolates and 39 B. pseudomallei strains from NCBI database. Overall, based on the CIM genes, the strains were subtyped into 33 profiles where majority of the strains from Asian countries were clustered together. On the other hand, MLST resolved the isolates into 31 profiles which formed three clusters

  14. Classification of the biphenyl- and polychlorinated biphenyl-degrading strain LB400T and relatives as Burkholderia xenovorans sp. nov.

    PubMed

    Goris, Johan; De Vos, Paul; Caballero-Mellado, Jesús; Park, Joonhong; Falsen, Enevold; Quensen, John F; Tiedje, James M; Vandamme, Peter

    2004-09-01

    Strain LB400T is the best-studied polychlorinated biphenyl (PCB) degrader. This organism has previously been allocated in the genus Burkholderia, since its 16S rRNA gene sequence shows 98.6 % sequence similarity to the type strains of Burkholderia graminis and Burkholderia terricola. A polyphasic study was undertaken to clarify the actual taxonomic position of this biotechnologically important organism and of two strains, one recovered from a blood culture vial and one from a coffee plant rhizosphere, both of which resembled strain LB400T in their whole-cell protein patterns. DNA-DNA hybridization experiments revealed that the three strains represented a single novel species, for which the name Burkholderia xenovorans sp. nov. is proposed. Strains of this novel species can be differentiated phenotypically from nearly all other Burkholderia species by their inability to assimilate L-arabinose. The whole-cell fatty acid profile of B. xenovorans strains is consistent with their classification in the genus Burkholderia, with 18 : 1omega7c, 16 : 1omega7c, 16 : 0, 14 : 0 3OH, 16 : 0 3OH, 17 : 0 cyclo and 14 : 0 being the most abundant fatty acids. The G + C content of the species varies between 62.4 and 62.9 mol%. The type strain of B. xenovorans is LB400T (= LMG 21463T = CCUG 46959T = NRRL B-18064T). PMID:15388727

  15. Use of a safe, reproducible, and rapid aerosol delivery method to study infection by Burkholderia pseudomallei and Burkholderia mallei in mice.

    PubMed

    Lafontaine, Eric R; Zimmerman, Shawn M; Shaffer, Teresa L; Michel, Frank; Gao, Xiudan; Hogan, Robert J

    2013-01-01

    Burkholderia pseudomallei, the etiologic agent of melioidosis, is a saprophytic bacterium readily isolated from wet soils of countries bordering the equator. Burkholderia mallei is a host-adapted clone of B. pseudomallei that does not persist outside of its equine reservoir and causes the zoonosis glanders, which is endemic in Asia, Africa, the Middle East and South America. Infection by these organisms typically occurs via percutaneous inoculation or inhalation of aerosols, and the most common manifestation is severe pneumonia leading to fatal bacteremia. Glanders and melioidosis are difficult to diagnose and require prolonged antibiotic therapy with low success rates. There are no vaccines available to protect against either Burkholderia species, and there is concern regarding their use as biological warfare agents given that B. mallei has previously been utilized in this manner. Hence, experiments were performed to establish a mouse model of aerosol infection to study the organisms and develop countermeasures. Using a hand-held aerosolizer, BALB/c mice were inoculated intratracheally with strains B. pseudomallei 1026b and B. mallei ATCC23344 and growth of the agents in the lungs, as well as dissemination to the spleen, were examined. Mice infected with 10(2), 10(3) and 10(4) organisms were unable to control growth of B. mallei in the lungs and bacteria rapidly disseminated to the spleen. Though similar results were observed in mice inoculated with 10(3) and 10(4) B. pseudomallei cells, animals infected with 10(2) organisms controlled bacterial replication in the lungs, dissemination to the spleen, and the extent of bacteremia. Analysis of sera from mice surviving acute infection revealed that animals produced antibodies against antigens known to be targets of the immune response in humans. Taken together, these data show that small volume aerosol inoculation of mice results in acute disease, dose-dependent chronic infection, and immune responses that correlate

  16. Use of a Safe, Reproducible, and Rapid Aerosol Delivery Method to Study Infection by Burkholderia pseudomallei and Burkholderia mallei in Mice

    PubMed Central

    Lafontaine, Eric R.; Zimmerman, Shawn M.; Shaffer, Teresa L.; Michel, Frank; Gao, Xiudan; Hogan, Robert J.

    2013-01-01

    Burkholderia pseudomallei, the etiologic agent of melioidosis, is a saprophytic bacterium readily isolated from wet soils of countries bordering the equator. Burkholderia mallei is a host-adapted clone of B. pseudomallei that does not persist outside of its equine reservoir and causes the zoonosis glanders, which is endemic in Asia, Africa, the Middle East and South America. Infection by these organisms typically occurs via percutaneous inoculation or inhalation of aerosols, and the most common manifestation is severe pneumonia leading to fatal bacteremia. Glanders and melioidosis are difficult to diagnose and require prolonged antibiotic therapy with low success rates. There are no vaccines available to protect against either Burkholderia species, and there is concern regarding their use as biological warfare agents given that B. mallei has previously been utilized in this manner. Hence, experiments were performed to establish a mouse model of aerosol infection to study the organisms and develop countermeasures. Using a hand-held aerosolizer, BALB/c mice were inoculated intratracheally with strains B. pseudomallei 1026b and B. mallei ATCC23344 and growth of the agents in the lungs, as well as dissemination to the spleen, were examined. Mice infected with 102, 103 and 104 organisms were unable to control growth of B. mallei in the lungs and bacteria rapidly disseminated to the spleen. Though similar results were observed in mice inoculated with 103 and 104 B. pseudomallei cells, animals infected with 102 organisms controlled bacterial replication in the lungs, dissemination to the spleen, and the extent of bacteremia. Analysis of sera from mice surviving acute infection revealed that animals produced antibodies against antigens known to be targets of the immune response in humans. Taken together, these data show that small volume aerosol inoculation of mice results in acute disease, dose-dependent chronic infection, and immune responses that correlate with those

  17. Bioconversion of AHX to AOH by resting cells of Burkholderia contaminans CH-1.

    PubMed

    Choi, Jae-Hoon; Kikuchi, Ayaka; Pumkaeo, Panyapon; Hirai, Hirofumi; Tokuyama, Shinji; Kawagishi, Hirokazu

    2016-10-01

    Fairy rings are zones of stimulated grass growth owing to the interaction between a fungus and a plant. We previously reported the discovery of two novel plant-growth regulating compounds related to forming fairy rings, 2-azahypoxanthine (AHX) and 2-aza-8-oxohypoxanthine (AOH). In this study, a bacterial strain CH-1 was isolated from an airborne-contaminated nutrient medium containing AHX. The strain converted AHX to AOH and identified as Burkholderia contaminans based on the gene sequence of its 16S rDNA. The quantitative production of AOH by resting cells of the strain was achieved. Among seven Burkholderia species, two bacteria and two yeasts tested, B. contaminans CH-1 showed the highest rate of conversion of AHX to AOH. By batch system, up to 10.6 mmol AHX was converted to AOH using the resting cells. The yield of this process reached at 91%. PMID:27387894

  18. Synthesis of the tetrasaccharide outer core fragment of Burkholderia multivorans lipooligosaccharide.

    PubMed

    Ziaco, Marcello; De Castro, Cristina; Silipo, Alba; Corsaro, Maria Michela; Molinaro, Antonio; Iadonisi, Alfonso; Lanzetta, Rosa; Parrilli, Michelangelo; Bedini, Emiliano

    2015-02-11

    The first synthesis of the outer core fragment of Burkholderia multivorans lipooligosaccharide [β-D-Glc-(1→3)-α-D-GalNAc-(1→3)-β-D-GalNAc-(1→3)-L-Rha] as α-allyl tetrasaccharide was accomplished. The glycosylations involving GalNAc units were studied in depth testing them under several conditions. This allowed the building of both the α- and the β-configured glycosidic bonds by employing the same GalNAc glycosyl donor, thus considerably shortening the total number of synthetic steps. The target tetrasaccharide was synthesized with an allyl aglycone to allow its future conjugation with an immunogenic protein en route to the development of a synthetic neoglycoconjugate vaccine against the Burkholderia cepacia pathogens. PMID:24933233

  19. Quorum Sensing Controls Swarming Motility of Burkholderia glumae through Regulation of Rhamnolipids.

    PubMed

    Nickzad, Arvin; Lépine, François; Déziel, Eric

    2015-01-01

    Burkholderia glumae is a plant pathogenic bacterium that uses an acyl-homoserine lactone-mediated quorum sensing system to regulate protein secretion, oxalate production and major virulence determinants such as toxoflavin and flagella. B. glumae also releases surface-active rhamnolipids. In Pseudomonas aeruginosa and Burkholderia thailandensis, rhamnolipids, along with flagella, are required for the social behavior called swarming motility. In the present study, we demonstrate that quorum sensing positively regulates the production of rhamnolipids in B. glumae and that rhamnolipids are necessary for swarming motility also in this species. We show that a rhlA- mutant, which is unable to produce rhamnolipids, loses its ability to swarm, and that this can be complemented by providing exogenous rhamnolipids. Impaired rhamnolipid production in a quorum sensing-deficient B. glumae mutant is the main factor responsible for its defective swarming motility behaviour. PMID:26047513

  20. σ54-Dependent Response to Nitrogen Limitation and Virulence in Burkholderia cenocepacia Strain H111

    PubMed Central

    Lardi, Martina; Aguilar, Claudio; Pedrioli, Alessandro; Omasits, Ulrich; Suppiger, Angela; Cárcamo-Oyarce, Gerardo; Schmid, Nadine; Ahrens, Christian H.

    2015-01-01

    Members of the genus Burkholderia are versatile bacteria capable of colonizing highly diverse environmental niches. In this study, we investigated the global response of the opportunistic pathogen Burkholderia cenocepacia H111 to nitrogen limitation at the transcript and protein expression levels. In addition to a classical response to nitrogen starvation, including the activation of glutamine synthetase, PII proteins, and the two-component regulatory system NtrBC, B. cenocepacia H111 also upregulated polyhydroxybutyrate (PHB) accumulation and exopolysaccharide (EPS) production in response to nitrogen shortage. A search for consensus sequences in promoter regions of nitrogen-responsive genes identified a σ54 consensus sequence. The mapping of the σ54 regulon as well as the characterization of a σ54 mutant suggests an important role of σ54 not only in control of nitrogen metabolism but also in the virulence of this organism. PMID:25841012

  1. Properties of Polyhydroxyalkanoate Granules and Bioemulsifiers from Pseudomonas sp. and Burkholderia sp. Isolates Growing on Glucose.

    PubMed

    Sacco, Laís Postai; Castellane, Tereza Cristina Luque; Lopes, Erica Mendes; de Macedo Lemos, Eliana Gertrudes; Alves, Lúcia Maria Carareto

    2016-03-01

    A Burkholderia and Pseudomonas species designated as AB4 and AS1, respectively, were isolated from soil containing decomposing straw or sugar cane bagasse collected from Brazil. This study sought to evaluate the capacities of culture media, cell-free medium, and crude lysate preparations (containing PHB inclusion bodies) from bacterial cell cultures to stabilize emulsions with several hydrophobic compounds. Four conditions showed good production of bioemulsifiers (E24 ≥ 50 %), headed by substantially cell-free media from bacterial cell cultures in which bacterial isolates from Burkholderia sp. strain AB4 and Pseudomonas sp. strain AS1 were grown. Our results revealed that the both isolates (AB4 and AS1 strains) exhibited high emulsification indices (indicating usefulness in bioremediation) and good stabilities. PMID:26578147

  2. Total Protein Extraction and 2-D Gel Electrophoresis Methods for Burkholderia Species

    PubMed Central

    Velapatiño, Billie; Zlosnik, James E. A.; Hird, Trevor J.; Speert, David P.

    2013-01-01

    The investigation of the intracellular protein levels of bacterial species is of importance to understanding the pathogenic mechanisms of diseases caused by these organisms. Here we describe a procedure for protein extraction from Burkholderia species based on mechanical lysis using glass beads in the presence of ethylenediamine tetraacetic acid and phenylmethylsulfonyl fluoride in phosphate buffered saline. This method can be used for different Burkholderia species, for different growth conditions, and it is likely suitable for the use in proteomic studies of other bacteria. Following protein extraction, a two-dimensional (2-D) gel electrophoresis proteomic technique is described to study global changes in the proteomes of these organisms. This method consists of the separation of proteins according to their isoelectric point by isoelectric focusing in the first dimension, followed by separation on the basis of molecular weight by acrylamide gel electrophoresis in the second dimension. Visualization of separated proteins is carried out by silver staining. PMID:24192802

  3. Mining Host-Pathogen Protein Interactions to Characterize Burkholderia mallei Infectivity Mechanisms

    PubMed Central

    Memišević, Vesna; Zavaljevski, Nela; Rajagopala, Seesandra V.; Kwon, Keehwan; Pieper, Rembert; DeShazer, David; Reifman, Jaques; Wallqvist, Anders

    2015-01-01

    Burkholderia pathogenicity relies on protein virulence factors to control and promote bacterial internalization, survival, and replication within eukaryotic host cells. We recently used yeast two-hybrid (Y2H) screening to identify a small set of novel Burkholderia proteins that were shown to attenuate disease progression in an aerosol infection animal model using the virulent Burkholderia mallei ATCC 23344 strain. Here, we performed an extended analysis of primarily nine B. mallei virulence factors and their interactions with human proteins to map out how the bacteria can influence and alter host processes and pathways. Specifically, we employed topological analyses to assess the connectivity patterns of targeted host proteins, identify modules of pathogen-interacting host proteins linked to processes promoting infectivity, and evaluate the effect of crosstalk among the identified host protein modules. Overall, our analysis showed that the targeted host proteins generally had a large number of interacting partners and interacted with other host proteins that were also targeted by B. mallei proteins. We also introduced a novel Host-Pathogen Interaction Alignment (HPIA) algorithm and used it to explore similarities between host-pathogen interactions of B. mallei, Yersinia pestis, and Salmonella enterica. We inferred putative roles of B. mallei proteins based on the roles of their aligned Y. pestis and S. enterica partners and showed that up to 73% of the predicted roles matched existing annotations. A key insight into Burkholderia pathogenicity derived from these analyses of Y2H host-pathogen interactions is the identification of eukaryotic-specific targeted cellular mechanisms, including the ubiquitination degradation system and the use of the focal adhesion pathway as a fulcrum for transmitting mechanical forces and regulatory signals. This provides the mechanisms to modulate and adapt the host-cell environment for the successful establishment of host infections

  4. Draft Genome Sequences of Burkholderia pseudomallei and Staphylococcus aureus, Isolated from a Patient with Chronic Rhinosinusitis

    PubMed Central

    Cottrell, Kyra; Cervin, Anders

    2015-01-01

    Here, we report the draft genome sequences of Burkholderia pseudomallei and Staphylococcus aureus causing chronic rhinosinusitis. Whole-genome sequencing determined the B. pseudomallei as sequence type (ST) 1381 and the S. aureus as ST8. B. pseudomallei possessed the blaOXA-59 gene. This study illustrates the potential emergence of B. pseudomallei in cases of chronic rhinosinusitis. PMID:26430027

  5. Draft Genome Sequence of Burkholderia sp. Strain CCA53, Isolated from Leaf Soil

    PubMed Central

    Kimura, Zen-ichiro; Yusoff, Mohd Zulkhairi Mohd; Nakashima, Nobutaka; Hoshino, Tamotsu

    2016-01-01

    Burkholderia sp. strain CCA53 was isolated from leaf soil collected in Higashi-Hiroshima City in Hiroshima Prefecture, Japan. Here, we present a draft genome sequence of this strain, which consists of a total of 4 contigs containing 6,647,893 bp, with a G+C content of 67.0% and comprising 9,329 predicted coding sequences. PMID:27389268

  6. Draft Genome Sequence of Burkholderia sp. Strain CCA53, Isolated from Leaf Soil.

    PubMed

    Akita, Hironaga; Kimura, Zen-Ichiro; Yusoff, Mohd Zulkhairi Mohd; Nakashima, Nobutaka; Hoshino, Tamotsu

    2016-01-01

    Burkholderia sp. strain CCA53 was isolated from leaf soil collected in Higashi-Hiroshima City in Hiroshima Prefecture, Japan. Here, we present a draft genome sequence of this strain, which consists of a total of 4 contigs containing 6,647,893 bp, with a G+C content of 67.0% and comprising 9,329 predicted coding sequences. PMID:27389268

  7. Burkholderia kirstenboschensis sp. nov. nodulates papilionoid legumes indigenous to South Africa.

    PubMed

    Steenkamp, Emma T; van Zyl, Elritha; Beukes, Chrizelle W; Avontuur, Juanita R; Chan, Wai Yin; Palmer, Marike; Mthombeni, Lunghile S; Phalane, Francina L; Sereme, T Karabo; Venter, Stephanus N

    2015-12-01

    Despite the diversity of Burkholderia species known to nodulate legumes in introduced and native regions, relatively few taxa have been formally described. For example, the Cape Floristic Region of South Africa is thought to represent one of the major centres of diversity for the rhizobial members of Burkholderia, yet only five species have been described from legumes occurring in this region and numerous are still awaiting taxonomic treatment. Here, we investigated the taxonomic status of 12 South African root-nodulating Burkholderia isolates from native papilionoid legumes (Hypocalyptus coluteoides, H. oxalidifolius, H. sophoroides and Virgilia oroboides). Analysis of four gene regions (16S rRNA, recA, atpD and rpoB) revealed that the isolates represent a genealogically unique and exclusive assemblage within the genus. Its distinctness was supported by all other aspects of the polyphasic approach utilized, including the genome-based criteria DNA-DNA hybridization (≥70.9%) and average nucleotide identities (≥96%). We accordingly propose the name B. kirstenboschensis sp. nov. for this taxon with isolate Kb15(T) (=LMG 28727(T); =SARC 695(T)) as its type strain. Our data showed that intraspecific genome size differences (≥0.81 Mb) and the occurrence of large DNA regions that are apparently unique to single individuals (16-23% of an isolate's genome) can significantly limit the value of data obtained from DNA-DNA hybridization experiments. Substitution of DNA-DNA hybridization with whole genome sequencing as a prerequisite for the description of Burkholderia species will undoubtedly speed up the pace at which their diversity are documented, especially in hyperdiverse regions such as the Cape Floristic Region. PMID:26472229

  8. Combining Functional and Structural Genomics to Sample the Essential Burkholderia Structome

    PubMed Central

    Baugh, Loren; Gallagher, Larry A.; Patrapuvich, Rapatbhorn; Clifton, Matthew C.; Gardberg, Anna S.; Edwards, Thomas E.; Armour, Brianna; Begley, Darren W.; Dieterich, Shellie H.; Dranow, David M.; Abendroth, Jan; Fairman, James W.; Fox, David; Staker, Bart L.; Phan, Isabelle; Gillespie, Angela; Choi, Ryan; Nakazawa-Hewitt, Steve; Nguyen, Mary Trang; Napuli, Alberto; Barrett, Lynn; Buchko, Garry W.; Stacy, Robin; Myler, Peter J.; Stewart, Lance J.; Manoil, Colin; Van Voorhis, Wesley C.

    2013-01-01

    Background The genus Burkholderia includes pathogenic gram-negative bacteria that cause melioidosis, glanders, and pulmonary infections of patients with cancer and cystic fibrosis. Drug resistance has made development of new antimicrobials critical. Many approaches to discovering new antimicrobials, such as structure-based drug design and whole cell phenotypic screens followed by lead refinement, require high-resolution structures of proteins essential to the parasite. Methodology/Principal Findings We experimentally identified 406 putative essential genes in B. thailandensis, a low-virulence species phylogenetically similar to B. pseudomallei, the causative agent of melioidosis, using saturation-level transposon mutagenesis and next-generation sequencing (Tn-seq). We selected 315 protein products of these genes based on structure-determination criteria, such as excluding very large and/or integral membrane proteins, and entered them into the Seattle Structural Genomics Center for Infection Disease (SSGCID) structure determination pipeline. To maximize structural coverage of these targets, we applied an “ortholog rescue” strategy for those producing insoluble or difficult to crystallize proteins, resulting in the addition of 387 orthologs (or paralogs) from seven other Burkholderia species into the SSGCID pipeline. This structural genomics approach yielded structures from 31 putative essential targets from B. thailandensis, and 25 orthologs from other Burkholderia species, yielding an overall structural coverage for 49 of the 406 essential gene families, with a total of 88 depositions into the Protein Data Bank. Of these, 25 proteins have properties of a potential antimicrobial drug target i.e., no close human homolog, part of an essential metabolic pathway, and a deep binding pocket. We describe the structures of several potential drug targets in detail. Conclusions/Significance This collection of structures, solubility and experimental essentiality data

  9. Burkholderia cepacia as a cause of ecthyma gangrenosum-like lesion.

    PubMed

    Aygencel, G; Dizbay, M; Sahin, G

    2008-06-01

    Ecthyma gangrenosum (EG) is considered to be a pathognomonic sign of Pseudomonas aeruginosa septicemia and is predominantly seen in immunosuppressed patients. Although P. aeruginosa is the most recognized pathogen of EG, numerous other organisms have been reported to cause clinically identical lesions. We report a case of an EG-like eruption caused by Burkholderia cepacia, in an intensive care unit patient with multiple myeloma. PMID:17962903

  10. Diverse Burkholderia Species Isolated from Soils in the Southern United States with No Evidence of B. pseudomallei

    PubMed Central

    Hall, Carina M.; Busch, Joseph D.; Shippy, Kenzie; Allender, Christopher J.; Kaestli, Mirjam; Mayo, Mark; Sahl, Jason W.; Schupp, James M.; Colman, Rebecca E.; Keim, Paul; Currie, Bart J.; Wagner, David M.

    2015-01-01

    The global distribution of the soil-dwelling bacterium Burkholderia pseudomallei, causative agent of melioidosis, is poorly understood. We used established culturing methods developed for B. pseudomallei to isolate Burkholderia species from soil collected at 18 sampling sites in three states in the southern United States (Arizona (n = 4), Florida (n = 7), and Louisiana (n = 7)). Using multi-locus sequence typing (MLST) of seven genes, we identified 35 Burkholderia isolates from these soil samples. All species belonged to the B. cepacia complex (Bcc), including B. cenocepacia, B. cepacia, B. contaminans, B. diffusa, B. metallica, B. seminalis, B. vietnamiensis and two unnamed members of the Bcc. The MLST analysis provided a high level of resolution among and within these species. Despite previous clinical cases within the U.S. involving B. pseudomallei and its close phylogenetic relatives, we did not isolate any of these taxa. The Bcc contains a number of opportunistic pathogens that cause infections in cystic fibrosis patients. Interestingly, we found that B. vietnamiensis was present in soil from all three states, suggesting it may be a common component in southern U.S. soils. Most of the Burkholderia isolates collected in this study were from Florida (30/35; 86%), which may be due to the combination of relatively moist, sandy, and acidic soils found there compared to the other two states. We also investigated one MLST gene, recA, for its ability to identify species within Burkholderia. A 365bp fragment of recA recovered nearly the same species-level identification as MLST, thus demonstrating its cost effective utility when conducting environmental surveys for Burkholderia. Although we did not find B. pseudomallei, our findings document that other diverse Burkholderia species are present in soils in the southern United States. PMID:26600238

  11. Biodegradation of PAHs by Burkholderia sp. VITRSB1 Isolated from Marine Sediments

    PubMed Central

    Revathy, T.; Jayasri, M. A.; Suthindhiran, K.

    2015-01-01

    The polycyclic aromatic hydrocarbons (PAHs) pollution to the environment is a major threat to the living organisms, and hence the degradation of these PAHs is necessary. Studies on PAHs degrading bacteria have focussed on terrestrial microbes and the potential of marine derived microbes is undermined. Herein we report the isolation and characterization of PAHs degrading Burkholderia sp. from lagoon sediments collected at the Southern coast of India. The strain was Gram negative, rod-shaped, motile, and ∼2–5 μm in length. Based on the phylogenetic data the strain was identified as Burkholderia and designated as VITRSB1. Initial PAHs degradation ability of the strain was assessed using basal salt medium supplemented with diesel, kerosene, toluene, aniline, naphthalene, and phenol. The strain was found to be effectively degrading kerosene, diesel, toluene, and aniline even at higher concentration (1%). However, naphthalene and aniline were degraded only at lower concentration (0.1%) and phenol, camphor, and DAP inhibited the growth of the strain. Furthermore, the degraded end products of the PAHs were determined using FTIR. Notably, none of the end products were found to be toxic to the biosphere. Our results indicate that the isolated Burkholderia sp. could be a prospective candidate for the effective degradation of selective PAHs. PMID:26605106

  12. Functional and genomic insights into the pathogenesis of Burkholderia species to rice.

    PubMed

    Naughton, Lynn M; An, Shi-Qi; Hwang, Ingyu; Chou, Shan-Ho; He, Yong-Qiang; Tang, Ji-Liang; Ryan, Robert P; Dow, J Maxwell

    2016-03-01

    A number of species of bacteria from the genus Burkholderia have been shown to be causal agents of diseases of rice. These diseases, caused by Burkholderia glumae, B. gladioli and B. plantarii, are becoming increasingly common across the globe. This is particularly so for B. glumae, whose ability to grow at elevated temperatures suggests that it may become a prevalent problem in an era of global warming. Despite the increasing threat to rice, relatively little is known about the virulence mechanisms employed by these pathogens. Work over the last 5 years has provided an increasing insight into these factors and their control by environmental and other cues. In addition, the determination of a number of genome sequences has allowed bioinformatic predictions of further possible mechanisms, which can now be investigated experimentally. Here, we review recent advances in the understanding of virulence of Burkholderia to rice, to include discussion of the roles of toxins, type II secreted enzymes, type III secreted effectors and motility as well as their regulation by quorum sensing, two-component systems and cyclic di-GMP signalling. Finally, we consider a number of approaches for the control of bacterial virulence through the modulation of quorum sensing and toxin degradation. PMID:26690879

  13. Protection against Experimental Melioidosis following Immunization with Live Burkholderia thailandensis Expressing a manno-Heptose Capsule

    PubMed Central

    Laws, Thomas R.; D'Elia, Riccardo V.; Stokes, Margaret G. M.; Nandi, Tannistha; Williamson, E. Diane; Tan, Patrick; Prior, Joann L.; Atkins, Timothy P.

    2013-01-01

    Melioidosis is a severe infectious disease caused by Burkholderia pseudomallei. It is highly resistant to antibiotic treatment, and there is currently no licensed vaccine. Burkholderia thailandensis is a close relative of Burkholderia pseudomallei but is essentially avirulent in mammals. In this report, we detail the protective efficacy of immunization with live B. thailandensis E555, a strain which has been shown to express an antigenic capsule similar to that of B. pseudomallei. Immunization with E555 induced significant protection against a lethal intraperitoneal B. pseudomallei challenge in a mouse model of infection, with no mice succumbing to infection over the course of the study, even with challenges of up to 6,000 median lethal doses. By comparison, mice immunized with B. thailandensis not expressing a B. pseudomallei-like capsule had significantly decreased levels of protection. E555-immunized mice had significantly higher levels of IgG than mice immunized with noncapsulated B. thailandensis, and these antibody responses were primarily directed against the capsule. PMID:23677322

  14. Biodegradation of PAHs by Burkholderia sp. VITRSB1 Isolated from Marine Sediments.

    PubMed

    Revathy, T; Jayasri, M A; Suthindhiran, K

    2015-01-01

    The polycyclic aromatic hydrocarbons (PAHs) pollution to the environment is a major threat to the living organisms, and hence the degradation of these PAHs is necessary. Studies on PAHs degrading bacteria have focussed on terrestrial microbes and the potential of marine derived microbes is undermined. Herein we report the isolation and characterization of PAHs degrading Burkholderia sp. from lagoon sediments collected at the Southern coast of India. The strain was Gram negative, rod-shaped, motile, and ∼2-5 μm in length. Based on the phylogenetic data the strain was identified as Burkholderia and designated as VITRSB1. Initial PAHs degradation ability of the strain was assessed using basal salt medium supplemented with diesel, kerosene, toluene, aniline, naphthalene, and phenol. The strain was found to be effectively degrading kerosene, diesel, toluene, and aniline even at higher concentration (1%). However, naphthalene and aniline were degraded only at lower concentration (0.1%) and phenol, camphor, and DAP inhibited the growth of the strain. Furthermore, the degraded end products of the PAHs were determined using FTIR. Notably, none of the end products were found to be toxic to the biosphere. Our results indicate that the isolated Burkholderia sp. could be a prospective candidate for the effective degradation of selective PAHs. PMID:26605106

  15. Widespread clone of Burkholderia cenocepacia in cystic fibrosis patients in the Czech Republic.

    PubMed

    Drevinek, Pavel; Vosahlikova, Sarka; Cinek, Ondrej; Vavrova, Vera; Bartosova, Jana; Pohunek, Petr; Mahenthiralingam, Eshwar

    2005-07-01

    The morbidity and mortality rates in patients with cystic fibrosis (CF) are significantly affected by infections with Burkholderia cepacia complex. In a Czech CF Centre, the prevalence of the infection reached up to 30 %, with the majority of patients found to be infected with Burkholderia cenocepacia (formerly genomovar III of the Burkholderia cepacia complex). Since B. cenocepacia is associated with patient-to-patient transmission and epidemic outbreaks among CF patients, this study sought to examine the epidemiological relatedness between the Czech isolates belonging to the genomovar-homogeneous group. Eighty-three clinical isolates recovered from 67 CF patients were analysed using a random amplified polymorphic DNA (RAPD) assay and macrorestriction typing (SpeI and XbaI) followed by PFGE. A single predominant banding pattern shared by multiple isolates was detected, although SpeI-generated PFGE results yielded a higher rate of inter-pattern variability in comparison to the more uniform RAPD and XbaI-generated PFGE results for this clone. Both typing systems also showed that only three out of 67 patients harboured strains distinct from the major strain type. The dominant clone was characterized by PCR positivity for the B. cepacia epidemic strain marker, PCR negativity for the cable pilin subunit gene and close genetic relatedness to the epidemic strain of RAPD 01 type previously identified in Canada. PMID:15947430

  16. Discrimination of Burkholderia mallei/pseudomallei from Burkholderia thailandensis by sequence comparison of a fragment of the ribosomal protein S21 (rpsU) gene

    PubMed Central

    Frickmann, H.; Chantratita, N.; Gauthier, Y. P.; Neubauer, H.; Hagen, R. M.

    2012-01-01

    Discrimination of Burkholderia (B.) pseudomallei and B. mallei from environmental B. thailandensis is challenging. We describe a discrimination method based on sequence comparison of the ribosomal protein S21 (rpsU) gene. The rpsU gene was sequenced in ten B. pseudomallei, six B. mallei, one B. thailandensis reference strains, six isolates of B. pseudomallei, and 37 of B. thailandensis. Further rpsU sequences of six B. pseudomallei, three B. mallei, and one B. thailandensis were identified via NCBI GenBank. Three to four variable base-positions were identified within a 120-base-pair fragment, allowing discrimination of the B. pseudomallei/mallei-cluster from B. thailandensis, whose sequences clustered identically. All B. mallei and three B. pseudomallei sequences were identical, while 17/22 B. pseudomallei strains differed in one nucleotide (78A>C). Sequences of the rpsU fragment of ‘out-stander’ reference strains of B. cepacia, B. gladioli, B. plantarii, and B. vietnamensis clustered differently. Sequence comparison of the described rpsU gene fragment can be used as a supplementary diagnostic procedure for the discrimination of B. mallei/pseudomallei from B. thailandensis as well as from other species of the genus Burkholderia, keeping in mind that it does not allow for a differentiation between B. mallei and B. pseudomallei. PMID:23227305

  17. Effect of gamma irradiation on Burkholderia thailandensis ( Burkholderia pseudomallei surrogate) survival under combinations of pH and NaCl

    NASA Astrophysics Data System (ADS)

    Yoon, Yohan; Kim, Jae-Hun; Byun, Myung-Woo; Choi, Kyoung-Hee; Lee, Ju-Woon

    2010-04-01

    This study evaluated the effect of gamma irradiation on Burkholderia thailandensis ( Burkholderia pseudomallei surrogate; potential bioterrorism agent) survival under different levels of NaCl and pH. B. thailandensis in Luria Bertani broth supplemented with NaCl (0-3%), and pH-adjusted to 4-7 was treated with gamma irradiation (0-0.5 kGy). Surviving cell counts of bacteria were then enumerated on tryptic soy agar. Data for the cell counts were also used to calculate D10 values (the dose required to reduce 1 log CFU/mL of B. thailandensis). Cell counts of B. thailandensis were decreased ( P<0.05) as irradiation dose increased, and no differences ( P≥0.05) in cell counts of the bacteria were observed among different levels of NaCl and pH. D10 values ranged from 0.04 to 0.07 kGy, regardless of NaCl and pH level. These results indicate that low doses of gamma irradiation should be a useful treatment in decreasing the potential bioterrorism bacteria, which may possibly infect humans through foods.

  18. Indole-3-Acetic Acid Produced by Burkholderia heleia Acts as a Phenylacetic Acid Antagonist to Disrupt Tropolone Biosynthesis in Burkholderia plantarii

    PubMed Central

    Wang, Mengcen; Tachibana, Seiji; Murai, Yuta; Li, Li; Lau, Sharon Yu Ling; Cao, Mengchao; Zhu, Guonian; Hashimoto, Makoto; Hashidoko, Yasuyuki

    2016-01-01

    Burkholderia heleia PAK1-2 is a potent biocontrol agent isolated from rice rhizosphere, as it prevents bacterial rice seedling blight disease caused by Burkholderia plantarii. Here, we isolated a non-antibacterial metabolite from the culture fluid of B. heleia PAK1-2 that was able to suppress B. plantarii virulence and subsequently identified as indole-3-acetic acid (IAA). IAA suppressed the production of tropolone in B. plantarii in a dose-dependent manner without any antibacterial and quorum quenching activity, suggesting that IAA inhibited steps of tropolone biosynthesis. Consistent with this, supplementing cultures of B. plantarii with either L-[ring-2H5]phenylalanine or [ring-2H2~5]phenylacetic acid revealed that phenylacetic acid (PAA), which is the dominant metabolite during the early growth stage, is a direct precursor of tropolone. Exposure of B. plantarii to IAA suppressed production of both PAA and tropolone. These data particularly showed that IAA produced by B. heleia PAK1-2 disrupts tropolone production during bioconversion of PAA to tropolone via the ring-rearrangement on the phenyl group of the precursor to attenuate the virulence of B. plantarii. B. heleia PAK1-2 is thus likely a microbial community coordinating bacterium in rhizosphere ecosystems, which never eliminates phytopathogens but only represses production of phytotoxins or bacteriocidal substances. PMID:26935539

  19. Indole-3-Acetic Acid Produced by Burkholderia heleia Acts as a Phenylacetic Acid Antagonist to Disrupt Tropolone Biosynthesis in Burkholderia plantarii.

    PubMed

    Wang, Mengcen; Tachibana, Seiji; Murai, Yuta; Li, Li; Lau, Sharon Yu Ling; Cao, Mengchao; Zhu, Guonian; Hashimoto, Makoto; Hashidoko, Yasuyuki

    2016-01-01

    Burkholderia heleia PAK1-2 is a potent biocontrol agent isolated from rice rhizosphere, as it prevents bacterial rice seedling blight disease caused by Burkholderia plantarii. Here, we isolated a non-antibacterial metabolite from the culture fluid of B. heleia PAK1-2 that was able to suppress B. plantarii virulence and subsequently identified as indole-3-acetic acid (IAA). IAA suppressed the production of tropolone in B. plantarii in a dose-dependent manner without any antibacterial and quorum quenching activity, suggesting that IAA inhibited steps of tropolone biosynthesis. Consistent with this, supplementing cultures of B. plantarii with either L-[ring-(2)H5]phenylalanine or [ring-(2)H2~5]phenylacetic acid revealed that phenylacetic acid (PAA), which is the dominant metabolite during the early growth stage, is a direct precursor of tropolone. Exposure of B. plantarii to IAA suppressed production of both PAA and tropolone. These data particularly showed that IAA produced by B. heleia PAK1-2 disrupts tropolone production during bioconversion of PAA to tropolone via the ring-rearrangement on the phenyl group of the precursor to attenuate the virulence of B. plantarii. B. heleia PAK1-2 is thus likely a microbial community coordinating bacterium in rhizosphere ecosystems, which never eliminates phytopathogens but only represses production of phytotoxins or bacteriocidal substances. PMID:26935539

  20. A reliable method for the selection and confirmation of transconjugants of plant growth-promoting bacteria especially plant-associated Burkholderia spp.

    PubMed

    Tariq, Mohsin; Lum, Michelle R; Chong, Allan W; Amirapu, Anjana B; Hameed, Sohail; Hirsch, Ann M

    2015-10-01

    Selectable markers, e.g., antibiotic resistance, for conjugation experiments are not always effective for slow-growing plant growth promoting bacteria such as Burkholderia. We used PCAT medium containing Congo Red for selecting Burkholderia transconjugants. This method allows for the reliable selection of transconjugants of these novel plant growth-promoting bacteria. PMID:26187775

  1. 40 CFR 180.1325 - Heat-killed Burkholderia spp. strain A396 cells and spent fermentation media exemption from the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... A396 cells and spent fermentation media exemption from the requirement of a tolerance. 180.1325 Section...-killed Burkholderia spp. strain A396 cells and spent fermentation media exemption from the requirement of...-killed Burkholderia spp. strain A396 cells and spent fermentation media in or on all food...

  2. Recombinant Salmonella Expressing Burkholderia mallei LPS O Antigen Provides Protection in a Murine Model of Melioidosis and Glanders

    PubMed Central

    Moustafa, Dina A.; Scarff, Jennifer M.; Garcia, Preston P.; Cassidy, Sara K. B.; DiGiandomenico, Antonio; Waag, David M.; Inzana, Thomas J.; Goldberg, Joanna B.

    2015-01-01

    Burkholderia pseudomallei and Burkholderia mallei are the etiologic agents of melioidosis and glanders, respectively. These bacteria are highly infectious via the respiratory route and can cause severe and often fatal diseases in humans and animals. Both species are considered potential agents of biological warfare; they are classified as category B priority pathogens. Currently there are no human or veterinary vaccines available against these pathogens. Consequently efforts are directed towards the development of an efficacious and safe vaccine. Lipopolysaccharide (LPS) is an immunodominant antigen and potent stimulator of host immune responses. B. mallei express LPS that is structurally similar to that expressed by B. pseudomallei, suggesting the possibility of constructing a single protective vaccine against melioidosis and glanders. Previous studies of others have shown that antibodies against B. mallei or B. pseudomallei LPS partially protect mice against subsequent lethal virulent Burkholderia challenge. In this study, we evaluated the protective efficacy of recombinant Salmonella enterica serovar Typhimurium SL3261 expressing B. mallei O antigen against lethal intranasal infection with Burkholderia thailandensis, a surrogate for biothreat Burkholderia spp. in a murine model that mimics melioidosis and glanders. All vaccine-immunized mice developed a specific antibody response to B. mallei and B. pseudomallei O antigen and to B. thailandensis and were significantly protected against challenge with a lethal dose of B. thailandensis. These results suggest that live-attenuated SL3261 expressing B. mallei O antigen is a promising platform for developing a safe and effective vaccine. PMID:26148026

  3. A reverse-phase protein microarray-based screen identifies host signaling dynamics upon Burkholderia spp. infection

    PubMed Central

    Chiang, Chih-Yuan; Uzoma, Ijeoma; Lane, Douglas J.; Memišević, Vesna; Alem, Farhang; Yao, Kuan; Kota, Krishna P.; Bavari, Sina; Wallqvist, Anders; Hakami, Ramin M.; Panchal, Rekha G.

    2015-01-01

    Burkholderia is a diverse genus of gram-negative bacteria that causes high mortality rate in humans, equines and cattle. The lack of effective therapeutic treatments poses serious public health threats. Developing insights toward host-Burkholderia spp. interaction is critical for understanding the pathogenesis of infection as well as identifying therapeutic targets for drug development. Reverse-phase protein microarray technology was previously proven to identify and characterize novel biomarkers and molecular signatures associated with infectious disease and cancer. In the present study, this technology was utilized to interrogate changes in host protein expression and phosphorylation events in macrophages infected with a collection of geographically diverse strains of Burkholderia spp. The expression or phosphorylation state of 25 proteins was altered during Burkholderia spp. infections of which eight proteins were selected for further characterization by immunoblotting. Increased phosphorylation of AMPK-α1, Src, and GSK3β suggested the importance of their roles in regulating Burkholderia spp. mediated innate immune response. Modulating the inflammatory response by perturbing their activities may provide therapeutic routes for future treatments. PMID:26284031

  4. A reverse-phase protein microarray-based screen identifies host signaling dynamics upon Burkholderia spp. infection.

    PubMed

    Chiang, Chih-Yuan; Uzoma, Ijeoma; Lane, Douglas J; Memišević, Vesna; Alem, Farhang; Yao, Kuan; Kota, Krishna P; Bavari, Sina; Wallqvist, Anders; Hakami, Ramin M; Panchal, Rekha G

    2015-01-01

    Burkholderia is a diverse genus of gram-negative bacteria that causes high mortality rate in humans, equines and cattle. The lack of effective therapeutic treatments poses serious public health threats. Developing insights toward host-Burkholderia spp. interaction is critical for understanding the pathogenesis of infection as well as identifying therapeutic targets for drug development. Reverse-phase protein microarray technology was previously proven to identify and characterize novel biomarkers and molecular signatures associated with infectious disease and cancer. In the present study, this technology was utilized to interrogate changes in host protein expression and phosphorylation events in macrophages infected with a collection of geographically diverse strains of Burkholderia spp. The expression or phosphorylation state of 25 proteins was altered during Burkholderia spp. infections of which eight proteins were selected for further characterization by immunoblotting. Increased phosphorylation of AMPK-α1, Src, and GSK3β suggested the importance of their roles in regulating Burkholderia spp. mediated innate immune response. Modulating the inflammatory response by perturbing their activities may provide therapeutic routes for future treatments. PMID:26284031

  5. Nitrous oxide emission potentials of Burkholderia species isolated from the leaves of a boreal peat moss Sphagnum fuscum.

    PubMed

    Nie, Yanxia; Li, Li; Wang, Mengcen; Tahvanainen, Teemu; Hashidoko, Yasuyuki

    2015-01-01

    Using a culture-based nitrous oxide (N2O) emission assay, three active N2O emitters were isolated from Sphagnum fuscum leaves and all identified as members of Burkholderia. These isolates showed N2O emission in the medium supplemented with [Formula: see text] but not with [Formula: see text], and Burkholderia sp. SF-E2 showed the most efficient N2O emission (0.20 μg·vial(-1)·day(-1)) at 1.0 mM KNO3. In Burkholderia sp. SF-E2, the optimum pH for N2O production was 5.0, close to that of the phyllosphere of Sphagnum mosses, while the optimum temperature was uniquely over 30 °C. The stimulating effect of additional 1.5 mM sucrose on N2O emission was ignorable, but Burkholderia sp. SF-E2 upon exposure to 100 mg·L(-1) E-caffeic acid showed uniquely 67-fold higher N2O emission. All of the three N2O emitters were negative in both acetylene inhibition assay and PCR assay for nosZ-detection, suggesting that N2O reductase or the gene itself is missing in the N2O-emitting Burkholderia. PMID:26167675

  6. High-quality permanent draft genome sequence of the Parapiptadenia rigida-nodulating Burkholderia sp. strain UYPR1.413

    SciTech Connect

    De Meyer, Sofie E.; Fabiano, Elena; Tian, Rui; Van Berkum, Peter; Seshadri, Rekha; Reddy, T. B. K.; Markowitz, Victor; Ivanova, Natalia; Pati, Amrita; Woyke, Tanja; Howieson, John; Kyrpides, Nikos; Reeve, Wayne

    2015-06-04

    We report that Burkholderia sp. strain UYPR1.413 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from a root nodule of Parapiptadenia rigida collected at the Angico plantation, Mandiyu, Uruguay, in December 2006. A survey of symbionts of P. rigida in Uruguay demonstrated that this species is nodulated predominantly by Burkholderia microsymbionts. Moreover, Burkholderia sp. strain UYPR1.413 is a highly efficient nitrogen fixing symbiont with this host. Currently, the only other sequenced isolate to fix with this host is Cupriavidus sp. UYPR2.512. Therefore, Burkholderia sp. strain UYPR1.413 was selected for sequencing on the basis of its environmental and agricultural relevance to issues in global carbon cycling, alternative energy production, and biogeochemical importance, and is part of the GEBA-RNB project. Here we describe the features of Burkholderia sp. strain UYPR1.413, together with sequence and annotation. The 10,373,764 bp high-quality permanent draft genome is arranged in 336 scaffolds of 342 contigs, contains 9759 protein-coding genes and 77 RNA-only encoding genes.

  7. High-quality permanent draft genome sequence of the Parapiptadenia rigida-nodulating Burkholderia sp. strain UYPR1.413

    PubMed Central

    2015-01-01

    Burkholderia sp. strain UYPR1.413 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from a root nodule of Parapiptadenia rigida collected at the Angico plantation, Mandiyu, Uruguay, in December 2006. A survey of symbionts of P. rigida in Uruguay demonstrated that this species is nodulated predominantly by Burkholderia microsymbionts. Moreover, Burkholderia sp. strain UYPR1.413 is a highly efficient nitrogen fixing symbiont with this host. Currently, the only other sequenced isolate to fix with this host is Cupriavidus sp. UYPR2.512. Therefore, Burkholderia sp. strain UYPR1.413 was selected for sequencing on the basis of its environmental and agricultural relevance to issues in global carbon cycling, alternative energy production, and biogeochemical importance, and is part of the GEBA-RNB project. Here we describe the features of Burkholderia sp. strain UYPR1.413, together with sequence and annotation. The 10,373,764 bp high-quality permanent draft genome is arranged in 336 scaffolds of 342 contigs, contains 9759 protein-coding genes and 77 RNA-only encoding genes. PMID:26203342

  8. High-quality permanent draft genome sequence of the Parapiptadenia rigida-nodulating Burkholderia sp. strain UYPR1.413

    DOE PAGESBeta

    De Meyer, Sofie E.; Fabiano, Elena; Tian, Rui; Van Berkum, Peter; Seshadri, Rekha; Reddy, T. B. K.; Markowitz, Victor; Ivanova, Natalia; Pati, Amrita; Woyke, Tanja; et al

    2015-06-04

    We report that Burkholderia sp. strain UYPR1.413 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from a root nodule of Parapiptadenia rigida collected at the Angico plantation, Mandiyu, Uruguay, in December 2006. A survey of symbionts of P. rigida in Uruguay demonstrated that this species is nodulated predominantly by Burkholderia microsymbionts. Moreover, Burkholderia sp. strain UYPR1.413 is a highly efficient nitrogen fixing symbiont with this host. Currently, the only other sequenced isolate to fix with this host is Cupriavidus sp. UYPR2.512. Therefore, Burkholderia sp. strain UYPR1.413 was selected for sequencing on the basis of its environmental and agriculturalmore » relevance to issues in global carbon cycling, alternative energy production, and biogeochemical importance, and is part of the GEBA-RNB project. Here we describe the features of Burkholderia sp. strain UYPR1.413, together with sequence and annotation. The 10,373,764 bp high-quality permanent draft genome is arranged in 336 scaffolds of 342 contigs, contains 9759 protein-coding genes and 77 RNA-only encoding genes.« less

  9. Understanding regulation of the host-mediated gut symbiont population and the symbiont-mediated host immunity in the Riptortus-Burkholderia symbiosis system.

    PubMed

    Kim, Jiyeun Kate; Lee, Jun Beom; Jang, Ho Am; Han, Yeon Soo; Fukatsu, Takema; Lee, Bok Luel

    2016-11-01

    Valuable insect models have tremendously contributed to our understanding of innate immunity and symbiosis. Bean bug, Riptortus pedestris, is a useful insect symbiosis model due to harboring cultivable monospecific gut symbiont, genus Burkholderia. Bean bug is a hemimetabolous insect whose immunity is not well-understood. However, we recently identified three major antimicrobial peptides of Riptortus and examined the relationship between gut symbiosis and host immunity. We found that the presence of Burkholderia gut symbiont positively affects Riptortus immunity. From studying host regulation mechanisms of symbiont population, we revealed that the symbiotic Burkholderia cells are much more susceptible to Riptortus immune responses than the cultured cells. We further elucidated that the immune-susceptibility of the Burkholderia gut symbionts is due to the drastic change of bacterial cell envelope. Finally, we show that the immune-susceptible Burkholderia symbionts are able to prosper in host owing to the suppression of immune responses of the symbiotic midgut. PMID:26774501

  10. Structural identification of the O-antigen fraction from the lipopolysaccharide of the Burkholderia ambifaria strain 19182.

    PubMed

    De Castro, Cristina; Dinischiotu, Natalia; Feys, Bart; Lanzetta, Rosa; Parrilli, Michelangelo; Molinaro, Antonio

    2013-09-20

    The Burkholderia cepacia complex comprises a group of bacterial strains with both beneficial and detrimental effects to plant and animals. Gram negative bacterial lipopolysaccharide is one of the most important molecular factors involved in the dialogue between the microbe and the host and in this context we have isolated and identified the O-antigen fraction of the Burkholderia ambifaria strain 19182. It consists of two different O-polysaccharides built up on 6-deoxy sugars, among which the 6-deoxy-altrose in the d absolute configuration, is present. This monosaccharide is found for the first time and it is a unique feature associated to this strain. PMID:23886988

  11. Isolation and Characterization of Burkholderia rinojensis sp. nov., a Non-Burkholderia cepacia Complex Soil Bacterium with Insecticidal and Miticidal Activities

    PubMed Central

    Fernandez, Lorena E.; Koivunen, Marja; Yang, April; Flor-Weiler, Lina; Marrone, Pamela G.

    2013-01-01

    Isolate A396, a bacterium isolated from a Japanese soil sample demonstrated strong insecticidal and miticidal activities in laboratory bioassays. The isolate was characterized through biochemical methods, fatty acid methyl ester (FAME) analysis, sequencing of 16S rRNA, multilocus sequence typing and analysis, and DNA-DNA hybridization. FAME analysis matched A396 to Burkholderia cenocepacia, but this result was not confirmed by 16S rRNA or DNA-DNA hybridization. 16S rRNA sequencing indicated closest matches with B. glumae and B. plantarii. DNA-DNA hybridization experiments with B. plantarii, B. glumae, B. multivorans, and B. cenocepacia confirmed the low genetic similarity (11.5 to 37.4%) with known members of the genus. PCR-based screening showed that A396 lacks markers associated with members of the B. cepacia complex. Bioassay results indicated two mechanisms of action: through ingestion and contact. The isolate effectively controlled beet armyworms (Spodoptera exigua; BAW) and two-spotted spider mites (Tetranychus urticae; TSSM). In diet overlay bioassays with BAW, 1% to 4% (vol/vol) dilution of the whole-cell broth caused 97% to 100% mortality 4 days postexposure, and leaf disc treatment bioassays attained 75% ± 22% mortality 3 days postexposure. Contact bioassays led to 50% larval mortality, as well as discoloration, stunting, and failure to molt. TSSM mortality reached 93% in treated leaf discs. Activity was maintained in cell-free supernatants and after heat treatment (60°C for 2 h), indicating that a secondary metabolite or excreted thermostable enzyme might be responsible for the activity. Based on these results, we describe the novel species Burkholderia rinojensis, a good candidate for the development of a biocontrol product against insect and mite pests. PMID:24096416

  12. Genetic relationships among Italian and Mexican maize-rhizosphere Burkholderia cepacia complex (BCC) populations belonging to Burkholderia cenocepacia IIIB and BCC6 group

    PubMed Central

    2011-01-01

    Background A close association between maize roots and Burkholderia cepacia complex (BCC) bacteria has been observed in different locations globally. In this study we investigated by MultiLocus Restriction Typing (MLRT) the genetic diversity and relationships among Burkholderia cenocepacia IIIB and BCC6 populations associated with roots of maize plants cultivated in geographically distant countries (Italy and Mexico), in order to provide new insights into their population structure, evolution and ecology. Results The 31 B. cenocepacia IIIB and 65 BCC6 isolates gave rise to 29 and 39 different restriction types (RTs), respectively. Two pairs of isolates of B. cenocepacia IIIB and BCC6, recovered from both Italian and Mexican maize rhizospheres, were found to share the same RT. The eBURST (Based Upon Related Sequence Types) analysis of MLRT data grouped all the B. cenocepacia IIIB isolates into four clonal complexes, with the RT-4-complex including the 42% of them, while the majority of the BCC6 isolates (94%) were grouped into the RT-104-complex. These two main clonal complexes included RTs shared by both Italian and Mexican maize rhizospheres and a clear relationship between grouping and maize variety was also found. Grouping established by eBURST correlated well with the assessment using unweighted-pair group method with arithmetic mean (UPGMA). The standardized index of association values obtained in both B. cenocepacia IIIB and BCC6 suggests an epidemic population structure in which occasional clones emerge and spread. Conclusions Taken together our data demonstrate a wide dispersal of certain B. cenocepacia IIIB and BCC6 isolates in Mexican and Italian maize rhizospheres. Despite the clear relationship found between the geographic origin of isolates and grouping, identical RTs and closely related isolates were observed in geographically distant regions. Ecological factors and selective pressure may preferably promote some genotypes within each local microbial

  13. Plant host and sugar alcohol induced exopolysaccharide biosynthesis in the Burkholderia cepacia complex.

    PubMed

    Bartholdson, S Josefin; Brown, Alan R; Mewburn, Ben R; Clarke, David J; Fry, Stephen C; Campopiano, Dominic J; Govan, John R W

    2008-08-01

    The species that presently constitute the Burkholderia cepacia complex (Bcc) have multiple roles; they include soil and water saprophytes, bioremediators, and plant, animal and human pathogens. Since the first description of pathogenicity in the Bcc was based on sour skin rot of onion bulbs, this study returned to this plant host to investigate the onion-associated phenotype of the Bcc. Many Bcc isolates, which were previously considered to be non-mucoid, produced copious amounts of exopolysaccharide (EPS) when onion tissue was provided as the sole nutrient. EPS production was not species-specific, was observed in isolates from both clinical and environmental sources, and did not correlate with the ability to cause maceration of onion tissue. Chemical analysis suggested that the onion components responsible for EPS induction were primarily the carbohydrates sucrose, fructose and fructans. Additional sugars were investigated, and all alcohol sugars tested were able to induce EPS production, in particular mannitol and glucitol. To investigate the molecular basis for EPS biosynthesis, we focused on the highly conserved bce gene cluster thought to be involved in cepacian biosynthesis. We demonstrated induction of the bce gene cluster by mannitol, and found a clear correlation between the inability of representatives of the Burkholderia cenocepacia ET12 lineage to produce EPS and the presence of an 11 bp deletion within the bceB gene, which encodes a glycosyltransferase. Insertional inactivation of bceB in Burkholderia ambifaria AMMD results in loss of EPS production on sugar alcohol media. These novel and surprising insights into EPS biosynthesis highlight the metabolic potential of the Bcc and show that a potential virulence factor may not be detected by routine laboratory culture. Our results also highlight a potential hazard in the use of inhaled mannitol as an osmolyte to improve mucociliary clearance in individuals with cystic fibrosis. PMID:18667584

  14. Versatility of the Burkholderia cepacia Complex for the Biosynthesis of Exopolysaccharides: A Comparative Structural Investigation

    PubMed Central

    Silipo, Alba; Lanzetta, Rosa; Liut, Gianfranco; Rizzo, Roberto; Cescutti, Paola

    2014-01-01

    The Burkholderia cepacia Complex assembles at least eighteen closely related species that are ubiquitous in nature. Some isolates show beneficial potential for biocontrol, bioremediation and plant growth promotion. On the contrary, other strains are pathogens for plants and immunocompromised individuals, like cystic fibrosis patients. In these subjects, they can cause respiratory tract infections sometimes characterised by fatal outcome. Most of the Burkholderia cepacia Complex species are mucoid when grown on a mannitol rich medium and they also form biofilms, two related characteristics, since polysaccharides are important component of biofilm matrices. Moreover, polysaccharides contribute to bacterial survival in a hostile environment by inhibiting both neutrophils chemotaxis and antimicrobial peptides activity, and by scavenging reactive oxygen species. The ability of these microorganisms to produce exopolysaccharides with different structures is testified by numerous articles in the literature. However, little is known about the type of polysaccharides produced in biofilms and their relationship with those obtained in non-biofilm conditions. The aim of this study was to define the type of exopolysaccharides produced by nine species of the Burkholderia cepacia Complex. Two isolates were then selected to compare the polysaccharides produced on agar plates with those formed in biofilms developed on cellulose membranes. The investigation was conducted using NMR spectroscopy, high performance size exclusion chromatography, and gas chromatography coupled to mass spectrometry. The results showed that the Complex is capable of producing a variety of exopolysaccharides, most often in mixture, and that the most common exopolysaccharide is always cepacian. In addition, two novel polysaccharide structures were determined: one composed of mannose and rhamnose and another containing galactose and glucuronic acid. Comparison of exopolysaccharides obtained from cultures on

  15. Versatility of the Burkholderia cepacia complex for the biosynthesis of exopolysaccharides: a comparative structural investigation.

    PubMed

    Cuzzi, Bruno; Herasimenka, Yury; Silipo, Alba; Lanzetta, Rosa; Liut, Gianfranco; Rizzo, Roberto; Cescutti, Paola

    2014-01-01

    The Burkholderia cepacia Complex assembles at least eighteen closely related species that are ubiquitous in nature. Some isolates show beneficial potential for biocontrol, bioremediation and plant growth promotion. On the contrary, other strains are pathogens for plants and immunocompromised individuals, like cystic fibrosis patients. In these subjects, they can cause respiratory tract infections sometimes characterised by fatal outcome. Most of the Burkholderia cepacia Complex species are mucoid when grown on a mannitol rich medium and they also form biofilms, two related characteristics, since polysaccharides are important component of biofilm matrices. Moreover, polysaccharides contribute to bacterial survival in a hostile environment by inhibiting both neutrophils chemotaxis and antimicrobial peptides activity, and by scavenging reactive oxygen species. The ability of these microorganisms to produce exopolysaccharides with different structures is testified by numerous articles in the literature. However, little is known about the type of polysaccharides produced in biofilms and their relationship with those obtained in non-biofilm conditions. The aim of this study was to define the type of exopolysaccharides produced by nine species of the Burkholderia cepacia Complex. Two isolates were then selected to compare the polysaccharides produced on agar plates with those formed in biofilms developed on cellulose membranes. The investigation was conducted using NMR spectroscopy, high performance size exclusion chromatography, and gas chromatography coupled to mass spectrometry. The results showed that the Complex is capable of producing a variety of exopolysaccharides, most often in mixture, and that the most common exopolysaccharide is always cepacian. In addition, two novel polysaccharide structures were determined: one composed of mannose and rhamnose and another containing galactose and glucuronic acid. Comparison of exopolysaccharides obtained from cultures on

  16. Insights into β-Lactamases from Burkholderia Species, Two Phylogenetically Related yet Distinct Resistance Determinants*

    PubMed Central

    Papp-Wallace, Krisztina M.; Taracila, Magdalena A.; Gatta, Julian A.; Ohuchi, Nozomi; Bonomo, Robert A.; Nukaga, Michiyoshi

    2013-01-01

    Burkholderia cepacia complex and Burkholderia pseudomallei are opportunistic human pathogens. Resistance to β-lactams among Burkholderia spp. is attributable to expression of β-lactamases (e.g. PenA in B. cepacia complex and PenI in B. pseudomallei). Phylogenetic comparisons reveal that PenA and PenI are highly related. However, the analyses presented here reveal that PenA is an inhibitor-resistant carbapenemase, most similar to KPC-2 (the most clinically significant serine carbapenemase), whereas PenI is an extended spectrum β-lactamase. PenA hydrolyzes β-lactams with kcat values ranging from 0.38 ± 0.04 to 460 ± 46 s−1 and possesses high kcat/kinact values of 2000, 1500, and 75 for β-lactamase inhibitors. PenI demonstrates the highest kcat value for cefotaxime of 9.0 ± 0.9 s−1. Crystal structure determination of PenA and PenI reveals important differences that aid in understanding their contrasting phenotypes. Changes in the positioning of conserved catalytic residues (e.g. Lys-73, Ser-130, and Tyr-105) as well as altered anchoring and decreased occupancy of the deacylation water explain the lower kcat values of PenI. The crystal structure of PenA with imipenem docked into the active site suggests why this carbapenem is hydrolyzed and the important role of Arg-220, which was functionally confirmed by mutagenesis and biochemical characterization. Conversely, the conformation of Tyr-105 hindered docking of imipenem into the active site of PenI. The structural and biochemical analyses of PenA and PenI provide key insights into the hydrolytic mechanisms of β-lactamases, which can lead to the rational design of novel agents against these pathogens. PMID:23658015

  17. Inhibition of co-colonizing cystic fibrosis-associated pathogens by Pseudomonas aeruginosa and Burkholderia multivorans.

    PubMed

    Costello, Anne; Reen, F Jerry; O'Gara, Fergal; Callaghan, Máire; McClean, Siobhán

    2014-07-01

    Cystic fibrosis (CF) is a recessive genetic disease characterized by chronic respiratory infections and inflammation causing permanent lung damage. Recurrent infections are caused by Gram-negative antibiotic-resistant bacterial pathogens such as Pseudomonas aeruginosa, Burkholderia cepacia complex (Bcc) and the emerging pathogen genus Pandoraea. In this study, the interactions between co-colonizing CF pathogens were investigated. Both Pandoraea and Bcc elicited potent pro-inflammatory responses that were significantly greater than Ps. aeruginosa. The original aim was to examine whether combinations of pro-inflammatory pathogens would further exacerbate inflammation. In contrast, when these pathogens were colonized in the presence of Ps. aeruginosa the pro-inflammatory response was significantly decreased. Real-time PCR quantification of bacterial DNA from mixed cultures indicated that Ps. aeruginosa significantly inhibited the growth of Burkholderia multivorans, Burkholderia cenocepacia, Pandoraea pulmonicola and Pandoraea apista, which may be a factor in its dominance as a colonizer of CF patients. Ps. aeruginosa cell-free supernatant also suppressed growth of these pathogens, indicating that inhibition was innate rather than a response to the presence of a competitor. Screening of a Ps. aeruginosa mutant library highlighted a role for quorum sensing and pyoverdine biosynthesis genes in the inhibition of B. cenocepacia. Pyoverdine was confirmed to contribute to the inhibition of B. cenocepacia strain J2315. B. multivorans was the only species that could significantly inhibit Ps. aeruginosa growth. B. multivorans also inhibited B. cenocepacia and Pa. apista. In conclusion, both Ps. aeruginosa and B. multivorans are capable of suppressing growth and virulence of co-colonizing CF pathogens. PMID:24790091

  18. Detection of Burkholderia pseudomallei O-antigen serotypes in near-neighbor species

    PubMed Central

    2012-01-01

    Background Burkholderia pseudomallei is the etiological agent of melioidosis and a CDC category B select agent with no available effective vaccine. Previous immunizations in mice have utilized the lipopolysaccharide (LPS) as a potential vaccine target because it is known as one of the most important antigenic epitopes in B. pseudomallei. Complicating this strategy are the four different B. pseudomallei LPS O-antigen types: A, B, B2, and rough. Sero-crossreactivity is common among O-antigens of Burkholderia species. Here, we identified the presence of multiple B. pseudomallei O-antigen types and sero-crossreactivity in its near-neighbor species. Results PCR screening of O-antigen biosynthesis genes, phenotypic characterization using SDS-PAGE, and immunoblot analysis showed that majority of B. mallei and B. thailandensis strains contained the typical O-antigen type A. In contrast, most of B. ubonensis and B. thailandensis-like strains expressed the atypical O-antigen types B and B2, respectively. Most B. oklahomensis strains expressed a distinct and non-seroreactive O-antigen type, except strain E0147 which expressed O-antigen type A. O-antigen type B2 was also detected in B. thailandensis 82172, B. ubonensis MSMB108, and Burkholderia sp. MSMB175. Interestingly, B. thailandensis-like MSMB43 contained a novel serotype B positive O-antigen. Conclusions This study expands the number of species which express B. pseudomallei O-antigen types. Further work is required to elucidate the full structures and how closely these are to the B. pseudomallei O-antigens, which will ultimately determine the efficacy of the near-neighbor B serotypes for vaccine development. PMID:23126230

  19. Dioxygenases in Burkholderia ambifaria and Yersinia pestis that hydroxylate the outer Kdo unit of lipopolysaccharide

    PubMed Central

    Chung, Hak Suk; Raetz, Christian R. H.

    2011-01-01

    Several Gram-negative pathogens, including Yersinia pestis, Burkholderia cepacia, and Acinetobacter haemolyticus, synthesize an isosteric analog of 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo), known as d-glycero-d-talo-oct-2-ulosonic acid (Ko), in which the axial hydrogen atom at the Kdo 3-position is replaced with OH. Here we report a unique Kdo 3-hydroxylase (KdoO) from Burkholderia ambifaria and Yersinia pestis, encoded by the bamb_0774 (BakdoO) and the y1812 (YpkdoO) genes, respectively. When expressed in heptosyl transferase-deficient Escherichia coli, these genes result in conversion of the outer Kdo unit of Kdo2-lipid A to Ko in an O2-dependent manner. KdoO contains the putative iron-binding motif, HXDXn>40H. Reconstitution of KdoO activity in vitro with Kdo2-lipid A as the substrate required addition of Fe2+, α-ketoglutarate, and ascorbic acid, confirming that KdoO is a Fe2+/α-ketoglutarate/O2-dependent dioxygenase. Conversion of Kdo to Ko in Kdo2-lipid A conferred reduced susceptibility to mild acid hydrolysis. Although two enzymes that catalyze Fe2+/α-ketoglutarate/O2-dependent hydroxylation of deoxyuridine in fungal extracts have been reported previously, kdoO is the first example of a gene encoding a deoxy-sugar hydroxylase. Homologues of KdoO are found exclusively in Gram-negative bacteria, including the human pathogens Burkholderia mallei, Yersinia pestis, Klebsiella pneumoniae, Legionella longbeachae, and Coxiella burnetii, as well as the plant pathogen Ralstonia solanacearum. PMID:21178073

  20. Comparative analysis of two phenotypically-similar but genomically-distinct Burkholderia cenocepacia-specific bacteriophages

    PubMed Central

    2012-01-01

    Background Genomic analysis of bacteriophages infecting the Burkholderia cepacia complex (BCC) is an important preliminary step in the development of a phage therapy protocol for these opportunistic pathogens. The objective of this study was to characterize KL1 (vB_BceS_KL1) and AH2 (vB_BceS_AH2), two novel Burkholderia cenocepacia-specific siphoviruses isolated from environmental samples. Results KL1 and AH2 exhibit several unique phenotypic similarities: they infect the same B. cenocepacia strains, they require prolonged incubation at 30°C for the formation of plaques at low titres, and they do not form plaques at similar titres following incubation at 37°C. However, despite these similarities, we have determined using whole-genome pyrosequencing that these phages show minimal relatedness to one another. The KL1 genome is 42,832 base pairs (bp) in length and is most closely related to Pseudomonas phage 73 (PA73). In contrast, the AH2 genome is 58,065 bp in length and is most closely related to Burkholderia phage BcepNazgul. Using both BLASTP and HHpred analysis, we have identified and analyzed the putative virion morphogenesis, lysis, DNA binding, and MazG proteins of these two phages. Notably, MazG homologs identified in cyanophages have been predicted to facilitate infection of stationary phase cells and may contribute to the unique plaque phenotype of KL1 and AH2. Conclusions The nearly indistinguishable phenotypes but distinct genomes of KL1 and AH2 provide further evidence of both vast diversity and convergent evolution in the BCC-specific phage population. PMID:22676492

  1. Genetic Analysis of the CDI Pathway from Burkholderia pseudomallei 1026b

    PubMed Central

    Edman, Natasha; Chaudhuri, Swarnava; Poole, Stephen J.; Manoil, Colin; Hayes, Christopher S.; Low, David A.

    2015-01-01

    Contact-dependent growth inhibition (CDI) is a mode of inter-bacterial competition mediated by the CdiB/CdiA family of two-partner secretion systems. CdiA binds to receptors on susceptible target bacteria, then delivers a toxin domain derived from its C-terminus. Studies with Escherichia coli suggest the existence of multiple CDI growth-inhibition pathways, whereby different systems exploit distinct target-cell proteins to deliver and activate toxins. Here, we explore the CDI pathway in Burkholderia using the CDIIIBp1026b system encoded on chromosome II of Burkholderia pseudomallei 1026b as a model. We took a genetic approach and selected Burkholderia thailandensis E264 mutants that are resistant to growth inhibition by CDIIIBp1026b. We identified mutations in three genes, BTH_I0359, BTH_II0599, and BTH_I0986, each of which confers resistance to CDIIIBp1026b. BTH_I0359 encodes a small peptide of unknown function, whereas BTH_II0599 encodes a predicted inner membrane transport protein of the major facilitator superfamily. The inner membrane localization of BTH_II0599 suggests that it may facilitate translocation of CdiA-CTIIBp1026b toxin from the periplasm into the cytoplasm of target cells. BTH_I0986 encodes a putative transglycosylase involved in lipopolysaccharide (LPS) synthesis. ∆BTH_I0986 mutants have altered LPS structure and do not interact with CDI+ inhibitor cells to the same extent as BTH_I0986+ cells, suggesting that LPS could function as a receptor for CdiAIIBp1026b. Although ∆BTH_I0359, ∆BTH_II0599, and ∆BTH_I0986 mutations confer resistance to CDIIIBp1026b, they provide no protection against the CDIE264 system deployed by B. thailandensis E264. Together, these findings demonstrate that CDI growth-inhibition pathways are distinct and can differ significantly even between closely related species. PMID:25786241

  2. Burkholderia unamae sp. nov., an N2-fixing rhizospheric and endophytic species.

    PubMed

    Caballero-Mellado, Jesús; Martínez-Aguilar, Lourdes; Paredes-Valdez, Guadalupe; Santos, Paulina Estrada-De los

    2004-07-01

    It was shown recently that the genus Burkholderia is rich in N2-fixing bacteria that are associated with plants. A group of these diazotrophic isolates with identical or very similar 16S rDNA restriction patterns [designated amplified rDNA restriction analysis (ARDRA) genotypes 13, 14 and 15] was selected and a polyphasic taxonomic study was performed, which included new isolates that were recovered from rhizospheres, rhizoplanes or internal tissues of maize, sugarcane and coffee plants. Morphological, physiological and biochemical features, as well as multi-locus enzyme electrophoresis profiles and whole-cell protein patterns, of 20 strains were analysed. In addition, analysis of cellular fatty acid profiles, 16S rDNA sequence analysis and DNA-DNA reassociation experiments were performed with representative strains. The taxonomic data indicated that the strains analysed belong to a novel diazotrophic Burkholderia species, for which the name Burkholderia unamae sp. nov. is proposed. Strain MTl-641T (=ATCC BAA-744T=CIP 107921T), isolated from the rhizosphere of maize, was designated as the type strain. B. unamae was found as an endophyte of plants grown in regions with climates ranging from semi-hot subhumid to hot humid, but not from plants grown in regions with semi-hot or hot dry climates. Moreover, B. unamae was isolated from rhizospheres and plants growing in soils with pH values in the range 4.5-7.1, but not from soils with pH values higher than 7.5. PMID:15280286

  3. Characterization of Burkholderia rhizoxinica and B. endofungorum Isolated from Clinical Specimens

    PubMed Central

    Gee, Jay E.; Glass, Mindy B.; Lackner, Gerald; Helsel, Leta O.; Daneshvar, Maryam; Hollis, Dannie G.; Jordan, Jean; Morey, Roger; Steigerwalt, Arnold; Hertweck, Christian

    2011-01-01

    Eight isolates submitted to CDC from 1989 to 2006 from clinical specimens were initially identified as members of the genus Burkholderia based on preliminary cellular fatty acid analysis and/or 16S rRNA gene sequencing. With the recent descriptions of the new species B. rhizoxinica and B. endofungorum, which are considered endosymbiotic bacteria in Rhizopus microsporus fungi, we now identify seven of these clinical isolates as B. rhizoxinica and one as B. endofungorum based on biochemical testing, 16s rRNA, and DNA-DNA hybridization results. We also further characterize these isolates by assessing toxin production and/or by multiple locus sequence typing. PMID:21267449

  4. The promise of bacteriophage therapy for Burkholderia cepacia complex respiratory infections.

    PubMed

    Semler, Diana D; Lynch, Karlene H; Dennis, Jonathan J

    2011-01-01

    In recent times, increased attention has been given to evaluating the efficacy of phage therapy, especially in scenarios where the bacterial infectious agent of interest is highly antibiotic resistant. In this regard, phage therapy is especially applicable to infections caused by the Burkholderia cepacia complex (BCC) since members of the BCC are antibiotic pan-resistant. Current studies in BCC phage therapy are unique from many other avenues of phage therapy research in that the investigation is not only comprised of phage isolation, in vitro phage characterization and assessment of in vivo infection model efficacy, but also adapting aerosol drug delivery techniques to aerosol phage formulation delivery and storage. PMID:22919592

  5. Identification and cloning of four riboswitches from Burkholderia pseudomallei strain K96243

    NASA Astrophysics Data System (ADS)

    Munyati-Othman, Noor; Fatah, Ahmad Luqman Abdul; Piji, Mohd Al Akmarul Fizree Bin Md; Ramlan, Effirul Ikhwan; Raih, Mohd Firdaus

    2015-09-01

    Structured RNAs referred as riboswitches have been predicted to be present in the genome sequence of Burkholderia pseudomallei strain K96243. Four of the riboswitches were identified and analyzed through BLASTN, Rfam search and multiple sequence alignment. The RNA aptamers belong to the following riboswitch classifications: glycine riboswitch, cobalamin riboswitch, S-adenosyl-(L)-homocysteine (SAH) riboswitch and flavin mononucleotide (FMN) riboswitch. The conserved nucleotides for each aptamer were identified and were marked on the secondary structure generated by RNAfold. These riboswitches were successfully amplified and cloned for further study.

  6. The Promise of Bacteriophage Therapy for Burkholderia cepacia Complex Respiratory Infections

    PubMed Central

    Semler, Diana D.; Lynch, Karlene H.; Dennis, Jonathan J.

    2012-01-01

    In recent times, increased attention has been given to evaluating the efficacy of phage therapy, especially in scenarios where the bacterial infectious agent of interest is highly antibiotic resistant. In this regard, phage therapy is especially applicable to infections caused by the Burkholderia cepacia complex (BCC) since members of the BCC are antibiotic pan-resistant. Current studies in BCC phage therapy are unique from many other avenues of phage therapy research in that the investigation is not only comprised of phage isolation, in vitro phage characterization and assessment of in vivo infection model efficacy, but also adapting aerosol drug delivery techniques to aerosol phage formulation delivery and storage. PMID:22919592

  7. Complete Genome Sequence of a Phenanthrene Degrader, Burkholderia sp. HB-1 (NBRC 110738)

    PubMed Central

    Moriya, Azusa; Kato, Hiromi; Ogawa, Natsumi; Nagata, Yuji; Tsuda, Masataka

    2015-01-01

    The phenanthrene-degrading Burkholderia sp. HB-1 was isolated from a phenanthrene-enrichment culture seeded with a pristine farm soil sample. We report the complete genome sequence of HB-1, which has been deposited to the stock culture (NBRC 110738) at Biological Resource Center, National Institute of Technology and Evaluation (NITE), Tokyo, Japan. The genome of strain HB-1 comprises two circular chromosomes of 4.1 Mb and 3.1 Mb. The finishing was facilitated by the computational tools GenoFinisher, AceFileViewer, and ShortReadManager. PMID:26543118

  8. AN IMPORTED CASE OF ACUTE MELIOIDOSIS CAUSED BY ST881 BURKHOLDERIA PSEUDOMALLEI.

    PubMed

    Zong, Zhiyong; Wang, Xiaohui; Deng, Yiyun

    2016-03-01

    A previously healthy Chinese male working in Malaysia returned to China with high fever. A blood culture showed Burkholderia pseudomallei strain WCBP1. This isolate was sequenced, showing type, ST881, which appears to be present in Malaysia. WCP1 had unusual susceptibility to aminoglycosides and habored the Yersinia-like fimbrial gene cluster for virulence. The patient's condition deteriorated rapidly but he recovered after receiving meropenem and intensive care support. Melioidosis is a potential problem among Chinese imigrant workers with strains new to China being identified. PMID:27244959

  9. Burkholderia cepacia endophthalmitis, in a penicillin allergic patient, following a ranibizumab injection.

    PubMed

    Saffra, Norman; Moriarty, Emily

    2014-01-01

    Burkholderia cepacia, a Gram-negative bacterium commonly found in water and soil, is a rare cause of endophthalmitis. The authors report a case of a penicillin-allergic patient who presented 15 days after an uneventful injection of ranibizumab for neovascular age-related macular degeneration with culture-positive B cepacia endophthalmitis. Initial antibiotic therapy using non-penicillin-based medications was not successful in eradicating the bacteria. Subsequent treatment with a third-generation cephalosporin resulted in complete resolution of the infection. B cepacia should be included among the bacterial species that may cause endophthalmitis after intravitreal injections. PMID:24526197

  10. Complete genome sequence of the plant growth-promoting endophyte Burkholderia phytofirmans strain PsJN.

    PubMed

    Weilharter, Alexandra; Mitter, Birgit; Shin, Maria V; Chain, Patrick S G; Nowak, Jerzy; Sessitsch, Angela

    2011-07-01

    Burkholderia phytofirmans PsJN(T) is able to efficiently colonize the rhizosphere, root, and above-ground plant tissues of a wide variety of genetically unrelated plants, such as potatoes, canola, maize, and grapevines. Strain PsJN shows strong plant growth-promoting effects and was reported to enhance plant vigor and resistance to biotic and abiotic stresses. Here, we report the genome sequence of this strain, which indicates the presence of multiple traits relevant for endophytic colonization and plant growth promotion. PMID:21551308

  11. Comparative genome-wide analysis reveals that Burkholderia contaminans MS14 possesses multiple antimicrobial biosynthesis genes but not major genetic loci required for pathogenesis.

    PubMed

    Deng, Peng; Wang, Xiaoqiang; Baird, Sonya M; Showmaker, Kurt C; Smith, Leif; Peterson, Daniel G; Lu, Shien

    2016-06-01

    Burkholderia contaminans MS14 shows significant antimicrobial activities against plant and animal pathogenic fungi and bacteria. The antifungal agent occidiofungin produced by MS14 has great potential for development of biopesticides and pharmaceutical drugs. However, the use of Burkholderia species as biocontrol agent in agriculture is restricted due to the difficulties in distinguishing between plant growth-promoting bacteria and the pathogenic bacteria. The complete MS14 genome was sequenced and analyzed to find what beneficial and virulence-related genes it harbors. The phylogenetic relatedness of B. contaminans MS14 and other 17 Burkholderia species was also analyzed. To research MS14's potential virulence, the gene regions related to the antibiotic production, antibiotic resistance, and virulence were compared between MS14 and other Burkholderia genomes. The genome of B. contaminans MS14 was sequenced and annotated. The genomic analyses reveal the presence of multiple gene sets for antimicrobial biosynthesis, which contribute to its antimicrobial activities. BLAST results indicate that the MS14 genome harbors a large number of unique regions. MS14 is closely related to another plant growth-promoting Burkholderia strain B. lata 383 according to the average nucleotide identity data. Moreover, according to the phylogenetic analysis, plant growth-promoting species isolated from soils and mammalian pathogenic species are clustered together, respectively. MS14 has multiple antimicrobial activity-related genes identified from the genome, but it lacks key virulence-related gene loci found in the pathogenic strains. Additionally, plant growth-promoting Burkholderia species have one or more antimicrobial biosynthesis genes in their genomes as compared with nonplant growth-promoting soil-isolated Burkholderia species. On the other hand, pathogenic species harbor multiple virulence-associated gene loci that are not present in nonpathogenic Burkholderia species. The MS14

  12. Burkholderia cenocepacia Strain CEIB S5-1, a Rhizosphere-Inhabiting Bacterium with Potential in Bioremediation

    PubMed Central

    Martínez-Ocampo, Fernando; Lozano-Aguirre Beltrán, Luis Fernando; Hernández-Mendoza, Armando; Rojas-Espinoza, Luis Enrique; Popoca-Ursino, Elida Carolina; Ortiz-Hernández, María Laura; Sánchez-Salinas, Enrique; Ramos Quintana, Fernando

    2015-01-01

    Burkholderia cenocepacia is considered an opportunistic pathogen from humans and may cause disease in plants. A bioprospection from a plaguicide-contaminated agricultural field in Mexico identified several methyl parathion-degrading bacteria. Here, we report the draft genome sequence of B. cenocepacia strain CEIB S5-1, which gave us clues into ecological biodiversity. PMID:25744996

  13. Draft Genome Sequence of Burkholderia stabilis LA20W, a Trehalose Producer That Uses Levulinic Acid as a Substrate

    PubMed Central

    Sato, Yuya; Koike, Hideaki; Kondo, Susumu; Hori, Tomoyuki; Kanno, Manabu; Kimura, Nobutada; Morita, Tomotake; Kirimura, Kohtaro

    2016-01-01

    Burkholderia stabilis LA20W produces trehalose using levulinic acid (LA) as a substrate. Here, we report the 7.97-Mb draft genome sequence of B. stabilis LA20W, which will be useful in investigations of the enzymes involved in LA metabolism and the mechanism of LA-induced trehalose production. PMID:27491978

  14. Use of Whole-Genome Sequencing to Link Burkholderia pseudomallei from Air Sampling to Mediastinal Melioidosis, Australia

    PubMed Central

    Price, Erin P.; Mayo, Mark; Kaestli, Mirjam; Theobald, Vanessa; Harrington, Ian; Harrington, Glenda; Sarovich, Derek S.

    2015-01-01

    The frequency with which melioidosis results from inhalation rather than percutaneous inoculation or ingestion is unknown. We recovered Burkholderia pseudomallei from air samples at the residence of a patient with presumptive inhalational melioidosis and used whole-genome sequencing to link the environmental bacteria to B. pseudomallei recovered from the patient. PMID:26488732

  15. Use of Whole-Genome Sequencing to Link Burkholderia pseudomallei from Air Sampling to Mediastinal Melioidosis, Australia.

    PubMed

    Currie, Bart J; Price, Erin P; Mayo, Mark; Kaestli, Mirjam; Theobald, Vanessa; Harrington, Ian; Harrington, Glenda; Sarovich, Derek S

    2015-11-01

    The frequency with which melioidosis results from inhalation rather than percutaneous inoculation or ingestion is unknown. We recovered Burkholderia pseudomallei from air samples at the residence of a patient with presumptive inhalational melioidosis and used whole-genome sequencing to link the environmental bacteria to B. pseudomallei recovered from the patient. PMID:26488732

  16. Draft Genome Sequence of Burkholderia stabilis LA20W, a Trehalose Producer That Uses Levulinic Acid as a Substrate.

    PubMed

    Sato, Yuya; Koike, Hideaki; Kondo, Susumu; Hori, Tomoyuki; Kanno, Manabu; Kimura, Nobutada; Morita, Tomotake; Kirimura, Kohtaro; Habe, Hiroshi

    2016-01-01

    Burkholderia stabilis LA20W produces trehalose using levulinic acid (LA) as a substrate. Here, we report the 7.97-Mb draft genome sequence of B. stabilis LA20W, which will be useful in investigations of the enzymes involved in LA metabolism and the mechanism of LA-induced trehalose production. PMID:27491978

  17. Draft Genome Sequence of the Polyhydroxyalkanoate-Producing Bacterium Burkholderia sacchari LMG 19450 Isolated from Brazilian Sugarcane Plantation Soil

    PubMed Central

    Alexandrino, Paulo Moises Raduan; Mendonça, Thatiane Teixeira; Guamán Bautista, Linda Priscila; Cherix, Juliano; Lozano-Sakalauskas, Gabriela Cazonato; Fujita, André; Ramos Filho, Edmar; Long, Paul; Padilla, Gabriel; Taciro, Marilda Keico; Gomez, José Gregório Cabrera

    2015-01-01

    Burkholderia sacchari LMG 19450, isolated from the soil of a sugarcane plantation in Brazil, accumulates large amounts of polyhydroxyalkanoates from sucrose, xylose, other carbohydrates, and organic acids. We present the draft genome sequence of this industrially relevant bacterium, which is 7.2 Mb in size and has a G+C content of 64%. PMID:25953171

  18. South African Papilionoid Legumes Are Nodulated by Diverse Burkholderia with Unique Nodulation and Nitrogen-Fixation Loci

    PubMed Central

    Beukes, Chrizelle W.; Venter, Stephanus N.; Law, Ian J.; Phalane, Francina L.; Steenkamp, Emma T.

    2013-01-01

    The root-nodule bacteria of legumes endemic to the Cape Floristic Region are largely understudied, even though recent reports suggest the occurrence of nodulating Burkholderia species unique to the region. In this study, we considered the diversity and evolution of nodulating Burkholderia associated with the endemic papilionoid tribes Hypocalypteae and Podalyrieae. We identified distinct groups from verified rhizobial isolates by phylogenetic analyses of the 16S rRNA and recA housekeeping gene regions. In order to gain insight into the evolution of the nodulation and diazotrophy of these rhizobia we analysed the genes encoding NifH and NodA. The majority of these 69 isolates appeared to be unique, potentially representing novel species. Evidence of horizontal gene transfer determining the symbiotic ability of these Cape Floristic Region isolates indicate evolutionary origins distinct from those of nodulating Burkholderia from elsewhere in the world. Overall, our findings suggest that Burkholderia species associated with fynbos legumes are highly diverse and their symbiotic abilities have unique ancestries. It is therefore possible that the evolution of these bacteria is closely linked to the diversification and establishment of legumes characteristic of the Cape Floristic Region. PMID:23874611

  19. Strains of Burkholderia cenocepacia genomovar IIIA possessing the cblA gene that are distinct from ET12.

    PubMed

    Turton, Jane F; O'Brien, Emily; Megson, Brian; Kaufmann, Mary E; Pitt, Tyrone L

    2009-05-01

    Three strains of Burkholderia cenocepacia genomovar IIIA that were polymerase chain reaction positive for cblA, bcrA, and the epidemic strain marker, but were distinct from representatives of ET12 by pulsed-field gel electrophoresis, are described. One of these strains was shown to express cable pili by electron microscopy. PMID:19304435

  20. Studies revealing bioremediation potential of the strain Burkholderia sp. GB-01 for abamectin contaminated soils.

    PubMed

    Ali, Shinawar Waseem; Yu, Fang-bo; Li, Lian-tai; Li, Xiao-hui; Gu, Li-feng; Jiang, Jian-dong; Li, Shun-peng

    2012-01-01

    Burkholderia sp. GB-01 strain was used to study different factors affecting its growth for inoculum production and then evaluated for abamectin degradation in soil for optimization under various conditions. The efficiency of abamectin degradation in soil by strain GB-01 was seen to be dependent on soil pH, temperature, initial abamectin concentration, and inoculum size along with inoculation frequency. Induction studies showed that abamectin depletion was faster when degrading cells were induced by pre-exposure to abamectin. Experiments performed with varying concentrations (2-160 mg Kg(-1)) of abamectin-spiked soils showed that strain GB-01 could effectively degrade abamectin over the range of 2-40 mg Kg(-1). The doses used were higher than the recommended dose for an agricultural application of abamectin, taking in account the over-use or spill situations. A cell density of approximately 10(8) viable cells g(-1) dry weight of soil was found to be suitable for bioremediation over a temperature range of 30-35°C and soil pH 7.5-8.5. This is the first report on bacterial degradation of abamectin in soil by a Burkholderia species, and our results indicated that this bacterium may be useful for efficient removal of abamectin from contaminated soils. PMID:22806778

  1. Isolation and characterization of an abamectin-degrading Burkholderia cepacia-like GB-01 strain.

    PubMed

    Ali, Shinawar Waseem; Li, Rong; Zhou, Wei-You; Sun, Ji-Quan; Guo, Peng; Ma, Ji-Ping; Li, Shun-Peng

    2010-06-01

    Abamectin is widely used in agriculture as an insecticide and in veterinary as an anti-parasitic agent, and has caused great environmental pollution by posing potential risk to non-target soil invertebrates and nearby aquatic systems. A bacterium designated GB-01, which was capable of degrading abamectin, was isolated from soil by enrichment culture method. On the basis of morphological, physiological and biochemical characteristics, combined with phylogenetic analysis of 16S rRNA gene, the bacterium GB-01 was identified as Burkholderia cepacia-like species. The bacterium GB-01 was able to utilize abamectin as its sole carbon source for growth, and could degrade more than 90% of abamectin at initial concentrations of 50 and 100 mg l(-1) in mineral salt medium in 30 and 36 h, respectively. The longer degradation cycle was observed with abamectin concentrations higher than 100 mg l(-1). Optimal growth temperatures and pH values with highest degradation rate were 30-35 degrees C and 7-8, respectively. Two new degradation products were identified and characterized by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) based mass spectral data and a plausible partial degradation pathway of abamectin was proposed. This is the first report in which an abamectin-degrading Burkholderia species isolated from soil was identified and characterized. PMID:19937266

  2. Interbacterial signaling via Burkholderia contact-dependent growth inhibition system proteins.

    PubMed

    Garcia, Erin C; Perault, Andrew I; Marlatt, Sara A; Cotter, Peggy A

    2016-07-19

    In prokaryotes and eukaryotes, cell-cell communication and recognition of self are critical to coordinate multicellular functions. Although kin and kind discrimination are increasingly appreciated to shape naturally occurring microbe populations, the underlying mechanisms that govern these interbacterial interactions are insufficiently understood. Here, we identify a mechanism of interbacterial signal transduction that is mediated by contact-dependent growth inhibition (CDI) system proteins. CDI systems have been characterized by their ability to deliver a polymorphic protein toxin into the cytoplasm of a neighboring bacterium, resulting in growth inhibition or death unless the recipient bacterium produces a corresponding immunity protein. Using the model organism Burkholderia thailandensis, we show that delivery of a catalytically active CDI system toxin to immune (self) bacteria results in gene expression and phenotypic changes within the recipient cells. Termed contact-dependent signaling (CDS), this response promotes biofilm formation and other community-associated behaviors. Engineered strains that are isogenic with B. thailandensis, except the DNA region encoding the toxin and immunity proteins, did not display CDS, whereas a strain of Burkholderia dolosa producing a nearly identical toxin-immunity pair induced signaling in B. thailandensis Our data indicate that bcpAIOB loci confer dual benefits; they direct antagonism toward non-self bacteria and promote cooperation between self bacteria, with self being defined by the bcpAIOB allele and not by genealogic relatedness. PMID:27335458

  3. Identification of an OmpW homologue in Burkholderia pseudomallei, a protective vaccine antigen against melioidosis.

    PubMed

    Casey, William T; Spink, Natasha; Cia, Felipe; Collins, Cassandra; Romano, Maria; Berisio, Rita; Bancroft, Gregory J; McClean, Siobhán

    2016-05-17

    Burkholderia pseudomallei is the causative agent of melioidosis, which is associated with a range of clinical manifestations, including sepsis and fatal pneumonia and is endemic in Southeast Asia and Northern Australia. Treatment can be challenging and control of infection involves prolonged antibiotic therapy, yet there are no approved vaccines available to prevent infection. Our aim was to develop and assess the potential of a prophylactic vaccine candidate targeted against melioidosis. The identified candidate is the 22kDa outer membrane protein, OmpW. We previously demonstrated that this protein was immunoprotective in mouse models of Burkholderia cepacia complex (Bcc) infections. We cloned Bp_ompW in Escherichia coli, expressed and purified the protein. Endotoxin free protein administered with SAS adjuvant protected Balb/C mice (75% survival) relative to controls (25% survival) (p<0.05). A potent serological response was observed with IgG2a to IgG1 ratio of 6.0. Furthermore C57BL/6 mice were protected for up to 80 days against a lethal dose of B. pseudomallei and surpassed the efficacy of the live attenuated 2D2 positive control. BpompW is homologous across thirteen sequenced B. pseudomallei strains, indicating that it should be broadly protective against B. pseudomallei. In conclusion, we have demonstrated that BpOmpW is able to induce protective immunity against melioidosis and is likely to be an effective vaccine antigen, possibly in combination with other subunit antigens. PMID:27091689

  4. Outbreak of Subclinical Mastitis in a Flock of Dairy Sheep Associated with Burkholderia cepacia Complex Infection

    PubMed Central

    Berriatua, E.; Ziluaga, I.; Miguel-Virto, C.; Uribarren, P.; Juste, R.; Laevens, S.; Vandamme, P.; Govan, J. R. W.

    2001-01-01

    An outbreak of subclinical mastitis in a flock of 620 milking sheep was investigated. Microbiological and epidemiological analyses identified the causative agent as belonging to the Burkholderia cepacia complex (formerly Pseudomonas cepacia). Every ewe in the milking flock was individually tested for subclinical mastitis on two separate occasions, 6 weeks apart, by the California (rapid) mastitis test (CMT). The proportion of CMT-positive ewes was 69 of 393 (17.6%) on the first sampling and 27 of 490 (5.5%) on the second sampling. Pure B. cepacia cultures identified with the API 20 NE system were grown from 64 of 96 (66.7%) CMT-positive ewes and from 1 of 33 (3.0%) CMT-negative ewes. Statistical analysis confirmed the significant association between a positive CMT result and a positive culture result for B. cepacia complex. Additional polyphasic taxonomic analyses of eight isolates showed that seven belonged to B. cepacia genomovar III; the remaining isolate was identified as Burkholderia vietnamiensis (formerly B. cepacia genomovar V). Bacteriological investigation of samples from milking equipment and other environmental sites failed to identify “B. cepacia” in any of the samples taken. To our knowledge, this is the first report of an outbreak of natural infection in animals caused by B. cepacia complex and the first description of B. cepacia complex infection in sheep. PMID:11230416

  5. Sequence- and Structure-Based Immunoreactive Epitope Discovery for Burkholderia pseudomallei Flagellin

    PubMed Central

    Nithichanon, Arnone; Rinchai, Darawan; Gori, Alessandro; Lassaux, Patricia; Peri, Claudio; Conchillio-Solé, Oscar; Ferrer-Navarro, Mario; Gourlay, Louise J.; Nardini, Marco; Vila, Jordi; Daura, Xavier; Colombo, Giorgio; Bolognesi, Martino; Lertmemonkolchai, Ganjana

    2015-01-01

    Burkholderia pseudomallei is a Gram-negative bacterium responsible for melioidosis, a serious and often fatal infectious disease that is poorly controlled by existing treatments. Due to its inherent resistance to the major antibiotic classes and its facultative intracellular pathogenicity, an effective vaccine would be extremely desirable, along with appropriate prevention and therapeutic management. One of the main subunit vaccine candidates is flagellin of Burkholderia pseudomallei (FliCBp). Here, we present the high resolution crystal structure of FliCBp and report the synthesis and characterization of three peptides predicted to be both B and T cell FliCBp epitopes, by both structure-based in silico methods, and sequence-based epitope prediction tools. All three epitopes were shown to be immunoreactive against human IgG antibodies and to elicit cytokine production from human peripheral blood mononuclear cells. Furthermore, two of the peptides (F51-69 and F270-288) were found to be dominant immunoreactive epitopes, and their antibodies enhanced the bactericidal activities of purified human neutrophils. The epitopes derived from this study may represent potential melioidosis vaccine components. PMID:26222657

  6. Intraspecific variation in Burkholderia caledonica: Europe vs. Africa and soil vs. endophytic isolates.

    PubMed

    Verstraete, Brecht; Peeters, Charlotte; van Wyk, Braam; Smets, Erik; Dessein, Steven; Vandamme, Peter

    2014-05-01

    The best-known interaction between bacteria and plants is the Rhizobium-legume symbiosis, but other bacteria-plant interactions exist, such as between Burkholderia and Rubiaceae (coffee family). A number of bacterial endophytes in Rubiaceae are closely related to the soil bacterium Burkholderia caledonica. This intriguing observation is explored by investigating isolates from different geographic regions (Western Europe vs. sub-Saharan Africa) and from different niches (free-living bacteria in soil vs. endophytic bacteria in host plants). The multilocus sequence analysis shows five clades, of which clade 1 with two basal isolates deviates from the rest and is therefore not considered further. All other isolates belong to the species B. caledonica, but two genetically different groups are identified. Group A holds only European isolates and group B holds isolates from Africa, with the exception of one European isolate. Although the European and African isolates are considered one species, some degree of genetic differentiation is evident. Endophytic isolates of B. caledonica are found in certain members of African Rubiaceae, but only in group B. Within this group, the endophytes cannot be distinguished from the soil isolates, which indicates a possible exchange of bacteria between soil and host plant. PMID:24433672

  7. Variable Virulence Factors in Burkholderia pseudomallei (Melioidosis) Associated with Human Disease

    PubMed Central

    Webb, Jessica R.; Ward, Linda M.; Voutsinos, Marcos Y.; Tuanyok, Apichai; Mayo, Mark; Kaestli, Mirjam; Currie, Bart J.

    2014-01-01

    Burkholderia pseudomallei is a Gram-negative environmental bacterium that causes melioidosis, a potentially life-threatening infectious disease affecting mammals, including humans. Melioidosis symptoms are both protean and diverse, ranging from mild, localized skin infections to more severe and often fatal presentations including pneumonia, septic shock with multiple internal abscesses and occasionally neurological involvement. Several ubiquitous virulence determinants in B. pseudomallei have already been discovered. However, the molecular basis for differential pathogenesis has, until now, remained elusive. Using clinical data from 556 Australian melioidosis cases spanning more than 20 years, we identified a Burkholderia mallei-like actin polymerization bimABm gene that is strongly associated with neurological disease. We also report that a filamentous hemagglutinin gene, fhaB3, is associated with positive blood cultures but is negatively correlated with localized skin lesions without sepsis. We show, for the first time, that variably present virulence factors play an important role in the pathogenesis of melioidosis. Collectively, our study provides a framework for assessing other non-ubiquitous bacterial virulence factors and their association with disease, such as candidate loci identified from large-scale microbial genome-wide association studies. PMID:24618705

  8. Cangene gold medal award lecture - Genomic analysis and modification of Burkholderia cepacia complex bacteriophages.

    PubMed

    Lynch, Karlene H; Dennis, Jonathan J

    2012-03-01

    The Burkholderia cepacia complex (Bcc) is a group of 17 Gram-negative predominantly environmental bacterial species that cause potentially fatal opportunistic infections in cystic fibrosis (CF) patients. Although its prevalence in these individuals is lower than that of Staphylococcus aureus and Pseudomonas aeruginosa , the Bcc remains a serious problem in the CF community because of the pathogenicity, transmissibility, and inherent antibiotic resistance of these organisms. An alternative treatment for Bcc infections that is currently being developed is phage therapy, the clinical use of viruses that infect bacteria. To assess the suitability of individual phage isolates for therapeutic use, the complete genome sequences of a panel of Bcc-specific phages were determined and analyzed. These sequences encode a broad range of proteins with a gradient of relatedness to phage and bacterial gene products from Burkholderia and other genera. The majority of these phages were found not to encode virulence factors, and despite their predominantly temperate nature, a proof-of-principle experiment has shown that they may be modified to a lytic form. Both the genomic characterization and subsequent engineering of Bcc-specific phages are fundamental to the development of an effective phage therapy strategy for these bacteria. PMID:22339239

  9. Macroautophagy is essential for killing of intracellular Burkholderia pseudomallei in human neutrophils

    PubMed Central

    Rinchai, Darawan; Riyapa, Donporn; Buddhisa, Surachat; Utispan, Kusumawadee; Titball, Richard W; Stevens, Mark P; Stevens, Joanne M; Ogawa, Michinaga; Tanida, Isei; Koike, Masato; Uchiyama, Yasuo; Ato, Manabu; Lertmemongkolchai, Ganjana

    2015-01-01

    Neutrophils play a key role in the control of Burkholderia pseudomallei, the pathogen that causes melioidosis. Here, we show that survival of intracellular B. pseudomallei was significantly increased in the presence of 3-methyladenine or lysosomal cathepsin inhibitors. The LC3-flux was increased in B. pseudomallei-infected neutrophils. Concordant with this result, confocal microscopy analyses using anti-LC3 antibodies revealed that B. pseudomallei-containing phagosomes partially overlapped with LC3-positive signal at 3 and 6 h postinfection. Electron microscopic analyses of B. pseudomallei-infected neutrophils at 3 h revealed B. pseudomallei-containing phagosomes that occasionally fused with phagophores or autophagosomes. Following infection with a B. pseudomallei mutant lacking the Burkholderia secretion apparatus Bsa Type III secretion system, neither this characteristic structure nor bacterial escape into the cytosol were observed. These findings indicate that human neutrophils are able to recruit autophagic machinery adjacent to B. pseudomallei-containing phagosomes in a Type III secretion system-dependent manner. PMID:25996656

  10. Cyanide Toxicity to Burkholderia cenocepacia Is Modulated by Polymicrobial Communities and Environmental Factors.

    PubMed

    Bernier, Steve P; Workentine, Matthew L; Li, Xiang; Magarvey, Nathan A; O'Toole, George A; Surette, Michael G

    2016-01-01

    Microbes within polymicrobial communities can establish positive and negative interactions that have the potential to influence the overall behavior of the community. Pseudomonas aeruginosa and species of the Burkholderia cepacia complex (Bcc) can co-exist in the lower airways, however several studies have shown that P. aeruginosa can effectively kill the Bcc in vitro, for which hydrogen cyanide (HCN) was recently proposed to play a critical role. Here we show that modification of the environment (i.e., culture medium), long-term genetic adaptation of P. aeruginosa to the cystic fibrosis (CF) lung, or the addition of another bacterial species to the community can alter the sensitivity of Burkholderia cenocepacia to P. aeruginosa toxins. We specifically demonstrate that undefined rich media leads to higher susceptibility of B. cenocepacia to P. aeruginosa toxins like cyanide as compared to a synthetic medium (SCFM), that mimics the CF lung nutritional content. Overall, our study shows that the polymicrobial environment can have profound effects on negative interactions mediated by P. aeruginosa against B. cenocepacia. In fact, evolved P. aeruginosa or the presence of other species such as Staphylococcus aureus can directly abolish the direct competition mediated by cyanide and consequently maintaining a higher level of species diversity within the community. PMID:27242743

  11. A Burkholderia Type VI Effector Deamidates Rho GTPases to Activate the Pyrin Inflammasome and Trigger Inflammation.

    PubMed

    Aubert, Daniel F; Xu, Hao; Yang, Jieling; Shi, Xuyan; Gao, Wenqing; Li, Lin; Bisaro, Fabiana; Chen, She; Valvano, Miguel A; Shao, Feng

    2016-05-11

    Burkholderia cenocepacia is an opportunistic pathogen of the cystic fibrosis lung that elicits a strong inflammatory response. B. cenocepacia employs a type VI secretion system (T6SS) to survive in macrophages by disarming Rho-type GTPases, causing actin cytoskeletal defects. Here, we identified TecA, a non-VgrG T6SS effector responsible for actin disruption. TecA and other bacterial homologs bear a cysteine protease-like catalytic triad, which inactivates Rho GTPases by deamidating a conserved asparagine in the GTPase switch-I region. RhoA deamidation induces caspase-1 inflammasome activation, which is mediated by the familial Mediterranean fever disease protein Pyrin. In mouse infection, the deamidase activity of TecA is necessary and sufficient for B. cenocepacia-triggered lung inflammation and also protects mice from lethal B. cenocepacia infection. Therefore, Burkholderia TecA is a T6SS effector that modifies a eukaryotic target through an asparagine deamidase activity, which in turn elicits host cell death and inflammation through activation of the Pyrin inflammasome. PMID:27133449

  12. Incidental Splenic Granuloma Due to Burkholderia pseudomallei: A Case of Asymptomatic Latent Melioidosis?

    PubMed

    Chow, Tak Kuan; Eu, Lin Chuan; Chin, Kin Fah; Ong, Kien Chai; Pailoor, Jayalakshmi; Vadivelu, Jamunarani; Wong, Kum Thong

    2016-03-01

    We report a rare case of an asymptomatic latent melioidosis lesion in a posttraumatic splenectomy specimen from a diabetic patient. The 2-cm yellowish, lobulated lesion was found in the splenic parenchyma well away from the traumatized areas. Microscopically, it consisted of a central area of necrosis and exudate surrounded by macrophages, epithelioid cells, lymphocytes, and occasional multinucleated giant cells. Burkholderia bacilli were detected by a novel in situ hybridization (ISH) assay, and confirmed by polymerase chain reaction and sequencing to be Burkholderia pseudomallei. As melioidosis was not suspected initially, bacterial culture was not done but electron microscopy showed morphologically viable and dividing bacilli in the lesion. Moreover, the surgical wound became infected with B. pseudomallei several days post-surgery. After treatment with ceftazidime and trimethoprim/sulfamethoxazole, the wound infection cleared. We believe this could be a unique case of asymptomatic latent melioidosis in the spleen. In endemic countries, chronic granulomas should be investigated for B. pseudomallei infection, and if available, ISH may be helpful for diagnosis. PMID:26787155

  13. Understanding the direction of evolution in Burkholderia glumae through comparative genomics.

    PubMed

    Lee, Hyun-Hee; Park, Jungwook; Kim, Jinnyun; Park, Inmyoung; Seo, Young-Su

    2016-02-01

    Members of the genus Burkholderia occupy remarkably diverse niches, with genome sizes ranging from ~3.75 to 11.29 Mbp. The genome of Burkholderia glumae ranges in size from ~5.81 to 7.89 Mbp. Unlike other plant pathogenic bacteria, B. glumae can infect a wide range of monocot and dicot plants. Comparative genome analysis of B. glumae strains can provide insight into genome variation as well as differential features of whole metabolism or pathways between multiple strains of B. glumae infecting the same host. Comparative analysis of complete genomes among B. glumae BGR1, B. glumae LMG 2196, and B. glumae PG1 revealed the largest departmentalization of genes onto separate replicons in B. glumae BGR1 and considerable downsizing of the genome in B. glumae LMG 2196. In addition, the presence of large-scale evolutionary events such as rearrangement and inversion and the development of highly specialized systems were found to be related to virulence-associated features in the three B. glumae strains. This connection may explain why this bacterium broadens its host range and reinforces its interaction with hosts. PMID:26454852

  14. Burkholderia mallei CLH001 Attenuated Vaccine Strain Is Immunogenic and Protects against Acute Respiratory Glanders.

    PubMed

    Hatcher, Christopher L; Mott, Tiffany M; Muruato, Laura A; Sbrana, Elena; Torres, Alfredo G

    2016-08-01

    Burkholderia mallei is the causative agent of glanders, an incapacitating disease with high mortality rates in respiratory cases. Its endemicity and ineffective treatment options emphasize its public health threat and highlight the need for a vaccine. Live attenuated vaccines are considered the most viable vaccine strategy for Burkholderia, but single-gene-deletion mutants have not provided complete protection. In this study, we constructed the select-agent-excluded B. mallei ΔtonB Δhcp1 (CLH001) vaccine strain and investigated its ability to protect against acute respiratory glanders. Here we show that CLH001 is attenuated, safe, and effective at protecting against lethal B. mallei challenge. Intranasal administration of CLH001 to BALB/c and NOD SCID gamma (NSG) mice resulted in complete survival without detectable colonization or abnormal organ histopathology. Additionally, BALB/c mice intranasally immunized with CLH001 in a prime/boost regimen were fully protected against lethal challenge with the B. mallei lux (CSM001) wild-type strain. PMID:27271739

  15. Application of lipase from Burkholderia cepacia in the degradation of agro-industrial effluent.

    PubMed

    Mello Bueno, Pabline Rafaella; de Oliveira, Tatianne Ferreira; Castiglioni, Gabriel Luis; Soares Júnior, Manoel Soares; Ulhoa, Cirano Jose

    2015-01-01

    This study aimed to analyze the physical and chemical characteristics of Amano PS commercial lipase - Burkholderia cepacia and lipase produced by Burkholderia cepacia strain ATCC 25416, in addition to studying the hydrolysis of agro-industrial effluent collected in a fried potato industry. The optimum temperature for increasing lipase activity was 37 °C. The temperature increase caused a decrease in thermostability of lipase, and the commercial lipase was less stable, with values of 10.5, 4.6 and 4.9%, respectively, lower than those obtained by lipase from strain ATCC 25416, at temperatures of 40, 50 and 60 °C. The enzymatic activity was higher in alkaline conditions, achieving better results at pH 8.0. The pH was the variable that most influenced the hydrolysis of triacylglycerides of the agro-industrial effluent, followed by enzyme concentration, and volume of gum arabic used in the reaction medium. Thus, it can be observed that the enzymatic hydrolytic process of the studied effluent presents a premising contribution to reduction of environmental impacts of potato chip processing industries. PMID:25860696

  16. Attenuation of a select agent-excluded Burkholderia pseudomallei capsule mutant in hamsters.

    PubMed

    Gutierrez, Maria G; Warawa, Jonathan M

    2016-05-01

    Burkholderia pseudomallei is a Tier 1 select agent and potential bioweapon. Given it is potential to cause a lethal respiratory disease, research with fully virulent B. pseudomallei is conducted in Biosafety Level 3 (BSL-3) laboratory spaces. The logistical, financial, and administrative burden of Tier 1 select agent BSL-3 research has created an interest in mitigating such burdens through the use of either attenuated B. pseudomallei strains at BSL-2, or research with surrogate species, such as Burkholderia thailandensis. Previously, attenuated B. pseudomallei auxotroph mutants (asd and purM) have been approved for exclusion from select agent requirements, allowing for in vitro studies to be conducted at BSL-2. Acapsular B. pseudomallei mutants are known to be strongly attenuated in a variety of animal models, and yet acapsular B. pseudomallei mutants do not require nutritional supplementation, and can be studied within cultured macrophages, performing phenotypically similarly to parent strains. We demonstrate that the loss of a 30.8 kb region of the wcb capsule operon allows for a dramatic >4.46 log attenuation in a hamster intraperitoneal infection model, and report that this strain, JW270, has met criteria for exclusion from select agent requirements. PMID:26836271

  17. Tangled bank of experimentally evolved Burkholderia biofilms reflects selection during chronic infections.

    PubMed

    Traverse, Charles C; Mayo-Smith, Leslie M; Poltak, Steffen R; Cooper, Vaughn S

    2013-01-15

    How diversity evolves and persists in biofilms is essential for understanding much of microbial life, including the uncertain dynamics of chronic infections. We developed a biofilm model enabling long-term selection for daily adherence to and dispersal from a plastic bead in a test tube. Focusing on a pathogen of the cystic fibrosis lung, Burkholderia cenocepacia, we sequenced clones and metagenomes to unravel the mutations and evolutionary forces responsible for adaptation and diversification of a single biofilm community during 1,050 generations of selection. The mutational patterns revealed recurrent evolution of biofilm specialists from generalist types and multiple adaptive alleles at relatively few loci. Fitness assays also demonstrated strong interference competition among contending mutants that preserved genetic diversity. Metagenomes from five other independently evolved biofilm lineages revealed extraordinary mutational parallelism that outlined common routes of adaptation, a subset of which was found, surprisingly, in a planktonic population. These mutations in turn were surprisingly well represented among mutations that evolved in cystic fibrosis isolates of both Burkholderia and Pseudomonas. These convergent pathways included altered metabolism of cyclic diguanosine monophosphate, polysaccharide production, tricarboxylic acid cycle enzymes, global transcription, and iron scavenging. Evolution in chronic infections therefore may be driven by mutations in relatively few pathways also favored during laboratory selection, creating hope that experimental evolution may illuminate the ecology and selective dynamics of chronic infections and improve treatment strategies. PMID:23271804

  18. CD4+ T cell immunity to the Burkholderia pseudomallei ABC transporter LolC in melioidosis

    PubMed Central

    Chu, Karen K.; Tippayawat, Patcharaporn; Walker, Nicola J.; Harding, Sarah V.; Atkins, Helen S.; Maillere, Bernard; Bancroft, Gregory J.; Lertmemongkolchai, Ganjana; Altmann, Daniel M.

    2011-01-01

    Burkholderia pseudomallei (Bp) causes melioidosis, a disease with a wide range of possible outcomes, from seroconversion and dormancy to sepsis and death. This spectrum of host-pathogen interactions poses challenging questions about heterogeneity in immunity to Bp. Models show protection to be dependent on CD4+ cells and IFNγ, but little is known about specific target antigens. Having previously implicated the ABC transporter, LolC, in protective immunity, we here use epitope prediction, HLA binding studies, HLA-transgenic models and studies of T cells from seropositive individuals to characterize HLA-restricted LolC responses. Immunized mice showed long-lasting memory to the protein, while predictive algorithms identified epitopes within LolC that subsequently demonstrated strong HLA class II binding. Immunization of HLA-DR transgenics with LolC stimulated T cell responses to four of these epitopes. Furthermore, responsiveness of HLA-transgenics to LolC revealed a hierarchy supportive of HLA polymorphism-determined differential susceptibility. Seropositive human donors of diverse HLA class II types showed T cell responses to LolC epitopes which are conserved among Burkholderia species including B. cenocepacia, associated with life-threatening cepacia complex in cystic fibrosis patients and B. mallei, which causes glanders. These findings suggest a role for LolC epitopes in multiepitope vaccine design for melioidosis and related diseases. PMID:21182082

  19. Stenotrophomonas, Achromobacter, and nonmelioid Burkholderia species: antimicrobial resistance and therapeutic strategies.

    PubMed

    Abbott, Iain J; Peleg, Anton Y

    2015-02-01

    Stenotrophomonas maltophilia, Achromobacter xylosoxidans, and nonmelioid Burkholderia species, namely, Burkholderia cepacia complex, collectively are a group of troublesome nonfermenters. Although not inherently virulent organisms, these environmental Gram negatives can complicate treatment in those who are immunocompromised, critically ill in the intensive care unit and those patients with suppurative lung disease, such as cystic fibrosis. Through a range of intrinsic antimicrobial resistance mechanisms, virulence factors, and the ability to survive in biofilms, these opportunistic pathogens are well suited to persist, both in the environment and the host. Treatment recommendations are hindered by the difficulties in laboratory identification, the lack of reproducibility of antimicrobial susceptibility testing, the lack of clinical breakpoints, and the absence of clinical outcome data. Despite trimethoprim-sulfamethoxazole often being the mainstay of treatment, resistance is widely encountered, and alternative regimens, including combination therapy, are often used. This review will highlight the important aspects and unique challenges that these three nonfermenters pose, and, in the absence of clinical outcome data, our therapeutic recommendations will be based on reported antimicrobial susceptibility and pharmacokinetic/pharmacodynamic profiles. PMID:25643274

  20. Cyanide Toxicity to Burkholderia cenocepacia Is Modulated by Polymicrobial Communities and Environmental Factors

    PubMed Central

    Bernier, Steve P.; Workentine, Matthew L.; Li, Xiang; Magarvey, Nathan A.; O'Toole, George A.; Surette, Michael G.

    2016-01-01

    Microbes within polymicrobial communities can establish positive and negative interactions that have the potential to influence the overall behavior of the community. Pseudomonas aeruginosa and species of the Burkholderia cepacia complex (Bcc) can co-exist in the lower airways, however several studies have shown that P. aeruginosa can effectively kill the Bcc in vitro, for which hydrogen cyanide (HCN) was recently proposed to play a critical role. Here we show that modification of the environment (i.e., culture medium), long-term genetic adaptation of P. aeruginosa to the cystic fibrosis (CF) lung, or the addition of another bacterial species to the community can alter the sensitivity of Burkholderia cenocepacia to P. aeruginosa toxins. We specifically demonstrate that undefined rich media leads to higher susceptibility of B. cenocepacia to P. aeruginosa toxins like cyanide as compared to a synthetic medium (SCFM), that mimics the CF lung nutritional content. Overall, our study shows that the polymicrobial environment can have profound effects on negative interactions mediated by P. aeruginosa against B. cenocepacia. In fact, evolved P. aeruginosa or the presence of other species such as Staphylococcus aureus can directly abolish the direct competition mediated by cyanide and consequently maintaining a higher level of species diversity within the community. PMID:27242743

  1. Resistance of the Burkholderia cepacia complex to fosmidomycin and fosmidomycin derivatives.

    PubMed

    Messiaen, Anne-Sophie; Verbrugghen, Thomas; Declerck, Charlotte; Ortmann, Regina; Schlitzer, Martin; Nelis, Hans; Van Calenbergh, Serge; Coenye, Tom

    2011-09-01

    The Burkholderia cepacia complex (BCC) is a group of 17 closely related opportunistic pathogens that are able to infect the respiratory tract of cystic fibrosis patients. BCC bacteria are intrinsically resistant to many antibiotics and are therefore difficult to eradicate. Fosmidomycin could be a new therapeutic agent to treat BCC infections as it inhibits 1-deoxy-d-xylulose-5-phosphate reductoisomerase (Dxr), a key enzyme in the non-mevalonate pathway essential in BCC bacteria for isoprenoid synthesis. In this study, the antimicrobial activity of fosmidomycin and eight fosmidomycin derivatives towards 40 BCC strains was investigated. All BCC strains were resistant to fosmidomycin, although addition of glucose-6-phosphate reduced the minimum inhibitory concentration values of FR900098, the fosmidomycin acetyl derivative, from 512 mg/L to 64 mg/L for Burkholderia multivorans and B. cepacia. This enhanced activity was linked to increased expression of the genes involved in glycerol-3-phosphate transport, which appears to be the only route for fosmidomycin import in BCC bacteria. Furthermore, upregulation of a fosmidomycin resistance gene (fsr) encoding an efflux pump was observed during fosmidomycin and FR900098 treatment. These results strongly suggest that the observed resistance in BCC bacteria is due to insufficient uptake accompanied by fosmidomycin and FR900098 efflux. PMID:21724375

  2. Comparative Burkholderia pseudomallei natural history virulence studies using an aerosol murine model of infection

    PubMed Central

    Massey, Shane; Yeager, Linsey A.; Blumentritt, Carla A.; Vijayakumar, Sudhamathi; Sbrana, Elena; Peterson, Johnny W.; Brasel, Trevor; LeDuc, James W.; Endsley, Janice J.; Torres, Alfredo G.

    2014-01-01

    Melioidosis is an endemic disease caused by the bacterium Burkholderia pseudomallei. Concerns exist regarding B. pseudomallei use as a potential bio-threat agent causing persistent infections and typically manifesting as severe pneumonia capable of causing fatal bacteremia. Development of suitable therapeutics against melioidosis is complicated due to high degree of genetic and phenotypic variability among B. pseudomallei isolates and lack of data establishing commonly accepted strains for comparative studies. Further, the impact of strain variation on virulence, disease presentation, and mortality is not well understood. Therefore, this study evaluate and compare the virulence and disease progression of B. pseudomallei strains K96243 and HBPUB10303a, following aerosol challenge in a standardized BALB/c mouse model of infection. The natural history analysis of disease progression monitored conditions such as weight, body temperature, appearance, activity, bacteremia, organ and tissue colonization (pathological and histological analysis) and immunological responses. This study provides a detailed, direct comparison of infection with different B. pseudomallei strains and set up the basis for a standardized model useful to test different medical countermeasures against Burkholderia species. Further, this protocol serves as a guideline to standardize other bacterial aerosol models of infection or to define biomarkers of infectious processes caused by other intracellular pathogens. PMID:24603493

  3. Hospital-wide outbreak of Burkholderia contaminans caused by prefabricated moist washcloths.

    PubMed

    Martin, M; Christiansen, B; Caspari, G; Hogardt, M; von Thomsen, A J; Ott, E; Mattner, F

    2011-03-01

    We experienced a hospital outbreak of Burkholderia contaminans (Burkholderia cepacia Group K) in a German university hospital with two campuses. Cases were defined as the microbiological detection of B. cepacia complex (BCC) in any clinical specimen sent to the laboratory during 30 June to 21 October 2008. Species identification of BCC was performed by recA gene sequencing, followed by pulsed-field gel electrophoresis (PFGE; SpeI digest) for clonal identity. In total, 61 BCC-positive cases were diagnosed at the two campuses. At least nine patients contracted a ventilator-associated pneumonia with BCC. One patient suffered an infection of a pacing wire insertion site and four patients had septicaemia. Sixteen patients died in hospital, none thought to be due to the outbreak strain. BCC was eventually found in packages of moist prefabricated washcloths used for intensive care patients. German healthcare authorities were informed and a Europe-wide alarm (RAPEX) was initiated through the systems to prevent infections in other hospitals. PFGE proved clonal identity between isolates from clinical specimens and washcloths of both campuses. After elimination of the contaminated washcloths no further cases occurred. This example of a relatively newly introduced product raises the question of whether current regulations are adequate to protect consumers. For critically ill patients, care products should be carefully evaluated. In case of infections due to contaminated products, immediate communication to healthcare authorities is required, including RAPEX warning if products are sold across Europe. PMID:21216034

  4. Use of a recombinant burkholderia intracellular motility a protein for immunodiagnosis of glanders.

    PubMed

    Kumar, Subodh; Malik, Praveen; Verma, Shailendra Kumar; Pal, Vijai; Gautam, Vandana; Mukhopadhyay, Chiranjay; Rai, Ganga Prasad

    2011-09-01

    Glanders, caused by the Gram-negative, nonmotile bacterium Burkholderia mallei, is a contagious and highly fatal disease of equines. During the last decade, the number of glanders outbreaks has increased steadily. The disease also has high zoonotic significance and B. mallei is listed biological warfare agent. The complement fixation test (CFT) is a routinely used and internationally recognized test to screen equine sera for the glanders. However, discrepant results have been observed using the CFT. The low sensitivity and specificity of the CFT and enzyme-linked immunosorbent assay (ELISA) have been linked to the use of crude test antigens. We expressed a novel recombinant Burkholderia intracellular motility A (rBimA) protein in Escherichia coli for the diagnosis of equine glanders. Purified rBimA was used in an indirect ELISA format. All of the 21 true-positive serum samples used in the study tested positive, whereas only 17 of the 1,524 potentially negative sera tested positive by indirect ELISA, thus exhibiting 100% sensitivity and 98.88% specificity. Also, rBimA protein did not react with melioidosis patient and normal healthy human serum samples, showing its high specificity. The developed assay can be used as a simple and rapid tool for diagnosis of glanders in equine serum samples. An Indian patent (1328/DEL/2010) has been filed for the reagent. PMID:21752949

  5. Proof that Burkholderia Strains Form Effective Symbioses with Legumes: a Study of Novel Mimosa-Nodulating Strains from South America

    PubMed Central

    Chen, Wen-Ming; de Faria, Sergio M.; Straliotto, Rosângela; Pitard, Rosa M.; Simões-Araùjo, Jean L.; Chou, Jui-Hsing; Chou, Yi-Ju; Barrios, Edmundo; Prescott, Alan R.; Elliott, Geoffrey N.; Sprent, Janet I.; Young, J. Peter W.; James, Euan K.

    2005-01-01

    Twenty Mimosa-nodulating bacterial strains from Brazil and Venezuela, together with eight reference Mimosa-nodulating rhizobial strains and two other β-rhizobial strains, were examined by amplified rRNA gene restriction analysis. They fell into 16 patterns and formed a single cluster together with the known β-rhizobia, Burkholderia caribensis, Burkholderia phymatum, and Burkholderia tuberum. The 16S rRNA gene sequences of 15 of the 20 strains were determined, and all were shown to belong to the genus Burkholderia; four distinct clusters could be discerned, with strains isolated from the same host species usually clustering very closely. Five of the strains (MAP3-5, Br3407, Br3454, Br3461, and Br3469) were selected for further studies of the symbiosis-related genes nodA, the NodD-dependent regulatory consensus sequences (nod box), and nifH. The nodA and nifH sequences were very close to each other and to those of B. phymatum STM815, B. caribensis TJ182, and Cupriavidus taiwanensis LMG19424 but were relatively distant from those of B. tuberum STM678. In addition to nodulating their original hosts, all five strains could also nodulate other Mimosa spp., and all produced nodules on Mimosa pudica that had nitrogenase (acetylene reduction) activities and structures typical of effective N2-fixing symbioses. Finally, both wild-type and green fluorescent protein-expressing transconjugant strains of Br3461 and MAP3-5 produced N2-fixing nodules on their original hosts, Mimosa bimucronata (Br3461) and Mimosa pigra (MAP3-5), and hence this confirms strongly that Burkholderia strains can form effective symbioses with legumes. PMID:16269788

  6. PCR-Based Detection and Identification of Burkholderia cepacia Complex Pathogens in Sputum from Cystic Fibrosis Patients

    PubMed Central

    McDowell, Andrew; Mahenthiralingam, Eshwar; Moore, John E.; Dunbar, Kerstin E. A.; Webb, A. Kevin; Dodd, Mary E.; Martin, S. Lorraine; Millar, B. Cherie; Scott, Christopher J.; Crowe, Mary; Elborn, J. Stuart

    2001-01-01

    PCR amplification of the recA gene followed by restriction fragment length polymorphism (RFLP) analysis was investigated for the rapid detection and identification of Burkholderia cepacia complex genomovars directly from sputum. Successful amplification of the B. cepacia complex recA gene from cystic fibrosis (CF) patient sputum samples containing B. cepacia genomovar I, Burkholderia multivorans, B. cepacia genomovar III, Burkholderia stabilis, and Burkholderia vietnamiensis was demonstrated. In addition, the genomovar identifications determined directly from sputum were the same as those obtained after selective culturing. Sensitivity experiments revealed that recA-based PCR could reliably detect B. cepacia complex organisms to concentrations of 106 CFU g of sputum−1. To fully assess the diagnostic value of the method, sputum samples from 100 CF patients were screened for B. cepacia complex infection by selective culturing and recA-based PCR. Selective culturing identified 19 samples with presumptive B. cepacia complex infection, which was corroborated by phenotypic analyses. Of the culture-positive sputum samples, 17 were also detected directly by recA-based PCR, while 2 samples were negative. The isolates cultured from both recA-negative sputum samples were subsequently identified as Burkholderia gladioli. RFLP analysis of the recA amplicons revealed 2 patients (12%) infected with B. multivorans, 11 patients (65%) infected with B. cepacia genomovar III-A, and 4 patients (23%) infected with B. cepacia genomovar III-B. These results demonstrate the potential of recA-based PCR-RFLP analysis for the rapid detection and identification of B. cepacia complex genomovars directly from sputum. Where the sensitivity of the assay proves a limitation, sputum samples can be analyzed by selective culturing followed by recA-based analysis of the isolate. PMID:11724828

  7. Draft Genome Sequence of Burkholderia sp. Strain PML1(12), an Ectomycorrhizosphere-Inhabiting Bacterium with Effective Mineral-Weathering Ability.

    PubMed

    Uroz, Stéphane; Oger, Phil

    2015-01-01

    We report the draft genome sequence of Burkholderia sp. PML1(12), a soil bacterium isolated from the Oak-Scleroderma citrinum ectomycorrhizosphere in the experimental forest site of Breuil-Chenue (France). PMID:26205858

  8. Draft Genome Sequence of Burkholderia sp. Strain PML1(12), an Ectomycorrhizosphere-Inhabiting Bacterium with Effective Mineral-Weathering Ability

    PubMed Central

    Oger, Phil

    2015-01-01

    We report the draft genome sequence of Burkholderia sp. PML1(12), a soil bacterium isolated from the Oak-Scleroderma citrinum ectomycorrhizosphere in the experimental forest site of Breuil-Chenue (France). PMID:26205858

  9. IN SITU BIOREMEDIATION OF TRICHLOROETHYLENE USING BURKHOLDERIA CEPACIA G4 PR1: ANALYSIS OF MICROBIAL ECOLOGY PARAMETERS FOR RISK ASSESSMENT (RESEARCH BRIEF)

    EPA Science Inventory

    The introduction of bacteria into aquifers for bioremediation purposes requires monitoring of the persistence and activity of microbial populations for efficacy and risk assessment purposes. Burkholderia cepacia G4 PR1 constitutively expresses a toluene ortho-monooxygenase (tom) ...

  10. Fatal Burkholderia pseudomallei Infection Initially Reported as a Bacillus Species, Ohio, 2013

    PubMed Central

    Doker, Thomas J.; Quinn, Celia L.; Salehi, Ellen D.; Sherwood, Joshua J.; Benoit, Tina J.; Elrod, Mindy Glass; Gee, Jay E.; Shadomy, Sean V.; Bower, William A.; Hoffmaster, Alex R.; Walke, Henry T.; Blaney, David D.; DiOrio, Mary S.

    2014-01-01

    A fatal case of melioidosis was diagnosed in Ohio one month after culture results were initially reported as a Bacillus species. To identify a source of infection and assess risk in patient contacts, we abstracted patient charts; interviewed physicians and contacts; genetically characterized the isolate; performed a Burkholderia pseudomallei antibody indirect hemagglutination assay on household contacts and pets to assess seropositivity; and collected household plant, soil, liquid, and insect samples for culturing and real-time polymerase chain reaction testing. Family members and pets tested were seronegative for B. pseudomallei. Environmental samples were negative by real-time polymerase chain reaction and culture. Although the patient never traveled internationally, the isolate genotype was consistent with an isolate that originated in Southeast Asia. This investigation identified the fifth reported locally acquired non-laboratory melioidosis case in the contiguous United States. Physicians and laboratories should be aware of this potentially emerging disease and refer positive cultures to a Laboratory Response Network laboratory. PMID:25092821

  11. Burkholderia pseudomallei identification: a comparison between the API 20NE and VITEK2GN systems.

    PubMed

    Deepak, Rama Narayana; Crawley, Brett; Phang, Elaine

    2008-12-01

    Sixty unique clinical isolates previously reported as Burkholderia pseudomallei were run in parallel through the API 20NE and VITEK2GN identification systems after 24h growth on Columbia agar with 5% sheep blood. The identifications and confidence levels determined by each test modality were compared. The VITEK2GN identified 47 (78.3%) and the API20NE identified 52 (86.7%) of the isolates as B. pseudomallei. The modal octal profile for the latter was 1156577. The alternative identification most commonly made by both systems was B. cepacia. Comparison of the two modalities gave a Cohen's kappa of 0.6008, suggesting good overall inter-test agreement. Both are good test modalities capable of identifying B. pseudomallei reliably, with the API20NE having the advantage of correctly identifying a slightly greater number of isolates, and the VITEK2 having the advantage of a shorter test turnaround time. PMID:19121685

  12. Agricultural use of Burkholderia (Pseudomonas) cepacia: a threat to human health?

    PubMed Central

    Holmes, A.; Govan, J.; Goldstein, R.

    1998-01-01

    In the past 2 decades, Burkholderia cepacia has emerged as a human pathogen causing numerous outbreaks, particularly among cystic fibrosis (CF) patients. One highly transmissible strain has spread across North America and Britain, and another between hospitalized CF and non-CF patients. Meanwhile, the organism has been developed as a biopesticide for protecting crops against fungal diseases and has potential as a bioremediation agent for breaking down recalcitrant herbicides and pesticides. However, B. cepacia is inherently resistant to multiple antibiotics; selection of strains "safe" for environmental application is not at present possible phenotypically or genotypically; molecular epidemiology and phylogenetic studies demonstrate that highly transmissible strains emerge randomly; and the organism has a capacity for rapid mutation and adaptation (facilitated by numerous insertion sequences), and a large, complex genome divided into separate chromosomes. Therefore, the widespread agricultural use of B. cepacia should be approached with caution. PMID:9621192

  13. Identification of the conserved hypothetical protein BPSL0317 in Burkholderia pseudomallei K96243

    NASA Astrophysics Data System (ADS)

    Yusoff, Nur Syamimi; Damiri, Nadzirah; Firdaus-Raih, Mohd

    2014-09-01

    Burkholderia pseudomallei K96243 is the causative agent of melioidosis, a disease which is endemic in Northern Australia and Southeastern Asia. The genome encodes several essential proteins including those currently annotated as hypothetical proteins. We studied the conservation and the essentiality of expressed hypothetical proteins in normal and different stress conditions. Based on the comparative genomics, we identified a hypothetical protein, BPSL0317, a potential essential gene that is being expressed in all normal and stress conditions. BPSL0317 is also phylogenetically conserved in the Burkholderiales order suggesting that this protein is crucial for survival among the order's members. BPSL0317 therefore has a potential to be a candidate antimicrobial drug target for this group of bacteria.

  14. Potential of metabolomics to reveal Burkholderia cepacia complex pathogenesis and antibiotic resistance

    PubMed Central

    Shommu, Nusrat S.; Vogel, Hans J.; Storey, Douglas G.

    2015-01-01

    The Burkholderia cepacia complex (Bcc) is a collection of closely related, genetically distinct, ecologically diverse species known to cause life-threatening infections in cystic fibrosis (CF) patients. By virtue of a flexible genomic structure and diverse metabolic activity, Bcc bacteria employ a wide array of virulence factors for pathogenesis in CF patients and have developed resistance to most of the commonly used antibiotics. However, the mechanism of pathogenesis and antibiotic resistance is still not fully understood. This mini review discusses the established and potential virulence determinants of Bcc and some of the contemporary strategies including transcriptomics and proteomics used to identify these traits. We also propose the application of metabolic profiling, a cost-effective modern-day approach to achieve new insights. PMID:26217312

  15. Evaluation of a Burkholderia pseudomallei Outer Membrane Vesicle Vaccine in Nonhuman Primates.

    PubMed

    Petersen, Hailey; Nieves, Wildaliz; Russell-Lodrigue, Kasi; Roy, Chad J; Morici, Lisa A

    2014-01-01

    Burkholderia pseudomallei (Bps)is the causative agent of melioidosis and is endemic in regions of northern Australia and Southeast Asia. Bps is inherently resistant to multiple antibiotics and is considered a potential biological warfare agent by the U.S. DHHS. Therefore, effective vaccines are necessary to prevent natural infection and to safeguard against biological attack with this organism. In our previous work we have shown that immunization with naturally derived outer membrane vesicles (OMVs) from Bps provides significant protection against lethal aerosol and systemic infection in BALB/c mice. In this work, we evaluated the safety and immunogenicity of escalating doses of OMV vaccine in rhesus macaques. We show that immunization of rhesus macaques with Bps OMVs generates humoral immuneresponses to protective protein and polysaccharide antigens without any associated toxicity or reactogenicity. These results lay the groundwork for evaluation of protective efficacy of the OMV vaccine in the nonhuman primate model of melioidosis. PMID:25165491

  16. Burkholderia cepacia Complex: Emerging Multihost Pathogens Equipped with a Wide Range of Virulence Factors and Determinants

    PubMed Central

    Sousa, Sílvia A.; Ramos, Christian G.; Leitão, Jorge H.

    2011-01-01

    The Burkholderia cepacia complex (Bcc) comprises at least 17 closely-related species of the β-proteobacteria subdivision, widely distributed in natural and man-made inhabitats. Bcc bacteria are endowed with an extraordinary metabolic diversity and emerged in the 1980s as life-threatening and difficult-to-treat pathogens among patients suffering from cystic fibrosis. More recently, these bacteria became recognized as a threat to hospitalized patients suffering from other diseases, in particular oncological patients. In the present paper, we review these and other traits of Bcc bacteria, as well as some of the strategies used to identify and validate the virulence factors and determinants used by these bacteria. The identification and characterization of these virulence factors is expected to lead to the design of novel therapeutic strategies to fight the infections caused by these emergent multidrug resistant human pathogens. PMID:20811541

  17. Biodiesel production from Jatropha oil catalyzed by immobilized Burkholderia cepacia lipase on modified attapulgite.

    PubMed

    You, Qinghong; Yin, Xiulian; Zhao, Yuping; Zhang, Yan

    2013-11-01

    Lipase from Burkholderia cepacia was immobilized on modified attapulgite by cross-linking reaction for biodiesel production with jatropha oil as feedstock. Effects of various factors on biodiesel production were studied by single-factor experiment. Results indicated that the best conditions for biodiesel preparation were: 10 g jatropha oil, 2.4 g methanol (molar ratio of oil to methanol is 1:6.6) being added at 3h intervals, 7 wt% water, 10 wt% immobilized lipase, temperature 35°C, and time 24h. Under these conditions, the maximum biodiesel yield reached 94%. The immobilized lipase retained 95% of its relative activity during the ten repeated batch reactions. The half-life time of the immobilized lipase is 731 h. Kinetics was studied and the Vmax of the immobilized lipases were 6.823 mmol L(-1). This immobilized lipase catalyzed process has potential industrial use for biodiesel production to replace chemical-catalyzed method. PMID:24055964

  18. Two quorum sensing systems control biofilm formation and virulence in members of the Burkholderia cepacia complex

    PubMed Central

    Suppiger, Angela; Schmid, Nadine; Aguilar, Claudio; Pessi, Gabriella; Eberl, Leo

    2013-01-01

    The Burkholderia cepacia complex (Bcc) consists of 17 closely related species that are problematic opportunistic bacterial pathogens for cystic fibrosis patients and immunocompromised individuals. These bacteria are capable of utilizing two different chemical languages: N-acyl homoserine lactones (AHLs) and cis-2-unsaturated fatty acids. Here we summarize the current knowledge of the underlying molecular architectures of these communication systems, showing how they are interlinked and discussing how they regulate overlapping as well as specific sets of genes. A particular focus is laid on the role of these signaling systems in the formation of biofilms, which are believed to be highly important for chronic infections. We review genes that have been implicated in the sessile lifestyle of this group of bacteria. The new emerging role of the intracellular second messenger cyclic dimeric guanosine monophosphate (c-di-GMP) as a downstream regulator of the fatty acid signaling cascade and as a key factor in biofilm formation is also discussed. PMID:23799665

  19. A napkin-associated outbreak of Burkholderia cenocepacia bacteraemia in haemodialysis patients.

    PubMed

    Lo Cascio, G; Bonora, M G; Zorzi, A; Mortani, E; Tessitore, N; Loschiavo, C; Lupo, A; Solbiati, M; Fontana, R

    2006-09-01

    This article reports a catheter-related outbreak of bacteraemia involving 38 patients in two haemodialysis units in Verona. Burkholderia cepacia complex strains were isolated from human blood and from an individually wrapped disinfection napkin that was contained in a commercially available, sterile dressing kit used to handle central venous catheters. Micro-organisms isolated from blood cultures and from the napkin were identified by standard procedures and confirmed as B. cenocepacia (genomovar III) by molecular analysis. Using pulsed-field gel electrophoresis analysis, the clinical isolates were indistinguishable or closely related to the B. cenocepacia isolated from the napkin. In conclusion, this study found that a contaminated commercial napkin soaked in quaternary ammonium, even when quality certified, was the source of infection. PMID:16859809

  20. Alteration of the Phenotypic and Pathogenic Patterns of Burkholderia pseudomallei that Persist in a Soil Environment

    PubMed Central

    Chen, Yao-Shen; Shieh, Wun-Ju; Goldsmith, Cynthia S.; Metcalfe, Maureen G.; Greer, Patricia W.; Zaki, Sherif R.; Chang, Hsin-Hou; Chan, Hao; Chen, Ya-Lei

    2014-01-01

    Melioidosis is caused by the soil-borne pathogen Burkholderia pseudomallei. To investigate whether the distinct phenotypic and virulent characteristics result from environmental adaptations in the soil or from the host body, two pairs of isogenic strains were generated by passages in soil or mice. After cultivation in soil, the levels of 3-hydroxytetradecanoic acid, biofilm formation, flagellar expression, and ultrastructure were altered in the bacteria. Uniformly fatal melioidosis developed as a result of infection with mouse-derived strains; however, the survival rates of mice infected with soil-derived strains prolonged. After primary infection or reinfection with soil-derived strains, the mice developed a low degree of bacterial hepatitis and bacterial colonization in the liver and bone marrow compared with mice that were infected with isogenic or heterogenic mouse-derived strains. We suggest that specific phenotypic and pathogenic patterns can be induced through infection with B. pseudomallei that has been cultured in different (soil versus mouse) environments. PMID:24445207

  1. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia.

    PubMed Central

    Govan, J R; Deretic, V

    1996-01-01

    Respiratory infections with Pseudomonas aeruginosa and Burkholderia cepacia play a major role in the pathogenesis of cystic fibrosis (CF). This review summarizes the latest advances in understanding host-pathogen interactions in CF with an emphasis on the role and control of conversion to mucoidy in P. aeruginosa, a phenomenon epitomizing the adaptation of this opportunistic pathogen to the chronic chourse of infection in CF, and on the innate resistance to antibiotics of B. cepacia, person-to-person spread, and sometimes rapidly fatal disease caused by this organism. While understanding the mechanism of conversion to mucoidy in P. aeruginosa has progressed to the point where this phenomenon has evolved into a model system for studying bacterial stress response in microbial pathogenesis, the more recent challenge with B. cepacia, which has emerged as a potent bona fide CF pathogen, is discussed in the context of clinical issues, taxonomy, transmission, and potential modes of pathogenicity. PMID:8840786

  2. The dsbB gene product is required for protease production by Burkholderia cepacia.

    PubMed Central

    Abe, M; Nakazawa, T

    1996-01-01

    Burkholderia cepacia KF1, isolated from a pneumonia patient, produces a 37-kDa extracellular metalloprotease. A protease-deficient and lipase-proficient mutant, KFT1007, was complemented by a clone having an open reading frame coding for a 170-amino-acid polypeptide which showed significant homology to Escherichia coli DsbB. KFT1007, a presumed dsbB mutant, also failed to show motility, and both protease secretion and motility were restored by the introduction of the cloned dsbB gene of B. cepacia. The mutant KFT1007 excreted a 43-kDa polypeptide that is immunologically related to the 37-kDa mature protease. These results suggested that the dsbB mutant secretes a premature and catalytically inactive form of protease and that disulfide formation is required for the production of extracellular protease by B. cepacia. PMID:8926116

  3. Fatal Burkholderia pseudomallei infection initially reported as a Bacillus species, Ohio, 2013.

    PubMed

    Doker, Thomas J; Quinn, Celia L; Salehi, Ellen D; Sherwood, Joshua J; Benoit, Tina J; Glass Elrod, Mindy; Gee, Jay E; Shadomy, Sean V; Bower, William A; Hoffmaster, Alex R; Walke, Henry T; Blaney, David D; DiOrio, Mary S

    2014-10-01

    A fatal case of melioidosis was diagnosed in Ohio one month after culture results were initially reported as a Bacillus species. To identify a source of infection and assess risk in patient contacts, we abstracted patient charts; interviewed physicians and contacts; genetically characterized the isolate; performed a Burkholderia pseudomallei antibody indirect hemagglutination assay on household contacts and pets to assess seropositivity; and collected household plant, soil, liquid, and insect samples for culturing and real-time polymerase chain reaction testing. Family members and pets tested were seronegative for B. pseudomallei. Environmental samples were negative by real-time polymerase chain reaction and culture. Although the patient never traveled internationally, the isolate genotype was consistent with an isolate that originated in Southeast Asia. This investigation identified the fifth reported locally acquired non-laboratory melioidosis case in the contiguous United States. Physicians and laboratories should be aware of this potentially emerging disease and refer positive cultures to a Laboratory Response Network laboratory. PMID:25092821

  4. A PCR-BASED DETECTION OF BURKHOLDERIA PSEUDOMALLEI DIVERSITY USING MYOVIRIDAE PROPHAGE TYPING.

    PubMed

    Nakornpakdee, Yaowarin; Sermswan, Rasana W; Tattawasart, Unchalee; Yordpratum, Umaporn; Wongratanacheewin, Surasakdi

    2015-01-01

    PCR-based detection of Myoviridae lysogenic phages in Burkholderia pseudomallei was developed using primers targeting K96243 prophage GI2, phiE12-2 and phi52237/phiX216. Investigation of 50 clinical and 50 environmental (soil) isolates revealed that K96243 prophage GI2 was the most common (48%) among the isolates, followed by phiE12-2 (38%) and phi52237/phiX216 (35%), with K96243 prophage GI2 being significantly more frequent in soil (64%) than clinical (32%) samples. Twenty-four percent of soil isolates contained all three prophage types, while clinical isolates harbored no more than two types. Although B. pseudomallei isolates from soil were found to be more diverse based on prophage typing, all isolates were equally susceptible to a battery of lytic phages (although to different extents), suggesting the possibility of using lytic phages to control environmental B. pseudomallei. PMID:26513903

  5. Genome sequence of Burkholderia mimosarum strain LMG 23256T, a Mimosa pigra microsymbiont from Anso, Taiwan

    PubMed Central

    Willems, Anne; Tian, Rui; Bräu, Lambert; Goodwin, Lynne; Han, James; Liolios, Konstantinos; Huntemann, Marcel; Pati, Amrita; Woyke, Tanja; Mavrommatis, Konstantinos; Markowitz, Victor; Ivanova, Natalia; Kyrpides, Nikos; Reeve, Wayne

    2013-01-01

    Burkholderia mimosarum strain LMG 23256T is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of Mimosa pigra (giant sensitive plant). LMG 23256T was isolated from a nodule recovered from the roots of the M. pigra growing in Anso, Taiwan. LMG 23256T is highly effective at fixing nitrogen with M. pigra. Here we describe the features of B. mimosarum strain LMG 23256T, together with genome sequence information and its annotation. The 8,410,967 bp high-quality-draft genome is arranged into 268 scaffolds of 270 contigs containing 7,800 protein-coding genes and 85 RNA-only encoding genes, and is one of 100 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project. PMID:25197434

  6. Interrogation of the Burkholderia pseudomallei genome to address differential virulence among isolates

    DOE PAGESBeta

    Challacombe, Jean F.; Stubben, Chris J.; Klimko, Christopher P.; Welkos, Susan L.; Kern, Steven J.; Bozue, Joel A.; Worsham, Patricia L.; Cote, Christopher K.; Wolfe, Daniel N.; Badger, Jonathan H.

    2014-12-23

    Infection by the Gram-negative pathogen Burkholderia pseudomallei results in the disease melioidosis, acquired from the environment in parts of southeast Asia and northern Australia. Clinical symptoms of melioidosis range from acute (fever, pneumonia, septicemia, and localized infection) to chronic (abscesses in various organs and tissues, most commonly occurring in the lungs, liver, spleen, kidney, prostate and skeletal muscle), and persistent infections in humans are difficult to cure. Understanding the basic biology and genomics of B. pseudomallei is imperative for the development of new vaccines and therapeutic interventions. This formidable task is becoming more tractable due to the increasing number ofmore » B. pseudomallei genomes that are being sequenced and compared. Here, we compared three B. pseudomallei genomes, from strains MSHR668, K96243 and 1106a, to identify features that might explain why MSHR668 is more virulent than K96243 and 1106a in a mouse model of B. pseudomallei infection. Our analyses focused on metabolic, virulence and regulatory genes that were present in MSHR668 but absent from both K96243 and 1106a. We also noted features present in K96243 and 1106a but absent from MSHR668, and identified genomic differences that may contribute to variations in virulence noted among the three B. pseudomallei isolates. While this work contributes to our understanding of B. pseudomallei genomics, more detailed experiments are necessary to characterize the relevance of specific genomic features to B. pseudomallei metabolism and virulence. Functional analyses of metabolic networks, virulence and regulation shows promise for examining the effects of B. pseudomallei on host cell metabolism and will lay a foundation for future prediction of the virulence of emerging strains. Continued emphasis in this area will be critical for protection against melioidosis, as a better understanding of what constitutes a fully virulent Burkholderia isolate may provide for

  7. Burkholderia cenocepacia Differential Gene Expression during Host–Pathogen Interactions and Adaptation to the Host Environment

    PubMed Central

    O’Grady, Eoin P.; Sokol, Pamela A.

    2011-01-01

    Members of the Burkholderia cepacia complex (Bcc) are important in medical, biotechnological, and agricultural disciplines. These bacteria naturally occur in soil and water environments and have adapted to survive in association with plants and animals including humans. All Bcc species are opportunistic pathogens including Burkholderia cenocepacia that causes infections in cystic fibrosis and chronic granulomatous disease patients. The adaptation of B. cenocepacia to the host environment was assessed in a rat chronic respiratory infection model and compared to that of high cell-density in vitro grown cultures using transcriptomics. The distribution of genes differentially expressed on chromosomes 1, 2, and 3 was relatively proportional to the size of each genomic element, whereas the proportion of plasmid-encoded genes differentially expressed was much higher relative to its size and most genes were induced in vivo. The majority of genes encoding known virulence factors, components of types II and III secretion systems and chromosome 2-encoded type IV secretion system were similarly expressed between in vitro and in vivo environments. Lower expression in vivo was detected for genes encoding N-acyl-homoserine lactone synthase CepI, orphan LuxR homolog CepR2, zinc metalloproteases ZmpA and ZmpB, LysR-type transcriptional regulator ShvR, nematocidal protein AidA, and genes associated with flagellar motility, Flp type pilus formation, and type VI secretion. Plasmid-encoded type IV secretion genes were markedly induced in vivo. Additional genes induced in vivo included genes predicted to be involved in osmotic stress adaptation or intracellular survival, metal ion, and nutrient transport, as well as those encoding outer membrane proteins. Genes identified in this study are potentially important for virulence during host–pathogen interactions and may be associated with survival and adaptation to the host environment during chronic lung infections. PMID:22919581

  8. Construction of a large-scale Burkholderia cenocepacia J2315 transposon mutant library

    NASA Astrophysics Data System (ADS)

    Wong, Yee-Chin; Pain, Arnab; Nathan, Sheila

    2014-09-01

    Burkholderia cenocepacia, a pathogenic member of the Burkholderia cepacia complex (Bcc), has emerged as a significant threat towards cystic fibrosis patients, where infection often leads to the fatal clinical manifestation known as cepacia syndrome. Many studies have investigated the pathogenicity of B. cenocepacia as well as its ability to become highly resistant towards many of the antibiotics currently in use. In addition, studies have also been undertaken to understand the pathogen's capacity to adapt and survive in a broad range of environments. Transposon based mutagenesis has been widely used in creating insertional knock-out mutants and coupled with recent advances in sequencing technology, robust tools to study gene function in a genome-wide manner have been developed based on the assembly of saturated transposon mutant libraries. In this study, we describe the construction of a large-scale library of B. cenocepacia transposon mutants. To create transposon mutants of B. cenocepacia strain J2315, electrocompetent bacteria were electrotransformed with the EZ-Tn5 transposome. Tetracyline resistant colonies were harvested off selective agar and pooled. Mutants were generated in multiple batches with each batch consisting of ˜20,000 to 40,000 mutants. Transposon insertion was validated by PCR amplification of the transposon region. In conclusion, a saturated B. cenocepacia J2315 transposon mutant library with an estimated total number of 500,000 mutants was successfully constructed. This mutant library can now be further exploited as a genetic tool to assess the function of every gene in the genome, facilitating the discovery of genes important for bacterial survival and adaptation, as well as virulence.

  9. Identification of a Predicted Trimeric Autotransporter Adhesin Required for Biofilm Formation of Burkholderia pseudomallei

    PubMed Central

    Lazar Adler, Natalie R.; Dean, Rachel E.; Saint, Richard J.; Stevens, Mark P.; Prior, Joann L.; Atkins, Timothy P.; Galyov, Edouard E.

    2013-01-01

    The autotransporters are a large and diverse family of bacterial secreted and outer membrane proteins, which are present in many Gram-negative bacterial pathogens and play a role in numerous environmental and virulence-associated interactions. As part of a larger systematic study on the autotransporters of Burkholderia pseudomallei, the causative agent of the severe tropical disease melioidosis, we have constructed an insertion mutant in the bpss1439 gene encoding an unstudied predicted trimeric autotransporter adhesin. The bpss1439 mutant demonstrated a significant reduction in biofilm formation at 48 hours in comparison to its parent 10276 wild-type strain. This phenotype was complemented to wild-type levels by the introduction of a full-length copy of the bpss1439 gene in trans. Examination of the wild-type and bpss1439 mutant strains under biofilm-inducing conditions by microscopy after 48 hours confirmed that the bpss1439 mutant produced less biofilm compared to wild-type. Additionally, it was observed that this phenotype was due to low levels of bacterial adhesion to the abiotic surface as well as reduced microcolony formation. In a murine melioidosis model, the bpss1439 mutant strain demonstrated a moderate attenuation for virulence compared to the wild-type strain. This attenuation was abrogated by in trans complementation, suggesting that bpss1439 plays a subtle role in the pathogenesis of B. pseudomallei. Taken together, these studies indicate that BPSS1439 is a novel predicted autotransporter involved in biofilm formation of B. pseudomallei; hence, this factor was named BbfA, Burkholderia biofilm factor A. PMID:24223950

  10. Using multispectral imaging flow cytometry to assess an in vitro intracellular Burkholderia thailandensis infection model.

    PubMed

    Jenner, Dominic; Ducker, Catherine; Clark, Graeme; Prior, Jo; Rowland, Caroline A

    2016-04-01

    The use of in vitro models to understand the interaction of bacteria with host cells is well established. In vitro bacterial infection models are often used to quantify intracellular bacterial load by lysing cell populations and subsequently enumerating the bacteria. Modern established techniques employ the use of fluorescence technologies such as flow cytometry, fluorescent microscopy, and/or confocal microscopy. However, these techniques often lack either the quantification of large data sets (microscopy) or use of gross fluorescence signal which lacks the visual confirmation that can provide additional confidence in data sets. Multispectral imaging flow cytometry (MIFC) is a novel emerging field of technology. This technology captures a bright field and fluorescence image of cells in a flow using a charged coupled device camera. It allows the analysis of tens of thousands of single cell images, making it an extremely powerful technology. Here MIFC was used as an alternative method of analyzing intracellular bacterial infection using Burkholderia thailandensis E555 as a model organism. It has been demonstrated that the data produced using traditional enumeration is comparable to data analyzed using MIFC. It has also been shown that by using MIFC it is possible to generate other data on the dynamics of the infection model rather than viable counts alone. It has been demonstrated that it is possible to inhibit the uptake of bacteria into mammalian cells and identify differences between treated and untreated cell populations. The authors believe this to be the first use of MIFC to analyze a Burkholderia bacterial species during intracellular infection. © 2016 Crown copyright. Published by Wiley Periodicals Inc. on behalf of ISAC. PMID:26841315

  11. Diazotrophic Burkholderia species isolated from the Amazon region exhibit phenotypical, functional and genetic diversity.

    PubMed

    da Silva, Krisle; Cassetari, Alice de Souza; Lima, Adriana Silva; De Brandt, Evie; Pinnock, Eleanor; Vandamme, Peter; Moreira, Fatima Maria de Souza

    2012-06-01

    Forty-eight Burkholderia isolates from different land use systems in the Amazon region were compared to type strains of Burkholderia species for phenotypic and functional characteristics that can be used to promote plant growth. Most of these isolates (n=46) were obtained by using siratro (Macroptilium atropurpureum - 44) and common bean (Phaseolus vulgaris - 2) as the trap plant species; two isolates were obtained from nodules collected in the field from Indigofera suffruticosa and Pithecellobium sp. The evaluated characteristics were the following: colony characterisation on "79" medium, assimilation of different carbon sources, enzymatic activities, solubilisation of phosphates, nitrogenase activity and antifungal activity against Fusarium oxysporium f. sp. phaseoli. Whole cell protein profiles, 16S rRNA, gyrB, and recA gene sequencing and multilocus sequence typing were used to identify the isolates. The isolates showed different cultural and biochemical characteristics depending on the legume species from which they were obtained. Except for one isolate from I. suffruticosa, all isolates were able to solubilise calcium phosphate and present nitrogenase activity under free-living conditions. Only one isolate from common beans, showed antifungal activity. The forty four isolates from siratro nodules were identified as B. fungorum; isolates UFLA02-27 and UFLA02-28, obtained from common bean plants, were identified as B. contaminans; isolate INPA89A, isolated from Indigofera suffruticosa, was a close relative of B. caribensis but could not be assigned to an established species; isolate INPA42B, isolated from Pithecellobium sp., was identified as B. lata. This is the first report of nitrogenase activity in B. fungorum, B. lata and B. contaminans. PMID:22609342

  12. Quantitative Proteomic Analysis of Burkholderia pseudomallei Bsa Type III Secretion System Effectors Using Hypersecreting Mutants

    PubMed Central

    Vander Broek, Charles W.; Chalmers, Kevin J.; Stevens, Mark P.; Stevens, Joanne M.

    2015-01-01

    Burkholderia pseudomallei is an intracellular pathogen and the causative agent of melioidosis, a severe disease of humans and animals. One of the virulence factors critical for early stages of infection is the Burkholderia secretion apparatus (Bsa) Type 3 Secretion System (T3SS), a molecular syringe that injects bacterial proteins, called effectors, into eukaryotic cells where they subvert cellular functions to the benefit of the bacteria. Although the Bsa T3SS itself is known to be important for invasion, intracellular replication, and virulence, only a few genuine effector proteins have been identified and the complete repertoire of proteins secreted by the system has not yet been fully characterized. We constructed a mutant lacking bsaP, a homolog of the T3SS “gatekeeper” family of proteins that exert control over the timing and magnitude of effector protein secretion. Mutants lacking BsaP, or the T3SS translocon protein BipD, were observed to hypersecrete the known Bsa effector protein BopE, providing evidence of their role in post-translational control of the Bsa T3SS and representing key reagents for the identification of its secreted substrates. Isobaric Tags for Relative and Absolute Quantification (iTRAQ), a gel-free quantitative proteomics technique, was used to compare the secreted protein profiles of the Bsa T3SS hypersecreting mutants of B. pseudomallei with the isogenic parent strain and a bsaZ mutant incapable of effector protein secretion. Our study provides one of the most comprehensive core secretomes of B. pseudomallei described to date and identified 26 putative Bsa-dependent secreted proteins that may be considered candidate effectors. Two of these proteins, BprD and BapA, were validated as novel effector proteins secreted by the Bsa T3SS of B. pseudomallei. PMID:25635268

  13. Characterization of the Burkholderia thailandensis SOS Response by Using Whole-Transcriptome Shotgun Sequencing

    PubMed Central

    Ulrich, Ricky L.; DeShazer, David; Kenny, Tara A.; Ulrich, Melanie P.; Moravusova, Anna; Opperman, Timothy; Bavari, Sina; Bowlin, Terry L.; Moir, Donald T.

    2013-01-01

    The bacterial SOS response is a well-characterized regulatory network encoded by most prokaryotic bacterial species and is involved in DNA repair. In addition to nucleic acid repair, the SOS response is involved in pathogenicity, stress-induced mutagenesis, and the emergence and dissemination of antibiotic resistance. Using high-throughput sequencing technology (SOLiD RNA-Seq), we analyzed the Burkholderia thailandensis global SOS response to the fluoroquinolone antibiotic, ciprofloxacin (CIP), and the DNA-damaging chemical, mitomycin C (MMC). We demonstrate that a B. thailandensis recA mutant (RU0643) is ∼4-fold more sensitive to CIP in contrast to the parental strain B. thailandensis DW503. Our RNA-Seq results show that CIP and MMC treatment (P < 0.01) resulted in the differential expression of 344 genes in B. thailandensis and 210 genes in RU0643. Several genes associated with the SOS response were induced and include lexA, uvrA, dnaE, dinB, recX, and recA. At the genome-wide level, we found an overall decrease in gene expression, especially for genes involved in amino acid and carbohydrate transport and metabolism, following both CIP and MMC exposure. Interestingly, we observed the upregulation of several genes involved in bacterial motility and enhanced transcription of a B. thailandensis genomic island encoding a Siphoviridae bacteriophage designated ϕE264. Using B. thailandensis plaque assays and PCR with B. mallei ATCC 23344 as the host, we demonstrate that CIP and MMC exposure in B. thailandensis DW503 induces the transcription and translation of viable bacteriophage in a RecA-dependent manner. This is the first report of the SOS response in Burkholderia spp. to DNA-damaging agents. We have identified both common and unique adaptive responses of B. thailandensis to chemical stress and DNA damage. PMID:23872555

  14. Burkholderia cepacia complex Phage-Antibiotic Synergy (PAS): antibiotics stimulate lytic phage activity.

    PubMed

    Kamal, Fatima; Dennis, Jonathan J

    2015-02-01

    The Burkholderia cepacia complex (Bcc) is a group of at least 18 species of Gram-negative opportunistic pathogens that can cause chronic lung infection in cystic fibrosis (CF) patients. Bcc organisms possess high levels of innate antimicrobial resistance, and alternative therapeutic strategies are urgently needed. One proposed alternative treatment is phage therapy, the therapeutic application of bacterial viruses (or bacteriophages). Recently, some phages have been observed to form larger plaques in the presence of sublethal concentrations of certain antibiotics; this effect has been termed phage-antibiotic synergy (PAS). Those reports suggest that some antibiotics stimulate increased production of phages under certain conditions. The aim of this study is to examine PAS in phages that infect Burkholderia cenocepacia strains C6433 and K56-2. Bcc phages KS12 and KS14 were tested for PAS, using 6 antibiotics representing 4 different drug classes. Of the antibiotics tested, the most pronounced effects were observed for meropenem, ciprofloxacin, and tetracycline. When grown with subinhibitory concentrations of these three antibiotics, cells developed a chain-like arrangement, an elongated morphology, and a clustered arrangement, respectively. When treated with progressively higher antibiotic concentrations, both the sizes of plaques and phage titers increased, up to a maximum. B. cenocepacia K56-2-infected Galleria mellonella larvae treated with phage KS12 and low-dose meropenem demonstrated increased survival over controls treated with KS12 or antibiotic alone. These results suggest that antibiotics can be combined with phages to stimulate increased phage production and/or activity and thus improve the efficacy of bacterial killing. PMID:25452284

  15. Systematic Review and Consensus Guidelines for Environmental Sampling of Burkholderia pseudomallei

    PubMed Central

    Limmathurotsakul, Direk; Dance, David A. B.; Wuthiekanun, Vanaporn; Kaestli, Mirjam; Mayo, Mark; Warner, Jeffrey; Wagner, David M.; Tuanyok, Apichai; Wertheim, Heiman; Yoke Cheng, Tan; Mukhopadhyay, Chiranjay; Puthucheary, Savithiri; Day, Nicholas P. J.; Steinmetz, Ivo; Currie, Bart J.; Peacock, Sharon J.

    2013-01-01

    Background Burkholderia pseudomallei, a Tier 1 Select Agent and the cause of melioidosis, is a Gram-negative bacillus present in the environment in many tropical countries. Defining the global pattern of B. pseudomallei distribution underpins efforts to prevent infection, and is dependent upon robust environmental sampling methodology. Our objective was to review the literature on the detection of environmental B. pseudomallei, update the risk map for melioidosis, and propose international consensus guidelines for soil sampling. Methods/Principal Findings An international working party (Detection of Environmental Burkholderia pseudomallei Working Party (DEBWorP)) was formed during the VIth World Melioidosis Congress in 2010. PubMed (January 1912 to December 2011) was searched using the following MeSH terms: pseudomallei or melioidosis. Bibliographies were hand-searched for secondary references. The reported geographical distribution of B. pseudomallei in the environment was mapped and categorized as definite, probable, or possible. The methodology used for detecting environmental B. pseudomallei was extracted and collated. We found that global coverage was patchy, with a lack of studies in many areas where melioidosis is suspected to occur. The sampling strategies and bacterial identification methods used were highly variable, and not all were robust. We developed consensus guidelines with the goals of reducing the probability of false-negative results, and the provision of affordable and ‘low-tech’ methodology that is applicable in both developed and developing countries. Conclusions/Significance The proposed consensus guidelines provide the basis for the development of an accurate and comprehensive global map of environmental B. pseudomallei. PMID:23556010

  16. Postinfection Biological Control of Oomycete Pathogens of Pea by Burkholderia cepacia AMMDR1.

    PubMed

    Heungens, K; Parke, J L

    2001-04-01

    ABSTRACT Burkholderia cepacia AMMDR1 is a biocontrol agent that reduces Pythium damping-off and Aphanomyces root rot severity on peas in the field. We studied the effect of B. cepacia AMMDR1 on post-infection stages in the life cycles of these pathogens, including mycelial colonization of the host, production of oogonia, and production of secondary zoospore inoculum. We used Burkholderia cepacia 1324, a seed and rootcolonizing but antibiosis-deficient Tn5 mutant of B. cepacia AMMDR1, to study mechanisms of biological control other than antibiosis. B. cepacia AMMDR1 significantly reduced Pythium aphanidermatum postinfection colonization and damping-off of pea seeds, even when the bacteria were applied 12 h after zoospore inoculation. B. cepacia AMMDR1 also significantly reduced colonization of taproots by Aphanomyces euteiches mycelium, but only when the bacteria were applied at high population densities at the site of zoospore inoculation. The antibiosisdeficient mutant, B. cepacia 1324, had no effect on mycelial colonization of seeds or roots by Pythium aphanidermatum nor A. euteiches, suggesting that antibiosis is the primary mechanism of biological control. B. cepacia AMMDR1, but not B. cepacia 1324, reduced production of A. euteiches oogonia. This effect occurred even when the population size of B. cepacia AMMDR1 was too small to cause a reduction in lesion length early on in the infection process and may result from in situ antibiotic production. B. cepacia AMMDR1 had no effect on the production of secondary zoospores of A. euteiches from infected roots. The main effects of B. cepacia AMMDR1 on postinfection stages in the life cycles of these pathogens therefore were reductions in mycelial colonization by Pythium aphanidermatum and in formation of oogonia by A. euteiches. No mechanism other than antibiosis could be identified. PMID:18943851

  17. The Multiple Roles of Hypothetical Gene BPSS1356 in Burkholderia pseudomallei

    PubMed Central

    Yam, Hokchai; Abdul Rahim, Ainihayati; Mohamad, Suriani; Mahadi, Nor Muhammad; Abdul Manaf, Uyub; Shu-Chien, Alexander Chong; Najimudin, Nazalan

    2014-01-01

    Burkholderia pseudomallei is an opportunistic pathogen and the causative agent of melioidosis. It is able to adapt to harsh environments and can live intracellularly in its infected hosts. In this study, identification of transcriptional factors that associate with the β′ subunit (RpoC) of RNA polymerase was performed. The N-terminal region of this subunit is known to trigger promoter melting when associated with a sigma factor. A pull-down assay using histidine-tagged B. pseudomallei RpoC N-terminal region as bait showed that a hypothetical protein BPSS1356 was one of the proteins bound. This hypothetical protein is conserved in all B. pseudomallei strains and present only in the Burkholderia genus. A BPSS1356 deletion mutant was generated to investigate its biological function. The mutant strain exhibited reduced biofilm formation and a lower cell density during the stationary phase of growth in LB medium. Electron microscopic analysis revealed that the ΔBPSS1356 mutant cells had a shrunken cytoplasm indicative of cell plasmolysis and a rougher surface when compared to the wild type. An RNA microarray result showed that a total of 63 genes were transcriptionally affected by the BPSS1356 deletion with fold change values of higher than 4. The expression of a group of genes encoding membrane located transporters was concurrently down-regulated in ΔBPSS1356 mutant. Amongst the affected genes, the putative ion transportation genes were the most severely suppressed. Deprivation of BPSS1356 also down-regulated the transcriptions of genes for the arginine deiminase system, glycerol metabolism, type III secretion system cluster 2, cytochrome bd oxidase and arsenic resistance. It is therefore obvious that BPSS1356 plays a multiple regulatory roles on many genes. PMID:24927285

  18. Snake Cathelicidin NA-CATH and Smaller Helical Antimicrobial Peptides Are Effective against Burkholderia thailandensis

    PubMed Central

    Blower, Ryan J.; Barksdale, Stephanie M.; van Hoek, Monique L.

    2015-01-01

    Burkholderia thailandensis is a Gram-negative soil bacterium used as a model organism for B. pseudomallei, the causative agent of melioidosis and an organism classified category B priority pathogen and a Tier 1 select agent for its potential use as a biological weapon. Burkholderia species are reportedly “highly resistant” to antimicrobial agents, including cyclic peptide antibiotics, due to multiple resistance systems, a hypothesis we decided to test using antimicrobial (host defense) peptides. In this study, a number of cationic antimicrobial peptides (CAMPs) were tested in vitro against B. thailandensis for both antimicrobial activity and inhibition of biofilm formation. Here, we report that the Chinese cobra (Naja atra) cathelicidin NA-CATH was significantly antimicrobial against B. thailandensis. Additional cathelicidins, including the human cathelicidin LL-37, a sheep cathelicidin SMAP-29, and some smaller ATRA peptide derivatives of NA-CATH were also effective. The D-enantiomer of one small peptide (ATRA-1A) was found to be antimicrobial as well, with EC50 in the range of the L-enantiomer. Our results also demonstrate that human alpha-defensins (HNP-1 & -2) and a short beta-defensin-derived peptide (Peptide 4 of hBD-3) were not bactericidal against B. thailandensis. We also found that the cathelicidin peptides, including LL-37, NA-CATH, and SMAP-29, possessed significant ability to prevent biofilm formation of B. thailandensis. Additionally, we show that LL-37 and its D-enantiomer D-LL-37 can disperse pre-formed biofilms. These results demonstrate that although B. thailandensis is highly resistant to many antibiotics, cyclic peptide antibiotics such as polymyxin B, and defensing peptides, some antimicrobial peptides including the elapid snake cathelicidin NA-CATH exert significant antimicrobial and antibiofilm activity towards B. thailandensis. PMID:26196513

  19. Burkholderia pseudomallei known siderophores and hemin uptake are dispensable for lethal murine melioidosis.

    PubMed

    Kvitko, Brian H; Goodyear, Andrew; Propst, Katie L; Dow, Steven W; Schweizer, Herbert P

    2012-01-01

    Burkholderia pseudomallei is a mostly saprophytic bacterium, but can infect humans where it causes the difficult-to-manage disease melioidosis. Even with proper diagnosis and prompt therapeutic interventions mortality rates still range from >20% in Northern Australia to over 40% in Thailand. Surprisingly little is yet known about how B. pseudomallei infects, invades and survives within its hosts, and virtually nothing is known about the contribution of critical nutrients such as iron to the bacterium's pathogenesis. It was previously assumed that B. pseudomallei used iron-acquisition systems commonly found in other bacteria, for example siderophores. However, our previous discovery of a clinical isolate carrying a large chromosomal deletion missing the entire malleobactin gene cluster encoding the bacterium's major high-affinity siderophore while still being fully virulent in a murine melioidosis model suggested that other iron-acquisition systems might make contributions to virulence. Here, we deleted the major siderophore malleobactin (mba) and pyochelin (pch) gene clusters in strain 1710b and revealed a residual siderophore activity which was unrelated to other known Burkholderia siderophores such as cepabactin and cepaciachelin, and not due to increased secretion of chelators such as citrate. Deletion of the two hemin uptake loci, hmu and hem, showed that Hmu is required for utilization of hemin and hemoglobin and that Hem cannot complement a Hmu deficiency. Prolonged incubation of a hmu hem mutant in hemoglobin-containing minimal medium yielded variants able to utilize hemoglobin and hemin suggesting alternate pathways for utilization of these two host iron sources. Lactoferrin utilization was dependent on malleobactin, but not pyochelin synthesis and/or uptake. A mba pch hmu hem quadruple mutant could use ferritin as an iron source and upon intranasal infection was lethal in an acute murine melioidosis model. These data suggest that B. pseudomallei may employ

  20. Microbiological and Epidemiological Features of Clinical Respiratory Isolates of Burkholderia gladioli▿

    PubMed Central

    Segonds, Christine; Clavel-Batut, Patricia; Thouverez, Michelle; Grenet, Dominique; Le Coustumier, Alain; Plésiat, Patrick; Chabanon, Gérard

    2009-01-01

    Burkholderia gladioli, primarily known as a plant pathogen, is involved in human infections, especially in patients with cystic fibrosis (CF). In the present study, the first respiratory isolates recovered from 14 French patients with CF and 4 French patients without CF, identified by 16S rRNA gene analysis, were tested for growth on B. cepacia selective media, for identification by commercial systems, and for their antimicrobial susceptibilities, and were compared by pulsed-field gel electrophoresis (PFGE). Patients' data were collected. All 18 isolates grew on oxidation-fermentation-polymyxin B-bacitracin-lactose medium and Pseudomonas cepacia agar, but only 13 grew on Burkholderia cepacia selective agar. API 20NE strips did not differentiate B. gladioli from B. cepacia, whereas Vitek 2 GN cards correctly identified 15 isolates. All isolates were susceptible to piperacillin, imipenem, aminoglycosides, and ciprofloxacin and were far less resistant to ticarcillin than B. cepacia complex organisms. Fifteen PFGE types were observed among the 18 isolates, but shared types were not identified among epidemiologically related patients. The microbiological follow-up of CF patients showed that colonization was persistent in 3 of 13 documented cases; B. gladioli was isolated from posttransplantation cultures of blood from 1 patient. Among the patients without CF, B. gladioli was associated with intubation (three cases) or bronchiectasis (one case). In summary, the inclusion of B. gladioli in the databases of commercial identification systems should improve the diagnostic capabilities of those systems. In CF patients, this organism is more frequently involved in transient infections than in chronic infections, but it may be responsible for complications posttransplantation; patient-to-patient transmission has not been demonstrated to date. Lastly, B. gladioli appears to be naturally susceptible to aminoglycosides and ciprofloxacin, although resistant isolates may emerge in

  1. Understanding the Pathogenicity of Burkholderia contaminans, an Emerging Pathogen in Cystic Fibrosis

    PubMed Central

    Nunvar, Jaroslav; Kalferstova, Lucie; Bloodworth, Ruhi A. M.; Kolar, Michal; Degrossi, Jose; Lubovich, Silvina; Cardona, Silvia T.; Drevinek, Pavel

    2016-01-01

    Several bacterial species from the Burkholderia cepacia complex (Bcc) are feared opportunistic pathogens that lead to debilitating lung infections with a high risk of developing fatal septicemia in cystic fibrosis (CF) patients. However, the pathogenic potential of other Bcc species is yet unknown. To elucidate clinical relevance of Burkholderia contaminans, a species frequently isolated from CF respiratory samples in Ibero-American countries, we aimed to identify its key virulence factors possibly linked with an unfavorable clinical outcome. We performed a genome-wide comparative analysis of two isolates of B. contaminans ST872 from sputum and blood culture of a female CF patient in Argentina. RNA-seq data showed significant changes in expression for quorum sensing-regulated virulence factors and motility and chemotaxis. Furthermore, we detected expression changes in a recently described low-oxygen-activated (lxa) locus which encodes stress-related proteins, and for two clusters responsible for the biosynthesis of antifungal and hemolytic compounds pyrrolnitrin and occidiofungin. Based on phenotypic assays that confirmed changes in motility and in proteolytic, hemolytic and antifungal activities, we were able to distinguish two phenotypes of B. contaminans that coexisted in the host and entered her bloodstream. Whole genome sequencing revealed that the sputum and bloodstream isolates (each representing a distinct phenotype) differed by over 1,400 mutations as a result of a mismatch repair-deficient hypermutable state of the sputum isolate. The inferred lack of purifying selection against nonsynonymous mutations and the high rate of pseudogenization in the derived isolate indicated limited evolutionary pressure during evolution in the nutrient-rich, stable CF sputum environment. The present study is the first to examine the genomic and transcriptomic differences between longitudinal isolates of B. contaminans. Detected activity of a number of putative virulence

  2. Interrogation of the Burkholderia pseudomallei Genome to Address Differential Virulence among Isolates

    PubMed Central

    Challacombe, Jean F.; Stubben, Chris J.; Klimko, Christopher P.; Welkos, Susan L.; Kern, Steven J.; Bozue, Joel A.; Worsham, Patricia L.; Cote, Christopher K.; Wolfe, Daniel N.

    2014-01-01

    Infection by the Gram-negative pathogen Burkholderia pseudomallei results in the disease melioidosis, acquired from the environment in parts of southeast Asia and northern Australia. Clinical symptoms of melioidosis range from acute (fever, pneumonia, septicemia, and localized infection) to chronic (abscesses in various organs and tissues, most commonly occurring in the lungs, liver, spleen, kidney, prostate and skeletal muscle), and persistent infections in humans are difficult to cure. Understanding the basic biology and genomics of B. pseudomallei is imperative for the development of new vaccines and therapeutic interventions. This formidable task is becoming more tractable due to the increasing number of B. pseudomallei genomes that are being sequenced and compared. Here, we compared three B. pseudomallei genomes, from strains MSHR668, K96243 and 1106a, to identify features that might explain why MSHR668 is more virulent than K96243 and 1106a in a mouse model of B. pseudomallei infection. Our analyses focused on metabolic, virulence and regulatory genes that were present in MSHR668 but absent from both K96243 and 1106a. We also noted features present in K96243 and 1106a but absent from MSHR668, and identified genomic differences that may contribute to variations in virulence noted among the three B. pseudomallei isolates. While this work contributes to our understanding of B. pseudomallei genomics, more detailed experiments are necessary to characterize the relevance of specific genomic features to B. pseudomallei metabolism and virulence. Functional analyses of metabolic networks, virulence and regulation shows promise for examining the effects of B. pseudomallei on host cell metabolism and will lay a foundation for future prediction of the virulence of emerging strains. Continued emphasis in this area will be critical for protection against melioidosis, as a better understanding of what constitutes a fully virulent Burkholderia isolate may provide for better

  3. Understanding the Pathogenicity of Burkholderia contaminans, an Emerging Pathogen in Cystic Fibrosis.

    PubMed

    Nunvar, Jaroslav; Kalferstova, Lucie; Bloodworth, Ruhi A M; Kolar, Michal; Degrossi, Jose; Lubovich, Silvina; Cardona, Silvia T; Drevinek, Pavel

    2016-01-01

    Several bacterial species from the Burkholderia cepacia complex (Bcc) are feared opportunistic pathogens that lead to debilitating lung infections with a high risk of developing fatal septicemia in cystic fibrosis (CF) patients. However, the pathogenic potential of other Bcc species is yet unknown. To elucidate clinical relevance of Burkholderia contaminans, a species frequently isolated from CF respiratory samples in Ibero-American countries, we aimed to identify its key virulence factors possibly linked with an unfavorable clinical outcome. We performed a genome-wide comparative analysis of two isolates of B. contaminans ST872 from sputum and blood culture of a female CF patient in Argentina. RNA-seq data showed significant changes in expression for quorum sensing-regulated virulence factors and motility and chemotaxis. Furthermore, we detected expression changes in a recently described low-oxygen-activated (lxa) locus which encodes stress-related proteins, and for two clusters responsible for the biosynthesis of antifungal and hemolytic compounds pyrrolnitrin and occidiofungin. Based on phenotypic assays that confirmed changes in motility and in proteolytic, hemolytic and antifungal activities, we were able to distinguish two phenotypes of B. contaminans that coexisted in the host and entered her bloodstream. Whole genome sequencing revealed that the sputum and bloodstream isolates (each representing a distinct phenotype) differed by over 1,400 mutations as a result of a mismatch repair-deficient hypermutable state of the sputum isolate. The inferred lack of purifying selection against nonsynonymous mutations and the high rate of pseudogenization in the derived isolate indicated limited evolutionary pressure during evolution in the nutrient-rich, stable CF sputum environment. The present study is the first to examine the genomic and transcriptomic differences between longitudinal isolates of B. contaminans. Detected activity of a number of putative virulence

  4. The multiple roles of hypothetical gene BPSS1356 in Burkholderia pseudomallei.

    PubMed

    Yam, Hokchai; Rahim, Ainihayati Abdul; Mohamad, Suriani; Mahadi, Nor Muhammad; Manaf, Uyub Abdul; Shu-Chien, Alexander Chong; Najimudin, Nazalan

    2014-01-01

    Burkholderia pseudomallei is an opportunistic pathogen and the causative agent of melioidosis. It is able to adapt to harsh environments and can live intracellularly in its infected hosts. In this study, identification of transcriptional factors that associate with the β' subunit (RpoC) of RNA polymerase was performed. The N-terminal region of this subunit is known to trigger promoter melting when associated with a sigma factor. A pull-down assay using histidine-tagged B. pseudomallei RpoC N-terminal region as bait showed that a hypothetical protein BPSS1356 was one of the proteins bound. This hypothetical protein is conserved in all B. pseudomallei strains and present only in the Burkholderia genus. A BPSS1356 deletion mutant was generated to investigate its biological function. The mutant strain exhibited reduced biofilm formation and a lower cell density during the stationary phase of growth in LB medium. Electron microscopic analysis revealed that the ΔBPSS1356 mutant cells had a shrunken cytoplasm indicative of cell plasmolysis and a rougher surface when compared to the wild type. An RNA microarray result showed that a total of 63 genes were transcriptionally affected by the BPSS1356 deletion with fold change values of higher than 4. The expression of a group of genes encoding membrane located transporters was concurrently down-regulated in ΔBPSS1356 mutant. Amongst the affected genes, the putative ion transportation genes were the most severely suppressed. Deprivation of BPSS1356 also down-regulated the transcriptions of genes for the arginine deiminase system, glycerol metabolism, type III secretion system cluster 2, cytochrome bd oxidase and arsenic resistance. It is therefore obvious that BPSS1356 plays a multiple regulatory roles on many genes. PMID:24927285

  5. Chemotaxis of Burkholderia sp. Strain SJ98 towards chloronitroaromatic compounds that it can metabolise

    PubMed Central

    2012-01-01

    Background Burkholderia sp. strain SJ98 is known for its chemotaxis towards nitroaromatic compounds (NACs) that are either utilized as sole sources of carbon and energy or co-metabolized in the presence of alternative carbon sources. Here we test for the chemotaxis of this strain towards six chloro-nitroaromatic compounds (CNACs), namely 2-chloro-4-nitrophenol (2C4NP), 2-chloro-3-nitrophenol (2C3NP), 4-chloro-2-nitrophenol (4C2NP), 2-chloro-4-nitrobenzoate (2C4NB), 4-chloro-2-nitrobenzoate (4C2NB) and 5-chloro-2-nitrobenzoate (5C2NB), and examine its relationship to the degradation of such compounds. Results Strain SJ98 could mineralize 2C4NP, 4C2NB and 5C2NB, and co-metabolically transform 2C3NP and 2C4NB in the presence of an alternative carbon source, but was unable to transform 4C2NP under these conditions. Positive chemotaxis was only observed towards the five metabolically transformed CNACs. Moreover, the chemotaxis was induced by growth in the presence of the metabolisable CNAC. It was also competitively inhibited by the presence of nitroaromatic compounds (NACs) that it could metabolise but not by succinate or aspartate. Conclusions Burkholderia sp. strain SJ98 exhibits metabolic transformation of, and inducible chemotaxis towards CNACs. Its chemotactic responses towards these compounds are related to its previously demonstrated chemotaxis towards NACs that it can metabolise, but it is independently inducible from its chemotaxis towards succinate or aspartate. PMID:22292983

  6. Snake Cathelicidin NA-CATH and Smaller Helical Antimicrobial Peptides Are Effective against Burkholderia thailandensis.

    PubMed

    Blower, Ryan J; Barksdale, Stephanie M; van Hoek, Monique L

    2015-01-01

    Burkholderia thailandensis is a Gram-negative soil bacterium used as a model organism for B. pseudomallei, the causative agent of melioidosis and an organism classified category B priority pathogen and a Tier 1 select agent for its potential use as a biological weapon. Burkholderia species are reportedly "highly resistant" to antimicrobial agents, including cyclic peptide antibiotics, due to multiple resistance systems, a hypothesis we decided to test using antimicrobial (host defense) peptides. In this study, a number of cationic antimicrobial peptides (CAMPs) were tested in vitro against B. thailandensis for both antimicrobial activity and inhibition of biofilm formation. Here, we report that the Chinese cobra (Naja atra) cathelicidin NA-CATH was significantly antimicrobial against B. thailandensis. Additional cathelicidins, including the human cathelicidin LL-37, a sheep cathelicidin SMAP-29, and some smaller ATRA peptide derivatives of NA-CATH were also effective. The D-enantiomer of one small peptide (ATRA-1A) was found to be antimicrobial as well, with EC50 in the range of the L-enantiomer. Our results also demonstrate that human alpha-defensins (HNP-1 & -2) and a short beta-defensin-derived peptide (Peptide 4 of hBD-3) were not bactericidal against B. thailandensis. We also found that the cathelicidin peptides, including LL-37, NA-CATH, and SMAP-29, possessed significant ability to prevent biofilm formation of B. thailandensis. Additionally, we show that LL-37 and its D-enantiomer D-LL-37 can disperse pre-formed biofilms. These results demonstrate that although B. thailandensis is highly resistant to many antibiotics, cyclic peptide antibiotics such as polymyxin B, and defensing peptides, some antimicrobial peptides including the elapid snake cathelicidin NA-CATH exert significant antimicrobial and antibiofilm activity towards B. thailandensis. PMID:26196513

  7. Novel Burkholderia mallei Virulence Factors Linked to Specific Host-Pathogen Protein Interactions*

    PubMed Central

    Memišević, Vesna; Zavaljevski, Nela; Pieper, Rembert; Rajagopala, Seesandra V.; Kwon, Keehwan; Townsend, Katherine; Yu, Chenggang; Yu, Xueping; DeShazer, David; Reifman, Jaques; Wallqvist, Anders

    2013-01-01

    Burkholderia mallei is an infectious intracellular pathogen whose virulence and resistance to antibiotics makes it a potential bioterrorism agent. Given its genetic origin as a commensal soil organism, it is equipped with an extensive and varied set of adapted mechanisms to cope with and modulate host-cell environments. One essential virulence mechanism constitutes the specialized secretion systems that are designed to penetrate host-cell membranes and insert pathogen proteins directly into the host cell's cytosol. However, the secretion systems' proteins and, in particular, their host targets are largely uncharacterized. Here, we used a combined in silico, in vitro, and in vivo approach to identify B. mallei proteins required for pathogenicity. We used bioinformatics tools, including orthology detection and ab initio predictions of secretion system proteins, as well as published experimental Burkholderia data to initially select a small number of proteins as putative virulence factors. We then used yeast two-hybrid assays against normalized whole human and whole murine proteome libraries to detect and identify interactions among each of these bacterial proteins and host proteins. Analysis of such interactions provided both verification of known virulence factors and identification of three new putative virulence proteins. We successfully created insertion mutants for each of these three proteins using the virulent B. mallei ATCC 23344 strain. We exposed BALB/c mice to mutant strains and the wild-type strain in an aerosol challenge model using lethal B. mallei doses. In each set of experiments, mice exposed to mutant strains survived for the 21-day duration of the experiment, whereas mice exposed to the wild-type strain rapidly died. Given their in vivo role in pathogenicity, and based on the yeast two-hybrid interaction data, these results point to the importance of these pathogen proteins in modulating host ubiquitination pathways, phagosomal escape, and actin

  8. Immobilization of Burkholderia sp. lipase on a ferric silica nanocomposite for biodiesel production.

    PubMed

    Tran, Dang-Thuan; Chen, Ching-Lung; Chang, Jo-Shu

    2012-04-15

    In this work, lipase produced from an isolated strain Burkholderia sp. C20 was immobilized on magnetic nanoparticles to catalyze biodiesel synthesis. Core-shell nanoparticles were synthesized by coating Fe(3)O(4) core with silica shell. The nanoparticles treated with dimethyl octadecyl [3-(trimethoxysilyl) propyl] ammonium chloride were used as immobilization supporters. The Burkholderia lipase was then bound to the synthesized nanoparticles for immobilization. The protein binding efficiency on alkyl-functionalized Fe(3)O(4)-SiO(2) was estimated as 97%, while the efficiency was only 76% on non-modified Fe(3)O(4)-SiO(2). Maximum adsorption capacity of lipase on alkyl-functionalized Fe(3)O(4)-SiO(2) was estimated as 29.45 mg g(-1) based on Langmuir isotherm. The hydrolytic kinetics (using olive oil as substrate) of the lipase immobilized on alkyl-grafted Fe(3)O(4)-SiO(2) followed Michaelis-Menten model with a maximum reaction rate and a Michaelis constant of 6251 Ug(-1) and 3.65 mM, respectively. Physical and chemical properties of the nanoparticles and the immobilized lipase were characterized by Brunauer-Emmett-Teller (BET) analysis, scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FT-IR). Moreover, the immobilized lipase was used to catalyze the transesterification of olive oil with methanol to produce fatty acid methyl esters (FAMEs), attaining a FAMEs conversion of over 90% within 30 h in batch operation when 11 wt% immobilized lipase was employed. The immobilized lipase could be used for ten cycles without significant loss in its transesterification activity. PMID:22306108

  9. Transcriptional and posttranscriptional control of cable pilus gene expression in Burkholderia cenocepacia.

    PubMed

    Tomich, Mladen; Mohr, Christian D

    2004-02-01

    Burkholderia cenocepacia is an important member of the Burkholderia cepacia complex, a group of closely related bacteria that inhabits a wide variety of environmental niches in nature and that also colonizes the lungs of compromised humans. Certain strains of B. cenocepacia express peritrichous adherence organelles known as cable pili, thought to be important in the colonization of the lower respiratory tract. The genetic locus required for cable pilus biogenesis is comprised of at least five genes, designated cblB, cblA, cblC, cblD, and cblS. In this study a transcriptional analysis of cbl gene expression was undertaken. The principal promoter, located upstream of the cbl locus, was identified and characterized. By using lacZ transcriptional fusions, the effects of multiple environmental cues on cbl gene expression were examined. High osmolarity, temperature of 37 degrees C, acidic pH, and low iron bioavailability were found to induce cbl gene expression. Northern hybridization analysis of the cbl locus identified a single, stable transcript corresponding to cblA, encoding the major pilin subunit. Transcriptional fusion studies combined with reverse transcription-PCR analysis indicated that the stable cblA transcript is the product of an mRNA processing event. This event may ensure high levels of expression of the major pilin, relative to other components of the assembly pathway. Our findings lend further insight into the control of cable pilus biogenesis in B. cenocepacia and provide evidence for regulation of cbl gene expression on both the transcriptional and posttranscriptional levels. PMID:14761995

  10. High-quality permanent draft genome sequence of the Lebeckia ambigua-nodulating Burkholderia sp. strain WSM4176

    SciTech Connect

    De Meyer, Sofie E.; Tian, Rui; Seshadri, Rekha; Reddy, TBK; Markowitz, Victor; Ivanova, Natalia; Pati, Amrita; Woyke, Tanja; Kyrpides, Nikos; Yates, Ron; Howieson, John; Reeve, Wayne

    2015-10-16

    We report that Burkholderia sp. strain WSM4176 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective N2-fixing root nodule of Lebeckia ambigua collected in Nieuwoudtville, Western Cape of South Africa, in October 2007. This plant persists in infertile, acidic and deep sandy soils, and is therefore an ideal candidate for a perennial based agriculture system in Western Australia. Here we describe the features of Burkholderia sp. strain WSM4176, which represents a potential inoculant quality strain for L. ambigua, together with sequence and annotation. The 9,065,247 bp high-quality-draft genome is arranged in 13 scaffolds of 65 contigs, contains 8369 protein-coding genes and 128 RNA-only encoding genes, and is part of the GEBA-RNB project proposal (Project ID 882).

  11. Chemistry and biology of the potent endotoxin from a Burkholderia dolosa clinical isolate from a cystic fibrosis patient.

    PubMed

    Lorenzo, Flaviana Di; Sturiale, Luisa; Palmigiano, Angelo; Lembo-Fazio, Luigi; Paciello, Ida; Coutinho, Carla P; Sá-Correia, Isabel; Bernardini, MariaLina; Lanzetta, Rosa; Garozzo, Domenico; Silipo, Alba; Molinaro, Antonio

    2013-06-17

    This is the first report of the chemical and biological properties of the lipooligosaccharide (LOS) endotoxin isolated from Burkholderia dolosa IST4208, an isolate recovered from a cystic fibrosis (CF) patient in a Portuguese CF center. B. dolosa is a member of the Burkholderia cepacia complex, a group of closely related species that are highly problematic and opportunistic pathogens in CF. B. dolosa infection leads to accelerated loss of lung function and decreased survival. The structural determination of its endotoxin was achieved using a combination of chemistry and spectroscopy, and has revealed a novel endotoxin structure. The purified LOS was tested for its immunostimulatory activity on human HEK 293 cells expressing TLR-4, MD-2, and CD-14. In these assays, the LOS showed strong proinflammatory activity. PMID:23733445

  12. High-quality permanent draft genome sequence of the Lebeckia ambigua-nodulating Burkholderia sp. strain WSM4176

    DOE PAGESBeta

    De Meyer, Sofie E.; Tian, Rui; Seshadri, Rekha; Reddy, TBK; Markowitz, Victor; Ivanova, Natalia; Pati, Amrita; Woyke, Tanja; Kyrpides, Nikos; Yates, Ron; et al

    2015-10-16

    We report that Burkholderia sp. strain WSM4176 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective N2-fixing root nodule of Lebeckia ambigua collected in Nieuwoudtville, Western Cape of South Africa, in October 2007. This plant persists in infertile, acidic and deep sandy soils, and is therefore an ideal candidate for a perennial based agriculture system in Western Australia. Here we describe the features of Burkholderia sp. strain WSM4176, which represents a potential inoculant quality strain for L. ambigua, together with sequence and annotation. The 9,065,247 bp high-quality-draft genome is arranged in 13 scaffolds of 65 contigs,more » contains 8369 protein-coding genes and 128 RNA-only encoding genes, and is part of the GEBA-RNB project proposal (Project ID 882).« less

  13. Live imaging of symbiosis: spatiotemporal infection dynamics of a GFP-labelled Burkholderia symbiont in the bean bug Riptortus pedestris.

    PubMed

    Kikuchi, Yoshitomo; Fukatsu, Takema

    2014-03-01

    Many insects possess endosymbiotic bacteria inside their body, wherein intimate interactions occur between the partners. While recent technological advancements have deepened our understanding of metabolic and evolutionary features of the symbiont genomes, molecular mechanisms underpinning the intimate interactions remain difficult to approach because the insect symbionts are generally uncultivable. The bean bug Riptortus pedestris is associated with the betaproteobacterial Burkholderia symbiont in a posterior region of the midgut, which develops numerous crypts harbouring the symbiont extracellularly. Distinct from other insect symbiotic systems, R. pedestris acquires the Burkholderia symbiont not by vertical transmission but from the environment every generation. By making use of the cultivability and the genetic tractability of the symbiont, we constructed a transgenic Burkholderia strain labelled with green fluorescent protein (GFP), which enabled detailed observation of spatiotemporal dynamics and the colonization process of the symbiont in freshly prepared specimens. The symbiont live imaging revealed that, at the second instar, colonization of the symbiotic midgut M4 region started around 6 h after inoculation (hai). By 24 hai, the symbiont cells appeared in the main tract and also in several crypts of the M4. By 48 hai, most of the crypts were colonized by the symbiont cells. By 72 hai, all the crypts were filled up with the symbiont cells and the symbiont localization pattern continued during the subsequent nymphal development. Quantitative PCR of the symbiont confirmed the infection dynamics quantitatively. These results highlight the stinkbug-Burkholderia gut symbiosis as an unprecedented model for comprehensive understanding of molecular mechanisms underpinning insect symbiosis. PMID:24103110

  14. Experimental bacteriophage therapy increases survival of Galleria mellonella larvae infected with clinically relevant strains of the Burkholderia cepacia complex.

    PubMed

    Seed, Kimberley D; Dennis, Jonathan J

    2009-05-01

    The Burkholderia cepacia complex (BCC) is a group of bacterial pathogens that are highly antibiotic resistant and associated with debilitating respiratory infections. Although bacteriophages of the BCC have been isolated and characterized, no studies have yet examined phage therapy against the BCC in vivo. In a caterpillar infection model, we show that BCC phage therapy is an alternative treatment possibility and is highly effective under specific conditions. PMID:19223640

  15. Genome Sequence of a Burkholderia pseudomallei Clinical Isolate from a Patient with Community-Acquired Pneumonia and Septicemia

    PubMed Central

    Vandana, K. E.; Chaitanya, T. A. K.; Shaw, Tushar; Bhat, H. Vinod; Chakrabarty, Sanjiban; Paul, Bobby; Mallya, Sandeep; Murali, T. S.; Satyamoorthy, Kapaettu

    2015-01-01

    Here, we report the draft genome sequence of Burkholderia pseudomallei CM_Manipal, the causative agent of melioidosis isolated from a diabetic patient in Manipal, southern India. The draft genome consists of 107 contigs and is 7,209,157 bp long. A total of 5,600 coding sequences (CDSs), 60 tRNAs, 12 rRNAs, and one noncoding RNA (ncRNA) were predicted from this assembly. PMID:26294629

  16. Genome Sequence of a Burkholderia pseudomallei Clinical Isolate from a Patient with Community-Acquired Pneumonia and Septicemia.

    PubMed

    Mukhopadhyay, Chiranjay; Vandana, K E; Chaitanya, T A K; Shaw, Tushar; Bhat, H Vinod; Chakrabarty, Sanjiban; Paul, Bobby; Mallya, Sandeep; Murali, T S; Satyamoorthy, Kapaettu

    2015-01-01

    Here, we report the draft genome sequence of Burkholderia pseudomallei CM_Manipal, the causative agent of melioidosis isolated from a diabetic patient in Manipal, southern India. The draft genome consists of 107 contigs and is 7,209,157 bp long. A total of 5,600 coding sequences (CDSs), 60 tRNAs, 12 rRNAs, and one noncoding RNA (ncRNA) were predicted from this assembly. PMID:26294629

  17. Burkholderia xernovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility

    SciTech Connect

    Chain, Patrick S. G.; Denef, Vincent; Konstantinidis, Konstantinos T; Vergez, Lisa; Agullo, Loreine; Reyes, Valeria Latorre; Hauser, Loren John; Cordova, Macarena; Gomez, Luis; Gonzalez, Myriam; Land, Miriam L; Lao, Victoria; Larimer, Frank W; LiPuma, John J; Mahenthiralingam, Eshwar; Malfatti, Stephanie; Marx, Christopher J; Parnell, J Jacob; Ramette, Alban; Richardson, P M; Seeger, Michael; Smith, Daryl; Spilker, Theodore; Sul, Woo Jun; Tsoi, Tamara V; Zhulin, Igor B; Tiedje, James M.

    2006-01-01

    Burkholderia xenovorans LB400 (LB400), a well studied, effective polychlorinated biphenyl-degrader, has one of the two largest known bacterial genomes and is the first nonpathogenic Burkholderia isolate sequenced. From an evolutionary perspective, we find significant differences in functional specialization between the three replicons of LB400, as well as a more relaxed selective pressure for genes located on the two smaller vs. the largest replicon. High genomic plasticity, diversity, and specialization within the Burkholderia genus are exemplified by the conservation of only 44% of the genes between LB400 and Burkholderia cepacia complex strain 383. Even among four B. xenovorans strains, genome size varies from 7.4 to 9.73 Mbp. The latter is largely explained by our findings that >20% of the LB400 sequence was recently acquired by means of lateral gene transfer. Although a range of genetic factors associated with in vivo survival and intercellular interactions are present, these genetic factors are likely related to niche breadth rather than determinants of pathogenicity. The presence of at least eleven 'central aromatic' and twenty 'peripheral aromatic' pathways in LB400, among the highest in any sequenced bacterial genome, supports this hypothesis. Finally, in addition to the experimentally observed redundancy in benzoate degradation and formaldehyde oxidation pathways, the fact that 17.6% of proteins have a better LB400 paralog than an ortholog in a different genome highlights the importance of gene duplication and repeated acquirement, which, coupled with their divergence, raises questions regarding the role of paralogs and potential functional redundancies in large-genome microbes.

  18. Detection of Bacterial Virulence Genes by Subtractive Hybridization: Identification of Capsular Polysaccharide of Burkholderia pseudomallei as a Major Virulence Determinant

    PubMed Central

    Reckseidler, Shauna L.; DeShazer, David; Sokol, Pamela A.; Woods, Donald E.

    2001-01-01

    Burkholderia pseudomallei, the etiologic agent of melioidosis, is responsible for a broad spectrum of illnesses in humans and animals particularly in Southeast Asia and northern Australia, where it is endemic. Burkholderia thailandensis is a nonpathogenic environmental organism closely related to B. pseudomallei. Subtractive hybridization was carried out between these two species to identify genes encoding virulence determinants in B. pseudomallei. Screening of the subtraction library revealed A-T-rich DNA sequences unique to B. pseudomallei, suggesting they may have been acquired by horizontal transfer. One of the subtraction clones, pDD1015, encoded a protein with homology to a glycosyltransferase from Pseudomonas aeruginosa. This gene was insertionally inactivated in wild-type B. pseudomallei to create SR1015. It was determined by enzyme-linked immunosorbent assay and immunoelectron microscopy that the inactivated gene was involved in the production of a major surface polysaccharide. The 50% lethal dose (LD50) for wild-type B. pseudomallei is <10 CFU; the LD50 for SR1015 was determined to be 3.5 × 105 CFU, similar to that of B. thailandensis (6.8 × 105 CFU). DNA sequencing of the region flanking the glycosyltransferase gene revealed open reading frames similar to capsular polysaccharide genes in Haemophilus influenzae, Escherichia coli, and Neisseria meningitidis. In addition, DNA from Burkholderia mallei and Burkholderia stabilis hybridized to a glycosyltransferase fragment probe, and a capsular structure was identified on the surface of B. stabilis via immunoelectron microscopy. Thus, the combination of PCR-based subtractive hybridization, insertional inactivation, and animal virulence studies has facilitated the identification of an important virulence determinant in B. pseudomallei. PMID:11119486

  19. Burkholderia genome mining for nonribosomal peptide synthetases reveals a great potential for novel siderophores and lipopeptides synthesis.

    PubMed

    Esmaeel, Qassim; Pupin, Maude; Kieu, Nam Phuong; Chataigné, Gabrielle; Béchet, Max; Deravel, Jovana; Krier, François; Höfte, Monica; Jacques, Philippe; Leclère, Valérie

    2016-06-01

    Burkholderia is an important genus encompassing a variety of species, including pathogenic strains as well as strains that promote plant growth. We have carried out a global strategy, which combined two complementary approaches. The first one is genome guided with deep analysis of genome sequences and the second one is assay guided with experiments to support the predictions obtained in silico. This efficient screening for new secondary metabolites, performed on 48 gapless genomes of Burkholderia species, revealed a total of 161 clusters containing nonribosomal peptide synthetases (NRPSs), with the potential to synthesize at least 11 novel products. Most of them are siderophores or lipopeptides, two classes of products with potential application in biocontrol. The strategy led to the identification, for the first time, of the cluster for cepaciachelin biosynthesis in the genome of Burkholderia ambifaria AMMD and a cluster corresponding to a new malleobactin-like siderophore, called phymabactin, was identified in Burkholderia phymatum STM815 genome. In both cases, the siderophore was produced when the strain was grown in iron-limited conditions. Elsewhere, the cluster for the antifungal burkholdin was detected in the genome of B. ambifaria AMMD and also Burkholderia sp. KJ006. Burkholderia pseudomallei strains harbor the genetic potential to produce a novel lipopeptide called burkhomycin, containing a peptidyl moiety of 12 monomers. A mixture of lipopeptides produced by Burkholderia rhizoxinica lowered the surface tension of the supernatant from 70 to 27 mN·m(-1) . The production of nonribosomal secondary metabolites seems related to the three phylogenetic groups obtained from 16S rRNA sequences. Moreover, the genome-mining approach gave new insights into the nonribosomal synthesis exemplified by the identification of dual C/E domains in lipopeptide NRPSs, up to now essentially found in Pseudomonas strains. PMID:27060604

  20. The melioidosis agent Burkholderia pseudomallei and related opportunistic pathogens detected in faecal matter of wildlife and livestock in northern Australia.

    PubMed

    Höger, A C R; Mayo, M; Price, E P; Theobald, V; Harrington, G; Machunter, B; Choy, J Low; Currie, B J; Kaestli, M

    2016-07-01

    The Darwin region in northern Australia has experienced rapid population growth in recent years, and with it, an increased incidence of melioidosis. Previous studies in Darwin have associated the environmental presence of Burkholderia pseudomallei, the causative agent of melioidosis, with anthropogenic land usage and proximity to animals. In our study, we estimated the occurrence of B. pseudomallei and Burkholderia spp. relatives in faecal matter of wildlife, livestock and domestic animals in the Darwin region. A total of 357 faecal samples were collected and bacteria isolated through culture and direct DNA extraction after enrichment in selective media. Identification of B. pseudomallei, B. ubonensis, and other Burkholderia spp. was carried out using TTS1, Bu550, and recA BUR3-BUR4 quantitative PCR assays, respectively. B. pseudomallei was detected in seven faecal samples from wallabies and a chicken. B. cepacia complex spp. and Pandoraea spp. were cultured from wallaby faecal samples, and B. cenocepacia and B. cepacia were also isolated from livestock animals. Various bacteria isolated in this study represent opportunistic human pathogens, raising the possibility that faecal shedding contributes to the expanding geographical distribution of not just B. pseudomallei but other Burkholderiaceae that can cause human disease. PMID:26935879

  1. Identification of volatile compounds produced by the bacterium Burkholderia tropica that inhibit the growth of fungal pathogens

    PubMed Central

    Tenorio-Salgado, Silvia; Tinoco, Raunel; Vazquez-Duhalt, Rafael; Caballero-Mellado, Jesus; Perez-Rueda, Ernesto

    2013-01-01

    It has been documented that bacteria from the Burkholderia genera produce different kinds of compounds that inhibit plant pathogens, however in Burkholderia tropica, an endophytic diazotrophic and phosphate-solubilizing bacterium isolated from a wide diversity of plants, the capacity to produce antifungal compounds has not been evaluated. In order to expand our knowledge about Burkholderia tropica as a potential biological control agent, we analyzed 15 different strains of this bacterium to evaluate their capacities to inhibit the growth of four phytopathogenic fungi, Colletotrichum gloeosporioides, Fusarium culmorum, Fusarium oxysporum and Sclerotium rolffsi. Diverse analytical techniques, including plant root protection and dish plate growth assays and gas chromatography-mass spectroscopy showed that the fungal growth inhibition was intimately associated with the volatile compounds produced by B. tropica and, in particular, two bacterial strains (MTo293 and TTe203) exhibited the highest radial mycelial growth inhibition. Morphological changes associated with these compounds, such as disruption of fungal hyphae, were identified by using photomicrographic analysis. By using gas chromatography-mass spectroscopy technique, 18 volatile compounds involved in the growth inhibition mechanism were identified, including α-pinene and limonene. In addition, we found a high proportion of bacterial strains that produced siderophores during growth with different carbon sources, such as alanine and glutamic acid; however, their roles in the antagonism mechanism remain unclear. PMID:23680857

  2. Identification of Specific and Universal Virulence Factors in Burkholderia cenocepacia Strains by Using Multiple Infection Hosts▿ †

    PubMed Central

    Uehlinger, Susanne; Schwager, Stephan; Bernier, Steve P.; Riedel, Kathrin; Nguyen, David T.; Sokol, Pamela A.; Eberl, Leo

    2009-01-01

    Over the past few decades, strains of the Burkholderia cepacia complex have emerged as important pathogens for patients suffering from cystic fibrosis. Identification of virulence factors and assessment of the pathogenic potential of Burkholderia strains have increased the need for appropriate infection models. In previous studies, different infection hosts, including mammals, nematodes, insects, and plants, have been used. At present, however, the extent to which the virulence factors required to infect different hosts overlap is not known. The aim of this study was to analyze the roles of various virulence factors of two closely related Burkholderia cenocepacia strains, H111 and the epidemic strain K56-2, in a multihost pathogenesis system using four different model organisms, namely, Caenorhabditis elegans, Galleria mellonella, the alfalfa plant, and mice or rats. We demonstrate that most of the identified virulence factors are specific for one of the infection models, and only three factors were found to be essential for full pathogenicity in several hosts: mutants defective in (i) quorum sensing, (ii) siderophore production, and (iii) lipopolysaccharide biosynthesis were attenuated in at least three of the infection models and thus may represent promising targets for the development of novel anti-infectives. PMID:19528212

  3. The Madagascar hissing cockroach as a novel surrogate host for Burkholderia pseudomallei, B. mallei and B. thailandensis

    PubMed Central

    2012-01-01

    Background Burkholderia pseudomallei and Burkholderia mallei are gram-negative pathogens responsible for the diseases melioidosis and glanders, respectively. Both species cause disease in humans and animals and have been designated as category B select agents by the Centers for Disease Control and Prevention (CDC). Burkholderia thailandensis is a closely related bacterium that is generally considered avirulent for humans. While it can cause disease in rodents, the B. thailandensis 50% lethal dose (LD50) is typically ≥ 104-fold higher than the B. pseudomallei and B. mallei LD50 in mammalian models of infection. Here we describe an alternative to mammalian hosts in the study of virulence and host-pathogen interactions of these Burkholderia species. Results Madagascar hissing cockroaches (MH cockroaches) possess a number of qualities that make them desirable for use as a surrogate host, including ease of breeding, ease of handling, a competent innate immune system, and the ability to survive at 37°C. MH cockroaches were highly susceptible to infection with B. pseudomallei, B. mallei and B. thailandensis and the LD50 was <10 colony-forming units (cfu) for all three species. In comparison, the LD50 for Escherichia coli in MH cockroaches was >105 cfu. B. pseudomallei, B. mallei, and B. thailandensis cluster 1 type VI secretion system (T6SS-1) mutants were all attenuated in MH cockroaches, which is consistent with previous virulence studies conducted in rodents. B. pseudomallei mutants deficient in the other five T6SS gene clusters, T6SS-2 through T6SS-6, were virulent in both MH cockroaches and hamsters. Hemocytes obtained from MH cockroaches infected with B. pseudomallei harbored numerous intracellular bacteria, suggesting that this facultative intracellular pathogen can survive and replicate inside of MH cockroach phagocytic cells. The hemolymph extracted from these MH cockroaches also contained multinuclear giant cells (MNGCs) with intracellular B

  4. Burkholderia dipogonis sp. nov., isolated from root nodules of Dipogon lignosus in New Zealand and Western Australia.

    PubMed

    Sheu, Shih-Yi; Chen, Ming-Hui; Liu, Wendy Y Y; Andrews, Mitchell; James, Euan K; Ardley, Julie K; De Meyer, Sofie E; James, Trevor K; Howieson, John G; Coutinho, Bruna G; Chen, Wen-Ming

    2015-12-01

    Seven strains, ICMP 19430T, ICMP 19429, ICMP 19431, WSM4637, WSM4638, WSM4639 and WSM4640, were isolated from nitrogen-fixing nodules on roots of the invasive South African legume Dipogon lignosus (subfamily Papilionoideae, tribe Phaseoleae) in New Zealand and Western Australia, and their taxonomic positions were investigated by using a polyphasic approach. All seven strains grew at 10-37 °C (optimum, 25-30 °C), at pH 4.0-9.0 (optimum, pH 6.0-7.0) and with 0-2 % (w/v) NaCl (optimum growth in the absence of NaCl). On the basis of 16S rRNA gene sequence analysis, the strains showed 99.0-99.5 % sequence similarity to the closest type strain, Burkholderia phytofirmans PsJNT, and 98.4-99.7 % sequence similarity to Burkholderia caledonica LMG 19076T. The predominant fatty acids were C18 : 1ω7c (21.0 % of the total fatty acids in strain ICMP 19430T), C16 : 0 (19.1 %), C17 : 0 cyclo (18.9 %), summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c; 10.7 %) and C19 : 0 cyclov ω8c (7.5 %). The polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and several uncharacterized aminophospholipids and phospholipids. The major isoprenoid quinone was Q-8 and the DNA G+C content of strain ICMP 19430T was 63.2 mol%. The DNA–DNA relatedness of the novel strains with respect to the closest neighbouring members of the genus Burkholderia was 55 % or less. On the basis of 16S rRNA and recA gene sequence similarities and chemotaxonomic and phenotypic data,these strains represent a novel symbiotic species in the genus Burkholderia, for which the name Burkholderia dipogonis sp. nov. is proposed, with the type strain ICMP 19430T (=LMG28415T=HAMBI 3637T). PMID:26410793

  5. Correlation of rpsU Gene Sequence Clusters and Biochemical Properties, Gc–Ms Spectra and Resistance Profiles of Clinical Burkholderia Spp. Isolates

    PubMed Central

    Ostermann, Maria Franziska; Neubauer, Heinrich; Frickmann, Hagen; Hagen, Ralf Matthias

    2016-01-01

    This study assessed the variation of phenotypic features of clinical isolates of Burkholderia spp. from common rpsU gene sequence clusters. A total of 41 clinical Burkholderia spp. isolates from German mucoviscidosis patients was subjected to rpsU gene sequencing. Biochemical assessment included the API systems 20 NE and 50 CHE as well as the Micronaut NF system. Fatty acid patterns were assessed using gas chromatography–mass spectrometry (GC–MS). Broth microdilution was used to identify minimum inhibitory concentrations. Five rpsU gene sequence clusters comprised more than one clinical isolate. Altogether, assignments to three species and seven clusters comprising more than one Burkholderia species were performed. Inhomogeneity of biochemical reactions within the clusters ranged from 0/28 to 45/50 reactions. The standard deviation for fatty acid distributions ranged from 0% to 11.5%. Minimum inhibitory concentrations within the clusters showed a wide variation but only minor differences between the clusters. Broad variations within identified rpsU gene sequence clusters regarding biochemical reactions, fatty acid patterns, and resistance patterns of clinical Burkholderia spp. isolates make the application of rpsU gene sequence analysis as a stand-alone procedure for discriminations within the Burkholderia cepacia complex unreliable. PMID:27141312

  6. Correlation of rpsU Gene Sequence Clusters and Biochemical Properties, Gc-Ms Spectra and Resistance Profiles of Clinical Burkholderia Spp. Isolates.

    PubMed

    Ostermann, Maria Franziska; Neubauer, Heinrich; Frickmann, Hagen; Hagen, Ralf Matthias

    2016-03-01

    This study assessed the variation of phenotypic features of clinical isolates of Burkholderia spp. from common rpsU gene sequence clusters. A total of 41 clinical Burkholderia spp. isolates from German mucoviscidosis patients was subjected to rpsU gene sequencing. Biochemical assessment included the API systems 20 NE and 50 CHE as well as the Micronaut NF system. Fatty acid patterns were assessed using gas chromatography-mass spectrometry (GC-MS). Broth microdilution was used to identify minimum inhibitory concentrations. Five rpsU gene sequence clusters comprised more than one clinical isolate. Altogether, assignments to three species and seven clusters comprising more than one Burkholderia species were performed. Inhomogeneity of biochemical reactions within the clusters ranged from 0/28 to 45/50 reactions. The standard deviation for fatty acid distributions ranged from 0% to 11.5%. Minimum inhibitory concentrations within the clusters showed a wide variation but only minor differences between the clusters. Broad variations within identified rpsU gene sequence clusters regarding biochemical reactions, fatty acid patterns, and resistance patterns of clinical Burkholderia spp. isolates make the application of rpsU gene sequence analysis as a stand-alone procedure for discriminations within the Burkholderia cepacia complex unreliable. PMID:27141312

  7. Interrogation of the Burkholderia pseudomallei genome to address differential virulence among isolates

    SciTech Connect

    Challacombe, Jean F.; Stubben, Chris J.; Klimko, Christopher P.; Welkos, Susan L.; Kern, Steven J.; Bozue, Joel A.; Worsham, Patricia L.; Cote, Christopher K.; Wolfe, Daniel N.; Badger, Jonathan H.

    2014-12-23

    Infection by the Gram-negative pathogen Burkholderia pseudomallei results in the disease melioidosis, acquired from the environment in parts of southeast Asia and northern Australia. Clinical symptoms of melioidosis range from acute (fever, pneumonia, septicemia, and localized infection) to chronic (abscesses in various organs and tissues, most commonly occurring in the lungs, liver, spleen, kidney, prostate and skeletal muscle), and persistent infections in humans are difficult to cure. Understanding the basic biology and genomics of B. pseudomallei is imperative for the development of new vaccines and therapeutic interventions. This formidable task is becoming more tractable due to the increasing number of B. pseudomallei genomes that are being sequenced and compared. Here, we compared three B. pseudomallei genomes, from strains MSHR668, K96243 and 1106a, to identify features that might explain why MSHR668 is more virulent than K96243 and 1106a in a mouse model of B. pseudomallei infection. Our analyses focused on metabolic, virulence and regulatory genes that were present in MSHR668 but absent from both K96243 and 1106a. We also noted features present in K96243 and 1106a but absent from MSHR668, and identified genomic differences that may contribute to variations in virulence noted among the three B. pseudomallei isolates. While this work contributes to our understanding of B. pseudomallei genomics, more detailed experiments are necessary to characterize the relevance of specific genomic features to B. pseudomallei metabolism and virulence. Functional analyses of metabolic networks, virulence and regulation shows promise for examining the effects of B. pseudomallei on host cell metabolism and will lay a foundation for future prediction of the virulence of emerging strains. Continued emphasis in this area will be critical for protection against melioidosis, as a better understanding of what

  8. Rapid identification of Burkholderia mallei and Burkholderia pseudomallei by intact cell Matrix-assisted Laser Desorption/Ionisation mass spectrometric typing

    PubMed Central

    2012-01-01

    Background Burkholderia (B.) pseudomallei and B. mallei are genetically closely related species. B. pseudomallei causes melioidosis in humans and animals, whereas B. mallei is the causative agent of glanders in equines and rarely also in humans. Both agents have been classified by the CDC as priority category B biological agents. Rapid identification is crucial, because both agents are intrinsically resistant to many antibiotics. Matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-TOF MS) has the potential of rapid and reliable identification of pathogens, but is limited by the availability of a database containing validated reference spectra. The aim of this study was to evaluate the use of MALDI-TOF MS for the rapid and reliable identification and differentiation of B. pseudomallei and B. mallei and to build up a reliable reference database for both organisms. Results A collection of ten B. pseudomallei and seventeen B. mallei strains was used to generate a library of reference spectra. Samples of both species could be identified by MALDI-TOF MS, if a dedicated subset of the reference spectra library was used. In comparison with samples representing B. mallei, higher genetic diversity among B. pseudomallei was reflected in the higher average Eucledian distances between the mass spectra and a broader range of identification score values obtained with commercial software for the identification of microorganisms. The type strain of B. pseudomallei (ATCC 23343) was isolated decades ago and is outstanding in the spectrum-based dendrograms probably due to massive methylations as indicated by two intensive series of mass increments of 14 Da specifically and reproducibly found in the spectra of this strain. Conclusions Handling of pathogens under BSL 3 conditions is dangerous and cumbersome but can be minimized by inactivation of bacteria with ethanol, subsequent protein extraction under BSL 1 conditions and MALDI-TOF MS analysis being faster than

  9. Burkholderia cepacia complex infection in Italian patients with cystic fibrosis: prevalence, epidemiology, and genomovar status.

    PubMed

    Agodi, A; Mahenthiralingam, E; Barchitta, M; Gianninò, V; Sciacca, A; Stefani, S

    2001-08-01

    The prevalence, epidemiology, and genomovar status of Burkholderia cepacia complex strains recovered from Italian cystic fibrosis (CF) patients were investigated using genetic typing and species identification methods. Four CF treatment centers were examined: two in Sicily, one in central Italy, and one in northern Italy. B. cepacia complex bacteria were isolated from 59 out of 683 CF patients attending these centers (8.6%). For the two geographically related treatment centers in Sicily, there was a high incidence of infection caused by a single epidemic clone possessing the cblA gene and belonging to B. cepacia genomovar III, recA group III-A, closely related to the major North America-United Kingdom clone, ET12; instability of the cblA sequence was also demonstrated for clonal isolates. In summary, of all the strains of B. cepacia encountered in the Italian CF population, the genomovar III, recA group III-A strains were the most prevalent and transmissible. However, patient-to-patient spread was also observed with several other genomovars, including strains of novel taxonomic status within the B. cepacia complex. A combination of genetic identification and molecular typing analysis is recommended to fully define specific risks posed by the genomovar status of strains within the B. cepacia complex. PMID:11474009

  10. Experimental adaptation of Burkholderia cenocepacia to onion medium reduces host range.

    PubMed

    Ellis, Crystal N; Cooper, Vaughn S

    2010-04-01

    It is unclear whether adaptation to a new host typically broadens or compromises host range, yet the answer bears on the fate of emergent pathogens and symbionts. We investigated this dynamic using a soil isolate of Burkholderia cenocepacia, a species that normally inhabits the rhizosphere, is related to the onion pathogen B. cepacia, and can infect the lungs of cystic fibrosis patients. We hypothesized that adaptation of B. cenocepacia to a novel host would compromise fitness and virulence in alternative hosts. We modeled adaptation to a specific host by experimentally evolving 12 populations of B. cenocepacia in liquid medium composed of macerated onion tissue for 1,000 generations. The mean fitness of all populations increased by 78% relative to the ancestor, but significant variation among lines was observed. Populations also varied in several phenotypes related to host association, including motility, biofilm formation, and quorum-sensing function. Together, these results suggest that each population adapted by fixing different sets of adaptive mutations. However, this adaptation was consistently accompanied by a loss of pathogenicity to the nematode Caenorhabditis elegans; by 500 generations most populations became unable to kill nematodes. In conclusion, we observed a narrowing of host range as a consequence of prolonged adaptation to an environment simulating a specific host, and we suggest that emergent pathogens may face similar consequences if they become host-restricted. PMID:20154121

  11. Burkholderia Diffusible Signal Factor Signals to Francisella novicida To Disperse Biofilm and Increase Siderophore Production

    PubMed Central

    Dean, Scott N.; Chung, Myung-Chul

    2015-01-01

    In many bacteria, the ability to modulate biofilm production relies on specific signaling molecules that are either self-produced or made by neighboring microbes within the ecological niche. We analyzed the potential interspecies signaling effect of the Burkholderia diffusible signal factor (BDSF) on Francisella novicida, a model organism for Francisella tularensis, and demonstrated that BDSF both inhibits the formation and causes the dispersion of Francisella biofilm. Specificity was demonstrated for the cis versus the trans form of BDSF. Using transcriptome sequencing, quantitative reverse transcription-PCR, and activity assays, we found that BDSF altered the expression of many F. novicida genes, including genes involved in biofilm formation, such as chitinases. Using a chitinase inhibitor, the antibiofilm activity of BDSF was also shown to be chitinase dependent. In addition, BDSF caused an increase in RelA expression and increased levels of (p)ppGpp, leading to decreased biofilm production. These results support our observation that exposure of F. novicida to BDSF causes biofilm dispersal. Furthermore, BDSF upregulated the genes involved in iron acquisition (figABCD), increasing siderophore production. Thus, this study provides evidence for a potential role and mechanism of diffusible signal factor (DSF) signaling in the genus Francisella and suggests the possibility of interspecies signaling between Francisella and other bacteria. Overall, this study suggests that in response to the interspecies DSF signal, F. novicida can alter its gene expression and regulate its biofilm formation. PMID:26231649

  12. What Drives the Occurrence of the Melioidosis Bacterium Burkholderia pseudomallei in Domestic Gardens?

    PubMed Central

    Kaestli, Mirjam; Harrington, Glenda; Mayo, Mark; Chatfield, Mark D.; Harrington, Ian; Hill, Audrey; Munksgaard, Niels; Gibb, Karen; Currie, Bart J.

    2015-01-01

    Melioidosis is an often fatal infectious disease affecting humans and animals in tropical regions and is caused by the saprophytic environmental bacterium Burkholderia pseudomallei. Domestic gardens are not only a common source of exposure to soil and thus to B. pseudomallei, but they also have been found to contain more B. pseudomallei than other environments. In this study we addressed whether anthropogenic manipulations common to gardens such as irrigation or fertilizers change the occurrence of B. pseudomallei. We conducted a soil microcosm experiment with a range of fertilizers and soil types as well as a longitudinal interventional study over three years on an experimental fertilized field site in an area naturally positive for B. pseudomallei. Irrigation was the only consistent treatment to increase B. pseudomallei occurrence over time. The effects of fertilizers upon these bacteria depended on soil texture, physicochemical soil properties and biotic factors. Nitrates and urea increased B. pseudomallei load in sand while phosphates had a positive effect in clay. The high buffering and cation exchange capacities of organic material found in a commercial potting mix led to a marked increase in soil salinity with no survival of B. pseudomallei after four weeks in the potting mix sampled. Imported grasses were also associated with B. pseudomallei occurrence in a multivariate model. With increasing population density in endemic areas these findings inform the identification of areas in the anthropogenic environment with increased risk of exposure to B. pseudomallei. PMID:25803046

  13. Discovery of new diketopiperazines inhibiting Burkholderia cenocepacia quorum sensing in vitro and in vivo.

    PubMed

    Scoffone, Viola C; Chiarelli, Laurent R; Makarov, Vadim; Brackman, Gilles; Israyilova, Aygun; Azzalin, Alberto; Forneris, Federico; Riabova, Olga; Savina, Svetlana; Coenye, Tom; Riccardi, Giovanna; Buroni, Silvia

    2016-01-01

    Burkholderia cenocepacia, an opportunistic respiratory pathogen particularly relevant for cystic fibrosis patients, is difficult to eradicate due to its high level of resistance to most clinically relevant antimicrobials. Consequently, the discovery of new antimicrobials as well as molecules capable of inhibiting its virulence is mandatory. In this regard quorum sensing (QS) represents a good target for anti-virulence therapies, as it has been linked to biofilm formation and is important for the production of several virulence factors, including proteases and siderophores. Here, we report the discovery of new diketopiperazine inhibitors of the B. cenocepacia acyl homoserine lactone synthase CepI, and report their anti-virulence properties. Out of ten different compounds assayed against recombinant CepI, four were effective inhibitors, with IC50 values in the micromolar range. The best compounds interfered with protease and siderophore production, as well as with biofilm formation, and showed good in vivo activity in a Caenorhabditis elegans infection model. These molecules were also tested in human cells and showed very low toxicity. Therefore, they could be considered for in vivo combined treatments with established or novel antimicrobials, to improve the current therapeutic strategies against B. cenocepacia. PMID:27580679

  14. Burkholderia cenocepacia Lipopolysaccharide Modification and Flagellin Glycosylation Affect Virulence but Not Innate Immune Recognition in Plants

    PubMed Central

    Khodai-Kalaki, Maryam; Andrade, Angel; Fathy Mohamed, Yasmine

    2015-01-01

    ABSTRACT Burkholderia cenocepacia causes opportunistic infections in plants, insects, animals, and humans, suggesting that “virulence” depends on the host and its innate susceptibility to infection. We hypothesized that modifications in key bacterial molecules recognized by the innate immune system modulate host responses to B. cenocepacia. Indeed, modification of lipopolysaccharide (LPS) with 4-amino-4-deoxy-l-arabinose and flagellin glycosylation attenuates B. cenocepacia infection in Arabidopsis thaliana and Galleria mellonella insect larvae. However, B. cenocepacia LPS and flagellin triggered rapid bursts of nitric oxide and reactive oxygen species in A. thaliana leading to activation of the PR-1 defense gene. These responses were drastically reduced in plants with fls2 (flagellin FLS2 host receptor kinase), Atnoa1 (nitric oxide-associated protein 1), and dnd1-1 (reduced production of nitric oxide) null mutations. Together, our results indicate that LPS modification and flagellin glycosylation do not affect recognition by plant receptors but are required for bacteria to establish overt infection. PMID:26045541

  15. Environmental Attributes Influencing the Distribution of Burkholderia pseudomallei in Northern Australia.

    PubMed

    Baker, Anthony L; Ezzahir, Jessica; Gardiner, Christopher; Shipton, Warren; Warner, Jeffrey M

    2015-01-01

    Factors responsible for the spatial and temporal clustering of Burkholderia pseudomallei in the environment remain to be elucidated. Whilst laboratory based experiments have been performed to analyse survival of the organism in various soil types, such approaches are strongly influenced by alterations to the soil micro ecology during soil sanitisation and translocation. During the monsoonal season in Townsville, Australia, B. pseudomallei is discharged from Castle Hill (an area with a very high soil prevalence of the organism) by groundwater seeps and is washed through a nearby area where intensive sampling in the dry season has been unable to detect the organism. We undertook environmental sampling and soil and plant characterisation in both areas to ascertain physiochemical and macro-floral differences between the two sites that may affect the prevalence of B. pseudomallei. In contrast to previous studies, the presence of B. pseudomallei was correlated with a low gravimetric water content and low nutrient availability (nitrogen and sulphur) and higher exchangeable potassium in soils favouring recovery. Relatively low levels of copper, iron and zinc favoured survival. The prevalence of the organism was found to be highest under the grasses Aristida sp. and Heteropogon contortus and to a lesser extent under Melinis repens. The findings of this study indicate that a greater variety of factors influence the endemicity of melioidosis than has previously been reported, and suggest that biogeographical boundaries to the organisms' distribution involve complex interactions. PMID:26398904

  16. Candidate Essential Genes in Burkholderia cenocepacia J2315 Identified by Genome-Wide TraDIS

    PubMed Central

    Wong, Yee-Chin; Abd El Ghany, Moataz; Naeem, Raeece; Lee, Kok-Wei; Tan, Yung-Chie; Pain, Arnab; Nathan, Sheila

    2016-01-01

    Burkholderia cenocepacia infection often leads to fatal cepacia syndrome in cystic fibrosis patients. However, antibiotic therapy rarely results in complete eradication of the pathogen due to its intrinsic resistance to many clinically available antibiotics. Recent attention has turned to the identification of essential genes as the proteins encoded by these genes may serve as potential targets for development of novel antimicrobials. In this study, we utilized TraDIS (Transposon Directed Insertion-site Sequencing) as a genome-wide screening tool to facilitate the identification of B. cenocepacia genes essential for its growth and viability. A transposon mutant pool consisting of approximately 500,000 mutants was successfully constructed, with more than 400,000 unique transposon insertion sites identified by computational analysis of TraDIS datasets. The saturated library allowed for the identification of 383 genes that were predicted to be essential in B. cenocepacia. We extended the application of TraDIS to identify conditionally essential genes required for in vitro growth and revealed an additional repertoire of 439 genes to be crucial for B. cenocepacia growth under nutrient-depleted conditions. The library of B. cenocepacia mutants can subsequently be subjected to various biologically related conditions to facilitate the discovery of genes involved in niche adaptation as well as pathogenicity and virulence. PMID:27597847

  17. A Pipeline for Screening Small Molecules with Growth Inhibitory Activity against Burkholderia cenocepacia

    PubMed Central

    Selin, Carrie; Stietz, Maria S.; Blanchard, Jan E.; Hall, Dennis G.; Brown, Eric D.; Cardona, Silvia T.

    2015-01-01

    Infections with the bacteria Burkholderia cepacia complex (Bcc) are very difficult to eradicate in cystic fibrosis patients due the intrinsic resistance of Bcc to most available antibiotics and the emergence of multiple antibiotic resistant strains during antibiotic treatment. In this work, we used a whole-cell based assay to screen a diverse collection of small molecules for growth inhibitors of a relevant strain of Bcc, B. cenocepacia K56-2. The primary screen used bacterial growth in 96-well plate format and identified 206 primary actives among 30,259 compounds. From 100 compounds with no previous record of antibacterial activity secondary screening and data mining selected a total of Bce bioactives that were further analyzed. An experimental pipeline, evaluating in vitro antibacterial and antibiofilm activity, toxicity and in vivo antibacterial activity using C. elegans was used for prioritizing compounds with better chances to be further investigated as potential Bcc antibacterial drugs. This high throughput screen, along with the in vitro and in vivo analysis highlights the utility of this experimental method to quickly identify bioactives as a starting point of antibacterial drug discovery. PMID:26053039

  18. Candidate Essential Genes in Burkholderia cenocepacia J2315 Identified by Genome-Wide TraDIS.

    PubMed

    Wong, Yee-Chin; Abd El Ghany, Moataz; Naeem, Raeece; Lee, Kok-Wei; Tan, Yung-Chie; Pain, Arnab; Nathan, Sheila

    2016-01-01

    Burkholderia cenocepacia infection often leads to fatal cepacia syndrome in cystic fibrosis patients. However, antibiotic therapy rarely results in complete eradication of the pathogen due to its intrinsic resistance to many clinically available antibiotics. Recent attention has turned to the identification of essential genes as the proteins encoded by these genes may serve as potential targets for development of novel antimicrobials. In this study, we utilized TraDIS (Transposon Directed Insertion-site Sequencing) as a genome-wide screening tool to facilitate the identification of B. cenocepacia genes essential for its growth and viability. A transposon mutant pool consisting of approximately 500,000 mutants was successfully constructed, with more than 400,000 unique transposon insertion sites identified by computational analysis of TraDIS datasets. The saturated library allowed for the identification of 383 genes that were predicted to be essential in B. cenocepacia. We extended the application of TraDIS to identify conditionally essential genes required for in vitro growth and revealed an additional repertoire of 439 genes to be crucial for B. cenocepacia growth under nutrient-depleted conditions. The library of B. cenocepacia mutants can subsequently be subjected to various biologically related conditions to facilitate the discovery of genes involved in niche adaptation as well as pathogenicity and virulence. PMID:27597847

  19. Screening for potential anti-infective agents towards Burkholderia pseudomallei infection

    NASA Astrophysics Data System (ADS)

    Eng, Su Anne; Nathan, Sheila

    2014-09-01

    The established treatment for melioidosis is antibiotic therapy. However, a constant threat to this form of treatment is resistance development of the causative agent, Burkholderia pseudomallei, towards antibiotics. One option to circumvent this threat of antibiotic resistance is to search for new alternative anti-infectives which target the host innate immune system and/or bacterial virulence. In this study, 29 synthetic compounds were evaluated for their potential to increase the lifespan of an infected host. The nematode Caenorhabditis elegans was adopted as the infection model as its innate immune pathways are homologous to humans. Screens were performed in a liquid-based survival assay containing infected worms exposed to individual compounds and survival of untreated and compound-treated worms were compared. A primary screen identified nine synthetic compounds that extended the lifespan of B. pseudomallei-infected worms. Subsequently, a disc diffusion test was performed on these selected compounds to delineate compounds into those that enhanced the survival of worms via antimicrobial activity i.e. reducing the number of infecting bacteria, or into those that did not target pathogen viability. Out of the nine hits selected, two demonstrated antimicrobial effects on B. pseudomallei. Therefore, the findings from this study suggest that the other seven identified compounds are potential anti-infectives which could protect a host against B. pseudomallei infection without developing the risk of drug resistance.

  20. What drives the occurrence of the melioidosis bacterium Burkholderia pseudomallei in domestic gardens?

    PubMed

    Kaestli, Mirjam; Harrington, Glenda; Mayo, Mark; Chatfield, Mark D; Harrington, Ian; Hill, Audrey; Munksgaard, Niels; Gibb, Karen; Currie, Bart J

    2015-03-01

    Melioidosis is an often fatal infectious disease affecting humans and animals in tropical regions and is caused by the saprophytic environmental bacterium Burkholderia pseudomallei. Domestic gardens are not only a common source of exposure to soil and thus to B. pseudomallei, but they also have been found to contain more B. pseudomallei than other environments. In this study we addressed whether anthropogenic manipulations common to gardens such as irrigation or fertilizers change the occurrence of B. pseudomallei. We conducted a soil microcosm experiment with a range of fertilizers and soil types as well as a longitudinal interventional study over three years on an experimental fertilized field site in an area naturally positive for B. pseudomallei. Irrigation was the only consistent treatment to increase B. pseudomallei occurrence over time. The effects of fertilizers upon these bacteria depended on soil texture, physicochemical soil properties and biotic factors. Nitrates and urea increased B. pseudomallei load in sand while phosphates had a positive effect in clay. The high buffering and cation exchange capacities of organic material found in a commercial potting mix led to a marked increase in soil salinity with no survival of B. pseudomallei after four weeks in the potting mix sampled. Imported grasses were also associated with B. pseudomallei occurrence in a multivariate model. With increasing population density in endemic areas these findings inform the identification of areas in the anthropogenic environment with increased risk of exposure to B. pseudomallei. PMID:25803046

  1. Burkholderia cenocepacia J2315 escapes to the cytosol and actively subverts autophagy in human macrophages.

    PubMed

    Al-Khodor, Souhaila; Marshall-Batty, Kimberly; Nair, Vinod; Ding, Li; Greenberg, David E; Fraser, Iain D C

    2014-03-01

    Selective autophagy functions to specifically degrade cellular cargo tagged by ubiquitination, including bacteria. Strains of the Burkholderia cepacia complex (Bcc) are opportunistic pathogens that cause life-threatening infections in patients with cystic fibrosis (CF) and chronic granulomatous disease (CGD). While there is evidence that defective macrophage autophagy in a mouse model of CF can influence B. cenocepacia susceptibility, there have been no comprehensive studies on how this bacterium is sensed and targeted by the host autophagy response in human macrophages. Here, we describe the intracellular life cycle of B. cenocepacia J2315 and its interaction with the autophagy pathway in human cells. Electron and confocal microscopy analyses demonstrate that the invading bacteria interact transiently with the endocytic pathway before escaping to the cytosol. This escape triggers theselective autophagy pathway, and the recruitment of ubiquitin, the ubiquitin-binding adaptors p62 and NDP52 and the autophagosome membrane-associated protein LC3B, to the bacterial vicinity. However, despite recruitment of these key autophagy pathway effectors, B. cenocepacia blocks autophagosome completion and replicates in the host cytosol. We find that a pre-infection increase in cellular autophagy flux can significantly inhibit B. cenocepacia replication and that lower autophagy flux in macrophages from immunocompromised CGD patients could contribute to increased B. cenocepacia susceptibility, identifying autophagy manipulation as a potential therapeutic approach to reduce bacterial burden in B. cenocepacia infections. PMID:24119232

  2. Burkholderia pseudomallei sequencing identifies genomic clades with distinct recombination, accessory, and epigenetic profiles.

    PubMed

    Nandi, Tannistha; Holden, Matthew T G; Holden, Mathew T G; Didelot, Xavier; Mehershahi, Kurosh; Boddey, Justin A; Beacham, Ifor; Peak, Ian; Harting, John; Baybayan, Primo; Guo, Yan; Wang, Susana; How, Lee Chee; Sim, Bernice; Essex-Lopresti, Angela; Sarkar-Tyson, Mitali; Nelson, Michelle; Smither, Sophie; Ong, Catherine; Aw, Lay Tin; Hoon, Chua Hui; Michell, Stephen; Studholme, David J; Titball, Richard; Chen, Swaine L; Parkhill, Julian; Tan, Patrick

    2015-01-01

    Burkholderia pseudomallei (Bp) is the causative agent of the infectious disease melioidosis. To investigate population diversity, recombination, and horizontal gene transfer in closely related Bp isolates, we performed whole-genome sequencing (WGS) on 106 clinical, animal, and environmental strains from a restricted Asian locale. Whole-genome phylogenies resolved multiple genomic clades of Bp, largely congruent with multilocus sequence typing (MLST). We discovered widespread recombination in the Bp core genome, involving hundreds of regions associated with multiple haplotypes. Highly recombinant regions exhibited functional enrichments that may contribute to virulence. We observed clade-specific patterns of recombination and accessory gene exchange, and provide evidence that this is likely due to ongoing recombination between clade members. Reciprocally, interclade exchanges were rarely observed, suggesting mechanisms restricting gene flow between clades. Interrogation of accessory elements revealed that each clade harbored a distinct complement of restriction-modification (RM) systems, predicted to cause clade-specific patterns of DNA methylation. Using methylome sequencing, we confirmed that representative strains from separate clades indeed exhibit distinct methylation profiles. Finally, using an E. coli system, we demonstrate that Bp RM systems can inhibit uptake of non-self DNA. Our data suggest that RM systems borne on mobile elements, besides preventing foreign DNA invasion, may also contribute to limiting exchanges of genetic material between individuals of the same species. Genomic clades may thus represent functional units of genetic isolation in Bp, modulating intraspecies genetic diversity. PMID:25236617

  3. Burkholderia pseudomallei sequencing identifies genomic clades with distinct recombination, accessory, and epigenetic profiles

    PubMed Central

    Nandi, Tannistha; Holden, Matthew T.G.; Didelot, Xavier; Mehershahi, Kurosh; Boddey, Justin A.; Beacham, Ifor; Peak, Ian; Harting, John; Baybayan, Primo; Guo, Yan; Wang, Susana; How, Lee Chee; Sim, Bernice; Essex-Lopresti, Angela; Sarkar-Tyson, Mitali; Nelson, Michelle; Smither, Sophie; Ong, Catherine; Aw, Lay Tin; Hoon, Chua Hui; Michell, Stephen; Studholme, David J.; Titball, Richard; Chen, Swaine L.; Parkhill, Julian

    2015-01-01

    Burkholderia pseudomallei (Bp) is the causative agent of the infectious disease melioidosis. To investigate population diversity, recombination, and horizontal gene transfer in closely related Bp isolates, we performed whole-genome sequencing (WGS) on 106 clinical, animal, and environmental strains from a restricted Asian locale. Whole-genome phylogenies resolved multiple genomic clades of Bp, largely congruent with multilocus sequence typing (MLST). We discovered widespread recombination in the Bp core genome, involving hundreds of regions associated with multiple haplotypes. Highly recombinant regions exhibited functional enrichments that may contribute to virulence. We observed clade-specific patterns of recombination and accessory gene exchange, and provide evidence that this is likely due to ongoing recombination between clade members. Reciprocally, interclade exchanges were rarely observed, suggesting mechanisms restricting gene flow between clades. Interrogation of accessory elements revealed that each clade harbored a distinct complement of restriction-modification (RM) systems, predicted to cause clade-specific patterns of DNA methylation. Using methylome sequencing, we confirmed that representative strains from separate clades indeed exhibit distinct methylation profiles. Finally, using an E. coli system, we demonstrate that Bp RM systems can inhibit uptake of non-self DNA. Our data suggest that RM systems borne on mobile elements, besides preventing foreign DNA invasion, may also contribute to limiting exchanges of genetic material between individuals of the same species. Genomic clades may thus represent functional units of genetic isolation in Bp, modulating intraspecies genetic diversity. PMID:25236617

  4. Superoxide dismutase C is required for intracellular survival and virulence of Burkholderia pseudomallei.

    PubMed

    Vanaporn, Muthita; Wand, Matthew; Michell, Stephen L; Sarkar-Tyson, Mitali; Ireland, Philip; Goldman, Stan; Kewcharoenwong, Chidchamai; Rinchai, Darawan; Lertmemongkolchai, Ganjana; Titball, Richard W

    2011-08-01

    Burkholderia pseudomallei is an intracellular pathogen and the causative agent of melioidosis, a life-threatening disease of humans. Within host cells, superoxide is an important mediator of pathogen killing. In this study, we have identified the B. pseudomallei K96243 sodC gene, shown that it has superoxide dismutase activity, and constructed an allelic deletion mutant of this gene. Compared with the wild-type, the mutant was more sensitive to killing by extracellular superoxide, but not to superoxide generated intracellularly. The sodC mutant showed a markedly decreased survival in J774A.1 mouse macrophages, and reduced numbers of bacteria were recovered from human polymorphonuclear neutrophils (PMNs) when compared with the wild-type. The numbers of wild-type or mutant bacteria recovered from human diabetic neutrophils were significantly lower than from normal human neutrophils. The sodC mutant was attenuated in BALB/c mice. Our results indicate that SodC plays a key role in the virulence of B. pseudomallei, but that diabetics are not more susceptible to infection because of a reduced ability of PMNs to kill by superoxide. PMID:21659326

  5. Gene and protein expression in response to different growth temperatures and oxygen availability in Burkholderia thailandensis.

    PubMed

    Peano, Clelia; Chiaramonte, Fabrizio; Motta, Sara; Pietrelli, Alessandro; Jaillon, Sebastien; Rossi, Elio; Consolandi, Clarissa; Champion, Olivia L; Michell, Stephen L; Freddi, Luca; Falciola, Luigi; Basilico, Fabrizio; Garlanda, Cecilia; Mauri, Pierluigi; De Bellis, Gianluca; Landini, Paolo

    2014-01-01

    Burkholderia thailandensis, although normally avirulent for mammals, can infect macrophages in vitro and has occasionally been reported to cause pneumonia in humans. It is therefore used as a model organism for the human pathogen B. pseudomallei, to which it is closely related phylogenetically. We characterized the B. thailandensis clinical isolate CDC2721121 (BtCDC272) at the genome level and studied its response to environmental cues associated with human host colonization, namely, temperature and oxygen limitation. Effects of the different growth conditions on BtCDC272 were studied through whole genome transcription studies and analysis of proteins associated with the bacterial cell surface. We found that growth at 37°C, compared to 28°C, negatively affected cell motility and flagella production through a mechanism involving regulation of the flagellin-encoding fliC gene at the mRNA stability level. Growth in oxygen-limiting conditions, in contrast, stimulated various processes linked to virulence, such as lipopolysaccharide production and expression of genes encoding protein secretion systems. Consistent with these observations, BtCDC272 grown in oxygen limitation was more resistant to phagocytosis and strongly induced the production of inflammatory cytokines from murine macrophages. Our results suggest that, while temperature sensing is important for regulation of B. thailandensis cell motility, oxygen limitation has a deeper impact on its physiology and constitutes a crucial environmental signal for the production of virulence factors. PMID:24671187

  6. Production of a recombinant vaccine candidate against Burkholderia pseudomallei exploiting the bacterial N-glycosylation machinery.

    PubMed

    Garcia-Quintanilla, Fatima; Iwashkiw, Jeremy A; Price, Nancy L; Stratilo, Chad; Feldman, Mario F

    2014-01-01

    Vaccines developing immune responses toward surface carbohydrates conjugated to proteins are effective in preventing infection and death by bacterial pathogens. Traditional production of these vaccines utilizes complex synthetic chemistry to acquire and conjugate the glycan to a protein. However, glycoproteins produced by bacterial protein glycosylation systems are significantly easier to produce, and could possible be used as vaccine candidates. In this work, we functionally expressed the Burkholderia pseudomallei O polysaccharide (OPS II), the Campylobacter jejuni oligosaccharyltransferase (OTase), and a suitable glycoprotein (AcrA) in a designer E. coli strain with a higher efficiency for production of glycoconjugates. We were able to produce and purify the OPS II-AcrA glycoconjugate, and MS analysis confirmed correct glycan was produced and attached. We observed the attachment of the O-acetylated deoxyhexose directly to the acceptor protein, which expands the range of substrates utilized by the OTase PglB. Injection of the glycoprotein into mice generated an IgG immune response against B. pseudomallei, and this response was partially protective against an intranasal challenge. Our experiments show that bacterial engineered glycoconjugates can be utilized as vaccine candidates against B. pseudomallei. Additionally, our new E. coli strain SDB1 is more efficient in glycoprotein production, and could have additional applications in the future. PMID:25120536

  7. Production of a recombinant vaccine candidate against Burkholderia pseudomallei exploiting the bacterial N-glycosylation machinery

    PubMed Central

    Garcia-Quintanilla, Fatima; Iwashkiw, Jeremy A.; Price, Nancy L.; Stratilo, Chad; Feldman, Mario F.

    2014-01-01

    Vaccines developing immune responses toward surface carbohydrates conjugated to proteins are effective in preventing infection and death by bacterial pathogens. Traditional production of these vaccines utilizes complex synthetic chemistry to acquire and conjugate the glycan to a protein. However, glycoproteins produced by bacterial protein glycosylation systems are significantly easier to produce, and could possible be used as vaccine candidates. In this work, we functionally expressed the Burkholderia pseudomallei O polysaccharide (OPS II), the Campylobacter jejuni oligosaccharyltransferase (OTase), and a suitable glycoprotein (AcrA) in a designer E. coli strain with a higher efficiency for production of glycoconjugates. We were able to produce and purify the OPS II-AcrA glycoconjugate, and MS analysis confirmed correct glycan was produced and attached. We observed the attachment of the O-acetylated deoxyhexose directly to the acceptor protein, which expands the range of substrates utilized by the OTase PglB. Injection of the glycoprotein into mice generated an IgG immune response against B. pseudomallei, and this response was partially protective against an intranasal challenge. Our experiments show that bacterial engineered glycoconjugates can be utilized as vaccine candidates against B. pseudomallei. Additionally, our new E. coli strain SDB1 is more efficient in glycoprotein production, and could have additional applications in the future. PMID:25120536

  8. Burkholderia pseudomallei rpoS mediates iNOS suppression in human hepatocyte (HC04) cells

    PubMed Central

    Sanongkiet, Sucharat; Ponnikorn, Saranyoo; Udomsangpetch, Rachanee; Tungpradabkul, Sumalee

    2016-01-01

    Burkholderia pseudomallei is an intracellular Gram-negative bacterial pathogen and the causative agent of melioidosis, a widespread disease in Southeast Asia. Reactive nitrogen, in an intermediate form of nitric oxide (NO), is one of the first lines of defense used by host cells to eliminate intracellular pathogens, through the stimulation of inducible nitric oxide synthase (iNOS). Studies in phagocytotic cells have shown that the iNOS response is muted in B. pseudomallei infection, and implicated the rpoS sigma factor as a key regulatory factor mediating suppression. The liver is a main visceral organ affected by B. pseudomallei, and there is little knowledge about the interaction of liver cells and B. pseudomallei. This study investigated the induction of iNOS, as well as autophagic flux and light-chain 3 (LC3) localization in human liver (HC04) cells in response to infection with B. pseudomallei and its rpoS deficient mutant. Results showed that the rpoS mutant was unable to suppress iNOS induction and that the mutant showed less induction of autophagy and lower co-localization with LC3, and this was coupled with a lower intracellular growth rate. Combining these results suggest that B. pseudomallei rpoS is an important factor in establishing infection in liver cells. PMID:27324398

  9. In Vitro Antifungal Activity of Burkholderia gladioli pv. agaricicola against Some Phytopathogenic Fungi

    PubMed Central

    Elshafie, Hazem S.; Camele, Ippolito; Racioppi, Rocco; Scrano, Laura; Iacobellis, Nicola S.; Bufo, Sabino A.

    2012-01-01

    The trend to search novel microbial natural biocides has recently been increasing in order to avoid the environmental pollution from use of synthetic pesticides. Among these novel natural biocides are the bioactive secondary metabolites of Burkholderia gladioli pv. agaricicola (Bga). The aim of this study is to determine antifungal activity of Bga strains against some phytopathogenic fungi. The fungicidal tests were carried out using cultures and cell-free culture filtrates against Botrytis cinerea, Aspergillus flavus, Aspergillus niger, Penicillium digitatum, Penicillium expansum, Sclerotinia sclerotiorum and Phytophthora cactorum. Results demonstrated that all tested strains exert antifungal activity against all studied fungi by producing diffusible metabolites which are correlated with their ability to produce extracellular hydrolytic enzymes. All strains significantly reduced the growth of studied fungi and the bacterial cells were more bioactive than bacterial filtrates. All tested Bulkholderia strains produced volatile organic compounds (VOCs), which inhibited the fungal growth and reduced the growth rate of Fusarium oxysporum and Rhizoctonia solani. GC/MS analysis of VOCs emitted by strain Bga 11096 indicated the presence of a compound that was identified as 1-methyl-4-(1-methylethenyl)-cyclohexene, a liquid hydrocarbon classified as cyclic terpene. This compound could be responsible for the antifungal activity, which is also in agreement with the work of other authors. PMID:23208371

  10. Temporal Variation in Genetic Diversity and Structure of a Lotic Population of Burkholderia (Pseudomonas) cepacia

    PubMed Central

    Wise, M. G.; McArthur, J. V.; Wheat, C.; Shimkets, L. J.

    1996-01-01

    The genetic structure and temporal patterns of genetic diversity in a population of Burkholderia (Pseudomonas) cepacia, isolated from a southeastern blackwater stream, were investigated by multilocus enzyme electrophoresis. Allelic variation in seven structural gene loci was monitored at a single stream location at 0, 6, 12, and 24 h and at 2, 4, 8, 16, and 32 days. Over the length of the study, 217 isolates were collected, from which 65 unique electrophoretic types (ETs) were identified. Most of these ETs were present at only one or two time periods and were considered transients; however, one resident ET was particularly abundant (64 of the 217 isolates [29.4%]) and was found at all time points except day 32. The mean genetic diversity of the entire population was 0.520, and the index of association (a measure of multilocus linkage disequilibrium) was 1.33. These results, taken in conjunction with a previous study focusing on spatial patterns of genetic diversity in lotic B. cepacia, show that these bacterial populations exhibit greater variability among sites than within a site over time, suggesting relative stability over short time periods. PMID:16535308

  11. Innate Immune Responses of Pulmonary Epithelial Cells to Burkholderia pseudomallei Infection

    PubMed Central

    Sim, Siew Hoon; Liu, Yichun; Wang, Dongling; Novem, Vidhya; Sivalingam, Suppiah Paramalingam; Thong, Tuck Weng; Ooi, Eng Eong; Tan, Gladys

    2009-01-01

    Background Burkholderia pseudomallei, a facultative intracellular pathogen, causes systemic infection in humans with high mortality especially when infection occurs through an infectious aerosol. Previous studies indicated that the epithelial cells in the lung are an active participant in host immunity. In this study, we aimed to investigate the innate immune responses of lung epithelial cells against B. pseudomallei. Methodology and Principal Findings Using a murine lung epithelial cell line, primary lung epithelial cells and an inhalational murine infection model, we characterized the types of innate immunity proteins and peptides produced upon B. pseudomallei infection. Among a wide panel of immune components studied, increased levels of major pro-inflammatory cytokines IL-6 and TNFα, chemokine MCP-1, and up-regulation of secretory leukocyte protease inhibitor (SLPI) and chemokine (C-C motif) ligand 20 (CCL20) were observed. Inhibition assays using specific inhibitors suggested that NF-κB and p38 MAPK pathways were responsible for these B. pseudomallei-induced antimicrobial peptides. Conclusions Our findings indicate that the respiratory epithelial cells, which form the majority of the cells lining the epithelial tract and the lung, have important roles in the innate immune response against B. pseudomallei infection. PMID:19806192

  12. The Genetic and Molecular Basis of O-Antigenic Diversity in Burkholderia pseudomallei Lipopolysaccharide

    PubMed Central

    Tuanyok, Apichai; Stone, Joshua K.; Mayo, Mark; Kaestli, Mirjam; Gruendike, Jeffrey; Georgia, Shalamar; Warrington, Stephanie; Mullins, Travis; Allender, Christopher J.; Wagner, David M.; Chantratita, Narisara; Peacock, Sharon J.; Currie, Bart J.; Keim, Paul

    2012-01-01

    Lipopolysaccharide (LPS) is one of the most important virulence and antigenic components of Burkholderia pseudomallei, the causative agent of melioidosis. LPS diversity in B. pseudomallei has been described as typical, atypical or rough, based upon banding patterns on SDS-PAGE. Here, we studied the genetic and molecular basis of these phenotypic differences. Bioinformatics was used to determine the diversity of genes known or predicted to be involved in biosynthesis of the O-antigenic moiety of LPS in B. pseudomallei and its near-relative species. Multiplex-PCR assays were developed to target diversity of the O-antigen biosynthesis gene patterns or LPS genotypes in B. pseudomallei populations. We found that the typical LPS genotype (LPS genotype A) was highly prevalent in strains from Thailand and other countries in Southeast Asia, whereas the atypical LPS genotype (LPS genotype B) was most often detected in Australian strains (∼13.8%). In addition, we report a novel LPS ladder pattern, a derivative of the atypical LPS phenotype, associated with an uncommon O-antigen biosynthesis gene cluster that is found in only a small B. pseudomallei sub-population. This new LPS group was designated as genotype B2. We also report natural mutations in the O-antigen biosynthesis genes that potentially cause the rough LPS phenotype. We postulate that the diversity of LPS may correlate with differential immunopathogenicity and virulence among B. pseudomallei strains. PMID:22235357

  13. Discovery of new diketopiperazines inhibiting Burkholderia cenocepacia quorum sensing in vitro and in vivo

    PubMed Central

    Scoffone, Viola C.; Chiarelli, Laurent R.; Makarov, Vadim; Brackman, Gilles; Israyilova, Aygun; Azzalin, Alberto; Forneris, Federico; Riabova, Olga; Savina, Svetlana; Coenye, Tom; Riccardi, Giovanna; Buroni, Silvia

    2016-01-01

    Burkholderia cenocepacia, an opportunistic respiratory pathogen particularly relevant for cystic fibrosis patients, is difficult to eradicate due to its high level of resistance to most clinically relevant antimicrobials. Consequently, the discovery of new antimicrobials as well as molecules capable of inhibiting its virulence is mandatory. In this regard quorum sensing (QS) represents a good target for anti-virulence therapies, as it has been linked to biofilm formation and is important for the production of several virulence factors, including proteases and siderophores. Here, we report the discovery of new diketopiperazine inhibitors of the B. cenocepacia acyl homoserine lactone synthase CepI, and report their anti-virulence properties. Out of ten different compounds assayed against recombinant CepI, four were effective inhibitors, with IC50 values in the micromolar range. The best compounds interfered with protease and siderophore production, as well as with biofilm formation, and showed good in vivo activity in a Caenorhabditis elegans infection model. These molecules were also tested in human cells and showed very low toxicity. Therefore, they could be considered for in vivo combined treatments with established or novel antimicrobials, to improve the current therapeutic strategies against B. cenocepacia. PMID:27580679

  14. A new species of Burkholderia isolated from sugarcane roots promotes plant growth

    PubMed Central

    Paungfoo-Lonhienne, Chanyarat; Lonhienne, Thierry G A; Yeoh, Yun Kit; Webb, Richard I; Lakshmanan, Prakash; Chan, Cheong Xin; Lim, Phaik-Eem; Ragan, Mark A; Schmidt, Susanne; Hugenholtz, Philip

    2014-01-01

    Sugarcane is a globally important food, biofuel and biomaterials crop. High nitrogen (N) fertilizer rates aimed at increasing yield often result in environmental damage because of excess and inefficient application. Inoculation with diazotrophic bacteria is an attractive option for reducing N fertilizer needs. However, the efficacy of bacterial inoculants is variable, and their effective formulation remains a knowledge frontier. Here, we take a new approach to investigating diazotrophic bacteria associated with roots using culture-independent microbial community profiling of a commercial sugarcane variety (Q208A) in a field setting. We first identified bacteria that were markedly enriched in the rhizosphere to guide isolation and then tested putative diazotrophs for the ability to colonize axenic sugarcane plantlets (Q208A) and promote growth in suboptimal N supply. One isolate readily colonized roots, fixed N2 and stimulated growth of plantlets, and was classified as a new species, Burkholderia australis sp. nov. Draft genome sequencing of the isolate confirmed the presence of nitrogen fixation. We propose that culture-independent identification and isolation of bacteria that are enriched in rhizosphere and roots, followed by systematic testing and confirming their growth-promoting capacity, is a necessary step towards designing effective microbial inoculants. PMID:24350979

  15. Detection of immunoglobulins M and G using culture filtrate antigen of Burkholderia pseudomallei.

    PubMed

    Chenthamarakshan, V; Vadivelu, J; Puthucheary, S D

    2001-01-01

    IgM and IgG based ELISA systems were developed using the culture filtrate antigen (CFA) of Burkholderia pseudomallei. The assays were evaluated using 95 sera from 66 septicemic cases and 47 sera from 20 cases with localized melioidosis. In addition 65 sera from culture negative cases that were also serologically negative for other endemic infections clinically suspected of melioidosis were included. These were compared with sera from 260 non-melioidosis cases, 169 sera from individuals with high risk of acquiring the infection and 48 sera from healthy controls. The IgG-ELISA was 96% sensitive and 94% specific. All sera from cases with septicemic and localized infections and 61 of 63 sera from clinically suspected melioidosis cases were positive for IgG antibody. The geometric mean titre index (GMTI) values of IgG antibody in melioidosis cases were significantly higher (p < 0.0005) compared to that of healthy subjects, high risk group and subjects with non-melioidosis infections. The sensitivity and specificity of IgM ELISA was 74 and 99% respectively. The GMTI value of IgM antibody in the sera of melioidosis cases was significantly higher as compared to that of non-melioidosis disease controls (p < or = 0.001). These results demonstrate that the detection of IgG is a better indicator of the disease in the diagnosis of melioidosis. PMID:11173184

  16. Bioactive and Structural Metabolites of Pseudomonas and Burkholderia Species Causal Agents of Cultivated Mushrooms Diseases1

    PubMed Central

    Andolfi, Anna; Cimmino, Alessio; Cantore, Pietro Lo; Iacobellis, Nicola Sante; Evidente, Antonio

    2008-01-01

    Pseudomonas tolaasii, P. reactans and Burkholderia gladioli pv. agaricicola, are responsible of diseases on some species of cultivated mushrooms. The main bioactive metabolites produced by both Pseudomonas strains are the lipodepsipeptides (LDPs) tolaasin I and II and the so called White Line Inducing Principle (WLIP), respectively, LDPs which have been extensively studied for their role in the disease process and for their biological properties. In particular, their antimicrobial activity and the alteration of biological and model membranes (red blood cell and liposomes) was established. In the case of tolaasin I interaction with membranes was also related to the tridimensional structure in solution as determined by NMR combined with molecular dynamic calculation techniques. Recently, five news minor tolaasins, tolaasins A–E, were isolated from the culture filtrates of P. tolaasii and their chemical structure was determined by extensive use of NMR and MS spectroscopy. Furthermore, their antimicrobial activity was evaluated on target micro-organisms (fungi—including the cultivated mushrooms Agaricus bisporus, Lentinus edodes, and Pleurotus spp.—chromista, yeast and bacteria). The Gram positive bacteria resulted the most sensible and a significant structure-activity relationships was apparent. The isolation and structure determination of bioactive metabolites produced by B. gladioli pv. agaricicola are still in progress but preliminary results indicate their peptide nature. Furthermore, the exopolysaccharide (EPS) from the culture filtrates of B. gladioli pv. agaricicola, as well as the O-chain and lipid A, from the lipopolysaccharide (LPS) of the three bacteria, were isolated and the structures determined. PMID:19787100

  17. Tyrosine Phosphorylation and Dephosphorylation in Burkholderia cenocepacia Affect Biofilm Formation, Growth under Nutritional Deprivation, and Pathogenicity

    PubMed Central

    Andrade, Angel; Tavares-Carreón, Faviola; Khodai-Kalaki, Maryam

    2015-01-01

    Burkholderia cenocepacia, a member of the B. cepacia complex (Bcc), is an opportunistic pathogen causing serious chronic infections in patients with cystic fibrosis. Tyrosine phosphorylation has emerged as an important posttranslational modification modulating the physiology and pathogenicity of Bcc bacteria. Here, we investigated the predicted bacterial tyrosine kinases BCAM1331 and BceF and the low-molecular-weight protein tyrosine phosphatases BCAM0208, BceD, and BCAL2200 of B. cenocepacia K56-2. We show that BCAM1331, BceF, BCAM0208, and BceD contribute to biofilm formation, while BCAL2200 is required for growth under nutrient-limited conditions. Multiple deletions of either tyrosine kinase or low-molecular-weight protein tyrosine phosphatase genes resulted in the attenuation of B. cenocepacia intramacrophage survival and reduced pathogenicity in the Galleria mellonella larval infection model. Experimental evidence indicates that BCAM1331 displays reduced tyrosine autophosphorylation activity compared to that of BceF. With the artificial substrate p-nitrophenyl phosphate, the phosphatase activities of the three low-molecular-weight protein tyrosine phosphatases demonstrated similar kinetic parameters. However, only BCAM0208 and BceD could dephosphorylate BceF. Further, BCAL2200 became tyrosine phosphorylated in vivo and catalyzed its autodephosphorylation. Together, our data suggest that despite having similar biochemical activities, low-molecular-weight protein tyrosine phosphatases and tyrosine kinases have both overlapping and specific roles in the physiology of B. cenocepacia. PMID:26590274

  18. Cloning, expression and mutation of a triazophos hydrolase gene from Burkholderia sp. SZL-1.

    PubMed

    Zhang, Hao; Li, Qiang; Guo, Su-Hui; Cheng, Ming-Gen; Zhao, Meng-Jun; Hong, Qing; Huang, Xing

    2016-06-01

    Triazophos is a broad-spectrum and highly effective insecticide, and the residues of triazophos have been frequently detected in the environment. A triazophos-degrading bacterium, Burkholderia sp. SZL-1, was isolated from a long-term triazophos-polluted soil. Strain SZL-1 could hydrolyze triazophos to 1-phenyl-3-hydroxy-1,2,4-triazole, which was further utilized as the carbon sources for growth. The triazophos hydrolase gene trhA, cloned from strain SZL-1, was expressed and homogenously purified using Ni-nitrilotriacetic acid affinity chromatography. TrhA is 55 kDa and displays maximum activity at 25°C, pH 8.0. This enzyme still has nearly 60% activity at the range of 15°C-50°C for 30 min. TrhA was mutated by sequential error prone PCR and screened for improved activity for triazophos degradation. One purified variant protein (Val89-Gly89) named TrhA-M1 showed up to 3-fold improvement in specific activity against triazophos, and the specificity constants of Kcat and Kcat/Km for TrhA-M1 were improved up to 2.3- and 8.28-fold, respectively, compared to the wild-type enzyme. The results in this paper provided potential material for the contaminated soil remediation and hydrolase genetic structure research. PMID:27190294

  19. Eradication and phenotypic tolerance of Burkholderia cenocepacia biofilms exposed to atmospheric pressure non-thermal plasma.

    PubMed

    Alshraiedeh, Nida H; Higginbotham, Sarah; Flynn, Padrig B; Alkawareek, Mahmoud Y; Tunney, Michael M; Gorman, Sean P; Graham, William G; Gilmore, Brendan F

    2016-06-01

    Chronic lung infection with bacteria from the Burkholderia cepacia complex (BCC), and in particular B. cenocepacia, is associated with significant morbidity and mortality in patients with cystic fibrosis (CF). B. cenocepacia can spread from person to person and exhibits intrinsic broad-spectrum antibiotic resistance. Recently, atmospheric pressure non-thermal plasmas (APNTPs) have gained increasing attention as a novel approach to the prevention and treatment of a variety of hospital-acquired infections. In this study, we evaluated an in-house-designed kHz-driven plasma source for the treatment of biofilms of a number of clinical CF B. cenocepacia isolates. The results demonstrated that APNTP is an effective and efficient tool for the eradication of B. cenocepacia biofilms but that efficacy is highly variable across different isolates. Determination of phenotypic differences between isolates in an attempt to understand variability in plasma tolerance revealed that isolates which are highly tolerant to APNTP typically produce biofilms of greater biomass than their more sensitive counterparts. This indicates a potential role for biofilm matrix components in biofilm tolerance to APNTP exposure. Furthermore, significant isolate-dependent differences in catalase activity in planktonic bacteria positively correlated with phenotypic resistance to APNTP by isolates grown in biofilms. PMID:27179816

  20. Bioleaching remediation of heavy metal-contaminated soils using Burkholderia sp. Z-90.

    PubMed

    Yang, Zhihui; Zhang, Zhi; Chai, Liyuan; Wang, Yong; Liu, Yi; Xiao, Ruiyang

    2016-01-15

    Bioleaching is an environment-friendly and economical technology to remove heavy metals from contaminated soils. In this study, a biosurfactant-producing strain with capacity of alkaline production was isolated from cafeteria sewer sludge and its capability for removing Zn, Pb, Mn, Cd, Cu, and As was investigated. Phylogenetic analysis using 16S rDNA gene sequences confirmed that the strain belonged to Burkholderia sp. and named as Z-90. The biosurfactant was glycolipid confirmed by thin layer chromatography and Fourier-transform infrared spectroscopy. Z-90 broth was then used for bioleaching remediation of heavy metal-contaminated soils. The removal efficiency was 44.0% for Zn, 32.5% for Pb, 52.2% for Mn, 37.7% for Cd, 24.1% for Cu and 31.6% for As, respectively. Mn, Zn and Cd were more easily removed from soil than Cu, Pb and As, which was attributed to the presence of high acid-soluble fraction of Mn, Zn and Cd and high residual fraction of Cu, Pb and As. The heavy metal removal in soils was contributed to the adhesion of heavy metal-contaminated soil minerals with strain Z-90 and the formation of a metal complex with biosurfactant. PMID:26348147

  1. A Murine Model for Infection with Burkholderia cepacia with Sustained Persistence in the Spleen

    PubMed Central

    Speert, David P.; Steen, Barbara; Halsey, Keith; Kwan, Eddie

    1999-01-01

    Burkholderia cepacia is an opportunistic pathogen that causes severe systemic infections in patients with chronic granulomatous disease (CGD) or with cystic fibrosis (CF), but its mechanisms of virulence are poorly understood. We developed a murine model of systemic infection in wild-type (WT) and gamma interferon knockout (GKO) BALB/c mice to facilitate dissection of components of pathogenicity and host defense. Both WT and GKO mice were susceptible to chronic splenic infection with B. cepacia, but not with Pseudomonas aeruginosa. B. cepacia strains from patients with CGD persisted longer than those from CF patients. C57BL/6 mice were the most susceptible murine strain; bacteria persisted in the spleen for 2 months. DBA/2, BALB/c, and A/J strains of mice were relatively resistant to infection. Certain strains of B. cepacia complex can persist in the murine spleen after systemic infection; this may provide clues to its virulence in compromised hosts, such as those with CGD and CF. PMID:10417170

  2. Novel Organization of the Genes for Phthalate Degradation from Burkholderia cepacia DBO1

    PubMed Central

    Chang, Hung-Kuang; Zylstra, Gerben J.

    1998-01-01

    Burkholderia cepacia DBO1 is able to utilize phthalate as the sole source of carbon and energy for growth. Two overlapping cosmid clones containing the genes for phthalate degradation were isolated from this strain. Subcloning and activity analysis localized the genes for phthalate degradation to two separate regions on the cosmid clones. Analysis of the nucleotide sequence of these two regions showed that the genes for phthalate degradation are arranged in at least three transcriptional units. The gene for phthalate dioxygenase reductase (ophA1) is present by itself, while the genes for an inactive transporter (ophD) and 4,5-dihydroxyphthalate decarboxylase (ophC) are linked and the genes for phthalate dioxygenase oxygenase (ophA2) and cis-phthalate dihydrodiol dehydrogenase (ophB) are linked. ophA1 and ophDC are adjacent to each other but are transcribed in opposite directions, while ophA2B is located 4 kb away. The genes for the oxygenase and reductase components of phthalate dioxygenase are located approximately 7 kb away from each other. The gene for the putative phthalate permease contains a frameshift mutation in contrast to genes for other permeases. Strains deleted for ophD are able to transport phthalate into the cell at rates equivalent to that of the wild-type organism, showing that this gene is not required for growth on phthalate. PMID:9851995

  3. Burkholderia pseudomallei rpoS mediates iNOS suppression in human hepatocyte (HC04) cells.

    PubMed

    Sanongkiet, Sucharat; Ponnikorn, Saranyoo; Udomsangpetch, Rachanee; Tungpradabkul, Sumalee

    2016-08-01

    Burkholderia pseudomallei is an intracellular Gram-negative bacterial pathogen and the causative agent of melioidosis, a widespread disease in Southeast Asia. Reactive nitrogen, in an intermediate form of nitric oxide (NO), is one of the first lines of defense used by host cells to eliminate intracellular pathogens, through the stimulation of inducible nitric oxide synthase (iNOS). Studies in phagocytotic cells have shown that the iNOS response is muted in B. pseudomallei infection, and implicated the rpoS sigma factor as a key regulatory factor mediating suppression. The liver is a main visceral organ affected by B. pseudomallei, and there is little knowledge about the interaction of liver cells and B. pseudomallei This study investigated the induction of iNOS, as well as autophagic flux and light-chain 3 (LC3) localization in human liver (HC04) cells in response to infection with B. pseudomallei and its rpoS deficient mutant. Results showed that the rpoS mutant was unable to suppress iNOS induction and that the mutant showed less induction of autophagy and lower co-localization with LC3, and this was coupled with a lower intracellular growth rate. Combining these results suggest that B. pseudomallei rpoS is an important factor in establishing infection in liver cells. PMID:27324398

  4. Bioformulation of Burkholderia sp. MSSP with a multispecies consortium for growth promotion of Cajanus cajan.

    PubMed

    Pandey, Piyush; Maheshwari, D K

    2007-02-01

    The present work was undertaken to formulate an effective bioformulation using Burkholderia sp. strain MSSP, a known plant-growth-promoting rhizobacterium. MSSP was tagged with the reporter gene of green fluorescent protein (gfp) to monitor its population in cost-effective solid carriers, including sugarcane-bagasse, sawdust, cocoa peat, rice husk, wheat bran, charcoal, and rock phosphate, and paneer-whey as liquid carrier. Physical and chemical properties of different low-cost carrier materials were studied. The viability of the green fluorescent tagged variant of MSSP was estimated in different sterile carrier materials. Whey and wheat bran proved to be efficient carrier materials for the bioformulation. Sawdust, rock phosphate, rice husk, and cocoa peat were average, while charcoal and sugarcane-bagasse proved to be inferior carriers. The viability of strain MSSP was also assessed in wheat bran and whey-based consortium, having three other bacterial strains, namely Sinorhizobium meliloti PP3, Rhizobium leguminosarum Pcc, and Bacillus sp. strain B1. Presence of other plant-growth-promoting bacteria did not have any detrimental effect on the viability of MSSP. Efficiency of the wheat-bran-based multispecies consortium was studied on the growth of pigeonpea in field conditions. A considerable increase in plant biomass, nodule number and weight, and number of pods was recorded as compared with individual trials and with the control. PMID:17496969

  5. Exploring the Anti-Burkholderia cepacia Complex Activity of Essential Oils: A Preliminary Analysis

    PubMed Central

    Lo Nostro, Antonella; Calonico, Carmela; Perrin, Elena; Chiellini, Carolina; Fondi, Marco; Mengoni, Alessio; Vannacci, Alfredo; Bilia, Anna Rita; Gori, Luigi

    2014-01-01

    In this work we have checked the ability of the essential oils extracted from six different medicinal plants (Eugenia caryophyllata, Origanum vulgare, Rosmarinus officinalis, Lavandula officinalis, Melaleuca alternifolia, and Thymus vulgaris) to inhibit the growth of 18 bacterial type strains belonging to the 18 known species of the Burkholderia cepacia complex (Bcc). These bacteria are opportunistic human pathogens that can cause severe infection in immunocompromised patients, especially those affected by cystic fibrosis (CF), and are often resistant to multiple antibiotics. The analysis of the aromatograms produced by the six oils revealed that, in spite of their different chemical composition, all of them were able to contrast the growth of Bcc members. However, three of them (i.e., Eugenia caryophyllata, Origanum vulgare, and Thymus vulgaris) were particularly active versus the Bcc strains, including those exhibiting a high degree or resistance to ciprofloxacin, one of the most used antibiotics to treat Bcc infections. These three oils are also active toward both environmental and clinical strains (isolated from CF patients), suggesting that they might be used in the future to fight B. cepacia complex infections. PMID:24701243

  6. chr genes from adaptive replicons are responsible for chromate resistance by Burkholderia xenovorans LB400.

    PubMed

    Reyes-Gallegos, Rosa I; Ramírez-Díaz, Martha I; Cervantes, Carlos

    2016-03-01

    The chromate ion transporter (CHR) superfamily includes proteins that confer chromate resistance by extruding toxic chromate ions from cytoplasm. Burkholderia xenovorans strain LB400 encodes six CHR homologues in its multireplicon genome and has been reported as highly chromate-resistant. The objective of this work was to analyze the involvement of chr redundant genes in chromate resistance by LB400. It was found that B. xenovorans plant rhizosphere strains lacking the megaplasmid are chromate-sensitive, suggesting that the chr gene present in this replicon is responsible for the chromate-resistance phenotype of the LB400 strain. Transformation of a chromate-sensitive B. xenovorans strain with each of the six cloned LB400 chr genes showed that genes from 'adaptive replicons' (chrA1b and chr1NCb from chromosome 2 and chrA2 from the megaplasmid) conferred higher chromate resistance levels than chr genes from 'central' chromosome 1 (chrA1a, chrA6, and chr1NCa). An LB400 insertion mutant affected in the chrA2 gene displayed a chromate-sensitive phenotype, which was fully reverted by transferring the chrA2 wild-type gene, and partially reverted by chrA1b or chr1NCb genes. These data indicate that chr genes from adaptive replicons, mainly chrA2 from the megaplasmid, are responsible for the B. xenovorans LB400 chromate-resistance phenotype. PMID:26873556

  7. Characterization of New Virulence Factors Involved in the Intracellular Growth and Survival of Burkholderia pseudomallei.

    PubMed

    Moule, Madeleine G; Spink, Natasha; Willcocks, Sam; Lim, Jiali; Guerra-Assunção, José Afonso; Cia, Felipe; Champion, Olivia L; Senior, Nicola J; Atkins, Helen S; Clark, Taane; Bancroft, Gregory J; Cuccui, Jon; Wren, Brendan W

    2015-01-01

    Burkholderia pseudomallei, the causative agent of melioidosis, has complex and poorly understood extracellular and intracellular lifestyles. We used transposon-directed insertion site sequencing (TraDIS) to retrospectively analyze a transposon library that had previously been screened through a BALB/c mouse model to identify genes important for growth and survival in vivo. This allowed us to identify the insertion sites and phenotypes of negatively selected mutants that were previously overlooked due to technical constraints. All 23 unique genes identified in the original screen were confirmed by TraDIS, and an additional 105 mutants with various degrees of attenuation in vivo were identified. Five of the newly identified genes were chosen for further characterization, and clean, unmarked bpsl2248, tex, rpiR, bpsl1728, and bpss1528 deletion mutants were constructed from the wild-type strain K96243. Each of these mutants was tested in vitro and in vivo to confirm their attenuated phenotypes and investigate the nature of the attenuation. Our results confirm that we have identified new genes important to in vivo virulence with roles in different stages of B. pseudomallei pathogenesis, including extracellular and intracellular survival. Of particular interest, deletion of the transcription accessory protein Tex was shown to be highly attenuating, and the tex mutant was capable of providing protective immunity against challenge with wild-type B. pseudomallei, suggesting that the genes identified in our TraDIS screen have the potential to be investigated as live vaccine candidates. PMID:26712202

  8. Leveraging structure determination with fragment screening for infectious disease drug targets: MECP synthase from Burkholderia pseudomallei

    SciTech Connect

    Begley, Darren W.; Hartley, Robert C.; Davies, Douglas R.; Edwards, Thomas E.; Leonard, Jess T.; Abendroth, Jan; Burris, Courtney A.; Bhandari, Janhavi; Myler, Peter J.; Staker, Bart L.; Stewart, Lance J.

    2011-09-28

    As part of the Seattle Structural Genomics Center for Infectious Disease, we seek to enhance structural genomics with ligand-bound structure data which can serve as a blueprint for structure-based drug design. We have adapted fragment-based screening methods to our structural genomics pipeline to generate multiple ligand-bound structures of high priority drug targets from pathogenic organisms. In this study, we report fragment screening methods and structure determination results for 2C-methyl-D-erythritol-2,4-cyclo-diphosphate (MECP) synthase from Burkholderia pseudomallei, the gram-negative bacterium which causes melioidosis. Screening by nuclear magnetic resonance spectroscopy as well as crystal soaking followed by X-ray diffraction led to the identification of several small molecules which bind this enzyme in a critical metabolic pathway. A series of complex structures obtained with screening hits reveal distinct binding pockets and a range of small molecules which form complexes with the target. Additional soaks with these compounds further demonstrate a subset of fragments to only bind the protein when present in specific combinations. This ensemble of fragment-bound complexes illuminates several characteristics of MECP synthase, including a previously unknown binding surface external to the catalytic active site. These ligand-bound structures now serve to guide medicinal chemists and structural biologists in rational design of novel inhibitors for this enzyme.

  9. Characterization of lesion formation in marmosets following inhalational challenge with different strains of Burkholderia pseudomallei.

    PubMed

    Nelson, Michelle; Nunez, Alejandro; Ngugi, Sarah A; Sinclair, Adam; Atkins, Timothy P

    2015-12-01

    The marmoset model of melioidosis was used to explore whether there was any difference in the disease presentation and/or the lesion formation following inhalational challenge with one of four strains of Burkholderia pseudomallei (K96243, 1026b, HBPUB10303a and HBPUB10134a). Marmosets were challenged with a range of bacterial doses and bacterial load, histological and physiological features were determined temporally following lethal disease. Melioidosis presented as an acute, febrile disease with bacteraemia, bacterial dissemination, necrotizing hepatitis, splenitis and pneumonia which was independent of the challenge strain. Generally, there were no major differences in the manifestation of melioidosis following challenge by the different strains of B. pseudomallei; however, there were some differences in the time to death and the severity of the pathological features. The pathological features observed in the liver and spleen of animals challenged with B. pseudomallei strain 1026b were statistically less severe (P < 0.05) and less frequent. However, more severe foci of disease were evident in the lungs of animals challenged with strain 1026b. In all cases, the lesions developed from small areas of bacteria-infected macrophages surrounded by non-infected neutrophils into large lesions with both immune cell types infected. The marmoset model was a useful tool enabling the distinction of subtle difference in the pathological response to B. pseudomallei. PMID:26852689

  10. Diversities in virulence, antifungal activity, pigmentation and DNA fingerprint among strains of Burkholderia glumae.

    PubMed

    Karki, Hari S; Shrestha, Bishnu K; Han, Jae Woo; Groth, Donald E; Barphagha, Inderjit K; Rush, Milton C; Melanson, Rebecca A; Kim, Beom Seok; Ham, Jong Hyun

    2012-01-01

    Burkholderia glumae is the primary causal agent of bacterial panicle blight of rice. In this study, 11 naturally avirulent and nine virulent strains of B. glumae native to the southern United States were characterized in terms of virulence in rice and onion, toxofalvin production, antifungal activity, pigmentation and genomic structure. Virulence of B. glumae strains on rice panicles was highly correlated to virulence on onion bulb scales, suggesting that onion bulb can be a convenient alternative host system to efficiently determine the virulence of B. glumae strains. Production of toxoflavin, the phytotoxin that functions as a major virulence factor, was closely associated with the virulence phenotypes of B. glumae strains in rice. Some strains of B. glumae showed various levels of antifungal activity against Rhizoctonia solani, the causal agent of sheath blight, and pigmentation phenotypes on casamino acid-peptone-glucose (CPG) agar plates regardless of their virulence traits. Purple and yellow-green pigments were partially purified from a pigmenting strain of B. glumae, 411gr-6, and the purple pigment fraction showed a strong antifungal activity against Collectotrichum orbiculare. Genetic variations were detected among the B. glumae strains from DNA fingerprinting analyses by repetitive element sequence-based PCR (rep-PCR) for BOX-A1R-based repetitive extragenic palindromic (BOX) or enterobacterial repetitive intergenic consensus (ERIC) sequences of bacteria; and close genetic relatedness among virulent but pigment-deficient strains were revealed by clustering analyses of DNA fingerprints from BOX-and ERIC-PCR. PMID:23028972

  11. Physicochemical Factors Affecting the Growth of Burkholderia pseudomallei in Soil Microcosm

    PubMed Central

    Wang-ngarm, Supunnipa; Chareonsudjai, Sorujsiri; Chareonsudjai, Pisit

    2014-01-01

    Burkholderia pseudomallei causes melioidosis, the third most common cause of death from infectious diseases in northeast Thailand. Four physicochemical factors were set so that their values covered the range of the northeast, which is an endemic area. The soil pH was set at pH 4–10, soil salinity was 0.0–5.0% NaCl, total iron was 50–150 mg/kg soil, and carbon to nitrogen ratio (C/N) was 10:1 to 40:1. The experiments were carried out at 37°C, and soil moisture was maintained for 7 days. The number of viable bacterial cells was counted daily. Soil pH, salinity, Fe, and C/N ratio affected the bacterial growth. The bacterial colony was significantly (P < 0.05) reduced at soil pH > 8, soil salinity > 1% NaCl, and C/N ratio > 40:1. However, the growth of B. pseudomallei was enhanced by increasing the concentrations of iron significantly (P < 0.05). We propose using these findings to control B. pseudomallei in situ. PMID:24445210

  12. Efflux-mediated resistance to a benzothiadiazol derivative effective against Burkholderia cenocepacia

    PubMed Central

    Scoffone, Viola C.; Ryabova, Olga; Makarov, Vadim; Iadarola, Paolo; Fumagalli, Marco; Fondi, Marco; Fani, Renato; De Rossi, Edda; Riccardi, Giovanna; Buroni, Silvia

    2015-01-01

    Burkholderia cenocepacia is a major concern for people suffering from cystic fibrosis as it contributes to serious respiratory tract infections. The lack of drugs effective against this opportunistic pathogen, along with the high level of resistance to multiple antibiotics, render the treatment of these infections particularly difficult. Here a new compound, belonging to the 2,1,3-benzothiadiazol-5-yl family (10126109), with a bactericidal effect and a minimal inhibitory concentration (MIC) of 8 μg/ml against B. cenocepacia, is described. The compound is not cytotoxic and effective against B. cenocepacia clinical isolates and members of all the known B. cepacia complex species. Spontaneous mutants resistant to 10126109 were isolated and mutations in the MerR transcriptional regulator BCAM1948 were identified. In this way, a mechanism of resistance to this new molecule was described, which relies on the overexpression of the RND-9 efflux pump. Indeed, rnd-9 overexpression was confirmed by quantitative reverse transcription PCR, and RND-9 was identified in the membrane fractions of the mutant strains. Moreover, the increase in the MIC values of different drugs in the mutant strains, together with complementation experiments, suggested the involvement of RND-9 in the efflux of 10126109, thus indicating again the central role of efflux transporters in B. cenocepacia drug resistance. PMID:26300878

  13. Divergence and Mosaicism among Virulent Soil Phages of the Burkholderia cepacia Complex‡

    PubMed Central

    Summer, Elizabeth J.; Gonzalez, Carlos F.; Bomer, Morgan; Carlile, Thomas; Embry, Addie; Kucherka, Amalie M.; Lee, Jonte; Mebane, Leslie; Morrison, William C.; Mark, Louise; King, Maria D.; LiPuma, John J.; Vidaver, Anne K.; Young, Ry

    2006-01-01

    We have determined the genomic sequences of four virulent myophages, Bcep1, Bcep43, BcepB1A, and Bcep781, whose hosts are soil isolates of the Burkholderia cepacia complex. Despite temporal and spatial separations between initial isolations, three of the phages (Bcep1, Bcep43, and Bcep781, designated the Bcep781 group) exhibit 87% to 99% sequence identity to one another and most coding region differences are due to synonymous nucleotide substitutions, a hallmark of neutral genetic drift. Phage BcepB1A has a very different genome organization but is clearly a mosaic with respect to many of the genes of the Bcep781 group, as is a defective prophage element in Photorhabdus luminescens. Functions were assigned to 27 out of 71 predicted genes of Bcep1 despite extreme sequence divergence. Using a lambda repressor fusion technique, 10 Bcep781-encoded proteins were identified for their ability to support homotypic interactions. While head and tail morphogenesis genes have retained canonical gene order despite extreme sequence divergence, genes involved in DNA metabolism and host lysis are not organized as in other phages. This unusual genome arrangement may contribute to the ability of the Bcep781-like phages to maintain a unified genomic type. However, the Bcep781 group phages can also engage in lateral gene transfer events with otherwise unrelated phages, a process that contributes to the broader-scale genomic mosaicism prevalent among the tailed phages. PMID:16352842

  14. Mesaconase Activity of Class I Fumarase Contributes to Mesaconate Utilization by Burkholderia xenovorans.

    PubMed

    Kronen, Miriam; Sasikaran, Jahminy; Berg, Ivan A

    2015-08-15

    Pseudomonas aeruginosa, Yersinia pestis, and many other bacteria are able to utilize the C5-dicarboxylic acid itaconate (methylenesuccinate). Itaconate degradation starts with its activation to itaconyl coenzyme A (itaconyl-CoA), which is further hydrated to (S)-citramalyl-CoA, and citramalyl-CoA is finally cleaved into acetyl-CoA and pyruvate. The xenobiotic-degrading betaproteobacterium Burkholderia xenovorans possesses a P. aeruginosa-like itaconate degradation gene cluster and is able to grow on itaconate and its isomer mesaconate (methylfumarate). Although itaconate degradation proceeds in B. xenovorans in the same way as in P. aeruginosa, the pathway of mesaconate utilization is not known. Here, we show that mesaconate is metabolized through its hydration to (S)-citramalate. The latter compound is then metabolized to acetyl-CoA and pyruvate with the participation of two enzymes of the itaconate degradation pathway, a promiscuous itaconate-CoA transferase able to activate (S)-citramalate in addition to itaconate and (S)-citramalyl-CoA lyase. The first reaction of the pathway, the mesaconate hydratase (mesaconase) reaction, is catalyzed by a class I fumarase. As this enzyme (Bxe_A3136) has similar efficiencies (kcat/Km) for both fumarate and mesaconate hydration, we conclude that B. xenovorans class I fumarase is in fact a promiscuous fumarase/mesaconase. This promiscuity is physiologically relevant, as it allows the growth of this bacterium on mesaconate as a sole carbon and energy source. PMID:26070669

  15. Mesaconase Activity of Class I Fumarase Contributes to Mesaconate Utilization by Burkholderia xenovorans

    PubMed Central

    Kronen, Miriam; Sasikaran, Jahminy

    2015-01-01

    Pseudomonas aeruginosa, Yersinia pestis, and many other bacteria are able to utilize the C5-dicarboxylic acid itaconate (methylenesuccinate). Itaconate degradation starts with its activation to itaconyl coenzyme A (itaconyl-CoA), which is further hydrated to (S)-citramalyl-CoA, and citramalyl-CoA is finally cleaved into acetyl-CoA and pyruvate. The xenobiotic-degrading betaproteobacterium Burkholderia xenovorans possesses a P. aeruginosa-like itaconate degradation gene cluster and is able to grow on itaconate and its isomer mesaconate (methylfumarate). Although itaconate degradation proceeds in B. xenovorans in the same way as in P. aeruginosa, the pathway of mesaconate utilization is not known. Here, we show that mesaconate is metabolized through its hydration to (S)-citramalate. The latter compound is then metabolized to acetyl-CoA and pyruvate with the participation of two enzymes of the itaconate degradation pathway, a promiscuous itaconate-CoA transferase able to activate (S)-citramalate in addition to itaconate and (S)-citramalyl-CoA lyase. The first reaction of the pathway, the mesaconate hydratase (mesaconase) reaction, is catalyzed by a class I fumarase. As this enzyme (Bxe_A3136) has similar efficiencies (kcat/Km) for both fumarate and mesaconate hydration, we conclude that B. xenovorans class I fumarase is in fact a promiscuous fumarase/mesaconase. This promiscuity is physiologically relevant, as it allows the growth of this bacterium on mesaconate as a sole carbon and energy source. PMID:26070669

  16. Landscape Changes Influence the Occurrence of the Melioidosis Bacterium Burkholderia pseudomallei in Soil in Northern Australia

    PubMed Central

    Kaestli, Mirjam; Mayo, Mark; Harrington, Glenda; Ward, Linda; Watt, Felicity; Hill, Jason V.; Cheng, Allen C.; Currie, Bart J.

    2009-01-01

    Background The soil-dwelling saprophyte bacterium Burkholderia pseudomallei is the cause of melioidosis, a severe disease of humans and animals in southeast Asia and northern Australia. Despite the detection of B. pseudomallei in various soil and water samples from endemic areas, the environmental habitat of B. pseudomallei remains unclear. Methodology/Principal Findings We performed a large survey in the Darwin area in tropical Australia and screened 809 soil samples for the presence of these bacteria. B. pseudomallei were detected by using a recently developed and validated protocol involving soil DNA extraction and real-time PCR targeting the B. pseudomallei–specific Type III Secretion System TTS1 gene cluster. Statistical analyses such as multivariable cluster logistic regression and principal component analysis were performed to assess the association of B. pseudomallei with environmental factors. The combination of factors describing the habitat of B. pseudomallei differed between undisturbed sites and environmentally manipulated areas. At undisturbed sites, the occurrence of B. pseudomallei was found to be significantly associated with areas rich in grasses, whereas at environmentally disturbed sites, B. pseudomallei was associated with the presence of livestock animals, lower soil pH and different combinations of soil texture and colour. Conclusions/Significance This study contributes to the elucidation of environmental factors influencing the occurrence of B. pseudomallei and raises concerns that B. pseudomallei may spread due to changes in land use. PMID:19156200

  17. A family history of deoxyribonuclease II: surprises from Trichinella spiralis and Burkholderia pseudomallei.

    PubMed

    MacLea, Kyle S; Krieser, Ronald J; Eastman, Alan

    2003-02-13

    Deoxyribonuclease IIalpha (DNase IIalpha) is an acidic endonuclease found in lysosomes and nuclei, and it is also secreted. Though its Caenorhabditis elegans homolog, NUC-1, is required for digesting DNA of apoptotic cell corpses and dietary DNA, it is not required for viability. However, DNase IIalpha is required in mice for correct development and viability, because undigested cell corpses lead to lesions throughout the body. Recently, we showed that, in contrast to previous reports, active DNase IIalpha consists of one contiguous polypeptide. To better analyze DNase II protein structure and determine residues important for activity, extensive database searches were conducted to find distantly related family members. We report 29 new partial or complete homologs from 21 species. Four homologs with differences at the purported active site histidine residue were detected in the parasitic nematodes Trichinella spiralis and Trichinella pseudospiralis. When these mutations were reconstructed in human DNase IIalpha, the expressed proteins were inactive. DNase II homologs were also identified in non-metazoan species. In particular, the slime-mold Dictyostelium, the protozoan Trichomonas vaginalis, and the bacterium Burkholderia pseudomallei all contain sequences with significant similarity and identity to previously cloned DNase II family members. We report an analysis of their sequences and implications for DNase II protein structure and evolution. PMID:12594037

  18. Identification of functions linking quorum sensing with biofilm formation in Burkholderia cenocepacia H111

    PubMed Central

    Inhülsen, Silja; Aguilar, Claudio; Schmid, Nadine; Suppiger, Angela; Riedel, Kathrin; Eberl, Leo

    2012-01-01

    Burkholderia cenocepacia has emerged as an important pathogen for patients suffering from cystic fibrosis (CF). Previous work has shown that this organism employs the CepIR quorum-sensing (QS) system to control the expression of virulence factors as well as the formation of biofilms. To date, however, very little is known about the QS-regulated virulence factors and virtually nothing about the factors that link QS and biofilm formation. Here, we have employed a combined transcriptomic and proteomic approach to precisely define the QS regulon in our model strain B. cenocepacia H111, a CF isolate. Among the identified CepR-activated loci, three were analyzed in better detail for their roles in biofilm development: (i) a gene cluster coding for the BclACB lectins, (ii) the large surface protein BapA, and (iii) a type I pilus. The analysis of defined mutants revealed that BapA plays a major role in biofilm formation on abiotic surfaces while inactivation of the type I pilus showed little effect both in a static microtitre dish-based biofilm assay and in flow-through cells. Inactivation of the bclACB lectin genes resulted in biofilms containing hollow microcolonies, suggesting that the lectins are important for biofilm structural development. PMID:22950027

  19. In silico analysis of Burkholderia pseudomallei genome sequence for potential drug targets.

    PubMed

    Chong, Chan-Eng; Lim, Boon-San; Nathan, Sheila; Mohamed, Rahmah

    2006-01-01

    Recent advances in DNA sequencing technology have enabled elucidation of whole genome information from a plethora of organisms. In parallel with this technology, various bioinformatics tools have driven the comparative analysis of the genome sequences between species and within isolates. While drawing meaningful conclusions from a large amount of raw material, computer-aided identification of suitable targets for further experimental analysis and characterization, has also led to the prediction of non-human homologous essential genes in bacteria as promising candidates for novel drug discovery. Here, we present a comparative genomic analysis to identify essential genes in Burkholderia pseudomallei. Our in silico prediction has identified 312 essential genes which could also be potential drug candidates. These genes encode essential proteins to support the survival of B. pseudomallei including outer-inner membrane and surface structures, regulators, proteins involved in pathogenenicity, adaptation, chaperones as well as degradation of small and macromolecules, energy metabolism, information transfer, central/intermediate/miscellaneous metabolism pathways and some conserved hypothetical proteins of unknown function. Therefore, our in silico approach has enabled rapid screening and identification of potential drug targets for further characterization in the laboratory. PMID:16922696

  20. Enhanced Susceptibility to Pulmonary Infection with Burkholderia cepacia in Cftr−/− Mice

    PubMed Central

    Sajjan, Uma; Thanassoulis, George; Cherapanov, Vera; Lu, Annie; Sjolin, Carola; Steer, Brent; Wu, Yi Jun; Rotstein, Ori D.; Kent, Geraldine; McKerlie, Colin; Forstner, Janet; Downey, Gregory P.

    2001-01-01

    Progressive pulmonary infection is the dominant clinical feature of cystic fibrosis (CF), but the molecular basis for this susceptibility remains incompletely understood. To study this problem, we developed a model of chronic pneumonia by repeated instillation of a clinical isolate of Burkholderia cepacia (genomovar III, ET12 strain), an opportunistic gram-negative bacterium, from a case of CF into the lungs of Cftr m1unc−/− (Cftr−/−) and congenic Cftr+/+ controls. Nine days after the last instillation, the CF transmembrane regulator knockout mice showed persistence of viable bacteria with chronic severe bronchopneumonia while wild-type mice remained healthy. The histopathological changes in the lungs of the susceptible Cftr−/− mice were characterized by infiltration of a mixed inflammatory-cell population into the peribronchiolar and perivascular spaces, Clara cell hyperplasia, mucus hypersecretion in airways, and exudation into alveolar airspaces by a mixed population of macrophages and neutrophils. An increased proportion of neutrophils was observed in bronchoalveolar lavage fluid from the Cftr−/− mice, which, despite an increased bacterial load, demonstrated minimal evidence of activation. Alveolar macrophages from Cftr−/− mice also demonstrated suboptimal activation. These observations suggest that the pulmonary host defenses are compromised in lungs from animals with CF, as manifested by increased susceptibility to bacterial infection and lung injury. This murine model of chronic pneumonia thus reflects, in part, the situation in human patients and may help elucidate the mechanisms leading to defective host defense in CF. PMID:11447196

  1. Virulent Burkholderia species mimic host actin polymerases to drive actin-based motility

    PubMed Central

    Benanti, Erin L.; Nguyen, Catherine M.; Welch, Matthew D.

    2015-01-01

    Summary Burkholderia pseudomallei and B. mallei are bacterial pathogens that cause melioidosis and glanders, while their close relative B. thailandensis is nonpathogenic. All use the trimeric autotransporter BimA to facilitate actin-based motility, host cell fusion and dissemination. Here, we show that BimA orthologs mimic different host actin-polymerizing proteins. B. thailandensis BimA activates the host Arp2/3 complex. In contrast, B. pseudomallei and B. mallei BimA mimic host Ena/VASP actin polymerases in their ability to nucleate, elongate and bundle filaments by associating with barbed ends, as well as in their use of WH2 motifs and oligomerization for activity. Mechanistic differences among BimA orthologs resulted in distinct actin filament organization and motility parameters, which affected the efficiency of cell fusion during infection. Our results identify bacterial Ena/VASP mimics and reveal that pathogens imitate the full spectrum of host actin-polymerizing pathways, suggesting that mimicry of different polymerization mechanisms influences key parameters of infection. PMID:25860613

  2. The Core and Accessory Genomes of Burkholderia pseudomallei: Implications for Human Melioidosis

    PubMed Central

    Lin, Chi Ho; Karuturi, R. Krishna M.; Wuthiekanun, Vanaporn; Tuanyok, Apichai; Chua, Hui Hoon; Ong, Catherine; Paramalingam, Sivalingam Suppiah; Tan, Gladys; Tang, Lynn; Lau, Gary; Ooi, Eng Eong; Woods, Donald; Feil, Edward; Peacock, Sharon J.; Tan, Patrick

    2008-01-01

    Natural isolates of Burkholderia pseudomallei (Bp), the causative agent of melioidosis, can exhibit significant ecological flexibility that is likely reflective of a dynamic genome. Using whole-genome Bp microarrays, we examined patterns of gene presence and absence across 94 South East Asian strains isolated from a variety of clinical, environmental, or animal sources. 86% of the Bp K96243 reference genome was common to all the strains representing the Bp “core genome”, comprising genes largely involved in essential functions (eg amino acid metabolism, protein translation). In contrast, 14% of the K96243 genome was variably present across the isolates. This Bp accessory genome encompassed multiple genomic islands (GIs), paralogous genes, and insertions/deletions, including three distinct lipopolysaccharide (LPS)-related gene clusters. Strikingly, strains recovered from cases of human melioidosis clustered on a tree based on accessory gene content, and were significantly more likely to harbor certain GIs compared to animal and environmental isolates. Consistent with the inference that the GIs may contribute to pathogenesis, experimental mutation of BPSS2053, a GI gene, reduced microbial adherence to human epithelial cells. Our results suggest that the Bp accessory genome is likely to play an important role in microbial adaptation and virulence. PMID:18927621

  3. Characterization of the Burkholderia pseudomallei K96243 Capsular Polysaccharide I Coding Region

    PubMed Central

    Cuccui, Jon; Milne, Timothy S.; Harmer, Nicholas; George, Alison J.; Harding, Sarah V.; Dean, Rachel E.; Scott, Andrew E.; Sarkar-Tyson, Mitali; Wren, Brendan W.; Prior, Joann L.

    2012-01-01

    Burkholderia pseudomallei is the causative agent of melioidosis, a disease endemic to regions of Southeast Asia and Northern Australia. Both humans and a range of other animal species are susceptible to melioidosis, and the production of a group 3 polysaccharide capsule in B. pseudomallei is essential for virulence. B. pseudomallei capsular polysaccharide (CPS) I comprises unbranched manno-heptopyranose residues and is encoded by a 34.5-kb locus on chromosome 1. Despite the importance of this locus, the role of all of the genes within this region is unclear. We inactivated 18 of these genes and analyzed their phenotype using Western blotting and immunofluorescence staining. Furthermore, by combining this approach with bioinformatic analysis, we were able to develop a model for CPS I biosynthesis and export. We report that inactivating gmhA, wcbJ, and wcbN in B. pseudomallei K96243 retains the immunogenic integrity of the polysaccharide despite causing attenuation in the BALB/c murine infection model. Mice immunized with the B. pseudomallei K96243 mutants lacking a functional copy of either gmhA or wcbJ were afforded significant levels of protection against a wild-type B. pseudomallei K96243 challenge. PMID:22252864

  4. The HicA toxin from Burkholderia pseudomallei has a role in persister cell formation

    PubMed Central

    Butt, Aaron; Higman, Victoria A.; Williams, Christopher; Crump, Matthew P.; Hemsley, Claudia M.; Harmer, Nicholas; Titball, Richard W.

    2014-01-01

    TA (toxin–antitoxin) systems are widely distributed amongst bacteria and are associated with the formation of antibiotic tolerant (persister) cells that may have involvement in chronic and recurrent disease. We show that overexpression of the Burkholderia pseudomallei HicA toxin causes growth arrest and increases the number of persister cells tolerant to ciprofloxacin or ceftazidime. Furthermore, our data show that persistence towards ciprofloxacin or ceftazidime can be differentially modulated depending on the level of induction of HicA expression. Deleting the hicAB locus from B. pseudomallei K96243 significantly reduced persister cell frequencies following exposure to ciprofloxacin, but not ceftazidime. The structure of HicA(H24A) was solved by NMR and forms a dsRBD-like (dsRNA-binding domain-like) fold, composed of a triple-stranded β-sheet, with two helices packed against one face. The surface of the protein is highly positively charged indicative of an RNA-binding protein and His24 and Gly22 were functionality important residues. This is the first study demonstrating a role for the HicAB system in bacterial persistence and the first structure of a HicA protein that has been experimentally characterized. PMID:24502667

  5. A Pipeline for Screening Small Molecules with Growth Inhibitory Activity against Burkholderia cenocepacia.

    PubMed

    Selin, Carrie; Stietz, Maria S; Blanchard, Jan E; Gehrke, Sebastian S; Bernard, Sylvain; Hall, Dennis G; Brown, Eric D; Cardona, Silvia T

    2015-01-01

    Infections with the bacteria Burkholderia cepacia complex (Bcc) are very difficult to eradicate in cystic fibrosis patients due the intrinsic resistance of Bcc to most available antibiotics and the emergence of multiple antibiotic resistant strains during antibiotic treatment. In this work, we used a whole-cell based assay to screen a diverse collection of small molecules for growth inhibitors of a relevant strain of Bcc, B. cenocepacia K56-2. The primary screen used bacterial growth in 96-well plate format and identified 206 primary actives among 30,259 compounds. From 100 compounds with no previous record of antibacterial activity secondary screening and data mining selected a total of Bce bioactives that were further analyzed. An experimental pipeline, evaluating in vitro antibacterial and antibiofilm activity, toxicity and in vivo antibacterial activity using C. elegans was used for prioritizing compounds with better chances to be further investigated as potential Bcc antibacterial drugs. This high throughput screen, along with the in vitro and in vivo analysis highlights the utility of this experimental method to quickly identify bioactives as a starting point of antibacterial drug discovery. PMID:26053039

  6. Land use and soil type determine the presence of the pathogen Burkholderia pseudomallei in tropical rivers.

    PubMed

    Ribolzi, Olivier; Rochelle-Newall, Emma; Dittrich, Sabine; Auda, Yves; Newton, Paul N; Rattanavong, Sayaphet; Knappik, Michael; Soulileuth, Bounsamai; Sengtaheuanghoung, Oloth; Dance, David A B; Pierret, Alain

    2016-04-01

    Burkholderia pseudomallei is the bacterium that causes melioidosis in humans. While B. pseudomallei is known to be endemic in South East Asia (SEA), the occurrence of the disease in other parts of the tropics points towards a potentially large global distribution. We investigated the environmental factors that influence the presence (and absence) of B. pseudomallei in a tropical watershed in SEA. Our main objective was to determine whether there is a link between the presence of the organism in the hydrographic network and the upstream soil and land-use type. The presence of B. pseudomallei was determined using a specific quantitative real-time PCR assay following enrichment culture. Land use, soil, geomorphology, and environmental data were then analyzed using partial least squares discriminant analysis (PLSDA) to compare the B. pseudomallei positive and negative sites. Soil type in the surrounding catchment and turbidity had a strong positive influence on the presence (acrisols and luvisols) or absence (ferralsols) of B. pseudomallei. Given the strong apparent links between soil characteristics, water turbidity, and the presence/absence of B. pseudomallei, actions to raise public awareness about factors increasing the risk of exposure should be undertaken in order to reduce the incidence of melioidosis in regions of endemicity. PMID:26758304

  7. Burkholderia pseudomallei Differentially Regulates Host Innate Immune Response Genes for Intracellular Survival in Lung Epithelial Cells

    PubMed Central

    Vellasamy, Kumutha Malar; Mariappan, Vanitha; Shankar, Esaki M.; Vadivelu, Jamuna

    2016-01-01

    Background Burkholderia pseudomallei, the causative agent of melioidosis poses a serious threat to humankind. B. pseudomallei secretes numerous virulence proteins that alter host cell functions to escape from intracellular immune sensors. However, the events underlying disease pathogenesis are poorly understood. Methods We determined the ability of B. pseudomallei to invade and survive intracellularly in A549 human lung epithelial cells, and also investigated the early transcriptional responses using an Illumina HumanHT-12 v4 microarray platform, after three hours of exposure to live B. pseudomallei (BCMS) and its secreted proteins (CCMS). Results We found that the ability of B. pseudomallei to invade and survive intracellularly correlated with increase of multiplicity of infection and duration of contact. Activation of host carbohydrate metabolism and apoptosis as well as suppression of amino acid metabolism and innate immune responses both by live bacteria and its secreted proteins were evident. These early events might be linked to initial activation of host genes directed towards bacterial dissemination from lungs to target organs (via proposed in vivo mechanisms) or to escape potential sensing by macrophages. Conclusion Understanding the early responses of A549 cells toward B. pseudomallei infection provide preliminary insights into the likely pathogenesis mechanisms underlying melioidosis, and could contribute to development of novel intervention strategies to combat B. pseudomallei infections. PMID:27367858

  8. Purification and characterization of chlorophenol 4-monooxygenase from Burkholderia cepacia AC1100.

    PubMed Central

    Xun, L

    1996-01-01

    Burkholderia (formerly Pseudomonas) cepacia AC1100 mineralizes the herbicide 2,4,5-trichlorophenoxyacetate (2,4,5-T), and the first intermediate of 2,4,5-T degradation is 2,4,5-trichlorophenol. Chlorophenol 4-monooxygenase activity responsible for 2,4,5-trichlorophenol degradation was detected in the cell extract. The enzyme consisted of two components separated during purification, and both were purified to more than 95% homogeneity. The reconstituted enzyme catalyzed the hydroxylation of several tested chlorophenols with the coconsumption of NADH and oxygen. In addition to chlorophenols, the enzyme also hydroxylated some chloro-p-hydroquinones with the coconsumption of NADH and oxygen. Apparently, the single enzyme was responsible for converting 2,4,5-trichlorophenol to 2,5-dichloro-p-hydroquinone and then to 5-chlorohydroxyquinol (5-chloro-1,2,4-trihydroxybenzene). Component A had a molecular weight of 22,000 and contained flavin adenine dinucleotide. Component A alone catalyzed NADH-dependent cytochrome c reduction, indicating that it had reductase activity. Component B had a molecular weight of 58,000, and no catalytic activity has yet been shown by itself. PMID:8626333

  9. Identification of Burkholderia cenocepacia Strain H111 Virulence Factors Using Nonmammalian Infection Hosts

    PubMed Central

    Schwager, Stephan; Agnoli, Kirsty; Köthe, Manuela; Feldmann, Friederike; Givskov, Michael; Carlier, Aurelien

    2013-01-01

    Burkholderia cenocepacia H111, a strain isolated from a cystic fibrosis patient, has been shown to effectively kill the nematode Caenorhabditis elegans. We used the C. elegans model of infection to screen a mini-Tn5 mutant library of B. cenocepacia H111 for attenuated virulence. Of the approximately 5,500 B. cenocepacia H111 random mini-Tn5 insertion mutants that were screened, 22 showed attenuated virulence in C. elegans. Except for the quorum-sensing regulator cepR, none of the mutated genes coded for the biosynthesis of classical virulence factors such as extracellular proteases or siderophores. Instead, the mutants contained insertions in metabolic and regulatory genes. Mutants attenuated in virulence in the C. elegans infection model were also tested in the Drosophila melanogaster pricking model, and those also attenuated in this model were further tested in Galleria mellonella. Six of the 22 mutants were attenuated in D. melanogaster, and five of these were less pathogenic in the G. mellonella model. We show that genes encoding enzymes of the purine, pyrimidine, and shikimate biosynthesis pathways are critical for virulence in multiple host models of infection. PMID:23090963

  10. Degradation of toluene by ortho cleavage enzymes in Burkholderia fungorum FLU100

    PubMed Central

    Dobslaw, Daniel; Engesser, Karl-Heinrich

    2015-01-01

    Burkholderia fungorum FLU100 simultaneously oxidized any mixture of toluene, benzene and mono-halogen benzenes to (3-substituted) catechols with a selectivity of nearly 100%. Further metabolism occurred via enzymes of ortho cleavage pathways with complete mineralization. During the transformation of 3-methylcatechol, 4-carboxymethyl-2-methylbut-2-en-4-olide (2-methyl-2-enelactone, 2-ML) accumulated transiently, being further mineralized only after a lag phase of 2 h in case of cells pre-grown on benzene or mono-halogen benzenes. No lag phase, however, occurred after growth on toluene. Cultures inhibited by chloramphenicol after growth on benzene or mono-halogen benzenes were unable to metabolize 2-ML supplied externally, even after prolonged incubation. A control culture grown with toluene did not show any lag phase and used 2-ML as a substrate. This means that 2-ML is an intermediate of toluene degradation and converted by specific enzymes. The conversion of 4-methylcatechol as a very minor by-product of toluene degradation in strain FLU100 resulted in the accumulation of 4-carboxymethyl-4-methylbut-2-en-4-olide (4-methyl-2-enelactone, 4-ML) as a dead-end product, excluding its nature as a possible intermediate. Thus, 3-methylcyclohexa-3,5-diene-1,2-diol, 3-methylcatechol, 2-methyl muconate and 2-ML were identified as central intermediates of productive ortho cleavage pathways for toluene metabolism in B. fungorum FLU100. PMID:25130674

  11. [GENOTYPING OF THE BURKHOLDERIA MALLEI STRAINS BASED ON DIFFERENT REGION ANALYSIS].

    PubMed

    Bondareva, O S; Savchenko, S S; Tkachenko, G A; Ledeneva, M L; Lemasova, L V; Antonov, V A

    2016-01-01

    Development of the genotyping methods of glanders agent is urgent due to its high pathogenicity, lack of effective preventive measures and threat of the use of Burkholderia mallei as a biological weapon. In this work we proposed a scheme for the typing of the B. mallei strains based on different region analysis (DFR). The choice of variable loci differentially presented in various strains of glanders agents was performed by analyzing annotated whole-genome sequences of the B. mallei strains. Primers and fluorescence probes were designed for 9 selected loci. The amplification conditions for different regions were optimized in two variants: with electrophoretic detection and hybridization-fluorescence detection in the strip format. The possibility of applying the DFR analysis to genetic characterization of strains was assessed in 14 B. mallei strains. The genetic profiles of the studied B. mallei strains revealed that the developed DFR-typing scheme was characterized by high discrimination power (Hunter-Gaston index value was 0.92), reproducibility, rapidity, easy interpretation, and applicability for epidemiological surveillance of glanders. PMID:27183720

  12. Environmental Attributes Influencing the Distribution of Burkholderia pseudomallei in Northern Australia

    PubMed Central

    Baker, Anthony L.; Ezzahir, Jessica; Gardiner, Christopher; Shipton, Warren; Warner, Jeffrey M.

    2015-01-01

    Factors responsible for the spatial and temporal clustering of Burkholderia pseudomallei in the environment remain to be elucidated. Whilst laboratory based experiments have been performed to analyse survival of the organism in various soil types, such approaches are strongly influenced by alterations to the soil micro ecology during soil sanitisation and translocation. During the monsoonal season in Townsville, Australia, B. pseudomallei is discharged from Castle Hill (an area with a very high soil prevalence of the organism) by groundwater seeps and is washed through a nearby area where intensive sampling in the dry season has been unable to detect the organism. We undertook environmental sampling and soil and plant characterisation in both areas to ascertain physiochemical and macro-floral differences between the two sites that may affect the prevalence of B. pseudomallei. In contrast to previous studies, the presence of B. pseudomallei was correlated with a low gravimetric water content and low nutrient availability (nitrogen and sulphur) and higher exchangeable potassium in soils favouring recovery. Relatively low levels of copper, iron and zinc favoured survival. The prevalence of the organism was found to be highest under the grasses Aristida sp. and Heteropogon contortus and to a lesser extent under Melinis repens. The findings of this study indicate that a greater variety of factors influence the endemicity of melioidosis than has previously been reported, and suggest that biogeographical boundaries to the organisms’ distribution involve complex interactions. PMID:26398904

  13. Burkholderia pseudomallei Antibodies in Individuals Living in Endemic Regions in Northeastern Brazil

    PubMed Central

    Rolim, Dionne Bezerra; Vilar, Dina Cortez F. L.; de Góes Cavalcanti, Luciano Pamplona; Freitas, Liara B. N.; Inglis, Timothy J. J.; Nobre Rodrigues, Jorge Luiz; Nagao-Dias, Aparecida Tiemi

    2011-01-01

    A seroepidemiological investigation was conducted among the population of two municipalities in Northeastern Brazil. Immunoglobulin M (IgM) and IgG antibodies to Burkholderia pseudomallei were positive in 51.27% (161 in 317 samples) and 58.49% (186), respectively. IgM titers were higher in children than in adults. On the contrary, IgG increased progressively with age. We observed a significant association between agricultural occupation and raised IgM titers (P < 0.005) and IgG titers (P < 0.001), and between construction workers and raised IgG titers (P = 0.005). Antibody IgG avidities did not correlate with age. The highest titers of antibodies (1/800) showed the highest antibody avidity indexes (P < 0.01). Most of the serum samples recognized 45-kDa and 200-kDa bands by IgG1 and IgG2 subclasses. Our study showed a high seropositivity among individuals living in endemic regions of the state of Ceará, and highlights the need for further surveillance close to water courses such as dams and rivers in Northeastern Brazil. PMID:21292903

  14. Gene and Protein Expression in Response to Different Growth Temperatures and Oxygen Availability in Burkholderia thailandensis

    PubMed Central

    Peano, Clelia; Chiaramonte, Fabrizio; Motta, Sara; Pietrelli, Alessandro; Jaillon, Sebastien; Rossi, Elio; Consolandi, Clarissa; Champion, Olivia L.; Michell, Stephen L.; Freddi, Luca; Falciola, Luigi; Basilico, Fabrizio; Garlanda, Cecilia; Mauri, Pierluigi; De Bellis, Gianluca; Landini, Paolo

    2014-01-01

    Burkholderia thailandensis, although normally avirulent for mammals, can infect macrophages in vitro and has occasionally been reported to cause pneumonia in humans. It is therefore used as a model organism for the human pathogen B. pseudomallei, to which it is closely related phylogenetically. We characterized the B. thailandensis clinical isolate CDC2721121 (BtCDC272) at the genome level and studied its response to environmental cues associated with human host colonization, namely, temperature and oxygen limitation. Effects of the different growth conditions on BtCDC272 were studied through whole genome transcription studies and analysis of proteins associated with the bacterial cell surface. We found that growth at 37°C, compared to 28°C, negatively affected cell motility and flagella production through a mechanism involving regulation of the flagellin-encoding fliC gene at the mRNA stability level. Growth in oxygen-limiting conditions, in contrast, stimulated various processes linked to virulence, such as lipopolysaccharide production and expression of genes encoding protein secretion systems. Consistent with these observations, BtCDC272 grown in oxygen limitation was more resistant to phagocytosis and strongly induced the production of inflammatory cytokines from murine macrophages. Our results suggest that, while temperature sensing is important for regulation of B. thailandensis cell motility, oxygen limitation has a deeper impact on its physiology and constitutes a crucial environmental signal for the production of virulence factors. PMID:24671187

  15. Pivotal role of anthranilate dioxygenase genes in the adaptation of Burkholderia multivorans ATCC 17616 in soil.

    PubMed

    Nishiyama, Eri; Ohtsubo, Yoshiyuki; Yamamoto, Yasuhiro; Nagata, Yuji; Tsuda, Masataka

    2012-05-01

    In our recent screen for soil-induced genes, the expression of andA operon (andAcAdAbAa) for anthranilate catabolism in Burkholderia multivorans ATCC 17616 was found to increase dramatically in a soil sample (Nishiyama et al., Environ Microbiol 12: 2539, 2010). The operon was preceded by andR encoding a putative transcriptional regulator for the andA operon. In this study, the andA promoter was induced by tryptophan and anthranilate in an andR-dependent manner. The andA promoter in a deletion mutant lacking tryptophan dioxygenase (one of enzymes for the catabolism of tryptophan to anthranilate) did not respond to tryptophan, indicating that not tryptophan but anthranilate is the effector of AndR. Although both anthranilate and tryptophan were under the detection levels in the soil sample, andA promoter showed higher activity in the soil sample than in a laboratory medium. Such induction required andR and was moderately dependent on the ferric uptake regulator (Fur). The proliferation ability of andAc mutant in the sterile soil was low compared with the co-incubated wild-type cells. These findings suggested that in the soil environment, anthranilate dioxygenase genes are induced by AndR and Fur, and play a pivotal role in the proliferation in the soil environment. PMID:22360670

  16. Multilocus sequence typing of 102 Burkholderia pseudomallei strains isolated from China.

    PubMed

    Fang, Y; Zhu, P; Li, Q; Chen, H; Li, Y; Ren, C; Hu, Y; Tan, Z; Gu, J; Mao, X

    2016-07-01

    The phylogenetic and epidemiological relationships of 102 Burkholderia pseudomallei clinical isolates from different geographical and population sources in China were investigated by multilocus sequence typing (MLST). The MLST data were analysed using the e-BURST algorithm, and an unweighted pair-group method with arithmetic mean dendrogram was constructed based on the pair-wise differences in the allelic profiles of the strains. Forty-one sequence types (STs) were identified, of which eight were novel (ST1341, ST1345, ST1346, ST1347, ST1348, ST1349, ST1350, ST1351). No geographical-specific or host population-specific phylogenetic lineages were identified. ST46, ST50, ST55, ST58, ST70 and ST1095 predominated, but ~44% of isolates were assigned to 45 STs illustrating high genetic diversity in the strain collection. Additionally, the phylogenetic relationships of the dominant STs in China showed significant linkeage with B. pseudomallei isolates from Thailand. Analysis of the gmhD allele suggests high genetic variation in B. pseudomallei in China. PMID:26744829

  17. Biosynthesis of antifungal and antibacterial polyketides by Burkholderia gladioli in coculture with Rhizopus microsporus.

    PubMed

    Ross, Claudia; Opel, Viktoria; Scherlach, Kirstin; Hertweck, Christian

    2014-12-01

    Fungi-bacteria interactions can impact the course of fungal infection and biotechnological use. The mucoralean fungus Rhizopus microsporus, traditionally used in food fermentations (tempe and sufu), is frequently accompanied by Burkholderia gladioli pv. cocovenenans. When producing tempe bongkrek, the bacterial contamination can lead to lethal food-related intoxications caused by the respiratory toxin bongkrekic acid. To unveil the metabolic potential of the fungus-associated bacterium, we sequenced its genome, assigned secondary metabolite biosynthesis gene clusters and monitored the metabolic profile under various growth conditions. In addition to the bongkrekic acid biosynthesis gene cluster we found gene clusters coding for the biosynthesis of toxoflavin and a complex polyketide. The orphan polyketide synthase gene cluster was activated under conditions that emulate tempe production, which enabled isolation and structure elucidation of four members of the enacyloxin family of antibiotics, out of which one is new. Moreover, we found that the fungus positively influences the growth of the bacteria and dramatically increases bongkrekic acid production in stationary culture, which inhibits the growth of the fungus. These results showcase the context-dependent formation of antifungal and antibacterial agents at the fungal-bacterial interface, which may also serve as a model for scenarios observed in mixed infections. PMID:25250879

  18. Enhanced Polychlorinated Biphenyl Removal in a Switchgrass Rhizosphere by Bioaugmentation with Burkholderia xenovorans LB400

    PubMed Central

    Liang, Yi; Meggo, Richard; Hu, Dingfei; Schnoor, Jerald L.; Mattes, Timothy E.

    2014-01-01

    Phytoremediation makes use of plants and associated microorganisms to clean up soils and sediments contaminated with inorganic and organic pollutants. In this study, switchgrass (Panicum virgatum) was used to test for its efficiency in improving the removal of three specific polychlorinated biphenyl (PCB) congeners (PCB 52, 77 and 153) in soil microcosms. The congeners were chosen for their ubiquity, toxicity, and recalcitrance. After 24 weeks of incubation, loss of 39.9 ± 0.41% of total PCB molar mass was observed in switchgrass treated soil, significantly higher than in unplanted soil (29.5 ± 3.4%) (p<0.05). The improved PCB removal in switchgrass treated soils could be explained by phytoextraction processes and enhanced microbial activity in the rhizosphere. Bioaugmentation with Burkholderia xenovorans LB400 was performed to further enhance aerobic PCB degradation. The presence of LB400 was associated with improved degradation of PCB 52, but not PCB 77 or PCB 153. Increased abundances of bphA (a functional gene that codes for a subunit of PCB-degrading biphenyl dioxygenase in bacteria) and its transcript were observed after bioaugmentation. The highest total PCB removal was observed in switchgrass treated soil with LB400 bioaugmentation (47.3 ± 1.22 %), and the presence of switchgrass facilitated LB400 survival in the soil. Overall, our results suggest the combined use of phytoremediation and bioaugmentation could be an efficient and sustainable strategy to eliminate recalcitrant PCB congeners and remediate PCB-contaminated soil. PMID:25246731

  19. Burkholderia pseudomallei is frequently detected in groundwater that discharges to major watercourses in northern Australia.

    PubMed

    Baker, Anthony L; Warner, Jeffrey M

    2016-07-01

    Burkholderia pseudomallei is the environmental bacterium that causes the serious disease melioidosis. Recently, a high prevalence of viable B. pseudomallei was reported from natural groundwater seeps around Castle Hill, a clinical focus of melioidosis in Townsville, Australia. This study sought to expand previous findings to determine the extent of B. pseudomallei in more diverse natural groundwater seeps in northern Queensland to ascertain if the presence of the organism in groundwater on Castle Hill was an isolated occurrence. Analysis of water samples (n = 26) obtained from natural groundwater seeps following an intensive rainfall event in the Townsville region determined the presence of B. pseudomallei DNA in duplicates of 18 samples (69.2 % [95 % CI, 51.5 to 87.0]). From 26 water samples, a single isolate of B. pseudomallei was recovered despite plating of both pre-enriched samples and original water samples onto selective media, indicating that the sensitivity of these molecular techniques far exceeds culture-based methods. Furthermore, the identification of new environments endemic for melioidosis may be more effectively determined by analysing surface groundwater seeps than by the analysis of random soil samples. This study suggests that a higher incidence of melioidosis following monsoonal rains may be partially the result of exposure to groundwater sources carrying B. pseudomallei, and that modifications to public health messages in endemic regions may be warranted. Moreover, these findings have implications for predictive models of melioidosis, effective models requiring consideration of topographical and surface hydrological data. PMID:26620184

  20. Production of (R)-3-hydroxybutyric acid by Burkholderia cepacia from wood extract hydrolysates

    PubMed Central

    2014-01-01

    (R)-hydroxyalkanoic acids (R-HAs) are valuable building blocks for the synthesis of fine chemicals and biopolymers because of the chiral center and the two active functional groups. Hydroxyalkanoic acids fermentation can revolutionize the polyhydroxyalkanoic acids (PHA) production by increasing efficiency and enhancing product utility. Modifying the fermentation conditions that promotes the in vivo depolymerization and secretion to fermentation broth in wild type bacteria is a novel and promising approach to produce R-HAs. Wood extract hydrolysate (WEH) was found to be a suitable substrate for R-3-hydroxybutyric acid (R-3-HB) production by Burkholderia cepacia. Using Paulownia elongate WEH as a feedstock, the R-3-HB concentration in fermentation broth reached as high as 14.2 g/L after 3 days of batch fermentation and the highest concentration of 16.8 g/L was obtained at day 9. Further investigation indicated that the composition of culture medium contributed to the enhanced R-3-HB production. PMID:24949263

  1. Importance of topology for glycocluster binding to Pseudomonas aeruginosa and Burkholderia ambifaria bacterial lectins.

    PubMed

    Ligeour, Caroline; Dupin, Lucie; Angeli, Anthony; Vergoten, Gérard; Vidal, Sébastien; Meyer, Albert; Souteyrand, Eliane; Vasseur, Jean-Jacques; Chevolot, Yann; Morvan, François

    2015-12-14

    Pseudomonas aeruginosa (PA) and Burkholderia ambifaria (BA) are two opportunistic Gram negative bacteria and major infectious agents involved in lung infection of cystic fibrosis patients. Both bacteria can develop resistance to conventional antibiotherapies. An alternative strategy consists of targeting virulence factors in particular lectins with high affinity ligands such as multivalent glycoclusters. LecA (PA-IL) and LecB (PA-IIL) are two tetravalent lectins from PA that recognise galactose and fucose respectively. BambL lectin from BA is trimeric with 2 binding sites per monomer and is also specific for fucose. These three lectins are potential therapeutic targets in an anti-adhesive anti-bacterial approach. Herein, we report the synthesis of 18 oligonucleotide pentofuranose-centered or mannitol-centered glycoclusters leading to tri-, penta- or decavalent clusters with different topologies. The linker arm length between the core and the carbohydrate epitope was also varied leading to 9 galactoclusters targeting LecA and 9 fucoclusters targeting both LecB and BambL. Their dissociation constants (Kd) were determined using a DNA-based carbohydrate microarray technology. The trivalent xylo-centered galactocluster and the ribo-centered fucocluster exhibited the best affinity for LecA and LecB respectively while the mannitol-centered decafucocluster displayed the best affinity to BambL. These data demonstrated that the topology and nature of linkers were the predominant factors for achieving high affinity rather than valency. PMID:26412676

  2. A new species of Burkholderia isolated from sugarcane roots promotes plant growth.

    PubMed

    Paungfoo-Lonhienne, Chanyarat; Lonhienne, Thierry G A; Yeoh, Yun Kit; Webb, Richard I; Lakshmanan, Prakash; Chan, Cheong Xin; Lim, Phaik-Eem; Ragan, Mark A; Schmidt, Susanne; Hugenholtz, Philip

    2014-03-01

    Sugarcane is a globally important food, biofuel and biomaterials crop. High nitrogen (N) fertilizer rates aimed at increasing yield often result in environmental damage because of excess and inefficient application. Inoculation with diazotrophic bacteria is an attractive option for reducing N fertilizer needs. However, the efficacy of bacterial inoculants is variable, and their effective formulation remains a knowledge frontier. Here, we take a new approach to investigating diazotrophic bacteria associated with roots using culture-independent microbial community profiling of a commercial sugarcane variety (Q208(A) ) in a field setting. We first identified bacteria that were markedly enriched in the rhizosphere to guide isolation and then tested putative diazotrophs for the ability to colonize axenic sugarcane plantlets (Q208(A) ) and promote growth in suboptimal N supply. One isolate readily colonized roots, fixed N2 and stimulated growth of plantlets, and was classified as a new species, Burkholderia australis sp. nov. Draft genome sequencing of the isolate confirmed the presence of nitrogen fixation. We propose that culture-independent identification and isolation of bacteria that are enriched in rhizosphere and roots, followed by systematic testing and confirming their growth-promoting capacity, is a necessary step towards designing effective microbial inoculants. PMID:24350979

  3. Differential Toll-Like Receptor-Signalling of Burkholderia pseudomallei Lipopolysaccharide in Murine and Human Models

    PubMed Central

    Weehuizen, Tassili A. F.; Prior, Joann L.; van der Vaart, Thomas W.; Ngugi, Sarah A.; Nepogodiev, Sergey A.; Field, Robert A.; Kager, Liesbeth M.; van ‘t Veer, Cornelis; de Vos, Alex F.; Wiersinga, W. Joost

    2015-01-01

    The Gram-negative bacterium Burkholderia pseudomallei causes melioidosis and is a CDC category B bioterrorism agent. Toll-like receptor (TLR)-2 impairs host defense during pulmonary B.pseudomallei infection while TLR4 only has limited impact. We investigated the role of TLRs in B.pseudomallei-lipopolysaccharide (LPS) induced inflammation. Purified B.pseudomallei-LPS activated only TLR2-transfected-HEK-cells during short stimulation but both HEK-TLR2 and HEK-TLR4-cells after 24 h. In human blood, an additive effect of TLR2 on TLR4-mediated signalling induced by B.pseudomallei-LPS was observed. In contrast, murine peritoneal macrophages recognized B.pseudomallei-LPS solely through TLR4. Intranasal inoculation of B.pseudomallei-LPS showed that both TLR4-knockout(-/-) and TLR2x4-/-, but not TLR2-/- mice, displayed diminished cytokine responses and neutrophil influx compared to wild-type controls. These data suggest that B.pseudomallei-LPS signalling occurs solely through murine TLR4, while in human models TLR2 plays an additional role, highlighting important differences between specificity of human and murine models that may have important consequences for B.pseudomallei-LPS sensing by TLRs and subsequent susceptibility to melioidosis. PMID:26689559

  4. Investigation into the susceptibility of Burkholderia cepacia complex isolates to photodynamic antimicrobial chemotherapy (PACT)

    NASA Astrophysics Data System (ADS)

    Cassidy, C. M.; Watters, A. L.; Donnelly, R. F.; Tunney, M. M.

    2009-06-01

    The main cause of morbidity and mortality in cystic fibrosis (CF) sufferers is progressive pulmonary damage caused by recurrent and often unremitting respiratory tract infection. Causative organisms include Pseudomonas aeruginosa and Haemophilus influenzae, but in recent years the Burkholderia cepacia complex has come to the fore. This group of highly drug-resistant Gram-negative bacteria are associated with a rapid decline in lung function and the often fatal cepacia syndrome, with treatment limited to patient segregation and marginally effective antibacterial regimens. Thus, development of an effective treatment is of the upmost importance. PACT, a non-target specific therapy, has proven successful in killing both Gram-positive and Gram-negative bacteria. In this study, planktonic cultures of six strains of the B. cepacia complex were irradiated (635 nm, 200 J cm-2,10 minutes irradiation) following 30 seconds incubation with methylene blue (MB) or meso-tetra (N-methyl-4-pyridyl) porphine tetra tosylate (TMP). Rates of kill of > 99 % were achieved with MB- and TMP-PACT. A MB concentration of 50 μg ml-1 and TMP concentration of 500 μg ml-1 were associated with highest percentage kills for each photosensitizer. PACT is an attractive option for treatment of B.cepacia complex infection. Further study, involving biofilm culture susceptibility, delivery of light to the target and in vivo testing will be necessary before it PACT becomes a viable treatment option for CF patients who are colonised or infected with B. cepacia complex.

  5. Screening of Burkholderia sp. WGB31 producing anisic acid from anethole and optimization of fermentation conditions.

    PubMed

    Shen, Peihong; Song, Zhangyang; Zhang, Zhenyong; Zeng, Huahe; Tang, Xianlai; Jiang, Chengjian; Li, Junfang; Wu, Bo

    2014-11-01

    Anisic acid, the precursor of a variety of food flavors and industrial raw materials, can be bioconversed from anethole which extracted from star anise fruits. WGB31 strain with anisic acid molar production rate of 10.25% was isolated and identified as Burkholderia sp. Three significant influential factors, namely, glucose concentration, initial pH value, and medium volume were selected and their effects were evaluated by Box-Behnken Design (BBD). Regression analysis was performed to determine response surface methodology and the significance was tested to obtain the process model of optimal conditions for producing anisic acid. The fermentation conditions at the stable point of the model were obtained: glucose 6 g L(-1) , pH 6.2, culture medium volume 61 mL in a triangular flask with 250 ml volume. Verification test indicated that the production rate of anisic acid was 30.7%, which was three times of that before optimizing. The results provide a basis and reference for producing anisic acid by microbial transformation. PMID:25100156

  6. Characterizing uncommon Burkholderia cepacia complex isolates from an outbreak in a haemodialysis unit.

    PubMed

    Souza, Andrea V; Moreira, Cláudia R; Pasternak, Jacyr; Hirata, Maria de Lurdes; Saltini, Denise Alves; Caetano, Viviane Cristina; Ciosak, Suely; Azevedo, Fátima M; Severino, Patricia; Vandamme, Peter; Magalhães, Vanda D

    2004-10-01

    An outbreak of bacteraemia in a haemodialysis unit where 65 episodes of infection involved 35 outpatients is reported. Burkholderia cepacia complex was the agent most frequently recovered from blood. Thirty-three environmental and clinical isolates of B. cepacia complex were characterized by whole-cell protein electrophoresis and recA-RFLP profile. Fourteen isolates were genomovar I and 16 isolates were not classifiable by their recA-RFLP pattern. Ribotyping, random amplification of polymorphic DNA (RAPD) and integron profile were used to explore the clonality of the isolates, and revealed multiple strain genotypes. Four ribotypes and RAPD types and three integron patterns were identified. The water supply was identified as the source of the outbreak, and inappropriate cleaning and a leak in the reverse osmosis tubing connection were the probable causes of contamination. B. cepacia complex was still recovered from blood of patients even after apparently adequate measures were taken and water quality standards were met, suggesting that higher standards for water quality should be adopted in haemodialysis units. The genomovars recovered here were distinct from those commonly reported for cystic fibrosis isolates. PMID:15358822

  7. Antioxidant enzymes activities of Burkholderia spp. strains-oxidative responses to Ni toxicity.

    PubMed

    Dourado, M N; Franco, M R; Peters, L P; Martins, P F; Souza, L A; Piotto, F A; Azevedo, R A

    2015-12-01

    Increased agriculture production associated with intense application of herbicides, pesticides, and fungicides leads to soil contamination worldwide. Nickel (Ni), due to its high mobility in soils and groundwater, constitutes one of the greatest problems in terms of environmental pollution. Metals, including Ni, in high concentrations are toxic to cells by imposing a condition of oxidative stress due to the induction of reactive oxygen species (ROS), which damage lipids, proteins, and DNA. This study aimed to characterize the Ni antioxidant response of two tolerant Burkholderia strains (one isolated from noncontaminated soil, SNMS32, and the other from contaminated soil, SCMS54), by measuring superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), and glutathione S-transferase (GST) activities. Ni accumulation and bacterial growth in the presence of the metal were also analyzed. The results showed that both strains exhibited different trends of Ni accumulation and distinct antioxidant enzymes responses. The strain from contaminated soil (SCMS54) exhibited a higher Ni biosorption and exhibited an increase in SOD and GST activities after 5 and 12 h of Ni exposure. The analysis of SOD, CAT, and GR by nondenaturing PAGE revealed the appearance of an extra isoenzyme in strain SCMS54 for each enzyme. The results suggest that the strain SCMS54 isolated from contaminated soil present more plasticity with potential to be used in soil and water bioremediation. PMID:26289332

  8. Differential interaction of bacterial species from the Burkholderia cepacia complex with human airway epithelial cells.

    PubMed

    Moura, Jane A; Cristina de Assis, Maria; Ventura, Grasiella C; Saliba, Alessandra M; Gonzaga, Luiz; Si-Tahar, Mustapha; Marques, Elizabeth de A; Plotkowski, Maria Cristina

    2008-01-01

    To increase knowledge of the pathogenic potential of the Burkholderia cepacia complex (BCC), we investigated the effects of reference strains of the nine BCC species on human bronchial epithelial cells in vitro. B. multivorans exhibited the highest rates of adherence to and internalization by host cells. Two out of three clinical isolates recovered from cystic fibrosis patients confirmed the B. multivorans high adhesiveness. All four B. multivorans isolates exhibited an aggregated pattern of adherence but any of them expressed cable pili. When bacteria were centrifuged onto cell cultures to circumvent their poor adhesiveness, B. pyrrocinia exhibited the highest internalization rate, followed by B. multivorans. The percentages of apoptotic cells in cultures infected with B. cepacia, B. multivorans, B. cenocepacia (subgroups IIIA and IIIB), B. stabilis and B. vietnamiensis were significantly higher than in control non-infected cultures. All nine BCC species triggered a similar release of the inflammatory cytokine IL-8, that was not reduced by cell treatment with cytochalasin D. Hence, our data demonstrate, for the first time, that all BCC species exhibit a similar ability to induce the expression of host immune mediators whereas they differ on their ability to adhere to, invade and kill airway epithelial cells. PMID:18068390

  9. Adherence and autoaggregation phenotypes of a Burkholderia cenocepacia cable pilus mutant.

    PubMed

    Tomich, Mladen; Mohr, Christian D

    2003-11-21

    Cable pili are unique peritrichous adherence organelles expressed by certain strains of the opportunistic human pathogen Burkholderia cenocepacia. Cable pili have been proposed to facilitate binding to human epithelial cells and mucin, and may play a role in the ability of B. cenocepacia to colonise the respiratory tract of compromised hosts. In this study, a genetic approach was undertaken to assess the role of cable pili in mediating adherence as well as bacterial cell-cell interactions. The cblA gene, encoding the major pilin subunit, was insertionally inactivated, and the resulting mutant was shown to be blocked in CblA expression and in cable pilus morphogenesis. Although non-piliated, the cblA mutant was not defective in adherence to either porcine mucin or to cultured A549 human respiratory epithelial cells. Microscopic and flow cytometric analyses of B. cenocepacia cultures revealed that cable pilus expression facilitated the formation of diffuse cell networks, whereas disruption of cable pilus biogenesis enhanced autoaggregation and the formation of compact cell aggregates. Autoaggregation was observed both in culture and during B. cenocepacia infection of A549 epithelial cell monolayers. These findings indicate that cable pilus expression plays an important role in mediating B. cenocepacia cell-cell interactions, and that both cable pilus-dependent and cable pilus-independent mechanisms may contribute to B. cenocepacia adherence to cellular and acellular surfaces. PMID:14638436

  10. A Unique Set of the Burkholderia Collagen-Like Proteins Provides Insight into Pathogenesis, Genome Evolution and Niche Adaptation, and Infection Detection

    PubMed Central

    Bachert, Beth A.; Choi, Soo J.; Snyder, Anna K.; Rio, Rita V. M.; Durney, Brandon C.; Holland, Lisa A.; Amemiya, Kei; Welkos, Susan L.; Bozue, Joel A.; Cote, Christopher K.; Berisio, Rita; Lukomski, Slawomir

    2015-01-01

    Burkholderia pseudomallei and Burkholderia mallei, classified as category B priority pathogens, are significant human and animal pathogens that are highly infectious and broad-spectrum antibiotic resistant. Currently, the pathogenicity mechanisms utilized by Burkholderia are not fully understood, and correct diagnosis of B. pseudomallei and B. mallei infection remains a challenge due to limited detection methods. Here, we provide a comprehensive analysis of a set of 13 novel Burkholderia collagen-like proteins (Bucl) that were identified among B. pseudomallei and B. mallei select agents. We infer that several Bucl proteins participate in pathogenesis based on their noncollagenous domains that are associated with the components of a type III secretion apparatus and membrane transport systems. Homology modeling of the outer membrane efflux domain of Bucl8 points to a role in multi-drug resistance. We determined that bucl genes are widespread in B. pseudomallei and B. mallei; Fischer’s exact test and Cramer’s V2 values indicate that the majority of bucl genes are highly associated with these pathogenic species versus nonpathogenic B. thailandensis. We designed a bucl-based quantitative PCR assay which was able to detect B. pseudomallei infection in a mouse with a detection limit of 50 CFU. Finally, chromosomal mapping and phylogenetic analysis of bucl loci revealed considerable genomic plasticity and adaptation of Burkholderia spp. to host and environmental niches. In this study, we identified a large set of phylogenetically unrelated bucl genes commonly found in Burkholderia select agents, encoding predicted pathogenicity factors, detection targets, and vaccine candidates. PMID:26356298

  11. Portable exhausters POR-004 SKID B, POR-005 SKID C, POR-006 SKID D storage plan

    SciTech Connect

    Nelson, O.D.

    1997-09-04

    This document provides a storage plan for portable exhausters POR-004 SKID B, POR-005 SKID C, AND POR-006 SKID D. The exhausters will be stored until they are needed by the TWRS (Tank Waste Remediation Systems) Saltwell Pumping Program. The storage plan provides criteria for portable exhauster storage, periodic inspections during storage, and retrieval from storage.

  12. Bacterial Cell Wall Synthesis Gene uppP Is Required for Burkholderia Colonization of the Stinkbug Gut

    PubMed Central

    Kim, Jiyeun Kate; Lee, Ho Jin; Kikuchi, Yoshitomo; Kitagawa, Wataru; Nikoh, Naruo

    2013-01-01

    To establish a host-bacterium symbiotic association, a number of factors involved in symbiosis must operate in a coordinated manner. In insects, bacterial factors for symbiosis have been poorly characterized at the molecular and biochemical levels, since many symbionts have not yet been cultured or are as yet genetically intractable. Recently, the symbiotic association between a stinkbug, Riptortus pedestris, and its beneficial gut bacterium, Burkholderia sp., has emerged as a promising experimental model system, providing opportunities to study insect symbiosis using genetically manipulated symbiotic bacteria. Here, in search of bacterial symbiotic factors, we targeted cell wall components of the Burkholderia symbiont by disruption of uppP gene, which encodes undecaprenyl pyrophosphate phosphatase involved in biosynthesis of various bacterial cell wall components. Under culture conditions, the ΔuppP mutant showed higher susceptibility to lysozyme than the wild-type strain, indicating impaired integrity of peptidoglycan of the mutant. When administered to the host insect, the ΔuppP mutant failed to establish normal symbiotic association: the bacterial cells reached to the symbiotic midgut but neither proliferated nor persisted there. Transformation of the ΔuppP mutant with uppP-encoding plasmid complemented these phenotypic defects: lysozyme susceptibility in vitro was restored, and normal infection and proliferation in the midgut symbiotic organ were observed in vivo. The ΔuppP mutant also exhibited susceptibility to hypotonic, hypertonic, and centrifugal stresses. These results suggest that peptidoglycan cell wall integrity is a stress resistance factor relevant to the successful colonization of the stinkbug midgut by Burkholderia symbiont. PMID:23747704

  13. Localization of Burkholderia cepacia Complex Bacteria in Cystic Fibrosis Lungs and Interactions with Pseudomonas aeruginosa in Hypoxic Mucus

    PubMed Central

    Abdullah, Lubna H.; Perlmutt, Olivia S.; Albert, Daniel; Davis, C. William; Arnold, Roland R.; Yankaskas, James R.; Gilligan, Peter; Neubauer, Heiner; Randell, Scott H.; Boucher, Richard C.

    2014-01-01

    The localization of Burkholderia cepacia complex (Bcc) bacteria in cystic fibrosis (CF) lungs, alone or during coinfection with Pseudomonas aeruginosa, is poorly understood. We performed immunohistochemistry for Bcc and P. aeruginosa bacteria on 21 coinfected or singly infected CF lungs obtained at transplantation or autopsy. Parallel in vitro experiments examined the growth of two Bcc species, Burkholderia cenocepacia and Burkholderia multivorans, in environments similar to those occupied by P. aeruginosa in the CF lung. Bcc bacteria were predominantly identified in the CF lung as single cells or small clusters within phagocytes and mucus but not as “biofilm-like structures.” In contrast, P. aeruginosa was identified in biofilm-like masses, but densities appeared to be reduced during coinfection with Bcc bacteria. Based on chemical analyses of CF and non-CF respiratory secretions, a test medium was defined to study Bcc growth and interactions with P. aeruginosa in an environment mimicking the CF lung. When test medium was supplemented with alternative electron acceptors under anaerobic conditions, B. cenocepacia and B. multivorans used fermentation rather than anaerobic respiration to gain energy, consistent with the identification of fermentation products by high-performance liquid chromatography (HPLC). Both Bcc species also expressed mucinases that produced carbon sources from mucins for growth. In the presence of P. aeruginosa in vitro, both Bcc species grew anaerobically but not aerobically. We propose that Bcc bacteria (i) invade a P. aeruginosa-infected CF lung when the airway lumen is anaerobic, (ii) inhibit P. aeruginosa biofilm-like growth, and (iii) expand the host bacterial niche from mucus to also include macrophages. PMID:25156735

  14. Effect of nitrofurans and NO generators on biofilm formation by Pseudomonas aeruginosa PAO1 and Burkholderia cenocepacia 370.

    PubMed

    Zaitseva, Julia; Granik, Vladimir; Belik, Alexandr; Koksharova, Olga; Khmel, Inessa

    2009-06-01

    Antibacterial drugs in the nitrofuran series, such as nitrofurazone, furazidin, nitrofurantoin and nifuroxazide, as well as the nitric oxide generators sodium nitroprusside and isosorbide mononitrate in concentrations that do not suppress bacterial growth, were shown to increase the capacity of pathogenic bacteria Pseudomonas aeruginosa PAO1 and Burkholderia cenocepacia 370 to form biofilms. At 25-100microg/ml, nitrofurans 2-2.5-fold enhanced biofilm formation of P. aeruginosa PAO1, and NO donors 3-6-fold. For B. cenocepacia 370, the enhancement was 2-5-fold (nitrofurans) and 4.5-fold (sodium nitroprusside), respectively. PMID:19460431

  15. Detection of Burkholderia cepacia DNA from artificially infected EDTA-blood and lung tissue comparing different DNA isolation methods.

    PubMed

    Merk, S; Meyer, H; Greiser-Wilke, I; Sprague, L D; Neubauer, H

    2006-08-01

    Bacterial DNA (Burkholderia cepacia) was prepared from artificially infected equine ethylenediaminetetraacetic acid (EDTA)-blood and lung tissue by using four standard methods (lysis buffer containing proteinase K, phenol/chloroform/isoamylalcohol-extraction, microwave-treatment, heat treatment) and six commercially available kits (Puregene, High Pure PCR Template Preparation Kit, InstaGene, QiaAmp Tissue Kit, DNAzol and Elu-Quik). After a subsequent polymerase chain reaction (PCR), their efficacy and sensitivity were compared. Concerning the detection limits, the simple lysis with a proteinase K-containing buffer led to the best results for EDTA-blood as well as for artificially infected lung tissue. PMID:16907960

  16. Draft genome sequence of the soil bacterium Burkholderia terrae strain BS001, which interacts with fungal surface structures.

    PubMed

    Nazir, Rashid; Hansen, Martin A; Sørensen, Søren; van Elsas, Jan Dirk

    2012-08-01

    Burkholderia terrae BS001 is a soil bacterium which was originally isolated from the mycosphere of the ectomycorrhizal fungus Laccaria proxima. It exhibits a range of fungus-interacting traits which reveal its propensity to actively interact at fungal interfaces. Here, we present the approximately 11.5-Mb (G+C content, 61.52%) draft genome sequence of B. terrae BS001 with the aim of providing insight into the genomic basis of its ecological success in fungus-affected soil settings. PMID:22843604

  17. Burkholderia cenocepacia ShvR-regulated genes that influence colony morphology, biofilm formation, and virulence.

    PubMed

    Subramoni, Sujatha; Nguyen, David T; Sokol, Pamela A

    2011-08-01

    Burkholderia cenocepacia is an opportunistic pathogen that primarily infects cystic fibrosis (CF) patients. Previously, we reported that ShvR, a LysR regulator, influences colony morphology, virulence, and biofilm formation and regulates the expression of an adjacent 24-kb genomic region encoding 24 genes. In this study, we report the functional characterization of selected genes in this region. A Tn5 mutant with shiny colony morphology was identified with a polar mutation in BCAS0208, predicted to encode an acyl-coenzyme A dehydrogenase. Mutagenesis of BCAS0208 and complementation analyses revealed that BCAS0208 is required for rough colony morphology, biofilm formation, and virulence on alfalfa seedlings. It was not possible to complement with BCAS0208 containing a mutation in the catalytic site. BCAS0201, encoding a putative flavin adenine dinucleotide (FAD)-dependent oxidoreductase, and BCAS0207, encoding a putative citrate synthase, do not influence colony morphology but are required for optimum levels of biofilm formation and virulence. Both BCAS0208 and BCAS0201 contribute to pellicle formation, although individual mutations in each of these genes had no appreciable effect on pellicle formation. A mutant with a polar insertion in BCAS0208 was significantly less virulent in a rat model of chronic lung infection as well as in the alfalfa model. Genes in this region were shown to influence utilization of branched-chain fatty acids, tricarboxylic acid cycle substrates, l-arabinose, and branched-chain amino acids. Together, our data show that the ShvR-regulated genes BCAS0208 to BCAS0201 are required for the rough colony morphotype, biofilm and pellicle formation, and virulence in B. cenocepacia. PMID:21690240

  18. Distribution of Burkholderia pseudomallei in Northern Australia, a Land of Diversity

    PubMed Central

    McRobb, Evan; Kaestli, Mirjam; Price, Erin P.; Sarovich, Derek S.; Mayo, Mark; Warner, Jeffrey; Spratt, Brian G.

    2014-01-01

    Burkholderia pseudomallei is a Gram-negative soil bacillus that is the etiological agent of melioidosis and a biothreat agent. Little is known about the biogeography of this bacterium in Australia, despite its hyperendemicity in the northern region of this continent. The population structure of 953 Australian B. pseudomallei strains representing 779 and 174 isolates of clinical and environmental origins, respectively, was analyzed using multilocus sequence typing (MLST). Bayesian population structure and network SplitsTree analyses were performed on concatenated MLST loci, and sequence type (ST) diversity and evenness were examined using Simpson's and Pielou's indices and a multivariate dissimilarity matrix. Bayesian analysis found two B. pseudomallei populations in Australia that were geographically distinct; isolates from the Northern Territory were grouped mainly into the first population, whereas the majority of isolates from Queensland were grouped in a second population. Differences in ST evenness were observed between sampling areas, confirming that B. pseudomallei is widespread and established across northern Australia, with a large number of fragmented habitats. ST analysis showed that B. pseudomallei populations diversified as the sampling area increased. This observation was in contrast to smaller sampling areas where a few STs predominated, suggesting that B. pseudomallei populations are ecologically established and not frequently dispersed. Interestingly, there was no identifiable ST bias between clinical and environmental isolates, suggesting the potential for all culturable B. pseudomallei isolates to cause disease. Our findings have important implications for understanding the ecology of B. pseudomallei in Australia and for potential source attribution of this bacterium in the event of unexpected cases of melioidosis. PMID:24657869

  19. Burkholderia cepacia complex in Serbian patients with cystic fibrosis: prevalence and molecular epidemiology.

    PubMed

    Vasiljevic, Z V; Novovic, K; Kojic, M; Minic, P; Sovtic, A; Djukic, S; Jovcic, B

    2016-08-01

    The Burkholderia cepacia complex (Bcc) organisms remain significant pathogens in patients with cystic fibrosis (CF). This study was performed to evaluate the prevalence, epidemiological characteristics, and presence of molecular markers associated with virulence and transmissibility of the Bcc strains in the National CF Centre in Belgrade, Serbia. The Bcc isolates collected during the four-year study period (2010-2013) were further examined by 16 s rRNA gene, pulsed-field gel electrophoresis of genomic DNA, multilocus sequence typing analysis, and phylogenetic analysis based on concatenated sequence of seven alleles. Fifty out of 184 patients (27.2 %) were colonized with two Bcc species, B. cenocepacia (n = 49) and B. stabilis (n = 1). Thirty-four patients (18.5 %) had chronic colonization. Typing methods revealed a high level of similarity among Bcc isolates, indicating a person-to-person transmission or acquisition from a common source. New sequence types (STs) were identified, and none of the STs with an international distribution were found. One centre-specific ST, B. cenocepacia ST856, was highly dominant and shared by 48/50 (96 %) patients colonized by Bcc. This clone was characterized by PCR positivity for both the B. cepacia epidemic strain marker and cable pilin, and showed close genetic relatedness to the epidemic strain CZ1 (ST32). These results indicate that the impact of Bcc on airway colonization in the Serbian CF population is high and virtually exclusively limited to a single clone of B. cenocepacia. The presence of a highly transmissible clone and probable patient-to-patient spread was observed. PMID:27177755

  20. Burkholderia gladioli infection isolated from the blood cultures of newborns in the neonatal intensive care unit.

    PubMed

    Zhou, F; Ning, H; Chen, F; Wu, W; Chen, A; Zhang, J

    2015-08-01

    Burkholderia gladioli was described as a plant pathogen, and it is a rare cause of infection in humans that is primarily associated with human pulmonary infections, such as chronic granulomatous disease and cystic fibrosis. The neonatal respiratory system is not fully developed and cannot expel bacterial aerosol properly. A total of 2,676 newborns in the neonatal intensive care unit were retrospectively analysed in Putian City, Fujian Province, China, from 2011 to 2014. All of the blood samples were tested for C-reactive protein (CRP), procalcitonin (PCT) and white blood cell (WBC). B. gladioli infections were determined and analysed using a blood culture system. Antibiotic susceptibility testing was performed using the K-B method. Of the 2,676 participants, 87 (3.25 %) had a positive B. gladioli blood culture that occurred >72 h after birth, including a premature group (54.0 %, asphyxia [vs. 9.20 %], fever [vs. 13.80 %], pneumonia [vs. 6.90 %] and hyperbilirubinaemia [vs. 8.05 %]) and newborns with necrotising enterocolitis (NEC) (vs. 5.75 %). The mean ± standard deviation (SD) of the CRP level was 12.31 ± 0.26 mg/L and that of the PCT level was 1.53 ± 0.21 ng/ml in the 87 B. gladioli-infected newborns. Most of the B. gladioli isolates were sensitive to many antimicrobial agents and did not lead to serious consequences. All of the B. gladioli-infected newborns were unhealthy, especially the premature infants. B. gladioli might be a causative bacteraemia agent in neonates, it appears to have pathogenic potential in newborns and its sensitivity to antibiotics may be a beneficial factor. PMID:25926303

  1. The cluster 1 type VI secretion system is a major virulence determinant in Burkholderia pseudomallei.

    PubMed

    Burtnick, Mary N; Brett, Paul J; Harding, Sarah V; Ngugi, Sarah A; Ribot, Wilson J; Chantratita, Narisara; Scorpio, Angelo; Milne, Timothy S; Dean, Rachel E; Fritz, David L; Peacock, Sharon J; Prior, Joanne L; Atkins, Timothy P; Deshazer, David

    2011-04-01

    The Burkholderia pseudomallei K96243 genome encodes six type VI secretion systems (T6SSs), but little is known about the role of these systems in the biology of B. pseudomallei. In this study, we purified recombinant Hcp proteins from each T6SS and tested them as vaccine candidates in the BALB/c mouse model of melioidosis. Recombinant Hcp2 protected 80% of mice against a lethal challenge with K96243, while recombinant Hcp1, Hcp3, and Hcp6 protected 50% of mice against challenge. Hcp6 was the only Hcp constitutively produced by B. pseudomallei in vitro; however, it was not exported to the extracellular milieu. Hcp1, on the other hand, was produced and exported in vitro when the VirAG two-component regulatory system was overexpressed in trans. We also constructed six hcp deletion mutants (Δhcp1 through Δhcp6) and tested them for virulence in the Syrian hamster model of infection. The 50% lethal doses (LD(50)s) for the Δhcp2 through Δhcp6 mutants were indistinguishable from K96243 (<10 bacteria), but the LD(50) for the Δhcp1 mutant was >10(3) bacteria. The hcp1 deletion mutant also exhibited a growth defect in RAW 264.7 macrophages and was unable to form multinucleated giant cells in this cell line. Unlike K96243, the Δhcp1 mutant was only weakly cytotoxic to RAW 264.7 macrophages 18 h after infection. The results suggest that the cluster 1 T6SS is essential for virulence and plays an important role in the intracellular lifestyle of B. pseudomallei. PMID:21300775

  2. Characterization of BcaA, a Putative Classical Autotransporter Protein in Burkholderia pseudomallei

    PubMed Central

    Campos, Cristine G.; Borst, Luke

    2013-01-01

    Burkholderia pseudomallei is a tier 1 select agent, and the causative agent of melioidosis, a disease with effects ranging from chronic abscesses to fulminant pneumonia and septic shock, which can be rapidly fatal. Autotransporters (ATs) are outer membrane proteins belonging to the type V secretion system family, and many have been shown to play crucial roles in pathogenesis. The open reading frame Bp1026b_II1054 (bcaA) in B. pseudomallei strain 1026b is predicted to encode a classical autotransporter protein with an approximately 80-kDa passenger domain that contains a subtilisin-related domain. Immediately 3′ to bcaA is Bp11026_II1055 (bcaB), which encodes a putative prolyl 4-hydroxylase. To investigate the role of these genes in pathogenesis, large in-frame deletion mutations of bcaA and bcaB were constructed in strain Bp340, an efflux pump mutant derivative of the melioidosis clinical isolate 1026b. Comparison of Bp340ΔbcaA and Bp340ΔbcaB mutants to wild-type B. pseudomallei in vitro demonstrated similar levels of adherence to A549 lung epithelial cells, but the mutant strains were defective in their ability to invade these cells and to form plaques. In a BALB/c mouse model of intranasal infection, similar bacterial burdens were observed after 48 h in the lungs and liver of mice infected with Bp340ΔbcaA, Bp340ΔbcaB, and wild-type bacteria. However, significantly fewer bacteria were recovered from the spleen of Bp340ΔbcaA-infected mice, supporting the idea of a role for this AT in dissemination or in survival in the passage from the site of infection to the spleen. PMID:23340315

  3. Burkholderia pseudomallei Biofilm Promotes Adhesion, Internalization and Stimulates Proinflammatory Cytokines in Human Epithelial A549 Cells

    PubMed Central

    Kunyanee, Chanikarn; Kamjumphol, Watcharaporn; Taweechaisupapong, Suwimol; Kanthawong, Sakawrat; Wongwajana, Suwin; Wongratanacheewin, Surasak; Hahnvajanawong, Chariya

    2016-01-01

    Burkholderia pseudomallei is a Gram-negative bacterium that causes melioidosis. Inhalational exposure leading to pulmonary melioidosis is the most common clinical manifestation with significant mortality. However, the role of B. pseudomallei biofilm phenotype during bacterial-host interaction remains unclear. We hypothesize that biofilm phenotype may play a role in such interactions. In this study, B. pseudomallei H777 (biofilm wild type), B. pseudomallei M10 (biofilm mutant) and B. pseudomallei C17 (biofilm-complemented) strains were used to assess the contribution of biofilm to adhesion to human lung epithelial cells (A549), intracellular interactions, apoptosis/necrosis and impact on proinflammatory responses. Confocal laser scanning microscopy demonstrated that B. pseudomallei H777 and C17 produced biofilm, whereas M10 did not. To determine the role of biofilm in host interaction, we assessed the ability of each of the three strains to interact with the A549 cells at MOI 10. Strain H777 exhibited higher levels of attachment and invasion compared to strain M10 (p < 0.05). In addition, the biofilm-complemented strain, C17 exhibited restored bacterial invasion ability. Flow cytometry combined with a double-staining assay using annexin V and propidium iodide revealed significantly higher numbers of early apoptotic and late apoptotic A549 cells when these were infected with strain H777 (1.52%) and C17 (1.43%) compared to strain M10 (0.85%) (p < 0.05). Strains H777 and C17 were able to stimulate significant secretion of IL-6 and IL-8 compared with the biofilm mutant (p < 0.05). Together, these findings demonstrated the role of biofilm-associated phenotypes of B. pseudomallei in cellular pathogenesis of human lung epithelial cells with respect to initial attachment and invasion, apoptosis and proinflammatory responses. PMID:27529172

  4. Key Role for Efflux in the Preservative Susceptibility and Adaptive Resistance of Burkholderia cepacia Complex Bacteria

    PubMed Central

    Rushton, Laura; Sass, Andrea; Baldwin, Adam; Dowson, Christopher G.; Donoghue, Denise

    2013-01-01

    Bacteria from the Burkholderia cepacia complex (Bcc) are encountered as industrial contaminants, and little is known about the species involved or their mechanisms of preservative resistance. Multilocus sequence typing (MLST) revealed that multiple Bcc species may cause contamination, with B. lata (n = 17) and B. cenocepacia (n = 11) dominant within the collection examined. At the strain level, 11 of the 31 industrial sequence types identified had also been recovered from either natural environments or clinical infections. Minimal inhibitory (MIC) and minimum bactericidal (MBC) preservative concentrations varied across 83 selected Bcc strains, with industrial strains demonstrating increased tolerance for dimethylol dimethyl hydantoin (DMDMH). Benzisothiazolinone (BIT), DMDMH, methylisothiazolinone (MIT), a blend of 3:1 methylisothiazolinone-chloromethylisothiazolinone (M-CMIT), methyl paraben (MP), and phenoxyethanol (PH), were all effective anti-Bcc preservatives; benzethonium chloride (BC) and sodium benzoate (SB) were least effective. Since B. lata was the dominant industrial Bcc species, the type strain, 383T (LMG 22485T), was used to study preservative tolerance. Strain 383 developed stable preservative tolerance for M-CMIT, MIT, BIT, and BC, which resulted in preservative cross-resistance and altered antibiotic susceptibility, motility, and biofilm formation. Transcriptomic analysis of the B. lata 383 M-CMIT-adapted strain demonstrated that efflux played a key role in its M-CMIT tolerance and elevated fluoroquinolone resistance. The role of efflux was corroborated using the inhibitor l-Phe-Arg-β-napthylamide, which reduced the MICs of M-CMIT and ciprofloxacin. In summary, intrinsic preservative tolerance and stable adaptive changes, such as enhanced efflux, play a role in the ability of Bcc bacteria to cause industrial contamination. PMID:23587949

  5. Distribution of Burkholderia pseudomallei in northern Australia, a land of diversity.

    PubMed

    McRobb, Evan; Kaestli, Mirjam; Price, Erin P; Sarovich, Derek S; Mayo, Mark; Warner, Jeffrey; Spratt, Brian G; Currie, Bart J

    2014-06-01

    Burkholderia pseudomallei is a Gram-negative soil bacillus that is the etiological agent of melioidosis and a biothreat agent. Little is known about the biogeography of this bacterium in Australia, despite its hyperendemicity in the northern region of this continent. The population structure of 953 Australian B. pseudomallei strains representing 779 and 174 isolates of clinical and environmental origins, respectively, was analyzed using multilocus sequence typing (MLST). Bayesian population structure and network SplitsTree analyses were performed on concatenated MLST loci, and sequence type (ST) diversity and evenness were examined using Simpson's and Pielou's indices and a multivariate dissimilarity matrix. Bayesian analysis found two B. pseudomallei populations in Australia that were geographically distinct; isolates from the Northern Territory were grouped mainly into the first population, whereas the majority of isolates from Queensland were grouped in a second population. Differences in ST evenness were observed between sampling areas, confirming that B. pseudomallei is widespread and established across northern Australia, with a large number of fragmented habitats. ST analysis showed that B. pseudomallei populations diversified as the sampling area increased. This observation was in contrast to smaller sampling areas where a few STs predominated, suggesting that B. pseudomallei populations are ecologically established and not frequently dispersed. Interestingly, there was no identifiable ST bias between clinical and environmental isolates, suggesting the potential for all culturable B. pseudomallei isolates to cause disease. Our findings have important implications for understanding the ecology of B. pseudomallei in Australia and for potential source attribution of this bacterium in the event of unexpected cases of melioidosis. PMID:24657869

  6. A Burkholderia pseudomallei outer membrane vesicle vaccine provides protection against lethal sepsis.

    PubMed

    Nieves, Wildaliz; Petersen, Hailey; Judy, Barbara M; Blumentritt, Carla A; Russell-Lodrigue, Kasi; Roy, Chad J; Torres, Alfredo G; Morici, Lisa A

    2014-05-01

    The environmental Gram-negative encapsulated bacillus Burkholderia pseudomallei is the causative agent of melioidosis, a disease associated with high morbidity and mortality rates in areas of Southeast Asia and northern Australia in which the disease is endemic. B. pseudomallei is also classified as a tier I select agent due to the high level of lethality of the bacterium and its innate resistance to antibiotics, as well as the lack of an effective vaccine. Gram-negative bacteria, including B. pseudomallei, secrete outer membrane vesicles (OMVs) which are enriched with multiple protein, lipid, and polysaccharide antigens. Previously, we demonstrated that immunization with multivalent B. pseudomallei-derived OMVs protects highly susceptible BALB/c mice against an otherwise lethal aerosol challenge. In this work, we evaluated the protective efficacy of OMV immunization against intraperitoneal challenge with a heterologous strain because systemic infection with phenotypically diverse environmental B. pseudomallei strains poses another hazard and a challenge to vaccine development. We demonstrated that B. pseudomallei OMVs derived from strain 1026b afforded significant protection against septicemic infection with B. pseudomallei strain K96243. OMV immunization induced robust OMV-, lipopolysaccharide-, and capsular polysaccharide-specific serum IgG (IgG1, IgG2a, and IgG3) and IgM antibody responses. OMV-immune serum promoted bacterial killing in vitro, and passive transfer of B. pseudomallei OMV immune sera protected naive mice against a subsequent challenge. These results indicate that OMV immunization provides antibody-mediated protection against acute, rapidly lethal sepsis in mice. B. pseudomallei-derived OMVs may represent an efficacious multivalent vaccine strategy against melioidosis. PMID:24671550

  7. Burkholderia phytofirmans PsJN reduces impact of freezing temperatures on photosynthesis in Arabidopsis thaliana

    PubMed Central

    Su, Fan; Jacquard, Cédric; Villaume, Sandra; Michel, Jean; Rabenoelina, Fanja; Clément, Christophe; Barka, Essaid A.; Dhondt-Cordelier, Sandrine; Vaillant-Gaveau, Nathalie

    2015-01-01

    Several plant growth-promoting rhizobacteria (PGPR) are known to improve plant tolerance to multiple stresses, including low temperatures. However, mechanisms underlying this protection are still poorly understood. The aim of this study was to evaluate the role of the endophytic PGPR, Burkholderia phytofirmans strain PsJN (Bp PsJN), on Arabidopsis thaliana cold tolerance using photosynthesis parameters as physiological markers. Under standard conditions, our results indicated that Bp PsJN inoculation led to growth promotion of Arabidopsis plants without significant modification on photosynthesis parameters and chloroplast organization. However, bacterial colonization induced a cell wall strengthening in the mesophyll. Impact of inoculation modes (either on seeds or by soil irrigation) and their effects overnight at 0, -1, or -3°C, were investigated by following photosystem II (PSII) activity and gas exchanges. Following low temperatures stress, a decrease of photosynthesis parameters was observed. In addition, during three consecutive nights or days at -1°C, PSII activity was monitored. Pigment contents, RuBisCO protein abundance, expression of several genes including RbcS, RbcL, CBF1, CBF2, CBF3, ICE1, COR15a, and COR78 were evaluated at the end of exposure. To assess the impact of the bacteria on cell ultrastructure under low temperatures, microscopic observations were achieved. Results indicated that freezing treatment induced significant changes in PSII activity as early as the first cold day, whereas the same impact on PSII activity was observed only during the third cold night. The significant effects conferred by PsJN were differential accumulation of pigments, and reduced expression of RbcL and COR78. Microscopical observations showed an alteration/disorganization in A. thaliana leaf mesophyll cells independently of the freezing treatments. The presence of bacteria during the three successive nights or days did not significantly improved A. thaliana

  8. Burkholderia phytofirmans PsJN reduces impact of freezing temperatures on photosynthesis in Arabidopsis thaliana.

    PubMed

    Su, Fan; Jacquard, Cédric; Villaume, Sandra; Michel, Jean; Rabenoelina, Fanja; Clément, Christophe; Barka, Essaid A; Dhondt-Cordelier, Sandrine; Vaillant-Gaveau, Nathalie

    2015-01-01

    Several plant growth-promoting rhizobacteria (PGPR) are known to improve plant tolerance to multiple stresses, including low temperatures. However, mechanisms underlying this protection are still poorly understood. The aim of this study was to evaluate the role of the endophytic PGPR, Burkholderia phytofirmans strain PsJN (Bp PsJN), on Arabidopsis thaliana cold tolerance using photosynthesis parameters as physiological markers. Under standard conditions, our results indicated that Bp PsJN inoculation led to growth promotion of Arabidopsis plants without significant modification on photosynthesis parameters and chloroplast organization. However, bacterial colonization induced a cell wall strengthening in the mesophyll. Impact of inoculation modes (either on seeds or by soil irrigation) and their effects overnight at 0, -1, or -3°C, were investigated by following photosystem II (PSII) activity and gas exchanges. Following low temperatures stress, a decrease of photosynthesis parameters was observed. In addition, during three consecutive nights or days at -1°C, PSII activity was monitored. Pigment contents, RuBisCO protein abundance, expression of several genes including RbcS, RbcL, CBF1, CBF2, CBF3, ICE1, COR15a, and COR78 were evaluated at the end of exposure. To assess the impact of the bacteria on cell ultrastructure under low temperatures, microscopic observations were achieved. Results indicated that freezing treatment induced significant changes in PSII activity as early as the first cold day, whereas the same impact on PSII activity was observed only during the third cold night. The significant effects conferred by PsJN were differential accumulation of pigments, and reduced expression of RbcL and COR78. Microscopical observations showed an alteration/disorganization in A. thaliana leaf mesophyll cells independently of the freezing treatments. The presence of bacteria during the three successive nights or days did not significantly improved A. thaliana

  9. Burkholderia BcpA mediates biofilm formation independently of interbacterial contact dependent growth inhibition

    PubMed Central

    Garcia, Erin C.; Anderson, Melissa S.; Hagar, Jon A.; Cotter, Peggy A.

    2013-01-01

    SUMMARY Contact dependent growth inhibition (CDI) is a phenomenon in which Gram-negative bacteria use the toxic C-terminus of a large surface-exposed exoprotein to inhibit the growth of susceptible bacteria upon cell-cell contact. Little is known about when and where bacteria express the genes encoding CDI system proteins and how these systems contribute to the survival of bacteria in their natural niche. Here we establish that, in addition to mediating interbacterial competition, the Burkholderia thailandensis CDI system exoprotein BcpA is required for biofilm development. We also provide evidence that the catalytic activity of BcpA and extracellular DNA are required for the characteristic biofilm pillars to form. We show using a bcpA-gfp fusion that within the biofilm, expression of the CDI system-encoding genes is below the limit of detection for the majority of bacteria and only a subset of cells express the genes strongly at any given time. Analysis of a strain constitutively expressing the genes indicates that native expression is critical for biofilm architecture. Although CDI systems have so far only been demonstrated to be involved in interbacterial competition, constitutive production of the system’s immunity protein in the entire bacterial population did not alter biofilm formation, indicating a CDI-independent role for BcpA in this process. We propose, therefore, that bacteria may use CDI proteins in cooperative behaviors, like building biofilm communities, and in competitive behaviors that prevent non-self bacteria from entering the community. PMID:23879629

  10. Genotyping of Burkholderia mallei from an Outbreak of Glanders in Bahrain Suggests Multiple Introduction Events

    PubMed Central

    Hornstra, Heidie; Projahn, Michaela; Terzioglu, Rahime; Wernery, Renate; Georgi, Enrico; Riehm, Julia M.; Wagner, David M.; Keim, Paul S.; Joseph, Marina; Johnson, Bobby; Kinne, Joerg; Jose, Shanti; Hepp, Crystal M.; Witte, Angela; Wernery, Ulrich

    2014-01-01

    Background Glanders, caused by the gram-negative bacterium Burkholderia mallei, is a highly infectious zoonotic disease of solipeds causing severe disease in animals and men. Although eradicated from many Western countries, it recently emerged in Asia, the Middle-East, Africa, and South America. Due to its rareness, little is known about outbreak dynamics of the disease and its epidemiology. Methodology/Principal Findings We investigated a recent outbreak of glanders in Bahrain by applying high resolution genotyping (multiple locus variable number of tandem repeats, MLVA) and comparative whole genome sequencing to B. mallei isolated from infected horses and a camel. These results were compared to samples obtained from an outbreak in the United Arab Emirates in 2004, and further placed into a broader phylogeographic context based on previously published B. mallei data. The samples from the outbreak in Bahrain separated into two distinct clusters, suggesting a complex epidemiological background and evidence for the involvement of multiple B. mallei strains. Additionally, the samples from Bahrain were more closely related to B. mallei isolated from horses in the United Arab Emirates in 2004 than other B. mallei which is suggestive of repeated importation to the region from similar geographic sources. Conclusion/Significance High-resolution genotyping and comparative whole genome analysis revealed the same phylogenetic patterns among our samples. The close relationship of the Dubai/UAE B. mallei populations to each other may be indicative of a similar geographic origin that has yet to be identified for the infecting strains. The recent emergence of glanders in combination with worldwide horse trading might pose a new risk for human infections. PMID:25255232

  11. Development of Rapid Enzyme-Linked Immunosorbent Assays for Detection of Antibodies to Burkholderia pseudomallei

    PubMed Central

    Suttisunhakul, Vichaya; Wuthiekanun, Vanaporn; Brett, Paul J.; Khusmith, Srisin; Day, Nicholas P. J.; Burtnick, Mary N.; Limmathurotsakul, Direk

    2016-01-01

    Burkholderia pseudomallei, the causative agent of melioidosis, is an environmental bacillus found in northeast Thailand. The mortality rate of melioidosis is ∼40%. An indirect hemagglutination assay (IHA) is used as a reference serodiagnostic test; however, it has low specificity in areas where the background seropositivity of healthy people is high. To improve assay specificity and reduce the time for diagnosis, four rapid enzyme-linked immunosorbent assays (ELISAs) were developed using two purified polysaccharide antigens (O-polysaccharide [OPS] and 6-deoxyheptan capsular polysaccharide [CPS]) and two crude antigens (whole-cell [WC] antigen and culture filtrate [CF] antigen) of B. pseudomallei. The ELISAs were evaluated using serum samples from 141 culture-confirmed melioidosis patients from Thailand along with 188 healthy donors from Thailand and 90 healthy donors from the United States as controls. The areas under receiver operator characteristic curves (AUROCC) using Thai controls were high for the OPS-ELISA (0.91), CF-ELISA (0.91), and WC-ELISA (0.90), while those of CPS-ELISA (0.84) and IHA (0.72) were lower. AUROCC values using U.S. controls were comparable to those of the Thai controls for all ELISAs except IHA (0.93). Using a cutoff optical density (OD) of 0.87, the OPS-ELISA had a sensitivity of 71.6% and a specificity of 95.7% for Thai controls; for U.S. controls, specificity was 96.7%. An additional 120 serum samples from tuberculosis, scrub typhus, or leptospirosis patients were evaluated in all ELISAs and resulted in comparable or higher specificities than using Thai healthy donors. Our findings suggest that antigen-specific ELISAs, particularly the OPS-ELISA, may be useful for serodiagnosis of melioidosis in areas where it is endemic and nonendemic. PMID:26912754

  12. Altered Proteome of Burkholderia pseudomallei Colony Variants Induced by Exposure to Human Lung Epithelial Cells

    PubMed Central

    Al-Maleki, Anis Rageh; Mariappan, Vanitha; Vellasamy, Kumutha Malar; Tay, Sun Tee; Vadivelu, Jamuna

    2015-01-01

    Burkholderia pseudomallei primary diagnostic cultures demonstrate colony morphology variation associated with expression of virulence and adaptation proteins. This study aims to examine the ability of B. pseudomallei colony variants (wild type [WT] and small colony variant [SCV]) to survive and replicate intracellularly in A549 cells and to identify the alterations in the protein expression of these variants, post-exposure to the A549 cells. Intracellular survival and cytotoxicity assays were performed followed by proteomics analysis using two-dimensional gel electrophoresis. B. pseudomallei SCV survive longer than the WT. During post-exposure, among 259 and 260 protein spots of SCV and WT, respectively, 19 were differentially expressed. Among SCV post-exposure up-regulated proteins, glyceraldehyde 3-phosphate dehydrogenase, fructose-bisphosphate aldolase (CbbA) and betaine aldehyde dehydrogenase were associated with adhesion and virulence. Among the down-regulated proteins, enolase (Eno) is implicated in adhesion and virulence. Additionally, post-exposure expression profiles of both variants were compared with pre-exposure. In WT pre- vs post-exposure, 36 proteins were differentially expressed. Of the up-regulated proteins, translocator protein, Eno, nucleoside diphosphate kinase (Ndk), ferritin Dps-family DNA binding protein and peptidyl-prolyl cis-trans isomerase B were implicated in invasion and virulence. In SCV pre- vs post-exposure, 27 proteins were differentially expressed. Among the up-regulated proteins, flagellin, Eno, CbbA, Ndk and phenylacetate-coenzyme A ligase have similarly been implicated in adhesion, invasion. Protein profiles differences post-exposure provide insights into association between morphotypic and phenotypic characteristics of colony variants, strengthening the role of B. pseudomallei morphotypes in pathogenesis of melioidosis. PMID:25996927

  13. An objective approach for Burkholderia pseudomallei strain selection as challenge material for medical countermeasures efficacy testing.

    PubMed

    Van Zandt, Kristopher E; Tuanyok, Apichai; Keim, Paul S; Warren, Richard L; Gelhaus, H Carl

    2012-01-01

    Burkholderia pseudomallei is the causative agent of melioidosis, a rare disease of biodefense concern with high mortality and extreme difficulty in treatment. No human vaccines are available that protect against B. pseudomallei infection, and with the current limitations of antibiotic treatment, the development of new preventative and therapeutic interventions is crucial. Although clinical trials could be used to test the efficacy of new medical countermeasures (MCMs), the high mortality rates associated with melioidosis raises significant ethical issues concerning treating individuals with new compounds with unknown efficacies. The US Food and Drug Administration (FDA) has formulated a set of guidelines for the licensure of new MCMs to treat diseases in which it would be unethical to test the efficacy of these drugs in humans. The FDA "Animal Rule" 21 CFR 314 calls for consistent, well-characterized B. pseudomallei strains to be used as challenge material in animal models. In order to facilitate the efficacy testing of new MCMs for melioidosis using animal models, we intend to develop a well-characterized panel of strains for use. This panel will comprise of strains that were isolated from human cases, have a low passage history, are virulent in animal models, and are well-characterized phenotypically and genotypically. We have reviewed published and unpublished data on various B. pseudomallei strains to establish an objective method for selecting the strains to be included in the panel of B. pseudomallei strains with attention to five categories: animal infection models, genetic characterization, clinical and passage history, and availability of the strain to the research community. We identified 109 strains with data in at least one of the five categories, scored each strain based on the gathered data and identified six strains as candidate for a B. pseudomallei strain panel. PMID:23057010

  14. Colony morphology variation of Burkholderia pseudomallei is associated with antigenic variation and O-polysaccharide modification.

    PubMed

    Wikraiphat, Chanthiwa; Saiprom, Natnaree; Tandhavanant, Sarunporn; Heiss, Christian; Azadi, Parastoo; Wongsuvan, Gumphol; Tuanyok, Apichai; Holden, Matthew T G; Burtnick, Mary N; Brett, Paul J; Peacock, Sharon J; Chantratita, Narisara

    2015-05-01

    Burkholderia pseudomallei is a CDC tier 1 select agent that causes melioidosis, a severe disease in humans and animals. Persistent infections are common, and there is currently no vaccine available. Lipopolysaccharide (LPS) is a potential vaccine candidate. B. pseudomallei expresses three serologically distinct LPS types. The predominant O-polysaccharide (OPS) is an unbranched heteropolymer with repeating d-glucose and 6-deoxy-l-talose residues in which the 6-deoxy-l-talose residues are variably replaced with O-acetyl and O-methyl modifications. We observed that primary clinical B. pseudomallei isolates with mucoid and nonmucoid colony morphologies from the same sample expressed different antigenic types distinguishable using an LPS-specific monoclonal antibody (MAb). MAb-reactive (nonmucoid) and nonreactive (mucoid) strains from the same patient exhibited identical LPS banding patterns by silver staining and indistinguishable genotypes. We hypothesized that LPS antigenic variation reflected modification of the OPS moieties. Mutagenesis of three genes involved in LPS synthesis was performed in B. pseudomallei K96243. Loss of MAb reactivity was observed in both wbiA (encoding a 2-O-acetyltransferase) and wbiD (putative methyl transferase) mutants. The structural characteristics of the OPS moieties from isogenic nonmucoid strain 4095a and mucoid strain 4095c were further investigated. Utilizing nuclear magnetic resonance (NMR) spectroscopy, we found that B. pseudomallei 4095a and 4095c OPS antigens exhibited substitution patterns that differed from the prototypic OPS structure. Specifically, 4095a lacked 4-O-acetylation, while 4095c lacked both 4-O-acetylation and 2-O-methylation. Our studies indicate that B. pseudomallei OPS undergoes antigenic variation and suggest that the 9D5 MAb recognizes a conformational epitope that is influenced by both O-acetyl and O-methyl substitution patterns. PMID:25776750

  15. Biological Relevance of Colony Morphology and Phenotypic Switching by Burkholderia pseudomallei▿

    PubMed Central

    Chantratita, Narisara; Wuthiekanun, Vanaporn; Boonbumrung, Khaemaporn; Tiyawisutsri, Rachaneeporn; Vesaratchavest, Mongkol; Limmathurotsakul, Direk; Chierakul, Wirongrong; Wongratanacheewin, Surasakdi; Pukritiyakamee, Sasithorn; White, Nicholas J.; Day, Nicholas P. J.; Peacock, Sharon J.

    2007-01-01

    Melioidosis is a notoriously protracted illness and is difficult to cure. We hypothesize that the causative organism, Burkholderia pseudomallei, undergoes a process of adaptation involving altered expression of surface determinants which facilitates persistence in vivo and that this is reflected by changes in colony morphology. A colony morphotyping scheme and typing algorithm were developed using clinical B. pseudomallei isolates. Morphotypes were divided into seven types (denoted I to VII). Type I gave rise to other morphotypes (most commonly type II or III) by a process of switching in response to environmental stress, including starvation, iron limitation, and growth at 42°C. Switching was associated with complex shifts in phenotype, one of which (type I to type II) was associated with a marked increase in production of factors putatively associated with in vivo concealment. Isogenic types II and III, derived from type I, were examined using several experimental models. Switching between isogenic morphotypes occurred in a mouse model, where type II appeared to become adapted for persistence in a low-virulence state. Isogenic type II demonstrated a significant increase in intracellular replication fitness compared with parental type I after uptake by epithelial cells in vitro. Isogenic type III demonstrated a higher replication fitness following uptake by macrophages in vitro, which was associated with a switch to type II. Mixed B. pseudomallei morphologies were common in individual clinical specimens and were significantly more frequent in samples of blood, pus, and respiratory secretions than in urine and surface swabs. These findings have major implications for therapeutics and vaccine development. PMID:17114252

  16. Garlic revisited: antimicrobial activity of allicin-containing garlic extracts against Burkholderia cepacia complex.

    PubMed

    Wallock-Richards, Daynea; Doherty, Catherine J; Doherty, Lynsey; Clarke, David J; Place, Marc; Govan, John R W; Campopiano, Dominic J

    2014-01-01

    The antimicrobial activities of garlic and other plant alliums are primarily based on allicin, a thiosulphinate present in crushed garlic bulbs. We set out to determine if pure allicin and aqueous garlic extracts (AGE) exhibit antimicrobial properties against the Burkholderia cepacia complex (Bcc), the major bacterial phytopathogen for alliums and an intrinsically multiresistant and life-threatening human pathogen. We prepared an AGE from commercial garlic bulbs and used HPLC to quantify the amount of allicin therein using an aqueous allicin standard (AAS). Initially we determined the minimum inhibitory concentrations (MICs) of the AGE against 38 Bcc isolates; these MICs ranged from 0.5 to 3% (v/v). The antimicrobial activity of pure allicin (AAS) was confirmed by MIC and minimum bactericidal concentration (MBC) assays against a smaller panel of five Bcc isolates; these included three representative strains of the most clinically important species, B. cenocepacia. Time kill assays, in the presence of ten times MIC, showed that the bactericidal activity of AGE and AAS against B. cenocepacia C6433 correlated with the concentration of allicin. We also used protein mass spectrometry analysis to begin to investigate the possible molecular mechanisms of allicin with a recombinant form of a thiol-dependent peroxiredoxin (BCP, Prx) from B. cenocepacia. This revealed that AAS and AGE modifies an essential BCP catalytic cysteine residue and suggests a role for allicin as a general electrophilic reagent that targets protein thiols. To our knowledge, we report the first evidence that allicin and allicin-containing garlic extracts possess inhibitory and bactericidal activities against the Bcc. Present therapeutic options against these life-threatening pathogens are limited; thus, allicin-containing compounds merit investigation as adjuncts to existing antibiotics. PMID:25438250

  17. Hexadecane and Tween 80 stimulate lipase production in Burkholderia glumae by different mechanisms.

    PubMed

    Boekema, Bouke K H L; Beselin, Anke; Breuer, Michael; Hauer, Bernhard; Koster, Margot; Rosenau, Frank; Jaeger, Karl-Erich; Tommassen, Jan

    2007-06-01

    Burkholderia glumae strain PG1 produces a lipase of biotechnological relevance. Lipase production by this strain and its derivative LU8093, which was obtained through classical strain improvement, was investigated under different conditions. When 10% hexadecane was included in the growth medium, lipolytic activity in both strains could be increased approximately 7-fold after 24 h of growth. Hexadecane also stimulated lipase production in a strain containing the lipase gene fused to the tac promoter, indicating that hexadecane did not affect lipase gene expression at the transcriptional level, which was confirmed using lipA-gfp reporter constructs. Instead, hexadecane appeared to enhance lipase secretion, since the amounts of lipase in the culture supernatant increased in the presence of hexadecane, with a concomitant decrease in the cells, even when protein synthesis was inhibited with chloramphenicol. In the presence of olive oil as a carbon source, nonionic detergents, such as Tween 80, increased extracellular lipase activity twofold. Like hexadecane, Tween 80 appeared to stimulate lipase secretion, although in a more disruptive manner, since other, normally nonsecreted proteins were found in the culture supernatant. Additionally, like olive oil, Tween 80 was found to induce lipase gene expression in strain PG1 in medium containing sucrose as a carbon source but not in glucose-containing medium, suggesting that lipase gene expression is prone to catabolite repression. In contrast, lipase production in the lipase-overproducing strain LU8093 was independent of the presence of an inducer and was not inhibited by glucose. In conclusion, hexadecane and Tween 80 enhance lipase production in B. glumae, and they act via different mechanisms. PMID:17468265

  18. Hexadecane and Tween 80 Stimulate Lipase Production in Burkholderia glumae by Different Mechanisms▿

    PubMed Central

    Boekema, Bouke K. H. L.; Beselin, Anke; Breuer, Michael; Hauer, Bernhard; Koster, Margot; Rosenau, Frank; Jaeger, Karl-Erich; Tommassen, Jan

    2007-01-01

    Burkholderia glumae strain PG1 produces a lipase of biotechnological relevance. Lipase production by this strain and its derivative LU8093, which was obtained through classical strain improvement, was investigated under different conditions. When 10% hexadecane was included in the growth medium, lipolytic activity in both strains could be increased ∼7-fold after 24 h of growth. Hexadecane also stimulated lipase production in a strain containing the lipase gene fused to the tac promoter, indicating that hexadecane did not affect lipase gene expression at the transcriptional level, which was confirmed using lipA-gfp reporter constructs. Instead, hexadecane appeared to enhance lipase secretion, since the amounts of lipase in the culture supernatant increased in the presence of hexadecane, with a concomitant decrease in the cells, even when protein synthesis was inhibited with chloramphenicol. In the presence of olive oil as a carbon source, nonionic detergents, such as Tween 80, increased extracellular lipase activity twofold. Like hexadecane, Tween 80 appeared to stimulate lipase secretion, although in a more disruptive manner, since other, normally nonsecreted proteins were found in the culture supernatant. Additionally, like olive oil, Tween 80 was found to induce lipase gene expression in strain PG1 in medium containing sucrose as a carbon source but not in glucose-containing medium, suggesting that lipase gene expression is prone to catabolite repression. In contrast, lipase production in the lipase-overproducing strain LU8093 was independent of the presence of an inducer and was not inhibited by glucose. In conclusion, hexadecane and Tween 80 enhance lipase production in B. glumae, and they act via different mechanisms. PMID:17468265

  19. Membrane-Bound PenA β-Lactamase of Burkholderia pseudomallei.

    PubMed

    Randall, Linnell B; Dobos, Karen; Papp-Wallace, Krisztina M; Bonomo, Robert A; Schweizer, Herbert P

    2015-01-01

    Burkholderia pseudomallei is the etiologic agent of melioidosis, a difficult-to-treat disease with diverse clinical manifestations. β-Lactam antibiotics such as ceftazidime are crucial to the success of melioidosis therapy. Ceftazidime-resistant clinical isolates have been described, and the most common mechanism is point mutations affecting expression or critical amino acid residues of the chromosomally encoded class A PenA β-lactamase. We previously showed that PenA was exported via the twin arginine translocase system and associated with the spheroplast fraction. We now show that PenA is a membrane-bound lipoprotein. The protein and accompanying β-lactamase activity are found in the membrane fraction and can be extracted with Triton X-114. Treatment with globomycin of B. pseudomallei cells expressing PenA results in accumulation of the prolipoprotein. Mass spectrometric analysis of extracted membrane proteins reveals a protein peak whose mass is consistent with a triacylated PenA protein. Mutation of a crucial lipobox cysteine at position 23 to a serine residue results in loss of β-lactamase activity and absence of detectable PenAC23S protein. A concomitant isoleucine-to-alanine change at position 20 in the signal peptide processing site in the PenAC23S mutant results in a nonlipidated protein (PenAI20A C23S) that is processed by signal peptidase I and exhibits β-lactamase activity. The resistance profile of a B. pseudomallei strain expressing this protein is indistinguishable from the profile of the isogenic strain expressing wild-type PenA. The data show that PenA membrane association is not required for resistance and must serve another purpose. PMID:26711764

  20. Pangenome Analysis of Burkholderia pseudomallei: Genome Evolution Preserves Gene Order despite High Recombination Rates

    PubMed Central

    Spring-Pearson, Senanu M.; Stone, Joshua K.; Doyle, Adina; Allender, Christopher J.; Okinaka, Richard T.; Mayo, Mark; Broomall, Stacey M.; Hill, Jessica M.; Karavis, Mark A.; Hubbard, Kyle S.; Insalaco, Joseph M.; McNew, Lauren A.; Rosenzweig, C. Nicole; Gibbons, Henry S.; Currie, Bart J.; Wagner, David M.; Keim, Paul; Tuanyok, Apichai

    2015-01-01

    The pangenomic diversity in Burkholderia pseudomallei is high, with approximately 5.8% of the genome consisting of genomic islands. Genomic islands are known hotspots for recombination driven primarily by site-specific recombination associated with tRNAs. However, recombination rates in other portions of the genome are also high, a feature we expected to disrupt gene order. We analyzed the pangenome of 37 isolates of B. pseudomallei and demonstrate that the pangenome is ‘open’, with approximately 136 new genes identified with each new genome sequenced, and that the global core genome consists of 4568±16 homologs. Genes associated with metabolism were statistically overrepresented in the core genome, and genes associated with mobile elements, disease, and motility were primarily associated with accessory portions of the pangenome. The frequency distribution of genes present in between 1 and 37 of the genomes analyzed matches well with a model of genome evolution in which 96% of the genome has very low recombination rates but 4% of the genome recombines readily. Using homologous genes among pairs of genomes, we found that gene order was highly conserved among strains, despite the high recombination rates previously observed. High rates of gene transfer and recombination are incompatible with retaining gene order unless these processes are either highly localized to specific sites within the genome, or are characterized by symmetrical gene gain and loss. Our results demonstrate that both processes occur: localized recombination introduces many new genes at relatively few sites, and recombination throughout the genome generates the novel multi-locus sequence types previously observed while preserving gene order. PMID:26484663

  1. Survival and susceptibility of Burkholderia cepacia complex in chlorhexidine gluconate and benzalkonium chloride.

    PubMed

    Kim, Jeong Myeong; Ahn, Youngbeom; LiPuma, John J; Hussong, David; Cerniglia, Carl E

    2015-06-01

    The Burkholderia cepacia complex (BCC) includes opportunistic pathogenic bacteria that have occasionally been recovered from various pharmaceutical products, including antiseptics and disinfectants. Plausible reasons for the contamination include intrinsic sources, such as inadequate process controls, especially for water or equipment used during product manufacture, or extrinsic sources, such as improper handling and dilution or distribution in contaminated containers. Because the survival of BCC in antiseptics is a concern to the public health and pharmaceutical industry, we determined minimum inhibitory concentrations (MICs) of 36 BCC strains against the antiseptics, following exposure to chlorhexidine gluconate (CHX) and benzalkonium chloride (BZK) solutions (1-500 µg/ml for each chemical). Susceptibility to CHX and BZK varied across the BCC strains and was recorded as mean 90.3 and 111.1 µg/ml, respectively, at initial inoculation, which was significantly higher than the 46.4 and 61.1 µg/ml levels measured for BCC incubated in water for 40 days. After determining antiseptic MICs of individual BCC strains, BCC recovery was measured on Tryptic Soy Agar (TSA), Reasoner's Second Agar (R2A) and diluted preparations of these media under their sub-MICs. The survival of BCC was monitored for 14 days (336 h) in sub-MICs diluted to less than their antiseptic susceptible concentration value. Diluted TSA and R2A media exhibited greater efficiency of recovery for most BCC strains from the CHX and BZK solutions than full strength TSA or R2A. For BCC survival in antiseptic solutions, the cell number of BCC decreased rapidly within the first 20 min in both antiseptics, but after this, recovery remained constant in CHX and increased in BZK over the 14 day incubation period. The results indicate that BCC in water can remain viable with low susceptibility to antiseptics for 14 days, which suggests the necessity for improved detection methods and control measures to monitor

  2. Involvement of outer membrane proteins and peroxide-sensor genes in Burkholderia cepacia resistance to isothiazolone.

    PubMed

    Zhou, Gang; Shi, Qing-shan; Ouyang, You-sheng; Chen, Yi-ben

    2014-04-01

    Isothiazolones are used as preservatives in various modern industrial products. Although microorganisms that exhibit resistance towards these biocides have been identified, the underlying resistance mechanisms are still unclear. Therefore, we investigated the resistance properties of the following Burkholderia cepacia strains to Kathon (a representative of isothiazolones): a wild-type (WT) strain; a laboratory resistance strain (BC-IR) induced from WT; and an isolated strain (BC-327) screened from industrial contamination samples. The bacterial cell structure was disrupted by 50 μg ml⁻¹ Kathon treatment. BC-IR and BC-327 did not display resistance in the presence of 1 ml L⁻¹ Tween 80, 1 ml L⁻¹ Triton X-100, 0.1 % sodium dodecyl sulfate or 1 mmol L⁻¹ EDTA-2Na. Additionally, BC-IR and BC-327 exhibited lower relative conductivity from 10 to 180 min. The types as well as the levels of outer-membrane proteins (OMPs) were altered among WT, BC-IR and BC-327. Finally, the two Kathon-resistance strains BC-IR and BC-327 presented higher resistance capacity to H₂O₂. We measured the levels of peroxide-sensor genes and observed that the transcriptional activator oxyR, superoxide dismutase sod1, sod2, catalase cat1 and cat3 were all up-regulated under oxidative conditions for all strains. Taken together, OMPs and peroxide-sensor genes in B. cepacia contributed to isothiazolone resistance; However, the laboratory strain BC-IR exhibited a different resistance mechanism and properties compared to the isolated strain BC-327. PMID:24197783

  3. Survey of Bartonella spp. in U.S. Bed Bugs Detects Burkholderia multivorans but Not Bartonella

    PubMed Central

    Saenz, Virna L.; Maggi, Ricardo G.; Breitschwerdt, Edward B.; Kim, Jung; Vargo, Edward L.; Schal, Coby

    2013-01-01

    Bed bugs (Cimex lectularius L.) have resurged in the United States and globally. Bed bugs are hematophagous ectoparasites of humans and other animals, including domestic pets, chickens, and bats, and their blood feeding habits contribute to their potential as disease vectors. Several species of Bartonella are re-emergent bacterial pathogens that also affect humans, domestic pets, bats and a number of other wildlife species. Because reports of both bed bugs and Bartonella have been increasing in the U.S., and because their host ranges can overlap, we investigated whether the resurgences of these medically important pathogens and their potential vector might be linked, by screening for Bartonella spp. in bed bugs collected from geographic areas where these pathogens are prevalent and from bed bugs that have been in culture in the laboratory for several years. We screened a total of 331 bed bugs: 316 bed bugs from 36 unique collections in 29 geographic locations in 13 states, 10 bed bugs from two colonies maintained in the laboratory for 3 yr, and 5 bed bugs from a colony that has been in culture since before the recent resurgence of bed bugs. Bartonella spp. DNA was screened using a polymerase chain reaction assay targeting the 16S–23S rRNA intergenic transcribed spacer region. Bartonella DNA was not amplified from any bed bug, but five bed bugs from four different apartments of an elderly housing building in North Carolina contained DNA sequences that corresponded to Burkholderia multivorans, an important pathogen in nosocomial infections that was not previously linked to an arthropod vector. PMID:24040015

  4. Effect of phosphoglycerate mutase and fructose 1,6-bisphosphatase deficiency on symbiotic Burkholderia phymatum.

    PubMed

    Chen, Wen-Ming; Prell, Jurgen; James, Euan K; Sheu, Der-Shyan; Sheu, Shih-Yi

    2012-04-01

    Burkholderia phymatum STM815 is a β-rhizobial strain that can effectively nodulate several species of the large legume genus Mimosa. Two Tn5-induced mutants of this strain, KM16-22 and KM51, failed to form root nodules on Mimosa pudica, but still caused root hair deformation, which is one of the early steps of rhizobial infection. Both mutants grew well in a complex medium. However, KM16-22 could not grow on minimal medium unless a sugar and a metabolic intermediate such as pyruvate were provided, and KM51 also could not grow on minimal medium unless a sugar was added. The Tn5-interrupted genes of the mutants showed strong homologies to pgm, which encodes 2,3-biphosphoglycerate-dependent phosphoglycerate mutase (dPGM), and fbp, which encodes fructose 1,6-bisphosphatase (FBPase). Both enzymes are known to be involved in obligate steps in carbohydrate metabolism. Enzyme assays confirmed that KM16-22 and KM51 had indeed lost dPGM and FBPase activity, respectively, whilst the activities of these enzymes were expressed normally in both free-living bacteria and symbiotic bacteroids of the parental strain STM815. Both mutants recovered their enzyme activity after the introduction of wild-type pgm or fbp genes, were subsequently able to use carbohydrate as a carbon source, and were able to form root nodules on M. pudica and to fix nitrogen as efficiently as the parental strain. We conclude that the enzymes dPGM and FBPase are essential for the formation of a symbiosis with the host plant. PMID:22282515

  5. A Burkholderia cenocepacia orphan LuxR homolog is involved in quorum-sensing regulation.

    PubMed

    Malott, Rebecca J; O'Grady, Eoin P; Toller, Jessica; Inhülsen, Silja; Eberl, Leo; Sokol, Pamela A

    2009-04-01

    Burkholderia cenocepacia utilizes quorum sensing to control gene expression, including the expression of genes involved in virulence. In addition to CepR and CciR, a third LuxR homolog, CepR2, was found to regulate gene expression and virulence factor production. All B. cenocepacia strains examined contained this orphan LuxR homolog, which was not associated with an adjacent N-acyl-homoserine lactone synthase gene. Expression of cepR2 was negatively autoregulated and was negatively regulated by CciR in strain K56-2. Microarray analysis and quantitative reverse transcription-PCR determined that CepR2 did not influence expression of cepIR or cciIR. However, in strain K56-2, CepR2 negatively regulated expression of several known quorum-sensing-controlled genes, including genes encoding zinc metalloproteases. CepR2 exerted positive and negative regulation on genes on three chromosomes, including strong negative regulation of a gene cluster located adjacent to cepR2. In strain H111, which lacks the CciIR quorum-sensing system, CepR2 positively regulated pyochelin production by controlling transcription of one of the operons required for the biosynthesis of the siderophore in an N-acyl-homoserine lactone-independent manner. CepR2 activation of a luxI promoter was demonstrated in a heterologous Escherichia coli host, providing further evidence that CepR2 can function in the absence of signaling molecules. This study demonstrates that the orphan LuxR homolog CepR2 contributes to the quorum-sensing regulatory network in two distinct strains of B. cenocepacia. PMID:19201791

  6. Burkholderia pseudomallei Colony Morphotypes Show a Synchronized Metabolic Pattern after Acute Infection

    PubMed Central

    Steinmetz, Ivo; Lalk, Michael

    2016-01-01

    Background Burkholderia pseudomallei is a water and soil bacterium and the causative agent of melioidosis. A characteristic feature of this bacterium is the formation of different colony morphologies which can be isolated from environmental samples as well as from clinical samples, but can also be induced in vitro. Previous studies indicate that morphotypes can differ in a number of characteristics such as resistance to oxidative stress, cellular adhesion and intracellular replication. Yet the metabolic features of B. pseudomallei and its different morphotypes have not been examined in detail so far. Therefore, this study aimed to characterize the exometabolome of B. pseudomallei morphotypes and the impact of acute infection on their metabolic characteristics. Methods and Principal Findings We applied nuclear magnetic resonance spectroscopy (1H-NMR) in a metabolic footprint approach to compare nutrition uptake and metabolite secretion of starvation induced morphotypes of the B. pseudomallei strains K96243 and E8. We observed gluconate production and uptake in all morphotype cultures. Our study also revealed that among all morphotypes amino acids could be classified with regard to their fast and slow consumption. In addition to these shared metabolic features, the morphotypes varied highly in amino acid uptake profiles, secretion of branched chain amino acid metabolites and carbon utilization. After intracellular passage in vitro or murine acute infection in vivo, we observed a switch of the various morphotypes towards a single morphotype and a synchronization of nutrient uptake and metabolite secretion. Conclusion To our knowledge, this study provides first insights into the basic metabolism of B. pseudomallei and its colony morphotypes. Furthermore, our data suggest, that acute infection leads to the synchronization of B. pseudomallei colony morphology and metabolism through yet unknown host signals and bacterial mechanisms. PMID:26943908

  7. Structure prediction and evolution of a halo-acid dehalogenase of Burkholderia mallei

    PubMed Central

    Rai, Alok R; Singh, Raghvendra Pratap; Srivastava, Alok Kumar; Dubey, Ramesh Chandra

    2012-01-01

    Environmental pollutants containing halogenated organic compounds e.g. haloacid, can cause a plethora of health problems. The structural and functional analyses of the gene responsible of their degradation are an important aspect for environmental studies and are important to human well-being. It has been shown that some haloacids are toxic and mutagenic. Microorganisms capable of degrading these haloacids can be found in the natural environment. One of these, a soil-borne Burkholderia mallei posses the ability to grow on monobromoacetate (MBA). This bacterium produces a haloacid dehalogenase that allows the cell to grow on MBA, a highly toxic and mutagenic environmental pollutant. For the structural and functional analysis, a 346 amino acid encoding protein sequence of haloacid dehalogenase is retrieve from NCBI data base. Primary and secondary structure analysis suggested that the high percentage of helices in the structure makes the protein more flexible for folding, which might increase protein interactions. The consensus protein sub-cellular localization predictions suggest that dehalogenase protein is a periplasmic protein 3D2GO server, suggesting that it is mainly employed in metabolic process followed by hydrolase activity and catalytic activity. The tertiary structure of protein was predicted by homology modeling. The result suggests that the protein is an unstable protein which is also an important characteristic of active enzyme enabling them to bind various cofactors and substrate for proper functioning. Validation of 3D structure was done using Ramachandran plot ProsA-web and RMSD score. This predicted information will help in better understanding of mechanism underlying haloacid dehalogenase encoding protein and its evolutionary relationship. PMID:23251046

  8. Fosmidomycin Decreases Membrane Hopanoids and Potentiates the Effects of Colistin on Burkholderia multivorans Clinical Isolates

    PubMed Central

    Malott, Rebecca J.; Wu, Chia-Hung; Lee, Tracy D.; Hird, Trevor J.; Dalleska, Nathan F.; Zlosnik, James E. A.; Newman, Dianne K.

    2014-01-01

    Burkholderia cepacia complex (Bcc) pulmonary infections in people living with cystic fibrosis (CF) are difficult to treat because of the extreme intrinsic resistance of most isolates to a broad range of antimicrobials. Fosmidomycin is an antibacterial and antiparasitic agent that disrupts the isoprenoid biosynthesis pathway, a precursor to hopanoid biosynthesis. Hopanoids are involved in membrane stability and contribute to polymyxin resistance in Bcc bacteria. Checkerboard MIC assays determined that although isolates of the Bcc species B. multivorans were highly resistant to treatment with fosmidomycin or colistin (polymyxin E), antimicrobial synergy was observed in certain isolates when the antimicrobials were used in combination. Treatment with fosmidomycin decreased the MIC of colistin for isolates as much as 64-fold to as low as 8 μg/ml, a concentration achievable with colistin inhalation therapy. A liquid chromatography-tandem mass spectrometry technique was developed for the accurate quantitative determination of underivatized hopanoids in total lipid extracts, and bacteriohopanetetrol cyclitol ether (BHT-CE) was found to be the dominant hopanoid made by B. multivorans. The amount of BHT-CE made was significantly reduced upon fosmidomycin treatment of the bacteria. Uptake assays with 1-N-phenylnaphthylamine were used to determine that dual treatment with fosmidomycin and colistin increases membrane permeability, while binding assays with boron-dipyrromethene-conjugated polymyxin B illustrated that the addition of fosmidomycin had no impact on polymyxin binding. This work indicates that pharmacological suppression of membrane hopanoids with fosmidomycin treatment can increase the susceptibility of certain clinical B. multivorans isolates to colistin, an agent currently in use to treat pulmonary infections in CF patients. PMID:24957830

  9. Solution structure of monomeric BsaL, the type III secretion needle protein of Burkholderia pseudomallei.

    PubMed

    Zhang, Lingling; Wang, Yu; Picking, Wendy L; Picking, William D; De Guzman, Roberto N

    2006-06-01

    Many gram-negative bacteria that are important human pathogens possess type III secretion systems as part of their required virulence factor repertoire. During the establishment of infection, these pathogens coordinately assemble greater than 20 different proteins into a macromolecular structure that spans the bacterial inner and outer membranes and, in many respects, resembles and functions like a syringe. This type III secretion apparatus (TTSA) is used to inject proteins into a host cell's membrane and cytoplasm to subvert normal cellular processes. The external portion of the TTSA is a needle that is composed of a single type of protein that is polymerized in a helical fashion to form an elongated tube with a central channel of 2-3 nm in diameter. TTSA needle proteins from a variety of bacterial pathogens share sequence conservation; however, no atomic structure for any TTSA needle protein is yet available. Here, we report the structure of a TTSA needle protein called BsaL from Burkholderia pseudomallei determined by nuclear magnetic resonance (NMR) spectroscopy. The central part of the protein assumes a helix-turn-helix core domain with two well-defined alpha-helices that are joined by an ordered, four-residue linker. This forms a two-helix bundle that is stabilized by interhelix hydrophobic contacts. Residues that flank this presumably exposed core region are not completely disordered, but adopt a partial helical conformation. The atomic structure of BsaL and its sequence homology with other TTSA needle proteins suggest potentially unique structural dynamics that could be linked with a universal mechanism for control of type III secretion in diverse gram-negative bacterial pathogens. PMID:16631790

  10. Spliceostatin hemiketal biosynthesis in Burkholderia spp. is catalyzed by an iron/α-ketoglutarate–dependent dioxygenase

    PubMed Central

    Eustáquio, Alessandra S.; Janso, Jeffrey E.; Ratnayake, Anokha S.; O’Donnell, Christopher J.; Koehn, Frank E.

    2014-01-01

    Spliceostatins are potent spliceosome inhibitors biosynthesized by a hybrid nonribosomal peptide synthetase−polyketide synthase (NRPS−PKS) system of the trans-acyl transferase (AT) type. Burkholderia sp. FERM BP-3421 produces hemiketal spliceostatins, such as FR901464, as well as analogs containing a terminal carboxylic acid. We provide genetic and biochemical evidence for hemiketal biosynthesis by oxidative decarboxylation rather than the previously hypothesized Baeyer–Villiger oxidative release postulated to be catalyzed by a flavin-dependent monooxygenase (FMO) activity internal to the last module of the PKS. Inactivation of Fe(II)/α-ketoglutarate–dependent dioxygenase gene fr9P led to loss of hemiketal congeners, whereas the mutant was still able to produce all major carboxylic acid-type compounds. FMO mutants, on the other hand, produced both hemiketal and carboxylic acid analogs containing an exocyclic methylene instead of an epoxide, indicating that the FMO is involved in epoxidation rather than Baeyer–Villiger oxidation. Moreover, recombinant Fr9P enzyme was shown to catalyze hydroxylation to form β-hydroxy acids, which upon decarboxylation led to hemiketal FR901464. Finally, a third oxygenase activity encoded in the biosynthetic gene cluster, the cytochrome P450 monooxygenase Fr9R, was assigned as a 4-hydroxylase based on gene inactivation results. Identification and deletion of the gene involved in hemiketal formation allowed us to generate a strain—the dioxygenase fr9P− mutant—that accumulates only the carboxylic acid-type spliceostatins, which are as potent as the hemiketal analogs, when derivatized to increase cell permeability, but are chemically more stable. PMID:25097259

  11. Development of Rapid Enzyme-Linked Immunosorbent Assays for Detection of Antibodies to Burkholderia pseudomallei.

    PubMed

    Suttisunhakul, Vichaya; Wuthiekanun, Vanaporn; Brett, Paul J; Khusmith, Srisin; Day, Nicholas P J; Burtnick, Mary N; Limmathurotsakul, Direk; Chantratita, Narisara

    2016-05-01

    Burkholderia pseudomallei, the causative agent of melioidosis, is an environmental bacillus found in northeast Thailand. The mortality rate of melioidosis is ∼40%. An indirect hemagglutination assay (IHA) is used as a reference serodiagnostic test; however, it has low specificity in areas where the background seropositivity of healthy people is high. To improve assay specificity and reduce the time for diagnosis, four rapid enzyme-linked immunosorbent assays (ELISAs) were developed using two purified polysaccharide antigens (O-polysaccharide [OPS] and 6-deoxyheptan capsular polysaccharide [CPS]) and two crude antigens (whole-cell [WC] antigen and culture filtrate [CF] antigen) of B. pseudomallei The ELISAs were evaluated using serum samples from 141 culture-confirmed melioidosis patients from Thailand along with 188 healthy donors from Thailand and 90 healthy donors from the United States as controls. The areas under receiver operator characteristic curves (AUROCC) using Thai controls were high for the OPS-ELISA (0.91), CF-ELISA (0.91), and WC-ELISA (0.90), while those of CPS-ELISA (0.84) and IHA (0.72) were lower. AUROCC values using U.S. controls were comparable to those of the Thai controls for all ELISAs except IHA (0.93). Using a cutoff optical density (OD) of 0.87, the OPS-ELISA had a sensitivity of 71.6% and a specificity of 95.7% for Thai controls; for U.S. controls, specificity was 96.7%. An additional 120 serum samples from tuberculosis, scrub typhus, or leptospirosis patients were evaluated in all ELISAs and resulted in comparable or higher specificities than using Thai healthy donors. Our findings suggest that antigen-specific ELISAs, particularly the OPS-ELISA, may be useful for serodiagnosis of melioidosis in areas where it is endemic and nonendemic. PMID:26912754

  12. Tracking the Response of Burkholderia cepacia G4 5223-PR1 in Aquifer Microcosms

    PubMed Central

    Winkler, J.; Timmis, K. N.; Snyder, R. A.

    1995-01-01

    The introduction of bacteria into the environment for bioremediation purposes (bioaugmentation) requires analysis and monitoring of microbial population dynamics to define persistence and activity from both efficacy and risk assessment perspectives. Burkholderia cepacia G4 5223-PR1 is a Tn5 insertion mutant which constitutively expresses a toluene ortho-monooxygenase that degrades trichloroethylene (TCE). This ability of G4 5223-PR1 to degrade TCE without aromatic induction may be useful for bioremediation of TCE-containing aquifers and groundwater. Thus, a simulated aquifer sediment system and groundwater microcosms were used to monitor the survival of G4 5223-PR1. The fate of G4 5223-PR1 in sediment was monitored by indirect immunofluorescence microscopy, a colony blot assay, and growth on selective medium. G4 5223-PR1 was detected immunologically by using a highly specific monoclonal antibody which reacted against the O-specific polysaccharide chain of the lipopolysaccharides of this organism. G4 5223-PR1 survived well in sterilized groundwater, although in nonsterile groundwater microcosms rapid decreases in the G4 5223-PR1 cell population were observed. Ten days after inoculation no G4 5223-PR1 cells could be detected by selective plating or immunofluorescence. G4 5223-PR1 survival was greater in a nonsterile aquifer sediment microcosm, although after 22 days of elution the number of G4 5223-PR1 cells was low. Our results demonstrate the utility of monoclonal antibody tracking methods and the importance of biotic interactions in determining the persistence of introduced microorganisms. PMID:16534928

  13. Versatile Dual-Technology System for Markerless Allele Replacement in Burkholderia pseudomallei▿ †

    PubMed Central

    López, Carolina M.; Rholl, Drew A.; Trunck, Lily A.; Schweizer, Herbert P.

    2009-01-01

    Burkholderia pseudomallei is the etiologic agent of melioidosis, a rare but serious tropical disease. In the United States, genetic research with this select agent bacterium is strictly regulated. Although several select agent compliant methods have been developed for allelic replacement, all of them suffer from some drawbacks, such as a need for specific host backgrounds or use of minimal media. Here we describe a versatile select agent compliant allele replacement system for B. pseudomallei based on a mobilizable vector, pEXKm5, which contains (i) a multiple cloning site within a lacZα gene for facile cloning of recombinant DNA fragments, (ii) a constitutively expressed gusA indicator gene for visual detection of merodiploid formation and resolution, and (iii) elements required for resolution of merodiploids using either I-SceI homing endonuclease-stimulated recombination or sacB-based counterselection. The homing endonuclease-based allele replacement system is completed by pBADSce, which contains an araC-PBAD-I-sceI expression cassette for arabinose-inducible I-SceI expression and a temperature-sensitive pRO1600 replicon for facile plasmid curing. Complementing these systems is the improved Δasd Escherichia coli mobilizer strain RHO3. This strain is susceptible to commonly used antibiotics and allows nutritional counterselection on rich media because of its diaminopimelic acid auxotrophy. The versatility of the I-SceI- and sacB-based methods afforded by pEXKm5 in conjunction with E. coli RHO3 was demonstrated by isolation of diverse deletion mutants in several clinical, environmental, and laboratory B. pseudomallei strains. Finally, sacB-based counterselection was employed to isolate a defined chromosomal fabD(Ts) allele that causes synthesis of a temperature-sensitive FabD, an essential fatty acid biosynthesis enzyme. PMID:19700544

  14. Characterization of Burkholderia pseudomallei Strains Using a Murine Intraperitoneal Infection Model and In Vitro Macrophage Assays

    PubMed Central

    Welkos, Susan L.; Klimko, Christopher P.; Kern, Steven J.; Bearss, Jeremy J.; Bozue, Joel A.; Bernhards, Robert C.; Trevino, Sylvia R.; Waag, David M.; Amemiya, Kei; Worsham, Patricia L.; Cote, Christopher K.

    2015-01-01

    Burkholderia pseudomallei, the etiologic agent of melioidosis, is a gram-negative facultative intracellular bacterium. This bacterium is endemic in Southeast Asia and Northern Australia and can infect humans and animals by several routes. It has also been estimated to present a considerable risk as a potential biothreat agent. There are currently no effective vaccines for B. pseudomallei, and antibiotic treatment can be hampered by nonspecific symptomology, the high incidence of naturally occurring antibiotic resistant strains, and disease chronicity. Accordingly, there is a concerted effort to better characterize B. pseudomallei and its associated disease. Before novel vaccines and therapeutics can be tested in vivo, a well characterized animal model is essential. Previous work has indicated that mice may be a useful animal model. In order to develop standardized animal models of melioidosis, different strains of bacteria must be isolated, propagated, and characterized. Using a murine intraperitoneal (IP) infection model, we tested the virulence of 11 B. pseudomallei strains. The IP route offers a reproducible way to rank virulence that can be readily reproduced by other laboratories. This infection route is also useful in distinguishing significant differences in strain virulence that may be masked by the exquisite susceptibility associated with other routes of infection (e.g., inhalational). Additionally, there were several pathologic lesions observed in mice following IP infection. These included varisized abscesses in the spleen, liver, and haired skin. This model indicated that commonly used laboratory strains of B. pseudomallei (i.e., K96243 and 1026b) were significantly less virulent as compared to more recently acquired clinical isolates. Additionally, we characterized in vitro strain-associated differences in virulence for macrophages and described a potential inverse relationship between virulence in the IP mouse model of some strains and in the

  15. The Concentrations of Ambient Burkholderia Pseudomallei during Typhoon Season in Endemic Area of Melioidosis in Taiwan

    PubMed Central

    Yang, Chun-Yuh; Lee, Min Sheng; Ho, Chi-Kung; Mena, Kristina D.; Wang, Peng-Yau; Chen, Pei-Shih

    2014-01-01

    Background Melioidosis is a severe bacterial infection caused by Burkholderia pseudomallei with a high case-fatality rate. Epidemiological and animal studies show the possibility of inhalation transmission. However, no B. pseudomallei concentrations in ambient air have been researched. Here, we developed a method to quantify ambient B. pseudomallei and then measured concentrations of ambient B. pseudomallei during the typhoon season and the non-typhoon season to determine the factors influencing ambient B. pseudomallei levels. Methods We quantified ambient B. pseudomallei by using a filter/real-time qPCR method in the Zoynan Region in Kaohsiung, southern Taiwan. Twenty-four hour samples were collected at a sampling rate of 20 L/min every day from June 11 to December 21, 2012 including during the typhoon season (June to September) and reference season (October to December). Results We successfully developed a filtration/real-time qPCR method to quantify ambient B. pseudomallei. To our knowledge, this is the first report describing concentrations of ambient B. pseudomallei. Ambient B. pseudomallei were only detected during the typhoon season when compared to the reference season. For the typhoons affecting the Zoynan Region, the positive rates of ambient B. pseudomallei were very high at 80% to 100%. During June to December, rainfall was positively correlated with ambient B. pseudomallei with a statistical significance. Sediment at a nearby pond significantly influenced the concentration of ambient B. pseudomallei. During the typhoon month, the typhoon was positively correlated with ambient B. pseudomallei whereas wind speed was reversely correlated with ambient B. pseudomallei. Conclusions Our data suggest the possibility of transmission of B. pseudomallei via inhalation during the typhoon season. PMID:24874950

  16. Species abundance and diversity of Burkholderia cepacia complex in the environment.

    PubMed

    Ramette, Alban; LiPuma, John J; Tiedje, James M

    2005-03-01

    Despite considerable interest in studying Burkholderia cepacia complex in the environment, we still do not have efficient methods to detect, isolate, and screen large numbers of B. cepacia isolates. To better describe the ecology and diversity of B. cepacia complex, a colony hybridization assay was developed to detect specifically all species of the complex based on polymorphism of the variable V3 region of the 16S rRNA sequence. The sensitivity of the assay was dramatically enhanced by using a probe consisting of three repeats of a B. cepacia complex-specific probe, each separated by a phosphoramidite spacer. In addition, a duplex PCR targeting B. cepacia complex-specific recA and 16S rRNA sequences was developed to enable a fast and reliable diagnostic assay for members of the complex. When applied to maize rhizosphere samples, colony hybridization results were in good agreement with those of most-probable-number duplex PCR, both indicating a >100-fold fluctuation of abundance between individual plants. Using restriction analysis of recA for a total of 285 confirmed isolates of the B. cepacia complex, up to seven B. cepacia complex species were identified; however, their diversity and abundance were not evenly distributed among individual plants, and several allelic variants were commonly found from the same rhizosphere sample. These results indicate that not only complex communities of B. cepacia complex species and closely related strains of the same species may coexist at high population levels but also species composition and abundance may dramatically vary between individual plants. PMID:15746318

  17. In vivo Bioluminescence Imaging of Burkholderia mallei Respiratory Infection and Treatment in the Mouse Model

    PubMed Central

    Massey, Shane; Johnston, Katie; Mott, Tiffany M.; Judy, Barbara M.; Kvitko, Brian H.; Schweizer, Herbert P.; Estes, D. Mark; Torres, Alfredo G.

    2011-01-01

    Bioluminescent imaging (BLI) technology is a powerful tool for monitoring infectious disease progression and treatment approaches. BLI is particularly useful for tracking fastidious intracellular pathogens that might be difficult to recover from certain organs. Burkholderia mallei, the causative agent of glanders, is a facultative intracellular pathogen and has been classified by the CDC as a Category B select agent due to its highly infectious nature and potential use as a biological weapon. Very little is known regarding pathogenesis or treatment of glanders. We investigated the use of bioluminescent reporter constructs to monitor the dynamics of infection as well as the efficacy of therapeutics for B. mallei in real-time. A stable luminescent reporter B. mallei strain was created using the pUTmini-Tn5::luxKm2 plasmid and used to monitor glanders in the BALB/c murine model. Mice were infected via the intranasal route with 5 × 103 bacteria and monitored by BLI at 24, 48, and 72 h. We verified that our reporter construct maintained similar virulence and growth kinetics compared to wild-type B. mallei and confirmed that it maintains luminescent stability in the presence or absence of antibiotic selection. The luminescent signal was initially seen in the lungs, and progressed to the liver and spleen over the course of infection. We demonstrated that antibiotic treatment 24 h post-infection resulted in reduction of bioluminescence that can be attributed to decreased bacterial burden in target organs. These findings suggest that BLI can be used to monitor disease progression and efficacy of therapeutics during glanders infections. Finally, we report an alternative method to mini-Tn5::luxKm2 transposon using mini-Tn7-lux elements that insert site-specifically at known genomic attachment sites and that can also be used to tag bacteria. PMID:21904535

  18. Identification, molecular characterisation and antimicrobial susceptibility of genomovars of the Burkholderia cepacia complex in Spain.

    PubMed

    Medina-Pascual, M J; Valdezate, S; Villalón, P; Garrido, N; Rubio, V; Saéz-Nieto, J A

    2012-12-01

    Burkholderia spp. strains collected in Spain over a 13-year period from patients with cystic fibrosis (CF) (n = 148), non-CF patients (n = 103) and from environmental sources (n = 64) were characterised. One hundred and forty-one of the examined strains were involved in seven suspected nosocomial disease outbreaks. Strains were identified by their 16s rRNA and recA genes. Their genetic relatedness, the possession of cable pili and the B. cepacia epidemic strain marker (BCESM), and their susceptibility to antimicrobial agents were studied using pulsed-field gel electrophoresis (PFGE), cblA and esmR genes analysis, and by the E-test, respectively. The genomovar distribution for the 315 strains was as follows: B. stabilis 29.5 %, B. cepacia 14.9 %, B. multivorans 11.1 %, B. cenocepacia IIIA 9.5 %, B. vietnamiensis 3.8 %, B. cenocepacia IIIB 3.5 %, and B. ambifaria and B. pyrrocinia 0.3 % each. The genetic diversity of the B. cepacia complex (Bcc) was ample, with 57 different SpeI types, showing a genetic similarity of 36.4-96.6 %. No strain carried cblA, whereas 25 B. cenocepacia genotypes harboured BCESM (23 from patients with CF). Antimicrobial resistance rates to tobramycin (TOB; 86 %) and imipenem (IPM; 67 %) were high. The strains from patients with CF showed significantly greater resistance to piperacillin (PIP), levofloxacin (LVX) and co-trimoxazole (SXT) than those isolated from non-CF patients (p < 0.05). In conclusion, B. cenocepacia was the most prevalent genomovar found in patients with CF (19.1 %), whereas B. cepacia was the most common among non-CF patients (20.7 %). B. stabilis (47.6 %) was the most common environmental genomovar. Susceptibility to antimicrobial agents depended on genomovar status and strain origin. PMID:22855365

  19. Draft Genome Sequence of Burkholderia ambifaria RZ2MS16, a Plant Growth-Promoting Rhizobacterium Isolated from Guarana, a Tropical Plant.

    PubMed

    Batista, Bruna Durante; Taniguti, Lucas Mitsuo; Monteiro-Vitorello, Claudia Barros; Azevedo, João Lúcio; Quecine, Maria Carolina

    2016-01-01

    Burkholderia ambifaria strain RZ2MS16 was isolated from the rhizosphere of Amazon guarana in Brazil. This bacterium exhibits a remarkable capacity to promote the growth of corn and soybean. Here, we report the draft genome sequence of RZ2MS16 and some genes related to multiple traits involved in plant growth promotion. PMID:26988044

  20. Draft Genome Sequence of Burkholderia ambifaria RZ2MS16, a Plant Growth-Promoting Rhizobacterium Isolated from Guarana, a Tropical Plant

    PubMed Central

    Batista, Bruna Durante; Taniguti, Lucas Mitsuo; Monteiro-Vitorello, Claudia Barros; Azevedo, João Lúcio

    2016-01-01

    Burkholderia ambifaria strain RZ2MS16 was isolated from the rhizosphere of Amazon guarana in Brazil. This bacterium exhibits a remarkable capacity to promote the growth of corn and soybean. Here, we report the draft genome sequence of RZ2MS16 and some genes related to multiple traits involved in plant growth promotion. PMID:26988044

  1. Biodegradation of 4-chloronitrobenzene by biochemical cooperation between Sphingomonas sp. strain CNB3 and Burkholderia sp. strain CAN6 isolated from activated sludge.

    PubMed

    Zhang, Longjiang; Wang, Xin; Jiao, Yiying; Chen, Xu; Zhou, Lingyan; Guo, Kun; Ge, Feng; Wu, Jun

    2013-05-01

    Two bacterial strains were isolated from activated sludge by using 4-chloronitrobenzene (4-CB) as the sole source of carbon for enrichment. One of the isolates was identified as Sphingomonas sp. strain CNB3 and the other as Burkholderia sp. strain CAN6, mainly through morphological and physiological characteristics and 16S rRNA gene sequence analysis. Sphingomonas sp. strain CNB3 could transform 4-CB to 4-chloroaniline, which accumulated in the medium. Burkholderia sp. strain CAN6 could transform 4-chloroaniline but not 4-CB. The co-culture of Sphingomonas sp. strain CNB3 and Burkholderia sp. strain CAN6 could degrade 4-CB completely by the biochemical cooperation of two strains to overcome the degradative limitations of each species alone. In addition, the biochemical pathway of 4-chloroaniline transformation by Burkholderia sp. strain CAN6 was proposed based on the determined related enzyme activities. The results suggested that 4-chloroaniline was completely transformed via the ortho-cleavage and modified ortho-cleavage pathways. PMID:23473429

  2. Complete genome sequence of Burkholderia caribensis Bcrs1W (NBRC110739), a strain co-residing with phenanthrene degrader Mycobacterium sp. EPa45.

    PubMed

    Ohtsubo, Yoshiyuki; Nonoyama, Shouta; Ogawa, Natsumi; Kato, Hiromi; Nagata, Yuji; Tsuda, Masataka

    2016-06-20

    Complete genome sequence of Burkholderia caribensis Bcrs1W, isolated from a phenanthrene-degrading mixed culture, was determined. The genomic information of Bcrs1W will be beneficial to elucidating the mechanisms of its positive effects on phenanthrene degradation by co-residing Mycobacterium sp. Epa45, and to exploiting their degradation potentials. PMID:27130496

  3. Saturation mutagenesis of a CepR binding site as a means to identify new quorum-regulated promoters in Burkholderia cenocepacia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Burkholderia cenocepacia, an opportunistic pathogen of humans, encodes the CepI and CepR proteins, which resemble the LuxI and LuxR quorum sensing proteins of Vibrio fischeri. CepI directs the synthesis of octanoylhomoserine lactone (OHL), while CepR is an OHL dependent transcription factor. In pr...

  4. Genome sequencing and transposon mutagenesis of Burkholderia seminalis TC3.4.2R3 identify genes contributing to suppression of orchid necrosis caused by B. gladioli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thirty six strains of Burkholderia spp. isolated from sugarcane were evaluated for biological control of leaf and pseudobulb necrosis of orchid caused by B. gladioli. Twenty nine of the sugarcane strains suppressed the disease in greenhouse assays. We generated a draft genomic sequence of one suppr...

  5. Whole-Genome Sequencing of Burkholderia pseudomallei Isolates from an Unusual Melioidosis Case Identifies a Polyclonal Infection with the Same Multilocus Sequence Type

    PubMed Central

    Sarovich, Derek S.; Viberg, Linda; Mayo, Mark; Kaestli, Mirjam; Tuanyok, Apichai; Foster, Jeffrey T.; Keim, Paul; Pearson, Talima; Currie, Bart J.

    2014-01-01

    Twelve Burkholderia pseudomallei isolates collected over a 32-month period from a patient with chronic melioidosis demonstrated identical multilocus sequence types (STs). However, whole-genome sequencing suggests a polyclonal infection. This study is the first to report a mixed infection with the same ST. PMID:25339397

  6. Backbone and side-chain (1)H, (15)N, (13)C assignment and secondary structure of BPSL1445 from Burkholderia pseudomallei.

    PubMed

    Quilici, Giacomo; Berardi, Andrea; Gaudesi, Davide; Gourlay, Louise J; Bolognesi, Martino; Musco, Giovanna

    2015-10-01

    BPSL1445 is a lipoprotein produced by the Gram-negative bacterium Burkholderia pseudomallei (B. pseudomallei), the etiological agent of melioidosis. Immunodetection assays against sera patients using protein microarray suggest BPSL1445 involvement in melioidosis. Herein we report backbone, side chain NMR assignment and secondary structure for the recombinant protein. PMID:25893672

  7. Characterization of the papilionoid-Burkholderia interaction in the Fynbos biome: The diversity and distribution of beta-rhizobia nodulating Podalyria calyptrata (Fabaceae, Podalyrieae).

    PubMed

    Lemaire, Benny; Van Cauwenberghe, Jannick; Verstraete, Brecht; Chimphango, Samson; Stirton, Charles; Honnay, Olivier; Smets, Erik; Sprent, Janet; James, Euan K; Muasya, A Muthama

    2016-02-01

    The South African Fynbos soils are renowned for nitrogen-fixing Burkholderia associated with diverse papilionoid legumes of the tribes Crotalarieae, Hypocalypteae, Indigofereae, Phaseoleae and Podalyrieae. However, despite numerous rhizobial studies in the region, the symbiotic diversity of Burkholderia has not been investigated in relation to a specific host legume and its geographical provenance. This study analyzed the diversity of nodulating strains of Burkholderia from the legume species Podalyria calyptrata. Diverse lineages were detected that proved to be closely related to Burkholderia taxa, originating from hosts in other legume tribes. By analyzing the genetic variation of chromosomal (recA) and nodulation (nodA) sequence data in relation to the sampling sites we assessed the geographical distribution patterns of the P. calyptrata symbionts. Although we found a degree of genetically differentiated rhizobial populations, a correlation between genetic (recA and nodA) and geographic distances among populations was not observed, suggesting high rates of dispersal and rhizobial colonization within Fynbos soils. PMID:26689612

  8. Proteogenomic Characterization of Monocyclic Aromatic Hydrocarbon Degradation Pathways in the Aniline-Degrading Bacterium Burkholderia sp. K24

    PubMed Central

    Yun, Sung Ho; Choi, Chi-Won; Yi, Yoon-Sun; Kim, Jonghyun; Chung, Young-Ho; Park, Edmond Changkyun; Kim, Seung Il

    2016-01-01

    Burkholderia sp. K24, formerly known as Acinetobacter lwoffii K24, is a soil bacterium capable of utilizing aniline as its sole carbon and nitrogen source. Genomic sequence analysis revealed that this bacterium possesses putative gene clusters for biodegradation of various monocyclic aromatic hydrocarbons (MAHs), including benzene, toluene, and xylene (BTX), as well as aniline. We verified the proposed MAH biodegradation pathways by dioxygenase activity assays, RT-PCR, and LC/MS-based quantitative proteomic analyses. This proteogenomic approach revealed four independent degradation pathways, all converging into the citric acid cycle. Aniline and p-hydroxybenzoate degradation pathways converged into the β-ketoadipate pathway. Benzoate and toluene were degraded through the benzoyl-CoA degradation pathway. The xylene isomers, i.e., o-, m-, and p-xylene, were degraded via the extradiol cleavage pathways. Salicylate was degraded through the gentisate degradation pathway. Our results show that Burkholderia sp. K24 possesses versatile biodegradation pathways, which may be employed for efficient bioremediation of aniline and BTX. PMID:27124467

  9. Genome sequence of the acid-tolerant Burkholderia sp. strain WSM2232 from Karijini National Park, Australia

    PubMed Central

    Walker, Robert; Watkin, Elizabeth; Tian, Rui; Bräu, Lambert; O’Hara, Graham; Goodwin, Lynne; Han, James; Reddy, Tatiparthi; Huntemann, Marcel; Pati, Amrita; Woyke, Tanja; Mavromatis, Konstantinos; Markowitz, Victor; Ivanova, Natalia; Kyrpides, Nikos; Reeve, Wayne

    2013-01-01

    Burkholderia sp. strain WSM2232 is an aerobic, motile, Gram-negative, non-spore-forming acid-tolerant rod that was trapped in 2001 from acidic soil collected from Karijini National Park (Australia) using Gastrolobium capitatum as a host. WSM2232 was effective in nitrogen fixation with G. capitatum but subsequently lost symbiotic competence during long-term storage. Here we describe the features of Burkholderia sp. strain WSM2232, together with genome sequence information and its annotation. The 7,208,311 bp standard-draft genome is arranged into 72 scaffolds of 72 contigs containing 6,322 protein-coding genes and 61 RNA-only encoding genes. The loss of symbiotic capability can now be attributed to the loss of nodulation and nitrogen fixation genes from the genome. This rhizobial genome is one of 100 sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project. PMID:25197442

  10. Characterising rhamnolipid production in Burkholderia thailandensis E264, a non-pathogenic producer.

    PubMed

    Funston, Scott J; Tsaousi, Konstantina; Rudden, Michelle; Smyth, Thomas J; Stevenson, Paul S; Marchant, Roger; Banat, Ibrahim M

    2016-09-01

    Burkholderia thailandensis E264 is a rhamnolipid (RL)-producing gram-negative bacterium first isolated from the soils and stagnant waters of central and north-eastern Thailand. Growth of B. thailandensis E264 under two different incubation temperatures (25 and 30 °C) resulted in a significantly higher dry cell biomass production at 30 °C (7.71 g/l) than at 25 °C (4.75 g/l) after 264 h; however, incubation at the lower temperature resulted in consistently higher concentration of RL production throughout the growth period. After 264 h, the concentration of crude RL extract for the 25 °C culture was 2.79 g/l compared to 1.99 g/l for the 30 °C culture. Overall RL production concentration after 264 h was 0.258 g/g dry cell biomass (DCB) for the 30 °C culture compared to 0.587 g/g DCB for the 25 °C culture. Real-time PCR (qPCR) was also used to analyse expression of the RL biosynthesis genes throughout the incubation period at 25 °C showing that the expression of the rhlA, rhlB and rhlC genes is continuous. During the log and early stationary phases of growth, expression levels remain low and are increased upon entry to the late stationary phase. B. thailandensis E264 produces mostly di-RLs and the Di-RL C14-C14 in most abundance (41.88 %). Fermentations were also carried out in small-scale bioreactors (4 l working volume) under controlled conditions, and results showed that RL production was maintained. Our findings show that B. thailandensis E264 has excellent potential for industrial scale RL production. PMID:27147528

  11. Biochemical Characterization of 3-Methyl-4-nitrophenol Degradation in Burkholderia sp. Strain SJ98

    PubMed Central

    Min, Jun; Lu, Yang; Hu, Xiaoke; Zhou, Ning-Yi

    2016-01-01

    Several strains have been reported to grow on 3-methyl-4-nitrophenol (3M4NP), the primary breakdown product of the excessively used insecticide fenitrothion. However, the microbial degradation of 3M4NP at molecular and biochemical levels remains unknown. Here, methyl-1,4-benzoquinone (MBQ) and methylhydroquinone (MHQ), rather than catechol proposed previously, were identified as the intermediates before ring cleavage during 3M4NP degradation by Burkholderia sp. strain SJ98. Real-time quantitative PCR analysis indicated that the pnpABA1CDEF cluster involved in para-nitrophenol (PNP) and 2-chloro-4-nitrophenol (2C4NP) catabolism was also likely responsible for 3M4NP degradation in this strain. Purified PNP 4-monooxygenase (PnpA) is able to catalyze the monooxygenation of 3M4NP to MBQ and exhibited an apparent Km value of 20.3 ± 2.54 μM for 3M4NP, and pnpA is absolutely necessary for the catabolism of 3M4NP by gene knock-out and complementation. PnpB, a 1,4-benzoquinone reductase catalyzes the reduction of MBQ to MHQ, and also found to enhance PnpA activity in vitro in the conversion of 3M4NP to MBQ. By sequential catalysis assays, PnpCD, PnpE, and PnpF were likely involved in the lower pathway of 3M4NP catabolism. Although NpcCD, NpcE, and NpcF are able to catalyze the sequential conversion of MHQ in vitro, these enzymes are unlikely involved in 3M4NP catabolism because their coding genes were not upregulated by 3M4NP induction in vivo. These results revealed that the enzymes involved in PNP and 2C4NP catabolism were also responsible for 3M4NP degradation in strain SJ98. This fills a gap in our understanding of the microbial degradation of 3M4NP at molecular and biochemical levels and also provides another example to illustrate the adaptive flexibility in microbial catabolism for structurally similar compounds. PMID:27252697

  12. Production of p-hydroxybenzoic acid from p-coumaric acid by Burkholderia glumae BGR1.

    PubMed

    Jung, Da-Hye; Kim, Eun-Jung; Jung, Eunok; Kazlauskas, Romas J; Choi, Kwon-Young; Kim, Byung-Gee

    2016-07-01

    p-Coumaric acid (pCA) is abundant in biomass with low lignin content, such as straw and stubble from rye, wheat, and barley. pCA can be isolated from biomass and used for the synthesis of aromatic hydrocarbons. Here, we report engineering of the natural pathway for conversion of pCA into p-hydroxybenzoic acid (pHBA) to increase the amount of pHBA that accumulates more than 100-fold. Burkholderia glumae strain BGR1 (BGR1) grows efficiently on pCA as a sole carbon source via a CoA-dependent non-β-oxidation pathway. This pathway removes two carbons from pCA as acetyl-CoA yielding p-hydroxybenzaldehyde and subsequently oxidizes it to pHBA. To increase the amount of accumulated pHBA in BGR1, we first deleted two genes encoding enzymes that degrade pHBA in the β-ketoadipate pathway. At 10 mM of pCA, the double deletion mutant BGR1_PB4 (Δphb3hΔbcl) accumulated pHBA with 95% conversion, while the control BGR1 accumulated only with 11.2% conversion. When a packed bed reactor containing immobilized BGR1_PB4 cells was operated at a dilution rate 0.2 h(-1) , the productivity of pHBA was achieved at 9.27 mg/L/h for 134 h. However, in a batch reactor at 20 mM pCA, growth of BGR1_PB4 was strongly inhibited, resulting in a low conversion of 19.3%. To further increase the amount of accumulated pCA, we identified the first enzyme in the pathway, p-hydroxcinnmaoyl-CoA synthetase II (phcs II), as the rate-limiting enzyme. Over expression of phcs II using a Palk promoter in a batch reaction at 20 mM of pCA yielded 99.0% conversion to pHBA, which is the highest concentration of pHBA ever reported using a biological process. Biotechnol. Bioeng. 2016;113: 1493-1503. © 2015 Wiley Periodicals, Inc. PMID:26693833

  13. Direct Detection of Burkholderia cepacia in Susceptible Pharmaceutical Products Using Semi-Nested PCR.

    PubMed

    Attia, Mohamed A; Ali, Amal E; Essam, Tamer M; Amin, Magdy A

    2016-01-01

    Burkholderia cepaciahas recently received a considerable attention as one of the major risks in susceptible pharmaceutical products. This microorganism can easily propagate and cause vast and severe contamination, especially to the water supplies for pharmaceutical companies. Moreover, it proliferates within the products and can cause severe infections for humans. Therefore, fast and sensitive detection of these bacteria is of a great demand. The present study introduces improved application of a polymerase chain reaction assay with relatively high sensitivity and specificity for the direct detection ofB. cepaciafrom the aqueous pharmaceutical products. A semi-nested polymerase chain reaction approach using the primer set BCR1/BCR2 followed by BCR1/Mr yielding a 465 bp fragment of the recA gene was applied and tested using both crude lysate from isolated colonies and DNA directly extracted from artificially prepared and spiked reference syrup. The polymerase chain reaction assay showed no interference with other bacterial reference and environmental strains tested, includingStaphylococcus aureusATCC® 6538,Pseudomonas aeruginosaATCC® 9027,Escherichia coliATCC® 8739,Salmonella abonyNCTC® 6017,Bacillus subtilisATCC® 6633,Micrococcus luteus, Staphylococcus warneri, Pseudomonas fluorescens, Pseudomonas putida, andRalstonia pickettii Moreover, this semi-nested assay showed a detection limit of around 10 colony-forming units per sample and could detectB. cepaciastrains isolated from a municipal pre-treated potable water tank. Comparing the results for detection ofB. cepaciain 100 randomly collected commercial syrup preparations using both conventional standard method and polymerase chain reaction assay revealed thatB. cepaciawas detected in two samples using polymerase chain reaction assay while all samples showed negative results by conventional culturing and biochemical methods. These results highlight the advantage of using this polymerase chain reaction assay to

  14. Biochemical Characterization of 3-Methyl-4-nitrophenol Degradation in Burkholderia sp. Strain SJ98.

    PubMed

    Min, Jun; Lu, Yang; Hu, Xiaoke; Zhou, Ning-Yi

    2016-01-01

    Several strains have been reported to grow on 3-methyl-4-nitrophenol (3M4NP), the primary breakdown product of the excessively used insecticide fenitrothion. However, the microbial degradation of 3M4NP at molecular and biochemical levels remains unknown. Here, methyl-1,4-benzoquinone (MBQ) and methylhydroquinone (MHQ), rather than catechol proposed previously, were identified as the intermediates before ring cleavage during 3M4NP degradation by Burkholderia sp. strain SJ98. Real-time quantitative PCR analysis indicated that the pnpABA1CDEF cluster involved in para-nitrophenol (PNP) and 2-chloro-4-nitrophenol (2C4NP) catabolism was also likely responsible for 3M4NP degradation in this strain. Purified PNP 4-monooxygenase (PnpA) is able to catalyze the monooxygenation of 3M4NP to MBQ and exhibited an apparent K m value of 20.3 ± 2.54 μM for 3M4NP, and pnpA is absolutely necessary for the catabolism of 3M4NP by gene knock-out and complementation. PnpB, a 1,4-benzoquinone reductase catalyzes the reduction of MBQ to MHQ, and also found to enhance PnpA activity in vitro in the conversion of 3M4NP to MBQ. By sequential catalysis assays, PnpCD, PnpE, and PnpF were likely involved in the lower pathway of 3M4NP catabolism. Although NpcCD, NpcE, and NpcF are able to catalyze the sequential conversion of MHQ in vitro, these enzymes are unlikely involved in 3M4NP catabolism because their coding genes were not upregulated by 3M4NP induction in vivo. These results revealed that the enzymes involved in PNP and 2C4NP catabolism were also responsible for 3M4NP degradation in strain SJ98. This fills a gap in our understanding of the microbial degradation of 3M4NP at molecular and biochemical levels and also provides another example to illustrate the adaptive flexibility in microbial catabolism for structurally similar compounds. PMID:27252697

  15. Orderly Replication and Segregation of the Four Replicons of Burkholderia cenocepacia J2315

    PubMed Central

    Kamgoué, Alain; Murray, Heath; Pasta, Franck

    2016-01-01

    Bacterial genomes typically consist of a single chromosome and, optionally, one or more plasmids. But whole-genome sequencing reveals about ten per-cent of them to be multipartite, with additional replicons which by size and indispensability are considered secondary chromosomes. This raises the questions of how their replication and partition is managed without compromising genome stability and of how such genomes arose. Vibrio cholerae, with a 1 Mb replicon in addition to its 3 Mb chromosome, is the only species for which maintenance of a multipartite genome has been investigated. In this study we have explored the more complex genome of Burkholderia cenocepacia (strain J2315). It comprises an extra replicon (c2) of 3.21 Mb, comparable in size to the3.87Mb main chromosome (c1), another extra replicon(c3) of 0.87 Mb and a plasmid of 0.09 Mb. The replication origin of c1 is typically chromosomal and those of c2 and c3 are plasmid-like; all are replicated bidirectionally. Fluorescence microscopy of tagged origins indicates that all initiate replication at mid-cell and segregate towards the cell quarter positions sequentially, c1-c2-p1/c3. c2 segregation is as well-phased with the cell cycle as c1, implying that this plasmid-like origin has become subject to regulation not typical of plasmids; in contrast, c3 segregates more randomly through the cycle. Disruption of individual Par systems by deletion of parAB or by addition of parS sites showed each Par system to govern the positioning of its own replicon only. Inactivation of c1, c2 and c3 Par systems not only reduced growth rate, generated anucleate cells and compromised viability but influenced processes beyond replicon partition, notably regulation of replication, chromosome condensation and cell size determination. In particular, the absence of the c1 ParA protein altered replication of all three chromosomes, suggesting that the partition system of the main chromosome is a major participant in the choreography of

  16. Molecular Investigations of PenA-mediated β-lactam Resistance in Burkholderia pseudomallei

    PubMed Central

    Rholl, Drew A.; Papp-Wallace, Krisztina M.; Tomaras, Andrew P.; Vasil, Michael L.; Bonomo, Robert A.; Schweizer, Herbert P.

    2011-01-01

    Burkholderia pseudomallei is the etiological agent of melioidosis. Because of the bacterium’s intrinsic resistance and propensity to establish latent infections, melioidosis therapy is complicated and prolonged. Newer generation β-lactams, specifically ceftazidime, are used for acute phase therapy, but resistance to this cephalosporin has been observed. The chromosomally encoded penA gene encodes a putative twin arginine translocase (TAT)-secreted β-lactamase, and penA mutations have been implicated in ceftazidime resistance in clinical isolates. However, the role of PenA in resistance has not yet been systematically studied in isogenetic B. pseudomallei mutant backgrounds. We investigated the effects of penA deletion, point mutations, and up-regulation, as well as tat operon deletion and PenA TAT-signal sequence mutations. These experiments were made possible by employing a B. pseudomallei strain that is excluded from Select Agent regulations. Deletion of penA significantly (>4-fold) reduced the susceptibility to six of the nine β-lactams tested and ≥16-fold for ampicillin, amoxicillin, and carbenicillin. Overexpression of penA by single-copy, chromosomal expression of the gene under control of the inducible Ptac promoter, increased resistance levels for all β-lactams tested 2- to 10-fold. Recreation of the C69Y and P167S PenA amino acid substitutions prev