Science.gov

Sample records for cave lava beds

  1. Selected caves and lava-tube systems in and near Lava Beds National Monument, California

    USGS Publications Warehouse

    Waters, Aaron Clement; Donnelly-Nolan, Julie M.; Rogers, Bruce W.

    1990-01-01

    Much of the north and south flanks of the Medicine Lake shield were built from molten lava transmitted through lava tubes. These tubes formed beneath the congealing surface of basalt flows in somewhat the same way that a brook may continue to flow beneath a cover of its own winter ice. As molten lava emerges from a vent and flows downslope, congealing lava from the top and sides of the central channel often forms a bridge over the lava stream. The sticking together of bits of lava spatter and fragile lava crusts strengthens the bridge in the manner that thin crusts of floating ice raft together to cover a brook during early stages of a winter freeze. Eruption of basalt lava, however, is a much more violent and spasmodic process than the steady gathering of water that feeds a brook. If liquid lava stops rising from its source deep within the earth, the still-molten lava moving beneath the crusted-over top of a lava flow will continue to drain downhill and may ultimately leave an open lavatube cave-often large enough for people to walk through. It is rare, however, to find such a simple scenario recorded intact among the hundreds of lava-tube caves in the monument. Even before the top and walls of a lava flow have time to cool during a pause in lava supply, a new and violent eruption of lava may refill the open tube, overflow its upper end, and spread a new lava flow beside or on top of the first flow. Even if the original tube is large enough to contain the renewed supply of lava, this tube must deliver the new lava beyond the end of its original flow and thus the lava field extends farther and farther downslope. If the gradient of flow flattens, the tube may subdivide into a number of smaller distributaries, which spread laterally over the more gently sloping ground. 

  2. Mineral resources of the Devil's Garden Lava Bed, Squaw Ridge Lava Bed, and Four Craters Lava Bed Wilderness Study Areas, Lake County, Oregon

    SciTech Connect

    Keith, W.J.; King, H.D.; Gettings, M.E. ); Johnson, F.L. )

    1988-01-01

    The Devel's Garden lava Bed, Squaw Ridge Lava Bed, and Four Craters Lava Bed Wilderness Study Areas include approximately 70,940 acres and are underlain entirely by Pleistocene or Holocene lava flows and associated sediments. There is no evidence of hydrothermal alteration in the study areas. No resources were identified in the study areas, but there is low potential for perlite resources in the southern part of the Devil's Garden Lava Bed and the northern half of the Squaw Ridge Lava Bed areas. All three study areas have low potential for geothermal resources and for oil and gas resources.

  3. White Sands, Carrizozo Lava Beds, NM

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A truly remarkable view of White Sands and the nearby Carrizozo Lava Beds in southeast NM (33.5N, 106.5W). White Sands, site of the WW II atomic bomb development and testing facility and later post war nuclear weapons testing that can still be seen in the cleared circular patterns on the ground.

  4. Lunar Pit Craters Presumed to be the Entrances of Lava Caves by Analogy to the Earth Lava Tube Pits

    NASA Astrophysics Data System (ADS)

    Hong, Ik-Seon; Yi, Yu; Kim, Eojin

    2014-06-01

    Lava caves could be useful as outposts for the human exploration of the Moon. Lava caves or lava tubes are formed when the external surface of the lava flows cools more quickly to make a hardened crust over subsurface lava flows. The lava flow eventually ceases and drains out of the tube, leaving an empty space. The frail part of the ceiling of lava tube could collapse to expose the entrance to the lava tubes which is called a pit crater. Several pit craters with the diameter of around 100 meters have been found by analyzing the data of SELENE and LRO lunar missions. It is hard to use these pit craters for outposts since these are too large in scale. In this study, small scale pit craters which are fit for outposts have been investigated using the NAC image data of LROC. Several topographic patterns which are believed to be lunar caves have been found and the similar pit craters of the Earth were compared and analyzed to identify caves. For this analysis, the image data of satellites and aerial photographs are collected and classified to construct a database. Several pit craters analogous to lunar pit craters were derived and a morphological pit crater model was generated using the 3D printer based on this database.

  5. Erosion by flowing lava: Geochemical evidence in the Cave Basalt, Mount St. Helens, Washington

    USGS Publications Warehouse

    Williams, D.A.; Kadel, S.D.; Greeley, R.; Lesher, C.M.; Clynne, M.A.

    2004-01-01

    We sampled basaltic lava flows and underlying dacitic tuff deposits in or near lava tubes of the Cave Basalt, Mount St. Helens, Washington to determine whether the Cave Basalt lavas contain geochemical evidence of substrate contamination by lava erosion. The samples were analyzed using a combination of wavelength-dispersive X-ray fluorescence spectrometry and inductively-coupled plasma mass spectrometry. The results indicate that the oldest, outer lava tube linings in direct contact with the dacitic substrate are contaminated, whereas the younger, inner lava tube linings are uncontaminated and apparently either more evolved or enriched in residual liquid. The most heavily contaminated lavas occur closer to the vent and in steeper parts of the tube system, and the amount of contamination decreases with increasing distance downstream. These results suggest that erosion by lava and contamination were limited to only the initially emplaced flows and that erosion was localized and enhanced by vigorous laminar flow over steeper slopes. After cooling, the initial Cave Basalt lava flows formed an insulating lining within the tubes that prevented further erosion by later flows. This interpretation is consistent with models of lava erosion that predict higher erosion rates closer to sources and over steeper slopes. A greater abundance of xenoliths and xenocrysts relative to xenomelts in hand samples indicates that mechanical erosion rather than thermal erosion was the dominant erosional process in the Cave Basalt, but further sampling and petrographic analyses must be performed to verify this hypothesis. ?? Springer-Verlag 2003.

  6. Near-IR Reflectance Spectra in a Lava Tube Cave from a Robotic Platform

    NASA Astrophysics Data System (ADS)

    Chanover, N. J.; Uckert, K.; Voelz, D. G.; Xiao, X.; Hull, R.; Boston, P. J.; Parness, A.; Abcouwer, N.; Willig, A.; Fuller, C.

    2015-10-01

    We present preliminary field measurements of biovermiculations and other mineral deposits made at a lava tube cave in El Malpais National Monument, NM, using a rock climbing robot equipped with a near-infrared point spectrometer.

  7. Comparison of Bacterial Diversity in Azorean and Hawai’ian Lava Cave Microbial Mats

    PubMed Central

    MARSHALL HATHAWAY, JENNIFER J.; GARCIA, MATTHEW G.; BALASCH, MONICA MOYA; SPILDE, MICHAEL N.; STONE, FRED D.; DAPKEVICIUS, MARIA DE LURDES N. E.; AMORIM, ISABEL R.; GABRIEL, ROSALINA; BORGES, PAULO A. V.; NORTHUP, DIANA E.

    2015-01-01

    Worldwide, lava caves host colorful microbial mats. However, little is known about the diversity of these microorganisms, or what role they may play in the subsurface ecosystem. White and yellow microbial mats were collected from four lava caves each on the Azorean island of Terceira and the Big Island of Hawai’i, to compare the bacterial diversity found in lava caves from two widely separated archipelagos in two different oceans at different latitudes. Scanning electron microscopy of mat samples showed striking similarities between Terceira and Hawai’ian microbial morphologies. 16S rRNA gene clone libraries were constructed to determine the diversity within these lava caves. Fifteen bacterial phyla were found across the samples, with more Actinobacteria clones in Hawai’ian communities and greater numbers of Acidobacteria clones in Terceira communities. Bacterial diversity in the subsurface was correlated with a set of factors. Geographical location was the major contributor to differences in community composition (at the OTU level), together with differences in the amounts of organic carbon, nitrogen and copper available in the lava rock that forms the cave. These results reveal, for the first time, the similarity among the extensive bacterial diversity found in lava caves in two geographically separate locations and contribute to the current debate on the nature of microbial biogeography. PMID:26924866

  8. Wintering bats of the upper Snake River Plain: occurrence in lava-tube caves

    SciTech Connect

    Genter, D.L.

    1986-04-30

    Distribution and habitat selection of hibernating bats at the Idaho National Engineering Laboratory (INEL) and adjacent area are reported. Exploration of over 30 lava-tube caves revealed that two species, Myotis leibii and Plecotus townsendii, hibernate in the upper Snake River Plain. Five species, M. lucifugus, M. evotis, Eptesicus fuscus, Lasionycteris noctivagans, and Lasiurus cinereus are considered migratory. Myotis leibii and P. townsendii hibernate throughout much of the area, occasionally in mixed-species groups. Myotis leibii uses the dark and protected regions of the cave, usually wedged into tiny pockets and crevices near or at the highest portion of the ceiling. Individuals of P. townsendii may be found at any height or depth in the cave. Temperature appears to be primary limiting factor in habitat selection. Myotis leibii was found in significantly cooler air temperatures than P. townsendii. Neither species tolerated continuous temperatures below 1.5 C. Relative humidity does not seem to be a significant factor in the distribution or habitat selection of the two species in lava-tube caves. 18 references, 1 figure, 1 table.

  9. Assessing the origin of unusual organic formations in lava caves from Canary Islands (Spain)

    NASA Astrophysics Data System (ADS)

    Miller, Ana Z.; de la Rosa, Jose M.; Garcia-Sanchez, Angela M.; Pereira, Manuel F. C.; Jurado, Valme; Fernández, Octavio; Knicker, Heike; Saiz-Jimenez, Cesareo

    2016-04-01

    Lava tubes, like other caves, contain a variety of speleothems formed in the initial stage of a lava tube formation or due to leaching and subsequent precipitation of secondary minerals. Primary and secondary mineral formations in lava caves are mainly composed of silicate minerals, although secondary minerals common in limestone caves have been also reported in this type of caves. In addition, unusual colored deposits have been found on the walls and ceilings of lava tubes, some of them of unknown origin and composition. A brown to black-colored mud-like deposits was observed in "Llano de los Caños" Cave, La Palma Island, Canary Islands, Spain. These black deposits coat the wall and ceiling of the lava tube where sub-horizontal fractures occur. FESEM-EDS, X-ray micro-computed tomography and mineralogical analyses were conducted for morphological, 3D microstructural and compositional characterization of these unusual speleothem samples. These techniques revealed that they are mainly composed of amorphous materials, suggesting an organic carbon composition. Hence, analytical pyrolysis (Py-GC/MS), solid-state 13C Nuclear Magnetic Resonance (NMR) and stable isotope analysis were applied to assess the nature and origin of the black deposits. The combination of these analytical tools permits the identification of specific biomarkers (di- and triterpenoids) for tracing the potential sources of the organic compounds in the speleothems. For comparison purposes, samples from the topsoil and overlaying vegetation were also analyzed. Chromatograms resulting from the Py-GC/MS showed an abundance of polysaccharides, lipids and terpenoids typically derived from the vegetation of the area (Erica arborea). In addition, levoglucosan, polycyclic aromatic hydrocarbons and N-containing heterocyclic compounds were detected. They probably derived from the leaching of charred vegetation resulting from a wildfire occurred in the area in 2012. The lack of the typical pattern of odd

  10. Evaluation of Lava Tube Formation Mechanisms Using Three-Dimensional Mapping, and Viscosity Modeling: Lava Beds National Monument, California.

    NASA Astrophysics Data System (ADS)

    Dedecker, J.; Gant, M.

    2014-12-01

    This study explores the relationships between lava tube morphology, lava effusion rate estimates, and the mechanism of lava tube formation. Effusion rate estimates for extinct lava tubes were calculated using a combination of three-dimensional mapping of lava tube caves, and viscosity models utilizing whole-rock compositions (Giordano et al., 2008, Earth Planet. Sci. Lett.), and petrographic data (Harris and Allen, 2008, J. Geophys. Res.). The mechanism of lava tube formation was evaluated using measured tube lengths and effusion rate estimates and comparing these data with observations from Hawaiian channel- and tube-fed flows (Pinkerton and Wilson, 1994, J. Volcanol. Geoth. Res.). Three-dimensional map data for lava tube caves were collected using a laser rangefinder to measure the cross-sectional shape and down-tube distance, and a tandem compass/inclinometer to measure the azimuth and inclination between survey stations in the tube. Total tube length consists of the mapped tube length plus the distance between collapse pits and trenches along the trend of the tube. Effusion rates were estimated using the Hagen-Poiseuille equation, measured mean cross-sectional radii and slope of lava tubes, and estimated effective viscosities of rock samples collected from mapped tubes at temperatures between 1080-1160 °C and water contents of 0-1 wt.%. A lava density of 1560 g/cm3was used for 0.40 vesicle fraction basalt. There is a positive correlation between measured tube lengths and cross-sectional radii (Fig. 1). We propose that this relationship reflects the positive correlation between flow lengths and effusion rates in active Hawaiian channel-fed flows. Measured tube lengths vs. effusion rate estimates were compared with data for Hawaiian channel-fed flows (Fig. 2). The two data sets overlap and have parallel trends. These results suggest that the lava tube caves studied formed by the roofing-over of channel-fed flows or had segments of channel-fed flow. We propose

  11. Diversity of Ammonia Oxidation (amoA) and Nitrogen Fixation (nifH) Genes in Lava Caves of Terceira, Azores, Portugal

    PubMed Central

    Hathaway, Jennifer J. Marshall; Sinsabaugh, Robert L.; Dapkevicius, Maria De Lurdes N. E.; Northup, Diana E.

    2015-01-01

    Lava caves are an understudied ecosystem in the subterranean world, particularly in regard to nitrogen cycling. The diversity of ammonia oxidation (amoA) and nitrogen fixation (nifH) genes in bacterial mats collected from lava cave walls on the island of Terceira (Azores, Portugal) was investigated using denaturing gradient gel electrophoresis (DGGE). A total of 55 samples were collected from 11 lava caves that were selected with regard to surface land use. Land use types above the lava caves were categorized into pasture, forested, and sea/urban, and used to determine if land use influenced the ammonia oxidizing and nitrogen fixing bacterial communities within the lava caves. The soil and water samples from each lava cave were analyzed for total organic carbon, inorganic carbon, total nitrogen, ammonium, nitrate, phosphate and sulfate, to determine if land use influences either the nutrient content entering the lava cave or the nitrogen cycling bacteria present within the cave. Nitrosospira-like sequences dominated the ammonia-oxidizing bacteria (AOB) community, and the majority of the diversity was found in lava caves under forested land. The nitrogen fixation community was dominated by Klebsiella pneumoniae-like sequences, and diversity was evenly distributed between pasture and forested land, but very little overlap in diversity was observed. The results suggest that land use is impacting both the AOB and the nitrogen fixing bacterial communities. PMID:26778867

  12. 76 FR 4721 - Minor Boundary Revision of Lava Beds National Monument

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-26

    ... to the protection of the ] significant historic and natural resources of the national monument. Dated... National Park Service Minor Boundary Revision of Lava Beds National Monument AGENCY: National Park Service....S.C. 460l- 9(c)(1), the boundary of the Petroglyph Point unit of Lava Beds National Monument...

  13. Lava Cave Microbial Communities Within Mats and Secondary Mineral Deposits: Implications for Life Detection on Other Planets

    PubMed Central

    Melim, L.A.; Spilde, M.N.; Hathaway, J.J.M.; Garcia, M.G.; Moya, M.; Stone, F.D.; Boston, P.J.; Dapkevicius, M.L.N.E.; Riquelme, C.

    2011-01-01

    Abstract Lava caves contain a wealth of yellow, white, pink, tan, and gold-colored microbial mats; but in addition to these clearly biological mats, there are many secondary mineral deposits that are nonbiological in appearance. Secondary mineral deposits examined include an amorphous copper-silicate deposit (Hawai‘i) that is blue-green in color and contains reticulated and fuzzy filament morphologies. In the Azores, lava tubes contain iron-oxide formations, a soft ooze-like coating, and pink hexagons on basaltic glass, while gold-colored deposits are found in lava caves in New Mexico and Hawai‘i. A combination of scanning electron microscopy (SEM) and molecular techniques was used to analyze these communities. Molecular analyses of the microbial mats and secondary mineral deposits revealed a community that contains 14 phyla of bacteria across three locations: the Azores, New Mexico, and Hawai‘i. Similarities exist between bacterial phyla found in microbial mats and secondary minerals, but marked differences also occur, such as the lack of Actinobacteria in two-thirds of the secondary mineral deposits. The discovery that such deposits contain abundant life can help guide our detection of life on extraterrestrial bodies. Key Words: Biosignatures—Astrobiology—Bacteria—Caves—Life detection—Microbial mats. Astrobiology 11, 601–618. PMID:21879833

  14. Lava cave microbial communities within mats and secondary mineral deposits: implications for life detection on other planets.

    PubMed

    Northup, D E; Melim, L A; Spilde, M N; Hathaway, J J M; Garcia, M G; Moya, M; Stone, F D; Boston, P J; Dapkevicius, M L N E; Riquelme, C

    2011-09-01

    Lava caves contain a wealth of yellow, white, pink, tan, and gold-colored microbial mats; but in addition to these clearly biological mats, there are many secondary mineral deposits that are nonbiological in appearance. Secondary mineral deposits examined include an amorphous copper-silicate deposit (Hawai'i) that is blue-green in color and contains reticulated and fuzzy filament morphologies. In the Azores, lava tubes contain iron-oxide formations, a soft ooze-like coating, and pink hexagons on basaltic glass, while gold-colored deposits are found in lava caves in New Mexico and Hawai'i. A combination of scanning electron microscopy (SEM) and molecular techniques was used to analyze these communities. Molecular analyses of the microbial mats and secondary mineral deposits revealed a community that contains 14 phyla of bacteria across three locations: the Azores, New Mexico, and Hawai'i. Similarities exist between bacterial phyla found in microbial mats and secondary minerals, but marked differences also occur, such as the lack of Actinobacteria in two-thirds of the secondary mineral deposits. The discovery that such deposits contain abundant life can help guide our detection of life on extraterrestrial bodies. PMID:21879833

  15. Cave microbial community composition in oceanic islands: disentangling the effect of different colored mats in diversity patterns of Azorean lava caves.

    PubMed

    Riquelme, Cristina; Rigal, François; Hathaway, Jennifer J M; Northup, Diana E; Spilde, Michael N; Borges, Paulo A V; Gabriel, Rosalina; Amorim, Isabel R; Dapkevicius, Maria de Lurdes N E

    2015-12-01

    Processes determining diversity and composition of bacterial communities in island volcanic caves are still poorly understood. Here, we characterized colored microbial mats in 14 volcanic caves from two oceanic islands of the Azores using 16S rRNA gene sequences. Factors determining community diversity (α) and composition (β) were explored, namely colored mats, caves and islands, as well as environmental and chemical characteristics of caves. Additive partitioning of diversity using OTU occurrence showed a greater influence of β-diversity between islands and caves that may relate to differences in rare OTUs (singletons and doubletons) across scales. In contrast, Shannon diversity partitioning revealed the importance of the lowest hierarchical level (α diversity, colored mat), suggesting a dominance of cosmopolitan OTUs (>1%) in most samples. Cosmopolitan OTUs included members involved in nitrogen cycling, supporting the importance of this process in Azorean caves. Environmental and chemical conditions in caves did not show any significant relationship to OTU diversity and composition. The absence of clear differences between mat colors and across scales may be explained by (1) the geological youth of the cave system (cave communities have not had enough time to diverge) or/and (2) community convergence, as the result of selection pressure in extreme environments. PMID:26564959

  16. Bald eagle winter roost characteristics in Lava Beds National Monument, California

    USGS Publications Warehouse

    Stohlgren, Thomas J.

    1993-01-01

    This study provided a survey of bald eagle (Haliaeetus leucocephalus) winter roost habitat (in 4 km2 of potential roost areas) in southern Lava Beds National Monument, California. A systematic-clustered sampling design (n=381 plots) was used to compare forest stand characteristics in two primary roost areas (Caldwell Butte and Eagle Nest Butte) and two potential roost areas (Hidden Valley and Island Butte). A 100 percent inventory of roost trees in Caldwell Butte (n=103 trees) and Eagle Nest Butte (n=44 trees) showed they were spatially clumped and restricted to 12.7 percent and 2.8 percent, respectively, of the study areas. Roost trees, primarily ponderosa pine (Pinus ponderosa), averaged 81.1 ± 1.3 cm dbh (mean ± 1 S.E.) compared to non-roost trees (>35 cm dbh) that averaged 52.2 ± 1.0 cm dbh. Roost trees were generally taller and more open-structured than non-roost trees. All four study sites had adequate numbers of mid-sized trees (10 to 50 cm dbh) to replace the current stock of older, larger roost trees. However, seedling and small trees (<10 cm dbh) in the roost areas were spatially clumped and few, suggesting that maintaining a continuous population of roost trees may be a problem in the distant future. Long-term studies of changing winter roost habitat and eagle use are essential to protect the bald eagle in the northwestern US.

  17. A geologic and hydrologic reconnaissance of Lava Beds National Monument and vicinity, California

    USGS Publications Warehouse

    Hotchkiss, W.R.

    1968-01-01

    Lava Beds National Monument is on the Modoc Plateau in Modoc and Siskiyou Counties. The principal geologic units in the vicinity are volcanic rocks, which in places are highly permeable and poorly permeable lake sedimentary deposits, all probably post-Oligocene in age. Yields and specific capacities of wells in the unconfined water body within volcanic rocks and lake deposits range widely, but in general are low in the lake deposits and higher in the volcanic rocks. A confined water body occurring in volcanic rocks underlying the lake deposits yields large quantities of water to three wells in the study area. Dissolved-solids content of ground water generally increases in proportion to the thickness of lake deposits penetrated and to proximity of the lake deposits. Water from wells drilled in the volcanic rocks several miles from the lake deposits and from wells penetrating the confined water body in volcanic rocks underlying the lake deposits contains small to moderate quantities of dissolved solids. Ground-water supplies can be developed almost anywhere in the study area by drilling wells to depths below the water table. In addition, there is a reasonable possibility of developing wells in a confined water body underlying the water-table system.

  18. Olivine-Respiring Bacteria Isolated from the Rock-Ice Interface in a Lava-Tube Cave, a Mars Analog Environment

    PubMed Central

    Smith, Amy R.; Popa, Rodica; Boone, Jane; Fisk, Martin

    2012-01-01

    Abstract The boundary between ice and basalt on Earth is an analogue for some near-surface environments of Mars. We investigated neutrophilic iron-oxidizing microorganisms from the basalt-ice interface in a lava tube from the Oregon Cascades with perennial ice. One of the isolates (Pseudomonas sp. HerB) can use ferrous iron Fe(II) from the igneous mineral olivine as an electron donor and O2 as an electron acceptor. The optimum growth temperature is ∼12–14°C, but growth also occurs at 5°C. Bicarbonate is a facultative source of carbon. Growth of Pseudomonas sp. HerB as a chemolithotrophic iron oxidizer with olivine as the source of energy is favored in low O2 conditions (e.g., 1.6% O2). Most likely, microbial oxidation of olivine near pH 7 requires low O2 to offset the abiotic oxidation of iron. The metabolic capabilities of this bacterium would allow it to live in near-surface, icy, volcanic environments of Mars in the present or recent geological past and make this type of physiology a prime candidate in the search for life on Mars. Key Words: Extremophiles—Mars—Olivine—Iron-oxidizing bacteria—Redox. Astrobiology 12, 9–18. PMID:22165996

  19. Lunar Lava Tubes as Potential Human Settlements and Refuge Sites

    NASA Astrophysics Data System (ADS)

    Lemke, K. A.; Mardon, A. A.

    2015-10-01

    Lava tubes have been detected on the surface of Earth's moon via satellite images. Upon further exploration of these caves through robotic technology and other means, a refuge place for astronauts may be installed.

  20. Geology of Caves.

    ERIC Educational Resources Information Center

    Davies, W. E.; Morgan, I. M.

    One of a series of general interest publications on science topics, the booklet provides those interested in the study of caves (speleology) with a nontechnical introduction to the subject. Separate sections examine types of caves, how caves form, cave features, minerals found in caves, uses of caves, and caves as natural underground laboratories.…

  1. Lava Lamp

    ERIC Educational Resources Information Center

    Leif, Todd R.

    2008-01-01

    This past semester I brought a Lava Lite[R] Lamp into my classroom. Why bring such a thing into class? Many of today's students are part of the "retro" movement. They buy clothes from the '60s, they wear their hair like people did in the '60s, and they look for the ideals and themes related to living in the 1960s. Physics education reform is also…

  2. Candidate cave entrances on Mars

    USGS Publications Warehouse

    Cushing, Glen E.

    2012-01-01

    This paper presents newly discovered candidate cave entrances into Martian near-surface lava tubes, volcano-tectonic fracture systems, and pit craters and describes their characteristics and exploration possibilities. These candidates are all collapse features that occur either intermittently along laterally continuous trench-like depressions or in the floors of sheer-walled atypical pit craters. As viewed from orbit, locations of most candidates are visibly consistent with known terrestrial features such as tube-fed lava flows, volcano-tectonic fractures, and pit craters, each of which forms by mechanisms that can produce caves. Although we cannot determine subsurface extents of the Martian features discussed here, some may continue unimpeded for many kilometers if terrestrial examples are indeed analogous. The features presented here were identified in images acquired by the Mars Odyssey's Thermal Emission Imaging System visible-wavelength camera, and by the Mars Reconnaissance Orbiter's Context Camera. Select candidates have since been targeted by the High-Resolution Imaging Science Experiment. Martian caves are promising potential sites for future human habitation and astrobiology investigations; understanding their characteristics is critical for long-term mission planning and for developing the necessary exploration technologies.

  3. Lava Flows

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03658 Lava Flows

    These relatively young lava flows are part of Arsia Mons.

    Image information: VIS instrument. Latitude -22.5N, Longitude 242.3E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  4. CAVE WINDOW

    DOEpatents

    Levenson, M.

    1960-10-25

    A cave window is described. It is constructed of thick glass panes arranged so that interior panes have smaller windowpane areas and exterior panes have larger areas. Exterior panes on the radiation exposure side are remotely replaceable when darkened excessively. Metal shutters minimize exposure time to extend window life.

  5. Lava Lamp

    NASA Astrophysics Data System (ADS)

    Leif, Todd R.

    2008-04-01

    This past semester I brought a Lava Lite® Lamp into my classroom. Why bring such a thing into class? Many of today's students are part of the "retro" movement. They buy clothes from the '60s, they wear their hair like people did in the '60s, and they look for the ideals and themes related to living in the 1960s. Physics education reform is also examining ideas from the "retro" world of science. This was the post-Sputnik era, a time when science was done by actually doing it and not necessarily by lecturing about it. Cliff Swartz, former TPT editor, once mentioned during a presentation at a Texas AAPT meeting, "The world of physics teaching is cyclic, like a swinging pendulum. We as physics teachers jump from `new ideas' back to our old ones, each generation testing what works best for them."

  6. Caving in the Classroom

    ERIC Educational Resources Information Center

    Yoder, Holly

    2010-01-01

    During Cave Week, more than 200 students explore a simulated cave environment and participate in cave-related activities. Active cavers from a local club bring in equipment and photos and speak about their caving experiences. As student groups explore the simulated cave, other groups participate in different activities where they can create bat…

  7. Founder effects initiated rapid species radiation in Hawaiian cave planthoppers.

    PubMed

    Wessel, Andreas; Hoch, Hannelore; Asche, Manfred; von Rintelen, Thomas; Stelbrink, Björn; Heck, Volker; Stone, Fred D; Howarth, Francis G

    2013-06-01

    The Hawaiian Islands provide the venue of one of nature's grand experiments in evolution. Here, we present morphological, behavioral, genetic, and geologic data from a young subterranean insect lineage in lava tube caves on Hawai'i Island. The Oliarus polyphemus species complex has the potential to become a model for studying rapid speciation by stochastic events. All species in this lineage live in extremely similar environments but show strong differentiation in behavioral and morphometric characters, which are random with respect to cave age and geographic distribution. Our observation that phenotypic variability within populations decreases with increasing cave age challenges traditional views on founder effects. Furthermore, these cave populations are natural replicates that can be used to test the contradictory hypotheses. Moreover, Hawaiian cave planthoppers exhibit one of the highest speciation rates among animals and, thus, radically shift our perception on the evolutionary potential of obligate cavernicoles. PMID:23696661

  8. Founder effects initiated rapid species radiation in Hawaiian cave planthoppers

    PubMed Central

    Wessel, Andreas; Hoch, Hannelore; Asche, Manfred; von Rintelen, Thomas; Stelbrink, Björn; Heck, Volker; Stone, Fred D.; Howarth, Francis G.

    2013-01-01

    The Hawaiian Islands provide the venue of one of nature’s grand experiments in evolution. Here, we present morphological, behavioral, genetic, and geologic data from a young subterranean insect lineage in lava tube caves on Hawai‘i Island. The Oliarus polyphemus species complex has the potential to become a model for studying rapid speciation by stochastic events. All species in this lineage live in extremely similar environments but show strong differentiation in behavioral and morphometric characters, which are random with respect to cave age and geographic distribution. Our observation that phenotypic variability within populations decreases with increasing cave age challenges traditional views on founder effects. Furthermore, these cave populations are natural replicates that can be used to test the contradictory hypotheses. Moreover, Hawaiian cave planthoppers exhibit one of the highest speciation rates among animals and, thus, radically shift our perception on the evolutionary potential of obligate cavernicoles. PMID:23696661

  9. Lava Flows On Ascraeus Mons Volcano

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Ascraeus Mons Volcano: Like Earth, Mars has many volcanoes and volcanic features. This high-resolution view shows some of the lava flows near the summit of Ascraeus Mons, one of the three giant shield volcanoes known as the 'Tharsis Montes'. Volcanoes form when magma (molten rock) erupts out onto the surface of a planet. Based on Viking-era observations, Ascraeus Mons is considered to be one of the tallest volcanoes on Mars... its summit is more than 11 km (6.8 miles) above the surrounding plain. The summit is more than 23 km (14 miles) higher in elevation than the place where Mars Pathfinder landed in July 1997.

    Description of MOC Image: This picture shows an area that is about 20 km (12 miles) higher in elevation than the Mars Pathfinder landing site. The picture shows three main features: (1) a crater at the center-right, (2) a sinuous, discontinuous channel across the upper half, and (3) a rough and pitted, elevated surface across the lower half of the image.

    (1) Crater at center right. Distinguishing meteor craters from volcanic craters can sometimes be a challenge on Mars. This particular crater was most likely formed by meteor impact because it has a raised rim and a faint radial ejecta pattern around the outside of it. This crater is 600 m (2000 feet) across, about 3/4 the size of the famous 'Meteor Crater' near Winslow, Arizona.

    (2) Sinuous channel. The type of discontinuous channel running across the upper half of the image is sometimes referred to as a 'sinuous rille'. These are common on the volcanic plains of the Moon and among volcanoes and volcanic plains on Earth. Such a channel was once a lava tube. It is running down the middle of an old lava flow. The 'tube' looks like a 'channel' because its roof has collapsed. The discontinuous nature of this channel is the result of the collapse, or 'cave-in' of what was once the roof of the lava tube. It is common for certain types of relatively fluid lavas to form

  10. The Science of Exploring Caves.

    ERIC Educational Resources Information Center

    Reid, Frank S.

    1991-01-01

    An introduction to the science of speleology is presented. Discussed is why people explore caves--for the physical challenge, the thrill of discovery, and the joy of viewing their beauty. Cave conservation, cave biology, caving safety, and caving equipment are topics of discussion. A reading list on caves is included. (KR)

  11. BELLE STARR CAVE WILDERNESS STUDY AREA, ARKANSAS.

    USGS Publications Warehouse

    Haley, Boyd R.; Stroud, Raymond B.

    1984-01-01

    A mineral survey of the Belle Starr Cave Wilderness Study Area in Arkansas concluded that there is little promise for the occurrence of metallic mineral resources in the area. There is a probable resource potential for small quantities of natural gas. A coal bed that underlies the area contains demonstrated coal resources of about 22. 5 million tons in a bed that averages less than 28 in. thick. Despite its contained coal, this area is not shown as having a coal resource potential.

  12. Lava Flows On Ascraeus Mons Volcano

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Ascraeus Mons Volcano: Like Earth, Mars has many volcanoes and volcanic features. This high-resolution view shows some of the lava flows near the summit of Ascraeus Mons, one of the three giant shield volcanoes known as the 'Tharsis Montes'. Volcanoes form when magma (molten rock) erupts out onto the surface of a planet. Based on Viking-era observations, Ascraeus Mons is considered to be one of the tallest volcanoes on Mars... its summit is more than 11 km (6.8 miles) above the surrounding plain. The summit is more than 23 km (14 miles) higher in elevation than the place where Mars Pathfinder landed in July 1997.

    Description of MOC Image: This picture shows an area that is about 20 km (12 miles) higher in elevation than the Mars Pathfinder landing site. The picture shows three main features: (1) a crater at the center-right, (2) a sinuous, discontinuous channel across the upper half, and (3) a rough and pitted, elevated surface across the lower half of the image.

    (1) Crater at center right. Distinguishing meteor craters from volcanic craters can sometimes be a challenge on Mars. This particular crater was most likely formed by meteor impact because it has a raised rim and a faint radial ejecta pattern around the outside of it. This crater is 600 m (2000 feet) across, about 3/4 the size of the famous 'Meteor Crater' near Winslow, Arizona.

    (2) Sinuous channel. The type of discontinuous channel running across the upper half of the image is sometimes referred to as a 'sinuous rille'. These are common on the volcanic plains of the Moon and among volcanoes and volcanic plains on Earth. Such a channel was once a lava tube. It is running down the middle of an old lava flow. The 'tube' looks like a 'channel' because its roof has collapsed. The discontinuous nature of this channel is the result of the collapse, or 'cave-in' of what was once the roof of the lava tube. It is common for certain types of relatively fluid lavas to form

  13. Lunar Lava Tube Sensing

    NASA Technical Reports Server (NTRS)

    York, Cheryl Lynn; Walden, Bryce; Billings, Thomas L.; Reeder, P. Douglas

    1992-01-01

    Large (greater than 300 m diameter) lava tube caverns appear to exist on the Moon and could provide substantial safety and cost benefits for lunar bases. Over 40 m of basalt and regolith constitute the lava tube roof and would protect both construction and operations. Constant temperatures of -20 C reduce thermal stress on structures and machines. Base designs need not incorporate heavy shielding, so lightweight materials can be used and construction can be expedited. Identification and characterization of lava tube caverns can be incorporated into current precursor lunar mission plans. Some searches can even be done from Earth. Specific recommendations for lunar lava tube search and exploration are (1) an Earth-based radar interferometer, (2) an Earth-penetrating radar (EPR) orbiter, (3) kinetic penetrators for lunar lava tube confirmation, (4) a 'Moon Bat' hovering rocket vehicle, and (5) the use of other proposed landers and orbiters to help find lunar lava tubes.

  14. Come to our Cave.

    ERIC Educational Resources Information Center

    Cassidy, Joan

    2001-01-01

    Describes an activity for first-grade students in which they learn about cave paintings and become spelunkers, or people who explore caves as a hobby, making their own paper head-lanterns. Explains that students draw animals on the walls of their "cave" (a dark hallway lined with brown kraft paper). (CMK)

  15. Upper Pleistocene interstratal piping-cave speleogenesis: The Seso Cave System (Central Pyrenees, Northern Spain)

    NASA Astrophysics Data System (ADS)

    Bartolomé, M.; Sancho, C.; Moreno, A.; Oliva-Urcia, B.; Belmonte, Á.; Bastida, J.; Cheng, H.; Edwards, R. L.

    2015-01-01

    The Seso Cave System (SCS, South Central Pyrenees, Northeastern Spain) develops in poorly soluble marly interstratum between limestone beds of Eocene age. We propose an innovative and singular pseudokarstic speleogenetic model under vadose conditions based on cave morphological evidence, physicochemical and mineralogical characteristics of the Eocene marly host rock, U-Th dating of cave deposits, and local geological and geomorphological information. Eocene marls are shown to be sensitive to dispersion processes supported by their high clay content and the high concentration of sodium and low electrical conductivity in the seepage water. Runoff inside the cave results from water that infiltrates through joints and seepage water in cave walls. Thereby piping processes become very active, triggering mechanical scouring and outwashing mechanisms. The hydraulic gradient required to develop piping activity is determined by regional fluvial incision. The base level controlling water discharge during opening of the SCS coincides with a terrace of the Ara River dated at 65 ka BP. Considering this age, as well as the U-Th age of the oldest speleothems dated in the cave at 38 ka BP, the timing of the SCS interstratal piping-cave speleogenesis is constrained to the Upper Pleistocene; very likely at the end of Marine Isotope Stage 4 during a period characterized by high water availability following glacial retreat in northern Iberian mountains.

  16. Olympus Mons Lava Flows

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 05 April 2002) Olympus Mons stands 26 km above the surrounding plains, which is three times taller than Mt. Everest, and is the tallest volcano in the solar system. Olympus Mons is also wider (585 km) than the state of Arizona. Although these are impressive dimensions an astronaut would find walking these slopes easy, as they are typically only 2 to 5 degrees. This image contains numerous lava flows, leveed lava channels, a discontinuous sinuous rille (thought to be a collapsed lava tube) and lava plains. Close examination of the sinuous rille reveals that portions of the roof of the lava tube have not completely collapsed. All of these features can be seen in basaltic (iron and magnesium rich black rock) volcanic regions on Earth like Hawaii and Iceland. Impact craters are scarce, indicating a relatively young age (several hundred million years old) for these surfaces.

  17. Geology of caves

    USGS Publications Warehouse

    Morgan, I.M., Davies,W.E.

    1991-01-01

    A cave is a natural opening in the ground extending beyond the zone of light and large enough to permit the entry of man. Occurring in a wide variety of rock types and caused by widely differing geological processes, caves range in size from single small rooms to intercorinecting passages many miles long. The scientific study of caves is called speleology (from the Greek words spelaion for cave and logos for study). It is a composite science based on geology, hydrology, biology, and archaeology, and thus holds special interest for earth scientists of the U.S. Geological Survey.

  18. Lava flows and domes

    SciTech Connect

    Fink, J. )

    1989-01-01

    This book discusses emplacement of silicic domes and mafic lava flows. The authors have utilized the combination of field, experimental and theoretical methods to constrain various characteristics of recently-emplaced lavas, including dimensions, growth rates, surface morphology, deformation styles, rheology, and volatile contents. Filed measurements from numerous volcanoes are presented. Focus is on data from Mount St. Helens. The value of such investigations is addressed.

  19. Lava Flow Dynamics

    NASA Technical Reports Server (NTRS)

    Taylor, G. Jeffrey

    1996-01-01

    This grant originally had four major tasks, all of which were addressed to varying extents during the course of the research: (1) Measure the fractal dimensions of lava flows as a function of topography, substrate, and rheology; (2) The nature of lava tube systems and their relation to flow fields; (3) A quantitative assessment of lava flow dynamics in light of the fractal nature of lava flow margins; and (4) Development and application of a new remote sensing tool based on fractal properties. During the course of the research, the project expanded to include the following projects: (1) A comparison of what we can-learn from remote sensing studies of lava flow morphology and from studies of samples of lava flows; (2) Study of a terrestrial analog of the nakhlites, one of the groups of meteorites from Mars; and (3) Study of the textures of Hawaiian basalts as an aid in understanding the dynamics (flow rates, inflation rates, thermal history) of flow interiors. In addition, during the first year an educational task (development and writing of a teacher's guide and activity set to accompany the lunar sample disk when it is sent to schools) was included.

  20. Empowering Women through Caving.

    ERIC Educational Resources Information Center

    Gabert, Julie

    1997-01-01

    Describes an introductory horizontal caving experience for college-age women who were uncomfortable with their bodies, insecure with movement, and unwilling to take big risks. The darkness and quiet of the cave released inhibitions and promoted group cohesion, feelings of intimacy and safety, self-discovery, and self-confidence. (SV)

  1. Cave Water Studies.

    ERIC Educational Resources Information Center

    O'Keefe, Elizabeth S.

    1996-01-01

    Describes a comparative study project where seventh grade students tested water samples from 10 cave sites that had been tested 24 years ago in a study that had attempted to determine if pollution in the environment had reached cave water. Discusses lab skills and some results of the study. (JRH)

  2. Basaltic Lava Channels

    NASA Astrophysics Data System (ADS)

    Cashman, K. V.; Griffiths, R. W.; Kerr, R. C.

    2004-12-01

    In Hawaii, the mode of lava transport - through open channels or through insulating lava tubes - determines the thermal, rheological, and emplacement history of a lava flow. Most Hawaiian lavas are erupted at near-liquidus temperatures and are therefore crystal-poor; lava transport through open channels allows rapid cooling and consequent rapid increases in lava crystallinity. Solidified aa flows resulting from channelized flow are typically fine-grained throughout their thickness, indicating cooling of the entire flow thickness during transport. In contrast, transport of lava through insulating tubes permits flow over long distances with little cooling. Flows emerging from such tubes typically have pahoehoe flow surfaces with glassy crusts. Groundmass textures that coarsen from the flow rind to the interior reflect rates of post-emplacement, rather than syn-emplacement, cooling. To distinguish eruption conditions that result in lava channels from those that allow formation of lava tubes, we have performed a series of laboratory experiments involving injection of PEG 600 (a wax with a Newtonian rheology and freezing temperature of 19ºC) into cold water through both uniform and non-uniform sloping channels. In uniform channels, tube formation can be distinguished from open channel flow using a dimensionless parameter based on a solidification time scale, an advection time scale, and a Rayleigh number that describes convection by heat loss from crust-free shear zones. Theoretical analysis predicts that in the open channel regime, the width of the crust (dc) will vary with the channel width (W) as dc = W5/3. Crustal coverage of non-uniform channels in both laboratory experiments and field examples from Kilauea Volcano, Hawaii, is consistent with this prediction. However, experiments in non-uniform channels illustrate additional controls on the surface coverage of lava channels. Most important is crustal extension resulting from flow acceleration through constrictions

  3. New Species of Campodeidae (Diplura) from Mexican caves.

    PubMed

    Sendra, Alberto; Palacios, Jose; Garcia, Arturo; Montejo, Maira

    2016-01-01

    Six new taxa of Campodeidae (Diplura) are described in the genera Litocampa, Juxtlacampa, Oncinocampa, and Tachycampa. We also redescribe the interesting species Juxtlacampa juxtlahucensis Wygodzinsky, 1944 from Juxtlahuaca cave in Guerrero, Mexico. All of these taxa are cave-dwelling species with more or less noticeable troglobiomorphic features They inhabit the subterranean ecosystem in six limestone massifs and one lava tube cave in the central states of Mexico. Four of these species are included in the "tachycampoide" group and one species in the "podocampoide" group (sensu Bareth & Conde). Nine species already known in Central and South America of the "tachycampoide" group, in such poorly-sampled regions compared with the eight species in the well-sampled Mediterranean region (Ibero-Sardinia and north Africa), suggest an American origin for this group. PMID:27395944

  4. Carroll Cave: a Missouri legend

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carroll Cave is one of the premiere caves of Missouri and the Ozarks region. At over 20 miles of surveyed passage, it is the 2nd longest cave in the state and 33rd longest in the nation. It is also the largest known cave formed in the Ordovician aged (443-485 million years ago) Gasconade Dolomite o...

  5. The foaming of lavas

    NASA Technical Reports Server (NTRS)

    Okeefe, J. A.; Walton, W.

    1976-01-01

    Foaming is of great practical and theoretical significance for volcanic processes on the earth, the moon, and perhaps the meteorite parent bodies. The theory of foams agrees with steelmaking experience to indicate that their presence depends on the existence of solutes in the lavas which reduce the surface tension, and are not saturated. These solutes concentrate at the surface, and are called surfactants. The surfactant responsible for the formation of volcanic ash was not identified; it appears to be related to the oxygen partial pressure above the lava. This fact may explain why lunar and meteoritic melts are not observed to foam. Experimental studies are needed to clarify the process.

  6. A multi-method approach for speleogenetic research on alpine karst caves. Torca La Texa shaft, Picos de Europa (Spain)

    NASA Astrophysics Data System (ADS)

    Ballesteros, Daniel; Jiménez-Sánchez, Montserrat; Giralt, Santiago; García-Sansegundo, Joaquín; Meléndez-Asensio, Mónica

    2015-10-01

    Speleogenetic research on alpine caves has advanced significantly during the last decades. These investigations require techniques from different geoscience disciplines that must be adapted to the methodological constraints of working in deep caves. The Picos de Europa mountains are one of the most important alpine karsts, including 14% of the World's Deepest Caves (caves with more than 1 km depth). A speleogenetic research is currently being developed in selected caves in these mountains; one of them, named Torca La Texa shaft, is the main goal of this article. For this purpose, we have proposed both an optimized multi-method approach for speleogenetic research in alpine caves, and a speleogenetic model of the Torca La Texa shaft. The methodology includes: cave surveying, dye-tracing, cave geometry analyses, cave geomorphological mapping, Uranium series dating (234U/230Th) and geomorphological, structural and stratigraphical studies of the cave surroundings. The SpeleoDisc method was employed to establish the structural control of the cavity. Torca La Texa (2653 m length, 215 m depth) is an alpine cave formed by two cave levels, vadose canyons and shafts, soutirage conduits, and gravity-modified passages. The cave was formed prior to the Middle Pleistocene and its development was controlled by the drop of the base level, producing the development of the two cave levels. Coevally to the cave levels formation, soutirage conduits originated connecting phreatic and epiphreatic conduits and vadose canyons and shafts were formed. Most of the shafts were created before the local glacial maximum (43-45 ka) and only two cave passages are related to dolines developed in recent times. The cave development is strongly related to the structure, locating the cave in the core of a gentle fold with the conduits' geometry and orientation controlled by the bedding and five families of joints.

  7. Gas discharges in fumarolic ice caves of Erebus volcano, Antarctica

    NASA Astrophysics Data System (ADS)

    Fischer, T. P.; Curtis, A. G.; Kyle, P. R.; Sano, Y.

    2013-12-01

    Fumarolic ice caves and towers on Erebus are the surface expression of flank degassing on the world's southernmost active volcano. The caves are formed by warm gases and steam escaping from small vents on the lava flow floors that melts the overlying ice and snow. Extremophiles in the caves may be analogues for extraterrestrial environments. Over the past four Austral summers, mapping, gas and thermal monitoring conducted under the Erebus Caves Project has provided insights into the ice cave formation processes and the relationships between cave structures, magmatic processes, and weather. Gas samples were collected during the 2012 - 2013 field season in 4 ice caves (Warren, Harry's Dream, Sauna, Haggis Hole) as well as the thermal ground at Tramway Ridge. The vents at all of these sites are characterized by diffuse degassing through loose lava or cracks in the lava flow floor. Vent temperatures ranged from 5 to 17°C in most caves and at Tramway Ridge. In Sauna cave the temperature was 40°C. Gases were sampled by inserting a perforated 1 m long, 5 mm diameter stainless steel tube, into the vents or hot ground. Giggenbach bottles, copper tubes and lead glass bottles were connected in series. The gases were pumped at a slow rate (about 20 ml per minute) using a battery pump for 12-24 hours to flush the system. After flushing samples were collected for later analyses. All samples are dominated by atmospheric components, however, carbon dioxide (0.1 to 1.9%), methane (0.005 to 0.01%), hydrogen (0.002 to 0.07%), and helium (0.0009 to 0.002 %) are above air background. Nitrogen (average 74%) and oxygen (23.5%) are slightly below and above air values, respectively. Helium isotopes show minor input of mantle derived helium-3 with 3He4He ratios ranging from 1.03 to 1.18 RA (where RA is the ratio of air). This represents the first detection of hydrogen and helium in the caves. Methane could be produced by anaerobic respiration of subsurface microbes or hydrothermal

  8. LAVA Applications to Open Rotors

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin C.; Housman, Jeff; Barad, Mike; Brehm, Christoph

    2015-01-01

    Outline: LAVA (Launch Ascent Vehicle Aerodynamics); Introduction; Acoustics Related Applications; LAVA Applications to Open Rotor; Structured Overset Grids; Cartesian Grid with Immersed Boundary; High Speed Case; High Speed Case with Plate Low Speed Case.

  9. Cave speleothems as repositories of microbial biosignatures

    NASA Astrophysics Data System (ADS)

    Miller, Ana Z.; Jurado, Valme; Pereira, Manuel F. C.; Fernández, Octavio; Calaforra, José M.; Dionísio, Amélia; Saiz-Jimenez, Cesareo

    2015-04-01

    The need to better understand the biodiversity, origins of life on Earth and on other planets, and the wide applications of the microbe-mineral interactions have led to a rapid expansion of interest in subsurface environments. Recently reported results indicated signs of an early wet Mars and rather recent volcanic activity which suggest that Mars's subsurface can house organic molecules or traces of microbial life, making the search for microbial life on Earth's subsurface even more compelling. Caves on Earth are windows into the subsurface that harbor a wide variety of mineral-utilizing microorganisms, which may contribute to the formation of biominerals and unusual microstructures recognized as biosignatures. These environments contain a wide variety of redox interfaces and stable physicochemical conditions, which enhance secondary mineral precipitation and microbial growth under limited organic nutrient inputs. Enigmatic microorganisms and unusual mineral features have been found associated with secondary mineral deposits or speleothems in limestone caves and lava tubes. In this study, Field Emission Scanning Electron Microscopy (FESEM) and Energy Dispersive X-ray spectroscopy (EDS) analyses were conducted on cave speleothem samples to assess microbe-mineral interactions, evaluate biogenicity, as well as to describe unusual mineral formations and microbial features. Microbial mats, extracellular polymeric substances, tubular empty sheaths, mineralized cells, filamentous fabrics, as well as "cell-sized" etch pits or microborings produced by bacterial cells were observed on minerals. These features evidence microbe-mineral interactions and may represent mineralogical signatures of life. We can thus consider that caves on Earth are plausible repositories of terrestrial biosignatures where we can look for microbial signatures. Acknowledgments: AZM acknowledges the support from the Marie Curie Intra-European Fellowship within the 7th European Community Framework

  10. Flow direction determination of lava flows.

    NASA Technical Reports Server (NTRS)

    Smith, E. I.; Rhodes, R. C.

    1972-01-01

    The flow direction technique, previously applied to ash-flow sheets, can be used to determine direction of movement and locate eruptive centers for lava flows. The method provides statistically stronger and more consistent flow direction data for lava than ash-flow tuff. The accuracy and reliability of the technique was established on the porphyritic basaltic andesite of Mount Taylor, New Mexico, which erupted from a known center, the Mount Taylor Amphitheater. The technique was then applied to volcanic units with unknown sources: the John Kerr Peak Quartz Latite and mid-Tertiary andesite flows in the Mogollon Mountains, both in southwestern New Mexico. The flow direction technique indicated flow patterns and suggested source areas for each rock unit. In the Mogollon Mountains flow direction measurements were supported by independent directional criteria such as dips of cross beds, stratigraphic thickening, facies changes, and megascopic textures.-

  11. Estimation of general and set steps of roof caving in rock mass with excavations at mining. Numerical modelling.

    NASA Astrophysics Data System (ADS)

    Eremin, M.; Makarov, P.

    2016-04-01

    The results of 2D modelling of rock mass elements fracture are shown in the article. The results of modelling are in a good agreement with empirical and theoretical estimations of roof caving steps for the flat-dipping coal seams when the horizons are not so deep (less than 600 m). The estimations of the general and set steps of roof caving are given for the lava conditions at different lengths of the main roof containing sandstone.

  12. High-Resolution Imaging of Lava Flow Terrains on Mars by MRO HiRISE

    NASA Astrophysics Data System (ADS)

    Crumpler, L. S.; Keszthelyi, L. P.; Jaeger, W. L.; McEwen, A. S.; HiRISE Team

    2007-12-01

    Lava flows account for a significant fraction of the surface of Mars and HiRISE has imaged a diverse selection of these areas at resolutions comparable to "air photos" on Earth. Although some lava are extensively impact "gardened" or mantled, many areas retain primary geomorphologic information at meter-scale. Primary characteristics similar to that of late Cenozoic lava flows in arid areas of Earth are visible in the HiRISE images of even some Hesperian lava plains. The extensive mantling by wind-blown deposits in some of the more youthful volcanic terrains (e.g., Tharsis) may, like terrestrial counterparts, be a result of the excessively rough surface trapping mobilized sand. Evidence for lava flow inflation, including lava-rise plateaus and pits and deformation both vertically and laterally of lava crusts, is documented in areas of flood lavas. Other lava flows are clearly fed from surface channels resulting in dispersive flow surface pattern. Lava flows with hummocky surface textures are comparable to terrestrial flows with auto-brecciated and disturbed surfaces, but the Martian flows are often much larger than typical terrestrial examples. Kilometer-scale areas of puzzle-work plates characterize some flood lava flows. The abundance of plate-like and rubbly deformation styles observed at many localities on Mars is consistent with examples of rubbly pahoehoe seen in situ by the Spirit rover. Rubbly pahoehoe may be a common primary surface texture for many areas of plains-like lava flow emplacement such as the Hesperian lava plains. Sinuous rill-like channels headed at distinct vents and collapse pits suggest significant lava erosion and correspondingly high effusion rates. While the Athabasca Valles channel bed forms appear to be associated with major aqueous outflows, the entire region is draped with lava.

  13. Bubble-Induced Cave Collapse

    PubMed Central

    Girihagama, Lakshika; Nof, Doron; Hancock, Cathrine

    2015-01-01

    Conventional wisdom among cave divers is that submerged caves in aquifers, such as in Florida or the Yucatan, are unstable due to their ever-growing size from limestone dissolution in water. Cave divers occasionally noted partial cave collapses occurring while they were in the cave, attributing this to their unintentional (and frowned upon) physical contact with the cave walls or the aforementioned “natural” instability of the cave. Here, we suggest that these cave collapses do not necessarily result from cave instability or contacts with walls, but rather from divers bubbles rising to the ceiling and reducing the buoyancy acting on isolated ceiling rocks. Using familiar theories for the strength of flat and arched (un-cracked) beams, we first show that the flat ceiling of a submerged limestone cave can have a horizontal expanse of 63 meters. This is much broader than that of most submerged Florida caves (~ 10 m). Similarly, we show that an arched cave roof can have a still larger expanse of 240 meters, again implying that Florida caves are structurally stable. Using familiar bubble dynamics, fluid dynamics of bubble-induced flows, and accustomed diving practices, we show that a group of 1-3 divers submerged below a loosely connected ceiling rock will quickly trigger it to fall causing a “collapse”. We then present a set of qualitative laboratory experiments illustrating such a collapse in a circular laboratory cave (i.e., a cave with a circular cross section), with concave and convex ceilings. In these experiments, a metal ball represented the rock (attached to the cave ceiling with a magnet), and the bubbles were produced using a syringe located at the cave floor. PMID:25849088

  14. Bubble-induced cave collapse.

    PubMed

    Girihagama, Lakshika; Nof, Doron; Hancock, Cathrine

    2015-01-01

    Conventional wisdom among cave divers is that submerged caves in aquifers, such as in Florida or the Yucatan, are unstable due to their ever-growing size from limestone dissolution in water. Cave divers occasionally noted partial cave collapses occurring while they were in the cave, attributing this to their unintentional (and frowned upon) physical contact with the cave walls or the aforementioned "natural" instability of the cave. Here, we suggest that these cave collapses do not necessarily result from cave instability or contacts with walls, but rather from divers bubbles rising to the ceiling and reducing the buoyancy acting on isolated ceiling rocks. Using familiar theories for the strength of flat and arched (un-cracked) beams, we first show that the flat ceiling of a submerged limestone cave can have a horizontal expanse of 63 meters. This is much broader than that of most submerged Florida caves (~ 10 m). Similarly, we show that an arched cave roof can have a still larger expanse of 240 meters, again implying that Florida caves are structurally stable. Using familiar bubble dynamics, fluid dynamics of bubble-induced flows, and accustomed diving practices, we show that a group of 1-3 divers submerged below a loosely connected ceiling rock will quickly trigger it to fall causing a "collapse". We then present a set of qualitative laboratory experiments illustrating such a collapse in a circular laboratory cave (i.e., a cave with a circular cross section), with concave and convex ceilings. In these experiments, a metal ball represented the rock (attached to the cave ceiling with a magnet), and the bubbles were produced using a syringe located at the cave floor. PMID:25849088

  15. Lava tubes and aquifer vulnerability in the upper Actopan River basin, Veracruz, México

    NASA Astrophysics Data System (ADS)

    Espinasa-Pereña, R.; Delgado Granados, H.

    2011-12-01

    Rapid infiltration leads to very dry conditions on the surface of some volcanic terrains, with large allogenic streams sometimes sinking underground upon reaching a lava flow. Aquifers in lava flows tend to be heterogeneous and discontinuous, generally unconfined and fissured, and have high transmissivity. Springs associated with basalts may be very large but are typically restricted to lava-flow margins. Concern has been expressed regarding the potential for lava-tube caves to facilitate groundwater contamination similar to that afflicting some karst aquifers (Kempe et al., 2003; Kiernan et al., 2002; Halliday 2003). The upper Actopan River basin is a series of narrow valleys excavated in Tertiary volcanic brechias. Several extensive Holocene basaltic tube-fed lava flows have partially filled these valleys. The youngest and longest flow originates at El Volcancillo, a 780 ybP monogenetic volcano. It is over 50 km long, and was fed through a major master tube, the remains of which form several lava-tube caves (Gassos and Espinasa-Pereña, 2008). Another tube-fed flow initiates at a vent at the bottom of Barranca Huichila and can be followed for 7 km to where it is covered by the Volcancillo flow. The Huichila River is captured by this system of lava tubes and can be followed through several underground sections. In dry weather the stream disappears at a sump in one of these caves, although during hurricanes it overflows the tube, floods the Tengonapa plain, and finally sinks through a series of skylights into the master tube of the Volcancillo flow. Near villages, the cave entrances are used as trash dumps, which are mobilized during floods. These include household garbage, organic materials associated with agriculture and even medical supplies. This is a relatively recent phenomenon, caused by population growth and the building of houses above the lava flows. The water resurges at El Descabezadero, gushing from fractures in the lava above the underlying brechias

  16. Winter distribution and use of high elevation caves as foraging sites by the endangered Hawaiian hoary bat, Lasiurus cinereus semotus

    USGS Publications Warehouse

    Bonaccorso, Frank; Montoya-Aiona, Kristina; Pinzari, Corinna A.; Todd, Christopher M.

    2016-01-01

    We examine altitudinal movements involving unusual use of caves by Hawaiian hoary bats, Lasiurus cinereus semotus, during winter and spring in the Mauna Loa Forest Reserve (MLFR), Hawai‘i Island. Acoustic detection of hoary bat vocalizations, were recorded with regularity outside 13 lava tube cave entrances situated between 2,200 to 3,600 m asl from November 2012 to April 2013. Vocalizations were most numerous in November and December with the number of call events and echolocation pulses decreasing through the following months. Bat activity was positively correlated with air temperature and negatively correlated with wind speed. Visual searches found no evidence of hibernacula nor do Hawaiian hoary bats appear to shelter by day in these caves. Nevertheless, bats fly deep into caves as evidenced by numerous carcasses found in cave interiors. The occurrence of feeding buzzes around cave entrances and visual observations of bats flying in acrobatic fashion in cave interiors point to the use of these spaces as foraging sites. Peridroma moth species (Noctuidae), the only abundant nocturnal, flying insect sheltering in large numbers in rock rubble and on cave walls in the MLFR, apparently serve as the principal prey attracting hoary bats during winter to lava tube caves in the upper MLFR. Caves above 3,000 m on Mauna Loa harbor temperatures suitable for Pseudogymnoascus destructansfungi, the causative agent of White-nose Syndrome that is highly lethal to some species of North American cave-dwelling bats. We discuss the potential for White-nose Syndrome to establish and affect Hawaiian hoary bats.

  17. Olympus Mons Lava Flows

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-437, 30 July 2003

    Olympus Mons is the largest volcano on Mars. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows some of the lava flows on the middle south flank of the giant volcano. Illuminated from the lower right, this picture is located near 16.4oN, 135.5oW.

  18. Lava Lakes on Io?

    NASA Astrophysics Data System (ADS)

    Lopes, R. M. C.; Kamp, L. W.; Smythe, W. D.; Howell, R.; Mouginis-Mark, P.; Kargel, J. S.; Radebaugh, J.; Turtle, E. P.; Perry, J.; Williams, D. A.; Carlson, R. W.; Doute, S.; Galileo NIMS Team

    2003-05-01

    At least 152 active volcanic centers have been identified on Jupiter's moon Io [Lopes et al., 2003, submitted to Icarus]. Eruptions at these centers include lava flows (``Promethean" type eruptions), explosive ``Pillanian" eruptions [Keszthelyi et al., 2001, JGR 106, 33,025-52] and volcanism confined within patera walls (``Lokian", Lopes et al., 2003). Understanding the Lokian eruption mechanism is particularly important because paterae are the most ubiquitous volcanic constructs on Io's surface [Radebaugh et al. 2001, JGR, 106, 33,005-33,020] and patera volcanism is the most common eruption type on Io. We use observations from Galileo's Near-Infrared Mapping Spectrometer (NIMS) and compare them with images from Galileo's Solid State Imaging system (SSI) to map the distribution of thermal emission at several Ionian paterae. This allows us to examine how thermal emission correlates with visible features, and to investigate how thermal emission varies with time. Galileo's close fly-bys of Io from 1999 to 2001 allowed NIMS to observe the volcanoes at relatively high spatial resolution (1-30 km pixel). At these scales, observations of the several paterae reveal that the greatest thermal emission occurs at the edges. This can be explained as the crust of a lava lake breaking up against the base of the patera (caldera) walls, similar to what has been observed at lava lakes on Earth. Comparison with terrestrial analogs shows that several Ionian active paterae, such as Loki, Tupan, and Emakong, have thermal properties consistent with relatively inactive lava lakes on Earth. We discuss these results and their implications for eruption styles and resurfacing on Io. This work was supported in part by NASA's Planetary Geology and Geophysics Program.

  19. Lava flows are fractals

    NASA Technical Reports Server (NTRS)

    Bruno, B. C.; Taylor, G. J.; Rowland, S. K.; Lucey, P. G.; Self, S.

    1992-01-01

    Results are presented of a preliminary investigation of the fractal nature of the plan-view shapes of lava flows in Hawaii (based on field measurements and aerial photographs), as well as in Idaho and the Galapagos Islands (using aerial photographs only). The shapes of the lava flow margins are found to be fractals: lava flow shape is scale-invariant. This observation suggests that nonlinear forces are operating in them because nonlinear systems frequently produce fractals. A'a and pahoehoe flows can be distinguished by their fractal dimensions (D). The majority of the a'a flows measured have D between 1.05 and 1.09, whereas the pahoehoe flows generally have higher D (1.14-1.23). The analysis is extended to other planetary bodies by measuring flows from orbital images of Venus, Mars, and the moon. All are fractal and have D consistent with the range of terrestrial a'a and have D consistent with the range of terrestrial a'a and pahoehoe values.

  20. Sandstone caves on Venezuelan tepuis: Return to pseudokarst?

    NASA Astrophysics Data System (ADS)

    Aubrecht, R.; Lánczos, T.; Gregor, M.; Schlögl, J.; Šmída, B.; Liščák, P.; Brewer-Carías, Ch.; Vlček, L.

    2011-09-01

    Venezuelan table mountains (tepuis) host the largest arenite caves in the world. The most frequently used explanation of their origin so far was the "arenization" theory, involving dissolution of quartz cement around the sand grains and subsequent removing of the released grains by water. New research in the two largest arenite cave systems - Churi-Tepui System in Chimanta Massif and Ojos de Cristal System in Roraima Tepui showed that quartz dissolution plays only a minor role in their speleogenesis. Arenites forming the tepuis are not only quartzites but they display a wide range of lithification and breakdown, including also loose sands and sandstones. Speleogenetic processes are mostly concentrated on the beds of unlithified sands which escaped from diagenesis by being sealed by the surrounding perfectly lithified quartzites. Only the so-called "finger-flow" pillars testify to confined diagenetic fluids which flowed in narrow channels, leaving the surrounding arenite uncemented. Another factor which influenced the cave-forming processes by about 30% was lateritization. It affects beds formed of arkosic sandstones and greywackes which show strong dissolution of micas, feldspars and clay minerals, turning then to laterite ("Barro Rojo"). The main prerequisite to rank caves among karst phenomena is dissolution. As the dissolution of silicate minerals other than quartz appears to play not only a volumetrically important role but even a trigger role, these arenitic caves may be ranked as karst.

  1. The Hypothesis of Caves on Mars Revisited Through MGS Data; Their Potential as Targets for the Surveyor Program

    NASA Technical Reports Server (NTRS)

    Grin, E. A.; Cabrol, N. A.; McKay, C. P.

    1999-01-01

    In a previous publication, we proposed the formation of caves at mega and microscale on Mars and emphasized their potential for the exobiology exploration. The recent MOC images have shown promising indicators that caves are actually existing on Mars. In the first section, we develop the theoretical potential formation of martian caves. Then, we show how MOC is supporting this hypothesis of their formation and the new types of environments it suggests. The existence of caves on Mars from microscale to microscale structures can be predicted according to the Mars geological and climatic history. A first global approach is to consider caves as a result of underground water activity combined with tectonic movement. They can be formed by: (1) diversion of channel courses in underground conduits; (2) fractures of surface drainage patterns; chaotic terrain and collapsed areas in general; (4) seepage face in valley walls and/or headwaters; (5) inactive hydrothermal vents and lava tubes.

  2. Petrogenesis of basalt-trachyte lavas from Olmoti Crater, Tanzania

    NASA Astrophysics Data System (ADS)

    Mollel, Godwin F.; Swisher, Carl C., III; McHenry, Lindsay J.; Feigenson, Mark D.; Carr, Michael J.

    2009-08-01

    .01 Ma. The age of Olmoti activity overlaps with ages reported for Ngorongoro Caldera, implying contemporaneous activity of multiple NVH volcanic centers during part of the eruption interval. Olmoti is considered the source for the bulk of interbedded volcanics and volcaniclastic deposits that comprise much of the upper Bed I section of nearby Olduvai Gorge, and part of the Laetoli sequence, both known for their well preserved fossils and archaeological remains. Age and chemical data reported here are compatible with those derived from tephra and lava interbedded in Bed I at Olduvai Gorge and from the Olpiro Beds at Laetoli.

  3. Magnetostratigraphy of Cave Sediments

    NASA Astrophysics Data System (ADS)

    Bosák, P.; Pruner, P.

    2007-05-01

    Karst and cave fills (karst sediments) are relatively special kinds of geologic materials, as the karst environment favors both the preservation of paleontological remains and their destruction: on one hand, karst is well known for its wealth of paleontological sites, on the other hand, most of cave fills are completely sterile (especially the inner-cave facies). Another specific feature is that karst systems can be "frozen" (halted) and then rejuvenated, often for several times. Reactivation processes may degrade the record into an unreadable form, often mixing karst fill of different ages (collapses, reworking, redepositions). Only the last accumulation phase has been dated in caves in most cases. The fossilisation of the cave (fill by deposits) and rejuvenation (exhumation of the fill) reflect changes in resurgence area. The rejuvenation of the karst process can excavate the previous cave fill completely, which is the most common case resulting from the polycyclicity and dynamics of cave environments. Under favorable settings, fills belonging to more infill phases and separated by distinct hiatuses (unconformities) can occur in one sedimentary profile. Such amalgamation is typical especially in ponor part of the cave. During our previous research we found, that owing to the specific character of karst sediments, the use of paleomagnetic methods can bring surprising result, without regards to the character of the method (correlated- ages not providing direct numerical output). The method can serve as helpful tool to interpret not only the age of cave sediments but also to understand the evolution of karst landscape and tectonic history of the region. To obtain more precise results, it is necessary to combine paleomagnetism with other methods of numerical-, relative- or correlated-dating. The analytical results confirmed that the complete step/field procedure offered by the alternating field and thermal demagnetization methods must be applied. The sampling for

  4. Olympus Mons Lava Flows

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-525, 26 October 2003

    This May 2003 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) picture shows lava flows on the lower northern flanks of the large martian volcano, Olympus Mons. Located near 21.9oN, 132.9oW, the image features flows that moved down the north slope, toward the north/northeast (top/upper right). Sunlight illuminates this scene from the left/lower left; the picture covers an area about 3 km (1.9 mi) across.

  5. A new millipede, Austrotyla awishoshola n. sp., (Diplopoda, Chordeumatida, Conotylidae) from New Mexico, USA, and the importance of cave moss gardens as refugial habitats.

    PubMed

    Wynne, J Judson; Shear, William A

    2016-01-01

    Austrotyla awishoshola n. sp. is described from the moss gardens of one lava tube cave in El Malpais National Monument, Cibola Co., New Mexico. Most chordeumatidans require mesic conditions, and these environments are limited to moss gardens in several cave entrances and beneath cave skylights in El Malpais. Presently, this species is known from the moss gardens of a single of cave in the monument. We suggest A. awishoshola may be a climatic relict, having become restricted to the cave environment following the end of the Pleistocene. We discuss the importance of cave moss gardens as refugial and relictual habitats. Recommendations are provided to aid in the conservation and management of A. awishoshola and these habitats. PMID:27394265

  6. Egyptian Sea Cave

    ERIC Educational Resources Information Center

    Journal of College Science Teaching, 2005

    2005-01-01

    This brief article describes an archaeological expedition to the Red Sea coast area of Egypt in 2004. Kathryn Bard, an associate professor of archaeology at Boston University, along with her team, discovered the well-preserved cedar timbers of an ancient Egyptian seafaring vessel near the entrance to a large man-made cave. Limestone tablets with…

  7. Arsia Mons Lava Flows

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    This VIS image of lava flows to the west of Arsia Mons looks very similar to the lava flows south of Arsia Mons. It is very likely that the flows were occurring at the same time(s) in both areas.

    Image information: VIS instrument. Latitude -2.9, Longitude 228.5 East (131.5 West). 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  8. Glacioclimatological study of Perennial Ice in the Fuji Ice Cave, Japan. Part I. Seasonal variation and mechanism of maintenance

    SciTech Connect

    Ohata, Tetsuo; Furukawa, Teruo; Higuchi, Keiji )

    1994-08-01

    Perennial cave ice in a cave located at Mt. Fuji in central Japan was studied to investigate the basic characteristics and the cause for existence of such ice under warm ground-level climate considering the ice cave as a thermal and hydrological system. Fuji Ice Cave is a lava tube cave 150 m in length with a collapsed part at the entrance. Measurements from 1984 to 1986 showed that the surface-level change of floor ice occurred due to freezing and melting at the surface and that melting at the bottom of the ice was negligible. The annual amplitude of change in surface level was larger near the entrance. Meterological data showed that the cold air inflow to the cave was strong in winter, but in summer the cave was maintained near 0[degrees]C with only weak inflow of warm air. The predominant wind system was from the entrance to the interior in both winter and summer, but the spatial scale of the wind system was different. Heat budget consideration of the cave showed that the largest component was the strong inflow of subzero dry air mass in winter. Cooling in winter was compensated for by summer inflow of warm air, heat transport from the surrounding ground layer, and loss of sensible heat due to cooling of the cave for the observed year. Strong inflow of cold air and weak inflow of warm air, which is extremely low compared to the ground level air, seemed to be the most important condition. Thus the thermal condition of the cave is quasi-balanced at the presence condition below 0[degrees]C with ice. It can be said that the interrelated result of the climatological and special structural conditions makes this cave very cold, and allows perennial ice to exist in the cave. Other climatological factors such as precipitation seem to be minor factors. 17 refs., 3 figs., 3 tabs.

  9. Arsia Mons Lava Flows

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The lava flows from Arsia Mons are some of the youngest flows in the region. The region of flows south of the volcano have had little modification and appear very similar in appearance to Hawaiian lava flows. This VIS image shows typical flows for the region. The flows are long, fairly narrow, overlapping, and with various surface features and textures.

    Image information: VIS instrument. Latitude -19.5, Longitude 240.1 East (119.9 West). 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  10. Eroding Lava Flows

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Today's image illustrates how radically the wind can affect the surface of Mars. The lava flows in this region have been covered by fine materials, and eroded by the sand blasting action of the wind. In this region the winds are blowing to the west, eroding the lava surface to form small east/west ridges and bumps. Given enough time the winds will change the appearance of the surface to such a large extent that all flow features will be erased.

    Image information: VIS instrument. Latitude -11.7, Longitude 220 East (140 West). 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  11. The microbiology of Lascaux Cave.

    PubMed

    Bastian, F; Jurado, V; Nováková, A; Alabouvette, C; Saiz-Jimenez, C

    2010-03-01

    Lascaux Cave (Montignac, France) contains paintings from the Upper Paleolithic period. Shortly after its discovery in 1940, the cave was seriously disturbed by major destructive interventions. In 1963, the cave was closed due to algal growth on the walls. In 2001, the ceiling, walls and sediments were colonized by the fungus Fusarium solani. Later, black stains, probably of fungal origin, appeared on the walls. Biocide treatments, including quaternary ammonium derivatives, were extensively applied for a few years, and have been in use again since January 2008. The microbial communities in Lascaux Cave were shown to be composed of human-pathogenic bacteria and entomopathogenic fungi, the former as a result of the biocide selection. The data show that fungi play an important role in the cave, and arthropods contribute to the dispersion of conidia. A careful study on the fungal ecology is needed in order to complete the cave food web and to control the black stains threatening the Paleolithic paintings. PMID:20056706

  12. Degassing driving crystallization of plagioclase phenocrysts in lava tube stalactites on Mount Etna (Sicily, Italy)

    NASA Astrophysics Data System (ADS)

    Lanzafame, Gabriele; Ferlito, Carmelo

    2014-10-01

    Basaltic lava flows can form tubes in response to the cooling of the outer surface. We collected lava stalactites (frozen lava tears) and sampled lava from the ceilings of three lava tubes on Mount Etna. Comparison of the petrographic characters between ceiling lavas and relative stalactites reveals surprising differences in the groundmass textures and crystal compositions. Major and trace element contents in stalactites show only a slight increase in alkali and SiO2 compared to ceiling lava, whereas significant differences exist in composition and textures between plagioclases within the ceiling lava and those within the stalactites, being in the last case definitively more An-rich. We advance the hypothesis that the high temperature reached in the cave caused the exsolution of the volatiles still trapped in the dripping melt. The volatiles, mainly H2O, formed bubbles and escaped from the melt; such a water-loss might have promoted the silicate polymerization in the stalactites resulting in the growth of An-rich plagioclase phenocrysts. Our results have important implications: in fact plagioclase phenocrysts are usually associated with intratelluric growth and are often considered as the main petrologic evidence for the existence of a magma chamber. The textural and chemical features of plagioclases in stalactites prove that phenocryst growth in syn to post-eruptive conditions is plausible and clearly explains the relatively low viscosity of many phenocryst-rich lava flows on Mount Etna, as well as on many other volcanoes around the world. Therefore, we can conclude that plagioclase phenocrysts cannot exclusively be considered as having originated within a magma chamber.

  13. Lava Lakes in Io's Paterae

    NASA Astrophysics Data System (ADS)

    Radebaugh, J.; McEwen, A. S.; Milazzo, M.; Davies, A. G.; Keszthelyi, L. P.; Geissler, P.

    2002-05-01

    New Galileo images and Galileo and Cassini temperature data lend credence to previous proposals that some of the paterae on Io contain lava lakes, similar in some ways to those observed on Earth. Galileo's October 2001 I32 flyby produced spectacular new high resolution observations of Io's paterae, their margins, and floors. Images reveal where lavas have filled Emakong Patera and overtopped its margins. Landslides from the peaks of Tohil Mons are not present on the adjacent floor of a dark patera, perhaps because they have slumped into a molten lava pit. Dark lavas have filled and drained back from colorful Tupan Patera, leaving a ring of material on its walls. This patera also shows evidence of interaction between molten sulfur and silicate lavas, a relationship observed at the terrestrial Poas Volcano (Francis et al., 1980, Nature 283, 754-756; Oppenheimer and Stevenson, 1990, La Recherche 21,1088-1090). The extremely uniformly dark materials in many other paterae could also be lava lakes. Pele Volcano on Io, in particular, has previously been considered a lava lake based on several characteristics (Davies et al., 2001, JGR 106,33,079-33,103). Recent analyses of eclipse images of Pele from Cassini reveal average temperatures of 1375 K, with variations on short (~10 minute) timescales, consistent with active fountaining in a lava lake. Similar oscillations around high temperatures over these time scales are seen in terrestrial lava lakes, such as at Kupaianaha (Flynn et al., GRL, 19,6461-6476, 1993) and Erta Ale (Bessard, Caillet and others, in progress). Nightside high resolution (60 m/pixel) images from Galileo I32 reveal a region of overturning and convection, with some areas reaching in excess of 1800 K, verifying very high-temperature components identified in high-resolution NIMS data (Lopes et al., 2001, JGR, 106, 33,053-33,078). This region is ringed with small hotspots, comparable to locations of breakup and fountaining at the margins of many terrestrial

  14. Deriving Lava Eruption Temperatures on Io Using Lava Tube Skylights

    NASA Astrophysics Data System (ADS)

    Davies, A. G.; Keszthelyi, L. P.; McEwen, A. S.

    2015-12-01

    The eruption temperature of Io's silicate lavas constrains Io's interior state and composition [1] but reliably measuring this temperature remotely is a challenge that has not yet been met. Previously, we established that eruption processes that expose large areas at the highest temperatures, such as roiling lava lakes or lava fountains, are suitable targets for this task [2]. In this study we investigate the thermal emission from lava tube skylights for basaltic and ultramafic composition lavas. Tube-fed lava flows are known on Io so skylights could be common. Unlike the surfaces of lava flows, lava lakes, and lava fountains which all cool very rapidly, skylights have steady thermal emission on a scale of days to months. The thermal emission from such a target, measured at multiple visible and NIR wavelengths, can provide a highly accurate diagnostic of eruption temperature. However, the small size of skylights means that close flybys of Io are necessary, requiring a dedicated Io mission [3]. We have modelled the thermal emission spectrum for different skylight sizes, lava flow stream velocities, end-member lava compositions, and skylight radiation shape factors, determining the flow surface cooling rates. We calculate the resulting thermal emission spectrum as a function of viewing angle. From the resulting 0.7:0.9 μm ratios, we see a clear distinction between basaltic and ultramafic compositions for skylights smaller than 20 m across, even if sub-pixel. If the skylight is not resolved, observations distributed over weeks that show a stationary and steady hot spot allow the presence of a skylight to be confidently inferred. This inference allows subsequent refining of observation design to improve viewing geometry of the target. Our analysis will be further refined as accurate high-temperature short-wavelength emissivity values become available [4]. This work was performed at the Jet Propulsion Laboratory-California Institute of Technology, under contract to

  15. Lava flows and volcanic landforms

    NASA Astrophysics Data System (ADS)

    Tarquini, Simone

    2016-04-01

    Lava flows constitute a large portion of the edifice of basaltic volcanoes. The substantial difference existing between the emplacement dynamics of different basaltic lava flows suggests a relation between the dominant flow dynamic and the overall shape of the ensuing volcano. Starting from the seminal works of Walker (1971, 1973) it is proposed that the rate of heat dissipation per unit volume of lava can be the founding principium at the roots of the emplacement dynamics of lava flows. Within the general framework of the thermodynamics of irreversible processes, a conceptual model is presented, in which the dynamic of lava flows can evolve in a linear or in a nonlinear regime on the basis of the constraint active on the system: a low constraint promotes a linear dynamic (i.e. fluctuations are damped), a high constraint a nonlinear one (i.e. fluctuations are enhanced). Two cases are considered as end-members for a linear and a nonlinear dynamic in lava flows: the typical "Hawaiian" sheet flow and the classic "Etnean" channelized flow (respectively). In lava flows, the active constraint is directly proportional to the slope of the topography and to the thermal conductivity and thermal capacity of the surrounding environment, and is inversely proportional to the lava viscosity and to the supply rate. The constraint indicates the distance from the equilibrium conditions of the system, and determines the rate of heat dissipation per unit volume. In subaerial flows, the heat dissipated during the emplacement is well approximated by the heat lost through radiation, which can be retrieved through remote-sensing techniques and can be used to correlate dynamic and dissipation. The model presented recombines previously unrelated concepts regarding the dynamics and the thermal regimes observed in different lava flows, providing a global consistent picture. References Walker GPL (1971) Compound and simple lava flows and flood basalts. Bull Volcanol 35:579-590 Walker GPL (1973

  16. Caves: A Course of Study.

    ERIC Educational Resources Information Center

    Phillips, Jan

    Middle school students from The College School, a private school in Webster Groves (Missouri) have completed a class called "Caves and Crystallography." A thematic approach was used in the course in which students and teachers read books telling how caves were formed, saw movies which explained the delicate balance of life underground, made…

  17. Important caves to be identified

    NASA Astrophysics Data System (ADS)

    Criteria to identify significant caves on federal land are being developed by the Interior Department's Bureau of Land Management and the Agriculture Department's Forest Service under requirements of the Federal Cave Resources Protection Act of 1988. The departments gave advance notice of proposed rulemaking March 3 and invited suggestions and comments from the public for 30 days.The law requires protection, to the extent practical, of significant caves on lands administered by the Secretaries of Agriculture and Interior and includes authority to issue and revoke permits for collection and removal of cave resources and special provisions for regulation of cave resources on Indian lands. Final regulations must be published by August 18, 1989.

  18. The Unicorn Cave, Southern Harz Mountains, Germany: From known passages to unknown extensions with the help of geophysical surveys

    NASA Astrophysics Data System (ADS)

    Kaufmann, Georg; Nielbock, Ralf; Romanov, Douchko

    2015-12-01

    In soluble rocks (limestone, dolomite, anhydrite, gypsum, …), fissures and bedding partings can be enlarged with time by both physical and chemical dissolution of the host rock. With time, larger cavities evolve, and a network of cave passages can evolve. If the enlarged cave voids are not too deep under the surface, geophysical measurements can be used to detect, identify and trace these karst structures, e.g.: (i) gravity revealing air- and sediment-filled cave voids through negative Bouguer anomalies, (ii) electrical resistivity imaging (ERI) mapping different infillings of cavities either as high resistivities from air-filled voids or dry soft sediments, or low resistivities from saturated sediments, and (iii) groundwater flow through electrical potential differences (SP) arising from dislocated ionic charges from the walls of the underground flow paths. We have used gravity, ERI, and SP methods both in and above the Unicorn Cave located in the southern Harz Mountains in Germany. The Unicorn Cave is a show cave developed in the Werra dolomite formation of the Permian Zechstein sequence, characterised by large trunk passages interrupted by larger rooms. The overburden of the cave is only around 15 m, and passages are filled with sediments reaching infill thicknesses up to 40 m. We present results from our geophysical surveys above the known cave and its northern and southern extension, and from the cave interior. We identify the cave geometry and its infill from gravity and ERI measurements, predict previously unknown parts of the cave, and subsequently confirm the existence of these new passages through drilling. From the wealth of geophysical data acquired we derive a three-dimensional structural model of the Unicorn Cave and its surrounding, especially the cave infill.

  19. Wind, Water, and Lava

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 18 June 2003

    The three main geological agents acting on the Martian surface are visible in this image, within an outflow channel to the east of the Tharsis volcanos and north of Valles Marineris. In a wide channel previously eroded by water, linear features have been eroded into the rock by the wind. Later, lava flows embayed the streamlined rocks. A second, younger flow lobe is visible at the bottom of the image.

    Image information: VIS instrument. Latitude 17, Longitude 283.6 East (76.4 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  20. Survey and hydrogeology of Carroll Cave

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carroll Cave, located in Camden County, Missouri, is the largest known cave formed in the Gasconade Dolomite of the Salem Plateau. Despite extensive visitation over the last 50 years and multiple survey efforts, a comprehensive map of the cave has never been produced. In 2002, the Carroll Cave Conse...

  1. Permeability of compacting porous lavas

    NASA Astrophysics Data System (ADS)

    Ashwell, P. A.; Kendrick, J. E.; Lavallée, Y.; Kennedy, B. M.; Hess, K.-U.; Aulock, F. W.; Wadsworth, F. B.; Vasseur, J.; Dingwell, D. B.

    2015-03-01

    The highly transient nature of outgassing commonly observed at volcanoes is in part controlled by the permeability of lava domes and shallow conduits. Lava domes generally consist of a porous outer carapace surrounding a denser lava core with internal shear zones of variable porosity. Here we examine densification using uniaxial compression experiments on variably crystalline and porous rhyolitic dome lavas from the Taupo Volcanic Zone. Experiments were conducted at 900°C and an applied stress of 3 MPa to 60% strain, while monitoring acoustic emissions to track cracking. The evolution of the porous network was assessed via X-ray computed tomography, He-pycnometry, and relative gas permeability. High starting connected porosities led to low apparent viscosities and high strain rates, initially accompanied by abundant acoustic emissions. As compaction ensued, the lavas evolved; apparent viscosity increased and strain rate decreased due to strain hardening of the suspensions. Permeability fluctuations resulted from the interplay between viscous flow and brittle failure. Where phenocrysts were abundant, cracks had limited spatial extent, and pore closure decreased axial and radial permeability proportionally, maintaining the initial anisotropy. In crystal-poor lavas, axial cracks had a more profound effect, and permeability anisotropy switched to favor axial flow. Irrespective of porosity, both crystalline samples compacted to a threshold minimum porosity of 17-19%, whereas the crystal-poor sample did not achieve its compaction limit. This indicates that unconfined loading of porous dome lavas does not necessarily form an impermeable plug and may be hindered, in part by the presence of crystals.

  2. The Lava Morphology Database (LAMDA)

    NASA Astrophysics Data System (ADS)

    Peckyno, R. S.; de Silva, S. L.; Lopes, R. M.; Pieri, D. C.

    2009-12-01

    Many previous investigations of lava morphology have explored the relationship between flow properties (e.g., length, area, thickness) or flow features (e.g. lobation, flow ridging, aspect ratio), and process variables such as lava viscosity, yield strength, temperature, effusion rate, and local slope. Previous studies, however, have focused on individual attributes and features across a limited dataset of lava flows and have often noted the lack of a larger baseline dataset for comparison. Today, ready availability of high spatial and spectral resolution data for Earth’s volcanoes, coupled with computing advances, enable substantially enhanced network interaction between satellite analysis and field investigators around the world. We therefore propose a community effort, the Lava Morphology Database (LAMDA), to develop a comprehensive database for the morphology of terrestrial lava flows of varying composition, using GIS to integrate, georeference, and compare multiple datasets as well as automating many of the basic calculations. In a preliminary effort, we have measured and compiled lava flow features and attributes at 38 volcanoes including flow distance, surface area, aspect ratio, margin lobation, radii of curvature, height, and arc-length, corresponding cleft angle, flow surface ridging wavelength, lobe and landscape level slope, etc. As an example of the utility of this prototype database we present the initial results of an analysis of these data in light of existing viscosity and effusion rate based morphological models. Data resolution, computing power, and the number of field samples that can be practically analyzed have often necessitated that researchers assume that local slopes, viscosities, chemistries, and temperatures are constant across a flow. In contrast, LAMBDA will enable the exploration of factors that impact the emplacement of terrestrial lava flows at a much higher resolution than previous studies, as well as provide an extensive

  3. Radon and thoron in cave dwellings (Yan'an, China)

    SciTech Connect

    Wiegand, J.; Feige, S.; Xie Quingling; Schreiber, U.; Wieditz, K.; Wittmann, C.; Luo Xiarong

    2000-04-01

    {sup 222}Rn and {sup 220}Rn concentrations were measured in cave dwellings and brick houses in the region of Yan'an (China) during summer 1997. The underground dwellings are built into Quaternary loess, and all investigated houses are founded on it. The median values of indoor {sup 222}Rn and {sup 220}Rn concentrations are 42 (n = 18) and 77Bq m{sup {minus}3} (n = 15) for brick houses and 92 (n = 23) and 215 (n = 17) Bq m{sup {minus}3} for cave dwellings. To classify the dwellings in respect to their cave-character, the fraction of walls having a direct contact to the loess is calculated for each dwelling. While the {sup 222}Rn concentrations are increasing with higher fractions, the {sup 220}Rn concentrations are not correlated with this fraction. On the other hand, due to the short half-life of {sup 220}Rn the distance from the measuring point to the walls is negatively correlated with the {sup 220}Rn concentration, while there is no correlation with the {sup 222}Rn concentration. Therefore, concentric isolines of {sup 220}Rn concentrations showing a strong gradient were detected in cave dwellings. An influence of the ventilation rate is distinct for {sup 222}Rn but weak for {sup 220}Rn. The effective dose rates for {sup 222}Rn and {sup 220}Rn and their progenies are calculated for brick houses (2.7 mSv y{sup {minus}1}), cave dwellings (7.1 mSv y{sup {minus}1}), and for traditional cave dwellings with a bed foundation built with loess (16.7 mSv y{sup {minus}1}). These calculations are based on summer measurements only. It is expected that the true effective dose rates will be significantly higher.

  4. Identification of flood events inside karst cavities: Fria Cave (Asturias - NW Spain)

    NASA Astrophysics Data System (ADS)

    Gonzalez Lemos, Saul; Stoll, Heather

    2013-04-01

    Fluvial records may be well preserved in subterranean karst drainage networks and fluvial deposits cemented in speleothems may provide good chronology of past flood events. In several karst systems in Asturias (NW. Spain), moments of extreme precipitation events produce deposits from flood events in the bed and walls of caves which we propose are also recorded in the calcium carbonate stalagmites growing in the cave. The final stretch of the studied cave (Fria Cave), with a development of 360 m in length, intersects a small perennial stream which in our observation has maintained a minimum discharge of about 0.022 m3/s but periodically overflows into the vadose cave passage. Immediately after a flood overflow event, water marks and foam detritus are visible at various levels on the cave walls and corresponding to heights of bottlenecks in overflow drainage through the cave passage. Flood events deposit sand on terraces on the cave wall and move large volumes of sand in the cave bed. These extreme events leave a long-term record in i) wall coloration or water marks on the cave walls; and ii) detrital particles preserved as inclusions inside the stalagmites. Throughout this cave, it is possible to recognize chromatic changes in the walls, such as manganese oxide stains, which coincide with one of the water marks left during a recent flood event. The most salient manganese oxide on the walls rises up to 1.5 m measured from the thalweg and we interpreted it as the result of a frequent process of wetting - drying related to frequent flooding of the cave. Since 3-4 ka, drapery flowstone has been deposited over this oxide coating in some parts of the cave and the drapery remains free of oxide coating. We interpret this as indicating a reduction in the frequency and/or duration of flooding to this height, coincident with a regional drying trend in late Holocene. Stalagmites growing in the bed of the cave appear to trap fluvial sediments like sand or silts particles, which

  5. Origin and Evolution of Limestone Caves of Chhattisgarh and Orissa, India: Role of Geomorphic, Tectonic and Hydrological Processes

    NASA Astrophysics Data System (ADS)

    Gautam, P. K.; Allu, N. C.; Ramesh, R.; Yadava, M. G.; Panigrahi, C. P.

    2014-12-01

    Carbonate rocks undergo karstic process and karst morphology is a key to understand the nature and genesis of caves. The primary energy source for the formation of karst landforms is hydrological cycle. Geomorphic features along with hydrological characteristics provide important information not only on karst formation but also climate and environmental conditions. In this paper, we present the tectonic and geomorphic features that played a role in evolution of caves located in Chhattisgarh and Orissa States of India. The geomorphic and tectonic aspects of Kotumsar, Kailash, and Gupteshwar caves are discussed in relation to the origin and evolution of these caves. Caves are located near the water falls. The area is folded and faulted along the Eastern Ghat Mobile Belt (EGMB) due to tectonic reactivation. Shaly-limestone beds exhibit vertical dipping near Gupteshwar cave, and steeply inclined near Kotumsar and Kailash caves. Indrāvati and Sabari/Kolab tributaries of the Godavari River drain the area. The landscape evolution and the origin of caves in the region is a multistage process, where the lithology, orogeny, fluvial action, and monsoon are the main agents, which is similar to the four state model (Ford and Ewers, 1978). The river basin evolution and regional tectonism also caused the initiation of karstification in the region. The evolution of caves is believed to have taken place in Pre-Pliocene under more humid conditions that coincided with the initiation of monsoon in India. Further, during the Quaternary wet-dry/cold-warm phases altered physical and chemical weathering of limestone rocks. Contrasting relief features of Bastar plateau have also helped the extensive cave formation in the region. The dissolution along weak planes initiated the openings of caves, further enlarged by geomorphic agents. Both monsoon and tectonics have caused fluctuations in water levels along river courses, which acted as active agents in evolution of caves.

  6. Lava Flow at Kilauea, Hawaii

    NASA Technical Reports Server (NTRS)

    2007-01-01

    On July 21, 2007, the world's most active volcano, Kilauea on Hawaii's Big Island, produced a new fissure eruption from the Pu'u O'o vent, which fed an open lava channel and lava flows toward the east. Access to the Kahauale'a Natural Area Reserve was closed due to fire and gas hazards. The two Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) nighttime thermal infrared images were acquired on August 21 and August 30, 2007. The brightest areas are the hottest lava flows from the recent fissure eruption. The large lava field extending down to the ocean is part of the Kupaianaha field. The most recent activity there ceased on June 20, but the lava is still hot and appears bright on the images. Magenta areas are cold lava flows from eruptions that occurred between 1969 and 2006. Clouds are cold (black) and the ocean is a uniform warm temperature, and light gray in color. These images are being used by volcanologists at the U.S. Geological Survey Hawaii Volcano Observatory to help monitor the progress of the lava flows.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra spacecraft. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud

  7. Evolution of Hang Son Doong, Vietnam: the largest cave passage in the world

    NASA Astrophysics Data System (ADS)

    Granger, D. E.

    2011-12-01

    Hang Son Doong (HSD), or Mountain River Cave, in the Quang Binh province of Vietnam, is considered to be the largest cave passage in the world. It has continuous widths near 100 m, and heights locally exceeding 200 m in a passage >6.5 km long. HSD is one of many extremely large caves in the tropical karst of the Ke Bang massif, a massively bedded limestone surrounded by metamorphic and clastic sedimentary rocks. Why are these caves so large? Is it because they are young and rapidly formed, or instead did they form slowly in exceptionally strong bedrock? To address these questions it is necessary to examine the style and timing of speleogenesis. Hang Son Doong was formed by an allogenic river sinking along a straight subvertical fault. The cave is formed largely within a brecciated fault zone that extends up to 100 m wide. A relict karst valley indicates that speleogenesis occurred due to wholesale capture of the surface river. The cave pattern is strongly fault-controlled with few branches, consistent with a primarily allogenic rather than distributed recharge. The cave is punctuated by two collapse dolines, one of which impedes discharge today. Massive slackwater deposits perhaps 100 m thick accumulated upstream of this doline collapse, and are overlain by corroded flowstone. To place some time constraints on speleogenesis, two samples were collected for cosmogenic nuclide burial dating with 26Al and 10Be in allogenic quartz. One was from the slackwater deposits, and another from a breccia-filled tributary passage at a fault junction. Both samples postdate cave formation, and can only be used to place minimum ages on the cave. Cosmogenic nuclide concentrations are very low, leading to large uncertainties in the ages. Nonetheless, the burial ages yield some important information. Initial results indicate that the slackwater deposits formed recently, during the past 300 ky. The filled passage, on the other hand, is much older and dates to the Pliocene. Re

  8. Exploring old caves

    NASA Astrophysics Data System (ADS)

    Luana Belli, Maria

    2015-04-01

    Quarries, caves and mines often contain fossils. During the '30s in Rome, the urban expansion needs for building materials such as gravel, sand and clay were extracted from quarries that surrounded the city. One of these quarries in particular, in the area of Saccopastore (Nomentana area 3 km from the University Sapienza Roma) returned an ancient human fossil skull belonging to a Neanderthal (most likely a female) who lived in Latium about 120,000 years ago. Detailed studies of this fossil were carried out by Sergio Sergi, the son of the founder of the Museum of Anthropology in Rome, Giuseppe Sergi. The museum was founded in 1884 and was later transferred to the University City (1934) where it is still located. Professor Maria Luana Belli, a science teacher in the Liceo Scientifico "G. Keplero" is a volunteer and collaborator with the Museum "G. Sergi", and she and her students retrace the places of the discovery on the trail of the Neanderthals, for understanding the evolution of the territory in a perspective of interdisciplinary teaching.

  9. Basaltic caves at Craters of the Moon National Monument and Preserve as analogs for Mars

    NASA Astrophysics Data System (ADS)

    Hinman, N. W.; Richardson, C. D.; McHenry, L.; Scott, J. R.

    2010-12-01

    Basaltic caves and lava tubes offer stable physicochemical conditions for formation of secondary minerals. Such features, putatively observed on Mars, intercept groundwater to weather country rock, leading to formation of secondary minerals. Further, caves are stable environments to search for evidence of past life, as they could offer protection from the oxidizing martian atmosphere. Searching for signs of life in a cave that could protect bio/organic compounds would preclude the need for risky drilling on Mars. Craters of the Moon National Monument (COM) offers an opportunity to study caves in Holocene iron-rich basalt flows to characterize secondary mineral deposits and search for organic compounds associated with secondary minerals; COM basalts are a good analog for martian basalts because of their high iron but other elements are higher at COM than on Mars. The Blue Dragon flow (~2.1 ka) contains the majority of the accessible caves and lava tubes. Two types of secondary mineral deposits were observed in these caves: ceiling coatings and crack or floor precipitates. Hematite, silica, and calcite comprise ceiling coatings. The crack and floor precipitates are white, efflorescent deposits in cavities along cave walls and ceilings or in localized mounds on cave floors. The secondary minerals in crack and floor precipitates are mainly thenardite and mirabilite with some minor concentrations of trona and/or burkeite. Organic compounds were found associated with the efflorescent deposits. Formation of the deposits is likely due to chemical leaching of basalt by meteoritic water. To test this, fluids collected from the ceiling and walls of the caves were analyzed. Solutions were modeled with the geochemical code, PHREEQC. The model tracked composition as water evaporated. Selected minerals were allowed to precipitate as they became oversaturated. Among the first minerals to become oversaturated were quartz and calcite, which are observed in ceiling deposits. Iron

  10. Mapping Overburden and Cave Networks with Muons

    NASA Astrophysics Data System (ADS)

    Prettyman, T. H.; Titus, T. N.; Boston, P. J.; Koontz, S. L.; Miller, R. S.

    2015-10-01

    We describe the use of highly-penetrating muons produced by cosmic ray showers to measure overburden and image the rock formation around terrestrial/extraterrestrial caves, and implications for cave science, exploration, and habitation.

  11. Unique Biosignatures in Caves of All Lithologies

    NASA Astrophysics Data System (ADS)

    Boston, P. J.; Schubert, K. E.; Gomez, E.; Conrad, P. G.

    2015-10-01

    Unique maze-like microbial communities on cave surfaces on all lithologies all over the world are an excellent candidate biosignatures for life detection missions into caves and other extraterrestrial environments.

  12. LavaSIM: the effect of heat transfer in 3D on lava flow characteristics (Invited)

    NASA Astrophysics Data System (ADS)

    Fujita, E.

    2013-12-01

    Characteristics of lava flow are governed by many parameters like lava viscosity, effusion rate, ground topography, etc. The accuracy and applicability of lava flow simulation code is evaluated whether the numerical simulation can reproduce these features quantitatively, which is important from both strategic and scientific points of views. Many lava flow simulation codes are so far proposed, and they are classified into two categories, i.e., the deterministic and the probabilistic models. LavaSIM is one of the former category models, and has a disadvantage of time consuming. But LavaSIM can solves the equations of continuity, motion, energy by step and has an advantage in the calculation of three-dimensional analysis with solid-liquid two phase flow, including the heat transfer between lava, solidified crust, air, water and ground, and three-dimensional convection in liquid lava. In other word, we can check the detailed structure of lava flow by LavaSIM. Therefore, this code can produce both channeled and fan-dispersive flows. The margin of the flow is solidified by cooling and these solidified crusts control the behavior of successive lava flow. In case of a channel flow, the solidified margin supports the stable central main flow and elongates the lava flow distance. The cross section of lava flow shows that the liquid lava flows between solidified crusts. As for the lava extrusion flow rate, LavaSIM can include the time function as well as the location of the vents. In some cases, some parts of the solidified wall may be broken by the pressure of successive flow and/or re-melting. These mechanisms could characterize complex features of the observed lava flows at many volcanoes in the world. To apply LavaSIM to the benchmark tests organized by V-hub is important to improve the lava flow evaluation technique.

  13. Numerical modelling of impact crater formation associated with isolated lunar skylight candidates on lava tubes

    NASA Astrophysics Data System (ADS)

    Martellato, E.; Foing, B. H.; Benkhoff, J.

    2013-09-01

    Skylights are openings on subsurface voids as lava tubes and caves. Recently deep hole structures, possibly skylights, were discovered on lunar photo images by the JAXA SELenological and ENgineering Explorer (SELENE)-Kaguya mission, and successively confirmed by the NASA Lunar Reconnaissance Orbiter (LRO) mission. Vertical hole structures and possibly underlying subsurface voids have high potential as resources for scientific study, and future unmanned and manned activities on the Moon. One mechanism proposed for their formation is impact cratering. The collapse of craters is due to the back spallation phenomena on the rear surface of the lava tube roofs. Previous analysis in this topic was based on small-scales laboratory experiments. These have pointed out that (i) the target thickness-to-crater diameter ratio is 0.7, and (ii) the projectile diameter-to-target thickness ratio is 0.16, at the ballistic limit once extrapolated to planetary conditions.

  14. Factors controlling lava dome morphology

    NASA Technical Reports Server (NTRS)

    Fink, Jonathan; Bridges, Nathan; Griffiths, Ross

    1991-01-01

    Research suggests that variations in lava dome morphology on different planets will depend much more critically on local gravity and the style of eruption than on the magma composition, ambient temperature, or the relative roles of convective and radiative cooling. Eruption style in turn reflects differences in tectonic conditions and the ability of magma to exsolve volatiles. Observed crude correlations between silica content and calculated yield strengths for terrestrial lava flows and domes probably are do to differences in extrusion rate and volatile solubility, rather than intrinsic rheological properties. Thus, even after taking the known effect of gravity into account, observed differences in gross dome morphology on different planets cannot by themselves be directly related to composition. Additional information such as the distribution of surface textures and structures, or spectroscopic data will be needed to conclusively establish dome compositions.

  15. Cave Art: Reflections of Early Human Culture.

    ERIC Educational Resources Information Center

    Sullivan, Brother Nicholas

    1981-01-01

    Discusses Paleolithic and Neolithic cave art and artifacts, stressing the degree of intellectual ability exhibited by the creators of this art. Topics discussed include some misunderstandings about cave art intellect shown by cave artists and the use of light and color. (DS)

  16. Lava Flows around Olympus Mons

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    At first glance, this image of lava flows around the large scarp of Olympus Mons shows little contrast in surface materials due to dust cover, but a closer look reveals textures characteristic of the variable surface roughness associated with different lava flows in this region. The lobate edges of the flows are distinctive, and permit the discrimination of many overlapping individual flows. On small scales, the surfaces of some flows look wrinkly and ropy, indicating a relatively fluid type of lava flow referred to as pahoehoe. Other surfaces appear more rough and broken, and might be referred to as a'a flows, which have higher viscosities and effusion rates compared to pahoehoe flows. The surface textures of lava flows can thus sometimes be used for comparative purposes to infer lava viscosity and effusion rates. There is also a bright streak in the wind shadow of the impact crater in the lower left of the image where dust that settles onto the surface is not easily scoured away.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and

  17. Fish Assemblages of Mediterranean Marine Caves

    PubMed Central

    Bussotti, Simona; Di Franco, Antonio; Francour, Patrice; Guidetti, Paolo

    2015-01-01

    Fish assemblages associated with 14 marine caves and adjacent external rocky reefs were investigated at four Marine Protected Areas (MPAs) along the coasts of Italy. Within the caves sampling was carried out in different sub-habitats: walls, ceilings, bottoms and ends of caves. On the whole, 38 species were recorded inside the 14 caves investigated. Eighteen species were exclusively found inside the caves: they were mainly represented by speleophilic (i.e. species preferentially or exclusively inhabiting caves) gobids (e.g. Didogobius splechtnai) and nocturnal species (e.g. Conger conger). Forty-one species were censused outside, 20 of which were shared with cave habitats. Apogon imberbis was the most common fish found in all 14 caves investigated, followed by Thorogobius ephippiatus (recorded in 13 caves), and Diplodus vulgaris and Scorpaena notata (both censused in 12 caves). Distinct fish assemblages were found between external rocky reefs and the different cave sub-habitats. New data on the distribution of some speleophilic gobids were collected, showing the existence of a pool of species shared by marine caves on a large scale (i.e. hundreds of km). Considering the uniqueness of cave fishes (18 exclusive species and different assemblage structures), the inclusion of marine caves among the habitats routinely investigated for fish biodiversity monitoring could facilitate the achievement of more comprehensive inventories. Due to their contribution to local species diversity and the shelter they provide to species valuable for conservation, marine caves should be prioritized for their inclusion not only within future MPAs through the Mediterranean Sea, but also into larger management spatial planning. PMID:25875504

  18. Fragmentation Mechanisms Associated with Lacustrine Lava-Water Explosions

    NASA Astrophysics Data System (ADS)

    Fitch, E. P.; Fagents, S. A.; Thordarson, T.; Hamilton, C.

    2015-12-01

    Rootless cones form when degassed lava interacts explosively with water contained in the near-surface substrate, and represents an end-member system that can elucidate mechanisms of magma-water interactions due to the absence of primary degassing-induced fragmentation. The proportion of finely fragmented ejecta (i.e. ash), generated in rootless explosions, even if the volume is small relative to coarser ejecta, may contribute significantly to the explosion energy release. Explosive melt-water experiments indicate that the degree of melt-water mixing and energy release are proportional to the abundance of blocky grains, fragmented by brittle disintegration, which effectively contribute thermal energy to the explosive lava-water interaction. In order to determine the state of the lava at the point of ash-grade fragmentation in rootless explosions we examined grain morphology over the following size ranges: 0.5-0 ϕ (1.41-1 mm, very coarse ash), 1.5-2 ϕ (0.354-0.250 mm, medium ash), and 3.5-4 ϕ (0.088-0.062 mm, very fine ash). We found that rootless ash is composed of blocky, mossy, and fluidal grains with a minor component of aggregates (≤ 2%) and glassy shards (< 35%). Typically, (1) very coarse ash contains blocky (9-58%), mossy (8-36%) and fluidal (28-67%) grains only, (2) medium ash contains blocky (32-76%), mossy (9-39%) and fluidal (15-43%) grains with a minor abundance of glassy shards (≤ 8%), and (3) very fine ash is dominated by blocky clasts (53-80%), with lower shard (12-34%) and fluidal (4-24%) components. We observe that the abundance of fluidal grains decreases while the abundance of blocky grains increases with decreasing grain size. Also, the abundance of blocky grains decreases with increasing stratigraphic height, indicating that as rootless explosions progressed, brittle fragmentation of lava is less pronounced, suggesting that the efficiency of lava-water mixing dropped, most likely due to reduced availability of external water. However, we

  19. The probability of lava inundation at the proposed and existing Kulani prison sites

    USGS Publications Warehouse

    Kauahikaua, J.P.; Trusdell, F.A.; Heliker, C.C.

    1998-01-01

    The State of Hawai`i has proposed building a 2,300-bed medium-security prison about 10 km downslope from the existing Kulani medium-security correctional facility. The proposed and existing facilities lie on the northeast rift zone of Mauna Loa, which last erupted in 1984 in this same general area. We use the best available geologic mapping and dating with GIS software to estimate the average recurrence interval between lava flows that inundate these sites. Three different methods are used to adjust the number of flows exposed at the surface for those flows that are buried to allow a better representation of the recurrence interval. Probabilities are then computed, based on these recurrence intervals, assuming that the data match a Poisson distribution. The probability of lava inundation for the existing prison site is estimated to be 11- 12% in the next 50 years. The probability of lava inundation for the proposed sites B and C are 2- 3% and 1-2%, respectively, in the same period. The probabilities are based on estimated recurrence intervals for lava flows, which are approximately proportional to the area considered. The probability of having to evacuate the prison is certainly higher than the probability of lava entering the site. Maximum warning times between eruption and lava inundation of a site are estimated to be 24 hours for the existing prison site and 72 hours for proposed sites B and C. Evacuation plans should take these times into consideration.

  20. Accelerator 14C dates for early upper paleolithic (basal Aurignacian) at El Castillo Cave (Spain)

    USGS Publications Warehouse

    Valdes, V.C.; Bischoff, J.L.

    1989-01-01

    Three fragments of charcoal taken from different parts of the lowermost bed containing Aurignacian artifacts at El Castillo Cave yielded AMS dates of 37??7 (?? 1??8) ka bp, 38??5 (?? 1??8) ka bp, and 40??0 (?? 2??1) ka bp (average 38??7 ?? 1??9 ka bp). These dates are almost identical to new AMS dates from l'Arbreda cave in Catalunya on the same cultural horizon (average 38??5 ?? 1??0 ka bp) and are significantly older than the earliest dates for Aurignacian industries in the Aquitaine and in other parts of Central and Western Europe. ?? 1989.

  1. Emplacement of Long Lava Flows: Detailed Topography of the Carrizozo Basalt Lava Flow, New Mexico

    NASA Technical Reports Server (NTRS)

    Zimbelman, J. R; Johnston, A. K.

    2000-01-01

    The Carrizozo flow in south-central New Mexico was examined to obtain detailed topography for a long basaltic lava flow. This information will be helpful in evaluating emplacement models for long lava flows.

  2. Utility of Lava Tubes on Other Worlds

    NASA Astrophysics Data System (ADS)

    Walden, Bryce E.; Billings, T. L.; York, Cheryl Lynn; Gillett, S. L.; Herbert, M. V.

    1998-01-01

    On Mars, as on Earth, lava tubes are found in the extensive lava fields associated with shield volcanism. Lunar lava-tube traces are located near mare-highland boundaries, giving access to a variety of minerals and other resources, including steep slopes, prominent heights for local area communications and observation, large-surface areas in shade, and abundant basalt plains suitable for landing sites, mass-drivers, surface transportation, regolith harvesting, and other uses. Methods for detecting lava tubes include visual observations of collapse trenches and skylights, ground-penetrating radar, gravimetry, magnetometry, seismography, atmospheric effects, laser, lidar, infrared, and human or robotic exploration.

  3. What factors control superficial lava dome explosivity?

    PubMed Central

    Boudon, Georges; Balcone-Boissard, Hélène; Villemant, Benoît; Morgan, Daniel J.

    2015-01-01

    Dome-forming eruption is a frequent eruptive style and a major hazard on numerous volcanoes worldwide. Lava domes are built by slow extrusion of degassed, viscous magma and may be destroyed by gravitational collapse or explosion. The triggering of lava dome explosions is poorly understood: here we propose a new model of superficial lava-dome explosivity based upon a textural and geochemical study (vesicularity, microcrystallinity, cristobalite distribution, residual water contents, crystal transit times) of clasts produced by key eruptions. Superficial explosion of a growing lava dome may be promoted through porosity reduction caused by both vesicle flattening due to gas escape and syn-eruptive cristobalite precipitation. Both processes generate an impermeable and rigid carapace allowing overpressurisation of the inner parts of the lava dome by the rapid input of vesiculated magma batches. The relative thickness of the cristobalite-rich carapace is an inverse function of the external lava dome surface area. Explosive activity is thus more likely to occur at the onset of lava dome extrusion, in agreement with observations, as the likelihood of superficial lava dome explosions depends inversely on lava dome volume. This new result is of interest for the whole volcanological community and for risk management. PMID:26420069

  4. What factors control superficial lava dome explosivity?

    NASA Astrophysics Data System (ADS)

    Boudon, Georges; Balcone-Boissard, Hélène; Villemant, Benoît; Morgan, Daniel J.

    2015-09-01

    Dome-forming eruption is a frequent eruptive style and a major hazard on numerous volcanoes worldwide. Lava domes are built by slow extrusion of degassed, viscous magma and may be destroyed by gravitational collapse or explosion. The triggering of lava dome explosions is poorly understood: here we propose a new model of superficial lava-dome explosivity based upon a textural and geochemical study (vesicularity, microcrystallinity, cristobalite distribution, residual water contents, crystal transit times) of clasts produced by key eruptions. Superficial explosion of a growing lava dome may be promoted through porosity reduction caused by both vesicle flattening due to gas escape and syn-eruptive cristobalite precipitation. Both processes generate an impermeable and rigid carapace allowing overpressurisation of the inner parts of the lava dome by the rapid input of vesiculated magma batches. The relative thickness of the cristobalite-rich carapace is an inverse function of the external lava dome surface area. Explosive activity is thus more likely to occur at the onset of lava dome extrusion, in agreement with observations, as the likelihood of superficial lava dome explosions depends inversely on lava dome volume. This new result is of interest for the whole volcanological community and for risk management.

  5. DELINEATING KARST RECHARGE AREAS AT ONONDAGA CAVE STATE PARK

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Onondaga Cave State Park is located in the north central portion of the Ozarks near Leasburg, Missouri. The park is known for two extensive cave systems, Onondaga Cave and Cathedral Cave. Both of these cave systems have active streams (1-2 cfs at baseflow) which have unknown recharge areas. As a man...

  6. 36 CFR 290.4 - Confidentiality of cave location information.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Confidentiality of cave... AGRICULTURE CAVE RESOURCES MANAGEMENT § 290.4 Confidentiality of cave location information. (a) Information... location of a significant cave or a cave nominated for designation, unless the authorized...

  7. 36 CFR 290.4 - Confidentiality of cave location information.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Confidentiality of cave... AGRICULTURE CAVE RESOURCES MANAGEMENT § 290.4 Confidentiality of cave location information. (a) Information... location of a significant cave or a cave nominated for designation, unless the authorized...

  8. 36 CFR 290.4 - Confidentiality of cave location information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Confidentiality of cave... AGRICULTURE CAVE RESOURCES MANAGEMENT § 290.4 Confidentiality of cave location information. (a) Information... location of a significant cave or a cave nominated for designation, unless the authorized...

  9. 36 CFR 290.4 - Confidentiality of cave location information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Confidentiality of cave... AGRICULTURE CAVE RESOURCES MANAGEMENT § 290.4 Confidentiality of cave location information. (a) Information... location of a significant cave or a cave nominated for designation, unless the authorized...

  10. 36 CFR 290.4 - Confidentiality of cave location information.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Confidentiality of cave... AGRICULTURE CAVE RESOURCES MANAGEMENT § 290.4 Confidentiality of cave location information. (a) Information... location of a significant cave or a cave nominated for designation, unless the authorized...

  11. The Stability of Lava Lakes

    NASA Astrophysics Data System (ADS)

    Witham, F.; Llewellin, E. W.; Woods, A. W.; Gladstone, C.

    2007-12-01

    Lava lakes may exhibit complex cycles of filling and draining on time-scales of hours to weeks. Such activity is recorded at Pu`u `O`o, Hawai`i. Other examples, e.g. Erta Ale in Ethiopia, do not display these draining episodes; instead an 'equilibrium' system is observed in which the lake may persist for years. We present the results of a theoretical and experimental investigation of lava lakes and identify behavioural regimes distinguished by system geometry and gas content. Laboratory analogue modelling shows that even a simple conduit-lake system, driven by a constant gas flux, can display steady-state equilibrium or cyclic behaviour, depending on the rate of gas flux. A theoretical approach to the same system captures this range of behaviour. By testing the stability of an 'equilibrium' lake to small perturbations, we show that the degree of stability is controlled by the ratio of conduit to lake areas, and the gas volume fraction at the top of the conduit. Despite the simplicity of the modelled system, a rich spectrum of behaviour is found. The model predicts that a stable system must drain over time. This implies that lakes which exhibit ongoing degassing for years or decades (e.g. Erta Ale) either must have an exogenous supply of gas bubbles from depth, or an effective conduit convection mechanism must exist.

  12. Propagation style controls lava-snow interactions

    NASA Astrophysics Data System (ADS)

    Edwards, B. R.; Belousov, A.; Belousova, M.

    2014-12-01

    Understanding interactions between volcanic eruptions and the cryosphere (a.k.a. glaciovolcanism) is important for climate reconstructions as well as for hazard mitigation at ice-clad volcanoes. Here we present unique field observations of interactions between snowpack and advancing basaltic lava flows during the 2012-13 eruption at Tolbachik volcano, Kamchatka, Russia. Our observations show that lava-snow heat transfer is slow, and that styles of lava propagation control snowpack responses. ‧A‧a and sheet lava flows advance in a rolling caterpillar-track motion on top of the rigid, snowpack substrate with minor lava-snow interaction. In contrast, pahoehoe lava propagates by inflation of lobes beneath/inside the snowpack, producing rigorous lava-snow interaction via meltwater percolation down into the incandescent lava causing production of voluminous steam, rapid surface cooling and thermal shock fragmentation. The textures produced by pahoehoe-snowpack interactions are distinctive and, where observed at other sites, can be used to infer syn-eruption seasonality and climatic conditions.

  13. Propagation style controls lava-snow interactions.

    PubMed

    Edwards, B R; Belousov, A; Belousova, M

    2014-01-01

    Understanding interactions between volcanic eruptions and the cryosphere (a.k.a. glaciovolcanism) is important for climate reconstructions as well as for hazard mitigation at ice-clad volcanoes. Here we present unique field observations of interactions between snowpack and advancing basaltic lava flows during the 2012-13 eruption at Tolbachik volcano, Kamchatka, Russia. Our observations show that lava-snow heat transfer is slow, and that styles of lava propagation control snowpack responses. 'A'a and sheet lava flows advance in a rolling caterpillar-track motion on top of the rigid, snowpack substrate with minor lava-snow interaction. In contrast, pahoehoe lava propagates by inflation of lobes beneath/inside the snowpack, producing rigorous lava-snow interaction via meltwater percolation down into the incandescent lava causing production of voluminous steam, rapid surface cooling and thermal shock fragmentation. The textures produced by pahoehoe-snowpack interactions are distinctive and, where observed at other sites, can be used to infer syn-eruption seasonality and climatic conditions. PMID:25514031

  14. Emplacement of Xenolith Nodules in the Kaupulehu Lava Flow, Hualalai Volcano, Hawaii

    NASA Technical Reports Server (NTRS)

    Guest, J. E.; Spudis, P. D.; Greeley, R.; Taylor, G. J.; Baloga, S. M.

    1995-01-01

    The basaltic Kaupulehu 1800-1801 lava flow of Hualalai Volcano, Hawaii contains abundant ultramafic xenoliths. Many of these xenoliths occur as bedded layers of semi-rounded nodules, each thinly coated with a veneer (typically 1 mm thick) of lava. The nodule beds are analogous to cobble deposits of fluvial sedimentary systems. Although several mechanisms have been proposed for the formation of the nodule beds, it was found that, at more than one locality, the nodule beds are overbank levee deposits. The geological occurrence of the nodules, certain diagnostic aspects of the flow morphology and consideration of the inferred emplacement process indicate that the Kaupulehu flow had an exceptionally low viscosity on eruption and that the flow of the lava stream was extremely rapid, with flow velocities of at least 10 m/s (more than 40 km/h. This flow is the youngest on Hualalai Volcano and future eruptions of a similar type would pose considerable hazard to life as well as property.

  15. Internal fabric development in complex lava domes

    NASA Astrophysics Data System (ADS)

    Závada, Prokop; Kratinová, Zuzana; Kusbach, Vladimír; Schulmann, Karel

    2009-03-01

    Viscous lava extrusions were modeled using plaster of Paris with admixed magnetite dust which served as a tracer of the internal anisotropy of magnetic susceptibility fabric in model lava domes. Used analogue material showed pseudoplastic behavior and yield strength level proportional to increasing mixing ratio of plaster powder and water. A series of models ranging from simple gravity flows to complex lava domes showing combined endogenous and exogenous growth were created by intrusion of plaster into a sandbox. The similarity of model bodies is compared with natural lava domes on the basis of dynamic scaling analysis. Growth dynamics, exogenous growth and internal fabric development in natural lava domes is critically discussed using the experimental results.

  16. Using CAVE technology for functional genomics studies.

    PubMed

    Sensen, Christoph W

    2002-01-01

    We have established the first Java 3D-enabled CAVE (CAVE automated virtual environment). The Java application programming interface allows the complete separation of the program development from the program execution, opening new application domains for the CAVE technology. Programs can be developed on any Java-enabled computer platform, including Windows, Macintosh, and Linux workstations, and executed in the CAVE without modification. The introduction of Java, one of the major programming environments for bioinformatics, into the CAVE environment allows the rapid development applications for genome research, especially for the analysis of the spatial and temporal data that are being produced by functional genomics experiments. The CAVE technology will play a major role in the modeling of biological systems that is necessary to understand how these systems are organized and how they function. PMID:12614491

  17. From Cave Walls to Clay Images

    ERIC Educational Resources Information Center

    Stone, Julie

    2004-01-01

    About 15,000 BC, the bison and other animals roamed the land and cave people, in their spare time, found colorful, chalky rocks with which to play. Over the course of time, they found that the chalky rocks would rub off on the cave walls, thus cave paintings and the pursuit of art was born. This article describes one fourth-grade classroom's…

  18. Cave of the Astronomers at Xochicalco

    NASA Astrophysics Data System (ADS)

    Lebeuf, Arnold

    The chimney built in the roof of the artificial large cave at Xochicalco, known as "Cave of the astronomers", has been interpreted as a solar zenithal observation tube. Nevertheless, different elements and especially the latitude of the site itself led the author to present a lunar hypothesis. Precise measurements of the impact of light inside the cave show the degree of precision that can be obtained in this camera obscura.

  19. Computer Assisted Virtual Environment - CAVE

    SciTech Connect

    Erickson, Phillip; Podgorney, Robert; Weingartner, Shawn; Whiting, Eric

    2014-01-14

    Research at the Center for Advanced Energy Studies is taking on another dimension with a 3-D device known as a Computer Assisted Virtual Environment. The CAVE uses projection to display high-end computer graphics on three walls and the floor. By wearing 3-D glasses to create depth perception and holding a wand to move and rotate images, users can delve into data.

  20. Computer Assisted Virtual Environment - CAVE

    ScienceCinema

    Erickson, Phillip; Podgorney, Robert; Weingartner, Shawn; Whiting, Eric

    2014-06-09

    Research at the Center for Advanced Energy Studies is taking on another dimension with a 3-D device known as a Computer Assisted Virtual Environment. The CAVE uses projection to display high-end computer graphics on three walls and the floor. By wearing 3-D glasses to create depth perception and holding a wand to move and rotate images, users can delve into data.

  1. Lava Flows near Pavonis Mons

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 29 September 2003

    The Tharsis province of Mars was the main center of volcanism on the planet. This THEMIS visible image shows lava flows that appear to be originating from linear vents just east of Pavonis Mons, the middle of the three giant Tharsis volcanoes. A large volume of lava also appears to be flowing out of a smaller series of pits on the far eastern side of the image, towards the bottom.

    Image information: VIS instrument. Latitude 2.1, Longitude 253.1 East (106.9 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  2. Lava Flows and Surface Textures

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 17 November 2003

    The striking surface textures observed in this THEMIS image taken south of the volcano Arsia Mons are from different erupted lava flows. Many flows extend for several kilometers and are observed to crosscut previous existing flows. The variable surface textures could result from older and younger lava flows, differences in the composition and vessicularity of magma, or different degrees of weathering.

    Image information: VIS instrument. Latitude -20.4, Longitude 242.2 East (117.8 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  3. Dynamics of the Mount Nyiragongo lava lake

    NASA Astrophysics Data System (ADS)

    Burgi, P.-Y.; Darrah, T. H.; Tedesco, D.; Eymold, W. K.

    2014-05-01

    The permanent and presently rising lava lake at Mount Nyiragongo constitutes a major potential geological hazard to the inhabitants of the Virunga volcanic region in the Democratic Republic of Congo (DRC) and Rwanda. Based on two field campaigns in June 2010 and 2011, we estimate the lava lake level from the southeastern crater rim (~400 m diameter) and lava lake area (~46,550 m2), which constrains, respectively, the lava lake volume (~9 × 106 m3) and volume flow rate needed to keep the magma in a molten state (0.6 to 3.5 m3 s-1). A bidirectional magma flow model, which includes the characterization of the conduit diameter and funnel-shaped lava lake geometry, is developed to constrain the amount of magma intruded/emplaced within the magmatic chamber and rift-related structures that extend between Mount Nyiragongo's volcanic center and the city of Goma, DRC, since Mount Nyiragongo's last eruption (17 January 2002). Besides matching field data of the lava lake level covering the period 1977 to 2002, numerical solutions of the model indicate that by 2022, 20 years after the January 2002 eruption, between 300 and 1700 × 106 m3 (0.3 to 1.7 km3) of magma could have intruded/emplaced underneath the edifice, and the lava lake volume could exceed 15 × 106 m3.

  4. Lava flow texture LiDAR signatures

    NASA Astrophysics Data System (ADS)

    Whelley, P.; Garry, W. B.; Scheidt, S. P.; Irwin, R. P., III; Fox, J.; Bleacher, J. E.; Hamilton, C. W.

    2014-12-01

    High-resolution point clouds and digital elevation models (DEMs) are used to investigate lava textures on the Big Island of Hawaii. An experienced geologist can distinguish fresh or degraded lava textures (e.g., blocky, a'a and pahoehoe) visually in the field. Lava texture depends significantly on eruption conditions, and it is therefore instructive, if accurately determined. In places where field investigations are prohibitive (e.g., Mercury, Venus, the Moon, Mars, Io and remote regions on Earth) lava texture must be assessed from remote sensing data. A reliable method for differentiating lava textures in remote sensing data remains elusive. We present preliminary results comparing properties of lava textures observed in airborne and terrestrial Light Detection and Ranging (LiDAR) data. Airborne data, in this study, were collected in 2011 by Airborne 1 Corporation and have a ~1m point spacing. The authors collected the terrestrial data during a May 2014 field season. The terrestrial scans have a heterogeneous point density. Points close to the scanner are 1 mm apart while 200 m in the distance points are 10 cm apart. Both platforms offer advantages and disadvantages beyond the differences in scale. Terrestrial scans are a quantitative representation of what a geologist sees "on the ground". Airborne scans are a point of view routinely imaged by other remote sensing tools, and can therefore be quickly compared to complimentary data sets (e.g., spectral scans or image data). Preliminary results indicate that LiDAR-derived surface roughness, from both platforms, is useful for differentiating lava textures, but at different spatial scales. As all lava types are quite rough, it is not simply roughness that is the most advantageous parameter; rather patterns in surface roughness can be used to differentiate lava surfaces of varied textures. This work will lead to faster and more reliable volcanic mapping efforts for planetary exploration as well as terrestrial

  5. Modeling and analysis of caves using voxelization

    NASA Astrophysics Data System (ADS)

    Szeifert, Gábor; Szabó, Tivadar; Székely, Balázs

    2014-05-01

    Although there are many ways to create three dimensional representations of caves using modern information technology methods, modeling of caves has been challenging for researchers for a long time. One of these promising new alternative modeling methods is using voxels. We are using geodetic measurements as an input for our voxelization project. These geodetic underground surveys recorded the azimuth, altitude and distance of corner points of cave systems relative to each other. The diameter of each cave section is estimated from separate databases originating from different surveys. We have developed a simple but efficient method (it covers more than 99.9 % of the volume of the input model on the average) to convert these vector-type datasets to voxels. We have also developed software components to make visualization of the voxel and vector models easier. Since each cornerpoint position is measured relative to another cornerpoints positions, propagation of uncertainties is an important issue in case of long caves with many separate sections. We are using Monte Carlo simulations to analyze the effect of the error of each geodetic instrument possibly involved in a survey. Cross-sections of the simulated three dimensional distributions show, that even tiny uncertainties of individual measurements can result in high variation of positions that could be reduced by distributing the closing errors if such data are available. Using the results of our simulations, we can estimate cave volume and the error of the calculated cave volume depending on the complexity of the cave. Acknowledgements: the authors are grateful to Ariadne Karst and Cave Exploring Association and State Department of Environmental and Nature Protection of the Hungarian Ministry of Rural Development, Department of National Parks and Landscape Protection, Section Landscape and Cave Protection and Ecotourism for providing the cave measurement data. BS contributed as an Alexander von Humboldt Research

  6. Early life recorded in archean pillow lavas.

    PubMed

    Furnes, Harald; Banerjee, Neil R; Muehlenbachs, Karlis; Staudigel, Hubert; de Wit, Maarten

    2004-04-23

    Pillow lava rims from the Mesoarchean Barberton Greenstone Belt in South Africa contain micrometer-scale mineralized tubes that provide evidence of submarine microbial activity during the early history of Earth. The tubes formed during microbial etching of glass along fractures, as seen in pillow lavas from recent oceanic crust. The margins of the tubes contain organic carbon, and many of the pillow rims exhibit isotopically light bulk-rock carbonate delta13C values, supporting their biogenic origin. Overlapping metamorphic and magmatic dates from the pillow lavas suggest that microbial life colonized these subaqueous volcanic rocks soon after their eruption almost 3.5 billion years ago. PMID:15105498

  7. Bed bugs.

    PubMed

    Foulke, Galen T; Anderson, Bryan E

    2014-09-01

    The term bed bug is applied to 2 species of genus Cimex: lectularius describes the common or temperate bed bug, and hemipterus its tropical cousin. Cimex lectularius is aptly named; its genus and species derive from the Latin words for bug and bed, respectively. Though the tiny pest is receiving increased public attention and scrutiny, the bed bug is hardly a new problem. PMID:25577850

  8. Lava Flows in IR Color

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released August 5, 2004 This image shows two representations of the same infra-red image covering a portion of the Solis Planum region, southeast of the Tharsis volcanoes. On the left is a grayscale image showing surface temperature, and on the right is a false-color composite made from 3 individual THEMIS bands. The false-color image is colorized using a technique called decorrelation stretch (DCS), which emphasizes the spectral differences between the bands to highlight compositional variations.

    Multiple layers of lava flows in this region show temperature differences, as well as some potential compositional differences. The temperature variations between these flows are likely caused by differences in their surface texture. The compositional variation could be due to differences in the make-up of the lava when it erupted onto the surface or might only reflect differences in the amount of dust covering these flows.

    Image information: IR instrument. Latitude -30.1, Longitude 275.9 East (84.1 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is

  9. Gravity for Detecting Caves: Airborne and Terrestrial Simulations Based on a Comprehensive Karstic Cave Benchmark

    NASA Astrophysics Data System (ADS)

    Braitenberg, Carla; Sampietro, Daniele; Pivetta, Tommaso; Zuliani, David; Barbagallo, Alfio; Fabris, Paolo; Rossi, Lorenzo; Fabbri, Julius; Mansi, Ahmed Hamdi

    2016-04-01

    Underground caves bear a natural hazard due to their possible evolution into a sink hole. Mapping of all existing caves could be useful for general civil usages as natural deposits or tourism and sports. Natural caves exist globally and are typical in karst areas. We investigate the resolution power of modern gravity campaigns to systematically detect all void caves of a minimum size in a given area. Both aerogravity and terrestrial acquisitions are considered. Positioning of the gravity station is fastest with GNSS methods the performance of which is investigated. The estimates are based on a benchmark cave of which the geometry is known precisely through a laser-scan survey. The cave is the Grotta Gigante cave in NE Italy in the classic karst. The gravity acquisition is discussed, where heights have been acquired with dual-frequency geodetic GNSS receivers and Total Station. Height acquisitions with non-geodetic low-cost receivers are shown to be useful, although the error on the gravity field is larger. The cave produces a signal of -1.5 × 10-5 m/s2, with a clear elliptic geometry. We analyze feasibility of airborne gravity acquisitions for the purpose of systematically mapping void caves. It is found that observations from fixed wing aircraft cannot resolve the caves, but observations from slower and low-flying helicopters or drones do. In order to detect the presence of caves the size of the benchmark cave, systematic terrestrial acquisitions require a density of three stations on square 500 by 500 m2 tiles. The question has a large impact on civil and environmental purposes, since it will allow planning of urban development at a safe distance from subsurface caves. The survey shows that a systematic coverage of the karst would have the benefit to recover the position of all of the greater existing void caves.

  10. Management issues in a Tasmanian tourist cave: potential microclimatic impacts of cave modifications.

    PubMed

    Russell, Mick J; MacLean, Victoria L

    2008-05-01

    Caves can be difficult to navigate and often require physical modification to allow easy access for visitors. Single entrance caves double the access impact of each visitor. Visitors in tourist caves have direct physical effects such as the introduction of concrete and steel structures; transport of mud, dust, and nutrients; installation of lights and the exhalation of water vapour and carbon dioxide into the air. Indirect physical effects include alteration of the microclimate, both through physical modifications that change the ventilation regime and through the presence of visitors leading to changes in temperature, humidity and CO2 within the cave environment. Anthropomorphic changes to cave physical environments to aid access or to reduce backtracking can have adverse effects on the internal microclimate of cave systems with subsequent changes to the cave environment affecting the quality of decorations and cave art and the diversity of cave fauna. Although often stated that caves operate at or near a constant temperature, closer examination indicates that cave temperatures are neither static nor constant. The degree of variation depends largely on the structure and physical characteristics of the cave. Air temperature and humidity gradients between the inside and outside cave environment can result in air density differences, which create airflow, which will in turn affect the cave microclimate. As part of the development of a management framework for King Solomons Cave, Tasmania, a study of the microclimate was carried out on behalf of Tasmanian Parks and Wildlife Service. Analysis of the variables showed significant differences in air temperature within each site and between sites. These differences range from 4 degrees C variation at one site to 0 degrees C at another site. The data were used to model potential airflow between the cave and the external environment. Results indicate that part of the cave is dominated by airflow between the chimney and the

  11. The conservation of Britain's limestone cave resource

    NASA Astrophysics Data System (ADS)

    Hardwick, P.; Gunn, J.

    1996-10-01

    Limestone caves are an important scientific and recreational resource in Britain. During the mid- to late 1970s, cavers and statutory conservation bodies cooperated in a review of cave resources which resulted in the designation of 48 caves or cave areas as Sites of Special Scientific Interest (SSSI). During the same period, the Wildlife and Countryside Act 1981 was introduced to provide more effective planning controls on activities such as agriculture carried out within SSSI boundaries. In one case, at Priddy in the Mendip Hills of Somerset, landowners prevented access to a number of caves in protest over the new, tougher restrictions on agriculture. Faced with the closure, and perceiving that their recreational use of caves might also be controlled, local cavers joined the landowners in opposing the proposals for SSSI designation. As a result the proposals were reviewed, three caves were excluded from the site and controls on the remaining area were relaxed. The case emphasized a need for an effective system to take account of all factors affecting cave conservation, a need which has led to a more constructive dialogue between nature conservation bodies, caver organizations and other interested parties.

  12. Lava Tube Exploration Robot and Payload Development

    NASA Astrophysics Data System (ADS)

    Kelly, H. S.; Parness, A. J.; Boston, P. J.

    2015-10-01

    Merging science and engineering from the ground up to co-develop a comprehensive instrument/robot package for exploration of and scientific data collection within lava tubes that target analog sites on the Moon and Mars.

  13. Geomagnetic polarity zones for icelandic lavas

    USGS Publications Warehouse

    Dagley, P.; Wilson, R.L.; Ade-Hall, J. M.; Walker, G.P.L.; Haggerty, S.E.; Sigurgeirsson, T.; Watkins, N.D.; Smith, P.J.; Edwards, J.; Grasty, R.L.

    1967-01-01

    Analysis of cores collected from a sequence of lavas in Eastern Iceland has made possible an accurate calculation of the average rate of reversal of the Earth's magnetic field. ?? 1967 Nature Publishing Group.

  14. Geomorphic Classification of Lava Flows on Io

    NASA Technical Reports Server (NTRS)

    Pieri, D. C.

    1985-01-01

    The lava flows on Io are classified into the following categories: broad, filamental, digitate, intercalated, sheet, and contained. Each classification is described according to flow distribution, geomorphology, color, thickness, and source.

  15. Lunar lava tube radiation safety analysis.

    PubMed

    De Angelis, Giovanni; Wilson, J W; Clowdsley, M S; Nealy, J E; Humes, D H; Clem, J M

    2002-12-01

    For many years it has been suggested that lava tubes on the Moon could provide an ideal location for a manned lunar base, by providing shelter from various natural hazards, such as cosmic radiation, meteorites, micrometeoroids, and impact crater ejecta, and also providing a natural environmental control, with a nearly constant temperature, unlike that of the lunar surface showing extreme variation in its diurnal cycle. An analysis of radiation safety issues on lunar lava tubes has been performed by considering radiation from galactic cosmic rays (GCR) and Solar Particle Events (SPE) interacting with the lunar surface, modeled as a regolith layer and rock. The chemical composition has been chosen as typical of the lunar regions where the largest number of lava tube candidates are found. Particles have been transported all through the regolith and the rock, and received particles flux and doses have been calculated. The radiation safety of lunar lava tubes environments has been demonstrated. PMID:12793728

  16. Lunar lava tube radiation safety analysis

    NASA Technical Reports Server (NTRS)

    De Angelis, Giovanni; Wilson, J. W.; Clowdsley, M. S.; Nealy, J. E.; Humes, D. H.; Clem, J. M.

    2002-01-01

    For many years it has been suggested that lava tubes on the Moon could provide an ideal location for a manned lunar base, by providing shelter from various natural hazards, such as cosmic radiation, meteorites, micrometeoroids, and impact crater ejecta, and also providing a natural environmental control, with a nearly constant temperature, unlike that of the lunar surface showing extreme variation in its diurnal cycle. An analysis of radiation safety issues on lunar lava tubes has been performed by considering radiation from galactic cosmic rays (GCR) and Solar Particle Events (SPE) interacting with the lunar surface, modeled as a regolith layer and rock. The chemical composition has been chosen as typical of the lunar regions where the largest number of lava tube candidates are found. Particles have been transported all through the regolith and the rock, and received particles flux and doses have been calculated. The radiation safety of lunar lava tubes environments has been demonstrated.

  17. Taylor instability in rhyolite lava flows

    NASA Technical Reports Server (NTRS)

    Baum, B. A.; Krantz, W. B.; Fink, J. H.; Dickinson, R. E.

    1989-01-01

    A refined Taylor instability model is developed to describe the surface morphology of rhyolite lava flows. The effect of the downslope flow of the lava on the structures resulting from the Taylor instability mechanism is considered. Squire's (1933) transformation is developed for this flow in order to extend the results to three-dimensional modes. This permits assessing why ridges thought to arise from the Taylor instability mechanism are preferentially oriented transverse to the direction of lava flow. Measured diapir and ridge spacings for the Little and Big Glass Mountain rhyolite flows in northern California are used in conjunction with the model in order to explore the implications of the Taylor instability for flow emplacement. The model suggests additional lava flow features that can be measured in order to test whether the Taylor instability mechanism has influenced the flows surface morphology.

  18. Mysterious Lava Mineral on Mars

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This graph or spectrum captured by the Moessbauer spectrometer onboard the Mars Exploration Rover Spirit shows the presence of three different iron-bearing minerals in the soil at the rover's landing site. One of these minerals has been identified as olivine, a shiny green rock commonly found in lava on Earth. The other two have yet to be pinned down. Scientists were puzzled by the discovery of olivine because it implies the soil consists at least partially of ground up rocks that have not been weathered or chemically altered. The black line in this graph represents the original data; the three colored regions denote individual minerals and add up to equal the black line.

    The Moessbauer spectrometer uses two pieces of radioactive cobalt-57, each about the size of pencil erasers, to determine with a high degree of accuracy the composition and abundance of iron-bearing minerals in martian rocks and soil. It is located on the rover's instrument deployment device, or 'arm.'

  19. Geochemical aspects of some Japanese lavas.

    NASA Technical Reports Server (NTRS)

    Philpotts, J. A.; Martin, W.; Schnetzler, C. C.

    1971-01-01

    K, Rb, Sr, Ba and rare-earth concentrations in some Japanese lavas have been determined by mass-spectrometric stable-isotope dilution. The samples fall into three rare-earth groups corresponding to tholeiitic, high alumina and alkali basalts. Japanese tholeiites have trace element characteristics similar to those of oceanic ridge tholeiites except for distinctly higher relative concentrations of Ba. Japanese lavas may result from various degrees of partial fusion of amphibole eclogite.

  20. Investigating lava-substrate interactions through flow experiments with syrup, wax, and molten basalt

    NASA Astrophysics Data System (ADS)

    Rumpf, M. E.; Lev, E.

    2015-12-01

    Among the many factors influencing the complex process of lava flow emplacement, the interaction with the substrate onto which flow is emplaced plays a central role. Lava flows are rarely emplaced onto smooth or regular surfaces. For example, at Kīlauea Volcano, Hawai'i, lava flows regularly flow over solid rock, vegetation, basaltic or silica sand, and man-made materials, including asphalt and concrete. In situ studies of lava-substrate interactions are inherently difficult, and often dangerous, to carry-out, requiring the design of controllable laboratory experiments. We investigate the effects of substrate grain size, cohesion, and roughness on flow mobility and morphology through a series of flow experiments using analog materials and molten basalt. We have developed a series of experiments that allow for adjustable substrate parameters and analyze their effects on lava flow emplacement. The first set of experiments are performed at the Fluids Mechanics Laboratory at the Lamont-Doherty Earth Observatory and focus on two analog materials: polyethylene glycol (PEG), a commercially available wax, and corn syrup. The fluids were each extruded onto a series of scaled substrate beds to replicate the emplacement of lava in a natural environment. Preliminary experiments demonstrated that irregular topography, particularly topography with a height amplitude similar to that of the flow itself, can affect flow morphology, width, and velocity by acting as local barriers or culverts to the fluid. This is expected from observations of fluid flow in natural environments. A follow-up set of experiments will be conducted in Fall 2015 at the Syracuse University (SU) Lava Project Lab. In this set, we will pour molten basalt directly onto a series of substrates representing natural environments found on the Earth and other rocky bodies in the Solar System. These experiments will allow for analysis of the effects of basaltic composition and high temperatures on lava-substrate heat

  1. Keck Geology Consortium Lava Project: Undergraduate Research Linking Natural and Experimental Basaltic Lava Flows

    NASA Astrophysics Data System (ADS)

    Karson, J. A.; Hazlett, R. W.; Wysocki, R.; Bromfield, M. E.; Browne, N. C.; Davis, N. C.; Pelland, C. G.; Rowan, W. L.; Warner, K. A.

    2014-12-01

    Undergraduate students in the Keck Geology Consortium Lava Project participated in a month-long investigation of features of basaltic lava flows from two very different perspectives. The first half of the project focused on field relations in basaltic lava flows from the 1984 Krafla Fires eruption in northern Iceland. Students gained valuable experience in the collection of observations and samples in the field leading to hypotheses for the formation of selected features related to lava flow dynamics. Studies focused on a wide range of features including: morphology and heat loss in lava tubes (pyroducts), growth and collapse of lava ponds and overflow deposits, textural changes of lava falls (flow over steep steps), spaced spatter cones from flows over wet ground, and anisotropy of magnetic susceptibility related to flow kinematics. In the second half of the program students designed, helped execute, documented, and analyzed features similar to those they studied in the field with large-scale (50-250 kg) basaltic lava flows created in the Syracuse University Lava Project (http://lavaproject.syr.edu). Data collected included video from multiple perspectives, infrared thermal (FLIR) images, still images, detailed measurements of flow dimensions and rates, and samples for textural and magnetic analyses. Experimental lava flow features provided critical tests of hypotheses generated in the field and a refined understanding of the behavior and final morphology of basaltic lava flows. The linked field and experimental studies formed the basis for year-long independent research projects under the supervision of their faculty mentors, leading to senior theses at the students' respective institutions.

  2. ACCESS Mars: A Mission Architecture for an initial settlement on Mars; using caves as habitation

    NASA Astrophysics Data System (ADS)

    Perez-Poch, Antoni; Gallardo, Beatriz; Laufer, Ren; Zavaleta, Jhony; Davila, Alfonso; de Carufel, Guy; Antonakopoulos, Konstantinos; Husseini, A. Al; Alvarez Sánchez, L.; Antonakopoulos, K.; Apeldoorn, J.; Ashford, K., Jr.; Atabay, D.; Barrios, I.; Baydaroglu, Y.; Bennell, K. M.; Chen, J.; Chen, X.; Cormier, D.; Crowley, P.; de Carufel, G.; Deper, B.; Drube, L.; Duffy, P.; Edwards, P.; Gutiérrez Fernandez, E.; Haider, O.; Kumar, G.; Henselowsky, C.; Hirano, D.; Hirmer, T.; Hogan, B.; Albalat, A. Jaime; Jens, E.; Jivenescu, I.; Jojaghaian, A.; Kerrigan, M.; Kodachi, Y.; Langston, S.; Macintosh, R.; Miguélez, X.; Panek, N.; Pegg, C.; Peldszus, R.; Peng, X.; Perez-Poch, A.; Perron, A.; Qiu, J.; Renten, P.; Ricardo, J.; Saraceno, T.; Sauceda, F.; Shaghaghi Varzeghani, A.; Shimmin, R.; Solaz, R.; Solé, A.; Suresh, E. R.; Mar Vaquero Escribano, T.; Vargas Muñoz, M.; Vaujour, P. D.; Zeile, D. Veilette, Y. Winetraub, O.

    This paper summarizes a team project report produced during the Summer Space Program of the International Space University, held at Nasa-Ames Research Center (CA, USA) by 56 students from 15 countries. Chair of the team project was Rene Laufer. Facilitators were Alfonso Davila and Jhonny Zavaleta, and teacher associate supporting the team was Beatriz Gallardo. The human race has evolved, grown and expanded through the exploration of Earth. After initial steps on the Moon, our next challenge is to explore the solar system. Mars shows potential for both scientific discovery and future human settlement, and therefore represents a prime candidate for the next leap of human exploration. Such a bold endeavor will be a driver for an unprecedented worldwide cooperative effort and the catalyst for a new era of international, intercultural and interdisciplinary human relations. Scientific and technological progress will also accelerate as mankind is ushered into a new era of space exploration. Currently proposed Mars missions have identified a number of challenges such as high levels of radiation, harsh climate and limited launch windows. Recently discovered lava tubes on Mars present potential solutions to some of these issues, but raise a variety of intriguing new challenges. This paper reviews existing reference missions and identifies areas of further research essential for adapting mission architectures to utilize caves. Different mission scenarios are proposed and analyzed, with a number of different recommendations given. An analysis of the feasibility of using Martian lava tubes as habitation is given in another paper by the same authors at COSPAR 2010 F34 Technical Session. Literature suggests a low radiation environment within Martian caves, allowing for extended duration missions. The ACCESS Mars Team concludes that the use of lava tubes as human habitats will be more beneficial for human Mars exploration than currently proposed surface solutions.

  3. Flood lavas on Earth, Io and Mars

    USGS Publications Warehouse

    Keszthelyi, L.; Self, S.; Thordarson, T.

    2006-01-01

    Flood lavas are major geological features on all the major rocky planetary bodies. They provide important insight into the dynamics and chemistry of the interior of these bodies. On the Earth, they appear to be associated with major and mass extinction events. It is therefore not surprising that there has been significant research on flood lavas in recent years. Initial models suggested eruption durations of days and volumetric fluxes of order 107 m3 s-1 with flows moving as turbulent floods. However, our understanding of how lava flows can be emplaced under an insulating crust was revolutionized by the observations of actively inflating pahoehoe flows in Hawaii. These new ideas led to the hypothesis that flood lavas were emplaced over many years with eruption rates of the order of 104 m3 s-1. The field evidence indicates that flood lava flows in the Columbia River Basalts, Deccan Traps, Etendeka lavas, and the Kerguelen Plateau were emplaced as inflated pahoehoe sheet flows. This was reinforced by the observation of active lava flows of ??? 100 km length on Io being formed as tube-fed flow fed by moderate eruption rates (102-103 m3 s-1). More recently it has been found that some flood lavas are also emplaced in a more rapid manner. New high-resolution images from Mars revealed 'platy-ridged' flood lava flows, named after the large rafted plates and ridges formed by compression of the flow top. A search for appropriate terrestrial analogues found an excellent example in Iceland: the 1783-1784 Laki Flow Field. The brecciated Laki flow top consists of pieces of pahoehoe, not aa clinker, leading us to call this 'rubbly pahoehoe'. Similar flows have been found in the Columbia River Basalts and the Kerguelen Plateau. We hypothesize that these flows form with a thick, insulating, but mobile crust, which is disrupted when surges in the erupted flux are too large to maintain the normal pahoehoe mode of emplacement Flood lavas emplaced in this manner could have

  4. Mapping of Daedalia Planum Lava Field

    NASA Astrophysics Data System (ADS)

    Giacomini, Lorenza; Carli, Cristian; Massironi, Matteo; Pasquarè, Giorgio; Sgavetti, Maria

    2010-05-01

    Daedalia Planum is one of the Tharsis volcanic plains and is located southwest of the Arsia Mons. MOLA, THEMIS, MOC and OMEGA data have been analysed, providing a multi-scale characterisation of this Martian lava field. According to Mars Global Surveyor's MOLA data, the flanks of Arsia have an average slope <5°, while the surrounding regions, including Daedalia Planum, have slopes <0,5° and commonly <0,1°. Mars Odyssey/THEMIS VIS and IR images show a plain covered by a huge number of lava flows. Older and larger lava flows on the field have a length greater than ~1500 km. Moreover most of the Daedalia flows are associated to wrinkly and ropy surfaces, typical of pahoehoe lavas. On the base of the morphology differences among the flows and through stratigraphic relationships we performed a geological map of the area. MEX/OMEGA spectra were collected in different areas of the lava field. Besides the similar absorption bands OMEGA spectra showed also some differences in reflectance and spectral slope. The spectral map created using the SAM classification reveals that these spectral variations are generally in agreement with the lava flows mapped previously on the base of the flows morphology and stratigraphy. This suggested that such variability is related with different surface textures of the lava flow. Moreover in some cases spectral map highlighted the presence of spectral subunits inside the same stratigraphic unit, due likely to a different mineralogy or rock textures. Therefore spectral analysis revealed useful to improve the geological mapping of the Daedalia Planum region.

  5. Does the Cave Environment Reduce Functional Diversity?

    PubMed Central

    Fernandes, Camile Sorbo; Batalha, Marco Antonio; Bichuette, Maria Elina

    2016-01-01

    Caves are not colonised by all taxa present in the surface species pool, due to absence of light and the tendency to food limitation when compared to surface communities. Under strong species sorting during colonisation and later by the restrictive environmental filter, traits that are not adaptive in subterranean habitats may be filtered out. We tested whether cave communities were assembled by the restrictive regime propitiated by permanent darkness or by competitive exclusion due to resource scarcity. When compared to surface communities, the restrictive subterranean regime would lead to lower functional diversity and phenotypic clustering inside the caves, and the opposite should be expected in the case of competitive exclusion. Using isopods (Oniscidea) as model taxa, we measured several niche descriptors of taxa from surface and cave habitats, used a multivariate measure of functional diversity, and compared their widths. We found phenotypic overdispersion and higher functional diversity in cave taxa when compared to surface taxa. On the one hand, the dry climate outside of caves hampered the survival of several taxa and their ecological strategies, not viable under severe desiccation risk, culminating in the clustering of functional traits. In contrast, this restriction does not occur inside of caves, where isopods find favourable conditions under lower predation pressures and more amenable environmental parameters that allow occupation and subsequent diversification. Our results showed that, at least for some taxa, caves may not be such a harsh environment as previously thought. The high functional diversity we found inside caves adds an additional reason for the conservation of these sensitive environments. PMID:27003837

  6. Glacioclimatological study of perennial ice in the Fuji Ice Cave, Japan. Part 2. Interannual variation and relation to climate

    SciTech Connect

    Ohata, Tetsuo; Furukawa, Teruo; Osada, Kazuo )

    1994-08-01

    A glacioclimatological study of the interannual variation of mass of perennial ice in the Fuji Ice Cave at the foot of Mt. Fuji, in central Japan is presented. The cave is a 150-m-long lava tube located in a dense forest area at an altitude of 1120 m. It has a perennial floor ice of areas approximately 3000 m[sup 3] and mean thickness 2.8 m. Mean annual air temperature at the ground surface level is 8.4[degrees]C. Ice surface levels and air temperatures were measured 39 times from July 1984 to December 1992. Mean ice level showed a 15 cm increase from 1984 to 1989 and suddenly started to decrease from 1989 to 1992. In the increase stage, annual net balance (December to November) was similar at various points, but in the decreasing stage, the lowering of the level near the entrance was very large due to intense melting. Air temperature inside the cave at the end of the annual cycle showed a correlation to net balance of the corresponding year. Comparison of yearly net balance with meterological indices at ground level (winter and summer, annual mean air temperature and total precipitation; and number of days with strong precipitation) showed that net balance of a give year has a high correlation with the average winter air temperature anomaly of the preceding 4 yr. This is probably due to the high heat capacity of the cave system. 6 refs., 7 figs., 2 tabs.

  7. Organic Sulfur Gas Production in Sulfidic Caves

    NASA Astrophysics Data System (ADS)

    Stern, L. A.; Engel, A. S.; Bennett, P. C.

    2001-12-01

    Lower Kane Cave, Big Horn Basin, WY, permits access to an environment where anaerobic sulfide-rich groundwater meets the aerobic vadose zone. At this interface microorganisms thrive on diverse metabolic pathways including autotrophic sulfur oxidation, sulfate reduction, and aerobic heterotrophy. Springs introduce groundwater rich in H2S to the cave where it both degasses into the cave atmosphere and is used by chemautotrophic sulfur oxidizing bacteria in the cave spring and stream habitat. The cave atmosphere in the immediate vicinity of the springs has elevated levels of CO2, H2S and methane, mirroring the higher concentration of H2S and methane in the spring water. The high CO2 concentrations are attenuated toward the two main sources of fresh air, the cave entrance and breathing holes at the rear of the cave. Conventional toxic gas monitors permit estimations of H2S concentrations, but they have severe cross sensitivity with other reduced sulfur gases, and thus are inadequate for characterization of sulfur cave gases. However employment of a field-based GC revealed elevated concentrations of carbonyl sulfide in cave atmosphere. Cultures of microorganisms collected from the cave optimized for enriching fermenters and autotrophic and heterophic sulfate reducing bacteria each produced carbonyl sulfide suggesting a biogenic in origin of the COS in addition to H2S. Enrichment cultures also produced methanethiol (methyl mercaptan) and an additional as yet undetermined volatile organic sulfur compound. In culture, the organo-sulfur compounds were less abundant than H2S, whereas in the cave atmosphere the organo-sulfur compounds were the dominant sulfur gases. Thus, these organo-sulfur gases may prove to be important sources of both reduced sulfur and organic carbon to microorganisms living on the cave wall in a subaerial habitat. Moreover groundwater has not yet been recognized as a source of sulfur gases to the atmosphere, but with the abundance of sulfidic

  8. Bilateral Meckel's cave amyloidoma: a case report.

    PubMed

    Gültaşli, N; van den Hauwe, L; Bruneau, M; D'Haene, N; Delpierre, I; Balériaux, D

    2012-05-01

    Primary solitary amyloidoma of Meckel's cave is rare, and a bilateral location is even more rare. To the best of our knowledge, only 12 cases in the literature have described such a primary lesion, including one case of bilateral involvement of Meckel's cave. We report here on the case of a 57-year-old woman presenting with pseudotumor masses involving both Meckel's caves and responsible for trigeminal neuropathy. The final diagnosis of amyloidoma was made on the basis of histological examination of surgical biopsy specimens. PMID:21641646

  9. Nornahraun lava morphology and mode of emplacement

    NASA Astrophysics Data System (ADS)

    Pedersen, Gro B. M.; Höskuldsson, Armann; Riishuus, Morten S.; Jónsdóttir, Ingibjörg; Gudmundsson, Magnús T.; Sigmundsson, Freysteinn; Óskarsson, Birgir V.; Drouin, Vincent; Gallagher, Catherine; Askew, Rob; Moreland, William M.; Dürig, Tobias; Dumont, Stephanie; Þórdarson, Þór

    2015-04-01

    The ongoing Nornahraun eruption is the largest effusive eruption in Iceland since the Laki eruption in 1783-84, with an estimated lava volume of ~1.15 km3 covering an area of ~83.4 km2 (as of 5 JAN 2015). The eruption provides an unprecedented opportunity to study i) lava morphologies and their emplacement styles, ii) the transition from from open to closed lava pathways and iii) lava pond formation. Tracking of the lava advancement and morphology has been performed by GPS and GoPro cameras installed in 4×4 vehicles as well as video footage. Complimentary observations have been provided from aircraft platforms and by satellite data. Of particular importance for lava morphology observations are 1-12 m/pixel airborne SAR images (x-band). The Nornahraun flow field comprises a continuum of morphologies from pāhoehoe to 'a'ā, which have varied tem-porally and spatially. At the onset of the eruption 31 AUG, lava flows advanced rapidly (400-800 m/hr) from the 1.5 km long fissure as large slabby pāhoehoe [1-3] sheet lobes, 100-500 m wide and 0.3-1 m thick at the flow fronts. By 1 SEPT, the flows began channeling towards the NE constrained by the older Holuhraun I lava field and the to-pography of flood plain itself. A central open channel developed, feeding a 1-2 km wide active 'a'ā frontal lobe that advanced 1-2 km/day. In addition to its own caterpillar motion, the frontal lobe advanced in a series of 30-50 m long breakouts, predominantly slabby and rubbly pāhoehoe [4,5]. These breakouts had initial velocities of 10-30 m/hr and reached their full length within tens of minutes and subsequently inflated over hours. With the continuous advancement of the 'a'ā flow front, the breakouts were incorporated into the 'a'ā flow fronts and seldom preserved. At the margins of the frontal lava lobe, the breakouts were more sporadic, but predominantly rubbly pāhoehoe and slabby pāhoehoe, as at the flow front. The lava flow advanced ENE into Jökulsá á Fjöllum on 7 SEPT

  10. Studies of fluid instabilities in flows of lava and debris

    NASA Technical Reports Server (NTRS)

    Fink, Jonathan H.

    1987-01-01

    At least two instabilities have been identified and utilized in lava flow studies: surface folding and gravity instability. Both lead to the development of regularly spaced structures on the surfaces of lava flows. The geometry of surface folds have been used to estimate the rheology of lava flows on other planets. One investigation's analysis assumed that lava flows have a temperature-dependent Newtonian rheology, and that the lava's viscosity decreased exponentially inward from the upper surface. The author reviews studies by other investigators on the analysis of surface folding, the analysis of Taylor instability in lava flows, and the effect of surface folding on debris flows.

  11. Nodal network generator for CAVE3

    NASA Technical Reports Server (NTRS)

    Palmieri, J. V.; Rathjen, K. A.

    1982-01-01

    A new extension of CAVE3 code was developed that automates the creation of a finite difference math model in digital form ready for input to the CAVE3 code. The new software, Nodal Network Generator, is broken into two segments. One segment generates the model geometry using a Tektronix Tablet Digitizer and the other generates the actual finite difference model and allows for graphic verification using Tektronix 4014 Graphic Scope. Use of the Nodal Network Generator is described.

  12. Fire, Lava Flows, and Human Evolution

    NASA Astrophysics Data System (ADS)

    Medler, M. J.

    2015-12-01

    Richard Wrangham and others argue that cooked food has been obligate for our ancestors since the time of Homo erectus. This hypothesis provides a particularly compelling explanation for the smaller mouths and teeth, shorter intestines, and larger brains that separate us from other hominins. However, natural ignitions are infrequent and it is unclear how earlier hominins may have adapted to cooked food and fire before they developed the necessary intelligence to make or control fire. To address this conundrum, we present cartographical evidence that the massive and long lasting lava flows in the African Rift could have provided our ancestors with episodic access to heat and fire as the front edges of these flows formed ephemeral pockets of heat and ignition and other geothermal features. For the last several million years major lava flows have been infilling the African Rift. After major eruptions there were likely more slowly advancing lava fronts creating small areas with very specific adaptive pressures and opportunities for small isolated groups of hominins. Some of these episodes of isolation may have extended for millennia allowing these groups of early hominins to develop the adaptations Wrangham links to fire and cooked food. To examine the potential veracity of this proposal, we developed a series of maps that overlay the locations of prominent hominin dig sites with contemporaneous lava flows. These maps indicate that many important developments in hominin evolution were occurring in rough spatial and temporal proximity to active lava flows. These maps indicate it is worth considering that over the last several million years small isolated populations of hominins may have experienced unique adaptive conditions while living near the front edges of these slowly advancing lava flows.

  13. LAVA: lithography analysis using virtual access

    NASA Astrophysics Data System (ADS)

    Hsu, Chang; Yang, Rona; Cheng, Jeffery; Chien, Peter; Wen, Victor; Neureuther, Andrew R.

    1998-06-01

    A web site allowing remote operation of the SPLAT, SAMPLE, TEMPEST and SIMPL simulators has been developed to promote collaborative work on lithography and in particular on EUV technology. Based on the extensive use of platform independent programming languages, LAVA is accessible from all modern computing platforms. The software supporting the web site is available to others in creating similar web site sites and in making simulators such as those from other universities 'play' together. The web site explores new paradigms in remote operation of lithography simulators and introduces more application-oriented modes of interaction with technologists. The LAVA web site URL is http://cuervo.eecs.berkeley.edu/Volcano/

  14. Experimental Compaction of Pumiceous Dome Lavas

    NASA Astrophysics Data System (ADS)

    Kendrick, J.; Ashwell, P. A.; Lavalleé, Y.; Kennedy, B. M.; Hess, K. U.; Cole, J.; Dingwell, D. B.

    2012-04-01

    Lava dome stability is reliant on pore pressure, which varies according to the evolution of the permeable porous network. Here, we present experimental results of porosity and permeability evolution during compaction of aphiric (from Ngongotaha volcano) and crystal-bearing (from Tarawera volcano) pumiceous, rhyolitic lavas from Taupo Volcanic Zone, New Zealand. The Ngongotaha sample has 55 % porosity and is from the crystal-free dome carapace erupted ~200 ka following caldera collapse at Rotorua Caldera. Two sample sets from Tarawera are crystalline, pumiceous clasts from a dome-collapse generated block and ash flow at Okataina Caldera ~1314 AD, and contain 50 and 25 % pores. This study tests the validity of the 'permeable foam' model by comparing properties of the experimentally compacted pumice to denser material seen in the exposed cores of Tarawera and Ngongotaha. Cylindrical samples were deformed under conditions similar to lava dome settings, under a constant, low axial stress of 2.8 MPa at 800-900oC (above the measured calorimetric glass transition temperatures). Deformation ensued to a total axial strain of 60% and the porosity and permeability of the samples were measured at strain increments of 10 %. Samples display different resultant strains under the same applied stress and exhibit strain-hardening behaviour during compaction. The development of textures and microstructures is characterised using petrographic analysis and x-ray computed tomography. Porosity reduces steadily with increasing strain, but reaches a minimum of 20 % porosity at 40-50 % strain (irrespective of starting porosity or crystallinity), after which further strain is accommodated by barrelling of the sample. A rapid reduction in permeability along the primary axis occurs during the initial stage of compression and continues to decrease with increasing strain and densification of the lava. Permeability development differs between lava types due to the influence of crystallinity on the

  15. Toward a model for leveed lava flows

    NASA Technical Reports Server (NTRS)

    Baloga, Stephen

    1987-01-01

    Many lava flows have two distinct volumetric components during emplacement. First, there is a component actively flowing in accordance with Newtonian or other constitutive relations. Second, there may be an inactive, stationary component that is no longer participating in the forward movement of the flow. Such passive components may take the form of flow-confining levees, solidified lateral margins, overspilling, plating, small ponds and sidestreams, or a lava tube. To describe the conservation of flow volume for the active component, governing equations are given and discussed.

  16. Genomic sequencing of Pleistocene cave bears

    SciTech Connect

    Noonan, James P.; Hofreiter, Michael; Smith, Doug; Priest, JamesR.; Rohland, Nadin; Rabeder, Gernot; Krause, Johannes; Detter, J. Chris; Paabo, Svante; Rubin, Edward M.

    2005-04-01

    Despite the information content of genomic DNA, ancient DNA studies to date have largely been limited to amplification of mitochondrial DNA due to technical hurdles such as contamination and degradation of ancient DNAs. In this study, we describe two metagenomic libraries constructed using unamplified DNA extracted from the bones of two 40,000-year-old extinct cave bears. Analysis of {approx}1 Mb of sequence from each library showed that, despite significant microbial contamination, 5.8 percent and 1.1 percent of clones in the libraries contain cave bear inserts, yielding 26,861 bp of cave bear genome sequence. Alignment of this sequence to the dog genome, the closest sequenced genome to cave bear in terms of evolutionary distance, revealed roughly the expected ratio of cave bear exons, repeats and conserved noncoding sequences. Only 0.04 percent of all clones sequenced were derived from contamination with modern human DNA. Comparison of cave bear with orthologous sequences from several modern bear species revealed the evolutionary relationship of these lineages. Using the metagenomic approach described here, we have recovered substantial quantities of mammalian genomic sequence more than twice as old as any previously reported, establishing the feasibility of ancient DNA genomic sequencing programs.

  17. Lava tube morphology on Etna and evidence for lava flow emplacement mechanisms

    NASA Astrophysics Data System (ADS)

    Calvari, Sonia; Pinkerton, Harry

    1999-06-01

    Lava tubes play a pivotal role in the formation of many lava flow fields. A detailed examination of several compound `a`a lava flow fields on Etna confirmed that a complex network of tubes forms at successively higher levels within the flow field, and that tubes generally advance by processes that include flow inflation and tube coalescence. Flow inflation is commonly followed by the formation of major, first-order ephemeral vents which, in turn, form an arterial tube network. Tube coalescence occurs when lava breaks through the roof or wall of an older lava tube; this can result in the unexpected appearance of vents several kilometers downstream. A close examination of underground features allowed us to distinguish between ephemeral vent formation and tube coalescence, both of which are responsible for abrupt changes in level or flow direction of lava within tubes on Etna. Ephemeral vent formation on the surface is frequently recorded underground by a marked increase in size of the tube immediately upstream of these vents. When the lining of an inflated tube has collapsed, `a`a clinker is commonly seen in the roof and walls of the tube, and this is used to infer that inflation has taken place in the distal part of an `a`a lava flow. Tube coalescence is recognised either from the compound shape of tube sections, or from breached levees, lava falls, inclined grooves or other structures on the walls and roof. Our observations confirm the importance of lava tubes in the evolution of extensive pahoehoe and `a`a flow fields on Etna.

  18. Geology of selected lava tubes in the Bend Area, Oregon

    NASA Technical Reports Server (NTRS)

    Greely, R.

    1971-01-01

    Longitudinal profiles representing 5872.5 m of mapped lava tubes and a photogeologic map relating lava tubes to surface geology, regional structure and topography are presented. Three sets of lava tubes were examined: (1) Arnold Lava Tube System (7km long) composed of collapsed and uncollapsed tube segments and lava ponds, (2) Horse Lava Tube System (11 km long) composed of parallel and anastomosing lava tube segments, and (3) miscellaneous lava tubes. Results of this study tend to confirm the layered lava hypothesis of Ollier and Brown (1965) for lava tube formation; however, there are probably several modes of formation for lava tubes in general. Arnold System is a single series of tubes apparently formed in a single basalt flow on a relatively steep gradient. The advancing flow in which the tubes formed was apparently temporarily halted, resulting in the formation of lava ponds which were inflated and later drained by the lava tube system. Horse System probably formed in multiple, interconnected flows. Pre-flow gradient appears to have been less than for Arnold System, and resulted in meandrous, multiple tube networks.

  19. 9. CRATER RIM DRIVE NEAR THURSTON LAVA TUBE. VIEW OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. CRATER RIM DRIVE NEAR THURSTON LAVA TUBE. VIEW OF CRENELATED LAVA STONE GUARD WALL AND ROCK CUT OPPOSITE. NOTE CATTLE GUARD ACROSS ROAD PARTIALLY PAVED OVER. - Crater Rim Drive, Volcano, Hawaii County, HI

  20. Quantitative constraints on the growth of submarine lava pillars from a monitoring instrument that was caught in a lava flow

    NASA Astrophysics Data System (ADS)

    Chadwick, William W.

    2003-11-01

    Lava pillars are hollow, vertical chimneys of solid basaltic lava that are common features within the collapsed interiors of submarine sheet flows on intermediate and fast spreading mid-ocean ridges. They are morphologically similar to lava trees that form on land when lava overruns forested areas, but the sides of lava pillars are covered with distinctive, evenly spaced, thin, horizontal lava crusts, referred to hereafter as "lava shelves." Lava stalactites up to 5 cm long on the undersides of these shelves are evidence that cavities filled with a hot vapor phase existed temporarily beneath each crust. During the submarine eruption of Axial Volcano in 1998 on the Juan de Fuca Ridge a monitoring instrument, called VSM2, became embedded in the upper crust of a lava flow that produced 3- to 5-m-high lava pillars. A pressure sensor in the instrument showed that the 1998 lobate sheet flow inflated 3.5 m and then drained out again in only 2.5 hours. These data provide the first quantitative constraints on the timescale of lava pillar formation and the rates of submarine lava flow inflation and drainback. They also allow comparisons to lava flow inflation rates observed on land, to theoretical models of crust formation on submarine lava, and to previous models of pillar formation. A new model is presented for the rhythmic formation of alternating lava crusts and vapor cavities to explain how stacks of lava shelves are formed on the sides of lava pillars during continuous lava drainback. Each vapor cavity is created between a stranded crust and the subsiding lava surface. A hot vapor phase forms within each cavity as seawater is syringed through tiny cracks in the stranded crust above. Eventually, the subsiding lava causes the crust above to fail, quenching the hot cavity and forming the next lava crust. During the 1998 eruption at Axial Volcano, this process repeated itself about every 2 min during the 81-min-long drainback phase of the eruption, based on the thickness

  1. Seismogenic lavas and explosive eruption forecasting.

    PubMed

    Lavallée, Y; Meredith, P G; Dingwell, D B; Hess, K-U; Wassermann, J; Cordonnier, B; Gerik, A; Kruhl, J H

    2008-05-22

    Volcanic dome-building episodes commonly exhibit acceleration in both effusive discharge rate and seismicity before explosive eruptions. This should enable the application of material failure forecasting methods to eruption forecasting. To date, such methods have been based exclusively on the seismicity of the country rock. It is clear, however, that the rheology and deformation rate of the lava ultimately dictate eruption style. The highly crystalline lavas involved in these eruptions are pseudoplastic fluids that exhibit a strong component of shear thinning as their deformation accelerates across the ductile to brittle transition. Thus, understanding the nature of the ductile-brittle transition in dome lavas may well hold the key to an accurate description of dome growth and stability. Here we present the results of rheological experiments with continuous microseismic monitoring, which reveal that dome lavas are seismogenic and that the character of the seismicity changes markedly across the ductile-brittle transition until complete brittle failure occurs at high strain rates. We conclude that magma seismicity, combined with failure forecasting methods, could potentially be applied successfully to dome-building eruptions for volcanic forecasting. PMID:18497822

  2. Valleys and Lava Flows near Olympus Mons

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Mars Orbiter Camera (MOC) on board the Mars Global Surveyor (MGS) spacecraft has been documenting a variety of landforms in the volcanic Tharsis region, including these valleys and associated lava flows on the plains southeast of Olympus Mons. Lava flows are visible in the upper left quarter of this image, but meandering valleys with streamlined 'islands' dominate the scene. The valleys might have been carved by running water, but extremely fluid lava or mud might also have flowed through the channels. The exact role of each type of fluid--water, mud, or lava--remains to be determined. Illumination is from the right. The area shown is 7.3 km (4.5 mi) wide by 12 km (7.5 mi)long.

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  3. Lava Flows in the Grand Canyon

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Over vast expanses of time, natural processes like floods and volcanoes deposit layers of rock on the Earth's surface. To delve down through layers of rock is to explore our planet's history. Sometimes rock layers are exposed through human activity, such as drilling or excavation. Other times, rivers carve through the rock. One of the best, and most well-known, examples of a river exposing ancient rocks is Colorado River in Arizona's Grand Canyon. What fewer people know is that the Grand Canyon also has a history of relatively recent (on geologic time scales) volcanism. The evidence--hardened lava--spills down the canyon walls all the way to the river. On June 22, 2003, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite captured this image of the Grand Canyon, near 36.2 degrees north latitude and 113.2 degrees west longitude. ASTER detects light visible to human eyes as well as 'invisible' infrared light. Because different minerals reflect different portions of the light spectrum, ASTER can see varying mineral compositions of the rocks it observes, as well as detecting vegetation. In this three-dimensional visualization, lava fields appear brownish gray, darker than the layers of limestone, sandstone and other rock in the canyon. Vegetation appears green, and sparsely vegetated areas appear mustard. Water in the Colorado River is blue-purple. Geologists estimate that between 1.8 million and 400,000 years ago, lava flows actually dammed the Colorado River more than a dozen times. Some of the lava dams were as high as 600 meters (about 1,969 feet), forming immense reservoirs. Over time, enough water and sediment built up to push the river flow over the tops of these dams and eventually erode them away. Today, remnants of these lava dams remain throughout the area, along with the much older rock layers they cover. Among the most well known examples of these 'frozen' lava cascades is Lava Falls, which spills down to the

  4. Circulation patterns in active lava lakes

    NASA Astrophysics Data System (ADS)

    Redmond, T. C.; Lev, E.

    2014-12-01

    Active lava lakes provide a unique window into magmatic conduit processes. We investigated circulation patterns of 4 active lava lakes: Kilauea's Halemaumau crater, Mount Erebus, Erta Ale and Nyiragongo, and in an artificial "lava lake" constructed at the Syracuse University Lava Lab. We employed visual and thermal video recordings collected at these volcanoes and use computer vision techniques to extract time-dependent, two-dimensional surface velocity maps. The large amount of data available from Halemaumau enabled us to identify several characteristic circulation patterns. One such pattern is a rapid acceleration followed by rapid deceleration, often to a level lower than the pre-acceleration level, and then a slow recovery. Another pattern is periodic asymmetric peaks of gradual acceleration and rapid deceleration, or vice versa, previously explained by gas pistoning. Using spectral analysis, we find that the dominant period of circulation cycles at approximately 30 minutes, 3 times longer than the dominant period identified previously for Mount Erebus. Measuring a complete surface velocity field allowed us to map and follow locations of divergence and convergence, therefore upwelling and downwelling, thus connecting the surface flow with that at depth. At Nyiragongo, the location of main upwelling shifts gradually, yet is usually at the interior of the lake, for Erebus it is usually along the perimeter yet often there is catastrophic downwelling at the interior; For Halemaumau upwelling/downwelling position is almost always on the perimeter. In addition to velocity fields, we developed an automated tool for counting crustal plates at the surface of the lava lakes, and found a correlation, and a lag time, between changes if circulation vigor and the average size of crustal plates. Circulation in the artificial basaltic lava "lake" was limited by its size and degree of foaming, yet we measured surface velocities and identify patterns. Maximum surface velocity

  5. Identifying hazards associated with lava deltas

    NASA Astrophysics Data System (ADS)

    Poland, Michael P.; Orr, Tim R.

    2014-12-01

    Lava deltas, formed where lava enters the ocean and builds a shelf of new land extending from the coastline, represent a significant local hazard, especially on populated ocean island volcanoes. Such structures are unstable and prone to collapse—events that are often accompanied by small explosions that can deposit boulders and cobbles hundreds of meters inland. Explosions that coincide with collapses of the East Lae `Apuki lava delta at Kīlauea Volcano, Hawai`i, during 2005-2007 followed an evolutionary progression mirroring that of the delta itself. A collapse that occurred when the lava-ocean entry was active was associated with a blast of lithic blocks and dispersal of spatter and fine, glassy tephra. Shortly after delta growth ceased, a collapse exposed hot rock to cold ocean water, resulting in an explosion composed entirely of lithic blocks and lapilli. Further collapse of the delta after several months of inactivity, by which time it had cooled significantly, resulted in no recognizable explosion deposit. Seaward displacement and subsidence of the coastline immediately inland of the delta was measured by both satellite and ground-based sensors and occurred at rates of several centimeters per month even after the lava-ocean entry had ceased. The anomalous deformation ended only after complete collapse of the delta. Monitoring of ground deformation may therefore provide an indication of the potential for delta collapse, while the hazard associated with collapse can be inferred from the level of activity, or the time since the last activity, on the delta.

  6. Lava flows composition of the Daedalia Planum

    NASA Astrophysics Data System (ADS)

    Carli, Cristian; Giacomini, Lorenza; Sgavetti, Maria; Massironi, Matteo

    2010-05-01

    Daedalia Planum is a large lava plain, consisting of more than 1500 km lava flows emplaced over an almost flat terrain in the south-east area of Arsia Mons. The morphology of this region has been studied by Giacomini et al. (Planet.SpaceSci., 2009) and revealed the presence of various features indicative of inflation mechanisms. Thirteen morphologic units have been delineated and the stratigraphic relationships among these units have been established by the authors. Several compositional data indicate that most of the Mars surface appears to consist of tholeiitic basalts where rocks previously identified as andesite may be basaltic rocks coated with alteration rinds (McSween et al., Science, 2009). Some primitive alkaline olivine-rich basaltic rocks have been also recognized by rover exploration (McSween et al., J.Geophys.Res., 2006). The visible and near-infrared reflectance spectra contain electronic absorptions characteristic of mafic minerals including pyroxenes and olivine. These minerals, together with plagioclase, are the major components of lava's rocks. We have analyzed data acquired by the OMEGA orbiter spectrometer of the Mars Express mission. Several OMEGA's images have been studied collecting sets of spectra from each of the thirteen geological units. The spectra indicate a relatively uniform composition of the lavas, characterized by two wide absorption bands (I and II) at about 1000 and 2000 nm, respectively. These spectral features are diagnostic of the presence of pyroxenes, and the continuum removed spectra permit us to recognize the presence of two different pyroxenes . The precise minima positions of band I, between 950 and 1000 nm, and of band II, between 1800 and 2000 nm, suggest the presence in this region of low calcium and subcalcium clinopyroxene, like pigeonite and augite, with variable relative abundances. The presence of these types of pyroxenes suggests a tholeiitic composition of the Daedalia Planum long lava flows, in agreement with

  7. The hydrothermal alteration of cooling lava domes

    NASA Astrophysics Data System (ADS)

    Ball, Jessica L.; Stauffer, Philip H.; Calder, Eliza S.; Valentine, Greg A.

    2015-12-01

    Hydrothermal alteration is a recognized cause of volcanic instability and edifice collapse, including that of lava domes or dome complexes. Alteration by percolating fluids transforms primary minerals in dome lavas to weaker secondary products such as clay minerals; moreover, secondary mineral precipitation can affect the porosity and permeability of dome lithologies. The location and intensity of alteration in a dome depend heavily on fluid pathways and availability in conjunction with heat supply. Here we investigate postemplacement lava dome weakening by hydrothermal alteration using a finite element numerical model of water migration in simplified dome geometries. This is combined with the rock alteration index (RAI) to predict zones of alteration and secondary mineral precipitation. Our results show that alteration potential is highest at the interface between the hot core of a lava dome and its clastic talus carapace. The longest lived alteration potential fields occur in domes with persistent heat sources and permeabilities that allow sufficient infiltration of water for alteration processes, but not so much that domes cool quickly. This leads us to conclude that alteration-induced collapses are most likely to be shallow seated and originate in the talus or talus/core interface in domes which have a sustained supply of magmatic heat. Mineral precipitation at these zones of permeability contrast could create barriers to fluid flow, potentially causing gas pressurization which might promote deeper seated and larger volume collapses. This study contributes to our knowledge of how hydrothermal alteration can affect lava domes and provides constraints on potential sites for alteration-related collapses, which can be used to target hazard monitoring.

  8. The Tony Grove Karst Region in Northern Utah: From Cave Sediments to Fluvial Geomorphology

    NASA Astrophysics Data System (ADS)

    Smith, H. D.

    2012-12-01

    The Tony Grove lake area is a dolomitic karst region in the Bear River Range of the Middle Rocky Mountain Province (Hintze, 1973; Wilson, 1976). Figure 1. The 5 km study area is strewn with boulders and consists of a combination of subsurface dissolution caves underlying the highly-eroded karst surface remnancent of past glaciation. Traces of the dynamic mountain structure can be seen in faults, fractures, and folds with the largest being the Logan Syncline (Wilson, 1976) formed during the Sevier Orogeny. The Tony Grove area stratigraphy is dominated by the Ordovician (505 MYR) Fish Haven dolomite and Silurian (438 MYR) Laketown dolomite units topped with some Devonian (406 MYR) aged inter-bedded quartzite, shale, and dolostone from the Water Canyon Formation (Morgan 1992, Spangler 2001). The 5 km study area contains over 90 karst features formed through vadose water flow due to the alpine proximity. The development and exhumation of these features have been greatly influenced over time by plate tectonics and water. We investigate cave formation and sediments as an indicator of past water flow and watershed dynamics (Figure 2). Figure 1. Site location of the Tony Grove Lake Area including an image of the karst terrain and geologic map showing the Logan Peak Syncline. The area is home to about 90 karst features inculding both dolines and caves. Figure 2. The cave sediments in this image of Thundershower Cave in the Tony Grove Lake Area show the flow pattern and a step and pool channel morphology with a side channel formed to the right during times of higher flow.

  9. The Tony Grove Karst Region in Northern Utah: From Cave Sediments to Fluvial Geomorphology

    NASA Astrophysics Data System (ADS)

    Smith, H. D.

    2013-12-01

    The Tony Grove lake area is a dolomitic karst region in the Bear River Range of the Middle Rocky Mountain Province (Hintze 1973, Wilson 1976). The 5 km study area (Figure 1) is strewn with boulders and consists of a combination of subsurface dissolution caves underlying the highly-eroded karst surface reminiscent of past glaciation. Traces of the dynamic mountain structure can be seen in faults, fractures, and folds with the largest being the Logan Syncline (Wilson, 1976) formed during the Sevier Orogeny. The Tony Grove area stratigraphy is dominated by the Ordovician (505 MYR) Fish Haven dolomite and Silurian (438 MYR) Laketown dolomite units topped with some Devonian (406 MYR) aged inter-bedded quartzite, shale, and dolostone from the Water Canyon Formation (Morgan 1992, Spangler 2001). The 5 km study area contains over 90 karst features formed through vadose water flow due to the alpine proximity. The development and exhumation of these features have been greatly influenced over time by plate tectonics and water. We investigate cave formation and sediments as an indicator of past water flow and watershed dynamics. Figure 1. Site location of the Tony Grove lake area including an image of the karst terrain and geologic map showing the Logan Peak Syncline. The area is home to about 90 karst features including both do lines and caves. Figure 2. The cave sediments in this image of Thundershower Cave in the Tony Grove lake area show the flow pattern and a step and pool channel morphology with a side channel formed to the right during times of higher flow.

  10. The influence of cave stream sediments on the transport behavior of karst springs

    NASA Astrophysics Data System (ADS)

    Wagner, T.; Winkler, G.; Woessner, W.; Birk, S.

    2012-04-01

    Spring response to recharge in karst systems is influenced by the complex distribution of the rock mass hydraulic properties, fracture systems, and the presence of conduits. In addition the exchange of karst water with unconsolidated sediments in conduits may also further influence spring responses. To evaluate the effects of cave streams and sediments on solute transport in karst systems a small scale tracer experiment using fluorescein as an artificial tracer and water temperature as a natural tracer was conducted within the hyporheic zone of the active cave stream Schmelzbach. This interior stream drains parts of the Lurbach Karst System (Semriach-Peggau, Styria, Austria). The main goal of the experiment was to investigate if measurable cave stream hyporheic exchange (with the stream bottom sediments) occurs and the degree to which this process alters the transport of conservative tracers. One hundred meters downstream of the tracer injection point three cross sections of monitoring wells (9 in total along a distance of approximately 25 m) were constructed and fitted with two vertically isolated activated charcoal bags, 10 cm and 30 cm below the streambed surface. PVC monitoring wells were installed along the three cross sections using hand driven steel pipes as a temporary casing. In two of these wells temperature sensors were placed at different depths within the saturated bed sediment to investigate how post tracer test stream flood events impacted the timing and rate of stream water penetration into the bed sediments. The tracer breakthrough curve was measured with a fluorimeter located 100 m from the injection point. The results show a sharp peak and a modest tailing of the breakthrough. A one-dimensional advection dispersion model that accounts for mass transfer and storage of tracer in immobile fluid zones such as pools or sediments provides a good fit to the measured breakthrough curve. The model results suggest that immobile fluid zones amount to 40% of

  11. Cave air ventilation and CO 2 outgassing by radon-222 modeling: How fast do caves breathe?

    NASA Astrophysics Data System (ADS)

    Kowalczk, Andrew J.; Froelich, Philip N.

    2010-01-01

    In general, the rate and timing of calcite precipitation is in part affected by variations in cave air CO 2 concentrations. Knowledge of cave ventilation processes is required to quantify the effect variations in CO 2 concentrations have on speleothem deposition rates and thus paleoclimate records. In this study we use radon-222 ( 222Rn) as a proxy of ventilation to estimate CO 2 outgassing from the cave to the atmosphere, which can be used to infer relative speleothem deposition rates. Hollow Ridge Cave, a wild cave preserve in Marianna, Florida, is instrumented inside and out with multiple micro-meteorological sensor stations that record continuous physical and air chemistry time-series data. Our time series datasets indicate diurnal and seasonal variations in cave air 222Rn and CO 2 concentrations, punctuated by events that provide clues to ventilation and drip water degassing mechanisms. Average cave air 222Rn and CO 2 concentrations vary seasonally between winter ( 222Rn = 50 dpm L - 1 , where 1 dpm L - 1 = 60 Bq m - 3 ; CO 2 = 360 ppmv) and summer ( 222Rn = 1400 dpm L - 1 ; CO 2 = 3900 ppmv). Large amplitude diurnal variations are observed during late summer and autumn ( 222Rn = 6 to 581 dpm L - 1 ; CO 2 = 360 to 2500 ppmv). We employ a simple first-order 222Rn mass balance model to estimate cave air exchange rates with the outside atmosphere. Ventilation occurs via density driven flow and by winds across the entrances which create a 'venturi' effect. The most rapid ventilation occurs 25 m inside the cave near the entrance: 45 h - 1 (1.33 min turnover time). Farther inside (175 m) exchange is slower and maximum ventilation rates are 3 h - 1 (22 min turnover time). We estimate net CO 2 flux from the epikarst to the cave atmosphere using a CO 2 mass balance model tuned with the 222Rn model. Net CO 2 flux from the epikarst is highest in summer (72 mmol m - 2 day - 1 ) and lowest in late autumn and winter (12 mmol m - 2 day - 1 ). Modeled ventilation and net CO 2

  12. PATTERNS OF ENDEMISM OF THE EASTERN NORTH AMERICAN CAVE FAUNA

    EPA Science Inventory

    Over 250 species of obligate terrestrial cave-dwelling animals (troglobionts) are known from single caves in the eastern United States. We investigate their geographic distribution, especially in relation to other troglobionts. We relate these patterns to taxonomic group, oppor...

  13. NASA Aircraft Aids Earth-Mars Cave Detection Study

    NASA Video Gallery

    The most likely location for discovering potential primitive life forms on Mars to be in caves. A recent NASA-funded airborne and ground study designed to aid in detection of caves on the Earth, th...

  14. Preservation of Microbial-Mineral Biosignatures in Caves

    NASA Astrophysics Data System (ADS)

    Boston, P. J.; Alexander, C.

    2016-05-01

    Earth caves are wonderful preservation environments for distinctive in situ biopatterns and biominerals. Several thousand volcanic caves have been detected on Mars and may contain biosignatures or extant life and are valuable future mission targets.

  15. Some New Caves under Airport in Dubrovnik

    NASA Astrophysics Data System (ADS)

    Garasic, Mladen; Garasic, Davor

    2013-04-01

    Till today six speleological sites are known to exist at the premises of the Dubrovnik Airport in Croatia. This is a highly weathered area that has been in the focus of attention of speleologists ever since the airport was built in 1961/62. Two vertical caves measuring 31 m and 10.5 m in depth were discovered at that time. These two caves are now situated right underneath the new control tower of the Dubrovnik Airport. A tunnel entrance to the cave that has been known to local population for a long time is situated in the immediate vicinity of the control tower. In late 1950's the entrance to the cave was closed with concrete because of a military airport construction, but a tunnel was built so as to enable access to the cave. The cave is about 200 meters long and it fully occupies the space underneath the concrete runways of the Dubrovnik Airport. Thanks to efforts made by speleologists in 2006-2010 the cave was adapted to enable tourist visits, and it is now the world's only tourist cave underneath an operating airport. During apron extension activities in May 2012, three additional speleological sites were discovered and examined, together with other previously discovered caves, from the standpoint of geophysics, geology and speleology. Results of exploration shows that there are several faults zones in karstified limestones. The water flow in the caverns varies depending on climatic conditions on the ground surface. Water reaches the caverns via joints directly from the ground surface (to a lesser extent) or in deeper parts via joints and paraclases from other parts of Cretaceous carbonate formations (in most cases). The weathering zone depth in the area of these speleological features, are estimated at 300 to 500 meters (included under sea levels) , and the zone of vertical circulation varies from 50 to 150 m. It is followed by the zone of horizontal circulation in which the ground water is carried via Cretaceous limestones toward submarine springs in the

  16. Emplacement of a silicic lava dome through a crater glacier: Mount St Helens, 2004-06

    USGS Publications Warehouse

    Walder, J.S.; LaHusen, R.G.; Vallance, J.W.; Schilling, S.P.

    2007-01-01

    The process of lava-dome emplacement through a glacier was observed for the first time after Mount St Helens reawakened in September 2004. The glacier that had grown in the crater since the cataclysmic 1980 eruption was split in two by the new lava dome. The two parts of the glacier were successively squeezed against the crater wall. Photography, photogrammetry and geodetic measurements document glacier deformation of an extreme variety, with strain rates of extraordinary magnitude as compared to normal alpine glaciers. Unlike normal temperate glaciers, the crater glacier shows no evidence of either speed-up at the beginning of the ablation season or diurnal speed fluctuations during the ablation season. Thus there is evidently no slip of the glacier over its bed. The most reasonable explanation for this anomaly is that meltwater penetrating the glacier is captured by a thick layer of coarse rubble at the bed and then enters the volcano's groundwater system rather than flowing through a drainage network along the bed.

  17. Bellholes: Ceiling Cavities Eroded By Bats in Caves of the Neotropical Climates

    NASA Astrophysics Data System (ADS)

    Miller, T.

    2014-12-01

    Hundreds of thousands of symmetrical, vertical, bullet-shaped cavities known as bellholes are present in the ceilings of caves restricted to the tropical Americas. Most have circular diameters (rarely influenced by joints or bedding) of at least 30 cm, and may be several meters in height. They are often paired with bellbasins (shallow depressions located vertically beneath them that contain guano produced by bats). Members of the species Artibeus jamaicensis (Jamaican Fruit Bat) are almost exclusive users of these roosts. Brown streaks flowing down the sides of the bellholes and centimeters-thick rinds of the basins below are largely apatite minerals produced by the reaction of the host limestone with phosphoric acids in the guano.Many bellholes have developed in speleothem in the cave ceilings, disproving early theories that they are the result of solution by phreatic currents in flooded caves. A. jamaicensis roosts singly or in harem groups of 2-14 that commonly cluster in the bellholes and it is likely that these social habits of this species focus corrosion resulting from the transfer of feces to rock (producing altered rock then removed by claws) to create discretely-spaced upward-growing cavities. Fossil evidence from Jamaica supports an arrival there from the mainland in the past 12,000 years, suggesting bellholes and bellbasins are geologically recent features in the Caribbean islands. Their locations (not all cave passages have bellholes) can provide information on the hydrological history or microclimate of a cave, due to the absence of both bellholes and bats in some specific situations, e.g. where physical barriers exist such as sumps, small airspaces above streams or through rock collapses, or with increasing distance from an entrance.Smaller circular, increasingly-indented ceiling cavities demonstrate a sequence of bellhole development. Small (23 cm diameter, 9 cm high), circular, streaked cavities in a limestone drainage tunnel constructed in 1927 in

  18. Ice-Confined Basaltic Lava Flows: Review and Discussion

    NASA Astrophysics Data System (ADS)

    Skilling, I.; Edwards, B. R.

    2012-12-01

    Basaltic lavas that are interpreted as having been emplaced in subglacial or ice-confined subaerial settings are known from several localities in Iceland, British Columbia and Antarctica. At least four different types of observations have been used to date to identify emplacement of basaltic lavas in an ice-rich environment: i) gross flow morphology, ii) surface structures, iii) evidence for ice-confined water during emplacement, and iv) lava fracture patterns. Five types of ice-confined lava are identified: sheets, lobes, mounds, linear ridges and sinuous ridges. While the appearance of lavas is controlled by the same factors as in the submarine environment, such as the geometry and configuration of vents and lava tubes, flow rheology and rates, and underlying topography, the presence of ice can lead to distinct features that are specific to the ice-confined setting. Other types have very similar or identical equivalents in submarine environment, albeit with some oversteepening/ice contact surfaces. Ice-confined lavas can form as (1) subaerial or subaqueous lavas emplaced against ice open to the air, (2) subaqueous lavas emplaced into pre-existing sub-ice drainage networks, and (3) subaqueous lavas emplaced into ponded water beneath ice. Their surface structures reflect the relationship between rates of lava flow emplacement at the site of ice-water-lava contact, ice melting and water drainage. Variations in local lava flow rates could be due to lava cooling, constriction, inflation, tube development, ice melting, ice collapse, lava collapse, changes in eruption rate etc. Episodes of higher lava flow rate would favour direct ice contact and plastic compression against the ice, generating oversteepened and/or overthickened chilled margins, cavities in the lava formed by melting of enveloped ice blocks (cryolith cavities) and structures such as flattened pillows and lava clasts embedded into the glassy margins. Melting back of the confining ice generates space to

  19. Underwater observations of active lava flows from Kilauea volcano, Hawaii

    USGS Publications Warehouse

    Tribble, G.W.

    1991-01-01

    Underwater observation of active submarine lava flows from Kilauea volcano, Hawaii, in March-June 1989 revealed both pillow lava and highly channelized lava streams flowing down a steep and unconsolidated lava delta. The channelized streams were 0.7-1.5 m across and moved at rates of 1-3 m/s. The estimated flux of a stream was 0.7 m3/s. Jets of hydrothermal water and gas bubbles were associated with the volcanic activity. The rapidly moving channelized lava streams represent a previously undescribed aspect of submarine volcanism. -Author

  20. Detecting short period variations in lava flux

    NASA Astrophysics Data System (ADS)

    James, M. R.; Pinkerton, H.

    2009-04-01

    Although the underpinning processes that govern the flow of lava have been recognized for some time, modeling the evolution of lava flow fields remains problematic due to the difficulties in fully constraining inputs to flow models. One of the main parameters controlling the evolution of individual flows is effusion rate, and long period effusion rate changes, such as flow-waning prior to the cessation of an eruption, can now be routinely incorporated in simulations. However, effusion rates commonly vary over a wide range of timescales (from years to minutes) and, for short period changes, neither the cause nor the effects are well understood. Nevertheless, short period changes can result in inaccuracies in the input data for simulations and can be responsible for altering flow directions by either building or breaching flow levees. Hence, understanding the processes involved in such changes is important for flow modeling and, furthermore, could eventually provide insight into flow instabilities within the conduit or variability within degassing processes. Observations of short period (e.g. <1 hr) variations in lava flux have been made previously in the field but associated changes cannot be identified in effusion rate data because of the generally low sampling frequency of such data. During the last week of July 2008, trail cameras were used to obtain dense time series imagery of the active lava flow at Mount Etna, Sicily. The trail cameras were modified to capture timelapse imagery by adding an interval timer which triggered image capture every 10 minutes. During daylight, the cameras collected 5 M-pixel colour images and, during nighttime, they automatically switched to a 2 M-pixel camera which collected (uncalibrated) black and white infrared images. For the color images, haze, cloud and sunglare combined with the low contrast between the active lava and its surroundings, prevented useful analysis. However, the infrared images captured at night clearly

  1. 75 FR 4417 - Wind Cave National Park, Custer County, SD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... Wind Cave National Park, Custer County, SD AGENCY: National Park Service. ACTION: Notice of... Statement, Wind Cave National Park, Custer County, South Dakota. SUMMARY: Pursuant to Section 102(2)(C) of... Environmental Impact Statement (Plan), Wind Cave National Park, Custer County, South Dakota. On December 3,...

  2. 36 CFR 7.68 - Russell Cave National Monument.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Russell Cave National... INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.68 Russell Cave National Monument. (a) Caves—(1) Closed Areas. Entering, exploring, or remaining within any cave area other than the...

  3. 36 CFR 7.36 - Mammoth Cave National Park.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Mammoth Cave National Park. 7... SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.36 Mammoth Cave National Park. (a) Fishing—(1... Creek Lake. Live minnows and worms may be used in all other waters. (ii) (b)(1) Cave entry. Except...

  4. 36 CFR 7.68 - Russell Cave National Monument.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Russell Cave National... INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.68 Russell Cave National Monument. (a) Caves—(1) Closed Areas. Entering, exploring, or remaining within any cave area other than the...

  5. 36 CFR 7.36 - Mammoth Cave National Park.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Mammoth Cave National Park. 7... SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.36 Mammoth Cave National Park. (a) Fishing—(1... Creek Lake. Live minnows and worms may be used in all other waters. (ii) (b)(1) Cave entry. Except...

  6. 36 CFR 7.68 - Russell Cave National Monument.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Russell Cave National... INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.68 Russell Cave National Monument. (a) Caves—(1) Closed Areas. Entering, exploring, or remaining within any cave area other than the...

  7. 36 CFR 7.68 - Russell Cave National Monument.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Russell Cave National... INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.68 Russell Cave National Monument. (a) Caves—(1) Closed Areas. Entering, exploring, or remaining within any cave area other than the...

  8. 36 CFR 7.36 - Mammoth Cave National Park.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Mammoth Cave National Park. 7... SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.36 Mammoth Cave National Park. (a) Fishing—(1... Creek Lake. Live minnows and worms may be used in all other waters. (ii) (b)(1) Cave entry. Except...

  9. 36 CFR 7.68 - Russell Cave National Monument.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Russell Cave National... INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.68 Russell Cave National Monument. (a) Caves—(1) Closed Areas. Entering, exploring, or remaining within any cave area other than the...

  10. 36 CFR 7.36 - Mammoth Cave National Park.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Mammoth Cave National Park. 7... SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.36 Mammoth Cave National Park. (a) Fishing—(1... Creek Lake. Live minnows and worms may be used in all other waters. (ii) (b)(1) Cave entry. Except...

  11. 36 CFR 7.36 - Mammoth Cave National Park.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Mammoth Cave National Park. 7... SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.36 Mammoth Cave National Park. (a) Fishing—(1... Creek Lake. Live minnows and worms may be used in all other waters. (ii) (b)(1) Cave entry. Except...

  12. Parallel speciation in Astyanax cave fish (Teleostei) in Northern Mexico.

    PubMed

    Strecker, Ulrike; Hausdorf, Bernhard; Wilkens, Horst

    2012-01-01

    We investigated differentiation processes in the Neotropical fish Astyanax that represents a model system for examining adaptation to caves, including regressive evolution. In particular, we analyzed microsatellite and mitochondrial data of seven cave and seven surface populations from Mexico to test whether the evolution of the cave fish represents a case of parallel evolution. Our data revealed that Astyanax invaded northern Mexico across the Trans-Mexican Volcanic Belt at least three times and that populations of all three invasions adapted to subterranean habitats. Significant differentiation was found between the cave and surface populations. We did not observe gene flow between the strongly eye and pigment reduced old cave populations (Sabinos, Tinaja, Pachon) and the surface fish, even when syntopically occurring like in Yerbaniz cave. Little gene flow, if any, was found between cave populations, which are variable in eye and pigmentation (Micos, Chica, Caballo Moro caves), and surface fish. This suggests that the variability is due to their more recent origin rather than to hybridization. Finally, admixture of the young Chica cave fish population with nuclear markers from older cave fish demonstrates that gene flow between populations that independently colonized caves occurs. Thus, all criteria of parallel speciation are fulfilled. Moreover, the microsatellite data provide evidence that two co-occurring groups with small sunken eyes and externally visible eyes, respectively, differentiated within the partly lightened Caballo Moro karst window cave and might represent an example for incipient sympatric speciation. PMID:21963344

  13. Metabolically active Crenarchaeota in Altamira Cave.

    PubMed

    Gonzalez, Juan M; Portillo, M Carmen; Saiz-Jimenez, Cesareo

    2006-01-01

    Altamira Cave contains valuable paleolithic paintings dating back to 15,000 years. The conservation of these unique paintings is attracting increasing interest, and so, understanding microbial proliferation in Altamira Cave represents a prioritary objective. Here, we show for the first time that members of the Crenarchaeota were metabolically active components of developing microbial communities. RNA was extracted directly from the studied environment, and a number of 16S rRNA gene sequences belonging to the low-temperature Crenarchaeota were detected. Although low-temperature Crenarchaeota detected in a variety of ecosystems by using molecular techniques remain uncultured, this RNA-based study confirms an active participation of the Crenarchaeota in cave biogeochemical cycles. PMID:16292522

  14. Cooling of Kilauea Iki lava lake

    SciTech Connect

    Hills, R.G.

    1982-02-01

    In 1959 Kilauea Iki erupted leaving a 110 to 120 m lake of molten lava in its crater. The resulting lava lake has provided a unique opportunity to study the cooling dynamics of a molten body and its associated hydrothermal system. Field measurements taken at Kilauea Iki indicate that the hydrothermal system above the cooling magma body goes through several stages, some of which are well modeled analytically. Field measurements also indicate that during most of the solidification period of the lake, cooling from above is controlled by 2-phase convection while conduction dominates the cooling of the lake from below. A summary of the field work related to the study of the cooling dynamics of Kilauea Iki is presented. Quantitative and qualitative cooling models for the lake are discussed.

  15. Support of LAVA Integration and Testing

    NASA Technical Reports Server (NTRS)

    Jackson, Marcus Algernon

    2014-01-01

    The Lunar Advanced Volatile Analysis (LAVA) subsystem is a part of the Regolith and Environment Science & Oxygen and Lunar Volatile Analysis (RESOLVE) Payload that will fly to the lunar pole on the Resource Prospector Mission (RPM) in 2019. The purpose of the mission is to characterize the water on the surface and subsurface of the moon in various locations in order to map the distribution. This characterization of water will help to understand how feasible water is as a resource that can be used for drinking water, breathable air, and propellants in future missions. This paper describes the key support activities performed during a 10 week internship; specifically, troubleshooting the Near Infrared Spectrometer for the Surge Tank (NIRST) instrument count loss, contributing to a clamp to be used in the installation of Resistive Temperature Detectors (RTDs) to tubing, performing a failure analysis of the LAVA Fluid Subsystem (FSS), and finalizing trade studies for release.

  16. Voluminous submarine lava flows from Hawaiian volcanoes

    SciTech Connect

    Holcomb, R.T.; Moore, J.G.; Lipman, P.W.; Belderson, R.H.

    1988-05-01

    The GLORIA long-range sonar imaging system has revealed fields of large lava flows in the Hawaiian Trough east and south of Hawaii in water as deep as 5.5 km. Flows in the most extensive field (110 km long) have erupted from the deep submarine segment of Kilauea's east rift zone. Other flows have been erupted from Loihi and Mauna Loa. This discovery confirms a suspicion, long held from subaerial studies, that voluminous submarine flows are erupted from Hawaiian volcanoes, and it supports an inference that summit calderas repeatedly collapse and fill at intervals of centuries to millenia owing to voluminous eruptions. These extensive flows differ greatly in form from pillow lavas found previously along shallower segments of the rift zones; therefore, revision of concepts of volcano stratigraphy and structure may be required.

  17. Modeling steam pressure under martian lava flows

    USGS Publications Warehouse

    Dundas, Colin M.; Keszthelyi, Laszlo P.

    2013-01-01

    Rootless cones on Mars are a valuable indicator of past interactions between lava and water. However, the details of the lava–water interactions are not fully understood, limiting the ability to use these features to infer new information about past water on Mars. We have developed a model for the pressurization of a dry layer of porous regolith by melting and boiling ground ice in the shallow subsurface. This model builds on previous models of lava cooling and melting of subsurface ice. We find that for reasonable regolith properties and ice depths of decimeters, explosive pressures can be reached. However, the energy stored within such lags is insufficient to excavate thick flows unless they draw steam from a broader region than the local eruption site. These results indicate that lag pressurization can drive rootless cone formation under favorable circumstances, but in other instances molten fuel–coolant interactions are probably required. We use the model results to consider a range of scenarios for rootless cone formation in Athabasca Valles. Pressure buildup by melting and boiling ice under a desiccated lag is possible in some locations, consistent with the expected distribution of ice implanted from atmospheric water vapor. However, it is uncertain whether such ice has existed in the vicinity of Athabasca Valles in recent history. Plausible alternative sources include surface snow or an aqueous flood shortly before the emplacement of the lava flow.

  18. Atmospheric /sup 222/Rn in tourist caves of Slovenia, Yugoslavia

    SciTech Connect

    Kobal, I.; Smodis, B.; Burger, J.; Skofljanec, M.

    1987-04-01

    Radon-222 concentrations in the air of 12 tourist caves in Slovenia, Yugoslavia were measured. In almost all the caves concentrations are higher than in the outdoor air, with the highest concentration in the Tabor Cave at about 6000 Bq m-3. From the /sup 222/Rn concentrations obtained, the activity of /sup 222/Rn inhaled by a visitor breathing cave air was calculated, and the bronchial dose was estimated. The inhaled activity and the bronchial dose were highest in the Tabor Cave with values of 10 kBq and 540 microSv, respectively.

  19. Clinker formation in basaltic lava flows

    NASA Astrophysics Data System (ADS)

    van Wyk de Vrie, B.; Loock, S.; Henot, J.

    2007-12-01

    Basaltic lava flows are classified according their surface morphology. They can be either aa, displaying a rough clinkery surface or pahoehoe, displaying a smooth clinkerless surface. These two surface types differ also in their emplacement and rheology, and can be differentiated in a shear-strain rate vs. apparent viscosity diagram (Hon & al., 2003). To understand clinker formation, one way is to see how a pahoehoe lava converts to an aa through shear-viscosity changes. Two possibilities occur: 1) the viscosity can increase (e.g. by levee formation) and clinkers will be formed by torque on the flow edges, or 2) the shear-strain will increase (lava influx increasing, topographic obstacles, slope change) and clinker will be formed by crust-breakage. These two clinker formatting processes are called magmatic fragmentation. Clinker will be formed on the summit and to the edges of the flow and they will appear at the base of its according the caterpillar motion usually associated with flows. However, in the Chaîne des Puys (French), basal clinker appears without top clinker (i.e. a pahoehoe lava flow with basal clinker) and thus another explanation is needed to explain them. Clinker samples were collected in different emplacement contexts and different part of flows. The SEM analysis of these samples and comparisons with ash samples from the literature show classical magmatic fragmentation textures (stepped fractures, non- synchronic fractures) in three aa lava flows. However, in one pahoehoe flow there are typical phreatomagmatic textures (blocky shapes, adhering fine particles). There are also shearing structures, such as microfaults in an intermediate flow. Thus, there are at least three different ways to form clinker: 1) classically by fragmentation at the flow base and the edges; 2) by phreatomagmatism at the base flow; 3) by shearing at the flow base and the edges. Basal shearing structures include fault gauges and welded clasts, indicating possible shear

  20. Is Radon Emission in Caves Causing Deletions in Satellite DNA Sequences of Cave-Dwelling Crickets?

    PubMed Central

    Allegrucci, Giuliana; Sbordoni, Valerio; Cesaroni, Donatella

    2015-01-01

    The most stable isotope of radon, 222Rn, represents the major source of natural radioactivity in confined environments such as mines, caves and houses. In this study, we explored the possible radon-related effects on the genome of Dolichopoda cave crickets (Orthoptera, Rhaphidophoridae) sampled in caves with different concentrations of radon. We analyzed specimens from ten populations belonging to two genetically closely related species, D. geniculata and D. laetitiae, and explored the possible association between the radioactivity dose and the level of genetic polymorphism in a specific family of satellite DNA (pDo500 satDNA). Radon concentration in the analyzed caves ranged from 221 to 26000 Bq/m3. Specimens coming from caves with the highest radon concentration showed also the highest variability estimates in both species, and the increased sequence heterogeneity at pDo500 satDNA level can be explained as an effect of the mutation pressure induced by radon in cave. We discovered a specific category of nuclear DNA, the highly repetitive satellite DNA, where the effects of the exposure at high levels of radon-related ionizing radiation are detectable, suggesting that the satDNA sequences might be a valuable tool to disclose harmful effects also in other organisms exposed to high levels of radon concentration. PMID:25822625

  1. Instrumenting caves to collect hydrologic and geochemical data: case study from James Cave, Virginia

    USGS Publications Warehouse

    Schreiber, Madeline E.; Schwartz, Benjamin F.; Orndorff, William; Doctor, Daniel H.; Eagle, Sarah D.; Gerst, Jonathan D.

    2015-01-01

    Karst aquifers are productive groundwater systems, supplying approximately 25 % of the world’s drinking water. Sustainable use of this critical water supply requires information about rates of recharge to karst aquifers. The overall goal of this project is to collect long-term, high-resolution hydrologic and geochemical datasets at James Cave, Virginia, to evaluate the quantity and quality of recharge to the karst system. To achieve this goal, the cave has been instrumented for continuous (10-min interval) measurement of the (1) temperature and rate of precipitation; (2) temperature, specific conductance, and rate of epikarst dripwater; (3) temperature of the cave air; and (4) temperature, conductivity, and discharge of the cave stream. Instrumentation has also been installed to collect both composite and grab samples of precipitation, soil water, the cave stream, and dripwater for geochemical analysis. This chapter provides detailed information about the instrumentation, data processing, and data management; shows examples of collected datasets; and discusses recommendations for other researchers interested in hydrologic and geochemical monitoring of cave systems. Results from the research, briefly described here and discussed in more detail in other publications, document a strong seasonality of the start of the recharge season, the extent of the recharge season, and the geochemistry of recharge.

  2. Helium Isotopes and Noble Gas Abundances of Cave Dripping Water in Three Caves in East Asia

    NASA Astrophysics Data System (ADS)

    Chen, A. T.; Shen, C. C.; Tan, M.; Li, T.; Uemura, R.; Asami, R.

    2015-12-01

    Paleo-temperature recorded in nature archives is a critical parameter to understand climate change in the past. With advantages of unique inert chemical characteristics and sensitive solubilities with temperature, dissolved noble gases in speleothem inclusion water were recently proposed to retrieve terrestrial temperature history. In order to accurately apply this newly-developed speleothem noble gas temperature (NGT) as a reliable proxy, a fundamental issue about behaviors of noble gases in the karst should be first clarified. In this study, we measured noble gas contents in air and dripping water to evaluate any ratio deviation between noble gases. Cave dripping water samples was collected from three selected caves, Shihua Cave in northern China, Furong Cave in southwestern, and Gyukusen Cave in an island located in the western Pacific. For these caves are characterized by a thorough mixing and long-term storage of waters in a karst aquifer by the absence of seasonal oxygen isotope shifts. Ratios of dripping water noble gases are statistically insignificant from air data. Helium isotopic ratios in the dripping water samples match air value. The results indicate that elemental and isotopic signatures of noble gases from air can be frankly preserved in the epikarst and support the fidelity of NGT techniques.

  3. Using Lava Tube Skylights To Derive Lava Eruption Temperatures on Io

    NASA Astrophysics Data System (ADS)

    Davies, Ashley Gerard; Keszthelyi, Laszlo P.; McEwen, Alfred S.

    2015-11-01

    The eruption temperature of Io’s silicate lavas constrains Io’s interior state and composition [1]. We have examined the theoretical thermal emission from lava tube skylights above basaltic and ultramafic lava channels. Assuming that tube-fed lava flows are common on Io, skylights could also be common. Skylights present steady thermal emission on a scale of days to months. We find that the thermal emission from such a target, measured at multiple visible and NIR wavelengths, can provide a highly accurate diagnostic of eruption temperature. However, the small size of skylights means that close flybys of Io are necessary, requiring a dedicated Io mission [2]. Observations would ideally be at night or in eclipse. We have modelled the thermal emission spectrum for different skylight sizes, lava flow stream velocities, end-member lava compositions, and skylight radiation shape factors, determining the resulting flow surface cooling rates. We calculate the resulting thermal emission spectrum as a function of viewing geometry. From the resulting 0.7:0.9 μm ratios, we see a clear distinction between basaltic and ultramafic compositions for skylights smaller than 20 m across, even if sub-pixel. Our analysis will be further refined as accurate high-temperature short-wavelength emissivity values become available [3]. This work was performed at the Jet Propulsion Laboratory-California Institute of Technology, under contract to NASA. We thank the NASA OPR Program for support. References: [1] Keszthelyi et al. (2007) Icarus 192, 491-502 [2] McEwen et al. (2015) The Io Volcano Observer (IVO) LPSC-46 abstract 1627 [3] Ramsey and Harris (2015) IAVCEI-2015, Prague, Cz. Rep., abstract IUGG-3519.

  4. Magnetostratigraphy of cave sediments, Wyandotte Ridge, Crawford County, southern Indiana

    SciTech Connect

    Pease, P.P.; Gomez, B. . Dept. of Geography and Geology); Schmidt, V.A. . Dept. of Geology and Planetary Science)

    1992-01-01

    The field polarities of 42 sediment samples obtained from 21 sites in Wyandotte Cave, and five smaller satellite caves in Wyandotte Ridge, southern Indiana, have been determined and correlated with magnetostratigraphic data from Mammoth Cave, Kentucky. In Wyandotte Cave sediment samples obtained between 137 m and 162 m in elevation possessed a normal field polarity, while samples obtained between 168 m and 171 m exhibited a field reversal. The reversal was interpreted to represent the most recent polarity change, dating the sediment fill and the end of the active period of the upper level of Wyandotte Cave at ca 0.788 Ma. There is a temporal correlation between the active period of the upper level in Wyandotte Cave and the C-level in Mammoth Cave, which lies at a similar elevation. Such a correlation is most likely a consequence of the contemporaneous abandonment of passages in the two cave systems during the early Pleistocene reconstruction of the Ohio River system, which acts as the base level control in both caves. Samples from two caves near the top of Wyandotte Ridge, located between elevations of 236 m and 241 m, exhibited a normal polarity. These caves are located at a higher elevation than any of the sample sites in Mammoth Cave and their location suggests that the fill predates sediments from that system. It appears most likely that the fill in these caves is a minimum of ca 2.48 Ma. old and correlates with the residuum of the upper Mitchell Plain surface, not with the fill in the upper (A- or B-levels) in Mammoth Cave.

  5. The Crystals Cave in a test tube

    NASA Astrophysics Data System (ADS)

    Puig, C.; Romero, M. L.

    2012-04-01

    It's quite easy to understand formation of crystals in Nature by evaporation of the solutions that contain minerals, but many times we have realised that our pupils hardly understand that precipitation is a process mostly caused by changing parameters in a solution, like pH, temperature, etc. and not necessarily depending on evaporation. We propose a hands-on activity using the context of the Cave of the Crystals in Naica's mine, Mexico. The Crystals Cave is a wonderful place where giant crystals of selenite (gypsum) have grown feeding from a supersaturated anhydrite solution1. Miners discovered the cave filled with hot water, and drained it to explore the gallery. The cave is now a giant laboratory where scientists are looking for the keys to understand geological processes. Teaching sequence (for students 15 years old) is as follows: DISCOVERING A MARVELLOUS PLACE: We showed our pupils several images and a short video of the Cave of the Crystals and ask them about the process that may have caused the phenomenon. Whole-class discussion. PRESENTING A CHALLENGE TO OUR STUDENTS: "COULD WE CREATE A CRYSTALS CAVE IN A TEST TUBE?" EXPERIMENTING TO IMITATE NATURE: Students tried to grow crystals simulating the same conditions as those in Naica's mine. We have chosen KNO3, a salt more soluble than gypsum. We added 85 g of salt to 200 ml of water (solubility of KNO3 at 25°C is 36 g per 100 gr of water) and heated it until it is dissolved. Afterwards, we poured the solution into some test tubes and other recipients and let them cool at room temperature. And they got a beautiful crystals cave!! THINKING A LITTLE MORE: we asked pupils some questions to make them think about the process and to predict what would happen in different situations. For example: a) What would happen with crystals if we heated the tubes again? or b) What would happen if we took the remaining solution from the tubes and keep it in the fridge? PROVING A NEW HYPOTHESIS: Pupils collected the remaining

  6. Bed Bugs FAQs

    MedlinePlus

    ... Tropical Diseases Laboratory Diagnostic Assistance [DPDx] Parasites Home Bed Bugs FAQs Recommend on Facebook Tweet Share Compartir On ... are bed bugs treated and prevented? What are bed bugs? Bed bugs ( Cimex lectularius ) are small, flat, parasitic ...

  7. Comparison of Natural Dams from Lava Flows and Landslides on the Owyhee River, Oregon

    NASA Astrophysics Data System (ADS)

    Ely, L. L.; Brossy, C. C.; Othus, S. M.; Orem, C.; Fenton, C.; House, P. K.; O'Connor, J. E.; Safran, E. B.

    2008-12-01

    Numerous large lava flows and mass movements have temporarily dammed the Owyhee River in southeastern Oregon at various temporal and spatial scales. These channel-encroaching events potentially play a significant role in creating and maintaining the geomorphic features of river canyons in uplifted volcanic terranes that compose a significant part of the western U.S. Abundant landslides and lava flows have the capacity to inhibit incision by altering channel slope, width, and bed character, and burying valley- bottom bedrock under exogenous material; or promote incision by generating cataclysmic floods through natural dam failures. The natural dams vary in their source, morphology, longevity and process of removal, which in turn affects the extent and duration of their impact on the river. The 3 most recent lava flows filled the channel 10-75 m deep and flowed up to 26 kilometers downvalley, creating long, low dams that were subject to gradual, rather than catastrophic, removal. In the last 125 ka, the Saddle Butte and West Crater lava dams created reservoirs into which 10-30 meters of silt and sand were deposited. The river overtopped the dams and in most reaches eventually cut a new channel through the adjacent, less resistant bedrock buttresses. Terraces at several elevations downstream and upstream of the West Crater dam indicate periods of episodic incision ranging from 0.28 to 1.7 mm/yr., based on 3He exposure ages on strath surfaces and boulder-rich fluvial deposits. In contrast to the lava dams, outburst flood deposits associated with landslide dams are common along the river. The mechanisms of failure are related to the geologic setting, and include rotational slump complexes, cantilevered blocks and block slides, and massive earthflows. Most large-scale mass movements occur in reaches where the Owyhee canyon incises through stacks of interbedded fluviolacustrine sediments capped with lava flows. The frequently observed association of landslides and flood

  8. Reply to the Comment on "Sandstone caves on Venezuelan tepuis: Return to pseudokarst?"

    NASA Astrophysics Data System (ADS)

    Aubrecht, R.; Lánczos, T.; Gregor, M.; Schlögl, J.; Šmída, B.; Liščák, P.; Brewer-Carías, Ch.; Vlček, L.

    2013-09-01

    In Aubrecht et al. (2011) we brought new data showing that the arenitic caves in the Venezuelan tepuis did not necessarily originate through quartz cement dissolution ('arenization') but the main portion of the caves originated because of poor lithification prior to erosion. An additional important process is lateritization which is responsible for at least 30% of the caves' volume. Sauro et al. (2012) in their comment support the 'arenization' theory (quartz cement dissolution) and provide several arguments against some points of our research. Their main objections and arguments relate to the following topics: 1) the validity of the arenization theory, 2) the origin and importance of the 'finger-flow' pillars, 3) the importance of the Schmidt hammer measurements and, 4) metamorphism of the Matauí Formation. In our reply we present further documentation that: The quartz cement dissolution theory of cave evolution was far less documented petrographically than the new theory presented by us. Although the presence of quartz dissolution is evident, there is no current evidence that it is widespread or that it plays a trigger role. Many of the presented examples of corrosion on quartz grains could have been caused by local alkalization. In addition, the hydrogeochemical data presented in the comment to support the 'arenization' theory do not in fact contradict our speleogenetic interpretations. 'Finger-flow' pillars are speleogenetic indicators and not speleogenetic factors. Their absence in some caves provides no evidence against our theory. Schmidt hammer measurements only objectivize the data on contrasting hardness in the Matauí Formation beds. They do not say anything about the origin of this difference. The arguments of Sauro et al. (2012) involve the metamorphic overprint of the Matauí Formation shown by the presence of pyrophyllite and quartz mobilizations. Because quartz mobilization also occurs in hypergenic conditions, it may be neglected as a metamorphic

  9. Impacts of cave air ventilation and in-cave prior calcite precipitation on Golgotha Cave dripwater chemistry, southwest Australia

    NASA Astrophysics Data System (ADS)

    Treble, Pauline C.; Fairchild, Ian J.; Griffiths, Alan; Baker, Andy; Meredith, Karina T.; Wood, Anne; McGuire, Elizabeth

    2015-11-01

    Speleothem trace element chemistry is an important component of multi-proxy records of environmental change but a thorough understanding of hydrochemical processes is essential for its interpretation. We present a dripwater chemistry dataset (PCO2, alkalinity, Ca, SIcc, Mg and Sr) from an eight-year monitoring study from Golgotha Cave, building on a previous study of hydrology and dripwater oxygen isotopes (Treble et al., 2013). Golgotha Cave is developed in Quaternary aeolianite and located in a forested catchment in the Mediterranean-type climate of southwest Western Australia. All dripwaters from each of the five monitored sites become supersaturated with respect to calcite during most of the year when cave ventilation lowers PCO2 in cave air. In this winter ventilation mode, prior calcite precipitation (PCP) signals of increased Mg/Ca and Sr/Ca in dripwater are attributed to stalactite deposition. A fast-dripping site displays less-evolved carbonate chemistry, implying minimal stalactite growth, phenomena which are attributed to minimal degassing because of the short drip interval (30 s). We employ hydrochemical mass-balance modelling techniques to quantitatively investigate the impact of PCP and CO2 degassing on our dripwater. Initially, we reverse-modelled dripwater solutions to demonstrate that PCP is dominating the dripwater chemistry at our low-flow site and predict that PCP becomes enhanced in underlying stalagmites. Secondly, we forward-modelled the ranges of solution Mg/Ca variation that potentially can be caused by degassing and calcite precipitation to serve as a guide to interpreting the resulting stalagmite chemistry. We predict that stalagmite trace element data from our high-flow sites will reflect trends in original dripwater solutes, preserving information on biogeochemical fluxes within our system. By contrast, stalagmites from our low-flow sites will be dominated by PCP effects driven by cave ventilation. Our poorly karstified system allows us

  10. Intraformational deformation in the tuffs and lavas of Calico Hills exposed near Yucca Mountain, Nevada

    SciTech Connect

    Buesch, D.C. ); Dickerson, R.P. )

    1993-04-01

    The 12.9 Ma tuffs and lavas of Calico Hills (CH) records development of part of the Southwest Nevada Volcanic Field that formed during intermittent periods of extensional tectonism. Exposures of the CH in upper Paintbrush Canyon, 6 km northeast of Yucca Mountain, consists of five lava flows interstratified with pyroclastic flow and fallout deposits, and fluvially redeposited sediment. The lower part of the exposures (shown in cross section below) consists of a lava flow (L1), interbedded primary and redeposited tuffaceous deposits (R1a and R1b), massive breccia deposit (M1), lava flow (L2), massive breccia deposit (M2), and redeposited tuffaceous deposits (R2). Moderately developed stratification at the base of massive breccia deposit M1 and localized concentrations of lithic fragments throughout the deposit indicates probably deposition from a pyroclastic flow. Bedding in R1, R2, and the base of M1 (dashed line) parallels stratigraphic unit contacts. An intraformational unconformity between R1 subunits (solid line) is interpreted as a fluctuation in local base level, or minor folding prior to deposition of R1b. Northward thinning of post-R1 rocks indicate L1 and R1 were folded into a southeast plunging anticline that formed a topographic high; across which M1 was deposited and against which L2, M2, and R2 abutted. Because post-R2 CH deposits shown no significant intraformational deformation at this location, most deformation described here occurred early in the depositional history of the CH and resulted from localized compression synchronous with regional extension or localized tumescence associated with volcanism.

  11. Sampling Elysium lavas (13 deg N, 203 deg W)

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.

    1994-01-01

    The proposed Pathfinder landing site presents the opportunity to determine chemical and mineralogical compositions of an Elysium lava flow. The flow is part of a geologic unit of planetary significance. The proposed site appears suitable for landing, and lava surfaces should be accessible to the Pathfinder instruments. By analogy to terrestrial flood basalts, any lava analyzed by Pathfinder is likely to be representative of the entire Elysium province.

  12. Delineating recharge areas for Onondaga and Cathedral Caves using groundwater tracing techniques

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Onondaga Cave and Cathedral Cave are two large, significant cave systems with active streams located along the Meramec River in the Ozarks ecoregion of Missouri. Groundwater dye tracing has delineated recharge areas for both caves in order to aid in the management of the cave systems by Onondaga Cav...

  13. Gusev Rocks Solidified from Lava (False Color)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    In recent weeks, as NASA's Mars Exploration Rover Spirit has driven through the basin south of 'Husband Hill,' it has been traversing mainly sand and dune deposits. This week, though, Spirit has been maneuvering along the edge of an arc-shaped feature called 'Lorre Ridge' and has encountered some spectacular examples of basaltic rocks with striking textures. This panoramic camera (Pancam) image shows a group of boulders informally named 'FuYi.' These basaltic rocks were formed by volcanic processes and may be a primary constituent of Lorre Ridge and other interesting landforms in the basin.

    Spirit first encountered basalts at its landing site two years ago, on a vast plain covered with solidified lava that appeared to have flowed across Gusev Crater. Later, basaltic rocks became rare as Spirit climbed Husband Hill. The basaltic rocks that Spirit is now seeing are interesting because they exhibit many small holes or vesicles, similar to some kinds of volcanic rocks on Earth. Vesicular rocks form when gas bubbles are trapped in lava flows and the rock solidifies around the bubbles. When the gas escapes, it leaves holes in the rock. The quantity of gas bubbles in rocks on Husband Hill varies considerably; some rocks have none and some, such as several here at FuYi, are downright frothy.

    The change in textures and the location of the basalts may be signs that Spirit is driving along the edge of a lava flow. This lava may be the same as the basalt blanketing the plains of Spirit's landing site, or it may be different. The large size and frothy nature of the boulders around Lorre Ridge might indicate that eruptions once took place at the edge of the lava flow, where the lava interacted with the rocks of the basin floor. Scientists hope to learn more as Spirit continues to investigate these rocks.

    As Earth approaches the Chinese New Year (The Year of the Dog), the Athena science team decided to use nicknames representing Chinese culture and geography

  14. Gusev Rocks Solidified from Lava (3-D)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    In recent weeks, as NASA's Mars Exploration Rover Spirit has driven through the basin south of 'Husband Hill,' it has been traversing mainly sand and dune deposits. This week, though, Spirit has been maneuvering along the edge of an arc-shaped feature called 'Lorre Ridge' and has encountered some spectacular examples of basaltic rocks with striking textures. This panoramic camera (Pancam) image shows a group of boulders informally named 'FuYi.' These basaltic rocks were formed by volcanic processes and may be a primary constituent of Lorre Ridge and other interesting landforms in the basin.

    Spirit first encountered basalts at its landing site two years ago, on a vast plain covered with solidified lava that appeared to have flowed across Gusev Crater. Later, basaltic rocks became rare as Spirit climbed Husband Hill. The basaltic rocks that Spirit is now seeing are interesting because they exhibit many small holes or vesicles, similar to some kinds of volcanic rocks on Earth. Vesicular rocks form when gas bubbles are trapped in lava flows and the rock solidifies around the bubbles. When the gas escapes, it leaves holes in the rock. The quantity of gas bubbles in rocks on Husband Hill varies considerably; some rocks have none and some, such as several here at FuYi, are downright frothy.

    The change in textures and the location of the basalts may be signs that Spirit is driving along the edge of a lava flow. This lava may be the same as the basalt blanketing the plains of Spirit's landing site, or it may be different. The large size and frothy nature of the boulders around Lorre Ridge might indicate that eruptions once took place at the edge of the lava flow, where the lava interacted with the rocks of the basin floor. Scientists hope to learn more as Spirit continues to investigate these rocks.

    As Earth approaches the Chinese New Year (The Year of the Dog), the Athena science team decided to use nicknames representing Chinese culture and geography

  15. The transport of CO2 into central Texas caves (Invited)

    NASA Astrophysics Data System (ADS)

    Breecker, D.; Banner, J. L.; Larson, T.

    2013-12-01

    It is well established that CO2 is flushed out of caves by seasonal or synoptic temperature- and barometric pressure-driven ventilation. The mechanism by which CO2 is transported into caves is not as well studied and must be understood in order to quantify carbon (C) cycling through caves, soils and epikarst. Transport mechanisms into caves include gas and aqueous phase (i.e. drip-water) transport. We interpret δ13C values of cave-air CO2 and O2/Ar ratios of cave-air in order to distinguish between these transport mechanisms in three central Texas caves. Gas phase transport might allow cave-air to be used as a simple proxy for otherwise largely inaccessible epikarst air. Drip-water transport might allow measurements of individual drips to be scaled up to cave-integrated assessment of water flux, calcite precipitation, and degassing-related isotope fractionation using measurements of cave-air CO2. We start by assuming gas phase transport and then evaluate the consistency of the results. We apply to cave-air CO2 the theory for steady state soil CO2 transport, which involves mixing with atmospheric air and isotope fractionation by diffusion. This allows calculation of the C isotope composition of the reduced C source for cave-air CO2 (δ13Cr). Calculated cave-air δ13Cr values are consistent with observed soil δ13Cr values. For instance, where trees are evenly distributed at the surface, cave-air δ13Cr values (-24‰) remained within 1‰ of tree-dominated soil δ13Cr values and were 3.5 to 4.5 ‰ lower than grass-dominated soil δ13Cr values, suggesting that trees are the dominant C source. This internally consistent explanation suggests that CO2 diffuses and/or advects into these caves as a gas because aqueous transport into caves would likely result in different cave-air and soil δ13Cr values, as described next. The magnitude of the CO2(g) -HCO3-(aq) carbon isotope per mil fractionation factor is -8.4 ‰ at 20.5°C, the mean Inner Space Cavern drip

  16. Geochemical Stratigraphy of Southern Parana' Lava Piles

    NASA Astrophysics Data System (ADS)

    Marzoli, A.; De Min, A.; Marques, L. S.; Nardy, A.; Chiaradia, M.

    2015-12-01

    Basaltic lava flows of the Paranà Large Igneous Province exhibit significant regional and stratigraphic geochemical variations. While the most notable difference concerns the dominance of low-Ti (TiO2 < 2.0 wt.%) and high-Ti types in the southern and northern part of the province, respectively, detailed analyses of lava flow sequences sampled mostly in drill cores allowed definition of six main groups of chemically distinct flow units. The chemical and possible age differences among these units were then used to define the global time-related evolution of Paranà basaltic magmatism and involvement of distinct mantle-source components. Newly sampled outcropping lava flow sequences from the southern Paranà do however only partially support this picture. Our new major and trace element and Sr-Nd-Pb isotopic data show that high- and low-Ti basaltic flows are interlayered. In particular, Pitanga type high-Ti basalts are interlayered with Gramado and Esmeralda low-Ti basalts (these latter being present both towards the base and the top of the sequence) in Paranà State, while in Santa Caterina State Gramado flows are interlayered with Urubici-type high-Ti basalts. The interlayering of distinct basaltic magma type requires near-synchronous eruption of chemically strongly different magma types generated from clearly heterogeneous mantle sources and erupted through separated magma plumbing systems, without apparent interaction (mixing) among the distinct basalts. In conclusion, the relative timing of low- and high-Ti magma types seems to be much more complicated than previously thought, as for example Esmeralda or Pitanga basalts, previously considered as quite late and postdating Gramado basalts, are indeed synchronous with them.

  17. Identifying hazards associated with lava deltas

    USGS Publications Warehouse

    Poland, Michael P.; Orr, Tim R.

    2014-01-01

    Lava deltas, formed where lava enters the ocean and builds a shelf of new land extending from the coastline, represent a significant local hazard, especially on populated ocean island volcanoes. Such structures are unstable and prone to collapse—events that are often accompanied by small explosions that can deposit boulders and cobbles hundreds of meters inland. Explosions that coincide with collapses of the East Lae ‘Apuki lava delta at Kīlauea Volcano, Hawai‘i, during 2005–2007 followed an evolutionary progression mirroring that of the delta itself. A collapse that occurred when the lava–ocean entry was active was associated with a blast of lithic blocks and dispersal of spatter and fine, glassy tephra. Shortly after delta growth ceased, a collapse exposed hot rock to cold ocean water, resulting in an explosion composed entirely of lithic blocks and lapilli. Further collapse of the delta after several months of inactivity, by which time it had cooled significantly, resulted in no recognizable explosion deposit. Seaward displacement and subsidence of the coastline immediately inland of the delta was measured by both satellite and ground-based sensors and occurred at rates of several centimeters per month even after the lava–ocean entry had ceased. The anomalous deformation ended only after complete collapse of the delta. Monitoring of ground deformation may therefore provide an indication of the potential for delta collapse, while the hazard associated with collapse can be inferred from the level of activity, or the time since the last activity, on the delta.

  18. Terrestrial Photogrammetry of Active Lava Flows

    NASA Astrophysics Data System (ADS)

    James, M.; Robson, S.

    2006-12-01

    In order to improve our understanding of how lavas flow, cool and stop, accurate and frequent DEMs and associated temperature measurements of active flows are required. We describe the use of terrestrial photogrammetric techniques which allow detailed measurements to be carried out rapidly, frequently and over relevant spatial scales. Furthermore, the equipment required is sufficiently small and light to be easily deployed in remote areas. Images of lava flows from Etna (Sicily) and Hawai'i have been acquired, representing cases involving different length scales, observation distances and advance rates. On Etna, flow-front regions and distal channels of aa flows were studied over distances of up to 400 m. Advance rates were relatively slow (< 4 m hr-1) over flow-fronts ~7 m in height and up to ~30 m in width. The slow rate of change allowed topographic surfaces to be constructed from images collected from multiple locations using a single camera. Sequential surfaces were uses to monitor variations in the volumetric flux at the flow fronts. On Hawai'i, smaller spatial scales were required (distances <30 m) to cover the advance and subsequent inflation of pahoehoe toes. In contrast to the Etna case, the higher rate of lava advance precluded the use of one roving camera to provide topographic data. Hence, DEMs were generated from image pairs acquired using two synchronised and tripod-mounted cameras. Image pairs were collected every minute and the resulting topography can be used to rectify simultaneously collected thermal data. The different problems associated with data collection and processing in these two cases are discussed. This includes image matching issues and factors resulting from the differences between the rubbly aa and the relatively smooth pahoehoe surfaces.

  19. Chips Off an Old Lava Flow

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2007-12-01

    Photogeologic and remote sensing studies of the Moon show that many light-colored, smooth areas in the highlands contain craters surrounded by dark piles of excavated debris. The dark deposits resemble the dark basalts that make up the lunar maria. They contain the same diagnostic minerals (especially high-calcium pyroxene) and chemical compositions (high iron oxide) as do mare basalts. The deposits formed when vast amounts of material ejected during the formation of giant impact basins covered pre-existing lava plains. Since the smooth plains are older than the youngest impact basin (about 3.8 billion years old), the lavas must have erupted before formation of the visible maria. In fact, they were visible maria for a while eons ago, but were buried by ejecta when the basins formed. We have samples of these ancient mare basalts. They reside in breccias collected from the lunar highlands. Age dating indicates that the chips have ages of 3.9 billion years and older. The oldest dated mare basalt in the Apollo collection is 4.23 billion years. Now Kentaro Terada (Hiroshima University, Japan), Mahesh Anand (Open University, UK), Anna Sokol and Addi Bischoff (Institute for Planetology, Muenster, Germany), and Yuji Sano (The University of Tokyo, Japan) have determined the age of pieces of an ancient lava flow in a lunar meteorite, Kalahari 009, found in Botswana in 1999. The team dated this very low-titanium mare basalt by using an ion microprobe to measure the isotopic composition of lead and uranium in phosphate minerals. They found that the basalt fragments in the rock have an age of about 4.35 (plus or minus 0.15) billion years. This overlaps with the ages of chemically-distinct igneous rocks from the highlands, indicating that diverse magmas were being produced early in the history of the Moon.

  20. Lava tubes - Potential shelters for habitats. [on moon

    NASA Technical Reports Server (NTRS)

    Horz, F.

    1985-01-01

    Natural caverns occur on the moon in the form of 'lava tubes', which are the drained conduits of underground lava rivers. The inside dimensions of these tubes measure tens to hundreds of meters, and their roofs are expected to be thicker than 10 meters. Consequently, lava tube interiors offer an environment that is naturally protected from the hazards of radiation and meteorite impact. Further, constant, relatively benign temperatures of -20 C prevail. These are extremely favorable environmental conditions for human activities and industrial operations. Significant operational, technological, and economical benefits might result if a lunar base were constructed inside a lava tube.

  1. Determining the Compositions of Extraterrestrial Lava Flows

    NASA Technical Reports Server (NTRS)

    Fink, Jonathan H.

    2002-01-01

    The primary purpose of this research project has been to develop techniques that allow the emplacement conditions of volcanic landforms on other planets to be related to attributes that can be remotely detected with available instrumentation. The underlying assumption of our work is that the appearance of a volcano, lava flow, debris avalanche, or exhumed magmatic intrusion can provide clues about the conditions operating when that feature was first emplaced. Magma composition, amount of crustal heat flow, state of tectonic stress, and climatic conditions are among the important variables that can be inferred from the morphology and texture of an igneous body.

  2. Next generation phylogeography of cave and surface Astyanax mexicanus.

    PubMed

    Coghill, Lyndon M; Darrin Hulsey, C; Chaves-Campos, Johel; García de Leon, Francisco J; Johnson, Steven G

    2014-10-01

    The loss of traits is a commonly observed evolutionary pattern in cave organisms, but due to extensive morphological convergence, inferring relationships between cave and surface populations can be difficult. For instance, Astyanax mexicanus (the blind Mexican cavefish) is thought to have repeatedly lost its eyes following colonization of cave environments, but the number of evolutionarily independent invasions of this species into caves remains unclear. Because of these repeated losses, it has become a model organism for studying the genetic basis of phenotypic trait loss. Here we reconstruct a high-resolution phylogeography for A. mexicanus inferred from both mitochondrial DNA and several thousand single nucleotide polymorphisms. We provide novel insight into the origin of cave populations from the Sabinos and Río Subterráneo caves and present evidence that the Sabinos cave population is part of a unique cave lineage unrelated to other A. mexicanus cave populations. Our results indicate A. mexicanus cave populations have at least four independent origins. PMID:25014568

  3. Book Review: Caves and Karst of the Yorkshire Dales

    NASA Astrophysics Data System (ADS)

    Westaway, Rob

    2015-10-01

    The British Cave Research Association (BCRA) is the research division of the British Caving Association (BCA), itself the principal society in Britain for those interested in caving, with activities including provision of training and safety certification for cavers and managing access to caves. Although some UK cave-related research is carried out by academics, this tends to be restricted to archaeological investigations of caves that have served as human habitations, and to be focused more on the occupants than the caves themselves. In contrast, most cave exploration is undertaken as a leisure activity, under the auspices of clubs affiliated to the BCA/BCRA, this being indeed virtually the only field of Earth science where amateur investigators can continue to make significant discoveries. Many cave explorers are also affiliated with academic researchers, such as managers of dating laboratories; the synergy between these two groups is highly productive, having resulted for instance in the discovery and exploration in recent years of the vast Ogof Draenen cave system in South Wales, which probably dates back to the Early Pleistocene (e.g., Farrant et al., 2014).

  4. Exploring caves: teaching packet for grades K-3

    USGS Publications Warehouse

    U.S. Geological Survey

    1998-01-01

    "Exploring Caves" is an interdisciplinary set of materials on caves for grades K-3. Caves entail at least five scientific disciplines: earth science, hydrology, mapping, biology, and anthropology. Each of these disciplines involves a unique content area as well as the development of particular intellectual skills. This unit aims at helping teachers to sort and organize the most important ideas in this rich scientific area. Detailed lesson plans serve as ways to pass these ideas on to very young students. Most American caves are big holes that form in limestone rock. The holes begin as cracks in limestone. The cracks get bigger and bigger. They grow into underground streams, rivers, and even lakes. When water drains away, the waterways turn into open cave tunnels, passages, and caverns. It takes 10,000 to 100,000 years to form a cave big enough for people to move around inside. Water drips constantly in caves. The drips dissolve limestone minerals in one part of the cave. As water dries out, the minerals build up in other places. In this way, beautiful cave rock formations and crystals grow over thousands of years. These rock formations change dark limestone caves into hidden fantasy lands.

  5. Stratigraphy and geochronology of pitfall accumulations in caves and fissures, Bermuda

    NASA Astrophysics Data System (ADS)

    Hearty, Paul J.; Olson, Storrs L.; Kaufman, Darrell S.; Edwards, R. Lawrence; Cheng, Hai

    2004-05-01

    Deep fractures ("fissures") and avens ("skylights") in limestone cave roofs create natural traps for sediments and biota. Fissures fill quickly with surface sediment and organisms soon after opening. Debris cones are formed as materials fall, wash, or drift on air through openings in cave skylights. Such deposits in Admiral's and Grand Canyon Cave, Bermuda contain distinct beds and are composed of mixtures of sediment and charcoal, together with fossils of land snails, crabs, birds, reptiles, and bats. The "pitfall" accumulations were periodically sealed over by calcite flowstone. A stratigraphic record of surface activity and fauna through both glacial and interglacial periods has been preserved. The succession also provides an ideal setting in which to compare several geochronological methods. Calibrated 14C ages on charcoal and shells provide dated horizons at 1600, 12,800, and about 35,000 14C yr BP. Thermal ionization mass spectrometric (TIMS) ages on several flowstone layers constrain the entire sequence in the Admiral's Cave sequence between 126,300±900 yr (Termination II) and historical times. A continuous relative-age record generated by amino acid epimerization (AAE) geochronology ( D-alloisoleucine/ L-isoleucine or aIle/Ile) on the pulmonate land gastropod Poecilozonites verifies the biostratigraphy, reveals a minimal degree of mixing between stratigraphic units, and establishes an independent temporal link between the subterranean and subaerial deposits of Bermuda. This convergence between stratigraphy and geochronology yields a precisely dated succession from the oceanic island of Bermuda, and thus presents a unique opportunity to assess the rates and processes of evolutionary and climate change during that interval.

  6. Actinobacterial Diversity in Volcanic Caves and Associated Geomicrobiological Interactions.

    PubMed

    Riquelme, Cristina; Marshall Hathaway, Jennifer J; Enes Dapkevicius, Maria de L N; Miller, Ana Z; Kooser, Ara; Northup, Diana E; Jurado, Valme; Fernandez, Octavio; Saiz-Jimenez, Cesareo; Cheeptham, Naowarat

    2015-01-01

    Volcanic caves are filled with colorful microbial mats on the walls and ceilings. These volcanic caves are found worldwide, and studies are finding vast bacteria diversity within these caves. One group of bacteria that can be abundant in volcanic caves, as well as other caves, is Actinobacteria. As Actinobacteria are valued for their ability to produce a variety of secondary metabolites, rare and novel Actinobacteria are being sought in underexplored environments. The abundance of novel Actinobacteria in volcanic caves makes this environment an excellent location to study these bacteria. Scanning electron microscopy (SEM) from several volcanic caves worldwide revealed diversity in the morphologies present. Spores, coccoid, and filamentous cells, many with hair-like or knobby extensions, were some of the microbial structures observed within the microbial mat samples. In addition, the SEM study pointed out that these features figure prominently in both constructive and destructive mineral processes. To further investigate this diversity, we conducted both Sanger sequencing and 454 pyrosequencing of the Actinobacteria in volcanic caves from four locations, two islands in the Azores, Portugal, and Hawai'i and New Mexico, USA. This comparison represents one of the largest sequencing efforts of Actinobacteria in volcanic caves to date. The diversity was shown to be dominated by Actinomycetales, but also included several newly described orders, such as Euzebyales, and Gaiellales. Sixty-two percent of the clones from the four locations shared less than 97% similarity to known sequences, and nearly 71% of the clones were singletons, supporting the commonly held belief that volcanic caves are an untapped resource for novel and rare Actinobacteria. The amplicon libraries depicted a wider view of the microbial diversity in Azorean volcanic caves revealing three additional orders, Rubrobacterales, Solirubrobacterales, and Coriobacteriales. Studies of microbial ecology in

  7. Actinobacterial Diversity in Volcanic Caves and Associated Geomicrobiological Interactions

    PubMed Central

    Riquelme, Cristina; Marshall Hathaway, Jennifer J.; Enes Dapkevicius, Maria de L. N.; Miller, Ana Z.; Kooser, Ara; Northup, Diana E.; Jurado, Valme; Fernandez, Octavio; Saiz-Jimenez, Cesareo; Cheeptham, Naowarat

    2015-01-01

    Volcanic caves are filled with colorful microbial mats on the walls and ceilings. These volcanic caves are found worldwide, and studies are finding vast bacteria diversity within these caves. One group of bacteria that can be abundant in volcanic caves, as well as other caves, is Actinobacteria. As Actinobacteria are valued for their ability to produce a variety of secondary metabolites, rare and novel Actinobacteria are being sought in underexplored environments. The abundance of novel Actinobacteria in volcanic caves makes this environment an excellent location to study these bacteria. Scanning electron microscopy (SEM) from several volcanic caves worldwide revealed diversity in the morphologies present. Spores, coccoid, and filamentous cells, many with hair-like or knobby extensions, were some of the microbial structures observed within the microbial mat samples. In addition, the SEM study pointed out that these features figure prominently in both constructive and destructive mineral processes. To further investigate this diversity, we conducted both Sanger sequencing and 454 pyrosequencing of the Actinobacteria in volcanic caves from four locations, two islands in the Azores, Portugal, and Hawai'i and New Mexico, USA. This comparison represents one of the largest sequencing efforts of Actinobacteria in volcanic caves to date. The diversity was shown to be dominated by Actinomycetales, but also included several newly described orders, such as Euzebyales, and Gaiellales. Sixty-two percent of the clones from the four locations shared less than 97% similarity to known sequences, and nearly 71% of the clones were singletons, supporting the commonly held belief that volcanic caves are an untapped resource for novel and rare Actinobacteria. The amplicon libraries depicted a wider view of the microbial diversity in Azorean volcanic caves revealing three additional orders, Rubrobacterales, Solirubrobacterales, and Coriobacteriales. Studies of microbial ecology in

  8. Altered former alkalic carbonatite lava from Oldoinyo Lengai, Tanzania: Inferences for calcite carbonatite lavas

    NASA Astrophysics Data System (ADS)

    Dawson, J. B.; Garson, M. S.; Roberts, B.

    1987-08-01

    The active volcano Oldoinyo Lengai, Tanzania, is well known for its extrusions of alkalic carbonatite lava, first witnessed in 1960. An older carbonatite flow from the volcano was originally also rich in Na and K, but replacement of nyerereite by pirssonite as a result of leaching of these elements (together with soluble components such as SO3, Cl, and Rb) and addition of Ca has resulted in a rock intermediate in bulk composition between the unique 1960 Lengai lavas and calcite-rich carbonatite flows reported from other localities. Further replacement of Na by Ca could theoretically result in a pure calcite rock, and we suggest that the partially altered alkalic lava described here is the “missing link” between lavas that are now calcitic but which had a high alkali content when originally extruded. The suggested link between alkali carbonate precursors and present-day calcium carbonate “lavas” explains the apparent paradox between the existence of calcite-rich “flows” and the experimental evidence that denies the possibility of hot, liquid calcium carbonate.

  9. Age and speleogenesis of epigenic gypsum caves in the northern Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Columbu, Andrea; Chiarini, Veronica; De Waele, Jo; Drysdale, Russell; Forti, Paolo; Hellstrom, John; Woodhead, Jon

    2016-04-01

    Triassic and Messinian gypsum beds host the majority of the caves in the eastern flank of the northern Apennines. To date, more than six hundreds voids have been mapped, including the longest known epigenic gypsum cave system in the world (Spipola-Acquafredda, ~11 km of tunnels) (De Waele et al., 2013). Superimposed caves are typically sub-horizontal (Klimchouk, 2000) and connected through vertical shafts, reflecting the palaeo base-level variations. When preserved, river terraces at the surface lie at the same palaeo altitude of the base level and horizontal cave passages. Notwithstanding the well-known geology of the area known (Vai and Martini, 2001), the age of these caves has been greatly underestimated in the past. Considering the rapid dissolution of the gypsum and uplifting of the area, the start of speleogenesis activity was considered to have occurred during the last glacial age. The age of karst voids can be only indirectly estimated by the dating of the infilling sediments. U-Th dating on carbonate speleothems provides high-precision and accurate ages (Hellstrom, 2003; Scholz and Hoffmann, 2008). We thus applied this methodology to 20 speleothems coming from 14 different caves belonging to the Monte Tondo, Spipola Acquafredda, Castelnuovo, Stella-Rio Basino and Brisighella systems. The results show that: i) caves were forming since at least ~300 ka; ii) the peak of speleogenesis was reached during relatively cold climate stages, when rivers formed terraces at the surface and aggradation caused paragenesis in the stable cave levels (Columbu et al., 2015). Besides the significant contribution to the understanding of the Apennines evaporite karst evolution, this study (and its further advancement) may also refine knowledge of the local vs regional uplifting rates and base-level variations since the late Pleistocene (Wegmann and Pazzaglia, 2009). References Columbu, A., De Waele, J., Forti, P., Montagna, P., Picotti, V., Pons-Branchu, E., Hellstrom, J

  10. Topographic Attributes of Three Hawaiian Lava Flows: Implications for Evaluation of Lava Flow Emplacement on Mars

    NASA Astrophysics Data System (ADS)

    Zimbelman, J. R.

    2004-12-01

    Differential Global Positioning System surveys were carried out recently across portions of three lava flows on the Big Island of Hawaii. Transects crossed an entire flow in several cases, and in other cases provided detailed information about selected flow margins. The 1907 basalt (a'a) flow from the southwestern rift zone of Mauna Loa has easy access at several points via the Ocean View Estates road system; flow thickness ranges from about 1 m near the middle of the eastern flow lobe to more than 10 m toward the distal end of this flow. Several components of a benmoreite (alkali-rich basaltic andesite) flow complex from Mauna Kea were examined near the small community of Mana (with permission of the Parker Ranch management), on the western flank of the volcano. The flows are more than 14,000 years old and completely covered with soil more than a meter thick, but flow morphology at the decameter scale remains very evident in aerial photographs; some benmoreite flows have up to 30 m of relief along their middle reaches. A trachyte flow more than 100,000 years old extends down slope from Puu Waawaa, on the northern flank of Hualalai; Puu Anahulu represents a very advanced stage of magmatic differentiation that resulted in a flow complex with more than 120 m of relief at its southern margin. Width/thickness represents a good discriminator between these three Hawaiian lava flows. Unfortunately, width is often the most difficult parameter to measure remotely for flows on other planets. Recent imaging data from the Thermal Emission Imaging System on the Mars Odyssey spacecraft reveal important new details of lava flows in the Tharsis region of Mars, some of which can be combined with elevation information from the Mars Orbiter Laser Altimeter. The precise topographic characteristics of diverse Hawaiian lava flows provide a new tool for evaluating the potential emplacement conditions for some Martian lava flows, which appear to be more consistent with the basalt to

  11. Temperature as tracer of the hydraulic dynamic of an anchialine cave (coastal submerged cave) of Krka Estuary (Croatia)

    NASA Astrophysics Data System (ADS)

    Domínguez-Villar, David; Cukrov, Neven; Krklec, Kristina

    2016-04-01

    A series of temperature, conductivity and water level loggers were used to characterize the hydraulic dynamic of a submerged cave (anchialine cave) in Krka Estuary. Litno Cave is a sub-horizontal gallery, less than 5 m in diameter and one meter below sea level. Apart from some sections that contain occasional air pockets under the ceiling, the cave is completely flooded. Outflow discharge through the cave is continuous during the year (>30 l/s). During several months vertical temperature profiles were measured in three locations inside the cave at 20, 60 and 100 m from the cave entrance, whereas another vertical profile was set in the estuary in front of the cave. Thermometers from the estuary measured thermal gradients to characterize position and evolution of the thermocline up to a depth of 3.5 m. Tides measured in the estuary are synchronous to those recorded in the cave and their amplitudes (20 to 40 cm in the estuary) are the same or smaller depending on cave outflow discharge. Records of cave water temperature show a non-linear response to tides due to the vertical displacement of the thermocline. During neap tides the thermocline was located in the aquifer below the cave, whereas during spring tides only thermometers in the top meter of the cave were not affected by the thermocline vertical displacement. After the first significant rains of the hydrological year, the freshwater contribution increased the cave outflow discharge by one order of magnitude. Thus, conductivity decreased in response to rains from 16000 ±1000 μS/cm to <700 μS/cm at the bottom of the cave. Under these conditions variability of cave water temperature was less than 0.1 °C, although a 0.4 °C long-term variability was recorded. These data shows that the discharge of freshwater to the estuary determines the dynamic of this submerged cave, limiting the influence of estuarine water intrusion in the coastal aquifer and the impact of tides. This research shows that temperature is a

  12. Lava tube shatter rings and their correlation with lava flux increases at Kīlauea Volcano, Hawai‘i

    USGS Publications Warehouse

    Orr, T.R.

    2011-01-01

    Shatter rings are circular to elliptical volcanic features, typically tens of meters in diameter, which form over active lava tubes. They are typified by an upraised rim of blocky rubble and a central depression. Prior to this study, shatter rings had not been observed forming, and, thus, were interpreted in many ways. This paper describes the process of formation for shatter rings observed at Kīlauea Volcano during November 2005–July 2006. During this period, tilt data, time-lapse images, and field observations showed that episodic tilt changes at the nearby Pu‘u ‘Ō‘ō cone, the shallow magmatic source reservoir, were directly related to fluctuations in the level of lava in the active lava tube, with periods of deflation at Pu‘u ‘Ō‘ō correlating with increases in the level of the lava stream surface. Increases in lava level are interpreted as increases in lava flux, and were coincident with lava breakouts from shatter rings constructed over the lava tube. The repetitive behavior of the lava flux changes, inferred from the nearly continuous tilt oscillations, suggests that shatter rings form from the repeated rise and fall of a portion of a lava tube roof. The locations of shatter rings along the active lava tube suggest that they form where there is an abrupt decrease in flow velocity through the tube, e.g., large increase in tube width, abrupt decrease in tube slope, and (or) sudden change in tube direction. To conserve volume, this necessitates an abrupt increase in lava stream depth and causes over-pressurization of the tube. More than a hundred shatter rings have been identified on volcanoes on Hawai‘i and Maui, and dozens have been reported from basaltic lava fields in Iceland, Australia, Italy, Samoa, and the mainland United States. A quick study of other basaltic lava fields worldwide, using freely available satellite imagery, suggests that they might be even more common than previously thought. If so, this confirms that episodic

  13. Peralkaline silicate lavas at Oldoinyo Lengai, Tanzania

    NASA Astrophysics Data System (ADS)

    Klaudius, Jurgis; Keller, Jörg

    2006-10-01

    A detailed study of Oldoinyo Lengai has led to the recognition of two major cone-building stages. An early, predominantly phonolitic stage, Lengai I, forms the southern cone. The recent nephelinitic Lengai II developed following a major sector collapse event over Lengai I. Petrography of Lengai II lavas show that nephelinite is combeite- and wollastonite-bearing. All Oldoinyo Lengai lavas are peralkaline and highly evolved in terms of low Mg#, Ni and Cr values. Within the unique Lengai II combeite-wollastonite-nephelinite (CWN) peralkalinity increases with time to extreme values (Na + K)/Al = 2.36. Mineralogical expression of peralkalinity is the presence of combeite and Na-rich clinopyroxene. In addition, exceptionally high Fe 2O 3 (up to 10.28 wt.%) in nepheline is an indicator for alumina deficiency. Combeite also shows high Fe 3+. Phonolite and CWN of Lengai I and Lengai II show similarly enriched LILE and LREE values and generally parallel patterns in PM normalized and REE plots.

  14. Pressure Analysis for LAVA-OVEN

    NASA Technical Reports Server (NTRS)

    Cendana, Donna Q.

    2014-01-01

    The Lunar Advanced Volatiles Analysis (LAVA) and the Oxygen Volatiles Extraction Node (OVEN) are subsystems included in the Regolith Environment Science, and Oxygen Lunar Volatiles Extraction (RESOLVE) payload bound for the Moon in 2019. This Resource Prospector Mission (RPM) has the objective of landing on a shadowed region of the Moons South Pole to collect data and determine whether the resources could be effectively used for space exploration systems. The quantification of the resources will help understand if it can adequately minimize materials carried from Earth by: providing life support, propellants, construction materials or energy supply to the payload or crew. This paper outlines the procedures done for the pressure analysis of the LAVA-OVEN (LOVEN) Integration Testing. The pressure analysis quantifies how much gases and water are present in the sample tested during the Engineering Testing Unit (ETU) phase of instrument development. Ultimately the purpose of these tests is to improve the estimate of the amount of water in each Lunar sample and reduce the time necessary for this estimate. The governing principle that was used for the analysis is the Ideal Gas Law, PV=nRT where P stands for pressure, V for volume, n for number of moles, R being the gas constant and T for temperature. We also estimate the errors involved in these measured and derived quantities since a key objective of the mission is to estimate the quantity of volatiles present in the lunar samples introduced into OVEN.

  15. Crystallization during emplacement of lava flows

    NASA Technical Reports Server (NTRS)

    Crisp, J.

    1991-01-01

    Thermal models of lava flows provide a way of estimating emplacement durations and eruption rates of planetary lava flows, which can help constrain magma ascent, rheology and composition. Most of the models that have been developed consider only the effects of cooling by radiation. However, heating due to crystallization can be a large component of the overall heat budget of a flow. Little is known about the amount of crystallization and latent heating during flow advance. Crystal size distribution (CSD) measurements were made to quantify and study the effects of crystallization in the 1984 Mauna Loa flow. For flows on Mars, we must assume that the amount of crystallization is similar to that in terrestrial flows and place minimum and maximum bounds on the latent heat effect. Unfortunately, as examples given here show, there can be anywhere from 0 to 60 percent crystallization during flow advance. To improve constraints for Martian flows, we need to search for correlations in terrestrial flows between flow morphology and the amount of crystallization during emplacement.

  16. What factors control the superficial lava dome explosivity?

    NASA Astrophysics Data System (ADS)

    Boudon, Georges; Balcone-Boissard, Hélène; Villemant, Benoit; Morgan, Daniel J.

    2015-04-01

    Dome-forming eruption is a frequent eruptive style; lava domes result from intermittent, slow extrusion of viscous lava. Most dome-forming eruptions produce highly microcrystallized and highly- to almost totally-degassed magmas which have a low explosive potential. During lava dome growth, recurrent collapses of unstable parts are the main destructive process of the lava dome, generating concentrated pyroclastic density currents (C-PDC) channelized in valleys. These C-PDC have a high, but localized, damage potential that largely depends on the collapsed volume. Sometimes, a dilute ash cloud surge develops at the top of the concentrated flow with an increased destructive effect because it may overflow ridges and affect larger areas. In some cases, large lava dome collapses can induce a depressurization of the magma within the conduit, leading to vulcanian explosions. By contrast, violent, laterally directed, explosions may occur at the base of a growing lava dome: this activity generates dilute and turbulent, highly-destructive, pyroclastic density currents (D-PDC), with a high velocity and propagation poorly dependent on the topography. Numerous studies on lava dome behaviors exist, but the triggering of lava dome explosions is poorly understood. Here, seven dome-forming eruptions are investigated: in the Lesser Antilles arc: Montagne Pelée, Martinique (1902-1905, 1929-1932 and 650 y. BP eruptions), Soufrière Hills, Montserrat; in Guatemala, Santiaguito (1929 eruption); in La Chaîne des Puys, France (Puy de Dome and Puy Chopine eruptions). We propose a new model of superficial lava-dome explosivity based upon a textural and geochemical study (vesicularity, microcrystallinity, cristobalite distribution, residual water contents, crystal transit times) of clasts produced by these key eruptions. Superficial explosion of a growing lava dome may be promoted through porosity reduction caused by both vesicle flattening due to gas escape and syn-eruptive cristobalite

  17. A biosignature suite from cave pool precipitates, Cottonwood Cave, New Mexico.

    PubMed

    Melim, L A; Liescheidt, R; Northup, D E; Spilde, M N; Boston, P J; Queen, J M

    2009-11-01

    Calcite cave pool precipitates often display a variety of potential biosignatures from the macroscopic to the submicroscopic. A fossil cave pool in Cottonwood Cave, New Mexico, exhibits older stalactites and stalagmites that are completely coated in brown, laminated calcitic crust that extends down as pool fingers and u-loops. The pool fingers and u-loops are mainly micrite to clotted micrite, some recrystallized to microspar, with some isopachous spar layers. Micrite, particularly clotted micrite, is usually interpreted by carbonate workers as microbial in origin. Scanning electron microscopy examination of etched pool fingers, u-loops, and the brown crust revealed abundant calcified microbial filaments and biofilm. Energy dispersive X-ray analysis showed that these features have excess carbon, above that found in pure calcite. Independent carbon analysis indicated that these same samples contain up to 0.2% organic carbon. Since pool fingers hang down but form underwater, we hypothesize they are biogenic with hanging microbial filaments or biofilm acting as nuclei for calcite precipitation. Because of the abundance of micrite and fossil filaments, we further hypothesize that these pendant features formed during a period of plentiful nutrients and active hydrological activity when the pool was literally dripping with microbial slime. Although each of these lines of evidence could be interpreted in other ways, their combined weight strongly suggests the cave pool precipitates in Cottonwood Cave are biogenic. These investigations can be used to help inform extraterrestrial life-detection studies. PMID:19968466

  18. The explosive origin of obsidian lava (Invited)

    NASA Astrophysics Data System (ADS)

    Castro, J. M.; Bindeman, I. N.; Tuffen, H.; Schipper, C.

    2013-12-01

    A long-standing challenge in volcanology has been to explain why explosive eruptions of rhyolite magma transition into outpourings of lava. Many studies suggest that lava is the product of non-explosive processes that allow magmatic vapour to escape in an open-system manner without wholesale fragmentation. Recent eruptions at Chaitén and Cordón Caulle volcanoes have shown that effusive rhyolites are anything but 'non-explosive' and may erupt simultaneously with vigourous pyroclastic fountains for months from a common vent. This behaviour implies that pyroclastic processes play a critical if not dominant role in degassing magma sufficiently such that it erupts effusively. Here we use H-isotope and bulk H2O measurements paired with textural evidence from the 2008 Chaitén and 2011 Cordón Caulle eruptions to demonstrate that effusion requires explosion(s)--lavas are the direct product of brittle deformation that fosters batched degassing into transient pyroclastic channels that repetitively and explosively vent from effusing lava. Evidence for cyclical brecciation and collapse of porous and permeable magmatic foams is abundant in the textures and structures of tuffisites--ash and lapilli-filled pyroclastic channels--found in volcanic bombs at both Chaitén and Cordón Caulle. We have used FTIR and a TCEA-MAT 253 system to precisely measure total water and D/H in erupted glass. Bulk H2O measurements on tuffisite and adjacent bomb obsidian indicate significantly lower H2O (~0.2-1.0 wt.%) in the tuffisite veins. These depletions imply effective local degassing and rapid advective transport of exsolved vapour through the veins. The H-isotopic signatures of tuffisites are also different from the hosting material insofar as being enriched in deuterium (up to -20‰). Such deuterium enrichments are inconsistent with isotope fractionation during both closed- and open-system degassing, but can be explained if an abundant and more primitive volatile phase from less degassed

  19. 222Rn variations in Mystery Cave, Minnesota

    USGS Publications Warehouse

    Lively, R.S.; Krafthefer, B.C.

    1995-01-01

    222Rn concentrations and meteorological parameters were measured at 4- h intervals over a 2-y period in Mystery Cave, southeastern Minnesota. Continuous radon monitors and meteorological sensors connected to data loggers were installed at several locations along commercial tour routes. 222Rn concentrations ranged as high as 25 kBq m-3 in summer and 20 kBq m-3 in winter. Average winter concentrations were lower than summer by at least a factor of two. Seasonal radon variations were correlative with outside air temperatures. During the winter, radon concentrations were observed to fluctuate periodically by factors of 20 or more in under 24 h. Both the long- and short-term variations are correlative with temperature- induced mixing of cave air with surface air.

  20. Palaeolithic paintings. Evolution of prehistoric cave art.

    PubMed

    Valladas, H; Clottes, J; Geneste, J M; Garcia, M A; Arnold, M; Cachier, H; Tisnérat-Laborde, N

    2001-10-01

    Sophisticated examples of European palaeolithic parietal art can be seen in the caves of Altamira, Lascaux and Niaux near the Pyrenees, which date to the Magdalenian period (12,000-17,000 years ago), but paintings of comparable skill and complexity were created much earlier, some possibly more than 30,000 years ago. We have derived new radiocarbon dates for the drawings that decorate the Chauvet cave in Vallon-Pont-d'Arc, Ardèche, France, which confirm that even 30,000 years ago Aurignacian artists, already known as accomplished carvers, could create masterpieces comparable to the best Magdalenian art. Prehistorians, who have traditionally interpreted the evolution of prehistoric art as a steady progression from simple to more complex representations, may have to reconsider existing theories of the origins of art. PMID:11586348

  1. Biomineralization and biosignatures of coralloid-type speleothems from lava tubes of Galapagos Islands: evidences on the fossil record of prokaryotes

    NASA Astrophysics Data System (ADS)

    Miller, Ana Z.; Garcia-Sanchez, Angela M.; Pereira, Manuel F. C.; Gazquez, Fernando; Calaforra, José M.; Forti, Paolo; Toulkeridis, Theofilos; Martínez-Frías, Jesús; Saiz-Jimenez, Cesareo

    2016-04-01

    Lava tubes have traditionally been considered of little interest from a mineralogical point of view. Recently, this type of volcanic caves has received particular attention because lava tubes have been described on Mars. Speleothems, or secondary mineral deposits in lava tubes are mainly composed of siliceous minerals. Coralloid-type speleothems are found either on basaltic cave walls or on the surface of other speleothems. Several authors attribute a microbially mediated origin to their formation. This type of speleothems was recorded within Royal Palm Cave of Santa Cruz Island in Galapagos Archipelago (Ecuador), a lava tube 600 m long, 5 to 15 m height and 2 to 10 m width. The Galapagos Islands are an archipelago of 19 volcanic islands located some 1500 km west of Ecuador, in the Pacific Ocean. These islands host one of the most biodiverse settings on Earth, studied by Charles Darwin. Beige and greyish small coralloids were collected in Royal Palm Cave and analysed by field emission scanning electron microscopy with energy dispersive X-ray spectroscopy (FESEM-EDS), X-ray micro-computed tomography (micro-CT) and mineralogical analyses for morphological, 3D microstructural and compositional characterization, as well as for assessing microbe-mineral interactions and biogenicity. In addition, 16S rRNA gene analyses were performed to identify microbial communities associated with the coralloid-type speleothems. The coralloids showed internal compositional zonation along the growth direction of the speleothems, according to micro-CT data. Internal layering was clearly discernable by the differences in opacity of the distinct mineralogical phases to X-rays, being dominated by alteration products of siliceous composition, whereas more opaque phases, usually Ca-rich minerals, were dominant in the outermost part of the speleothems. X-ray diffraction and infrared spectroscopy reinforced that the first stage of deposition is mainly composed of opal A and clay minerals

  2. Cyclic pressurisation of lava dome rocks. Laboratory results and implications for lava dome monitoring

    NASA Astrophysics Data System (ADS)

    Dainty, M. L.; Smith, R.; Sammonds, P.; Meredith, P. G.

    2009-12-01

    Lava domes are frequently subjected to cyclic heating and pressurisation. These processes may weaken the dome rocks, leading to collapse of the lava dome or explosion and extrusion events caused by unplugging of the magma conduit. By subjecting lava dome rocks to cyclic loading and heating in the laboratory, we can investigate how these processes affect the elastic moduli and strength of the dome rocks. These elastic moduli are crucial parameters for determining how the deformation measured at a volcano relates to the pressurisation and stress. Recording acoustic emissions (AE) during these cyclic loading tests can reveal when the cracking and damage occurs and indicate expected patterns in seismicity during cyclic pressurisation of lava domes. For this laboratory investigation of cyclic loading and heating of lava dome rocks, samples with four different extrusion dates within the 2004-2008 eruption of Mount St Helens were used. This allowed us to also investigate how the mechanical properties of this lava dome changed with time. For each timed sample, four 62.5 mm long x 25 mm diameter cores were deformed in uniaxial compression. The first sample was simply loaded to failure at a constant rate, to obtain the strength and elastic moduli. Of the remaining three cores from each sample, one was slowly heated and cooled to 900°C and one to 600°C (and the other not heated). The three cores from each sample were then initially loaded to 40 MPa at a constant rate and then unloaded to 5 MPa. They were then sequentially reloaded and unloaded at the same rate with the peak stress in each cycle increased by 5 MPa until failure. For all samples, the core loaded to failure with no cycling was stronger than those subjected to cyclic loading. However, there was no weakening or reduction in elastic moduli seen for the samples subjected to a heating cycle before cyclic loading. The sample extruded in 2004 compared to the later ones from 2005 and 2006, was the weakest at 60 to 70

  3. An American scientist visits the Altamira cave in northern Spain

    SciTech Connect

    Wilkening, M.

    1981-12-01

    The Altamira Cave is internationally known for its remarkable Stone Age paintings. It is located in the brow of a hill overlooking the village of Santillana del Mar which is nestled among green rolling hills near the coast of northern Spain. This report gives a brief description of the Cave and its paintings, the nature of the deterioration that has resulted in the closing of the cave to tourists, and the scientific studies being undertaken to help preserve the paintings.

  4. Cave biosignature suites: microbes, minerals, and Mars.

    PubMed

    Boston, P J; Spilde, M N; Northup, D E; Melim, L A; Soroka, D S; Kleina, L G; Lavoie, K H; Hose, L D; Mallory, L M; Dahm, C N; Crossey, L J; Schelble, R T

    2001-01-01

    Earth's subsurface offers one of the best possible sites to search for microbial life and the characteristic lithologies that life leaves behind. The subterrain may be equally valuable for astrobiology. Where surface conditions are particularly hostile, like on Mars, the subsurface may offer the only habitat for extant lifeforms and access to recognizable biosignatures. We have identified numerous unequivocally biogenic macroscopic, microscopic, and chemical/geochemical cave biosignatures. However, to be especially useful for astrobiology, we are looking for suites of characteristics. Ideally, "biosignature suites" should be both macroscopically and microscopically detectable, independently verifiable by nonmorphological means, and as independent as possible of specific details of life chemistries--demanding (and sometimes conflicting) criteria. Working in fragile, legally protected environments, we developed noninvasive and minimal impact techniques for life and biosignature detection/characterization analogous to Planetary Protection Protocols. Our difficult field conditions have shared limitations common to extraterrestrial robotic and human missions. Thus, the cave/subsurface astrobiology model addresses the most important goals from both scientific and operational points of view. We present details of cave biosignature suites involving manganese and iron oxides, calcite, and sulfur minerals. Suites include morphological fossils, mineral-coated filaments, living microbial mats and preserved biofabrics, 13C and 34S values consistent with microbial metabolism, genetic data, unusual elemental abundances and ratios, and crystallographic mineral forms. PMID:12448994

  5. Small domes on Venus: probable analogs of Icelandic lava shields

    USGS Publications Warehouse

    Garvin, James B.; Williams, Richard S., Jr.

    1990-01-01

    On the basis of observed shapes and volumetric estimates, we interpret small, dome-like features on radar images of Venus to be analogs of Icelandic lava-shield volcanoes. Using morphometric data for venusian domes in Aubele and Slyuta (in press), as well as our own measurements of representative dome volumes and areas from Tethus Regio, we demonstrate that the characteristic aspect ratios and flank slopes of these features are consistent with a subclass of low Icelandic lava-shield volcanoes (LILS ). LILS are slightly convex in cross-section with typical flank slopes of ∼3°. Plausible lava-shield-production rates for the venusian plains suggest formation of ∼53 million shields over the past 0.25 Ga. The cumulative global volume of lava that would be associated with this predicted number of lava shields is only a factor of 3–4 times that of a single oceanic composite shield volcano such as Mauna Loa. The global volume of all venusian lava shields in the 0.5–20-km size range would only contribute a meter of resurfacing over geologically significant time scales. Thus, venusian analogs to LILS may represent the most abundant landform on the globally dominant plains of Venus, but would be insignificant with regard to the global volume of lava extruded. As in Iceland, associated lavas from fissure eruptions probably dominate plains volcanism and should be evident on the higher resolution Magellan radar images.

  6. Lava Flows on Io: Modelling Cooling After Solidification

    NASA Technical Reports Server (NTRS)

    Davies, A. G.; Matson, D. L.; Veeder, G. J.; Johnson, T. V.; Blaney, D. L.

    2003-01-01

    We have modeled the cooling of lava bodies on Io after solidification of the lava, a process that has been little explored since Carr (1986). With recent estimates of lava flow thicknesses on Io ranging from 1 m to 10 m, the modeling of thermal emission from active volcanism must take into account the cooling behaviour after the solidification of the lava, which we model using a finite-element model. Once a lava body is fully solidified, the surface temperature decreases faster, as heat loss is no longer buffered by release of latent heat. This is significant as observed surface temperature is often the only clue available to determine lava surface age. We also find that cooling from the base of the lava is an important process that accelerates the solidification of a flow and therefore subsequent cooling. It is necessary to constrain the cooling process in order to better understand temperature-area relationships on Io's surface and to carry out stochastic modelling of lava flow emplacement.

  7. Joint analysis of deformation, gravity, and lava lake elevation reveals temporal variations in lava lake density at Kilauea Volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Carbone, Daniele; Poland, Michael; Patrick, Matthew

    2015-04-01

    We find a tight correlation between (i) changes in lava level within the summit eruptive vent at Kilauea Volcano, Hawaii, observed for at least 2 years since early 2011, and (ii) ground deformation in the vicinity of the vent. The observed correlation indicates that changing pressure within the shallow magma reservoir feeding the lava lake influences both deformation and lava level. However, those two parameters are related to chamber pressure through different properties, namely, the density of the lava filling the vent (for the lava level) and the size/position of the reservoir plus the elastic parameters of the host rock (for the deformation). Joint analyses in the time and frequency domains of lava level (determined from thermal camera imagery of the lava lake) and tilt measured on a borehole instrument (~2 km from the summit vent) reveal a good correlation throughout the studied period. The highest correlation occurs over periods ranging between 1 and 20 days. The ratio between lava level and tilt is not constant over time, however. Using data from a continuously recording gravimeter located near the rim of the summit eruptive vent, we demonstrate that the tilt-lava level ratio is controlled by the fluctuations in the density of the lava inside the vent (i.e., its degree of vesicularity). A second continuous gravimeter was installed near the summit eruptive vent in 2014, providing a new observation point for gravity change associated with summit lava lave activity to test models developed from the previously existing instrument. In addition, a continuous gravimeter was installed on the rim of the Puu Oo eruptive vent on Kilauea's East Rift Zone in 2013. Puu Oo is connected via the subvolcanic magma plumbing system to the summit eruptive vent and often deforms in concert with the summit. This growing network of continuously recording gravimeters at Kilauea can be used to examine correlations in gravity change associated with variations in eruptive activity

  8. International comparison of cave radon concentrations identifying the potential alpha radiation risks to British cave users.

    PubMed

    Hyland, R; Gunn, J

    1994-08-01

    Elevated concentrations of 222Rn have been recorded in many limestone caves throughout the world. As prolonged exposure to high radon concentrations has been linked to cancer and tumors, particularly of the lung (National Academy of Science 1988; Eatough and Henshaw 1990), a national survey of radon in British caves was undertaken. Passive radon detectors were exposed at 250 sites in 47 caves over four 7-d sampling periods. Mean concentrations ranging from 454-8,868 Bq m-3 were recorded. In one system, in the Peak District, radon concentrations of 155,000 Bq m-3 were recorded. The results indicate that the potential radiation dose from a single 4-h trip could exceed the national average annual background radiation dose (for the UK) from radon of 1.25 mSv. PMID:8026972

  9. International comparison of cave radon concentrations identifying the potential alpha radiation risks to British cave users

    SciTech Connect

    Hyland, R.; Gunn, J.

    1994-08-01

    Elevated concentrations of {sup 222}Rn have been recorded in many limestone caves throughout the world. As prolonged exposure to high radon concentrations has been linked to cancer and tumors, particularly of the lung, a national survey of radon in British caves was undertaken. Passive radon detectors were exposed at 250 sites in 47 caves over four 7-d sampling periods. Mean concentrations ranging from 454-8,868 Bq m{sup {minus}3} were recorded. In one system, in the Peak District, radon concentrations of 155,000 Bq m{sup {minus}3} were recorded. The results indicate that the potential radiation dose from a single 4-h trip could exceed the national average annual background radiation dose (for the UK) from radon of 1.25 mSv. 18 refs., 3 tabs.

  10. Pre-excavation studies of prehistoric cave sites by magnetic prospecting

    NASA Astrophysics Data System (ADS)

    Itkis., Sonia; Matskevich, Zinovii; Meshveliani, Tengiz

    2014-05-01

    Detailed magnetic survey was performed for caves study in Israel (1995-1996) within the framework of the Beit Shemesh Regional Project (Judean Shephelah). The experience accumulated in Israel we applied later (2010) in two Georgian prehistoric cave sites: Cherula and Kotias-Klde. The magnetic method is based on the contrast in magnetic properties between a target object (e.g., buried archaeological feature) and the host medium (i.e, the surrounding bedrock and soil). The feasibility of the magnetic method for cave revealing was evaluated by magnetic susceptibility (κ) measurements of surrounding soil and rocks, and archaeological features: stones making up the walls, ceramic fragments and cave fill. According to data obtained, the κ of soil within caves (cave fill) is higher than that of surrounding soil. The enhancement of cave fill κ occurs because processes associated with human habitation: repeated heating and accumulation of organic debris. Both these processes provide good conditions for the conversion of the iron oxide found within the soil to a strongly ferromagnetic form (Mullins, 1977; Maher, 1986; Dalan and Banerjee, 1998, Itkis and Eppelbaum, 1999; Itkis, 2003) The presence of highly magnetic ceramics in caves also enhances magnetic contrast between practically non-magnetic bed rock (chalk in Ramat Beit Shemesh Site (Israel) and limestone (Georgian sites) and the cave fill, increasing the potential of the magnetic method to reveal caves (Itkis, 2011). Based on magnetic survey results, an excavation revealed a cave with a large amount of well preserved pottery and finds typical of the Early Bronze Age. Both studied cave sites in Georgia were located in Chiatura region of Imeretia province. Cherula site is a karstic rockshelter with a single chamber, ca 100 sq. m. The site was briefly tested in 1970s'. The area excavated in 2010 went to the depth of 60 cm below the present day surface; the limestone bedrock was not reached. The excavation revealed