Sample records for cavitada por rhodococcus

  1. Cloning systems for Rhodococcus and related bacteria

    DOEpatents

    Finnerty, W.R.; Singer, M.E.

    1990-08-28

    A plasmid transformation system for Rhodococcus was developed using an Escherichia coli-Rhodococcus shuttle plasmid. Rhodococcus sp. H13-A contains three cryptic indigenous plasmids, designated pMVS100, pMVS200 and pMVS300, of 75, 19.5 and 13.4 kilobases (Kb), respectively. A 3.8 Kb restriction fragment of pMVS300 was cloned into pIJ30, a 6.3 Kb pBR322 derivative, containing the E. coli origin of replication (ori) and ampicillin resistance determinant (bla) as well as a Streptomyces gene for thiostrepton resistance, tsr. The resulting 10.1 Kb recombinant plasmid, designated pMVS301, was isolated from E. coli DH1 (pMVS301) and transformed into Rhodococcus sp. AS-50, a derivative of strain H13-A, by polyethylene glycol-assisted transformation of Rhodococcus protoplasts and selection for thiostrepton-resistant transformants. This strain was deposited with the ATCC on Feb. 1, 1988 and assigned ATCC 53719. The plasmid contains the Rhodococcus origin of replication. The plasmid and derivatives thereof can therefore be used to introduce nucleic acid sequences to and from Rhodococcus for subsequent expression and translation into protein. The isolated origin of replication can also be used in the construction of new vectors. 2 figs.

  2. Cloning systems for Rhodococcus and related bacteria

    DOEpatents

    Finnerty, William R.; Singer, Mary E.

    1990-01-01

    A plasmid transformation system for Rhodococcus was developed using an Escherichia coli-Rhodococcus shuttle plasmid. Rhodococcus sp. H13-A contains three cryptic indigenous plasmids, designated pMVS100, pMVS200 and pMVS300, of 75, 19.5 and 13.4 kilobases (Kb), respectively. A 3.8 Kb restriction fragment of pMVS300 was cloned into pIJ30, a 6.3 Kb pBR322 derivative, containing the E. coli origin of replication (ori) and ampicillin resistance determinant (bla) as well as a Streptomyces gene for thiostrepton resistance, tsr. The resulting 10.1 Kb recombinant plasmid, designated pMVS301, was isolated from E. coli DH1 (pMVS301) and transformed into Rhodococcus sp. AS-50, a derivative of strain H13-A, by polyethylene glycol-assisted transformation of Rhodococcus protoplasts and selection for thiostrepton-resistant transformants. This strain was deposited with the ATCC on Feb. 1, 1988 and assigned ATCC 53719. The plasmid contains the Rhodococcus origin of replication. The plasmid and derivatives thereof can therefore be used to introduce nucleic acid sequences to and from Rhodococcus for subsequent expression and translation into protein. The isolated origin of replication can also be used in the construction of new vectors.

  3. Coaggregation between Rhodococcus and Acinetobacter strains isolated from the food industry.

    PubMed

    Møretrø, Trond; Sharifzadeh, Shahab; Langsrud, Solveig; Heir, Even; Rickard, Alexander H

    2015-07-01

    In this study, coaggregation interactions between Rhodococcus and Acinetobacter strains isolated from food-processing surfaces were characterized. Rhodococcus sp. strain MF3727 formed intrageneric coaggregates with Rhodococcus sp. strain MF3803 and intergeneric coaggregates with 2 strains of Acinetobacter calcoaceticus (MF3293, MF3627). Stronger coaggregation between A. calcoaceticus MF3727 and Rhodococcus sp. MF3293 was observed after growth in batch culture at 30 °C than at 20 °C, after growth in tryptic soy broth than in liquid R2A medium, and between cells in exponential and early stationary phases than cells in late stationary phase. The coaggregation ability of Rhodococcus sp. MF3727 was maintained even after heat and Proteinase K treatment, suggesting its ability to coaggregate was protein independent whereas the coaggregation determinants of the other strains involved proteinaceous cell-surface-associated polymers. Coaggregation was stable at pH 5-9. The mechanisms of coaggregation among Acinetobacter and Rhodococcus strains bare similarity to those displayed by coaggregating bacteria of oral and freshwater origin, with respect to binding between proteinaceous and nonproteinaceous determinants and the effect of environmental factors on coaggregation. Coaggregation may contribute to biofilm formation on industrial food surfaces, protecting bacteria against cleaning and disinfection.

  4. Gene Cluster Encoding Cholate Catabolism in Rhodococcus spp.

    PubMed Central

    Wilbrink, Maarten H.; Casabon, Israël; Stewart, Gordon R.; Liu, Jie; van der Geize, Robert; Eltis, Lindsay D.

    2012-01-01

    Bile acids are highly abundant steroids with important functions in vertebrate digestion. Their catabolism by bacteria is an important component of the carbon cycle, contributes to gut ecology, and has potential commercial applications. We found that Rhodococcus jostii RHA1 grows well on cholate, as well as on its conjugates, taurocholate and glycocholate. The transcriptome of RHA1 growing on cholate revealed 39 genes upregulated on cholate, occurring in a single gene cluster. Reverse transcriptase quantitative PCR confirmed that selected genes in the cluster were upregulated 10-fold on cholate versus on cholesterol. One of these genes, kshA3, encoding a putative 3-ketosteroid-9α-hydroxylase, was deleted and found essential for growth on cholate. Two coenzyme A (CoA) synthetases encoded in the cluster, CasG and CasI, were heterologously expressed. CasG was shown to transform cholate to cholyl-CoA, thus initiating side chain degradation. CasI was shown to form CoA derivatives of steroids with isopropanoyl side chains, likely occurring as degradation intermediates. Orthologous gene clusters were identified in all available Rhodococcus genomes, as well as that of Thermomonospora curvata. Moreover, Rhodococcus equi 103S, Rhodococcus ruber Chol-4 and Rhodococcus erythropolis SQ1 each grew on cholate. In contrast, several mycolic acid bacteria lacking the gene cluster were unable to grow on cholate. Our results demonstrate that the above-mentioned gene cluster encodes cholate catabolism and is distinct from a more widely occurring gene cluster encoding cholesterol catabolism. PMID:23024343

  5. Rhodococcus antrifimi sp. nov., isolated from dried bat dung of a cave.

    PubMed

    Ko, Kwan Su; Kim, Youngju; Seong, Chi Nam; Lee, Soon Dong

    2015-11-01

    A Gram-reaction-positive, high DNA G+C content, non-motile actinobacterium, strain D7-21T, was isolated from dried bat dung inside a natural cave and its taxonomic status was examined by using a polyphasic approach. The 16S rRNA gene sequence study showed that the isolate belonged to the genus Rhodococcus and formed a cluster with Rhodococcus defluvii (98.98 % gene similarity), Rhodococcus equi (98.62 %) and Rhodococcus kunmingensis (97.66 %). Whole-cell hydrolysates contained meso-diaminopimelic acid, arabinose and galactose as the diagnostic diamino acid and sugars. MK-8(H2) was the predominant menaquinone. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside, an unknown phosphoglycolipid and an unknown glycolipid. Mycolic acids were present. The major fatty acids were C16 : 0, C18 : 1ω9c and 10-methyl C18 : 0. The DNA G+C content was 70.1 mol%. A battery of phenotypic features and DNA-DNA relatedness data support that strain D7-21T ( = KCTC 29469T = DSM 46727T) represents a novel species of the genus Rhodococcus, for which Rhodococcus antrifimi sp. nov. is proposed.

  6. Comparative and Functional Genomics of Rhodococcus opacus PD630 for Biofuels Development

    PubMed Central

    Holder, Jason W.; Ulrich, Jil C.; DeBono, Anthony C.; Godfrey, Paul A.; Desjardins, Christopher A.; Zucker, Jeremy; Zeng, Qiandong; Leach, Alex L. B.; Ghiviriga, Ion; Dancel, Christine; Abeel, Thomas; Gevers, Dirk; Kodira, Chinnappa D.; Desany, Brian; Affourtit, Jason P.; Birren, Bruce W.; Sinskey, Anthony J.

    2011-01-01

    The Actinomycetales bacteria Rhodococcus opacus PD630 and Rhodococcus jostii RHA1 bioconvert a diverse range of organic substrates through lipid biosynthesis into large quantities of energy-rich triacylglycerols (TAGs). To describe the genetic basis of the Rhodococcus oleaginous metabolism, we sequenced and performed comparative analysis of the 9.27 Mb R. opacus PD630 genome. Metabolic-reconstruction assigned 2017 enzymatic reactions to the 8632 R. opacus PD630 genes we identified. Of these, 261 genes were implicated in the R. opacus PD630 TAGs cycle by metabolic reconstruction and gene family analysis. Rhodococcus synthesizes uncommon straight-chain odd-carbon fatty acids in high abundance and stores them as TAGs. We have identified these to be pentadecanoic, heptadecanoic, and cis-heptadecenoic acids. To identify bioconversion pathways, we screened R. opacus PD630, R. jostii RHA1, Ralstonia eutropha H16, and C. glutamicum 13032 for growth on 190 compounds. The results of the catabolic screen, phylogenetic analysis of the TAGs cycle enzymes, and metabolic product characterizations were integrated into a working model of prokaryotic oleaginy. PMID:21931557

  7. Evolutionary transitions between beneficial and phytopathogenic Rhodococcus challenge disease management

    PubMed Central

    Thomas, William J; Gordon, Michael I; Stevens, Danielle M; Creason, Allison L; Belcher, Michael S; Serdani, Maryna; Wiseman, Michele S; Grünwald, Niklaus J; Putnam, Melodie L

    2017-01-01

    Understanding how bacteria affect plant health is crucial for developing sustainable crop production systems. We coupled ecological sampling and genome sequencing to characterize the population genetic history of Rhodococcus and the distribution patterns of virulence plasmids in isolates from nurseries. Analysis of chromosome sequences shows that plants host multiple lineages of Rhodococcus, and suggested that these bacteria are transmitted due to independent introductions, reservoir populations, and point source outbreaks. We demonstrate that isolates lacking virulence genes promote beneficial plant growth, and that the acquisition of a virulence plasmid is sufficient to transition beneficial symbionts to phytopathogens. This evolutionary transition, along with the distribution patterns of plasmids, reveals the impact of horizontal gene transfer in rapidly generating new pathogenic lineages and provides an alternative explanation for pathogen transmission patterns. Results also uncovered a misdiagnosed epidemic that implicated beneficial Rhodococcus bacteria as pathogens of pistachio. The misdiagnosis perpetuated the unnecessary removal of trees and exacerbated economic losses. PMID:29231813

  8. Evolutionary transitions between beneficial and phytopathogenic Rhodococcus challenge disease management.

    PubMed

    Savory, Elizabeth A; Fuller, Skylar L; Weisberg, Alexandra J; Thomas, William J; Gordon, Michael I; Stevens, Danielle M; Creason, Allison L; Belcher, Michael S; Serdani, Maryna; Wiseman, Michele S; Grünwald, Niklaus J; Putnam, Melodie L; Chang, Jeff H

    2017-12-12

    Understanding how bacteria affect plant health is crucial for developing sustainable crop production systems. We coupled ecological sampling and genome sequencing to characterize the population genetic history of Rhodococcus and the distribution patterns of virulence plasmids in isolates from nurseries. Analysis of chromosome sequences shows that plants host multiple lineages of Rhodococcus , and suggested that these bacteria are transmitted due to independent introductions, reservoir populations, and point source outbreaks. We demonstrate that isolates lacking virulence genes promote beneficial plant growth, and that the acquisition of a virulence plasmid is sufficient to transition beneficial symbionts to phytopathogens. This evolutionary transition, along with the distribution patterns of plasmids, reveals the impact of horizontal gene transfer in rapidly generating new pathogenic lineages and provides an alternative explanation for pathogen transmission patterns. Results also uncovered a misdiagnosed epidemic that implicated beneficial Rhodococcus bacteria as pathogens of pistachio. The misdiagnosis perpetuated the unnecessary removal of trees and exacerbated economic losses.

  9. [Rhodococcus equi pneumonia in an HIV+ patient: An uncommon association].

    PubMed

    Esteves, Paula; Mineiro, Ana; Serrado, Margarida; Diniz, António

    2007-01-01

    The human infection by Rhodococcus equi, even in the presence of HIV infection, remains a rare disease. The authors present a case report of pneumonia, occurring in a HIV+ man. After identifying Pneumocystis jiroveci in the BAL, despite proper medication, the patient didn't improve. Another BAL was performed and a Rhodococcus equi isolated. The therapeutic regimen was changed according to this finding and the patient improved. The authors make a review of the literature, focusing on the rarity of this association and the high survival observed.

  10. 1,4-Dioxane degradation potential of members of the genera Pseudonocardia and Rhodococcus.

    PubMed

    Inoue, Daisuke; Tsunoda, Tsubasa; Sawada, Kazuko; Yamamoto, Norifumi; Saito, Yuji; Sei, Kazunari; Ike, Michihiko

    2016-11-01

    In recent years, several strains capable of degrading 1,4-dioxane have been isolated from the genera Pseudonocardia and Rhodococcus. This study was conducted to evaluate the 1,4-dioxane degradation potential of phylogenetically diverse strains in these genera. The abilities to degrade 1,4-dioxane as a sole carbon and energy source and co-metabolically with tetrahydrofuran (THF) were evaluated for 13 Pseudonocardia and 12 Rhodococcus species. Pseudonocardia dioxanivorans JCM 13855 T , which is a 1,4-dioxane degrading bacterium also known as P. dioxanivorans CB1190, and Rhodococcus aetherivorans JCM 14343 T could degrade 1,4-dioxane as the sole carbon and energy source. In addition to these two strains, ten Pseudonocardia strains could degrade THF, but no Rhodococcus strains could degrade THF. Of the ten Pseudonocardia strains, Pseudonocardia acacia JCM 16707 T and Pseudonocardia asaccharolytica JCM 10410 T degraded 1,4-dioxane co-metabolically with THF. These results indicated that 1,4-dioxane degradation potential, including degradation for growth and by co-metabolism with THF, is possessed by selected strains of Pseudonocardia and Rhodococcus, although THF degradation potential appeared to be widely distributed in Pseudonocardia. Analysis of soluble di-iron monooxygenase (SDIMO) α-subunit genes in THF and/or 1,4-dioxane degrading strains revealed that not only THF and 1,4-dioxane monooxygenases but also propane monooxygenase-like SDIMOs can be involved in 1,4-dioxane degradation.

  11. Decolourization and biodegradation of azo dye methyl red by Rhodococcus strain UCC 0016.

    PubMed

    Maniyam, Maegala Nallapan; Ibrahim, Abdul Latif; Cass, Anthony E G

    2018-06-20

    In the present study, locally isolated Rhodococcus strains were attempted as biological tools for methyl red removal, a mutagenic azo dye posing threat to the environment if left untreated. Rhodococcus strain UCC 0016 demonstrated superior methyl red-decolourizing activity of 100% after 24 hours at static condition in comparison to Rhodococcus strain UCC 0008 which recorded 65% decolourization after 72 hours. Optimization of physicochemical parameters at 30 °C, pH 7 and supplementing glucose as the carbon source resulted in improved methyl red-decolourizing activity at static condition and reduced the time taken to achieve complete decolourization by 80%. Higher concentration of methyl red (5 g/L) was able to be decolourized completely within 10 hours by adopting the technology of immobilization. The encapsulated cells of Rhodococcus strain UCC 0016 demonstrated higher substrate affinity (K m =0.6995 g/L) and accelerated rate of disappearance of methyl red (V max = 0.3203 g/L/h) compared to the free cells. Furthermore, the gellan gum beads could be reused up to 9 batches without substantial loss in the catalytic activity indicating the economic importance of this protocol. Analysis of methyl red degradation products revealed no germination inhibition on Triticum aestivum and Vigna radiata demonstrating complete toxicity removal of the parent dye after biological treatment. The occurrence of new and altered peaks (UV-Vis and FTIR) further supported the notion that the removal of methyl red by Rhodococcus strain UCC 0016 was indeed through biodegradation. Therefore, this strain has a huge potential as a candidate for efficient bioremediation of wastewater containing methyl red.

  12. Seroprevalence of Rhodococcus equi in horses in Israel.

    PubMed

    Tirosh-Levy, Sharon; Gürbilek, Sevil E; Tel, Osman Y; Keskin, Oktay; Steinman, Amir

    2017-06-26

    Rhodococcus equi is a common cause of pneumonia in foals and has extensive clinical, economic and possibly zoonotic consequences. This bacterium survives well in the environment and may be considered as normal flora of adult horses. Certain strains of this bacterium are extremely virulent in foals, and early identification and intervention is crucial for prognosis. Rhodococcus equi is endemic in many parts of the world and occasionally isolated in Israel. This study was designed to evaluate R. equi seroprevalence in adult horses in Israel to indirectly indicate the potential level of exposure of susceptible foals. Sera were collected from 144 horses during spring 2011 and from 293 horses during fall 2014, and the presence of antibodies against virulent R. equi was detected by enzyme-linked immunosorbent assay. Equine seroprevalence of R. equi was found to be 7.6% in 2011 and 5.1% in 2014. Only one farm had seropositive horses in 2011, whereas several farms had seropositive horses in 2014. No significant risk factors for seropositivity were found. Rhodococcus equi appears to be endemic in Israel. This is the first survey of R. equi in Israel that provides information on the epidemiology of this important bacterium.

  13. Complete Genome Sequence of a Rhodococcus Species Isolated from the Winter Skate Leucoraja ocellata.

    PubMed

    Wiens, Julia; Ho, Ryan; Fernando, Dinesh; Kumar, Ayush; Loewen, Peter C; Brassinga, Ann Karen C; Anderson, W Gary

    2016-09-01

    We report here a genome sequence for Rhodococcus sp. isolate UM008 isolated from the renal/interrenal tissue of the winter skate Leucoraja ocellata Genome sequence analysis suggests that Rhodococcus bacteria may act in a novel mutualistic relationship with their elasmobranch host, serving as biocatalysts in the steroidogenic pathway of 1α-hydroxycorticosterone. Copyright © 2016 Wiens et al.

  14. The detection and phylogenetic analysis of the alkane 1-monooxygenase gene of members of the genus Rhodococcus.

    PubMed

    Táncsics, András; Benedek, Tibor; Szoboszlay, Sándor; Veres, Péter G; Farkas, Milán; Máthé, István; Márialigeti, Károly; Kukolya, József; Lányi, Szabolcs; Kriszt, Balázs

    2015-02-01

    Naturally occurring and anthropogenic petroleum hydrocarbons are potential carbon sources for many bacteria. The AlkB-related alkane hydroxylases, which are integral membrane non-heme iron enzymes, play a key role in the microbial degradation of many of these hydrocarbons. Several members of the genus Rhodococcus are well-known alkane degraders and are known to harbor multiple alkB genes encoding for different alkane 1-monooxygenases. In the present study, 48 Rhodococcus strains, representing 35 species of the genus, were investigated to find out whether there was a dominant type of alkB gene widespread among species of the genus that could be used as a phylogenetic marker. Phylogenetic analysis of rhodococcal alkB gene sequences indicated that a certain type of alkB gene was present in almost every member of the genus Rhodococcus. These alkB genes were common in a unique nucleotide sequence stretch absent from other types of rhodococcal alkB genes that encoded a conserved amino acid motif: WLG(I/V/L)D(G/D)GL. The sequence identity of the targeted alkB gene in Rhodococcus ranged from 78.5 to 99.2% and showed higher nucleotide sequence variation at the inter-species level compared to the 16S rRNA gene (93.9-99.8%). The results indicated that the alkB gene type investigated might be applicable for: (i) differentiating closely related Rhodococcus species, (ii) properly assigning environmental isolates to existing Rhodococcus species, and finally (iii) assessing whether a new Rhodococcus isolate represents a novel species of the genus. Copyright © 2014 Elsevier GmbH. All rights reserved.

  15. Sulfur-selective desulfurization of dibenzothiophene and diesel oil by newly isolated Rhodococcus sp. strains.

    PubMed

    Castorena, Gladys; Suárez, Claudia; Valdez, Idania; Amador, Guadalupe; Fernández, Luis; Le Borgne, Sylvie

    2002-09-24

    New desulfurizing bacteria able to convert dibenzothiophene into 2-hydroxybiphenyl and sulfate were isolated from contaminated soils collected in Mexican refineries. Random amplified polymorphic DNA analysis showed they were different from previously reported Rhodococcus erythropolis desulfurizing strains. According to 16S rRNA gene sequencing and fatty acid analyses, these new isolates belonged to the genus Rhodococcus. These strains could desulfurize 4,6-dimethyldibenzothiophene which is one of the most difficult dibenzothiophene derivatives to remove by hydrodesulfurization. A deeply hydrodesulfurized diesel oil containing significant amounts of 4,6-dimethyldibenzothiophene was treated with Rhodococcus sp. IMP-S02 cells. Up to 60% of the total sulfur was removed and all the 4,6-dimethyldibenzothiophene disappeared as a result of this treatment.

  16. Rhodococcus equi pleuropneumonia in an adult horse

    PubMed Central

    Vengust, Modest; Stæmpfli, Henry; Prescott, John F.

    2002-01-01

    A 10-year-old warmblood gelding was evaluated for intermittent pyrexia, dullness, weight loss, and progressive respiratory disease. Multifocal necrotic pneumonia and pleuritis due to Rhodococcus equi infection was diagnosed. Case management is discussed, as well as factors that may have led to this rare cause of pleuropneumonia in an adult horse. PMID:12240529

  17. Characterization of the Basic Replicon of Rhodococcus Plasmid pSOX and Development of a Rhodococcus-Escherichia coli Shuttle Vector†

    PubMed Central

    Denis-Larose, Claude; Bergeron, Hélène; Labbé, Diane; Greer, Charles W.; Hawari, Jalal; Grossman, Matthew J.; Sankey, Bruce M.; Lau, Peter C. K.

    1998-01-01

    The replication region of a 100-kb desulfurization plasmid (pSOX) from Rhodococcus sp. strain X309 was localized to a 4-kb KpnI fragment, and its sequence was determined. The amino acid sequence of one of the predicted open reading frames (ORFs) was related to the putative replication (Rep) protein sequences of the mycobacterial pLR7 family of plasmids. Three of the five predicted ORF products were identified by radiolabelling with the Escherichia coli T7 polymerase/promoter system. In E. coli, the Rep protein of pSOX was apparently synthesized in a shortened form, 21.3 kDa instead of the predicted 41.3 kDa, as a result of an internal initiation. This situation is reminescent of that for some bacterial Rep proteins. A shuttle plasmid was constructed with the pSOX origin, pBluescript II KS−, and the chloramphenicol resistance (Cmr) gene from pRF29. This new shuttle plasmid was used to demonstrate expression of the Bacillus subtilis sacB gene in a strain of Rhodococcus, rendering it sensitive to the presence of sucrose. PMID:9797291

  18. Rhodococcus equi (Prescottella equi) vaccines; the future of vaccine development.

    PubMed

    Giles, C; Vanniasinkam, T; Ndi, S; Barton, M D

    2015-09-01

    For decades researchers have been targeting prevention of Rhodococcus equi (Rhodococcus hoagui/Prescottella equi) by vaccination and the horse breeding industry has supported the ongoing efforts by researchers to develop a safe and cost effective vaccine to prevent disease in foals. Traditional vaccines including live, killed and attenuated (physical and chemical) vaccines have proved to be ineffective and more modern molecular-based vaccines including the DNA plasmid, genetically attenuated and subunit vaccines have provided inadequate protection of foals. Newer, bacterial vector vaccines have recently shown promise for R. equi in the mouse model. This article describes the findings of key research in R. equi vaccine development and looks at alternative methods that may potentially be utilised. © 2014 EVJ Ltd.

  19. Biodegradation and chemotaxis of polychlorinated biphenyls, biphenyls, and their metabolites by Rhodococcus spp.

    PubMed

    Wang, Hui; Hu, Jinxing; Xu, Kai; Tang, Xianjin; Xu, Xinhua; Shen, Chaofeng

    2018-02-01

    Two biphenyl-degrading bacterial strains, SS1 and SS2, were isolated from polychlorinated biphenyl (PCB)-contaminated soil. They were identified as Rhodococcus ruber and Rhodococcus pyridinivorans based on the 16S rRNA gene sequence, as well as morphological, physiological and biochemical characteristics. SS1 and SS2 exhibited tolerance to 2000 and 3000 mg/L of biphenyl. And they could degrade 83.2 and 71.5% of 1300 mg/L biphenyl within 84 h, respectively. In the case of low-chlorinated PCB congeners, benzoate and 3-chlorobenzoate, the degradation activities of SS1 and SS2 were also significant. In addition, these two strains exhibited chemotactic response toward TCA-cycle intermediates, benzoate, biphenyl and 2-chlorobenzoate. This study indicated that, like the flagellated bacteria, non-flagellated Rhodococcus spp. might actively seek substrates through the process of chemotaxis once the substrates are depleted in their surroundings. Together, these data provide supporting evidence that SS1 and SS2 might be good candidates for restoring biphenyl/PCB-polluted environments.

  20. Microbial biodiesel production from oil palm biomass hydrolysate using marine Rhodococcus sp. YHY01.

    PubMed

    Bhatia, Shashi Kant; Kim, Junyoung; Song, Hun-Seok; Kim, Hyun Joong; Jeon, Jong-Min; Sathiyanarayanan, Ganesan; Yoon, Jeong-Jun; Park, Kyungmoon; Kim, Yun-Gon; Yang, Yung-Hun

    2017-06-01

    The effect of various biomass derived inhibitors (i.e. furfural, hydroxymethylfurfural (HMF), vanillin, 4-hydroxy benzaldehyde (4-HB) and acetate) was investigated for fatty acid accumulation in Rhodococcus sp. YHY 01. Rhodococcus sp. YHY01 was able to utilize acetate, vanillin, and 4-HB for biomass production and fatty acid accumulation. The IC 50 value for furfural (3.1mM), HMF (3.2mM), vanillin (2.0mM), 4-HB (2.7mM) and acetate (3.7mM) was calculated. HMF and vanillin affect fatty acid composition and increase saturated fatty acid content. Rhodococcus sp. YHY 01 cultured with empty fruit bunch hydrolysate (EFBH) as the main carbon source resulted in enhanced biomass (20%) and fatty acid productivity (37%), in compression to glucose as a carbon source. Overall, this study showed the beneficial effects of inhibitory molecules on growth and fatty acid production, and support the idea of biomass hydrolysate utilization for biodiesel production by avoiding complex efforts to remove inhibitory compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Analysis of Genes for Succinoyl Trehalose Lipid Production and Increasing Production in Rhodococcus sp. Strain SD-74

    PubMed Central

    Inaba, Tomohiro; Tokumoto, Yuta; Miyazaki, Yusuke; Inoue, Naoyuki; Maseda, Hideaki; Nakajima-Kambe, Toshiaki; Uchiyama, Hiroo

    2013-01-01

    Succinoyl trehalose lipids (STLs) are promising glycolipid biosurfactants produced from n-alkanes that are secreted by Rhodococcus species bacteria. These compounds not only exhibit unique interfacial properties but also demonstrate versatile biochemical actions. In this study, three novel types of genes involved in the biosynthesis of STLs, including a putative acyl coenzyme A (acyl-CoA) transferase (tlsA), fructose-bisphosphate aldolase (fda), and alkane monooxygenase (alkB), were identified. The predicted functions of these genes indicate that alkane metabolism, sugar synthesis, and the addition of acyl groups are important for the biosynthesis of STLs. Based on these results, we propose a biosynthesis pathway for STLs from alkanes in Rhodococcus sp. strain SD-74. By overexpressing tlsA, we achieved a 2-fold increase in the production of STLs. This study advances our understanding of bacterial glycolipid production in Rhodococcus species. PMID:24038682

  2. Cometabolic degradation of trichloroethene by Rhodococcus sp. strain L4 immobilized on plant materials rich in essential oils.

    PubMed

    Suttinun, Oramas; Müller, Rudolf; Luepromchai, Ekawan

    2010-07-01

    The cometabolic degradation of trichloroethene (TCE) by Rhodococcus sp. L4 was limited by the loss of enzyme activity during TCE transformation. This problem was overcome by repeated addition of inducing substrates, such as cumene, limonene, or cumin aldehyde, to the cells. Alternatively, Rhodococcus sp. L4 was immobilized on plant materials which contain those inducers in their essential oils. Cumin seeds were the most suitable immobilizing material, and the immobilized cells tolerated up to 68 muM TCE and degraded TCE continuously. The activity of immobilized cells, which had been inactivated partially during TCE degradation, could be reactivated by incubation in mineral salts medium without TCE. These findings demonstrate that immobilization of Rhodococcus sp. L4 on plant materials rich in essential oils is a promising method for efficient cometabolic degradation of TCE.

  3. Physiological and genetic differences amongst Rhodococcus species for using glycerol as a source for growth and triacylglycerol production.

    PubMed

    Herrero, O Marisa; Moncalián, Gabriel; Alvarez, Héctor M

    2016-02-01

    We analysed the ability of five different rhodococcal species to grow and produce triacylglycerols (TAGs) from glycerol, the main byproduct of biodiesel production. Rhodococcus fascians and Rhodococcus erythropolis grew fast on glycerol, whereas Rhodococcus opacus and Rhodococcus jostii exhibited a prolonged lag phase of several days before growing. Rhodococcus equi only exhibited poor growth on glycerol. R. erythropolis DSMZ 43060 and R. fascians F7 produced 3.9-4.3 g cell biomass l(-1) and 28.4-44.6% cellular dry weight (CDW) of TAGs after 6 days of incubation; whereas R. opacus PD630 and R. jostii RHA1 produced 2.5-3.8 g cell biomass l(-1) and 28.3-38.4% CDW of TAGs after 17 days of growth on glycerol. Genomic analyses revealed two different sets of genes for glycerol uptake and degradation (here named clusters 1 and 2) amongst rhodococci. Those species that possessed cluster 1 (glpFK1D1) (R. fascians and R. erythropolis) exhibited fast growth and lipid accumulation, whereas those that possessed cluster 2 (glpK2D2) (R. opacus, R. jostii and R. equi) exhibited delayed growth and lipid accumulation during cultivation on glycerol. Three glycerol-negative strains were complemented for their ability to grow and produce TAGs by heterologous expression of glpK2 from R. opacus PD630. In addition, we significantly reduced the extension of the lag phase and improved glycerol assimilation and oil production of R. opacus PD630 when expressing glpK1D1 from R. fascians. The results demonstrated that rhodococci are a flexible and amenable biological system for further biotechnological applications based on the reutilization of glycerol.

  4. [Respiratory infections caused by slow-growing bacteria: Nocardia, Actinomyces, Rhodococcus].

    PubMed

    Eschapasse, E; Hussenet, C; Bergeron, A; Lebeaux, D

    2017-06-01

    Pneumonia caused by slow-growing bacteria is rare but sometimes severe. These infections share many similarities such as several differential diagnoses, difficulties to identify the pathogen, the importance of involving the microbiologist in the diagnostic investigation and the need for prolonged antibiotic treatment. However, major differences distinguish them: Nocardia and Rhodococcus infect mainly immunocompromised patients while actinomycosis also concerns immunocompetent patients; the severity of nocardioses is related to their hematogenous spread while locoregional extension by contiguity makes the gravity of actinomycosis. For these diseases, molecular diagnostic tools are essential, either to obtain a species identification and guide treatment in the case of nocardiosis or to confirm the diagnosis from a biological sample. Treatment of these infections is complex due to: (1) the limited data in the literature; (2) the need for prolonged treatment of several months; (3) the management of toxicities and drug interactions for the treatment of Nocardia and Rhodococcus. Close cooperation between pneumonologists, infectious disease specialists and microbiologists is essential for the management of these patients. Copyright © 2017 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  5. Sequence and molecular characterization of a DNA region encoding the dibenzothiophene desulfurization operon of Rhodococcus sp. strain IGTS8.

    PubMed Central

    Piddington, C S; Kovacevich, B R; Rambosek, J

    1995-01-01

    Dibenzothiophene (DBT), a model compound for sulfur-containing organic molecules found in fossil fuels, can be desulfurized to 2-hydroxybiphenyl (2-HBP) by Rhodococcus sp. strain IGTS8. Complementation of a desulfurization (dsz) mutant provided the genes from Rhodococcus sp. strain IGTS8 responsible for desulfurization. A 6.7-kb TaqI fragment cloned in Escherichia coli-Rhodococcus shuttle vector pRR-6 was found to both complement this mutation and confer desulfurization to Rhodococcus fascians, which normally is not able to desulfurize DBT. Expression of this fragment in E. coli also conferred the ability to desulfurize DBT. A molecular analysis of the cloned fragment revealed a single operon containing three open reading frames involved in the conversion of DBT to 2-HBP. The three genes were designated dszA, dszB, and dszC. Neither the nucleotide sequences nor the deduced amino acid sequences of the enzymes exhibited significant similarity to sequences obtained from the GenBank, EMBL, and Swiss-Prot databases, indicating that these enzymes are novel enzymes. Subclone analyses revealed that the gene product of dszC converts DBT directly to DBT-sulfone and that the gene products of dszA and dszB act in concert to convert DBT-sulfone to 2-HBP. PMID:7574582

  6. Cometabolic Degradation of Trichloroethene by Rhodococcus sp. Strain L4 Immobilized on Plant Materials Rich in Essential Oils▿ †

    PubMed Central

    Suttinun, Oramas; Müller, Rudolf; Luepromchai, Ekawan

    2010-01-01

    The cometabolic degradation of trichloroethene (TCE) by Rhodococcus sp. L4 was limited by the loss of enzyme activity during TCE transformation. This problem was overcome by repeated addition of inducing substrates, such as cumene, limonene, or cumin aldehyde, to the cells. Alternatively, Rhodococcus sp. L4 was immobilized on plant materials which contain those inducers in their essential oils. Cumin seeds were the most suitable immobilizing material, and the immobilized cells tolerated up to 68 μM TCE and degraded TCE continuously. The activity of immobilized cells, which had been inactivated partially during TCE degradation, could be reactivated by incubation in mineral salts medium without TCE. These findings demonstrate that immobilization of Rhodococcus sp. L4 on plant materials rich in essential oils is a promising method for efficient cometabolic degradation of TCE. PMID:20472723

  7. Characterization of Rhodococcus sp. A5wh isolated from a high altitude Andean lake to unravel the survival strategy under lithium stress.

    PubMed

    Belfiore, Carolina; Curia, María V; Farías, María E

    2017-11-24

    Lithium (Li) is widely distributed in nature and has several industrial applications. The largest reserves of Li (over 85%) are in the so-called "triangle of lithium" that includes the Salar de Atacama in Chile, Salar de Uyuni in Bolivia and Salar del Hombre Muerto in Argentina. Recently, the use of microorganisms in metal recovery such as copper has increased; however, there is little information about the recovery of lithium. The strain Rhodococcus sp. A5 wh used in this work was previously isolated from Laguna Azul. The assays revealed that this strain was able to accumulate Li (39.52% of Li/g microbial cells in 180min) and that it was able to grow in its presence up to 1M. In order to understand the mechanisms implicated in Li tolerance, a proteomic approach was conducted. Comparative proteomic analyses of strain A5 wh exposed and unexposed to Li reveal that 17 spots were differentially expressed. The identification of proteins was performed by MALDI-TOF/MS, and the obtained results showed that proteins involved in stress response, transcription, translations, and metabolism were expressed under Li stress. This knowledge constitutes the first proteomic approach to elucidate the strategy followed by Rhodococcus to adapt to Li. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. Acute osteomyelitis of the mandible caused by Rhodococcus equi in an immunocompromised patient: a case report and literature review.

    PubMed

    Rallis, George; Dais, Panayotis; Gkinis, George; Mourouzis, Constantinos; Papaioannou, Vasiliki; Mezitis, Michael

    2012-10-01

    We present the first case of acute osteomyelitis of the mandible caused by Rhodococcus equi in an immunocompromised patient. A 53-year-old Caucasian man was referred to the outpatient clinic, because of a swelling of the left submental and submandibular spaces. The patient was immunocompromised owing to medication against myasthenia gravis and type II diabetes mellitus. The patient underwent surgical debridement under local anesthesia. Histologic examination showed acute osteomyelitis and both blood and pus cultures isolated Rhodococcus equi. The patient was discharged on linezolid 600 mg orally twice a day for 6 months and remains free of the disease 2 years postoperatively. Most patients with Rhodococcus infection are immunocompromised. Infection with this organism is rare and usually causes a distinct clinical syndrome resembling pulmonary tuberculosis. Diagnosis is frequently missed or delayed. Not only clinicians but also laboratory specialists should be aware of this organism, so as to contribute to prompt diagnosis and treatment of such infections. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Biodegradation of cyanide by acetonitrile-induced cells of Rhodococcus sp. UKMP-5M.

    PubMed

    Nallapan Maniyam, Maegala; Sjahrir, Fridelina; Ibrahim, Abdul Latif; Cass, Anthony E G

    2013-01-01

    A Rhodococcus sp. UKMP-5M isolate was shown to detoxify cyanide successfully, suggesting the presence of an intrinsic property in the bacterium which required no prior cyanide exposure for induction of this property. However, in order to promote growth, Rhodococcus sp. UKMP-5M was fully acclimatized to cyanide after 7 successive subcultures in 0.1 mM KCN for 30 days. To further shorten the lag phase and simultaneously increase the tolerance towards higher cyanide concentrations, the bacterium was induced with various nitrile compounds sharing a similar degradatory pathway to cyanide. Acetonitrile emerged as the most favored inducer and the induced cells were able to degrade 0.1 mM KCN almost completely within 18 h. With the addition of subsequent aliquots of 0.1 mM KCN a shorter period for complete removal of cyanide was required, which proved to be advantageous economically. Both resting cells and crude enzyme of Rhodococcus sp. UKMP-5M were able to biodegrade cyanide to ammonia and formate without the formation of formamide, implying the identification of a simple hydrolytic cyanide degradation pathway involving the enzyme cyanidase. Further verification with SDS-PAGE revealed that the molecular weight of the active enzyme was estimated to be 38 kDa, which is consistent with previously reported cyanidases. Since the recent advancement in the application of biological methods in treating cyanide-bearing wastewater has been promising, the discovery of this new bacterium will add value by diversifying the existing microbial populations capable of cyanide detoxification.

  10. De Novo Genome Project for the Aromatic Degrader Rhodococcus pyridinivorans Strain AK37

    PubMed Central

    Kriszt, Balázs; Táncsics, András; Cserháti, Mátyás; Tóth, Ákos; Nagy, István; Horváth, Balázs; Nagy, István; Tamura, Tomohiro; Szoboszlay, Sándor

    2012-01-01

    Here, we present the complete genome sequence of Rhodococcus pyridinivorans AK37 strain NCAIM PB1376, which was isolated from an oil-polluted site in Hungary. R. pyridinivorans AK37 is an aerobic, nonsporulating, nonmotile, Gram-positive bacterium with remarkable aromatic-decomposing activity. PMID:22328750

  11. Draft Genome of Rhodococcus rhodochrous TRN7, Isolated from the Coast of Trindade Island, Brazil

    PubMed Central

    Rodrigues, Edmo M.; Pylro, Victor S.; Dobbler, Priscila T.; Victoria, Filipe

    2016-01-01

    Here, we present a draft genome and annotation of Rhodococcus rhodochrous TRN7, isolated from Trindade Island, Brazil, which will provide genetic data to benefit the understanding of its metabolism. PMID:26941155

  12. Combination of degradation pathways for naphthalene utilization in Rhodococcus sp. strain TFB

    PubMed Central

    Tomás-Gallardo, Laura; Gómez-Álvarez, Helena; Santero, Eduardo; Floriano, Belén

    2014-01-01

    Rhodococcus sp. strain TFB is a metabolic versatile bacterium able to grow on naphthalene as the only carbon and energy source. Applying proteomic, genetic and biochemical approaches, we propose in this paper that, at least, three coordinated but independently regulated set of genes are combined to degrade naphthalene in TFB. First, proteins involved in tetralin degradation are also induced by naphthalene and may carry out its conversion to salicylaldehyde. This is the only part of the naphthalene degradation pathway showing glucose catabolite repression. Second, a salicylaldehyde dehydrogenase activity that converts salicylaldehyde to salicylate is detected in naphthalene-grown cells but not in tetralin-or salicylate-grown cells. Finally, we describe the chromosomally located nag genes, encoding the gentisate pathway for salicylate conversion into fumarate and pyruvate, which are only induced by salicylate and not by naphthalene. This work shows how biodegradation pathways in Rhodococcus sp. strain TFB could be assembled using elements from different pathways mainly because of the laxity of the regulatory systems and the broad specificity of the catabolic enzymes. PMID:24325207

  13. Biosurfactant production by halotolerant Rhodococcus fascians from Casey Station, Wilkes Land, Antarctica.

    PubMed

    Gesheva, Victoria; Stackebrandt, Erko; Vasileva-Tonkova, Evgenia

    2010-08-01

    Isolate A-3 from Antarctic soil in Casey Station, Wilkes Land, was characterized for growth on hydrocarbons. Use of glucose or kerosene as a sole carbon source in the culture medium favoured biosynthesis of surfactant which, by thin-layer chromatography, indicated the formation of a rhamnose-containing glycolipid. This compound lowered the surface tension at the air/water interface to 27 mN/m as well as inhibited the growth of B. subtilis ATCC 6633 and exhibited hemolytic activity. A highly hydrophobic surface of the cells suggests that uptake occurs via a direct cell-hydrocarbon substrate contact. Strain A-3 is Gram-positive, halotolerant, catalase positive, urease negative and has rod-coccus shape. Its cell walls contained meso-diaminopimelic acid. Phylogenetic analysis based on comparative analysis of 16S rRNA gene sequences revealed that strain A-3 is closely related to Rhodococcus fascians with which it shares 100% sequence similarity. This is the first report on rhamnose-containing biosurfactant production by Rhodococcus fascians isolated from Antarctic soil.

  14. [Pulmonary infection from Rhodococcus equi after renal transplantation. Review of the literature].

    PubMed

    Gallen, F; Kernaonet, E; Foulet, A; Goldstein, A; Lebon, P; Babinet, F

    1999-01-01

    Rhodococcus Equi, a strictly aerobic Gram positive coco-bacillus, is a pathogen for horses and foals. It may induce opportunistic infections and is described in AIDS infected patients. We report the case of a 47-year old man, breeder of horses, with kidney transplant who has presented, 8 years after his graft, an impairment of health, a fever and evidence of pulmonary disease. The pulmonary biopsy under scanner guidance and microbiology study, has displayed the diagnosis of Rhodococcus equi infection. The evolution has been favorable with double antibiotherapy (follow-up 27 months). Ten comparable observations have been published after organ transplantation: (kidney: 8; heart: 1; liver: 1). Pulmonary locations are widely predominant. The animal contact is found only in 30% of cases. The presentation of the sickness has been compared to pulmonary tuberculosis or to nocardiosis, pathologies often observed in this context of immunosuppression. The antibiotic treatment is difficult and should required two bactericidal antibiotics. A surgical lobectomy can be envisaged in case of relapse. The mortality is 30%.

  15. [Expression of acylamidase gene in Rhodococcus erythropolis strains].

    PubMed

    Lavrov, K V; Novikov, A D; Riabchenko, L E; Ianenko, A S

    2014-09-01

    The expression of a new acylamidase gene from R. erythropolis 37 was studied in Rhodococcus erythropolis strains. This acylamidase, as a result of its unique substrate specificity, can hydrolyse N-substituted amides (4'-nitroacetanilide, N-isopropylacrylamide, N'N-dimethylaminopropylacrylamide). A new expression system based on the use of the promoter region of nitrilhydratase genes from R. rhodochrous M8 was created to achieve constitutive synthesis of acylamidase in R. erythropolis cells. A fourfold improvement in the acylamidase activity of recombinant R. erythropolis cells as compared with the parent wild-type strain was obtained through the use of the new expression system.

  16. Draft Genome of Rhodococcus rhodochrous TRN7, Isolated from the Coast of Trindade Island, Brazil.

    PubMed

    Rodrigues, Edmo M; Pylro, Victor S; Dobbler, Priscila T; Victoria, Filipe; Roesch, Luiz F W; Tótola, Marcos R

    2016-03-03

    Here, we present a draft genome and annotation of Rhodococcus rhodochrous TRN7, isolated from Trindade Island, Brazil, which will provide genetic data to benefit the understanding of its metabolism. Copyright © 2016 Rodrigues et al.

  17. [Cloning of new acylamidase gene from Rhodococcus erythropolis and its expression in Escherichia coli].

    PubMed

    Lavrov, K V; Ianenko, A S

    2013-10-01

    The gene for new Rhodococcus erythropolis TA37 acylamidase, which possesses unique substrate specificity, has been cloned and expressed in E. coli. Substrates for this enzyme are not only simple amides, such as acetamide and propionamide, but also N-substituted amides, such as 4'-nitroacetanilide. The 1431-bp gene was expressed in E. coli BL21 (DE3) cells on pET16b plasmid under the control of a promoter of the φ 10 gene from the T7 phage. The molecular mass of recombinant acylamidase in E. coli was 55 kDa, which corresponded to that of native acylamidase from Rhodococcus erythropolis TA37. Recombinant acylamidase was able to hydrolize N-substituted amides. A search of a nucleotide database and multiple alignment revealed that acylamidase belonged to the Amidase protein family PF01425, but its nucleotide and amino acid sequences differed significantly from those of the described amidases.

  18. Analysis of genome sequences from plant pathogenic Rhodococcus reveals genetic novelties in virulence loci

    USDA-ARS?s Scientific Manuscript database

    Members of Gram-positive Actinobacteria cause economically important diseases to plants. Within the Rhodococcus genus, some members can cause growth deformities and persist as pathogens on a wide range of host plants. The current model predicts that phytopathogenic isolates require a cluster of thre...

  19. Cold adaptive traits revealed by comparative genomic analysis of the eurypsychrophile Rhodococcus sp. JG3 isolated from high elevation McMurdo Dry Valley permafrost, Antarctica.

    PubMed

    Goordial, Jacqueline; Raymond-Bouchard, Isabelle; Zolotarov, Yevgen; de Bethencourt, Luis; Ronholm, Jennifer; Shapiro, Nicole; Woyke, Tanja; Stromvik, Martina; Greer, Charles W; Bakermans, Corien; Whyte, Lyle

    2016-02-01

    The permafrost soils of the high elevation McMurdo Dry Valleys are the most cold, desiccating and oligotrophic on Earth. Rhodococcus sp. JG3 is one of very few bacterial isolates from Antarctic Dry Valley permafrost, and displays subzero growth down to -5°C. To understand how Rhodococcus sp. JG3 is able to survive extreme permafrost conditions and be metabolically active at subzero temperatures, we sequenced its genome and compared it to the genomes of 14 mesophilic rhodococci. Rhodococcus sp. JG3 possessed a higher copy number of genes for general stress response, UV protection and protection from cold shock, osmotic stress and oxidative stress. We characterized genome wide molecular adaptations to cold, and identified genes that had amino acid compositions favourable for increased flexibility and functionality at low temperatures. Rhodococcus sp. JG3 possesses multiple complimentary strategies which may enable its survival in some of the harshest permafrost on Earth. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. [Cloning and analysis of a new aliphatic amidase gene from Rhodococcus erythropolis TA37].

    PubMed

    Lavrov, K V; Karpova, I Yu; Epremyan, A S; Yanenko, A S

    2014-10-01

    A new aliphatic amidase gene (ami), having a level of similarity with the nearest homologs of no more than 77%, was identified in the Rhodococcus erythropolis TA37 strain, which is able to hydrolyze a wide range of amides. The amidase gene was cloned within a 3.7 kb chromosomal locus, which also contains putative acetyl-CoA ligase and ABC-type transportergenes. The structure of this locus in the R. erythropolis TA37 strain differs from the structure of loci in other Rhodococcus strains. The amidase gene is expressed in Escherichia coli cells. It was demonstrated that amidase (generated in the recombinant strain) efficiently hydrolyzes acetamide (aliphatic anmide) and does not use 4'-nitroacetanilide (N-substituted amide) as a substrate. Insertional inactivation of the amidase gene in the R. erythropolis TA37 strain results in a considerable decrease (by at least 6-7 times) in basal amidase activity, indicating functional amidase activity in the R. erythropolis TA37 strain.

  1. Overexpression of a phosphatidic acid phosphatase type 2 leads to an increase in triacylglycerol production in oleaginous Rhodococcus strains.

    PubMed

    Hernández, Martín A; Comba, Santiago; Arabolaza, Ana; Gramajo, Hugo; Alvarez, Héctor M

    2015-03-01

    Oleaginous Rhodococcus strains are able to accumulate large amounts of triacylglycerol (TAG). Phosphatidic acid phosphatase (PAP) enzyme catalyzes the dephosphorylation of phosphatidic acid (PA) to yield diacylglycerol (DAG), a key precursor for TAG biosynthesis. Studies to establish its role in lipid metabolism have been mainly focused in eukaryotes but not in bacteria. In this work, we identified and characterized a putative PAP type 2 (PAP2) encoded by the ro00075 gene in Rhodococcus jostii RHA1. Heterologous expression of ro00075 in Escherichia coli resulted in a fourfold increase in PAP activity and twofold in DAG content. The conditional deletion of ro00075 in RHA1 led to a decrease in the content of DAG and TAG, whereas its overexpression in both RHA1 and Rhodococcus opacus PD630 promoted an increase up to 10 to 15 % by cellular dry weight in TAG content. On the other hand, expression of ro00075 in the non-oleaginous strain Rhodococcus fascians F7 promoted an increase in total fatty acid content up to 7 % at the expense of free fatty acid (FFA), DAG, and TAG fractions. Moreover, co-expression of ro00075/atf2 genes resulted in a fourfold increase in total fatty acid content by a further increase of the FFA and TAG fractions. The results of this study suggest that ro00075 encodes for a PAP2 enzyme actively involved in TAG biosynthesis. Overexpression of this gene, as single one or with an atf gene, provides an alternative approach to increase the biosynthesis and accumulation of bacterial oils as a potential source of raw material for biofuel production.

  2. ChoG is the main inducible extracellular cholesterol oxidase of Rhodococcus sp. strain CECT3014.

    PubMed

    Fernández de Las Heras, Laura; Mascaraque, Victoria; García Fernández, Esther; Navarro-Llorens, Juana María; Perera, Julián; Drzyzga, Oliver

    2011-07-20

    Cholesterol catabolism has been reported in different bacteria and particularly in several Rhodococcus species, but the genetic of this complex pathway is not yet very well defined. In this work we report the isolation and sequencing of a 9.8 kb DNA fragment of Rhodococcus sp. strain CECT3014, a bacterial strain that we here identify as a Rhodococcus erythropolis strain. In this DNA fragment we found several ORF that are probably involved in steroid catabolism, and choG, a gene encoding a putative cholesterol oxidase whose functional characterization we here report. ChoG protein is a class II cholesterol oxidase with all the structural features of the enzymes of this group. The disruption of the choG gene does not alter the ability of strain CECT3014 cells to grow on cholesterol, but it abolishes the production of extracellular cholesterol oxidase. This later effect is reverted when the mutant cells are transformed with a plasmid expressing choG. We conclude that choG is the gene responsible for the inducible extracellular cholesterol oxidase activity of strain CECT3014. This activity distributes between the cellular membrane and the culture supernatant in a way that suggests it is produced by the same ChoG protein that occurs in two different locations. RT-PCR transcript analysis showed a dual scheme of choG expression: a low constitutive independent transcription, plus a cholesterol induced transcription of choG into a polycistronic kstD-hsd4B-choG mRNA. Copyright © 2010 Elsevier GmbH. All rights reserved.

  3. A novel 17β-hydroxysteroid dehydrogenase in Rhodococcus sp. P14 for transforming 17β-estradiol to estrone.

    PubMed

    Ye, Xueying; Wang, Hui; Kan, Jie; Li, Jin; Huang, Tongwang; Xiong, Guangming; Hu, Zhong

    2017-10-01

    17β-hydroxysteroid dehydrogenases (17β-HSD) are a group of oxidoreductase enzymes that exhibit high specificity for 17C reduction/oxidation. However, the mechanism of 17β-HSD in oxidizing steroid hormone 17β-estradiol to estrone in bacterium is still unclear. In this work, a functional bacterium Rhodococcus sp. P14 was identified having rapid ability to oxidize estradiol into estrone in mineral salt medium (MSM) within 6 h. The functional genes encoding NADH-dependent oxidoreductase were successfully detected with the help of bioinformatics, and it was identified that it contained two consensus regions affiliated to the short-chain dehydrogenase/reductase (SDR) superfamily. Expression of 17β-HSD could be induced by estradiol in strain P14. The 17β-HSD gene from Rhodococcus sp. P14 was expressed in Escherichia coli strain BL21. Furthermore, recombinant 17β-HSD-expressing BL21 cells showed a high transformation rate, they are capable of transforming estradiol to estrone up to 94%. The purified His-17β-HSD protein also exhibited high catalyzing efficiency. In conclusion, this study provides the first evidence that a novel 17β-HSD in Rhodococcus sp. P14 can catalyze the oxidation of estradiol. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Biotransformation of d-Limonene to (+) trans-Carveol by Toluene-Grown Rhodococcus opacus PWD4 Cells

    PubMed Central

    Duetz, Wouter A.; Fjällman, Ann H. M.; Ren, Shuyu; Jourdat, Catherine; Witholt, Bernard

    2001-01-01

    The toluene-degrading strain Rhodococcus opacus PWD4 was found to hydroxylate d-limonene exclusively in the 6-position, yielding enantiomerically pure (+) trans-carveol and traces of (+) carvone. This biotransformation was studied using cells cultivated in chemostat culture with toluene as a carbon and energy source. The maximal specific activity of (+) trans-carveol formation was 14.7 U (g of cells [dry weight])−1, and the final yield was 94 to 97%. Toluene was found to be a strong competitive inhibitor of the d-limonene conversion. Glucose-grown cells did not form any trans-carveol from d-limonene. These results suggest that one of the enzymes involved in toluene degradation is responsible for this allylic monohydroxylation. Another toluene degrader (Rhodococcus globerulus PWD8) had a lower specific activity but was found to oxidize most of the formed trans-carveol to (+) carvone, allowing for the biocatalytic production of this flavor compound. PMID:11375201

  5. Deep Desulfurization of Extensively Hydrodesulfurized Middle Distillate Oil by Rhodococcus sp. Strain ECRD-1

    PubMed Central

    Grossman, M. J.; Lee, M. K.; Prince, R. C.; Minak-Bernero, V.; George, G. N.; Pickering, I. J.

    2001-01-01

    Dibenzothiophene (DBT), and in particular substituted DBTs, are resistant to hydrodesulfurization (HDS) and can persist in fuels even after aggressive HDS treatment. Treatment by Rhodococcus sp. strain ECRD-1 of a middle distillate oil whose sulfur content was virtually all substituted DBTs produced extensive desulfurization and a sulfur level of 56 ppm. PMID:11282654

  6. Bioconversion of lignocellulosic pretreatment effluent via oleaginous Rhodococcus opacus DSM 1069

    DOE PAGES

    Wells, Jr., Tyrone; Wei, Zhen; Ragauskas, Arthur J.

    2014-11-26

    Rhodococcus opacus DSM 1069 utilized pine organosolv pretreatment effluent as a sole carbon and energy source for 120 h at 1.5 w/v% solids concentration and accumulated a maximum of 26.99 ± 2.88% of its cellular dry weight in oils composed of oleic, palmitic, and stearic fatty acids. Here, these results establish the potential for lignocellulosic pretreatment effluent as a feedstock for microbial biodiesel production via oleaginous R. opacus and an interesting route for biorefinery waste stream optimization.

  7. Rhodococcus equi.

    PubMed

    Meijer, Wim G; Prescott, John F

    2004-01-01

    Rhodococcus equi is an important cause of subacute or chronic abscessating bronchopneumonia of foals up to 3-5 months of age. It shares the lipid-rich cell wall envelope characteristic of the mycolata, including Mycobacterium tuberculosis, as well as the ability of pathogenic members of this group to survive within macrophages. The possession of a large virulence plasmid in isolates recovered from pneumonic foals is crucial for virulence. The plasmid contains an 27 kb pathogenicity island (PI) that encodes seven related virulence-associated proteins (Vaps), including the immunodominant surface-expressed protein, VapA. Only PI genes are differentially expressed when the organism is grown in macrophages in vitro. Ten of the PI genes, including six Vap genes, have signal sequences, suggesting that they are exported from the cell to interact with the macrophage. Different PI genes are regulated by temperature, pH, iron, oxidative stress and probably also by magnesium, all environmental changes encountered after environmental R. equi are inhaled in dust and are ingested into macrophages in the lung. The basis of pathogenicity of R. equi is its ability to multiply in and eventually to destroy alveolar macrophages. Infectivity is largely or exclusively limited to cells of the monocyte-macrophage lineage. Current evidence suggests that infection of foals with virulent R. equi results in some foals in subversion of cell-mediated immunity and development of an ineffective and sometimes lethal Th2-based immune response. Significant progress has been made recently in the development of R. equi-E. coli shuttle vectors, transformation and random and site specific mutagenesis procedures, all of which will be important in molecular dissection of the mechanisms by which R. equi subverts normal macrophage killing mechanisms and cell-mediated immunity.

  8. Analysis and optimization of triacylglycerol synthesis in novel oleaginous Rhodococcus and Streptomyces strains isolated from desert soil.

    PubMed

    Röttig, Annika; Hauschild, Philippa; Madkour, Mohamed H; Al-Ansari, Ahmed M; Almakishah, Naief H; Steinbüchel, Alexander

    2016-05-10

    As oleaginous microorganisms represent an upcoming novel feedstock for the biotechnological production of lipids or lipid-derived biofuels, we searched for novel, lipid-producing strains in desert soil. This was encouraged by the hypothesis that neutral lipids represent an ideal storage compound, especially under arid conditions, as several animals are known to outlast long periods in absence of drinking water by metabolizing their body fat. Ten lipid-accumulating bacterial strains, affiliated to the genera Bacillus, Cupriavidus, Nocardia, Rhodococcus and Streptomyces, were isolated from arid desert soil due to their ability to synthesize poly(β-hydroxybutyrate), triacylglycerols or wax esters. Particularly two Streptomyces sp. strains and one Rhodococcus sp. strain accumulate significant amounts of TAG under storage conditions under optimized cultivation conditions. Rhodococcus sp. A27 and Streptomyces sp. G49 synthesized approx. 30% (w/w) fatty acids from fructose or cellobiose, respectively, while Streptomyces isolate G25 reached a cellular fatty acid content of nearly 50% (w/w) when cultivated with cellobiose. The stored triacylglycerols were composed of 30-40% branched fatty acids, such as anteiso-pentadecanoic or iso-hexadecanoic acid. To date, this represents by far the highest lipid content described for streptomycetes. A biotechnological production of such lipids using (hemi)cellulose-derived raw material could be used to obtain sustainable biodiesel with a high proportion of branched-chain fatty acids to improve its cold-flow properties and oxidative stability. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Influence of Rhodococcus equi on the respiratory burst of resident alveolar macrophages from horses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brumbaugh, G.W.

    1986-01-01

    Rhodococcus equi is the etiologic agent of a devastating pneumonia of sporadic incidence in foals. The purpose of this study was to evaluate the influence of R. equi on the superoxide anion production, measured spectrophotometrically as the reduction of cytochrome C, and hexose monophosphate shunt activity, measured by /sup 14/CO/sub 2/ liberation from /sup 14/C-1-D-glucose, of alveolar macrophages from horses. Alveolar macrophages were harvested from 6 anesthetized, healthy, light-breed, adult horses by bronchoalveolar lavage. Following a randomized complete block design, the suspension of cells was divided into aliquots of 10/sup 6/ viable alveolar macrophages which were exposed to 1, 10more » or 100 g. of opsonized R. equi or opsonized zymosan A at 37 C for 2 hours. In this study the respiratory burst of equine alveolar macrophages was only evidenced by the hexose monophosphate shunt activity and superoxide anion was not coincidentally produced. Rhodococcus equi did not adversely affect that response. The insignificant superoxide anion production by the alveolar macrophages suggests that this may not be a significant oxygen metabolite in those cells.« less

  10. Novel Genes Encoding Hexadecanoic Acid Δ6-Desaturase Activity in a Rhodococcus sp.

    PubMed

    Araki, Hiroyuki; Hagihara, Hiroshi; Takigawa, Hirofumi; Tsujino, Yukiharu; Ozaki, Katsuya

    2016-11-01

    cis-6-Hexadecenoic acid, a major component of human sebaceous lipids, is involved in the defense mechanism against Staphylococcus aureus infection in healthy skin and closely related to atopic dermatitis. Previously, Koike et al. (Biosci Biotechnol Biochem 64:1064-1066, 2000) reported that a mutant strain of Rhodococcus sp. produced cis-6-hexadecenoate derivatives from palmitate alkyl esters. From the mutant Rhodococcus strain, we identified and sequenced two open reading frames present in an amplified 5.7-kb region; these open reading frames encoded tandemly repeated Δ6-desaturase-like genes, Rdes1 and Rdes2. A phylogenetic tree indicated that Rdes1 and Rdes2 were different from previously known Δ6-desaturase genes, and that they formed a new cluster. Rdes1 and Rdes2 were each introduced into vectors and then expressed separately in Escherichia coli, and the fatty acid composition of the transformed cells was analyzed by gas chromatography and mass spectrometry. The amount of cis-6-hexadecenoic acid was significantly higher in Rdes1- or Rdes2-transformed E. coli cells (twofold and threefold, respectively) than in vector-only control cells. These results showed that cis-6-hexadecenoic acid was produced in E. coli cells by the rhodococcal Δ6-desaturase-like proteins.

  11. Algicidal activity of a dibenzofuran-degrader Rhodococcus sp.

    PubMed

    Wang, Meng-Hui; Peng, Peng; Liu, Yu-Mei; Jia, Rui-Bao; Li, Li

    2013-02-01

    Rhodococcus sp. strain p52, a previously isolated dibenzofuran degrader, could effectively inhibit the growth of cyanobacteria, including species of Microcystis, Anabaena, and Nodularia. When strain p52 was inoculated at the concentration of 7.7×10(7) CFU/ml, 93.5% of exponentially growing Microcystis aeruginosa (7.3×10(6) cells/ml initially) was inhibited after 4 day. The threshold concentration for its algicidal activity against M. aeruginosa was 7.7×10(6) CFU/ml. Strain p52 exerted algicidal effect by synthesizing extracellular substances, which were identified as trans-3-indoleacrylic acid, DL-pipecolic acid, and L-pyroglutamic acid. The effective concentrations of trans-3-indoleacrylic acid and DL-pipecolic acid against M. aeruginosa were tested to be 0.5 mg/l and 5 mg/l, respectively.

  12. Establishment of an effective oligotrophic cultivation system for Rhodococcus erythropolis N9T-4.

    PubMed

    Matsuoka, Tomohiro; Yoshida, Nobuyuki

    2018-06-03

    Rhodococcus erythropolis N9T-4 grows on an inorganic solid-state medium with no additional carbon and energy sources; however, it is unable to grow well in a liquid culture medium under the oligotrophic conditions. We examined submerged cultivations of N9T-4 using a polyurethane foam sponge to achieve approximately 10 times of the oligotrophic growth of the bacterium in the liquid culture medium.

  13. Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment.

    PubMed

    Auta, H S; Emenike, C U; Jayanthi, B; Fauziah, S H

    2018-02-01

    Interest in the biodegradation of microplastics is due to their ubiquitous distribution, availability, high persistence in the environment and deleterious impact on marine biota. The present study evaluates the growth response and mechanism of polypropylene (PP) degradation by Bacillus sp. strain 27 and Rhodococcus sp. strain 36 isolated from mangrove sediments upon exposure to PP microplastics. Both bacteria strains were able to utilise PP microplastic for growth as confirmed by the reduction of the polymer mass. The weight loss was 6.4% by Rhodococcus sp. strain 36 and 4.0% by Bacillus sp. strain 27 after 40days of incubation. PP biodegradation was further confirmed using Fourier-transform infrared spectroscopy and scanning electron microscopy analyses, which revealed structural and morphological changes in the PP microplastics with microbial treatment. These analyses showed that the isolates can colonise, modify and utilise PP microplastics as carbon source. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Identification of microbial carotenoids and isoprenoid quinones from Rhodococcus sp. B7740 and its stability in the presence of iron in model gastric conditions.

    PubMed

    Chen, Yashu; Xie, Bijun; Yang, Jifang; Chen, Jigang; Sun, Zhida

    2018-02-01

    Rhodococcus sp. B7740 is a newfound bacterium which was isolated from 25m deep seawater in the arctic. In this paper, Rhodococcus sp. B7740 was firstly discovered to produce abundant natural isoprenoids, including ubiquinone-4(UQ-4), 13 kinds of menaquinones, three rare aromatic carotenoids and more than one common carotenoid. These compounds were identified by UV-Visible, HPLC-APCI-MS/MS and HRMS spectra. Results demonstrated that Rhodococcus sp. B7740 might be a worthy source of natural isoprenoids especially for scarce aromatic carotenoids. Among them, isorenieratene with 528.3762Da (calculated for 528.3756Da, error: 1.1ppm), a carotenoid with aromatic ring, was purified by HSCCC. The stability of isorenieratene under the mimical gastric conditions was measured compared with common dietary carotenoids, β-carotene and lutein. Unlike β-carotene and lutein, isorenieratene exhibited rather stable in the presence of free iron or heme iron. Its high retention rate in gastrointestinal tract after ingestion indicates the benefits for health. Copyright © 2017. Published by Elsevier Ltd.

  15. Fate of the nitrilotriacetic acid-Fe(III) complex during photodegradation and biodegradation by Rhodococcus rhodochrous.

    PubMed

    Bunescu, Andrei; Besse-Hoggan, Pascale; Sancelme, Martine; Mailhot, Gilles; Delort, Anne-Marie

    2008-10-01

    Aminopolycarboxylic acids are ubiquitous in natural waters and wastewaters. They have the ability to form very stable water-soluble complexes with many metallic di- or trivalent ions. The iron complex nitrilotriacetic acid-Fe(III) (FeNTA) has been previously shown to increase drastically the rate of photo- and biodegradation of 2-aminobenzothiazole, an organic pollutant, by Rhodococcus rhodochrous. For this paper, the fate of FeNTA was investigated during these degradation processes. First, it was shown, using in situ (1)H nuclear magnetic resonance, that the complex FeNTA was biodegraded by Rhodococcus rhodochrous cells, but the ligand (NTA) alone was not. This result indicates that FeNTA was transported and biotransformed inside the cell. The same products, including iminodiacetic acid, glycine, and formate, were obtained during the photo- and biodegradation processes of FeNTA, likely because they both involve oxidoreduction mechanisms. When the results of the different experiments are compared, the soluble iron, measured by spectrophotometry, was decreasing when microbial cells were present. About 20% of the initial iron was found inside the cells. These results allowed us to propose detailed mechanistic schemes for FeNTA degradation by solar light and by R. rhodochrous.

  16. Fate of the Nitrilotriacetic Acid-Fe(III) Complex during Photodegradation and Biodegradation by Rhodococcus rhodochrous▿

    PubMed Central

    Bunescu, Andrei; Besse-Hoggan, Pascale; Sancelme, Martine; Mailhot, Gilles; Delort, Anne-Marie

    2008-01-01

    Aminopolycarboxylic acids are ubiquitous in natural waters and wastewaters. They have the ability to form very stable water-soluble complexes with many metallic di- or trivalent ions. The iron complex nitrilotriacetic acid-Fe(III) (FeNTA) has been previously shown to increase drastically the rate of photo- and biodegradation of 2-aminobenzothiazole, an organic pollutant, by Rhodococcus rhodochrous. For this paper, the fate of FeNTA was investigated during these degradation processes. First, it was shown, using in situ 1H nuclear magnetic resonance, that the complex FeNTA was biodegraded by Rhodococcus rhodochrous cells, but the ligand (NTA) alone was not. This result indicates that FeNTA was transported and biotransformed inside the cell. The same products, including iminodiacetic acid, glycine, and formate, were obtained during the photo- and biodegradation processes of FeNTA, likely because they both involve oxidoreduction mechanisms. When the results of the different experiments are compared, the soluble iron, measured by spectrophotometry, was decreasing when microbial cells were present. About 20% of the initial iron was found inside the cells. These results allowed us to propose detailed mechanistic schemes for FeNTA degradation by solar light and by R. rhodochrous. PMID:18757580

  17. Novel Allylic Oxidation of α-Cedrene to sec-Cedrenol by a Rhodococcus Strain

    PubMed Central

    Takigawa, Hirofumi; Kubota, Hiromi; Sonohara, Hiroshi; Okuda, Mitsuyoshi; Tanaka, Shigeyoshi; Fujikura, Yoshiaki; Ito, Susumu

    1993-01-01

    A bacterial strain, designated KSM-7358, that can use α-cedrene for growth was isolated. The strain was identified as a member of the genus Rhodococcus and catalyzed the novel allylic oxidation of α-cedrene regiospecifically to produce (R)-10-hydroxycedrene (sec-cedrenol) with a very high yield. α-Curcumene was also produced as a possible metabolite of sec-cedrenol. A possible pathway for the microbial conversion of α-cedrene to sec-cedrenol and α-curcumene is proposed. PMID:16348930

  18. Genome-based exploration of the specialized metabolic capacities of the genus Rhodococcus.

    PubMed

    Ceniceros, Ana; Dijkhuizen, Lubbert; Petrusma, Mirjan; Medema, Marnix H

    2017-08-09

    Bacteria of the genus Rhodococcus are well known for their ability to degrade a large range of organic compounds. Some rhodococci are free-living, saprophytic bacteria; others are animal and plant pathogens. Recently, several studies have shown that their genomes encode putative pathways for the synthesis of a large number of specialized metabolites that are likely to be involved in microbe-microbe and host-microbe interactions. To systematically explore the specialized metabolic potential of this genus, we here performed a comprehensive analysis of the biosynthetic coding capacity across publicly available rhododoccal genomes, and compared these with those of several Mycobacterium strains as well as that of their mutual close relative Amycolicicoccus subflavus. Comparative genomic analysis shows that most predicted biosynthetic gene cluster families in these strains are clade-specific and lack any homology with gene clusters encoding the production of known natural products. Interestingly, many of these clusters appear to encode the biosynthesis of lipopeptides, which may play key roles in the diverse environments were rhodococci thrive, by acting as biosurfactants, pathogenicity factors or antimicrobials. We also identified several gene cluster families that are universally shared among all three genera, which therefore may have a more 'primary' role in their physiology. Inactivation of these clusters by mutagenesis might help to generate weaker strains that can be used as live vaccines. The genus Rhodococcus thus provides an interesting target for natural product discovery, in view of its large and mostly uncharacterized biosynthetic repertoire, its relatively fast growth and the availability of effective genetic tools for its genomic modification.

  19. Initial transformations in the biodegradation of benzothiazoles by Rhodococcus isolates.

    PubMed

    De Wever, H; Vereecken, K; Stolz, A; Verachtert, H

    1998-09-01

    Benzothiazole-2-sulfonate (BTSO3) is one of the side products occurring in 2-mercaptobenzothiazole (MBT) production wastewater. We are the first to isolate an axenic culture capable of BTSO3 degradation. The isolate was identified as a Rhodococcus erythropolis strain and also degraded 2-hydroxybenzothiazole (OBT) and benzothiazole (BT), but not MBT, which was found to inhibit the biodegradation of OBT, BT, and BTSO3. In anaerobic resting cell assays, BTSO3 was transformed into OBT in stoichiometric amounts. Under aerobic conditions, OBT was observed as an intermediate in BT breakdown and an unknown compound transiently accumulated in several assays. This product was identified as a dihydroxybenzothiazole. Benzothiazole degradation pathways seem to converge into OBT, which is then transformed further into the dihydroxy derivative.

  20. Molecular Toolkit for Gene Expression Control and Genome Modification in Rhodococcus opacus PD630

    DOE PAGES

    DeLorenzo, Drew M.; Rottinghaus, Austin G.; Henson, William R.; ...

    2018-01-24

    Rhodococcus opacus PD630 is a non-model, gram-positive bacterium that possesses desirable traits for lignocellulosic biomass conversion. In particular, it has a relatively rapid growth rate, exhibits genetic tractability, produces high quantities of lipids, and can tolerate and consume toxic, lignin-derived aromatic compounds. Despite these unique, industrially relevant characteristics, R. opacus has been underutilized due to a lack of reliable genetic parts and engineering tools. In this work, we developed a molecular toolbox for reliable gene expression control and genome modification in R. opacus. To facilitate predictable gene expression, a constitutive promoter library spanning ~45-fold in output was constructed. To improvemore » the characterization of available plasmids, the copy numbers of four heterologous and nine endogenous plasmids were determined using quantitative PCR. The molecular toolbox was further expanded by screening a previously unreported antibiotic resistance marker (HygR) and constructing a curable plasmid backbone for temporary gene expression (pB264). Furthermore, a system for genome modification was devised, and three neutral integration sites were identified using a novel combination of transcriptomic data, genomic architecture, and growth rate analysis. Finally, the first reported system for targeted, tunable gene repression in Rhodococcus was developed by utilizing CRISPR interference (CRISPRi). Overall, this work greatly expands the ability to manipulate and engineer R. opacus, making it a viable new chassis for bioproduction from renewable feedstocks.« less

  1. Molecular Toolkit for Gene Expression Control and Genome Modification in Rhodococcus opacus PD630

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeLorenzo, Drew M.; Rottinghaus, Austin G.; Henson, William R.

    Rhodococcus opacus PD630 is a non-model, gram-positive bacterium that possesses desirable traits for lignocellulosic biomass conversion. In particular, it has a relatively rapid growth rate, exhibits genetic tractability, produces high quantities of lipids, and can tolerate and consume toxic, lignin-derived aromatic compounds. Despite these unique, industrially relevant characteristics, R. opacus has been underutilized due to a lack of reliable genetic parts and engineering tools. In this work, we developed a molecular toolbox for reliable gene expression control and genome modification in R. opacus. To facilitate predictable gene expression, a constitutive promoter library spanning ~45-fold in output was constructed. To improvemore » the characterization of available plasmids, the copy numbers of four heterologous and nine endogenous plasmids were determined using quantitative PCR. The molecular toolbox was further expanded by screening a previously unreported antibiotic resistance marker (HygR) and constructing a curable plasmid backbone for temporary gene expression (pB264). Furthermore, a system for genome modification was devised, and three neutral integration sites were identified using a novel combination of transcriptomic data, genomic architecture, and growth rate analysis. Finally, the first reported system for targeted, tunable gene repression in Rhodococcus was developed by utilizing CRISPR interference (CRISPRi). Overall, this work greatly expands the ability to manipulate and engineer R. opacus, making it a viable new chassis for bioproduction from renewable feedstocks.« less

  2. Biodesulphurization of gasoline by Rhodococcus erythropolis supported on polyvinyl alcohol.

    PubMed

    Fatahi, A; Sadeghi, S

    2017-05-01

    A new biodesulphurization (BDS) method has been considered using Rhodococcus erythropolis supported on polyvinyl alcohol (PVA) for BDS of thiophene as a gasoline sulphur model compound in n-hexane as the solvent, subsequently this biocatalyst has been applied to BDS of gasoline samples. The obtained results according to UV-Spectrophotometer analysis at 240 nm showed that 97·41% of thiophene at the optimum condition of primary concentration 80 mg l -1 , pH = 7, by 0·1 g of biocatalyst in 30°C and after 20 h of contact time has been degraded. These optimum conditions have been applied to gasoline BDS and the biodegradation of gasoline thiophenic compounds have been investigated by gas chromatography-mass spectrometry (GC-MS). According to GC-MS, thiophene and its 2-methyl, 3-methyl and 2- ethyl derivatives had acceptable biodegradation efficiencies of about 26·67, 21·03, 23·62% respectively. Also, benzothiophene that has been detected in a gasoline sample had 38·89% biodegradation efficiency at optimum conditions, so biomodification of PVA by R. erythropolis produces biocatalysts with an active metabolism that facilitates the interaction of bacterial strain with gasoline thiophenic compounds. The morphology and surface functional groups of supported R. erythropolis on PVA have been investigated by scanning electron microscope (SEM) and FT-IR spectroscopy respectively. SEM images suggest some regular layered shape for the supported bacteria. FT-IR spectra indicate a desirable interaction between bacterial cells and polymer supports. Also, the recovery of biocatalyst has been investigated and after three times of using in BDS activity, its biocatalytic ability had no significant decreases. The biomodification of polyvinyl alcohol by Rhodococcus erythropolis described herein produces a new biocatalyst which can be used for significantly reducing the thiophenic compounds of gasoline and other fossil fuels. The immobilization process is to increase the

  3. Enzymatic cyanide degradation by cell-free extract of Rhodococcus UKMP-5M.

    PubMed

    Nallapan Maniyam, Maegala; Sjahrir, Fridelina; Latif Ibrahim, Abdul; Cass, Anthony E G

    2015-01-01

    The cell-free extract of locally isolated Rhodococcus UKMP-5M strain was used as an alternative to develop greener and cost effective cyanide removal technology. The present study aims to assess the viability of the cell-free extract to detoxify high concentrations of cyanide which is measured through the monitoring of protein concentration and specific cyanide-degrading activity. When cyanide-grown cells were subjected to grinding in liquid nitrogen which is relatively an inexpressive and fast cell disruption method, highest cyanide-degrading activity of 0.63 mM min(-1) mg(-1) protein was obtained in comparison to enzymatic lysis and agitation with fine glass beads. The cell-free extracts managed to degrade 80% of 20 mM KCN within 80 min and the rate of cyanide consumption increased linearly as the concentration of protein was raised. In both cases, the addition of co-factor was not required which proved to be advantageous economically. The successful formation of ammonia and formate as endproducts indicated that the degradation of cyanide by Rhodococcus UKMP-5M proceeded via the activity of cyanidase and the resulting non-toxic products are safe for disposal into the environment. Further verification with SDS-PAGE revealed that the molecular weight of the active enzyme was estimated to be 38 kDa, which is consistent with previously reported cyanidases. Thus, the utilization of cell-free extracts as an alternative to live microbial in cyanide degradation offers numerous advantageous such as the potential to tolerate and degrade higher concentration of cyanide and total reduction in the overall cost of operation since the requirement for nutrient support is irrelevant.

  4. Coexisting bacterial populations responsible for multiphasic mineralization kinetics in soil. [Janthinobacterium sp. Rhodococcus sp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, S.K.; Gier, M.J.

    1990-09-01

    Experiments were conducted to study populations of indigenous microorganisms capable of mineralizing 2,4-dinitrophenol (DNP) in two soils. Previous kinetic analyses indicated the presence of two coexisting populations of DNP-mineralizing microorganisms in a forest soil (soil 1). Studies in which eucaryotic and procaryotic inhibitors were added to this soil indicated that both populations were bacterial. Most-probable-number counts with media containing different concentrations of DNP indicated that more bacteria could mineralize low concentrations of DNP than could metabolize high concentrations of it. Enrichments with varying concentrations of DNP and various combinations of inhibitors consistently resulted in the isolation of the same twomore » species of bacteria from soil 1. This soil contained a large number and variety of fungi, but no fungi capable of mineralizing DNP were isolated. The two bacterial isolates were identified as a Janthinobacterium sp. and a Rhodococcus sp. The Janthinobacterium sp. had a low {mu}{sub max} and a low K{sub m} for DNP mineralization, whereas the Rhodococcus sp. had much higher values for both parameters. These differences between the two species of bacteria were similar to differences seen when soil was incubated with different concentrations of DNP. Values for {mu}{sub max} from soil incubations were similar to {mu}{sub max} values obtained in pure culture studies. In contrast, K{sub s} and K{sub m} values showed greater variation between soil and pure culture studies.« less

  5. Initial hydrogenation during catabolism of picric acid by Rhodococcus erythropolis HL 24-2.

    PubMed Central

    Lenke, H; Knackmuss, H J

    1992-01-01

    Rhodococcus erythropolis HL 24-2, which was originally isolated as a 2,4-dinitrophenol-degrading bacterium, could also utilize picric acid as a nitrogen source after spontaneous mutation. During growth, the mutant HL PM-1 transiently accumulated an orange-red metabolite, which was identified as a hydride-Meisenheimer complex of picric acid. This complex was formed as the initial metabolite and further converted with concomitant liberation of nitrite. 2,4,6-Trinitrocyclohexanone was identified as a dead-end metabolite of the degradation of picric acid, indicating the addition of two hydride ions to picric acid. PMID:1444408

  6. Biodegradation of the organic disulfide 4,4'-dithiodibutyric acid by Rhodococcus spp.

    PubMed

    Khairy, Heba; Wübbeler, Jan Hendrik; Steinbüchel, Alexander

    2015-12-01

    Four Rhodococcus spp. exhibited the ability to use 4,4'-dithiodibutyric acid (DTDB) as a sole carbon source for growth. The most important step for the production of a novel polythioester (PTE) using DTDB as a precursor substrate is the initial cleavage of DTDB. Thus, identification of the enzyme responsible for this step was mandatory. Because Rhodococcus erythropolis strain MI2 serves as a model organism for elucidation of the biodegradation of DTDB, it was used to identify the genes encoding the enzymes involved in DTDB utilization. To identify these genes, transposon mutagenesis of R. erythropolis MI2 was carried out using transposon pTNR-TA. Among 3,261 mutants screened, 8 showed no growth with DTDB as the sole carbon source. In five mutants, the insertion locus was mapped either within a gene coding for a polysaccharide deacetyltransferase, a putative ATPase, or an acetyl coenzyme A transferase, 1 bp upstream of a gene coding for a putative methylase, or 176 bp downstream of a gene coding for a putative kinase. In another mutant, the insertion was localized between genes encoding a putative transcriptional regulator of the TetR family (noxR) and an NADH:flavin oxidoreductase (nox). Moreover, in two other mutants, the insertion loci were mapped within a gene encoding a hypothetical protein in the vicinity of noxR and nox. The interruption mutant generated, R. erythropolis MI2 noxΩtsr, was unable to grow with DTDB as the sole carbon source. Subsequently, nox was overexpressed and purified, and its activity with DTDB was measured. The specific enzyme activity of Nox amounted to 1.2 ± 0.15 U/mg. Therefore, we propose that Nox is responsible for the initial cleavage of DTDB into 2 molecules of 4-mercaptobutyric acid (4MB). Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Degradation of car engine base oil by Rhodococcus sp. NDKK48 and Gordonia sp. NDKY76A.

    PubMed

    Koma, Daisuke; Sakashita, Yuichi; Kubota, Kenzo; Fujii, Yoshihide; Hasumi, Fumihiko; Chung, Seon-Yong; Kubo, Motoki

    2003-07-01

    Two microorganisms (NDKK48 and NDKY76A) that degrade long-chain cyclic alkanes (c-alkanes) were isolated from soil samples. Strains NDKK48 and NDKY76A were identified as Rhodococcus sp. and Gordonia sp., respectively. Both strains used not only normal alkane (n-alkane) but also c-alkane as a sole carbon and energy source, and the strains degraded more than 27% of car engine base oil (1% addition).

  8. Isolation and identification of berberine and berberrubine metabolites by berberine-utilizing bacterium Rhodococcus sp. strain BD7100.

    PubMed

    Ishikawa, Kazuki; Takeda, Hisashi; Wakana, Daigo; Sato, Fumihiko; Hosoe, Tomoo

    2016-05-01

    Based on the finding of a novel berberine (BBR)-utilizing bacterium, Rhodococcus sp. strain BD7100, we investigated the degradation of BBR and its analog berberrubine (BRU). Resting cells of BD7100 demethylenated BBR and BRU, yielding benzeneacetic acid analogs. Isolation of benzeneacetic acid analogs suggested that BD7100 degraded the isoquinoline ring of the protoberberine skeleton. This work represents the first report of cleavage of protoberberine skeleton by a microorganism.

  9. Rhodococcus equi: the many facets of a pathogenic actinomycete.

    PubMed

    Vázquez-Boland, José A; Giguère, Steeve; Hapeshi, Alexia; MacArthur, Iain; Anastasi, Elisa; Valero-Rello, Ana

    2013-11-29

    Rhodococcus equi is a soil-dwelling pathogenic actinomycete that causes pulmonary and extrapulmonary pyogranulomatous infections in a variety of animal species and people. Young foals are particularly susceptible and develop a life-threatening pneumonic disease that is endemic at many horse-breeding farms worldwide. R. equi is a facultative intracellular parasite of macrophages that replicates within a modified phagocytic vacuole. Its pathogenicity depends on a virulence plasmid that promotes intracellular survival by preventing phagosome-lysosome fusion. Species-specific tropism of R. equi for horses, pigs and cattle appears to be determined by host-adapted virulence plasmid types. Molecular epidemiological studies of these plasmids suggest that human R. equi infection is zoonotic. Analysis of the recently determined R. equi genome sequence has identified additional virulence determinants on the bacterial chromosome. This review summarizes our current understanding of the clinical aspects, biology, pathogenesis and immunity of this fascinating microbe with plasmid-governed infectivity. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. The Genome of a Pathogenic Rhodococcus: Cooptive Virulence Underpinned by Key Gene Acquisitions

    PubMed Central

    Letek, Michal; González, Patricia; MacArthur, Iain; Rodríguez, Héctor; Freeman, Tom C.; Valero-Rello, Ana; Blanco, Mónica; Buckley, Tom; Cherevach, Inna; Fahey, Ruth; Hapeshi, Alexia; Holdstock, Jolyon; Leadon, Desmond; Navas, Jesús; Ocampo, Alain; Quail, Michael A.; Sanders, Mandy; Scortti, Mariela M.; Prescott, John F.; Fogarty, Ursula; Meijer, Wim G.; Parkhill, Julian; Bentley, Stephen D.; Vázquez-Boland, José A.

    2010-01-01

    We report the genome of the facultative intracellular parasite Rhodococcus equi, the only animal pathogen within the biotechnologically important actinobacterial genus Rhodococcus. The 5.0-Mb R. equi 103S genome is significantly smaller than those of environmental rhodococci. This is due to genome expansion in nonpathogenic species, via a linear gain of paralogous genes and an accelerated genetic flux, rather than reductive evolution in R. equi. The 103S genome lacks the extensive catabolic and secondary metabolic complement of environmental rhodococci, and it displays unique adaptations for host colonization and competition in the short-chain fatty acid–rich intestine and manure of herbivores—two main R. equi reservoirs. Except for a few horizontally acquired (HGT) pathogenicity loci, including a cytoadhesive pilus determinant (rpl) and the virulence plasmid vap pathogenicity island (PAI) required for intramacrophage survival, most of the potential virulence-associated genes identified in R. equi are conserved in environmental rhodococci or have homologs in nonpathogenic Actinobacteria. This suggests a mechanism of virulence evolution based on the cooption of existing core actinobacterial traits, triggered by key host niche–adaptive HGT events. We tested this hypothesis by investigating R. equi virulence plasmid-chromosome crosstalk, by global transcription profiling and expression network analysis. Two chromosomal genes conserved in environmental rhodococci, encoding putative chorismate mutase and anthranilate synthase enzymes involved in aromatic amino acid biosynthesis, were strongly coregulated with vap PAI virulence genes and required for optimal proliferation in macrophages. The regulatory integration of chromosomal metabolic genes under the control of the HGT–acquired plasmid PAI is thus an important element in the cooptive virulence of R. equi. PMID:20941392

  11. Core element characterization of Rhodococcus promoters and development of a promoter-RBS mini-pool with different activity levels for efficient gene expression.

    PubMed

    Jiao, Song; Yu, Huimin; Shen, Zhongyao

    2018-09-25

    To satisfy the urgent demand for promoter engineering that can accurately regulate the metabolic circuits and expression of specific genes in the Rhodococcus microbial platform, a promoter-ribosome binding site (RBS) coupled mini-pool with fine-tuning of different activity levels was successfully established. Transcriptome analyses of R. ruber TH revealed several representative promoters with different activity levels, e.g., Pami, Pcs, Pnh, P50sl36, PcbiM, PgroE and Pniami. β-Galactosidase (LacZ) reporter measurement demonstrated that different gene expression levels could be obtained with these natural promoters combined with an optimal RBS of ami. Further use of these promoters to overexpress the nitrile hydratase (NHase) gene with RBSami in R. ruber THdAdN produced different expression levels consistent with the transcription analyses. The -35 and -10 core elements of different promoters were further analyzed, and the conserved sequences were revealed to be TTGNNN and (T/C)GNNA(A/C)AAT. By mutating the core elements of the strong promoters, Pnh and Pami, into the above consensus sequence, two even stronger promoters, PnhM and PamiM, were obtained with 2.2-fold and 7.7-fold improvements in transcription, respectively. Integrating several strategies, including transcriptome promoter screening, -35 and -10 core element identification, core element point-mutation, RBS optimization and diverse reporter verification, a fine-tuning promoter-RBS combination mini-pool with different activity levels in Rhodococcus strains was successfully established. This development is significant for broad applications of the Rhodococcus genus as a microbial platform. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Assessment of alkaline cholesterol oxidase purified from Rhodococcus sp. PKPD-CL for its halo tolerance, detergent and organic solvent stability.

    PubMed

    Kasabe, Pramod J; Mali, Geetanjali T; Dandge, Padma B

    2015-12-01

    The novel bacterium, Rhodococcus sp. PKPD-CL was isolated and identified from the 'Chilika Lake' located at Odisha state of India, which is a largest brackish water habitat in Asia. Rhodococcus sp. PKPD-CL produces extracellular halo tolerant, detergent and organic solvent stable alkaline cholesterol oxidase. It has apparent molecular weight of 60 kDa and was purified 59 fold by using 60% saturated ammonium sulfate fractionation, anion exchange followed by size exclusion chromatographic techniques with 37% recovery. It showed substrate specificity for 3β-hydroxysteroids with Km of 1.1 × 10(-4)M for cholesterol. The pH, 8.0 and the temperature, 37 °C were required for its optimum activity. Enzyme is considerably stable at pH 6.0-8.5 and temperature up to 50 °C. At 4 and 30 °C it maintained its 100% activity up to 60 days. The isoelectric point of the enzyme was 9.5. It showed 80% residual activity with 20% NaCl (3.42 M) and 83% relative activity with 12% NaCl (2.05 M) concentration. The metal ions like Zn(2+), Cu(2+), Ag+, Fe(3+), Ba(2+) inhibited the enzyme activity >60% while Hg(2+) served a potent inhibitor whereas Mg(2+) found to be a good enhancer for it. The enzyme was stable in presence of chemical reagents (NaN3, EDTA), detergents (Tween-80, Tween-20, Triton X-100, sodium cholate) and various organic solvents (isopropanol, ethanol, benzene, chloroform, methanol, toluene, ethyl acetate, butanol and dimethylsulfoxide). Such a multi stress tolerant and versatile enzyme produced by Rhodococcus sp. PKPD-CL may serve as a good choice for industrial applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Cloning and Expression of the Benzoate Dioxygenase Genes from Rhodococcus sp. Strain 19070

    PubMed Central

    Haddad, Sandra; Eby, D. Matthew; Neidle, Ellen L.

    2001-01-01

    The bopXYZ genes from the gram-positive bacterium Rhodococcus sp. strain 19070 encode a broad-substrate-specific benzoate dioxygenase. Expression of the BopXY terminal oxygenase enabled Escherichia coli to convert benzoate or anthranilate (2-aminobenzoate) to a nonaromatic cis-diol or catechol, respectively. This expression system also rapidly transformed m-toluate (3-methylbenzoate) to an unidentified product. In contrast, 2-chlorobenzoate was not a good substrate. The BopXYZ dioxygenase was homologous to the chromosomally encoded benzoate dioxygenase (BenABC) and the plasmid-encoded toluate dioxygenase (XylXYZ) of gram-negative acinetobacters and pseudomonads. Pulsed-field gel electrophoresis failed to identify any plasmid in Rhodococcus sp. strain 19070. Catechol 1,2- and 2,3-dioxygenase activity indicated that strain 19070 possesses both meta- and ortho-cleavage degradative pathways, which are associated in pseudomonads with the xyl and ben genes, respectively. Open reading frames downstream of bopXYZ, designated bopL and bopK, resembled genes encoding cis-diol dehydrogenases and benzoate transporters, respectively. The bop genes were in the same order as the chromosomal ben genes of P. putida PRS2000. The deduced sequences of BopXY were 50 to 60% identical to the corresponding proteins of benzoate and toluate dioxygenases. The reductase components of these latter dioxygenases, BenC and XylZ, are 201 residues shorter than the deduced BopZ sequence. As predicted from the sequence, expression of BopZ in E. coli yielded an approximately 60-kDa protein whose presence corresponded to increased cytochrome c reductase activity. While the N-terminal region of BopZ was approximately 50% identical in sequence to the entire BenC or XylZ reductases, the C terminus was unlike other known protein sequences. PMID:11375157

  14. Biodegradation of the Organic Disulfide 4,4′-Dithiodibutyric Acid by Rhodococcus spp.

    PubMed Central

    Khairy, Heba; Wübbeler, Jan Hendrik

    2015-01-01

    Four Rhodococcus spp. exhibited the ability to use 4,4′-dithiodibutyric acid (DTDB) as a sole carbon source for growth. The most important step for the production of a novel polythioester (PTE) using DTDB as a precursor substrate is the initial cleavage of DTDB. Thus, identification of the enzyme responsible for this step was mandatory. Because Rhodococcus erythropolis strain MI2 serves as a model organism for elucidation of the biodegradation of DTDB, it was used to identify the genes encoding the enzymes involved in DTDB utilization. To identify these genes, transposon mutagenesis of R. erythropolis MI2 was carried out using transposon pTNR-TA. Among 3,261 mutants screened, 8 showed no growth with DTDB as the sole carbon source. In five mutants, the insertion locus was mapped either within a gene coding for a polysaccharide deacetyltransferase, a putative ATPase, or an acetyl coenzyme A transferase, 1 bp upstream of a gene coding for a putative methylase, or 176 bp downstream of a gene coding for a putative kinase. In another mutant, the insertion was localized between genes encoding a putative transcriptional regulator of the TetR family (noxR) and an NADH:flavin oxidoreductase (nox). Moreover, in two other mutants, the insertion loci were mapped within a gene encoding a hypothetical protein in the vicinity of noxR and nox. The interruption mutant generated, R. erythropolis MI2 noxΩtsr, was unable to grow with DTDB as the sole carbon source. Subsequently, nox was overexpressed and purified, and its activity with DTDB was measured. The specific enzyme activity of Nox amounted to 1.2 ± 0.15 U/mg. Therefore, we propose that Nox is responsible for the initial cleavage of DTDB into 2 molecules of 4-mercaptobutyric acid (4MB). PMID:26407888

  15. Structure of the virulence-associated protein VapD from the intracellular pathogen Rhodococcus equi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whittingham, Jean L.; Blagova, Elena V.; Finn, Ciaran E.

    2014-08-01

    VapD is one of a set of highly homologous virulence-associated proteins from the multi-host pathogen Rhodococcus equi. The crystal structure reveals an eight-stranded β-barrel with a novel fold and a glycine rich ‘bald’ surface. Rhodococcus equi is a multi-host pathogen that infects a range of animals as well as immune-compromised humans. Equine and porcine isolates harbour a virulence plasmid encoding a homologous family of virulence-associated proteins associated with the capacity of R. equi to divert the normal processes of endosomal maturation, enabling bacterial survival and proliferation in alveolar macrophages. To provide a basis for probing the function of the Vapmore » proteins in virulence, the crystal structure of VapD was determined. VapD is a monomer as determined by multi-angle laser light scattering. The structure reveals an elliptical, compact eight-stranded β-barrel with a novel strand topology and pseudo-twofold symmetry, suggesting evolution from an ancestral dimer. Surface-associated octyl-β-d-glucoside molecules may provide clues to function. Circular-dichroism spectroscopic analysis suggests that the β-barrel structure is preceded by a natively disordered region at the N-terminus. Sequence comparisons indicate that the core folds of the other plasmid-encoded virulence-associated proteins from R. equi strains are similar to that of VapD. It is further shown that sequences encoding putative R. equi Vap-like proteins occur in diverse bacterial species. Finally, the functional implications of the structure are discussed in the light of the unique structural features of VapD and its partial structural similarity to other β-barrel proteins.« less

  16. Utilization of simultaneous saccharification and fermentation residues as feedstock for lipid accumulation in Rhodococcus opacus.

    PubMed

    Le, Rosemary K; Das, Parthapratim; Mahan, Kristina M; Anderson, Seth A; Wells, Tyrone; Yuan, Joshua S; Ragauskas, Arthur J

    2017-09-29

    Use of oleaginous microorganisms as "micro-factories" for accumulation of single cell oils for biofuel production has increased significantly to mitigate growing energy demands, resulting in efforts to upgrade industrial waste, such as second-generation lignocellulosic residues, into potential feedstocks. Dilute-acid pretreatment (DAP) is commonly used to alter the physicochemical properties of lignocellulosic materials and is typically coupled with simultaneous saccharification and fermentation (SSF) for conversion of sugars into ethanol. The resulting DAP residues are usually processed as a waste stream, e.g. burned for power, but this provides minimal value. Alternatively, these wastes can be utilized as feedstock to generate lipids, which can be converted to biofuel. DAP-SSF residues were generated from pine, poplar, and switchgrass. High performance liquid chromatography revealed less than 0.13% monomeric sugars in the dry residue. Fourier transform infrared spectroscopy was indicative of the presence of lignin and polysaccharides. Gel permeation chromatography suggested the bacterial strains preferred molecules with molecular weight ~ 400-500 g/mol. DAP-SSF residues were used as the sole carbon source for lipid production by Rhodococcus opacus DSM 1069 and PD630 in batch fermentations. Depending on the strain of Rhodococcus employed, 9-11 lipids for PD630 and DSM 1069 were observed, at a final concentration of ~ 15 mg/L fatty acid methyl esters (FAME) detected. Though the DAP-SSF substrate resulted in low FAME titers, novel analysis of solid-state fermentations was investigated, which determined that DAP-SSF residues could be a viable feedstock for lipid generation.

  17. Genetic analysis of the dsz promoter and associated regulatory regions of Rhodococcus erythropolis IGTS8.

    PubMed Central

    Li, M Z; Squires, C H; Monticello, D J; Childs, J D

    1996-01-01

    The dsz gene cluster of Rhodococcus erythropolis IGTS8 comprises three genes, dszA, dszB, and dszC, whose products are involved in the conversion of dibenzothiophene (DBT) to 2-hydroxybiphenyl and sulfite. This organism can use DBT as the sole sulfur source but not as a carbon source. Dsz activity is repressed by methionine, cysteine, Casamino Acids, and sulfate but not by DBT or dimethyl sulfoxide. We cloned 385 bp of the DNA immediately 5' to dszA in front of the reporter gene lacZ of Escherichia coli. We showed that this region contains a Rhodococcus promoter and at least three dsz regulatory regions. After hydrazine mutagenesis of this DNA, colonies that were able to express beta-galactosidase in the presence of Casamino Acids were isolated. Sequencing of these mutants revealed two possible regulatory regions. One is at -263 to -244, and the other is at -93 to -38, where -1 is the base preceding the A of the initiation codon ATG of dszA. An S1 nuclease protection assay showed that the start of the dsz promoter is the G at -46 and that transcription is repressed by sulfate and cysteine but not by dimethyl sulfoxide. The promoter encompasses a region of potential diad symmetry that may contain an operator. Immediately upstream of the promoter is a protein-binding domain between -146 and -121. Deletion of this region did not affect repression, but promoter activity appeared to be reduced by threefold. Thus, it could be an activator binding site or an enhancer region. PMID:8932295

  18. [Cloning and expression of Micrococcus luteus IAM 14879 Rpf and its role in the recovery of the VBNC state in Rhodococcus sp. DS471].

    PubMed

    Ding, Linxian; Zhang, Pinghua; Hong, Huachang; Lin, Hongjun; Yokota, Akira

    2012-01-01

    The purpose of the present study was to produce the Rpf (resuscitation promoting factor) protein by cloning and expressing the rpf gene, secreted by Micrococcus luteus IAM 14879, in Escherichia coli and to evaluate its role in the recovery of the VBNC (viable but non-culturable) state in high-GC Gram-positive bacteria. Genomic DNA was extracted from Micrococcus luteus IAM 14879 and the rpf gene was amplified by PCR using specific primers. The PCR products was purified, cloned into a pET15b expression vector, and transformed into Escherichia coli BL21 (DE3). Then the pET15b plasmid expression vector was used to confirm the purification of the recombinant proteins via SDS-PAGE. The VBNC state cells from the high-GC Gram-positive bacteria, Rhodococcus sp. DS471, were used to confirm the promotion and recovery of growth capacity. Rhodococcus sp. DS471 were isolated from soil and closely related to Micrococcus luteus IAM 14879. The gene sequences confirmed that the rpf gene from Micrococcus luteus IAM 14879 that was expressed in Escherichia coli, was 672 bp. SDS-PAGE analysis showed that the recombinant Rpf protein was obtained successfully, and further studies showed it capable of promoting the recovery of the VBNC state by about 100-fold relative to the control. Rpf of Micrococus luteus IAM 14879 can be successfully cloned and expressed in Escherichia coli and shows a strong ability to promote the recovery of the VBNC state of cells of Rhodococcus sp. DS471.

  19. Substrate Preferences in Biodesulfurization of Diesel Range Fuels by Rhodococcus sp. Strain ECRD-1

    PubMed Central

    Prince, Roger C.; Grossman, Matthew J.

    2003-01-01

    The range of sulfur compounds in fuel oil and the substrate range and preference of the biocatalytic system determine the maximum extent to which sulfur can be removed by biodesulfurization. We show that the biodesulfurization apparatus in Rhodococcus sp. strain ECRD-1 is able to attack all isomers of dibenzothiophene including those with at least four pendant carbons, with a slight preference for those substituted in the α-position. With somewhat less avidity, this apparatus is also able to attack substituted benzothiophenes with between two and seven pendant carbons. Some compounds containing sulfidic sulfur are also susceptible to desulfurization, although we have not yet been able to determine their molecular identities. PMID:14532032

  20. A Review on The Bioconversion of Lignin to Microbial Lipid with Oleaginous Rhodococcus opacus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahan, Kristina M.; Le, Rosemary K.; Yuan, Joshua

    Rhodococcus opacus produces intracellular lipids from the biodegradation of lignocellulosic biomass. These lipids can be used to produce biofuels that could potentially replace petroleum-derived chemicals. Some current studies are focusing on deconstructing lignin through efficient and cost-effective pretreatment methods and improving microbial lipid titers. Furthermore, R. opacus can reach high levels of oleaginicity (>80%) when grown on glucose and other aromatic model compounds but intracellular lipid production is much lower on complex recalcitrant lignin substrates. Our review will discuss recent advances in studying R. opacus lignin degradation by exploring different pretreatment methods, increasing lignin solubility, enriching for low molecular weightmore » lignin compounds and laccase supplementation.« less

  1. A Review on The Bioconversion of Lignin to Microbial Lipid with Oleaginous Rhodococcus opacus

    DOE PAGES

    Mahan, Kristina M.; Le, Rosemary K.; Yuan, Joshua; ...

    2017-06-29

    Rhodococcus opacus produces intracellular lipids from the biodegradation of lignocellulosic biomass. These lipids can be used to produce biofuels that could potentially replace petroleum-derived chemicals. Some current studies are focusing on deconstructing lignin through efficient and cost-effective pretreatment methods and improving microbial lipid titers. Furthermore, R. opacus can reach high levels of oleaginicity (>80%) when grown on glucose and other aromatic model compounds but intracellular lipid production is much lower on complex recalcitrant lignin substrates. Our review will discuss recent advances in studying R. opacus lignin degradation by exploring different pretreatment methods, increasing lignin solubility, enriching for low molecular weightmore » lignin compounds and laccase supplementation.« less

  2. Biotechnological methods for chalcone reduction using whole cells of Lactobacillus, Rhodococcus and Rhodotorula strains as a way to produce new derivatives.

    PubMed

    Stompor, Monika; Kałużny, Mateusz; Żarowska, Barbara

    2016-10-01

    Microbial strains of the genera Dietzia, Micrococcus, Pseudomonas, Rhodococcus, Gordonia, Streptomyces, Pseudomonas, Bacillus, Penicillium, Rhodotorula and Lactobacillus were screened for the ability to convert chalcones. Synthesis of chalcones was performed by the Claisen-Schmidt reaction. There were three groups of chalcones obtained as the products, which included the derivatives containing 4-substituted chalcone, 2'-hydroxychalcone and 4'-methoxychalcone. The B ring of the chalcones was substituted in the para position with different groups, such as halide, hydroxyl, nitro, methyl, ethyl and ethoxy one. The structure-activity relationship of the tested chalcones in biotransformation processes was studied. It has been proven that Gram-positive bacterial strains Rhodococcus and Lactobacillus catalyzed reduction of C=C bond in the chalcones to give respective dihydrochalcones. The strain Rhodotorula rubra AM 82 transformed chalcones into dihydrochalcones and respective secondary alcohols. These results suggest that the probiotic strain of Lactobacillus can be used for biotransformations of chalcones, which has not been described before. The structure of new metabolites 14a and 15b were established as 4-ethoxy-4'-methoxydihydrochalcone and 3-(4-bromophenyl)-1-(4'-O-methylphenyl)-2-propan-1-ol, respectively, which was confirmed by (1)H NMR and (13)C NMR analysis.

  3. Members of the Genera Paenibacillus and Rhodococcus Harbor Genes Homologous to Enterococcal Glycopeptide Resistance Genes vanA and vanB

    PubMed Central

    Guardabassi, L.; Christensen, H.; Hasman, H.; Dalsgaard, A.

    2004-01-01

    Genes homologous to enterococcal glycopeptide resistance genes vanA and vanB were found in glycopeptide-resistant Paenibacillus and Rhodococcus strains from soil. The putative d-Ala:d-Lac ligase genes in Paenibacillus thiaminolyticus PT-2B1 and Paenibacillus apiarius PA-B2B were closely related to vanA (92 and 87%) and flanked by genes homologous to vanH and vanX in vanA operons. PMID:15561881

  4. Members of the genera Paenibacillus and Rhodococcus harbor genes homologous to enterococcal glycopeptide resistance genes vanA and vanB.

    PubMed

    Guardabassi, L; Christensen, H; Hasman, H; Dalsgaard, A

    2004-12-01

    Genes homologous to enterococcal glycopeptide resistance genes vanA and vanB were found in glycopeptide-resistant Paenibacillus and Rhodococcus strains from soil. The putative D-Ala:D-Lac ligase genes in Paenibacillus thiaminolyticus PT-2B1 and Paenibacillus apiarius PA-B2B were closely related to vanA (92 and 87%) and flanked by genes homologous to vanH and vanX in vanA operons.

  5. Effect of Aromatic Compounds on Cellular Fatty Acid Composition of Rhodococcus opacus

    PubMed Central

    Tsitko, Irina V.; Zaitsev, Gennadi M.; Lobanok, Anatoli G.; Salkinoja-Salonen, Mirja S.

    1999-01-01

    In cells of Rhodococcus opacus GM-14, GM-29, and 1CP, the contents of branched (10-methyl) fatty acids increased from 3% to 15 to 34% of the total fatty acids when the cells were grown on benzene, phenol, 4-chlorophenol, chlorobenzene, or toluene as the sole source of carbon and energy, in comparison with cells grown on fructose. In addition, the content of trans-hexadecenoic acid increased from 5% to 8 to 18% with phenol or chlorophenol as the carbon source. The 10-methyl branched fatty acid content of R. opacus GM-14 cells increased in a dose-related manner following exposure to phenol or toluene when toluene was not utilized as the growth substrate. The results suggest that 10-methyl branched fatty acids may participate in the adaptation of R. opacus to lipophilic aromatic compounds. PMID:9925629

  6. Tetramethylpyrazine-Inducible Promoter Region from Rhodococcus jostii TMP1.

    PubMed

    Stanislauskienė, Rūta; Kutanovas, Simonas; Kalinienė, Laura; Bratchikov, Maksim; Meškys, Rolandas

    2018-06-25

    An inducible promoter region, P TTMP (tetramethylpyrazine [TTMP]), has been identified upstream of the tpdABC operon, which contains the genes required for the initial degradation of 2,3,5,6-tetramethylpyrazine in Rhodococcus jostii TMP1 bacteria. In this work, the promoter region was fused with the gene for the enhanced green fluorescent protein (EGFP) to investigate the activity of P TTMP by measuring the fluorescence of bacteria. The highest promoter activity was observed when bacteria were grown in a nutrient broth (NB) medium supplemented with 5 mM 2,3,5,6-tetramethylpyrazine for 48 h. Using a primer extension reaction, two transcriptional start sites for tpdA were identified, and the putative −35 and −10 promoter motifs were determined. The minimal promoter along with two 15 bp long direct repeats and two 7 bp inverted sequences were identified. Also, the influence of the promoter elements on the activity of P TTMP were determined using site-directed mutagenesis. Furthermore, P TTMP was shown to be induced by pyrazine derivatives containing methyl groups in the 2- and 5-positions of the heterocyclic ring, in the presence of the LuxR family transcriptional activator TpdR.

  7. Production of single cell protein from agro-waste using Rhodococcus opacus.

    PubMed

    Mahan, Kristina M; Le, Rosemary K; Wells, Tyrone; Anderson, Seth; Yuan, Joshua S; Stoklosa, Ryan J; Bhalla, Aditya; Hodge, David B; Ragauskas, Arthur J

    2018-06-18

    Livestock and fish farming are rapidly growing industries facing the simultaneous pressure of increasing production demands and limited protein required to produce feed. Bacteria that can convert low-value non-food waste streams into singe cell protein (SCP) present an intriguing route for rapid protein production. The oleaginous bacterium Rhodococcus opacus serves as a model organism for understanding microbial lipid production. SCP production has not been explored using an organism from this genus. In the present research, R. opacus strains DSM 1069 and PD630 were fed three agro-waste streams: (1) orange pulp, juice, and peel; (2) lemon pulp, juice, and peel; and (3) corn stover effluent, to determine if these low-cost substrates would be suitable for producing a value-added product, SCP for aquafarming or livestock feed. Both strains used agro-waste carbon sources as a growth substrate to produce protein-rich cell biomass suggesting that that R. opacus can be used to produce SCP using agro-wastes as low-cost substrates.

  8. Development of Chemical and Metabolite Sensors for Rhodococcus opacus PD630

    DOE PAGES

    DeLorenzo, Drew M.; Henson, William R.; Moon, Tae Seok

    2017-07-26

    Rhodococcus opacus PD630 is a non-model, gram positive bacterium that possesses desirable traits for biomass conversion, including consumption capabilities for lignocellulose-based sugars and toxic lignin-derived aromatic compounds, significant triacylglycerol accumulation, relatively rapid growth rate, and genetic tractability. However, few genetic elements have been directly characterized in R. opacus, limiting its application for lignocellulose bioconversion. Here, we report the characterization and development of genetic tools for tunable gene expression in R. opacus, including: 1) six fluorescent reporters for quantifying promoter output, 2) three chemically inducible promoters for variable gene expression, and 3) two classes of metabolite sensors derived from native R.more » opacus promoters that detect nitrogen levels or aromatic compounds. Using these tools, we also provide insights into native aromatic consumption pathways in R. opacus. Overall, this work expands the ability to control and characterize gene expression in R. opacus for future lignocellulose-based fuel and chemical production.« less

  9. Development of Chemical and Metabolite Sensors for Rhodococcus opacus PD630.

    PubMed

    DeLorenzo, Drew M; Henson, William R; Moon, Tae Seok

    2017-10-20

    Rhodococcus opacus PD630 is a nonmodel, Gram-positive bacterium that possesses desirable traits for biomass conversion, including consumption capabilities for lignocellulose-based sugars and toxic lignin-derived aromatic compounds, significant triacylglycerol accumulation, relatively rapid growth rate, and genetic tractability. However, few genetic elements have been directly characterized in R. opacus, limiting its application for lignocellulose bioconversion. Here, we report the characterization and development of genetic tools for tunable gene expression in R. opacus, including: (1) six fluorescent reporters for quantifying promoter output, (2) three chemically inducible promoters for variable gene expression, and (3) two classes of metabolite sensors derived from native R. opacus promoters that detect nitrogen levels or aromatic compounds. Using these tools, we also provide insights into native aromatic consumption pathways in R. opacus. Overall, this work expands the ability to control and characterize gene expression in R. opacus for future lignocellulose-based fuel and chemical production.

  10. Biodegradation kinetics of picric acid by Rhodococcus sp.NJUST16 in batch reactors.

    PubMed

    Shen, Jinyou; He, Rui; Wang, Lianjun; Zhang, Jianfa; Zuo, Yi; Li, Yanchun; Sun, Xiuyun; Li, Jiansheng; Han, Weiqing

    2009-08-15

    Biological degradation of 2,4,6-trinitrophenol (TNP) by Rhodococcus sp.NJUST16 in mineral salt medium was investigated in shake-flask experiments at pH of 7.0 and 30 degrees C, over a wide range of initial TNP concentration (20-800 mgl(-1)). The TNP was observed to be the inhibitory compound. For the studied concentration range, Haldane's model could be fitted to the growth kinetics data well with the kinetic constants mu(max)=0.2362 h(-1), K(s)=9.9131 mgl(-1) and K(i)=362.7411 mgl(-1). Further, the variation of observed yield coefficient Y with initial TNP concentration and the decay coefficient were investigated. It is our view that the above information would be useful for modeling and designing the units treating TNP-containing wastewaters.

  11. Pyrolysis Oil-Based Lipid Production as Biodiesel Feedstock by Rhodococcus opacus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Zhen; Zeng, Guangming; Kosa, Matyas

    2014-11-07

    Light oil from pyrolysis, which accounts for ~10 % carbon yield of the starting biomass, is a complex aqueous product that is difficult to utilize and usually discarded. This work presents the feasibility of light oil as a sole carbon source to support the growth of Rhodococcus opacus (R. opacus) that in turn accumulate triacylglycerols as biodiesel feedstock. Two types of bacteria (R. opacus PD630 and DSM 1069) were selected in this study. Research results showed that after short adaption periods both strains can grow well on this complex carbon source, as proved by the consumption of oligomers and monomersmore » in light oil. Lipid content by R. opacus PD630 and DSM 1069 was observed up to 25.8 % and 22.0 % of cell dry weight, respectively. Palmitic and stearic acids were found to be the predominant fatty acids in these bacterial cells. In addition, the light oil-based lipid production can be enhanced by reducing the pH value from 7 to 4, especially in case of DSM 1069.« less

  12. Isolation and characterization of styrene metabolism genes from styrene-assimilating soil bacteria Rhodococcus sp. ST-5 and ST-10.

    PubMed

    Toda, Hiroshi; Itoh, Nobuya

    2012-01-01

    Styrene metabolism genes were isolated from styrene-assimilating bacteria Rhodococcus sp. ST-5 and ST-10. Strain ST-5 had a gene cluster containing four open reading frames which encoded styrene degradation enzymes. The genes showed high similarity to styABCD of Pseudomonas sp. Y2. On the other hand, strain ST-10 had only two genes which encoded styrene monooxygenase and flavin oxidoreductase (styAB). Escherichia coli transformants possessing the sty genes of strains ST-5 and ST-10 produced (S)-styrene oxide from styrene, indicating that these genes function as styrene degradation enzymes. Metabolite analysis by resting-cell reaction with gas chromatography-mass spectrometry revealed that strain ST-5 converts styrene to phenylacetaldehyde via styrene oxide by styrene oxide isomerase (styC) reaction. On the other hand, strain ST-10 lacked this enzyme, and thus accumulated styrene oxide as an intermediate. HPLC analysis showed that styrene oxide was spontaneously isomerized to phenylacetaldehyde by chemical reaction. The produced phenylacetaldehyde was converted to phenylacetic acid (PAA) in strain ST-10 as well as in strain ST-5. Furthermore, phenylacetic acid was converted to phenylacetyl-CoA by the catalysis of phenylacetate-CoA ligase in strains ST-5 and ST-10. This study proposes possible styrene metabolism pathways in Rhodococcus sp. strains ST-5 and ST-10. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Enhanced biodegradation of diesel oil by a newly identified Rhodococcus baikonurensis EN3 in the presence of mycolic acid.

    PubMed

    Lee, M; Kim, M K; Singleton, I; Goodfellow, M; Lee, S-T

    2006-02-01

    The aim of the present study was to isolate and characterize a bacterium, strain EN3, capable of using diesel oil as a major carbon and energy source, and to analyse the enhancement of diesel oil degradation by this organism using synthetic mycolic acid (2-hexyl-3-hydroxyldecanoic acid). An actinomycete with the ability to degrade diesel oil was isolated from oil contaminated soil and characterized. The strain had phenotypic properties consistent with its classification in the genus Rhodococcus showing a 16S rRNA gene similarity of 99.7% with Rhodococcus baikonurensis DSM 44587(T). The ability of the characterized strain to degrade diesel oil at various concentrations (1000, 5000, 10 000 and 20 000 mg l(-1)) was determined. The effect of synthetic mycolic acid on the biodegradation of diesel oil was investigated at the 20 000 mg l(-1) concentration; the surfactant was added to the flask cultures at three different concentrations (10, 50 and 100 mg l(-1)) and degradation followed over 7 days. Enhanced degradation was found at all three concentrations of the surfactant. In addition, the enhancement of diesel oil degradation by other surfactants was observed. The synthetic mycolic acid has potential for the remediation of petroleum-contaminated sites from both an economic and applied perspective as it can stimulate biodegradation at low concentrations. This study showed that the synthesized mycolic acid can be used for potential applications in the bioremediation industries, for example, in oil spill clean-up, diesel fuel remediation and biostimulation.

  14. Heterologous Expression of Bacterial Epoxyalkane:Coenzyme M Transferase and Inducible Coenzyme M Biosynthesis in Xanthobacter Strain Py2 and Rhodococcus rhodochrous B276

    PubMed Central

    Krum, Jonathan G.; Ensign, Scott A.

    2000-01-01

    Coenzyme M (CoM) (2-mercaptoethanesulfonic acid) biosynthesis is shown to be coordinately regulated with the expression of the enzymes of alkene and epoxide metabolism in the propylene-oxidizing bacteria Xanthobacter strain Py2 and Rhodococcus rhodochrous strain B276. These results provide the first evidence for the involvement of CoM in propylene metabolism by R. rhodochrous and demonstrate for the first time the inducible nature of eubacterial CoM biosynthesis. PMID:10762269

  15. Response of Rhodococcus erythropolis strain IBBPo1 to toxic organic solvents

    PubMed Central

    Stancu, Mihaela Marilena

    2015-01-01

    Abstract Recently, there has been a lot of interest in the utilization of rhodococci in the bioremediation of petroleum contaminated environments. This study investigates the response of Rhodococcus erythropolis IBBPo1 cells to 1% organic solvents (alkanes, aromatics). A combination of microbiology, biochemical, and molecular approaches were used to examine cell adaptation mechanisms likely to be pursued by this strain after 1% organic solvent exposure. R. erythropolis IBBPo1 was found to utilize 1% alkanes (cyclohexane, n-hexane, n-decane) and aromatics (toluene, styrene, ethylbenzene) as the sole carbon source. Modifications in cell viability, cell morphology, membrane permeability, lipid profile, carotenoid pigments profile and 16S rRNA gene were revealed in R. erythropolis IBBPo1 cells grown 1 and 24 h on minimal medium in the presence of 1% alkanes (cyclohexane, n-hexane, n-decane) and aromatics (toluene, styrene, ethylbenzene). Due to its environmental origin and its metabolic potential, R. erythropolis IBBPo1 is an excellent candidate for the bioremediation of soils contaminated with crude oils and other toxic compounds. Moreover, the carotenoid pigments produced by this nonpathogenic Gram-positive bacterium have a variety of other potential applications. PMID:26691458

  16. Endosulfan induced alteration in bacterial protein profile and RNA yield of Klebsiella sp. M3, Achromobacter sp. M6, and Rhodococcus sp. M2.

    PubMed

    Singh, Madhu; Singh, Dileep Kumar

    2014-01-30

    Three bacterial strains identified as Klebsiella sp. M3, Achromobacter sp. M6 and Rhodococcus sp. M2 were isolated by soil enrichment with endosulfan followed by shake flask enrichment technique. They were efficiently degrading endosulfan in the NSM (non sulfur medium) broth. Degradation of endosulfan was faster with the cell free extract of bacterial cells grown in the sulfur deficient medium (NSM) supplemented with endosulfan than that of nutrient rich medium (Luria Bertani). In the cell free extract of NSM supplemented with endosulfan as sole sulfur source, a unique band was visualized on SDS-PAGE but not with magnesium sulfate as the sole sulfur source in NSM and LB with endosulfan. Expression of a unique polypeptide band was speculated to be induced by endosulfan under sulfur starved condition. These unique polypeptide bands were identified as OmpK35 protein, sulfate binding protein and outer membrane porin protein, respectively, in Klebsiella sp. M3, Achromobacter sp. M6 and Rhodococcus sp. M2. Endosulfan showed dose dependent negative effect on total RNA yield of bacterial strains in nutrient rich medium. Absence of plasmid DNA indicated the presence of endosulfan metabolizing gene on genomic DNA. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Pseudo-membranes on internal organs associated with Rhodococcus qingshengii infection in Atlantic salmon (Salmo salar).

    PubMed

    Avendaño-Herrera, Rubén; Balboa, Sabela; Doce, Alejandra; Ilardi, Pedro; Lovera, Pablo; Toranzo, Alicia E; Romalde, Jesús L

    2011-01-10

    This paper describes a pathological condition in intensive reared Atlantic salmon (Salmo salar), restricted to the appearance of pseudo-membranes covering internal organs (i.e. spleen, liver, heart and others) associated with the presence of large numbers of a Gram-positive bacteria. Isolate 79043-3, obtained as pure culture from affected fish, was subjected to a polyphasic taxonomic study in order to determine its exact taxonomic position, as well as to experimental challenges leading to determine its pathogenic potential for cultured fish. Based on this characterization, we report the first isolation of Rhodococcus qingshengii, from a farmed population of Atlantic salmon in Chile. Virulence studies demonstrated that the isolate fulfilled the Koch's postulates, suggesting that this bacterial species could be considered as an opportunistic pathogen for Atlantic salmon. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Activity of 10 antimicrobial agents against intracellular Rhodococcus equi.

    PubMed

    Giguère, Steeve; Berghaus, Londa J; Lee, Elise A

    2015-08-05

    Studies with facultative intracellular bacterial pathogens have shown that evaluation of the bactericidal activity of antimicrobial agents against intracellular bacteria is more closely associated with in vivo efficacy than traditional in vitro susceptibility testing. The objective of this study was to determine the relative activity of 10 antimicrobial agents against intracellular Rhodococcus equi. Equine monocyte-derived macrophages were infected with virulent R. equi and exposed to erythromycin, clarithromycin, azithromycin, rifampin, ceftiofur, gentamicin, enrofloxacin, vancomycin, imipenem, or doxycycline at concentrations achievable in plasma at clinically recommended dosages in foals. The number of intracellular R. equi was determined 48h after infection by counting colony forming units (CFUs). The number of R. equi CFUs in untreated control wells were significantly higher than those of monolayers treated with antimicrobial agents. Numbers of R. equi were significantly lower in monolayers treated with enrofloxacin followed by those treated with gentamicin, and vancomycin, when compared to monolayers treated with other antimicrobial agents. Numbers of R. equi in monolayers treated with doxycycline were significantly higher than those of monolayers treated with other antimicrobial agents. Differences in R. equi CFUs between monolayers treated with other antimicrobial agents were not statistically significant. Enrofloxacin, gentamicin, and vancomycin are the most active drugs in equine monocyte-derived macrophages infected with R. equi. Additional studies will be needed to determine if these findings correlate with in vivo efficacy. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Molecular characterization of three 3-ketosteroid-Δ(1)-dehydrogenase isoenzymes of Rhodococcus ruber strain Chol-4.

    PubMed

    Fernández de las Heras, Laura; van der Geize, Robert; Drzyzga, Oliver; Perera, Julián; María Navarro Llorens, Juana

    2012-11-01

    Rhodococcus ruber strain Chol-4 isolated from a sewage sludge sample is able to grow on minimal medium supplemented with steroids, showing a broad catabolic capacity. This paper reports the characterization of three different 3-ketosteroid-Δ(1)-dehydrogenases (KstDs) in the genome of R. ruber strain Chol-4. The genome of this strain does not contain any homologues of a 3-keto-5α-steroid-Δ(4)-dehydrogenase (Kst4d or TesI) that appears in the genomes of Rhodococcus erythropolis SQ1 or Comamonas testosteroni. Growth experiments with kstD2 mutants, either a kstD2 single mutant, kstD2 double mutants in combination with kstD1 or kstD3, or the triple kstD1,2,3 mutant, proved that KstD2 is involved in the transformation of 4-androstene-3,17-dione (AD) to 1,4-androstadiene-3,17-dione (ADD) and in the conversion of 9α-hydroxy-4-androstene-3,17-dione (9OHAD) to 9α-hydroxy-1,4-androstadiene-3,17-dione (9OHADD). kstD2,3 and kstD1,2,3 R. ruber mutants (both lacking KstD2 and KstD3) did not grow in minimal medium with cholesterol as the only carbon source, thus demonstrating the involvement of KstD2 and KstD3 in cholesterol degradation. In contrast, mutation of kstD1 does not alter the bacterial growth on the steroids tested in this study and therefore, the role of this protein still remains unclear. The absence of a functional KstD2 in R. ruber mutants provoked in all cases an accumulation of 9OHAD, as a branch product probably formed by the action of a 3-ketosteroid-9α-hydroxylase (KshAB) on the AD molecule. Therefore, KstD2 is a key enzyme in the AD catabolism pathway of R. ruber strain Chol-4 while KstD3 is involved in cholesterol catabolism. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Site-specific integration of Streptomyces PhiC31 integrase-based vectors in the chromosome of Rhodococcus equi.

    PubMed

    Hong, Yang; Hondalus, Mary K

    2008-10-01

    Streptomyces PhiC31-based site-specific integration was used to transform the facultative intracellular pathogen Rhodococcus equi. The transformation efficiency of vectors incorporating the PhiC31 integrase and attP sites was comparable to that of replication plasmids using the same electroporation procedure. A single attB integration site was identified within an ORF encoding a pirin-like protein, which deviates slightly from the consensus sequence of Streptomyces attB sites. Vector integration was stably maintained in the R. equi chromosome for as many as 100 generations during unselected passage in vitro. In addition, integration does not appear to affect the replication of bacteria inside macrophages. Finally, this integration system was also used to successfully complement an R. equi mutant.

  1. Lag phase and biomass determination of Rhodococcus pyridinivorans GM3 for degradation of phenol

    NASA Astrophysics Data System (ADS)

    Al-Defiery, M. E. J.; Reddy, G.

    2018-05-01

    Among various techniques available for removal of phenol, biodegradation is an eco-friendly and cost effective method. Thus, it is required to understand the process of biodegradation of phenol, such as investigate on lag phase and biomass concentration. Phenol degrading bacteria were isolated from soil samples of industrial sites in enriched mineral salts medium (MSM) with phenol as a sole source of energy and carbon. One isolate of potential phenol degradation from consortium for phenol degrading studies was identified as Rhodococcus pyridinivorans GM3. Lag phase and biomass determination of R. pyridinivorans GM3 was studied with different phenol concentrations under pH 8.5 at temperature 32 Co and 200 rpm. Microbial biomass was directly proportional to increasing phenol concentration between 1.0 to 2.0 g/L with a maximum dry biomass of 1.745 g/L was noted after complete degradation of 2.0 g/L phenol in 48 hours.

  2. Degradation of Chloronitrobenzenes by a Coculture of Pseudomonas putida and a Rhodococcus sp.

    PubMed Central

    Park, Hee-Sung; Lim, Sung-Jin; Chang, Young Keun; Livingston, Andrew G.; Kim, Hak-Sung

    1999-01-01

    A single microorganism able to mineralize chloronitrobenzenes (CNBs) has not been reported, and degradation of CNBs by coculture of two microbial strains was attempted. Pseudomonas putida HS12 was first isolated by analogue enrichment culture using nitrobenzene (NB) as the substrate, and this strain was observed to possess a partial reductive pathway for the degradation of NB. From high-performance liquid chromatography-mass spectrometry and 1H nuclear magnetic resonance analyses, NB-grown cells of P. putida HS12 were found to convert 3- and 4-CNBs to the corresponding 5- and 4-chloro-2-hydroxyacetanilides, respectively, by partial reduction and subsequent acetylation. For the degradation of CNBs, Rhodococcus sp. strain HS51, which degrades 4- and 5-chloro-2-hydroxyacetanilides, was isolated and combined with P. putida HS12 to give a coculture. This coculture was confirmed to mineralize 3- and 4-CNBs in the presence of an additional carbon source. A degradation pathway for 3- and 4-CNBs by the two isolated strains was also proposed. PMID:10049867

  3. Cholesterol oxidase (ChoE) is not important in the virulence of Rhodococcus equi.

    PubMed

    Pei, Yanlong; Dupont, Chris; Sydor, Tobias; Haas, Albert; Prescott, John F

    2006-12-20

    To analyze further the role in virulence of the prominent cholesterol oxidase (ChoE) of Rhodococcus equi, an allelic exchange choE mutant from strain 103+ was constructed and assessed for virulence in macrophages, in mice, and in foals. There was no difference between the mutant and parent strain in cytotoxic activity for macrophages or in intra-macrophage multiplication. No evidence of attenuation was obtained in macrophages and in mice, but there was slight attenuation apparent in four intra-bronchially infected foals compared to infection of four foals with the virulent parent strain, based on a delayed rise in temperature of the choE-mutant infected foals. However, bacterial colony counts in the lung 2 weeks after infection were not significantly different, although there was a slight but non-significant (P=0.12) difference in lung:body weight ratio of the choE mutant versus virulent parent infected foals (mean 2.67+/-0.25% compared to 4.58+/-0.96%). We conclude that the cholesterol oxidase is not important for the virulence of R. equi.

  4. Hyperproduction of sebaceous cis-6-hexadecenoic acid by esterase-reduced mutant of Rhodococcus sp. strain.

    PubMed

    Araki, Hiroyuki; Hagihara, Hiroshi; Takigawa, Hirofumi; Kotani, Nobuharu; Tsujino, Yukiharu; Koike, Kenzo; Kawai, Shuji; Ozaki, Katsuya; Ito, Susumu

    2007-10-01

    cis-6-Hexadecenoic acid is a major component of human sebaceous lipids that is involved in skin self-sterilization and atopic dermatitis amelioration. It can be prepared by hydrolysis of isopropyl cis-6-hexadecenoate produced by resting cells of Rhodococcus sp. strain KSM-MT66. To devise an economical industrial-scale process for the production of this rare fatty acid, we optimized the conditions for growing rhodococcal cells. Mg(2+) and Fe(2+) ions are essential for the efficient production of isopropyl cis-6-hexadecenoate. To further increase the production of isopropyl cis-6-hexadecenoate, we created a mutant strain (T64) with reduced esterase activity by random mutagenesis using UV irradiation of MT66. Under an optimized condition, the mutant T64 produced more than 60 g l(-1) isopropyl cis-6-hexadecenoate in a 4-d cultivation, corresponding to about 52 g l(-1)cis-6-hexadecenoate.

  5. Rhodococcus erythropolis MTHt3 biotransforms ergopeptines to lysergic acid.

    PubMed

    Thamhesl, Michaela; Apfelthaler, Elisabeth; Schwartz-Zimmermann, Heidi Elisabeth; Kunz-Vekiru, Elisavet; Krska, Rudolf; Kneifel, Wolfgang; Schatzmayr, Gerd; Moll, Wulf-Dieter

    2015-03-28

    Ergopeptines are a predominant class of ergot alkaloids produced by tall fescue grass endophyte Neotyphodium coenophialum or cereal pathogen Claviceps purpurea. The vasoconstrictive activity of ergopeptines makes them toxic for mammals, and they can be a problem in animal husbandry. We isolated an ergopeptine degrading bacterial strain, MTHt3, and classified it, based on its 16S rDNA sequence, as a strain of Rhodococcus erythropolis (Nocardiaceae, Actinobacteria). For strain isolation, mixed microbial cultures were obtained from artificially ergot alkaloid-enriched soil, and provided with the ergopeptine ergotamine in mineral medium for enrichment. Individual colonies derived from such mixed cultures were screened for ergotamine degradation by high performance liquid chromatography and fluorescence detection. R. erythropolis MTHt3 converted ergotamine to ergine (lysergic acid amide) and further to lysergic acid, which accumulated as an end product. No other tested R. erythropolis strain degraded ergotamine. R. erythropolis MTHt3 degraded all ergopeptines found in an ergot extract, namely ergotamine, ergovaline, ergocristine, ergocryptine, ergocornine, and ergosine, but the simpler lysergic acid derivatives agroclavine, chanoclavine, and ergometrine were not degraded. Temperature and pH dependence of ergotamine and ergine bioconversion activity was different for the two reactions. Degradation of ergopeptines to ergine is a previously unknown microbial reaction. The reaction end product, lysergic acid, has no or much lower vasoconstrictive activity than ergopeptines. If the genes encoding enzymes for ergopeptine catabolism can be cloned and expressed in recombinant hosts, application of ergopeptine and ergine degrading enzymes for reduction of toxicity of ergot alkaloid-contaminated animal feed may be feasible.

  6. Cloning and Characterization of Benzoate Catabolic Genes in the Gram-Positive Polychlorinated Biphenyl Degrader Rhodococcus sp. Strain RHA1

    PubMed Central

    Kitagawa, Wataru; Miyauchi, Keisuke; Masai, Eiji; Fukuda, Masao

    2001-01-01

    Benzoate catabolism is thought to play a key role in aerobic bacterial degradation of biphenyl and polychlorinated biphenyls (PCBs). Benzoate catabolic genes were cloned from a PCB degrader, Rhodococcus sp. strain RHA1, by using PCR amplification and temporal temperature gradient electrophoresis separation. A nucleotide sequence determination revealed that the deduced amino acid sequences encoded by the RHA1 benzoate catabolic genes, benABCDK, exhibit 33 to 65% identity with those of Acinetobacter sp. strain ADP1. The gene organization of the RHA1 benABCDK genes differs from that of ADP1. The RHA1 benABCDK region was localized on the chromosome, in contrast to the biphenyl catabolic genes, which are located on linear plasmids. Escherichia coli cells containing RHA1 benABCD transformed benzoate to catechol via 2-hydro-1,2-dihydroxybenzoate. They transformed neither 2- nor 4-chlorobenzoates but did transform 3-chlorobenzoate. The RHA1 benA gene was inactivated by insertion of a thiostrepton resistance gene. The resultant mutant strain, RBD169, neither grew on benzoate nor transformed benzoate, and it did not transform 3-chlorobenzoate. It did, however, exhibit diminished growth on biphenyl and growth repression in the presence of a high concentration of biphenyl (13 mM). These results indicate that the cloned benABCD genes could play an essential role not only in benzoate catabolism but also in biphenyl catabolism in RHA1. Six rhodococcal benzoate degraders were found to have homologs of RHA1 benABC. In contrast, two rhodococcal strains that cannot transform benzoate were found not to have RHA1 benABC homologs, suggesting that many Rhodococcus strains contain benzoate catabolic genes similar to RHA1 benABC. PMID:11673430

  7. Identification of Virulence-Associated Plasmids in Rhodococcus equi in Humans with and without Acquired Immunodeficiency Syndrome in Brazil

    PubMed Central

    Ribeiro, Márcio Garcia; Takai, Shinji; de Vargas, Agueda Castagna; Mattos-Guaraldi, Ana Luiza; Ferreira Camello, Thereza Cristina; Ohno, Ryoko; Okano, Hajime; da Silva, Aristeu Vieira

    2011-01-01

    Virulence of Rhodococcus equi strains from 20 humans in Brazil was investigated by using a polymerase chain reaction to characterize isolates as virulent (VapA), intermediately virulent (VapB), and avirulent. Nine isolates were obtained from human immunodeficiency virus (HIV)–positive patients, six from HIV-negative patients, and five from patients of unknown status. Five isolates were VapB positive, four were VapA positive, and eleven were avirulent. Among the nine isolates from HIV-positive patients, five contained VapB plasmids and two contained VapA plasmids. Five VapB-positive isolates had the type 8 virulence plasmid. Eleven of the patients had a history of contact with livestock and/or a farm environment, and none had contact with pigs. PMID:21896813

  8. A Long-Chain Secondary Alcohol Dehydrogenase from Rhodococcus erythropolis ATCC 4277

    PubMed Central

    Ludwig, B.; Akundi, A.; Kendall, K.

    1995-01-01

    A NAD-dependent secondary alcohol dehydrogenase has been purified from the alkane-degrading bacterium, Rhodococcus erythropolis ATCC 4277. The enzyme was found to be active against a broad range of substrates, particularly long-chain secondary aliphatic alcohols. Although optimal activity was observed with linear 2-alcohols containing between 6 and 11 carbon atoms, secondary alcohols as long as 2-tetradecanol were oxidized at 25% of the rate seen with mid-range alcohols. The purified enzyme was specific for the S-(+) stereoisomer of 2-octanol and had a specific activity for 2-octanol of over 200 (mu)mol/min/mg of protein at pH 9 and 37(deg)C, 25-fold higher than that of any previously reported S-(+) secondary alcohol dehydrogenase. Linear primary alcohols containing between 3 and 13 carbon atoms were utilized 20- to 40-fold less efficiently than the corresponding secondary alcohols. The apparent K(infm) value for NAD(sup+) with 2-octanol as the substrate was 260 (mu)M, whereas the apparent K(infm) values for the 2-alcohols ranged from over 5 mM for 2-pentanol to less than 2 (mu)M for 2-tetradecanol. The enzyme showed moderate thermostability (half-life of 4 h at 60(deg)C) and could potentially be useful for the synthesis of optically pure stereoisomers of secondary alcohols. PMID:16535152

  9. Biodegradation of buprofezin by Rhodococcus sp. strain YL-1 isolated from rice field soil.

    PubMed

    Li, Chao; Zhang, Ji; Wu, Zhi-Guo; Cao, Li; Yan, Xin; Li, Shun-Peng

    2012-03-14

    A buprofezin-degrading bacterium, YL-1, was isolated from rice field soil. YL-1 was identified as Rhodococcus sp. on the basis of the comparative analysis of 16S rDNA sequences. The strain could use buprofezin as the sole source of carbon and nitrogen for growth and was able to degrade 92.4% of 50 mg L(-1) buprofezin within 48 h in liquid culture. During the degradation of buprofezin, four possible metabolites, 2-tert-butylimino-3-isopropyl-1,3,5-thiadiazinan-4-one, N-tert-butyl-thioformimidic acid formylaminomethyl ester, 2-isothiocyanato-2-methyl-propane, and 2-isothiocyanato-propane, were identified using gas chromatography-mass spectrometry (GC-MS) analysis. The catechol 2,3-dioxygenase activity was strongly induced during the degradation of buprofezin. A novel microbial biodegradation pathway for buprofezin was proposed on the basis of these metabolites. The inoculation of soils treated with buprofezin with strain YL-1 resulted in a higher degradation rate than that observed in noninoculated soils, indicating that strain YL-1 has the potential to be used in the bioremediation of buprofezin-contaminated environments.

  10. Identification of novel extracellular protein for PCB/biphenyl metabolism in Rhodococcus jostii RHA1.

    PubMed

    Atago, Yuki; Shimodaira, Jun; Araki, Naoto; Bin Othman, Nor'azizi; Zakaria, Zuriati; Fukuda, Masao; Futami, Junichiro; Hara, Hirofumi

    2016-05-01

    Rhodococcus jostii RHA1 (RHA1) degrades polychlorinated biphenyl (PCB) via co-metabolism with biphenyl. To identify the novel open reading frames (ORFs) that contribute to PCB/biphenyl metabolism in RHA1, we compared chromatin immunoprecipitation chip and transcriptomic data. Six novel ORFs involved in PCB/biphenyl metabolism were identified. Gene deletion mutants of these 6 ORFs were made and were tested for their ability to grow on biphenyl. Interestingly, only the ro10225 deletion mutant showed deficient growth on biphenyl. Analysis of Ro10225 protein function showed that growth of the ro10225 deletion mutant on biphenyl was recovered when exogenous recombinant Ro10225 protein was added to the culture medium. Although Ro10225 protein has no putative secretion signal sequence, partially degraded Ro10225 protein was detected in conditioned medium from wild-type RHA1 grown on biphenyl. This Ro10225 fragment appeared to form a complex with another PCB/biphenyl oxidation enzyme. These results indicated that Ro10225 protein is essential for the formation of the PCB/biphenyl dioxygenase complex in RHA1.

  11. Aerobic Growth of Rhodococcus aetherivorans BCP1 Using Selected Naphthenic Acids as the Sole Carbon and Energy Sources

    PubMed Central

    Presentato, Alessandro; Cappelletti, Martina; Sansone, Anna; Ferreri, Carla; Piacenza, Elena; Demeter, Marc A.; Crognale, Silvia; Petruccioli, Maurizio; Milazzo, Giorgio; Fedi, Stefano; Steinbüchel, Alexander; Turner, Raymond J.; Zannoni, Davide

    2018-01-01

    Naphthenic acids (NAs) are an important group of toxic organic compounds naturally occurring in hydrocarbon deposits. This work shows that Rhodococcus aetherivorans BCP1 cells not only utilize a mixture of eight different NAs (8XNAs) for growth but they are also capable of marked degradation of two model NAs, cyclohexanecarboxylic acid (CHCA) and cyclopentanecarboxylic acid (CPCA) when supplied at concentrations from 50 to 500 mgL-1. The growth curves of BCP1 on 8XNAs, CHCA, and CPCA showed an initial lag phase not present in growth on glucose, which presumably was related to the toxic effects of NAs on the cell membrane permeability. BCP1 cell adaptation responses that allowed survival on NAs included changes in cell morphology, production of intracellular bodies and changes in fatty acid composition. Transmission electron microscopy (TEM) analysis of BCP1 cells grown on CHCA or CPCA showed a slight reduction in the cell size, the production of EPS-like material and intracellular electron-transparent and electron-dense inclusion bodies. The electron-transparent inclusions increased in the amount and size in NA-grown BCP1 cells under nitrogen limiting conditions and contained storage lipids as suggested by cell staining with the lipophilic Nile Blue A dye. Lipidomic analyses revealed significant changes with increases of methyl-branched (MBFA) and polyunsaturated fatty acids (PUFA) examining the fatty acid composition of NAs-growing BCP1 cells. PUFA biosynthesis is not usual in bacteria and, together with MBFA, can influence structural and functional processes with resulting effects on cell vitality. Finally, through the use of RT (Reverse Transcription)-qPCR, a gene cluster (chcpca) was found to be transcriptionally induced during the growth on CHCA and CPCA. Based on the expression and bioinformatics results, the predicted products of the chcpca gene cluster are proposed to be involved in aerobic NA degradation in R. aetherivorans BCP1. This study provides first

  12. Induction of proinflammatory cytokines in human lung epithelial cells during Rhodococcus equi infection.

    PubMed

    Remuzgo-Martínez, Sara; Pilares-Ortega, Lilian; Alvarez-Rodríguez, Lorena; Aranzamendi-Zaldunbide, Maitane; Padilla, Daniel; Icardo, Jose Manuel; Ramos-Vivas, Jose

    2013-08-01

    Rhodococcus equi is an opportunistic human pathogen associated with immunosuppressed people. While the interaction of R. equi with macrophages has been comprehensively studied, little is known about its interactions with non-phagocytic cells. Here, we characterized the entry process of this bacterium into human lung epithelial cells. The invasion is inhibited by nocodazole and wortmannin, suggesting that the phosphatidylinositol 3-kinase pathway and microtubule cytoskeleton are important for invasion. Pre-incubation of R. equi with a rabbit anti-R. equi polyclonal antiserum resulted in a dramatic reduction in invasion. Also, the invasion process as studied by immunofluorescence and scanning electron microscopy indicates that R. equi make initial contact with the microvilli of the A549 cells, and at the structural level, the entry process was observed to occur via a zipper-like mechanism. Infected lung epithelial cells upregulate the expression of cytokines IL-8 and IL-6 upon infection. The production of these pro-inflammatory cytokines was significantly enhanced in culture supernatants from cells infected with non-mucoid plasmid-less strains when compared with cells infected with mucoid strains. These results demonstrate that human airway epithelial cells produce pro-inflammatory mediators against R. equi isolates.

  13. Aerobic Biodegradation of N-Nitrosodimethylamine by the Propanotroph Rhodococcus ruber ENV425▿

    PubMed Central

    Fournier, Diane; Hawari, Jalal; Halasz, Annamaria; Streger, Sheryl H.; McClay, Kevin R.; Masuda, Hisako; Hatzinger, Paul B.

    2009-01-01

    The propanotroph Rhodococcus ruber ENV425 was observed to rapidly biodegrade N-nitrosodimethylamine (NDMA) after growth on propane, tryptic soy broth, or glucose. The key degradation intermediates were methylamine, nitric oxide, nitrite, nitrate, and formate. Small quantities of formaldehyde and dimethylamine were also detected. A denitrosation reaction, initiated by hydrogen atom abstraction from one of the two methyl groups, is hypothesized to result in the formation of n-methylformaldimine and nitric oxide, the former of which decomposes in water to methylamine and formaldehyde and the latter of which is then oxidized further to nitrite and then nitrate. Although the strain mineralized more than 60% of the carbon in [14C]NDMA to 14CO2, growth of strain ENV425 on NDMA as a sole carbon and energy source could not be confirmed. The bacterium was capable of utilizing NDMA, as well as the degradation intermediates methylamine and nitrate, as sources of nitrogen during growth on propane. In addition, ENV425 reduced environmentally relevant microgram/liter concentrations of NDMA to <2 ng/liter in batch cultures, suggesting that the bacterium may have applications for groundwater remediation. PMID:19542346

  14. 2D-crystallization of Rhodococcus 20S proteasome at the liquid-liquid interface

    NASA Astrophysics Data System (ADS)

    Aoyama, Kazuhiro

    1996-10-01

    The 2D-crystallization method using the liquid-liquid interface between a aqueous phase (protein solution) and a thin organic liquid (dehydroabietylamine) layer has been applied to the Rhodococcus 20S proteasome. The 20S proteasome is known to be the core complex of the 26S proteasome, which is the central protease of the ubiquitin-dependent pathway. Two types of ordered arrays were obtained, both large enough for high resolution analysis by electron crystallography. The first one had a four-fold symmetry, whereas the second one was found out to be a hexagonally close-packed array. By image analysis based on a real space correlation averaging (CAV) technique, the close-packed array was found to be hexagonally packed, but the molecules had presumably rotational freedom. The four-fold array was found to be a true crystal with p4 symmetry. Lattice constants were a = b = 20.0 nm and α = 90°. The unit cell of this crystal contained two molecules. The diffraction pattern computed from the original picture showed spots up to (4, 5) that corresponds to 3.1 nm resolution. After applying an unbending procedure, the diffraction pattern showed spots extending to 1.8 nm resolution.

  15. 1,4-Dioxane degradation characteristics of Rhodococcus aetherivorans JCM 14343.

    PubMed

    Inoue, Daisuke; Tsunoda, Tsubasa; Yamamoto, Norifumi; Ike, Michihiko; Sei, Kazunari

    2018-06-01

    Rhodococcus aetherivorans JCM 14343 can degrade 1,4-dioxane as a sole carbon and energy source. This study aimed to characterize this 1,4-dioxane degradation ability further, and assess the potential use of the strain for 1,4-dioxane removal in industrial wastewater. Strain JCM 14343 was able to degrade 1,4-dioxane inducibly, and its 1,4-dioxane degradation was also induced by tetrahydrofuran and 1,4-butanediol. The demonstration that 1,4-butanediol not only induced but also enhanced 1,4-dioxane degradation was a novel finding of this study. Although strain JCM 14343 appeared not to be an effective 1,4-dioxane degrader considering the maximum specific 1,4-dioxane degradation rate (0.0073 mg-dioxane/mg-protein/h), half saturation concentration (59.2 mg/L), and cell yield (0.031 mg-protein/mg-1,4-dioxane), the strain could degrade over 1100 mg/L of 1,4-dioxane and maintain its degradation activity at a wide range of temperature (5-40 °C) and pH (4-9) conditions. This suggests the usefulness of strain JCM 14343 in 1,4-dioxane treatment under acidic and cold conditions. In addition, 1,4-dioxane degradation experiments in the presence of ethylene glycol (EG) or other cyclic ethers revealed that 1,4-dioxane degradation by strain JCM 14343 was inhibited in the presence of other cyclic ethers, but not by EG, suggesting certain applicability of strain JCM 14343 for industrial wastewater treatment.

  16. Bioremediation of soil contaminated by dichlorodiphenyltrichloroethane with the use of aerobic strain Rhodococcus wratislaviensis Ch628

    NASA Astrophysics Data System (ADS)

    Egorova, D. O.; Farafonova, V. V.; Shestakova, E. A.; Andreyev, D. N.; Maksimov, A. S.; Vasyanin, A. N.; Buzmakov, S. A.; Plotnikova, E. G.

    2017-10-01

    The concentration of dichlorodiphenyltrichloroethane (DDT) was determined in a sandy soil of specially Protected Natural Area Osinskaya Lesnaya Dacha (Perm region) 45 years after the last application of the insecticide in this area. The concentration of DDT in the soil exceeded the maximum permissible concentration by 250 times and reached 25.05 mg/kg of soil. Under the conditions of model experiment, efficient decontamination of the soil was recorded in the system with the introduced strain Rhodococcus wratislaviensis Ch628; the DDT concentration decreased by 99.7% and equaled 0.07 mg/kg. The process of DDT degradation proceeded slower in the model soil system with autochthonous microbial complex. In this case, 58.2% DDT degraded in 70 days, and the final concentration was 10.47 mg/kg. The soil lost its toxicity for animal and plant test objects by the end of the experiment only in the model system containing the R. wratislaviensis Ch628 strain.

  17. The sensor kinase MprB is required for Rhodococcus equi virulence.

    PubMed

    MacArthur, Iain; Parreira, Valeria R; Lepp, Dion; Mutharia, Lucy M; Vazquez-Boland, José A; Prescott, John F

    2011-01-10

    Rhodococcus equi is a soil bacterium and, like Mycobacterium tuberculosis, a member of the mycolata. Through possession of a virulence plasmid, it has the ability to infect the alveolar macrophages of foals, resulting in pyogranulomatous bronchopneumonia. The virulence plasmid has an orphan two-component system (TCS) regulatory gene, orf8, mutation of which completely attenuates virulence. This study attempted to find the cognate sensor kinase (SK) of orf8. Annotation of the R. equi strain 103 genome identified 23 TCSs encoded on the chromosome, which were used in a DNA microarray to compare TCS gene transcription in murine macrophage-like cells to growth in vitro. This identified six SKs as significantly up-regulated during growth in macrophages. Mutants of these SKs were constructed and their ability to persist in macrophages was determined with one SK, MprB, found to be required for intracellular survival. The attenuation of the mprB- mutant, and its complementation, was confirmed in a mouse virulence assay. In silico analysis of the R. equi genome sequence identified an MprA binding box motif homologous to that of M. tuberculosis, on mprA, pepD, sigB and sigE. The results of this study also show that R. equi responds to the macrophage environment differently from M. tuberculosis. MprB is the first SK identified as required for R. equi virulence and intracellular survival. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Short report: Identification of virulence-associated plasmids in Rhodococcus equi in humans with and without acquired immunodeficiency syndrome in Brazil.

    PubMed

    Ribeiro, Márcio Garcia; Takai, Shinji; de Vargas, Agueda Castagna; Mattos-Guaraldi, Ana Luiza; Ferreira Camello, Thereza Cristina; Ohno, Ryoko; Okano, Hajime; Silva, Aristeu Vieira da

    2011-09-01

    Virulence of Rhodococcus equi strains from 20 humans in Brazil was investigated by using a polymerase chain reaction to characterize isolates as virulent (VapA), intermediately virulent (VapB), and avirulent. Nine isolates were obtained from human immunodeficiency virus (HIV)-positive patients, six from HIV-negative patients, and five from patients of unknown status. Five isolates were VapB positive, four were VapA positive, and eleven were avirulent. Among the nine isolates from HIV-positive patients, five contained VapB plasmids and two contained VapA plasmids. Five VapB-positive isolates had the type 8 virulence plasmid. Eleven of the patients had a history of contact with livestock and/or a farm environment, and none had contact with pigs.

  19. Production of isopropyl cis-6-hexadecenoate by regiospecific desaturation of isopropyl palmitate by a double mutant of a Rhodococcus strain.

    PubMed

    Koike, K; Takaiwa, M; Ara, K; Inoue, S; Kimura, Y; Ito, S

    2000-02-01

    Resting cells of a double mutant noted as KSM-MT66, derived from Rhodococcus sp. strain KSM-B-3 by UV irradiation, were found to cis-desaturate isopropyl hexadecanoate, yielding isopropyl cis-6-hexadecenoate. Addition of sodium glutamate (1.0%), Mg SO4 (2 mM), and thiamine (2 mM) increased the productivity of the unsaturated product in phosphate buffer. Optimal temperature and pH for the reaction were around 26 degrees C and 7, respectively. Under the optimized conditions, more than 50 g/l of isopropyl cis-6-hexadecenoate was produced after a 3-day incubation by resting cells of the mutant. Thus, cis-6-hexadecenoic acid, the main component of human sebaceous lipids, can be manufactured economically by the rhodococcal bioconversion.

  20. A new acylamidase from Rhodococcus erythropolis TA37 can hydrolyze N-substituted amides.

    PubMed

    Lavrov, K V; Zalunin, I A; Kotlova, E K; Yanenko, A S

    2010-08-01

    A new acylamidase was isolated from Rhodococcus erythropolis TA37 and characterized. N-Substituted acrylamides (isopropyl acrylamide, N,N-dimethyl-aminopropyl acrylamide, and methylene-bis-acrylamide), acid para-nitroanilides (4'-nitroacetanilide, Gly-pNA, Ala-pNA, Leu-pNA), and N-acetyl derivatives of glycine, alanine, and leucine are good substrates for this enzyme. Aliphatic amides (acetamide, acrylamide, isobutyramide, n-butyramide, and valeramide) are also used as substrates but with less efficiency. The enzyme subunit mass by SDS-PAGE is 55 kDa. Maximal activity is exhibited at pH 7-8 and 55°C. The enzyme is stable for 15 h at 22°C and for 0.5 h at 45°C. The Michaelis constant (K(m)) is 0.25 mM with Gly-pNA and 0.55 mM with Ala-pNA. The acylamidase activity is suppressed by inhibitors of serine proteases (phenylmethylsulfonyl fluoride and diisopropyl fluorophosphate) but is not suppressed by inhibitors of aliphatic amidases (acetaldehyde and nitrophenyl disulfides). The N-terminal amino acid sequence of the acylamidase is highly homologous to those of two putative amidases detected from sequenced R. erythropolis genomes. It is suggested that the acylamidase together with the detected homologs forms a new class within the amidase signature family.

  1. Multiple reuses of Rhodococcus ruber TH3 free cells to produce acrylamide in a membrane dispersion microreactor.

    PubMed

    Li, Jiahui; Liu, Junqi; Chen, Jie; Wang, Yujun; Luo, Guangsheng; Yu, Huimin

    2015-01-01

    In this work, multiple reuses of Rhodococcus ruber TH3 free cells for the hydration of acrylonitrile to produce acrylamide in a membrane dispersion microreactor were carried out. Through using a centrifuge, the reactions reached 39.9, 39.5, 38.6 and 38.0wt% of the final acrylamide product concentration respectively within 35min in a four cycle reuse of free cells. In contrast, using a stirring tank, free cells could only be used once with the same addition speed of acrylonitrile with a microreactor. Through observing the dissolution behavior of acrylonitrile microdroplets in a free cell solution using a coaxial microfluidic device and microscope, it was found that the acrylonitrile microdroplets with a diameter of 75μm were rarely observed within a length of 2cm channel within 10s, which illustrated that the microreactor can intensify the reaction rate to reduce the inhibition of acrylonitrile and acrylamide. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Immobilization of Rhodococcus rhodochrous BX2 (an acetonitrile-degrading bacterium) with biofilm-forming bacteria for wastewater treatment.

    PubMed

    Li, Chunyan; Li, Yue; Cheng, Xiaosong; Feng, Liping; Xi, Chuanwu; Zhang, Ying

    2013-03-01

    In this study, a unique biofilm consisting of three bacterial strains with high biofilm-forming capability (Bacillus subtilis E2, E3, and N4) and an acetonitrile-degrading bacterium (Rhodococcus rhodochrous BX2) was established for acetonitrile-containing wastewater treatment. The results indicated that this biofilm exhibited strong resistance to acetonitrile loading shock and displayed a typical spatial and structural heterogeneity and completely depleted the initial concentration of acetonitrile (800mgL(-1)) within 24h in a moving-bed-biofilm reactor (MBBR) after operation for 30days. The immobilization of BX2 cells in the biofilm was confirmed by PCR-DGGE. It has been demonstrated that biofilm-forming bacteria can promote the immobilization of contaminant-degrading bacteria in the biofilms and can subsequently improve the degradation of contaminants in wastewater. This approach offers a novel strategy for enhancing biological oxidation of toxic pollutants in wastewater. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Nutrient starvation leading to triglyceride accumulation activates the Entner Doudoroff pathway in Rhodococcus jostii RHA1.

    PubMed

    Juarez, Antonio; Villa, Juan A; Lanza, Val F; Lázaro, Beatriz; de la Cruz, Fernando; Alvarez, Héctor M; Moncalián, Gabriel

    2017-02-27

    Rhodococcus jostii RHA1 and other actinobacteria accumulate triglycerides (TAG) under nutrient starvation. This property has an important biotechnological potential in the production of sustainable oils. To gain insight into the metabolic pathways involved in TAG accumulation, we analysed the transcriptome of R jostii RHA1 under nutrient-limiting conditions. We correlate these physiological conditions with significant changes in cell physiology. The main consequence was a global switch from catabolic to anabolic pathways. Interestingly, the Entner-Doudoroff (ED) pathway was upregulated in detriment of the glycolysis or pentose phosphate pathways. ED induction was independent of the carbon source (either gluconate or glucose). Some of the diacylglycerol acyltransferase genes involved in the last step of the Kennedy pathway were also upregulated. A common feature of the promoter region of most upregulated genes was the presence of a consensus binding sequence for the cAMP-dependent CRP regulator. This is the first experimental observation of an ED shift under nutrient starvation conditions. Knowledge of this switch could help in the design of metabolomic approaches to optimize carbon derivation for single cell oil production.

  4. Production of carotenoids and lipids by Rhodococcus opacus PD630 in batch and fed-batch culture.

    PubMed

    Thanapimmetha, Anusith; Suwaleerat, Tharatron; Saisriyoot, Maythee; Chisti, Yusuf; Srinophakun, Penjit

    2017-01-01

    Production of carotenoids by Rhodococcus opacus PD630 is reported. A modified mineral salt medium formulated with glycerol as an inexpensive carbon source was used for the fermentation. Ammonium acetate was the nitrogen source. A dry cell mass concentration of nearly 5.4 g/L could be produced in shake flasks with a carotenoid concentration of 0.54 mg/L. In batch culture in a 5 L bioreactor, without pH control, the maximum dry biomass concentration was ~30 % lower than in shake flasks and the carotenoids concentration was 0.09 mg/L. Both the biomass concentration and the carotenoids concentration could be raised using a fed-batch operation with a feed mixture of ammonium acetate and acetic acid. With this strategy, the final biomass concentration was 8.2 g/L and the carotenoids concentration was 0.20 mg/L in a 10-day fermentation. A control of pH proved to be unnecessary for maximizing the production of carotenoids in this fermentation.

  5. Biodegradation of 2,4,6-trinitrophenol by Rhodococcus sp. isolated from a picric acid-contaminated soil.

    PubMed

    Shen, Jinyou; Zhang, Jianfa; Zuo, Yi; Wang, Lianjun; Sun, Xiuyun; Li, Jiansheng; Han, Weiqing; He, Rui

    2009-04-30

    A picric acid-degrading bacterium, strain NJUST16, was isolated from a soil contaminated by picric acid and identified as a member of Rhodococcus sp. based on 16S rRNA sequence. The degradation assays suggested that the strain NJUST16 could utilize picric acid as the sole source of carbon, nitrogen and energy. The isolate grew optimally at 30 degrees C and initial pH 7.0-7.5 in the mineral salts medium supplemented with picric acid. It was basically consistent with degradation of picric acid by the isolate. Addition of nitrogen sources such as yeast extract and peptone accelerated the degradation of picric acid. However, the stimulation was concentration dependent. The degradation was accompanied by release of stoichiometric amount of nitrite and acidification. The degradation of picric acid at relatively high concentrations (>3.93 mM) demonstrated that the degradation was both pH and nitrite dependent. Neutral and slightly basic pH was crucial to achieve high concentrations of picric acid degradation by the NJUST16 strain.

  6. In vitro and intra-macrophage gene expression by Rhodococcus equi strain 103.

    PubMed

    Rahman, Md Tanvir; Parreira, Valeria; Prescott, John F

    2005-09-30

    Rhodococcus equi is a facultative intracellular respiratory pathogen of foals that persists and multiplies within macrophages. In foals, virulence is associated with 80-90 kb plasmids, which include a pathogenicity island (PI) containing the virulence-associated protein (vap) gene family, but detailed understanding of the basis of virulence is still poor. A 60 spot-based DNA microarray was developed containing eight PI genes and 42 chromosomal putative virulence or virulence-associated genes selected from a recent partial genome sequence in order to study transcription of these genes by R. equi grown inside macrophages and under in vitro conditions thought to simulate those of macrophages. In addition to seven PI genes, nine chromosomal genes involved in fatty acid and lipid metabolism (choD, fadD13, fbpB), heme biosynthesis (hemE), iron utilization (mbtF), heat shock resistance and genes encoding chaperones (clpB, groEL), a sigma factor (sigK), and a transcriptional regulator (moxR) were significantly induced in R. equi growing inside macrophages. The pattern of R. equi chromosomal genes significantly transcribed inside macrophages largely differed from those transcribed under in vitro conditions (37 degrees C, pH 5.0 or 50mM H2O2 for 30 min). This study has identified genes, other than those of the virulence plasmid, the transcription of which is enhanced within equine macrophages. These genes should be investigated further to improve understanding of how this organism survives intracellularly.

  7. Transformation of Rhodococcus fascians by High-Voltage Electroporation and Development of R. fascians Cloning Vectors

    PubMed Central

    Desomer, Jan; Dhaese, Patrick; Montagu, Marc Van

    1990-01-01

    The analysis of the virulence determinants of phytopathogenic Rhodococcus fascians has been hampered by the lack of a system for introducing exogenous DNA. We investigated the possibility of genetic transformation of R. fascians by high-voltage electroporation of intact bacterial cells in the presence of plasmid DNA. Electrotransformation in R. fascians D188 resulted in transformation frequencies ranging from 105/μg of DNA to 107/μg of DNA, depending on the DNA concentration. The effects of different electrical parameters and composition of electroporation medium on transformation efficiency are presented. By this transformation method, a cloning vector (pRF28) for R. fascians based on an indigenous 160-kilobase (chloramphenicol and cadmium resistance-encoding) plasmid pRF2 from strain NCPPB 1675 was developed. The origin of replication and the chloramphenicol resistance gene on pRF28 were used to construct cloning vectors that are capable of replication in R. fascians and Escherichia coli. The electroporation method presented was efficient enough to allow detection of the rare integration of replication-deficient pRF28 derivatives in the R. fascians D188 genome via either homologous or illegitimate recombination. Images PMID:16348290

  8. Heterologous production of kasugamycin, an aminoglycoside antibiotic from Streptomyces kasugaensis, in Streptomyces lividans and Rhodococcus erythropolis L-88 by constitutive expression of the biosynthetic gene cluster.

    PubMed

    Kasuga, Kano; Sasaki, Akira; Matsuo, Takashi; Yamamoto, Chika; Minato, Yuiko; Kuwahara, Naoya; Fujii, Chikako; Kobayashi, Masayuki; Agematu, Hitosi; Tamura, Tomohiro; Komatsu, Mamoru; Ishikawa, Jun; Ikeda, Haruo; Kojima, Ikuo

    2017-05-01

    Kasugamycin (KSM), an aminoglycoside antibiotic isolated from Streptomyces kasugaensis cultures, has been used against rice blast disease for more than 50 years. We cloned the KSM biosynthetic gene (KBG) cluster from S. kasugaensis MB273-C4 and constructed three KBG cassettes (i.e., cassettes I-III) to enable heterologous production of KSM in many actinomycetes by constitutive expression of KBGs. Cassette I comprised all putative transcriptional units in the cluster, but it was placed under the control of the P neo promoter from Tn5. It was not maintained stably in Streptomyces lividans and did not transform Rhodococcus erythropolis. Cassette II retained the original arrangement of KBGs, except that the promoter of kasT, the specific activator gene for KBG, was replaced with P rpsJ , the constitutive promoter of rpsJ from Streptomyces avermitilis. To enhance the intracellular concentration of myo-inositol, an expression cassette of ino1 encoding the inositol-1-phosphate synthase from S. avermitilis was inserted into cassette II to generate cassette III. These two cassettes showed stable maintenance in S. lividans and R. erythropolis to produce KSM. Particularly, the transformants of S. lividans induced KSM production up to the same levels as those produced by S. kasugaensis. Furthermore, cassette III induced more KSM accumulation than cassette II in R. erythropolis, suggesting an exogenous supply of myo-inositol by the ino1 expression in the host. Cassettes II and III appear to be useful for heterologous KSM production in actinomycetes. Rhodococcus exhibiting a spherical form in liquid cultivation is also a promising heterologous host for antibiotic fermentation.

  9. Restriction Fragment Length Polymorphisms of Virulence Plasmids in Rhodococcus equi

    PubMed Central

    Takai, Shinji; Shoda, Masato; Sasaki, Yukako; Tsubaki, Shiro; Fortier, Guillaume; Pronost, Stephane; Rahal, Karim; Becu, Teotimo; Begg, Angela; Browning, Glenn; Nicholson, Vivian M.; Prescott, John F.

    1999-01-01

    Virulent Rhodococcus equi, which is a well-known cause of pyogranulomatous pneumonia in foals, possesses a large plasmid encoding virulence-associated 15- to 17-kDa antigens. Foal and soil isolates from five countries—Argentina, Australia, Canada, France, and Japan—were investigated for the presence of 15- to 17-kDa antigens by colony blotting, using the monoclonal antibody 10G5, and the gene coding for 15- to 17-kDa antigens by PCR. Plasmid DNAs extracted from positive isolates were digested with restriction endonucleases BamHI, EcoRI, EcoT22I, and HindIII, and the digestion patterns that resulted divided the plasmids of virulent isolates into five closely related types. Three of the five types had already been reported in Canadian and Japanese isolates, and the two new types had been found in French and Japanese isolates. Therefore, we tentatively designated these five types 85-kb type I (pREAT701), 85-kb type II (a new type), 87-kb type I (EcoRI and BamHI type 2 [V. M. Nicholson and J. F. Prescott, J. Clin. Microbiol. 35:738–740, 1997]), 87-kb type II (a new type), and 90-kb (pREL1) plasmids. The 85-kb type I plasmid was found in isolates from Argentina, Australia, Canada, and France. Plasmid 87-kb type I was isolated in specimens from Argentina, Canada, and France. The 85-kb type II plasmid appeared in isolates from France. On the other hand, plasmids 87-kb type II and 90-kb were found only in isolates from Japan. These results revealed geographic differences in the distribution of the virulence plasmids found in the five countries and suggested that the restriction fragment length polymorphism of virulence plasmids might be useful to elucidate the molecular epidemiology of virulent R. equi in the world. PMID:10488224

  10. Saccharification of Cellulose by Recombinant Rhodococcus opacus PD630 Strains

    PubMed Central

    Hetzler, Stephan; Bröker, Daniel

    2013-01-01

    The noncellulolytic actinomycete Rhodococcus opacus strain PD630 is the model oleaginous prokaryote with regard to the accumulation and biosynthesis of lipids, which serve as carbon and energy storage compounds and can account for as much as 87% of the dry mass of the cell in this strain. In order to establish cellulose degradation in R. opacus PD630, we engineered strains that episomally expressed six different cellulase genes from Cellulomonas fimi ATCC 484 (cenABC, cex, cbhA) and Thermobifida fusca DSM43792 (cel6A), thereby enabling R. opacus PD630 to degrade cellulosic substrates to cellobiose. Of all the enzymes tested, five exhibited a cellulase activity toward carboxymethyl cellulose (CMC) and/or microcrystalline cellulose (MCC) as high as 0.313 ± 0.01 U · ml−1, but recombinant strains also hydrolyzed cotton, birch cellulose, copy paper, and wheat straw. Cocultivations of recombinant strains expressing different cellulase genes with MCC as the substrate were carried out to identify an appropriate set of cellulases for efficient hydrolysis of cellulose by R. opacus. Based on these experiments, the multicellulase gene expression plasmid pCellulose was constructed, which enabled R. opacus PD630 to hydrolyze as much as 9.3% ± 0.6% (wt/vol) of the cellulose provided. For the direct production of lipids from birch cellulose, a two-step cocultivation experiment was carried out. In the first step, 20% (wt/vol) of the substrate was hydrolyzed by recombinant strains expressing the whole set of cellulase genes. The second step was performed by a recombinant cellobiose-utilizing strain of R. opacus PD630, which accumulated 15.1% (wt/wt) fatty acids from the cellobiose formed in the first step. PMID:23793636

  11. Diversion of phagosome trafficking by pathogenic Rhodococcus equi depends on mycolic acid chain length

    PubMed Central

    Sydor, Tobias; Bargen, Kristine; Hsu, Fong-Fu; Huth, Gitta; Holst, Otto; Wohlmann, Jens; Becken, Ulrike; Dykstra, Tobias; Söhl, Kristina; Lindner, Buko; Prescott, John F; Schaible, Ulrich E; Utermöhlen, Olaf; Haas, Albert

    2013-01-01

    Rhodococcus equi is a close relative of Mycobacterium spp. and a facultative intracellular pathogen which arrests phagosome maturation in macrophages before the late endocytic stage. We have screened a transposon mutant library of R. equi for mutants with decreased capability to prevent phagolysosome formation. This screen yielded a mutant in the gene for β-ketoacyl-(acyl carrier protein)-synthase A (KasA), a key enzyme of the long-chain mycolic acid synthesizing FAS-II system. The longest kasA mutant mycolic acid chains were 10 carbon units shorter than those of wild-type bacteria. Coating of non-pathogenic E. coli with purified wild-type trehalose dimycolate reduced phagolysosome formation substantially which was not the case with shorter kasA mutant-derived trehalose dimycolate. The mutant was moderately attenuated in macrophages and in a mouse infection model, but was fully cytotoxic.Whereas loss of KasA is lethal in mycobacteria, R. equi kasA mutant multiplication in broth was normal proving that long-chain mycolic acid compounds are not necessarily required for cellular integrity and viability of the bacteria that typically produce them. This study demonstrates a central role of mycolic acid chain length in diversion of trafficking by R. equi. PMID:23078612

  12. Diversion of phagosome trafficking by pathogenic Rhodococcus equi depends on mycolic acid chain length.

    PubMed

    Sydor, Tobias; von Bargen, Kristine; Hsu, Fong-Fu; Huth, Gitta; Holst, Otto; Wohlmann, Jens; Becken, Ulrike; Dykstra, Tobias; Söhl, Kristina; Lindner, Buko; Prescott, John F; Schaible, Ulrich E; Utermöhlen, Olaf; Haas, Albert

    2013-03-01

    Rhodococcus equi is a close relative of Mycobacterium spp. and a facultative intracellular pathogen which arrests phagosome maturation in macrophages before the late endocytic stage. We have screened a transposon mutant library of R. equi for mutants with decreased capability to prevent phagolysosome formation. This screen yielded a mutant in the gene for β-ketoacyl-(acyl carrier protein)-synthase A (KasA), a key enzyme of the long-chain mycolic acid synthesizing FAS-II system. The longest kasA mutant mycolic acid chains were 10 carbon units shorter than those of wild-type bacteria. Coating of non-pathogenic E. coli with purified wild-type trehalose dimycolate reduced phagolysosome formation substantially which was not the case with shorter kasA mutant-derived trehalose dimycolate. The mutant was moderately attenuated in macrophages and in a mouse infection model, but was fully cytotoxic.Whereas loss of KasA is lethal in mycobacteria, R. equi kasA mutant multiplication in broth was normal proving that long-chain mycolic acid compounds are not necessarily required for cellular integrity and viability of the bacteria that typically produce them. This study demonstrates a central role of mycolic acid chain length in diversion of trafficking by R. equi. © 2012 Blackwell Publishing Ltd.

  13. Bromate Reduction by Rhodococcus sp. Br-6 in the Presence of Multiple Redox Mediators.

    PubMed

    Tamai, Naoko; Ishii, Takahiro; Sato, Yusuke; Fujiya, Hiroko; Muramatsu, Yasuyuki; Okabe, Nobuaki; Amachi, Seigo

    2016-10-04

    A bromate (BrO 3 - )-reducing bacterium, designated Rhodococcus sp. strain Br-6, was isolated from soil. The strain reduced 250 μM bromate completely within 4 days under growth conditions transitioning from aerobic to anaerobic conditions, while no reduction was observed under aerobic and anaerobic growth conditions. Bromate was reduced to bromide (Br - ) stoichiometrically, and acetate was required as an electron donor. Interestingly, bromate reduction by strain Br-6 was significantly dependent on both ferric iron and a redox dye 2,6-dichloroindophenol (DCIP). Cell free extract of strain Br-6 showed a dicumarol-sensitive diaphorase activity, which catalyzes the reduction of DCIP in the presence of NADH. Following abiotic experiments showed that the reduced form of DCIP was reoxidized by ferric iron, and that the resulting ferrous iron reduced bromate abiotically. Furthermore, activity staining of the cell free extract revealed that one of diaphorase isoforms possessed a bromate-reducing activity. Our results demonstrate that strain Br-6 utilizes multiple redox mediators, that is, DCIP and ferric iron, for bromate reduction. Since the apparent rate of bromate reduction by this strain (60 μM day -1 ) was 3 orders of magnitude higher than that of known bromate-reducing bacteria, it could be applicable to removal of this probable human carcinogen from drinking water.

  14. Hydride-Meisenheimer Complex Formation and Protonation as Key Reactions of 2,4,6-Trinitrophenol Biodegradation by Rhodococcus erythropolis

    PubMed Central

    Rieger, Paul-Gerhard; Sinnwell, Volker; Preuß, Andrea; Francke, Wittko; Knackmuss, Hans-Joachim

    1999-01-01

    Biodegradation of 2,4,6-trinitrophenol (picric acid) by Rhodococcus erythropolis HLPM-1 proceeds via initial hydrogenation of the aromatic ring system. Here we present evidence for the formation of a hydride-Meisenheimer complex (anionic ς-complex) of picric acid and its protonated form under physiological conditions. These complexes are key intermediates of denitration and productive microbial degradation of picric acid. For comparative spectroscopic identification of the hydride complex, it was necessary to synthesize this complex for the first time. Spectroscopic data revealed the initial addition of a hydride ion at position 3 of picric acid. This hydride complex readily picks up a proton at position 2, thus forming a reactive species for the elimination of nitrite. Cell extracts of R. erythropolis HLPM-1 transform the chemically synthesized hydride complex into 2,4-dinitrophenol. Picric acid is used as the sole carbon, nitrogen, and energy source by R. erythropolis HLPM-1. PMID:9973345

  15. Biochemical pathways and enhanced degradation of di-n-octyl phthalate (DOP) in sequencing batch reactor (SBR) by Arthrobacter sp. SLG-4 and Rhodococcus sp. SLG-6 isolated from activated sludge.

    PubMed

    Zhang, Ke; Liu, Yihao; Chen, Qiang; Luo, Hongbing; Zhu, Zhanyuan; Chen, Wei; Chen, Jia; Mo, You

    2018-04-01

    Two bacterial strains designated as Arthrobacter sp. SLG-4 and Rhodococcus sp. SLG-6, capable of utilizing di-n-octyl phthalate (DOP) as sole source of carbon and energy, were isolated from activated sludge. The analysis of DOP degradation intermediates indicated Arthrobacter sp. SLG-4 could completely degrade DOP. Whereas DOP could not be mineralized by Rhodococcus sp. SLG-6 and the final metabolic product was phthalic acid (PA). The proposed DOP degradation pathway by Arthrobacter sp. SLG-4 was that strain SLG-4 initially transformed DOP to PA via de-esterification pathway, and then PA was metabolized to protocatechuate acid and eventually converted to tricarboxylic acid (TCA) cycle through meta-cleavage pathway. Accordingly, Phthalate 3,4-dioxygenase genes (phtA) responsible for PA degradation were successfully detected in Arthrobacter sp. SLG-4 by real-time quantitative PCR (q-PCR). q-PCR analysis demonstrated that the quantity of phthalate 3,4-dioxygenase was positively correlated to DOP degradation in SBRs. Bioaugmentation by inoculating DOP-degrading bacteria effectively shortened the start-up of SBRs and significantly enhanced DOP degradation in bioreactors. More than 91% of DOP (500 mg L -1 ) was removed in SBR bioaugmented with bacterial consortium, which was double of the control SBR. This study suggests bioaugmentation is an effective and feasible technique for DOP bioremediation in practical engineering.

  16. Effect of substrate interaction on the degradation of methyl tert-butyl ether, benzene, toluene, ethylbenzene, and xylene by Rhodococcus sp.

    PubMed

    Lee, Eun-Hee; Cho, Kyung-Suk

    2009-08-15

    It was examined the substrate interactions of benzene (B), tolulene (T), ethylbenzene (E), xylene (X), and methyl tert-butyl ether (M) in binary, ternary, quaternary, and quinary mixtures by Rhodococcus sp. EH831 that could aerobically degrade all of five single components. The specific degradation rates (SDRs) of B, T, E, X, and M were 234, 913, 131, 184 and 139 micromol g-dry cell weight (DCW)(-1)h(-1), respectively. In binary, ternary, quaternary, and quinary mixtures of them, ethylbenzene was the strongest inhibitor for the other substrates, and methyl tert-butyl ether was the weakest inhibitor. Interestingly, no degradation of benzene and methyl tert-butyl ether was found in the coexistence of ethylbenzene. The degradation of benzene followed only after toluene became exhausted when both was present. Ethylbenzene was least inhibited by methyl tert-butyl ether and most inhibited by toluene.

  17. An Inducible Propane Monooxygenase Is Responsible for N-Nitrosodimethylamine Degradation by Rhodococcus sp. Strain RHA1▿

    PubMed Central

    Sharp, Jonathan O.; Sales, Christopher M.; LeBlanc, Justin C.; Liu, Jie; Wood, Thomas K.; Eltis, Lindsay D.; Mohn, William W.; Alvarez-Cohen, Lisa

    2007-01-01

    Rhodococci are common soil heterotrophs that possess diverse functional enzymatic activities with economic and ecological significance. In this study, the correlation between gene expression and biological removal of the water contaminant N-nitrosodimethylamine (NDMA) is explored. NDMA is a hydrophilic, potent carcinogen that has gained recent notoriety due to its environmental persistence and emergence as a widespread micropollutant in the subsurface environment. In this study, we demonstrate that Rhodococcus sp. strain RHA1 can constitutively degrade NDMA and that activity toward this compound is enhanced by approximately 500-fold after growth on propane. Transcriptomic analysis of RHA1 and reverse transcriptase quantitative PCR assays demonstrate that growth on propane elicits the upregulation of gene clusters associated with (i) the oxidation of propane and (ii) the oxidation of substituted benzenes. Deletion mutagenesis of prmA, the gene encoding the large hydroxylase component of propane monooxygenase, abolished both growth on propane and removal of NDMA. These results demonstrate that propane monooxygenase is responsible for NDMA degradation by RHA1 and explain the enhanced cometabolic degradation of NDMA in the presence of propane. PMID:17873074

  18. The NADH:flavin oxidoreductase Nox from Rhodococcus erythropolis MI2 is the key enzyme of 4,4'-dithiodibutyric acid degradation.

    PubMed

    Khairy, H; Wübbeler, J H; Steinbüchel, A

    2016-12-01

    The reduction of the disulphide bond is the initial catabolic step of the microbial degradation of the organic disulphide 4,4'-dithiodibutyric acid (DTDB). Previously, an NADH:flavin oxidoreductase from Rhodococcus erythropolis MI2 designated as Nox MI2 , which belongs to the old yellow enzyme (OYE) family, was identified. In the present study, it was proven that Nox MI2 has the ability to cleave the sulphur-sulphur bond in DTDB. In silico analysis revealed high sequence similarities to proteins of the flavin mononucleotide (FMN) reductase family identified in many strains of R. erythropolis. Therefore, nox was heterologously expressed in the pET23a(+) expression system using Escherichia coli strain BL21(DE3) pLysS, which effectively produces soluble active Nox MI2 . Nox MI2 showed a maximum specific activity (V max ) of 3·36 μmol min -1  mg -1 corresponding to a k cat of 2·5 s -1 and an apparent substrate K m of 0·6 mmol l -1 , when different DTDB concentrations were applied. No metal cofactors were required. Moreover, Nox MI2 had very low activity with other sulphur-containing compounds like 3,3'-dithiodipropionic acid (8·0%), 3,3'-thiodipropionic acid (7·6%) and 5,5'-dithiobis(2-nitrobenzoic acid) (8·0%). The UV/VIS spectrum of Nox MI2 revealed the presence of the cofactor FMN. Based on results obtained, Nox MI2 adds a new physiological substrate and mode of action to OYE members. It was unequivocally demonstrated in this study that an NADH:flavin oxidoreductase from Rhodococcus erythropolis MI2 (Nox MI2 ) is able to cleave the xenobiotic disulphide 4,4'-dithiodibutyric acid (DTDB) into two molecules of 4-mercaptobutyric acid (4MB) with concomitant consumption of NADH. Nox MI2 showed a high substrate specificity as well as high heat stability. This study provides the first detailed characterization of the initial cleavage of DTDB, which is considered as a promising polythioester precursor. © 2016 The Society for Applied Microbiology.

  19. Styrene Oxide Isomerase of Rhodococcus opacus 1CP, a Highly Stable and Considerably Active Enzyme

    PubMed Central

    Gröning, Janosch A. D.; Tischler, Dirk; Kaschabek, Stefan R.; Schlömann, Michael

    2012-01-01

    Styrene oxide isomerase (SOI) is involved in peripheral styrene catabolism of bacteria and converts styrene oxide to phenylacetaldehyde. Here, we report on the identification, enrichment, and biochemical characterization of a novel representative from the actinobacterium Rhodococcus opacus 1CP. The enzyme, which is strongly induced during growth on styrene, was shown to be membrane integrated, and a convenient procedure was developed to highly enrich the protein in active form from the wild-type host. A specific activity of about 370 U mg−1 represents the highest activity reported for this enzyme class so far. This, in combination with a wide pH and temperature tolerance, the independence from cofactors, and the ability to convert a spectrum of substituted styrene oxides, makes a biocatalytic application imaginable. First, semipreparative conversions were performed from which up to 760 μmol of the pure phenylacetaldehyde could be obtained from 130 U of enriched SOI. Product concentrations of up to 76 mM were achieved. However, due to the high chemical reactivity of the aldehyde function, SOI was shown to be the subject of an irreversible product inhibition. A half-life of 15 min was determined at a phenylacetaldehyde concentration of about 55 mM, indicating substantial limitations of applicability and the need to modify the process. PMID:22504818

  20. Trehalose promotes Rhodococcus sp. strain YYL colonization in activated sludge under tetrahydrofuran (THF) stress

    PubMed Central

    He, Zhixing; Zhang, Kai; Wang, Haixia; Lv, Zhenmei

    2015-01-01

    Few studies have focused on the role of compatible solutes in changing the microbial community structure in bioaugmentation systems. In this study, we investigated the influence of trehalose as a biostimulant on the microbial community in tetrahydrofuran (THF)-treated wastewater bioaugmentation systems with Rhodococcus sp. YYL. Functional gene profile changes were used to study the variation in the microbial community. Soluble di-iron monooxygenases (SDIMO), particularly group-5 SDIMOs (i.e., tetrahydrofuran and propane monooxygenases), play a significant role in the initiation of the ring cleavage of tetrahydrofuran. Group-5 SDIMOs genes are enriched upon trehalose addition, and exogenous tetrahydrofuran monooxygenase (thmA) genes can successfully colonize bioaugmentation systems. Cytochrome P450 monooxygenases (P450s) have a significant role in catalyzing the region- and stereospecific oxidation of non-activated hydrocarbons, and THF was reported to inhibit P450s in the environment. The CYP153 family was chosen as a representative P450 to study the inhibitory effects of THF. The results demonstrated that CYP153 family genes exhibited significant changes upon THF treatment and that trehalose helped maintain a rich diversity and high abundance of CYP153 family genes. Biostimulation with trehalose could alleviate the negative effects of THF stress on microbial diversity in bioaugmentation systems. Our results indicated that trehalose as a compatible solute plays a significant role for environmental strains under extreme conditions. PMID:26029182

  1. Mutation and virulence assessment of chromosomal genes of Rhodococcus equi 103

    PubMed Central

    Pei, Yanlong; Parreira, Valeria; Nicholson, Vivian M.; Prescott, John F.

    2007-01-01

    Rhodococcus equi can cause severe or fatal pneumonia in foals as well as in immunocompromised animals and humans. Its ability to persist in macrophages is fundamental to how it causes disease, but the basis of this is poorly understood. To examine further the general application of a recently developed system of targeted gene mutation and to assess the importance of different genes in resistance to innate immune defenses, we disrupted the genes encoding high-temperature requirement A (htrA), nitrate reductase (narG), peptidase D (pepD), phosphoribosylaminoimidazole-succinocarboxamide synthase (purC), and superoxide dismutase (sodC) in strain 103 of R. equi using a double-crossover homologous recombination approach. Virulence testing by clearance after intravenous injection in mice showed that the htrA and narG mutants were fully attenuated, the purC and sodC mutants were unchanged, and the pepD mutant was slightly attenuated. Complementation with the pREM shuttle plasmid restored the virulence of the htrA and pepD mutants but not that of the narG mutant. A single-crossover mutation approach was simpler and faster than the double-crossover homologous recombination technique and was used to obtain mutations in 6 other genes potentially involved in virulence (clpB, fadD8, fbpB, glnA1, regX3, and sigF). These mutants were not attenuated in the mouse clearance assay. We were not able to obtain mutants for genes furA, galE, and sigE using the single-crossover mutation approach. In summary, the targeted-mutation system had general applicability but was not always completely successful, perhaps because some genes are essential under the growth conditions used or because the success of mutation depends on the target genes. PMID:17193875

  2. Mutation and virulence assessment of chromosomal genes of Rhodococcus equi 103.

    PubMed

    Pei, Yanlong; Parreira, Valeria; Nicholson, Vivian M; Prescott, John F

    2007-01-01

    Rhodococcus equi can cause severe or fatal pneumonia in foals as well as in immunocompromised animals and humans. Its ability to persist in macrophages is fundamental to how it causes disease, but the basis of this is poorly understood. To examine further the general application of a recently developed system of targeted gene mutation and to assess the importance of different genes in resistance to innate immune defenses, we disrupted the genes encoding high-temperature requirement A (htrA), nitrate reductase (narG), peptidase D (pepD), phosphoribosylaminoimidazole-succinocarboxamide synthase (purC), and superoxide dismutase (sodC) in strain 103 of R. equi using a double-crossover homologous recombination approach. Virulence testing by clearance after intravenous injection in mice showed that the htrA and narG mutants were fully attenuated, the purC and sodC mutants were unchanged, and the pepD mutant was slightly attenuated. Complementation with the pREM shuttle plasmid restored the virulence of the htrA and pepD mutants but not that of the narG mutant. A single-crossover mutation approach was simpler and faster than the double-crossover homologous recombination technique and was used to obtain mutations in 6 other genes potentially involved in virulence (clpB, fadD8, fbpB, glnA1, regX3, and sigF). These mutants were not attenuated in the mouse clearance assay. We were not able to obtain mutants for genesfurA, galE, and sigE using the single-crossover mutation approach. In summary, the targeted-mutation system had general applicability but was not always completely successful, perhaps because some genes are essential under the growth conditions used or because the success of mutation depends on the target genes.

  3. Improvement of Biodesulfurization Rate of Alginate Immobilized Rhodococcus erythropolis R1.

    PubMed

    Derikvand, Peyman; Etemadifar, Zahra

    2014-03-01

    Sulfur oxides released from the burning of oil causes severe environmental pollution. The sulfur can be removed via the 4S pathway in biodesulfurization (BDS). Immobilization approaches have been developed to prevent cell contamination of oil during the BDS process. The encapsulation of Rhodococcus erythropolis R1 in calcium alginate beads was studied in order to enhance conversion of dibenzothiophene (DBT) to 2-hydroxy biphenyl (2-HBP) as the final product. Also the effect of different factors on the BDS process was investigated. Calcium alginate capsules were prepared using peristaltic pumps with different needle sizes to control the beads sizes. Scanning electron microscopy and flow cytometry methods were used to study the distribution and viability of encapsulated cells, respectively. Two non-ionic surfactants and also nano Ƴ-Al2O3were used with the ratio of 0.5% (v/v) and 1:5 (v/v) respectively to investigate their BDS efficiency. In addition, the effect of different bead sizes and different concentrations of sodium alginate in BDS activity was studied. The 2% (w/v) sodium alginate beads with 1.5mm size were found to be the optimum for beads stability and efficient 2-HBP production. The viability of encapsulated cells decreased by 12% after 20 h of desulfurization, compared to free cells. Adding the non-ionic surfactants markedly enhanced the rate of BDS, because of increasing mass transfer of DBT to the gel matrix. In addition, Span 80 was more effective than Tween 80. The nanoƳ-Al2O3 particles could increase BDS rate by up to two-folds greater than that of the control beads. The nano Ƴ-Al2O3 can improve the immobilized biocatalyst for excellent efficiency of DBT desulfurization. Also the BDS activity can be enhanced by setting the other explained factors at optimum levels.

  4. Evidence for an Inducible Nucleotide-Dependent Acetone Carboxylase in Rhodococcus rhodochrous B276

    PubMed Central

    Clark, Daniel D.; Ensign, Scott A.

    1999-01-01

    The metabolism of acetone was investigated in the actinomycete Rhodococcus rhodochrous (formerly Nocardia corallina) B276. Suspensions of acetone- and isopropanol-grown R. rhodochrous readily metabolized acetone. In contrast, R. rhodochrous cells cultured with glucose as the carbon source lacked the ability to metabolize acetone at the onset of the assay but gained the ability to do so in a time-dependent fashion. Chloramphenicol and rifampin prevented the time-dependent increase in this activity. Acetone metabolism by R. rhodochrous was CO2 dependent, and 14CO2 fixation occurred concomitant with this process. A nucleotide-dependent acetone carboxylase was partially purified from cell extracts of acetone-grown R. rhodochrous by DEAE-Sepharose chromatography. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis suggested that the acetone carboxylase was composed of three subunits with apparent molecular masses of 85, 74, and 16 kDa. Acetone metabolism by the partially purified enzyme was dependent on the presence of a divalent metal and a nucleoside triphosphate. GTP and ITP supported the highest rates of acetone carboxylation, while CTP, UTP, and XTP supported carboxylation at 10 to 50% of these rates. ATP did not support acetone carboxylation. Acetoacetate was determined to be the stoichiometric product of acetone carboxylation. The longer-chain ketones butanone, 2-pentanone, 3-pentanone, and 2-hexanone were substrates. This work has identified an acetone carboxylase with a novel nucleotide usage and broader substrate specificity compared to other such enzymes studied to date. These results strengthen the proposal that carboxylation is a common strategy used for acetone catabolism in aerobic acetone-oxidizing bacteria. PMID:10217764

  5. Molecular epidemiology of Rhodococcus equi in slaughtered swine, cattle and horses in Poland.

    PubMed

    Witkowski, Lucjan; Rzewuska, Magdalena; Takai, Shinji; Kizerwetter-Świda, Magdalena; Kita, Jerzy

    2016-05-27

    Rhodococcus equi is an emerging zoonotic presumably foodborne pathogen. Since the data on the worldwide prevalence of R. equi in meat animals are scarce, the present study aimed to investigate the molecular epidemiology of R. equi in swine, cattle and horse carcasses intended for human consumption in Poland. Totally 1028 lymph node samples were examined. R. equi was isolated from 26.6 % (105/395) swine and 1.3 % (3/234) bovine healthy submaxillary lymph nodes. In horses, R. equi was isolated only from 0.5 % (1/198) samples of middle tracheo-branchiales lymph node while no lymphocentrum retropharyngeum sample was positive (0/198). The purulent lesions were observed only in 0.8 % swine submaxillary lymph nodes samples (3/398) and in two of them R. equi was detected. All bovine and most of swine isolates (98.1 %) were vapB-positive. 87.9 % of swine isolates carried 95-kb type 5 plasmid, 3.7 % type 1 and plasmid types: 4, 7, 10, 11, 21, 31 were carried by a single isolate (0.9 %). All bovine isolates carried VAPB type 26. Single horse isolate was vapA-positive and carried plasmid VAPA 85-kb type I. The prevalence of vapB-positive R. equi in investigated healthy swine intended for human consumption was very high. Not only swine, but also even apparently healthy cattle or horse carcasses should be considered as a potential source of R. equi for humans, especially in countries where undercooked or raw beef or horsemeat is traditionally consumed.

  6. Improvement of phytoremediation of an aged petroleum hydrocarbon-contaminated soil by Rhodococcus erythropolis CD 106 strain.

    PubMed

    Płociniczak, Tomasz; Fic, Ewa; Pacwa-Płociniczak, Magdalena; Pawlik, Małgorzata; Piotrowska-Seget, Zofia

    2017-07-03

    The aim of this study was to assess the impact of soil inoculation with the Rhodococcus erythropolis CD 106 strain on the effectiveness of the phytoremediation of an aged hydrocarbon-contaminated [approx. 1% total petroleum hydrocarbon (TPH)] soil using ryegrass (Lolium perenne). The introduction of CD 106 into the soil significantly increased the biomass of ryegrass and the removal of hydrocarbons in planted soil. The fresh weight of the shoots and roots of plants inoculated with CD 106 increased by 49% and 30%, respectively. After 210 days of the experiment, the concentration of TPH was reduced by 31.2%, whereas in the planted, non-inoculated soil, it was reduced by 16.8%. By contrast, the concentration of petroleum hydrocarbon decreased by 18.7% in non-planted soil bioaugmented with the CD 106 strain. The rifampicin-resistant CD 106 strain survived after inoculation into soil and was detected in the soil during the entire experimental period, but the number of CD 106 cells decreased constantly during the enhanced phytoremediation and bioaugmentation experiments. The plant growth-promoting and hydrocarbon-degrading properties of CD 106, which are connected with its long-term survival and limited impact on autochthonous microflora, make this strain a good candidate for improving the phytoremediation efficiency of soil contaminated with hydrocarbons.

  7. Comparative transcriptomics elucidates adaptive phenol tolerance and utilization in lipid-accumulating Rhodococcus opacus PD630

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoneda, Aki; Henson, William R.; Goldner, Nicholas K.

    Lignin-derived (e.g. phenolic) compounds can compromise the bioconversion of lignocellulosic biomass to fuels and chemicals due to their toxicity and recalcitrance. The lipid-accumulating bacterium Rhodococcus opacus PD630 has recently emerged as a promising microbial host for lignocellulose conversion to value-added products due to its natural ability to tolerate and utilize phenolics. To gain a better understanding of its phenolic tolerance and utilization mechanisms, we adaptively evolved R. opacus over 40 passages using phenol as its sole carbon source (up to 373% growth improvement over wild-type), and extensively characterized two strains from passages 33 and 40. The two adapted strains showedmore » higher phenol consumption rates (~20 mg/l/h) and ~2-fold higher lipid production from phenol than the wild-type strain.Whole-genome sequencing and comparative transcriptomics identified highly-upregulated degradation pathways and putative transporters for phenol in both adapted strains, highlighting the important linkage between mechanisms of regulated phenol uptake, utilization, and evolved tolerance. Our study shows that the R. opacus mutants are likely to use their transporters to import phenol rather than export them, suggesting a new aromatic tolerance mechanism. The identified tolerance genes and pathways are promising candidates for future metabolic engineering in R. opacus for improved lignin conversion to lipid-based products.« less

  8. Comparative transcriptomics elucidates adaptive phenol tolerance and utilization in lipid-accumulating Rhodococcus opacus PD630

    DOE PAGES

    Yoneda, Aki; Henson, William R.; Goldner, Nicholas K.; ...

    2016-02-02

    Lignin-derived (e.g. phenolic) compounds can compromise the bioconversion of lignocellulosic biomass to fuels and chemicals due to their toxicity and recalcitrance. The lipid-accumulating bacterium Rhodococcus opacus PD630 has recently emerged as a promising microbial host for lignocellulose conversion to value-added products due to its natural ability to tolerate and utilize phenolics. To gain a better understanding of its phenolic tolerance and utilization mechanisms, we adaptively evolved R. opacus over 40 passages using phenol as its sole carbon source (up to 373% growth improvement over wild-type), and extensively characterized two strains from passages 33 and 40. The two adapted strains showedmore » higher phenol consumption rates (~20 mg/l/h) and ~2-fold higher lipid production from phenol than the wild-type strain.Whole-genome sequencing and comparative transcriptomics identified highly-upregulated degradation pathways and putative transporters for phenol in both adapted strains, highlighting the important linkage between mechanisms of regulated phenol uptake, utilization, and evolved tolerance. Our study shows that the R. opacus mutants are likely to use their transporters to import phenol rather than export them, suggesting a new aromatic tolerance mechanism. The identified tolerance genes and pathways are promising candidates for future metabolic engineering in R. opacus for improved lignin conversion to lipid-based products.« less

  9. Effect of proteases on biofilm formation of the plastic-degrading actinomycete Rhodococcus ruber C208.

    PubMed

    Gilan, Irit; Sivan, Alex

    2013-05-01

    In most habitats, the vast majority of microbial populations form biofilms on solid surfaces, whether natural or artificial. These biofilms provide either increased physical support and/or a source of nutrients. Further modifications and development of biofilms are regulated by signal molecules secreted by the cells. Because synthetic polymers are not soluble in aqueous solutions, biofilm-producing bacteria may biodegrade such materials more efficiently than planktonic strains. Bacterial biofilms comprise bacterial cells embedded in self-secreted extracellular polymeric substances (EPS). Revealing the roles of each component of the EPS will enable further insight into biofilm development and the EPS structure-function relationship. A strain of Rhodococcus ruber (C208) displayed high hydrophobicity and formed a dense biofilm on the surface of polyethylene films while utilizing the polyolefin as carbon and energy sources. This study investigated the effects of several proteases on C208 biofilm formation and stability. The proteolysis of C208 biofilm gave conflicting results. Trypsin significantly reduced biofilm formation, and the resultant biofilm appeared monolayered. In contrast, proteinase K enhanced biofilm formation, which was robust and multilayered. Presumably, proteinase K degraded self-secreted proteases or quorum-sensing peptides, which may be involved in biofilm detachment processes, leading to a multilayered, nondispersed biofilm. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  10. Bruker biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometry system for identification of Nocardia, Rhodococcus, Kocuria, Gordonia, Tsukamurella, and Listeria species.

    PubMed

    Hsueh, Po-Ren; Lee, Tai-Fen; Du, Shin-Hei; Teng, Shih-Hua; Liao, Chun-Hsing; Sheng, Wang-Hui; Teng, Lee-Jene

    2014-07-01

    We evaluated whether the Bruker Biotyper matrix-associated laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) system provides accurate species-level identifications of 147 isolates of aerobically growing Gram-positive rods (GPRs). The bacterial isolates included Nocardia (n = 74), Listeria (n = 39), Kocuria (n = 15), Rhodococcus (n = 10), Gordonia (n = 7), and Tsukamurella (n = 2) species, which had all been identified by conventional methods, molecular methods, or both. In total, 89.7% of Listeria monocytogenes, 80% of Rhodococcus species, 26.7% of Kocuria species, and 14.9% of Nocardia species (n = 11, all N. nova and N. otitidiscaviarum) were correctly identified to the species level (score values, ≥ 2.0). A clustering analysis of spectra generated by the Bruker Biotyper identified six clusters of Nocardia species, i.e., cluster 1 (N. cyriacigeorgica), cluster 2 (N. brasiliensis), cluster 3 (N. farcinica), cluster 4 (N. puris), cluster 5 (N. asiatica), and cluster 6 (N. beijingensis), based on the six peaks generated by ClinProTools with the genetic algorithm, i.e., m/z 2,774.477 (cluster 1), m/z 5,389.792 (cluster 2), m/z 6,505.720 (cluster 3), m/z 5,428.795 (cluster 4), m/z 6,525.326 (cluster 5), and m/z 16,085.216 (cluster 6). Two clusters of L. monocytogenes spectra were also found according to the five peaks, i.e., m/z 5,594.85, m/z 6,184.39, and m/z 11,187.31, for cluster 1 (serotype 1/2a) and m/z 5,601.21 and m/z 11,199.33 for cluster 2 (serotypes 1/2b and 4b). The Bruker Biotyper system was unable to accurately identify Nocardia (except for N. nova and N. otitidiscaviarum), Tsukamurella, or Gordonia species. Continuous expansion of the MALDI-TOF MS databases to include more GPRs is necessary. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  11. Bruker Biotyper Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry System for Identification of Nocardia, Rhodococcus, Kocuria, Gordonia, Tsukamurella, and Listeria Species

    PubMed Central

    Lee, Tai-Fen; Du, Shin-Hei; Teng, Shih-Hua; Liao, Chun-Hsing; Sheng, Wang-Hui; Teng, Lee-Jene

    2014-01-01

    We evaluated whether the Bruker Biotyper matrix-associated laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) system provides accurate species-level identifications of 147 isolates of aerobically growing Gram-positive rods (GPRs). The bacterial isolates included Nocardia (n = 74), Listeria (n = 39), Kocuria (n = 15), Rhodococcus (n = 10), Gordonia (n = 7), and Tsukamurella (n = 2) species, which had all been identified by conventional methods, molecular methods, or both. In total, 89.7% of Listeria monocytogenes, 80% of Rhodococcus species, 26.7% of Kocuria species, and 14.9% of Nocardia species (n = 11, all N. nova and N. otitidiscaviarum) were correctly identified to the species level (score values, ≥2.0). A clustering analysis of spectra generated by the Bruker Biotyper identified six clusters of Nocardia species, i.e., cluster 1 (N. cyriacigeorgica), cluster 2 (N. brasiliensis), cluster 3 (N. farcinica), cluster 4 (N. puris), cluster 5 (N. asiatica), and cluster 6 (N. beijingensis), based on the six peaks generated by ClinProTools with the genetic algorithm, i.e., m/z 2,774.477 (cluster 1), m/z 5,389.792 (cluster 2), m/z 6,505.720 (cluster 3), m/z 5,428.795 (cluster 4), m/z 6,525.326 (cluster 5), and m/z 16,085.216 (cluster 6). Two clusters of L. monocytogenes spectra were also found according to the five peaks, i.e., m/z 5,594.85, m/z 6,184.39, and m/z 11,187.31, for cluster 1 (serotype 1/2a) and m/z 5,601.21 and m/z 11,199.33 for cluster 2 (serotypes 1/2b and 4b). The Bruker Biotyper system was unable to accurately identify Nocardia (except for N. nova and N. otitidiscaviarum), Tsukamurella, or Gordonia species. Continuous expansion of the MALDI-TOF MS databases to include more GPRs is necessary. PMID:24759706

  12. Rhodococcus aetherivorans BCP1 as cell factory for the production of intracellular tellurium nanorods under aerobic conditions.

    PubMed

    Presentato, Alessandro; Piacenza, Elena; Anikovskiy, Max; Cappelletti, Martina; Zannoni, Davide; Turner, Raymond J

    2016-12-15

    Tellurite (TeO 3 2- ) is recognized as a toxic oxyanion to living organisms. However, mainly anaerobic or facultative-anaerobic microorganisms are able to tolerate and convert TeO 3 2- into the less toxic and available form of elemental Tellurium (Te 0 ), producing Te-deposits or Te-nanostructures. The use of TeO 3 2- -reducing bacteria can lead to the decontamination of polluted environments and the development of "green-synthesis" methods for the production of nanomaterials. In this study, the tolerance and the consumption of TeO 3 2- have been investigated, along with the production and characterization of Te-nanorods by Rhodococcus aetherivorans BCP1 grown under aerobic conditions. Aerobically grown BCP1 cells showed high tolerance towards TeO 3 2- with a minimal inhibitory concentration (MIC) of 2800 μg/mL (11.2 mM). TeO 3 2- consumption has been evaluated exposing the BCP1 strain to either 100 or 500 μg/mL of K 2 TeO 3 (unconditioned growth) or after re-inoculation in fresh medium with new addition of K 2 TeO 3 (conditioned growth). A complete consumption of TeO 3 2- at 100 μg/mL was observed under both growth conditions, although conditioned cells showed higher consumption rate. Unconditioned and conditioned BCP1 cells partially consumed TeO 3 2- at 500 μg/mL. However, a greater TeO 3 2- consumption was observed with conditioned cells. The production of intracellular, not aggregated and rod-shaped Te-nanostructures (TeNRs) was observed as a consequence of TeO 3 2- reduction. Extracted TeNRs appear to be embedded in an organic surrounding material, as suggested by the chemical-physical characterization. Moreover, we observed longer TeNRs depending on either the concentration of precursor (100 or 500 μg/mL of K 2 TeO 3 ) or the growth conditions (unconditioned or conditioned grown cells). Rhodococcus aetherivorans BCP1 is able to tolerate high concentrations of TeO 3 2- during its growth under aerobic conditions. Moreover, compared to unconditioned

  13. RETRACTED: Aerobic degradation of 4-nitroaniline (4-NA) via novel degradation intermediates by Rhodococcus sp. strain FK48.

    PubMed

    Khan, Fazlurrahman; Pandey, Janmejay; Vikram, Surendra; Pal, Deepika; Cameotra, Swaranjit Singh

    2013-06-15

    An aerobic strain, Rhodococcus sp. strain FK48, capable of growing on 4-nitroaniline (4-NA) as the sole source of carbon, nitrogen, and energy has been isolated from enrichment cultures originating from contaminated soil samples. During growth studies with non- induced cells of FK48 catalyzed sequential denitrification (release of NO₂ substituent) and deamination (release of NH₂ substituent) of 4-NA. However, none of the degradation intermediates could be identified with growth studies. During resting cell studies, 4-NA-induced cells of strain FK48 transformed 4-NA via a previously unknown pathway which involved oxidative hydroxylation leading to formation of 4-aminophenol (4-AP). Subsequent degradation involved oxidated deamination of 4-AP and formation of 1,2,4-benzenetriol (BT) as the major identified terminal aromatic intermediate. Identification of these intermediates was ascertained by HPLC, and GC-MS analyses of the culture supernatants. 4-NA-induced cells of strain FK48 showed positive activity for 1,2,4-benzenetriol dioxygenase in spectrophotometric assay. This is the first conclusive study on aerobic microbial degradation of 4-NA and elucidation of corresponding metabolic pathway. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Improvement of Biodesulfurization Rate of Alginate Immobilized Rhodococcus erythropolis R1

    PubMed Central

    Derikvand, Peyman; Etemadifar, Zahra

    2014-01-01

    Background: Sulfur oxides released from the burning of oil causes severe environmental pollution. The sulfur can be removed via the 4S pathway in biodesulfurization (BDS). Immobilization approaches have been developed to prevent cell contamination of oil during the BDS process. Objectives: The encapsulation of Rhodococcus erythropolis R1 in calcium alginate beads was studied in order to enhance conversion of dibenzothiophene (DBT) to 2-hydroxy biphenyl (2-HBP) as the final product. Also the effect of different factors on the BDS process was investigated. Materials and Methods: Calcium alginate capsules were prepared using peristaltic pumps with different needle sizes to control the beads sizes. Scanning electron microscopy and flow cytometry methods were used to study the distribution and viability of encapsulated cells, respectively. Two non-ionic surfactants and also nano Ƴ-Al2O3were used with the ratio of 0.5% (v/v) and 1:5 (v/v) respectively to investigate their BDS efficiency. In addition, the effect of different bead sizes and different concentrations of sodium alginate in BDS activity was studied. Results: The 2% (w/v) sodium alginate beads with 1.5mm size were found to be the optimum for beads stability and efficient 2-HBP production. The viability of encapsulated cells decreased by 12% after 20 h of desulfurization, compared to free cells. Adding the non-ionic surfactants markedly enhanced the rate of BDS, because of increasing mass transfer of DBT to the gel matrix. In addition, Span 80 was more effective than Tween 80. The nanoƳ-Al2O3 particles could increase BDS rate by up to two-folds greater than that of the control beads. Conclusions: The nano Ƴ-Al2O3 can improve the immobilized biocatalyst for excellent efficiency of DBT desulfurization. Also the BDS activity can be enhanced by setting the other explained factors at optimum levels. PMID:25147685

  15. Infection by Rhodococcus fascians maintains cotyledons as a sink tissue for the pathogen

    PubMed Central

    Dhandapani, Pragatheswari; Song, Jiancheng; Novak, Ondrej

    2017-01-01

    Background and Aims Pisum sativum L. (pea) seed is a source of carbohydrate and protein for the developing plant. By studying pea seeds inoculated by the cytokinin-producing bacterium, Rhodococcus fascians, we sought to determine the impact of both an epiphytic (avirulent) strain and a pathogenic strain on source–sink activity within the cotyledons during and following germination. Methods Bacterial spread was monitored microscopically, and real-time reverse transcription–quantitative PCR was used to determine the expression of cytokinin biosynthesis, degradation and response regulator gene family members, along with expression of family members of SWEET, SUT, CWINV and AAP genes – gene families identified initially in pea by transcriptomic analysis. The endogenous cytokinin content was also determined. Key Results The cotyledons infected by the virulent strain remained intact and turned green, while multiple shoots were formed and root growth was reduced. The epiphytic strain had no such marked impact. Isopentenyl adenine was elevated in the cotyledons infected by the virulent strain. Strong expression of RfIPT, RfLOG and RfCKX was detected in the cotyledons infected by the virulent strain throughout the experiment, with elevated expression also observed for PsSWEET, PsSUT and PsINV gene family members. The epiphytic strain had some impact on the expression of these genes, especially at the later stages of reserve mobilization from the cotyledons. Conclusions The pathogenic strain retained the cotyledons as a sink tissue for the pathogen rather than the cotyledon converting completely to a source tissue for the germinating plant. We suggest that the interaction of cytokinins, CWINVs and SWEETs may lead to the loss of apical dominance and the appearance of multiple shoots. PMID:27864224

  16. Insight into Cr6+ reduction efficiency of Rhodococcus erythropolis isolated from coalmine waste water.

    PubMed

    Banerjee, Soumya; Joshi, S R; Mandal, Tamal; Halder, Gopinath

    2017-01-01

    A microbial treatment of Cr 6+ contaminated wastewater with a chromium reducing bacteria isolated from coal mine area was investigated. In a series of batch study metal removal was executed under different parametric conditions which include pH (2-7), temperature (20-50 °C), initial Cr 6+ concentration (1-100 mg/L), substrate utilization and its overall effect on biomass generation. Impact of oxygen availability was checked at different agitation speed and its role on the remedial process. Liquid phase reduction of Cr 6+ was measured in terms of substrate reduction and total biomass yield. The bacterium species isolated was able to tolerate Cr 6+ over a wide range from 1 to 100 mg/L before it reached minimum inhibition concentration. Apart from Cr 6+ , the bacterial isolate showed tolerance towards Fe, As, Cu, Ag, Zn, Mn, Mg and Pb. Removal mechanism adopted by the bacterium recommended that it employed accumulation of Cr 6+ as Cr 3+ both within and outside the cell. Classical Monod equation was used to determine the biokinetics of the bacterial isolate along with the interference of metal ion concentration and substrate utilization. Cr 6+ removal was found prominent even in bimetallic solutions. The bacterial isolate was confirmed to be Rhodococcus erythopolis by 16s rRNA molecular characterization. Thus the bacterial isolate obtained from the coal mine area proved to be a potential agent for microbial remediation of Cr 6+ laden waste water. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Oral Administration of Electron-Beam Inactivated Rhodococcus equi Failed to Protect Foals against Intrabronchial Infection with Live, Virulent R. equi

    PubMed Central

    Rocha, Joana N.; Cohen, Noah D.; Bordin, Angela I.; Brake, Courtney N.; Giguère, Steeve; Coleman, Michelle C.; Alaniz, Robert C.; Lawhon, Sara D.; Mwangi, Waithaka; Pillai, Suresh D.

    2016-01-01

    There is currently no licensed vaccine that protects foals against Rhodococcus equi–induced pneumonia. Oral administration of live, virulent R. equi to neonatal foals has been demonstrated to protect against subsequent intrabronchial challenge with virulent R. equi. Electron beam (eBeam)-inactivated R. equi are structurally intact and have been demonstrated to be immunogenic when administered orally to neonatal foals. Thus, we investigated whether eBeam inactivated R. equi could protect foals against developing pneumonia after experimental infection with live, virulent R. equi. Foals (n = 8) were vaccinated by gavaging with eBeam-inactivated R. equi at ages 2, 7, and 14 days, or gavaged with equal volume of saline solution (n = 4), and subsequently infected intrabronchially with live, virulent R. equi at age 21 days. The proportion of vaccinated foals that developed pneumonia following challenge was similar among the vaccinated (7/8; 88%) and unvaccinated foals (3/4; 75%). This vaccination regimen did not appear to be strongly immunogenic in foals. Alternative dosing regimens or routes of administration need further investigation and may prove to be immunogenic and protective. PMID:26828865

  18. Degradation of 17α-methyltestosterone by Rhodococcus sp. and Nocardioides sp. isolated from a masculinizing pond of Nile tilapia fry.

    PubMed

    Homklin, Supreeda; Ong, Say Kee; Limpiyakorn, Tawan

    2012-06-30

    17α-Methyltestosterone (MT), a synthetic anabolic androgenic steroid, is widely used in aquafarming for the production of an all male fish population such as Nile tilapia. This study isolated, identified and characterized MT-degrading bacteria in the sediment and water from a masculinizing pond of Nile tilapia fry. Based on the phylogeny, physiological properties and cell morphology, the three isolated MT-degrading bacteria were related closely to Rhodococcus equi, Nocardioides aromaticivorans, and Nocardioides nitrophenolicus. Growth of the three isolated strains was found to be inhibited for MT concentrations in the range of 1.0-10mg/L. The inhibition of cell growth was found to be modeled using the Haldane's substrate inhibition model. The kinetic constants ranged from 0.13 to 0.19h(-1) for μ(max), 0.7-24.8mg/L for K(s) and 19.6-76.2mg/L for K(i). Androgenic activity using β-galactosidase assay showed that all strains degraded MT to the products with no androgenic potency. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Biodegradation of bis(1-chloro-2-propyl) ether via initial ether scission and subsequent dehalogenation by Rhodococcus sp. strain DTB.

    PubMed

    Moreno Horn, Marcus; Garbe, Leif-Alexander; Tressl, Roland; Adrian, Lorenz; Görisch, Helmut

    2003-04-01

    Rhodococcus sp. strain DTB (DSM 44534) grows on bis(1-chloro-2-propyl) ether (DDE) as sole source of carbon and energy. The non-chlorinated diisopropyl ether and bis(1-hydroxy-2-propyl) ether, however, did not serve as substrates. In ether degradation experiments with dense cell suspensions, 1-chloro-2-propanol and chloroacetone were formed, which indicated that scission of the ether bond is the first step while dehalogenation of the chlorinated C(3)-compounds occurs at a later stage of the degradation pathway. Inhibition of ether scission by methimazole suggested that the first step in degradation is catalyzed by a flavin-dependent enzyme activity. The non-chlorinated compounds 1,2-propanediol, hydroxyacetone, lactate, pyruvate, 1-propanol, propanal, and propionate also supported growth, which suggested that the intermediates 1,2-propanediol and hydroxyacetone are converted to pyruvate or to propionate, which can be channeled into the citric acid cycle by a number of routes. Total release of chloride and growth-yield experiments with DDE and non-chlorinated C(3)-compounds suggested complete biodegradation of the chlorinated ether.

  20. Constitutive expression of catABC genes in the aniline-assimilating bacterium Rhodococcus species AN-22: production, purification, characterization and gene analysis of CatA, CatB and CatC

    PubMed Central

    Matsumura, Eitaro; Sakai, Masashi; Hayashi, Katsuaki; Murakami, Shuichiro; Takenaka, Shinji; Aoki, Kenji

    2005-01-01

    The aniline-assimilating bacterium Rhodococcus sp. AN-22 was found to constitutively synthesize CatB (cis,cis-muconate cycloisomerase) and CatC (muconolactone isomerase) in its cells growing on non-aromatic substrates, in addition to the previously reported CatA (catechol 1,2-dioxygenase). The bacterium maintained the specific activity of the three enzymes at an almost equal level during cultivation on succinate. CatB and CatC were purified to homogeneity and characterized. CatB was a monomer with a molecular mass of 44 kDa. The enzyme was activated by Mn2+, Co2+ and Mg2+. Native CatC was a homo-octamer with a molecular mass of 100 kDa. The enzyme was stable between pH 7.0 and 10.5 and was resistant to heating up to 90 °C. Genes coding for CatA, CatB and CatC were cloned and named catA, catB and catC respectively. The catABC genes were transcribed as one operon. The deduced amino acid sequences of CatA, CatB and CatC showed high identities with those from other Gram-positive micro-organisms. A regulator gene such as catR encoding a regulatory protein was not observed around the cat gene cluster of Rhodococcus sp. AN-22, but a possible relic of catR was found in the upstream region of catA. Reverse transcriptase-PCR and primer extension analyses showed that the transcriptional start site of the cat gene cluster was located 891 bp upstream of the catA initiation codon in the AN-22 strain growing on both aniline and succinate. Based on these data, we concluded that the bacterium constitutively transcribed the catABC genes and translated its mRNA into CatA, CatB and CatC. PMID:16156722

  1. Characterization of the Rhodococcus sp. MK1 strain and its pilot application for bioremediation of diesel oil-contaminated soil.

    PubMed

    Kis, Ágnes Erdeiné; Laczi, Krisztián; Zsíros, Szilvia; Kós, Péter; Tengölics, Roland; Bounedjoum, Naila; Kovács, Tamás; Rákhely, Gábor; Perei, Katalin

    2017-12-01

    Petroleum hydrocarbons and derivatives are widespread contaminants in both aquifers and soil, their elimination is in the primary focus of environmental studies. Microorganisms are key components in biological removal of pollutants. Strains capable to utilize hydrocarbons usually appear at the contaminated sites, but their metabolic activities are often restricted by the lack of nutrients and/or they can only utilize one or two components of a mixture. We isolated a novel Rhodococcus sp. MK1 strain capable to degrade the components of diesel oil simultaneously. The draft genome of the strain was determined and besides the chromosome, the presence of one plasmid could be revealed. Numerous routes for oxidation of aliphatic and aromatic compounds were identified. The strain was tested in ex situ applications aiming to compare alternative solutions for microbial degradation of hydrocarbons. The results of bioaugmentation and biostimulation experiments clearly demonstrated that - in certain cases - the indigenous microbial community could be exploited for bioremediation of oil-contaminated soils. Biostimulation seems to be efficient for removal of aged contaminations at lower concentration range, whereas bioaugmentation is necessary for the treatment of freshly and highly polluted sites.

  2. Optimization of biosurfactant production in soybean oil by rhodococcus rhodochrous and its utilization in remediation of cadmium-contaminated solution

    NASA Astrophysics Data System (ADS)

    Suryanti, Venty; Hastuti, Sri; Andriani, Dewi

    2016-02-01

    Biosurfactant production by Rhodococcus rhodochrous in soybean oil was developed, where the effect of medium composition and fermentation time were evaluated. The optimum condition for biosurfactant production was achieved when a medium containing 30 g/L TSB (tryptic soy broth) and 20% v/v soybean oil was used as media with 7 days of fermentation. Biosurfactant was identified as glycolipids type biosurfactant which had critical micelle concentration (CMC) value of 896 mg/L. The biosurfactant had oil in water emulsion type and was able to reduce the surface tension of palm oil about 52% which could stabilize the emulsion up to 12 days. The batch removal of cadmium metal ion by crude and partially purified biosurfactants have been examined from synthetic aqueous solution at pH 6. The results exhibited that the crude biosurfactant had a much better adsorption ability of Cd(II) than that of partially purified biosurfactant. However, it was found that there was no significant difference in the adsorption of Cd(II) with 5 and 10 minutes of contact time. The results indicated that the biosurfactant could be used in remediation of heavy metals from contaminated aqueous solution.

  3. 2-DE Compared with iTRAQ-based Proteomic Analysis of the Functional Regulation of Proteins in Rhodococcus sp. BAP-1 Response to Fluoranthene

    NASA Astrophysics Data System (ADS)

    Xu, Jie; Wang, Hongqi; Kong, Dekang

    2018-01-01

    Although the degradation pathways of Polycyclic aromatic hydrocarbons (PAHs) have been extensively studied in many bacteria, the variations in the expression levels of the key functional regulation of proteins during catabolism are still not quantitatively understood. In this study, we compared two proteomic methods, that one is two-dimensional gel electrophoresis (2-DE), a traditional widely used way and the other is isobaric tags for relative and absolute quantization (iTRAQ), an innovative approach, in order to analyze the functional regulation at the protein level in high effective fluoranthene-degrading bacteria named Rhodococcus sp. BAP-1. The number of differentially expressed proteins identified using iTRAQ is much larger than employing 2-DE. Response to fluoranthene, the key over expressed proteins in BAP-1 were NADPH-dependent FMN reductase, 30S ribosomal protein S2, S-ribosylhomocysteinase, etc.; the significant down-regulated proteins were cytochrome ubiquinol oxidase subunit, NAD(P) transhydrogenase subunit alpha, 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase, et al.

  4. Seroepidemiological survey of Rhodococcus equi infection in asymptomatic horses and donkeys from southeast Turkey.

    PubMed

    Tel, O Y; Arserim, N B; Keskin, O

    2011-12-01

    In order to assess the level of Rhodococcus equi infection in southeast Turkey, 679 sera from healthy foals and adult horses and 78 sera from donkeys were tested by indirect ELISA using a R. equi reference strain (ATCC 33701) as antigen. Eighty (11.7%) sera from horses and 9 (11.5%) sera from donkeys with titres >0.85 were positive. The prevalence of seropositive horses in Sanliurfa Province was higher than in Diyarbakir Province; 56 (13.9%) horses in Sanliurfa Province and 24 (8.7%) horses in Diyarbakir Province were defined as seropositive. In Sanliurfa Province 14.5% of female (n=343) and 10.1% of male (n = 59) horses tested were defined as seropositive, while in Diyarbakir Province more males (11.4%, n=114) were seropositive than females (6.7%, n=163). Horses 1 to 5 years of age were found to have the highest seropositivity rate in both provinces. A total of 78 sera from donkeys were investigated in Sanliurfa Province, of which 9 (11.5%) were positive by ELISA. Among the 9 positive sera, 6 (12.8%) were from donkeys 1-5 years old and 3 (13.6%) were from donkeys >5 years of age. No positive sera were found in donkeys less than 1 year old. Five (12.5%) sera of females and 4 (10.5%) sera of males tested were positive. These results indicate the existence of R. equi in the horse populations in Sanliurfa and Diyarbakir Provinces. Similar infection rates were found for donkeys in Sanliurfa. This suggests the importance of serological surveys to diagnose R. equi infection in the region and to prevent the zoonotic risk.

  5. Engineering xylose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production

    PubMed Central

    2013-01-01

    Background There has been a great deal of interest in fuel productions from lignocellulosic biomass to minimize the conflict between food and fuel use. The bioconversion of xylose, which is the second most abundant sugar present after glucose in lignocellulosic biomass, is important for the development of cost effective bioprocesses to fuels. Rhodococcus opacus PD630, an oleaginous bacterium, accumulates large amounts of triacylglycerols (TAGs), which can be processed into advanced liquid fuels. However, R. opacus PD630 does not metabolize xylose. Results We generated DNA libraries from a Streptomyces bacterium capable of utilizing xylose and introduced them into R. opacus PD630. Xsp8, one of the engineered strains, was capable of growing on up to 180 g L-1 of xylose. Xsp8 grown in batch-cultures derived from unbleached kraft hardwood pulp hydrolysate containing 70 g L-1 total sugars was able to completely and simultaneously utilize xylose and glucose present in the lignocellulosic feedstock, and yielded 11.0 g L-1 of TAGs as fatty acids, corresponding to 45.8% of the cell dry weight. The yield of total fatty acids per gram of sugars consumed was 0.178 g, which consisted primarily of palmitic acid and oleic acid. The engineered strain Xsp8 was introduced with two heterologous genes from Streptomyces: xylA, encoding xylose isomerase, and xylB, encoding xylulokinase. We further demonstrated that in addition to the introduction and the concomitant expression of heterologous xylA and xylB genes, there is another molecular target in the R. opacus genome which fully enables the functionality of xylA and xylB genes to generate the robust xylose-fermenting strain capable of efficiently producing TAGs at high xylose concentrations. Conclusion We successfully engineered a R. opacus strain that is capable of completely utilizing high concentrations of xylose or mixed xylose/glucose simultaneously, and substantiated its suitability for TAG production. This study demonstrates

  6. Portable exhausters POR-004 SKID B, POR-005 SKID C, POR-006 SKID D storage plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, O.D.

    1997-09-04

    This document provides a storage plan for portable exhausters POR-004 SKID B, POR-005 SKID C, AND POR-006 SKID D. The exhausters will be stored until they are needed by the TWRS (Tank Waste Remediation Systems) Saltwell Pumping Program. The storage plan provides criteria for portable exhauster storage, periodic inspections during storage, and retrieval from storage.

  7. Electrical resistivity tomography to monitor enhanced biodegradation of hydrocarbons with Rhodococcus erythropolis T902.1 at a pilot scale.

    PubMed

    Masy, Thibaut; Caterina, David; Tromme, Olivier; Lavigne, Benoît; Thonart, Philippe; Hiligsmann, Serge; Nguyen, Frédéric

    2016-01-01

    Petroleum hydrocarbons (HC) represent the most widespread contaminants and in-situ bioremediation remains a competitive treatment in terms of cost and environmental concerns. However, the efficiency of such a technique (by biostimulation or bioaugmentation) strongly depends on the environment affected and is still difficult to predict a priori. In order to overcome these uncertainties, Electrical Resistivity Tomography (ERT) appears as a valuable non-invasive tool to detect soil heterogeneities and to monitor biodegradation. The main objective of this study was to isolate an electrical signal linked to an enhanced bacterial activity with ERT, in an aged HC-contaminated clay loam soil. To achieve this, a pilot tank was built to mimic field conditions. Compared to a first insufficient biostimulation phase, bioaugmentation with Rhodococcus erythropolis T902.1 led to a HC depletion of almost 80% (6900 to 1600ppm) in 3months in the center of the contaminated zone, where pollutants were less bioavailable. In the meantime, lithological heterogeneities and microbial activities (growth and biosurfactant production) were successively discriminated by ERT images. In the future, this cost-effective technique should be more and more transferred to the field in order to monitor biodegradation processes and assist in selecting the most appropriate remediation technique. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Regulation of plasmid-encoded isoprene metabolism in Rhodococcus, a representative of an important link in the global isoprene cycle

    PubMed Central

    Crombie, Andrew T; Khawand, Myriam El; Rhodius, Virgil A; Fengler, Kevin A; Miller, Michael C; Whited, Gregg M; McGenity, Terry J; Murrell, J Colin

    2015-01-01

    Emissions of biogenic volatile organic compounds (VOCs) form an important part of the global carbon cycle, comprising a significant proportion of net ecosystem productivity. They impact atmospheric chemistry and contribute directly and indirectly to greenhouse gases. Isoprene, emitted largely from plants, comprises one third of total VOCs, yet in contrast to methane, which is released in similar quantities, we know little of its biodegradation. Here, we report the genome of an isoprene degrading isolate, Rhodococcus sp. AD45, and, using mutagenesis shows that a plasmid-encoded soluble di-iron centre isoprene monooxygenase (IsoMO) is essential for isoprene metabolism. Using RNA sequencing (RNAseq) to analyse cells exposed to isoprene or epoxyisoprene in a substrate-switch time-course experiment, we show that transcripts from 22 contiguous genes, including those encoding IsoMO, were highly upregulated, becoming among the most abundant in the cell and comprising over 25% of the entire transcriptome. Analysis of gene transcription in the wild type and an IsoMO-disrupted mutant strain showed that epoxyisoprene, or a subsequent product of isoprene metabolism, rather than isoprene itself, was the inducing molecule. We provide a foundation of molecular data for future research on the environmental biological consumption of this important, climate-active compound. PMID:25727256

  9. Electrical resistivity tomography to monitor enhanced biodegradation of hydrocarbons with Rhodococcus erythropolis T902.1 at a pilot scale

    NASA Astrophysics Data System (ADS)

    Masy, Thibaut; Caterina, David; Tromme, Olivier; Lavigne, Benoît; Thonart, Philippe; Hiligsmann, Serge; Nguyen, Frédéric

    2016-01-01

    Petroleum hydrocarbons (HC) represent the most widespread contaminants and in-situ bioremediation remains a competitive treatment in terms of cost and environmental concerns. However, the efficiency of such a technique (by biostimulation or bioaugmentation) strongly depends on the environment affected and is still difficult to predict a priori. In order to overcome these uncertainties, Electrical Resistivity Tomography (ERT) appears as a valuable non-invasive tool to detect soil heterogeneities and to monitor biodegradation. The main objective of this study was to isolate an electrical signal linked to an enhanced bacterial activity with ERT, in an aged HC-contaminated clay loam soil. To achieve this, a pilot tank was built to mimic field conditions. Compared to a first insufficient biostimulation phase, bioaugmentation with Rhodococcus erythropolis T902.1 led to a HC depletion of almost 80% (6900 to 1600 ppm) in 3 months in the center of the contaminated zone, where pollutants were less bioavailable. In the meantime, lithological heterogeneities and microbial activities (growth and biosurfactant production) were successively discriminated by ERT images. In the future, this cost-effective technique should be more and more transferred to the field in order to monitor biodegradation processes and assist in selecting the most appropriate remediation technique.

  10. Enantioselective Metabolism of Chiral 3-Phenylbutyric Acid, an Intermediate of Linear Alkylbenzene Degradation, by Rhodococcus rhodochrous PB1

    PubMed Central

    Simoni, S.; Klinke, S.; Zipper, C.; Angst, W.; Kohler, H. E.

    1996-01-01

    Rhodococcus rhodochrous PB1 was isolated from compost soil by selective culture with racemic 3-phenylbutyric acid as the sole carbon and energy source. Growth experiments with the single pure enantiomers as well as with the racemate showed that only one of the two enantiomers, (R)-3-phenylbutyric acid, supported growth of strain PB1. Nevertheless, (S)-3-phenylbutyric acid was cometabolically transformed to, presumably, (S)-3-(2,3-dihydroxyphenyl)butyric acid (the absolute configuration at the C-3 atom is not known yet) by (R)-3-phenylbutyric acid-grown cells of strain PB1, as shown by (sup1)H nuclear magnetic resonance spectroscopy of the partially purified compound and gas chromatography-mass spectrometry analysis of the trimethylsilyl derivative. Oxygen uptake rates suggest that either 3-phenylpropionic acid or cinnamic acid (trans-3-phenyl-2-propenoic acid) is the substrate for aromatic ring hydroxylation. This view is substantiated by the fact that 3-(2,3-dihydroxyphenyl)propionic acid was a substrate for meta cleavage in cell extracts of (R)-3-phenylbutyric acid-grown cells of strain PB1. Gas chromatography-mass spectrometry analysis of trimethylsilane-treated ethyl acetate extracts of incubation mixtures showed that both the meta-cleavage product, 2-hydroxy-6-oxo-2,4-nonadiene-1,9-dicarboxylic acid, and succinate, a hydrolysis product thereof, were formed during such incubations. PMID:16535265

  11. Rhodococcus erythropolis DCL14 Contains a Novel Degradation Pathway for Limonene

    PubMed Central

    van der Werf, Mariët J.; Swarts, Henk J.; de Bont, Jan A. M.

    1999-01-01

    Strain DCL14, which is able to grow on limonene as a sole source of carbon and energy, was isolated from a freshwater sediment sample. This organism was identified as a strain of Rhodococcus erythropolis by chemotaxonomic and genetic studies. R. erythropolis DCL14 also assimilated the terpenes limonene-1,2-epoxide, limonene-1,2-diol, carveol, carvone, and (−)-menthol, while perillyl alcohol was not utilized as a carbon and energy source. Induction tests with cells grown on limonene revealed that the oxygen consumption rates with limonene-1,2-epoxide, limonene-1,2-diol, 1-hydroxy-2-oxolimonene, and carveol were high. Limonene-induced cells of R. erythropolis DCL14 contained the following four novel enzymatic activities involved in the limonene degradation pathway of this microorganism: a flavin adenine dinucleotide- and NADH-dependent limonene 1,2-monooxygenase activity, a cofactor-independent limonene-1,2-epoxide hydrolase activity, a dichlorophenolindophenol-dependent limonene-1,2-diol dehydrogenase activity, and an NADPH-dependent 1-hydroxy-2-oxolimonene 1,2-monooxygenase activity. Product accumulation studies showed that (1S,2S,4R)-limonene-1,2-diol, (1S,4R)-1-hydroxy-2-oxolimonene, and (3R)-3-isopropenyl-6-oxoheptanoate were intermediates in the (4R)-limonene degradation pathway. The opposite enantiomers [(1R,2R,4S)-limonene-1,2-diol, (1R,4S)-1-hydroxy-2-oxolimonene, and (3S)-3-isopropenyl-6-oxoheptanoate] were found in the (4S)-limonene degradation pathway, while accumulation of (1R,2S,4S)-limonene-1,2-diol from (4S)-limonene was also observed. These results show that R. erythropolis DCL14 metabolizes both enantiomers of limonene via a novel degradation pathway that starts with epoxidation at the 1,2 double bond forming limonene-1,2-epoxide. This epoxide is subsequently converted to limonene-1,2-diol, 1-hydroxy-2-oxolimonene, and 7-hydroxy-4-isopropenyl-7-methyl-2-oxo-oxepanone. This lactone spontaneously rearranges to form 3-isopropenyl-6-oxoheptanoate. In

  12. Evaluation of biosurfactants grown in corn oil by Rhodococcus rhodochrous on removing of heavy metal ion from aqueous solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suryanti, Venty, E-mail: venty@mipa.uns.ac.id; Hastuti, Sri; Pujiastuti, Dwi

    The potential application of biosurfactants to remove heavy metal ion from aqueous solution by batch technique was examined. The glycolipids type biosurfactants were grown in a media containing of 20% v/v corn oil with 7 days of fermentation by Rhodococcus rhodochrous. The biosurfactants reduced the surface tension of water of about 51% from 62 mN/m to 30 mN/m. The biosurfactant increased the E24 of water-palm oil emulsion of about 55% from 43% to 97% and could maintain this E24 value of above 50% for up to 9 days. Heavy metal ion removal, in this case cadmium ion, by crude andmore » patially purified biosurfactants has been investigated from aqueous solution at pH 6. Adsorption capacity of Cd(II) ion by crude biosurfactant with 5 and 10 minutes of contact times were 1.74 and 1.82 mg/g, respectively. Additionally, the adsorption capacity of Cd(II) ion by partially purified biosurfactant with 5 and 10 minutes of contact times were 0.79 and 1.34 mg/g, respectively. The results demonstrated that the adsorption capacity of Cd(II) ion by crude biosurfactant was higher than that of by partially purified biosurfactant. The results suggested that the biosurfactant could be used in the removal of heavy metal ions from aqueous solution.« less

  13. A novel method to generate unmarked gene deletions in the intracellular pathogen Rhodococcus equi using 5-fluorocytosine conditional lethality

    PubMed Central

    van der Geize, R.; de Jong, W.; Hessels, G. I.; Grommen, A. W. F.; Jacobs, A. A. C.; Dijkhuizen, L.

    2008-01-01

    A novel method to efficiently generate unmarked in-frame gene deletions in Rhodococcus equi was developed, exploiting the cytotoxic effect of 5-fluorocytosine (5-FC) by the action of cytosine deaminase (CD) and uracil phosphoribosyltransferase (UPRT) enzymes. The opportunistic, intracellular pathogen R. equi is resistant to high concentrations of 5-FC. Introduction of Escherichia coli genes encoding CD and UPRT conferred conditional lethality to R. equi cells incubated with 5-FC. To exemplify the use of the codA::upp cassette as counter-selectable marker, an unmarked in-frame gene deletion mutant of R. equi was constructed. The supA and supB genes, part of a putative cholesterol catabolic gene cluster, were efficiently deleted from the R. equi wild-type genome. Phenotypic analysis of the generated ΔsupAB mutant confirmed that supAB are essential for growth of R. equi on cholesterol. Macrophage survival assays revealed that the ΔsupAB mutant is able to survive and proliferate in macrophages comparable to wild type. Thus, cholesterol metabolism does not appear to be essential for macrophage survival of R. equi. The CD-UPRT based 5-FC counter-selection may become a useful asset in the generation of unmarked in-frame gene deletions in other actinobacteria as well, as actinobacteria generally appear to be 5-FC resistant and 5-FU sensitive. PMID:18984616

  14. Pulmonary disposition of tilmicosin in foals and in vitro activity against Rhodococcus equi and other common equine bacterial pathogens.

    PubMed

    Womble, A; Giguère, S; Murthy, Y V S N; Cox, C; Obare, E

    2006-12-01

    The objectives of this study were to determine the serum and pulmonary disposition of tilmicosin in foals and to investigate the in vitro activity of the drug against Rhodococcus equi and other common bacterial pathogens of horses. A single dose of a new fatty acid salt formulation of tilmicosin (10 mg/kg of body weight) was administered to seven healthy 5- to 8-week-old foals by the intramuscular route. Concentrations of tilmicosin were measured in serum, lung tissue, pulmonary epithelial lining fluid (PELF), bronchoalveolar lavage (BAL) cells, and blood neutrophils. Mean peak tilmicosin concentrations were significantly different between sampling sites with highest concentrations measured in blood neutrophils (66.01+/-15.97 microg/mL) followed by BAL cells (20.1+/-5.1 microg/mL), PELF (2.91+/-1.15 microg/mL), lung tissue (1.90+/-0.65 microg/mL), and serum (0.19+/-0.09 microg/mL). Harmonic mean terminal half-life in lung tissue (193.3 h) was significantly longer than that of PELF (73.3 h), bronchoalveolar cells (62.2 h), neutrophils (47.9 h), and serum (18.4 h). The MIC90 of 56 R. equi isolates was 32 microg/mL. Tilmicosin was active in vitro against most streptococci, Staphylococcus spp., Actinobacillus spp., and Pasteurella spp. The drug was not active against Enterococcus spp., Pseudomonas spp., and Enterobacteriaceae.

  15. Evaluation of biosurfactants grown in corn oil by Rhodococcus rhodochrous on removing of heavy metal ion from aqueous solution

    NASA Astrophysics Data System (ADS)

    Suryanti, Venty; Hastuti, Sri; Pujiastuti, Dwi

    2016-02-01

    The potential application of biosurfactants to remove heavy metal ion from aqueous solution by batch technique was examined. The glycolipids type biosurfactants were grown in a media containing of 20% v/v corn oil with 7 days of fermentation by Rhodococcus rhodochrous. The biosurfactants reduced the surface tension of water of about 51% from 62 mN/m to 30 mN/m. The biosurfactant increased the E24 of water-palm oil emulsion of about 55% from 43% to 97% and could maintain this E24 value of above 50% for up to 9 days. Heavy metal ion removal, in this case cadmium ion, by crude and patially purified biosurfactants has been investigated from aqueous solution at pH 6. Adsorption capacity of Cd(II) ion by crude biosurfactant with 5 and 10 minutes of contact times were 1.74 and 1.82 mg/g, respectively. Additionally, the adsorption capacity of Cd(II) ion by partially purified biosurfactant with 5 and 10 minutes of contact times were 0.79 and 1.34 mg/g, respectively. The results demonstrated that the adsorption capacity of Cd(II) ion by crude biosurfactant was higher than that of by partially purified biosurfactant. The results suggested that the biosurfactant could be used in the removal of heavy metal ions from aqueous solution.

  16. Regulation of plasmid-encoded isoprene metabolism in Rhodococcus, a representative of an important link in the global isoprene cycle.

    PubMed

    Crombie, Andrew T; Khawand, Myriam El; Rhodius, Virgil A; Fengler, Kevin A; Miller, Michael C; Whited, Gregg M; McGenity, Terry J; Murrell, J Colin

    2015-09-01

    Emissions of biogenic volatile organic compounds (VOCs) form an important part of the global carbon cycle, comprising a significant proportion of net ecosystem productivity. They impact atmospheric chemistry and contribute directly and indirectly to greenhouse gases. Isoprene, emitted largely from plants, comprises one third of total VOCs, yet in contrast to methane, which is released in similar quantities, we know little of its biodegradation. Here, we report the genome of an isoprene degrading isolate, Rhodococcus sp. AD45, and, using mutagenesis shows that a plasmid-encoded soluble di-iron centre isoprene monooxygenase (IsoMO) is essential for isoprene metabolism. Using RNA sequencing (RNAseq) to analyse cells exposed to isoprene or epoxyisoprene in a substrate-switch time-course experiment, we show that transcripts from 22 contiguous genes, including those encoding IsoMO, were highly upregulated, becoming among the most abundant in the cell and comprising over 25% of the entire transcriptome. Analysis of gene transcription in the wild type and an IsoMO-disrupted mutant strain showed that epoxyisoprene, or a subsequent product of isoprene metabolism, rather than isoprene itself, was the inducing molecule. We provide a foundation of molecular data for future research on the environmental biological consumption of this important, climate-active compound. © 2015 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Production, Purification, and Identification of Cholest-4-en-3-one Produced by Cholesterol Oxidase from Rhodococcus sp. in Aqueous/Organic Biphasic System.

    PubMed

    Wu, Ke; Li, Wei; Song, Jianrui; Li, Tao

    2015-01-01

    Cholest-4-en-3-one has positive uses against obesity, liver disease, and keratinization. It can be applied in the synthesis of steroid drugs as well. Most related studies are focused on preparation of cholest-4-en-3-one by using whole cells as catalysts, but production of high-quality cholest-4-en-3-one directly from cholesterol oxidase (COD) using an aqueous/organic two-phase system has been rarely explored. This study set up an enzymatic reaction system to produce cholest-4-en-3-one. We developed and optimized the enzymatic reaction system using COD from COX5-6 (a strain of Rhodococcus) instead of whole-cell biocatalyst. This not only simplifies and accelerates the production but also benefits the subsequent separation and purification process. Through extraction, washing, evaporation, column chromatography, and recrystallization, we got cholest-4-en-3-one with purity of 99.78%, which was identified by nuclear magnetic resonance, mass spectroscopy, and infrared spectroscopy. In addition, this optimized process of cholest-4-en-3-one production and purification can be easily scaled up for industrial production, which can largely decrease the cost and guarantee the purity of the product.

  18. Production, Purification, and Identification of Cholest-4-en-3-one Produced by Cholesterol Oxidase from Rhodococcus sp. in Aqueous/Organic Biphasic System

    PubMed Central

    Wu, Ke; Li, Wei; Song, Jianrui; Li, Tao

    2015-01-01

    Cholest-4-en-3-one has positive uses against obesity, liver disease, and keratinization. It can be applied in the synthesis of steroid drugs as well. Most related studies are focused on preparation of cholest-4-en-3-one by using whole cells as catalysts, but production of high-quality cholest-4-en-3-one directly from cholesterol oxidase (COD) using an aqueous/organic two-phase system has been rarely explored. This study set up an enzymatic reaction system to produce cholest-4-en-3-one. We developed and optimized the enzymatic reaction system using COD from COX5-6 (a strain of Rhodococcus) instead of whole-cell biocatalyst. This not only simplifies and accelerates the production but also benefits the subsequent separation and purification process. Through extraction, washing, evaporation, column chromatography, and recrystallization, we got cholest-4-en-3-one with purity of 99.78%, which was identified by nuclear magnetic resonance, mass spectroscopy, and infrared spectroscopy. In addition, this optimized process of cholest-4-en-3-one production and purification can be easily scaled up for industrial production, which can largely decrease the cost and guarantee the purity of the product. PMID:25733914

  19. Transcriptomic Assessment of Isozymes in the Biphenyl Pathway of Rhodococcus sp. Strain RHA1†

    PubMed Central

    Gonçalves, Edmilson R.; Hara, Hirofumi; Miyazawa, Daisuke; Davies, Julian E.; Eltis, Lindsay D.; Mohn, William W.

    2006-01-01

    Rhodococcus sp. RHA1 grows on a broad range of aromatic compounds and vigorously degrades polychlorinated biphenyls (PCBs). Previous work identified RHA1 genes encoding multiple isozymes for most of the seven steps of the biphenyl (BPH) pathway, provided evidence for coexpression of some of these isozymes, and indicated the involvement of some of these enzymes in the degradation of BPH, ethylbenzene (ETB), and PCBs. To investigate the expression of these isozymes and better understand how they contribute to the robust degradative capacity of RHA1, we comprehensively analyzed the 9.7-Mb genome of RHA1 for BPH pathway genes and characterized the transcriptome of RHA1 growing on benzoate (BEN), BPH, and ETB. Sequence analyses revealed 54 potential BPH pathway genes, including 28 not previously reported. Transcriptomic analysis with a DNA microarray containing 70-mer probes for 8,213 RHA1 genes revealed a suite of 320 genes of diverse functions that were upregulated during growth both on BPH and on ETB, relative to growth on the control substrate, pyruvate. By contrast, only 65 genes were upregulated during growth on BEN. Quantitative PCR assays confirmed microarray results for selected genes and indicated that some of the catabolic genes were upregulated over 10,000-fold. Our analysis suggests that up to 22 enzymes, including 8 newly identified ones, may function in the BPH pathway of RHA1. The relative expression levels of catabolic genes did not differ for BPH and ETB, suggesting a common regulatory mechanism. This study delineated a suite of catabolic enzymes for biphenyl and alkyl-benzenes in RHA1, which is larger than previously recognized and which may serve as a model for catabolism in other environmentally important bacteria having large genomes. PMID:16957245

  20. High-cell-density batch fermentation of Rhodococcus opacus PD630 using a high glucose concentration for triacylglycerol production.

    PubMed

    Kurosawa, Kazuhiko; Boccazzi, Paolo; de Almeida, Naomi M; Sinskey, Anthony J

    2010-06-01

    Biodiesel, monoalkyl esters of long-chain fatty acids with short-chain alcohols derived from triacylglycerols (TAGs), can be produced from renewable biomass sources. Recently, there has been interest in producing microbial oils from oleaginous microorganisms. Rhodococcus opacus PD630 is known to accumulate large amounts of TAGs. Following on these earlier works we demonstrate that R. opacus PD630 has the uncommon capacity to grow in defined media supplemented with glucose at a concentration of 300 g l(-1) during batch-culture fermentations. We found that we could significantly increase concentrations of both glucose and (NH4)2SO4 in the production medium resulting in a dramatic increase in fatty acid production when pH was controlled. We describe the experimental design protocol used to achieve the culture conditions necessary to obtain both high-cell-density and TAG accumulation; specifically, we describe the importance of the C/N ratio of the medium composition. Our bioprocess results demonstrate that R. opacus PD630 grown in batch-culture with an optimal production medium containing 240 g l(-1) glucose and 13.45 g l(-1) (NH4)2SO4 (C/N of 17.8) yields 77.6 g l(-1) of cell dry weight composed of approximately 38% TAGs indicating that this strain holds great potential as a future source of industrial biodiesel on starchy cellulosic feedstocks that are glucose polymers. 2010 Elsevier B.V. All rights reserved.

  1. Transcriptome of the quorum-sensing signal-degrading Rhodococcus erythropolis responds differentially to virulent and avirulent Pectobacterium atrosepticum

    PubMed Central

    Kwasiborski, A; Mondy, S; Chong, T-M; Barbey, C; Chan, K-G; Beury-Cirou, A; Latour, X; Faure, D

    2015-01-01

    Social bacteria use chemical communication to coordinate and synchronize gene expression via the quorum-sensing (QS) regulatory pathway. In Pectobacterium, a causative agent of the blackleg and soft-rot diseases on potato plants and tubers, expression of the virulence factors is collectively controlled by the QS-signals N-acylhomoserine lactones (NAHLs). Several soil bacteria, such as the actinobacterium Rhodococcus erythropolis, are able to degrade NAHLs, hence quench the chemical communication and virulence of Pectobacterium. Here, next-generation sequencing was used to investigate structural and functional genomics of the NAHL-degrading R. erythropolis strain R138. The R. erythropolis R138 genome (6.7 Mbp) contained a single circular chromosome, one linear (250 kbp) and one circular (84 kbp) plasmid. Growth of R. erythropolis and P. atrosepticum was not altered in mixed-cultures as compared with monocultures on potato tuber slices. HiSeq-transcriptomics revealed that no R. erythropolis genes were differentially expressed when R. erythropolis was cultivated in the presence vs absence of the avirulent P. atrosepticum mutant expI, which is defective for QS-signal synthesis. By contrast 50 genes (<1% of the R. erythropolis genome) were differentially expressed when R. erythropolis was cultivated in the presence vs absence of the NAHL-producing virulent P. atrosepticum. Among them, quantitative real-time reverse-transcriptase–PCR confirmed that the expression of some alkyl-sulfatase genes decreased in the presence of a virulent P. atrosepticum, as well as deprivation of organic sulfur such as methionine, which is a key precursor in the synthesis of NAHL by P. atrosepticum. PMID:25585922

  2. Portable exhauster POR-007/Skid E and POR-008/Skid F storage plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, O.D.

    1998-07-25

    This document provides storage requirements for 1,000 CFM portable exhausters POR-O07/Skid E and POR-008/Skid F. These requirements are presented in three parts: preparation for storage, storage maintenance and testing, and retrieval from storage. The exhauster component identification numbers listed in this document contain the prefix POR-007 or POR-008 depending on which exhauster is being used.

  3. Immunization by intrabronchial administration to 1-week-old foals of an unmarked double gene disruption strain of Rhodococcus equi strain 103+.

    PubMed

    Pei, Yanlong; Nicholson, Vivian; Woods, Katharine; Prescott, John F

    2007-11-15

    Rhodococcus equi causes fatal granulomatous pneumonia in foals and immunocompromised animals and humans. However, there is no effective vaccine against this infection. In this study, the chromosomal genes isocitrate lyase (icl) and cholesterol oxidase (choE) were chosen as targets for mutation and assessment of the double mutant as an intrabronchial vaccine in 1-week-old foals. Using a modification of a suicide plasmid previously developed in this laboratory, we developed a choE-icl unmarked deletion mutant of R. equi strain 103+. Five 1-week-old foals were infected intrabronchially with the mutant and challenged intrabronchially with the parent, virulent, strain 2 weeks later. Three of the foals were protected against pneumonia caused by the virulent strain, but the other two foals developed pneumonia caused by the mutant strain during the post-challenge period. Since infection of 3-week-old foals by an icl mutant in an earlier study had shown complete attenuation of the strain, we conclude that a proportion of foals in the 1st week or so of life are predisposed to developing R. equi pneumonia because of an inability to mount an effective immune response. This has been suspected previously but this is the first time that this has been demonstrated experimentally.

  4. Purification and characterization of a 14-kilodalton protein that is bound to the surface of polyhydroxyalkanoic acid granules in Rhodococcus ruber.

    PubMed Central

    Pieper-Fürst, U.; Madkour, M. H.; Mayer, F.; Steinbüchel, A.

    1994-01-01

    The N-terminal amino acid sequence of the polyhydroxyalkanoic acid (PHA) granule-associated M(r)-15,500 protein of Rhodococcus ruber (the GA14 protein) was analyzed. The sequence revealed that the corresponding structural gene is represented by open reading frame 3, encoding a protein with a calculated M(r) of 14,175 which was recently localized downstream of the PHA synthase gene (U. Pieper and A. Steinbüchel, FEMS Microbiol. Lett. 96:73-80, 1992). A recombinant strain of Escherichia coli XL1-Blue carrying the hybrid plasmid (pSKXA10*) with open reading frame 3 overexpressed the GA14 protein. The GA14 protein was subsequently purified in a three-step procedure including chromatography on DEAE-Sephacel, phenyl-Sepharose CL-4B, and Superose 12. Determination of the molecular weight by gel filtration as well as electron microscopic studies indicates that a tetrameric structure of the recombinant, native GA14 protein is most likely. Immunoelectron microscopy demonstrated a localization of the GA14 protein at the periphery of PHA granules as well as close to the cell membrane in R. ruber. Investigations of PHA-leaky and PHA-negative mutants of R. ruber indicated that expression of the GA14 protein depended strongly on PHA synthesis. Images PMID:8021220

  5. The effect of mutation on Rhodococcus equi virulence plasmid gene expression and mouse virulence.

    PubMed

    Ren, Jun; Prescott, John F

    2004-11-15

    An 81 kb virulence plasmid containing a pathogenicity island (PI) plays a crucial role in the pathogenesis of Rhodococcus equi pneumonia in foals but its specific function in virulence and regulation of plasmid-encoded virulence genes is unclear. Using a LacZ selection marker developed for R. equi in this study, in combination with an apramycin resistance gene, an efficient two-stage homologous recombination targeted gene mutation procedure was used to mutate three virulence plasmid genes, a LysR regulatory gene homologue (ORF4), a ResD-like two-component response regulator homologue (ORF8), and a gene (ORF10) of unknown function that is highly expressed by R. equi inside macrophages, as well as the chromosomal gene operon, phoPR. Virulence testing by liver clearance after intravenous injection in mice showed that the ORF4 and ORF8 mutants were fully attenuated, that the phoPR mutant was hypervirulent, and that virulence of the ORF10 mutant remained unchanged. A virulence plasmid DNA microarray was used to compare the plasmid gene expression profile of each of the four gene-targeted mutants against the parental R. equi strain. Changes were limited to PI genes and gene induction was observed for all mutants, suggesting that expression of virulence plasmid genes is dominated by a negative regulatory network. The finding of attenuation of ORF4 and ORF8 mutants despite enhanced transcription of vapA suggests that factors other than VapA are important for full expression of virulence. ORF1, a putative Lsr antigen gene, was strongly and similarly induced in all mutants, implying a common regulatory pathway affecting this gene for all four mutated genes. ORF8 is apparently the centre of this common pathway. Two distinct highly correlated gene induction patterns were observed, that of the ORF4 and ORF8 mutants, and that of the ORF10 and phoPR mutants. The gene induction pattern distinguishing these two groups paralleled their virulence in mice.

  6. Functional characterization of 3-ketosteroid 9α-hydroxylases in Rhodococcus ruber strain chol-4.

    PubMed

    Guevara, Govinda; Heras, Laura Fernández de Las; Perera, Julián; Llorens, Juana María Navarro

    2017-09-01

    The 3-Ketosteroid-9α-Hydroxylase, also known as KshAB [androsta-1,4-diene-3,17-dione, NADH:oxygen oxidoreductase (9α-hydroxylating); EC 1.14.13.142)], is a key enzyme in the general scheme of the bacterial steroid catabolism in combination with a 3-ketosteroid-Δ 1 -dehydrogenase activity (KstD), being both responsible of the steroid nucleus (rings A/B) breakage. KshAB initiates the opening of the steroid ring by the 9α-hydroxylation of the C9 carbon of 4-ene-3-oxosteroids (e.g. AD) or 1,4-diene-3-oxosteroids (e.g. ADD), transforming them into 9α-hydroxy-4-androsten-3,17-dione (9OHAD) or 9α-hydroxy-1,4-androstadiene-3,17-dione (9OHADD), respectively. The redundancy of these enzymes in the actinobacterial genomes results in a serious difficulty for metabolic engineering this catabolic pathway to obtain intermediates of industrial interest. In this work, we have identified three homologous kshA genes and one kshB gen in different genomic regions of R. ruber strain Chol-4. We present a set of data that helps to understand their specific roles in this strain, including: i) description of the KshAB enzymes ii) construction and characterization of ΔkshB and single, double and triple ΔkshA mutants in R. ruber iii) growth studies of the above strains on different substrates and iv) genetic complementation and biotransformation assays with those strains. Our results show that KshA2 isoform is needed for the degradation of steroid substrates with short side chain, while KshA3 works on those molecules with longer side chains. KshA1 is a more versatile enzyme related to the cholic acid catabolism, although it also collaborates with KshA2 or KshA3 activities in the catabolism of steroids. Accordingly to what it is described for other Rhodococcus strains, our results also suggest that the side chain degradation is KshAB-independent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Diurnal variation in bacterioplankton composition and DNA damage in the microbial community from an Andean oligotrophic lake.

    PubMed

    Fernández-Zenoff, María V; Estévez, María C; Farías, María E

    2014-01-01

    Laguna Azul is an oligotrophic lake situated at 4,560 m above sea level and subject to a high level of solar radiation. Bacterioplankton community composition (BCC) was analysed by denaturing gradient gel electrophoresis and the impact of solar ultraviolet radiation was assessed by measuring cyclobutane pyrimidine dimers (CPD). Furthermore, pure cultures of Acinetobacter johnsonii A2 and Rhodococcus sp. A5 were exposed simultaneously and CPD accumulation was studied. Gel analyses generated a total of 7 sequences belonging to Alpha-proteobacteria (1 band), Beta-proteobacteria (1 band), Bacteroidetes (2 bands), Actinobacteria (1 band), and Firmicutes (1 band). DGGE profiles showed minimal changes in BCC and no CPD was detected even though a high level of damage was found in biodosimeters. A. johnsonii A2 showed low level of DNA damage while Rhodococcus sp. A5 exhibited high resistance since no CPD were detected under natural UV-B exposure, suggesting that the bacterial community is well adapted to this highly solar irradiated environment. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España. All rights reserved.

  8. Virulence genes and plasmid profiles in Rhodococcus equi isolates from domestic pigs and wild boars (Sus scrofa) in Brazil.

    PubMed

    Ribeiro, Márcio Garcia; Takai, Shinji; Guazzelli, Alessandro; Lara, Gustavo Henrique Batista; da Silva, Aristeu Vieira; Fernandes, Marta Catarina; Condas, Larissa Anuska Zeni; Siqueira, Amanda Keller; Salerno, Tatiana

    2011-12-01

    The virulence genes and plasmid profiles of 23 Rhodococcus equi isolates from 258 lymph nodes from domestic pigs (129 nodes with lesions and 129 without lesions) and 120 lymph nodes from slaughtered wild boars (60 nodes with lesions and 60 without) were characterized. R. equi was obtained from 19 lymph nodes of domestic pigs, 17 with, and two without lesions, and from four lymph nodes with lesions, from wild boars. The 23 isolates were tested for the presence of vapA and vapB genes, responsible for the 15-17 and 20 kDa virulence-associated proteins, respectively, by PCR in order to characterize as virulent (VapA), intermediately virulent (VapB) and avirulent. Plasmid DNAs were isolated and analyzed by digestion with restriction endonucleases to estimate size and compare their polymorphisms. Of the 19 domestic pigs strains, seven (36.8%) were avirulent and 12 (63.2%) were intermediately virulent, with the intermediately virulent isolates being plasmid types 8 (8 isolates), 10 (2 isolates), 1 (1 isolate) and 29 (1 isolate). The plasmid type of four strains isolated from wild boars was also intermediately virulent type 8. None of the domestic pigs and wild boar isolates showed the vapA gene. These findings demonstrate a high occurrence of plasmid type 8 in isolates from pigs and wild boars, and the similarity of plasmid types in the domestic pigs, wild boars and human isolates in Brazil. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Purification, Characterization, and Overexpression of Flavin Reductase Involved in Dibenzothiophene Desulfurization by Rhodococcus erythropolis D-1

    PubMed Central

    Matsubara, Toshiyuki; Ohshiro, Takashi; Nishina, Yoshihiro; Izumi, Yoshikazu

    2001-01-01

    The dibenzothiophene (DBT)-desulfurizing bacterium, Rhodococcus erythropolis D-1, removes sulfur from DBT to form 2-hydroxybiphenyl using four enzymes, DszC, DszA, DszB, and flavin reductase. In this study, we purified and characterized the flavin reductase from R. erythropolis D-1 grown in a medium containing DBT as the sole source of sulfur. It is conceivable that the enzyme is essential for two monooxygenase (DszC and DszA) reactions in vivo. The purified flavin reductase contains no chromogenic cofactors and was found to have a molecular mass of 86 kDa and four identical 22-kDa subunits. The enzyme catalyzed NADH-dependent reduction of flavin mononucleotide (FMN), and the Km values for NADH and FMN were 208 and 10.8 μM, respectively. Flavin adenine dinucleotide was a poor substrate, and NADPH was inert. The enzyme did not catalyze reduction of any nitroaromatic compound. The optimal temperature and optimal pH for enzyme activity were 35°C and 6.0, respectively, and the enzyme retained 30% of its activity after heat treatment at 80°C for 30 min. The N-terminal amino acid sequence of the purified flavin reductase was identical to that of DszD of R. erythropolis IGTS8 (K. A. Gray, O. S. Pogrebinsky, G. T. Mrachko, L. Xi, D. J. Monticello, and C. H. Squires, Nat. Biotechnol. 14:1705–1709, 1996). The flavin reductase gene was amplified with primers designed by using dszD of R. erythropolis IGTS8, and the enzyme was overexpressed in Escherichia coli. The specific activity in crude extracts of the overexpressed strain was about 275-fold that of the wild-type strain. PMID:11229908

  10. A Novel p-Nitrophenol Degradation Gene Cluster from a Gram-Positive Bacterium, Rhodococcus opacus SAO101

    PubMed Central

    Kitagawa, Wataru; Kimura, Nobutada; Kamagata, Yoichi

    2004-01-01

    p-Nitrophenol (4-NP) is recognized as an environmental contaminant; it is used primarily for manufacturing medicines and pesticides. To date, several 4-NP-degrading bacteria have been isolated; however, the genetic information remains very limited. In this study, a novel 4-NP degradation gene cluster from a gram-positive bacterium, Rhodococcus opacus SAO101, was identified and characterized. The deduced amino acid sequences of npcB, npcA, and npcC showed identity with phenol 2-hydroxylase component B (reductase, PheA2) of Geobacillus thermoglucosidasius A7 (32%), with 2,4,6-trichlorophenol monooxygenase (TcpA) of Ralstonia eutropha JMP134 (44%), and with hydroxyquinol 1,2-dioxygenase (ORF2) of Arthrobacter sp. strain BA-5-17 (76%), respectively. The npcB, npcA, and npcC genes were cloned into pET-17b to construct the respective expression vectors pETnpcB, pETnpcA, and pETnpcC. Conversion of 4-NP was observed when a mixture of crude cell extracts of Escherichia coli containing pETnpcB and pETnpcA was used in the experiment. The mixture converted 4-NP to hydroxyquinol and also converted 4-nitrocatechol (4-NCA) to hydroxyquinol. Furthermore, the crude cell extract of E. coli containing pETnpcC converted hydroxyquinol to maleylacetate. These results suggested that npcB and npcA encode the two-component 4-NP/4-NCA monooxygenase and that npcC encodes hydroxyquinol 1,2-dioxygenase. The npcA and npcC mutant strains, SDA1 and SDC1, completely lost the ability to grow on 4-NP as the sole carbon source. These results clearly indicated that the cloned npc genes play an essential role in 4-NP mineralization in R. opacus SAO101. PMID:15262926

  11. The Equine Antimicrobial Peptide eCATH1 Is Effective against the Facultative Intracellular Pathogen Rhodococcus equi in Mice

    PubMed Central

    Schlusselhuber, Margot; Torelli, Riccardo; Martini, Cecilia; Leippe, Matthias; Cattoir, Vincent; Leclercq, Roland; Laugier, Claire; Grötzinger, Joachim; Sanguinetti, Maurizio

    2013-01-01

    Rhodococcus equi, the causal agent of rhodococcosis, is a major pathogen of foals and is also responsible for severe infections in immunocompromised humans. Of great concern, strains resistant to currently used antibiotics have emerged. As the number of drugs that are efficient in vivo is limited because of the intracellular localization of the bacterium inside macrophages, new active but cell-permeant drugs will be needed in the near future. In the present study, we evaluated, by in vitro and ex vivo experiments, the ability of the alpha-helical equine antimicrobial peptide eCATH1 to kill intracellular bacterial cells. Moreover, the therapeutic potential of the peptide was assessed in experimental rhodococcosis induced in mice, while the in vivo toxicity was evaluated by behavioral and histopathological analysis. The study revealed that eCATH1 significantly reduced the number of bacteria inside macrophages. Furthermore, the bactericidal potential of the peptide was maintained in vivo at doses that appeared to have no visible deleterious effects for the mice even after 7 days of treatment. Indeed, daily subcutaneous injections of 1 mg/kg body weight of eCATH1 led to a significant reduction of the bacterial load in organs comparable to that obtained after treatment with 10 mg/kg body weight of rifampin. Interestingly, the combination of the peptide with rifampin showed a synergistic interaction in both ex vivo and in vivo experiments. These results emphasize the therapeutic potential that eCATH1 represents in the treatment of rhodococcosis. PMID:23817377

  12. Metabolism of 2-Chloro-4-Nitroaniline via Novel Aerobic Degradation Pathway by Rhodococcus sp. Strain MB-P1

    PubMed Central

    Khan, Fazlurrahman; Pal, Deepika; Vikram, Surendra; Cameotra, Swaranjit Singh

    2013-01-01

    2-chloro-4-nitroaniline (2-C-4-NA) is used as an intermediate in the manufacture of dyes, pharmaceuticals, corrosion inhibitor and also used in the synthesis of niclosamide, a molluscicide. It is marked as a black-listed substance due to its poor biodegradability. We report biodegradation of 2-C-4-NA and its pathway characterization by Rhodococcus sp. strain MB-P1 under aerobic conditions. The strain MB-P1 utilizes 2-C-4-NA as the sole carbon, nitrogen, and energy source. In the growth medium, the degradation of 2-C-4-NA occurs with the release of nitrite ions, chloride ions, and ammonia. During the resting cell studies, the 2-C-4-NA-induced cells of strain MB-P1 transformed 2-C-4-NA stoichiometrically to 4-amino-3-chlorophenol (4-A-3-CP), which subsequently gets transformed to 6-chlorohydroxyquinol (6-CHQ) metabolite. Enzyme assays by cell-free lysates prepared from 2-C-4-NA-induced MB-P1 cells, demonstrated that the first enzyme in the 2-C-4-NA degradation pathway is a flavin-dependent monooxygenase that catalyzes the stoichiometric removal of nitro group and production of 4-A-3-CP. Oxygen uptake studies on 4-A-3-CP and related anilines by 2-C-4-NA-induced MB-P1 cells demonstrated the involvement of aniline dioxygenase in the second step of 2-C-4-NA degradation. This is the first report showing 2-C-4-NA degradation and elucidation of corresponding metabolic pathway by an aerobic bacterium. PMID:23614030

  13. Biodegradation of Di-(2-ethylhexyl) Phthalate by Rhodococcus ruber YC-YT1 in Contaminated Water and Soil.

    PubMed

    Yang, Ting; Ren, Lei; Jia, Yang; Fan, Shuanghu; Wang, Junhuan; Wang, Jiayi; Nahurira, Ruth; Wang, Haisheng; Yan, Yanchun

    2018-05-11

    Di-(2-ethylehxyl) phthalate (DEHP) is one of the most broadly representative phthalic acid esters (PAEs) used as a plasticizer in polyvinyl chloride (PVC) production, and is considered to be an endocrine-disrupting chemical. DEHP and its monoester metabolites are responsible for adverse effects on human health. An efficient DEHP-degrading bacterial strain Rhodococcus ruber YC-YT1, with super salt tolerance (0⁻12% NaCl), is the first DEHP-degrader isolated from marine plastic debris found in coastal saline seawater. Strain YC-YT1 completely degraded 100 mg/L DEHP within three days (pH 7.0, 30 °C). According to high-performance liquid chromatography⁻mass spectrometry (HPLC-MS) analysis, DEHP was transformed by strain YC-YT1 into phthalate (PA) via mono (2-ethylehxyl) phthalate (MEHP), then PA was used for cell growth. Furthermore, YC-YT1 metabolized initial concentrations of DEHP ranging from 0.5 to 1000 mg/L. Especially, YC-YT1 degraded up to 60% of the 0.5 mg/L initial DEHP concentration. Moreover, compared with previous reports, strain YC-YT1 had the largest substrate spectrum, degrading up to 13 kinds of PAEs as well as diphenyl, p-nitrophenol, PA, benzoic acid, phenol, protocatechuic acid, salicylic acid, catechol, and 1,2,3,3-tetrachlorobenzene. The excellent environmental adaptability of strain YC-YT1 contributed to its ability to adjust its cell surface hydrophobicity (CSH) so that 79.7⁻95.9% of DEHP-contaminated agricultural soil, river water, coastal sediment, and coastal seawater were remedied. These results demonstrate that R. ruber YC-YT1 has vast potential to bioremediate various DEHP-contaminated environments, especially in saline environments.

  14. Roles of Ring-Hydroxylating Dioxygenases in Styrene and Benzene Catabolism in Rhodococcus jostii RHA1▿ †

    PubMed Central

    Patrauchan, Marianna A.; Florizone, Christine; Eapen, Shawn; Gómez-Gil, Leticia; Sethuraman, Bhanu; Fukuda, Masao; Davies, Julian; Mohn, William W.; Eltis, Lindsay D.

    2008-01-01

    Proteomics and targeted gene disruption were used to investigate the catabolism of benzene, styrene, biphenyl, and ethylbenzene in Rhodococcus jostii RHA1, a well-studied soil bacterium whose potent polychlorinated biphenyl (PCB)-transforming properties are partly due to the presence of the related Bph and Etb pathways. Of 151 identified proteins, 22 Bph/Etb proteins were among the most abundant in biphenyl-, ethylbenzene-, benzene-, and styrene-grown cells. Cells grown on biphenyl, ethylbenzene, or benzene contained both Bph and Etb enzymes and at least two sets of lower Bph pathway enzymes. By contrast, styrene-grown cells contained no Etb enzymes and only one set of lower Bph pathway enzymes. Gene disruption established that biphenyl dioxygenase (BPDO) was essential for growth of RHA1 on benzene or styrene but that ethylbenzene dioxygenase (EBDO) was not required for growth on any of the tested substrates. Moreover, whole-cell assays of the ΔbphAa and etbAa1::cmrA etbAa2::aphII mutants demonstrated that while both dioxygenases preferentially transformed biphenyl, only BPDO transformed styrene. Deletion of pcaL of the β-ketoadipate pathway disrupted growth on benzene but not other substrates. Thus, styrene and benzene are degraded via meta- and ortho-cleavage, respectively. Finally, catalases were more abundant during growth on nonpolar aromatic compounds than on aromatic acids. This suggests that the relaxed specificities of BPDO and EBDO that enable RHA1 to grow on a range of compounds come at the cost of increased uncoupling during the latter's initial transformation. The stress response may augment RHA1's ability to degrade PCBs and other pollutants that induce similar uncoupling. PMID:17965160

  15. A preliminary report on the contact-independent antagonism of Pseudogymnoascus destructans by Rhodococcus rhodochrous strain DAP96253.

    PubMed

    Cornelison, Christopher T; Keel, M Kevin; Gabriel, Kyle T; Barlament, Courtney K; Tucker, Trudy A; Pierce, George E; Crow, Sidney A

    2014-09-26

    The recently-identified causative agent of White-Nose Syndrome (WNS), Pseudogymnoascus destructans, has been responsible for the mortality of an estimated 5.5 million North American bats since its emergence in 2006. A primary focus of the National Response Plan, established by multiple state, federal and tribal agencies in 2011, was the identification of biological control options for WNS. In an effort to identify potential biological control options for WNS, multiply induced cells of Rhodococcus rhodochrous strain DAP96253 was screened for anti-P. destructans activity. Conidia and mycelial plugs of P. destructans were exposed to induced R. rhodochrous in a closed air-space at 15°C, 7°C and 4°C and were evaluated for contact-independent inhibition of conidia germination and mycelial extension with positive results. Additionally, in situ application methods for induced R. rhodochrous, such as fixed-cell catalyst and fermentation cell-paste in non-growth conditions, were screened with positive results. R. rhodochrous was assayed for ex vivo activity via exposure to bat tissue explants inoculated with P. destructans conidia. Induced R. rhodochrous completely inhibited growth from conidia at 15°C and had a strong fungistatic effect at 4°C. Induced R. rhodochrous inhibited P. destructans growth from conidia when cultured in a shared air-space with bat tissue explants inoculated with P. destructans conidia. The identification of inducible biological agents with contact-independent anti- P. destructans activity is a major milestone in the development of viable biological control options for in situ application and provides the first example of contact-independent antagonism of this devastating wildlife pathogen.

  16. Biodegradation of Di-(2-ethylhexyl) Phthalate by Rhodococcus ruber YC-YT1 in Contaminated Water and Soil

    PubMed Central

    Yang, Ting; Jia, Yang; Fan, Shuanghu; Wang, Junhuan; Wang, Jiayi; Nahurira, Ruth; Wang, Haisheng; Yan, Yanchun

    2018-01-01

    Di-(2-ethylehxyl) phthalate (DEHP) is one of the most broadly representative phthalic acid esters (PAEs) used as a plasticizer in polyvinyl chloride (PVC) production, and is considered to be an endocrine-disrupting chemical. DEHP and its monoester metabolites are responsible for adverse effects on human health. An efficient DEHP-degrading bacterial strain Rhodococcus ruber YC-YT1, with super salt tolerance (0–12% NaCl), is the first DEHP-degrader isolated from marine plastic debris found in coastal saline seawater. Strain YC-YT1 completely degraded 100 mg/L DEHP within three days (pH 7.0, 30 °C). According to high-performance liquid chromatography–mass spectrometry (HPLC-MS) analysis, DEHP was transformed by strain YC-YT1 into phthalate (PA) via mono (2-ethylehxyl) phthalate (MEHP), then PA was used for cell growth. Furthermore, YC-YT1 metabolized initial concentrations of DEHP ranging from 0.5 to 1000 mg/L. Especially, YC-YT1 degraded up to 60% of the 0.5 mg/L initial DEHP concentration. Moreover, compared with previous reports, strain YC-YT1 had the largest substrate spectrum, degrading up to 13 kinds of PAEs as well as diphenyl, p-nitrophenol, PA, benzoic acid, phenol, protocatechuic acid, salicylic acid, catechol, and 1,2,3,3-tetrachlorobenzene. The excellent environmental adaptability of strain YC-YT1 contributed to its ability to adjust its cell surface hydrophobicity (CSH) so that 79.7–95.9% of DEHP-contaminated agricultural soil, river water, coastal sediment, and coastal seawater were remedied. These results demonstrate that R. ruber YC-YT1 has vast potential to bioremediate various DEHP-contaminated environments, especially in saline environments. PMID:29751654

  17. Structural Insights into the PorK and PorN Components of the Porphyromonas gingivalis Type IX Secretion System.

    PubMed

    Gorasia, Dhana G; Veith, Paul D; Hanssen, Eric G; Glew, Michelle D; Sato, Keiko; Yukitake, Hideharu; Nakayama, Koji; Reynolds, Eric C

    2016-08-01

    The type IX secretion system (T9SS) has been recently discovered and is specific to Bacteroidetes species. Porphyromonas gingivalis, a keystone pathogen for periodontitis, utilizes the T9SS to transport many proteins including the gingipain virulence factors across the outer membrane and attach them to the cell surface via a sortase-like mechanism. At least 11 proteins have been identified as components of the T9SS including PorK, PorL, PorM, PorN and PorP, however the precise roles of most of these proteins have not been elucidated and the structural organization of these components is unknown. In this study, we purified PorK and PorN complexes from P. gingivalis and using electron microscopy we have shown that PorN and the PorK lipoprotein interact to form a 50 nm diameter ring-shaped structure containing approximately 32-36 subunits of each protein. The formation of these rings was dependent on both PorK and PorN, but was independent of PorL, PorM and PorP. PorL and PorM were found to form a separate stable complex. PorK and PorN were protected from proteinase K cleavage when present in undisrupted cells, but were rapidly degraded when the cells were lysed, which together with bioinformatic analyses suggests that these proteins are exposed in the periplasm and anchored to the outer membrane via the PorK lipid. Chemical cross-linking and mass spectrometry analyses confirmed the interaction between PorK and PorN and further revealed that they interact with the PG0189 outer membrane protein. Furthermore, we established that PorN was required for the stable expression of PorK, PorL and PorM. Collectively, these results suggest that the ring-shaped PorK/N complex may form part of the secretion channel of the T9SS. This is the first report showing the structural organization of any T9SS component.

  18. Structural Insights into the PorK and PorN Components of the Porphyromonas gingivalis Type IX Secretion System

    PubMed Central

    Gorasia, Dhana G.; Veith, Paul D.; Hanssen, Eric G.; Glew, Michelle D.; Sato, Keiko; Yukitake, Hideharu; Nakayama, Koji; Reynolds, Eric C.

    2016-01-01

    The type IX secretion system (T9SS) has been recently discovered and is specific to Bacteroidetes species. Porphyromonas gingivalis, a keystone pathogen for periodontitis, utilizes the T9SS to transport many proteins including the gingipain virulence factors across the outer membrane and attach them to the cell surface via a sortase-like mechanism. At least 11 proteins have been identified as components of the T9SS including PorK, PorL, PorM, PorN and PorP, however the precise roles of most of these proteins have not been elucidated and the structural organization of these components is unknown. In this study, we purified PorK and PorN complexes from P. gingivalis and using electron microscopy we have shown that PorN and the PorK lipoprotein interact to form a 50 nm diameter ring-shaped structure containing approximately 32–36 subunits of each protein. The formation of these rings was dependent on both PorK and PorN, but was independent of PorL, PorM and PorP. PorL and PorM were found to form a separate stable complex. PorK and PorN were protected from proteinase K cleavage when present in undisrupted cells, but were rapidly degraded when the cells were lysed, which together with bioinformatic analyses suggests that these proteins are exposed in the periplasm and anchored to the outer membrane via the PorK lipid. Chemical cross-linking and mass spectrometry analyses confirmed the interaction between PorK and PorN and further revealed that they interact with the PG0189 outer membrane protein. Furthermore, we established that PorN was required for the stable expression of PorK, PorL and PorM. Collectively, these results suggest that the ring-shaped PorK/N complex may form part of the secretion channel of the T9SS. This is the first report showing the structural organization of any T9SS component. PMID:27509186

  19. Characterization and genome functional analysis of a novel metamitron-degrading strain Rhodococcus sp. MET via both triazinone and phenyl rings cleavage

    NASA Astrophysics Data System (ADS)

    Fang, Hua; Xu, Tianheng; Cao, Duantao; Cheng, Longyin; Yu, Yunlong

    2016-08-01

    A novel bacterium capable of utilizing metamitron as the sole source of carbon and energy was isolated from contaminated soil and identified as Rhodococcus sp. MET based on its morphological characteristics, BIOLOG GP2 microplate profile, and 16S rDNA phylogeny. Genome sequencing and functional annotation of the isolate MET showed a 6,340,880 bp genome with a 62.47% GC content and 5,987 protein-coding genes. In total, 5,907 genes were annotated with the COG, GO, KEGG, Pfam, Swiss-Prot, TrEMBL, and nr databases. The degradation rate of metamitron by the isolate MET obviously increased with increasing substrate concentrations from 1 to 10 mg/l and subsequently decreased at 100 mg/l. The optimal pH and temperature for metamitron biodegradation were 7.0 and 20-30 °C, respectively. Based on genome annotation of the metamitron degradation genes and the metabolites detected by HPLC-MS/MS, the following metamitron biodegradation pathways were proposed: 1) Metamitron was transformed into 2-(3-hydrazinyl-2-ethyl)-hydrazono-2-phenylacetic acid by triazinone ring cleavage and further mineralization; 2) Metamitron was converted into 3-methyl-4-amino-6(2-hydroxy-muconic acid)-1,2,4-triazine-5(4H)-one by phenyl ring cleavage and further mineralization. The coexistence of diverse mineralization pathways indicates that our isolate may effectively bioremediate triazinone herbicide-contaminated soils.

  20. Structural basis for the substrate specificity and the absence of dehalogenation activity in 2-chloromuconate cycloisomerase from Rhodococcus opacus 1CP.

    PubMed

    Kolomytseva, Marina; Ferraroni, Marta; Chernykh, Alexey; Golovleva, Ludmila; Scozzafava, Andrea

    2014-09-01

    2-Chloromuconate cycloisomerase from the Gram-positive bacterium Rhodococcus opacus 1CP (Rho-2-CMCI) is an enzyme of a modified ortho-pathway, in which 2-chlorophenol is degraded using 3-chlorocatechol as the central intermediate. In general, the chloromuconate cycloisomerases catalyze not only the cycloisomerization, but also the process of dehalogenation of the chloromuconate to dienelactone. However Rho-2-CMCI, unlike the homologous enzymes from the Gram-negative bacteria, is very specific for only one position of the chloride on the substrate chloromuconate. Furthermore, Rho-2-CMCI is not able to dehalogenate the 5-chloromuconolactone and therefore it cannot generate the dienelactone. The crystallographic structure of the homooctameric Rho-2-CMCI was solved by molecular replacement using the coordinates of the structure of chloromuconate cycloisomerase from Pseudomonas putida PRS2000. The structure was analyzed and compared to the other already known structures of (chloro)muconate cycloisomerases. In addition to this, molecular docking calculations were carried out, which allowed us to determine the residues responsible for the high substrate specificity and the lack of dehalogenation activity of Rho-2-CMCI. Our studies highlight that a histidine, located in a loop that closes the active site cavity upon the binding of the substrate, could be related to the dehalogenation inability of Rho-2-CMCI and in general of the muconate cycloisomerases. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Biodegradation of phenol in synthetic and industrial wastewater by Rhodococcus erythropolis UPV-1 immobilized in an air-stirred reactor with clarifier.

    PubMed

    Prieto, M B; Hidalgo, A; Rodríguez-Fernández, C; Serra, J L; Llama, M J

    2002-05-01

    Phenol biodegradation by suspended and immobilized cells of Rhodococcus erythropolis UPV-1 was studied in discontinuous and continuous mode under optimum culture conditions. Phenol-acclimated cells were adsorbed on diatomaceous earth, where they grew actively forming a biofilm of short filaments. Immobilization protected cells against phenol and resulted in a remarkable enhancement of their respiratory activity and a shorter lag phase preceding active phenol degradation. Under optimum operation conditions in a laboratory-scale air-stirred reactor, the immobilized cells were able to completely degrade phenol in synthetic wastewater at a volumetric productivity of 11.5 kg phenol m(-3) day(-1). Phenol biodegradation was also tested in two different industrial wastewaters (WW1 and WW2) obtained from local resin manufacturing companies, which contained both phenols and formaldehyde. In this case, after wastewater conditioning (i.e., dilution, pH, nitrogen and phosphorous sources and micronutrient amendments) the immobilized cells were able to completely remove the formaldehyde present in both waters. Moreover, they biodegraded phenols completely at a rate of 0.5 kg phenol m(-3) day(-1) in the case of WW1 and partially (but at concentrations lower than 50 mg l(-1)) at 0.1 and 1.0 kg phenol m(-3) day(-1) in the cases of WW2 and WW1, respectively.

  2. Proteome analysis reveals differential expression of proteins involved in triacylglycerol accumulation by Rhodococcus jostii RHA1 after addition of methyl viologen.

    PubMed

    Dávila Costa, José Sebastián; Silva, Roxana A; Leichert, Lars; Alvarez, Héctor M

    2017-03-01

    Rhodococcus jostii RHA1 is able to degrade toxic compounds and accumulate high amounts of triacylglycerols (TAG) upon nitrogen starvation. These NADPH-dependent processes are essential for the adaptation of rhodococci to fluctuating environmental conditions. In this study, we used an MS-based, label-free and quantitative proteomic approach to better understand the integral response of R. jostii RHA1 to the presence of methyl viologen (MV) in relation to the synthesis and accumulation of TAG. The addition of MV promoted a decrease of TAG accumulation in comparison to cells cultivated under nitrogen-limiting conditions in the absence of this pro-oxidant. Proteomic analyses revealed that the abundance of key proteins of fatty acid biosynthesis, the Kennedy pathway, glyceroneogenesis and methylmalonyl-CoA pathway, among others, decreased in the presence of MV. In contrast, some proteins involved in lipolysis and β-oxidation of fatty acids were upregulated. Some metabolic pathways linked to the synthesis of NADPH remained activated during oxidative stress as well as under nitrogen starvation conditions. Additionally, exposure to MV resulted in the activation of complete antioxidant machinery comprising superoxide dismutases, catalases, mycothiol biosynthesis, mycothione reductase and alkyl hydroperoxide reductases, among others. Our study suggests that oxidative stress response affects TAG accumulation under nitrogen-limiting conditions through programmed molecular mechanisms when both stresses occur simultaneously.

  3. The PorX Response Regulator of the Porphyromonas gingivalis PorXY Two-Component System Does Not Directly Regulate the Type IX Secretion Genes but Binds the PorL Subunit

    PubMed Central

    Vincent, Maxence S.; Durand, Eric; Cascales, Eric

    2016-01-01

    The Type IX secretion system (T9SS) is a versatile multi-protein complex restricted to bacteria of the Bacteriodetes phylum and responsible for the secretion or cell surface exposition of diverse proteins that participate to S-layer formation, gliding motility or pathogenesis. The T9SS is poorly characterized but a number of proteins involved in the assembly of the secretion apparatus in the oral pathogen Porphyromonas gingivalis have been identified based on genome substractive analyses. Among these proteins, PorY, and PorX encode typical two-component system (TCS) sensor and CheY-like response regulator respectively. Although the porX and porY genes do not localize at the same genetic locus, it has been proposed that PorXY form a bona fide TCS. Deletion of porX in P. gingivalis causes a slight decrease of the expression of a number of other T9SS genes, including sov, porT, porP, porK, porL, porM, porN, and porY. Here, we show that PorX and the soluble cytoplasmic domain of PorY interact. Using electrophoretic mobility shift, DNA-protein co-purification and heterologous host expression assays, we demonstrate that PorX does not bind T9SS gene promoters and does not directly regulate expression of the T9SS genes. Finally, we show that PorX interacts with the cytoplasmic domain of PorL, a component of the T9SS membrane core complex and propose that the CheY-like PorX protein might be involved in the dynamics of the T9SS. PMID:27630829

  4. Removal of polycyclic aromatic hydrocarbons in soil spiked with model mixtures of petroleum hydrocarbons and heterocycles using biosurfactants from Rhodococcus ruber IEGM 231.

    PubMed

    Ivshina, Irina; Kostina, Ludmila; Krivoruchko, Anastasiya; Kuyukina, Maria; Peshkur, Tatyana; Anderson, Peter; Cunningham, Colin

    2016-07-15

    Removal of polycyclic aromatic hydrocarbons (PAHs) in soil using biosurfactants (BS) produced by Rhodococcus ruber IEGM 231 was studied in soil columns spiked with model mixtures of major petroleum constituents. A crystalline mixture of single PAHs (0.63g/kg), a crystalline mixture of PAHs (0.63g/kg) and polycyclic aromatic sulfur heterocycles (PASHs), and an artificially synthesized non-aqueous phase liquid (NAPL) containing PAHs (3.00g/kg) dissolved in alkanes C10-C19 were used for spiking. Percentage of PAH removal with BS varied from 16 to 69%. Washing activities of BS were 2.5 times greater than those of synthetic surfactant Tween 60 in NAPL-spiked soil and similar to Tween 60 in crystalline-spiked soil. At the same time, amounts of removed PAHs were equal and consisted of 0.3-0.5g/kg dry soil regardless the chemical pattern of a model mixture of petroleum hydrocarbons and heterocycles used for spiking. UV spectra for soil before and after BS treatment were obtained and their applicability for differentiated analysis of PAH and PASH concentration changes in remediated soil was shown. The ratios A254nm/A288nm revealed that BS increased biotreatability of PAH-contaminated soils. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Differences in Rhodococcus equi Infections Based on Immune Status and Antibiotic Susceptibility of Clinical Isolates in a Case Series of 12 Patients and Cases in the Literature

    PubMed Central

    Suzuki, Yasuhiro; Ribes, Julie A.; Thornton, Alice

    2016-01-01

    Rhodococcus equi is an unusual zoonotic pathogen that can cause life-threatening diseases in susceptible hosts. Twelve patients with R. equi infection in Kentucky were compared to 137 cases reported in the literature. Although lungs were the primary sites of infection in immunocompromised patients, extrapulmonary involvement only was more common in immunocompetent patients (P < 0.0001). Mortality in R. equi-infected HIV patients was lower in the HAART era (8%) than in pre-HAART era (56%) (P < 0.0001), suggesting that HAART improves prognosis in these patients. Most (85–100%) of clinical isolates were susceptible to vancomycin, clarithromycin, rifampin, aminoglycosides, ciprofloxacin, and imipenem. Interestingly, there was a marked difference in susceptibility of the isolates to cotrimoxazole between Europe (35/76) and the US (15/15) (P < 0.0001). Empiric treatment of R. equi infection should include a combination of two antibiotics, preferably selected from vancomycin, imipenem, clarithromycin/azithromycin, ciprofloxacin, rifampin, or cotrimoxazole. Local antibiograms should be checked prior to using cotrimoxazole due to developing resistance. PMID:27631004

  6. Distribution of a Nocardia brasiliensis catalase gene fragment in members of the genera Nocardia, Gordona, and Rhodococcus.

    PubMed

    Vera-Cabrera, L; Johnson, W M; Welsh, O; Resendiz-Uresti, F L; Salinas-Carmona, M C

    1999-06-01

    An immunodominant protein from Nocardia brasiliensis, P61, was subjected to amino-terminal and internal sequence analysis. Three sequences of 22, 17, and 38 residues, respectively, were obtained and compared with the protein database from GenBank by using the BLAST system. The sequences showed homology to some eukaryotic catalases and to a bromoperoxidase-catalase from Streptomyces violaceus. Its identity as a catalase was confirmed by analysis of its enzymatic activity on H2O2 and by a double-staining method on a nondenaturing polyacrylamide gel with 3,3'-diaminobenzidine and ferricyanide; the result showed only catalase activity, but no peroxidase. By using one of the internal amino acid sequences and a consensus catalase motif (VGNNTP), we were able to design a PCR assay that generated a 500-bp PCR product. The amplicon was analyzed, and the nucleotide sequence was compared to the GenBank database with the observation of high homology to other bacterial and eukaryotic catalases. A PCR assay based on this target sequence was performed with primers NB10 and NB11 to confirm the presence of the NB10-NB11 gene fragment in several N. brasiliensis strains isolated from mycetoma. The same assay was used to determine whether there were homologous sequences in several type strains from the genera Nocardia, Rhodococcus, Gordona, and Streptomyces. All of the N. brasiliensis strains presented a positive result but only some of the actinomycetes species tested were positive in the PCR assay. In order to confirm these findings, genomic DNA was subjected to Southern blot analysis. A 1.7-kbp band was observed in the N. brasiliensis strains, and bands of different molecular weight were observed in cross-reacting actinomycetes. Sequence analysis of the amplicons of selected actinomycetes showed high homology in this catalase fragment, thus demonstrating that this protein is highly conserved in this group of bacteria.

  7. The glyoxylate shunt is essential for CO2-requiring oligotrophic growth of Rhodococcus erythropolis N9T-4.

    PubMed

    Yano, Takanori; Yoshida, Nobuyuki; Yu, Fujio; Wakamatsu, Miki; Takagi, Hiroshi

    2015-07-01

    Rhodococcus erythropolis N9T-4 shows extremely oligotrophic growth requiring atmospheric CO2 and forms its colonies on an inorganic basal medium (BM) without any additional carbon source. Screening of a random mutation library constructed by a unique genome deletion method that we established indicated that the aceA, aceB, and pckG genes encoding isocitrate lyase, malate synthase, and phosphoenolpyruvate carboxykinase, respectively, were requisite for survival on BM plates. The aceA- and aceB deletion mutants and the pckG deletion mutant grew well on BM plates containing L-malate and D-glucose, respectively, suggesting that the glyoxylate (GO) shunt and gluconeogenesis are essential for the oligotrophic growth of N9T-4. Interestingly, most of the enzyme activities in the TCA cycle were observed in the cell-free extract of N9T-4, with perhaps the most important exception being α-ketoglutarate dehydrogenase (KGDH) activity. Instead of the KGDH activity, we detected a remarkable level of α-ketoglutarate decarboxylase (KGD) activity, which is the activity exhibited by the E1 component of the KGDH complex in Mycobacterium tuberculosis. The recombinant KGD of N9T-4 catalyzed the decarboxylation of α-ketoglutarate to form succinic semialdehyde (SSA) in a time-dependent manner. Since N9T-4 also showed a detectable SSA dehydrogenase activity, we concluded that N9T-4 possesses a variant TCA cycle, which uses SSA rather than succinyl-CoA. These results suggest that oligotrophic N9T-4 cells utilize the GO shunt to avoid the loss of carbons as CO2 and to conserve CoA units in the TCA cycle.

  8. Enantioselective degradation of ofloxacin and levofloxacin by the bacterial strains Labrys portucalensis F11 and Rhodococcus sp. FP1.

    PubMed

    Maia, Alexandra S; Tiritan, Maria Elizabeth; Castro, Paula M L

    2018-07-15

    Fluoroquinolones are a class of antibiotics widely prescribed in both human and veterinary medicine of high environmental concern and characterized as environmental micropollutants due to their ecotoxicity and persistence and antibacterial resistance potential. Ofloxacin and levofloxacin are chiral fluoroquinolones commercialized as racemate and in enantiomerically pure form, respectively. Since the pharmacological properties and toxicity of the enantiomers may be very different, understanding the stereochemistry of these compounds should be a priority in environmental monitoring. This work presents the biodegradation of racemic ofloxacin and its (S)-enantiomer levofloxacin by the bacterial strains Labrys portucalensis F11 and Rhodococcus sp. FP1 at a laboratory-scale microcosm following the removal and the behavior of the enantiomers. Strain F11 could degrade both antibiotics almost completely when acetate was supplied regularly to the cultures. Enrichment of the (R)-enantiomer was observed in FP1 and F11 cultures supplied with ofloxacin. Racemization was observed in the biodegradation of the pure (S)-ofloxacin (levofloxacin) by strain F11, which was confirmed by liquid chromatography - exact mass spectrometry. Biodegradation of ofloxacin at 450 µg L -1 by both bacterial strains expressed good linear fits (R 2 > 0.98) according to the Rayleigh equation. The enantiomeric enrichment factors were comprised between - 22.5% to - 9.1%, and - 18.7% to - 9.0% in the biodegradation of ofloxacin by strains F11 and FP1, respectively, with no significant differences for the two bacteria under the same conditions. This is the first time that enantioselective biodegradation of ofloxacin and levofloxacin by single bacteria is reported. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. The Reaction Kinetics of 3-Hydroxybenzoate 6-Hydroxylase from Rhodococcus jostii RHA1 Provide an Understanding of the para-Hydroxylation Enzyme Catalytic Cycle*

    PubMed Central

    Sucharitakul, Jeerus; Tongsook, Chanakan; Pakotiprapha, Danaya; van Berkel, Willem J. H.; Chaiyen, Pimchai

    2013-01-01

    3-Hydroxybenzoate 6-hydroxylase (3HB6H) from Rhodococcus jostii RHA1 is an NADH-specific flavoprotein monooxygenase that catalyzes the para-hydroxylation of 3-hydroxybenzoate (3HB) to form 2,5-dihydroxybenzoate (2,5-DHB). Based on results from stopped-flow spectrophotometry, the reduced enzyme-3HB complex reacts with oxygen to form a C4a-peroxy flavin with a rate constant of 1.13 ± 0.01 × 106 m−1 s−1 (pH 8.0, 4 °C). This intermediate is subsequently protonated to form a C4a-hydroperoxyflavin with a rate constant of 96 ± 3 s−1. This step shows a solvent kinetic isotope effect of 1.7. Based on rapid-quench measurements, the hydroxylation occurs with a rate constant of 36 ± 2 s−1. 3HB6H does not exhibit substrate inhibition on the flavin oxidation step, a common characteristic found in most ortho-hydroxylation enzymes. The apparent kcat at saturating concentrations of 3HB, NADH, and oxygen is 6.49 ± 0.02 s−1. Pre-steady state and steady-state kinetic data were used to construct the catalytic cycle of the reaction. The data indicate that the steps of product release (11.7 s−1) and hydroxylation (36 ± 2 s−1) partially control the overall turnover. PMID:24129570

  10. Rational evolution of the unusual Y-type oxyanion hole of Rhodococcus sp. CR53 lipase LipR.

    PubMed

    Infanzón, Belén; Sotelo, Pablo H; Martínez, Josefina; Diaz, Pilar

    2018-01-01

    Rhodococcus sp CR-53 lipase LipR was the first characterized member of bacterial lipase family X. Interestingly, LipR displays some similarity with α/β-hydrolases of the C. antartica lipase A (CAL-A)-like superfamily (abH38), bearing a Y-type oxyanion hole, never found before among bacterial lipases. In order to explore this unusual Y-type oxyanion hole, and to improve LipR performance, two modification strategies based on site directed or saturation mutagenesis were addressed. Initially, a small library of mutants was designed to convert LipR Y-type oxyanion hole (YDS) into one closer to those most frequently found in bacteria (GGG(X)). However, activity was completely lost in all mutants obtained, indicating that the Y-type oxyanion hole of LipR is required for activity. A second approach was addressed to modify the two main oxyanion hole residues Tyr 110 and Asp 111 , previously described for CAL-A as the most relevant amino acids involved in stabilization of the enzyme-substrate complex. A saturation mutagenesis library was prepared for each residue (Tyr 110 and Asp 111 ), and activity of the resulting variants was assayed on different chain length substrates. No functional LipR variants could be obtained when Tyr 110 was replaced by any other amino acids, indicating that this is a crucial residue for catalysis. However, among the Asp 111 variants obtained, LipR D111G produced a functional enzyme. Interestingly, this LipR-YGS variant showed less activity than wild type LipR on short- or mid- chain substrates but displayed a 5.6-fold increased activity on long chain length substrates. Analysis of the 3D model and in silico docking studies of this enzyme variant suggest that substitution of Asp by Gly produces a wider entrance tunnel that would allow for a better and tight accommodation of larger substrates, thus justifying the experimental results obtained. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Biodegradation of benzo[α]pyrene, toluene, and formaldehyde from the gas phase by a consortium of Rhodococcus erythropolis and Fusarium solani.

    PubMed

    Morales, Paulina; Cáceres, Manuel; Scott, Felipe; Díaz-Robles, Luis; Aroca, Germán; Vergara-Fernández, Alberto

    2017-09-01

    Polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs) are important indoor contaminants. Their hydrophobic nature hinders the possibility of biological abatement using biofiltration. Our aim was to establish whether the use of a consortium of Fusarium solani and Rhodococcus erythropolis shows an improved performance (in terms of mineralization rate and extent) towards the degradation of formaldehyde, as a slightly polar VOC; toluene, as hydrophobic VOC; and benzo[α]pyrene (BaP) as PAH at low concentrations compared to a single-species biofilm in serum bottles with vermiculite as solid support to mimic a biofilter and to relate the possible improvements with the surface hydrophobicity and partition coefficient of the biomass at three different temperatures. Results showed that the hydrophobicity of the surface of the biofilms was affected by the hydrophobicity of the carbon source in F. solani but it did not change in R. erythropolis. Similarly, the partition coefficients of toluene and BaP in F. solani biomass (both as pure culture and consortium) show a reduction of up to 38 times compared to its value in water, whereas this reduction was only 1.5 times in presence of R. erythropolis. Despite that increments in the accumulated CO 2 and its production rate were found when F. solani or the consortium was used, the mineralization extent of toluene was below 25%. Regarding BaP degradation, the higher CO 2 production rates and percent yields were obtained when a consortium of F. solani and R. erythropolis was used, despite a pure culture of R. erythropolis exhibits poor mineralization of BaP.

  12. Role of the 85-Kilobase Plasmid and Plasmid-Encoded Virulence-Associated Protein A in Intracellular Survival and Virulence of Rhodococcus equi

    PubMed Central

    Giguère, Steeve; Hondalus, Mary K.; Yager, Julie A.; Darrah, Patricia; Mosser, David M.; Prescott, John F.

    1999-01-01

    Rhodococcus equi is a facultative intracellular pathogen of macrophages and a cause of pneumonia in young horses (foals) and immunocompromised people. Isolates of R. equi from pneumonic foals typically contain large, 85- or 90-kb plasmids encoding a highly immunogenic virulence-associated protein (VapA). The objective of this study was to determine the role of the 85-kb plasmid and VapA in the intracellular survival and virulence of R. equi. Clinical isolates containing the plasmid and expressing VapA efficiently replicated within mouse macrophages in vitro, while plasmid-cured derivatives of these organisms did not multiply intracellularly. An isolate harboring the large plasmid also replicated in the tissues of experimentally infected mice, whereas its plasmid-cured derivative was rapidly cleared. All foals experimentally infected with a plasmid-containing clinical isolate developed severe bronchopneumonia, whereas the foals infected with its plasmid-cured derivative remained asymptomatic and free of visible lung lesions. By day 14 postinfection, lung bacterial burdens had increased considerably in foals challenged with the plasmid-containing clinical isolate. In contrast, bacteria could no longer be cultured from the lungs of foals challenged with the isogenic plasmid-cured derivative. A recombinant, plasmid-cured derivative expressing wild-type levels of VapA failed to replicate in macrophages and remained avirulent for both mice and foals. These results show that the 85-kb plasmid of R. equi is essential for intracellular replication within macrophages and for development of disease in the native host, the foal. However, expression of VapA alone is not sufficient to restore the virulence phenotype. PMID:10377138

  13. Isolation of endosulfan sulfate-degrading Rhodococcus koreensis strain S1-1 from endosulfan contaminated soil and identification of a novel metabolite, endosulfan diol monosulfate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ito, Koji; Kawashima, Fujimasa; Organochemicals Division, National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki, 305-8604

    2016-05-13

    An aerobic endosulfan sulfate-degrading bacterium, Rhodococcus koreensis strain S1-1, was isolated from soil to which endosulfan had been applied annually for more than 10 years until 2008. The strain isolated in this work reduced the concentration of endosulfan sulfate (2) from 12.25 μM to 2.11 μM during 14 d at 30 °C. Using ultra performance liquid chromatography-electrospray ionization-mass spectroscopy (UPLC-ESI-MS), a new highly water-soluble metabolite possessing six chlorine atoms was found to be endosulfan diol monosulfate (6), derived from 2 by hydrolysis of the cyclic sulfate ester ring. The structure of 6 was elucidated by chemical synthesis of the candidate derivatives and by HR-MSmore » and UPLC-MS analyses. Therefore, it was suggested that the strain S1-1 has a new metabolic pathway of 2. In addition, 6 was expected to be less toxic among the metabolites of 1 because of its higher water-solubility. -- Highlights: •A novel endosulfan sulfate-degrading bacterium was isolated and named strain S1-1. •Strain S1-1 degraded endosulfan sulfate into a novel metabolite endosulfan diol monosulfate. •Endosulfan diol monosulfate showed higher polarity than other known metabolites of endosulfan. •We proposed the plausible metabolic pathway of endosulfan in terms of organic chemistry.« less

  14. Biodegradation of 4-nitrotoluene with biosurfactant production by Rhodococcus pyridinivorans NT2: metabolic pathway, cell surface properties and toxicological characterization.

    PubMed

    Kundu, Debasree; Hazra, Chinmay; Dandi, Navin; Chaudhari, Ambalal

    2013-11-01

    A novel 4-nitrotoluene-degrading bacterial strain was isolated from pesticides contaminated effluent-sediment and identified as Rhodococcus pyridinivorans NT2 based on morphological and biochemical properties and 16S rDNA sequencing. The strain NT2 degraded 4-NT (400 mg l(-1)) with rapid growth at the end of 120 h, reduced surface tension of the media from 71 to 29 mN m(-1) and produced glycolipidic biosurfactants (45 mg l(-1)). The biosurfactant was purified and characterized as trehalose lipids. The biosurfactant was stable in high salinity (10 % w/v NaCl), elevated temperatures (120 °C for 15 min) and a wide pH range (2.0-10.0). The noticeable changes during biodegradation were decreased hydrophobicity; an increase in degree of fatty acid saturation, saturated/unsaturated ratio and cyclopropane fatty acid. Biodegradation of 4-NT was accompanied by the accumulation of ammonium (NH4 (+)) and negligible amount of nitrite ion (NO2 (-)). Product stoichiometry showed a carbon (C) and nitrogen (N) mass balance of 37 and 35 %, respectively. Biodegradation of 4-NT proceeded by oxidation at the methyl group to form 4-nitrobenzoate, followed by reduction and hydrolytic deamination yielding protocatechuate, which was metabolized through β-ketoadipate pathway. In vitro and in vivo acute toxicity assays in adult rat (Rattus norvegicus) showed sequential detoxification and the order of toxicity was 4-NT >4-nitrobenzyl alcohol >4-nitrobenzaldehyde >4-nitrobenzoate > protocatechuate. Taken together, the strain NT2 could be used as a potential bioaugmentation candidate for the bioremediation of contaminated sites.

  15. Purification and Characterization of an Inverting Stereo- and Enantioselective sec-Alkylsulfatase from the Gram-Positive Bacterium Rhodococcus ruber DSM 44541

    PubMed Central

    Pogorevc, Mateja; Faber, Kurt

    2003-01-01

    Whole cells of Rhodococcus ruber DSM 44541 were found to hydrolyze (±)-2-octyl sulfate in a stereo- and enantiospecific fashion. When growing on a complex medium, the cells produced two sec-alkylsulfatases and (at least) one prim-alkylsulfatase in the absence of an inducer, such as a sec-alkyl sulfate or a sec-alcohol. From the crude cell-free lysate, two proteins responsible for sulfate ester hydrolysis (designated RS1 and RS2) were separated from each other based on their different hydrophobicities and were subjected to further chromatographic purification. In contrast to sulfatase RS1, enzyme RS2 proved to be reasonably stable and thus could be purified to homogeneity. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a single band at a molecular mass of 43 kDa. Maximal enzyme activity was observed at 30°C and at pH 7.5. Sulfatase RS2 showed a clear preference for the hydrolysis of linear secondary alkyl sulfates, such as 2-, 3-, or 4-octyl sulfate, with remarkable enantioselectivity (an enantiomeric ratio of up to 21 [23]). Enzymatic hydrolysis of (R)-2-octyl sulfate furnished (S)-2-octanol without racemization, which revealed that the enzymatic hydrolysis proceeded through inversion of the configuration at the stereogenic carbon atom. Screening of a broad palette of potential substrates showed that the enzyme exhibited limited substrate tolerance; while simple linear sec-alkyl sulfates (C7 to C10) were freely accepted, no activity was found with branched and mixed aryl-alkyl sec-sulfates. Due to the fact that prim-sulfates were not accepted, the enzyme was classified as sec-alkylsulfatase (EC 3.1.6.X). PMID:12732552

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finnerty, W.R.

    We have sought the structural elucidation of the glycolipid biosurfactant. The extracellular glycolipid consists of 1 major component (>90%) plus 6--7 minor molecular species. The deacylated water-soluble backbone is common to all molecular species of the glycolipid. A complex fatty acid composition characterizes the glycolipid and contributes to its surface active character. The water soluble backbone consists of glycerol, trehalose and 3--5 glucose residues. FTIR spectroscopy has confirmed the presence of these polyhydric components. The next major objective has been to clone the genes for glycolipid biosynthesis in Rhodococcus sp. H13-A. Improvements in the E. coli-Rhodococcus shuttle vector, pMVS301, weremore » made prior to the construction and screening of a genomic library in Rhodococcus. A system is being developed for transpositional mutagenesis in Rhodococcus, using Tn917 containing plasmids used successfully in Bacillus sp. for the isolation and analysis of sporulation and developmental genes. We are also actively assessing the utility of this cloning and transformation system which we have developed for Rhodococcus, for use in mycobacterium, a related Actinomycete for which there exists no systems for plasmid transformation or molecular cloning. 8 refs., 1 fig.« less

  17. Structure of Rhodococcus equi virulence-associated protein B (VapB) reveals an eight-stranded antiparallel β-barrel consisting of two Greek-key motifs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geerds, Christina; Wohlmann, Jens; Haas, Albert

    The structure of VapB, a member of the Vap protein family that is involved in virulence of the bacterial pathogen R. equi, was determined by SAD phasing and reveals an eight-stranded antiparallel β-barrel similar to avidin, suggestive of a binding function. Made up of two Greek-key motifs, the topology of VapB is unusual or even unique. Members of the virulence-associated protein (Vap) family from the pathogen Rhodococcus equi regulate virulence in an unknown manner. They do not share recognizable sequence homology with any protein of known structure. VapB and VapA are normally associated with isolates from pigs and horses, respectively.more » To contribute to a molecular understanding of Vap function, the crystal structure of a protease-resistant VapB fragment was determined at 1.4 Å resolution. The structure was solved by SAD phasing employing the anomalous signal of one endogenous S atom and two bound Co ions with low occupancy. VapB is an eight-stranded antiparallel β-barrel with a single helix. Structural similarity to avidins suggests a potential binding function. Unlike other eight- or ten-stranded β-barrels found in avidins, bacterial outer membrane proteins, fatty-acid-binding proteins and lysozyme inhibitors, Vaps do not have a next-neighbour arrangement but consist of two Greek-key motifs with strand order 41238567, suggesting an unusual or even unique topology.« less

  18. Microbial biodegradation and toxicity of vinclozolin and its toxic metabolite 3,5-dichloroaniline.

    PubMed

    Lee, Jung-Bok; Sohn, Ho-Yong; Shin, Kee-Sun; Kim, Jong-Sik; Jo, Min-Sub; Jeon, Chun-Pyo; Jang, Jong-Ok; Kim, Jang-Eok; Kwon, Gi-Seok

    2008-02-01

    Vinclozolin, an endocrine disrupting chemical, is a chlorinated fungicide widely used to control fungal diseases. However, its metabolite 3,5-dichloroaniline is more toxic and persistent than the parent vinclozolin. For the biodegradation of vinclozolin, vinclozolin- and/or 3,5-dichloroaniline-degrading bacteria were isolated from pesticide-polluted agriculture soil. Among the isolated bacteria, a Rhodococcus sp. was identified from a 16S rDNA sequence analysis and named Rhodococcus sp. T1-1. The degradation ratios for vinclozolin or 3,5- dichloroaniline in a minimal medium containing vinclozolin (200 microg/ml) or 3,5-dichloroaniline (120 microg/ml) were 90% and 84.1%, respectively. Moreover, Rhodococcus sp. T1-1 also showed an effective capability to biodegrade dichloroaniline isomers on enrichment cultures in which they were contained. Therefore, these results suggest that Rhodococcus sp. T1-1 can bioremediate vinclozolin as well as 3,5-dichloroaniline.

  19. Genome and Proteome Analysis of Rhodococcus erythropolis MI2: Elucidation of the 4,4´-Dithiodibutyric Acid Catabolism

    PubMed Central

    Khairy, Heba; Meinert, Christina; Wübbeler, Jan Hendrik; Poehlein, Anja; Daniel, Rolf; Voigt, Birgit; Riedel, Katharina; Steinbüchel, Alexander

    2016-01-01

    Rhodococcus erythropolis MI2 has the extraordinary ability to utilize the xenobiotic 4,4´-dithiodibutyric acid (DTDB). Cleavage of DTDB by the disulfide-reductase Nox, which is the only verified enzyme involved in DTDB-degradation, raised 4-mercaptobutyric acid (4MB). 4MB could act as building block of a novel polythioester with unknown properties. To completely unravel the catabolism of DTDB, the genome of R. erythropolis MI2 was sequenced, and subsequently the proteome was analyzed. The draft genome sequence consists of approximately 7.2 Mbp with an overall G+C content of 62.25% and 6,859 predicted protein-encoding genes. The genome of strain MI2 is composed of three replicons: one chromosome and two megaplasmids with sizes of 6.45, 0.4 and 0.35 Mbp, respectively. When cells of strain MI2 were cultivated with DTDB as sole carbon source and compared to cells grown with succinate, several interesting proteins with significantly higher expression levels were identified using 2D-PAGE and MALDI-TOF mass spectrometry. A putative luciferase-like monooxygenase-class F420-dependent oxidoreductase (RERY_05640), which is encoded by one of the 126 monooxygenase-encoding genes of the MI2-genome, showed a 3-fold increased expression level. This monooxygenase could oxidize the intermediate 4MB into 4-oxo-4-sulfanylbutyric acid. Next, a desulfurization step, which forms succinic acid and volatile hydrogen sulfide, is proposed. One gene coding for a putative desulfhydrase (RERY_06500) was identified in the genome of strain MI2. However, the gene product was not recognized in the proteome analyses. But, a significant expression level with a ratio of up to 7.3 was determined for a putative sulfide:quinone oxidoreductase (RERY_02710), which could also be involved in the abstraction of the sulfur group. As response to the toxicity of the intermediates, several stress response proteins were strongly expressed, including a superoxide dismutase (RERY_05600) and an osmotically induced

  20. Genome and Proteome Analysis of Rhodococcus erythropolis MI2: Elucidation of the 4,4´-Dithiodibutyric Acid Catabolism.

    PubMed

    Khairy, Heba; Meinert, Christina; Wübbeler, Jan Hendrik; Poehlein, Anja; Daniel, Rolf; Voigt, Birgit; Riedel, Katharina; Steinbüchel, Alexander

    2016-01-01

    Rhodococcus erythropolis MI2 has the extraordinary ability to utilize the xenobiotic 4,4´-dithiodibutyric acid (DTDB). Cleavage of DTDB by the disulfide-reductase Nox, which is the only verified enzyme involved in DTDB-degradation, raised 4-mercaptobutyric acid (4MB). 4MB could act as building block of a novel polythioester with unknown properties. To completely unravel the catabolism of DTDB, the genome of R. erythropolis MI2 was sequenced, and subsequently the proteome was analyzed. The draft genome sequence consists of approximately 7.2 Mbp with an overall G+C content of 62.25% and 6,859 predicted protein-encoding genes. The genome of strain MI2 is composed of three replicons: one chromosome and two megaplasmids with sizes of 6.45, 0.4 and 0.35 Mbp, respectively. When cells of strain MI2 were cultivated with DTDB as sole carbon source and compared to cells grown with succinate, several interesting proteins with significantly higher expression levels were identified using 2D-PAGE and MALDI-TOF mass spectrometry. A putative luciferase-like monooxygenase-class F420-dependent oxidoreductase (RERY_05640), which is encoded by one of the 126 monooxygenase-encoding genes of the MI2-genome, showed a 3-fold increased expression level. This monooxygenase could oxidize the intermediate 4MB into 4-oxo-4-sulfanylbutyric acid. Next, a desulfurization step, which forms succinic acid and volatile hydrogen sulfide, is proposed. One gene coding for a putative desulfhydrase (RERY_06500) was identified in the genome of strain MI2. However, the gene product was not recognized in the proteome analyses. But, a significant expression level with a ratio of up to 7.3 was determined for a putative sulfide:quinone oxidoreductase (RERY_02710), which could also be involved in the abstraction of the sulfur group. As response to the toxicity of the intermediates, several stress response proteins were strongly expressed, including a superoxide dismutase (RERY_05600) and an osmotically induced

  1. Identification of a Novel Dioxygenase Involved in Metabolism of o-Xylene, Toluene, and Ethylbenzene by Rhodococcus sp. Strain DK17

    PubMed Central

    Kim, Dockyu; Chae, Jong-Chan; Zylstra, Gerben J.; Kim, Young-Soo; Kim, Seong-Ki; Nam, Myung Hee; Kim, Young Min; Kim, Eungbin

    2004-01-01

    Rhodococcus sp. strain DK17 is able to grow on o-xylene, benzene, toluene, and ethylbenzene. DK17 harbors at least two megaplasmids, and the genes encoding the initial steps in alkylbenzene metabolism are present on the 330-kb pDK2. The genes encoding alkylbenzene degradation were cloned in a cosmid clone and sequenced completely to reveal 35 open reading frames (ORFs). Among the ORFs, we identified two nearly exact copies (one base difference) of genes encoding large and small subunits of an iron sulfur protein terminal oxygenase that are 6 kb apart from each other. Immediately downstream of one copy of the dioxygenase genes (akbA1a and akbA2a) is a gene encoding a dioxygenase ferredoxin component (akbA3), and downstream of the other copy (akbA1b and akbA2b) are genes putatively encoding a meta-cleavage pathway. RT-PCR experiments show that the two copies of the dioxygenase genes are operonic with the downstream putative catabolic genes and that both operons are induced by o-xylene. When expressed in Escherichia coli, AkbA1a-AkbA2a-AkbA3 transformed o-xylene into 2,3- and 3,4-dimethylphenol. These were apparently derived from an unstable o-xylene cis-3,4-dihydrodiol, which readily dehydrates. This indicates a single point of attack of the dioxygenase on the aromatic ring. In contrast, attack of AkbA1a-AkbA2a-AkbA3 on ethylbenzene resulted in the formation of two different cis-dihydrodiols resulting from an oxidation at the 2,3 and the 3,4 positions on the aromatic ring, respectively. PMID:15574904

  2. A Two-Component para-Nitrophenol Monooxygenase Initiates a Novel 2-Chloro-4-Nitrophenol Catabolism Pathway in Rhodococcus imtechensis RKJ300

    PubMed Central

    Min, Jun; Zhang, Jun-Jie

    2015-01-01

    Rhodococcus imtechensis RKJ300 (DSM 45091) grows on 2-chloro-4-nitrophenol (2C4NP) and para-nitrophenol (PNP) as the sole carbon and nitrogen sources. In this study, by genetic and biochemical analyses, a novel 2C4NP catabolic pathway different from those of all other 2C4NP utilizers was identified with hydroxyquinol (hydroxy-1,4-hydroquinone or 1,2,4-benzenetriol [BT]) as the ring cleavage substrate. Real-time quantitative PCR analysis indicated that the pnp cluster located in three operons is likely involved in the catabolism of both 2C4NP and PNP. The oxygenase component (PnpA1) and reductase component (PnpA2) of the two-component PNP monooxygenase were expressed and purified to homogeneity, respectively. The identification of chlorohydroquinone (CHQ) and BT during 2C4NP degradation catalyzed by PnpA1A2 indicated that PnpA1A2 catalyzes the sequential denitration and dechlorination of 2C4NP to BT and catalyzes the conversion of PNP to BT. Genetic analyses revealed that pnpA1 plays an essential role in both 2C4NP and PNP degradations by gene knockout and complementation. In addition to catalyzing the oxidation of CHQ to BT, PnpA1A2 was also found to be able to catalyze the hydroxylation of hydroquinone (HQ) to BT, revealing the probable fate of HQ that remains unclear in PNP catabolism by Gram-positive bacteria. This study fills a gap in our knowledge of the 2C4NP degradation mechanism in Gram-positive bacteria and also enhances our understanding of the genetic and biochemical diversity of 2C4NP catabolism. PMID:26567304

  3. Growth of Rhodococcus sp. strain BCP1 on gaseous n-alkanes: new metabolic insights and transcriptional analysis of two soluble di-iron monooxygenase genes

    PubMed Central

    Cappelletti, Martina; Presentato, Alessandro; Milazzo, Giorgio; Turner, Raymond J.; Fedi, Stefano; Frascari, Dario; Zannoni, Davide

    2015-01-01

    Rhodococcus sp. strain BCP1 was initially isolated for its ability to grow on gaseous n-alkanes, which act as inducers for the co-metabolic degradation of low-chlorinated compounds. Here, both molecular and metabolic features of BCP1 cells grown on gaseous and short-chain n-alkanes (up to n-heptane) were examined in detail. We show that propane metabolism generated terminal and sub-terminal oxidation products such as 1- and 2-propanol, whereas 1-butanol was the only terminal oxidation product detected from n-butane metabolism. Two gene clusters, prmABCD and smoABCD—coding for Soluble Di-Iron Monooxgenases (SDIMOs) involved in gaseous n-alkanes oxidation—were detected in the BCP1 genome. By means of Reverse Transcriptase-quantitative PCR (RT-qPCR) analysis, a set of substrates inducing the expression of the sdimo genes in BCP1 were assessed as well as their transcriptional repression in the presence of sugars, organic acids, or during the cell growth on rich medium (Luria–Bertani broth). The transcriptional start sites of both the sdimo gene clusters were identified by means of primer extension experiments. Finally, proteomic studies revealed changes in the protein pattern induced by growth on gaseous- (n-butane) and/or liquid (n-hexane) short-chain n-alkanes as compared to growth on succinate. Among the differently expressed protein spots, two chaperonins and an isocytrate lyase were identified along with oxidoreductases involved in oxidation reactions downstream of the initial monooxygenase reaction step. PMID:26029173

  4. Optimizing Polychlorinated Biphenyl Degradation by Flavonoid-Induced Cells of the Rhizobacterium Rhodococcus erythropolis U23A.

    PubMed

    Pham, Thi Thanh My; Pino Rodriguez, Nancy Johanna; Hijri, Mohamed; Sylvestre, Michel

    2015-01-01

    There is evidence that many plant secondary metabolites may act as signal molecules to trigger the bacterial ability to metabolize polychlorinated biphenyls (PCBs) during the rhizoremediation process. However, the bases for the PCB rhizoremediation process are still largely unknown. The rhizobacterium Rhodococcus erythropolis U23A is unable to use flavanone as a growth substrate. However, on the basis of an assay that monitors the amount of 4-chlorobenzoate produced from 4-chlorobiphenyl by cells grown co-metabolically on flavanone plus sodium acetate, this flavonoid was previously found to be a potential inducer of the U23A biphenyl catabolic pathway. In this work, and using the same assay, we identified ten other flavonoids that did not support growth, but that acted as inducers of the U23A biphenyl pathway, and we confirmed flavonoid induction of the biphenyl catabolic pathway using quantitative real-time polymerase chain reaction (RT-qPCR) on the bphA gene. We also examined the effect of the growth co-substrate on flavonoid induction. Sodium acetate was replaced by glucose, mannose, sucrose, or mannitol, which are sugars found in plant root exudates. The data showed that the level of induction of strain U23A biphenyl-degrading enzymes was significantly influenced by the nature and concentration of the flavonoid in the growth medium, as well as by the substrate used for growth. Sucrose allowed for an optimal induction response for most flavonoids. Some flavonoids, such as flavone and isoflavone, were better inducers of the biphenyl catabolic enzymes than biphenyl itself. We also found that all flavonoids tested in this work were metabolized by strain U23A during co-metabolic growth, but that the metabolite profiles, as well as the level of efficiency of degradation, differed for each flavonoid. To obtain insight into how flavonoids interact with strain U23A to promote polychlorinated biphenyl (PCB) degradation, we determined the concentration of flavanone at

  5. Optimizing Polychlorinated Biphenyl Degradation by Flavonoid-Induced Cells of the Rhizobacterium Rhodococcus erythropolis U23A

    PubMed Central

    Hijri, Mohamed; Sylvestre, Michel

    2015-01-01

    There is evidence that many plant secondary metabolites may act as signal molecules to trigger the bacterial ability to metabolize polychlorinated biphenyls (PCBs) during the rhizoremediation process. However, the bases for the PCB rhizoremediation process are still largely unknown. The rhizobacterium Rhodococcus erythropolis U23A is unable to use flavanone as a growth substrate. However, on the basis of an assay that monitors the amount of 4-chlorobenzoate produced from 4-chlorobiphenyl by cells grown co-metabolically on flavanone plus sodium acetate, this flavonoid was previously found to be a potential inducer of the U23A biphenyl catabolic pathway. In this work, and using the same assay, we identified ten other flavonoids that did not support growth, but that acted as inducers of the U23A biphenyl pathway, and we confirmed flavonoid induction of the biphenyl catabolic pathway using quantitative real-time polymerase chain reaction (RT-qPCR) on the bphA gene. We also examined the effect of the growth co-substrate on flavonoid induction. Sodium acetate was replaced by glucose, mannose, sucrose, or mannitol, which are sugars found in plant root exudates. The data showed that the level of induction of strain U23A biphenyl-degrading enzymes was significantly influenced by the nature and concentration of the flavonoid in the growth medium, as well as by the substrate used for growth. Sucrose allowed for an optimal induction response for most flavonoids. Some flavonoids, such as flavone and isoflavone, were better inducers of the biphenyl catabolic enzymes than biphenyl itself. We also found that all flavonoids tested in this work were metabolized by strain U23A during co-metabolic growth, but that the metabolite profiles, as well as the level of efficiency of degradation, differed for each flavonoid. To obtain insight into how flavonoids interact with strain U23A to promote polychlorinated biphenyl (PCB) degradation, we determined the concentration of flavanone at

  6. Preliminary report on a catalyst derived from induced cells of Rhodococcus rhodochrous strain DAP 96253 that delays the ripening of selected climacteric fruit: bananas, avocados, and peaches.

    PubMed

    Pierce, G E; Drago, G K; Ganguly, S; Tucker, T-A M; Hooker, J W; Jones, S; Crow, S A

    2011-09-01

    Despite the use of refrigeration, improved packaging, adsorbents, and ethylene receptor blockers, on average, nearly 40% of all fruits and vegetables harvested in the US are not consumed. Many plant products, especially fruit, continue to ripen after harvesting, and as they do so, become increasingly susceptible to mechanical injury, resulting in increased rot. Other plant products during transportation and storage are susceptible to chill injury (CI). There is a real need for products that can delay ripening or mitigate the effects of CI, yet still permit full ripeness and quality to be achieved. Preliminary results are discussed where catalyst derived from cells of Rhodococcus rhodochrous DAP 96253, grown under conditions that induced high levels of nitrile hydratase, were able to extend the ripening and thus the shelf-life of selected climacteric fruits (banana, avocado, and peach). A catalyst, when placed in proximity to, but not touching, the test fruit delayed the ripening but did not alter the final ripeness of the fruit tested. Organoleptic evaluations conducted with control peaches and with peaches exposed to, but not in contact with, the catalyst showed that the catalyst-treated peaches achieved full, natural levels of ripeness with respect to aroma, flavor, sweetness, and juice content. Furthermore, the results of delayed ripening were achieved at ambient temperatures (without the need for refrigeration).

  7. Identification of Porphyromonas gingivalis proteins secreted by the Por secretion system.

    PubMed

    Sato, Keiko; Yukitake, Hideharu; Narita, Yuka; Shoji, Mikio; Naito, Mariko; Nakayama, Koji

    2013-01-01

    The Gram-negative bacterium Porphyromonas gingivalis possesses a number of potential virulence factors for periodontopathogenicity. In particular, cysteine proteinases named gingipains are of interest given their abilities to degrade host proteins and process other virulence factors such as fimbriae. Gingipains are translocated on the cell surface or into the extracellular milieu by the Por secretion system (PorSS), which consists of a number of membrane or periplasmic proteins including PorK, PorL, PorM, PorN, PorO, PorP, PorQ, PorT, PorU, PorV (PG27, LptO), PorW and Sov. To identify proteins other than gingipains secreted by the PorSS, we compared the proteomes of P. gingivalis strains kgp rgpA rgpB (PorSS-proficient strain) and kgp rgpA rgpB porK (PorSS-deficient strain) using two-dimensional gel electrophoresis and peptide-mass fingerprinting. Sixteen spots representing 10 different proteins were present in the particle-free culture supernatant of the PorSS-proficient strain but were absent or faint in that of the PorSS-deficient strain. These identified proteins possessed the C-terminal domains (CTDs), which had been suggested to form the CTD protein family. These results indicate that the PorSS is used for secretion of a number of proteins other than gingipains and that the CTDs of the proteins are associated with the PorSS-dependent secretion. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  8. Suppression of Cytochrome P450 Reductase (POR) Expression in Hepatoma Cells Replicates the Hepatic Lipidosis Observed in Hepatic POR-Null Mice

    PubMed Central

    Banerjee, Subhashis; Stolarczyk, Elzbieta I.; Zou, Ling

    2011-01-01

    Cytochrome P450 reductase (POR) is a microsomal electron transport protein essential to cytochrome P450-mediated drug metabolism and sterol and bile acid synthesis. The conditional deletion of hepatic POR gene expression in mice results in a marked decrease in plasma cholesterol levels counterbalanced by the accumulation of triglycerides in lipid droplets in hepatocytes. To evaluate the role of cholesterol and bile acid synthesis in this hepatic lipidosis, as well as the possible role of lipid transport from peripheral tissues, we developed a stable, small interfering RNA (siRNA)-mediated cell culture model for the suppression of POR. POR mRNA and protein expression were decreased by greater than 50% in McArdle-RH7777 rat hepatoma cells 10 days after transfection with a POR-siRNA expression plasmid, and POR expression was nearly completely extinguished by day 20. Immunofluorescent analysis revealed a marked accumulation of lipid droplets in cells by day 15, accompanied by a nearly 2-fold increase in cellular triglyceride content, replicating the lipidosis seen in hepatic POR-null mouse liver. In contrast, suppression of CYP51A1 (lanosterol demethylase) did not result in lipid accumulation, indicating that loss of cholesterol synthesis is not the basis for this lipidosis. Indeed, addition of cholesterol to the medium appeared to augment the lipidosis in POR-suppressed cells, whereas removal of lipids from the medium reversed the lipidosis. Oxysterols did not accumulate in POR-suppressed cells, discounting a role for liver X receptor in stimulating triglyceride synthesis, but addition of chenodeoxycholate significantly repressed lipid accumulation, suggesting that the absence of bile acids and loss of farnesoid X receptor stimulation lead to excessive triglyceride synthesis. PMID:21368239

  9. Suppression of cytochrome P450 reductase (POR) expression in hepatoma cells replicates the hepatic lipidosis observed in hepatic POR-null mice.

    PubMed

    Porter, Todd D; Banerjee, Subhashis; Stolarczyk, Elzbieta I; Zou, Ling

    2011-06-01

    Cytochrome P450 reductase (POR) is a microsomal electron transport protein essential to cytochrome P450-mediated drug metabolism and sterol and bile acid synthesis. The conditional deletion of hepatic POR gene expression in mice results in a marked decrease in plasma cholesterol levels counterbalanced by the accumulation of triglycerides in lipid droplets in hepatocytes. To evaluate the role of cholesterol and bile acid synthesis in this hepatic lipidosis, as well as the possible role of lipid transport from peripheral tissues, we developed a stable, small interfering RNA (siRNA)-mediated cell culture model for the suppression of POR. POR mRNA and protein expression were decreased by greater than 50% in McArdle-RH7777 rat hepatoma cells 10 days after transfection with a POR-siRNA expression plasmid, and POR expression was nearly completely extinguished by day 20. Immunofluorescent analysis revealed a marked accumulation of lipid droplets in cells by day 15, accompanied by a nearly 2-fold increase in cellular triglyceride content, replicating the lipidosis seen in hepatic POR-null mouse liver. In contrast, suppression of CYP51A1 (lanosterol demethylase) did not result in lipid accumulation, indicating that loss of cholesterol synthesis is not the basis for this lipidosis. Indeed, addition of cholesterol to the medium appeared to augment the lipidosis in POR-suppressed cells, whereas removal of lipids from the medium reversed the lipidosis. Oxysterols did not accumulate in POR-suppressed cells, discounting a role for liver X receptor in stimulating triglyceride synthesis, but addition of chenodeoxycholate significantly repressed lipid accumulation, suggesting that the absence of bile acids and loss of farnesoid X receptor stimulation lead to excessive triglyceride synthesis.

  10. Kinetic Studies of the Cometabolism of 1,4-DIOXANE and Chlorinated Aliphatic Hydrocarbon Mixtures by Rhodococcus Rhodochrous Grown on Isobutane

    NASA Astrophysics Data System (ADS)

    Rolston, H. M.; Semprini, L.; Thankitkul, S.; Azizian, M.; Hyman, M. R.

    2016-12-01

    1,4-dioxane (1,4-D) is a frequently observed groundwater contaminant due to its use as a stabilizer in commercial solvent formulations. In situ bioremediation could potentially provide a large cost savings for treatment of mixtures of chlorinated aliphatic hydrocarbons (CAHs) that include 1,4-D. Aerobic cometabolism is a particularly attractive option, as microorganisms can be stimulated in situ using specific primary substrates. Results will be presented that show the model isobutane-metabolizing bacteria, Rhodococcus rhodochrous (ATCC 21198), has the ability to transform 14-D at high rates and transformation capacities to concentrations below the drinking water screening level of 0.67 µg L-1. Resting cell transformation tests showed 1,4-D and a broad range of CAHs can be cometabolized by ATCC 21198. The maximum transformation rate (kmax) and the half-substrate coefficient (Ks) were determined for isobutane (the growth substrate), 1,4-D, 1,1,1-trichloroethane (1,1,1-TCA), 1,1,2-trichloroethane (1,1,2-TCA), 1,1-dichloroethane (1,1-DCA); 1,2-dichloroethane ((1,2-DCA) and 1,1-dichloroethene (1,1-DCE). Of the CAHs tested, 1,1-DCA had the highest kmax, approximately 25% of that for isobutane utilization, while 1,1,1-TCA had the lowest kmax, approximately 2% of isobutane's. 1,4-D was rapidly transformed and had a kmax 25% of that of isobutane. ATCC 21198 effectively transformed mixtures of 1,4-D, 1,1-DCE, 1,2-DCA and 1,1,1-TCA, both in the presence and absence isobutane. Model simulations were performed for the simultaneous cometabolism of 1,4-D and CAH mixtures by ATCC 21198, that included inhibition among the contaminants and isobutane , and terms for a limited transformation capacity. A good match to experimental observations was obtaining using the independently measured rate parameters. Results of model simulations will also be presented using a reactive transport model to evaluate conditions of in situ bioremediation using strain ATCC 21198.

  11. Identification of the region of a 14-kilodalton protein of Rhodococcus ruber that is responsible for the binding of this phasin to polyhydroxyalkanoic acid granules.

    PubMed Central

    Pieper-Fürst, U; Madkour, M H; Mayer, F; Steinbüchel, A

    1995-01-01

    The function of the polyhydroxyalkanoic acid (PHA) granule-associated GA14 protein of Rhodococcus ruber was investigated in Escherichia coli XL1-Blue, which coexpressed this protein with the polyhydroxybutyric acid (PHB) biosynthesis operon of Alcaligenes eutrophus. The GA14 protein had no influence on the biosynthesis rate of PHB in E. coli XL1-Blue(pSKCO7), but this recombinant E. coli strain formed smaller PHB granules than were formed by an E. coli strain that expressed only the PHB operon. Immunoelectron microscopy with GA14-specific antibodies demonstrated the binding of GA14 protein to these mini granules. In a previous study, two hydrophobic domains close to the C terminus of the GA14 protein were analyzed, and a working hypothesis that suggested an anchoring of the GA14 protein in the phospholipid monolayer surrounding the PHA granule core by these hydrophobic domains was developed (U. Pieper-Fürst, M. H. Madkour, F. Mayer, and A. Steinbüchel, J. Bacteriol. 176:4328-4337, 1994). This hypothesis was confirmed by the construction of C-terminally truncated variants of the GA14 protein lacking the second or both hydrophobic domains and by the demonstration of their inability to bind to PHB granules. Further confirmation of the hypothesis was obtained by the construction of a fusion protein composed of the acetaldehyde dehydrogenase II of A. eutrophus and the C terminus of the GA14 protein containing both hydrophobic domains and by its affinity to native and artificial PHB granules. PMID:7730285

  12. Use of Serial Quantitative PCR of the vapA Gene of Rhodococcus equi in Feces for Early Detection of R. equi Pneumonia in Foals.

    PubMed

    Madrigal, R G; Shaw, S D; Witkowski, L A; Sisson, B E; Blodgett, G P; Chaffin, M K; Cohen, N D

    2016-01-01

    Current screening tests for Rhodococcus equi pneumonia in foals lack adequate accuracy for clinical use. Real-time, quantitative PCR (qPCR) for virulent R. equi in feces has not been systematically evaluated as a screening test. The objective of this study was to evaluate the accuracy of qPCR for vapA in serially collected fecal samples as a screening test for R. equi pneumonia in foals. One hundred and twenty-five foals born in 2011 at a ranch in Texas. Fecal samples were collected concurrently with thoracic ultrasonography (TUS) screening examinations at ages 3, 5, and 7 weeks. Affected (pneumonic) foals (n = 25) were matched by age and date-of-birth to unaffected (n = 25) and subclinical (ie, having thoracic TUS lesions but no clinical signs of pneumonia) foals (n = 75). DNA was extracted from feces using commercial kits and concentration of virulent R. equi in feces was determined by qPCR. Subsequently affected foals had significantly greater concentrations of vapA in feces than foals that did not develop pneumonia (unaffected and subclinical foals) at 5 and 7 weeks of age. Accuracy of fecal qPCR, however, was poor as a screening test to differentiate foals that would develop clinical signs of pneumonia from those that would remain free of clinical signs (including foals with subclinical pulmonary lesions attributed to R. equi) using receiver operating characteristic (ROC) methods. In the population studied, serial qPCR on feces lacked adequate accuracy as a screening test for clinical R. equi foal pneumonia. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  13. VapB type 8 plasmids in Rhodococcus equi isolated from the small intestine of pigs and comparison of selective culture media.

    PubMed

    Lara, G H B; Takai, S; Sasaki, Y; Kakuda, T; Listoni, F J P; Risseti, R M; de Morais, A B C; Ribeiro, M G

    2015-09-01

    The virulence-plasmid profile of Rhodococcus equi strains isolated from Suidae and humans is similar. Recent evidence suggests that the consumption of pork products contaminated with faeces might be a potential source of R. equi infections in humans, mainly to patients with rhodococcosis without history of contact with pigs or pig farms. This study investigated the virulence-associated genes (vapA and vapB) and plasmid profiles of R. equi among the 150 samples of small intestinal content obtained from slaughtered pigs. In addition, all samples were subjected to microbiological culture in conventional sheep blood agar and CAZ-NB, TCP and TVP selective media. A total of 40 (26·7%) of the samples recovered R. equi, with two samples recovering isolates harbouring the VapB type 8 plasmid. Among the 150 pigs sampled herein, CAZ-NB was considered the best selective medium for the isolation of R. equi from faeces. Our results provide evidence that the contamination of slaughtered pig carcasses with pathogenic R. equi might occur through faeces, representing a public health concern. Furthermore, this study is the first description of R. equi strains carrying the VapB plasmid in the gut of pigs. Intermediately virulent (VapB) is a common plasmid-type harboured by R. equi isolated from pigs and humans with AIDS. Curiously, humans with rhodococcosis usually have no history of contact with pigs or pig farms. Virulence-plasmid profile of 40 R. equi isolated among 150 small intestine content samples from pigs revelled two carrying isolates with the VapB type-8 plasmids. Moreover, comparison of three selective culture media shows that CAZ-NB was the best. Our results provide evidence that contamination of slaughtered pig carcasses with pathogenic R. equi might occur through faeces, representing a public health concern. Furthermore, R. equi carrying VapB type-8 plasmids types are described for the first time in the gut of the pig. © 2015 The Society for Applied

  14. Microbial cleavage of organic C-S bonds

    DOEpatents

    Kilbane, II, John J.

    1994-01-01

    A microbial process for selective cleavage of organic C--S bonds which may be used for reducing the sulfur content of sulfur-containing organic carbonaceous materials, Microorganisms of Rhodococcus rhodochrous and Bacillus sphaericus have been found which have the ability of selective cleavage of organic C--S bonds. Particularly preferred microorganisms are Rhodococcus rhodochrous strain ATCC 53968 and Bacillus sphaericus strain ATCC 53969 and their derivatives.

  15. Microbial cleavage of organic C-S bonds

    DOEpatents

    Kilbane, J.J. II.

    1994-10-25

    A microbial process is described for selective cleavage of organic C-S bonds which may be used for reducing the sulfur content of sulfur-containing organic carbonaceous materials. Microorganisms of Rhodococcus rhodochrous and Bacillus sphaericus have been found which have the ability of selective cleavage of organic C-S bonds. Particularly preferred microorganisms are Rhodococcus rhodochrous strain ATCC 53968 and Bacillus sphaericus strain ATCC 53969 and their derivatives.

  16. Clearance of Virulent but Not Avirulent Rhodococcus equi from the Lungs of Adult Horses Is Associated with Intracytoplasmic Gamma Interferon Production by CD4+ and CD8+ T Lymphocytes

    PubMed Central

    Hines, Stephen A.; Stone, Diana M.; Hines, Melissa T.; Alperin, Debby C.; Knowles, Donald P.; Norton, Linda K.; Hamilton, Mary J.; Davis, William C.; McGuire, Travis C.

    2003-01-01

    Rhodococcus equi is a gram-positive bacterium that infects alveolar macrophages and causes rhodococcal pneumonia in horses and humans. The virulence plasmid of R. equi appears to be required for both pathogenicity in the horse and the induction of protective immunity. An understanding of the mechanisms by which virulent R. equi circumvents protective host responses and by which bacteria are ultimately cleared is important for development of an effective vaccine. Six adult horses were challenged with either virulent R. equi or an avirulent, plasmid-cured derivative. By using a flow cytometric method for intracytoplasmic detection of gamma interferon (IFN-γ) in equine bronchoalveolar lavage fluid (BALF) cells, clearance of the virulent strain was shown to be associated with increased numbers of pulmonary CD4+ and CD8+ T lymphocytes producing IFN-γ. There was no change in IFN-γ-positive cells in peripheral blood, suggesting that a type 1 recall response at the site of challenge was protective. The plasmid-cured strain of R. equi was cleared in horses without a significant increase in IFN-γ-producing T lymphocytes in BALF. In contrast to these data, a previous report in foals suggested an immunomodulating role for R. equi virulence plasmid-encoded products in downregulating IFN-γ expression by equine CD4+ T lymphocytes. Intracytoplasmic detection of IFN-γ provides a method to better determine whether modulation of macrophage-activating cytokines by virulent strains occurs uniquely in neonates and contributes to their susceptibility to rhodococcal pneumonia. PMID:12626444

  17. Biodegradation of sulfamethoxazole by individual and mixed bacteria.

    PubMed

    Larcher, Simone; Yargeau, Viviane

    2011-07-01

    Antibiotic compounds, like sulfamethoxazole (SMX), have become a concern in the aquatic environment due to the potential development of antibacterial resistances. Due to excretion and disposal, SMX has been frequently detected in wastewaters and surface waters. SMX removal in conventional wastewater treatment plants (WWTPs) ranges from 0% to 90%, and there are opposing results regarding its biodegradability at lab scale. The objective of this research was to determine the ability of pure cultures of individual and mixed consortia of bacteria (Bacillus subtilis, Pseudomonas aeruginosa, Pseudomonas putida, Rhodococcus equi, Rhodococcus erythropolis, Rhodococcus rhodocrous, and Rhodococcus zopfii) known to exist in WWTP activated sludge to remove SMX. Results showed that R. equi alone had the greatest ability to remove SMX leading to 29% removal (with glucose) and the formation of a metabolite. Degradation pathways and metabolite structures have been proposed based on the potential enzymes produced by R. equi. When R. equi was mixed with other microorganisms, a positive synergistic effect was not observed and the maximum SMX removal achieved was 5%. This indicates that pure culture results cannot be extrapolated to mixed culture conditions, and the methodology developed here to study the biodegradability of compounds under controlled mixed culture conditions offers an alternative to conventional studies using pure bacterial cultures or inocula from activated sludge sources consisting of unknown and variable microbial populations.

  18. Treatment of N-Nitrosodimethylamine (NDMA) in Groundwater Using a Fluidized Bed Bioreactor

    DTIC Science & Technology

    2014-01-01

    by the propanotroph Rhodococcus ruber ENV425 in batch culture. Figure 1.3 Effect of propane on the mineralization of 14C-NDMA to 14CO2 by the...propanotroph Rhodococcus ruber ENV425. Figure 1.4 Percent mineralization of 14C-NDMA to 14CO2 in microcosms prepared with aquifer solids and... mineralization by ENV425 in WSTF water. Figure 5.3 NDMA degradation by ENV425 in WSTF water. Figure 5.4 Photograph of the laboratory-scale FBR

  19. System design description for portable 1,000 CFM exhauster Skids POR-007/Skid E and POR-008/Skid F

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, O.D.

    1998-07-25

    The primary purpose of the two 1,000 CFM Exhauster Skids, POR-007-SKID E and POR-008-SKID F, is to provide backup to the waste tank primary ventilation systems for tanks 241-C-106 and 241-AY-102, and the AY-102 annulus in the event of a failure during the sluicing of tank 241-C-106 and subsequent transfer of sluiced waste to 241-AY-102. This redundancy is required since both of the tank ventilation systems have been declared as Safety Class systems.

  20. [Use of claydite-immobilized oil-oxidizing microbial cells for purification of water from oil].

    PubMed

    Pirog, T P; Shevchuk, T A; Voloshinka, I N; Gregirchak, N N

    2005-01-01

    Oil-oxidizing bacteria were isolated from oil-polluted soil and water samples and identified as Acinetobacter calcoaceticus K-4, Nocardia vaceinii K-8, Rhodococcus erythropolis EK-1, and Mycobacterium sp. K-2. It was found that immobilization of the bacteria on an expanded clay aggregate accelerated their growth and consumption of hydrocarbon substrates. It was also found that water polluted with 100 mg/l oil could be purified with Rhodococcus erythropolis EK-1 and Nocardia vaceinii K-8 cells immobilized in this way. The dependence of the degree of water purification on its flow rate, aeration, and availability of nitrogen and phosphorus sources was determined. The efficiency of water purification from oil by immobilized Rhodococcus erythropolis EK-1 cells at high flow rates (of up to 0.68 l/h), low aeration (of 0.1 l/l per min) and an intermittent supply of 0.01% diammonium phosphate reached 99.5-99.8%.

  1. Degradation of hexane and other recalcitrant hydrocarbons by a novel isolate, Rhodococcus sp. EH831.

    PubMed

    Lee, Eun-Hee; Kim, Jaisoo; Cho, Kyung-Suk; Ahn, Yun Gyong; Hwang, Geum-Sook

    2010-01-01

    , chlorinated hydrocarbons, cyclic alkanes, ethers, ketones, monoaromatic and polyaromatic hydrocarbons, and petroleum hydrocarbons. The maximum hexane degradation rate (V max) of EH831 was 290 micromol g dry cell weight(-1) h(-1), and the saturation constant (K s) was 15 mM. Using 14C-hexane, EH831 was confirmed to mineralize approximately 49% of the hexane into CO2 and, converted approximately, 46% into biomass; the rest (1.7%) remained as extracellular metabolites in the liquid phase. The degradation pathway was assessed through the qualitative analysis of the hexane intermediates due to EH831, which were 2-hexanol, 2-hexanone, 5-hexen-2-one and 2,5-hexanedione, in that order, followed by 4-methyl-2-pentanone, 3-methyl-1-butanol, 3-methyl-1-butanone and butanal, and finally, CO2. EH831 could degrade methanol, ethanol, acetone, cyclohexane, MTBE, DCM, BTEX, pyrene, diesel, and lubricant oil. EH831 was able to degrade many recalcitrant hydrocarbons at higher degradation rates compared with previous well-known degraders. Furthermore, this study primarily suggested the aerobic biodegradation pathway, which may provide valuable information for researchers and engineers working in the field of environmental engineering. Rhodococcus sp. EH831 is a promising bioresource for removing hexane and other recalcitrant hydrocarbons from a variety of environments. Moreover, the aerobic biodegradation pathway is reported for the first time in this study, which offers valuable information for understanding the microbial degradation of hexane. The utility of the strain isolated in this study needs to be proved by its application to biological process systems, such as biofilters and bioreactors, etc., for the degradation of hexane and many other recalcitrant hydrocarbons. Detailed investigations will also be needed to clarify the enzymatic characteristics relating the degradation of both recalcitrant hydrocarbons and hexane.

  2. Biosynthesis of 1α-hydroxycorticosterone in the winter skate Leucoraja ocellata: evidence to suggest a novel steroidogenic route.

    PubMed

    Wiens, J; Ho, R; Brassinga, A K; Deck, C A; Walsh, P J; Ben, R N; Mcclymont, K; Charlton, T; Evans, A N; Anderson, W G

    2017-07-01

    The present study explores the ability of intracellular bacteria within the renal-inter-renal tissue of the winter skate Leucoraja ocellata to metabolize steroids and contribute to the synthesis of the novel elasmobranch corticosteroid, 1α-hydroxycorticosterone (1α-OH-B). Despite the rarity of C1 hydroxylation noted in the original identification of 1α-OH-B, literature provides evidence for steroid C1 hydroxylation by micro-organisms. Eight ureolytic bacterial isolates were identified in the renal-inter-renal tissue of L. ocellata, the latter being the site of 1α-OH-B synthesis. From incubations of bacterial isolates with known amounts of potential 1α-OH-B precursors, one isolate UM008 of the genus Rhodococcus was seen to metabolize corticosteroids and produce novel products via HPLC analysis. Cations Zn 2+ and Fe 3+ altered metabolism of certain steroid precursors, suggesting inhibition of Rhodococcus steroid catabolism. Genome sequencing of UM008 identified strong sequence and structural homology to that of Rhodococcus erythropolis PR4. A complete enzymatic pathway for steroid-ring oxidation as documented within other Actinobacteria was identified within the UM008 genome. This study highlights the potential role of Rhodococcus bacteria in steroid metabolism and proposes a novel alternative pathway for 1α-OH-B synthesis, suggesting a unique form of mutualism between intracellular bacteria and their elasmobranch host. © 2017 The Fisheries Society of the British Isles.

  3. Predicting the accumulation of storage compounds by Rhodococcus jostii RHA1 in the feast-famine growth cycles using genome-scale flux balance analysis.

    PubMed

    Tajparast, Mohammad; Frigon, Dominic

    2018-01-01

    Feast-famine cycles in biological wastewater resource recovery systems select for bacterial species that accumulate intracellular storage compounds such as poly-β-hydroxybutyrate (PHB), glycogen, and triacylglycerols (TAG). These species survive better the famine phase and resume rapid substrate uptake at the beginning of the feast phase faster than microorganisms unable to accumulate storage. However, ecophysiological conditions favouring the accumulation of either storage compounds remain to be clarified, and predictive capabilities need to be developed to eventually rationally design reactors producing these compounds. Using a genome-scale metabolic modelling approach, the storage metabolism of Rhodococcus jostii RHA1 was investigated for steady-state feast-famine cycles on glucose and acetate as the sole carbon sources. R. jostii RHA1 is capable of accumulating the three storage compounds (PHB, TAG, and glycogen) simultaneously. According to the experimental observations, when glucose was the substrate, feast phase chemical oxygen demand (COD) accumulation was similar for the three storage compounds; when acetate was the substrate, however, PHB accumulation was 3 times higher than TAG accumulation and essentially no glycogen was accumulated. These results were simulated using the genome-scale metabolic model of R. jostii RHA1 (iMT1174) by means of flux balance analysis (FBA) to determine the objective functions capable of predicting these behaviours. Maximization of the growth rate was set as the main objective function, while minimization of total reaction fluxes and minimization of metabolic adjustment (environmental MOMA) were considered as the sub-objective functions. The environmental MOMA sub-objective performed better than the minimization of total reaction fluxes sub-objective function at predicting the mixture of storage compounds accumulated. Additional experiments with 13C-labelled bicarbonate (HCO3-) found that the fluxes through the central

  4. Predicting the accumulation of storage compounds by Rhodococcus jostii RHA1 in the feast-famine growth cycles using genome-scale flux balance analysis

    PubMed Central

    Tajparast, Mohammad

    2018-01-01

    Feast-famine cycles in biological wastewater resource recovery systems select for bacterial species that accumulate intracellular storage compounds such as poly-β-hydroxybutyrate (PHB), glycogen, and triacylglycerols (TAG). These species survive better the famine phase and resume rapid substrate uptake at the beginning of the feast phase faster than microorganisms unable to accumulate storage. However, ecophysiological conditions favouring the accumulation of either storage compounds remain to be clarified, and predictive capabilities need to be developed to eventually rationally design reactors producing these compounds. Using a genome-scale metabolic modelling approach, the storage metabolism of Rhodococcus jostii RHA1 was investigated for steady-state feast-famine cycles on glucose and acetate as the sole carbon sources. R. jostii RHA1 is capable of accumulating the three storage compounds (PHB, TAG, and glycogen) simultaneously. According to the experimental observations, when glucose was the substrate, feast phase chemical oxygen demand (COD) accumulation was similar for the three storage compounds; when acetate was the substrate, however, PHB accumulation was 3 times higher than TAG accumulation and essentially no glycogen was accumulated. These results were simulated using the genome-scale metabolic model of R. jostii RHA1 (iMT1174) by means of flux balance analysis (FBA) to determine the objective functions capable of predicting these behaviours. Maximization of the growth rate was set as the main objective function, while minimization of total reaction fluxes and minimization of metabolic adjustment (environmental MOMA) were considered as the sub-objective functions. The environmental MOMA sub-objective performed better than the minimization of total reaction fluxes sub-objective function at predicting the mixture of storage compounds accumulated. Additional experiments with 13C-labelled bicarbonate (HCO3−) found that the fluxes through the central

  5. Enhanced polyaromatic hydrocarbon degradation by adapted cultures of actinomycete strains.

    PubMed

    Bourguignon, Natalia; Isaac, Paula; Alvarez, Héctor; Amoroso, María J; Ferrero, Marcela A

    2014-12-01

    Fifteen actinomycete strains were evaluated for their potential use in removal of polycyclic aromatic hydrocarbons (PAH). Their capability to degrade of naphthalene, phenanthrene, and pyrene was tested in minimal medium (MM) and MM with glucose as another substrate. Degradation of naphthalene in MM was observed in all isolates at different rates, reaching maximum values near to 76% in some strains of Streptomyces, Rhodococcus sp. 016 and Amycolatopsis tucumanensis DSM 45259. Maximum values of degradation of phenanthrene in MM occurred in cultures of A. tucumanensis DSM 45259 (36.2%) and Streptomyces sp. A12 (20%), while the degradation of pyrene in MM was poor and only significant with Streptomyces sp. A12 (4.3%). Because of the poor performance when growing on phenanthrene and pyrene alone, Rhodococcus sp. 20, Rhodococcus sp. 016, A. tucumanensis DSM 45259, Streptomyces sp. A2, and Streptomyces sp. A12 were challenged to an adaptation schedule of successive cultures on a fresh solid medium supplemented with PAHs, decreasing concentration of glucose in each step. As a result, an enhanced degradation of PAHs by adapted strains was observed in the presence of glucose as co-substrate, without degradation of phenanthrene and pyrene in MM while an increase to up to 50% of degradation was seen with these strains in glucose amended media. An internal fragment of the catA gene, which codes for catechol 1,2-dioxygenase, was amplified from both Rhodococcus strains, showing the potential for degradation of aromatic compounds via salycilate. These results allow us to propose the usefulness of these actinomycete strains for PAH bioremediation in the environment. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Biodegradation of the xenobiotic organic disulphide 4,4'-dithiodibutyric acid by Rhodococcus erythropolis strain MI2 and comparison with the microbial utilization of 3,3'-dithiodipropionic acid and 3,3'-thiodipropionic acid.

    PubMed

    Wübbeler, Jan Hendrik; Bruland, Nadine; Wozniczka, Milena; Steinbüchel, Alexander

    2010-04-01

    Application of the non-toxic 3,3'-thiodipropionic acid (TDP) and 3,3'-dithiodipropionic acid (DTDP) as precursors for the microbial production of polythioesters (PTEs), a class of biologically persistent biopolymers containing sulphur in the backbone, was successfully established previously. However, synthesis of PTEs containing 4-mercaptobutyrate (4MB) as building blocks could not be achieved. The very harmful 4MB is not used as a PTE precursor or as the carbon source for growth by any known strain. As a promising alternative, the harmless oxidized disulfide of two molecules of 4MB, 4,4'-dithiodibutyric acid (DTDB), was employed for enrichments of bacterial strains capable of biodegradation. Investigation of novel precursor substrates for PTEs and comparison of respective strains growing on TDP, DTDP and DTDB as sole carbon source was accomplished. A broad variety of bacteria capable of using one of these organic sulphur compounds were isolated and compared. TDP and DTDP were degraded by several strains belonging to different genera, whereas all DTDB-utilizing strains were affiliated to the species Rhodococcus erythropolis. Transposon mutagenesis of R. erythropolis strain MI2 and screening of 7500 resulting mutants yielded three mutants exhibiting impaired growth on DTDB. Physiological studies revealed production of volatile hydrogen sulphide and accumulation of significant amounts of 4MB, 4-oxo-4-sulphanylbutanoic acid and succinic acid in the culture supernatants. Based on this knowledge, a putative pathway for degradation of DTDB was proposed: DTDB could be cleaved into two molecules of 4MB, followed by an oxidation yielding 4-oxo-4-sulphanylbutanoic acid. A putative desulphydrase probably catalyses the abstraction of sulphur, thereby generating succinic acid and hydrogen sulphide.

  7. Biotransformations of 2-Methylisoborneol by Camphor-Degrading Bacteria ▿

    PubMed Central

    Eaton, Richard W.; Sandusky, Peter

    2009-01-01

    Many camphor-degrading bacteria that are able to transform 2-methylisoborneol (2-MIB) have been identified. Three of these strains have been examined in detail. Rhodococcus ruber T1 metabolizes camphor through 6-hydroxycamphor but converts 2-MIB to 3-hydroxy-2-MIB. Pseudomonas putida G1, which metabolizes camphor through 5-hydroxycamphor, converts MIB primarily to 6-hydroxy-2-MIB. Rhodococcus wratislaviensis DLC-cam converts 2-MIB through 5-hydroxy-2-MIB to 5-keto-2-MIB. Together, these three strains produce metabolites resulting from hydroxylation at all of the three available secondary carbons on the six-member ring of 2-MIB. PMID:19060161

  8. Outer membrane vesicles from Neisseria gonorrhoeae target PorB to mitochondria and induce apoptosis

    PubMed Central

    Elgass, Kirstin D.; Gabriel, Kipros; Dougan, Gordon; Lithgow, Trevor; Heinz, Eva

    2018-01-01

    Neisseria gonorrhoeae causes the sexually transmitted disease gonorrhoea by evading innate immunity. Colonizing the mucosa of the reproductive tract depends on the bacterial outer membrane porin, PorB, which is essential for ion and nutrient uptake. PorB is also targeted to host mitochondria and regulates apoptosis pathways to promote infections. How PorB traffics from the outer membrane of N. gonorrhoeae to mitochondria and whether it modulates innate immune cells, such as macrophages, remains unclear. Here, we show that N. gonorrhoeae secretes PorB via outer membrane vesicles (OMVs). Purified OMVs contained primarily outer membrane proteins including oligomeric PorB. The porin was targeted to mitochondria of macrophages after exposure to purified OMVs and wild type N. gonorrhoeae. This was associated with loss of mitochondrial membrane potential, release of cytochrome c, activation of apoptotic caspases and cell death in a time-dependent manner. Consistent with this, OMV-induced macrophage death was prevented with the pan-caspase inhibitor, Q-VD-PH. This shows that N. gonorrhoeae utilizes OMVs to target PorB to mitochondria and to induce apoptosis in macrophages, thus affecting innate immunity. PMID:29601598

  9. Application of two bacterial strains for wastewater bioremediation and assessment of phenolics biodegradation.

    PubMed

    Paisio, Cintia E; Quevedo, María R; Talano, Melina A; González, Paola S; Agostini, Elizabeth

    2014-08-01

    The use of native bacteria is a useful strategy to decontaminate industrial effluents. In this work, two bacterial strains isolated from polluted environments constitutes a promising alternative since they were able to remove several phenolic compounds not only from synthetic solutions but also from effluents derived from a chemical industry and a tannery which are complex matrices. Acinetobacter sp. RTE 1.4 showed ability to completely remove 2-methoxyphenol (1000 mg/L) while Rhodococcus sp. CS 1 not only degrade the same concentration of this compound but also removed 4- chlorophenol, 2,4-dichlorophenol and pentachlorophenol with high efficiency. Moreover, both bacteria degraded phenols naturally present or even exogenously added at high concentrations in effluents from the chemical industry and a tannery in short time (up to 5 d). In addition, a significant reduction of biological oxygen demand and chemical oxygen demand values was achieved after 7 d of treatment for both effluents using Acinetobacter sp. RTE 1.4 and Rhodococcus sp. CS1, respectively. These results showed that Acinetobacter sp. RTE1.4 and Rhodococcus sp. CS 1 might be considered as useful biotechnological tools for an efficient treatment of different effluents, since they showed wide versatility to detoxify these complex matrices, even supplemented with high phenol concentrations.

  10. Chloromuconolactone dehalogenase ClcF of actinobacteria.

    PubMed

    Solyanikova, Inna P; Plotnikova, Elena G; Shumkova, Ekaterina S; Robota, Irina V; Prisyazhnaya, Natalya V; Golovleva, Ludmila A

    2014-01-01

    This work investigated the distribution of the clcF gene in actinobacteria isolated from different ecotopes. The gene encodes chloromuconolactone dehalogenase (CMLD) ClcF, the enzyme found to date in only one representative of Gram-positive bacteria, Rhodococcus opacus 1CP, adapted to 2-chlorophenol (2CP). Using primers specific to the clcF gene, from the DNA matrix of rhodococcal strains closely related to species Rhodococcus wratislaviensis (P1, P12, P13, P20, G10, KT112, KT723, BO1) we obtained PCR products whose nucleotide sequences were 100% identical to that of the clcF gene from strain R. opacus 1CP. CMLDs isolated from the biomass of strains Rhodococcus spp. G10 and P1 grown on 2CP did not differ by their subunit molecular mass deduced from the known amino acid sequence of the clcF gene from the ClcF of strain R. opacus 1CP. Matrix-assisted laser dissociation/ionization time-of-flight mass spectrometry showed the presence of a peak with m/z 11,194-11,196 Da both in whole cells and in protein solutions with a ClcF activity. Thus, we have first time shown the distribution of ClcF among actinobacteria isolated from geographically distant habitats.

  11. Gliding Motility and Por Secretion System Genes Are Widespread among Members of the Phylum Bacteroidetes

    PubMed Central

    Zhu, Yongtao

    2013-01-01

    The phylum Bacteroidetes is large and diverse, with rapid gliding motility and the ability to digest macromolecules associated with many genera and species. Recently, a novel protein secretion system, the Por secretion system (PorSS), was identified in two members of the phylum, the gliding bacterium Flavobacterium johnsoniae and the nonmotile oral pathogen Porphyromonas gingivalis. The components of the PorSS are not similar in sequence to those of other well-studied bacterial secretion systems. The F. johnsoniae PorSS genes are a subset of the gliding motility genes, suggesting a role for the secretion system in motility. The F. johnsoniae PorSS is needed for assembly of the gliding motility apparatus and for secretion of a chitinase, and the P. gingivalis PorSS is involved in secretion of gingipain protease virulence factors. Comparative analysis of 37 genomes of members of the phylum Bacteroidetes revealed the widespread occurrence of gliding motility genes and PorSS genes. Genes associated with other bacterial protein secretion systems were less common. The results suggest that gliding motility is more common than previously reported. Microscopic observations confirmed that organisms previously described as nonmotile, including Croceibacter atlanticus, “Gramella forsetii,” Paludibacter propionicigenes, Riemerella anatipestifer, and Robiginitalea biformata, exhibit gliding motility. Three genes (gldA, gldF, and gldG) that encode an apparent ATP-binding cassette transporter required for F. johnsoniae gliding were absent from two related gliding bacteria, suggesting that the transporter may not be central to gliding motility. PMID:23123910

  12. Antigenic topology of chlamydial PorB protein and identification of targets for immune neutralization of infectivity.

    PubMed

    Kawa, Diane E; Stephens, Richard S

    2002-05-15

    The outer membrane protein PorB is a conserved chlamydial protein that functions as a porin and is capable of eliciting neutralizing Abs. A topological antigenic map was developed using overlapping synthetic peptides representing the Chlamydia trachomatis PorB sequence and polyclonal immune sera. To identify which antigenic determinants were surface accessible, monospecific antisera were raised to the PorB peptides and were used in dot-blot and ELISA-based absorption studies with viable chlamydial elementary bodies (EBs). The ability of the surface-accessible antigenic determinants to direct neutralizing Ab responses was investigated using standardized in vitro neutralization assays. Four major antigenic clusters corresponding to Phe(34)-Leu(59) (B1-2 and B1-3), Asp(112) -Glu(145) (B2-3 and B2-4), Gly(179)-Ala(225) (B3-2 to B3-4), and Val(261)-Asn(305) (B4-4 to B5-2) were identified. Collectively, the EB absorption and dot-blot assays established that the immunoreactive PorB Ags were exposed on the surface of chlamydial EBs. Peptide-specific antisera raised to the surface-accessible Ags neutralized chlamydial infectivity and demonstrated cross-reactivity to synthetic peptides representing analogous C. pneumoniae PorB sequences. Furthermore, neutralization of chlamydial infectivity by C. trachomatis PorB antisera was inhibited by synthetic peptides representing the surface-exposed PorB antigenic determinants. These findings demonstrate that PorB Ags may be useful for development of chlamydial vaccines.

  13. Low oxygen environment facilitates embryo availability for older ovarian responders (PORs).

    PubMed

    Li, Mingzhao; Li, Zhibin; Shi, Juanzi

    2018-04-18

    We aimed to investigate the different effects of low oxygen (5% O 2 ) and atmospheric oxygen (20% O 2 ) on in vitro fertilization for older poor ovarian responders (PORs). We selected 1080 older PORs who met two criteria: (i) advanced maternal age (≥40) and (ii) an abnormal ovarian reserve test. All the patients used the ultra-short term protocols with GnRH agonist and recombinant FSH for controlled ovarian hyperstimulation (COH). About 506 cycles were performed in the incubators with 5% O 2 and 574 cycles were performed in the incubators with 20% O 2 . No significant differences were observed in normal fertilization rates (59.68 versus 60.25%; p = .691) and cancelation rates (18.97 versus 19.34%; p = .879) between two groups. The number of available embryos (1.77 ± 0.57 versus 1.52 ± 0.50; p = .041) and mean number of cells on Day 3 (7.49 ± 1.82 versus 7.16 ± 1.70; p = .032) were significantly higher in 5% O 2 group compared to that in 20% O 2 group. It showed no significant differences in the implantation rates (27.43 versus 24.11%; p = .803) and clinical pregnancy rates (36.34 versus 30.05%; p = .307) between two groups. The employ of low oxygen culture did not improve clinical pregnancy rate for older PORs. However, it benefited early embryonic development for older PORs.

  14. Molecular biological enhancement of coal biodesulfurization. [Quarterly] technical report, December 1, 1993--February 28, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilbane, J.J. II

    1994-06-01

    IGT has developed a microbial culture of Rhodococcus rhodochrous, IGTS8, that is capable of specifically cleaving carbon-sulfur bonds in a range of organosulfur model compounds and is capable of removing organic sulfur from coal and petroleum. Although IGTS8 possesses the ability to specifically remove organic sulfur from coal, a major research need is to develop improved strain`s of microorganisms that possess higher levels of desulfurization activity and therefore wall permit more favorable biodesulfurization process conditions: faster rates, mare complete removal, and smaller reactor size. Strain improvement is the single most important aspect to the development of a practical coal biodesulfurizationmore » process and accordingly is the focus of research in this project. Several possible strong promoters have been isolated and are in the process of being analyzed. When these promoters have been characterized for inducibility, strength, transcriptional start sites and other physical properties, they will be placed in front of the desulfurization genes and expression will be monitored. Improved promoter probe vectors have been constructed, allowing a conclusive screen of all putative Rhodococcus promoters. With the improved methodologies in the handling of Rhodococcus RNA, we have begun to gauge promoter expression using Northern blots. During this quarter we have constructed and successfully used a promoter probe vector using the {beta}-galactosidane gene from E. coli. A chromosomal promoter library was constructed upstream from the {beta}-galactosidase gene. Over 200 colonies were isolated that yielded {beta}-galactosidase activity.« less

  15. Inversor Resonante de Tres Elementos L-LC con Caracteristica Cortocircuitable para Aplicaciones de Calentamiento por Induccion

    NASA Astrophysics Data System (ADS)

    Espi Huerta, Jose Miguel

    Los generadores de calentamiento por induccion son puentes inversores con carga resonante, cuya mision es basicamente crear una corriente sinusoidal de gran amplitud sobre la "bobina de caldeo", que forma parte del tanque resonante. En el interior de esta bobina se introduce la pieza que se desea calentar. EI campo magnetico creado induce corrientes superficiales (corrientes de Foucault) sobre la pieza, que producen su calentamiento. Los tanques resonantes (tambien llamados osciladores) utilizados en la actualidad son el resonante serie y el resonante paralelo. Aunque ya desde hace algun tiempo se vienen construyendo generadores de alta potencia basados en estos dos osciladores, el exito nunca ha. sido completo en ninguno de los dos casos. Tal y como se explica en la introduccion de esta memoria, los puentes inversores utilizados deben operar sobre una carga inductiva (corriente retrasada) para evitar el fenomeno de la recuperacion inversa de sus diodos y la consiguiente ruptura de los transistores. De la restriccion topologica anterior se deduce que el generador paralelo debe conmutar a frecuencias inferiores a la resonancia, y el serie a frecuencias superiores. A esta restriccion topologica hay que unir otra que es exclusiva del calentamiento por induccion: La corriente por la bobina de caldeo debe ser sinusoidal. De no ser asi, resultaria imposible disponer toda la potencia de calentamiento sobre la pieza en el espesor requerido por la aplicacion. Como consecuencia, los inversores no pueden operar por debajo de la frecuencia de resonancia del oscilador, pues en ese caso se amplifican los armonicos de orden superior de la tension/corriente de entrada situados sobre la resonancia, con la consiguiente distorsion de la corriente de salida. La conjuncion de las dos restricciones anteriores obligan al inversor paralelo a funcionar a la frecuencia de resonancia del oscilador. Esto imposibilita un control por variacion de frecuencia, regulandose la potencia desde la

  16. Multiple active site residues are important for photochemical efficiency in the light-activated enzyme protochlorophyllide oxidoreductase (POR).

    PubMed

    Menon, Binuraj R K; Hardman, Samantha J O; Scrutton, Nigel S; Heyes, Derren J

    2016-08-01

    Protochlorophyllide oxidoreductase (POR) catalyzes the light-driven reduction of protochlorophyllide (Pchlide), an essential, regulatory step in chlorophyll biosynthesis. The unique requirement of the enzyme for light has provided the opportunity to investigate how light energy can be harnessed to power biological catalysis and enzyme dynamics. Excited state interactions between the Pchlide molecule and the protein are known to drive the subsequent reaction chemistry. However, the structural features of POR and active site residues that are important for photochemistry and catalysis are currently unknown, because there is no crystal structure for POR. Here, we have used static and time-resolved spectroscopic measurements of a number of active site variants to study the role of a number of residues, which are located in the proposed NADPH/Pchlide binding site based on previous homology models, in the reaction mechanism of POR. Our findings, which are interpreted in the context of a new improved structural model, have identified several residues that are predicted to interact with the coenzyme or substrate. Several of the POR variants have a profound effect on the photochemistry, suggesting that multiple residues are important in stabilizing the excited state required for catalysis. Our work offers insight into how the POR active site geometry is finely tuned by multiple active site residues to support enzyme-mediated photochemistry and reduction of Pchlide, both of which are crucial to the existence of life on Earth. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  17. VERA-CS User Support Activities for PoR 14

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kochunas, Brendan

    2017-11-01

    The purpose of this milestone is to document the user support activities that took place between 10/1/2016 and 3/31/2017 (PoR 14). In the normal PHI workflow, that also extends to several activities within RTM, a Kanban process is followed. This involves creating tickets for specific work items and track the progress to complete these specific work items.

  18. Biotransformation of geosmin by terpene-degrading bacteria.

    USDA-ARS?s Scientific Manuscript database

    Two terpene-degrading bacteria that are able to transform geosmin have been identified. Pseudomonas sp. SBR3-tpnb, isolated on -terpinene, converts geosmin to several products; the major products are keto-geosmins. This geosmin transformation ability is inducible by -terpinene. Rhodococcus wratisl...

  19. Microbial strain improvement for organosulfur removal from coal. Final technical report, 1 September, 1992--31 August, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilbane, J.J. II

    1993-12-31

    IGT has developed a microbial culture of Rhodococcus rhodochrous, designated as IGTS8, that is capable of specifically cleaving carbon-sulfur bonds in a range of organosulfur model compounds and is capable of removing organic sulfur from coal and petroleum without significantly sacrificing the calorific value of the fuel. Although IGTS8 possesses the ability to specifically remove organic sulfur from coal, a major research need is to develop improved strains of microorganisms that possess higher levels of desulfurization activity and therefore will permit more favorable biodesulfurization process conditions: faster rates, more complete removal, and smaller reactor size. Strain improvement is the singlemore » most important aspect to the development of a practical coal biodesulfurization process and accordingly is the focus of research in this project. During the past year, significant progress was made toward improving the biodesulfurization capabilities of Rhodococcus Rhodochrous IGTS8. The main objective was to identify and characterize strong promoters of IGTS8. The DNA sequencing of the promoter region and chloramphenicol resistance gene of pRF2, as well as six mutant promoters, was determined. The 16S structural gene of IGTS8 was isolated and used to identify the putative promoter of this gene. Four promoter probe vectors were constructed and are currently being used to analyze the strength of Rhodococcus promoters: from the IGTS8 genome, mutants of promoters from the chloramphenicol resistance gene of pRF2, the promoter from the 16S RNA gene, and various strong inducible promoters.« less

  20. Biotransformations of 2-methylisoborneol by camphor-degrading bacteria.

    USDA-ARS?s Scientific Manuscript database

    Many camphor-degrading bacteria that are able to transform 2-methylisoborneol (MIB) have been identified. Three strains representative of these, have been examined in detail. Rhodococcus ruber T1 metabolizes camphor through 6-hydroxycamphor, but converts MIB to 2,3-dihydroxy-2-methylbornane. Pseu...

  1. Secondary successions of biota in oil-polluted peat soil upon different biological remediation methods

    NASA Astrophysics Data System (ADS)

    Melekhina, E. N.; Markarova, M. Yu.; Shchemelinina, T. N.; Anchugova, E. M.; Kanev, V. A.

    2015-06-01

    The effects of different bioremediation methods on restoration of the oil-polluted peat soil (Histosol) in the northernmost taiga subzone of European Russia was studied. The population dynamics of microorganisms belonging to different trophic groups (hydrocarbon-oxidizing, ammonifying, nitrifying, and oligonitrophilic) were analyzed together with data on the soil enzyme (catalase and dehydrogenase) activities, population densities of soil microfauna groups, their structures, and states of phytocenoses during a sevenyear-long succession. The remediation with biopreparations Roder composed of oil-oxidizing microorganisms-Roder with Rhodococcus rubber and R. erythropolis and Universal with Rhodotorula glutinis and Rhodococcus sp.-was more efficient than the agrochemical and technical remediation. It was concluded that the biopreparations activate microbiological oil destruction, thereby accelerating restoration succession of phytocenosis and zoocenosis. The succession of dominant microfauna groups was observed: the dipteran larvae and Mesostigmata mites predominant at the early stages were replaced by collembolans at later stages. The pioneer oribatid mite species were Tectocepheus velatus, Oppiella nova, Liochthonius sellnicki, Oribatula tibialis, and Eupelops sp.

  2. Microbial catabolism of sterols: focus on the enzymes that transform the sterol 3β-hydroxy-5-en into 3-keto-4-en.

    PubMed

    Kreit, Joseph

    2017-02-01

    An overview on the microbial sterol catabolism is described with a focus on the catabolic step of the 3β-hydroxy-5-en structure. Cholesterol oxidase transforms this structure into the corresponding 3-keto-4-en feature, and thus initiates the sterol molecule catabolism. The oxidase has been found in a large number of microorganisms, especially in Actinobacteria as species of Rhodococcus and Streptomyces. Other Actinobacteria as species of Mycobacterium and Nocardia possess NAD(P)-dependent dehydrogenase for this catabolic step. In Rhodococcus jostii, oxidation of the C26 of the sterol side chain is the initiating step. The resulting stenone or sterol-C26-oic acid is then catabolized according to two subpathways: cleavage of the sterol side chain and degradation of the steroid nucleus. Divergent items concerned with the enzymes that transform the sterol 3β-hydroxy-5-en are discussed. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. A role for POR1, a Rac1-interacting protein, in ARF6-mediated cytoskeletal rearrangements.

    PubMed Central

    D'Souza-Schorey, C; Boshans, R L; McDonough, M; Stahl, P D; Van Aelst, L

    1997-01-01

    The ARF6 GTPase, the least conserved member of the ADP ribosylation factor (ARF) family, associates with the plasma membrane and intracellular endosome vesicles. Mutants of ARF6 defective in GTP binding and hydrolysis have a marked effect on endocytic trafficking and the gross morphology of the peripheral membrane system. Here we report that expression of the GTPase-defective mutant of ARF6, ARF6(Q67L), remodels the actin cytoskeleton by inducing actin polymerization at the cell periphery. This cytoskeletal rearrangement was inhibited by co-expression of ARF6(Q67L) with deletion mutants of POR1, a Rac1-interacting protein involved in membrane ruffling, but not with the dominant-negative mutant of Rac1, Rac1(S17N). A synergistic effect between POR1 and ARF6 for the induction of actin polymerization was detected. Furthermore, we observed that ARF6 interacts directly with POR1 and that this interaction was GTP dependent. These findings indicate that ARF6 and Rac1 function on distinct signaling pathways to mediate cytoskeletal reorganization, and suggest a role for POR1 as an important regulatory element in orchestrating cytoskeletal rearrangements at the cell periphery induced by ARF6 and Rac1. PMID:9312003

  4. Recombinant DNA encoding a desulfurization biocatalyst

    DOEpatents

    Rambosek, John; Piddington, Chris S.; Kovacevich, Brian R.; Young, Kevin D.; Denome, Sylvia A.

    1994-01-01

    This invention relates to a recombinant DNA molecule containing a gene or genes which encode a biocatalyst capable of desulfurizing a fossil fuel which contains organic sulfur molecules. For example, the present invention encompasses a recombinant DNA molecule containing a gene or genes of a strain of Rhodococcus rhodochrous.

  5. Effect of SPM-based cleaning POR on EUV mask performance

    NASA Astrophysics Data System (ADS)

    Choi, Jaehyuck; Lee, Han-shin; Yoon, Jinsang; Shimomura, Takeya; Friz, Alex; Montgomery, Cecilia; Ma, Andy; Goodwin, Frank; Kang, Daehyuk; Chung, Paul; Shin, Inkyun; Cho, H.

    2011-11-01

    EUV masks include many different layers of various materials rarely used in optical masks, and each layer of material has a particular role in enhancing the performance of EUV lithography. Therefore, it is crucial to understand how the mask quality and patterning performance can change during mask fabrication, EUV exposure, maintenance cleaning, shipping, or storage. The fact that a pellicle is not used to protect the mask surface in EUV lithography suggests that EUV masks may have to undergo more cleaning cycles during their lifetime. More frequent cleaning, combined with the adoption of new materials for EUV masks, necessitates that mask manufacturers closely examine the performance change of EUV masks during cleaning process. We have investigated EUV mask quality and patterning performance during 30 cycles of Samsung's EUV mask SPM-based cleaning and 20 cycles of SEMATECH ADT exposure. We have observed that the quality and patterning performance of EUV masks does not significantly change during these processes except mask pattern CD change. To resolve this issue, we have developed an acid-free cleaning POR and substantially improved EUV mask film loss compared to the SPM-based cleaning POR.

  6. Detección y estudio mediante Fluorescencia Inducida por Láser de radicales libres formados por Disociación Multifotónica Infrarroja

    NASA Astrophysics Data System (ADS)

    Santos, M.; Díaz, L.; Torresano, J. A.; Rubio, L.; Samoudi, B.

    Una de las principales aplicaciones actuales de los procesos de disociación multifotónica inducidos por radiación láser infrarroja (DMI) es la producción de radiales libres, con el fin de estudiar sus propiedades cinéticas y espectroscópicas. La disociación de moléculas poliatómicas en el IR con láseres de CO2 tiene lugar desde la superficie de energía molecular mas baja y conduce generalmente a la formación de fragmentos en el estado electrónico fundamental, con diversos grados de excitación vibracional. En el Grupo de Procesos Multifotónicos del Instituto de Estructura de la Materia del C.S.I.C. hemos puesto a punto la técnica de Fluorescencia Inducida por Láser (LIF) para la detección y análisis en tiempo real de los fragmentos producidos en la DMI inducida mediante uno o dos campos láseres de diferentes longitudes de onda. Objetivos de nuestro trabajo han sido el estudio de los canales de disociación mayoritarios y de las especies transitoria producidas, así como de la distribución de energía interna con que éstas son generadas. En particular hemos detectado mediante LIF las especies: C2, CF, CH, SiH2, CF2, CH2, SiHCl, y CF3 a partir de la disociación de, entre otras, las siguientes moléculas: C2H3Br, C3F6, C4H8Si, C2H5ClSi y CH5ClSi. En este trabajo presentamos algunos de los resultados obtenidos mediante el estudio por LIF de estos radicales: estudio temporal de la señal LIF obtenida con determinación de tiempos de vida, espectros de excitación y fluorescencia, temperaturas vibracionales de formación, variación de la intensidad LIF con el tiempo de retraso entre los láseres de disociación y prueba, etc.

  7. Microbial cycling of isoprene, the most abundantly produced biological volatile organic compound on Earth.

    PubMed

    McGenity, Terry J; Crombie, Andrew T; Murrell, J Colin

    2018-04-01

    Isoprene (2-methyl-1,3-butadiene), the most abundantly produced biogenic volatile organic compound (BVOC) on Earth, is highly reactive and can have diverse and often detrimental atmospheric effects, which impact on climate and health. Most isoprene is produced by terrestrial plants, but (micro)algal production is important in aquatic environments, and the relative bacterial contribution remains unknown. Soils are a sink for isoprene, and bacteria that can use isoprene as a carbon and energy source have been cultivated and also identified using cultivation-independent methods from soils, leaves and coastal/marine environments. Bacteria belonging to the Actinobacteria are most frequently isolated and identified, and Proteobacteria have also been shown to degrade isoprene. In the freshwater-sediment isolate, Rhodococcus strain AD45, initial oxidation of isoprene to 1,2-epoxy-isoprene is catalyzed by a multicomponent isoprene monooxygenase encoded by the genes isoABCDEF. The resultant epoxide is converted to a glutathione conjugate by a glutathione S-transferase encoded by isoI, and further degraded by enzymes encoded by isoGHJ. Genome sequence analysis of actinobacterial isolates belonging to the genera Rhodococcus, Mycobacterium and Gordonia has revealed that isoABCDEF and isoGHIJ are linked in an operon, either on a plasmid or the chromosome. In Rhodococcus strain AD45 both isoprene and epoxy-isoprene induce a high level of transcription of 22 contiguous genes, including isoABCDEF and isoGHIJ. Sequence analysis of the isoA gene, encoding the large subunit of the oxygenase component of isoprene monooxygenase, from isolates has facilitated the development of PCR primers that are proving valuable in investigating the ecology of uncultivated isoprene-degrading bacteria.

  8. Determinacion del error sistematico del momentum de muones producidos por interacciones neutrino-nucleon en el detector MINER$$\

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz Bautista, Gonzalo A.

    El Modelo Estandar describe todas las partculas observadas en el naturaleza hasta el momento as como las caractersticas que gobiernan a las interacciones fundamentales entre ellas. En especial es posible identicar a las interacciones electromagnetica y debil, las cuales bajo determinadas condiciones de temperatura y energa pueden ser descritas a traves de una sola teora que engloba a ambas. A esta teora se le denomina electrodebil y tiene como nalidad caracterizar las propiedades de la interaccion maniesta a partir de la mezcla de las interacciones electromagnetica y debil, la que tambien lleva como nombre interaccion electrodebil. Particularmente, los neutrinos sonmore » de especial interes ya que, por un lado, interactuan por medio de la interaccion debil muy raramente en comparacion con otras partculas y, por el otro, no son acertadamente descritos por el Modelo Estandar. Por medio de observaciones experimentales que demostraban que los neutrinos cambian de sabor al propagarse, fenomeno llamado oscilaciones de neutrinos, se pudo llegar a la conclusion de que la implicancia de este fenomeno da como consecuencia que los neutrinos efectivamente s tienen masa, algo que entra en contradiccion con la descripcion inicial del Modelo Estandar, el cual los describe como partculas sin masa. Es de esta manera que las oscilaciones de neutrinos han sido y siguen siendo en la actualidad objeto de interes en la Fsica de Altas Energas tanto teorica como experimental. A n de poder realizar mediciones precisas de oscilaciones de neutrinos, los experimentos encargados de estas mediciones deben tratar de reducir sus incertidumbres en lo posible. Una de estas proviene de la caracterizacion de las secciones de choque de los neutrinos cuando interactuan con la materia, particularmente los nucleones al interior de los nucleos atomicos. El experimento MINERA esta orientado, entre otras cosas, a hacer una correcta caracterizacion de secciones de choque neutrino-nucleon por medio del

  9. Recombinant DNA encoding a desulfurization biocatalyst

    DOEpatents

    Rambosek, J.; Piddington, C.S.; Kovacevich, B.R.; Young, K.D.; Denome, S.A.

    1994-10-18

    This invention relates to a recombinant DNA molecule containing a gene or genes which encode a biocatalyst capable of desulfurizing a fossil fuel which contains organic sulfur molecules. For example, the present invention encompasses a recombinant DNA molecule containing a gene or genes of a strain of Rhodococcus rhodochrous. 13 figs.

  10. Mapping the Laminin Receptor Binding Domains of Neisseria meningitidis PorA and Haemophilus influenzae OmpP2

    PubMed Central

    Mahdavi, Jafar; Oldfield, Neil J.; Wheldon, Lee M.; Wooldridge, Karl G.; Ala'Aldeen, Dlawer A. A.

    2012-01-01

    Neisseria meningitidis, Haemophilus influenzae and Streptococcus pneumoniae are major bacterial agents of meningitis. They each bind the 37/67-kDa laminin receptor (LamR) via the surface protein adhesins: meningococcal PilQ and PorA, H. influenzae OmpP2 and pneumococcal CbpA. We have previously reported that a surface-exposed loop of the R2 domain of CbpA mediates LamR-binding. Here we have identified the LamR-binding regions of PorA and OmpP2. Using truncated recombinant proteins we show that binding is dependent on amino acids 171–240 and 91–99 of PorA and OmpP2, respectively, which are predicted to localize to the fourth and second surface-exposed loops, respectively, of these proteins. Synthetic peptides corresponding to the loops bound LamR and could block LamR-binding to bacterial ligands in a dose dependant manner. Meningococci expressing PorA lacking the apex of loop 4 and H. influenzae expressing OmpP2 lacking the apex of loop 2 showed significantly reduced LamR binding. Since both loops are hyper-variable, our data may suggest a molecular basis for the range of LamR-binding capabilities previously reported among different meningococcal and H. influenzae strains. PMID:23049988

  11. Mapping the laminin receptor binding domains of Neisseria meningitidis PorA and Haemophilus influenzae OmpP2.

    PubMed

    Abouseada, Noha M; Assafi, Mahde Saleh A; Mahdavi, Jafar; Oldfield, Neil J; Wheldon, Lee M; Wooldridge, Karl G; Ala'Aldeen, Dlawer A A

    2012-01-01

    Neisseria meningitidis, Haemophilus influenzae and Streptococcus pneumoniae are major bacterial agents of meningitis. They each bind the 37/67-kDa laminin receptor (LamR) via the surface protein adhesins: meningococcal PilQ and PorA, H. influenzae OmpP2 and pneumococcal CbpA. We have previously reported that a surface-exposed loop of the R2 domain of CbpA mediates LamR-binding. Here we have identified the LamR-binding regions of PorA and OmpP2. Using truncated recombinant proteins we show that binding is dependent on amino acids 171-240 and 91-99 of PorA and OmpP2, respectively, which are predicted to localize to the fourth and second surface-exposed loops, respectively, of these proteins. Synthetic peptides corresponding to the loops bound LamR and could block LamR-binding to bacterial ligands in a dose dependant manner. Meningococci expressing PorA lacking the apex of loop 4 and H. influenzae expressing OmpP2 lacking the apex of loop 2 showed significantly reduced LamR binding. Since both loops are hyper-variable, our data may suggest a molecular basis for the range of LamR-binding capabilities previously reported among different meningococcal and H. influenzae strains.

  12. Analysis of the xplAB-Containing Gene Cluster Involved in the Bacterial Degradation of the Explosive Hexahydro-1,3,5-Trinitro-1,3,5-Triazine

    PubMed Central

    Chong, Chun Shiong; Sabir, Dana Khdr; Lorenz, Astrid; Bontemps, Cyril; Andeer, Peter; Stahl, David A.; Strand, Stuart E.; Rylott, Elizabeth L.

    2014-01-01

    Repeated use of the explosive compound hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) on military land has resulted in significant soil and groundwater pollution. Rates of degradation of RDX in the environment are low, and accumulated RDX, which the U.S. Environmental Protection Agency has determined is a possible human carcinogen, is now threatening drinking water supplies. RDX-degrading microorganisms have been isolated from RDX-contaminated land; however, despite the presence of these species in contaminated soils, RDX pollution persists. To further understand this problem, we studied RDX-degrading species belonging to four different genera (Rhodococcus, Microbacterium, Gordonia, and Williamsia) isolated from geographically distinct locations and established that the xplA and xplB (xplAB) genes, which encode a cytochrome P450 and a flavodoxin redox partner, respectively, are nearly identical in all these species. Together, the xplAB system catalyzes the reductive denitration of RDX and subsequent ring cleavage under aerobic and anaerobic conditions. In addition to xplAB, the Rhodococcus species studied here share a 14-kb region flanking xplAB; thus, it appears likely that the RDX-metabolizing ability was transferred as a genomic island within a transposable element. The conservation and transfer of xplAB-flanking genes suggest a role in RDX metabolism. We therefore independently knocked out genes within this cluster in the RDX-degrading species Rhodococcus rhodochrous 11Y. Analysis of the resulting mutants revealed that XplA is essential for RDX degradation and that XplB is not the sole contributor of reducing equivalents to XplA. While XplA expression is induced under nitrogen-limiting conditions and further enhanced by the presence of RDX, MarR is not regulated by RDX. PMID:25128343

  13. Culturable bacteria present in the fluid of the hooded-pitcher plant Sarracenia minor based on 16S rDNA gene sequence data.

    PubMed

    Siragusa, Alex J; Swenson, Janice E; Casamatta, Dale A

    2007-08-01

    The culturable microbial community within the pitcher fluid of 93 Sarracenia minor carnivorous plants was examined over a 2-year study. Many aspects of the plant/bacterial/insect interaction within the pitcher fluid are minimally understood because the bacterial taxa present in these pitchers have not been identified. Thirteen isolates were characterized by 16S rDNA sequencing and subsequent phylogenetic analysis. The Proteobacteria were the most abundant taxa and included representatives from Serratia, Achromobacter, and Pantoea. The Actinobacteria Micrococcus was also abundant while Bacillus, Lactococcus, Chryseobacterium, and Rhodococcus were infrequently encountered. Several isolates conformed to species identifiers (>98% rDNA gene sequence similarity) including Serratia marcescens (isolates found in 27.5% of pitchers), Achromobacter xylosoxidans (37.6%), Micrococcus luteus (40.9%), Bacillus cereus (isolates found in 10.2%), Bacillus thuringiensis (5.4%), Lactococcus lactis (17.2%), and Rhodococcus equi (2.2%). Species-area curves suggest that sampling efforts were sufficient to recover a representative culturable bacterial community. The bacteria present represent a diverse community probably as a result of introduction by insect vectors, but the ecological significance remains under explored.

  14. New reactions and products resulting from alternative interactions between the P450 enzyme and redox partners.

    PubMed

    Zhang, Wei; Liu, Yi; Yan, Jinyong; Cao, Shaona; Bai, Fali; Yang, Ying; Huang, Shaohua; Yao, Lishan; Anzai, Yojiro; Kato, Fumio; Podust, Larissa M; Sherman, David H; Li, Shengying

    2014-03-05

    Cytochrome P450 enzymes are capable of catalyzing a great variety of synthetically useful reactions such as selective C-H functionalization. Surrogate redox partners are widely used for reconstitution of P450 activity based on the assumption that the choice of these auxiliary proteins or their mode of action does not affect the type and selectivity of reactions catalyzed by P450s. Herein, we present an exceptional example to challenge this postulate. MycG, a multifunctional biosynthetic P450 monooxygenase responsible for hydroxylation and epoxidation of 16-membered ring macrolide mycinamicins, is shown to catalyze the unnatural N-demethylation(s) of a range of mycinamicin substrates when partnered with the free Rhodococcus reductase domain RhFRED or the engineered Rhodococcus-spinach hybrid reductase RhFRED-Fdx. By contrast, MycG fused with the RhFRED or RhFRED-Fdx reductase domain mediates only physiological oxidations. This finding highlights the larger potential role of variant redox partner protein-protein interactions in modulating the catalytic activity of P450 enzymes.

  15. Trombocitopenia induzida por heparina em paciente com oclusão arterial aguda

    PubMed Central

    Pimenta, Rafael Elias Farres; Yoshida, Winston Bonetti; Rollo, Hamilton Almeida; Sobreira, Marcone Lima; Bertanha, Matheus; Mariúba, Jamil Victor de Oliveira; Jaldin, Rodrigo Gibin; de Camargo, Paula Angeleli Bueno

    2016-01-01

    Resumo A trombocitopenia induzida por heparina é uma complicação grave da terapêutica anticoagulante com heparina e está associada à formação de anticorpos antifator IV plaquetário. Costuma surgir a partir do quinto dia do tratamento, com queda de pelo menos 50% da contagem plaquetária. Em decorrência da ativação plaquetária concomitante, pode ocorrer quadro de trombose, venosa ou arterial, com repercussões clínicas graves. Apresentamos um caso de paciente portador de síndrome do anticorpo antifosfolípide, com quadro de oclusão arterial aguda, que foi tratado cirurgicamente e recebeu heparina não fracionada no intra e pós-operatório. No quinto dia de tratamento anticoagulante, apresentou queda maior de 50% da contagem de plaquetas em relação à contagem pré-heparina. A suspeita de trombocitopenia induzida por heparina e seus aspectos diagnósticos e terapêuticos serão abordados neste desafio terapêutico.

  16. THz+X Seedling Report

    DTIC Science & Technology

    2005-11-23

    lamblia Entamoeba histolytica Toxoplasma Microsporidia Additional viral encephalitides West Nile Virus LaCrosse California encephalitis VEE...Is Catalyzed by Salicylate 1- Monooxygenase from Pseudomonas sp . Strain ATCC 29352; Applied and Environmental Microbiology, July 2004, p. 4040-4047...the Mechanism of RDX Biodegradation by Rhodococcus - 31 - sp . Strain DN22; Applied and Environmental Microbiology, March 2003, p. 1347-1351

  17. Etiological misidentification by routine biochemical tests of bacteremia caused by Gordonia terrae infection in the course of an episode of acute cholecystitis.

    PubMed

    Gil-Sande, E; Brun-Otero, M; Campo-Cerecedo, F; Esteban, E; Aguilar, L; García-de-Lomas, J

    2006-07-01

    Gordonia terrae has been reported to be a rare cause of bacteremia. We report the first case of bacteremia associated with acute cholecystitis. Commercial biochemical testing was not able to identify the strain at the genus level, classifying it instead as Rhodococcus sp. Definitive identification was obtained by sequencing of the 16S rRNA gene.

  18. Isolation and Identification of Novel Microcystin-Degrading Bacteria▿

    PubMed Central

    Manage, Pathmalal M.; Edwards, Christine; Singh, Brajesh K.; Lawton, Linda A.

    2009-01-01

    Of 31 freshwater bacterial isolates screened using the Biolog MT2 assay to determine their metabolism of the microcystin LR, 10 were positive. Phylogenetic analysis (16S rRNA) identified them as Arthrobacter spp., Brevibacterium sp., and Rhodococcus sp. This is the first report of microcystin degraders that do not belong to the Proteobacteria. PMID:19734339

  19. Prevalencia y tamizaje del Trastorno por Déficit de Atención con Hiperactividad en Costa Rica

    PubMed Central

    Weiss, Nicholas T.; Schuler, Jovita; Monge, Silvia; McGough, James J.; Chavira, Denise; Bagnarello, Monica; Herrera, Luis Diego; Mathews, Carol A.

    2015-01-01

    Resumen La investigación tuvo como propósito estimar la prevalencia del Trastorno por Déficit de Atención con Hiperactividad (TDAH) en Costa Rica y determinar si la versión en español del cuestionario Swanson Nolan and Pelham Scale IV (SNAP-IV) es un instrumento de tamizaje útil en una población de niños y niñas escolares costarricenses. El instrumento fue entregado a padres y maestros de 425 niños entre 5 y 13 años de edad (promedio = 8.8). Todos fueron evaluados con el instrumento Swanson, Kotkin, Agler, M-Flynn and Pelham Scale (SKAMP). Su diagnóstico fue confirmado con una entrevista clínica. La sensibilidad y la especificidad del SNAP-IV fueron evaluadas como predictores de criterios de diagnóstico según el DSM-IV. La prevalencia puntual en la muestra del TDAH fue del 5%. El tamizaje más preciso lo hizo el SNAP-IV completado por el maestro en un corte de 20%, con una sensibilidad de 96% y una especificidad de un 82%. La sensibilidad de los instrumentos completados por los padres fue más baja que aquella de los maestros. El SNAP-IV completado por las maestras con un corte aislando el 20% de los mayores puntajes categorizó correctamente a un 87% de los sujetos. PMID:22432094

  20. Racism in digital era: Development and initial validation of the Perceived Online Racism Scale (PORS v1.0).

    PubMed

    Keum, Brian TaeHyuk; Miller, Matthew J

    2017-04-01

    The purpose of this study was to develop the Perceived Online Racism Scale (PORS) to assess perceived online racist interpersonal interactions and exposure to online racist content among people of color. Items were developed through a multistage process involving a comprehensive literature review, focus-groups, qualitative data collection, and survey of online racism experiences. Based on a sample of 1,023 racial minority participants, exploratory and confirmatory factor analyses provided support for a 30-item bifactor model accounted by the general factor and the following 3 specific factors: (a) personal experience of racial cyber-aggression, (b) vicarious exposure to racial cyber-aggression, and (c) online-mediated exposure to racist reality. The PORS demonstrated measurement invariance across racial/ethnic groups in our sample. Internal reliability estimates for the total and subscale scores of the PORS were above .88 and the 4-week test-retest reliability was adequate. Limitations and future directions for research are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  1. [Professor Frantisek Por MD and Professor Robert Klopstock MD, students at Budapest and Prague Faculties of Medicine].

    PubMed

    Mydlík, M; Derzsiová, K

    2010-11-01

    Professor Frantisek Por MD and Professor Robert Klopstock MD were contemporaries, both born in 1899, one in Zvolen, the other in Dombovar, at the time of Austro-Hungarian Monarchy. Prof. Por attended the Faculty of Medicine in Budapest from 1918 to 1920, and Prof. Klopstock studied at the same place between 1917 and 1919. From 1920 until graduation on 6th February 1926, Prof. Por continued his studies at the German Faculty of Medicine, Charles University in Prague. Prof. Klopstock had to interrupt his studies in Budapest due to pulmonary tuberculosis; he received treatment at Tatranske Matliare where he befriended Franz Kafka. Later, upon Kafka's encouragement, he changed institutions and continued his studies at the German Faculty of Medicine, Charles University in Prague, where he graduated the first great go. It is very likely that, during their studies in Budapest and Prague, both professors met repeatedly, even though their life paths later separated. Following his graduation, Prof. Por practiced as an internist in Prague, later in Slovakia, and from 1945 in Kosice. In 1961, he was awarded the title of university professor of internal medicine at the Faculty of Medicine, Pavol Jozef Safarik University in Kosice, where he practiced until his death in 1980. Prof. Klopstock continued his studies in Kiel and Berlin. After his graduation in 1933, he practiced in Berlin as a surgeon and in 1938 left for USA. In 1962, he was awarded the title of university professor of pulmonary surgery in NewYork, where he died in 1972.

  2. Encefalitis por anticuerpos contra el receptor de NMDA: experiencia con seis pacientes pediátricos. Potencial eficacia del metotrexato

    PubMed Central

    Bravo-Oro, Antonio; Abud-Mendoza, Carlos; Quezada-Corona, Arturo; Dalmau, Josep; Campos-Guevara, Verónica

    2016-01-01

    Introducción La encefalitis por anticuerpos contra el receptor de N-metil-D-aspartato (NMDA) es una entidad cada vez más diagnosticada en edad pediátrica. A diferencia de los adultos, en muchos casos no se asocia a tumores y las manifestaciones iniciales en niños más frecuentes son crisis convulsivas y trastornos del movimiento, mientras que en los adultos predominan las alteraciones psiquiátricas. Casos clínicos Presentamos seis casos pediátricos confirmados con anticuerpos contra la subunidad NR1 del receptor de NMDA en suero y líquido cefalorraquídeo. Cinco de los casos comenzaron con crisis convulsivas como manifestación clínica inicial antes de desarrollar el cuadro clásico de esta entidad. En todos los casos se utilizaron esteroides como primera línea de tratamiento, con los que sólo se observó control de las manifestaciones en uno, por lo que el resto de los pacientes requirió inmunomoduladores de segunda línea. Todos los pacientes recibieron metotrexato como tratamiento inmunomodulador para evitar recaídas y la evolución fue a la mejoría en todos ellos. Conclusiones En nuestra serie de pacientes con encefalitis por anticuerpos contra el receptor de NMDA, ninguno se asoció a tumores. Todos los casos recibieron metotrexato por lo menos durante un año, no observamos eventos adversos clínicos ni por laboratorio, ni hubo secuelas neurológicas ni recaídas durante el tratamiento. Aunque es una serie pequeña y es deseable incrementar el número y tiempo de evolución, consideramos el metotrexato una excelente alternativa como tratamiento inmunomodulador para esta patología. PMID:24150952

  3. Structural and functional probing of PorZ, an essential bacterial surface component of the type-IX secretion system of human oral-microbiomic Porphyromonas gingivalis.

    PubMed Central

    Lasica, Anna M.; Goulas, Theodoros; Mizgalska, Danuta; Zhou, Xiaoyan; de Diego, Iñaki; Ksiazek, Mirosław; Madej, Mariusz; Guo, Yonghua; Guevara, Tibisay; Nowak, Magdalena; Potempa, Barbara; Goel, Apoorv; Sztukowska, Maryta; Prabhakar, Apurva T.; Bzowska, Monika; Widziolek, Magdalena; Thøgersen, Ida B.; Enghild, Jan J.; Simonian, Mary; Kulczyk, Arkadiusz W.; Nguyen, Ky-Anh; Potempa, Jan; Gomis-Rüth, F. Xavier

    2016-01-01

    Porphyromonas gingivalis is a member of the human oral microbiome abundant in dysbiosis and implicated in the pathogenesis of periodontal (gum) disease. It employs a newly described type-IX secretion system (T9SS) for secretion of virulence factors. Cargo proteins destined for secretion through T9SS carry a recognition signal in the conserved C-terminal domain (CTD), which is removed by sortase PorU during translocation. Here, we identified a novel component of T9SS, PorZ, which is essential for surface exposure of PorU and posttranslational modification of T9SS cargo proteins. These include maturation of enzyme precursors, CTD removal and attachment of anionic lipopolysaccharide for anchorage in the outer membrane. The crystal structure of PorZ revealed two β-propeller domains and a C-terminal β-sandwich domain, which conforms to the canonical CTD architecture. We further documented that PorZ is itself transported to the cell surface via T9SS as a full-length protein with its CTD intact, independently of the presence or activity of PorU. Taken together, our results shed light on the architecture and possible function of a novel component of the T9SS. Knowledge of how T9SS operates will contribute to our understanding of protein secretion as part of host-microbiome interactions by dysbiotic members of the human oral cavity. PMID:27883039

  4. The enhanced immune responses induced by Salmonella enteritidis ghosts loaded with Neisseria gonorrhoeae porB against Salmonella in mice.

    PubMed

    Jiao, Hongmei; Yang, Hui; Zhao, Dan; He, Li; Chen, Jin; Li, Guocai

    2016-11-01

    Human health has been seriously endangered by highly prevalent salmonellosis and multidrug-resistant Salmonella strains. Current vaccines suffer from variable immune-protective effects, so more effective ones are needed to control Salmonella infection : Bacterial ghosts have been produced by the expression of lysis gene E from bacteriophage PhiX174 and can be filled with considerable exogenous substances such as DNA or drugs as a novel platform. In this study, Salmonella enteritidis (SE) ghosts were developed and loaded with Neisseria gonorrhoeae porin B (porB) to construct a novel inactive vaccine. Our new studies show that SE ghosts loaded with porB displayed increased production of pro-inflammatory cytokines (IL-1β, IL-6, IL-10 and IL-12p70) in bone marrow-derived dendritic cells (BMDCs), and elicited significantly higher specific systemic and mucosal immune responses to Salmonella than SE ghosts alone. In addition, the novel porB-loaded ghosts conferred higher protective effects on virulent Salmonella challenge. For the first time, we demonstrate that N. gonorrhoeae porB, as a novel adjuvant, can increase the immunogenicity of SE ghosts. Our studies suggested that Salmonella enteritidis ghosts loaded with Neisseria gonorrhoeae porin B might be a useful mucosal Salmonella vaccine candidate for practical use in the future. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Diversity of metabolic capacities among strains degrading polycyclic aromatic hydrocarbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouchez, M.; Besnaienou, B.; Blanchet, D.

    1995-12-31

    Strains of Pseudomonas and Rhodococcus genera were isolated for their capacity to use, as a sole carbon and energy source, one of the following polycyclic aromatic hydrocarbons (PAHs): naphthalene (NAP), fluorene (FLU), phenanthrene (PHE), anthracene (ANT), fluoranthene (FLT), and pyrene (PYR). The range of PAHs supporting growth of these pure strains was usually restricted, but several other hydrocarbons were used by Rhodococcus sp. All strains could grow on simple organic acids. Maximal specific growth rates ({mu}{sub max}) of all strains on their PAH growth substrates were determined by respirometry. No clear relationships between {mu}{sub max} values and the molecular weightmore » or water solubility of PAHs were apparent, but Pseudomonas sp. exhibited the highest {mu}{sub max} values. Carbon balances for PAH biodegradation were established. Differences between strains were observed, but high mineralization rates and low production of soluble metabolites were obtained for all PAHs. Bacterial biomass represented 16% to 35% of the carbon consumed. Strain diversity was also apparent in the interactions observed in the degradation of a mixture of two PAHs by individual strains, which often involved inhibition of PAH substrate degradation, with or without cometabolization of the second PAH.« less

  6. Isolation and characterization of novel chitinolytic bacteria

    NASA Astrophysics Data System (ADS)

    Gürkök, Sümeyra; Görmez, Arzu

    2016-04-01

    Chitin, a linear polymer of β-1,4-N-acetylglucosamine units, is one of the most abundant biopolymers widely distributed in the marine and terrestrial environments. It is found as a structural component of insects, crustaceans and the cell walls of fungi. Chitinases, the enzymes degrading chitin by cleaving the β-(1-4) bond, have gained increased attention due to their wide range of biotechnological applications, especially for biocontrol of harmful insects and phytopathogenic fungi in agriculture. In the present study, 200 bacterial isolates from Western Anatolia Region of Turkey were screened for chitinolytic activity on agar media amended with colloidal chitin. Based on the chitin hydrolysis zone, 13 isolates were selected for further study. Bacterial isolates with the highest chitinase activity were identified as Acinetobacter calcoaceticus, Arthrobacter oxydans, Bacillus cereus, Bacillus megaterium, Brevibacillus reuszeri, Kocuria erythromyxa, Kocuria rosea, Novosphingobium capsulatum, Rhodococcus bratislaviensis, Rhodococcus fascians and Staphylococcus cohnii by MIS and BIOLOG systems. The next aims of the study are to compare the productivity of these bacteria quantitatively, to purify the enzyme from the most potent producer and to apply the pure enzyme for the fight against the phytopathogenic fungi and harmful insects.

  7. Isolation of Bacteria Capable of Growth with 2-Methylisoborneol and Geosmin as the Sole Carbon and Energy Sources

    PubMed Central

    Guttman, Lior

    2012-01-01

    Using a relatively simple enrichment technique, geosmin and 2-methylisoborneol (MIB)-biodegrading bacteria were isolated from a digestion basin in an aquaculture unit. Comparison of 16S rRNA gene sequences affiliated one of the three isolates with the Gram-positive genus Rhodococcus, while the other two isolates were found to be closely related to the Gram-negative family Comamonadaceae (Variovorax and Comamonas). Growth rates and geosmin and MIB removal rates by the isolates were determined under aerated and nonaerated conditions in mineral medium containing either of the two compounds as the sole carbon and energy source. All isolates exhibited their fastest growth under aerobic conditions, with generation times ranging from 3.1 to 5.7 h, compared to generation times of up to 19.1 h in the nonaerated flasks. Incubation of the isolates with additional carbon sources caused a significant increase in their growth rates, while removal rates of geosmin and MIB were significantly lower than those for incubation with only geosmin or MIB. By fluorescence in situ hybridization, members of the genera Rhodococcus and Comamonas were detected in geosmin- and MIB-enriched sludge from the digestion basin. PMID:22081577

  8. Differential desulfurization of dibenzothiophene by newly identified MTCC strains: Influence of Operon Array

    PubMed Central

    Bhanjadeo, Madhabi M.; Rath, Kalyani; Gupta, Dhirendra; Pradhan, Nilotpala; Biswal, Surendra K.; Mishra, Barada K.

    2018-01-01

    Since the sulfur specific cleavage is vital for the organic sulfur removal from fossil fuel, we explored potential bacterial strains of MTCC (Microbial Type Culture Collection) to desulfurize the Dibenzothiophene (DBT) through C-S bond cleavage (4-S pathway). MTCC strains Rhodococcus rhodochrous (3552), Arthrobacter sulfureus (3332), Gordonia rubropertincta (289), and Rhodococcus erythropolis (3951) capable of growing in 0.5 mM DBT were examined for their desulfurization ability. The presence of dsz genes as well as the metabolites was screened by polymerase chain reaction (PCR) and HPLC, respectively. All these strains showed > 99% DBT desulfurization with 10 days of incubation in minimal salt medium. From the HPLC analysis it was further revealed that these MTCC strains show differences in the end metabolites and desulfurize DBT differently following a variation in the regular 4-S pathway. These findings are also well corroborating with their respective organization of dszABC operons and their relative abundance. The above MTCC strains are capable of desulfurizing DBT efficiently and hence can be explored for biodesulfurization of petrochemicals and coal with an eco-friendly and energy economical process. PMID:29518089

  9. Enhancement of Microbial Biodesulfurization via Genetic Engineering and Adaptive Evolution

    PubMed Central

    Wang, Jia; Butler, Robert R.; Wu, Fan; Pombert, Jean-François; Kilbane, John J.; Stark, Benjamin C.

    2017-01-01

    In previous work from our laboratories a synthetic gene encoding a peptide (“Sulpeptide 1” or “S1”) with a high proportion of methionine and cysteine residues had been designed to act as a sulfur sink and was inserted into the dsz (desulfurization) operon of Rhodococcus erythropolis IGTS8. In the work described here this construct (dszAS1BC) and the intact dsz operon (dszABC) cloned into vector pRESX under control of the (Rhodococcus) kstD promoter were transformed into the desulfurization-negative strain CW25 of Rhodococcus qingshengii. The resulting strains (CW25[pRESX-dszABC] and CW25[pRESX-dszAS1BC]) were subjected to adaptive selection by repeated passages at log phase (up to 100 times) in minimal medium with dibenzothiophene (DBT) as sole sulfur source. For both strains DBT metabolism peaked early in the selection process and then decreased, eventually averaging four times that of the initial transformed cells; the maximum specific activity achieved by CW25[pRESX-dszAS1BC] exceeded that of CW25[pRESX-dszABC]. Growth rates increased by 7-fold (CW25[pRESX-dszABC]) and 13-fold (CW25[pRESX-dszAS1BC]) and these increases were stable. The adaptations of CW25[pRESX-dszAS1BC] were correlated with a 3-5X increase in plasmid copy numbers from those of the initial transformed cells; whole genome sequencing indicated that during its selection processes no mutations occurred to any of the dsz, S1, or other genes and promoters involved in sulfur metabolism, stress response, or DNA methylation, and that the effect of the sulfur sink produced by S1 is likely very small compared to the cells’ overall cysteine and methionine requirements. Nevertheless, a combination of genetic engineering using sulfur sinks and increasing Dsz capability with adaptive selection may be a viable strategy to increase biodesulfurization ability. PMID:28060828

  10. Functional characterization of propane-enhanced N-nitrosodimethylamine degradation by two actinomycetales.

    PubMed

    Sharp, Jonathan O; Sales, Christopher M; Alvarez-Cohen, Lisa

    2010-12-15

    Propane-induced cometabolic degradation of n-nitrosodimethylamine (NDMA) by two propanotrophs is characterized through kinetic, gene presence, and expression studies. After growth on propane, resting cells of Rhodococcus sp. RR1 possessed a maximum transformation rate (v(max,n)) of 44 ± 5 µg NDMA (mg protein)(-1) h(-1); the rate for Mycobacterium vaccae (austroafricanum) JOB-5 was modestly lower with v(max,n) of 28 ± 3 µg NDMA (mg protein)(-1) h(-1). Both strains were capable of degrading environmentally relevant, trace quantities of NDMA to below the experimental limit of detection, calculated as 20 ng NDMA L(-1). However, a comparison of half saturation constants (K(s,n)) and NDMA degradation in the presence of propane revealed pronounced differences between the strains. The K(s,n) for strain RR1 was 36 ± 10 µg NDMA L(-1) while the propane concentration needed to inhibit NDMA rates by 50% (K(inh)) occurred at 7,700 µg propane L(-1) (R(2) = 0.9669). In contrast, strain JOB-5 had a markedly lower affinity for NDMA verses propane with a calculated K(s,n) of 2,200 ± 1,000 µg NDMA L(-1) and K(inh) of 120 µg propane L(-1) (R(2) = 0.9895). Genomic and transcriptional investigations indicated that the functional enzymes involved in NDMA degradation and propane metabolism are different for each strain. For Rhodococcus sp. RR1, a putative propane monooxygenase (PrMO) was identified and implicated in NDMA oxidation. In contrast, JOB-5 was not found to possess a PrMO homologue and two functionally analogous alkane monoxygenases (AlkMOs) were not induced by growth on propane. Differences between the PrMO in this Rhodococcus and the unidentified enzyme(s) in the Mycobacterium may explain differences in NDMA degradation and inhibition kinetics between these strains. © 2010 Wiley Periodicals, Inc.

  11. Diagnóstico diferencial en la encefalitis por anticuerpos contra el receptor NMDA

    PubMed Central

    González-Valcárcel, J.; Rosenfeld, M.R.; Dalmau, J.

    2011-01-01

    Resumen Introducción La encefalitis por anticuerpos contra el receptor de NMDA (NMDAR) suele desarrollarse como un síndrome característico de evolución multifásica y diagnóstico diferencial amplio. Pacientes Presentamos a 2 pacientes diagnosticadas de encefalitis por anticuerpos NMDAR con un cuadro clínico típico, pero que inicialmente señaló otras etiologías. Discusión La afectación frecuente de pacientes jóvenes con manifestaciones psiquiátricas prominentes indica frecuentemente otras consideraciones diagnósticas; las más frecuentes son las encefalitis virales, los procesos psiquiátricos y el síndrome neuroléptico maligno. Varios síndromes previamente definidos de manera parcial o descriptiva en adultos y pacientes pediátricos probablemente eran casos de encefalitis anti-NMDAR. Conclusiones La encefalitis anti-NMDAR debe considerarse en pacientes jóvenes con manifestaciones psiquiátricas subagudas, movimientos anormales y alteraciones autonómicas. La caracterización clínica e inmunológica de esta enfermedad ha llevado a la identificación de nuevos anticuerpos que afectan a procesos de memoria, aprendizaje, conducta y psicosis. PMID:20964986

  12. Engineering and improvement of the efficiency of a chimeric [P450cam-RhFRed reductase domain] enzyme.

    PubMed

    Robin, Aélig; Roberts, Gareth A; Kisch, Johannes; Sabbadin, Federico; Grogan, Gideon; Bruce, Neil; Turner, Nicholas J; Flitsch, Sabine L

    2009-05-14

    A chimeric oxygenase, in which the P450cam domain was fused to the reductase host domains of a P450RhF from Rhodococcus sp. strain NCIMB 9784 was optimised to allow for a biotransformation at 30 mM substrate in 80% overall yield, with the linker region between P450 and FMN domain proving to be important for the effective biotransformation of (+)-camphor to 5-exo-hydroxycamphor.

  13. Reconstrução tridimensional de arcos magnéticos por tomografia

    NASA Astrophysics Data System (ADS)

    Simões, P. J. A.; Costa, J. E. R.

    2003-08-01

    Uma explosão solar é uma variação súbita do brilho que ocorre nas regiões ativas da atmosfera solar. Estas regiões são constituídas por um plasma magnetizado com intensa indução magnética e em cenários bem complexos como visto recentemente através de experimentos embarcados em satélites operando instrumentos em raios X moles e ultra-violeta distante. A energia magnética, que pode ser armazenada por um período de horas até dias em configurações magnéticas estressadas, é subitamente lançada na atmosfera solar e transferida para partículas como elétrons, prótons e núcleos pesados, que são acelerados e/ou aquecidos, produzindo radiação eletromagnética. A proposta final deste projeto é determinar as características espaciais de alta resolução da emissão e polarização girossincrotrônica de explosões solares em ambientes complexos de campos magnéticos. Os recentes resultados da emissão difusa em EUV apresentado pelos satélites TRACE e SOHO dos arcos magnéticos conectando as diferentes polaridades magnéticas sobre as regiões ativas possibilitam novas abordagens sobre o papel do campo magnético na emissão em rádio. Nesta etapa apresentamos os resultados da reconstrução da geometria tridimensional das linhas de força destes arcos utilizando técnicas tomográficas, a partir de imagens de alta resolução espacial obtidas pelo instrumento EIT (Extreme ultraviolet Imaging Telescope), além da modelagem das induções magnéticas por um campo dipolar e as densidades de partículas aceleradas. Utilizamos para a reconstrução geométrica, imagens tomadas em vários ângulos dos arcos devido à rotacão solar. Com estes resultados, daremos continuidade ao projeto, com os cálculos da transferência radiativa nos modos ordinário e extraordinário de propagação da radiação girossincrotrônica de explosões solares.

  14. The Acquisition of Lexical Meaning in a Study Abroad Context: The Spanish Prepositions "por" and "para."

    ERIC Educational Resources Information Center

    Lafford, Barbara A.; Ryan, John M.

    1995-01-01

    Examination of the development of form/function relations of the prepositions "por" and "para" at different levels of proficiency in the interlanguage of study-abroad students in Granada, Spain, revealed "noncanonical" as well as "canonical" uses of these prepositions. The most common noncanonical uses were…

  15. Rubber gloves biodegradation by a consortium, mixed culture and pure culture isolated from soil samples.

    PubMed

    Nawong, Chairat; Umsakul, Kamontam; Sermwittayawong, Natthawan

    2018-02-03

    An increasing production of natural rubber (NR) products has led to major challenges in waste management. In this study, the degradation of rubber latex gloves in a mineral salt medium (MSM) using a bacterial consortium, a mixed culture of the selected bacteria and a pure culture were studied. The highest 18% weight loss of the rubber gloves were detected after incubated with the mixed culture. The increased viable cell counts over incubation time indicated that cells used rubber gloves as sole carbon source leading to the degradation of the polymer. The growth behavior of NR-degrading bacteria on the latex gloves surface was investigated using the scanning electron microscope (SEM). The occurrence of the aldehyde groups in the degradation products was observed by Fourier Transform Infrared Spectroscopy analysis. Rhodococcus pyridinivorans strain F5 gave the highest weight loss of rubber gloves among the isolated strain and posses latex clearing protein encoded by lcp gene. The mixed culture of the selected strains showed the potential in degrading rubber within 30 days and is considered to be used efficiently for rubber product degradation. This is the first report to demonstrate a strong ability to degrade rubber by Rhodococcus pyridinivorans. Copyright © 2018. Published by Elsevier Editora Ltda.

  16. Potential of Polycyclic Aromatic Hydrocarbon-Degrading Bacterial Isolates to Contribute to Soil Fertility

    PubMed Central

    Chirima, George Johannes

    2016-01-01

    Restoration of polycyclic aromatic hydrocarbon- (PAH-) polluted sites is presently a major challenge in agroforestry. Consequently, microorganisms with PAH-degradation ability and soil fertility improvement attributes are sought after in order to achieve sustainable remediation of polluted sites. This study isolated PAH-degrading bacteria from enriched cultures of spent automobile engine-oil polluted soil. Isolates' partial 16S rRNA genes were sequenced and taxonomically classified. Isolates were further screened for their soil fertility attributes such as phosphate solubilization, atmospheric nitrogen fixation, and indoleacetic acid (IAA) production. A total of 44 isolates were obtained and belong to the genera Acinetobacter, Arthrobacter, Bacillus, Flavobacterium, Microbacterium, Ochrobactrum, Pseudomonas, Pseudoxanthomonas, Rhodococcus, and Stenotrophomonas. Data analysed by principal component analysis showed the Bacillus and Ochrobactrum isolates displayed outstanding IAA production. Generalized linear modelling statistical approaches were applied to evaluate the contribution of the four most represented genera (Pseudomonas, Acinetobacter, Arthrobacter, and Rhodococcus) to soil fertility. The Pseudomonas isolates were the most promising in all three soil fertility enhancement traits evaluated and all isolates showed potential for one or more of the attributes evaluated. These findings demonstrate a clear potential of the isolates to participate in restorative bioremediation of polluted soil, which will enhance sustainable agricultural production and environmental protection. PMID:27774456

  17. Effect of Activated Carbon Amendment on Bacterial Community Structure and Functions in a PAH Impacted Urban Soil

    PubMed Central

    2012-01-01

    We collected urban soil samples impacted by polycyclic aromatic hydrocarbons (PAHs) from a sorbent-based remediation field trial to address concerns about unwanted side-effects of 2% powdered (PAC) or granular (GAC) activated carbon amendment on soil microbiology and pollutant biodegradation. After three years, total microbial cell counts and respiration rates were highest in the GAC amended soil. The predominant bacterial community structure derived from denaturing gradient gel electrophoresis (DGGE) shifted more strongly with time than in response to AC amendment. DGGE band sequencing revealed the presence of taxa with closest affiliations either to known PAH degraders, e.g. Rhodococcus jostii RHA-1, or taxa known to harbor PAH degraders, e.g. Rhodococcus erythropolis, in all soils. Quantification by real-time polymerase chain reaction yielded similar dioxygenases gene copy numbers in unamended, PAC-, or GAC-amended soil. PAH availability assessments in batch tests showed the greatest difference of 75% with and without biocide addition for unamended soil, while the lowest PAH availability overall was measured in PAC-amended, live soil. We conclude that AC had no detrimental effects on soil microbiology, AC-amended soils retained the potential to biodegrade PAHs, but the removal of available pollutants by biodegradation was most notable in unamended soil. PMID:22455603

  18. Molecular Analysis of Surfactant-Driven Microbial Population Shifts in Hydrocarbon-Contaminated Soil†

    PubMed Central

    Colores, Gregory M.; Macur, Richard E.; Ward, David M.; Inskeep, William P.

    2000-01-01

    We analyzed the impact of surfactant addition on hydrocarbon mineralization kinetics and the associated population shifts of hydrocarbon-degrading microorganisms in soil. A mixture of radiolabeled hexadecane and phenanthrene was added to batch soil vessels. Witconol SN70 (a nonionic, alcohol ethoxylate) was added in concentrations that bracketed the critical micelle concentration (CMC) in soil (CMC′) (determined to be 13 mg g−1). Addition of the surfactant at a concentration below the CMC′ (2 mg g−1) did not affect the mineralization rates of either hydrocarbon. However, when surfactant was added at a concentration approaching the CMC′ (10 mg g−1), hexadecane mineralization was delayed and phenanthrene mineralization was completely inhibited. Addition of surfactant at concentrations above the CMC′ (40 mg g−1) completely inhibited mineralization of both phenanthrene and hexadecane. Denaturing gradient gel electrophoresis of 16S rRNA gene segments showed that hydrocarbon amendment stimulated Rhodococcus and Nocardia populations that were displaced by Pseudomonas and Alcaligenes populations at elevated surfactant levels. Parallel cultivation studies revealed that the Rhodococcus population can utilize hexadecane and that the Pseudomonas and Alcaligenes populations can utilize both Witconol SN70 and hexadecane for growth. The results suggest that surfactant applications necessary to achieve the CMC alter the microbial populations responsible for hydrocarbon mineralization. PMID:10877792

  19. Use of mycelia as paths for the isolation of contaminant‐degrading bacteria from soil

    PubMed Central

    Furuno, Shoko; Remer, Rita; Chatzinotas, Antonis; Harms, Hauke; Wick, Lukas Y.

    2012-01-01

    Summary Mycelia of fungi and soil oomycetes have recently been found to act as effective paths boosting bacterial mobility and bioaccessibility of contaminants in vadose environments. In this study, we demonstrate that mycelia can be used for targeted separation and isolation of contaminant‐degrading bacteria from soil. In a ‘proof of concept’ study we developed a novel approach to isolate bacteria from contaminated soil using mycelia of the soil oomycete Pythium ultimum as translocation networks for bacteria and the polycyclic aromatic hydrocarbon naphthalene (NAPH) as selective carbon source. NAPH‐degrading bacterial isolates were affiliated with the genera Xanthomonas, Rhodococcus and Pseudomonas. Except for Rhodococcus the NAPH‐degrading isolates exhibited significant motility as observed in standard swarming and swimming motility assays. All steps of the isolation procedures were followed by cultivation‐independent terminal 16S rRNA gene terminal fragment length polymorphism (T‐RFLP) analysis. Interestingly, a high similarity (63%) between both the cultivable NAPH‐degrading migrant and the cultivable parent soil bacterial community profiles was observed. This suggests that mycelial networks generally confer mobility to native, contaminant‐degrading soil bacteria. Targeted, mycelia‐based dispersal hence may have high potential for the isolation of bacteria with biotechnologically useful properties. PMID:22014110

  20. Characterization of the microbial community structure and nitrosamine-reducing isolates in drinking water biofilters.

    PubMed

    Wang, Wanfeng; Guo, Yanling; Yang, Qingxiang; Huang, Yao; Zhu, Chunyou; Fan, Jing; Pan, Feng

    2015-07-15

    Two biofilters were constructed using biological activated carbon (BAC) and nitrosamine-containing water from two drinking water treatment plants. The microbiome of each biofilter was characterized by 454 high-throughput pyrosequencing, and one nitrosamine-reducing bacterium was isolated. The results showed that nitrosamines changed the relative abundance at both the phylum and class levels, and the new genera were observed in the microbial communities of the two BAC filters after cultivation. As such, the genus Rhodococcus, which includes many nitrosamine-reducing strains reported in previous studies, was only detected in the BAC2 filter after cultivation. These findings indicate that nitrosamines can significantly affect the genus level in the microbial communities. Furthermore, the isolated bacterial culture Rhodococcus cercidiphylli A41 AS-1 exhibited the ability to reduce five nitrosamines (N-nitrosodimethylamine, N-nitrosodiethylamine, N-nitrosodi-n-propylamine, N-nitrosopyrrolidine, and N-nitrosodi-n-butylamine) with removal ratios that ranged from 38.1% to 85.4%. The isolate exhibited a better biodegradation ability with nitrosamine as the carbon source when compared with nitrosamine as the nitrogen source. This study increases our understanding of the microbial community in drinking water biofilters with trace quantities of nitrosamines, and provides information on the metabolism of nitrosamine-reducing bacteria. Copyright © 2015. Published by Elsevier B.V.

  1. Effect of activated carbon amendment on bacterial community structure and functions in a PAH impacted urban soil.

    PubMed

    Meynet, Paola; Hale, Sarah E; Davenport, Russell J; Cornelissen, Gerard; Breedveld, Gijs D; Werner, David

    2012-05-01

    We collected urban soil samples impacted by polycyclic aromatic hydrocarbons (PAHs) from a sorbent-based remediation field trial to address concerns about unwanted side-effects of 2% powdered (PAC) or granular (GAC) activated carbon amendment on soil microbiology and pollutant biodegradation. After three years, total microbial cell counts and respiration rates were highest in the GAC amended soil. The predominant bacterial community structure derived from denaturing gradient gel electrophoresis (DGGE) shifted more strongly with time than in response to AC amendment. DGGE band sequencing revealed the presence of taxa with closest affiliations either to known PAH degraders, e.g. Rhodococcus jostii RHA-1, or taxa known to harbor PAH degraders, e.g. Rhodococcus erythropolis, in all soils. Quantification by real-time polymerase chain reaction yielded similar dioxygenases gene copy numbers in unamended, PAC-, or GAC-amended soil. PAH availability assessments in batch tests showed the greatest difference of 75% with and without biocide addition for unamended soil, while the lowest PAH availability overall was measured in PAC-amended, live soil. We conclude that AC had no detrimental effects on soil microbiology, AC-amended soils retained the potential to biodegrade PAHs, but the removal of available pollutants by biodegradation was most notable in unamended soil. © 2012 American Chemical Society

  2. Next-generation systematics: An innovative approach to resolve the structure of complex prokaryotic taxa

    NASA Astrophysics Data System (ADS)

    Sangal, Vartul; Goodfellow, Michael; Jones, Amanda L.; Schwalbe, Edward C.; Blom, Jochen; Hoskisson, Paul A.; Sutcliffe, Iain C.

    2016-12-01

    Prokaryotic systematics provides the fundamental framework for microbiological research but remains a discipline that relies on a labour- and time-intensive polyphasic taxonomic approach, including DNA-DNA hybridization, variation in 16S rRNA gene sequence and phenotypic characteristics. These techniques suffer from poor resolution in distinguishing between closely related species and often result in misclassification and misidentification of strains. Moreover, guidelines are unclear for the delineation of bacterial genera. Here, we have applied an innovative phylogenetic and taxogenomic approach to a heterogeneous actinobacterial taxon, Rhodococcus, to identify boundaries for intrageneric and supraspecific classification. Seven species-groups were identified within the genus Rhodococcus that are as distantly related to one another as they are to representatives of other mycolic acid containing actinobacteria and can thus be equated with the rank of genus. It was also evident that strains assigned to rhodococcal species-groups are underspeciated with many misclassified using conventional taxonomic criteria. The phylogenetic and taxogenomic methods used in this study provide data of theoretical value for the circumscription of generic and species boundaries and are also of practical significance as they provide a robust basis for the classification and identification of rhodococci of agricultural, industrial and medical/veterinary significance.

  3. Hygienic characteristics and microbiological hazard identification in horse and donkey raw milk.

    PubMed

    Colavita, Giampaolo; Amadoro, Carmela; Rossi, Franca; Fantuz, Francesco; Salimei, Elisabetta

    2016-01-01

    Today the interest toward horse (Equus caballus) and donkey (Equus asinus) milk for human consumption is receiving a renewed attention because of its particular composition, hypoallergenicity, and nutraceutical properties. The realistic perspective of global use of this aliment in balanced diets, especially for infancy and geriatrics, poses the need for a more in depth knowledge on milk hygiene and on the health status of dairy animals, as a prerequisite of consumers' safety. The aim of this paper was to review the available literature on the health and hygiene parameters as well as on the potential microbiological hazards in horse and donkey milk and the risks related to their consumption. Both microbial contamination and somatic cell count are reasonably low in equine milk and also the presence of pathogens, like Escherichia coli O157, Salmonella spp., Campylobacter spp., Yersinia enterocolitica, Brucella spp., Mycobacterium spp., Bacillus cereus, Cronobacter sakazakii, Streptococcus equi subsp. zooepidemicus, Rhodococcus equi, Streptococcus dysgalactiae subsp. equisimilis, Clostridium difficile and Burkholderia mallei is low. However, in those regions of the world where the prevalence of Brucella spp. and Rhodococcus equi is high, the alimentary risks could increase. Similarly, in areas with higher incidence of immunocompromised people, the increased risks should be warned not only for pathogens but also for opportunistic microbiota.

  4. From oil spills to barley growth - oil-degrading soil bacteria and their promoting effects.

    PubMed

    Mikolasch, Annett; Reinhard, Anne; Alimbetova, Anna; Omirbekova, Anel; Pasler, Lisa; Schumann, Peter; Kabisch, Johannes; Mukasheva, Togzhan; Schauer, Frieder

    2016-11-01

    Heavy contamination of soils by crude oil is omnipresent in areas of oil recovery and exploitation. Bioremediation by indigenous plants in cooperation with hydrocarbon degrading microorganisms is an economically and ecologically feasible means to reclaim contaminated soils. To study the effects of indigenous soil bacteria capable of utilizing oil hydrocarbons on biomass production of plants growing in oil-contaminated soils eight bacterial strains were isolated from contaminated soils in Kazakhstan and characterized for their abilities to degrade oil components. Four of them, identified as species of Gordonia and Rhodococcus turned out to be effective degraders. They produced a variety of organic acids from oil components, of which 59 were identified and 7 of them are hitherto unknown acidic oil metabolites. One of them, Rhodococcus erythropolis SBUG 2054, utilized more than 140 oil components. Inoculating barley seeds together with different combinations of these bacterial strains restored normal growth of the plants on contaminated soils, demonstrating the power of this approach for bioremediation. Furthermore, we suggest that the plant promoting effect of these bacteria is not only due to the elimination of toxic oil hydrocarbons but possibly also to the accumulation of a variety of organic acids which modulate the barley's rhizosphere environment. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Improved purification of native meningococcal porin PorB and studies on its structure/function.

    PubMed

    Massari, Paola; King, Carol A; MacLeod, Heather; Wetzler, Lee M

    2005-12-01

    The outer membrane protein PorB of Neisseria meningitidis is a pore-forming protein which has various effects on eukaryotic cells. It has been shown to (1) up-regulate the surface expression of the co-stimulatory molecule CD86 and of MHC class II (which are TLR2/MyD88 dependent and related to the porin's immune-potentiating ability), (2) be involved in prevention of apoptosis by modulating the mitochondrial membrane potential, and (3) form pores in eukaryotic cells. As an outer membrane protein, its native trimeric form isolation is complicated by its insoluble nature, requiring the presence of detergent throughout the whole procedure, and by its tight association with other outer membrane components, such as neisserial LOS or lipoproteins. In this study, an improved chromatographic purification method to obtain an homogeneous product free of endotoxin and lipoprotein is described, without loss of any of the above-mentioned properties of the porin. Furthermore, we have investigated the requirement of the native trimeric structure for the porin's activity. Inactivation of functional PorB trimers into non-functional monomers was achieved by incubation on ice. Thus, routine long- and medium-term storage at low temperature may be a cause of porin inactivation.

  6. Adjuvant Effects Elicited by Novel Oligosaccharide Variants of Detoxified Meningococcal Lipopolysaccharides on Neisseria meningitidis Recombinant PorA Protein: A Comparison in Mice

    PubMed Central

    Mehta, Ojas H.; Norheim, Gunnstein; Hoe, J . Claire; Rollier, Christine S.; Nagaputra, Jerry C.; Makepeace, Katherine; Saleem, Muhammad; Chan, Hannah; Ferguson, David J. P.; Jones, Claire; Sadarangani, Manish; Hood, Derek W.; Feavers, Ian; Derrick, Jeremy P.; Pollard, Andrew J.; Moxon, E . Richard

    2014-01-01

    Neisseria meningitidis lipopolysaccharide (LPS) has adjuvant properties that can be exploited to assist vaccine immunogenicity. The modified penta-acylated LPS retains the adjuvant properties of hexa-acylated LPS but has a reduced toxicity profile. In this study we investigated whether two modified glycoform structures (LgtE and IcsB) of detoxified penta-acylated LPS exhibited differential adjuvant properties when formulated as native outer membrane vesicles (nOMVs) as compared to the previously described LgtB variant. Detoxified penta-acylated LPS was obtained by disruption of the lpxL1 gene (LpxL1 LPS), and three different glycoforms were obtained by disruption of the lgtB, lgtE or icsB genes respectively. Mice (mus musculus) were immunized with a recombinant PorA P1.7-2,4 (rPorA) protein co-administered with different nOMVs (containing a different PorA serosubtype P1.7,16), each of which expressed one of the three penta-acylated LPS glycoforms. All nOMVs induced IgG responses against the rPorA, but the nOMVs containing the penta-acylated LgtB-LpxL1 LPS glycoform induced significantly greater bactericidal activity compared to the other nOMVs or when the adjuvant was Alhydrogel. Compared to LgtE or IcsB LPS glycoforms, these data support the use of nOMVs containing detoxified, modified LgtB-LpxL1 LPS as a potential adjuvant for future meningococcal protein vaccines. PMID:25545241

  7. Global Microlending in Education Reform: Enseñá Por Argentina and the Neoliberalization of the Grassroots

    ERIC Educational Resources Information Center

    Friedrich, Daniel S.

    2010-01-01

    This article examines the workings and underlying assumptions behind Enseñá por Argentina (Teach for Argentina), one specific program that takes part in the larger and expanding network of Teach for All, by thinking about the ways in which a global push for redefining teaching and teacher education encounters local characteristics and histories,…

  8. Enhanced biodegradation of methylhydrazine and hydrazine contaminated NASA wastewater in fixed-film bioreactor.

    PubMed

    Nwankwoala, A U; Egiebor, N O; Nyavor, K

    2001-01-01

    The aerobic biodegradation of National Aeronautics and Space Administration (NASA) wastewater that contains mixtures of highly concentrated methylhydrazine/hydrazine, citric acid and their reaction product was studied on a laboratory-scale fixed film trickle-bed reactor. The degrading organisms, Achromobacter sp., Rhodococcus B30 and Rhodococcus J10, were immobilized on coarse sand grains used as support-media in the columns. Under continuous flow operation, Rhodococcus sp. degraded the methylhydrazine content of the wastewater from a concentration of 10 to 2.5 mg/mL within 12 days and the hydrazine from approximately 0.8 to 0.1 mg/mL in 7 days. The Achromobacter sp. was equally efficient in degrading the organics present in the wastewater, reducing the concentration of the methylhydrazine from 10 to approximately 5 mg/mL within 12 days and that of the hydrazine from approximately 0.8 to 0.2 mg/mL in 7 days. The pseudo first-order rate constants of 0.137 day(-1) and 0.232 day(-1) were obtained for the removal of methylhydrazine and hydrazine, respectively, in wastewater in the reactor column. In the batch cultures, rate constants for the degradation were 0.046 and 0.079 day(-1) for methylhydrazine and hydrazine respectively. These results demonstrate that the continuous flow bioreactor afford greater degradation efficiencies than those obtained when the wastewater was incubated with the microbes in growth-limited batch experiments. They also show that wastewater containing hydrazine is more amenable to microbial degradation than one that is predominant in methylhydrazine, in spite of the longer lag period observed for hydrazine containing wastewater. The influence of substrate concentration and recycle rate on the degradation efficiency is reported. The major advantages of the trickle-bed reactor over the batch system include very high substrate volumetric rate of turnover, higher rates of degradation and tolerance of the 100% concentrated NASA wastewater. The

  9. Metagenomic Analysis of a Biphenyl-Degrading Soil Bacterial Consortium Reveals the Metabolic Roles of Specific Populations

    PubMed Central

    Garrido-Sanz, Daniel; Manzano, Javier; Martín, Marta; Redondo-Nieto, Miguel; Rivilla, Rafael

    2018-01-01

    Polychlorinated biphenyls (PCBs) are widespread persistent pollutants that cause several adverse health effects. Aerobic bioremediation of PCBs involves the activity of either one bacterial species or a microbial consortium. Using multiple species will enhance the range of PCB congeners co-metabolized since different PCB-degrading microorganisms exhibit different substrate specificity. We have isolated a bacterial consortium by successive enrichment culture using biphenyl (analog of PCBs) as the sole carbon and energy source. This consortium is able to grow on biphenyl, benzoate, and protocatechuate. Whole-community DNA extracted from the consortium was used to analyze biodiversity by Illumina sequencing of a 16S rRNA gene amplicon library and to determine the metagenome by whole-genome shotgun Illumina sequencing. Biodiversity analysis shows that the consortium consists of 24 operational taxonomic units (≥97% identity). The consortium is dominated by strains belonging to the genus Pseudomonas, but also contains betaproteobacteria and Rhodococcus strains. whole-genome shotgun (WGS) analysis resulted in contigs containing 78.3 Mbp of sequenced DNA, representing around 65% of the expected DNA in the consortium. Bioinformatic analysis of this metagenome has identified the genes encoding the enzymes implicated in three pathways for the conversion of biphenyl to benzoate and five pathways from benzoate to tricarboxylic acid (TCA) cycle intermediates, allowing us to model the whole biodegradation network. By genus assignment of coding sequences, we have also been able to determine that the three biphenyl to benzoate pathways are carried out by Rhodococcus strains. In turn, strains belonging to Pseudomonas and Bordetella are the main responsible of three of the benzoate to TCA pathways while the benzoate conversion into TCA cycle intermediates via benzoyl-CoA and the catechol meta-cleavage pathways are carried out by beta proteobacteria belonging to genera such as

  10. Concepciones y concepciones alternativas de estudiantes universitarios/as de biologia y futuros maestros/as de Ciencia de escuela secundaria sobre la teoria de evolucion biologica por seleccion natural

    NASA Astrophysics Data System (ADS)

    Morales Ramos, Egda M.

    La teoria de evolucion biologica (TEB) por seleccion natural es uno de los conceptos unificadores mas importantes del curriculo de Biologia. En Puerto Rico se han hecho pocas investigaciones que abunden sobre las concepciones y concepciones alternativas (CA) que tienen los estudiantes universitarios/as de Biologia y los maestros/as de Ciencia del nivel secundario sobre esta teoria. La politica publica educativa actual establece mediante documentos normativos como los Estandares de contenido y Expectativas de grado del Programa de Ciencias [Puerto Rico Core Standards] la ensenanza de esta teoria. Sin embargo, no se encontraron preguntas sobre la seleccion natural en los ejercicios de practica provistos por el Departamento de Educacion para las pruebas estandarizadas lo cual puede influir para que no se ensene adecuadamente. Las preguntas de investigacion fueron 1. ¿Cuales son las concepciones y concepciones alternativas de estudiantes universitarios/as y de los futuros maestros y maestras de Ciencia sobre la TEB? 2. ¿Cuales conceptos que seleccionan los estudiantes universitarios/as y los futuros maestros y maestras de Ciencia sobre la TEB coinciden con lo aceptado como valido por la comunidad cientifica? y 3. ¿Como comparan las respuestas de la prueba original. v. Entendiendo el cambio biologico que mide concepciones y CA sobre la TEB por seleccion natural, con las de la traducida al idioma espanol? Se utilizo el metodo cuantitativo con un diseno de investigacion transversal por encuesta. La tecnica principal para recopilar los datos fue una prueba con doce items, que formo parte de un instrumento para el cual se recopilaron diversas fuentes de evidencia acerca de su validez. Las muestras estuvieron formadas por 69 estudiantes de Ciencias Naturales y por 16 estudiantes futuros maestros y maestras del nivel secundario de la UPR-RP. Se utilizaron estadisticas descriptivas, analisis de Ji cuadrado y se calcularon los coeficientes alfa de Cronbach y de Spearman

  11. A Literature Survey and Data Base Assessment: Microbial Fate of Diesel Fuel and Fog Oils,

    DTIC Science & Technology

    1986-04-01

    in progress.4 The physical and chemical properties of fog oils, diesel fuel, and resultant fogs have been studied,5𔄀 as has the inhalation ...produced in the presence of hydrocarbon are the a,n- trehalose -6,6"dicornomycolates (glycolipids produced by n-alkanes in Rhodococcus erythropolis.) 32...9600, DOE No. 40-1016-79. 7. Dalbey, W. and S. Lock. 1982. Inhalation Toxicology of Diesel Fuel Obscurant Aerosol in Sprague-Dawley Rats, Phase 1, Acute

  12. Microbial Desulfurization of a Crude Oil Middle-Distillate Fraction: Analysis of the Extent of Sulfur Removal and the Effect of Removal on Remaining Sulfur

    PubMed Central

    Grossman, M. J.; Lee, M. K.; Prince, R. C.; Garrett, K. K.; George, G. N.; Pickering, I. J.

    1999-01-01

    Rhodococcus sp. strain ECRD-1 was evaluated for its ability to desulfurize a 232 to 343°C middle-distillate (diesel range) fraction of Oregon basin (OB) crude oil. OB oil was provided as the sole source of sulfur in batch cultures, and the extent of desulfurization and the chemical fate of the residual sulfur in the oil after treatment were determined. Gas chromatography (GC), flame ionization detection, and GC sulfur chemiluminesce detection analysis were used to qualitatively evaluate the effect of Rhodococcus sp. strain ECRD-1 treatment on the hydrocarbon and sulfur content of the oil, respectively. Total sulfur was determined by combustion of samples and measurement of released sulfur dioxide by infrared absorption. Up to 30% of the total sulfur in the middle distillate cut was removed, and compounds across the entire boiling range of the oil were affected. Sulfur K-edge X-ray absorption-edge spectroscopy was used to examine the chemical state of the sulfur remaining in the treated OB oil. Approximately equal amounts of thiophenic and sulfidic sulfur compounds were removed by ECRD-1 treatment, and over 50% of the sulfur remaining after treatment was in an oxidized form. The presence of partially oxidized sulfur compounds indicates that these compounds were en route to desulfurization. Overall, more than two-thirds of the sulfur had been removed or oxidized by the microbial treatment. PMID:9872778

  13. Pincharse sin infectarse: estrategias para prevenir la infección por el VIH y el VHC entre usuarios de drogas inyectables

    PubMed Central

    MATEU-GELABERT, P.; FRIEDMAN, S.; SANDOVAL, M.

    2011-01-01

    Resumen Objetivo Desde principios de los noventa, en la ciudad de Nueva York se han implementado con éxito programas para reducir la incidencia del virus de la inmunodeficiencia humana (VIH) y, en menor medida, del virus de la hepatitis C (VHC). A pesar de ello, aproximadamente el 70% de los usuario de drogas inyectables (UDI) están infectados por el VHC. Queremos investigar cómo el 30% restante se las ha arreglado para no infectarse. El Staying safe (nombre original del estudio) explora los comportamientos y mecanismos que ayudan a evitar la infección por el VHC y el VIH a largo plazo. Material y métodos Hemos utilizado el concepto de «desviación positiva» aplicado en otros campos de salud pública. Estudiamos las estrategias, prácticas y tácticas de prevención de aquellos UDI que, viviendo en contextos de alta prevalencia, se mantienen sin infectar por VIH y el VHC, a pesar de haberse inyectado heroína durante años. Los resultados preliminares presentados en este artículo incluyen el análisis de las entrevistas realizadas a 25 UDI (17 doble negativos, 3 doble positivos y 5 con infección por el VHC y sin infección por el VIH). Se usaron entrevistas semiestructuradas que exploraban con detalle la historia de vida de los sujetos, incluyendo su consumo de drogas, redes sociales, contacto con instituciones, relaciones sexuales y estrategias de protección y vigilancia. Resultados La intencionalidad es importante para no infectarse, especialmente durante períodos de involución (períodos donde hay un deterioro económico y/o social que llevan al que se inyecta a situaciones de mayor riesgo). Presentamos tres dimensiones independientes de intencionalidad que conllevan comportamientos que pueden ayudar a prevenir la infección: a) evitar «el mono» (síntomas de abstención) asegurando el acceso a la droga; b) «llevarlo bien» para no convertirse en un junkie y así evitar la «muerte social» y la falta de acceso a los recursos, y c) seguir sin

  14. Acceptance test report for portable exhauster POR-007/Skid E

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kriskovich, J.R.

    1998-07-24

    This document describes Acceptance Testing performed on Portable Exhauster POR-007/Skid E. It includes measurements of bearing vibration levels, pressure decay testing, programmable logic controller interlocks, high vacuum, flow and pressure control functional testing. The purpose of Acceptance testing documented by this report was to demonstrate compliance of the exhausters with the performance criteria established within HNF-0490, Rev. 1 following a repair and upgrade effort at Hanford. In addition, data obtained during this testing is required for the resolution of outstanding Non-conformance Reports (NCR), and finally, to demonstrate the functionality of the associated software for the pressure control and high vacuummore » exhauster operating modes provided for by W-320. Additional testing not required by the ATP was also performed to assist in the disposition and close out of receiving inspection report and for application design information (system curve). Results of this testing are also captured within this document.« less

  15. Study of the interaction mechanisms between absorbed NO{sub 2} and por-Si/SnO{sub x} nanocomposite layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolotov, V. V.; Kan, V. E., E-mail: kan@obisp.oscsbras.ru; Makushenko, R. K.

    2013-10-15

    The interaction mechanisms between NO{sub 2} molecules and the surface of por-Si/SnO{sub x} nanocomposites obtained by magnetron deposition and chemical vapor deposition (CVD) are studied by infrared absorption spectroscopy and electron paramagnetic resonance methods. The observed increase in the free carrier concentration in the por-Si/SnO{sub x} nanocomposite layers is explained by a change in the charge state of P{sub b} centers due to the formation of neutral 'surface defect-adsorbed NO{sub 2} molecule' complexes with free carrier generation in the crystallite bulk. In the nanocomposite layers grown by the CVD method, the increase in the free hole concentration during NO{sub 2}more » adsorption is much less pronounced in comparison with the composite grown by magnetron deposition, which is caused by the competing interaction channel of NO{sub 2} molecules with electrically neutral P{sub b} centers.« less

  16. Rapid microbiochemical identification of Corynebacterium diphtheriae and other medically important corynebacteria.

    PubMed Central

    Thompson, J S; Gates-Davis, D R; Yong, D C

    1983-01-01

    A rapid biochemical method based on the fermentation of carbohydrates, the hydrolysis of urea, and the reduction of nitrate was used to identify Corynebacterium diphtheriae, C. ulcerans, C. pseudodiphtheriticum, C. haemolyticum, C. pseudotuberculosis, C. pyogenes, C. ovis, the Centers for Disease Control JK group, and Rhodococcus (Corynebacterium) equi. With this procedure identification was confirmed for 133 stock cultures and clinical isolates of corynebacteria. Most were identified within 1 h and all were identified within 4 h after inoculation into the test substrates. PMID:6355166

  17. Acceptance test report for portable exhauster POR-008/Skid F

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kriskovich, J.R.

    1998-07-24

    Portable Exhauster POR-008 was procured via HNF-0490, Specification for a Portable Exhausted System for Waste Tank Ventilation. Prior to taking ownership, acceptance testing was performed at the vendors. However at the conclusion of testing a number of issues remained that required resolution before the exhausters could be used by Project W-320. The purpose of acceptance testing documented by this report was to demonstrate compliance of the exhausters with the performance criteria established within HNF-O49O, Rev. 1 following a repair and upgrade effort at Hanford. In addition, data obtained during this testing is required for the resolution of outstanding Non-conformance Reportsmore » (NCR), and finally, to demonstrate the functionality of the associated software for the pressure control and high vacuum exhauster operating modes provided for by W-320. Additional testing not required by the ATP was also performed to assist in the disposition and close out of receiving inspection report and for application design information (system curve). Results of this testing are also captured within this document.« less

  18. Análise dos Conceitos Astronômicos Apresentados por Professores de Algumas Escolas Estaduais Brasileiras

    NASA Astrophysics Data System (ADS)

    Voelzke, Marcos Rincon; Gonzaga, Edson Pereira

    2011-12-01

    A razão para o desenvolvimento deste trabalho baseia-se no fato de que muitos professores da Educação Básica (EB) não lidam com conceitos relacionados à astronomia, e quando o fazem eles simplesmente seguem livros didáticos que podem conter erros conceituais. Como é de conhecimento geral a astronomia é um dos conteúdos a serem ensinados na EB fazendo parte dos Parâmetros Curriculares Nacionais e das Propostas Curriculares do Estado de São Paulo, mas é um fato, que vários pesquisadores apontam, a existência de muitos problemas no ensino da astronomia. Com o propósito de minimizar algumas dessas deficiências foi realizado um trabalho de pesquisa com a utilização de questionários pré e pós pesquisa, para tanto foi desenvolvido um Curso de Extensão Universitária para professores da Diretoria de Ensino Regional (DE) que abrange Mauá, Ribeirão Pires e Rio Grande da Serra (no Estado de São Paulo) com os seguintes objetivos: levantar concepções alternativas; subsidiar os professores por meio de palestras, debates e workshops, e verificar o sucesso da aprendizagem após o curso, adotando-se como referência, para a análise dos resultados, os dicionários de Língua Portuguesa (FERREIRA, 2004) e Enciclopédico de Astronomia e Astronáutica (MOURĀO, 1995). Portanto, dezesseis questões foram aplicadas antes e após o curso, assim pode-se verificar após a pesquisa que 100,0% dos professores sabiam os nomes das fases da Lua, 97,0% entenderam que o Sistema Solar é composto por oito planetas, 78,1% foram capazes de explicar como ocorre um eclipse lunar, um eclipse solar e um solstício, 72,7% sabiam como explicar a ocorrência das estações do ano; 64,5% explicaram corretamente a ocorrência do equinócio, 89,7% foram capazes de definir adequadamente o termo cometa; 63,6% definiram asteróide, 54,5% meteoro, 58,1% galáxia, e 42,4% planeta. Os resultados obtidos indicam uma aprendizagem significativa por parte dos participantes.

  19. Biocatalytic Desulfurization Capabilities of a Mixed Culture during Non-Destructive Utilization of Recalcitrant Organosulfur Compounds

    PubMed Central

    Ismail, Wael; El-Sayed, Wael S.; Abdul Raheem, Abdul Salam; Mohamed, Magdy E.; El Nayal, Ashraf M.

    2016-01-01

    We investigated the biodesulfurization potential of a mixed culture AK6 enriched from petroleum hydrocarbons-polluted soil with dibenzothiophene (DBT) as a sulfur source. In addition to DBT, AK6 utilized the following compounds as sulfur sources: 4-methyldibenzothiophene (4-MDBT), benzothiophene (BT), and 4,6- dimethyldibenzothiophene (4,6-DM-DBT). None of these compounds supported the growth of AK6 as the sole carbon and sulfur source. AK6 could not grow on dibenzylsulfide (DBS) as a sulfur source. The AK6 community structure changed according to the provided sulfur source. The major DGGE bands represented members of the genera Sphingobacterium, Klebsiella, Pseudomonas, Stenotrophomonas, Arthrobacter, Mycobacterium, and Rhodococcus. Sphingobacterium sp. and Pseudomonas sp. were abundant across all cultures utilizing any of the tested thiophenic S-compounds. Mycobacterium/Rhodococcus spp. were restricted to the 4-MDBT culture. The 4-MDBT culture had the highest species richness and diversity. Biodesulfurization of DBT by resting cells of AK6 produced 2-hydroxybiphenyl (2-HBP) in addition to trace amounts of phenylacetate. AK6 transformed DBT to 2-hydroxybiphenyl with a specific activity of 9 ± 0.6 μM 2-HBP g dry cell weight−1 h−1. PCR confirmed the presence in the AK6 community of the sulfur-specific (4S) pathway genes dszB and dszC. Mixed cultures hold a better potential than axenic ones for the development of a biodesulfurization technology. PMID:26973637

  20. Calcite Biomineralization by Bacterial Isolates from the Recently Discovered Pristine Karstic Herrenberg Cave

    PubMed Central

    Rusznyák, Anna; Akob, Denise M.; Nietzsche, Sándor; Eusterhues, Karin; Totsche, Kai Uwe; Neu, Thomas R.; Frosch, Torsten; Popp, Jürgen; Keiner, Robert; Geletneky, Jörn; Katzschmann, Lutz; Schulze, Ernst-Detlef

    2012-01-01

    Karstic caves represent one of the most important subterranean carbon storages on Earth and provide windows into the subsurface. The recent discovery of the Herrenberg Cave, Germany, gave us the opportunity to investigate the diversity and potential role of bacteria in carbonate mineral formation. Calcite was the only mineral observed by Raman spectroscopy to precipitate as stalactites from seepage water. Bacterial cells were found on the surface and interior of stalactites by confocal laser scanning microscopy. Proteobacteria dominated the microbial communities inhabiting stalactites, representing more than 70% of total 16S rRNA gene clones. Proteobacteria formed 22 to 34% of the detected communities in fluvial sediments, and a large fraction of these bacteria were also metabolically active. A total of 9 isolates, belonging to the genera Arthrobacter, Flavobacterium, Pseudomonas, Rhodococcus, Serratia, and Stenotrophomonas, grew on alkaline carbonate-precipitating medium. Two cultures with the most intense precipitate formation, Arthrobacter sulfonivorans and Rhodococcus globerulus, grew as aggregates, produced extracellular polymeric substances (EPS), and formed mixtures of calcite, vaterite, and monohydrocalcite. R. globerulus formed idiomorphous crystals with rhombohedral morphology, whereas A. sulfonivorans formed xenomorphous globular crystals, evidence for taxon-specific crystal morphologies. The results of this study highlighted the importance of combining various techniques in order to understand the geomicrobiology of karstic caves, but further studies are needed to determine whether the mineralogical biosignatures found in nutrient-rich media can also be found in oligotrophic caves. PMID:22179248

  1. Calcite biomineralization by bacterial isolates from the recently discovered pristine karstic herrenberg cave.

    PubMed

    Rusznyák, Anna; Akob, Denise M; Nietzsche, Sándor; Eusterhues, Karin; Totsche, Kai Uwe; Neu, Thomas R; Frosch, Torsten; Popp, Jürgen; Keiner, Robert; Geletneky, Jörn; Katzschmann, Lutz; Schulze, Ernst-Detlef; Küsel, Kirsten

    2012-02-01

    Karstic caves represent one of the most important subterranean carbon storages on Earth and provide windows into the subsurface. The recent discovery of the Herrenberg Cave, Germany, gave us the opportunity to investigate the diversity and potential role of bacteria in carbonate mineral formation. Calcite was the only mineral observed by Raman spectroscopy to precipitate as stalactites from seepage water. Bacterial cells were found on the surface and interior of stalactites by confocal laser scanning microscopy. Proteobacteria dominated the microbial communities inhabiting stalactites, representing more than 70% of total 16S rRNA gene clones. Proteobacteria formed 22 to 34% of the detected communities in fluvial sediments, and a large fraction of these bacteria were also metabolically active. A total of 9 isolates, belonging to the genera Arthrobacter, Flavobacterium, Pseudomonas, Rhodococcus, Serratia, and Stenotrophomonas, grew on alkaline carbonate-precipitating medium. Two cultures with the most intense precipitate formation, Arthrobacter sulfonivorans and Rhodococcus globerulus, grew as aggregates, produced extracellular polymeric substances (EPS), and formed mixtures of calcite, vaterite, and monohydrocalcite. R. globerulus formed idiomorphous crystals with rhombohedral morphology, whereas A. sulfonivorans formed xenomorphous globular crystals, evidence for taxon-specific crystal morphologies. The results of this study highlighted the importance of combining various techniques in order to understand the geomicrobiology of karstic caves, but further studies are needed to determine whether the mineralogical biosignatures found in nutrient-rich media can also be found in oligotrophic caves.

  2. Mathematical Modeling Of Production Of Bio-surfactant Through Bio-desulfurization Of Hydrotreated Diesel In A Fermenter

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Sujaya; Chowdhury, Ranjana; Bhattacharjee, Chiranjib

    2010-10-01

    The conventional deep desulfurization must be followed by a suitable desulfurization process to achieve ultra low sulfur diesel (ULSD) with 10-15 ppm sulfur level which satisfies the strict environmental regulations. Bio-desulfurization is one of the potential routes for the above mentioned purpose. In this present investigation our major concern is production of Ultra Low sulfur diesel (ULSD) and production of biosurfactant simultaneously using Rhodococcus sp. The substituted benzothiophenes (BTs) and dibenzothiophenes (DBTs) get converted to 2-hydroxy biphenyl, which is a potential bio-surfactant. Kinetics of biodesulfurisation of deep desulfurized diesel using Rhodococcus sp. has been studied with special reference to removal of organo-sulfur compounds in diesel and production of 2-hydroxy biphenyl. The sulfur concentration of feed diesel is in the range of 200-540 mg/L. Aqueous phase to diesel ratios have been varied in the range of 9:1 to 1:9. The optimum ratio has been found to be 1:4 and the maximum conversion of sulfur of 95% has been achieved. The values of Monod kinetic parameters, μmax, maximum specific growth rate and Ks, saturation constant of the microbial growth and Yield coefficient of surfactant have been measured to be 0.096 h-1, 71 mg/L, and 17 μmol/g dry cell weights respectively by conducting batch type experiments. A deterministic mathematical model has been developed using the kinetic parameters and the experimental data have been compared with simulated ones satisfactorily.

  3. Delineation of Steroid-Degrading Microorganisms through Comparative Genomic Analysis

    PubMed Central

    Bergstrand, Lee H.; Cardenas, Erick; Holert, Johannes; Van Hamme, Jonathan D.

    2016-01-01

    ABSTRACT Steroids are ubiquitous in natural environments and are a significant growth substrate for microorganisms. Microbial steroid metabolism is also important for some pathogens and for biotechnical applications. This study delineated the distribution of aerobic steroid catabolism pathways among over 8,000 microorganisms whose genomes are available in the NCBI RefSeq database. Combined analysis of bacterial, archaeal, and fungal genomes with both hidden Markov models and reciprocal BLAST identified 265 putative steroid degraders within only Actinobacteria and Proteobacteria, which mainly originated from soil, eukaryotic host, and aquatic environments. These bacteria include members of 17 genera not previously known to contain steroid degraders. A pathway for cholesterol degradation was conserved in many actinobacterial genera, particularly in members of the Corynebacterineae, and a pathway for cholate degradation was conserved in members of the genus Rhodococcus. A pathway for testosterone and, sometimes, cholate degradation had a patchy distribution among Proteobacteria. The steroid degradation genes tended to occur within large gene clusters. Growth experiments confirmed bioinformatic predictions of steroid metabolism capacity in nine bacterial strains. The results indicate there was a single ancestral 9,10-seco-steroid degradation pathway. Gene duplication, likely in a progenitor of Rhodococcus, later gave rise to a cholate degradation pathway. Proteobacteria and additional Actinobacteria subsequently obtained a cholate degradation pathway via horizontal gene transfer, in some cases facilitated by plasmids. Catabolism of steroids appears to be an important component of the ecological niches of broad groups of Actinobacteria and individual species of Proteobacteria. PMID:26956583

  4. Coral-Associated Actinobacteria: Diversity, Abundance, and Biotechnological Potentials

    PubMed Central

    Mahmoud, Huda M.; Kalendar, Aisha A.

    2016-01-01

    Marine Actinobacteria, particularly coral-associated Actinobacteria, have attracted attention recently. In this study, the abundance and diversity of Actinobacteria associated with three types of coral thriving in a thermally stressed coral reef system north of the Arabian Gulf were investigated. Coscinaraea columna, Platygyra daedalea and Porites harrisoni have been found to harbor equivalent numbers of culturable Actinobacteria in their tissues but not in their mucus. However, different culturable actinobacterial communities have been found to be associated with different coral hosts. Differences in the abundance and diversity of Actinobacteria were detected between the mucus and tissue of the same coral host. In addition, temporal and spatial variations in the abundance and diversity of the cultivable actinobacterial communities were detected. In total, 19 different actinobacterial genera, namely Micrococcus, Brachybacterium, Brevibacterium, Streptomyces, Micromonospora, Renibacterium, Nocardia, Microbacterium, Dietzia, Cellulomonas, Ornithinimicrobium, Rhodococcus, Agrococcus, Kineococcus, Dermacoccus, Devriesea, Kocuria, Marmoricola, and Arthrobacter, were isolated from the coral tissue and mucus samples. Furthermore, 82 isolates related to Micromonospora, Brachybacterium, Nocardia, Micrococcus, Arthrobacter, Rhodococcus, and Streptomyces showed antimicrobial activities against representative Gram-positive and/or Gram-negative bacteria. Even though Brevibacterium and Kocuria were the most dominant actinobacterial isolates, they failed to show any antimicrobial activity, whereas less dominant genera, such as Streptomyces, did show antimicrobial activity. Focusing on the diversity of coral-associated Actinobacteria may help to understand how corals thrive under harsh environmental conditions and may lead to the discovery of novel antimicrobial metabolites with potential biotechnological applications. PMID:26973601

  5. Using the PORS Problems to Examine Evolutionary Optimization of Multiscale Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinhart, Zachary; Molian, Vaelan; Bryden, Kenneth

    2013-01-01

    Nearly all systems of practical interest are composed of parts assembled across multiple scales. For example, an agrodynamic system is composed of flora and fauna on one scale; soil types, slope, and water runoff on another scale; and management practice and yield on another scale. Or consider an advanced coal-fired power plant: combustion and pollutant formation occurs on one scale, the plant components on another scale, and the overall performance of the power system is measured on another. In spite of this, there are few practical tools for the optimization of multiscale systems. This paper examines multiscale optimization of systemsmore » composed of discrete elements using the plus-one-recall-store (PORS) problem as a test case or study problem for multiscale systems. From this study, it is found that by recognizing the constraints and patterns present in discrete multiscale systems, the solution time can be significantly reduced and much more complex problems can be optimized.« less

  6. Update on bacterial pneumonia in the foal and weanling.

    PubMed

    Reuss, Sarah M; Cohen, Noah D

    2015-04-01

    Bacterial pneumonia is a common cause of disease in both neonatal and weanling foals. The causal organism or organisms differ with the age of the foal, should be identified via microbiologic culture, and will ultimately dictate appropriate treatment. Initial treatment in neonates should be broad spectrum and bactericidal, whereas weanling age foals may receive more targeted treatment. The combination of a macrolide antibiotic and rifampin remains the gold standard for treatment of Rhodococcus equi pneumonia; however, resistance to these antimicrobials is a concern. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Psychrotolerant bacteria for remediation of oil-contaminated soils in the Arctic

    NASA Astrophysics Data System (ADS)

    Svarovskaya, L. I.; Altunina, L. K.

    2017-12-01

    Samples of oil-contaminated peat soil are collected in the region of the Barents Sea in Arctic Kolguyev Island. A model experiment on biodegradation of polluting hydrocarbons by natural microflora exhibiting psychrophilic properties is carried out at +10°C. The geochemical activity of pure hydrocarbon-oxidizing Acinetobacter, Pseudomonas, Bacillus and Rhodococcus cultures isolated from the soil is studied at a lower temperature. The concentration of soil contamination is determined within the range 18-57 g/kg. The biodegradation of oil by natural microflora is 60% under the conditions of a model experiment.

  8. Adult Student Retention and Achievement with Language-Based Modular Materials. POR FIN: Program Organizing Related Family Instruction in the Neighborhood.

    ERIC Educational Resources Information Center

    Bexar County School Board, San Antonio, TX.

    The goal of the POR FIN research design was to develop a language-based curriculum emphasizing the audiolingual approach and integrating academic and social-functioning subject matter. The modular curriculum is designed so that each lesson is independent and complete in itself, and provides a high degree of motivation, retention, and achievement…

  9. Characterisation by multilocus sequence and porA and flaA typing of Campylobacter jejuni isolated from samples of dog faeces collected in one city in New Zealand.

    PubMed

    Mohan, V; Stevenson, M A; Marshall, J C; French, N P

    2017-07-01

    To investigate the prevalence of Campylobacter spp. and C. jejuni in dog faecal material collected from dog walkways in the city of Palmerston North, New Zealand, and to characterise the C. jejuni isolates by multilocus sequence typing (MLST) and porA and flaA antigen gene typing. A total of 355 fresh samples of dogs faeces were collected from bins provided for the disposal of dog faeces in 10 walkways in Palmerston North, New Zealand, between August 2008-July 2009. Presumptive Campylobacter colonies, cultured on modified charcoal cefoperazone deoxycholate plates, were screened for genus Campylobacter and C. jejuni by PCR. The C. jejuni isolates were subsequently characterised by MLST and porA and flaA typing, and C. jejuni sequence types (ST) were assigned. Of the 355 samples collected, 72 (20 (95% CI=16-25)%) were positive for Campylobacter spp. and 22 (6 (95% CI=4-9)%) were positive for C. jejuni. Of the 22 C. jejuni isolates, 19 were fully typed by MLST. Ten isolates were assigned to the clonal complex ST-45 and three to ST-52. The allelic combinations of ST-45/flaA 21/porA 44 (n=3), ST-45/flaA 22/porA 53 (n=3) and ST-52/ flaA 57/porA 905 (n=3) were most frequent. The successful isolation of C. jejuni from canine faecal samples collected from faecal bins provides evidence that Campylobacter spp. may survive outside the host for at least several hours despite requiring fastidious growth conditions in culture. The results show that dogs carry C. jejuni genotypes (ST-45, ST-50, ST-52 and ST-696) that have been reported in human clinical cases. Although these results do not provide any evidence either for the direction of infection or for dogs being a potential risk factor for human campylobacteriosis, dog owners are advised to practice good hygiene with respect to their pets to reduce potential exposure to infection.

  10. Stable isotope probing reveals the importance of Comamonas and Pseudomonadaceae in RDX degradation in samples from a Navy detonation site.

    PubMed

    Jayamani, Indumathy; Cupples, Alison M

    2015-07-01

    This study investigated the microorganisms involved in hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) degradation from a detonation area at a Navy base. Using Illumina sequencing, microbial communities were compared between the initial sample, samples following RDX degradation, and controls not amended with RDX to determine which phylotypes increased in abundance following RDX degradation. The effect of glucose on these communities was also examined. In addition, stable isotope probing (SIP) using labeled ((13)C3, (15)N3-ring) RDX was performed. Illumina sequencing revealed that several phylotypes were more abundant following RDX degradation compared to the initial soil and the no-RDX controls. For the glucose-amended samples, this trend was strong for an unclassified Pseudomonadaceae phylotype and for Comamonas. Without glucose, Acinetobacter exhibited the greatest increase following RDX degradation compared to the initial soil and no-RDX controls. Rhodococcus, a known RDX degrader, also increased in abundance following RDX degradation. For the SIP study, unclassified Pseudomonadaceae was the most abundant phylotype in the heavy fractions in both the presence and absence of glucose. In the glucose-amended heavy fractions, the 16S ribosomal RNA (rRNA) genes of Comamonas and Anaeromxyobacter were also present. Without glucose, the heavy fractions also contained the 16S rRNA genes of Azohydromonas and Rhodococcus. However, all four phylotypes were present at a much lower level compared to unclassified Pseudomonadaceae. Overall, these data indicate that unclassified Pseudomonadaceae was primarily responsible for label uptake in both treatments. This study indicates, for the first time, the importance of Comamonas for RDX removal.

  11. Microbial community characterization and functional gene quantification in RDX-degrading microcosms derived from sediment and groundwater at two naval sites.

    PubMed

    Wilson, Fernanda Paes; Cupples, Alison M

    2016-08-01

    The explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) has long been recognized as a problematic environmental pollutant, and efforts to remediate contaminated soils, sediments, and groundwater have been going on for decades. In recent years, much interest has focused on using bioremediation to clean up these sites. The current study investigated the microorganisms (16S rRNA genes, Illumina) and functional genes (xenA, xenB, and xplA) linked to RDX biodegradation in microcosms composed of sediment or groundwater from two Navy sites. For this, experiments included sediment samples from three depths (5 to 30 ft) from two wells located in one Navy site. In addition, the groundwater upstream and downstream of an emulsified oil biobarrier was examined from another Navy site. Further, for the groundwater experiments, the effect of glucose addition was explored. For the sediment experiments, the most enriched phylotypes during RDX degradation varied over time, by depth and well locations. However, several trends were noted, including the enrichment of Pseudomonas, Rhodococcus, Arthrobacter, and Sporolactobacillus in the sediment microcosms. For the groundwater-based experiments, Pseudomonas, unclassified Rhodocyclaceae, Sphingomonas, and Rhodococcus were also highly abundant during RDX degradation. The abundance of both xplA and xenA significantly increased during RDX degradation compared to the control microcosms for many treatments (both groundwater and sediment microcosms). In a limited number of microcosms, the copy number of the xenB gene increased. Phylotype data were correlated with functional gene data to highlight potentially important biomarkers for RDX biodegradation at these two Navy sites.

  12. Exploring the Diversity and Antimicrobial Potential of Marine Actinobacteria from the Comau Fjord in Northern Patagonia, Chile

    PubMed Central

    Undabarrena, Agustina; Beltrametti, Fabrizio; Claverías, Fernanda P.; González, Myriam; Moore, Edward R. B.; Seeger, Michael; Cámara, Beatriz

    2016-01-01

    Bioprospecting natural products in marine bacteria from fjord environments are attractive due to their unique geographical features. Although, Actinobacteria are well known for producing a myriad of bioactive compounds, investigations regarding fjord-derived marine Actinobacteria are scarce. In this study, the diversity and biotechnological potential of Actinobacteria isolated from marine sediments within the Comau fjord, in Northern Chilean Patagonia, were assessed by culture-based approaches. The 16S rRNA gene sequences revealed that members phylogenetically related to the Micrococcaceae, Dermabacteraceae, Brevibacteriaceae, Corynebacteriaceae, Microbacteriaceae, Dietziaceae, Nocardiaceae, and Streptomycetaceae families were present at the Comau fjord. A high diversity of cultivable Actinobacteria (10 genera) was retrieved by using only five different isolation media. Four isolates belonging to Arthrobacter, Brevibacterium, Corynebacterium and Kocuria genera showed 16S rRNA gene identity <98.7% suggesting that they are novel species. Physiological features such as salt tolerance, artificial sea water requirement, growth temperature, pigmentation and antimicrobial activity were evaluated. Arthrobacter, Brachybacterium, Curtobacterium, Rhodococcus, and Streptomyces isolates showed strong inhibition against both Gram-negative Pseudomonas aeruginosa, Escherichia coli and Salmonella enterica and Gram-positive Staphylococcus aureus, Listeria monocytogenes. Antimicrobial activities in Brachybacterium, Curtobacterium, and Rhodococcus have been scarcely reported, suggesting that non-mycelial strains are a suitable source of bioactive compounds. In addition, all strains bear at least one of the biosynthetic genes coding for NRPS (91%), PKS I (18%), and PKS II (73%). Our results indicate that the Comau fjord is a promising source of novel Actinobacteria with biotechnological potential for producing biologically active compounds. PMID:27486455

  13. Biodegradation of diesel by mixed bacteria immobilized onto a hybrid support of peat moss and additives: a batch experiment.

    PubMed

    Lee, Young-Chul; Shin, Hyun-Jae; Ahn, Yeonghee; Shin, Min-Chul; Lee, Myungjin; Yang, Ji-Won

    2010-11-15

    We report microbial cell immobilization onto a hybrid support of peat moss for diesel biodegradation. Three strains isolated from a site contaminated with diesel oil were used in this study: Acinetobacter sp., Gordonia sp., and Rhodococcus sp. To increase not only diesel adsorption but also diesel biodegradation, additives such as zeolite, bentonite, chitosan, and alginate were tested. In this study, a peat moss, bentonite, and alginate (2/2.9/0.1 g, w/w/w) hybrid support (PBA) was the best support matrix, considering both diesel physical adsorption capacity and mixed microbial immobilization. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Actinomycetes in Karstic caves of northern Spain (Altamira and Tito Bustillo).

    PubMed

    Groth, I; Vettermann, R; Schuetze, B; Schumann, P; Saiz-Jimenez, C

    1999-05-01

    A variety of isolation procedures were carried out to study the involvement of bacteria in the colonisation and biodeterioration of Spanish caves with paleolithic rock art (Altamira and Tito Bustillo). The applied techniques mainly aimed to isolate heterotrophic bacteria such as streptomycetes, nocardioform and coryneform actinomycetes, and other gram-positive and gram-negative bacteria. The results demonstrated that actinomycetes were the most abundant gram-positive bacteria in the caves. Actinomycetes revealed a great taxonomic diversity with the predominant isolates belonging to the genus Streptomyces. Members of the genera Nocardia, Rhodococcus, Nocardioides, Amycolatopsis, Saccharothrix, Brevibacterium, Microbacterium, and coccoid actinomycetes (family Micrococcaceae) were also found.

  15. Arsenic-tolerant plant-growth-promoting bacteria isolated from arsenic-polluted soils in South Korea.

    PubMed

    Shagol, Charlotte C; Krishnamoorthy, Ramasamy; Kim, Kiyoon; Sundaram, Subbiah; Sa, Tongmin

    2014-01-01

    The Janghang smelter in Chungnam, South Korea started in 1936 was subsequently shutdown in 1989 due to heavy metal (loid) pollution concerns in the vicinity. Thus, there is a need for the soil in the area to be remediated to make it usable again especially for agricultural purposes. The present study was conducted to exploit the potential of arsenic (As)-tolerant bacteria thriving in the vicinity of the smelter-polluted soils to enhance phytoremediation of hazardous As. We studied the genetic and taxonomic diversity of 21 As-tolerant bacteria isolated from soils nearer to and away from the smelter. These isolates belonging to the genera Brevibacterium, Pseudomonas, Microbacterium, Rhodococcus, Rahnella, and Paenibacillus, could tolerate high concentrations of arsenite (As(III)) and arsenate (As(V)) with the minimum inhibitory concentration ranging from 3 to >20 mM for NaAsO2 and 140 to 310 mM NaH2AsO4 · 7H2O, respectively. All isolates exhibited As(V) reduction except Pseudomonas koreensis JS123, which exhibited both oxidation and reduction of As. Moreover, all the 21 isolates produced indole acetic acid (IAA), 13 isolates exhibited 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, 12 produced siderophore, 17 solubilized phosphate, and 13 were putative nitrogen fixers under in vitro conditions. Particularly, Rhodococcus aetherivorans JS2210, P. koreensis JS2214, and Pseudomonas sp. JS238 consistently increased root length of maize in the presence of 100 and 200 μM As(V). Possible utilization of these As-tolerant plant-growth-promoting bacteria can be a potential strategy in increasing the efficiency of phytoremediation in As-polluted soils.

  16. Clinical characteristics of infections caused by Tsukamurella spp. and antimicrobial susceptibilities of the isolates.

    PubMed

    Liu, Chia-Ying; Lai, Chih-Cheng; Lee, Meng-Rui; Lee, Yi-Chieh; Huang, Yu-Tsung; Liao, Chun-Hsing; Hsueh, Po-Ren

    2011-12-01

    To investigate the clinical and microbiological characteristics of infections caused by Tsukamurella spp., the computerised database of the Bacteriology Laboratory at National Taiwan University Hospital (Taipei, Taiwan) was reviewed retrospectively to identify patients with infections caused by this species during the period January 1997 to December 2008. All of the isolates had been initially misidentified as Rhodococcus spp. Identification of Tsukamurella isolates to species level was carried out by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of the heat shock protein gene (hsp65) as well as 16S rRNA gene sequencing. During the study period, a total of eight patients with Tsukamurella infection and two patients with Tsukamurella colonisation were identified. Tsukamurella tyrosinosolvens (n=6) was the most prevalent species, followed by Tsukamurella spumae (n=3) and Tsukamurella pulmonis (n=1). Keratitis was the most common type of infection (n=3), followed by catheter-related bloodstream infection (n=2). One of the patients with Tsukamurella infection died due to bacteraemia; the other seven patients with Tsukamurella infection had favourable outcomes. The three species had different drug susceptibility patterns; T. pulmonis was the most resistant pathogen, with higher minimum inhibitory concentrations of clindamycin (>2 mg/L), erythromycin (2 mg/L) and tetracycline (8 mg/L) than those for the other Tsukamurella spp. In conclusion, strains of Tsukamurella spp., including T. spumae, are uncommon causative agents of ocular infections and bacteraemia in cancer patients. Molecular diagnostic methods are essential to distinguish species in the Tsukamurella genus from species in other phylogenetically related genera such as Rhodococcus. Copyright © 2011 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  17. Killing of Mycolic Acid-Containing Bacteria Aborted Induction of Antibiotic Production by Streptomyces in Combined-Culture.

    PubMed

    Asamizu, Shumpei; Ozaki, Taro; Teramoto, Kanae; Satoh, Katsuya; Onaka, Hiroyasu

    2015-01-01

    Co-culture of Streptomyces with mycolic acid-containing bacteria (MACB), which we termed "combined-culture," alters the secondary metabolism pattern in Streptomyces and has been a useful method for the discovery of bioactive natural products. In the course of our investigation to identify the inducing factor(s) of MACB, we previously observed that production of pigments in Streptomyces lividans was not induced by factors such as culture extracts or mycolic acids. Although dynamic changes occurred in culture conditions because of MACB, the activation of pigment production by S. lividans was observed in a limited area where both colonies were in direct contact. This suggested that direct attachment of cells is a requirement and that components on the MACB cell membrane may play an important role in the response by S. lividans. Here we examined whether this response was influenced by dead MACB that possess intact mycolic acids assembled on the outer cell membrane. Formaldehyde fixation and γ-irradiation were used to prepare dead cells that retain their shape and mycolic acids of three MACB species: Tsukamurella pulmonis, Rhodococcus erythropolis, and Rhodococcus opacus. Culturing tests verified that S. lividans does not respond to the intact dead cells of three MACB. Observation of combined-culture by scanning electron microscopy (SEM) indicated that adhesion of live MACB to S. lividans mycelia were a significant interaction that resulted in formation of co-aggregation. In contrast, in the SEM analysis, dead cells were not observed to adhere. Therefore, direct attachment by live MACB cells is proposed as one of the possible factors that causes Streptomyces to alter its specialized metabolism in combined-culture.

  18. Novel Extracellular PHB Depolymerase from Streptomyces ascomycinicus: PHB Copolymers Degradation in Acidic Conditions

    PubMed Central

    García-Hidalgo, Javier; Hormigo, Daniel; Arroyo, Miguel; de la Mata, Isabel

    2013-01-01

    The ascomycin-producer strain Streptomyces ascomycinicus has been proven to be an extracellular poly(R)-3-hydroxybutyrate (PHB) degrader. The fkbU gene, encoding a PHB depolymerase (PhaZSa), has been cloned in E. coli and Rhodococcus sp. T104 strains for gene expression. Gram-positive host Rhodococcus sp. T104 was able to produce and secrete to the extracellular medium an active protein form. PhaZSa was purified by two hydrophobic interaction chromatographic steps, and afterwards was biochemically as well as structurally characterized. The enzyme was found to be a monomer with a molecular mass of 48.4 kDa, and displayed highest activity at 45°C and pH 6, thus being the first PHB depolymerase from a gram-positive bacterium presenting an acidic pH optimum. The PHB depolymerase activity of PhaZSa was increased in the presence of divalent cations due to non-essential activation, and also in the presence of methyl-β-cyclodextrin and PEG 3350. Protein structure was analyzed, revealing a globular shape with an alpha-beta hydrolase fold. The amino acids comprising the catalytic triad, Ser131-Asp209-His269, were identified by multiple sequence alignment, chemical modification of amino acids and site-directed mutagenesis. These structural results supported the proposal of a three-dimensional model for this depolymerase. PhaZSa was able to degrade PHB, but also demonstrated its ability to degrade films made of PHB, PHBV copolymers and a blend of PHB and starch (7∶3 proportion wt/wt). The features shown by PhaZSa make it an interesting candidate for industrial applications involving PHB degradation. PMID:23951224

  19. Novel extracellular PHB depolymerase from Streptomyces ascomycinicus: PHB copolymers degradation in acidic conditions.

    PubMed

    García-Hidalgo, Javier; Hormigo, Daniel; Arroyo, Miguel; de la Mata, Isabel

    2013-01-01

    The ascomycin-producer strain Streptomyces ascomycinicus has been proven to be an extracellular poly(R)-3-hydroxybutyrate (PHB) degrader. The fkbU gene, encoding a PHB depolymerase (PhaZ Sa ), has been cloned in E. coli and Rhodococcus sp. T104 strains for gene expression. Gram-positive host Rhodococcus sp. T104 was able to produce and secrete to the extracellular medium an active protein form. PhaZ Sa was purified by two hydrophobic interaction chromatographic steps, and afterwards was biochemically as well as structurally characterized. The enzyme was found to be a monomer with a molecular mass of 48.4 kDa, and displayed highest activity at 45°C and pH 6, thus being the first PHB depolymerase from a gram-positive bacterium presenting an acidic pH optimum. The PHB depolymerase activity of PhaZ Sa was increased in the presence of divalent cations due to non-essential activation, and also in the presence of methyl-β-cyclodextrin and PEG 3350. Protein structure was analyzed, revealing a globular shape with an alpha-beta hydrolase fold. The amino acids comprising the catalytic triad, Ser(131)-Asp(209)-His(269), were identified by multiple sequence alignment, chemical modification of amino acids and site-directed mutagenesis. These structural results supported the proposal of a three-dimensional model for this depolymerase. PhaZ Sa was able to degrade PHB, but also demonstrated its ability to degrade films made of PHB, PHBV copolymers and a blend of PHB and starch (7∶3 proportion wt/wt). The features shown by PhaZ Sa make it an interesting candidate for industrial applications involving PHB degradation.

  20. Distribution of the coenzyme M pathway of epoxide metabolism among ethene- and vinyl chloride-degrading Mycobacterium strains.

    PubMed

    Coleman, Nicholas V; Spain, Jim C

    2003-10-01

    An epoxyalkane:coenzyme M (CoM) transferase (EaCoMT) enzyme was recently found to be active in the aerobic vinyl chloride (VC) and ethene assimilation pathways of Mycobacterium strain JS60. In the present study, EaCoMT activity and genes were investigated in 10 different mycobacteria isolated on VC or ethene from diverse environmental samples. In all cases, epoxyethane metabolism in cell extracts was dependent on CoM, with average specific activities of EaCoMT between 380 and 2,910 nmol/min/mg of protein. PCR with primers based on conserved regions of EaCoMT genes from Mycobacterium strain JS60 and the propene oxidizers Xanthobacter strain Py2 and Rhodococcus strain B-276 yielded fragments (834 bp) of EaCoMT genes from all of the VC- and ethene-assimilating isolates. The Mycobacterium EaCoMT genes form a distinct cluster and are more closely related to the EaCoMT of Rhodococcus strain B-276 than that of Xanthobacter strain Py2. The incongruence of the EaCoMT and 16S rRNA gene trees and the fact that isolates from geographically distant locations possessed almost identical EaCoMT genes suggest that lateral transfer of EaCoMT among the Mycobacterium strains has occurred. Pulsed-field gel electrophoresis revealed large linear plasmids (110 to 330 kb) in all of the VC-degrading strains. In Southern blotting experiments, the strain JS60 EaCoMT gene hybridized to many of the plasmids. The CoM-mediated pathway of epoxide metabolism appears to be universal in alkene-assimilating mycobacteria, possibly because of plasmid-mediated lateral gene transfer.

  1. Identification of microbial populations assimilating nitrogen from RDX in munitions contaminated military training range soils by high sensitivity stable isotope probing.

    PubMed

    Andeer, Peter; Stahl, David A; Lillis, Lorraine; Strand, Stuart E

    2013-09-17

    The leaching of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) from particulates deposited in live-fire military training range soils contributes to significant pollution of groundwater. In situ microbial degradation has been proposed as a viable method for onsite containment of RDX. However, there is only a single report of RDX degradation in training range soils and the soil microbial communities involved in RDX degradation were not identified. Here we demonstrate aerobic RDX degradation in soils taken from a target area of an Eglin Air Force Base bombing range, C52N Cat's Eye, (Eglin, Florida U.S.A.). RDX-degradation activity was spatially heterogeneous (found in less than 30% of initial target area field samples) and dependent upon the addition of exogenous carbon sources to the soils. Therefore, biostimulation (with exogenous carbon sources) and bioaugmentation may be necessary to sustain timely and effective in situ microbial biodegradation of RDX. High sensitivity stable isotope probing analysis of extracted soils incubated with fully labeled (15)N-RDX revealed several organisms with (15)N-labeled DNA during RDX-degradation, including xplA-bearing organisms. Rhodococcus was the most prominent genus in the RDX-degrading soil slurries and was completely labeled with (15)N-nitrogen from the RDX. Rhodococcus and Williamsia species isolated from these soils were capable of using RDX as a sole nitrogen source and possessed the genes xplB and xplA associated with RDX-degradation, indicating these genes may be suitable genetic biomarkers for assessing RDX degradation potential in soils. Other highly labeled species were primarily Proteobacteria, including: Mesorhizobium sp., Variovorax sp., and Rhizobium sp.

  2. El proceso hacia la integracion de la equidad por genero al curriculo.(The Process of the Integration of Gender Equity in the Curriculum.)

    ERIC Educational Resources Information Center

    Rivera-Bermudez, Carmen D.

    "El Proyecto Colaborativo de Equidad por Genero en la Educacion," or the Collaborative Project for Gender Equity in Education, was undertaken in Puerto Rico between 1990 and 1992 to study how to facilitate the integration of gender equity themes in the curriculum through the direct action of participating teachers. A study examined the…

  3. Gene expression systems in corynebacteria.

    PubMed

    Srivastava, Preeti; Deb, J K

    2005-04-01

    Corynebacterium belongs to a group of gram-positive bacteria having moderate to high G+C content, the other members being Mycobacterium, Nocardia, and Rhodococcus. Considerable information is now available on the plasmids, gene regulatory elements, and gene expression in corynebacteria, especially in soil corynebacteria such as Corynebacterium glutamicum. These bacteria are non-pathogenic and, unlike Bacillus and Streptomyces, are low in proteolytic activity and thus have the potential of becoming attractive systems for expression of heterologous proteins. This review discusses recent advances in our understanding of the organization of various regulatory elements, such as promoters, transcription terminators, and development of vectors for cloning and gene expression.

  4. Modulation of eukaryotic cell apoptosis by members of the bacterial order Actinomycetales.

    PubMed

    Barry, Daniel P; Beaman, Blaine L

    2006-10-01

    Apoptosis, or programmed cell death, is normally responsible for the orderly elimination of aged or damaged cells, and is a necessary part of the homeostasis and development of multicellular organisms. Some pathogenic bacteria can disrupt this process by triggering excess apoptosis or by preventing it when appropriate. Either event can lead to disease. There has been extensive research into the modulation of host cell death by microorganisms, and several reviews have been published on the phenomenon. Rather than covering the entire field, this review focuses on the dysregulation of host cell apoptosis by members of the order Actinomycetales, containing the genera Corynebacterium, Mycobacterium, Rhodococcus, and Nocardia.

  5. Biotechnological potential for degradation of isoprene: a review.

    PubMed

    Srivastva, Navnita; Singh, Abhishek; Bhardwaj, Yashpal; Dubey, Suresh Kumar

    2018-06-01

    Isoprene, the ubiquitous, highly emitted non-methane volatile hydrocarbon, affects atmospheric chemistry and human health, and this makes its removal from the contaminated environment imperative. Physicochemical degradation of isoprene is inefficient and generates secondary pollutants. Therefore, biodegradation can be considered as the safer approach for its efficient abatement. This review summarizes efforts in this regard that led to tracking the diverse groups of isoprene degrading bacteria such as Methanotrophs, Xanthobacter, Nocardia, Alcaligenes, Rhodococcus, Actinobacteria, Alphaproteobacteria, Bacteriodetes, Pseudomonas, and Alcanivorax. Biodegradation of isoprene by such bacteria in batch and continuous modes has been elaborated. The products, pathways and the key enzymes associated with isoprene biodegradation have also been presented.

  6. Protection by meningococcal outer membrane protein PorA-specific antibodies and a serogroup B capsular polysaccharide-specific antibody in complement-sufficient and C6-deficient infant rats.

    PubMed

    Toropainen, Maija; Saarinen, Leena; Vidarsson, Gestur; Käyhty, Helena

    2006-05-01

    The relative contributions of antibody-induced complement-mediated bacterial lysis and antibody/complement-mediated phagocytosis to host immunity against meningococcal infections are currently unclear. Further, the in vivo effector functions of antibodies may vary depending on their specificity and Fc heavy-chain isotype. In this study, a mouse immunoglobulin G2a (mIgG2a) monoclonal antibody (MN12H2) to meningococcal outer membrane protein PorA (P1.16), its human IgG subclass derivatives (hIgG1 to hIgG4), and an mIgG2a monoclonal antibody (Nmb735) to serogroup B capsular polysaccharide (B-PS) were evaluated for passive protection against meningococcal serogroup B strain 44/76-SL (B:15:P1.7,16) in an infant rat infection model. Complement component C6-deficient (PVG/c-) rats were used to assess the importance of complement-mediated bacterial lysis for protection. The PorA-specific parental mIgG2a and the hIgG1 to hIgG3 derivatives all induced efficient bactericidal activity in vitro in the presence of human or infant rat complement and augmented bacterial clearance in complement-sufficient HsdBrlHan:WIST rats, while the hIgG4 was unable to do so. In C6-deficient PVG/c- rats, lacking complement-mediated bacterial lysis, the augmentation of bacterial clearance by PorA-specific mIgG2a and hIgG1 antibodies was impaired compared to that in the syngeneic complement-sufficient PVG/c+ rat strain. This was in contrast to the case for B-PS-specific mIgG2a, which conferred similar protective activity in both rat strains. These data suggest that while anti-B-PS antibody can provide protection in the infant rats without membrane attack complex formation, the protection afforded by anti-PorA antibody is more dependent on the activation of the whole complement pathway and subsequent bacterial lysis.

  7. Seguridad del paciente en Radioterapia Intraoperatoria: Impacto de los elementos controlados por el Radiofisico

    NASA Astrophysics Data System (ADS)

    Tarjuelo, Juan Lopez

    Introduccion: En la administracion de la radioterapia intervienen profesionales y equipos de tratamiento, por lo que existe el riesgo de error y se precisa que dicho equipamiento funcione conforme a lo esperado. A los radiofisicos les corresponde participar en las actividades de garantia o aseguramiento de la calidad, incluyendo el control de calidad de los equipos, y en la evaluacion de los riesgos asociados. La radioterapia intraoperatoria (RIO) es una tecnica radioterapica de intensificacion de dosis, altamente selectiva, dirigida a volumenes anatomicos restringidos durante el tratamiento quirurgico oncologico, basada en la administracion de una dosis absorbida alta por medio de un haz de electrones tras el examen visual directo del lecho tumoral. Como incorporar los ultimos avances en el refuerzo de la seguridad en radioterapia es una tarea ambiciosa y compleja, resulta mas concreta y de inmediata aplicacion su introduccion en la RIO. El objetivo es analizar los elementos que reducen los riesgos y aumentan la seguridad en la RIO y su dosimetria, y valorar la funcion del radiofisico en esta labor. Material y metodos: Se emplearon el planificador Radiance de GMV y el acelerador lineal de los tratamientos de RIO Elekta Precise, controlado con el verificador diario de haces Daily QA Check 1090 y medido con las camaras de ionizacion PPC 40, FC65-G y FC65-P de PTW-Freiburg, a su vez verificadas con fuentes radiactivas adecuadas de estroncio-90 modelos CDP y CDC de IBA Dosimetry. Se realizo un analisis de modos de fallo y efectos (failure mode and effect analysis, FMEA) con el fin de identificar los elementos que forman la RIO y aplicar las herramientas necesarias para la minimizacion de los riesgos y la mejora de la seguridad en la tecnica. Se estudiaron las verificaciones diarias de dicho acelerador Precise con el control estadistico de procesos (statistical process control, SPC) y se simularon intervenciones para devolverlo al estado llamado en control. El SPC

  8. Fabrication of por-Si/SnO{sub x} nanocomposite layers for gas microsensors and nanosensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolotov, V. V., E-mail: bolotov@obisp.oscsbras.ru; Korusenko, P. M.; Nesov, S. N.

    2011-05-15

    Two-phase nanocomposite layers based on porous silicon and nonstoichiometric tin oxide were fabricated by various methods. The structure, as well as elemental and phase composition, of the obtained nanocomposites were studied using transmission and scanning electron microscopy, Raman spectroscopy, Auger electron spectroscopy, and X-ray photoelectron spectroscopy. The results obtained confirm the formation of nanocomposite layers with a thickness as large as 2 {mu}m thick and SnO{sub x} stoichiometry coefficients x = 1.0-2.0. Significant tin diffusion into the porous silicon matrix with D{sub eff} Almost-Equal-To 10{sup -14} cm{sup 2} s{sup -1} was observed upon annealing at 770 K. Test sensor structuresmore » based on por-Si/SnO{sub x} nanocomposite layers grown by magnetron deposition showed fairly high stability of properties and sensitivity to NO{sub 2}.« less

  9. Metabolism of the aliphatic nitramine 4-nitro-2,4-diazabutanal by Methylobacterium sp. strain JS178.

    PubMed

    Fournier, Diane; Trott, Sandra; Hawari, Jalal; Spain, Jim

    2005-08-01

    The aliphatic nitramine 4-nitro-2,4-diazabutanal (NDAB; C2H5N3O3) is a ring cleavage metabolite that accumulates during the aerobic degradation of the energetic compound hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by various Rhodococcus spp. NDAB is also produced during the alkaline hydrolysis of either RDX or octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and during the photolysis of RDX. Traces of NDAB were observed in a soil sampled from an ammunition-manufacturing facility contaminated with both HMX and RDX, suggesting natural attenuation. In this study, we report the isolation of a soil bacterium that is able to degrade NDAB under aerobic conditions. The isolate is a pink-pigmented facultative methylotroph affiliated with the genus Methylobacterium. The strain, named Methylobacterium sp. strain JS178, degrades NDAB as a sole nitrogen source, with concomitant growth and formation of 1 molar equivalent of nitrous oxide (N2O). Comparison of the growth yield of strain JS178 grown on NDAB, nitrite (NO2-), or ammonium (NH4+) as a nitrogen source revealed that 1 N equivalent is assimilated from each mole of NDAB, which completes the nitrogen mass balance. In radiotracer experiments, strain JS178 mineralized 1 C of the [14C]NDAB produced in situ from [14C]RDX by Rhodococcus sp. strain DN22. Studies on the regulation of NDAB degradation indicated that allantoin, an intermediate in the purine catabolic pathway and a central molecule in the storage and transport of nitrogen in plants, up-regulated the enzyme(s) involved in the degradation of the nitramine. The results reveal the potential for the sequential participation of rhodococci and methylobacteria to effect the complete degradation of RDX.

  10. Metabolism of the Aliphatic Nitramine 4-Nitro-2,4-Diazabutanal by Methylobacterium sp. Strain JS178

    PubMed Central

    Fournier, Diane; Trott, Sandra; Hawari, Jalal; Spain, Jim

    2005-01-01

    The aliphatic nitramine 4-nitro-2,4-diazabutanal (NDAB; C2H5N3O3) is a ring cleavage metabolite that accumulates during the aerobic degradation of the energetic compound hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by various Rhodococcus spp. NDAB is also produced during the alkaline hydrolysis of either RDX or octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and during the photolysis of RDX. Traces of NDAB were observed in a soil sampled from an ammunition-manufacturing facility contaminated with both HMX and RDX, suggesting natural attenuation. In this study, we report the isolation of a soil bacterium that is able to degrade NDAB under aerobic conditions. The isolate is a pink-pigmented facultative methylotroph affiliated with the genus Methylobacterium. The strain, named Methylobacterium sp. strain JS178, degrades NDAB as a sole nitrogen source, with concomitant growth and formation of 1 molar equivalent of nitrous oxide (N2O). Comparison of the growth yield of strain JS178 grown on NDAB, nitrite (NO2−), or ammonium (NH4+) as a nitrogen source revealed that 1 N equivalent is assimilated from each mole of NDAB, which completes the nitrogen mass balance. In radiotracer experiments, strain JS178 mineralized 1 C of the [14C]NDAB produced in situ from [14C]RDX by Rhodococcus sp. strain DN22. Studies on the regulation of NDAB degradation indicated that allantoin, an intermediate in the purine catabolic pathway and a central molecule in the storage and transport of nitrogen in plants, up-regulated the enzyme(s) involved in the degradation of the nitramine. The results reveal the potential for the sequential participation of rhodococci and methylobacteria to effect the complete degradation of RDX. PMID:16085803

  11. Threats and opportunities of plant pathogenic bacteria.

    PubMed

    Tarkowski, Petr; Vereecke, Danny

    2014-01-01

    Plant pathogenic bacteria can have devastating effects on plant productivity and yield. Nevertheless, because these often soil-dwelling bacteria have evolved to interact with eukaryotes, they generally exhibit a strong adaptivity, a versatile metabolism, and ingenious mechanisms tailored to modify the development of their hosts. Consequently, besides being a threat for agricultural practices, phytopathogens may also represent opportunities for plant production or be useful for specific biotechnological applications. Here, we illustrate this idea by reviewing the pathogenic strategies and the (potential) uses of five very different (hemi)biotrophic plant pathogenic bacteria: Agrobacterium tumefaciens, A. rhizogenes, Rhodococcus fascians, scab-inducing Streptomyces spp., and Pseudomonas syringae. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Improved outcome of Trypanosoma cruzi infection in rats following treatment in early life with suspensions of heat-killed environmental Actinomycetales.

    PubMed

    Fontanella, G H; Pascutti, M F; Daurelio, L; Perez, A R; Nocito, A L; Wojdyla, D; Bottasso, O; Revelli, S S; Stanford, J L

    2007-04-30

    The well-established model of Chagas' disease in "l" rats was used to evaluate the effects of three injections of heat-killed Gordonia bronchialis, Rhodococcus coprophilus or saline on Trypanosoma cruzi parasitaemia and acute and chronic myocarditis, sequelae of the infection. Two vaccinating injections were given prior to challenge with T. cruzi, and the third, immunotherapeutic, injection was given 7 days after challenge. Treatment with either actinomycete significantly reduced acute parasitaemia (p<0.04), modified cellular infiltration during acute myocarditis and limited chronic myocarditis (p<0.03) in comparison with the saline-treated control animals. Immunological investigations showed that both bacterial preparations achieved their results through different mechanisms. The relevance of our findings to human Chagas' disease is discussed.

  13. Trisindoline synthesis and anticancer activity.

    PubMed

    Yoo, Miyoun; Choi, Sang-Un; Choi, Ki Young; Yon, Gyu Hwan; Chae, Jong-Chan; Kim, Dockyu; Zylstra, Gerben J; Kim, Eungbin

    2008-11-07

    Expression of a Rhodococcus-derived oxygenase gene in Escherichia coli yielded indigo metabolites with cytotoxic activity against cancer cells. Bioactivity-guided fractionation of these indigo metabolites led to the isolation of trisindoline as the agent responsible for the observed in vitro cytotoxic activity against cancer cells. While the cytotoxicity of etoposide, a common anticancer drug, was dramatically decreased in multidrug-resistant (MDR) cancer cells compared with treatment of parental cells, trisindoline was found to have similar cytotoxicity effects on both parental and MDR cell lines. In addition, the cytotoxic effects of trisindoline were resistant to P-glycoprotein overexpression, one of the most common mechanisms of drug resistance in cancer cells, supporting its use to kill MDR cancer cells.

  14. Being a mother and a por día domestic worker. Companionship and deprivation.

    PubMed

    Bernal, P; Meleis, A I

    1995-08-01

    This article presents qualitative findings concerning women's maternal roles, based on interviews conducted in a study on role integration and health, in a Colombian sample of 60 women who are "por día" domestic workers. The results describe the women's worldview as they discuss the stresses and the satisfactions of their mothering roles. The results also include the coping strategies used to deal with the stresses inherent in the maternal role. Women describe how the companionship of their children, watching their children grow, and the nurturing they give their children provides them with pride and deep satisfaction. These satisfying aspects of their role are burdened by the stress related to worry about children's bad behavior, their illness, and a pervasive generalized sense of constant worry. Being single parents adds more stress to these women's lives. Participants coped emotionally through distraction and through talking with friends. Other coping strategies included calming self, problem solving, talking with children, and substance use. The authors conclude with a discussion of the relationship between poverty and work situation as contexts for understanding maternal roles.

  15. The use of chemical and molecular microbial indicators for faecal source identification.

    PubMed

    Gilpin, B; James, T; Nourozi, F; Saunders, D; Scholes, P; Savill, M

    2003-01-01

    Identifying the source of faecal pollution is important to enable appropriate management of faecal pollution of water. We are developing and evaluating a combination of these microbial and chemical indicators better able to identify the source of faecal pollution. These assays make use of a combination of direct PCR, culturing, and colony hybridisation to identify source specific species of Bifidobacterium, Rhodococcus and Bacteroides. In conjunction with assays for (a) fluorescent whitening agents and (b) faecal sterols and stanols, these indicators were able to identify human derived faecal pollution in river water containing inputs from septic tanks, municipal oxidation ponds, farmed animals and feral animals. Differentiating amongst the animal sources was more difficult and will require development of molecular assays for organisms specific to each animal group.

  16. Aquisição fonológica do português brasileiro por crianças ouvintes bilíngues bimodais e surdas usuárias de implante coclear

    PubMed Central

    Cruz, Carina Rebello; Finger, Ingrid

    2014-01-01

    Resumo O presente estudo investiga a aquisição fonológica do Português Brasileiro (PB) por 24 crianças ouvintes bilíngues bimodais, com acesso irrestrito à Língua Brasileira de Sinais (Libras), e por 6 crianças surdas que utilizam implante coclear (IC), com acesso restrito ou irrestrito à Libras. Para a avaliação do sistema fonológico das crianças em PB, foi utilizada a Parte A, Prova de Nomeação, do ABFW – Teste de Linguagem Infantil (ANDRADE et al. 2004). Os resultados revelaram que as crianças ouvintes bilíngues bimodais e a criança surda usuária de IC com acesso irrestrito à Libras apresentaram processo de aquisição fonológica esperada (normal) para a sua faixa etária. Considera-se que a aquisição precoce e o acesso irrestrito à Libras podem ter sido determinantes para o desempenho dessas crianças no teste oral utilizado. PMID:25506105

  17. In-Situ Determination of the Mechanical Properties of Gliding or Non-Motile Bacteria by Atomic Force Microscopy under Physiological Conditions without Immobilization

    PubMed Central

    Dhahri, Samia; Ramonda, Michel; Marlière, Christian

    2013-01-01

    We present a study about AFM imaging of living, moving or self-immobilized bacteria in their genuine physiological liquid medium. No external immobilization protocol, neither chemical nor mechanical, was needed. For the first time, the native gliding movements of Gram-negative Nostoc cyanobacteria upon the surface, at speeds up to 900 µm/h, were studied by AFM. This was possible thanks to an improved combination of a gentle sample preparation process and an AFM procedure based on fast and complete force-distance curves made at every pixel, drastically reducing lateral forces. No limitation in spatial resolution or imaging rate was detected. Gram-positive and non-motile Rhodococcus wratislaviensis bacteria were studied as well. From the approach curves, Young modulus and turgor pressure were measured for both strains at different gliding speeds and are ranging from 20±3 to 105±5 MPa and 40±5 to 310±30 kPa depending on the bacterium and the gliding speed. For Nostoc, spatially limited zones with higher values of stiffness were observed. The related spatial period is much higher than the mean length of Nostoc nodules. This was explained by an inhomogeneous mechanical activation of nodules in the cyanobacterium. We also observed the presence of a soft extra cellular matrix (ECM) around the Nostoc bacterium. Both strains left a track of polymeric slime with variable thicknesses. For Rhodococcus, it is equal to few hundreds of nanometers, likely to promote its adhesion to the sample. While gliding, the Nostoc secretes a slime layer the thickness of which is in the nanometer range and increases with the gliding speed. This result reinforces the hypothesis of a propulsion mechanism based, for Nostoc cyanobacteria, on ejection of slime. These results open a large window on new studies of both dynamical phenomena of practical and fundamental interests such as the formation of biofilms and dynamic properties of bacteria in real physiological conditions. PMID:23593493

  18. Enrichment of beneficial bacteria in the skin microbiota of bats persisting with white-nose syndrome.

    PubMed

    Lemieux-Labonté, Virginie; Simard, Anouk; Willis, Craig K R; Lapointe, François-Joseph

    2017-09-05

    Infectious diseases of wildlife are increasing worldwide with implications for conservation and human public health. The microbiota (i.e. microbial community living on or in a host) could influence wildlife disease resistance or tolerance. White-nose syndrome (WNS), caused by the fungus Pseudogymnoascus destructans (Pd), has killed millions of hibernating North American bats since 2007. We characterized the skin microbiota of naïve, pre-WNS little brown bats (Myotis lucifugus) from three WNS-negative hibernation sites and persisting, previously exposed bats from three WNS-positive sites to test the hypothesis that the skin microbiota of bats shifts following WNS invasion. Using high-throughput 16S rRNA gene sequencing on 66 bats and 11 environmental samples, we found that hibernation site strongly influenced the composition and diversity of the skin microbiota. Bats from WNS-positive and WNS-negative sites differed in alpha and beta diversity, as well as in microbiota composition. Alpha diversity was reduced in persisting, WNS-positive bats, and the microbiota profile was enriched with particular taxa such Janthinobacterium, Micrococcaceae, Pseudomonas, Ralstonia, and Rhodococcus. Some of these taxa are recognized for their antifungal activity, and specific strains of Rhodococcus and Pseudomonas are known to inhibit Pd growth. Composition of the microbial community in the hibernaculum environment and the community on bat skin was superficially similar but differed in relative abundance of some bacterial taxa. Our results are consistent with the hypothesis that Pd invasion leads to a shift in the skin microbiota of surviving bats and suggest the possibility that the microbiota plays a protective role for bats facing WNS. The detection of what appears to be enrichment of beneficial bacteria in the skin microbiota of persisting bats is a promising discovery for species re-establishment. Our findings highlight not only the potential value of management actions that

  19. Biocatalytic desulfurization of thiophenic compounds and crude oil by newly isolated bacteria

    PubMed Central

    Mohamed, Magdy El-Said; Al-Yacoub, Zakariya H.; Vedakumar, John V.

    2015-01-01

    Microorganisms possess enormous highly specific metabolic activities, which enable them to utilize and transform nearly every known chemical class present in crude oil. In this context, one of the most studied biocatalytic processes is the biodesulfurization (BDS) of thiophenic sulfur-containing compounds such as benzothiophene (BT) and dibenzothiophene (DBT) in crude oils and refinery streams. Three newly isolated bacterial strains, which were affiliated as Rhodococcus sp. strain SA11, Stenotrophomonas sp. strain SA21, and Rhodococcus sp. strain SA31, were enriched from oil contaminated soil in the presence of DBT as the sole S source. GC-FID analysis of DBT-grown cultures showed consumption of DBT, transient formation of DBT sulfone (DBTO2) and accumulation of 2-hydroxybiphenyl (2-HBP). Molecular detection of the plasmid-borne dsz operon, which codes for the DBT desulfurization activity, revealed the presence of dszA, dszB, and dszC genes. These results point to the operation of the known 4S pathway in the BDS of DBT. The maximum consumption rate of DBT was 11 μmol/g dry cell weight (DCW)/h and the maximum formation rate of 2-HBP formation was 4 μmol/g DCW/h. Inhibition of both cell growth and DBT consumption by 2-HBP was observed for all isolates but SA11 isolate was the least affected. The isolated biocatalysts desulfurized other model DBT alkylated homologs. SA11 isolate was capable of desulfurizing BT as well. Resting cells of SA11 exhibited 10% reduction in total sulfur present in heavy crude oil and 18% reduction in total sulfur present in the hexane-soluble fraction of the heavy crude oil. The capabilities of the isolated bacteria to survive and desulfurize a wide range of S compounds present in crude oil are desirable traits for the development of a robust BDS biocatalyst to upgrade crude oils and refinery streams. PMID:25762990

  20. Microbial background flora in small-scale cheese production facilities does not inhibit growth and surface attachment of Listeria monocytogenes.

    PubMed

    Schirmer, B C T; Heir, E; Møretrø, T; Skaar, I; Langsrud, S

    2013-10-01

    The background microbiota of 5 Norwegian small-scale cheese production sites was examined and the effect of the isolated strains on the growth and survival of Listeria monocytogenes was investigated. Samples were taken from the air, food contact surfaces (storage surfaces, cheese molds, and brine) and noncontact surfaces (floor, drains, and doors) and all isolates were identified by sequencing and morphology (mold). A total of 1,314 isolates were identified and found to belong to 55 bacterial genera, 1 species of yeast, and 6 species of mold. Lactococcus spp. (all of which were Lactococcus lactis), Staphylococcus spp., Microbacterium spp., and Psychrobacter sp. were isolated from all 5 sites and Rhodococcus spp. and Chryseobacterium spp. from 4 sites. Thirty-two genera were only found in 1 out of 5 facilities each. Great variations were observed in the microbial background flora both between the 5 producers, and also within the various production sites. The greatest diversity of bacteria was found in drains and on rubber seals of doors. The flora on cheese storage shelves and in salt brines was less varied. A total of 62 bacterial isolates and 1 yeast isolate were tested for antilisterial activity in an overlay assay and a spot-on-lawn assay, but none showed significant inhibitory effects. Listeria monocytogenes was also co-cultured on ceramic tiles with bacteria dominating in the cheese production plants: Lactococcus lactis, Pseudomonas putida, Staphylococcus equorum, Rhodococcus spp., or Psychrobacter spp. None of the tested isolates altered the survival of L. monocytogenes on ceramic tiles. The conclusion of the study was that no common background flora exists in cheese production environments. None of the tested isolates inhibited the growth of L. monocytogenes. Hence, this study does not support the hypothesis that the natural background flora in cheese production environments inhibits the growth or survival of L. monocytogenes. Copyright © 2013 American

  1. Linking ceragenins to water-treatment membranes to minimize biofouling.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hibbs, Michael R.; Altman, Susan Jeanne; Feng, Yanshu

    Ceragenins were used to create biofouling resistant water-treatment membranes. Ceragenins are synthetically produced antimicrobial peptide mimics that display broad-spectrum bactericidal activity. While ceragenins have been used on bio-medical devices, use of ceragenins on water-treatment membranes is novel. Biofouling impacts membrane separation processes for many industrial applications such as desalination, waste-water treatment, oil and gas extraction, and power generation. Biofouling results in a loss of permeate flux and increase in energy use. Creation of biofouling resistant membranes will assist in creation of clean water with lower energy usage and energy with lower water usage. Five methods of attaching three different cerageninmore » molecules were conducted and tested. Biofouling reduction was observed in the majority of the tests, indicating the ceragenins are a viable solution to biofouling on water treatment membranes. Silane direct attachment appears to be the most promising attachment method if a high concentration of CSA-121a is used. Additional refinement of the attachment methods are needed in order to achieve our goal of several log-reduction in biofilm cell density without impacting the membrane flux. Concurrently, biofilm forming bacteria were isolated from source waters relevant for water treatment: wastewater, agricultural drainage, river water, seawater, and brackish groundwater. These isolates can be used for future testing of methods to control biofouling. Once isolated, the ability of the isolates to grow biofilms was tested with high-throughput multiwell methods. Based on these tests, the following species were selected for further testing in tube reactors and CDC reactors: Pseudomonas ssp. (wastewater, agricultural drainage, and Colorado River water), Nocardia coeliaca or Rhodococcus spp. (wastewater), Pseudomonas fluorescens and Hydrogenophaga palleronii (agricultural drainage), Sulfitobacter donghicola, Rhodococcus fascians

  2. Chromosome diversity and similarity within the Actinomycetales.

    PubMed

    Kirby, Ralph

    2011-06-01

    Many chromosomes from Actinomycetales, an order within the Actinobacteria, have been sequenced over the last 10 years and the pace is increasing. This group of Gram-positive and high G+C% bacteria is economically and medically important. However, this group of organisms also is just about the only order in the kingdom Bacteria to have a relatively high proportion of linear chromosomes. Chromosome topology varies within the order according to the genera. Streptomyces, Kitasatospora and Rhodococcus, at least as chromosome sequencing stands at present, have a very high proportion of linear chromosomes, whereas most other genera seem to have circular chromosomes. This review examines chromosome topology across the Actinomycetales and how this affects our concepts of chromosome evolution. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  3. Prevalencia y factores de riesgo para infecciones del tracto urinario de inicio en la comunidad causadas por Escherichia coli productor de betalactamasas de espectro extendido en Colombia

    PubMed Central

    Blanco, Victor M.; Maya, Juan J.; Correa, Adriana; Perenguez, Marcela; Muñoz, Juan S.; Motoa, Gabriel; Pallares, Christian J.; Rosso, Fernando; Matta, Lorena; Celis, Yamile; Garzon, Martha; Villegas, y María V.

    2016-01-01

    RESUMEN Introducción Las infecciones del tracto urinario (ITU) son frecuentes en la comunidad. Sin embargo, la información de aislamientos resistentes en este contexto es limitada en Latinoamérica. Este estudio tiene como objetivo determinar la prevalencia y los factores de riesgo asociados con ITU de inicio en la comunidad (ITU-IC) causadas por Escherichia coli productor de betalactamasas de espectro extendido (BLEE) en Colombia. Materiales y métodos Entre agosto y diciembre de 2011 se realizó un estudio de casos y controles en 3 instituciones de salud de tercer nivel en Colombia. Se invitó a participar a todos los pacientes admitidos a urgencias con diagnóstico probable de ITU-IC, y se les pidió una muestra de orina. En los aislamien-tos de E. coli se realizaron pruebas confirmatorias para BLEE, susceptibilidad antibiótica, caracterización molecular (PCR en tiempo real para genes bla, repetitive element palindromic PCR [rep-PCR], multilocus sequence typing [MLST] y factores de virulencia por PCR). Se obtuvo información clínica y epidemiológica, y posteriormente se realizó el análisis estadístico. Resultados De los 2.124 pacientes seleccionados, 629 tuvieron un urocultivo positivo, en 431 de estos se aisló E. coli, 54 fueron positivos para BLEE y 29 correspondieron a CTX-M-15. La mayoría de los aislamientos de E. coli productor de BLEE fueron sensibles a ertapenem, fosfomicina y amikacina. La ITU complicada se asoció fuertemente con infecciones por E. coli productor de BLEE (OR = 3,89; IC 95%: 1,10–13,89; p = 0,03). E. coli productor de CTX-M-15 mostró 10 electroferotipos diferentes; de estos, el 65% correspondieron al ST131. La mayoría de estos aislamientos tuvieron 8 de los 9 factores de virulencia analizados. Discusión E. coli portador del gen blaCTX-M-15 asociado al ST131 sigue siendo frecuente en Colombia. La presencia de ITU-IC complicada aumenta el riesgo de tener E. coli productor de BLEE, lo cual debe tenerse en cuenta para ofrecer

  4. La inserción en el mercado laboral de los inmigrantes latinos en España y en los Estados Unidos: Diferencias por país de origen y estatus legal

    PubMed Central

    Connor, Phillip; Massey, Douglas

    2013-01-01

    Resumen Este artículo compara los resultados económicos entre los inmigrantes latinoamericanos en España y Estados Unidos. Detectamos un efecto de selección por el que la mayoría de los inmigrantes latinoamericanos en España proceden de Sudamérica de un entorno de clases medias, mientras la mayoría de los inmigrantes que van a los Estados Unidos son centroamericanos de clase baja. Este efecto de selección explica las diferencias transnacionales en la probabilidad de empleo, logro ocupacional y salarios obtenidos. A pesar de las diferencias en los orígenes y las características de los latinoamericanos en ambos países, los factores demográficos, humanos y de capital social parecen operar de forma similar en ambos países; y cuando los modelos se estiman separadamente por estatus legal, descubrimos que los efectos se acentúan más entre los inmigrantes irregulares cuando se los compara con los regulares, especialmente en Estados Unidos. PMID:24532857

  5. "Estudio tribologico de aceros para moldes. Aplicacion al moldeo por inyeccion de polibutilentereftalato reforzado con fibra de vidrio"

    NASA Astrophysics Data System (ADS)

    Martinez Mateo, Isidoro Jose

    Mould materials for injection moulding of polymers and polymer-matrix composites represent a relevant industrial economic sector due to the large quantity of pieces and components processed. The material selection for mould manufacturing, its composition and heat treatment, the hardening procedures and machining and finishing processes determine the service performance and life of the mould. In the first part of the present study, the relationship between the hardness and microstructure and the wear resistance of mould steels from large blocks has been studied by pin-on-disc tests, studying the main wear mechanisms. In order to determine the surface damage on mould steels under real injection conditions, different commercial steels have been studied by measuring the variation of surface roughness with the number of injected pieces with different reinforcement percentages and different mould geometries, by using optical profilometry and scanning electron microscopy techniques. It was important to determine the variation of surface roughness of the moulded pieces with the number of injection operations. The materials used were polybutyleneterephthalate pure and reinforced with either 20% or 50% glass fibre. For the different mould designs, the evolution of the glass fibre orientation with injection flow has been determined by image analysis and related to roughness changes and surface damage, both of the composite parts and of the mould steel surface. Finally, the abrasion resistance of the composite parts has been studied by scratch tests as a function of the number of injected parts and of the scratch direction with respect to injection flow and glass fibre orientation. Los materiales para moldes de inyeccion de polimeros y materiales compuestos representan un sector economicamente muy relevante debido al gran aumento del numero de componentes fabricados a partir de materiales polimericos obtenidos mediante moldeo por inyeccion. La seleccion del material para la

  6. Synthesis and biodegradation of the VX nerve agent derivative 2-DIISO-propylaminoethylsulfonic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warner, C.H.; Labare, M.P.; Wessel, T.E.

    1996-10-01

    The United States is currently examining biodegradation methods to demilitarize chemical weapons. The nerve agent, O-ethyl-S-(2-diisopropylamino-ethyl)methylphosphonothiolate (VX) is first chemically inactivated with water at 90% yielding two fragments. One fragment is 2-diisopropylaminoethanethiol which quickly reacts with another thiol fragment forming the disulfide, bis(2-diisopropylaminoethyl)disulfide. The presence of the disulfide bond in this compound renders it resistant to biodegradation. Methods for converting the disulfide to the sulfonic acid are currently being pursued by treatment with performic acid. However, the sulfonic: acid has been synthesized by an independent method. Preliminary experiments indicate that the sulfonic acid at 1.0 and 0.5 mM is degradedmore » by Rhodococcus dp. strain IGTS8 as evidenced by an increase in the optical density at 600 nm.« less

  7. Development of novel assays for lignin degradation: comparative analysis of bacterial and fungal lignin degraders.

    PubMed

    Ahmad, Mark; Taylor, Charles R; Pink, David; Burton, Kerry; Eastwood, Daniel; Bending, Gary D; Bugg, Timothy D H

    2010-05-01

    Two spectrophotometric assays have been developed to monitor breakdown of the lignin component of plant lignocellulose: a continuous fluorescent assay involving fluorescently modified lignin, and a UV-vis assay involving chemically nitrated lignin. These assays have been used to analyse lignin degradation activity in bacterial and fungal lignin degraders, and to identify additional soil bacteria that show activity for lignin degradation. Two soil bacteria known to act as aromatic degraders, Pseudomonas putida and Rhodococcus sp. RHA1, consistently showed activity in these assays, and these strains were shown in a small scale experiment to breakdown lignocellulose, producing a number of monocyclic phenolic products. Using milled wood lignin prepared from wheat straw, pine, and miscanthus, some bacterial lignin degraders were found to show specificity for lignin type. These assays could be used to identify novel lignin degraders for breakdown of plant lignocellulose.

  8. Mujeres felices por ser saludables: a breast cancer risk reduction program for Latino women.

    PubMed

    Fitzgibbon, Marian L; Gapstur, Susan M; Knight, Sara J

    2003-05-01

    Breast cancer is the most commonly diagnosed cancer and the most common cause of cancer mortality among Latino women. Several behavioral factors such as early detection and dietary practices could help decrease morbidity and mortality associated with breast cancer in this population. Unfortunately, there are few data regarding the efficacy of health-related interventions for young Latino women. Mujeres Felices por ser Saludables is a randomized intervention project designed to assess breast cancer risk reduction behavior among Latino women ages 20-40 years. The primary objectives of the project were to determine whether an 8-month integrated dietary/breast health intervention could lead to a greater reduction in dietary fat, increase in dietary fiber, increase in the frequency and proficiency of breast self examination (BSE), and reduction in anxiety related to BSE compared to controls. Herein we describe the overall design of the project and present baseline characteristics of the 256 randomized women. Our results suggest that the average daily intake of dietary fat (percentage of total energy) was slightly below 30% (percentage of total energy) among the women randomized. While over half of these women reported that they practice BSE, and few reported anxiety related to BSE, less than 27% of women were proficient in the recommended BSE technique. There are few data on the dietary and breast health behaviors of young low-acculturated Latino women. This study documents the feasibility of recruiting, randomizing, and obtaining both baseline dietary and breast health data on this unique and underserved population.

  9. Relación masa-radio para estrellas enanas blancas y la interpretación de recientes mediciones hechas por Hipparcos

    NASA Astrophysics Data System (ADS)

    Panei, J. A.; Althaus, L. G.; Benvenuto, O. G.

    Recientes mediciones de la masa y el radio hechas por Hipparcos de las estrellas enanas blancas 40 Eri B y Procyon B (Shipman, H. & Provencal, J. - ApJ. 1998, 494, 759), sugieren un núcleo compuesto de hierro para dichas estrellas, en lugar de carbono y oxígeno como predice la teoría standard de evolución estelar. Para interpretar estas observaciones, presentamos aquí, relaciones masa-radio para configuraciones degeneradas a temperatura finita para distintas composiciones químicas centrales. Para tal fin hemos calculado secuencias evolutivas de enanas blancas utilizando el código de evolución estelar, desarrollado en el Observatorio de La Plata. Dicho código resuelve las ecuaciones de estructura y evolución estelar mediante la técnica de relajación de Henyey, y esta basado en una descripción física muy detallada y actualizada.

  10. Relationship of CYP2D6, CYP3A, POR, and ABCB1 genotypes with galantamine plasma concentrations.

    PubMed

    Noetzli, Muriel; Guidi, Monia; Ebbing, Karsten; Eyer, Stephan; Zumbach, Serge; Giannakopoulos, Panteleimon; von Gunten, Armin; Csajka, Chantal; Eap, Chin B

    2013-04-01

    The frequently prescribed antidementia drug galantamine is extensively metabolized by the enzymes cytochrome P450 (CYP) 2D6 and CYP3A and is a substrate of the P-glycoprotein. We aimed to study the relationship between genetic variants influencing the activity of these enzymes and transporters with galantamine steady state plasma concentrations. In this naturalistic cross-sectional study, 27 older patients treated with galantamine were included. The patients were genotyped for common polymorphisms in CYP2D6, CYP3A4/5, POR, and ABCB1, and galantamine steady state plasma concentrations were determined. The CYP2D6 genotype seemed to be an important determinant of galantamine pharmacokinetics, with CYP2D6 poor metabolizers presenting 45% and 61% higher dose-adjusted galantamine plasma concentrations than heterozygous and homozygous CYP2D6 extensive metabolizers (median 2.9 versus 2.0 ng/mL · mg, P = 0.025, and 1.8 ng/mL · mg, P = 0.004), respectively. The CYP2D6 genotype significantly influenced galantamine plasma concentrations. The influence of CYP2D6 polymorphisms on the treatment efficacy and tolerability should be further investigated.

  11. Endo-β-Glucosidase Tag Allows Dual Detection of Fusion Proteins by Fluorescent Mechanism-Based Probes and Activity Measurement.

    PubMed

    Kallemeijn, Wouter W; Scheij, Saskia; Voorn-Brouwer, Tineke M; Witte, Martin D; Verhoek, Marri; Overkleeft, Hermen S; Boot, Rolf G; Aerts, Johannes M F G

    2016-09-15

    β-Glucoside-configured cyclophellitols are activity-based probes (ABPs) that allow sensitive detection of β-glucosidases. Their applicability to detect proteins fused with β-glucosidase was investigated in the cellular context. The tag was Rhodococcus sp. M-777 endoglycoceramidase II (EGCaseII), based on its lack of glycans and ability to hydrolyze fluorogenic 4-methylumbelliferyl β-d-lactoside (an activity absent in mammalian cells). Specific dual detection of fusion proteins was possible in vitro and in situ by using fluorescent ABPs and a fluorogenic substrate. Pre-blocking with conduritol β-epoxide (a poor inhibitor of EGCaseII) eliminated ABP labeling of endogenous β-glucosidases. ABPs equipped with biotin allowed convenient purification of the fusion proteins. Diversification of ABPs (distinct fluorophores, fluorogenic high-resolution detection moieties) should assist further research in living cells and organisms. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Changes in the structure of bacterial complexes of vegetable crops in the course of their growth on a cultivated soddy-podzolic soil

    NASA Astrophysics Data System (ADS)

    Dobrovol'skaya, T. G.; Khusnetdinova, K. A.

    2017-11-01

    The dynamics of population density and taxonomic structure of epiphytic bacterial communities on the leaves and roots of potatoes, carrots, and beets have been studied. Significant changes take place in the ontogenesis of these vegetables with substitution of hydrolytic bacteria for eccrisotrophic bacteria feeding on products of plant exosmosis. The frequency of domination of representatives of different taxa of epiphytic bacteria on the studied plants has been determined for the entire period of their growth. Bacteria of different genera have been isolated from the aboveground and underground organs of vegetables; their functions are discussed. It is shown that the taxonomic structure of bacterial communities in the soil under studied plants is not subjected to considerable changes and is characterized by the domination of typical soil bacteria— Arthrobacter and bacilli—with the appearance of Rhodococcus as a codominant at the end of the season (before harvesting).

  13. Locating and Activating Molecular ‘Time Bombs’: Induction of Mycolata Prophages

    PubMed Central

    Dyson, Zoe A.; Brown, Teagan L.; Farrar, Ben; Doyle, Stephen R.; Tucci, Joseph; Seviour, Robert J.; Petrovski, Steve

    2016-01-01

    Little is known about the prevalence, functionality and ecological roles of temperate phages for members of the mycolic acid producing bacteria, the Mycolata. While many lytic phages infective for these organisms have been isolated, and assessed for their suitability for use as biological control agents of activated sludge foaming, no studies have investigated how temperate phages might be induced for this purpose. Bioinformatic analysis using the PHAge Search Tool (PHAST) on Mycolata whole genome sequence data in GenBank for members of the genera Gordonia, Mycobacterium, Nocardia, Rhodococcus, and Tsukamurella revealed 83% contained putative prophage DNA sequences. Subsequent prophage inductions using mitomycin C were conducted on 17 Mycolata strains. This led to the isolation and genome characterization of three novel Caudovirales temperate phages, namely GAL1, GMA1, and TPA4, induced from Gordonia alkanivorans, Gordonia malaquae, and Tsukamurella paurometabola, respectively. All possessed highly distinctive dsDNA genome sequences. PMID:27487243

  14. Quorum quenching properties of Actinobacteria isolated from Malaysian tropical soils.

    PubMed

    Devaraj, Kavimalar; Tan, Geok Yuan Annie; Chan, Kok-Gan

    2017-08-01

    In this study, a total of 147 soil actinobacterial strains were screened for their ability to inhibit response of Chromobacterium violaceum CV026 to short chain N-acyl homoserine lactone (AHL) which is a quorum sensing molecule. Of these, three actinobacterial strains showed positive for violacein inhibition. We further tested these strains for the inhibition of Pseudomonas aeruginosa PAO1 quorum sensing-regulated phenotypes, namely, swarming and pyocyanin production. The three strains were found to inhibit at least one of the quorum sensing-regulated phenotypes of PAO1. Phylogenetic analysis of the 16S rRNA gene sequences indicated that these strains belong to the genera Micromonospora, Rhodococcus and Streptomyces. This is the first report presenting quorum quenching activity by a species of the genus Micromonospora. Our data suggest that Actinobacteria may be a rich source of active compounds that can act against bacterial quorum sensing system.

  15. Insights on the Effects of Heat Pretreatment, pH, and Calcium Salts on Isolation of Rare Actinobacteria from Karstic Caves

    PubMed Central

    Fang, Bao-Zhu; Salam, Nimaichand; Han, Ming-Xian; Jiao, Jian-Yu; Cheng, Juan; Wei, Da-Qiao; Xiao, Min; Li, Wen-Jun

    2017-01-01

    The phylum Actinobacteria is one of the most ubiquitously present bacterial lineages on Earth. In the present study, we try to explore the diversity of cultivable rare Actinobacteria in Sigangli Cave, Yunnan, China by utilizing a combination of different sample pretreatments and under different culture conditions. Pretreating the samples under different conditions of heat, setting the isolation condition at different pHs, and supplementation of media with different calcium salts were found to be effective for isolation of diverse rare Actinobacteria. During our study, a total of 204 isolates affiliated to 30 genera of phylum Actinobacteria were cultured. Besides the dominant Streptomyces, rare Actinobacteria of the genera Actinocorallia, Actinomadura, Agromyces, Alloactinosynnema, Amycolatopsis, Beutenbergia, Cellulosimicrobium, Gordonia, Isoptericola, Jiangella, Knoellia, Kocuria, Krasilnikoviella, Kribbella, Microbacterium, Micromonospora, Mumia, Mycobacterium, Nocardia, Nocardioides, Nocardiopsis, Nonomuraea, Oerskovia, Pseudokineococcus, Pseudonocardia, Rhodococcus, Saccharothrix, Streptosporangium, and Tsukamurella were isolated from these cave samples. PMID:28848538

  16. The Sangre Por Salud Biobank: Facilitating Genetic Research in an Underrepresented Latino Community.

    PubMed

    Shaibi, Gabriel; Singh, Davinder; De Filippis, Eleanna; Hernandez, Valentina; Rosenfeld, Bill; Otu, Essen; Montes de Oca, Gregorio; Levey, Sharon; Radecki Breitkopf, Carmen; Sharp, Richard; Olson, Janet; Cerhan, James; Thibodeau, Stephen; Winkler, Erin; Mandarino, Lawrence

    2016-01-01

    The Sangre Por Salud (Blood for Health; SPS) Biobank was created for the purpose of expanding precision medicine research to include underrepresented Latino patients. It is the result of a unique collaboration between Mayo Clinic and Mountain Park Health Center, a federally qualified community health center in Phoenix, Arizona. This report describes the rationale, development, implementation, and characteristics of the SPS Biobank. Latino adults (ages 18-85 years) who were active patients within Mountain Park Health Center's internal medicine practice in Phoenix, Ariz., and had no history of diabetes were eligible. Participants provided a personal and family history of chronic disease, completed a sociodemographic, psychosocial, and behavioral questionnaire, underwent a comprehensive cardiometabolic risk assessment (anthropometrics, blood pressure and labs), and provided blood samples for banking. Laboratory results of cardiometabolic testing were returned to the participants and their providers through the electronic health record. During the first 2 years of recruitment into the SPS Biobank, 2,335 patients were approached and 1,432 (61.3%) consented to participate; 1,354 (94.5%) ultimately completed all requisite questionnaires and medical evaluations. The cohort is primarily Spanish-speaking (72.9%), female (73.3%), with a mean age of 41.3 ± 12.5 years. Most participants were born outside of the US (77.9%) and do not have health insurance (77.5%). The prevalence of overweight (35.5%) and obesity (45.0%) was high, as was previously unidentified prediabetes (55.9%), type 2 diabetes (7.4%), prehypertension (46.8%), and hypertension (16.2%). The majority of participants rated their health as good to excellent (72.1%) and, as a whole, described their overall quality of life as high (7.9/10). Collaborative efforts such as the SPS Biobank are critical for ensuring that underrepresented minority populations are included in precision medicine initiatives and biomedical

  17. The Sangre Por Salud Biobank: Facilitating Genetic Research in an Underrepresented Latino Community

    PubMed Central

    Shaibi, Gabriel; Singh, Davinder; De Filippis, Eleanna; Hernandez, Valentina; Rosenfeld, Bill; Otu, Essen; de Oca, Gregorio Montes; Levey, Sharon; Breitkopf, Carmen Radecki; Sharp, Richard; Olson, Janet; Cerhan, James; Thibodeau, Stephen; Winkler, Erin; Mandarino, Lawrence

    2018-01-01

    Background/Aims The Sangre Por Salud (Blood for Health; SPS) Biobank was created for the purpose of expanding precision medicine research to include underrepresented Latino patients. It is the result of a unique collaboration between Mayo Clinic and Mountain Park Health Center, a federally qualified community health center in Phoenix, Arizona. This report describes the rationale, development, implementation, and characteristics of the SPS Biobank. Methods Latino adults (ages 18–85 years) who were active patients within Mountain Park Health Center’s internal medicine practice in Phoenix, Ariz., and had no history of diabetes were eligible. Participants provided a personal and family history of chronic disease, completed a sociodemographic, psychosocial, and behavioral questionnaire, underwent a comprehensive cardiometabolic risk assessment (anthropometrics, blood pressure and labs), and provided blood samples for banking. Laboratory results of cardiometabolic testing were returned to the participants and their providers through the electronic health record. Results During the first 2 years of recruitment into the SPS Biobank, 2,335 patients were approached and 1,432 (61.3%) consented to participate; 1,354 (94.5%) ultimately completed all requisite questionnaires and medical evaluations. The cohort is primarily Spanish-speaking (72.9%), female (73.3%), with a mean age of 41.3 ± 12.5 years. Most participants were born outside of the US (77.9%) and do not have health insurance (77.5%). The prevalence of overweight (35.5%) and obesity (45.0%) was high, as was previously unidentified prediabetes (55.9%), type 2 diabetes (7.4%), prehypertension (46.8%), and hypertension (16.2%). The majority of participants rated their health as good to excellent (72.1%) and, as a whole, described their overall quality of life as high (7.9/10). Conclusion Collaborative efforts such as the SPS Biobank are critical for ensuring that underrepresented minority populations are included in

  18. Bioconversion of oxygen-pretreated Kraft lignin to microbial lipid with oleaginous Rhodococcus opacus DSM 1069

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Zhen; Zeng, Guangming; Huang, Fang

    2015-04-09

    Kraft lignin (KL) from black liquor is an abundantly available, inexpensive aromatic resource that is regarded as a low value compound by the pulp and paper industry, necessitating the development of new applications.

  19. Oil biodegradation: Interactions of artificial marine snow, clay particles, oil and Corexit.

    PubMed

    Rahsepar, Shokouh; Langenhoff, Alette A M; Smit, Martijn P J; van Eenennaam, Justine S; Murk, Albertinka J; Rijnaarts, Huub H M

    2017-12-15

    During the Deepwater Horizon (DwH) oil spill, interactions between oil, clay particles and marine snow lead to the formation of aggregates. Interactions between these components play an important, but yet not well understood, role in biodegradation of oil in the ocean water. The aim of this study is to explore the effect of these interactions on biodegradation of oil in the water. Laboratory experiments were performed, analyzing respiration and n-alkane and BTEX biodegradation in multiple conditions containing Corexit, alginate particles as marine snow, and kaolin clay. Two oil degrading bacterial pure cultures were added, Pseudomonas putida F1 and Rhodococcus qingshengii TUHH-12. Results show that the presence of alginate particles enhances oil biodegradation. The presence of Corexit alone or in combination with alginate particles and/or kaolin clay, hampers oil biodegradation. Kaolin clay and Corexit have a synergistic effect in increasing BTEX concentrations in the water and cause delay in oil biodegradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Occurrence of diverse alkane hydroxylase alkB genes in indigenous oil-degrading bacteria of Baltic Sea surface water.

    PubMed

    Viggor, Signe; Jõesaar, Merike; Vedler, Eve; Kiiker, Riinu; Pärnpuu, Liis; Heinaru, Ain

    2015-12-30

    Formation of specific oil degrading bacterial communities in diesel fuel, crude oil, heptane and hexadecane supplemented microcosms of the Baltic Sea surface water samples was revealed. The 475 sequences from constructed alkane hydroxylase alkB gene clone libraries were grouped into 30 OPFs. The two largest groups were most similar to Pedobacter sp. (245 from 475) and Limnobacter sp. (112 from 475) alkB gene sequences. From 56 alkane-degrading bacterial strains 41 belonged to the Pseudomonas spp. and 8 to the Rhodococcus spp. having redundant alkB genes. Together 68 alkB gene sequences were identified. These genes grouped into 20 OPFs, half of them being specific only to the isolated strains. Altogether 543 diverse alkB genes were characterized in the brackish Baltic Sea water; some of them representing novel lineages having very low sequence identities with corresponding genes of the reference strains. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Performance and bacterial diversity of biotrickling filters filled with conductive packing material for the treatment of toluene.

    PubMed

    Wu, Hao; Guo, Chunyu; Yin, Zhenhao; Quan, Yue; Yin, Chengri

    2018-06-01

    Toluene has high toxicity and mutagenicity, thus, the removal of toluene from air is necessary. In this study, two biotrickling filters (BTFs) were constructed and packed with conductive packing material to treat toluene waste gas. BTF-O exhibited good toluene removal performance even under high toluene inlet concentration, and over 80% of removal efficiency was observed. The elimination capacity reached 120.1 g/m 3  h corresponding to an inlet concentration of 2.259 g/m 3 under 61.5 s of empty bed retention time. During toluene biodegradation, the output voltage was observed in BTF-O and BTF-E, moreover BTF-E also showed slight power storage capacity. The applied voltage inhibited toluene removal and affected the bacterial community. The predominant bacterial genera in BTF-O were Acidovorax, Rhodococcus, Hydrogenophaga, Brevundimonas, Arthrobacter, Pseudoxanthomonas, Devosia, Gemmobacter, Rhizobium, Dokdonella and Pseudomonas. Genera Xanthobacter and Pelomonas accounted for the main bacterial community in BTF-E. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Toxicity evaluation of 2-hydroxybiphenyl and other compounds involved in studies of fossil fuels biodesulphurisation.

    PubMed

    Alves, L; Paixão, S M

    2011-10-01

    The acute toxicity of some compounds used in fossil fuels biodesulphurisation studies, on the respiration activity, was evaluated by Gordonia alkanivorans and Rhodococcus erythropolis. Moreover, the effect of 2-hydroxybiphenyl on cell growth of both strains was also determined, using batch (chronic bioassays) and continuous cultures. The IC₅₀ values obtained showed the toxicity of all the compounds tested to both strains, specially the high toxicity of 2-HBP. These results were confirmed by the chronic toxicity data. The toxicity data sets highlight for a higher sensitivity to the toxicant by the strain presenting a lower growth rate, due to a lower cells number in contact with the toxicant. Thus, microorganisms exhibiting faster generation times could be more resistant to 2-HBP accumulation during a BDS process. The physiological response of both strains to 2-HBP pulse in a steady-state continuous culture shows their potential to be used in a future fossil fuel BDS process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. The influence of bioaugmentation and biosurfactant addition on bioremediation efficiency of diesel-oil contaminated soil: feasibility during field studies.

    PubMed

    Szulc, Alicja; Ambrożewicz, Damian; Sydow, Mateusz; Ławniczak, Łukasz; Piotrowska-Cyplik, Agnieszka; Marecik, Roman; Chrzanowski, Łukasz

    2014-01-01

    The study focused on assessing the influence of bioaugmentation and addition of rhamnolipids on diesel oil biodegradation efficiency during field studies. Initial laboratory studies (measurement of emitted CO2 and dehydrogenase activity) were carried out in order to select the consortium for bioaugmentation as well as to evaluate the most appropriate concentration of rhamnolipids. The selected consortium consisted of following bacterial taxa: Aeromonas hydrophila, Alcaligenes xylosoxidans, Gordonia sp., Pseudomonas fluorescens, Pseudomonas putida, Rhodococcus equi, Stenotrophomonas maltophilia, Xanthomonas sp. It was established that the application of rhamnolipids at 150 mg/kg of soil was most appropriate in terms of dehydrogenase activity. Based on the obtained results, four treatment methods were designed and tested during 365 days of field studies: I) natural attenuation; II) addition of rhamnolipids; III) bioaugmentation; IV) bioaugmentation and addition of rhamnolipids. It was observed that bioaugmentation contributed to the highest diesel oil biodegradation efficiency, whereas the addition of rhamnolipids did not notably influence the treatment process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Bacterial diversity in soil from geophagic mining sites in the Qwa-Qwa region of South Africa.

    PubMed

    de Smidt, Olga; Smit, Nellie Jacoba; Botes, Elsabe

    2015-01-01

    Geophagia is practised in many parts of the world and can be associated with medicinal treatments, ceremonial events and spiritual behaviours/practices. This is the first report on a systematic investigation and description of the bacterial diversity in soil regularly ingested by geophagic individuals using a culture-independent method. Diversity in 17 different mining sites was investigated using denaturing gradient gel electrophoresis. Genetic material from Pantoea, Stenotrophomonas, Listeria, Rhodococcus and Sphingomonads was present in most of the soil samples. Species from these genera are recognised, potential or immerging human pathogens, and are of special interest in immune-compromised individuals. Other genera able to produce a variety of bacteriocins and antimicrobial/antifungal substances inhibitory towards food borne pathogens (Dactylosporangium and Bacillus) and able to degrade a range of environmental pollutants and toxins (Duganella and Massilia) were also present. These essential insights provide the platform for adjusting culturing strategies to isolate specific bacteria, further phylogenetic studies and microbial mining prospect for bacterial species of possible economic importance.

  5. Maternal immunization with actinomycetales immunomodulators reduces parasitemias in offspring challenged with Trypanosoma cruzi.

    PubMed

    Davila, Hector; Didoli, Griselda; Bottasso, Oscar; Stanford, John

    2011-04-01

    This article describes the first use of heat-killed, borate-buffered preparations of aerobic actinomycetales to immunize pregnant animals in order to determine the effect on their pregnancy and fertility and the survival coefficients of their offspring. Pregnant rats received three injections of Gordonia bronchialis, Rhodococcus coprophylus or physiological saline and a proportion of their offspring were challenged with live Trypanosoma cruzi at the time of weaning. Levels of parasitemia and, in some animals, of the cytokines IFN-γ and IL-10 were measured. The progress of pregnancy, fertility and survival of offspring were unaffected by the maternal immunizations. The offspring of rats immunized with G. bronchialis displayed significantly reduced parasitemias, with increased levels of IFN-γ and reduced levels of IL-10, 4 days after challenge. The offspring of rats immunized with R. coprophylus displayed greater parasitemias than did those of the control group. These unexpected results are discussed and their causation considered.

  6. Microbial Community in a Biofilter for Removal of Low Load Nitrobenzene Waste Gas

    PubMed Central

    Zhai, Jian; Wang, Zhu; Shi, Peng; Long, Chao

    2017-01-01

    To improve biofilter performance, the microbial community of a biofilter must be clearly defined. In this study, the performance of a lab-scale polyurethane biofilter for treating waste gas with low loads of nitrobenzene (NB) (< 20 g m-3 h-1) was investigated when using different empty bed residence times (EBRT) (64, 55.4 and 34 s, respectively). In addition, the variations of the bacterial community in the biofilm on the longitudinal distribution of the biofilters were analysed by using Illumina MiSeq high-throughput sequencing. The results showed that NB waste gas was successfully degraded in the biofilter. High-throughput sequencing data suggested that the phylum Actinobacteria and genus Rhodococcus played important roles in the degradation of NB. The variations of the microbial community were attributed to the different intermediate degradation products of NB in each layer. The strains identified in this study were potential candidates for purifying waste gas effluents containing NB. PMID:28114416

  7. Application of 2,4-Dinitrophenylhydrazine (DNPH) in High-Throughput Screening for Microorganism Mutants Accumulating 9α-Hydroxyandrost-4-ene-3,17-dione (9α-OH-AD)

    PubMed Central

    Liu, Yang; Cao, Fei; Xiong, Hui; Shen, Yanbing; Wang, Min

    2016-01-01

    To develop a quick method for the preliminarily screening of mutant strains that can accumulate 9α-hydroxyandrost-4-ene-3,17-dione (9α-OH-AD), a high-throughput screening method was presented by applying the principle that 2,4-dinitrophenylhydrazine (DNPH) can react with ketones to produce precipitation. The optimal color assay conditions were the substrate androst-4-ene-3,17-dione (AD) concentration at 2.0 g/L, the ratio of AD to DNPH solution at 1:4, and the sulfuric acid and ethanol solution percentages in DNPH solution at 2% and 35%, respectively. This method was used to preliminarily screen the mutants of Rhodococcus rhodochrous DSM43269, from which the three ones obtained could produce more 9α-OH-AD. This DNPH color assay method not only broadens screening methods and increases screening efficiency in microbial mutation breeding but also establishes a good foundation for obtaining strains for industrial application. PMID:27706217

  8. Application of 2,4-Dinitrophenylhydrazine (DNPH) in High-Throughput Screening for Microorganism Mutants Accumulating 9α-Hydroxyandrost-4-ene-3,17-dione (9α-OH-AD).

    PubMed

    Liu, Yang; Cao, Fei; Xiong, Hui; Shen, Yanbing; Wang, Min

    2016-01-01

    To develop a quick method for the preliminarily screening of mutant strains that can accumulate 9α-hydroxyandrost-4-ene-3,17-dione (9α-OH-AD), a high-throughput screening method was presented by applying the principle that 2,4-dinitrophenylhydrazine (DNPH) can react with ketones to produce precipitation. The optimal color assay conditions were the substrate androst-4-ene-3,17-dione (AD) concentration at 2.0 g/L, the ratio of AD to DNPH solution at 1:4, and the sulfuric acid and ethanol solution percentages in DNPH solution at 2% and 35%, respectively. This method was used to preliminarily screen the mutants of Rhodococcus rhodochrous DSM43269, from which the three ones obtained could produce more 9α-OH-AD. This DNPH color assay method not only broadens screening methods and increases screening efficiency in microbial mutation breeding but also establishes a good foundation for obtaining strains for industrial application.

  9. Ntann12 annexin expression is induced by auxin in tobacco roots

    PubMed Central

    Baucher, Marie; Oukouomi Lowe, Yves; Vandeputte, Olivier M.; Mukoko Bopopi, Johnny; Moussawi, Jihad; Vermeersch, Marjorie; Mol, Adeline; El Jaziri, Mondher; Homblé, Fabrice; Pérez-Morga, David

    2011-01-01

    Ntann12, encoding a polypeptide homologous to annexins, was found previously to be induced upon infection of tobacco with the bacterium Rhodococcus fascians. In this study, Ntann12 is shown to bind negatively charged phospholipids in a Ca2+-dependent manner. In plants growing in light conditions, Ntann12 is principally expressed in roots and the corresponding protein was mainly immunolocalized in the nucleus. Ntann12 expression was inhibited following plant transfer to darkness and in plants lacking the aerial part. However, an auxin (indole-3-acetic acid) treatment restored the expression of Ntann12 in the root system in dark conditions. Conversely, polar auxin transport inhibitors such as 1-naphthylphthalamic acid (NPA) or 2,3,5-triiodobenzoic acid (TIBA) inhibited Ntann12 expression in light condition. These results indicate that the expression of Ntann12 in the root is linked to the perception of a signal in the aerial part of the plant that is transmitted to the root via polar auxin transport. PMID:21543519

  10. Genetic diversity of the causative agent of ice-ice disease of the seaweed Kappaphycus alvarezii from Karimunjawa island, Indonesia

    NASA Astrophysics Data System (ADS)

    Syafitri, E.; Prayitno, S. B.; Ma'ruf, W. F.; Radjasa, O. K.

    2017-02-01

    An essential step in investigating the bacterial role in the occurrence of diseases in Kappaphycus alvarezii is the characterization of bacteria associated with this seaweed. A molecular characterization was conducted on the genetic diversity of the causative agents of ice-ice disease associated with K. alvarezii widely known as the main source of kappa carrageenan. K. alvrezii infected with ice-ice were collected from the Karimunjawa island, North Java Sea, Indonesia. Using Zobell 2216E marine agar medium, nine bacterial species were isolated from the infected seaweed. The molecular characterizations revealed that the isolated bacteria causing ice-ice disease were closely related to the genera of Alteromonas, Bacillus, Pseudomonas, Pseudoalteromonas, Glaciecola, Aurantimonas, and Rhodococcus. In order to identify the symptoms causative organisms, the isolated bacterial species were cultured and were evaluated for their pathogenity. Out of 9 species, only 3 isolates were able to cause the ice-ice symptoms and consisted of Alteromonas macleodii, Pseudoalteromonas issachenkonii and Aurantimonas coralicida. A. macleodii showed the highest pathogenity.

  11. Bacterial production of short-chain organic acids and trehalose from levulinic acid: a potential cellulose-derived building block as a feedstock for microbial production.

    PubMed

    Habe, Hiroshi; Sato, Shun; Morita, Tomotake; Fukuoka, Tokuma; Kirimura, Kohtaro; Kitamoto, Dai

    2015-02-01

    Levulinic acid (LA) is a platform chemical derived from cellulosic biomass, and the expansion of LA utilization as a feedstock is important for production of a wide variety of chemicals. To investigate the potential of LA as a substrate for microbial conversion to chemicals, we isolated and identified LA-utilizing bacteria. Among the six isolated strains, Pseudomonas sp. LA18T and Rhodococcus hoagie LA6W degraded up to 70 g/L LA in a high-cell-density system. The maximal accumulation of acetic acid by strain LA18T and propionic acid by strain LA6W was 13.6 g/L and 9.1 g/L, respectively, after a 4-day incubation. Another isolate, Burkholderia stabilis LA20W, produced trehalose extracellularly in the presence of 40 g/L LA to approximately 2 g/L. These abilities to produce useful compounds supported the potential of microbial LA conversion for future development and cellulosic biomass utilization. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Astronomy in the Classroom: Why? (Spanish Title: Astronomía en la Clase: ¿Por Qué?) Astronomia na Sala de Aula: Por Quê?

    NASA Astrophysics Data System (ADS)

    Daros Gama, Leandro; Bagdonas Henrique, Alexandre

    2010-07-01

    There are many discussions about the relevance of the topics covered in classes. One subject in particular is the focus of this essay: astronomy. In what sense and to what extent it would be worth to teach it in science or other kind of classes? In this paper we discuss some aspects of the advantages of dealing with this area of knowledge in schools, taking into account the epistemological and axiological dimensions of astronomy, in light of the vision of science as an intelligent dialogue with the world (Bachelard), in addition to the "problematization" knowledge of Paulo Freire. We propose that in fact the Astronomy does not need to be seen as just a new set of contents to be taught, but appears as a set of motivational contents for historical-philosophical discussions, and permit the discussion of concepts of other disciplines. Numerosas discusiones se están llevando a cabo acerca de la pertinencia de los temas tradicionalmente tratados en las clases. Uno de los temas, en particular, es el foco de este ensayo: la astronomía. ¿En qué sentido y en qué medida sería conveniente tratarla en clase, ya sea en clases de ciencias naturales, específicamente en las de astronomía o asignaturas afines? Elaboramos en este artículo algunos aspectos de las ventajas de tratar esta área del conocimiento en las escuelas, teniendo en cuenta las dimensiones epistemológica y axiológica de la astronomía, a la luz de la visión de la ciencia como un diálogo inteligente con el mundo (Bachelard), además de la propuesta del conocimiento "problematizador" de Paulo Freire. Proponemos que en realidad la astronomía no tiene por qué ser vista sólo como un nuevo conjunto de contenidos que se enseñan, sino que aparece como un conjunto de temas de motivación para el debate histórico-filosófico y para permitir la discusión de los conceptos típicos de otras disciplinas. Muitas discussões vêm acontecendo sobre a relevância dos temas abordados em sala de aula. Um tema, em

  13. Trayectoria de los tornillos pediculares lumbares y sacros: Comparación entre el abordaje por linea media versus el abordaje posterolateral tipo wiltse

    PubMed Central

    Gagliardi, Martín; Guiroy, Alfredo; Molina, Federico Fernández; Fasano, Francisco; Ciancio, Alejandro Morales; Mezzadri, Juan José; Jalón, Pablo

    2017-01-01

    Resumen Objetivos: El objetivo de este estudio fue comparar, en fusiones lumbosacras cortas, el ángulo de convergencia de los tornillos pediculares entre el abordaje posterolateral tipo Wiltse y el abordaje mediano convencional. Método: Se revisaron en forma retrospectiva los controles en tomografía axial computada (TAC) de 76 tornillos pediculares lumbares y sacros colocados por vía posterior, mediante un abordaje mediano convencional (n: 38) o por vía posterolateral transmuscular tipo Wiltse (n: 38). Se incluyeron fusiones lumbosacras cortas desde L3 a S1, en pacientes adultos, con patología degenerativa. Se excluyeron los tornillos con una brecha ósea >4 mm en cualquier dirección, los casos con instrumentaciones pediculares previas y aquellos con curvas en el plano coronal mayores de 20°. Resultados: Considerando la totalidad de los implantes, el ángulo de convergencia fue de 23,3° (+/- 15,82). La angulación promedio, en el grupo AW, fue de 29,3° (+/- 9,72). En el grupo AC, el grado de convergencia de los implantes fue de 17,2° (+/- 10,58). Esta diferencia fue estadísticamente significativa (P < 0,0001). Para el grupo AW, el grado de convergencia según nivel fue el siguiente: L3: 31,2° (+/- 1,9); L4: 31,4° (+/- 2,76); L5: 31,1° (+/- 5,62); S1: 24,2° (+/- 12,16). El promedio del ángulo del tornillo según nivel para el grupo AC fue: L3: 16° (+/- 7,16); L4: 20,3° (+/- 6,9) L5: 15,9° (+/- 13,38); S1: 15,2° (+/- 14,32). Los implantes del grupo AW tuvieron ángulos significativamente más convergentes que el grupo AC en todos los segmentos explorados. Conclusión: En las fusiones lumbosacras cortas, la utilización del abordaje tipo Wiltse permitió la colocación de tornillos pediculares con más convergencia que en el abordaje mediano convencional. La relevancia clínica de este hecho es desconocida y se requerirían trabajos prospectivos randomizados para determinar la misma. PMID:29142777

  14. Estimaciones de Prevalencia del VIH por Género y Grupo de Riesgo en Tijuana, México: 2006

    PubMed Central

    Iñiguez-Stevens, Esmeralda; Brouwer, Kimberly C.; Hogg, Robert S.; Patterson, Thomas L.; Lozada, Remedios; Magis-Rodriguez, Carlos; Elder, John P.; Viani, Rolando M.; Strathdee, Steffanie A.

    2010-01-01

    OBJETIVO Estimar la prevalencia del VIH en adultos de 15-49 años de edad en Tijuana, México - en la población general y en subgrupos de riesgo en el 2006. METODOS Se obtuvieron datos demográficos del censo Mexicano del 2005, y la prevalencia del VIH se obtuvo de la literatura. Se construyó un modelo de prevalencia del VIH para la población general y de acuerdo al género. El análisis de sensibilidad consistió en estimar errores estándar del promedio-ponderado de la prevalencia del VIH y tomar derivados parciales con respecto a cada parámetro. RESULTADOS La prevalencia del VIH es 0.54%(N = 4,347) (Rango: 0.22%–0.86%, (N = 1,750–6,944)). Esto sugiere que 0.85%(Rango: 0.39%–1.31%) de los hombres y 0.22%(Rango: 0.04%–0.40%) de las mujeres podrían ser VIH-positivos. Los hombres que tienen sexo con hombres (HSH), las trabajadoras sexuales usuarias de drogas inyectables (MTS-UDI), MTS-noUDI, mujeres UDI, y los hombres UDI contribuyeron las proporciones más elevadas de personas infectadas por el VIH. CONCLUSIONES El número de adultos VIH-positivos entre subgrupos de riesgo en la población de Tijuana es considerable, marcando la necesidad de enforcar las intervenciones de prevención en sus necesidades específicas. El presente modelo estima que hasta 1 en cada 116 adultos podrían ser VIH-positivos. PMID:19685824

  15. Biostimulation and microbial community profiling reveal insights on RDX transformation in groundwater

    DOE PAGES

    Wang, Dongping; Boukhalfa, Hakim; Marina, Oana; ...

    2016-11-17

    Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a high explosive released to the environment as a result of weapons manufacturing and testing worldwide. At Los Alamos National Laboratory, the Technical Area (TA) 16 260 Outfall discharged high-explosives-bearing water from a high-explosives-machining facility to Cañon de Valle during 1951 through 1996. These discharges served as a primary source of high-explosives and inorganic-element contamination in the area. Data indicate that springs, surface water, alluvial groundwater, and perched-intermediate groundwater contain explosive compounds, including RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine); HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine); and TNT (2,4,6-trinitrotoluene). RDX has been detected in the regional aquifer in several wells, and a corrective measures evaluation ismore » planned to identify remedial alternatives to protect the regional aquifer. Perched-intermediate groundwater at Technical Area 16 is present at depths from 650 ft to 1200 ft bgs. In this study, we examined the microbial diversity in a monitoring well completed in perched-intermediate groundwater contaminated by RDX, and examined the response of the microbial population to biostimulation under varying geochemical conditions. Results show that the groundwater microbiome was dominated by Actinobacteria and Proteobacteria. A total of 1,605 operational taxonomic units (OTUs) in 96 bacterial genera were identified. Rhodococcus was the most abundant genus (30.6%) and a total of 46 OTUs were annotated as Rhodococcus. One OTU comprising 25.2% of total sequences was closely related to a RDX -degrading strain R. erythropolis HS4. A less abundant OTU from the Pseudomonas family closely related to RDX-degrading strain P. putida II-B was also present. Biostimulation significantly enriched Proteobacteria but decreased/eliminated the population of Actinobacteria. Consistent with RDX degradation, the OTU closely related to the RDX-degrading P

  16. Biostimulation and microbial community profiling reveal insights on RDX transformation in groundwater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dongping; Boukhalfa, Hakim; Marina, Oana

    Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a high explosive released to the environment as a result of weapons manufacturing and testing worldwide. At Los Alamos National Laboratory, the Technical Area (TA) 16 260 Outfall discharged high-explosives-bearing water from a high-explosives-machining facility to Cañon de Valle during 1951 through 1996. These discharges served as a primary source of high-explosives and inorganic-element contamination in the area. Data indicate that springs, surface water, alluvial groundwater, and perched-intermediate groundwater contain explosive compounds, including RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine); HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine); and TNT (2,4,6-trinitrotoluene). RDX has been detected in the regional aquifer in several wells, and a corrective measures evaluation ismore » planned to identify remedial alternatives to protect the regional aquifer. Perched-intermediate groundwater at Technical Area 16 is present at depths from 650 ft to 1200 ft bgs. In this study, we examined the microbial diversity in a monitoring well completed in perched-intermediate groundwater contaminated by RDX, and examined the response of the microbial population to biostimulation under varying geochemical conditions. Results show that the groundwater microbiome was dominated by Actinobacteria and Proteobacteria. A total of 1,605 operational taxonomic units (OTUs) in 96 bacterial genera were identified. Rhodococcus was the most abundant genus (30.6%) and a total of 46 OTUs were annotated as Rhodococcus. One OTU comprising 25.2% of total sequences was closely related to a RDX -degrading strain R. erythropolis HS4. A less abundant OTU from the Pseudomonas family closely related to RDX-degrading strain P. putida II-B was also present. Biostimulation significantly enriched Proteobacteria but decreased/eliminated the population of Actinobacteria. Consistent with RDX degradation, the OTU closely related to the RDX-degrading P

  17. Results of Mujeres Felices por ser Saludables: a dietary/breast health randomized clinical trial for Latino women.

    PubMed

    Fitzgibbon, Marian L; Gapstur, Susan M; Knight, Sara J

    2004-10-01

    Data are limited on the efficacy of health-focused interventions for young, low-acculturated Latino women. Because breast cancer is the most commonly diagnosed cancer and the most common cause of cancer mortality in this population, combined interventions that address both early detection and dietary patterns could help reduce both morbidity and mortality associated with breast cancer in this underserved population. Mujeres Felices por ser Saludables was randomized intervention study designed to assess the efficacy of an 8-month combined dietary and breast health intervention to reduce fat and increase fiber intake as well as to increase the frequency and proficiency of breast self-examination (BSE) and reduce anxiety related to BSE among Latinas. Blocked randomization in blocks of 6 was used to randomize 256 20- to 40-year-old Latinas to the intervention (n = 127) or control group (n = 129). The intervention group attended an 8-month multicomponent education program designed specifically for low-acculturated Latinas. The control group received mailed health education material on a schedule comparable to the intervention. A total of 195 women (76.2%) completed both the baseline and 8-month follow-up interviews. The intervention and control groups were similar on baseline sociodemographic characteristics. At the 8-month follow up, the intervention group reported lower dietary fat (P < .001) and higher fiber intake (p = .06); a higher proportion reported practicing BSE at the recommended interval (p < .001) and showed improved BSE proficiency (p < .001) compared to the control group. BSE-related anxiety was low for both groups at baseline, and no difference in reduction was observed. This project provides a successful model for achieving dietary change and improving breast health behavior in young, low-acculturated Latinas.

  18. Screening of biosurfactant-producing bacteria from offshore oil and gas platforms in North Atlantic Canada.

    PubMed

    Cai, Qinhong; Zhang, Baiyu; Chen, Bing; Song, Xing; Zhu, Zhiwen; Cao, Tong

    2015-05-01

    From offshore oil and gas platforms in North Atlantic Canada, crude oil, formation water, drilling mud, treated produced water and seawater samples were collected for screening potential biosurfactant producers. In total, 59 biosurfactant producers belong to 4 genera, namely, Bacillus, Rhodococcus, Halomonas, and Pseudomonas were identified and characterized. Phytogenetic trees based on 16S ribosomal deoxyribonucleic acid (16S rDNA) were constructed with isolated strains plus their closely related strains and isolated strains with biosurfactant producers in the literature, respectively. The distributions of the isolates were site and medium specific. The richness, diversity, and evenness of biosurfactant producer communities in oil and gas platform samples have been analyzed. Diverse isolates were found with featured properties such as effective reduction of surface tension, producing biosurfactants at high rate and stabilization of water-in-oil or oil-in-water emulsion. The producers and their corresponding biosurfactants had promising potential in applications such as offshore oil spill control, enhancing oil recovery and soil washing treatment of petroleum hydrocarbon-contaminated sites.

  19. Conversion of corn stover alkaline pre-treatment waste streams into biodiesel via Rhodococci

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le, Rosemary K.; Wells Jr., Tyrone; Das, Parthapratim

    We present the bioconversion of second-generation cellulosic ethanol waste streams into biodiesel via oleaginous bacteria is a novel optimization strategy for biorefineries with substantial potential for rapid development. In this study, one- and two-stage alkali/alkali-peroxide pretreatment waste streams of corn stover were separately implemented as feedstocks in 96 h batch reactor fermentations with wild-type Rhodococcus opacus PD 630, R. opacus DSM 1069, and R. jostii DSM 44719 T . Here we show using 31P-NMR, HPAECPAD, and SEC analyses, that the more rigorous and chemically-efficient two-stage chemical pretreatment effluent provided higher concentrations of solubilized glucose and lower molecular weight (70 300more » g mol1 ) lignin degradation products thereby enabling improved cellular density, viability, and oleaginicity in each respective strain. The most significant yields were by R. opacus PD 630, which converted 6.2% of organic content with a maximal total lipid production of 1.3 g L1 and accumulated 42.1% in oils based on cell dry weight after 48 h.« less

  20. UV-Resistant Actinobacteria from High-Altitude Andean Lakes: Isolation, Characterization and Antagonistic Activities.

    PubMed

    Rasuk, María Cecilia; Ferrer, Gabriela Mónica; Kurth, Daniel; Portero, Luciano Raúl; Farías, María Eugenia; Albarracín, Virginia Helena

    2017-05-01

    Polyextremophiles are present in a wide variety of extreme environments in which they must overcome various hostile conditions simultaneously such as high UVB radiation, extreme pHs and temperatures, elevated salt and heavy-metal concentration, low-oxygen pressure and scarce nutrients. High-altitude Andean lakes (HAALs; between 2000 and 4000 m) are one example of these kinds of ecosystems suffering from the highest total solar and UVB radiation on Earth where an abundant and diverse polyextremophilic microbiota was reported. In this work, we performed the first extensive isolation of UV-resistant actinobacteria from soils, water, sediments and modern stromatolites at HAALs. Based on the 16S rRNA sequence, the strains were identified as members of the genera Streptomyces, Micrococcus, Nesterenkonia, Rhodococcus, Microbacterium, Kocuria, Arthrobacter, Micromonospora, Blastococcus, Citrococcus and Brevibacterium. Most isolates displayed resistance to multiple environmental stress factors confirming their polyextremophilic nature and were able to produce effective antimicrobial compounds. HAALs constitute a largely unexplored repository of UV-resistant actinobacteria, with high potential for the biodiscovery of novel natural products. © 2017 The American Society of Photobiology.

  1. Microbial communities inhabiting oil-contaminated soils from two major oilfields in Northern China: Implications for active petroleum-degrading capacity.

    PubMed

    Sun, Weimin; Dong, Yiran; Gao, Pin; Fu, Meiyan; Ta, Kaiwen; Li, Jiwei

    2015-06-01

    Although oilfields harbor a wide diversity of microorganisms with various metabolic potentials, our current knowledge about oil-degrading bacteria is limited because the vast majority of oil-degrading bacteria remain uncultured. In the present study, microbial communities in nine oil-contaminated soils collected from Daqing and Changqing, two of the largest oil fields in China, were characterized through highthroughput sequencing of 16S rRNA genes. Bacteria related to the phyla Proteobacteria and Actinobacteria were dominant in four and three samples, respectively. At the genus level, Alkanindiges, Arthrobacter, Pseudomonas, Mycobacterium, and Rhodococcus were frequently detected in nine soil samples. Many of the dominant genera were phylogenetically related to the known oil-degrading species. The correlation between physiochemical parameters within the microbial communities was also investigated. Canonical correspondence analysis revealed that soil moisture, nitrate, TOC, and pH had an important impact in shaping the microbial communities of the hydrocarbon-contaminated soil. This study provided an in-depth analysis of microbial communities in oilcontaminated soil and useful information for future bioremediation of oil contamination.

  2. [Oil degradation by basidiomycetes in soil and peat at low temperatures].

    PubMed

    Kulikova, N A; Klein, O I; Pivchenko, D V; Landesman, E O; Pozdnyakova, N N; Turkovskaya, O V; Zaichik, B Ts; Ruzhitskii, A O; Koroleva, O V

    2016-01-01

    A total of 17 basidiomycete strains causing white rot and growing on oil-contaminated substrates have been screened. Three strains with high (Steccherinum murashkinskyi), average (Trametes maxima), and low (Pleurotus ostreatus) capacities for the colonization of oil-contaminated substrates have been selected. The potential for degrading crude oil hydrocarbons has been assessed with the use of fungi grown on nonsterile soil and peat at low temperatures. Candida sp. and Rhodococcus sp. commercial strains have been used as reference organisms with oil-degrading ability. All microorganisms introduced in oil-contaminated soil have proved to be ineffective, whereas the inoculation of peat with basidiomycetes and oil-degrading microorganisms accelerated the destruction of oil hydrocarbons. The greatest degradation potential of oil-aliphatic hydrocarbons has been found in S. murashlinskyi. T. maxima turned out to be the most successful in degrading aromatic hydrocarbons. It has been suggested that aboriginal microflora contributes importantly to the effectiveness of oil-destructing microorganisms. T. maxima and S. murashkinskyi strains are promising for further study as oil-oxidizing agents during bioremediation of oil-contaminated peat soil under conditions of low temperatures.

  3. Rate-limiting step analysis of the microbial desulfurization of dibenzothiophene in a model oil system

    PubMed Central

    Abin-Fuentes, Andres; Leung, James C.; Mohamed, Magdy El-Said; Wang, Daniel IC; Prather, Kristala LJ

    2014-01-01

    A mechanistic analysis of the various mass transport and kinetic steps in the microbial desulfurization of dibenzothiophene (DBT) by Rhodococcus erythropolis IGTS8 in a model biphasic (oil-water), small-scale system was performed. The biocatalyst was distributed into three populations, free cells in the aqueous phase, cell aggregates and oil-adhered cells, and the fraction of cells in each population was measured. The power input per volume (P/V) and the impeller tip speed (vtip) were identified as key operating parameters in determining whether the system is mass transport controlled or kinetically controlled. Oil-water DBT mass transport was found to not be limiting under the conditions tested. Experimental results at both the 100 mL and 4L (bioreactor) scales suggest that agitation leading to P/V greater than 10,000 W/ m3 and/or vtip greater than 0.67 m/s is sufficient to overcome the major mass transport limitation in the system, which was the diffusion of DBT within the biocatalyst aggregates. PMID:24284557

  4. Isolation and Characterisation of 1-Alkyl-3-Methylimidazolium Chloride Ionic Liquid-Tolerant and Biodegrading Marine Bacteria

    PubMed Central

    Megaw, Julianne; Busetti, Alessandro; Gilmore, Brendan F.

    2013-01-01

    The aim of this study was to isolate and identify marine-derived bacteria which exhibited high tolerance to, and an ability to biodegrade, 1-alkyl-3-methylimidazolium chloride ionic liquids. The salinity and hydrocarbon load of some marine environments may induce selective pressures which enhance the ability of microbes to grow in the presence of these liquid salts. The isolates obtained in this study generally showed a greater ability to grow in the presence of the selected ionic liquids compared to microorganisms described previously, with two marine-derived bacteria, Rhodococcus erythropolis and Brevibacterium sanguinis growing in concentrations exceeding 1 M 1-ethyl-3-methylimidazolium chloride. The ability of these bacteria to degrade the selected ionic liquids was assessed using High Performance Liquid Chromatography (HPLC), and three were shown to degrade the selected ionic liquids by up to 59% over a 63-day test period. These bacterial isolates represent excellent candidates for further potential applications in the bioremediation of ionic liquid-containing waste or following accidental environmental exposure. PMID:23560109

  5. Successful immunotherapy of canine flea allergy with injected Actinomycetales preparations.

    PubMed

    Marro, Alicia; Pirles, Mónica; Schiaffino, Laura; Bin, Liliana; Dávila, Héctor; Bottasso, Oscar A; McIntyre, Graham; Ripley, Paul R; Stanford, Cynthia A; Stanford, John L

    2011-08-01

    Can heat-killed, borate-buffered suspensions of Gordonia bronchialis, Rhodococcus coprophilus or Tsukamurella inchonensis be used to treat canine flea allergy? Organisms cultured on Sauton's medium into stationary phase were autoclaved in borate-buffered saline and stored at 10 mg wet weight/ml. Intradermal injections of 0.1 ml containing 1 mg of bacilli were administered on the first and 20th days of the study. G. bronchialis and R. coprophilus were most effective in a pilot study of a small number of dogs with flea allergy. A larger number of affected dogs were then randomized to receive placebo or either of the two selected reagents. The extent and severity of allergic signs and symptoms were scored and blood samples were collected just before the first injection and 28 days after the second. Both selected reagents reduced the extent and severity of lesions (p < 0.001) and reduced scratching. Eosinophil numbers were reduced (p < 0.0001) between the first and second assessment. Injections of G. bronchialis or R. coprophilus effectively reduce the signs and symptoms of flea allergy in dogs.

  6. Antibiotic Resistance of Bacteria Isolated from the Internal Organs of Edible Snow Crabs

    PubMed Central

    Kim, Misoon; Kwon, Tae-Hyung; Jung, Su-Mi; Cho, Seung-Hak; Jin, Seon Yeong; Park, Nyun-Ho; Kim, Choong-Gon; Kim, Jong-Shik

    2013-01-01

    Antibiotic resistance and microbiota within edible snow crabs are important for the Chionoecetes (snow crab) fishing industry. We investigated these parameters using culture methods and antibiotic susceptibility tests with six internal organs from three species of Chionoecetes. Each sample revealed many unexpected microbial species within Chionoecetes internal organs. On the basis of 16S rRNA sequence analysis of 381 isolates, the most abundant genera identified in Chionoecetes opilio were Acinetobacter spp. (24%), Bacillus spp. (4%), Pseudomonas spp. (34%), Stenotrophomonas spp. (28%), and Agreia spp. (11%). In Chionoecetes sp. crabs, Acinetobacter spp. (23%), Bacillus spp. (12%), and Psychrobacter spp. (20%) were most prevalent, while Agreia spp. (11%), Bacillus spp. (31%), Microbacterium spp. (10%), Rhodococcus spp. (12%), and Agrococcus spp. (6%) were most abundant in C. japonicus. Our antibiotic resistance test found resistance to all nine antibiotics tested in 19, 14, and two of the isolates from C. opilio, Chionoecetes sp., and, C. japonicus respectively. Our results are the first to show that microbes with antibiotic resistance are widely distributed throughout the internal organs of natural snow crabs. PMID:23990916

  7. High-sensitivity stable-isotope probing by a quantitative terminal restriction fragment length polymorphism protocol.

    PubMed

    Andeer, Peter; Strand, Stuart E; Stahl, David A

    2012-01-01

    Stable-isotope probing (SIP) has proved a valuable cultivation-independent tool for linking specific microbial populations to selected functions in various natural and engineered systems. However, application of SIP to microbial populations with relatively minor buoyant density increases, such as populations that utilize compounds as a nitrogen source, results in reduced resolution of labeled populations. We therefore developed a tandem quantitative PCR (qPCR)-TRFLP (terminal restriction fragment length polymorphism) protocol that improves resolution of detection by quantifying specific taxonomic groups in gradient fractions. This method combines well-controlled amplification with TRFLP analysis to quantify relative taxon abundance in amplicon pools of FAM-labeled PCR products, using the intercalating dye EvaGreen to monitor amplification. Method accuracy was evaluated using mixtures of cloned 16S rRNA genes, DNA extracted from low- and high-G+C bacterial isolates (Escherichia coli, Rhodococcus, Variovorax, and Microbacterium), and DNA from soil microcosms amended with known amounts of genomic DNA from bacterial isolates. Improved resolution of minor shifts in buoyant density relative to TRFLP analysis alone was confirmed using well-controlled SIP analyses.

  8. Conversion of corn stover alkaline pre-treatment waste streams into biodiesel via Rhodococci

    DOE PAGES

    Le, Rosemary K.; Wells Jr., Tyrone; Das, Parthapratim; ...

    2017-01-13

    We present the bioconversion of second-generation cellulosic ethanol waste streams into biodiesel via oleaginous bacteria is a novel optimization strategy for biorefineries with substantial potential for rapid development. In this study, one- and two-stage alkali/alkali-peroxide pretreatment waste streams of corn stover were separately implemented as feedstocks in 96 h batch reactor fermentations with wild-type Rhodococcus opacus PD 630, R. opacus DSM 1069, and R. jostii DSM 44719 T . Here we show using 31P-NMR, HPAECPAD, and SEC analyses, that the more rigorous and chemically-efficient two-stage chemical pretreatment effluent provided higher concentrations of solubilized glucose and lower molecular weight (70 300more » g mol1 ) lignin degradation products thereby enabling improved cellular density, viability, and oleaginicity in each respective strain. The most significant yields were by R. opacus PD 630, which converted 6.2% of organic content with a maximal total lipid production of 1.3 g L1 and accumulated 42.1% in oils based on cell dry weight after 48 h.« less

  9. Cometabolic degradation of chloramphenicol via a meta-cleavage pathway in a microbial fuel cell and its microbial community.

    PubMed

    Zhang, Qinghua; Zhang, Yanyan; Li, Daping

    2017-04-01

    The performance of a microbial fuel cell (MFC) in terms of degradation of chloramphenicol (CAP) was investigated. Approximately 84% of 50mg/L CAP was degraded within 12h in the MFC. A significant interaction of pH, temperature, and initial CAP concentration was found on removal of CAP, and a maximum degradation rate of 96.53% could theoretically be achieved at 31.48°C, a pH of 7.12, and an initial CAP concentration of 106.37mg/L. Moreover, CAP was further degraded through a ring-cleavage pathway. The antibacterial activity of CAP towards Escherichia coli ATCC 25922 and Shewanella oneidensis MR-1 was largely eliminated by MFC treatment. High-throughput sequencing analysis indicated that Azonexus, Comamonas, Nitrososphaera, Chryseobacterium, Azoarcus, Rhodococcus, and Dysgonomonas were the predominant genera in the MFC anode biofilm. In conclusion, the MFC shows potential for the treatment of antibiotic residue-containing wastewater due to its high rates of CAP removal and energy recovery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Effect of the anode feeding composition on the performance of a continuous-flow methane-producing microbial electrolysis cell.

    PubMed

    Zeppilli, Marco; Villano, Marianna; Aulenta, Federico; Lampis, Silvia; Vallini, Giovanni; Majone, Mauro

    2015-05-01

    A methane-producing microbial electrolysis cell (MEC) was continuously fed at the anode with a synthetic solution of soluble organic compounds simulating the composition of the soluble fraction of a municipal wastewater. The MEC performance was assessed at different anode potentials in terms of chemical oxygen demand (COD) removal efficiency, methane production, and energy efficiency. As a main result, about 72-80% of the removed substrate was converted into current at the anode, and about 84-86% of the current was converted into methane at the cathode. Moreover, even though both COD removed and methane production slightly decreased as the applied anode potential decreased, the energy efficiency (i.e., the energy recovered as methane with respect to the energy input into the system) increased from 54 to 63%. Denaturing gradient gel electrophoresis (DGGE) analyses revealed a high diversity in the anodic bacterial community with the presence of both fermentative (Proteiniphilum acetatigenes and Petrimonas sulphurifila) and aerobic (Rhodococcus qingshengii) microorganisms, whereas only two microorganisms (Methanobrevibacter arboriphilus and Methanosarcina mazei), both assignable to methanogens, were observed in the cathodic community.

  11. Diversity and antibacterial activity of culturable actinobacteria isolated from five species of the South China Sea gorgonian corals.

    PubMed

    Zhang, Xiao-Yong; He, Fei; Wang, Guang-Hua; Bao, Jie; Xu, Xin-Ya; Qi, Shu-Hua

    2013-06-01

    This study describes the diversity and antibacterial activity of culturable actinobacteria isolated from five species of gorgonian corals (Echinogorgia aurantiaca, Melitodes squamata, Muricella flexuosa, Subergorgia suberosa, and Verrucella umbraculum) collected in shallow water of the South China Sea. A total of 123 actinobacterial isolates were recovered using ten different isolation media, and assigned to 11 genera, including Streptomyces and Micromonospora as the dominant genera, followed by Nocardia, Verrucosispora, Nocardiopsis, Rhodococcus, Pseudonocardia, Agrococcus, Saccharomonospora, Saccharopolyspora and Dietzia. Comparable analysis indicated that the numbers of actinobacterial genera and isolates from the five gorgonian coral species varied significantly. It was found that 72 isolates displayed antibacterial activity against at least one indicator bacterium, and the antibacterial strains isolated from different gorgonians had almost the same proportion (~50 %). These results provide direct evidence for the hypotheses that gorgonian coral species contain large and diverse communities of actinobacteria, and suggest that many gorgonian-associated actinobacteria could produce some antibacterial agents to protect their hosts against pathogens. To our knowledge, this is the first report about the diversity of culturable actinobacteria isolated from gorgonian corals.

  12. Actinobacteria possessing antimicrobial and antioxidant activities isolated from the pollen of scots pine (Pinus sylvestris) grown on the Baikal shore.

    PubMed

    Axenov-Gribanov, Denis V; Voytsekhovskaya, Irina V; Rebets, Yuriy V; Tokovenko, Bogdan T; Penzina, Tatyana A; Gornostay, Tatyana G; Adelshin, Renat V; Protasov, Eugenii S; Luzhetskyy, Andriy N; Timofeyev, Maxim A

    2016-10-01

    Isolated ecosystems existing under specific environmental conditions have been shown to be promising sources of new strains of actinobacteria. The taiga forest of Baikal Siberia has not been well studied, and its actinobacterial population remains uncharacterized. The proximity between the huge water mass of Lake Baikal and high mountain ranges influences the structure and diversity of the plant world in Siberia. Here, we report the isolation of eighteen actinobacterial strains from male cones of Scots pine trees (Pinus sylvestris) growing on the shore of the ancient Lake Baikal in Siberia. In addition to more common representative strains of Streptomyces, several species belonging to the genera Rhodococcus, Amycolatopsis, and Micromonospora were isolated. All isolated strains exhibited antibacterial and antifungal activities. We identified several strains that inhibited the growth of the pathogen Candida albicans but did not hinder the growth of Saccharomyces cerevisiae. Several isolates were active against Gram-positive and Gram-negative bacteria. The high proportion of biologically active strains producing antibacterial and specific antifungal compounds may reflect their role in protecting pollen against phytopathogens.

  13. Bifurcación de las soluciones de vientos impulsados por radiación en estrellas Be: formación de líneas

    NASA Astrophysics Data System (ADS)

    Curé, M.; Rial, D.; Cidale, L.; Venero, R.

    Se ha estudiado la topología de la ecuación hidrodinámica no-lineal que describe el perfil de velocidades de vientos impulsados por radiación en estrellas tempranas. Al aplicar este modelo a estrellas Be se encuentra que existen dos tipos De soluciones: la estándar, que describe el viento polar, y una nueva, que describe un viento más denso y lento y que explicaría el disco que se encuentra alrededor de estos objetos. Existe una región de transición en donde ambas soluciones coexisten (bifurcación}). Ambas soluciones satisfacen en esta región las mismas condiciones de borde. Para estas dos soluciones se han obtenido los perfiles de líneas de hidrógeno del visible y del IR, resolviendo el transporte de radiación en el ``comoving frame". Para la solución estándar, se obtienen perfiles con componentes en emisión, mientras que para la nueva solución se obtienen perfiles en absorción. Se comparan cualitativamente los resultados con las observaciones.

  14. Biodegradation of RDX and MNX with Rhodococcus sp. Strain DN22: New Insights into the Degradation Pathway

    DTIC Science & Technology

    2010-11-15

    denitrosation of MNX by DN22 did not involve direct participation of either oxygen or water, but both played major roles in subsequent secondary chemical and... secondary reactions and products distributions would pro- vide new insights into the degradation pathway of RDX and thus help in the development of...not involve direct participation of either oxygen or water, but both played major roles in subsequent secondary chemical and biochemical reactions of

  15. Biostimulation and microbial community profiling reveal insights on RDX transformation in groundwater.

    PubMed

    Wang, Dongping; Boukhalfa, Hakim; Marina, Oana; Ware, Doug S; Goering, Tim J; Sun, Fengjie; Daligault, Hajnalka E; Lo, Chien-Chi; Vuyisich, Momchilo; Starkenburg, Shawn R

    2017-04-01

    Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a high explosive released to the environment as a result of weapons manufacturing and testing worldwide. At Los Alamos National Laboratory, the Technical Area (TA) 16 260 Outfall discharged high-explosives-bearing water from a high-explosives-machining facility to Cañon de Valle during 1951 through 1996. These discharges served as a primary source of high-explosives and inorganic-element contamination in the area. Data indicate that springs, surface water, alluvial groundwater, and perched-intermediate groundwater contain explosive compounds, including RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine); HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine); and TNT (2,4,6-trinitrotoluene). RDX has been detected in the regional aquifer in several wells, and a corrective measures evaluation is planned to identify remedial alternatives to protect the regional aquifer. Perched-intermediate groundwater at Technical Area 16 is present at depths from 650 ft to 1200 ft bgs. In this study, we examined the microbial diversity in a monitoring well completed in perched-intermediate groundwater contaminated by RDX, and examined the response of the microbial population to biostimulation under varying geochemical conditions. Results show that the groundwater microbiome was dominated by Actinobacteria and Proteobacteria. A total of 1,605 operational taxonomic units (OTUs) in 96 bacterial genera were identified. Rhodococcus was the most abundant genus (30.6%) and a total of 46 OTUs were annotated as Rhodococcus. One OTU comprising 25.2% of total sequences was closely related to a RDX -degrading strain R. erythropolis HS4. A less abundant OTU from the Pseudomonas family closely related to RDX-degrading strain P. putida II-B was also present. Biostimulation significantly enriched Proteobacteria but decreased/eliminated the population of Actinobacteria. Consistent with RDX degradation, the OTU closely related to the RDX-degrading P

  16. Molecular Mechanism and Genetic Determinants of Buprofezin Degradation

    PubMed Central

    Chen, Xueting; Ji, Junbin; Zhao, Leizhen; Qiu, Jiguo; Dai, Chen; Wang, Weiwu; He, Jian; Jiang, Jiandong; Hong, Qing

    2017-01-01

    ABSTRACT Buprofezin is a widely used insect growth regulator whose residue has been frequently detected in the environment, posing a threat to aquatic organisms and nontarget insects. Microorganisms play an important role in the degradation of buprofezin in the natural environment. However, the relevant catabolic pathway has not been fully characterized, and the molecular mechanism of catabolism is still completely unknown. Rhodococcus qingshengii YL-1 can utilize buprofezin as a sole source of carbon and energy for growth. In this study, the upstream catabolic pathway in strain YL-1 was identified using tandem mass spectrometry. Buprofezin is composed of a benzene ring and a heterocyclic ring. The degradation is initiated by the dihydroxylation of the benzene ring and continues via dehydrogenation, aromatic ring cleavage, breaking of an amide bond, and the release of the heterocyclic ring 2-tert-butylimino-3-isopropyl-1,3,5-thiadiazinan-4-one (2-BI). A buprofezin degradation-deficient mutant strain YL-0 was isolated. A comparative genomic analysis combined with gene deletion and complementation experiments revealed that the gene cluster bfzBA3A4A1A2C is responsible for the upstream catabolic pathway of buprofezin. The bfzA3A4A1A2 cluster encodes a novel Rieske nonheme iron oxygenase (RHO) system that is responsible for the dihydroxylation of buprofezin at the benzene ring; bfzB is involved in dehydrogenation, and bfzC is in charge of benzene ring cleavage. Furthermore, the products of bfzBA3A4A1A2C can also catalyze dihydroxylation, dehydrogenation, and aromatic ring cleavage of biphenyl, flavanone, flavone, and bifenthrin. In addition, a transcriptional study revealed that bfzBA3A4A1A2C is organized in one transcriptional unit that is constitutively expressed in strain YL-1. IMPORTANCE There is an increasing concern about the residue and environmental fate of buprofezin. Microbial metabolism is an important mechanism responsible for the buprofezin degradation in

  17. Contaminación por mercurio de leche materna de madres lactantes de municipios de Antioquia con explotación minera de oro.

    PubMed

    Molina, Carlos Federico; Arango, Catalina María; Sepúlveda, Hernán

    2018-05-01

    Introducción. La leche materna es esencial para el desarrollo del ser humano, pero puede contener sustancias tóxicas provenientes de la contaminación ambiental, especialmente en las áreas mineras.Objetivo. Determinar la prevalencia de la contaminación con mercurio de la leche materna de mujeres lactantes residentes en los municipios con explotación minera de oro.Materiales y métodos. Se hizo un estudio transversal de 150 madres lactantes de cuatro municipios mineros de Antioquia (El Bagre, Segovia, Remedios y Zaragoza), a quienes se les hizo una encuesta sobre factores sociodemográficos, ocupacionales y ambientales relacionados con el mercurio, y se les tomaron muestras de leche materna, de orina y de cabello. Se calculó el promedio de la concentración de mercurio y las prevalencias municipales de contaminación.Resultados. El promedio de la concentración de mercurio en la leche materna fue de 2,5 (± desviación estándar 9,2) μg/L. La prevalencia de muestras de leche materna con niveles altos de mercurio fue de 11,7 %.Conclusión. En este estudio se evidencia un grave problema en las regiones mineras auríferas de Antioquia por el efecto de la contaminación con mercurio en sectores de la población más vulnerable.

  18. Fuentes de variabilidad en el diagnóstico de gastritis atrófica multifocal asociada con la infección por Helicobacter pylori1

    PubMed Central

    Bravo, Luis Eduardo; Bravo, Juan Carlos; Realpe, José Luis; Zarama, Guillermo; Piazuelo, MarÍa Blanca; Correa, Pelayo

    2014-01-01

    RESUMEN Introducción El mapeo de las diferentes regiones del estómago y el número de fragmentos de mucosa gástrica disponibles para evaluación histopatológica son fuentes importantes de variación en el momento de clasificar y hacer la gradación de la gastritis crónica. Objetivos Estimar la sensibilidad del número de fragmentos de mucosa gástrica necesarios para establecer los diagnósticos de gastritis atrófica con metaplasia intestinal (MI), displasia y estado de infección por Helicobacter pylori. Además evaluar la variabilidad intra-observador en la clasificación de estas lesiones precursoras del cáncer gástrico. Materiales y métodos En una cohorte de 6 años de seguimiento se evaluaron 1,958 procedimientos de endoscopia realizados por dos gastroenterólogos. En cada procedimiento y de cada participante se obtuvieron 5 biopsias de mucosa gástrica que representaban antro, incisura angularis y cuerpo. Un único patólogo hizo la interpretación histológica de las 5 biopsias y proporcionó un diagnóstico definitivo global que se utilizó como patrón de referencia. Cada fragmento de mucosa gástrica examinado condujo a un diagnóstico individual para cada biopsia que se comparó con el patrón de referencia. La variabilidad intra-observador se evaluó en 127 personas que corresponden a una muestra aleatoria de 20% del total de endoscopias hechas a los 72 meses de seguimiento. Resultados La sensibilidad del diagnóstico de MI y displasia gástrica aumentó de manera significativa con el número de fragmentos de mucosa gástrica evaluados El sitio anatómico de mayor sensibilidad para el diagnóstico de MI y displasia fue la incisura angularis. Para descubrir H. pylori se logró alta sensibilidad con el estudio de un solo fragmento de mucosa gástrica (95.9%) y fue independiente del sitio de obtención de la biopsia. El acuerdo intra-observador para el diagnóstico de gastritis crónica fue 86.1% con valor kappa de 0.79 IC 95% (0.76-0.85). Las

  19. The potential of epiphytic hydrocarbon-utilizing bacteria on legume leaves for attenuation of atmospheric hydrocarbon pollutants.

    PubMed

    Ali, Nida; Sorkhoh, Naser; Salamah, Samar; Eliyas, Mohamed; Radwan, Samir

    2012-01-01

    The leaves of two legumes, peas and beans, harbored on their surfaces up to 9×10⁷ cells g⁻¹ of oil-utilizing bacteria. Less numbers, up to 5×10⁵ cells g⁻¹ inhabited leaves of two nonlegume crops, namely tomato and sunflower. Older leaves accommodated more of such bacteria than younger ones. Plants raised in oily environments were colonized by much more oil-utilizing bacteria than those raised in pristine (oil-free) environments. Similar numbers were counted on the same media in which nitrogen salt was deleted, indicating that most phyllospheric bacteria were probably diazotrophic. Most dominant were Microbacterium spp. followed by Rhodococcus spp., Citrobacter freundii, in addition to several other minor species. The pure bacterial isolates could utilize leaf tissue hydrocarbons, and consume considerable proportions of crude oil, phenanthrene (an aromatic hydrocarbon) and n-octadecane (an alkane) in batch cultures. Bacterial consortia on fresh (but not on previously autoclaved) leaves of peas and beans could also consume substantial proportions of the surrounding volatile oil hydrocarbons in closed microcosms. It was concluded that phytoremediation through phyllosphere technology could be useful in remediating atmospheric hydrocarbon pollutants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Bacterial community changes in response to oil contamination and perennial crop cultivation.

    PubMed

    Yan, Lijuan; Penttinen, Petri; Mikkonen, Anu; Lindström, Kristina

    2018-05-01

    We investigated bacterial community dynamics in response to used motor oil contamination and perennial crop cultivation by 16S rRNA gene amplicon sequencing in a 4-year field study. Actinobacteria, Proteobacteria, Chloroflexi, Acidobacteria, and Gemmatimonadetes were the major bacterial phyla, and Rhodococcus was the most abundant genus. Initially, oil contamination decreased the overall bacterial diversity. Actinobacteria, Betaproteobacteria, and Gammaproteobacteria were sensitive to oil contamination, exhibiting clear succession with time. However, bacterial communities changed over time, regardless of oil contamination and crop cultivation. The abundance difference of most OTUs between oil-contaminated and non-contaminated plots remained the same in later sampling years after the initial abundance difference induced by oil spike. The abundances of three oil-favored actinobacteria (Lysinimonas, Microbacteriaceae, and Marmoricola) and one betaproteobacterium (Aquabacterium) changed in different manner over time in oil-contaminated and non-contaminated soil. We propose that these taxa are potential bio-indicators for monitoring recovery from motor oil contamination in boreal soil. The effect of crop cultivation on bacterial communities became significant only after the crops achieved stable growth, likely associated with plant material decomposition by Bacteroidetes, Armatimonadetes and Fibrobacteres.

  1. [Elimination of volatile compounds of leaf tobacco from air emissions using biofiltration].

    PubMed

    Zagustina, N A; Misharina, T A; Vepritskiĭ, A A; Zhukov, V G; Ruzhitskiĭ, A O; Terenina, M B; Krikunova, N I; Kulikova, A K; Popov, V O

    2012-01-01

    The composition of the volatile organic compounds (VOCs) of various leaf tobacco brands and their blends has been studied. The differences in the content of nicotine, solanone, tetramethyl hexadecenol, megastigmatrienones, and other compounds, determining the specific tobacco smell, have been revealed. A microbial consortium, which is able to deodorize simulated tobacco emissions and decompose nicotine, has been formed by long-term adaptation to the VOCs of tobacco leaves in a laboratory reactor, functioning as a trickle-bed biofilter. Such a biofilter eliminates 90% of the basic toxic compound (nicotine) and odor-active compounds; the filtration efficiency does not change for tobacco brands with different VOC concentrations or in the presence of foreign substances. The main strains, isolated from the formed consortium and participating in the nicotine decomposition process, belong to the genera Pseudomonas, Bacillus, and Rhodococcus. An examination of the biofilter trickling fluid has shown full decomposition of nicotine and odor-active VOCs. The compounds, revealed in the trickling fluid, did not have any odor and were nontoxic. The obtained results make it possible to conduct scaling of the biofiltration process to eliminate odor from air emissions in the tobacco industry.

  2. Chemical intervention in bacterial lignin degradation pathways: Development of selective inhibitors for intradiol and extradiol catechol dioxygenases.

    PubMed

    Sainsbury, Paul D; Mineyeva, Yelena; Mycroft, Zoe; Bugg, Timothy D H

    2015-06-01

    Bacterial lignin degradation could be used to generate aromatic chemicals from the renewable resource lignin, provided that the breakdown pathways can be manipulated. In this study, selective inhibitors of enzymatic steps in bacterial degradation pathways were developed and tested for their effects upon lignin degradation. Screening of a collection of hydroxamic acid metallo-oxygenase inhibitors against two catechol dioxygenase enzymes, protocatechuate 3,4-dioxygenase (3,4-PCD) and 2,3-dihydroxyphenylpropionate 1,2-dioxygenase (MhpB), resulted in the identification of selective inhibitors D13 for 3,4-PCD (IC50 15μM) and D3 for MhpB (IC50 110μM). Application of D13 to Rhodococcus jostii RHA1 in minimal media containing ferulic acid led to the appearance of metabolic precursor protocatechuic acid at low concentration. Application of 1mM disulfiram, an inhibitor of mammalian aldehyde dehydrogenase, to R. jostii RHA1, gave rise to 4-carboxymuconolactone on the β-ketoadipate pathway, whereas in Pseudomonas fluorescens Pf-5 disulfiram treatment gave rise to a metabolite found to be glycine betaine aldehyde. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Ammonia-oxidizing microbial communities in reactors with efficient nitrification at low-dissolved oxygen

    PubMed Central

    Fitzgerald, Colin M.; Camejo, Pamela; Oshlag, J. Zachary; Noguera, Daniel R.

    2015-01-01

    Ammonia-oxidizing microbial communities involved in ammonia oxidation under low dissolved oxygen (DO) conditions (<0.3 mg/L) were investigated using chemostat reactors. One lab-scale reactor (NS_LowDO) was seeded with sludge from a full-scale wastewater treatment plant (WWTP) not adapted to low-DO nitrification, while a second reactor (JP_LowDO) was seeded with sludge from a full-scale WWTP already achieving low-DO nitrifiaction. The experimental evidence from quantitative PCR, rDNA tag pyrosequencing, and fluorescence in situ hybridization (FISH) suggested that ammonia-oxidizing bacteria (AOB) in the Nitrosomonas genus were responsible for low-DO nitrification in the NS_LowDO reactor, whereas in the JP_LowDO reactor nitrification was not associated with any known ammonia-oxidizing prokaryote. Neither reactor had a significant population of ammonia-oxidizing archaea (AOA) or anaerobic ammonium oxidation (anammox) organisms. Organisms isolated from JP_LowDO were capable of autotrophic and heterotrophic ammonia utilization, albeit without stoichiometric accumulation of nitrite or nitrate. Based on the experimental evidence we propose that Pseudomonas, Xanthomonadaceae, Rhodococcus, and Sphingomonas are involved in nitrification under low-DO conditions. PMID:25506762

  4. Purification, characterization, and cDNA cloning of a novel acidic endoglycoceramidase from the jellyfish, Cyanea nozakii.

    PubMed

    Horibata, Y; Okino, N; Ichinose, S; Omori, A; Ito, M

    2000-10-06

    Endoglycoceramidase (EC ) is an enzyme capable of cleaving the glycosidic linkage between oligosaccharides and ceramides in various glycosphingolipids. We report here the purification, characterization, and cDNA cloning of a novel endoglycoceramidase from the jellyfish, Cyanea nozakii. The purified enzyme showed a single protein band estimated to be 51 kDa on SDS-polyacrylamide gel electrophoresis. The enzyme showed a pH optimum of 3.0 and was activated by Triton X-100 and Lubrol PX but not by sodium taurodeoxycholate. This enzyme preferentially hydrolyzed gangliosides, especially GT1b and GQ1b, whereas neutral glycosphingolipids were somewhat resistant to hydrolysis by the enzyme. A full-length cDNA encoding the enzyme was cloned by 5'- and 3'-rapid amplification of cDNA ends using a partial amino acid sequence of the purified enzyme. The open reading frame of 1509 nucleotides encoded a polypeptide of 503 amino acids including a signal sequence of 25 residues and six potential N-glycosylation sites. Interestingly, the Asn-Glu-Pro sequence, which is the putative active site of Rhodococcus endoglycoceramidase, was conserved in the deduced amino acid sequences. This is the first report of the cloning of an endoglycoceramidase from a eukaryote.

  5. Distribution of hydrocarbon-degrading bacteria in the soil environment and their contribution to bioremediation.

    PubMed

    Fukuhara, Yuki; Horii, Sachie; Matsuno, Toshihide; Matsumiya, Yoshiki; Mukai, Masaki; Kubo, Motoki

    2013-05-01

    A real-time PCR quantification method for indigenous hydrocarbon-degrading bacteria (HDB) carrying the alkB gene in the soil environment was developed to investigate their distribution in soil. The detection limit of indigenous HDB by the method was 1 × 10(6) cells/g-soil. The indigenous HDB were widely distributed throughout the soil environment and ranged from 3.7 × 10(7) to 5.0 × 10(8) cells/g-soil, and the ratio to total bacteria was 0.1-4.3 %. The dynamics of total bacteria, indigenous HDB, and Rhodococcus erythropolis NDKK6 (carrying alkB R2) during bioremediation were analyzed. During bioremediation with an inorganic nutrient treatment, the numbers of these bacteria were slightly increased. The numbers of HDB (both indigenous bacteria and strain NDKK6) were gradually decreased from the middle stage of bioremediation. Meanwhile, the numbers of these bacteria were highly increased and were maintained during bioremediation with an organic nutrient. The organic treatment led to activation of not only the soil bacteria but also the HDB, so an efficient bioremediation was carried out.

  6. The role of bacteria and mycorrhiza in plant sulfur supply

    PubMed Central

    Gahan, Jacinta; Schmalenberger, Achim

    2014-01-01

    Plant growth is highly dependent on bacteria, saprophytic, and mycorrhizal fungi which facilitate the cycling and mobilization of nutrients. Over 95% of the sulfur (S) in soil is present in an organic form. Sulfate-esters and sulfonates, the major forms of organo-S in soils, arise through deposition of biological material and are transformed through subsequent humification. Fungi and bacteria release S from sulfate-esters using sulfatases, however, release of S from sulfonates is catalyzed by a bacterial multi-component mono-oxygenase system. The asfA gene is used as a key marker in this desulfonation process to study sulfonatase activity in soil bacteria identified as Variovorax, Polaromonas, Acidovorax, and Rhodococcus. The rhizosphere is regarded as a hot spot for microbial activity and recent studies indicate that this is also the case for the mycorrhizosphere where bacteria may attach to the fungal hyphae capable of mobilizing organo-S. While current evidence is not showing sulfatase and sulfonatase activity in arbuscular mycorrhiza, their effect on the expression of plant host sulfate transporters is documented. A revision of the role of bacteria, fungi and the interactions between soil bacteria and mycorrhiza in plant S supply was conducted. PMID:25566295

  7. Diversity of pigmented Gram-positive bacteria associated with marine macroalgae from Antarctica.

    PubMed

    Leiva, Sergio; Alvarado, Pamela; Huang, Ying; Wang, Jian; Garrido, Ignacio

    2015-12-01

    Little is known about the diversity and roles of Gram-positive and pigmented bacteria in Antarctic environments, especially those associated with marine macroorganisms. This work is the first study about the diversity and antimicrobial activity of culturable pigmented Gram-positive bacteria associated with marine Antarctic macroalgae. A total of 31 pigmented Gram-positive strains were isolated from the surface of six species of macroalgae collected in the King George Island, South Shetland Islands. On the basis of 16S rRNA gene sequence similarities ≥99%, 18 phylotypes were defined, which were clustered into 11 genera of Actinobacteria (Agrococcus, Arthrobacter, Brachybacterium, Citricoccus, Kocuria, Labedella, Microbacterium, Micrococcus, Rhodococcus, Salinibacterium and Sanguibacter) and one genus of the Firmicutes (Staphylococcus). It was found that five isolates displayed antimicrobial activity against a set of macroalgae-associated bacteria. The active isolates were phylogenetically related to Agrococcus baldri, Brachybacterium rhamnosum, Citricoccus zhacaiensis and Kocuria palustris. The results indicate that a diverse community of pigmented Gram-positive bacteria is associated with Antartic macroalgae and suggest its potential as a promising source of antimicrobial and pigmented natural compounds. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Effect of cell-surface hydrophobicity on bacterial conversion of water-immiscible chemicals in two-liquid-phase culture systems.

    PubMed

    Hamada, Takahiro; Maeda, Yusuke; Matsuda, Hiroyuki; Sameshima, Yuka; Honda, Kohsuke; Omasa, Takeshi; Kato, Junichi; Ohtake, Hisao

    2009-08-01

    The effect of bacterial cell-surface hydrophobicity on the bioconversion of water-immiscible chemicals in an aqueous-organic (A/O) two-liquid-phase culture system was investigated. Escherichia coli JM109 and Rhodococcus opacus B-4 were used as hydrophilic and hydrophobic whole-cell catalysts, respectively. Hydroxylation reactions of monoaromatics, including toluene (log P(ow)=2.9), ethylbenzene (3.1), n-propylbenzene (3.4), and sec-butylbenzene (3.7), were employed as model conversions. When the todC1C2BA genes encoding Pseudomonas putida toluene dioxygenase were expressed in E. coli JM109, the yield of hydroxylated monoaromatics decreased with increasing substrate hydrophobicity. By contrast, R. opacus transformants, which expressed the todC1C2BA genes, showed high performance in the hydroxylation of monoaromatics, irrespective of substrate hydrophobicity. When the R. opacus transformants were examined for their ability to hydroxylate monoaromatics in an aqueous single-liquid-phase culture, the reaction velocity was markedly lower than that observed in the A/O two-liquid-phase culture. These results suggested that R. opacus B-4 accessed the hydrophobic substrates in the oil phase, thus making it more effective for the bioconversion reactions.

  9. A Combination of Stable Isotope Probing, Illumina Sequencing, and Co-occurrence Network to Investigate Thermophilic Acetate- and Lactate-Utilizing Bacteria.

    PubMed

    Sun, Weimin; Krumins, Valdis; Dong, Yiran; Gao, Pin; Ma, Chunyan; Hu, Min; Li, Baoqin; Xia, Bingqing; He, Zijun; Xiong, Shangling

    2018-01-01

    Anaerobic digestion is a complicated microbiological process that involves a wide diversity of microorganisms. Acetate is one of the most important intermediates, and interactions between acetate-oxidizing bacteria and archaea could play an important role in the formation of methane in anoxic environments. Anaerobic digestion at thermophilic temperatures is known to increase methane production, but the effects on the microbial community are largely unknown. In the current study, stable isotope probing was used to characterize acetate- and lactate-oxidizing bacteria in thermophilic anaerobic digestion. In microcosms fed 13 C-acetate, bacteria related to members of Clostridium, Hydrogenophaga, Fervidobacterium, Spirochaeta, Limnohabitans, and Rhodococcus demonstrated elevated abundances of 13 C-DNA fractions, suggesting their activities in acetate oxidation. In the treatments fed 13 C-lactate, Anaeromyxobacter, Desulfobulbus, Syntrophus, Cystobacterineae, and Azospira were found to be the potential thermophilic lactate utilizers. PICRUSt predicted that enzymes related to nitrate and nitrite reduction would be enriched in 13 C-DNA fractions, suggesting that the acetate and lactate oxidation may be coupled with nitrate and/or nitrite reduction. Co-occurrence network analysis indicated bacterial taxa not enriched in 13 C-DNA fractions that may also play a critical role in thermophilic anaerobic digestion.

  10. Culture-dependent and culture-independent diversity of Actinobacteria associated with the marine sponge Hymeniacidon perleve from the South China Sea.

    PubMed

    Sun, Wei; Dai, Shikun; Jiang, Shumei; Wang, Guanghua; Liu, Guohui; Wu, Houbo; Li, Xiang

    2010-06-01

    In this report, the diversity of Actinobacteria associated with the marine sponge Hymeniacidon perleve collected from a remote island of the South China Sea was investigated employing classical cultivation and characterization, 16S rDNA library construction, 16S rDNA-restriction fragment length polymorphism (rDNA-RFLP) and phylogenetic analysis. A total of 184 strains were isolated using seven different media and 24 isolates were selected according to their morphological characteristics for phylogenetic analysis on the basis of their 16S rRNA gene sequences. Results showed that the 24 isolates were assigned to six genera including Salinispora, Gordonia, Mycobacterium, Nocardia, Rhodococcus and Streptomyces. This is the first report that Salinispora is present in a marine sponge from the South China Sea. Subsequently, 26 rDNA clones were selected from 191 clones in an Actinobacteria-specific 16S rDNA library of the H. perleve sample, using the RFLP technique for sequencing and phylogenetic analysis. In total, 26 phylotypes were clustered in eight known genera of Actinobacteria including Mycobacterium, Amycolatopsis, Arthrobacter, Brevibacterium, Microlunatus, Nocardioides, Pseudonocardia and Streptomyces. This study contributes to our understanding of actinobacterial diversity in the marine sponge H. perleve from the South China Sea.

  11. Control of membrane biofouling in MBR for wastewater treatment by quorum quenching bacteria encapsulated in microporous membrane.

    PubMed

    Oh, Hyun-Suk; Yeon, Kyung-Min; Yang, Cheon-Seok; Kim, Sang-Ryoung; Lee, Chung-Hak; Park, Son Young; Han, Jong Yun; Lee, Jung-Kee

    2012-05-01

    Recently, enzymatic quorum quenching has proven its potential as an innovative approach for biofouling control in the membrane bioreactor (MBR) for advanced wastewater treatment. However, practical issues on the cost and stability of enzymes are yet to be solved, which requires more effective quorum quenching methods. In this study, a novel quorum quenching strategy, interspecies quorum quenching by bacterial cell, was elaborated and proved to be efficient and economically feasible biofouling control in MBR. A recombinant Escherichia coli which producing N-acyl homoserine lactonase or quorum quenching Rhodococcus sp. isolated from a real MBR plant was encapsulated inside the lumen of microporous hollow fiber membrane, respectively. The porous membrane containing these functional bacteria (i.e., "microbial-vessel") was put into the submerged MBR to alleviate biofouling on the surface of filtration membrane. The effect of biofouling inhibition by the microbial-vessel was evaluated over 80 days of MBR operation. Successful control of biofouling in a laboratory scale MBR suggests that the biofouling control through the interspecies quorum quenching could be expanded to the plant scale of MBR and various environmental engineering systems with economic feasibility. © 2012 American Chemical Society

  12. Bacterial Phosphating of Mild (Unalloyed) Steel

    PubMed Central

    Volkland, Hans-Peter; Harms, Hauke; Müller, Beat; Repphun, Gernot; Wanner, Oskar; Zehnder, Alexander J. B.

    2000-01-01

    Mild (unalloyed) steel electrodes were incubated in phosphate-buffered cultures of aerobic, biofilm-forming Rhodococcus sp. strain C125 and Pseudomonas putida mt2. A resulting surface reaction leading to the formation of a corrosion-inhibiting vivianite layer was accompanied by a characteristic electrochemical potential (E) curve. First, E increased slightly due to the interaction of phosphate with the iron oxides covering the steel surface. Subsequently, E decreased rapidly and after 1 day reached −510 mV, the potential of free iron, indicating the removal of the iron oxides. At this point, only scattered patches of bacteria covered the surface. A surface reaction, in which iron was released and vivianite precipitated, started. E remained at −510 mV for about 2 days, during which the vivianite layer grew steadily. Thereafter, E increased markedly to the initial value, and the release of iron stopped. Changes in E and formation of vivianite were results of bacterial activity, with oxygen consumption by the biofilm being the driving force. These findings indicate that biofilms may protect steel surfaces and might be used as an alternative method to combat corrosion. PMID:11010888

  13. Bacterial communities in ancient permafrost profiles of Svalbard, Arctic.

    PubMed

    Singh, Purnima; Singh, Shiv M; Singh, Ram N; Naik, Simantini; Roy, Utpal; Srivastava, Alok; Bölter, Manfred

    2017-12-01

    Permafrost soils are unique habitats in polar environment and are of great ecological relevance. The present study focuses on the characterization of bacterial communities from permafrost profiles of Svalbard, Arctic. Counts of culturable bacteria range from 1.50 × 10 3 to 2.22 × 10 5 CFU g -1 , total bacterial numbers range from 1.14 × 10 5 to 5.52 × 10 5 cells g -1 soil. Bacterial isolates are identified through 16S rRNA gene sequencing. Arthrobacter and Pseudomonas are the most dominant genera, and A. sulfonivorans, A. bergeri, P. mandelii, and P. jessenii as the dominant species. Other species belong to genera Acinetobacter, Bacillus, Enterobacter, Nesterenkonia, Psychrobacter, Rhizobium, Rhodococcus, Sphingobacterium, Sphingopyxis, Stenotrophomonas, and Virgibacillus. To the best of our knowledge, genera Acinetobacter, Enterobacter, Nesterenkonia, Psychrobacter, Rhizobium, Sphingobacterium, Sphingopyxis, Stenotrophomonas, and Virgibacillus are the first northernmost records from Arctic permafrost. The present study fills the knowledge gap of culturable bacterial communities and their chronological characterization from permafrost soils of Ny-Ålesund (79°N), Arctic. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Bacterial community analysis of Tatsoi cultivated by hydroponics.

    PubMed

    Koo, Ok K; Kim, Hun; Kim, Hyun J; Baker, Christopher A; Ricke, Steven C

    2016-07-02

    Tatsoi (Brassica narinosa) is a popular Asian salad green that is mostly consumed as a source of fresh produce. The purpose of this study was to assess the microbial diversity of Tatsoi cultivated in a hydroponic system and of its ecosystem. Tatsoi leaves, nutrient solution, and perlite/earth samples from a trickle feed system (TFS) and an ebb-and-flow system (EFS) were collected and their microbial communities were analyzed by pyrosequencing analysis. The results showed that most bacteria in the leaves from the TFS contained genus Sporosarcina (99.6%), while Rhizobium (60.4%) was dominant in the leaves from the EFS. Genus Paucibacter (18.21%) and Pelomonas (12.37%) were the most abundant microbiota in the nutrient solution samples of the TFS. In the EFS, the nutrient solution samples contained mostly genus Rhodococcus and Acinetobacter. Potential microbial transfer between the leaves and the ecosystem was observed in the EFS, while samples in the TFS were found to share only one species between the leaves, nutrient solution, and earth. Together, these results show that the bacterial populations in Tatsoi and in its ecosystem are highly diverse based on the cultivation system.

  15. Treatment of swine wastewater using chemically modified zeolite and bioflocculant from activated sludge.

    PubMed

    Guo, Junyuan; Yang, Chunping; Zeng, Guangming

    2013-09-01

    Sterilization, alkaline-thermal and acid-thermal treatments were applied to activated sludge and the pre-treated sludge was used as raw material for Rhodococcus R3 to produce polymeric substances. After 60 h of fermentation, bioflocculant of 2.7 and 4.2 g L(-1) were produced in sterilized and alkaline-thermal treated sludge as compared to that of 0.9 g L(-1) in acid-thermal treated sludge. Response surface methodology (RSM) was employed to optimize the treatment process of swine wastewater using the composite of bioflocculant and zeolite modified by calcining with MgO. The optimal flocculating conditions were bioflocculant of 24 mg L(-1), modified zeolite of 12 g L(-1), CaCl2 of 16 mg L(-1), pH of 8.3 and contact time of 55 min, and the corresponding removal rates of COD, ammonium and turbidity were 87.9%, 86.9%, and 94.8%. The use of the composite by RSM provides a feasible way to improve the pollutant removal efficiencies and recycle high-level of ammonium from wastewater. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. The structure and functions of bacterial communities in an agrocenosis

    NASA Astrophysics Data System (ADS)

    Dobrovol'skaya, T. G.; Khusnetdinova, K. A.; Manucharova, N. A.; Balabko, P. N.

    2016-01-01

    The most significant factor responsible for the specific taxonomic composition of the bacterial communities in the agrocenosis studied was found to be a part or organ of plants (leaves, flowers, roots, fruits). A stage of plant ontogeny also determines changes of taxa. In the course of the plant growth, eccrisotrophic bacteria are replaced by hydrolytic ones that belong to the group of cellulose-decomposing bacteria. Representatives of the proteobacteria genera that are difficult to identify by phenotypic methods were determined using molecular-biological methods. They were revealed only on oat leaves in the moist period. As the vetch-oat mixture was fertilized with BIOUD-1 (foliar application) in the phyllosphere of both oats and vetch, on all the plant organs, representatives of the Rhodococcus genus as dominants were isolated. This fact was related to the capability of bacteria to decompose the complex aromatic compounds that are ingredients of the fertilizers applied. Another positive effect for plants of the bacterial communities forming in agrocenoses is the presence of bacteria that are antagonists of phytopathogenic bacteria. Thus, in agrocenoses, some interrelationships promoting the growth and reproduction of plants are formed in crop plants and bacteria.

  17. Phylogenetic diversity of actinobacteria associated with soft coral Alcyonium gracllimum and stony coral Tubastraea coccinea in the East China Sea.

    PubMed

    Yang, Shan; Sun, Wei; Tang, Cen; Jin, Liling; Zhang, Fengli; Li, Zhiyong

    2013-07-01

    Actinobacteria are widely distributed in the marine environment. To date, few studies have been performed to explore the coral-associated Actinobacteria, and little is known about the diversity of coral-associated Actinobacteria. In this study, the actinobacterial diversity associated with one soft coral Alcyonium gracllimum and one stony coral Tubastraea coccinea collected from the East China Sea was investigated using both culture-independent and culture-dependent approaches. A total of 19 actinobacterial genera were detected in these two corals, among which nine genera (Corynebacterium, Dietzia, Gordonia, Kocuria, Microbacterium, Micrococcus, Mycobacterium, Streptomyces, and Candidatus Microthrix) were common, three genera (Cellulomonas, Dermatophilus, and Janibacter) were unique to the soft coral, and seven genera (Brevibacterium, Dermacoccus, Leucobacter, Micromonospora, Nocardioides, Rhodococcus, and Serinicoccus) were unique to the stony coral. This finding suggested that highly diverse Actinobacteria were associated with different types of corals. In particular, five actinobacterial genera (Cellulomonas, Dermacoccus, Gordonia, Serinicoccus, and Candidatus Microthrix) were recovered from corals for the first time, extending the known diversity of coral-associated Actinobacteria. This study shows that soft and stony corals host diverse Actinobacteria and can serve as a new source of marine actinomycetes.

  18. Diversity, ecological distribution and biotechnological potential of Actinobacteria inhabiting seamounts and non-seamounts in the Tyrrhenian Sea.

    PubMed

    Ettoumi, Besma; Chouchane, Habib; Guesmi, Amel; Mahjoubi, Mouna; Brusetti, Lorenzo; Neifar, Mohamed; Borin, Sara; Daffonchio, Daniele; Cherif, Ameur

    2016-01-01

    In the present study, the ecological distribution of marine Actinobacteria isolated from seamount and non-seamount stations in the Tyrrhenian Sea was investigated. A collection of 110 isolates was analyzed by Automated Ribosomal Intergenic Spacer Analysis (ARISA) and 16S rRNA gene sequencing of representatives for each ARISA haplotype (n=49). Phylogenetic analysis of 16S rRNA sequences showed a wide diversity of marine isolates and clustered the strains into 11 different genera, Janibacter, Rhodococcus, Arthrobacter, Kocuria, Dietzia, Curtobacterium, Micrococcus, Citricoccus, Brevibacterium, Brachybacterium and Nocardioides. Interestingly, Janibacter limosus was the most encountered species particularly in seamounts stations, suggesting that it represents an endemic species of this particular ecosystem. The application of BOX-PCR fingerprinting on J. limosus sub-collection (n=22), allowed their separation into seven distinct BOX-genotypes suggesting a high intraspecific microdiversity among the collection. Furthermore, by screening the biotechnological potential of selected actinobacterial strains, J. limosus was shown to exhibit the most important biosurfactant activity. Our overall data indicates that Janibacter is a major and active component of seamounts in the Tyrrhenian Sea adapted to low nutrient ecological niche. Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. Actinobacterial diversity in limestone deposit sites in Hundung, Manipur (India) and their antimicrobial activities

    PubMed Central

    Nimaichand, Salam; Devi, Asem Mipeshwaree; Tamreihao, K.; Ningthoujam, Debananda S.; Li, Wen-Jun

    2015-01-01

    Studies on actinobacterial diversity in limestone habitats are scarce. This paper reports profiling of actinobacteria isolated from Hundung limestone samples in Manipur, India using ARDRA as the molecular tool for preliminary classification. A total of 137 actinobacteria were clustered into 31 phylotypic groups based on the ARDRA pattern generated and representative of each group was subjected to 16S rRNA gene sequencing. Generic diversity of the limestone isolates consisted of Streptomyces (15 phylotypic groups), Micromonospora (4), Amycolatopsis (3), Arthrobacter (3), Kitasatospora (2), Janibacter (1), Nocardia (1), Pseudonocardia (1) and Rhodococcus (1). Considering the antimicrobial potential of these actinobacteria, 19 showed antimicrobial activities against at least one of the bacterial and candidal test pathogens, while 45 exhibit biocontrol activities against at least one of the rice fungal pathogens. Out of the 137 actinobacterial isolates, 118 were found to have at least one of the three biosynthetic gene clusters (PKS-I, PKS-II, NRPS). The results indicate that 86% of the strains isolated from Hundung limestone deposit sites possessed biosynthetic gene clusters of which 40% exhibited antimicrobial activities. It can, therefore, be concluded that limestone habitat is a promising source for search of novel secondary metabolites. PMID:25999937

  20. Zinc and lead detoxifying abilities of humic substances relevant to environmental bacterial species.

    PubMed

    Perelomov, L V; Sarkar, Binoy; Sizova, O I; Chilachava, K B; Shvikin, A Y; Perelomova, I V; Atroshchenko, Y M

    2018-04-30

    The effect of humic substances (HS) and their different fractions (humic acids (HA) and hymatomelanic acids (HMA)) on the toxicity of zinc and lead to different strains of bacteria was studied. All tested bacteria demonstrated a lower resistance to zinc than lead showing minimum inhibitory concentrations of 0.1 - 0.3mM and 0.3-0.5mM, respectively. The highest resistance to lead was characteristic of Pseudomonas chlororaphis PCL1391 and Rhodococcus RS67, while Pseudomonas chlororaphis PCL1391 showed the greatest resistance to zinc. The combined fractions of HS and HA alone reduced zinc toxicity at all added concentrations of the organic substances (50 - 200mgL -1 ) to all microorganisms, while hymatomelanic acids reduced zinc toxicity to Pseudomonas chlororaphis PCL1391 at 200mgL -1 organic concentration only. The HS fractions imparted similar effects on lead toxicity also. This study demonstrated that heavy metal toxicity to bacteria could be reduced through complexation with HS and their fractions. This was particularly true when the metal-organic complexes held a high stability, and low solubility and bioavailability. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Microbial dynamics in mixed culture biofilms of bacteria surviving sanitation of conveyor belts in salmon-processing plants.

    PubMed

    Langsrud, S; Moen, B; Møretrø, T; Løype, M; Heir, E

    2016-02-01

    The microbiota surviving sanitation of salmon-processing conveyor belts was identified and its growth dynamics further investigated in a model mimicking processing surfaces in such plants. A diverse microbiota dominated by Gram-negative bacteria was isolated after regular sanitation in three salmon processing plants. A cocktail of 14 bacterial isolates representing all genera isolated from conveyor belts (Listeria, Pseudomonas, Stenotrophomonas, Brochothrix, Serratia, Acinetobacter, Rhodococcus and Chryseobacterium) formed stable biofilms on steel coupons (12°C, salmon broth) of about 10(9) CFU cm(-2) after 2 days. High-throughput sequencing showed that Listeria monocytogenes represented 0·1-0·01% of the biofilm population and that Pseudomonas spp dominated. Interestingly, both Brochothrix sp. and a Pseudomonas sp. dominated in the surrounding suspension. The microbiota surviving sanitation is dominated by Pseudomonas spp. The background microbiota in biofilms inhibit, but do not eliminate L. monocytogenes. The results highlights that sanitation procedures have to been improved in the salmon-processing industry, as high numbers of a diverse microbiota survived practical sanitation. High-throughput sequencing enables strain level studies of population dynamics in biofilm. © 2015 The Society for Applied Microbiology.

  2. Culture-dependent and culture-independent characterization of potentially functional biphenyl-degrading bacterial community in response to extracellular organic matter from Micrococcus luteus.

    PubMed

    Su, Xiao-Mei; Liu, Yin-Dong; Hashmi, Muhammad Zaffar; Ding, Lin-Xian; Shen, Chao-Feng

    2015-05-01

    Biphenyl (BP)-degrading bacteria were identified to degrade various polychlorinated BP (PCB) congers in long-term PCB-contaminated sites. Exploring BP-degrading capability of potentially useful bacteria was performed for enhancing PCB bioremediation. In the present study, the bacterial composition of the PCB-contaminated sediment sample was first investigated. Then extracellular organic matter (EOM) from Micrococcus luteus was used to enhance BP biodegradation. The effect of the EOM on the composition of bacterial community was investigated by combining with culture-dependent and culture-independent methods. The obtained results indicate that Proteobacteria and Actinobacteria were predominant community in the PCB-contaminated sediment. EOM from M. luteus could stimulate the activity of some potentially difficult-to-culture BP degraders, which contribute to significant enhancement of BP biodegradation. The potentially difficult-to-culture bacteria in response to EOM addition were mainly Rhodococcus and Pseudomonas belonging to Gammaproteobacteria and Actinobacteria respectively. This study provides new insights into exploration of functional difficult-to-culture bacteria with EOM addition and points out broader BP/PCB degrading, which could be employed for enhancing PCB-bioremediation processes. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  3. An in vivo study of electrical charge distribution on the bacterial cell wall by atomic force microscopy in vibrating force mode

    NASA Astrophysics Data System (ADS)

    Marlière, Christian; Dhahri, Samia

    2015-05-01

    We report an in vivo electromechanical atomic force microscopy (AFM) study of charge distribution on the cell wall of Gram+ Rhodococcus wratislaviensis bacteria, naturally adherent to a glass substrate, under physiological conditions. The method presented in this paper relies on a detailed study of AFM approach/retract curves giving the variation of the interaction force versus distance between the tip and the sample. In addition to classical height and mechanical (as stiffness) data, mapping of local electrical properties, such as bacterial surface charge, was proved to be feasible at a spatial resolution better than a few tens of nanometers. This innovative method relies on the measurement of the cantilever's surface stress through its deflection far from (>10 nm) the repulsive contact zone: the variations of surface stress come from the modification of electrical surface charge of the cantilever (as in classical electrocapillary measurements) likely stemming from its charging during contact of both the tip and the sample electrical double layers. This method offers an important improvement in local electrical and electrochemical measurements at the solid/liquid interface, particularly in high-molarity electrolytes when compared to techniques focused on the direct use of electrostatic force. It thus opens a new way to directly investigate in situ biological electrical surface processes involved in numerous practical applications and fundamental problems such as bacterial adhesion, biofilm formation, microbial fuel cells, etc.We report an in vivo electromechanical atomic force microscopy (AFM) study of charge distribution on the cell wall of Gram+ Rhodococcus wratislaviensis bacteria, naturally adherent to a glass substrate, under physiological conditions. The method presented in this paper relies on a detailed study of AFM approach/retract curves giving the variation of the interaction force versus distance between the tip and the sample. In addition to classical

  4. TSCA Experimental Release Application (TERA) for modified Gordonia terrae, R-13-0001 and modified Rhodococcus jostii, R-13-0002

    EPA Pesticide Factsheets

    TERAs submitted by the US Army Engineer Research and Development Center, Vicksburg, MS and US Army Corps of Engineers, Seattle, WA. These microorganisms will be used in a field demonstration of bioaugmentation to enhance RDX degradation.

  5. Production of added value bacterial lipids through valorisation of hydrocarbon-contaminated cork waste.

    PubMed

    Castro, A R; Guimarães, M; Oliveira, J V; Pereira, M A

    2017-12-15

    This work demonstrates that cork used as oil-spill sorbents, contaminated with liquid hydrocarbons, herein demonstrated with hexadecane, can be biologically treated by Rhodococcus opacus B4 with concomitant lipids production. R. opacus B4 consumed up to 96% of hexadecane (C16) impregnated in natural and regranulated cork sorbents after 48h incubation, producing 0.59±0.06g of triacylglycerol (TAG) g -1 of C16 consumed with a TAG content of 0.60±0.06gg -1 of cellular dry weight (CDW) and 0.54±0.05g TAG g -1 of C16 consumed with a TAG content of 0.77±0.04gg -1 (CDW), respectively. TAG was mainly composed by fatty acids of 16 and 18 carbon chains demonstrating the feasibility of using it as raw material for biodiesel production. In addition, the obtained lipid-rich biomass (whole cells) can be used for biomethane production, at a yield of 0.4L CH 4 g -1 (CDW). The obtained results support a novel approach for management of oil-spill contaminated cork sorbents through its valorisation by producing bacterial lipids, which can be used as feedstocks for biofuels production. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Diversity of culturable nocardioform actinomycetes from wastewater treatment plants in Spain and their role in the biodegradability of aromatic compounds.

    PubMed

    Soler, Albert; García-Hernández, Jorge; Zornoza, Andrés; Alonso, José Luis

    2018-01-01

    Currently, municipal and industrial wastewater treatment plants (WWTPs) are mainly focusing on reduction of biological oxygen demand and on the removal of nutrients. However, there are microorganisms that interfere with the process. In this environment, there is a large diversity of microorganisms that have not been studied in detail and that could provide real and practical solutions to the foaming problems. Among such microorganisms, Gram-positive actinomycete bacteria are of special interest because they are known for producing secondary metabolites as well as chemically diverse compounds and for their capacity to degrade recalcitrant pollutants. Three different media were chosen to isolate actinomycetes from 28 WWTPs in Spain. A total of 189 activated sludge samples were collected; 126 strains were isolated and identified to belong to 1 suborder, i.e. Corynebacterineae, and 7 genera, i.e. Corynebacterium, Dietzia, Gordonia, Mycobacterium, Rhodococcus, Tsukamurella and Williamsia. Furthermore, 71 strains were capable of biodegrading at least 1 aromatic product, and that 27 of them amplified for catA gene. The results of this research help us understand the complexity of the foam-forming microbial populations in Spain and it shows that WWTPs can be a good source of microorganisms that can degrade phenol or naphthalene.

  7. Identification of Inhibitors in Lignocellulosic Slurries and Determination of Their Effect on Hydrocarbon-Producing Microorganisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Shihui; Franden, Mary A; Yang, Qing

    The aim of this work was to identify inhibitors in pretreated lignocellulosic slurries, evaluate high-throughput screening strategies, and investigate the impact of inhibitors on potential hydrocarbon-producing microorganisms. Compounds present in slurries that could inhibit microbial growth were identified through a detailed analysis of saccharified slurries by applying a combination of approaches of high-performance liquid chromatography, GC-MS, LC-DAD-MS, and ICP-MS. Several high-throughput assays were then evaluated to generate toxicity profiles. Our results demonstrated that Bioscreen C was useful for analyzing bacterial toxicity but not for yeast. AlamarBlue reduction assay can be a useful high-throughput assay for both bacterial and yeast strainsmore » as long as medium components do not interfere with fluorescence measurements. In addition, this work identified two major inhibitors (furfural and ammonium acetate) for three potential hydrocarbon-producing bacterial species that include Escherichia coli, Cupriavidus necator, and Rhodococcus opacus PD630, which are also the primary inhibitors for ethanologens. Here, this study was strived to establish a pipeline to quantify inhibitory compounds in biomass slurries and high-throughput approaches to investigate the effect of inhibitors on microbial biocatalysts, which can be applied for various biomass slurries or hydrolyzates generated through different pretreatment and enzymatic hydrolysis processes or different microbial candidates.« less

  8. One pot green fabrication of metallic silver nanoscale materials using Crescentia cujete L. and assessment of their bactericidal activity.

    PubMed

    Prabukumar, Seetharaman; Rajkuberan, Chandrasekaran; Sathishkumar, Gnanasekar; Illaiyaraja, Mani; Sivaramakrishnan, Sivaperumal

    2018-06-01

    In this study, the leaf extract of an important medicinal plant Crescentia cujete L. (CC) was employed as a green reducing agent to synthesise highly-stable C. cujete silver nanoparticles (CCAgNPs). The reduction of Ag + to Ag 0 nanoparticles was initially observed by a colour change which generates an intense surface plasmon resonance peak at 417 nm using a UV-Vis spectrophotometer. Various optimisation factors such as temperature, pH, time and the stoichiometric proportion of the reaction mixture were performed, which influence the size, dispersity and synthesis rate of CCAgNPs. In addition, surface chemistry of synthesised CCAgNPs through Fourier transform infrared spectroscopy reveals the reducing/stabilising agent present in the aqueous extract of C. cujete and synthesised CCAgNPs. Transmission electron microscopy analysis features the spherical shape of CCAgNPs with an average size of 39.74 nm. Furthermore, an X-ray diffraction study confirms that the synthesised CCAgNPs were face-centred cubic crystalline in nature. The CCAgNPs display tremendous bactericidal activity against human pathogens Bacillus subtilis , Staphylococcus epidermidis , Rhodococcus rhodochrous , Salmonella typhi , Mycobacterium smegmatis , Shigella flexneri and Vibrio cholerae via penetrating into the bacterial cell membrane and causing failure of an internal chain reaction.

  9. Profiling microbial community structures across six large oilfields in China and the potential role of dominant microorganisms in bioremediation.

    PubMed

    Sun, Weimin; Li, Jiwei; Jiang, Lei; Sun, Zhilei; Fu, Meiyan; Peng, Xiaotong

    2015-10-01

    Successful bioremediation of oil pollution is based on a comprehensive understanding of the in situ physicochemical conditions and indigenous microbial communities as well as the interaction between microorganisms and geochemical variables. Nineteen oil-contaminated soil samples and five uncontaminated controls were taken from six major oilfields across different geoclimatic regions in China to investigate the spatial distribution of the microbial ecosystem. Microbial community analysis revealed remarkable variation in microbial diversity between oil-contaminated soils taken from different oilfields. Canonical correspondence analysis (CCA) further demonstrated that a suite of in situ geochemical parameters, including soil moisture and sulfate concentrations, were among the factors that influenced the overall microbial community structure and composition. Phylogenetic analysis indicated that the vast majority of sequences were related to the genera Arthrobacter, Dietzia, Pseudomonas, Rhodococcus, and Marinobacter, many of which contain known oil-degrading or oil-emulsifying species. Remarkably, a number of archaeal genera including Halalkalicoccus, Natronomonas, Haloterrigena, and Natrinema were found in relatively high abundance in some of the oil-contaminated soil samples, indicating that these Euryarchaeota may play an important ecological role in some oil-contaminated soils. This study offers a direct and reliable reference of the diversity of the microbial community in various oil-contaminated soils and may influence strategies for in situ bioremediation of oil pollution.

  10. Enteric Pathogens and Coinfections in Foals with and without Diarrhea

    PubMed Central

    Olivo, Giovane; Lucas, Thays Mizuki; Borges, Alexandre Secorun; Silva, Rodrigo Otávio Silveira; Lobato, Francisco Carlos Faria; Siqueira, Amanda Keller; da Silva Leite, Domingos; Brandão, Paulo Eduardo; de Oliveira-Filho, José Paes

    2016-01-01

    Diarrhea is a major clinical problem affecting foals up to 3 months of age. The aim of this study was to identify enteric microorganisms involved in monoinfections and coinfections and the associated virulence factors in healthy and diarrheic foals. Diarrheic (D) (n = 56) and nondiarrheic (ND) foals (n = 60) up to three months of age were studied. Fecal samples were analyzed for identification of infectious agents (microbiological culturing, molecular techniques, and microscopic analyses). Escherichia coli fimH (30% versus 25%), Salmonella spp. (25% versus 7%), Strongyloides westeri (25% versus 25%), Clostridium perfringens type A (21% versus 10%), E. coli ag43 (20% versus 35%), Strongylus (11% versus 18%), and vapA-positive Rhodococcus equi (5% versus 2%) were the most frequent enteric pathogens detected in D and ND foals, respectively. The frequency of toxin A-positive C. perfringens was significantly increased in the D (p = 0.033) compared with the ND animals. R. equi strains harboring virulent plasmids were also identified (VapA 85-kb type I and VapA 87-kb type I) in D and ND foals. Coinfections were observed in 46% of the D and 33% of the ND foals. Our results demonstrate the great diversity of enteric pathogens, virulence factors, and coinfections involved in enteric infections of foals. PMID:28116290

  11. Temperature effect on bacterial azo bond reduction kinetics: an Arrhenius plot analysis.

    PubMed

    Angelova, Blaga; Avramova, Tatyana; Stefanova, Lilyana; Mutafov, Sava

    2008-06-01

    Studied was the effect of temperature in the range 12-46 degrees C on the rate of bacterial decolorization of the mono-azo dye Acid Orange 7 by Alcaligenes faecalis 6132 and Rhodococcus erythropolis 24. With both strains the raise of temperature led to a corresponding raise of decolorization rate better manifested by R. erythropolis. The analysis of the Arrhenius plot revealed a break near the middle of the temperature range. The regression analysis showed practically complete identity of the observed break point temperatures (T (BP)): 20.7 degrees C for Alc. faecalis and 20.8 degrees C for R. erythropolis. The values of the activation energy of the decolorization reaction (E (a)) were found to depend on both the organism and the temperature range. In the range below T (BP) the estimated values of E (a) were 138 +/- 7 kJ mol(-1) for Alc. faecalis and 160 +/- 8 kJ mol(-1) for R. erythropolis. In the range above T (BP) they were 54.2 +/- 1.8 kJ mol(-1) for Alc. faecalis and 37.6 +/- 4.1 kJ mol(-1) for R. erythropolis. Discussed are the possible reasons for the observed abrupt change of the activation energy.

  12. Development of a live, attenuated, potential vaccine strain of R. equi expressing vapA and the virR operon, and virulence assessment in the mouse.

    PubMed

    Whitehead, Ashley E; Parreira, Valeria R; Hewson, Joanne; Watson, Johanna L; Prescott, John F

    2012-01-15

    Pneumonia caused by Rhodococcus equi remains a significant problem in foals. The objective of this study was to develop a safe and efficacious attenuated strain of R. equi for eventual use in oral immunization of foals. The approach involved expression of vapA in a live, virulence plasmid-negative, strain of R. equi (strain 103-). PCR-amplified fragments of the vapA gene, with and without the upstream genes virR, orf5, vapH, orf7 and orf8 (orf4-8), were cloned into a shuttle vector pNBV1. These plasmids, named pAW48A and pAWVapA respectively, were electroporated into strain 103-. The presence of the recombinant vectors in the attenuated strain (103-) and the integrity of the inserted genes were confirmed, and both constructs expressed VapA. The virulence of the two strains was compared to that of wild type R. equi 103+ and negative controls by their intravenous inoculation into mice, followed by examination of liver clearance 4 days later. Mice inoculated with R. equi 103-, 103-/pAWVapA and 103-/pNBV1 completely cleared infection, whereas strain 103-/pAW48A persisted in 47% of mice. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Advanced Chemical Design for Efficient Lignin Bioconversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Shangxian; Sun, Qining; Pu, Yunqiao

    Here, lignin depolymerization mainly involves redox reactions relying on the effective electron transfer. Even though electron mediators were previously used for delignification of paper pulp, no study has established a bioprocess to fragment and solubilize the lignin with an effective laccase–mediator system, in particular, for subsequent microbial bioconversion. Efficient lignin depolymerization was achieved by screening proper electron mediators with laccase to attain a nearly 6-fold increase of kraft lignin solubility compared to the control kraft lignin without laccase treatment. Chemical analysis suggested the release of a low molecular weight fraction of kraft lignin into the solution phase. Moreover, NMR analysismore » revealed that an efficient enzyme–mediator system can promote the lignin degradation. More importantly, the fundamental mechanisms guided the development of an efficient lignin bioconversion process, where solubilized lignin from laccase–HBT treatment served as a superior substrate for bioconversion by Rhodococcus opacus PD630. The cell growth was increased by 10 6 fold, and the lipid titer reached 1.02 g/L. Overall, the study has manifested that an efficient enzyme–mediator–microbial system can be exploited to establish a bioprocess to solubilize lignin, cleave lignin linkages, modify the structure, and produce substrates amenable to bioconversion.« less

  14. Internalisation potential of Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica subsp. enterica serovar Typhimurium and Staphylococcus aureus in lettuce seedlings and mature plants.

    PubMed

    Standing, Taryn-Ann; du Plessis, Erika; Duvenage, Stacey; Korsten, Lise

    2013-06-01

    The internalisation potential of Listeria monocytogenes, Staphylococcus aureus, Escherichia coli O157:H7 and Salmonella enterica subsp. enterica serovar Typhimurium in lettuce was evaluated using seedlings grown in vermiculite in seedling trays as well as hydroponically grown lettuce. Sterile distilled water was spiked with one of the four human pathogenic bacteria (10(5) CFU/mL) and used to irrigate the plants. The potential for pathogen internalisation was investigated over time using light microscopy, transmission electron microscopy and viable plate counts. Additionally, the identities of the pathogens isolated from internal lettuce plant tissues were confirmed using polymerase chain reaction with pathogen-specific oligonucleotides. Internalisation of each of the human pathogens was evident in both lettuce seedlings and hydroponically grown mature lettuce plants. To our knowledge, this is the first report of S. aureus internalisation in lettuce plants. In addition, the levels of background microflora in the lettuce plants were determined by plate counting and the isolates identified using matrix-assisted laser ionisation-time of flight (MALDI-TOF). Background microflora assessments confirmed the absence of the four pathogens evaluated in this study. A low titre of previously described endophytes and soil inhabitants, i.e., Enterobacter cloacae, Enterococcus faecalis, Lysinibacillus fusiformis, Rhodococcus rhodochrous, Staphylococcus epidermidis and Staphylococcus hominis were identified.

  15. Twenty Species of Hypobarophilic Bacteria Recovered from Diverse Soils Exhibit Growth under Simulated Martian Conditions at 0.7 kPa

    NASA Astrophysics Data System (ADS)

    Schuerger, Andrew C.; Nicholson, Wayne L.

    2016-12-01

    Bacterial growth at low pressure is a new research area with implications for predicting microbial activity in clouds and the bulk atmosphere on Earth and for modeling the forward contamination of planetary surfaces like Mars. Here, we describe experiments on the recovery and identification of 20 species of bacterial hypobarophiles (def., growth under hypobaric conditions of approximately 1-2 kPa) in 10 genera capable of growth at 0.7 kPa. Hypobarophilic bacteria, but not archaea or fungi, were recovered from diverse soils, and high numbers of hypobarophiles were recovered from Arctic and Siberian permafrost soils. Isolates were identified through 16S rRNA sequencing to belong to the genera Bacillus, Carnobacterium, Clostridium, Cryobacterium, Exiguobacterium, Paenibacillus, Rhodococcus, Streptomyces, and Trichococcus. The highest population of culturable hypobarophilic bacteria (5.1 × 104 cfu/g) was recovered from Colour Lake soils from Axel Heiberg Island in the Canadian Arctic. In addition, we extend the number of hypobarophilic species in the genus Serratia to six type-strains that include S. ficaria, S. fonticola, S. grimesii, S. liquefaciens, S. plymuthica, and S. quinivorans. Microbial growth at 0.7 kPa suggests that pressure alone will not be growth-limiting on the martian surface, or in Earth's atmosphere up to an altitude of 34 km.

  16. Research into acetone removal from air by biofiltration using a biofilter with straight structure plates

    PubMed Central

    Baltrėnas, Pranas; Zagorskis, Alvydas; Misevičius, Antonas

    2015-01-01

    The biological air treatment method is based on the biological destruction of organic compounds using certain cultures of microorganisms. This method is simple and may be applied in many branches of industry. The main element of biological air treatment devices is a filter charge. Tests were carried out using a new-generation laboratory air purifier with a plate structure. This purifier is called biofilter. The biofilter has a special system for packing material humidification which does not require additional energy inputs. In order to extend the packing material's durability, it was composed of thermally treated birch fibre. Pollutant (acetone) biodegradation occurred on thermally treated wood fibre in this research. According to the performed tests and the received results, the process of biodestruction was highly efficient. When acetone was passed through biofilter's packing material at 0.08 m s−1 rate, the efficiency of the biofiltration process was from 70% up to 90%. The species of bacteria capable of removing acetone vapour from the air, i.e. Bacillus (B. cereus, B. subtilis), Pseudomonas (P. aeruginosa, P. putida), Stapylococcus (S. aureus) and Rhodococcus sp., was identified in this study during the process of biofiltration. Their amount in the biological packing material changed from 1.6 × 107 to 3.7 × 1011 CFU g−1. PMID:26019659

  17. Identification of Inhibitors in Lignocellulosic Slurries and Determination of Their Effect on Hydrocarbon-Producing Microorganisms

    DOE PAGES

    Yang, Shihui; Franden, Mary A; Yang, Qing; ...

    2018-04-04

    The aim of this work was to identify inhibitors in pretreated lignocellulosic slurries, evaluate high-throughput screening strategies, and investigate the impact of inhibitors on potential hydrocarbon-producing microorganisms. Compounds present in slurries that could inhibit microbial growth were identified through a detailed analysis of saccharified slurries by applying a combination of approaches of high-performance liquid chromatography, GC-MS, LC-DAD-MS, and ICP-MS. Several high-throughput assays were then evaluated to generate toxicity profiles. Our results demonstrated that Bioscreen C was useful for analyzing bacterial toxicity but not for yeast. AlamarBlue reduction assay can be a useful high-throughput assay for both bacterial and yeast strainsmore » as long as medium components do not interfere with fluorescence measurements. In addition, this work identified two major inhibitors (furfural and ammonium acetate) for three potential hydrocarbon-producing bacterial species that include Escherichia coli, Cupriavidus necator, and Rhodococcus opacus PD630, which are also the primary inhibitors for ethanologens. Here, this study was strived to establish a pipeline to quantify inhibitory compounds in biomass slurries and high-throughput approaches to investigate the effect of inhibitors on microbial biocatalysts, which can be applied for various biomass slurries or hydrolyzates generated through different pretreatment and enzymatic hydrolysis processes or different microbial candidates.« less

  18. Degradation mechanisms of DDX induced by the addition of toluene and glycerol as cosubstrates in a zero-valent iron pretreated soil.

    PubMed

    Velasco, Antonio; Aburto-Medina, Arturo; Shahsavari, Esmaeil; Revah, Sergio; Ortiz, Irmene

    2017-01-05

    Abiotic and biotic processes can be used to remediate DDX (DDT, DDD, DDE, and DDNS) contaminated soils; these processes can be fostered using specific carbon-amendments to stimulate particular soil indigenous microbial communities to improve rates or extent of degradation. In this study, toluene and glycerol were evaluated as cosubstrates under aerobic and anoxic conditions to determine the degradation efficiencies of DDX and to elucidate possible degradation mechanisms. Slurry microcosms experiments were performed during 60 days using pretreated soil with zero-valent iron (ZVI). Toluene addition enhanced the percentage of degradation of DDX. DDNS was the main compound degraded (around 86%) under aerobic conditions, suggesting cometabolic degradation of DDX by toluene-degrading soil bacteria. Glycerol addition under anoxic conditions favored the abiotic degradation of DDX mediated by sulfate-reducing bacteria activity, where DDT was the main compound degraded (around 90%). The 16S rDNA metagenomic analyses revealed Rhodococcus ruber and Desulfosporosinus auripigmenti as the predominant bacterial species after 40 days of treatment with toluene and glycerol additions, respectively. This study provides evidence of biotic and abiotic DDX degradation by the addition of toluene and glycerol as cosubstrates in ZVI pretreated DDX-contaminated soil. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Bioaugmentation as a strategy for the remediation of pesticide-polluted soil: A review.

    PubMed

    Cycoń, Mariusz; Mrozik, Agnieszka; Piotrowska-Seget, Zofia

    2017-04-01

    Bioaugmentation, a green technology, is defined as the improvement of the degradative capacity of contaminated areas by introducing specific microorganisms, has emerged as the most advantageous method for cleaning-up soil contaminated with pesticides. The present review discusses the selection of pesticide-utilising microorganisms from various sources, their potential for the degradation of pesticides from different chemical classes in liquid media as well as soil-related case studies in a laboratory, a greenhouse and field conditions. The paper is focused on the microbial degradation of the most common pesticides that have been used for many years such as organochlorinated and organophosphorus pesticides, triazines, pyrethroids, carbamate, chloroacetamide, benzimidazole and derivatives of phenoxyacetic acid. Special attention is paid to bacterial strains from the genera Alcaligenes, Arthrobacter, Bacillus, Brucella, Burkholderia, Catellibacterium, Pichia, Pseudomonas, Rhodococcus, Serratia, Sphingomonas, Stenotrophomonas, Streptomyces and Verticillum, which have potential applications in the bioremediation of pesticide-contaminated soils using bioaugmentation technology. Since many factors strongly influence the success of bioaugmentation, selected abiotic and biotic factors such as pH, temperature, type of soil, pesticide concentration, content of water and organic matter, additional carbon and nitrogen sources, inoculum size, interactions between the introduced strains and autochthonous microorganisms as well as the survival of inoculants were presented. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Correlation of maple sap composition with bacterial and fungal communities determined by multiplex automated ribosomal intergenic spacer analysis (MARISA).

    PubMed

    Filteau, Marie; Lagacé, Luc; LaPointe, Gisèle; Roy, Denis

    2011-08-01

    During collection, maple sap is contaminated by bacteria and fungi that subsequently colonize the tubing system. The bacterial microbiota has been more characterized than the fungal microbiota, but the impact of both components on maple sap quality remains unclear. This study focused on identifying bacterial and fungal members of maple sap and correlating microbiota composition with maple sap properties. A multiplex automated ribosomal intergenic spacer analysis (MARISA) method was developed to presumptively identify bacterial and fungal members of maple sap samples collected from 19 production sites during the tapping period. Results indicate that the fungal community of maple sap is mainly composed of yeast related to Mrakia sp., Mrakiella sp., Guehomyces pullulans, Cryptococcus victoriae and Williopsis saturnus. Mrakia, Mrakiella and Guehomyces peaks were identified in samples of all production sites and can be considered dominant and stable members of the fungal microbiota of maple sap. A multivariate analysis based on MARISA profiles and maple sap chemical composition data showed correlations between Candida sake, Janthinobacterium lividum, Williopsis sp., Leuconostoc mesenteroides, Mrakia sp., Rhodococcus sp., Pseudomonas tolaasii, G. pullulans and maple sap composition at different flow periods. This study provides new insights on the relationship between microbial community and maple sap quality. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Effect of bacterial inoculants on phytomining of metals from waste incineration bottom ash.

    PubMed

    Rosenkranz, Theresa; Kidd, Petra; Puschenreiter, Markus

    2018-03-01

    Waste incineration bottom ash is considered a secondary resource for valuable trace elements (TE), which is currently neglected in most European countries. Phytomining could potentially recover valuable TE from such waste materials but is still at an exploratory stage with many challenges. The use of bioaugmentation to improve plant growth and TE accumulation of metal-tolerant high biomass plants growing on waste incineration bottom ash was evaluated. Bacterial strains that were previously isolated from rhizosphere, roots and contaminated soil were selected according to their plant growth promoting characteristics and tolerance to the bottom ash substrate. Those selected bacterial strains were tested for their beneficial effects on Nicotiana tabacum and Salix smithiana with regards to phytomining. The rhizobacterial strain Rhodococcus erythropolis P30 enhanced the shoot dry weight of N. tabacum by on average 57% compared to the control plants. Several bacterial inoculants enhanced biomass production and the nutritional status of S. smithiana. Moreover, those bacterial strains previously described to enhance biomass production of N. tabacum and members of the Salicaceae on TE-contaminated soils, also enhanced biomass production of these species on bottom ash. However, bacterial inoculants could not enhance trace element accumulation in plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Research into acetone removal from air by biofiltration using a biofilter with straight structure plates.

    PubMed

    Baltrėnas, Pranas; Zagorskis, Alvydas; Misevičius, Antonas

    2015-03-04

    The biological air treatment method is based on the biological destruction of organic compounds using certain cultures of microorganisms. This method is simple and may be applied in many branches of industry. The main element of biological air treatment devices is a filter charge. Tests were carried out using a new-generation laboratory air purifier with a plate structure. This purifier is called biofilter. The biofilter has a special system for packing material humidification which does not require additional energy inputs. In order to extend the packing material's durability, it was composed of thermally treated birch fibre. Pollutant (acetone) biodegradation occurred on thermally treated wood fibre in this research. According to the performed tests and the received results, the process of biodestruction was highly efficient. When acetone was passed through biofilter's packing material at 0.08 m s -1 rate, the efficiency of the biofiltration process was from 70% up to 90%. The species of bacteria capable of removing acetone vapour from the air, i.e. Bacillus ( B. cereus , B. subtilis ), Pseudomonas ( P. aeruginosa , P. putida ), Stapylococcus ( S. aureus ) and Rhodococcus sp., was identified in this study during the process of biofiltration. Their amount in the biological packing material changed from 1.6 × 10 7 to 3.7 × 10 11 CFU g -1 .

  3. Bacteriophages of wastewater foaming-associated filamentous Gordonia reduce host levels in raw activated sludge.

    PubMed

    Liu, Mei; Gill, Jason J; Young, Ry; Summer, Elizabeth J

    2015-09-09

    Filamentous bacteria are a normal and necessary component of the activated sludge wastewater treatment process, but the overgrowth of filamentous bacteria results in foaming and bulking associated disruptions. Bacteriophages, or phages, were investigated for their potential to reduce the titer of foaming bacteria in a mixed-microbial activated sludge matrix. Foaming-associated filamentous bacteria were isolated from activated sludge of a commercial wastewater treatment plan and identified as Gordonia species by 16S rDNA sequencing. Four representative phages were isolated that target G. malaquae and two un-named Gordonia species isolates. Electron microscopy revealed the phages to be siphophages with long tails. Three of the phages--GordTnk2, Gmala1, and GordDuk1--had very similar ~76 kb genomes, with >93% DNA identity. These genomes shared limited synteny with Rhodococcus equi phage ReqiDocB7 and Gordonia phage GTE7. In contrast, the genome of phage Gsput1 was smaller (43 kb) and was not similar enough to any known phage to be placed within an established phage type. Application of these four phages at MOIs of 5-15 significantly reduced Gordonia host levels in a wastewater sludge model by approximately 10-fold as compared to non-phage treated reactors. Phage control was observed for nine days after treatment.

  4. Coupled reactions on bioparticles: Stereoselective reduction with cofactor regeneration on PhaC inclusion bodies.

    PubMed

    Spieler, Valerie; Valldorf, Bernhard; Maaß, Franziska; Kleinschek, Alexander; Hüttenhain, Stefan H; Kolmar, Harald

    2016-07-01

    Chiral alcohols are important building blocks for specialty chemicals and pharmaceuticals. The production of chiral alcohols from ketones can be carried out stereo selectively with alcohol dehydrogenases (ADHs). To establish a process for cost-effective enzyme immobilization on solid phase for application in ketone reduction, we used an established enzyme pair consisting of ADH from Rhodococcus erythropolis and formate dehydrogenase (FDH) from Candida boidinii for NADH cofactor regeneration and co-immobilized them on modified poly-p-hydroxybutyrate synthase (PhaC)-inclusion bodies that were recombinantly produced in Escherichia coli cells. After separate production of genetically engineered and recombinantly produced enzymes and particles, cell lysates were combined and enzymes endowed with a Kcoil were captured on the surface of the Ecoil presenting particles due to coiled-coil interaction. Enzyme-loaded particles could be easily purified by centrifugation. Total conversion of 4'-chloroacetophenone to (S)-4-chloro-α-methylbenzyl alcohol could be accomplished using enzyme-loaded particles, catalytic amounts of NAD(+) and formate as substrates for FDH. Chiral GC-MS analysis revealed that immobilized ADH retained enantioselectivity with 99 % enantiomeric excess. In conclusion, this strategy may become a cost-effective alternative to coupled reactions using purified enzymes. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Isolation, Characterization, and Antibacterial Activity of Hard-to-Culture Actinobacteria from Cave Moonmilk Deposits.

    PubMed

    Adam, Delphine; Maciejewska, Marta; Naômé, Aymeric; Martinet, Loïc; Coppieters, Wouter; Karim, Latifa; Baurain, Denis; Rigali, Sébastien

    2018-03-22

    Cave moonmilk deposits host an abundant and diverse actinobacterial population that has a great potential for producing novel natural bioactive compounds. In our previous attempt to isolate culturable moonmilk-dwelling Actinobacteria, only Streptomyces species were recovered, whereas a metagenetic study of the same deposits revealed a complex actinobacterial community including 46 actinobacterial genera in addition to streptomycetes. In this work, we applied the rehydration-centrifugation method to lessen the occurrence of filamentous species and tested a series of strategies to achieve the isolation of hard-to-culture and rare Actinobacteria from the moonmilk deposits of the cave "Grotte des Collemboles". From the "tips and tricks" that were tested, separate autoclaving of the components of the International Streptomyces Project (ISP) medium number 5 (ISP5) medium, prolonged incubation time, and dilution of the moonmilk suspension were found to most effectively improve colony forming units. Taxonomic analyses of the 40 isolates revealed new representatives of the Agromyces , Amycolatopsis , Kocuria , Micrococcus , Micromonospora , Nocardia , and Rhodococcus species, as well as additional new streptomycetes. The applied methodologies allowed the isolation of strains associated with both the least and most abundant moonmilk-dwelling actinobacterial operational taxonomic units. Finally, bioactivity screenings revealed that some isolates displayed high antibacterial activities, and genome mining uncovered a strong potential for the production of natural compounds.

  6. Bacteriophage formulated into a range of semisolid and solid dosage forms maintain lytic capacity against isolated cutaneous and opportunistic oral bacteria.

    PubMed

    Brown, Teagan L; Thomas, Tereen; Odgers, Jessica; Petrovski, Steve; Spark, Marion Joy; Tucci, Joseph

    2017-03-01

    Resistance of bacteria to antimicrobial agents is of grave concern. Further research into the development of bacteriophage as therapeutic agents against bacterial infections may help alleviate this problem. To formulate bacteriophage into a range of semisolid and solid dosage forms and investigate the capacity of these preparations to kill bacteria under laboratory conditions. Bacteriophage suspensions were incorporated into dosage forms such as creams, ointments, pastes, pessaries and troches. These were applied to bacterial lawns in order to ascertain lytic capacity. Stability of these formulations containing phage was tested under various storage conditions. A range of creams and ointments were able to support phage lytic activity against Propionibacterium acnes. Assessment of the stability of these formulations showed that storage at 4 °C in light-protected containers resulted in optimal phage viability after 90 days. Pessaries/suppositories and troches were able to support phage lytic activity against Rhodococcus equi. We report here the in-vitro testing of semisolid and solid formulations of bacteriophage lytic against a range of bacteria known to contribute to infections of the epithelia. This study provides a basis for the future formulation of diverse phage against a range of bacteria that infect epithelial tissues. © 2016 Royal Pharmaceutical Society.

  7. Mechanism of enhanced conversion of 1,2,3-trichloropropane by mutant haloalkane dehalogenase revealed by molecular modeling

    NASA Astrophysics Data System (ADS)

    Banáš, Pavel; Otyepka, Michal; Jeřábek, Petr; Petřek, Martin; Damborský, Jiří

    2006-06-01

    1,2,3-Trichloropropane (TCP) is a highly toxic, recalcitrant byproduct of epichlorohydrin manufacture. Haloalkane dehalogenase (DhaA) from Rhodococcus sp. hydrolyses the carbon-halogen bond in various halogenated compounds including TCP, but with low efficiency ( k cat/ K m = 36 s-1 M-1). A Cys176Tyr-DhaA mutant with a threefold higher catalytic efficiency for TCP dehalogenation has been previously obtained by error-prone PCR. We have used molecular simulations and quantum mechanical calculations to elucidate the molecular mechanisms involved in the improved catalysis of the mutant, and enantioselectivity of DhaA toward TCP. The Cys176Tyr mutation modifies the protein access and export routes. Substitution of the Cys residue by the bulkier Tyr narrows the upper tunnel, making the second tunnel "slot" the preferred route. TCP can adopt two major orientations in the DhaA enzyme, in one of which the halide-stabilizing residue Asn41 forms a hydrogen bond with the terminal halogen atom of the TCP molecule, while in the other it bonds with the central halogen atom. The differences in these binding patterns explain the preferential formation of the ( R)- over the ( S)-enantiomer of 2,3-dichloropropane-1-ol in the reaction catalyzed by the enzyme.

  8. Process-Oriented Review of Bacterial Quorum Quenching for Membrane Biofouling Mitigation in Membrane Bioreactors (MBRs)

    PubMed Central

    Bouayed, Naila; Dietrich, Nicolas; Lafforgue, Christine; Lee, Chung-Hak; Guigui, Christelle

    2016-01-01

    Quorum Quenching (QQ) has been developed over the last few years to overcome practical issues related to membrane biofouling, which is currently the major difficulty thwarting the extensive development of membrane bioreactors (MBRs). QQ is the disruption of Quorum Sensing (QS), cell-to-cell communication enabling the bacteria to harmonize their behavior. The production of biofilm, which is recognized as a major part of the biocake formed on a membrane surface, and which leads to biofouling, has been found to be one of the bacterial behaviors controlled by QS. Since the enzymatic disruption of QS was reported to be efficient as a membrane biofouling mitigation technique in MBRs, the application of QQ to lab-scale MBRs has been the subject of much research using different approaches under different operating conditions. This paper gives an overview of the effectiveness of QQ in mitigating membrane biofouling in MBRs. It is based on the results of previous studies, using two microbial strains, Rhodococcus sp. BH4 and Pseudomonas sp. 1A1. The effect of bacterial QQ on the physical phenomena of the MBR process is analyzed, adopting an original multi-scale approach. Finally, the potential influence of the MBR operating conditions on QQ effectiveness is discussed. PMID:27983578

  9. Biodegradation of paint stripper solvents in a modified gas lift loop bioreactor.

    PubMed

    Vanderberg-Twary, L; Steenhoudt, K; Travis, B J; Hanners, J L; Foreman, T M; Brainard, J R

    1997-07-05

    Paint stripping wastes generated during the decontamination and decommissioning of former nuclear facilities contain paint stripping organics (dichloromethane, 2-propanol, and methanol) and bulk materials containing paint pigments. It is desirable to degrade the organic residues as part of an integrated chemical-biological treatment system. We have developed a modified gas lift loop bioreactor employing a defined consortium of Rhodococcus rhodochrous strain OFS and Hyphomicrobium sp. DM-2 that degrades paint stripper organics. Mass transfer coefficients and kinetic constants for biodegradation in the system were determined. It was found that transfer of organic substrates from surrogate waste into the air and further into the liquid medium in the bioreactor were rapid processes, occurring within minutes. Monod kinetics was employed to model the biodegradation of paint stripping organics. Analysis of the bioreactor process was accomplished with BIOLAB, a mathematical code that simulates coupled mass transfer and biodegradation processes. This code was used to fit experimental data to Monod kinetics and to determine kinetic parameters. The BIOLAB code was also employed to compare activities in the bioreactor of individual microbial cultures to the activities of combined cultures in the bioreactor. This code is of benefit for further optimization and scale-up of the bioreactor for treatment of paint stripping and other volatile organic wastes in bulk materials.

  10. Identities of epilithic hydrocarbon-utilizing diazotrophic bacteria from the Arabian Gulf Coasts, and their potential for oil bioremediation without nitrogen supplementation.

    PubMed

    Radwan, Samir; Mahmoud, Huda; Khanafer, Majida; Al-Habib, Aamar; Al-Hasan, Redha

    2010-08-01

    Gravel particles from four sites along the Arabian Gulf coast in autumn, winter, and spring were naturally colonized with microbial consortia containing between 7 and 400 × 10(2) cm(-2) of cultivable oil-utilizing bacteria. The 16S rRNA gene sequences of 70 representatives of oil-utilizing bacteria revealed that they were predominantly affiliated with the Gammaproteobacteria and the Actinobacteria. The Gammaproteobacteria comprised among others, the genera Pseudomonas, Pseudoalteromonas, Shewanella, Marinobacter, Psychrobacter, Idiomarina, Alcanivorax, Cobetia, and others. Actinobacteria comprised the genera Dietzia, Kocuria, Isoptericola, Rhodococcus, Microbacterium, and others. In autumn, Firmicutes members were isolated from bay and nonbay stations while Alphaproteobacteria were detected only during winter from Anjefa bay station. Fingerprinting by denaturing gradient gel electrophoresis of amplified 16S rRNA genes of whole microbial consortia confirmed the culture-based bacterial diversities in the various epilithons in various sites and seasons. Most of the representative oil-utilizing bacteria isolated from the epilithons were diazotrophic and could attenuate oil also in nitrogen-rich (7.9-62%) and nitrogen-free (4-54%) cultures, which, makes the microbial consortia suitable for oil bioremediation in situ, without need for nitrogen supplementation. This was confirmed in bench-scale experiments in which unfertilized oily seawater was bioremediated by epilithon-coated gravel particles.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szcześ, Aleksandra, E-mail: aszczes@poczta.umcs.lublin.pl; Czemierska, Magdalena; Jarosz-Wilkołazka, Anna

    Extracellular polymeric substance (EPS) extracted from Rhodococcus opacus bacterial strain was used as a matrix for calcium carbonate precipitation using the vapour diffusion method. The total exopolymer and water-soluble exopolymer fraction of different concentrations were spread on the mica surface by the spin-coating method. The obtained layers were characterized using the atomic force microscopy measurement and XPS analysis. The effects of polymer concentration, initial pH of calcium chloride solution and precipitation time on the obtained crystals properties were investigated. Raman spectroscopy and scanning electron microscopy were used to characterize the precipitated minerals. It was found that the type of precipitatedmore » CaCO{sub 3} polymorph and the crystal size depend on the kind of EPS fraction. The obtained results indicates that the water soluble fraction favours vaterite dissolution and calcite growth, whereas the total EPS stabilizes vaterite and this effect is stronger at basic pH. It seems to be due to different contents of the functional group of EPS fractions. - Highlights: • CaCO{sub 3} crystal size and polymorph can be controlled by EPS substance obtained from R. opacus. • The water soluble fraction favours vaterite dissolution and calcite growth. • The total EPS stabilizes vaterite. • This effect is stronger at basic pH.« less

  12. [Antimicrobial effect on some zoonotic bacteria, of the cell-free fermentation fluid and purified peptide fraction of the entomopathogenic bacterium, Xenorhabdus budapestensis].

    PubMed

    Burgettiné Böszörményi, Erzsébet; Barcs, István; Domján, Gyula; Bélafiné Bakó, Katalin; Fodor, András; Makrai, László; Vozik, Dávid

    2015-11-01

    Many multi-resistant patogens appear continuously resulting in a permanent need for the development of novel antibiotics. A large number of antibiotics introduced in clinical and veterinary practices are not effective. Antibacterial peptides with unusual mode of action may represent a promising option against multi-resistant pathogens. The entomopathogenic Xenorhabdus budapestensis bacteria produce several different antimicrobial peptides compounds such as bicornutin-A and fabclavin. The aim of the authors was to evaluate the in vitro antibacterial effect of Xenorhabdus budapestensis using zoonotic patogen bacteria. Cell-free conditioned media and purified peptide fractions of Xenorhabdus budapestensis were tested on Gram-positive (Rhodococcus equi, Erysipelothrix rhusiopathia, Staphylococcus aureus, Streptococcus equi, Corynebacterium pseudotuberculosis, Listeria monocytagenes) and Gram-negative bacteria (Salmonella gallinarum, Salmonella derbi, Bordatella bronchoseptica, Escherichia coli, Pasteurella multocida, Aeromonas hydrophila) using agar diffusion test on blood agar plates. It was found that Xenorhabdus budapestensis bacteria produced compounds with strong and dose-dependent effects on the tested organisms. Purified peptid fraction exerted a more marked effect than cell free conditioned media. Gram-positive bacteria were more sensitive to this antibacterial effect than Gram-negative bacteria. Antibacterial peptide compound from Xenorhabdus budapestensis exert marked antibacterial effect on zoonotic patogen bacteria and they should be further evaluated in future for their potential use in the control or prevention of zoonoses.

  13. Advanced Chemical Design for Efficient Lignin Bioconversion

    DOE PAGES

    Xie, Shangxian; Sun, Qining; Pu, Yunqiao; ...

    2017-01-30

    Here, lignin depolymerization mainly involves redox reactions relying on the effective electron transfer. Even though electron mediators were previously used for delignification of paper pulp, no study has established a bioprocess to fragment and solubilize the lignin with an effective laccase–mediator system, in particular, for subsequent microbial bioconversion. Efficient lignin depolymerization was achieved by screening proper electron mediators with laccase to attain a nearly 6-fold increase of kraft lignin solubility compared to the control kraft lignin without laccase treatment. Chemical analysis suggested the release of a low molecular weight fraction of kraft lignin into the solution phase. Moreover, NMR analysismore » revealed that an efficient enzyme–mediator system can promote the lignin degradation. More importantly, the fundamental mechanisms guided the development of an efficient lignin bioconversion process, where solubilized lignin from laccase–HBT treatment served as a superior substrate for bioconversion by Rhodococcus opacus PD630. The cell growth was increased by 10 6 fold, and the lipid titer reached 1.02 g/L. Overall, the study has manifested that an efficient enzyme–mediator–microbial system can be exploited to establish a bioprocess to solubilize lignin, cleave lignin linkages, modify the structure, and produce substrates amenable to bioconversion.« less

  14. Microbial degradation of Cold Lake Blend and Western Canadian select dilbits by freshwater enrichments.

    PubMed

    Deshpande, Ruta S; Sundaravadivelu, Devi; Techtmann, Stephen; Conmy, Robyn N; Santo Domingo, Jorge W; Campo, Pablo

    2018-06-15

    Treatability experiments were conducted to determine the biodegradation of diluted bitumen (dilbit) at 5 and 25 °C for 72 and 60 days, respectively. Microbial consortia obtained from the Kalamazoo River Enbridge Energy spill site were enriched on dilbit at both 5 (cryo) and 25 (meso) ºC. On every sampling day, triplicates were sacrificed and residual hydrocarbon concentrations (alkanes and polycyclic aromatic hydrocarbons) were determined by GCMS/MS. The composition and relative abundance of different bacterial groups were identified by 16S rRNA gene sequencing analysis. While some physicochemical differences were observed between the two dilbits, their biodegradation profiles were similar. The rates and extent of degradation were greater at 25 °C. Both consortia metabolized 99.9% of alkanes; however, the meso consortium was more effective at removing aromatics than the cryo consortium (97.5 vs 70%). Known hydrocarbon-degrading bacteria were present in both consortia (Pseudomonas, Rhodococcus, Hydrogenophaga, Parvibaculum, Arthrobacter, Acidovorax), although their relative abundances depended on the temperatures at which they were enriched. Regardless of the dilbit type, the microbial community structure significantly changed as a response to the diminishing hydrocarbon load. Our results demonstrate that dilbit can be effectively degraded by autochthonous microbial consortia from sites with recent exposure to dilbit contamination. Published by Elsevier B.V.

  15. Brazilian Cerrado soil Actinobacteria ecology.

    PubMed

    Suela Silva, Monique; Naves Sales, Alenir; Teixeira Magalhães-Guedes, Karina; Ribeiro Dias, Disney; Schwan, Rosane Freitas

    2013-01-01

    A total of 2152 Actinobacteria strains were isolated from native Cerrado (Brazilian Savannah) soils located in Passos, Luminárias, and Arcos municipalities (Minas Gerais State, Brazil). The soils were characterised for chemical and microbiological analysis. The microbial analysis led to the identification of nine genera (Streptomyces, Arthrobacter, Rhodococcus, Amycolatopsis, Microbacterium, Frankia, Leifsonia, Nakamurella, and Kitasatospora) and 92 distinct species in both seasons studied (rainy and dry). The rainy season produced a high microbial population of all the aforementioned genera. The pH values of the soil samples from the Passos, Luminárias, and Arcos regions varied from 4.1 to 5.5. There were no significant differences in the concentrations of phosphorus, magnesium, and organic matter in the soils among the studied areas. Samples from the Arcos area contained large amounts of aluminium in the rainy season and both hydrogen and aluminium in the rainy and dry seasons. The Actinobacteria population seemed to be unaffected by the high levels of aluminium in the soil. Studies are being conducted to produce bioactive compounds from Actinobacteria fermentations on different substrates. The present data suggest that the number and diversity of Actinobacteria spp. in tropical soils represent a vast unexplored resource for the biotechnology of bioactives production.

  16. Brazilian Cerrado Soil Actinobacteria Ecology

    PubMed Central

    Suela Silva, Monique; Naves Sales, Alenir; Teixeira Magalhães-Guedes, Karina; Ribeiro Dias, Disney; Schwan, Rosane Freitas

    2013-01-01

    A total of 2152 Actinobacteria strains were isolated from native Cerrado (Brazilian Savannah) soils located in Passos, Luminárias, and Arcos municipalities (Minas Gerais State, Brazil). The soils were characterised for chemical and microbiological analysis. The microbial analysis led to the identification of nine genera (Streptomyces, Arthrobacter, Rhodococcus, Amycolatopsis, Microbacterium, Frankia, Leifsonia, Nakamurella, and Kitasatospora) and 92 distinct species in both seasons studied (rainy and dry). The rainy season produced a high microbial population of all the aforementioned genera. The pH values of the soil samples from the Passos, Luminárias, and Arcos regions varied from 4.1 to 5.5. There were no significant differences in the concentrations of phosphorus, magnesium, and organic matter in the soils among the studied areas. Samples from the Arcos area contained large amounts of aluminium in the rainy season and both hydrogen and aluminium in the rainy and dry seasons. The Actinobacteria population seemed to be unaffected by the high levels of aluminium in the soil. Studies are being conducted to produce bioactive compounds from Actinobacteria fermentations on different substrates. The present data suggest that the number and diversity of Actinobacteria spp. in tropical soils represent a vast unexplored resource for the biotechnology of bioactives production. PMID:23555089

  17. A protein secretion system linked to bacteroidete gliding motility and pathogenesis

    PubMed Central

    Sato, Keiko; Naito, Mariko; Yukitake, Hideharu; Hirakawa, Hideki; Shoji, Mikio; McBride, Mark J.; Rhodes, Ryan G.; Nakayama, Koji

    2009-01-01

    Porphyromonas gingivalis secretes strong proteases called gingipains that are implicated in periodontal pathogenesis. Protein secretion systems common to other Gram-negative bacteria are lacking in P. gingivalis, but several proteins, including PorT, have been linked to gingipain secretion. Comparative genome analysis and genetic experiments revealed 11 additional proteins involved in gingipain secretion. Six of these (PorK, PorL, PorM, PorN, PorW, and Sov) were similar in sequence to Flavobacterium johnsoniae gliding motility proteins, and two others (PorX and PorY) were putative two-component system regulatory proteins. Real-time RT-PCR analysis revealed that porK, porL, porM, porN, porP, porT, and sov were down-regulated in P. gingivalis porX and porY mutants. Disruption of the F. johnsoniae porT ortholog resulted in defects in motility, chitinase secretion, and translocation of a gliding motility protein, SprB adhesin, to the cell surface, providing a link between a unique protein translocation system and a motility apparatus in members of the Bacteroidetes phylum. PMID:19966289

  18. Differential Regulation of Duplicate Light-Dependent Protochlorophyllide Oxidoreductases in the Diatom Phaeodactylum tricornutum

    PubMed Central

    Hunsperger, Heather M.; Cattolico, Rose Ann

    2016-01-01

    Background Diatoms (Bacilliariophyceae) encode two light-dependent protochlorophyllide oxidoreductases (POR1 and POR2) that catalyze the penultimate step of chlorophyll biosynthesis in the light. Algae live in dynamic environments whose changing light levels induce photoacclimative metabolic shifts, including altered cellular chlorophyll levels. We hypothesized that the two POR proteins may be differentially adaptive under varying light conditions. Using the diatom Phaeodactylum tricornutum as a test system, differences in POR protein abundance and por gene expression were examined when this organism was grown on an alternating light:dark cycles at different irradiances; exposed to continuous light; and challenged by a significant decrease in light availability. Results For cultures maintained on a 12h light: 12h dark photoperiod at 200μE m−2 s−1 (200L/D), both por genes were up-regulated during the light and down-regulated in the dark, though por1 transcript abundance rose and fell earlier than that of por2. Little concordance occurred between por1 mRNA and POR1 protein abundance. In contrast, por2 mRNA and POR2 protein abundances followed similar diurnal patterns. When 200L/D P. tricornutum cultures were transferred to continuous light (200L/L), the diurnal regulatory pattern of por1 mRNA abundance but not of por2 was disrupted, and POR1 but not POR2 protein abundance dropped steeply. Under 1200μE m−2 s−1 (1200L/D), both por1 mRNA and POR1 protein abundance displayed diurnal oscillations. A compromised diel por2 mRNA response under 1200L/D did not impact the oscillation in POR2 abundance. When cells grown at 1200L/D were then shifted to 50μE m−2 s−1 (50L/D), por1 and por2 mRNA levels decreased swiftly but briefly upon light reduction. Thereafter, POR1 but not POR2 protein levels rose significantly in response to this light stepdown. Conclusion Given the sensitivity of diatom por1/POR1 to real-time light cues and adherence of por2/POR2 regulation to

  19. Population pharmacokinetic approach to evaluate the effect of CYP2D6, CYP3A, ABCB1, POR and NR1I2 genotypes on donepezil clearance

    PubMed Central

    Noetzli, Muriel; Guidi, Monia; Ebbing, Karsten; Eyer, Stephan; Wilhelm, Laurence; Michon, Agnès; Thomazic, Valérie; Stancu, Ioana; Alnawaqil, Abdel-Messieh; Bula, Christophe; Zumbach, Serge; Gaillard, Michel; Giannakopoulos, Panteleimon; von Gunten, Armin; Csajka, Chantal; Eap, Chin B

    2014-01-01

    Aims A large interindividual variability in plasma concentrations has been reported in patients treated with donepezil, the most frequently prescribed antidementia drug. We aimed to evaluate clinical and genetic factors influencing donepezil disposition in a patient population recruited from a naturalistic setting. Methods A population pharmacokinetic study was performed including data from 129 older patients treated with donepezil. The patients were genotyped for common polymorphisms in the metabolic enzymes CYP2D6 and CYP3A, in the electron transferring protein POR and the nuclear factor NR1I2 involved in CYP activity and expression, and in the drug transporter ABCB1. Results The average donepezil clearance was 7.3 l h−1 with a 30% interindividual variability. Gender markedly influenced donepezil clearance (P < 0.01). Functional alleles of CYP2D6 were identified as unique significant genetic covariate for donepezil clearance (P < 0.01), with poor metabolizers and ultrarapid metabolizers demonstrating, respectively, a 32% slower and a 67% faster donepezil elimination compared with extensive metabolizers. Conclusion The pharmacokinetic parameters of donepezil were well described by the developed population model. Functional alleles of CYP2D6 significantly contributed to the variability in donepezil disposition in the patient population and should be further investigated in the context of individual dose optimization to improve clinical outcome and tolerability of the treatment. PMID:24433464

  20. Population pharmacokinetic approach to evaluate the effect of CYP2D6, CYP3A, ABCB1, POR and NR1I2 genotypes on donepezil clearance.

    PubMed

    Noetzli, Muriel; Guidi, Monia; Ebbing, Karsten; Eyer, Stephan; Wilhelm, Laurence; Michon, Agnès; Thomazic, Valérie; Stancu, Ioana; Alnawaqil, Abdel-Messieh; Bula, Christophe; Zumbach, Serge; Gaillard, Michel; Giannakopoulos, Panteleimon; von Gunten, Armin; Csajka, Chantal; Eap, Chin B

    2014-07-01

    A large interindividual variability in plasma concentrations has been reported in patients treated with donepezil, the most frequently prescribed antidementia drug. We aimed to evaluate clinical and genetic factors influencing donepezil disposition in a patient population recruited from a naturalistic setting. A population pharmacokinetic study was performed including data from 129 older patients treated with donepezil. The patients were genotyped for common polymorphisms in the metabolic enzymes CYP2D6 and CYP3A, in the electron transferring protein POR and the nuclear factor NR1I2 involved in CYP activity and expression, and in the drug transporter ABCB1. The average donepezil clearance was 7.3 l h(-1) with a 30% interindividual variability. Gender markedly influenced donepezil clearance (P < 0.01). Functional alleles of CYP2D6 were identified as unique significant genetic covariate for donepezil clearance (P < 0.01), with poor metabolizers and ultrarapid metabolizers demonstrating, respectively, a 32% slower and a 67% faster donepezil elimination compared with extensive metabolizers. The pharmacokinetic parameters of donepezil were well described by the developed population model. Functional alleles of CYP2D6 significantly contributed to the variability in donepezil disposition in the patient population and should be further investigated in the context of individual dose optimization to improve clinical outcome and tolerability of the treatment. © 2014 The British Pharmacological Society.

  1. Differential regulation of duplicate light-dependent protochlorophyllide oxidoreductases in the diatom Phaeodactylum tricornutum

    DOE PAGES

    Hunsperger, Heather M.; Ford, Christopher J.; Miller, James S.; ...

    2016-07-01

    Diatoms (Bacilliariophyceae) encode two light-dependent protochlorophyllide oxidoreductases (POR1 and POR2) that catalyze the penultimate step of chlorophyll biosynthesis in the light. Algae live in dynamic environments whose changing light levels induce photoacclimative metabolic shifts, including altered cellular chlorophyll levels. We hypothesized that the two POR proteins may be differentially adaptive under varying light conditions. Using the diatom Phaeodactylum tricornutum as a test system, differences in POR protein abundance and por gene expression were examined when this organism was grown on an alternating light:dark cycles at different irradiances; exposed to continuous light; and challenged by a significant decrease in light availability.more » As a result, for cultures maintained on a 12h light: 12h dark photoperiod at 200μEm –2 s –1 ( 200L/D), both por genes were up-regulated during the light and down-regulated in the dark, though por1 transcript abundance rose and fell earlier than that of por2. Little concordance occurred between por1 mRNA and POR1 protein abundance. In contrast, por2 mRNA and POR2 protein abundances followed similar diurnal patterns. When 200L/D P. tricornutum cultures were transferred to continuous light ( 200L/L), the diurnal regulatory pattern of por1 mRNA abundance but not of por2 was disrupted, and POR1 but not POR2 protein abundance dropped steeply. Under 1200μEm –2 s –1 ( 1200L/D), both por1 mRNA and POR1 protein abundance displayed diurnal oscillations. A compromised diel por2 mRNA response under 1200L/D did not impact the oscillation in POR2 abundance. When cells grown at 1200L/D were then shifted to 50μEm –2 s –1 (50L/D), por1 and por2 mRNA levels decreased swiftly but briefly upon light reduction. Thereafter, POR1 but not POR2 protein levels rose significantly in response to this light stepdown.« less

  2. A study on the stability of O{sub 2} on oxometalloporphyrins by the first principles calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubota, Yoshiyuki; Escano, Mary Clare Sison; Dy, Eben Sy

    2007-05-21

    The authors investigated the interaction of oxometalloporphyrins (MO(por))--specifically, MoO(por), WO(por), TiO(por), VO(por), and CrO(por)--with O{sub 2} by using first principles calculations. MoO(por) and WO(por) undergo reactions with O{sub 2}; on the other hand, TiO(por), VO(por), and CrO(por) do not. Next, they compared the interaction of MoO(por) and WO(por) with O{sub 2}. Activation barriers for the reactions of MoO(por) and WO(por) with a side-on O{sub 2} are small. For MoO(por)(O{sub 2}), the activation barrier for the reverse reaction that liberates O{sub 2} is also small; however, that for WO(por)(O{sub 2}) is large. The experimental results that photoirradiation with visible light ormore » heating of Mo {sup VI}O(tmp)(O{sub 2}) regenerates Mo {sup VI}O(tmp) by liberating O{sub 2} while W {sup VI}O(tmp)(O{sub 2}) does not [J. Tachibana, T. Imamura, and Y. Sasaki, Bull. Chem. Soc. Jpn. 71, 363 (1998)] are explained by the difference in activation barriers of the reverse reactions. This means that bonds formed between the W atom and O{sub 2} are stronger than those between the Mo atom and O{sub 2}. The bond strengths can be explained by differences in the energy levels between the highest occupied molecular orbital of MoO(por) and WO(por), which are mainly formed from the a orbitals of the central metal atom and {pi}{sup *} orbitals of O{sub 2}.« less

  3. Chemical Modification and Detoxification of the Pseudomonas aeruginosa Toxin 2-Heptyl-4-hydroxyquinoline N-Oxide by Environmental and Pathogenic Bacteria.

    PubMed

    Thierbach, Sven; Birmes, Franziska S; Letzel, Matthias C; Hennecke, Ulrich; Fetzner, Susanne

    2017-09-15

    2-Heptyl-4-hydroxyquinoline N-oxide (HQNO), a major secondary metabolite and virulence factor produced by the opportunistic pathogen Pseudomonas aeruginosa, acts as a potent inhibitor of respiratory electron transfer and thereby affects host cells as well as microorganisms. In this study, we demonstrate the previously unknown capability of environmental and pathogenic bacteria to transform and detoxify this compound. Strains of Arthrobacter and Rhodococcus spp. as well as Staphylococcus aureus introduced a hydroxyl group at C-3 of HQNO, whereas Mycobacterium abscessus, M. fortuitum, and M. smegmatis performed an O-methylation, forming 2-heptyl-1-methoxy-4-oxoquinoline as the initial metabolite. Bacillus spp. produced the glycosylated derivative 2-heptyl-1-(β-d-glucopyranosydyl)-4-oxoquinoline. Assaying the effects of these metabolites on cellular respiration and on quinol oxidase activity of membrane fractions revealed that their EC 50 values were up to 2 orders of magnitude higher than that of HQNO. Furthermore, cellular levels of reactive oxygen species were significantly lower in the presence of the metabolites than under the influence of HQNO. Therefore, the capacity to transform HQNO should lead to a competitive advantage against P. aeruginosa. Our findings contribute new insight into the metabolic diversity of bacteria and add another layer of complexity to the metabolic interactions which likely contribute to shaping polymicrobial communities comprising P. aeruginosa.

  4. Metabolomic tools for secondary metabolite discovery from marine microbial symbionts.

    PubMed

    Macintyre, Lynsey; Zhang, Tong; Viegelmann, Christina; Martinez, Ignacio Juarez; Cheng, Cheng; Dowdells, Catherine; Abdelmohsen, Usama Ramadam; Gernert, Christine; Hentschel, Ute; Edrada-Ebel, RuAngelie

    2014-06-05

    Marine invertebrate-associated symbiotic bacteria produce a plethora of novel secondary metabolites which may be structurally unique with interesting pharmacological properties. Selection of strains usually relies on literature searching, genetic screening and bioactivity results, often without considering the chemical novelty and abundance of secondary metabolites being produced by the microorganism until the time-consuming bioassay-guided isolation stages. To fast track the selection process, metabolomic tools were used to aid strain selection by investigating differences in the chemical profiles of 77 bacterial extracts isolated from cold water marine invertebrates from Orkney, Scotland using liquid chromatography-high resolution mass spectrometry (LC-HRMS) and nuclear magnetic resonance (NMR) spectroscopy. Following mass spectrometric analysis and dereplication using an Excel macro developed in-house, principal component analysis (PCA) was employed to differentiate the bacterial strains based on their chemical profiles. NMR 1H and correlation spectroscopy (COSY) were also employed to obtain a chemical fingerprint of each bacterial strain and to confirm the presence of functional groups and spin systems. These results were then combined with taxonomic identification and bioassay screening data to identify three bacterial strains, namely Bacillus sp. 4117, Rhodococcus sp. ZS402 and Vibrio splendidus strain LGP32, to prioritize for scale-up based on their chemically interesting secondary metabolomes, established through dereplication and interesting bioactivities, determined from bioassay screening.

  5. Ex situ bioremediation of oil-contaminated soil.

    PubMed

    Lin, Ta-Chen; Pan, Po-Tsen; Cheng, Sheng-Shung

    2010-04-15

    An innovative bioprocess method, Systematic Environmental Molecular Bioremediation Technology (SEMBT) that combines bioaugmentation and biostimulation with a molecular monitoring microarray biochip, was developed as an integrated bioremediation technology to treat S- and T-series biopiles by using the landfarming operation and reseeding process to enhance the bioremediation efficiency. After 28 days of the bioremediation process, diesel oil (TPH(C10-C28)) and fuel oil (TPH(C10-C40)) were degraded up to approximately 70% and 63% respectively in the S-series biopiles. When the bioaugmentation and biostimulation were applied in the beginning of bioremediation, the microbial concentration increased from approximately 10(5) to 10(6) CFU/g dry soil along with the TPH biodegradation. Analysis of microbial diversity in the contaminated soils by microarray biochips revealed that Acinetobacter sp. and Pseudomonas aeruginosa were the predominant groups in indigenous consortia, while the augmented consortia were Gordonia alkanivorans and Rhodococcus erythropolis in both series of biopiles during bioremediation. Microbial respiration as influenced by the microbial activity reflected directly the active microbial population and indirectly the biodegradation of TPH. Field experimental results showed that the residual TPH concentration in the complex biopile was reduced to less than 500 mg TPH/kg dry soil. The above results demonstrated that the SEMBT technology is a feasible alternative to bioremediate the oil-contaminated soil. Crown Copyright 2009. Published by Elsevier B.V. All rights reserved.

  6. Evaluation of the Andromas Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry System for Identification of Aerobically Growing Gram-Positive Bacilli

    PubMed Central

    Farfour, E.; Leto, J.; Barritault, M.; Barberis, C.; Meyer, J.; Dauphin, B.; Le Guern, A.-S.; Leflèche, A.; Badell, E.; Guiso, N.; Leclercq, A.; Le Monnier, A.; Lecuit, M.; Rodriguez-Nava, V.; Bergeron, E.; Raymond, J.; Vimont, S.; Bille, E.; Carbonnelle, E.; Guet-Revillet, H.; Lécuyer, H.; Beretti, J.-L.; Vay, C.; Berche, P.; Ferroni, A.; Nassif, X.

    2012-01-01

    Matrix-associated laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) is a rapid and simple microbial identification method. Previous reports using the Biotyper system suggested that this technique requires a preliminary extraction step to identify Gram-positive rods (GPRs), a technical issue that may limit the routine use of this technique to identify pathogenic GPRs in the clinical setting. We tested the accuracy of the MALDI-TOF MS Andromas strategy to identify a set of 659 GPR isolates representing 16 bacterial genera and 72 species by the direct colony method. This bacterial collection included 40 C. diphtheriae, 13 C. pseudotuberculosis, 19 C. ulcerans, and 270 other Corynebacterium isolates, 32 L. monocytogenes and 24 other Listeria isolates, 46 Nocardia, 75 Actinomyces, 18 Actinobaculum, 11 Propionibacterium acnes, 18 Propionibacterium avidum, 30 Lactobacillus, 21 Bacillus, 2 Rhodococcus equi, 2 Erysipelothrix rhusiopathiae, and 38 other GPR isolates, all identified by reference techniques. Totals of 98.5% and 1.2% of non-Listeria GPR isolates were identified to the species or genus level, respectively. Except for L. grayi isolates that were identified to the species level, all other Listeria isolates were identified to the genus level because of highly similar spectra. These data demonstrate that rapid identification of pathogenic GPRs can be obtained without an extraction step by MALDI-TOF mass spectrometry. PMID:22692743

  7. Efflux pump-deficient mutants as a platform to search for microbes that produce antibiotics

    PubMed Central

    Molina-Santiago, Carlos; Udaondo, Zulema; Daddaoua, Abdelali; Roca, Amalia; Martín, Jesús; Pérez-Victoria, Ignacio; Reyes, Fernando; Ramos, Juan-Luis

    2015-01-01

    Pseudomonas putida DOT-T1E-18 is a strain deficient in the major antibiotic efflux pump (TtgABC) that exhibits an overall increased susceptibility to a wide range of drugs when compared with the wild-type strain. We used this strain as a platform to search for microbes able to produce antibiotics that inhibit growth. A collection of 2400 isolates from soil, sediments and water was generated and a drop assay developed to identify, via growth inhibition halos, strains that prevent the growth of DOT-T1E-18 on solid Luria–Bertani plates. In this study, 35 different isolates that produced known and unknown antibiotics were identified. The most potent inhibitor of DOT-T1E-18 growth was an isolate named 250J that, through multi-locus sequence analysis, was identified as a Pseudomonas sp. strain. Culture supernatants of 250J contain four different xantholysins that prevent growth of Gram-positive bacteria, Gram-negative and fungi. Two of the xantholysins were produced in higher concentrations and purified. Xantholysin A was effective against Bacillus, Lysinibacillus and Rhodococcus strains, and the effect against these microbes was enhanced when used in combination with other antibiotics such as ampicillin, gentamicin and kanamycin. Xantholysin C was also efficient against Gram-positive bacteria and showed an interesting antimicrobial effect against Pseudomonas strains, and a synergistic inhibitory effect with ampicillin, chloramphenicol and gentamicin. PMID:26059350

  8. Bacteriophages of wastewater foaming-associated filamentous Gordonia reduce host levels in raw activated sludge

    PubMed Central

    Liu, Mei; Gill, Jason J.; Young, Ry; Summer, Elizabeth J.

    2015-01-01

    Filamentous bacteria are a normal and necessary component of the activated sludge wastewater treatment process, but the overgrowth of filamentous bacteria results in foaming and bulking associated disruptions. Bacteriophages, or phages, were investigated for their potential to reduce the titer of foaming bacteria in a mixed-microbial activated sludge matrix. Foaming-associated filamentous bacteria were isolated from activated sludge of a commercial wastewater treatment plan and identified as Gordonia species by 16S rDNA sequencing. Four representative phages were isolated that target G. malaquae and two un-named Gordonia species isolates. Electron microscopy revealed the phages to be siphophages with long tails. Three of the phages - GordTnk2, Gmala1, and GordDuk1 - had very similar ~76 kb genomes, with >93% DNA identity. These genomes shared limited synteny with Rhodococcus equi phage ReqiDocB7 and Gordonia phage GTE7. In contrast, the genome of phage Gsput1 was smaller (43 kb) and was not similar enough to any known phage to be placed within an established phage type. Application of these four phages at MOIs of 5–15 significantly reduced Gordonia host levels in a wastewater sludge model by approximately 10-fold as compared to non-phage treated reactors. Phage control was observed for nine days after treatment. PMID:26349678

  9. Twenty Species of Hypobarophilic Bacteria Recovered from Diverse Soils Exhibit Growth under Simulated Martian Conditions at 0.7 kPa.

    PubMed

    Schuerger, Andrew C; Nicholson, Wayne L

    2016-12-01

    Bacterial growth at low pressure is a new research area with implications for predicting microbial activity in clouds and the bulk atmosphere on Earth and for modeling the forward contamination of planetary surfaces like Mars. Here, we describe experiments on the recovery and identification of 20 species of bacterial hypobarophiles (def., growth under hypobaric conditions of approximately 1-2 kPa) in 10 genera capable of growth at 0.7 kPa. Hypobarophilic bacteria, but not archaea or fungi, were recovered from diverse soils, and high numbers of hypobarophiles were recovered from Arctic and Siberian permafrost soils. Isolates were identified through 16S rRNA sequencing to belong to the genera Bacillus, Carnobacterium, Clostridium, Cryobacterium, Exiguobacterium, Paenibacillus, Rhodococcus, Streptomyces, and Trichococcus. The highest population of culturable hypobarophilic bacteria (5.1 × 10 4 cfu/g) was recovered from Colour Lake soils from Axel Heiberg Island in the Canadian Arctic. In addition, we extend the number of hypobarophilic species in the genus Serratia to six type-strains that include S. ficaria, S. fonticola, S. grimesii, S. liquefaciens, S. plymuthica, and S. quinivorans. Microbial growth at 0.7 kPa suggests that pressure alone will not be growth-limiting on the martian surface, or in Earth's atmosphere up to an altitude of 34 km. Key Words: Barophile-Extremophilic microorganisms-Habitability-Mars-Special Region. Astrobiology 16, 964-976.

  10. Lipid membrane modulation and pigmentation: A cryoprotection mechanism in Arctic pigmented bacteria.

    PubMed

    Singh, Archana; Krishnan, Kottekattu P; Prabaharan, Dharmar; Sinha, Rupesh K

    2017-09-01

    The present study aims to address the effect of gradual change in temperature (15-4 °C) followed by freeze-thaw on pigmented bacterial strains - Leeuwenhoekiella aequorea, Pseudomonas pelagia, Halomonas boliviensis, Rhodococcus yunnanensis, and Algoriphagus ratkwoskyi, isolated from Kongsfjorden (an Arctic fjord) to understand their survival in present climate change scenario. The total cell count and retrievability of the isolates were not affected despite the variation in temperature. In all the isolates, the saturated fatty acids, particularly stearic and palmitic acid were predominant at higher temperature, while at 4 °C, the unsaturated fatty acids, primarily cis-10-pentadecenoic, palmitoleic, and oleic acid, were major constituents, confirming homeoviscous adaptation. Even after freeze-thaw, the unsaturated fatty acid composition was retained in all the isolates except A. ratkwoskyi. The increase in unsaturated fatty acids was at the expense of their saturated analogs, probably by desaturase activity. The major pigment in the isolates resembled Zeaxanthin, whose concentration was found to be 26-65% higher after freeze-thaw, suggesting its vital role as a cryoprotective agent in regulating membrane fluidity. Such experimental simulations related to freeze-thaw in polar bacterial isolates are helpful in understanding the physiological plasticity adaptations, which could be critical for survival in harsh and rapidly changing polar environments. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Recovery of metallo-tolerant and antibiotic resistant psychrophilic bacteria from Siachen glacier, Pakistan.

    PubMed

    Rafiq, Muhammad; Hayat, Muhammad; Anesio, Alexandre M; Jamil, Syed Umair Ullah; Hassan, Noor; Shah, Aamer Ali; Hasan, Fariha

    2017-01-01

    Cultureable bacterial diversity of previously unexplored Siachen glacier, Pakistan, was studied. Out of 50 isolates 33 (66%) were Gram negative and 17 (34%) Gram positive. About half of the isolates were pigment producers and were able to grow at 4-37°C. 16S rRNA gene sequences revealed Gram negative bacteria dominated by Proteobacteria (especially γ-proteobacteria and β-proteobacteria) and Flavobacteria. The genus Pseudomonas (51.51%, 17) was dominant among γ- proteobacteria. β-proteobacteria constituted 4 (12.12%) Alcaligenes and 4 (12.12%) Janthinobacterium strains. Among Gram positive bacteria, phylum Actinobacteria, Rhodococcus (23.52%, 4) and Arthrobacter (23.52%, 4) were the dominating genra. Other bacteria belonged to Phylum Firmicutes with representative genus Carnobacterium (11.76%, 2) and 4 isolates represented 4 genera Bacillus, Lysinibacillus, Staphylococcus and Planomicrobium. Most of the Gram negative bacteria were moderate halophiles, while most of the Gram positives were extreme halophiles and were able to grow up to 6.12 M of NaCl. More than 2/3 of the isolates showed antimicrobial activity against multidrug resistant S. aureus, E. coli, Klebsiella pneumonia, Enterococcus faecium, Candida albicans, Aspergillus flavus and Aspergillus fumigatus and ATCC strains. Gram positive bacteria (94.11%) were more resistant to heavy metals as compared to Gram negative (78.79%) and showed maximum tolerance against iron and least tolerance against mercury.

  12. Characterization of micro-organisms isolated from dairy industry after cleaning and fogging disinfection with alkyl amine and peracetic acid.

    PubMed

    Bore, E; Langsrud, S

    2005-01-01

    To characterize micro-organisms isolated from Norwegian dairy production plants after cleaning and fogging disinfection with alkyl amine/peracetic acid and to indicate reasons for survival. Microbial samples were collected from five dairy plants after cleaning and fogging disinfection. Isolates from two of these production plants, which used fogging with alkylamino acetate (plant A), and peracetic acid (plant B), were chosen for further characterization. The sequence of the 16S ribosomal DNA, fatty acid analysis and biochemical characteristics were used to identify isolates. Three isolates identified as Rhodococcus erythropolis, Methylobacterium rhodesianum and Rhodotorula mucilaginosa were isolated from plant A and one Sphingomonas sp. and two M. extorquens from plant B. Different patterns of resistance to seven disinfectants in a bactericidal suspension test and variable degree of attachment to stainless steel were found. The strains with higher disinfectant resistance showed lower degree of attachment than susceptible strains. The study identifies and characterizes micro-organisms present after cleaning and fogging disinfection. Both surface attachment and resistance were shown as possible reasons for the presence of the isolates after cleaning and disinfection. These results contribute to the awareness of disinfectant resistance as well as attachment as mechanisms of survival in dairy industry. It also strengthens the argument of frequent alternation of disinfectants in the food processing industry to avoid the establishment of resistant house strains.

  13. Activation of protein kinase C by mycobacterial cord factor, trehalose 6-monomycolate, resulting in tumor necrosis factor-alpha release in mouse lung tissues.

    PubMed

    Sueoka, E; Nishiwaki, S; Okabe, S; Iida, N; Suganuma, M; Yano, I; Aoki, K; Fujiki, H

    1995-08-01

    Cord factors are mycoloyl glycolipids in cell walls of bacteria belonging to Actinomycetales, such as Mycobacterium, Nocardia and Rhodococcus. They induce granuloma formation in the lung and interstitial pneumonitis, associated with production of macrophage-derived cytokines. We studied how cord factors induce biological activities in the cells. Cord factors isolated from M. tuberculosis, trehalose 6-monomycolate (mTMM) and trehalose 6,6'-dimycolate (mTDM), enhanced protein kinase C (PKC) activation in the presence of phosphatidylserine (PtdSer), diacylglycerol and Ca2+, and mTMM activated PKC alpha more strongly than PKC beta or gamma under the same assay conditions. Kinetic studies of mTMM in response to PKC activation revealed that mTMM increased the apparent affinity of PKC to Ca2+ in the presence of both PtdSer and diolein. Although this is similar to observations with unsaturated fatty acids, such as arachidonic acid, mTMM was synergistic with PtdSer for PKC activation, but arachidonic acid was not. mTMM was also different as regards PKC activation, as phorbol ester was. A single i.p. administration of mTMM to mouse induced tumor necrosis factor-alpha (TNF-alpha) in serum and in the lung, which is a unique target tissue of cord factors. Based on our recent finding that TNF-alpha is an endogenous tumor promoter, the correlation between lung cancer and pulmonary tuberculosis is discussed.

  14. Effects of bovine milk lactoperoxidase system on some bacteria.

    PubMed

    Cankaya, M; Sişecioğlu, M; Bariş, O; Güllüce, M; Ozdemir, H

    2010-01-01

    Bovine lactoperoxidase (LPO) was purified from skimmed milk using amberlite CG-50-H+ resin, CM sephadex C-50 ion-exchange chromatography, and sephadex G-100 gel filtration chromatography. Lactoperoxidase was purified 20.45-fold with a yield of 28.8%. Purity of enzyme checked by sodium dodecyl sulphate-polyacrylamide gel electrophoresis method and a single band was observed. Km was 0.25 mM at 20 degrees C, Vmax value was 7.95 micromol/ml min at 20 degrees C (pH 6.0). Antibacterial study was done by disk diffusion method of Kir-by-Bauer using Mueller-Hinton agar medium with slight modification. Bovine LPO showed high antibacterial activity in 100 mM thiocyanate-100 mM H2O2 medium for some bacteria (Brevibacillus centrosaurus, B. choshinensis, B. lyticum, Cedecea davisae, Chryseobacterium indoltheticum, Clavibacter michiganense pv. insidiosum, Kocuria erythromyxa, K. kristinae, K. rosea, K. varians, Paenibacillus validus, Pseudomonas syringae pv. populans, Ralstonia pickettii, Rhodococcus wratislaviensis, Serratia fonticola, Streptomyces violaceusniger, Vibrio cholerae-nonO1) respectively, and compared with well known antibacterial substances (levofloxacin, netilmicin). LPO system has inhibition effects on all type bacteria and concentration is really important such as LPO-100 mM thiocyanate-100 mM H2O2 system was proposed as an effective agent against many factors causing several diseases.

  15. Characterization of key triacylglycerol biosynthesis processes in rhodococci

    DOE PAGES

    Amara, Sawsan; Seghezzi, Nicolas; Otani, Hiroshi; ...

    2016-04-29

    In this study, oleaginous microorganisms have considerable potential for biofuel and commodity chemical production. Under nitrogen-limitation, Rhodococcus jostii RHA1 grown on benzoate, an analog of lignin depolymerization products, accumulated triacylglycerols (TAGs) to 55% of its dry weight during transition to stationary phase, with the predominant fatty acids being C16:0 and C17:0. Transcriptomic analyses of RHA1 grown under conditions of N-limitation and N-excess revealed 1,826 dysregulated genes. Genes whose transcripts were more abundant under N-limitation included those involved in ammonium assimilation, benzoate catabolism, fatty acid biosynthesis and the methylmalonyl-CoA pathway. Of the 16 atf genes potentially encoding diacylglycerol O-acyltransferases, atf8 transcriptsmore » were the most abundant during N-limitation (~50-fold more abundant than during N-excess). Consistent with Atf8 being a physiological determinant of TAG accumulation, a Δ atf8 mutant accumulated 70% less TAG than wild-type RHA1 while atf8 overexpression increased TAG accumulation 20%. Genes encoding type-2 phosphatidic acid phosphatases were not significantly expressed. By contrast, three genes potentially encoding phosphatases of the haloacid dehalogenase superfamily and that cluster with, or are fused with other Kennedy pathway genes were dysregulated. Overall, these findings advance our understanding of TAG metabolism in mycolic acid-containing bacteria and provide a framework to engineer strains for increased TAG production.« less

  16. Characterization of key triacylglycerol biosynthesis processes in rhodococci

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amara, Sawsan; Seghezzi, Nicolas; Otani, Hiroshi

    In this study, oleaginous microorganisms have considerable potential for biofuel and commodity chemical production. Under nitrogen-limitation, Rhodococcus jostii RHA1 grown on benzoate, an analog of lignin depolymerization products, accumulated triacylglycerols (TAGs) to 55% of its dry weight during transition to stationary phase, with the predominant fatty acids being C16:0 and C17:0. Transcriptomic analyses of RHA1 grown under conditions of N-limitation and N-excess revealed 1,826 dysregulated genes. Genes whose transcripts were more abundant under N-limitation included those involved in ammonium assimilation, benzoate catabolism, fatty acid biosynthesis and the methylmalonyl-CoA pathway. Of the 16 atf genes potentially encoding diacylglycerol O-acyltransferases, atf8 transcriptsmore » were the most abundant during N-limitation (~50-fold more abundant than during N-excess). Consistent with Atf8 being a physiological determinant of TAG accumulation, a Δ atf8 mutant accumulated 70% less TAG than wild-type RHA1 while atf8 overexpression increased TAG accumulation 20%. Genes encoding type-2 phosphatidic acid phosphatases were not significantly expressed. By contrast, three genes potentially encoding phosphatases of the haloacid dehalogenase superfamily and that cluster with, or are fused with other Kennedy pathway genes were dysregulated. Overall, these findings advance our understanding of TAG metabolism in mycolic acid-containing bacteria and provide a framework to engineer strains for increased TAG production.« less

  17. Bioprospection of actinobacteria derived from freshwater sediments for their potential to produce antimicrobial compounds.

    PubMed

    Zothanpuia; Passari, Ajit Kumar; Leo, Vincent Vineeth; Chandra, Preeti; Kumar, Brijesh; Nayak, Chandra; Hashem, Abeer; Abd Allah, Elsayed Fathi; Alqarawi, Abdulaziz A; Singh, Bhim Pratap

    2018-05-05

    Actinobacteria from freshwater habitats have been explored less than from other habitats in the search for compounds of pharmaceutical value. This study highlighted the abundance of actinobacteria from freshwater sediments of two rivers and one lake, and the isolates were studied for their ability to produce antimicrobial bioactive compounds. 16S rRNA gene sequencing led to the identification of 84 actinobacterial isolates separated into a common genus (Streptomyces) and eight rare genera (Nocardiopsis, Saccharopolyspora, Rhodococcus, Prauserella, Amycolatopsis, Promicromonospora, Kocuria and Micrococcus). All strains that showed significant inhibition potentials were found against Gram-positive, Gram-negative and yeast pathogens. Further, three biosynthetic genes, polyketide synthases type II (PKS II), nonribosomal peptide synthetases (NRPS) and aminodeoxyisochorismate synthase (phzE), were detected in 38, 71 and 29% of the strains, respectively. Six isolates based on their antimicrobial potentials were selected for the detection and quantification of standard antibiotics using ultra performance liquid chromatography (UPLC-ESI-MS/MS) and volatile organic compounds (VOCs) using gas chromatography mass spectrometry (GC/MS). Four antibiotics (fluconazole, trimethoprim, ketoconazole and rifampicin) and 35 VOCs were quantified and determined from the methanolic crude extract of six selected Streptomyces strains. Infectious diseases still remain one of the leading causes of death globally and bacterial infections caused millions of deaths annually. Culturable actinobacteria associated with freshwater lake and river sediments has the prospects for the production of bioactive secondary metabolites.

  18. Microbial lipid production by oleaginous Rhodococci cultured in lignocellulosic autohydrolysates

    DOE PAGES

    Wei, Zhen; Zeng, Guangming; Huang, Fang; ...

    2015-07-04

    Metabolic synthesis of single cell oils (SCOs) for biodiesel application by heterotrophic oleaginous microorganisms is being hampered by the high cost of culture media. This study investigated the possibility of using loblolly pine and sweetgum autohydrolysates as economic feedstocks for microbial lipid production by oleaginous Rhodococcus opacus ( R. opacus) PD630 and DSM 1069. Results revealed that when the substrates were detoxified by the removal of inhibitors (such as HMF—hydroxymethyl-furfural), the two strains exhibited viable growth patterns after a short adaptation/lag phase. R. opacus PD630 accumulated as much as 28.6 % of its cell dry weight (CDW) in lipids whilemore » growing on detoxified sweetgum autohydrolysate (DSAH) that translates to 0.25 g/l lipid yield. The accumulation of SCOs reached the level of oleagenicity in DSM 1069 cells (28.3 % of CDW) as well, while being cultured on detoxified pine autohydrolysate (DPAH), with the maximum lipid yield of 0.31 g/l. The composition of the obtained microbial oils varied depending on the substrates provided. These results indicate that lignocellulosic autohydrolysates can be used as low-cost fermentation substrates for microbial lipid production by wild-type R. opacus species. Furthermore, the variety of applications for aqueous liquors from lignocellulosic pretreatment has been expanded, allowing for the further optimization of the integrated biorefinery.« less

  19. Real-time PCR for rapidly detecting aniline-degrading bacteria in activated sludge.

    PubMed

    Kayashima, Takakazu; Suzuki, Hisako; Maeda, Toshinari; Ogawa, Hiroaki I

    2013-05-01

    We developed a detection method that uses quantitative real-time PCR (qPCR) and the TaqMan system to easily and rapidly assess the population of aniline-degrading bacteria in activated sludge prior to conducting a biodegradability test on a chemical compound. A primer and probe set for qPCR was designed by a multiple alignment of conserved amino acid sequences encoding the large (α) subunit of aniline dioxygenase. PCR amplification tests showed that the designed primer and probe set targeted aniline-degrading strains such as Acidovorax sp., Gordonia sp., Rhodococcus sp., and Pseudomonas putida, thereby suggesting that the developed method can detect a wide variety of aniline-degrading bacteria. There was a strong correlation between the relative copy number of the α-aniline dioxygenase gene in activated sludge obtained with the developed qPCR method and the number of aniline-degrading bacteria measured by the Most Probable Number method, which is the conventional method, and a good correlation with the lag time of the BOD curve for aniline degradation produced by the biodegradability test in activated sludge samples collected from eight different wastewater treatment plants in Japan. The developed method will be valuable for the rapid and accurate evaluation of the activity of inocula prior to conducting a ready biodegradability test. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Isolation and identification of culturable bacteria, capable of heterotrophic growth, from rapid sand filters of drinking water treatment plants.

    PubMed

    Vandermaesen, Johanna; Lievens, Bart; Springael, Dirk

    The microbial community in sand filters (SFs) of drinking water treatment plants (DWTPs) likely contributes to SF functionalities, such as organic carbon removal through heterotrophic metabolism. However, the dynamics and functionality of the SF microbiome and microbial communities in oligotrophic freshwater environments in general, are poorly understood. Therefore, the availability of bacterial strains from these oligotrophic environments is of great interest, but such organisms are currently underrepresented in culture collections. Focusing on heterotrophic carbon metabolism, bacteria were isolated from SFs using conventional media and media that contained SF extracts to mimic the SF environment. The majority of isolates belonged to Betaproteobacteria, more specifically to the families Comamonadaceae (genera Acidovorax, Curvibacter, Hydrogenophaga, Simplicispira, Paucibacter, Pelomonas, Piscinibacter and Rhodoferax) and Oxalobacteraceae (Undibacterium). Additionally, members of Alphaproteobacteria (Mesorhizobium), Gammaproteobacteria (Aeromonas and Perlucidibaca) and Actinobacteria (Rhodococcus and Brachybacterium) were isolated. Several of those genera have only rarely been described, but appear typical inhabitants of oligotrophic freshwater environments. In this regard, the Comamonadaceae isolates are of particular interest. Our study shows that bacteria representative of oligotrophic environments can be isolated using simple isolation procedures. The isolates provide a microbial framework for extending our knowledge of the taxonomy, physiology and functionality of oligotrophic freshwater microbiomes and their interactions with possible invaders. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.