These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

A consideration of thermal effect on cavitation bubble growth  

SciTech Connect

The partial differential equation of heat transfer was solved by finite difference scheme with momentum equation (Rayleigh`s equation) for a spherical bubble. Cavitation bubble growth and development of thermal boundary layer were calculated for hot water, liquid hydrogen, and liquid nitrogen. The result agreed well both with Plesset and Zwick`s result and with Birkhoff`s result for a stepwise pressure change. Bubble growth under a sinusoidal pressure change was also calculated which was more complex and temperature in the boundary layer didn`t change monotonously. The analysis was extended to cluster bubbles. Calculation showed D / Ja (D: thermal diffusivity of liquid and Ja: Jakob number) was a governing parameter to judge whether the bubbles collide each other or not.

Kato, H.; Kayano, H.; Kageyama, Y. [Univ. of Tokyo (Japan). Dept. of Naval Architecture and Ocean Engineering

1994-12-31

2

Analysis of cavitation bubble dynamics in a liquid  

NASA Technical Reports Server (NTRS)

General differential equations governing the dynamics of the cavitation bubbles in a liquid were derived. With the assumption of spherical symmetry the governing equations were simplified. Closed form solutions were obtained for simple cases, and numerical solutions were calculated for complicated ones. The growth and the collapse of the bubble were analyzed, oscillations of the bubbles were studied, and the stability of the cavitation bubbles were investigated. The results show that the cavitation bubbles are unstable, and the oscillation is not sinusoidal.

Fontenot, L. L.; Lee, Y. C.

1971-01-01

3

Effect of dissolved gases in water on acoustic cavitation and bubble growth rate in 0.83 MHz megasonic of interest to wafer cleaning.  

PubMed

Changes in the cavitation intensity of gases dissolved in water, including H2, N2, and Ar, have been established in studies of acoustic bubble growth rates under ultrasonic fields. Variations in the acoustic properties of dissolved gases in water affect the cavitation intensity at a high frequency (0.83 MHz) due to changes in the rectified diffusion and bubble coalescence rate. It has been proposed that acoustic bubble growth rates rapidly increase when water contains a gas, such as hydrogen faster single bubble growth due to rectified diffusion, and a higher rate of coalescence under Bjerknes forces. The change of acoustic bubble growth rate in rectified diffusion has an effect on the damping constant and diffusivity of gas at the acoustic bubble and liquid interface. It has been suggested that the coalescence reaction of bubbles under Bjerknes forces is a reaction determined by the compressibility and density of dissolved gas in water associated with sound velocity and density in acoustic bubbles. High acoustic bubble growth rates also contribute to enhanced cavitation effects in terms of dissolved gas in water. On the other hand, when Ar gas dissolves into water under ultrasound field, cavitation behavior was reduced remarkably due to its lower acoustic bubble growth rate. It is shown that change of cavitation intensity in various dissolved gases were verified through cleaning experiments in the single type of cleaning tool such as particle removal and pattern damage based on numerically calculated acoustic bubble growth rates. PMID:24529613

Kang, Bong-Kyun; Kim, Min-Su; Park, Jin-Goo

2014-07-01

4

Discrete Bubble Modeling for Cavitation Bubbles  

NASA Astrophysics Data System (ADS)

Dynaflow, Inc. has conducted extensive studies on non-spherical bubble dynamics and interactions with solid and free boundaries, vortical flow structures, and other bubbles. From these studies, emerged a simplified Surface Averaged Pressure (SAP) spherical bubble dynamics model and a Lagrangian bubble tracking scheme. In this SAP scheme, the pressure and velocity of the surrounding flow field are averaged on the bubble surface, and then used for the bubble motion and volume dynamics calculations. This model is implemented using the Fluent User Defined Function (UDF) as Discrete Bubble Model (DBM). The Bubble dynamics portion can be solved using an incompressible liquid modified Rayleigh-Plesset equation or a compressible liquid modified Gilmore equation. The Discrete Bubble Model is a very suitable tool for the studies on cavitation inception of foils and turbo machinery, bubble nuclei effects, noise from the bubbles, and can be used in many practical problems in industrial and naval applications associated with flows in pipes, jets, pumps, propellers, ships, and the ocean. Applications to propeller cavitation, wake signatures of waterjet propelled ships, bubble-wake interactions, modeling of cavitating jets, and bubble entrainments around a ship will be presented.

Choi, Jin-Keun; Chahine, Georges; Hsiao, Chao-Tsung

2007-03-01

5

Simulation of heat transfer with the growth and collapse of a cavitation bubble near the heated wall  

NASA Astrophysics Data System (ADS)

The growth and collapse behaviors of a single cavitation bubble near a heated wall and its effect on the heat transfer are numerically investigated. The present study is designed to reveal the mechanism of cavitation enhanced heat transfer from a microscopic perspective. In the simulation, the time-dependent Navier-Stokes equations are solved in an axisymmetric two-dimensional domain. The volume of fluid (VOF) method is employed to track the liquid-gas interface. It is assumed that the gas inside the bubble is compressible vapor, and the surrounding liquid is incompressible water. Mass transfer between two phases is ignored. The calculated bubble profiles were compared to the available experimental data, and a good agreement was obtained. Then, the relationship among bubble motion, flow field and surface heat transfer coefficient was analyzed. On this basis, the effects of such factors as the initial distance between the bubble and the wall, the initial vapor pressure and the initial bubble nucleus size on the heat transfer enhancement are discussed. The present study is helpful to understand the heat transfer phenomenon in presence of cavitation bubble in liquid.

Liu, Bin; Cai, Jun; Li, Fengchao; Huai, Xiulan

2013-08-01

6

Stationary cavitation bubbles forming on a delta wing vortex  

NASA Astrophysics Data System (ADS)

Vortex cavitation forming in the leading-edge vortices of a delta wing was examined to determine how the individual cavitation bubbles incepted, grew, interacted with the underlying vortical flow and produced acoustic tones. The non-cavitating vortical flow over the delta wing was chosen to be similar to those previously reported in the literature. It was found that vortex breakdown was unaffected by the presence of incipient and developed vortex cavitation bubbles in the vortex core. While some cavitation bubbles incepted, grew, and collapsed relatively quickly, others reached an equilibrium position wherein the bubble tip was stationary in the laboratory frame at a particular location along the vortex axis. For a given attack angle, the equilibrium location moved upstream with a reduction in free stream cavitation number. It is shown that the existence of these stationary vortex bubbles is possible when there is a balance between the axial growth of the bubble along the vortex axis and the opposite motion of the axial jetting flow in the vortex core, and only a single equilibrium position is possible along the axially evolving vortex for a given free stream cavitation number. These transient and stationary vortex bubbles emit significant cavitation noise upon inception, growth, and collapse. The spectral content of the noise produced was expected to be related to the interaction of the bubble with the surrounding vortical flow in a manner similar to that reported in previous studies, where sustained tones were similar to the underlying vortex frequency. However, in the present study, the dominant frequency and higher harmonics of the tones occur at a higher frequency than that of the underlying vortex. Hence, it is likely that the highly elongated stationary bubbles have higher-order volume oscillations compared to the two-dimensional radial mode of the vortex cores of vortex cavitation bubbles with much smaller diameter-to-length ratios.

Ganesh, Harish; Schot, Joost; Ceccio, Steven L.

2014-12-01

7

Dynamic behaviors of cavitation bubble for the steady cavitating flow  

Microsoft Academic Search

In this paper, by introducing the flow velocity item into the classical Rayleigh-Plesset dynamic equation, a new equation,\\u000a which does not involve the time term and can describe the motion of cavitation bubble in the steady cavitating flow, has been\\u000a obtained. By solving the new motion equation using Runge-Kutta fourth order method with adaptive step size control, the dynamic\\u000a behaviors

Jun Cai; Xiulan Huai; Xunfeng Li

2009-01-01

8

Sonoluminescence, sonochemistry and bubble dynamics of single bubble cavitation  

NASA Astrophysics Data System (ADS)

The amount of hydroxyl radicals produced from a single cavitation bubble was quantified by terephthalate dosimetry at various frequencies and pressure amplitudes, while the dynamics of the single bubble was observed by stroboscopic and light-scattering methods. Also, sonoluminescence (SL), sonochemiluminescence (SCL) of luminol, and sodium atom emission (Na*) in the cavitation field were observed. The amount of hydroxyl radicals per cycle as well as the intensity of SL was proportional to pressure amplitude at every frequency performed, and it decreased with increasing frequency. When the single bubble was dancing with a decrease in pressure amplitude, however, the amount of hydroxyl radicals was greater than that for the stable bubble at the higher pressure amplitude and did not significantly decrease with frequency. Furthermore, SCL and Na* were detected only under unstable bubble conditions. These results imply that the instability of bubbles significantly enhances sonochemical efficiency for non-volatile substances in liquid phase.

Hatanaka, Shin-ichi

2012-09-01

9

Modeling Heat and Mass Transfer in Bubbly Cavitating Flows and Shock Waves in Cavitating  

E-print Network

Modeling Heat and Mass Transfer in Bubbly Cavitating Flows and Shock Waves in Cavitating Nozzles. #12;v Abstract Two problems are considered in this thesis: the modeling of heat and mass diffusion effects on the dynamics of spherical bubbles, and the computation of unsteady, bubbly cavitating flows

Colonius, Tim

10

Observation of Microhollows Produced by Bubble Cloud Cavitation  

NASA Astrophysics Data System (ADS)

When an ultrasonic wave with sound pressure less than the threshold level of bubble destruction irradiates microbubbles, the microbubbles aggregate by an acoustic radiation force and form bubble clouds. The cavitation of bubble clouds produces a large number of microhollows (microdips) on the flow channel wall. In this study, microhollow production by bubble cloud cavitation is evaluated using a blood vessel phantom made of N-isopropylacrylamide (NIPA) gel. Microbubble dynamics in bubble cloud cavitation is observed by a microscope with a short pulse light emitted diode (LED) light source. Microhollows produced on the flow channel wall are evaluated by a confocal laser microscope with a water immersion objective. It is observed that a mass of low-density bubbles (bubble mist) is formed by bubble cloud cavitation. The spatial correlation between the bubble mist and the microhollows shows the importance of the bubble mist in microhollow production by bubble cloud cavitation.

Yamakoshi, Yoshiki; Miwa, Takashi

2012-07-01

11

Sonoluminescence temperatures during multi-bubble cavitation  

Microsoft Academic Search

Acoustic cavitation-the formation and implosive collapse of\\u000a bubbles-occurs when a liquid is exposed to intense sound. Cavitation can\\u000a produce white noise, sonochemical reactions, erosion of hard materials,\\u000a rupture of living cells and the emission of light, or\\u000a sonoluminescence(1,2). The concentration of energy during the collapse\\u000a is enormous: the energy of an emitted photon can exceed the energy\\u000a density of the

WB McNamara; YT Didenko; KS Suslick

1999-01-01

12

Multiscale Modeling of Cavitating Bubbly Flows  

NASA Astrophysics Data System (ADS)

Modeling of cavitating bubbly flows is challenging due to the wide range of characteristic lengths of the physics at play: from micrometers (e.g., bubble nuclei radius) to meters (e.g., propeller diameter or sheet cavity length). To address this, we present here a multiscale approach which integrates a Discrete Bubble Model for dispersed microbubbles and a level set N-S solver for macro cavities, along with a mesoscale transition model to bridge the two. This approach was implemented in 3DYNAFS^ and used to simulate sheet-to-cloud cavitation over a hydrofoil. The hybrid model captures well the full cavitation process starting from free field nuclei and nucleation from solid surfaces. In low pressure region of the foil small nuclei are seen to grow large and eventually merge to form a large scale sheet cavity. A reentrant jet forms under the cavity, travels upstream, and breaks it, resulting in a bubble cloud of a large amount of microbubbles as the broken pockets shrink and travel downstream. This is in good agreement with experimental observations based of sheet lengths and frequency of lift force oscillation.

Ma, J.; Hsiao, C.-T.; Chahine, G. L.

2013-03-01

13

On thermonuclear processes in cavitation bubbles  

NASA Astrophysics Data System (ADS)

The theoretical and experimental foundations of so-called bubble nuclear fusion are reviewed. In the nuclear fusion process, a spherical cavitation cluster ˜ 10-2 m in diameter is produced of spherical bubbles at the center of a cylindrical chamber filled with deuterated acetone using a focused acoustic field having a resonant frequency of about 20 kHz. The acoustically-forced bubbles effectuate volume oscillations with sharp collapses during the compression stage. At the final stages of collapse, the bubble cluster emits 2.5 MeV D-D fusion neutron pulses at a rate of ˜ 2000 per second. The neutron yield is ˜ 10^5 s -1. In parallel, tritium nuclei are produced at the same yield. It is shown numerically that, for bubbles having sufficient molecular mass, spherical shock waves develop in the center of the cluster and that these spherical shock waves (microshocks) produce converging shocks within the interior bubbles, which focus energy on the centers of the bubbles. When these shock waves reflect from the centers of the bubbles, extreme conditions of temperature ( ˜ 10^8 K) and density ( ˜ 10^4 kg m -3) arise in a (nano)spherical region ( ˜ 10-7 m in size) that last for ˜ 10-12 s, during which time about ten D-D fusion neutrons and tritium nuclei are produced in the region. A paradoxical result in our experiments is that it is bubble cluster (not streamer) cavitation and the sufficiently high molecular mass of (and hence the low sound speed in) D-acetone ( C3D6O) vapor (as compared, for example, to deuterated water D2O) which are necessary conditions for the formation of convergent spherical microshock waves in central cluster bubbles. It is these waves that allow the energy to be sufficiently focused in the nanospherical regions near the bubble centers for fusion events to occur. The criticism to which the concept of 'bubble fusion' has been subjected in the literature, in particular, most recently in Uspekhi Fizicheskikh Nauk (Physics – Uspekhi) journal, is discussed.

Nigmatulin, R. I.; Lahey, R. T., Jr.; Taleyarkhan, R. P.; West, C. D.; Block, R. C.

2014-09-01

14

Cavitation  

SciTech Connect

Cavitation in fluid machines or flow passages can cause loss of performance or material damage due to erosion. This conference reports the results of world-wide research into all aspects of the study of cavitation. Contents include: Cavitation effects in machinery such as pumps, water turbines, propellers and positive displacement machinery; Cavitation in structures, flow passages, valves, flow meters and bearings; Cavitation erosion, noise and instability effects; Cavitation inception; Developed flows; Supercavitating flows and machines; Fundamentals; Bubble dynamics and thermodynamics of cavitation in various fluids; Test facilities and methods of cavitation research and testing; Special instrumentation for cavitation studies, and standards and recommendations for cavitation or erosion.

Not Available

1983-01-01

15

Spatial distribution of acoustic cavitation bubbles at different ultrasound frequencies.  

PubMed

Images of sonoluminescence, sonophotoluminescence and sonochemiluminescence are recorded in order to semi-quantitatively compare the spatial distribution of the cavitation activity at three different ultrasound frequencies (170 kHz, 440 kHz and 700 kHz) and at various acoustic amplitudes. At all ultrasound frequencies investigated, the sonochemically active cavitation zones are much larger than the cavitation zones where sonoluminescence is observed. Also, the sonochemically active bubbles are observed at relatively lower acoustic amplitudes than that required for sonoluminescence bubbles to appear. The acoustic power required for the observation of the initial cavitation bubbles increases with an increase in the ultrasound frequency. The cavitation bubbles are observed relatively uniformly throughout the reactor at 170 kHz whereas they are located away from the transducer at the higher frequencies used in this study. While these observations highlight the complexities involved in acoustic cavitation, possible reasons for the observed results are discussed. PMID:20301178

Ashokkumar, Muthupandian; Lee, Judy; Iida, Yasuo; Yasui, Kyuichi; Kozuka, Teruyuki; Tuziuti, Toru; Towata, Atsuya

2010-06-01

16

Cavitation erosion by single laser-produced bubbles  

Microsoft Academic Search

In order to elucidate the mechanism of cavitation erosion, the dynamics of a single laser-generated cavitation bubble in water and the resulting surface damage on a flat metal specimen are investigated in detail. The characteristic effects of bubble dynamics, in particular the formation of a high-speed liquid jet and the emission of shock waves at the moment of collapse are

A. Philipp; W. Lauterborn

1998-01-01

17

Cavitation Bubble Cluster Activity in the Breakage of Kidney Stones by Lithotripter Shock Waves  

PubMed Central

High-speed photography was used to analyze cavitation bubble activity at the surface of artificial and natural kidney stones during exposure to lithotripter shock waves in vitro. Numerous individual bubbles formed at the surface of stones, but these bubbles did not remain independent and combined with one another to form bubble clusters. Bubble clusters formed at the proximal end, the distal end, and at the sides of stones. Each cluster collapsed to a narrow point of impact. Collapse of the proximal cluster caused erosion at the leading face of the stone and the collapse of clusters at the sides of stones appeared to contribute to the growth of cracks. Collapse of the distal cluster caused minimal damage. We conclude that cavitation-mediated damage to stones was due not to the action of solitary bubbles, but to the growth and collapse of bubble clusters. PMID:14565872

Pishchalnikov, Yuriy A.; Sapozhnikov, Oleg A.; Bailey, Michael R.; Williams, James C.; Cleveland, Robin O.; Colonius, Tim; Crum, Lawrence A.; Evan, Andrew P.; McAteer, James A.

2008-01-01

18

Interaction between therapeutic ultrasound propagation and cavitation bubbles  

NASA Astrophysics Data System (ADS)

In medical applications of high intense focused ultrasound using pressure pulses or continuous wave signals, cavitation is considered to play a significant role for physical and biological effects. To further develop therapeutic applications it is essential to improve the understanding of these cavitation related effects. In this paper a numerical model is presented to simulate the interactions between ultrasonic waves and cavitation bubbles. The FDTD model is based on a two-phase continuum approach for bubbly liquids and combines nonlinear ultrasound propagation with cavitation bubble activity. Experimental and numerical investigations are presented demonstrating the influence of cavitation bubbles on ultrasound propagation. Measurements with a fiber optic hydrofone for pulsed piezoelectric transducers show significant variations in focal pressure waveforms after the first tensile phase of the wave for different gas content. It is supposed that these changes are caused by cavitation effects. Calculations with different bubble densities confirm these experimental results and demonstrate that the first positive pressure part of the wave is not affected by bubble activity. Increasing the gas content leads to a truncated tensile part followed by augmented pressure oscillations. Further on, simulation results for the evolution and impact of cavitation bubble clouds in CW applications are presented.

Liebler, Marko; Dreyer, Thomas; Riedlinger, Rainer

2001-05-01

19

Suppression of cavitation inception by gas bubble injection: a numerical study focusing on bubble-bubble interaction.  

PubMed

The dynamic behavior of cavitation and gas bubbles under negative pressure has been studied numerically to evaluate the effect of gas bubble injection into a liquid on the suppression of cavitation inception. In our previous studies, it was demonstrated by direct observation that cavitation occurs in liquid mercury when mechanical impacts are imposed, and this will cause cavitation damage in spallation neutron sources, in which liquid mercury is bombarded by a high-power proton beam. In the present paper, we describe numerical investigations of the dynamics of cavitation bubbles in liquid mercury using a multibubble model that takes into account the interaction of a cavitation bubble with preexisting gas bubbles through bubble-radiated pressure waves. The numerical results suggest that, if the mercury includes gas bubbles whose equilibrium radius is much larger than that of the cavitation bubble, the explosive expansion of the cavitation bubble (i.e., cavitation inception) is suppressed by the positive-pressure wave radiated by the injected bubbles, which decreases the magnitude of the negative pressure in the mercury. PMID:17995108

Ida, Masato; Naoe, Takashi; Futakawa, Masatoshi

2007-10-01

20

Comparison of numerical simulations and laboratory studies of shock waves and cavitation bubble growth produced by optical breakdown in water  

SciTech Connect

In numerical calculations of idealized bubble dynamics test problems, Los Alamos computational tools perform well. A realistic equation of state must be used and geometrical features must be carefully modeled to simulate experiments accurately. In this work, we compare numerical simulations taking these features into account with experiments performed at the Medizinisches Laserzentrum Lubeck. We compare the measured and calculated positions of the shock front and of the bubble wall as a function of time in the laser optical breakdown of water produced by 30-ps 1-mJ Nd:YAG laser pulses.

Chapyak, E.J.; Godwin, R.P. [Los Alamos National Lab., NM (United States); Vogel, A. [Medizinisches Laserzentrum Luebeck GmbH (Germany)

1997-04-01

21

Bubbly Cavitating Flow Generation and Investigation of Its Erosional Nature for Biomedical Applications  

Microsoft Academic Search

This paper presents a study that investigates the de- structive energy output resulting from hydrodynamic bubbly cav- itation in microchannels and its potential use in biomedical appli- cations. The research performed in this study includes results from bubbly cavitation experiments and findings showing the destruc- tive effects of bubbly cavitating flow on selected solid specimens and live cells. The bubbles

Ali Ko?ar; Muhsincan ?e?en; Ozlem Oral; Zeynep Itah; Devrim Gozuacik

2011-01-01

22

Unsteady translation and repetitive jetting of acoustic cavitation bubbles  

NASA Astrophysics Data System (ADS)

High-speed recordings reveal peculiar details of the oscillation and translation behavior of cavitation bubbles in the vicinity of an ultrasonic horn tip driven at 20 kHz. In particular, a forward jump during collapse that is due to the rapid reduction of virtual mass is observed. Furthermore, frequently a jetting in the translation direction during the collapse phase is resolved. In spite of strong aspherical deformations and frequent splitting, these bubbles survive the jetting collapse, and they rebound recollecting fragments. Because of incomplete restoration of the spherical shape within the following driving period, higher periodic volume oscillations can occur. This is recognized as a yet unknown source of subharmonic acoustic emission by cavitation bubbles. Numerical modeling can capture the essentials of the unsteady translation.

Nowak, Till; Mettin, Robert

2014-09-01

23

How Snapping Shrimp Snap: Through Cavitating Bubbles  

Microsoft Academic Search

The snapping shrimp (Alpheus heterochaelis) produces a loud snapping sound by an extremely rapid closure of its snapper claw. One of the effects of the snapping is to stun or kill prey animals. During the rapid snapper claw closure, a high-velocity water jet is emitted from the claw with a speed exceeding cavitation conditions. Hydrophone measurements in conjunction with time-controlled

Michel Versluis; Barbara Schmitz; Anna von der Heydt; Detlef Lohse

2000-01-01

24

Molecular dynamics simulations of cavitation bubble collapse and sonoluminescence  

NASA Astrophysics Data System (ADS)

The dynamics of the medium within a collapsing and rebounding cavitation bubble is investigated by means of molecular dynamics (MD) simulations adopting a hard sphere model for the species inside the bubble. The dynamics of the surrounding liquid (water) is modelled using a Rayleigh-Plesset (RP)-type equation coupled to the bubble interior by the gas pressure at the wall obtained from the MD calculations. Water vapour and vapour chemistry are included in the RP-MD model as well as mass and energy transfer through the bubble wall. The calculations reveal the evolution of temperature, density and pressure within a bubble at conditions typical of single-bubble sonoluminescence and predict how the particle numbers and densities of different vapour dissociation and reaction products in the bubble develop in space and time. Among the parameters varied are the sound pressure amplitude of a sonoluminescence bubble in water, the noble gas mixture in the bubble and the accommodation coefficients for mass and energy exchange through the bubble wall. Simulation particle numbers up to 10 million are used; most calculations, however, are performed with one million particles to save computer run time. Validation of the MD code was done by comparing MD results with solutions obtained by continuum mechanics calculations for the Euler equations.

Schanz, Daniel; Metten, Burkhard; Kurz, Thomas; Lauterborn, Werner

2012-11-01

25

Characterization of acoustic cavitation bubbles in different sound fields.  

PubMed

Various fundamental properties of acoustic cavitation bubbles have been investigated in single- and dual-frequency sound fields. It was found that the relative extent of bubble coalescence in the dual-frequency field correlated strongly with the synergistic enhancement of the sonochemical reaction rates. Both the relative extent of coalescence and the sonochemical synergy observed were enhanced through the addition of coalescence-inhibiting solutes. This was attributed to greater nucleation in the dual-frequency mode compared with the single-frequency modes, producing a very localized and high-density bubble field. The acoustic bubble size, compared with that measured at 355 kHz alone, was found to increase upon the application of synchronous 20 kHz pulses but was reduced dramatically when the low frequency was applied as a continuous wave. This trend is consistent with previous reports indicating that the bubble density and cavitation activity are relatively higher in the pulsed system and that the continuous wave application exerts a strong cancellation effect. The changes in bubble density and coalescence rates are proposed to govern the acoustic bubble size. The bubble lifetime was found to be longer in the dual-frequency field (>0.30 ms; >6 low-frequency oscillations, >100 high-frequency oscillations) compared with both single-frequency fields (0.26 ms and 5 oscillations for the low frequency; 0.22 ms and 75 oscillations for the high frequency). The confluence of a longer bubble lifetime and more asymmetric collapse conditions, the latter inferred from a more pronounced sodium atom emission in the sonoluminescence spectrum, resulted in a lower bubble collapse temperature measured in the dual-frequency system. PMID:20698516

Brotchie, Adam; Grieser, Franz; Ashokkumar, Muthupandian

2010-09-01

26

A Study of Cavitation-Ignition Bubble Combustion  

NASA Technical Reports Server (NTRS)

We present the results of an experimental and computational study of the physics and chemistry of cavitation-ignition bubble combustion (CIBC), a process that occurs when combustible gaseous mixtures are ignited by the high temperatures found inside a rapidly collapsing bubble. The CIBC process was modeled using a time-dependent compressible fluid-dynamics code that includes finite-rate chemistry. The model predicts that gas-phase reactions within the bubble produce CO and other gaseous by-products of combustion. In addition, heat and mechanical energy release through a bubble volume-expansion phase are also predicted by the model. We experimentally demonstrate the CIBC process using an ultrasonically excited cavitation flow reactor with various hydrocarbon-air mixtures in liquid water. Low concentrations (< 160 ppm) of carbon monoxide (CO) emissions from the ultrasonic reactor were measured, and found to be proportional to the acoustic excitation power. The results of the model were consistent with the measured experimental results. Based on the experimental findings, the computational model, and previous reports of the "micro-diesel effect" in industrial hydraulic systems, we conclude that CIBC is indeed possible and exists in ultrasonically- and hydrodynamically-induced cavitation. Finally, estimates of the utility of CIBC process as a means of powering an idealized heat engine are also presented.

Nguyen, Quang-Viet; Jacqmin, David A.

2005-01-01

27

Numerical simulation of cavitation bubble dynamics induced by ultrasound waves in a high frequency reactor.  

PubMed

The use of high frequency ultrasound in chemical systems is of major interest to optimize chemical procedures. Characterization of an open air 477 kHz ultrasound reactor shows that, because of the collapse of transient cavitation bubbles and pulsation of stable cavitation bubbles, chemical reactions are enhanced. Numerical modelling is undertaken to determine the spatio-temporal evolution of cavitation bubbles. The calculus of the emergence of cavitation bubbles due to the acoustic driving (by taking into account interactions between the sound field and bubbles' distribution) gives a cartography of bubbles' emergence within the reactor. Computation of their motion induced by the pressure gradients occurring in the reactor show that they migrate to the pressure nodes. Computed bubbles levitation sites gives a cartography of the chemical activity of ultrasound. Modelling of stable cavitation bubbles' motion induced by the motion of the liquid gives some insight on degassing phenomena. PMID:11062879

Servant, G; Caltagirone, J P; Gérard, A; Laborde, J L; Hita, A

2000-10-01

28

Cavitation clouds created by shock scattering from bubbles during histotripsy.  

PubMed

Histotripsy is a therapy that focuses short-duration, high-amplitude pulses of ultrasound to incite a localized cavitation cloud that mechanically breaks down tissue. To investigate the mechanism of cloud formation, high-speed photography was used to observe clouds generated during single histotripsy pulses. Pulses of 5-20 cycles duration were applied to a transparent tissue phantom by a 1-MHz spherically focused transducer. Clouds initiated from single cavitation bubbles that formed during the initial cycles of the pulse, and grew along the acoustic axis opposite the propagation direction. Based on these observations, we hypothesized that clouds form as a result of large negative pressure generated by the backscattering of shockwaves from a single bubble. The positive-pressure phase of the wave inverts upon scattering and superimposes on the incident negative-pressure phase to create this negative pressure and cavitation. The process repeats with each cycle of the incident wave, and the bubble cloud elongates toward the transducer. Finite-amplitude propagation distorts the incident wave such that the peak-positive pressure is much greater than the peak-negative pressure, which exaggerates the effect. The hypothesis was tested with two modified incident waves that maintained negative pressure but reduced the positive pressure amplitude. These waves suppressed cloud formation which supported the hypothesis. PMID:21973343

Maxwell, Adam D; Wang, Tzu-Yin; Cain, Charles A; Fowlkes, J Brian; Sapozhnikov, Oleg A; Bailey, Michael R; Xu, Zhen

2011-10-01

29

Bubble nucleation and growth in open-cycle OTEC subsystems  

NASA Astrophysics Data System (ADS)

Bubble nucleation and growth in the evaporator, condenser, upcomers, and feedwater distribution systems of open-cycle ocean thermal energy conversion (OTEC) power plants are examined. The phenomenon that will probably have the most impact on system design is cavitation in the warm water feed near the entrance of the evaporator. The critical bubble size for cavitation is about 105 microns. Sources of bubbles in the warm water feed are those entering from the ocean, those nucleating on suspended particles, and those nucleating on the upcomer wall. Analyses of bubble growth induced by changes in hydrostatic pressure, mass transfer, and coalescence are presented. Using available information for bubble size distribution in seawater at California locations, it is shown that cavitation will probably have a significant impact on evaporator performance unless a debubbler is provided upstream of the evaporator entrance.

Bugby, D. C.; Wassel, A. T.; Mills, A. F.

1983-05-01

30

Effect of laser-induced cavitation bubble on a thin elastic membrane  

NASA Astrophysics Data System (ADS)

A study of the effects of a cavitation bubble on a thin elastic membrane is presented. A cavitation bubble was produced by focusing a high-energy laser beam near an elastic membrane submerged in water, which corresponds to conditions often encountered in ophthalmology. The bubble effects on the membrane were studied as a function of distance between the bubble and membrane and laser pulse energy. Recordings of bubble dynamics with an ultra-high-speed camera were performed on both sides of the membrane, providing better insight into the mechanisms of membrane rupture. Observations have revealed distinct bubble behavior regimes with respect to coefficient ?. Cavitation bubbles centered on the membrane produce less damage than bubbles shifted slightly away. Significant damages were observed at intermediate distances between the bubble and membrane after bubble collapse, while weaker interactions were recorded at larger distances with less or no damaging effect to the membrane.

Orthaber, U.; Petkovšek, R.; Schille, J.; Hartwig, L.; Hawlina, G.; Drnovšek-Olup, B.; Vre?ko, A.; Poberaj, I.

2014-12-01

31

Transcranial ultrasonic therapy based on time reversal of acoustically induced cavitation bubble signature  

E-print Network

Transcranial ultrasonic therapy based on time reversal of acoustically induced cavitation bubble skull at a single location. It has enabled the creation of a cavitation bubble at focus]. These effects decrease heat deposition at the focus and the spatial resolution, which can reduce therapeutic

Paris-Sud XI, Université de

32

A brief review on cavitation bubble collapse near a solid boundary  

SciTech Connect

A brief review of cavitation bubble collapse near a solid boundary includes a comprehensive bibliography with 67 citations of work published since 1960. The 67 references presented here deal almost solely with cavitation bubble collapse in the vicinity of a rigid wall or boundary.

Steinberg, D.J.

1987-06-01

33

Numerical analysis of the effects of radiation heat transfer and ionization energy loss on the cavitation Bubble?s dynamics  

Microsoft Academic Search

A numerical scheme for simulating the acoustic and hydrodynamic cavitation was developed. Bubble instantaneous radius was obtained using Gilmore equation which considered the compressibility of the liquid. A uniform temperature was assumed for the inside gas during the collapse. Radiation heat transfer inside the bubble and the heat conduction to the bubble was considered. The numerical code was validated with

M. Mahdi; R. Ebrahimi; M. Shams

2011-01-01

34

Numerical simulations of acoustic cavitation noise with the temporal fluctuation in the number of bubbles.  

PubMed

Numerical simulations of cavitation noise have been performed under the experimental conditions reported by Ashokkumar et al. (2007) [26]. The results of numerical simulations have indicated that the temporal fluctuation in the number of bubbles results in the broad-band noise. "Transient" cavitation bubbles, which disintegrate into daughter bubbles mostly in a few acoustic cycles, generate the broad-band noise as their short lifetimes cause the temporal fluctuation in the number of bubbles. Not only active bubbles in light emission (sonoluminescence) and chemical reactions but also inactive bubbles generate the broad-band noise. On the other hand, "stable" cavitation bubbles do not generate the broad-band noise. The weaker broad-band noise from a low-concentration surfactant solution compared to that from pure water observed experimentally by Ashokkumar et al. is caused by the fact that most bubbles are shape stable in a low-concentration surfactant solution due to the smaller ambient radii than those in pure water. For a relatively high number density of bubbles, the bubble-bubble interaction intensifies the broad-band noise. Harmonics in cavitation noise are generated by both "stable" and "transient" cavitation bubbles which pulsate nonlinearly with the period of ultrasound. PMID:19751988

Yasui, Kyuichi; Tuziuti, Toru; Lee, Judy; Kozuka, Teruyuki; Towata, Atsuya; Iida, Yasuo

2010-02-01

35

Experimental and theoretical study on cavitation inception and bubbly flow dynamics. Part 1. Design, development, and operation of a cavitation-susceptibility meter. Part 2. Linearized dynamics of bubbly and cavitating flows with bubble-dynamics effects. Doctoral thesis  

SciTech Connect

This theses presents the design, development and operations of a Cavitation Susceptibility Meter based on the use of a venturi tube for the measurement of the content of active cavitation nuclei in water samples. The pressure at the venturi throat is determined from the upstream pressure and the local flow velocity without corrections for viscous effects because the flow possesses a laminar potential core in all operational conditions. The detection ov cavitation and the measurement of the flow velocity are carried out optically. The apparatus comprises a Laser Doppler Velocimeter for the measurement of the flow velocity and the detection of cavitation, a custom-made electronic Signal Processor for real time generation and temporary storage of the data and a computerized system for the final acquisition and reduction of the collected data. The results of application of the Cavitation Susceptibility Meter to the measurement of the water quality of the tap water samples are presented. The results of an investigation are presented on the linearized dynamics of two-phase bubbly flows with the inclusion of bubble dynamics effects. Two flow configurations have been studied: the time dependent one-dimensional flow of a spherical bubble cloud subject to harmonic excitation of the far field external pressure and the steady state two-dimensional flow of a bubbly mixture on a slender profile of arbitrary shape.

D'Agostino, L.

1987-05-01

36

Shockwave and cavitation bubble dynamics of atmospheric air  

NASA Astrophysics Data System (ADS)

The generation and evolution of laser induced shock waves (SWs) and the hot core plasma (HCP) created by focusing 7 ns, 532 nm laser pulses in ambient air is studied using time resolved shadowgraphic imaging technique. The dynamics of rapidly expanding plasma releasing SWs into the ambient atmosphere were studied for time delays ranging from nanoseconds to milliseconds with ns temporal resolution. The SW is observed to get detached from expanding HCP at around 3?s. Though the SWs were found to expand spherically following the Sedov-Taylor theory, the rapidly expanding HCP shows asymmetric expansion during both the expansion and cooling phase similar to that of inertial cavitation bubble (CB) dynamics. The asymmetric expansion of HCP leads to oscillation of the plasma boundary, eventually leading to collapse by forming vortices formed by the interaction of ambient air.

Leela, Ch.; Bagchi, S.; Tewari, Surya P.; Kiran, P. Prem

2013-11-01

37

The detection and control of stable and transient acoustic cavitation bubbles.  

PubMed

Acoustic cavitation plays a significant role in many applications that include therapeutic medicine, sonochemsitry and materials processing. The type of cavitation bubbles generated, namely transient or stable (repetitive transient), is important for optimizing the efficiency of these applications. We report on a multibubble sonoluminescence (MBSL)-based experimental technique for the detection and the control of type of cavitation at low and high ultrasound frequencies. It is observed that the use of a horn-type sonicator operating at 20 kHz primarily generates transient cavitation bubbles, as reported earlier. However, the use of plate type transducers at low frequencies (25 and 37 kHz) generates a significant amount of stable cavitation, as evidenced from the quenching of sonoluminescence by volatile solutes. Evidence for the existence of transient cavitation at a higher ultrasound frequency (440 kHz) is also provided. PMID:19865767

Ashokkumar, Muthupandian; Lee, Judy; Iida, Yasuo; Yasui, Kyuichi; Kozuka, Teruyuki; Tuziuti, Toru; Towata, Atsuya

2009-11-21

38

Spatial distribution of sonoluminescence and sonochemiluminescence generated by cavitation bubbles in 1.2 MHz focused ultrasound field.  

PubMed

An intensified charge coupled device (ICCD) camera was used to observe the spatial distribution of sonoluminescence (SL) and sonochemiluminescence (SCL) generated by cavitation bubbles in a 1.2 MHz focused ultrasound (FU) field in order to investigate the mechanisms of acoustic cavitation under different sonication conditions for FU therapeutic applications. It was found that SL emissions were located in the post-focal region. When the intensity of SL and SCL increased as the power rose, the growth of SCL was much higher than that of SL. In the post-focal region, the SCL emissions moved along specific paths and formed branch-like streamers. At the beginning of the ultrasound irradiation, cavitation bubbles generated SCL in both the pre-focal and the post-focal region. When the electrical power or the sonication time increased, the SCL in the post-focal region increased and became higher than that in the pre-focal region. The intensity of SCL in the focal region is usually the weakest because of "oversaturation". The spatial distribution of SCL near a tissue boundary differed from that obtained in free fields. It organized into special structures under different acoustic amplitudes. When the electrical power was relatively low, the SCL emission was conical shape which suggested a standing wave formation at the tissue-fluid boundary. When the electrical power exceeded a certain threshold, only a bright spot could be captured in the focus. The cavitation bubbles which centralized in the focus concentrated energy and hindered the formation of standing waves. With rising electrical power at high levels, besides a bright spot in the focus, there were some irregular light spots in pre-focal region, which indicated some cavitation bubbles or small bubble clusters achieved the threshold of SCL and induced the reaction with the luminol solution. PMID:21862375

Cao, Hua; Wan, Mingxi; Qiao, Yangzi; Zhang, Shusheng; Li, Ruixue

2012-03-01

39

Electrochemical investigations of stable cavitation from bubbles generated during reduction of water.  

PubMed

Megasonic cleaning is traditionally used for removal of particles from wafer surfaces in semiconductor industry. With the advancement of technology node, the major challenge associated with megasonic cleaning is to be able to achieve high cleaning efficiency without causing damage to fragile features. In this paper, a method based on electrochemistry has been developed that allows controlled formation and growth of a hydrogen bubbles close to a solid surface immersed in an aqueous solution irradiated with ?1 MHz sound field. It has been shown that significant microstreaming from resonating size bubble can be induced by proper choice of transducer duty cycle. This method has the potential to significantly improve the performance of megasonic cleaning technology through generation of local microstreaming, interfacial and pressure gradient forces in close vicinity of conductive surfaces on wafers without affecting the transient cavitation responsible for feature damage. PMID:24798227

Keswani, M; Raghavan, S; Deymier, P

2014-09-01

40

Velocity field and pressure distribution around a collapsing cavitation bubble during necking and splitting  

Microsoft Academic Search

The hydrodynamic behavior of the fluid around a cavitation bubble located above a rigid boundary is investigated numerically.\\u000a The liquid around the cavitation bubble is assumed to be incompressible, inviscid and irrotatational and surface tension is\\u000a assumed to be negligible. Boundary-integral-equation and finite-difference methods are employed to study the problem. Three\\u000a cases are investigated: (1) when the Bjerknes force is

M. T. Shervani-Tabar; N. Mobadersany; S. M. S. Mahmoudi; A. Rezaee-Barmi

41

Spatio-temporal dynamics of cavitation bubble clouds in a low frequency reactor: comparison between theoretical and experimental results.  

PubMed

The propagation of ultrasound through a liquid induces the growth of inceptions and germs into bubbles. In a low frequency reactor, fragmentary transient bubbles emerge due to the acoustic driving. They violently collapse in one cycle and fragment into many smaller bubbles than in turn cavitate. This violent collapse is responsible for the mechanical effects of ultrasounds effects. The latter bubbles gather in a ball-shaped cloud and migrate to pressure antinodes. During their migration, their nonexplosive collapses mainly contribute to activate chemical reactions by producing OH. radicals. Mathematical modelling is performed as a new approach to predict the bubbles field. Through numerical simulation, we determinate emergence sites of mechanically active cavitation bubbles. Calculus are compared with aluminium foil degradation. The modelling of bubble migration allow us to have an insight on the privileged sites of the chemical reactions. Validation of the modelling is made through direct comparison with chemiluminescence photo. All experiments and computations are made in a 28.2 kHz sonoreactor. PMID:11441594

Servant, G; Laborde, J L; Hita, A; Caltagirone, J P; Gérard, A

2001-07-01

42

THE TEMPERATURE OF CAVITATION  

Microsoft Academic Search

Ultrasonic irradiation of liquids causes acoustic cavitation: the\\u000a formation, growth, and implosive collapse of bubbles. Bubble collapse\\u000a during cavitation generates transient hot spots responsible for\\u000a high-energy chemistry and emission of light. Determination of the\\u000a temperatures reached in a cavitating bubble has remained a difficult\\u000a experimental problem. As a spectroscopic probe of the cavitation event,\\u000a sonoluminescence provides a solution. Sonoluminescence spectra

E. B. FLINT; K. S. SUSLICK

1991-01-01

43

The Correlation Between Bubble-Enhanced HIFU Heating and Cavitation Power  

Microsoft Academic Search

It has been established that while the inherent presence of bubbles increases heat generation due to scattering and absorption, inertial cavitation is responsible for elevated heating during high-intensity focused ultrasound (HIFU) application. The contribution of bubble-induced heating can be an important factor to consider, as it can be several times greater than the expected heat deposition from absorption of energy

R. Glynn Holt; Ronald A. Roy

2010-01-01

44

Luminescence from acoustic-driven laser-induced cavitation bubbles Claus-Dieter Ohl*  

E-print Network

Luminescence from acoustic-driven laser-induced cavitation bubbles Claus-Dieter Ohl* Drittes second harmonic driving. However, the need to levitate a bubble by the same sound field may limit at infinity is P P0 Pa(t), where Pa(t) is the imposed acoustic driving term. We assume a sinusoidal

Ohl, Claus-Dieter

45

The correlation between bubble-enhanced HIFU heating and cavitation power.  

PubMed

It has been established that while the inherent presence of bubbles increases heat generation due to scattering and absorption, inertial cavitation is responsible for elevated heating during high-intensity focused ultrasound (HIFU) application. The contribution of bubble-induced heating can be an important factor to consider, as it can be several times greater than the expected heat deposition from absorption of energy from the primary ultrasound field. The temperature and cavitation signal near the focus were measured for 5.5-s continuous-wave 1.1-MHz HIFU sonications in tissue mimicking phantoms. The measured temperature was corrected for heating predicted from the primary ultrasound absorption to isolate the temperature rise from the bubble activity. The temperature rise induced from cavitation correlates well with a measurement of the instantaneous "cavitation power" as indicated by the mean square voltage output of a 15-MHz passive cavitation detector. The results suggest that careful processing of the cavitation signals can serve as a proxy for measuring the heating contribution from inertial cavitation. PMID:19651548

Farny, Caleb H; Glynn Holt, R; Roy, Ronald A

2010-01-01

46

A numerical method for the dynamics of non-spherical cavitation bubbles  

NASA Technical Reports Server (NTRS)

A boundary integral numerical method for the dynamics of nonspherical cavitation bubbles in inviscid incompressible liquids is described. Only surface values of the velocity potential and its first derivatives are involved. The problem of solving the Laplace equation in the entire domain occupied by the liquid is thus avoided. The collapse of a bubble in the vicinity of a solid wall and the collapse of three bubbles with collinear centers are considered.

Lucca, G.; Prosperetti, A.

1982-01-01

47

Two-dimensional direct numerical simulation of bubble cloud cavitation by front-tracking method  

NASA Astrophysics Data System (ADS)

Unsteady bubble cloud cavitation phenomenon caused by negative pressure pulse has been treated numerically by applying a front tracking method. The behaviour of bubble cloud expanding and contracting is evaluated by tracking the motion of all bubble interfaces. Numerical investigation demonstrates that: (1) In the collapsing of bubble cloud micro liquid jets toward the inner bubbles are formed while the outer layer bubbles contract extremely, and then a high impact pressure is released when the inner central bubble contacts to its minimum. (2) The oscillation of bubble cloud depends upon the void fraction greatly. In the case of high void fraction, the frequency of cloud oscillation is lower than that of individual bubble and the decay of the oscillation becomes much slowly also.

Peng, G.; Tryggvason, G.; Shimizu, S.

2015-01-01

48

The dynamic behavior and compliance of a stream of cavitating bubbles.  

NASA Technical Reports Server (NTRS)

Study of the dynamic response of streams of cavitating bubbles to imposed pressure fluctuations to determine the role played by turbopump cavitation in the POGO instability of liquid rockets. Both quasi-static and more general linearized dynamic analyses are made of the perturbations to a cavitating flow through a region of reduced pressure in which the bubbles first grow and then collapse. The results, when coupled with typical bubble number density distribution functions, yield compliances which compare favorably with the existing measurements. Since the fluids involved are frequently cryogenic, a careful examination was made of the thermal effects both on the mean flow and on the perturbations. As a result, the discrepancy between theory and experiment for particular engines could be qualitatively ascribed to reductions in the compliance caused either by these thermal effects or by relatively high reduced frequencies.

Brennen, C.

1973-01-01

49

Motion characteristics of cavitation bubble near the rigid wall with the driving of acoustic wave  

NASA Astrophysics Data System (ADS)

The dynamics of cavitation bubble is analyzed in the compressible fluid by use of the boundary integral equation considering the compressibility. After the vertical incidence of plane wave to the rigid wall, the motion characteristics of single cavitation bubble near the rigid wall with initial equilibrium state are researched with different parameters. The results show that after the driving of acoustic wave, the cavitation bubble near the rigid wall will expand or contract, and generate the jet pointing to the wall. Also, the existence of the wall will elongate time for one oscillation. With the compressible model, the oscillation amplitude is reduced, as well as the peak value of inner pressure and jet tip velocity. The effect of the wall on oscillation amplitude is limited. However with the increment of initial vertical distance, the effect of wall on the jet velocity is from acceleration to limitation, and finally to acceleration again.

Ye, Xi; Zhang, A.-man; Zeng, Dong-rui

2015-03-01

50

A Thermodynamic Cavitation Model for Cavitating Flow Simulation in a Wide Range of Water Temperatures  

Microsoft Academic Search

A thermodynamic cavitation model is developed to simulate the cavitating water flow in a wide temperature range. The thermal effect on bubble growth during cavitation is introduced in the developed model by considering both pressure difference and heat transfer between the vapor and liquid phase. The cavitating turbulent flow over a NACA0015 hydrofoil has been simulated at various temperatures from

Yao Zhang; Xian-Wu Luo; Jibin; Shu-Hong Liu; Yu-Lin Wu; Hong-Yuan Xu

2010-01-01

51

Optical observation of shock waves and cavitation bubbles in high intensity laser-induced shock processes  

SciTech Connect

We report an experimental study of the temporal and spatial dynamics of shock waves, cavitation bubbles, and sound waves generated in water during laser shock processing by single Nd:YAG laser pulses of nanosecond duration. A fast ICCD camera (2 ns gate time) was employed to record false schlieren photographs, schlieren photographs, and Mach-Zehnder interferograms of the zone surrounding the laser spot site on the target, an aluminum alloy sample. We recorded hemispherical shock fronts, cylindrical shock fronts, plane shock fronts, cavitation bubbles, and phase disturbance tracks.

Marti-Lopez, L.; Ocana, R.; Porro, J. A.; Morales, M.; Ocana, J. L.

2009-07-01

52

Thermodynamic and kinetic considerations of nucleation and stabilization of acoustic cavitation bubbles in water.  

PubMed

Qualitative explanation for a homogeneous nucleation of acoustic cavitation bubbles in the incompressible liquid water with simple phenomenological approach has been provided via the concept of the desorbtion of the dissolved gas and the vaporization of local liquid molecules. The liquid medium has been viewed as an ensemble of lattice structures. Validity of the lattice structure approach against the Brownian motion of molecules in the liquid state has been discussed. Criterion based on probability for nucleus formation has been defined for the vaporization of local liquid molecules. Energy need for the enthalpy of vaporization has been considered as an energy criterion for the formation of a vaporous nucleus. Sound energy, thermal energy of the liquid bulk (Joule-Thomson effect) and free energy of activation, which is associated with water molecules in the liquid state (Brownian motion) as per the modified Eyring's kinetic theory of liquid are considered as possible sources for the enthalpy of vaporization of water molecules forming a single unit lattice. The classical nucleation theory has then been considered for expressing further growth of the vaporous nucleus against the surface energy barrier. Effect of liquid property (temperature), and effect of an acoustic parameter (frequency) on an acoustic cavitation threshold pressure have been discussed. Kinetics of nucleation has been considered. PMID:17368069

Bapat, Pratap S; Pandit, Aniruddha B

2008-01-01

53

Collapse of a cavitation bubble generated by low voltage discharge in water  

NASA Astrophysics Data System (ADS)

The article presents experimental results of the optical study of cavitation bubble collapse close to a solid boundary in water. The bubble was generated by discharge of two low-voltage capacitors. High-speed CCD camera was used to record the time evolution of the bubble size. High-power halogen lamp was used for illumination. The system was synchronized by pulse generator connected to an oscilloscope. The velocity of the re-entrant jet was estimated from the time resolved photography for different maximum bubble sizes.

Müller, Miloš; Unger, Ji?í; Bud'arek, Tomáš; Zima, Patrik

2012-04-01

54

A reduced-order, single-bubble cavitation model with applications to therapeutic ultrasound.  

PubMed

Cavitation often occurs in therapeutic applications of medical ultrasound such as shock-wave lithotripsy (SWL) and high-intensity focused ultrasound (HIFU). Because cavitation bubbles can affect an intended treatment, it is important to understand the dynamics of bubbles in this context. The relevant context includes very high acoustic pressures and frequencies as well as elevated temperatures. Relative to much of the prior research on cavitation and bubble dynamics, such conditions are unique. To address the relevant physics, a reduced-order model of a single, spherical bubble is proposed that incorporates phase change at the liquid-gas interface as well as heat and mass transport in both phases. Based on the energy lost during the inertial collapse and rebound of a millimeter-sized bubble, experimental observations were used to tune and test model predictions. In addition, benchmarks from the published literature were used to assess various aspects of model performance. Benchmark comparisons demonstrate that the model captures the basic physics of phase change and diffusive transport, while it is quantitatively sensitive to specific model assumptions and implementation details. Given its performance and numerical stability, the model can be used to explore bubble behaviors across a broad parameter space relevant to therapeutic ultrasound. PMID:22088026

Kreider, Wayne; Crum, Lawrence A; Bailey, Michael R; Sapozhnikov, Oleg A

2011-11-01

55

High Speed Imaging of Bubble Clouds Generated in Pulsed Ultrasound Cavitational Therapy—Histotripsy  

PubMed Central

Our recent studies have demonstrated that mechanical fractionation of tissue structure with sharply demarcated boundaries can be achieved using short (<20 ?s), high intensity ultrasound pulses delivered at low duty cycles. We have called this technique histotripsy. Histotripsy has potential clinical applications where noninvasive tissue fractionation and/or tissue removal are desired. The primary mechanism of histotripsy is thought to be acoustic cavitation, which is supported by a temporally changing acoustic backscatter observed during the histotripsy process. In this paper, a fast-gated digital camera was used to image the hypothesized cavitating bubble cloud generated by histotripsy pulses. The bubble cloud was produced at a tissue-water interface and inside an optically transparent gelatin phantom which mimics bulk tissue. The imaging shows the following: 1) Initiation of a temporally changing acoustic backscatter was due to the formation of a bubble cloud; 2) The pressure threshold to generate a bubble cloud was lower at a tissue-fluid interface than inside bulk tissue; and 3) at higher pulse pressure, the bubble cloud lasted longer and grew larger. The results add further support to the hypothesis that the histotripsy process is due to a cavitating bubble cloud and may provide insight into the sharp boundaries of histotripsy lesions. PMID:18019247

Xu, Zhen; Raghavan, Mekhala; Hall, Timothy L.; Chang, Ching-Wei; Mycek, Mary-Ann; Fowlkes, J. Brian; Cain, Charles A.

2009-01-01

56

A reduced-order, single-bubble cavitation model with applications to therapeutic ultrasound  

PubMed Central

Cavitation often occurs in therapeutic applications of medical ultrasound such as shock-wave lithotripsy (SWL) and high-intensity focused ultrasound (HIFU). Because cavitation bubbles can affect an intended treatment, it is important to understand the dynamics of bubbles in this context. The relevant context includes very high acoustic pressures and frequencies as well as elevated temperatures. Relative to much of the prior research on cavitation and bubble dynamics, such conditions are unique. To address the relevant physics, a reduced-order model of a single, spherical bubble is proposed that incorporates phase change at the liquid-gas interface as well as heat and mass transport in both phases. Based on the energy lost during the inertial collapse and rebound of a millimeter-sized bubble, experimental observations were used to tune and test model predictions. In addition, benchmarks from the published literature were used to assess various aspects of model performance. Benchmark comparisons demonstrate that the model captures the basic physics of phase change and diffusive transport, while it is quantitatively sensitive to specific model assumptions and implementation details. Given its performance and numerical stability, the model can be used to explore bubble behaviors across a broad parameter space relevant to therapeutic ultrasound. PMID:22088026

Kreider, Wayne; Crum, Lawrence A.; Bailey, Michael R.; Sapozhnikov, Oleg A.

2011-01-01

57

Molecular dynamics simulations of bubble formation and cavitation in liquid metals.  

SciTech Connect

Thermodynamics and kinetics of nano-scale bubble formation in liquid metals such as Li and Pb were studied by molecular dynamics (MD) simulations at pressures typical for magnetic and inertial fusion. Two different approaches to bubble formation were developed. In one method, radial densities, pressures, surface tensions, and work functions of the cavities in supercooled liquid lithium were calculated and compared with the surface tension experimental data. The critical radius of a stable cavity in liquid lithium was found for the first time. In the second method, the cavities were created in the highly stretched region of the liquid phase diagram; and then the stability boundary and the cavitation rates were calculated in liquid lead. The pressure dependences of cavitation frequencies were obtained over the temperature range 700-2700 K in liquid Pb. The results of MD calculations for cavitation rate were compared with estimates of classical nucleation theory (CNT).

Insepov, Z.; Hassanein, A.; Bazhirov, T. T.; Norman, G. E.; Stegailov, V. V.; Mathematics and Computer Science; Inst. for High Energy Densities of Joint Inst. for High Temperatures of RAS

2007-11-01

58

Computation of bubbly cavitating flow in shock wave lithotripsy Michel Tanguay  

E-print Network

. iii #12;Abstract Lithotripsy is at the forefront of treatment of kidney stones. By firing shock waves at the stone, it can be broken down into small fragments. Although the treatment is non-invasive, both short that the cloud of cavitating bubble produced in the wake of the shock wave is a crucial element in the stone

Colonius, Tim

59

Thermodynamic and kinetic considerations of nucleation and stabilization of acoustic cavitation bubbles in water  

Microsoft Academic Search

Qualitative explanation for a homogeneous nucleation of acoustic cavitation bubbles in the incompressible liquid water with simple phenomenological approach has been provided via the concept of the desorbtion of the dissolved gas and the vaporization of local liquid molecules. The liquid medium has been viewed as an ensemble of lattice structures. Validity of the lattice structure approach against the Brownian

Pratap S. Bapat; Aniruddha B. Pandit

2008-01-01

60

Localized removal of layers of metal, polymer, or biomaterial by ultrasound cavitation bubbles  

PubMed Central

We present an ultrasonic device with the ability to locally remove deposited layers from a glass slide in a controlled and rapid manner. The cleaning takes place as the result of cavitating bubbles near the deposited layers and not due to acoustic streaming. The bubbles are ejected from air-filled cavities micromachined in a silicon surface, which, when vibrated ultrasonically at a frequency of 200 kHz, generate a stream of bubbles that travel to the layer deposited on an opposing glass slide. Depending on the pressure amplitude, the bubble clouds ejected from the micropits attain different shapes as a result of complex bubble interaction forces, leading to distinct shapes of the cleaned areas. We have determined the removal rates for several inorganic and organic materials and obtained an improved efficiency in cleaning when compared to conventional cleaning equipment. We also provide values of the force the bubbles are able to exert on an atomic force microscope tip. PMID:23964308

Fernandez Rivas, David; Verhaagen, Bram; Seddon, James R. T.; Zijlstra, Aaldert G.; Jiang, Lei-Meng; van der Sluis, Luc W. M.; Versluis, Michel; Lohse, Detlef; Gardeniers, Han J. G. E.

2012-01-01

61

Interaction of lithotripter shockwaves with single inertial cavitation bubbles  

PubMed Central

The dynamic interaction of a shockwave (modelled as a pressure pulse) with an initially spherically oscillating bubble is investigated. Upon the shockwave impact, the bubble deforms non-spherically and the flow field surrounding the bubble is determined with potential flow theory using the boundary-element method (BEM). The primary advantage of this method is its computational efficiency. The simulation process is repeated until the two opposite sides of the bubble surface collide with each other (i.e. the formation of a jet along the shockwave propagation direction). The collapse time of the bubble, its shape and the velocity of the jet are calculated. Moreover, the impact pressure is estimated based on water-hammer pressure theory. The Kelvin impulse, kinetic energy and bubble displacement (all at the moment of jet impact) are also determined. Overall, the simulated results compare favourably with experimental observations of lithotripter shockwave interaction with single bubbles (using laser-induced bubbles at various oscillation stages). The simulations confirm the experimental observation that the most intense collapse, with the highest jet velocity and impact pressure, occurs for bubbles with intermediate size during the contraction phase when the collapse time of the bubble is approximately equal to the compressive pulse duration of the shock wave. Under this condition, the maximum amount of energy of the incident shockwave is transferred to the collapsing bubble. Further, the effect of the bubble contents (ideal gas with different initial pressures) and the initial conditions of the bubble (initially oscillating vs. non-oscillating) on the dynamics of the shockwave–bubble interaction are discussed. PMID:19018296

Klaseboer, Evert; Fong, Siew Wan; Turangan, Cary K.; Khoo, Boo Cheong; Szeri, Andrew J.; Calvisi, Michael L.; Sankin, Georgy N.; Zhong, Pei

2008-01-01

62

Effects of tissue stiffness, ultrasound frequency, and pressure on histotripsy-induced cavitation bubble behavior.  

PubMed

Histotripsy is an ultrasound ablation method that controls cavitation to fractionate soft tissue. In order to effectively fractionate tissue, histotripsy requires cavitation bubbles to rapidly expand from nanometer-sized initial nuclei into bubbles often larger than 50?µm. Using a negative pressure high enough to initiate a bubble cloud and expand bubbles to a sufficient size, histotripsy has been shown capable of completely fractionating soft tissue into acelluar debris resulting in effective tissue removal. Previous work has shown that the histotripsy process is affected by tissue mechanical properties with stiffer tissues showing increased resistance to histotripsy fractionation, which we hypothesize to be caused by impeded bubble expansion in stiffer tissues. In this study, the hypothesis that increases in tissue stiffness cause a reduction in bubble expansion was investigated both theoretically and experimentally. High speed optical imaging was used to capture a series of time delayed images of bubbles produced inside mechanically tunable agarose tissue phantoms using histotripsy pulses produced by 345?kHz, 500?kHz, 1.5?MHz, and 3?MHz histotripsy transducers. The results demonstrated a significant decrease in maximum bubble radius (Rmax) and collapse time (tc) with both increasing Young's modulus and increasing frequency. Furthermore, results showed that Rmax was not increased by raising the pressure above the intrinsic threshold. Finally, this work demonstrated the potential of using a dual-frequency strategy to modulate the expansion of histotripsy bubbles. Overall, the results of this study improve our understanding of how tissue stiffness and ultrasound parameters affect histotripsy-induced bubble behavior and provide a rational basis to tailor acoustic parameters for treatment of the specific tissues of interest. PMID:25715732

Vlaisavljevich, Eli; Lin, Kuang-Wei; Warnez, Matthew T; Singh, Rahul; Mancia, Lauren; Putnam, Andrew J; Johnsen, Eric; Cain, Charles; Xu, Zhen

2015-03-21

63

Effects of tissue stiffness, ultrasound frequency, and pressure on histotripsy-induced cavitation bubble behavior  

NASA Astrophysics Data System (ADS)

Histotripsy is an ultrasound ablation method that controls cavitation to fractionate soft tissue. In order to effectively fractionate tissue, histotripsy requires cavitation bubbles to rapidly expand from nanometer-sized initial nuclei into bubbles often larger than 50?µm. Using a negative pressure high enough to initiate a bubble cloud and expand bubbles to a sufficient size, histotripsy has been shown capable of completely fractionating soft tissue into acelluar debris resulting in effective tissue removal. Previous work has shown that the histotripsy process is affected by tissue mechanical properties with stiffer tissues showing increased resistance to histotripsy fractionation, which we hypothesize to be caused by impeded bubble expansion in stiffer tissues. In this study, the hypothesis that increases in tissue stiffness cause a reduction in bubble expansion was investigated both theoretically and experimentally. High speed optical imaging was used to capture a series of time delayed images of bubbles produced inside mechanically tunable agarose tissue phantoms using histotripsy pulses produced by 345?kHz, 500?kHz, 1.5?MHz, and 3?MHz histotripsy transducers. The results demonstrated a significant decrease in maximum bubble radius (Rmax) and collapse time (tc) with both increasing Young’s modulus and increasing frequency. Furthermore, results showed that Rmax was not increased by raising the pressure above the intrinsic threshold. Finally, this work demonstrated the potential of using a dual-frequency strategy to modulate the expansion of histotripsy bubbles. Overall, the results of this study improve our understanding of how tissue stiffness and ultrasound parameters affect histotripsy-induced bubble behavior and provide a rational basis to tailor acoustic parameters for treatment of the specific tissues of interest.

Vlaisavljevich, Eli; Lin, Kuang-Wei; Warnez, Matthew T.; Singh, Rahul; Mancia, Lauren; Putnam, Andrew J.; Johnsen, Eric; Cain, Charles; Xu, Zhen

2015-03-01

64

Effects of cavitation bubble interaction with temporally separated fs-laser pulses.  

PubMed

We present a time-resolved photographic analysis of the pulse-to-pulse interaction. In particular, we studied the influence of the cavitation bubble induced by a fs-pulse on the optical focusing of the consecutive pulse and its cavitation bubble dynamics in dependence on temporal pulse separation in water. As a first result, by decreasing the temporal separation of laser pulses, there is a diminishment of the laser-induced optical breakdown (LIOB) efficiency in terms of energy conversion, caused by disturbed focusing into persisting gas bubbles at the focal volume. A LIOB at the focal spot is finally suppressed by impinging the expanding or collapsing cavitation bubble of the preceding pulse. These results could be additionally confirmed in porcine gelatin solution with various concentrations. Hence, the interaction between the laser and transparent ophthalmic tissue may be accompanied by a raised central laser energy transmission, which could be observed in case of a temporal pulse overlap. In conclusion, our experimental results are of particular importance for the optimization of the prospective ophthalmic surgical process with future generation fs-lasers. PMID:24781592

Tinne, Nadine; Knoop, Gesche; Kallweit, Nicole; Veith, Sonja; Bleeker, Sebastian; Lubatschowski, Holger; Krüger, Alexander; Ripken, Tammo

2014-04-01

65

Interaction dynamics of temporal and spatial separated cavitation bubbles in water  

NASA Astrophysics Data System (ADS)

The LASIK procedure is a well established laser based treatment in ophthalmology. Nowadays it includes a cutting of the corneal tissue bases on ultra short pulses which are focused below the tissue surface to create an optical breakdown and hence a dissection of the tissue. The energy of the laser pulse is absorbed by non-linear processes that result in an expansion of a cavitation bubble and rupturing of the tissue. Due to a reduction of the duration of treatment the current development of ultra short laser systems points to higher repetition rates. This in turn results in a probable interaction between different cavitation bubbles of adjacent optical breakdowns. While the interaction of one single laser pulse with biological tissue is analyzed reasonably well experimentally and theoretically, the interaction of several spatial and temporal following pulses is scarcely determined yet. We present a high-speed photography analysis of cavitation bubble interaction for two spatial separated laser-induced optical breakdowns varying the laser pulse energy as well as the spatial distance. Depending on a change of these parameters different kinds of interactions such as a flattening and deformation of bubble shape, asymmetric water streams and jet formation were observed. The results of this research can be used to comprehend and optimize the cutting effect of ultra short pulse laser systems with high repetition rates (> 1 MHz).

Tinne, N.; Ripken, T.; Lubatschowski, H.

2010-02-01

66

Single bubble perturbation in cavitation proximity of solid glass: hot spot versus distance.  

PubMed

A systematic study of the energy loss of a cavitation bubble in a close proximity of a glass surface is introduced for the first time in a low acoustic field (1.2-2.4 bar). Single bubble sonoluminescence (SBSL) is used as a tool to predict the temperature and pressure decrease of bubble (?m) versus surface distance. A glass as a model system is used to imitate the boundary conditions relevant for nano- or micromaterials. SBSL preequilibrated with 5% argon is perturbed by a glass rod with the tip (Z-perturbation) and with the long axis (X-perturbation) at a defined distance. From 2 mm to 500 ?m argon-SBSL lines monotonically narrow and the effective emission temperature decreases from 9000 K to 6800 K comparable to multiple bubbles. The electron density decreases by two orders of magnitude in Z-perturbation and is by a factor of two higher in X-perturbation than the unperturbed cavitating bubble. The perturbed single bubble sonoluminescence pressure decreases from 2700 atm to 1200 atm at 2.4 bar. In water new non-SBSL SiO molecular emission lines are observed and OH emission disappears. PMID:24068109

Radziuk, Darya; Möhwald, Helmuth; Suslick, Kenneth

2014-02-28

67

An acoustofluidic micromixer via bubble inception and cavitation from microchannel sidewalls.  

PubMed

During the deep reactive ion etching process, the sidewalls of a silicon mold feature rough wavy structures, which can be transferred onto a polydimethylsiloxane (PDMS) microchannel through the soft lithography technique. In this article, we utilized the wavy structures of PDMS microchannel sidewalls to initiate and cavitate bubbles in the presence of acoustic waves. Through bubble cavitation, this acoustofluidic approach demonstrates fast, effective mixing in microfluidics. We characterized its performance by using viscous fluids such as poly(ethylene glycol) (PEG). When two PEG solutions with a resultant viscosity 54.9 times higher than that of water were used, the mixing efficiency was found to be 0.92, indicating excellent, homogeneous mixing. The acoustofluidic micromixer presented here has the advantages of simple fabrication, easy integration, and capability to mix high-viscosity fluids (Reynolds number: ~0.01) in less than 100 ms. PMID:24754496

Ozcelik, Adem; Ahmed, Daniel; Xie, Yuliang; Nama, Nitesh; Qu, Zhiguo; Nawaz, Ahmad Ahsan; Huang, Tony Jun

2014-05-20

68

Cavitation bubbles induced by Erbium lasers: implications for dentistry  

NASA Astrophysics Data System (ADS)

With new fiber systems available for 3 ?m, Erbium lasers become more interesting for precise tissue ablation in a water environment enabling new application in e.g. dentistry. The dynamics of explosive bubble formation was investigated at 2.78 ?m (Er,Cr;YSGG) and 2.94 ?m (Er:YAG), in relation to energy (10-50 mJ), pulse length (20-150 ?s) and fiber tip shape (flat or taper). The dynamics of exploding and imploding vapor bubbles were captured with high speed imaging (10 - 300 ?s range). Increasing the pulse length and energy, the vapor bubble became more elongated with an opaque surface for flat tip fibers. Tapered fibers produced spherical vapor bubbles with an optically transparent surface expected to be more forceful for creating mechanical effects in both hard and soft tissues. There was no significant difference between bubbles formed at 2.78 ?m (Er,Cr;YSGG) and 2.94 ?m (Er:YAG).

Verleng, Marja; Verdaasdonk, Rudolf; van der Veen, Albert; Lemberg, Vladimir; Boutoussov, Dmitri

2014-02-01

69

Reduction of Bubble Cavitation by Modifying the Diffraction Wave from a Lithotripter Aperture  

PubMed Central

Abstract Purpose A new method was devised to suppress the bubble cavitation in the lithotripter focal zone to reduce the propensity of shockwave-induced renal injury. Materials and Methods An edge extender was designed and fabricated to fit on the outside of the ellipsoidal reflector of an electrohydraulic lithotripter to disturb the generation of diffraction wave at the aperture, but with little effect on the acoustic field inside the reflector. Results Although the peak negative pressures at the lithotripter focus using the edge extender at 20?kV were similar to that of the original configuration (-11.1±0.9 vs ?10.6±0.7?MPa), the duration of the tensile wave was shortened significantly (3.2±0.54 vs 5.83±0.56??s, P<0.01). There is no difference, however, in both the amplitude and duration of the compressive shockwaves between these two configurations as well as the ?6 dB beam width in the focal plane. The significant suppression effect of bubble cavitation was confirmed by the measured bubble collapse time using passive cavitation detection. At the lithotripter focus, while only about 30 shocks were needed to rupture a blood vessel phantom using the original HM-3 reflector at 20?kV, no damage could be produced after 300 shocks using the edge extender. Meanwhile, the original HM-3 lithotripter at 20?kV can achieve a stone comminution efficiency of 50.4±2.0% on plaster-of-Paris stone phantom after 200 shocks, which is comparable to that of using the edge extender (46.8±4.1%, P=0.005). Conclusions Modifying the diffraction wave at the lithotripter aperture can suppress the shockwave-induced bubble cavitation with significant reduced damage potential on the vessel phantom but satisfactory stone comminution ability. PMID:22332839

2012-01-01

70

Shock wave emission from laser-induced cavitation bubbles in polymer solutions  

Microsoft Academic Search

The role of extensional viscosity on the acoustic emission from laser-induced cavitation bubbles in polymer solutions and near a rigid boundary is investigated by acoustic measurements. The polymer solutions consist of a 0.5% polyacrylamide (PAM) aqueous solution with a strong elastic component and a 0.5% carboxymethylcellulose (CMC) aqueous solution with a weak elastic component. A reduction of the maximum amplitude

Emil-Alexandru Brujan

2008-01-01

71

Incubation pit analysis and calculation of the hydrodynamic impact pressure from the implosion of an acoustic cavitation bubble.  

PubMed

An experimental study to evaluate cavitation bubble dynamics is conducted. The aim is to predict the magnitude and statistical distribution of hydrodynamic impact pressure generated from the implosion of various individual acoustic cavitation bubbles near to a rigid boundary, considering geometrical features of the pitted area. A steel sample was subjected to cavitation impacts by an ultrasonic transducer with a 5mm diameter probe. The pitted surface was then examined using high-precision 3D optical interferometer techniques. Only the incubation period where surface is plastically deformed without material loss is taken into account. The exposure time was adjusted in the range of 3-60 s to avoid pit overlapping and a special procedure for pit analysis and characterisation was then followed. Moreover, a high-speed camera device was deployed to capture the implosion mechanisms of cavitation bubbles near to the surface. The geometrical characteristics of single incubation pits as well as pit clusters were studied and their deformation patterns were compared. Consequently, a reverse engineering approach was applied in order the hydrodynamic impact pressure from the implosion of an individual cavitation bubble to be determined. The characteristic parameters of the cavitation implosion process such as hydrodynamic impact pressure and liquid micro-jet impact velocity as well as the hydrodynamic severity of the cavitation impacts were quantified. It was found that the length of the hypotenuse of the orthographic projections from the center of the pit, which basically represents the deformed area of the pit, increases with the hydrodynamic impact aggressiveness in a linear rate. Majority of the hydrodynamic impacts were in the range of 0.4-1 GPa while the corresponding micro-jet velocities were found to be in the range of 200-700 m/s. Outcomes of this study, contribute to further understanding the cavitation intensity from the implosion of acoustically generated bubbles and could certainly represent a significant step towards developing more accurate cavitation models. PMID:24176799

Tzanakis, I; Eskin, D G; Georgoulas, A; Fytanidis, D K

2014-03-01

72

Variations of bubble cavitation and temperature elevation during lesion formation by high-intensity focused ultrasound.  

PubMed

High-intensity focused ultrasound (HIFU) is emerging as an effective therapeutic modality in both thermal ablations for solid tumor/cancer and soft-tissue fragmentation. Mechanical and thermal effects, which play an important role in the HIFU treatment simultaneously, are dependent on the operating parameters and may vary with the progress of therapy. Mechanical erosion in the shape of a "squid," a "dumbbell" lesion with both mechanical and thermal lesions, or a "tadpole" lesion with mechanical erosion at the center and thermal necrosis on the boundary in the transparent gel phantom could be produced correspondingly with the pulse duration of 5-30?ms, which is much longer than histotripsy burst but shorter than the time for tissue boiling, and pulse repetition frequency (PRF) of 0.2-5?Hz. Meanwhile, variations of bubble cavitation (both inertial and stable cavitation) and temperature elevation in the focal region (i.e., z?=?-2.5, 0, and 2.5?mm) were measured by passive cavitation detection (PCD) and thermocouples during the therapeutic procedure, respectively. Stable cavitation increased with the pulse duration, PRF, and the number of pulses delivered. However, inertial cavitation was found to increase initially and then decrease with long pulse duration and high PRF. Temperature in the pre-focal region is always higher than those at the focal and post-focal position in all tests. Great variations of PCD signals and temperature elevation are due to the generation and persistence of large bubble, which is resistant to collapse and occurs with the increase of pulse duration and PRF. Similar lesion pattern and variations were also observed in ex vivo porcine kidneys. Hyperechoes in the B-mode ultrasound image were comparable to the shape and size of lesions in the dissected tissue. Thermal lesion volume increased with the increase of pulse duration and PRF, but mechanical erosion reached its maximum volume with the pulse duration of 20?ms and PRF of 1?Hz. Altogether, bubble cavitation and thermal field vary with the progress of HIFU treatment with different sonication parameters, which provide insights into the interaction of ultrasound burst with the induced bubbles for both soft tissue fractionation and enhancement in thermal accumulation. Appropriate synergy and monitoring of mechanical and thermal effects would broaden the HIFU application and enhance its efficiency as well as safety. PMID:23927209

Zhou, Yufeng; Gao, Xiaobin Wilson

2013-08-01

73

Investigation on the collapse behavior of a cavitation bubble near a conical rigid boundary  

NASA Astrophysics Data System (ADS)

The collapse stage of cavitation bubble development near a conical rigid boundary is investigated in detail by a finite-volume method and the volume of fluid method. The obtained results reveal the effect of the angle of the conical boundary on the bubble shape and the collapse time, as well as liquid jet formation. The degree of departure of the bubble shape from spherical one and the collapse time are found to increase with the increase of cone angle. The relationship between the prolongation factor of the collapse time near a conical boundary and the cone angle is proposed, and theoretical values of the collapse time are calculated. Good agreement is found between the theoretical values and the values obtained from simulations using a finite-volume method.

Li, B.-B.; Jia, W.; Zhang, H.-Ch.; Lu, J.

2014-05-01

74

Prediction of tip vortex cavitation inception using coupled spherical and nonspherical bubble models and Navier–Stokes computations  

Microsoft Academic Search

A spherical and a nonspherical bubble dynamics models were developed to study cavitation inception, scaling, and dynamics in a vortex flow. The spherical model is a modified Rayleigh–Plesset model to account for bubble slip velocity and for nonuniform pressures around the bubble. The nonspherical model is embedded in an unsteady Reynolds-averaged Navier–Stokes code with appropriate free-surface boundary conditions and a

Chao-Tsung Hsiao; Georges Chahine

2004-01-01

75

Pit clustering in cavitation erosion  

Microsoft Academic Search

An investigation of the erosion effects of cavitation on a thin aluminium foil was made. Cavitation was generated in a small tank with capacity of about 500ml of clean water. The growth and collapse of bubbles was triggered by means of ultrasound. The sustained damage was measured by evaluating the area of the damaged surface in time intervals of 4s.

Matevž Dular; Aljaž Osterman

2008-01-01

76

Luminescence of trivalent lanthanide ions excited by single-bubble and multibubble cavitations.  

PubMed

This article focuses on the possibility of exciting some lanthanides (Ce(3+), Tb(3+), Gd(3+), and Eu(3+)) by ultrasound in aqueous solutions. Depending on the lanthanide ions and on the acoustic cavitation conditions (single-bubble or multibubble systems), the excitation mechanism is shown to be photoexcitation (e.g., for Ce(3+)) or collision-induced excitation (e.g., for Tb(3+)). The sonoluminescence of Tb(3+) is studied in detail at various ultrasonic frequencies, allowing quantification of the amount of quenching. The latter is much stronger in sonoluminescence than in photoluminescence due to the particular properties of acoustic cavitation. Complexation with citrate ions enhances manifold sonoluminescence of lanthanides due to reduction of intra- and inner-molecular quenching. PMID:23421489

Pflieger, Rachel; Schneider, Julia; Siboulet, Bertrand; Möhwald, Helmuth; Nikitenko, Sergey I

2013-03-14

77

Interaction mechanisms of cavitation bubbles induced by spatially and temporally separated fs-laser pulses.  

PubMed

The emerging use of femtosecond lasers with high repetition rates in the MHz regime together with limited scan speed implies possible mutual optical and dynamical interaction effects of the individual cutting spots. In order to get more insight into the dynamics a time-resolved photographic analysis of the interaction of cavitation bubbles is presented. Particularly, we investigated the influence of fs-laser pulses and their resulting bubble dynamics with various spatial as well as temporal separations. Different time courses of characteristic interaction effects between the cavitation bubbles were observed depending on pulse energy and spatio-temporal pulse separation. These ranged from merely no interaction to the phenomena of strong water jet formation. Afterwards, the mechanisms are discussed regarding their impact on the medical application of effective tissue cutting lateral to the laser beam direction with best possible axial precision: the mechanical forces of photodisruption as well as the occurring water jet should have low axial extend and a preferably lateral priority. Furthermore, the overall efficiency of energy conversion into controlled mechanical impact should be maximized compared to the transmitted pulse energy and unwanted long range mechanical side effects, e.g. shock waves, axial jet components. In conclusion, these experimental results are of great importance for the prospective optimization of the ophthalmic surgical process with high-repetition rate fs-lasers. PMID:25502697

Tinne, Nadine; Kaune, Brigitte; Krüger, Alexander; Ripken, Tammo

2014-01-01

78

Interaction Mechanisms of Cavitation Bubbles Induced by Spatially and Temporally Separated fs-Laser Pulses  

PubMed Central

The emerging use of femtosecond lasers with high repetition rates in the MHz regime together with limited scan speed implies possible mutual optical and dynamical interaction effects of the individual cutting spots. In order to get more insight into the dynamics a time-resolved photographic analysis of the interaction of cavitation bubbles is presented. Particularly, we investigated the influence of fs-laser pulses and their resulting bubble dynamics with various spatial as well as temporal separations. Different time courses of characteristic interaction effects between the cavitation bubbles were observed depending on pulse energy and spatio-temporal pulse separation. These ranged from merely no interaction to the phenomena of strong water jet formation. Afterwards, the mechanisms are discussed regarding their impact on the medical application of effective tissue cutting lateral to the laser beam direction with best possible axial precision: the mechanical forces of photodisruption as well as the occurring water jet should have low axial extend and a preferably lateral priority. Furthermore, the overall efficiency of energy conversion into controlled mechanical impact should be maximized compared to the transmitted pulse energy and unwanted long range mechanical side effects, e.g. shock waves, axial jet components. In conclusion, these experimental results are of great importance for the prospective optimization of the ophthalmic surgical process with high-repetition rate fs-lasers. PMID:25502697

Tinne, Nadine; Kaune, Brigitte; Krüger, Alexander; Ripken, Tammo

2014-01-01

79

Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom  

NASA Astrophysics Data System (ADS)

Stress wave emission and cavitation bubble dynamics after optical breakdown in water and a tissue phantom with Nd: YAG laser pulses of 6 ns duration were investigated both experimentally and numerically to obtain a better understanding of the physical mechanisms involved in plasma-mediated laser surgery. Experimental tools were high-speed photography with 50000 frames s(-1) , and acoustic measurements. The tissue phantom consisted of a transparent polyacrylamide (PAA) gel, the elastic properties of which can be controlled by modifying the water content. Breakdown in water produced a purely compressive stress wave. By contrast, in stiff PAA samples and for sufficiently large pulse energies, the compression wave was followed by an intense tensile wave, similar to the behaviour previously observed in cornea. The elastic/plastic response of the medium led to a significant decrease of the maximum size of the cavitation bubble and to a shortening of its oscillation period which was found to be related to the generation of the tensile stress wave upon breakdown. For increasing elastic modulus of the PAA, both the amplitudes of the bubble oscillation and of the stress wave emitted during bubble collapse decreased until the bubble oscillation was so strongly damped that no collapse stress wave was emitted. Numerical simulations were performed using a spherical model of bubble dynamics which includes the compressibility and elastic/plastic behaviour of the medium, viscosity, density and surface tension. The calculations revealed that consideration of the elastic/plastic behaviour of the medium surrounding the bubble is essential to describe the experimentally observed bipolar shape of the stress wave emitted upon optical breakdown. Water is a poor tissue model because the shape of the emitted stress waves and the bubble dynamics differ strongly for both materials. The mechanical properties of PAA were also found to be quite different from those of tissues. Experimental and numerical results provided evidence that the dynamic mechanical properties relevant for optical breakdown in PAA and tissue differ by as much as two orders of magnitude from the static values. The discovery of a tensile stress wave after optical breakdown in tissue-like media is of great importance for the assessment of collateral damage in laser surgery because biological tissues are much more susceptible to tensile stress than to compressive stress.

Brujan, Emil-Alexandru; Vogel, Alfred

2006-07-01

80

Cavitation and multiphase flow forum--1990  

SciTech Connect

This book is covered under the following topics: Multiphase flow, Cavitation phenomena and review papers, Cavitation in fluid machinery and components, Cavitation and bubble dynamics, Bubble dynamics and cavitation damage.

Furuya, O. (Technologies, Inc. (US))

1990-01-01

81

Shock-Wave Propagation and Cavitation Bubble Oscillation by Nd:YAG Laser Ablation of a Metal in Water  

Microsoft Academic Search

A highly sensitive fiber-optic sensor based on optical beam deflection is applied for investigating the propagation of a laser-induced plasma shock wave, the oscillation of a cavitation bubble diameter, and the development of a bubble-collapse-induced shock wave when a Nd:YAG laser pulse is focused upon an aluminum surface in water. By the sequence of experimental waveforms detected at different distances,

Xiao Chen; Rong-Qing Xu; Jian-Ping Chen; Zhong-Hua Shen; Lu Jian; Xiao-Wu Ni

2004-01-01

82

Cavitation 91  

SciTech Connect

The objective of the Symposium is to provide engineers and scientists working in various fields related to cavitation with an opportunity of assembling and discussing the state-of-art knowledge including its most recent advances, exchanging ideas, and determining future directions in cavitation research. Topics include: inception and bubble dynamic, foil, flow and propella cavitation, and erosion.

Kato, H. (Tokyo Univ. (Japan)); Furuya, O. (OF Technologies, Inc. (US))

1991-01-01

83

Effect of acoustic cavitation on boiling heat transfer  

Microsoft Academic Search

Boiling heat transfer on a horizontal circular copper tube in an acoustical field is investigated experimentally and the relation between the liquid cavitation, the boiling and the micro bubble radii are analyzed theoretically. The results show that cavitation bubbles have an important influence on the nucleation, growth and collapse of vapor embryo within cavities on the heat transfer surface and

D. W. Zhou; D. Y. Liu; X. G. Hu; C. F. Ma

2002-01-01

84

Influence of Vortex Cavitation on Vortex Breakdown  

NASA Astrophysics Data System (ADS)

Cavitation inception and development was observed in the vortices created by an ? = 70^o delta wing over a range of attack angles and cavitation numbers. The location of cavitation inception, bubble size, growth rate, and the effect of cavitation on the location of vortex breakdown were studied. From the observations a rationale that governs the observed inception location, growth of incepted nucleus into a given shape is proposed. It is based on the alterations of the vortical core flow that an elongating bubble will cause. The minimizing potential theory of Rusak et alootnotetext``The evolution of a perturbed vortex in a pipe to axisymmetric vortex breakdown,'' Rusak, Z., Wang. S., Whiting. C. H., Journal of fluid mechanics, 1998, Vol 336, pp 211-237 is used to identify the constraints on the bubble growth which in turn helps us to understand the bubble shape and growth rate.

Ganesh, Harish; Pinheiro, Andre; Guen Paik, Bu; Ceccio, Steven L.

2011-11-01

85

Sonoluminescence quenching and cavitation bubble temperature measurements in an ionic liquid.  

PubMed

A comparison between the temperatures within imploding acoustic cavitation bubbles and the extent of sonoluminescence (SL) quenching by C(1)-C(5) aliphatic alcohols in 1-ethyl-3-methylimidazolium ethylsulfate ([EMIM][EtSO(4)], a well known imidazolium based room temperature ionic liquid (RTIL)), has been made at an ultrasound frequency of 213 kHz. The temperatures obtained ranged from 3500 ± 200K, in neat [EMIM][EtSO(4)], to about 3200 ± 200K in RTIL-alcohol containing solutions. It was also found that the SL intensity decreased with increasing concentration (up to 1M) of the alcohols to a greater extent compared with the relative changes to the bubble temperatures. Both the extent of the reduction in the bubble temperatures and the SL quenching were much smaller than those obtained in comparable aqueous solutions containing aliphatic alcohols. Possible reasons for the differences in the observed trends between water/alcohol and [EMIM][EtSO(4)]/alcohol systems under sonication at 213 kHz are discussed. PMID:22717325

Kanthale, Parag M; Brotchie, Adam; Grieser, Franz; Ashokkumar, Muthupandian

2013-01-01

86

Bubble Proliferation or Dissolution of Cavitation Nuclei in the Beam Path of a Shock-Wave Lithotripter  

NASA Astrophysics Data System (ADS)

It is hypothesized that the decreased treatment efficiency in contemporary shock-wave lithotripters is related to tensile wave attenuation due to cavitation in the prefocal beam path. Utilizing high-speed imaging of the beam path and focal pressure waveform measurements, tensile attenuation is associated with bubble proliferation. By systematically testing different combinations of pulse-repetition frequency and gas concentration, we modulate the bubble-dissolution time to identify which conditions lead to bubble proliferation and show that reducing bubble proliferation in the beam path significantly improves acoustic transmission and stone comminution efficiency in vitro. In addition to experiments, a bubble-proliferation model is developed that takes gas diffusion across the bubble wall and bubble fragmentation into account. By aligning the model with experimental observations, the number of daughter bubbles produced after a single lithotripter bubble collapse is estimated to be in the range of 253 ˜510 . This finding is on the same order of magnitude with previous measurements of an isolated bubble collapse in a lithotripter field by Pishchalnikov, McAteer, and Williams [BJU Int. 102, 1681 (2008), 10.1111/j.1464-410X.2008.07896.x], and this estimate improves the general understanding of lithotripsy bubble dynamics in the beam path.

Frank, Spencer; Lautz, Jaclyn; Sankin, Georgy N.; Szeri, Andrew J.; Zhong, Pei

2015-03-01

87

Cavitation mapping by sonochemiluminescence with less bubble displacement induced by acoustic radiation force in a 1.2 MHz HIFU.  

PubMed

An acoustic radiation force counterbalanced appliance was employed to map the cavitation distribution in water. The appliance was made up of a focused ultrasound transducer and an aluminum alloy reflector with the exactly same shape. They were centrosymmetry around the focus of the source transducer. Spatial-temporal dynamics of cavitation bubble clouds in the 1.2 MHz ultrasonic field within this appliance were observed in water. And they were mapped by sonochemiluminescence (SCL) recordings and high-speed photography. There were significant differences in spatial distribution and temporal evolution between normal group and counterbalanced group. The reflector could avoid bubble directional displacement induced by acoustic radiation force under certain electric power (?50 W). As a result, the SCL intensity in the pre-focal region was larger than that of normal group. In event of high electric power (?70 W), most of the bubbles were moving in acoustic streaming. When electric power decreased, bubbles kept stable and showed stripe structure in SCL images. Both stationary bubbles and moving bubbles have been captured, and exhibited analytical potential with respect to bubbles in therapeutic ultrasound. PMID:24409464

Yin, Hui; Qiao, Yangzi; Cao, Hua; Li, Zhaopeng; Wan, Mingxi

2014-03-01

88

K.S. Suslick, W.B. McNamara III, Y. Didenko; "Hot Spot Conditions During Multi-Bubble Cavitation" in Sonochemistry and Sonoluminescence, Crum, L. A.; Mason, T. J.; Reisse, J.; Suslick, K.S., eds.  

E-print Network

of about 1000 atmospheres, and heating and cooling rates above 1010 K/s. In single bubble cavitation with the extraordinary heating and cooling rates generated by cavitation bubble collapse mean that ultrasound provides laser photolysis, cavitation heating is very short lived, but it occurs within condensed phases

Suslick, Kenneth S.

89

Bubble growth in rhyolitic melt Yang Liu, Youxue Zhang *  

E-print Network

Bubble growth in rhyolitic melt Yang Liu, Youxue Zhang * The Department of Geological Sciences rhyolitic melt with 1.4^2.0 wt% initial total H2O at 0.1 MPa and 500^600³C. Growth of many bubbles. The average growth rate for bubbles growing in an infinite rhyolitic melt at a bubble radius of 25 Wm is V0

Zhang, Youxue

90

Contribution of stress wave and cavitation bubble in evaluation of cell-cell adhesion by femtosecond laser-induced impulse  

NASA Astrophysics Data System (ADS)

When an intense femtosecond laser is focused in a cell culture medium, shock wave, stress wave, and cavitation bubble are generated at the laser focal point. Cell-cell adhesion can be broken at the cellular level by the impacts of these factors. We have applied this breaking of the adhesion to an estimation of the cell-cell adhesion strength. In this application, it is important to identify which of these factors is the dominant factor that breaks the adhesion. Here we investigated this issue using streptavidin-coated microbeads adhering to a biotin-coated substrate as a mimic of the cell-cell adhesion. The results indicated that the break was induced mainly by the stress wave, not by the impact of the cavitation bubble.

Iino, Takanori; Li, Po-Lin; Wang, Wen-Zhe; Deng, Jia-Huei; Lu, Yun-Chang; Kao, Fu-Jen; Hosokawa, Yoichiroh

2014-10-01

91

Dynamics of ultrasound-induced cavitation bubbles in non-Newtonian liquids and near a rigid boundary  

NASA Astrophysics Data System (ADS)

The dynamics of ultrasound-induced cavitation bubbles situated in non-Newtonian liquids and near a rigid boundary are investigated experimentally by acoustic measurements and high-speed photography with up to 4 million frames/s. The non-Newtonian liquids consist of a 0.5% polyacrylamide (PAM) aqueous solution with a strong elastic component and a 0.5% carboxymethylcellulose aqueous solution with a weak elastic component. The maximum velocity of the re-entrant liquid jet and the pressure amplitude of the acoustic transients emitted during first bubble collapse are diminished by the polymer additives. The most significant reduction was found in the elastic PAM solution. It might be caused by an increased resistance to extensional flow which is conferred upon the liquid by the polymer additive. The results are discussed with respect to the mechanisms of cavitation erosion of rigid materials. The material presented may also be useful for comparison with future numerical work.

Brujan, E. A.; Ikeda, T.; Matsumoto, Y.

2004-07-01

92

Bubble Growth and Detachment from a Needle  

NASA Astrophysics Data System (ADS)

The release of bubbles from an underwater nozzle or orifice occurs in large number of applications, such as perforated plate columns, blood oxygenators and various methods of water treatment. It is also a widely used method in laboratory research on multiphase flow and acoustics for generating small bubbles in a controlled fashion. We studied experimentally the growth and pinch-off of air bubbles released from a submerged needle into a quiescent liquid or a liquid flowing parallel to the needle. Micron-sized bubbles were generated by an air-liquid dispenser. High-speed imaging was performed to study the formation and detachment of bubbles from the tip of the needle. The impact of the needle diameter was investigated and the size and number of produced bubbles were assessed for different flow rates of air and for different velocities of the imposed upward liquid flow. The results were compared with available theoretical models and numerical computations. The existence of a critical gas flow rate and two regimes of bubble growth were verified.

Shusser, Michael; Rambod, Edmond; Gharib, Morteza

1999-11-01

93

Characterization of stable and transient cavitation bubbles in a milliflow reactor using a multibubble sonoluminescence quenching technique.  

PubMed

The bubble type, generated by an ultrasonic field, was studied in a batch and flow reactor using a multibubble sonoluminescence (MBSL) quenching technique with propanol and acetone. The influence of frequency and transducer configuration was evaluated using the same piezoelectric element in both setups. Results show that the bubble type not only depends on the frequency, but also on the input power or transducer configuration. Additionally, the effect of flow on sonoluminescence yield and bubble type was studied in the continuous setup at various frequencies. As the flow becomes turbulent, the sonoluminescence signal reaches a plateau for three out of four frequencies, and a transition from transient to stable cavitation occurs for frequencies below 200kHz. PMID:25218768

Gielen, B; Jordens, J; Janssen, J; Pfeiffer, H; Wevers, M; Thomassen, L C J; Braeken, L; Van Gerven, T

2015-07-01

94

Molecular and atomic emission during single-bubble cavitation in concentrated sulfuric acid  

E-print Network

: April 12, 2005 1. Introduction A single gas bubble in a liquid can be acoustically levitated and driven and to the overall bubble oscillation will lead to a much more detailed understanding of SBSL. © 2005 Acoustical,2 This light emission from single acoustically driven bubbles, dubbed single-bubble sonoluminescence (SBSL

Suslick, Kenneth S.

95

Small Gas Bubble Experiment for Mitigation of Cavitation Damage and Pressure Waves in Short-pulse Mercury Spallation Targets  

SciTech Connect

Populations of small helium gas bubbles were introduced into a flowing mercury experiment test loop to evaluate mitigation of beam-pulse induced cavitation damage and pressure waves. The test loop was developed and thoroughly tested at the Spallation Neutron Source (SNS) prior to irradiations at the Los Alamos Neutron Science Center - Weapons Neutron Research Center (LANSCE-WNR) facility. Twelve candidate bubblers were evaluated over a range of mercury flow and gas injection rates by use of a novel optical measurement technique that accurately assessed the generated bubble size distributions. Final selection for irradiation testing included two variations of a swirl bubbler provided by Japan Proton Accelerator Research Complex (J-PARC) collaborators and one orifice bubbler developed at SNS. Bubble populations of interest consisted of sizes up to 150 m in radius with achieved gas void fractions in the 10^-5 to 10^-4 range. The nominal WNR beam pulse used for the experiment created energy deposition in the mercury comparable to SNS pulses operating at 2.5 MW. Nineteen test conditions were completed each with 100 pulses, including variations on mercury flow, gas injection and protons per pulse. The principal measure of cavitation damage mitigation was surface damage assessment on test specimens that were manually replaced for each test condition. Damage assessment was done after radiation decay and decontamination by optical and laser profiling microscopy with damaged area fraction and maximum pit depth being the more valued results. Damage was reduced by flow alone; the best mitigation from bubble injection was between half and a quarter that of flow alone. Other data collected included surface motion tracking by three laser Doppler vibrometers (LDV), loop wall dynamic strain, beam diagnostics for charge and beam profile assessment, embedded hydrophones and pressure sensors, and sound measurement by a suite of conventional and contact microphones.

Wendel, Mark W [ORNL] [ORNL; Felde, David K [ORNL] [ORNL; Sangrey, Robert L [ORNL] [ORNL; Abdou, Ashraf A [ORNL] [ORNL; West, David L [ORNL] [ORNL; Shea, Thomas J [ORNL] [ORNL; Hasegawa, Shoichi [Japan Atomic Energy Agency (JAEA)] [Japan Atomic Energy Agency (JAEA); Kogawa, Hiroyuki [Japan Atomic Energy Agency (JAEA)] [Japan Atomic Energy Agency (JAEA); Naoe, Dr. Takashi [Japan Atomic Energy Agency (JAEA)] [Japan Atomic Energy Agency (JAEA); Farny, Dr. Caleb H. [Boston University] [Boston University; Kaminsky, Andrew L [ORNL] [ORNL

2014-01-01

96

Growth of an initially sharp crack by grain boundary cavitation  

NASA Astrophysics Data System (ADS)

A new computational model is presented to analyze intergranular creep crack growth in a polycrystalline aggregate in a discrete manner and based directly on the underlying physical micromechanisms. A crack tip process zone is introduced in which grains and their grain boundaries are represented discretely, while the surrounding undamaged material is described as a continuum. Special-purpose finite elements are used to represent individual grains and grain boundary facets. The constitutive description of the grain boundary elements accounts for the relevant physical fracture mechanisms, i.e. viscous grain boundary sliding, the nucleation of grain boundary cavities, their growth by grain boundary diffusion and local creep, until coalescence of cavities leads to microcracks. Discrete propagation of the main crack occurs by linking up of neighbouring facet microcracks. Assuming small-scale damage conditions, the model is used to simulate the initial stages of growth of an initially sharp crack under C? controlled, mode I loading conditions. Material parameters are varied so as to lead to either ductile or brittle fracture, thus elucidating creep constrained cavitation near cracks. The role of the stress state dependence of cavity nucleation on the crack growth direction is emphasized.

Onck, Patrick; Giessen, Erik van der

1998-12-01

97

Cavitation and multiphase flow forum -- 1993  

SciTech Connect

This volume contains papers presented at the 28th Cavitation and Multiphase Flow Forum of the Fluids Engineering Division of the American Society of Mechanical Engineers. About 35 papers and 3 student papers were presented. The papers are divided into the following sections: Multiphase flow; Multiphase flow/Bubble dynamics; Vortex cavitations/Bubble cavitation/Cavitation erosion; Cavitation erosion/Bubble dynamics; Cavitation inception/Bubbles/Cavitation in fluid machinery; and Cavitation in fluid machinery. Papers have been processed separately for inclusion on the data base.

Furuya, Okitsugu (ed.)

1993-01-01

98

A simple model of ultrasound propagation in a cavitating liquid. Part II: Primary Bjerknes force and bubble structures  

E-print Network

In a companion paper, a reduced model for propagation of acoustic waves in a cloud of inertial cavitation bubbles was proposed. The wave attenuation was calculated directly from the energy dissipated by a single bubble, the latter being estimated directly from the fully nonlinear radial dynamics. The use of this model in a mono-dimensional configuration has shown that the attenuation near the vibrating emitter was much higher than predictions obtained from linear theory, and that this strong attenuation creates a large traveling wave contribution, even for closed domain where standing waves are normally expected. In this paper, we show that, owing to the appearance of traveling waves, the primary Bjerknes force near the emitter becomes very large and tends to expel the bubbles up to a stagnation point. Two-dimensional axi-symmetric computations of the acoustic field created by a large area immersed sonotrode are also performed, and the paths of the bubbles in the resulting Bjerknes force field are sketched. C...

Louisnard, Olivier

2013-01-01

99

A simple model of ultrasound propagation in a cavitating liquid. Part II: Primary Bjerknes force and bubble structures.  

PubMed

In a companion paper, a reduced model for propagation of acoustic waves in a cloud of inertial cavitation bubbles was proposed. The wave attenuation was calculated directly from the energy dissipated by a single bubble, the latter being estimated directly from the fully nonlinear radial dynamics. The use of this model in a mono-dimensional configuration has shown that the attenuation near the vibrating emitter was much higher than predictions obtained from linear theory, and that this strong attenuation creates a large traveling wave contribution, even for closed domain where standing waves are normally expected. In this paper, we show that, owing to the appearance of traveling waves, the primary Bjerknes force near the emitter becomes very large and tends to expel the bubbles up to a stagnation point. Two-dimensional axi-symmetric computations of the acoustic field created by a large area immersed sonotrode are also performed, and the paths of the bubbles in the resulting Bjerknes force field are sketched. Cone bubble structures are recovered and compare reasonably well to reported experimental results. The underlying mechanisms yielding such structures is examined, and it is found that the conical structure is generic and results from the appearance a sound velocity gradient along the transducer area. Finally, a more complex system, similar to an ultrasonic bath, in which the sound field results from the flexural vibrations of a thin plate, is also simulated. The calculated bubble paths reveal the appearance of other commonly observed structures in such configurations, such as streamers and flare structures. PMID:21764349

Louisnard, O

2012-01-01

100

Characterization of the shock pulse-induced cavitation bubble activities recorded by an optical fiber hydrophone.  

PubMed

A shock pressure pulse used in an extracorporeal shock wave treatment has a large negative pressure (<-5?MPa) which can produce cavitation. Cavitation cannot be measured easily, but may have known therapeutic effects. This study considers the signal recorded for several hundred microseconds using an optical hydrophone submerged in water at the focus of shock pressure field. The signal is characterized by shock pulse followed by a long tail after several microseconds; this signal is regarded as a cavitation-related signal (CRS). An experimental investigation of the CRS was conducted in the shock pressure field produced in water using an optical hydrophone (FOPH2000, RP Acoustics, Germany). The CRS was found to contain characteristic information about the shock pulse-induced cavitation. The first and second collapse times (t1 and t2) were identified in the CRS. The collapse time delay (tc?=?t2 - t1) increased with the driving shock pressures. The signal amplitude integrated for time from t1 to t2 was highly correlated with tc (adjusted R(2)?=?0.990). This finding suggests that a single optical hydrophone can be used to measure shock pulse and to characterize shock pulse-induced cavitation. PMID:24606257

Kang, Gwansuk; Cho, Sung Chan; Coleman, Andrew John; Choi, Min Joo

2014-03-01

101

Characterization of an acoustic cavitation bubble structure at 230 kHz.  

PubMed

A generic bubble structure in a 230 kHz ultrasonic field is observed in a partly developed standing wave field in water. It is characterized by high-speed imaging, sonoluminescence recordings, and surface cleaning tests. The structure has two distinct bubble populations. Bigger bubbles (much larger than linear resonance size) group on rings in planes parallel to the transducer surface, apparently in locations of driving pressure minima. They slowly rise in a jittering, but synchronous way, and they can have smaller satellite bubbles, thus resembling the arrays of bubbles observed by Miller [D. Miller, Stable arrays of resonant bubbles in a 1-MHz standing-wave acoustic field, J. Acoust. Soc. Am. 62 (1977) 12]. Smaller bubbles (below and near linear resonance size) show a fast "streamer" motion perpendicular to and away from the transducer surface. While the bigger bubbles do not emit light, the smaller bubbles in the streamers show sonoluminescence when they pass the planes of high driving pressure. Both bubble populations exhibit cleaning potential with respect to micro-particles attached to a glass substrate. The respective mechanisms of particle removal, though, might be different. PMID:21041109

Thiemann, Andrea; Nowak, Till; Mettin, Robert; Holsteyns, Frank; Lippert, Alexander

2011-03-01

102

Hot spot conditions during cavitation in water  

SciTech Connect

Liquids irradiated with high-intensity ultrasound undergo acoustic cavitation--the formation, growth, and implosive collapse of bubbles. The energy stored during the growth of the bubble in the rarefaction phase of the acoustic field is released when the bubble violently collapses in the compression phase of the acoustic field, as acoustic noise, shock waves, chemical reactions, and the emission of light (sonoluminescence, SL). This violent collapse is predicted to generate a hot spot of thousands of Kelvin within the bubble, but, to date, there have been only a limited number of experimental measurements of the temperature of this hot spot. Although the SL of water has been studied for more than 50 years, the effective hot spot temperature during aqueous cavitation remains unresolved. Given the importance of aqueous cavitation (sonography and bioeffects of ultrasound, sonochemical remediation of aqueous pollutants, synthetic applications of sonochemistry, etc.), the authors decided to apply previous spectroscopic analysis of SL of nonaqueous liquids to aqueous solutions doped with small amounts of hydrocarbons. The authors have collected and analyzed excited-state C{sub 2} NBSL (multi-bubble sonoluminescence, light emission from the clouds of cavitating bubbles) spectra from mixtures of organic liquids in water at 20 kHz and find an effective emission temperature of 4,300 {+-} 200 K.

Didenko, Y.T.; McNamara, W.B. III; Suslick, K.S.

1999-06-23

103

Dynamics of shock waves and cavitation bubbles in bilinear elastic-plastic media, and the implications to short-pulsed laser surgery  

NASA Astrophysics Data System (ADS)

The dynamics of shock waves and cavitation bubbles generated by short laser pulses in water and elastic-plastic media were investigated theoretically in order to get a better understanding of their role in short-pulsed laser surgery. Numerical simulations were performed using a spherical model of bubble dynamics which include the elastic-plastic behaviour of the medium surrounding the bubble, compressibility, viscosity, density and surface tension. Breakdown in water produces a monopolar acoustic signal characterized by a compressive wave. Breakdown in an elastic-plastic medium produces a bipolar acoustic signal, with a leading positive compression wave and a trailing negative tensile wave. The calculations revealed that consideration of the tissue elasticity is essential to describe the bipolar shape of the shock wave emitted during optical breakdown. The elastic-plastic response of the medium surrounding the bubble leads to a significant decrease of the maximum size of the cavitation bubble and pressure amplitude of the shock wave emitted during bubble collapse, and shortening of the oscillation period of the bubble. The results are discussed with respect to collateral damage in short-pulsed laser surgery.

Brujan, E.-A.

2005-01-01

104

Generation of laser-induced cavitation bubbles with a digital hologram  

E-print Network

. Theisen, S. Busch, U. Parlitz, D.X. Hammer, G.D. Noojin, B.A. Rockwell, R. Birngruber, "Energy balance or optical breakdown in water at nanosecond to femtosecond time scales," Appl. Phys B 68, 271-280 (1999). 8, E. Nijhuis, A. van deb Berg, I. Vermes, A. Poot, and C. D. Ohl, "Controlled cavitation

Ohl, Claus-Dieter

105

Multifocal laser surgery: Cutting enhancement by hydrodynamic interactions between cavitation bubbles  

E-print Network

been recently demon- strated in cataract surgery 2 . An anterior lens capsule was cut in a spiralMultifocal laser surgery: Cutting enhancement by hydrodynamic interactions between cavitation a corneal flap in refractive surgery a part of LASIK procedure , replacing less precise mechanical micro

Palanker, Daniel

106

Molecular dynamics simulations of bubble formation and cavitation in liquid metals  

Microsoft Academic Search

Thermodynamics and kinetics of nano-scale bubble formation in liquid metals such as Li and Pb were studied by molecular dynamics (MD) simulations at pressures typical for magnetic and inertial fusion. Two different approaches to bubble formation were developed. In one method, radial densities, pressures, surface tensions, and work functions of the cavities in supercooled liquid lithium were calculated and compared

Z. Insepov; A. Hassanein; T. T. Bazhirov; G. E. Norman; V. V. Stegailov

2007-01-01

107

Bubble growth during decompression of magma: experimental and theoretical investigation  

E-print Network

Bubble growth during decompression of magma: experimental and theoretical investigation N.G. Lensky, Israel Abstract A model of bubble growth during decompression of supersaturated melt was developed supersaturation of the melt. The model accounts for the interplay of three dynamic processes: decompression rate

Lyakhovsky, Vladimir

108

Time-resolved monitoring of cavitation activity in megasonic cleaning systems.  

PubMed

The occurrence of acoustic cavitation in the cleaning liquid is a crucial precondition for the performance of megasonic cleaning systems. Hence, a fundamental understanding of the impact of different parameters of the megasonic process on cavitation activity is necessary. A setup capable of synchronously measuring sonoluminescence and acoustic emission originating from acoustically active bubbles is presented. The system also includes a high-speed-stroboscopic Schlieren imaging system to directly visualize the influence of cavitation activity on the Schlieren contrast and resolvable bubbles. This allows a thorough characterization of the mutual interaction of cavitation bubbles with the sound field and with each other. Results obtained during continuous sonication of argon-saturated water at various nominal power densities indicate that acoustic cavitation occurs in a cyclic manner, during which periods of stable and inertial cavitation activity alternate. The occurrence of higher and ultraharmonics in the acoustic emission spectra is characteristic for the stable cavitation state. The inertial cavitation state is characterized by a strong attenuation of the sound field, the explosive growth of bubbles and the occurrence of broadband components in the acoustic spectra. Both states can only be sustained at sufficiently high intensities of the sound field. At lower intensities, their occurrences are limited to short, random bursts. Cleaning activity can be linked to the cavitation activity through the measurement of particle removal on standard 200 mm silicon wafers. It is found that the particle removal efficiency is reduced, when a continuous state of cavitation activity ceases to exist. PMID:22462949

Hauptmann, M; Brems, S; Struyf, H; Mertens, P; Heyns, M; De Gendt, S; Glorieux, C

2012-03-01

109

Time-resolved monitoring of cavitation activity in megasonic cleaning systems  

NASA Astrophysics Data System (ADS)

The occurrence of acoustic cavitation in the cleaning liquid is a crucial precondition for the performance of megasonic cleaning systems. Hence, a fundamental understanding of the impact of different parameters of the megasonic process on cavitation activity is necessary. A setup capable of synchronously measuring sonoluminescence and acoustic emission originating from acoustically active bubbles is presented. The system also includes a high-speed-stroboscopic Schlieren imaging system to directly visualize the influence of cavitation activity on the Schlieren contrast and resolvable bubbles. This allows a thorough characterization of the mutual interaction of cavitation bubbles with the sound field and with each other. Results obtained during continuous sonication of argon-saturated water at various nominal power densities indicate that acoustic cavitation occurs in a cyclic manner, during which periods of stable and inertial cavitation activity alternate. The occurrence of higher and ultraharmonics in the acoustic emission spectra is characteristic for the stable cavitation state. The inertial cavitation state is characterized by a strong attenuation of the sound field, the explosive growth of bubbles and the occurrence of broadband components in the acoustic spectra. Both states can only be sustained at sufficiently high intensities of the sound field. At lower intensities, their occurrences are limited to short, random bursts. Cleaning activity can be linked to the cavitation activity through the measurement of particle removal on standard 200 mm silicon wafers. It is found that the particle removal efficiency is reduced, when a continuous state of cavitation activity ceases to exist.

Hauptmann, M.; Brems, S.; Struyf, H.; Mertens, P.; Heyns, M.; De Gendt, S.; Glorieux, C.

2012-03-01

110

Bubble dynamics in boiling under high heat flux pulse heating  

Microsoft Academic Search

A new theoretical model of bubble behavior in boiling water under high heat flux pulse is presented. The essence of the model is nucleation in the superheated liquid followed by instantaneous formation of a vapor film, rapid bubble growth due to the pressure impulse, and cavitation bubble collapse. To check the model, boiling of methanol under 5 â¼ 50 MW

A. Asai

1991-01-01

111

Interaction dynamics of fs-laser induced cavitation bubbles and their impact on the laser-tissue-interaction of modern ophthalmic laser systems  

NASA Astrophysics Data System (ADS)

A today well-known laser based treatment in ophthalmology is the LASIK procedure which nowadays includes cutting of the corneal tissue with ultra-short laser pulses. Instead of disposing a microkeratome for cutting a corneal flap, a focused ultra-short laser pulse is scanned below the surface of biological tissue causing the effect of an optical breakdown and hence obtaining a dissection. Inside the tissue, the energy of the laser pulses is absorbed by non-linear processes; as a result a cavitation bubble expands and ruptures the tissue. Hence, positioning of several optical breakdowns side by side generates an incision. Due to a reduction of the amount of laser energy, with a moderate duration of treatment at the same time, the current development of ultra-short pulse laser systems points to higher repetition rates in the range of even Megahertz instead of tens or hundreds of Kilohertz. In turn, this results in a pulse overlap and therefor a probable occurrence of interaction between different optical breakdowns and respectively cavitation bubbles of adjacent optical breakdowns. While the interaction of one single laser pulse with biological tissue is analyzed reasonably well experimentally and theoretically, the interaction of several spatial and temporal following pulses is scarcely determined yet. Thus, the aim of this study is to analyse the dynamic and interaction of two cavitation bubbles by using high speed photography. The applied laser pulse energy, the energy ratio and the spot distance between different cavitation bubbles were varied. Depending on a change of these parameters different kinds of interactions such as a flattening and deformation of bubble shape or jet formation are observed. The effects will be discussed regarding the medical ophthalmic application of fs-lasers. Based on these results a further research seems to be inevitable to comprehend and optimize the cutting effect of ultra-short pulse laser systems with high (> 500 kHz) repetition rates.

Tinne, N.; Ripken, T.; Lubatschowski, H.; Heisterkamp, A.

2011-07-01

112

Stability of bubbly liquids and its connection to the process of cavitation inception  

NASA Astrophysics Data System (ADS)

This paper presents a potential energy approach for the investigation of the stability of bubbly liquids. Using the system's free energy variations with respect to the void fraction as a stability criterion for the whole system, we consider that sudden bubble expansion occurs only when the bubble cluster expansion is energetically favorable. The results obtained provide new insight into the behavior of pre-nucleated liquids when the inception point is reached as well as a simple method to estimate the energy exchanges between a bubble cluster and its environment when the kinetic energy is negligible compared to the elastic energy stored during tension and compression processes. In addition to the radius of the initial nuclei, the concentration and polydispersity are shown to exert an important influence on the response of the system after inception.

Fuster, D.; Pham, K.; Zaleski, S.

2014-04-01

113

Unorthodox bubbles when boiling in cold water  

NASA Astrophysics Data System (ADS)

High-speed movies are taken when bubbles grow at gold surfaces heated spotwise with a near-infrared laser beam heating water below the boiling point (60-70 °C) with heating powers spanning the range from very low to so high that water fails to rewet the surface after bubbles detach. Roughly half the bubbles are conventional: They grow symmetrically through evaporation until buoyancy lifts them away. Others have unorthodox shapes and appear to contribute disproportionately to heat transfer efficiency: mushroom cloud shapes, violently explosive bubbles, and cavitation events, probably stimulated by a combination of superheating, convection, turbulence, and surface dewetting during the initial bubble growth. Moreover, bubbles often follow one another in complex sequences, often beginning with an unorthodox bubble that stirs the water, followed by several conventional bubbles. This large dataset is analyzed and discussed with emphasis on how explosive phenomena such as cavitation induce discrepancies from classical expectations about boiling.

Parker, Scott; Granick, Steve

2014-01-01

114

Unorthodox bubbles when boiling in cold water.  

PubMed

High-speed movies are taken when bubbles grow at gold surfaces heated spotwise with a near-infrared laser beam heating water below the boiling point (60-70?°C) with heating powers spanning the range from very low to so high that water fails to rewet the surface after bubbles detach. Roughly half the bubbles are conventional: They grow symmetrically through evaporation until buoyancy lifts them away. Others have unorthodox shapes and appear to contribute disproportionately to heat transfer efficiency: mushroom cloud shapes, violently explosive bubbles, and cavitation events, probably stimulated by a combination of superheating, convection, turbulence, and surface dewetting during the initial bubble growth. Moreover, bubbles often follow one another in complex sequences, often beginning with an unorthodox bubble that stirs the water, followed by several conventional bubbles. This large dataset is analyzed and discussed with emphasis on how explosive phenomena such as cavitation induce discrepancies from classical expectations about boiling. PMID:24580324

Parker, Scott; Granick, Steve

2014-01-01

115

{open_quotes}Bubble fusion{close_quotes}: Preliminary estimates of spherical micro-implosions in cavitating liquids  

SciTech Connect

Liquids irradiated with intense ultrasonic waves can generate small cavities or bubbles. Upon nonlinear expansion to a state of disequilibrium, wherein the externally imposed hydrostatic pressure far exceeds that of entrapped non-condensable gas, these bubbles undergo a rapid and violent collapse. This collapse, if symmetric, can generate high pressures and temperatures through a number of possible mechanisms. The simplest and oldest explanation suggests a focusing of the kinetic energy of all the surrounding liquid onto the collapsing bubble and the subsequent heating of entrapped gases under either adiabatic or isothermal conditions. Although induced by externally imposed millisecond pressure oscillations, these collapses can occur on sub-microsecond timescales and are accompanied by picosecond light emissions; this combination of sound and light is called sonoluminescence. Recent explanations of observed high temperatures and picosecond radiation pulses accompanying such collapses are based on the interaction of multiple shock waves that are launched off the inward cavity wall. Other potential explanations invoke dipole emissions induced by intermolecular collisions or the release of Casimir energy when a dielectric hole is filled. Conjectures have been made that the processes responsible for sonoluminescence may be extended to generated conditions where thermonuclear fusion might occur. Such an achievement would extend scientific interest in sonoluminescence out of a purely chemical context to include the study of matter subjected to more extreme conditions. The main goal of this {open_quotes}scoping{close_quotes} study is to understand better conditions where deuterium-tritium fusion might be observed in conjunction with micro-implosions in cavitating liquids; prognoses of fusion application at this point are unintended.

Krakowski, R.A.

1995-02-01

116

Numerical estimation of cavitation intensity  

NASA Astrophysics Data System (ADS)

Cavitation may appear in turbomachinery and in hydraulic orifices, venturis or valves, leading to performance losses, vibrations and material erosion. This study propose a new method to predict the cavitation intensity of the flow, based on a post-processing of unsteady CFD calculations. The paper presents the analyses of cavitating structures' evolution at two different scales: • A macroscopic one in which the growth of cavitating structures is calculated using an URANS software based on a homogeneous model. Simulations of cavitating flows are computed using a barotropic law considering presence of air and interfacial tension, and Reboud's correction on the turbulence model. • Then a small one where a Rayleigh-Plesset software calculates the acoustic energy generated by the implosion of the vapor/gas bubbles with input parameters from macroscopic scale. The volume damage rate of the material during incubation time is supposed to be a part of the cumulated acoustic energy received by the solid wall. The proposed analysis method is applied to calculations on hydrofoil and orifice geometries. Comparisons between model results and experimental works concerning flow characteristic (size of cavity, pressure,velocity) as well as pitting (erosion area, relative cavitation intensity) are presented.

Krumenacker, L.; Fortes-Patella, R.; Archer, A.

2014-12-01

117

Digital In-Line Holography in a Droplet with Cavitation Air Bubbles  

NASA Astrophysics Data System (ADS)

In this publication, the modelisation of an air bubble as inclusion in a droplet is treated from scalar theory point of view (Fresnel's theory). The elaborated model is compared with Lorenz-Mie scattering theory and with an experimental results. Circle polynomials and scaled pupil function are the background of this work to take into account the critical angle effect that arises at a transition from a higher index to a lower index medium.

Coetmellec, S.; Pejchang, D.; Allano, D.; Grehan, G.; Lebrun, D.; Brunel, M.; Janssen, A. J. E. M.

2014-12-01

118

Nucleate boiling bubble growth and departure  

E-print Network

The vapor bubble formation on the heating surface during pool boiling has been studied experimentally. Experiments were made at the atmospheric pressure 28 psi and 40 psi, using degassed distilled water and ethanol. The ...

Staniszewski, Bogumil E.

1959-01-01

119

Analogy between fluid cavitation and fracture mechanics  

NASA Technical Reports Server (NTRS)

When the stresses imposed on a fluid are sufficiently large, rupture or cavitation can occur. Such conditions can exist in many two-phase flow applications, such as the choked flows, which can occur in seals and bearings. Nonspherical bubbles with large aspect ratios have been observed in fluids under rapid acceleration and high shear fields. These bubbles are geometrically similar to fracture surface patterns (Griffith crack model) existing in solids. Analogies between crack growth in solid and fluid cavitation are proposed and supported by analysis and observation (photographs). Healing phenomena (void condensation), well accepted in fluid mechanics, have been observed in some polymers and hypothesized in solid mechanics. By drawing on the strengths of the theories of solid mechanics and cavitation, a more complete unified theory can be developed.

Hendricks, R. C.; Mullen, R. L.; Braun, M. J.

1983-01-01

120

Aspherical bubble dynamics and oscillation times  

SciTech Connect

The cavitation bubbles common in laser medicine are rarely perfectly spherical and are often located near tissue boundaries, in vessels, etc., which introduce aspherical dynamics. Here, novel features of aspherical bubble dynamics are explored by time-resolved photography and numerical simulations. The growth-collapse period of cylindrical bubbles of large aspect ratio (length:diameter {approximately}20) differs only slightly from twice the Rayleigh collapse time for a spherical bubble with an equivalent maximum volume. This fact justifies using the temporal interval between the acoustic signals emitted upon bubble creation and collapse to estimate the maximum bubble volume. As a result, hydrophone measurements can provide an estimate of the bubble size and energy even for aspherical bubbles. The change of the oscillation period of bubbles near solid walls and elastic (tissue-like) boundaries relative to that of isolated spherical bubbles is also investigated.

Vogel, A.; Noack, J. [Meizinisches Laserzentrum Luebeck (Germany); Chapyak, E.J.; Godwin, R.P. [Los Alamos National Lab., NM (United States)

1999-06-01

121

Optimization of centrifugal pump cavitation performance based on CFD  

NASA Astrophysics Data System (ADS)

In order to further improve the cavitation performance of a centrifugal pump, slots on impeller blade near inlet were studied and six groups of hydraulic model were designed. Base on cavitating flow feature inside a centrifugal pump, bubble growth and implosion are calculated from the Rayleigh-Plesset equation which describes the dynamic behavior of spherical bubble and RNG ?-epsilon model was employed to simulate and analyze the internal two-phase flow of the model pump under the same conditions. The simulation results show that slots on blade near inlet could improve the cavitation performance and cavitation performance improvement of the second group was more obvious. Under the same conditions, the pressure on the back of blade near inlet was higher than the pressure on the back of unmodified blade near inlet, and energy distribution in the flow channel between the two blades was more uniform with a small change of head.

Xie, S. F.; Wang, Y.; Liu, Z. C.; Zhu, Z. T.; Ning, C.; Zhao, L. F.

2015-01-01

122

Acoustic cavitation and its chemical consequences  

E-print Network

: compression of a gas generates heat. When the compression of bubbles occurs during cavitation, heating is more of bubbles caused by cavitation produces intense local heating and high pressures, with very short lifetimesAcoustic cavitation and its chemical consequences By Kenneth S. Suslick, Yuri Didenko, Ming M. Fang

Suslick, Kenneth S.

123

Cavitation bubble-driven cell and particle behavior in an ultrasound standing wave.  

PubMed

The behavior of human erythrocytes and 1-microm-diameter fluorescent latex beads in the presence of Optison contrast agent in a single half-wavelength (lambda/2) ultrasound standing wave (USSW) resonator has been studied. The particle movements were observed with an epi-fluorescent microscope and the velocity of the particles and cells was measured by particle image velocimetry (PIV). Acoustic emissions were monitored with a microphone and a spectrum analyzer. Optison contrast agent disintegrated immediately on exposure to ultrasound of 0.98-MPa acoustic pressure amplitude or higher in a chamber driven at its resonance frequency of 1.56 MHz. A discrete cloud of active microbubbles, detected at the pressure node plane, disappeared gradually and was completely lost within 15 s. The microscopy showed three-dimensional regions of circulation of both 1-microm tracer particles and erythrocytes in planes perpendicular to the pressure node plane. A numerical simulation showed that, for parameters that conform to the experimental conditions, a bubble of a subresonance size moves towards and translates about a pressure node plane. This result is in agreement with the experimental observation that the particle and cell circulation is induced by the presence and/or translational motion of microbubbles at the pressure node plane. PMID:15704403

Kuznetsova, Larisa A; Khanna, Sanjay; Amso, Nazar N; Coakley, W Terence; Doinikov, Alexander A

2005-01-01

124

Coherent-optical methods of investigation in cavitation research  

Microsoft Academic Search

The main problem of cavitation research is the dynamics of the hollow space (cavitation bubbles) produced during cavitation. The development of holography has afforded the opportunity to record graphically a large spatial region with high resolution so that the difficulty caused by the statistically spatial appearance of cavitation bubbles can basically be regarded as overcome. The development of coherent optics,

W. Lauterborn

1975-01-01

125

Visualization and simulation of bubble growth in pore networks  

SciTech Connect

Bubble nucleation and bubble growth in porous media is an important problem encountered in processes, such as pressure depletion and boiling. To understand its basic aspects, experiments and numerical simulations in micromodel geometries were undertaken. Experiments of bubble growth by pressure depletion were carried out in 2-D etched-glass micromodels and in Hele-Shaw cells. Nucleation of bubbles and the subsequent growth of gas clusters were visualized. Contrary to the bulk or to Hele-Shaw cells, gas clusters in the micromodel have irregular and ramified shapes and share many of the features of an external invasion process (e.g. of percolation during drainage). A pore network numerical model was developed to simulate the growth of multiple gas clusters under various conditions. The model is based on the solution of the convection-diffusions equation and also accounts for capillary and viscous forces, which play an important role in determining the growth patterns. Numerical simulation resulted in good agreement with the experimental results.

Li, Xuehai; Yortsos, Y.C.

1994-03-01

126

Cavitation Thermometry Using Molecular and Continuum Sonoluminescence Lawrence S. Bernstein* and Mitchell R. Zakin  

E-print Network

Cavitation Thermometry Using Molecular and Continuum Sonoluminescence Lawrence S. Bernstein (SB) sonoluminescence (SL) is explored as a probe of bubble temperature during cavitational collapse of continuum single bubble sonoluminescence (SBSL) and molecular multiple bubble sonoluminescence (MBSL

Suslick, Kenneth S.

127

Bubble growth in rhyolitic melts: experimental and numerical investigation  

Microsoft Academic Search

Bubble growth controlled by mass transfer of water from hydrated rhyolitic melts at high pressures and temperatures was studied\\u000a experimentally and simulated numerically. Rhyolitic melts were hydrated at 150?MPa, 780–850??C to uniform water content of\\u000a 5.5–5.3?wt%. The pressure was then dropped and held constant at 15–145?MPa. Upon the drop bubbles nucleated and were allowed\\u000a to grow for various periods of

Vladimir Lyakhovsky; Shaul Hurwitz; Oded Navon

1996-01-01

128

Cavitation in a metallic liquid: Homogeneous nucleation and growth of nanovoids  

SciTech Connect

Large-scale molecular dynamics (MD) simulations are performed to investigate homogeneous nucleation and growth of nanovoids during cavitation in liquid Cu. We characterize in detail the atomistic cavitation processes by following the temporal evolution of cavities or voids, analyze the nucleation behavior with the mean first-passage time (MFPT) and survival probability (SP) methods, and discuss the results against classical nucleation theory (CNT), the Tolman equation for surface energy, independent calculation of surface tension via integrating the stress profiles, the Johnson-Mehl-Avrami (JMA) growth law, and the power law for nucleus size distributions. Cavitation in this representative metallic liquid is a high energy barrier Poisson processes, and the steady-state nucleation rates obtained from statistical runs with the MFPT and SP methods are in agreement. The MFPT method also yields the critical nucleus size and the Zeldovich factor. Fitting with the Tolman's equation to the MD simulations yields the surface energy of a planar interface (?0.9 J m{sup ?2}) and the Tolman length (0.4–0.5 Å), and those values are in accord with those from integrating the stress profiles of a planar interface. Independent CNT predictions of the nucleation rate (10{sup 33?34} s{sup ?1} m{sup ?3}) and critical size (3–4 Å in radius) are in agreement with the MFPT and SP results. The JMA law can reasonably describe the nucleation and growth process. The size distribution of subcritical nuclei appears to follow a power law with an exponent decreasing with increasing tension owing to coupled nucleation and growth, and that of the supercritical nuclei becomes flattened during further stress relaxation due to void coalescence.

Cai, Y. [Department of Modern Mechanics, CAS Key Laboratory of Materials Behavior and Design, University of Science and Technology of China, Hefei, Anhui 230027 (China); The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610207 (China); Wu, H. A., E-mail: wuha@ustc.edu.cn [Department of Modern Mechanics, CAS Key Laboratory of Materials Behavior and Design, University of Science and Technology of China, Hefei, Anhui 230027 (China); Luo, S. N., E-mail: sluo@pims.ac.cn [The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610207 (China)

2014-06-07

129

Cavitation in a metallic liquid: Homogeneous nucleation and growth of nanovoids  

NASA Astrophysics Data System (ADS)

Large-scale molecular dynamics (MD) simulations are performed to investigate homogeneous nucleation and growth of nanovoids during cavitation in liquid Cu. We characterize in detail the atomistic cavitation processes by following the temporal evolution of cavities or voids, analyze the nucleation behavior with the mean first-passage time (MFPT) and survival probability (SP) methods, and discuss the results against classical nucleation theory (CNT), the Tolman equation for surface energy, independent calculation of surface tension via integrating the stress profiles, the Johnson-Mehl-Avrami (JMA) growth law, and the power law for nucleus size distributions. Cavitation in this representative metallic liquid is a high energy barrier Poisson processes, and the steady-state nucleation rates obtained from statistical runs with the MFPT and SP methods are in agreement. The MFPT method also yields the critical nucleus size and the Zeldovich factor. Fitting with the Tolman's equation to the MD simulations yields the surface energy of a planar interface (˜0.9 J {m}^{-2}) and the Tolman length (0.4-0.5 Å), and those values are in accord with those from integrating the stress profiles of a planar interface. Independent CNT predictions of the nucleation rate (1033 - 34 s-1 m-3) and critical size (3-4 Å in radius) are in agreement with the MFPT and SP results. The JMA law can reasonably describe the nucleation and growth process. The size distribution of subcritical nuclei appears to follow a power law with an exponent decreasing with increasing tension owing to coupled nucleation and growth, and that of the supercritical nuclei becomes flattened during further stress relaxation due to void coalescence.

Cai, Y.; Wu, H. A.; Luo, S. N.

2014-06-01

130

Vulnerability to cavitation, hydraulic efficiency, growth and survival in an insular pine (Pinus canariensis)  

PubMed Central

Background and Aims It is widely accepted that hydraulic failure due to xylem embolism is a key factor contributing to drought-induced mortality in trees. In the present study, an attempt is made to disentangle phenotypic plasticity from genetic variation in hydraulic traits across the entire distribution area of a tree species to detect adaptation to local environments. Methods A series of traits related to hydraulics (vulnerability to cavitation and hydraulic conductivity in branches), growth performance and leaf mass per area were assessed in eight Pinus canariensis populations growing in two common gardens under contrasting environments. In addition, the neutral genetic variability (FST) and the genetic differentiation of phenotypic variation (QST) were compared in order to identify the evolutionary forces acting on these traits. Key Results The variability for hydraulic traits was largely due to phenotypic plasticity. Nevertheless, the vulnerability to cavitation displayed a significant genetic variability (approx. 5 % of the explained variation), and a significant genetic × environment interaction (between 5 and 19 % of the explained variation). The strong correlation between vulnerability to cavitation and survival in the xeric common garden (r = –0·81; P < 0·05) suggests a role for the former in the adaptation to xeric environments. Populations from drier sites and higher temperature seasonality were less vulnerable to cavitation than those growing at mesic sites. No trade-off between xylem safety and efficiency was detected. QST of parameters of the vulnerability curve (0·365 for P50 and the slope of the vulnerability curve and 0·452 for P88) differed substantially from FST (0·091), indicating divergent selection. In contrast, genetic drift alone was found to be sufficient to explain patterns of differentiation for xylem efficiency and growth. Conclusions The ability of P. canariensis to inhabit a wide range of ecosystems seemed to be associated with high phenotypic plasticity and some degree of local adaptations of xylem and leaf traits. Resistance to cavitation conferred adaptive potential for this species to adapt successfully to xeric conditions. PMID:23644361

López, Rosana; López de Heredia, Unai; Collada, Carmen; Cano, Francisco Javier; Emerson, Brent C.; Cochard, Hervé; Gil, Luis

2013-01-01

131

Bubble evolution and properties in homogeneous nucleation simulations.  

PubMed

We analyze the properties of naturally formed nanobubbles in Lennard-Jones molecular dynamics simulations of liquid-to-vapor nucleation in the boiling and the cavitation regimes. The large computational volumes provide a realistic environment at unchanging average temperature and liquid pressure, which allows us to accurately measure properties of bubbles from their inception as stable, critically sized bubbles, to their continued growth into the constant speed regime. Bubble gas densities are up to 50% lower than the equilibrium vapor densities at the liquid temperature, yet quite close to the gas equilibrium density at the lower gas temperatures measured in the simulations: The latent heat of transformation results in bubble gas temperatures up to 25% below those of the surrounding bulk liquid. In the case of rapid bubble growth-typical for the cavitation regime-compression of the liquid outside the bubble leads to local temperature increases of up to 5%, likely significant enough to alter the surface tension as well as the local viscosity. The liquid-vapor bubble interface is thinner than expected from planar coexistence simulations by up to 50%. Bubbles near the critical size are extremely nonspherical, yet they quickly become spherical as they grow. The Rayleigh-Plesset description of bubble-growth gives good agreement in the cavitation regime. PMID:25615216

Angélil, Raymond; Diemand, Jürg; Tanaka, Kyoko K; Tanaka, Hidekazu

2014-12-01

132

Bubble evolution and properties in homogeneous nucleation simulations  

NASA Astrophysics Data System (ADS)

We analyze the properties of naturally formed nanobubbles in Lennard-Jones molecular dynamics simulations of liquid-to-vapor nucleation in the boiling and the cavitation regimes. The large computational volumes provide a realistic environment at unchanging average temperature and liquid pressure, which allows us to accurately measure properties of bubbles from their inception as stable, critically sized bubbles, to their continued growth into the constant speed regime. Bubble gas densities are up to 50 % lower than the equilibrium vapor densities at the liquid temperature, yet quite close to the gas equilibrium density at the lower gas temperatures measured in the simulations: The latent heat of transformation results in bubble gas temperatures up to 25 % below those of the surrounding bulk liquid. In the case of rapid bubble growth—typical for the cavitation regime—compression of the liquid outside the bubble leads to local temperature increases of up to 5 %, likely significant enough to alter the surface tension as well as the local viscosity. The liquid-vapor bubble interface is thinner than expected from planar coexistence simulations by up to 50 % . Bubbles near the critical size are extremely nonspherical, yet they quickly become spherical as they grow. The Rayleigh-Plesset description of bubble-growth gives good agreement in the cavitation regime.

Angélil, Raymond; Diemand, Jürg; Tanaka, Kyoko K.; Tanaka, Hidekazu

2014-12-01

133

A quantum description of bubble growth in a superheated fluid  

E-print Network

We discuss a quantum description of bubble growth in a superheated liquid Helium by addressing the problem of operator ordering ambiguities that arise due to the presence of position dependent mass (PDM) in this system. Using a supersymmetric quantum mechanics formalism along with the Weyl quantization rule, we are able to identify specific operator orderings for this problem. This is a general method which should be applicable to other PDM systems.

S. Choi; K. M. Galdamez; B. Sundaram

2010-06-04

134

Boiling heat transfer and bubble growth dynamics during rapid decompression  

Microsoft Academic Search

Boiling transition and bubble growth from a thin electrical heating wire were studied during rapid decompressions at three decompression rates, ranging from 180 to the 2nd power kPa\\/sec to 720 to the 2nd power kPa\\/sec and over a wide range of heat fluxes. It was found that the time to boiling transition could not be estimated by available steady state

S. P. Kung

1980-01-01

135

Observations and measurements on unsteady cavitating flows using a simultaneous sampling approach  

NASA Astrophysics Data System (ADS)

The main purpose of this study was to shed light on the unsteady cavitating flow and corresponding wall-pressure fluctuation characteristic. A simultaneous sampling technique is used to synchronize the observations of cavitation images and the measurements of wall-pressure signals in a convergent-divergent channel. The results show that, with the decreasing cavitation number, cavitating flows in a convergent-divergent channel display several types of cavitation behavior, such as cavitation inception, sheet cavitation, and sheet/cloud cavitation. The intensity of the pressure fluctuation increases with the decrease in cavitation number. However, with decreasing cavitation number, the dominant frequency of the unsteady pressure fluctuation decreases significantly, and for sheet/cloud cavitation, the dominant frequency of pressure fluctuation is consistent with that of global cavitation area fluctuation. A typical quasi-periodic sheet/cavitation development cycle is characterized by three stages such as: (1) the growth of attached cavity, (2) the shedding of attached cavity, and (3) the development and collapse of detached cavities. In the stage one, the magnitude of pressure fluctuations under the attached cavity is small; however, it is large in the closure region of attached cavity, especially when attached cavity obtains its maximum length. In the stage two, the attached cavity begins to shed and some small detached cavities are observed, and small local pressure fluctuations with higher frequency are detected. In the stage three, a large detached cavity is formed in the rear of attached cavity. When the detached cavity collapses rapidly in the downstream region, pressure pulses with the magnitude of the order of several atmospheres are detected. The propagation speeds of pressure pulses in different cavitation regions are found to be related with the bubble density in the flow field. It is also found that the pressure impulse in the region covered by attached cavity is much lower than that in the attached cavity closure area.

Chen, G. H.; Wang, G. Y.; Hu, C. L.; Huang, B.; Zhang, M. D.

2015-02-01

136

Unidirectional bubble growth in microchannels with asymmetric surfacefeatures  

Microsoft Academic Search

The growth of vapor bubbles is studied numerically in a microchannel\\u000d\\u000a\\u0009with asymmetric surface features. The channel design is chosen such\\u000d\\u000a\\u0009that evaporation results in vapor bubbles growing only along a predefined\\u000d\\u000a\\u0009direction. The principle relies on capillary forces and the pinning\\/depinning\\u000d\\u000a\\u0009of three-phase contact lines at sharp edges of the wall geometry.\\u000d\\u000a\\u0009Analytical expressions are derived predicting the direction

Steffen Hardt; Stefan Herbert; Christian Kunkelmann; ShadiMahjoob; Peter Stephan

2012-01-01

137

Numerical method for predicting ship propeller cavitation noise  

Microsoft Academic Search

During ship travels in high-velocity, propeller cavitation noise predominates in the radiated noise sources. However, experiential data regress method was use to predicate propeller cavitation noise in the past. In this article, propeller cavitation noise has been calculated by numerical computation method. From the engineering point of view, ship propeller has been disposed as a dipole bubble. Bubble volume pulse

Yong-Kun Zhang; Ying Xiong

2011-01-01

138

The influence of developed cavitation on the flow of a turbulent shear layer  

NASA Astrophysics Data System (ADS)

Developed cavitation in a shear layer was studied experimentally in order to determine the effect that the growth and collapse of cavitation have on the dynamics of shear flows. Planar particle imaging velocimetry (PIV) was used to measure the velocity field, the vorticity, strain rates, and Reynolds stresses of the flow downstream of the cavitating and noncavitating shear layer; the flow pressures and void fraction were also measured. The flow downstream of a cavitating shear flow was compared to the noncavitating shear flow. For cavitating shear layers with void fractions of up to 1.5%, the growth rate of the shear layer and the mean flow downstream of the shear layer were modified by the growth and collapse of cavitation bubbles. The cross-stream velocity fluctuations and the Reynolds stresses measured downstream of the cavitating shear layer were reduced compared to the entirely noncavitating flow. This result is inconsistent with a scaling of the shear stress within the shear flow based on the mean flow. The decrease in the cross-stream fluctuations and Reynolds stresses suggests that the cavitation within the cores of strong streamwise vortices has decreased the coupling between the streamwise and cross-stream velocity fluctuations.

Iyer, Claudia O.; Ceccio, Steven L.

2002-10-01

139

Plasma and cavitation dynamics during pulsed laser microsurgery in vivo  

E-print Network

We compare the plasma and cavitation dynamics underlying pulsed laser microsurgery in water and in fruit fly embryos (in vivo) - specifically for nanosecond pulses at 355 and 532 nm. We find two key differences. First, the plasma-formation thresholds are lower in vivo - especially at 355 nm - due to the presence of endogenous chromophores that serve as additional sources for plasma seed electrons. Second, the biological matrix constrains the growth of laser-induced cavitation bubbles. Both effects reduce the disrupted region in vivo when compared to extrapolations from measurements in water.

Hutson, M Shane

2007-01-01

140

Cavitating vortex generation by a submerged jet  

SciTech Connect

The surface geometry of a cavitating vortex is determined in the limit of inviscid incompressible flow. The limit surface is an ovaloid of revolution with an axis ratio of 5: 3. It is shown that a cavitating vortex ring cannot develop if the cavitation number is lower than a certain critical value. Experiments conducted at various liquid pressures and several jet exit velocities confirm the existence of a critical cavitation number close to 3. At cavitation numbers higher than the critical one, the cavitating vortex ring does not develop. At substantially lower cavitation numbers (k {<=} 0.1), an elongated asymmetric cavitation bubble is generated, with an axial reentrant jet whose length can exceed the initial jet length by several times. This flow structure is called an asymmetric cavitating vortex, even though steady motion of this structure has not been observed.

Belyakov, G. V. [Russian Academy of Sciences, Institute for Dynamics of Geospheres (Russian Federation); Filippov, A. N. [Moscow State University of Food Production (Russian Federation)], E-mail: a.filippov@mgupp.ru

2006-05-15

141

Experimental analysis of bubble growth, departure and interactions during pool boiling on artificial nucleation sites  

SciTech Connect

The present work describes experimental results of pentane pool boiling, simplified to the cases of boiling on a single or on two adjacent nucleation sites. Bubbles growths have been recorded by a high speed camera under various wall superheat conditions. Bubble volume has been plotted as a function of time, and an experimental growth law has been proposed. Oscillations were observed during growth, showing the interaction of one bubble with the preceding bubble released from the same nucleation site. Lateral coalescence has been visualized and the images have brought to the fore the capillary effects on the distortion of the interface. (author)

Siedel, S.; Cioulachtjian, S.; Bonjour, J. [CETHIL - UMR5008 CNRS INSA-Lyon Univ. Lyon1, Bat. Sadi Carnot, 9 rue de la Physique, INSA-Lyon, F-69621 Villeurbanne Cedex (France)

2008-09-15

142

Dynamics of cavitation bubble induced by 193 nm ArF excimer laser in concentrated sodium chloride solutions  

E-print Network

on the tip is compared with the well-studied dynamics of bubbles resulting from dielectric breakdown near been studied in detail only for mechanisms based on pulsed laser induced dielectric break- down solutions.9 These so- lutions were also used in the present research as models of absorbing substrates

Palanker, Daniel

143

SYMPOSIUM PAPER Simulation of the effects of cavitation and anatomy in the shock  

E-print Network

within the stone to produce tension and stress concentrations that lead to crack inception and growth [1, or that generate waves and stress concentrations within it [3­6]. Cavitation bubbles are also implicated in tissue-focal stresses (for a fluid, simply the pressure) gen- erated by the lithotripter pulse that lead to different

Dabiri, John O.

144

Molecular dynamics investigation of nanoscale cavitation dynamics.  

PubMed

We use molecular dynamics simulations to investigate the cavitation dynamics around intensely heated solid nanoparticles immersed in a model Lennard-Jones fluid. Specifically, we study the temporal evolution of vapor nanobubbles that form around the solid nanoparticles heated over ps time scale and provide a detail description of the following vapor formation and collapse. For 8 nm diameter nanoparticles we observe the formation of vapor bubbles when the liquid temperature 0.5-1 nm away from the nanoparticle surface reaches ?90% of the critical temperature, which is consistent with the onset of spinodal decomposition. The peak heat flux from the hot solid to the surrounding liquid at the bubble formation threshold is ?20 times higher than the corresponding steady state critical heat flux. Detailed analysis of the bubble dynamics indicates adiabatic formation followed by an isothermal final stage of growth and isothermal collapse. PMID:25527949

Sasikumar, Kiran; Keblinski, Pawel

2014-12-21

145

Molecular dynamics investigation of nanoscale cavitation dynamics  

NASA Astrophysics Data System (ADS)

We use molecular dynamics simulations to investigate the cavitation dynamics around intensely heated solid nanoparticles immersed in a model Lennard-Jones fluid. Specifically, we study the temporal evolution of vapor nanobubbles that form around the solid nanoparticles heated over ps time scale and provide a detail description of the following vapor formation and collapse. For 8 nm diameter nanoparticles we observe the formation of vapor bubbles when the liquid temperature 0.5-1 nm away from the nanoparticle surface reaches ˜90% of the critical temperature, which is consistent with the onset of spinodal decomposition. The peak heat flux from the hot solid to the surrounding liquid at the bubble formation threshold is ˜20 times higher than the corresponding steady state critical heat flux. Detailed analysis of the bubble dynamics indicates adiabatic formation followed by an isothermal final stage of growth and isothermal collapse.

Sasikumar, Kiran; Keblinski, Pawel

2014-12-01

146

A New Unsteady Model for Dense Cloud Cavitation in Cryogenic Fluids  

NASA Technical Reports Server (NTRS)

A new unsteady, cavitation model is presented wherein the phase change process (bubble growth/collapse) is coupled to the acoustic field in a cryogenic fluid. It predicts the number density and radius of bubbles in vapor clouds by tracking both the aggregate surface area and volume fraction of the cloud. Hence, formulations for the dynamics of individual bubbles (e.g. Rayleigh-Plesset equation) may be integrated within the macroscopic context of a dense vapor cloud i.e. a cloud that occupies a significant fraction of available volume and contains numerous bubbles. This formulation has been implemented within the CRUNCH CFD, which has a compressible real fluid formulation, a multi-element, unstructured grid framework, and has been validated extensively for liquid rocket turbopump inducers. Detailed unsteady simulations of a cavitating ogive in liquid nitrogen are presented where time-averaged mean cavity pressure and temperature depressions due to cavitation are compared with experimental data. The model also provides the spatial and temporal history of the bubble size distribution in the vapor clouds that are shed, an important physical parameter that is difficult to measure experimentally and is a significant advancement in the modeling of dense cloud cavitation.

Hosangadi, A.; Ahuja, V.

2005-01-01

147

Combined effect of viscosity and vorticity on single mode Rayleigh-Taylor instability bubble growth  

SciTech Connect

The combined effect of viscosity and vorticity on the growth rate of the bubble associated with single mode Rayleigh-Taylor instability is investigated. It is shown that the effect of viscosity on the motion of the lighter fluid associated with vorticity accumulated inside the bubble due to mass ablation may be such as to reduce the net viscous drag on the bubble exerted by the upper heavier fluid as the former rises through it.

Banerjee, Rahul; Mandal, Labakanta; Roy, S.; Khan, M.; Gupta, M. R. [Department of Instrumentation Science and Centre for Plasma Studies, Jadavpur University, Kolkata 700032 (India)

2011-02-15

148

Bubble Bubble  

NSDL National Science Digital Library

With magic bubble solution, a boy discovers that he can blow any kind of bubble imaginable: a kangaroo, a bird, a car, or a boat. Mercer Mayer's colorful illustrations enliven this engaging tale of mysterious bubbles.

Mercer Mayer

2009-11-11

149

Numerical study of bubble growth and wall heat transfer during flow boiling in a microchannel  

E-print Network

Numerical study of bubble growth and wall heat transfer during flow boiling in a microchannel A 2011 Accepted 27 January 2011 Available online 12 April 2011 Keywords: Flow boiling Microchannels saturation temperature. During flow boiling, bubbles nucleate on the microchannel walls and may grow big en

Kandlikar, Satish

150

Gas-bubble growth mechanisms in the analysis of metal fuel swelling  

SciTech Connect

During steady-state irradiation, swelling rates associated with growth of fission-gas bubbles in metallic fast reactor fuels may be expected to remain small. As a consequence, bubble-growth mechanisms are not a major consideration in modeling the steady-state fuel behavior, and it is usually adequate to consider the gas pressure to be in equilibrium with the external pressure and surface tension restraint. On transient time scales, however, various bubble-growth mechanisms become important components of the swelling rate. These mechanisms include growth by diffusion, for bubbles within grains and on grain boundaries; dislocation nucleation at the bubble surface, or ''punchout''; and bubble growth by creep. Analyses of these mechanisms are presented and applied to provide information on the conditions and the relative time scales for which the various processes should dominate fuel swelling. The results are compared to a series of experiments in which the swelling of irradiated metal fuel was determined after annealing at various temperatures and pressures. The diffusive growth of bubbles on grain boundaries is concluded to be dominant in these experiments.

Gruber, E.E.; Kramer, J.M.

1986-06-01

151

Analysis of quasi-static vapour bubble shape during growth and departure  

NASA Astrophysics Data System (ADS)

In an effort to better understand the physical mechanisms responsible for pool boiling heat transfer, a numerical solution to the capillary equation is used to describe bubble shape evolution. Indeed, any analysis of thermal transport due to nucleate pool boiling requires bubble frequency and volume predictions, which are intimately linked to bubble shape. To this end, a numerical treatment of the capillary equation is benchmarked to profiles measured from captured images of vapour bubble formations. The bubble growth is quasi-static in a quiescent liquid with a triple contact line fixed to the perimeter of a needle orifice. This investigation provides insight into the dependence the bubble shape evolution has on the physical mechanisms quantified in the Bond number with characteristic length equal to the cavity radius.

Lesage, Frédéric J.; Cotton, James S.; Robinson, Anthony J.

2013-06-01

152

Aerator Combined With Bubble Remover  

NASA Technical Reports Server (NTRS)

System produces bubble-free oxygen-saturated water. Bubble remover consists of outer solid-walled tube and inner hydrophobic, porous tube. Air bubbles pass from water in outer tube into inner tube, where sucked away. Developed for long-term aquaculture projects in space. Also applicable to terrestrial equipment in which entrained bubbles dry membranes or give rise to cavitation in pumps.

Dreschel, Thomas W.

1993-01-01

153

Distribution of dissolved water in magmatic glass records growth and resorption of bubbles  

NASA Astrophysics Data System (ADS)

Volcanic eruptions are driven by the growth of gas bubbles in magma. Bubbles grow when dissolved volatile species, principally water, diffuse through the silicate melt and exsolve at the bubble wall. On rapid cooling, the melt quenches to glass, preserving the spatial distribution of water concentration around the bubbles (now vesicles), offering a window into pre-eruptive conditions. We measure the water distribution around vesicles in experimentally-vesiculated samples, with high spatial resolution. We find that, contrary to expectation, water concentration increases towards vesicles, indicating that water is resorbed from bubbles during cooling; textural evidence suggests that resorption occurs largely before the melt solidifies. Speciation data indicate that the molecular water distribution records resorption, whilst the hydroxyl distribution records earlier decompressive growth. Our results challenge the emerging paradigm that resorption indicates fluctuating pressure conditions, and lay the foundations for a new tool for reconstructing the eruptive history of natural volcanic products.

McIntosh, I. M.; Llewellin, E. W.; Humphreys, M. C. S.; Nichols, A. R. L.; Burgisser, A.; Schipper, C. I.; Larsen, J. F.

2014-09-01

154

Bubble growth and droplet decay in the quark-hadron phase transition in the early Universe  

NASA Astrophysics Data System (ADS)

When the Universe was about 10 ?sec old, it underwent a phase transition in which the quarks and gluons condensed into hadrons. We assume that this phase transition was of first order and study how the Universe evolved through the mixed phase in a scenario with small initial supercooling and monotonically growing hadronic bubbles. Nucleation of bubbles, collisions of shock fronts preceding the bubbles, arrestation of bubble growth by the reheating due to these collisions, subsequent slow growth of the bubbles to fill the entire Universe, condensation of baryon number, death of the remaining quark matter droplets, and the resulting density perturbations are discussed. A (1+1)-dimensional approximation is frequently used to make analytic calculations possible.

Kajantie, K.; Kurki-Suonio, Hannu

1986-09-01

155

Study of bubble growth in water pool boiling through synchronized, infrared thermometry and high-speed video  

E-print Network

High-speed video and infrared thermometry were used to obtain time- and space-resolved information on bubble nucleation and heat transfer in pool boiling of water. The bubble departure diameter and frequency, growth and ...

Gerardi, Craig

156

An experimental investigation of bubble growth and detachment in vertical upflow and downflow boiling  

Microsoft Academic Search

A visual study of vapor bubble growth and departure in vertical upflow and downflow forced convection boiling is presented. A vertical flow boiling facility was constructed with a transparent, electrically-heated test section in which the ebullition process could be observed. High-speed digital images of flow boiling phenomena were obtained, which were used to measure bubble growth, departure diameters, and lift-off

G. E. Thorncroft; J. F. Klausner; R. Mei

1998-01-01

157

Vortex and Cavitation Flows in Hydraulic Systems  

Microsoft Academic Search

Experimental study of vortex and cavitation nonuniform flows in hydraulic heat generators demonstrated that the heating rate decreases with increasing liquid temperature because of the growing saturation vapor pressure in the cavitation bubbles. Voltage, electric current, slight radioactivity, and an increased water pH were detected in these flows. It was shown by mathematical modeling that the heat produced in the

E. P. Zaporozhets; L. P. Kholpanov; G. K. Zibert; A. V. Artemov

2004-01-01

158

The Role of Salts in Acoustic Cavitation and the Use of Inorganic Complexes as Cavitation Probes  

NASA Astrophysics Data System (ADS)

Inorganic complexes have been employed as cavitation probes to ascertain invaluable quantitative information pertaining to bubble collapse temperatures and pressures, and provide qualitative insight into other fundamental aspects of cavitation. In addition to serving as cavitation probes, simple salts exert a marked influence on critical facets of acoustic cavitation ranging from nucleation, to inter-bubble interactions and the bubble size distribution. Multi-bubble sonoluminescence intensities can be elevated by almost an order of magnitude at high electrolyte concentration and the coalescence behaviour exhibited between bubbles scales with the ‘salting-out' effect of a range of solutes, adding an interesting insight in the context of ion-specific electrolyte coalescence inhibition. This chapter provides a review of the literature available in these areas.

Brotchie, Adam; Grieser, Franz; Ashokkumar, Muthupandian

159

Micropumping of liquid by directional growth and selective venting of gas bubbles.  

PubMed

We introduce a new mechanism to pump liquid in microchannels based on the directional growth and displacement of gas bubbles in conjunction with the non-directional and selective removal of the bubbles. A majority of the existing bubble-driven micropumps employs boiling despite the unfavorable scaling of energy consumption for miniaturization because the vapor bubbles can be easily removed by condensation. Other gas generation methods are rarely suitable for micropumping applications because it is difficult to remove the gas bubbles promptly from a pump loop. In order to eradicate this limitation, the rapid removal of insoluble gas bubbles without liquid leakage is achieved with hydrophobic nanopores, allowing the use of virtually any kind of bubbles. In this paper, electrolysis and gas injection are demonstrated as two distinctively different gas sources. The proposed mechanism is first proved by circulating water in a looped microchannel. Using H(2) and O(2) gas bubbles continuously generated by electrolysis, a prototype device with a looped channel shows a volumetric flow rate of 4.5-13.5 nL s(-1) with a direct current (DC) power input of 2-85 mW. A similar device with an open-ended microchannel gives a maximum flow rate of approximately 65 nL s(-1) and a maximum pressure head of approximately 195 Pa with 14 mW input. The electrolytic-bubble-driven micropump operates with a 10-100 times higher power efficiency than its thermal-bubble-driven counterparts and exhibits better controllability. The pumping mechanism is then implemented by injecting nitrogen gas bubbles to demonstrate the flexibility of bubble sources, which would allow one to choose them for specific needs (e.g., energy efficiency, thermal sensitivity, biocompatibility, and adjustable flow rate), making the proposed mechanism attractive for many applications including micro total analysis systems (microTAS) and micro fuel cells. PMID:18497918

Meng, Dennis Desheng; Kim, Chang-Jin C J

2008-06-01

160

Deformed bubble growth and coalescence in polymer foam processing  

E-print Network

the geometrical constraints imposed by the existence of neighboring growing bubbles. The viscoelastic behavior of the polymer melt as well as the effect of the intermolecular forces on foam stability are investigated. An analysis of the results indicates...

Allaboun, Hussein Raji

1996-01-01

161

Effects of microgravity on Marangoni convection and growth characteristic of a single bubble  

NASA Astrophysics Data System (ADS)

Based on previous experiments and the volume of fluid (VOF) multiphase model, the growth characteristics of a single bubble have been numerically investigated in a rectangular pool (10×10×25 mm3) under microgravity. The transport of mass and energy during phase change was realized by source terms of the mass and energy equations through user-defined functions (UDF). Under microgravity, the results show that the temperature and the streamline field distribution around the bubble are significantly changed as compared to the ones of terrestrial conditions. The temperature profile at the two-phase interface is no longer a uniform distribution, and the Marangoni flows are more obvious at the two-phase interface. The effects of gravity on the detachment of the bubble are significant: the bubble does not immediately detach from the heating wall under microgravity conditions. The surface tension gradient caused by the Marangoni effect is more significant at lower microgravity. Bubble growth is more complex under microgravity conditions than normal gravity conditions, and it is related to the magnitude of the microgravity: the lower the microgravity, the higher the bubble growth rate. Furthermore, under microgravity, the bubble diameter changes differently, and the fluctuation amplitude of the heat transfer coefficient increases with increasing microgravity.

Yang, Yan; Pan, Liang-ming; Xu, Jian-jun

2014-07-01

162

Some experiments on ultrasonic cavitation using a pulsed neutron source  

Microsoft Academic Search

Experiments on the prompt neutron-induced cavitation effect in tetrachloroethylene are described. Cavitation bubbles were detected by the fast acoustic signals they emit, probably during the collapse phase. Using a pulsed fast-neutron source phase locked to the acoustic field, and a time analyser, information was obtained on the history of bubbles which were nucleated at a known phase of the sound

R. Howlett

1968-01-01

163

A simple cavitation model for unsteady simulation and its application to cavitating flow in two-dimensional convergent-divergent nozzle  

NASA Astrophysics Data System (ADS)

In this paper, a simple cavitation model is developed under the framework of homogeneousone-fluid model, in which the perfect mixture of liquid and vapor phases is assumed. In most of conventional models, the vapor phase is considered as a dispersed phase against the liquid phase as a continuous phase, while in the present model, two extreme conditions are considered: for low void fraction, dispersed vapor bubbles in continuous liquid phase, while for high void fraction, dispersed droplets in continuous vapor phase. The growth of bubbles and droplets are taken into account in the mass transfer between vapor and liquid phases, and are switched according to the local void fraction. The model is applied for the simulation of cavitating flow in a two-dimensional convergent-divergent nozzle, and the result is compared with that using a conventional model. To enhance the unsteadiness of cavitation due to the instability at the cavity interphase, the turbulent shear stress is modified depending upon the continuous phases in combination with the proposed cavitation model, which drastically reduces the turbulent viscosity for high void fraction region. As a result, the unsteadiness of cavitation observed in experiments is well reproduced.

Yamamoto, Y.; Watanabe, S.; Tsuda, S. I.

2015-01-01

164

Formation and Growth of Micro and Macro Bubbles on Copper-Graphite Composite Surfaces  

NASA Technical Reports Server (NTRS)

Micro scale boiling behavior in the vicinity of graphite micro-fiber tips on the coppergraphite composite boiling surfaces is investigated. It is discovered that a large number of micro bubbles are formed first at the micro scratches and cavities on the copper matrix in pool boiling. In virtue of the non-wetting property of graphite, once the growing micro bubbles touch the graphite tips, the micro bubbles are sucked by the tips and merged into larger micro bubbles sitting on the tips. The micro bubbles grow rapidly and coalesce to form macro bubbles, each of which sitting on several tips. The growth processes of the micro and macro bubbles are analyzed and formulated followed by an analysis of bubble departure on the composite surfaces. Based on these analyses, the enhancement mechanism of the pool boiling heat transfer on the composite surfaces is clearly revealed. Experimental results of pool boiling heat transfer both for water and Freon-113 on the composite surfaces convincingly demonstrate the enhancement effects of the unique structure of Cu-Gr composite surfaces on boiling heat transfer.

Chao, David F.; Sankovic, John M.; Motil, Brian J.; Zhang, Nengli

2007-01-01

165

Cavitation induced by continuous wave lasers  

NASA Astrophysics Data System (ADS)

Laser induced cavitation bubbles in water results from either dielectric breakdown or the fast evaporation due to radiation absorption. The bubbles expand, reach a maximum radius and then supersonically collapse producing a by shock wave. So far, laser induced cavitation has been observed by using short pulsed (femto to nanosecond) lasers. In this report, we observe laser induced cavitation bubbles by using relatively low power (200 mW) cw light sources. A beam from a cw Nd:YAG laser (?=1.064 ?m) is tightly focused on saturated solution of copper nitrate salt. The large absorption coefficient at the illumination wavelength produces large thermal gradients and high peak temperatures leading to the formation of cavitation bubbles near the solution-glass interface. The collapse of the bubbles is so violent that they can be listened without any special device. Cavitation appears at quite regular time escales. The frequency of bubble formation depends on the laser intensity reaching frequencies as high as 4 KHz. We present detailed experimental results on the bubble formation using a phase contrast, light scattering and hydrophones.

Ramirez-San-Juan, J. C.; Rodriguez-Aboytes, E.; Korneev, N.; Baldovinos-Pantaleon, O.; Chiu-Zarate, R.; Gutiérrez-Juárez, G.; Dominguez-Cruz, R.; Ramos-García, R.

2007-09-01

166

Taxing the Rich: Recombinations and Bubble Growth During Reionization  

E-print Network

Reionization is inhomogeneous for two reasons: the clumpiness of the intergalactic medium (IGM) and clustering of the discrete ionizing sources. While numerical simulations can in principle take both into account, they are at present limited by small box sizes. On the other hand, analytic models have only examined the limiting cases of a clumpy IGM (with uniform ionizing emissivity) and clustered sources (embedded in a uniform IGM). Here, we present an analytic model for the evolving topology of reionization that includes both factors. At first, recombinations can be ignored and ionized bubbles grow primarily through major mergers. As a result, reionization resembles "punctuated equilibrium," with a series of well-separated sharp jumps in the ionizing background. These features are local effects and do not reflect similar jumps in the global ionized fraction. We then combine our bubble model with a simple description of recombinations in the IGM. We show that the bubbles stop growing when recombinations balan...

Furlanetto, S R; Furlanetto, Steven R.

2005-01-01

167

Taxing the Rich: Recombinations and Bubble Growth During Reionization  

E-print Network

Reionization is inhomogeneous for two reasons: the clumpiness of the intergalactic medium (IGM) and clustering of the discrete ionizing sources. While numerical simulations can in principle take both into account, they are at present limited by small box sizes. On the other hand, analytic models have only examined the limiting cases of a clumpy IGM (with uniform ionizing emissivity) and clustered sources (embedded in a uniform IGM). Here, we present an analytic model for the evolving topology of reionization that includes both factors. At first, recombinations can be ignored and ionized bubbles grow primarily through major mergers. As a result, reionization resembles "punctuated equilibrium," with a series of well-separated sharp jumps in the ionizing background. These features are local effects and do not reflect similar jumps in the global ionized fraction. We then combine our bubble model with a simple description of recombinations in the IGM. We show that the bubbles stop growing when recombinations balance ionizations. If the IGM density structure is similar to that at moderate redshifts, this limits the bubble radii to ~20 comoving Mpc; however, it may be much smaller if the IGM is significantly clumpier at higher redshifts. Once a bubble reaches saturation, that region of the universe has for all intents and purposes entered the "post-overlap" stage, so the overlap epoch actually has a finite width. This picture naturally explains the substantial large-scale variation in Lyman-series opacity along the lines of sight to the known z>6 quasars. More quasar spectra will shed light on the transition between the "bubble-dominated" topology characteristic of reionization and the "web-dominated" topology characteristic of the later universe. [Abridged

Steven R. Furlanetto; S. Peng Oh

2005-08-16

168

Simulation of cryogenic liquid flows with vapor bubbles  

NASA Astrophysics Data System (ADS)

Liquid flows in rocket engine components (such as bearings, seals, and pumps) often involve the formation of vapor bubbles due to local superheating of the fluid (either boiling or cavitation). Under the present effort, an analysis has been developed for liquid flows with vapor bubbles, based on a combined Eulerian-Lagrangian technique, in which the continuous (liquid) phase is treated by solving a system of Eulerian conservation equations, while the discrete (vapor bubble) phase is dealt with by integrating Lagrangian equations of motion in computational coordinates. Vapor bubbles of changing size can be accommodated easily by this analysis, and models for the simulation of bubble formation, growth, and motion have been included. The effect of bubble motion and other bubble processes on the continuous (liquid) phase has been accounted for by appropriate bubble mass, momentum, and energy interchange source terms in the Eulerian conservation equations. To demonstrate the viability of the resulting procedure, the cavitating flow of liquid oxygen through a simplified model of a labyrinth seal has been successfully calculated.

de Jong, Frederik J.; Sabnis, Jayant S.

1991-06-01

169

Cavitation processes and negative pressure  

Microsoft Academic Search

Molecular dynamics simulations of a Lennard–Jones fluid under negative pressure are carried out to investigate the inception of vapor phase in the liquid (i.e., cavitation) and properties of liquid under negative pressure. The pressure of the system is reduced by uniform system expansion. In the case of larger expansion ratios, the nuclei of bubbles immediately appear, whereas finite waiting time

Tomoyuki Kinjo; Mitsuhiro Matsumoto

1998-01-01

170

The microjetting behavior from single laser-induced bubbles generated above a solid boundary with a through hole  

NASA Astrophysics Data System (ADS)

An inertial bubble collapsing near a solid boundary generates a fast impulsive microjet directed toward the boundary. The jet impacts the solid boundary at a high velocity, and this effect has been taken advantage of in industrial cleaning such as when tiny bubbles are driven ultrasonically to cavitate around machined parts to produce jets that are believed to induce the cleaning effect. In this experimental investigation, we are interested in the jetting from single cavities near a boundary. By introducing a through hole in the boundary beneath a laser-induced bubble, it is hypothesized that the forming jet, upon bubble implosion, will proceed to penetrate through the hole to the other side and that it may be utilized in useful applications such as precise surgeries. It was found that the growth of the bubble induced a fast flow through the hole and lead to the formation of secondary hydrodynamic cavitation. The experiments also showed the formation of a counter jet directed away from the hole and into the bubble. During the growth phase of the bubble, and near the point of maximum expansion, the bubble wall bulged out toward the hole in a `bulb' like formation, which sometimes resulted in the pinching-off of a secondary small bubble. This was ensued by the inward recoiling of the primary bubble wall near the pinch-off spot, which developed into a counter jet seen to move away from the hole and inward into the bubble.

Abboud, Jack E.; Oweis, Ghanem F.

2012-12-01

171

The microjetting behavior from single laser-induced bubbles generated above a solid boundary with a through hole  

NASA Astrophysics Data System (ADS)

An inertial bubble collapsing near a solid boundary generates a fast impulsive microjet directed toward the boundary. The jet impacts the solid boundary at a high velocity, and this effect has been taken advantage of in industrial cleaning such as when tiny bubbles are driven ultrasonically to cavitate around machined parts to produce jets that are believed to induce the cleaning effect. In this experimental investigation, we are interested in the jetting from single cavities near a boundary. By introducing a through hole in the boundary beneath a laser-induced bubble, it is hypothesized that the forming jet, upon bubble implosion, will proceed to penetrate through the hole to the other side and that it may be utilized in useful applications such as precise surgeries. It was found that the growth of the bubble induced a fast flow through the hole and lead to the formation of secondary hydrodynamic cavitation. The experiments also showed the formation of a counter jet directed away from the hole and into the bubble. During the growth phase of the bubble, and near the point of maximum expansion, the bubble wall bulged out toward the hole in a `bulb' like formation, which sometimes resulted in the pinching-off of a secondary small bubble. This was ensued by the inward recoiling of the primary bubble wall near the pinch-off spot, which developed into a counter jet seen to move away from the hole and inward into the bubble.

Abboud, Jack E.; Oweis, Ghanem F.

2013-01-01

172

Bubble Proliferation in Shock Wave Lithotripsy Occurs during Inertial Collapse  

NASA Astrophysics Data System (ADS)

In shock wave lithotripsy (SWL), firing shock pulses at slow pulse repetition frequency (0.5 Hz) is more effective at breaking kidney stones than firing shock waves (SWs) at fast rate (2 Hz). Since at fast rate the number of cavitation bubbles increases, it appears that bubble proliferation reduces the efficiency of SWL. The goal of this work was to determine the basis for bubble proliferation when SWs are delivered at fast rate. Bubbles were studied using a high-speed camera (Imacon 200). Experiments were conducted in a test tank filled with nondegassed tap water at room temperature. Acoustic pulses were generated with an electromagnetic lithotripter (DoLi-50). In the focus of the lithotripter the pulses consisted of a ˜60 MPa positive-pressure spike followed by up to -8 MPa negative-pressure tail, all with a total duration of about 7 ?s. Nonlinear propagation steepened the shock front of the pulses to become sufficiently thin (˜0.03 ?m) to impose differential pressure across even microscopic bubbles. High-speed camera movies showed that the SWs forced preexisting microbubbles to collapse, jet, and break up into daughter bubbles, which then grew rapidly under the negative-pressure phase of the pulse, but later coalesced to re-form a single bubble. Subsequent bubble growth was followed by inertial collapse and, usually, rebound. Most, if not all, cavitation bubbles emitted micro-jets during their first inertial collapse and re-growth. After jetting, these rebounding bubbles could regain a spherical shape before undergoing a second inertial collapse. However, either upon this second inertial collapse, or sometimes upon the first inertial collapse, the rebounding bubble emerged from the collapse as a cloud of smaller bubbles rather than a single bubble. These daughter bubbles could continue to rebound and collapse for a few cycles, but did not coalesce. These observations show that the positive-pressure phase of SWs fragments preexisting bubbles but this initial fragmentation does not yield bubble proliferation, as the daughter bubbles coalesce to reform a single bubble. Instead, bubble proliferation is the product of the subsequent inertial collapses.

Pishchalnikov, Yuri A.; McAteer, James A.; Pishchalnikova, Irina V.; Williams, James C.; Bailey, Michael R.; Sapozhnikov, Oleg A.

2008-06-01

173

Towards an understanding and control of cavitation activity in 1 MHz ultrasound fields.  

PubMed

Various industrial processes such as sonochemical processing and ultrasonic cleaning strongly rely on the phenomenon of acoustic cavitation. As the occurrence of acoustic cavitation is incorporating a multitude of interdependent effects, the amount of cavitation activity in a vessel is strongly depending on the ultrasonic process conditions. It is therefore crucial to quantify cavitation activity as a function of the process parameters. At 1 MHz, the active cavitation bubbles are so small that it is becoming difficult to observe them in a direct way. Hence, another metrology based on secondary effects of acoustic cavitation is more suitable to study cavitation activity. In this paper we present a detailed analysis of acoustic cavitation phenomena at 1 MHz ultrasound by means of time-resolved measurements of sonoluminescence, cavitation noise, and synchronized high-speed stroboscopic Schlieren imaging. It is shown that a correlation exists between sonoluminescence, and the ultraharmonic and broadband signals extracted from the cavitation noise spectra. The signals can be utilized to characterize different regimes of cavitation activity at different acoustic power densities. When cavitation activity sets on, the aforementioned signals correlate to fluctuations in the Schlieren contrast as well as the number of nucleated bubbles extracted from the Schlieren Images. This additionally proves that signals extracted from cavitation noise spectra truly represent a measure for cavitation activity. The cyclic behavior of cavitation activity is investigated and related to the evolution of the bubble populations in the ultrasonic tank. It is shown that cavitation activity is strongly linked to the occurrence of fast-moving bubbles. The origin of this "bubble streamers" is investigated and their role in the initialization and propagation of cavitation activity throughout the sonicated liquid is discussed. Finally, it is shown that bubble activity can be stabilized and enhanced by the use of pulsed ultrasound by conserving and recycling active bubbles between subsequent pulsing cycles. PMID:22705075

Hauptmann, M; Struyf, H; Mertens, P; Heyns, M; De Gendt, S; Glorieux, C; Brems, S

2013-01-01

174

Nonequilibrium statistical theory of bubble nucleation and growth under neutron and proton irradiation  

SciTech Connect

Microstructural evolution in metals under particle irradiation is described by a non-equilibrium statistics method. This method gives a set of equations for the evolution of bubbles and an approximate solution for a distribution function of bubble size as a function of fluence and temperature. The distribution function gives the number of bubbles of radius r at time t, N(r,t)dr, as a function of size, r/r/sub 0/(r/sub 0/ is the radius of a bubble nucleus). It is found that N(r,t)dr increases with fluence. Also, the peak value of N(r,t)dt shifts to higher r/r/sub 0/ with increasing fluence. Nucleation depends mainly on helium concentration and defect cluster concentration while bubble growth is controlled mainly by the vacancy concentration and a fluctuation coefficient. If suitable material parameters are chosen, a reasonable distribution function for bubble size is obtained. The helium diffusion coefficient is found to be less than that for vacancies by five orders of magnitude. The fraction of helium remaining in matrix is less than 10/sup -2/; the majority of the helium is associated with the bubbles.

Yu, J.; Sommer, W.F.; Bradbury, J.N.

1986-01-01

175

Thursday 21 October 1999 physics : Bubbling hot  

E-print Network

the squeeze when the tension is succeeded by a wave of compression, and their contents heat up dramatically. Theory predicts that temperatures in bubbles generated by this process, known as 'acoustic cavitation, acoustic cavitation presents a few experimental challenges: good measurements inside a hot, cavitating

Suslick, Kenneth S.

176

Fighting fish (Betta splendens) bubble nests do not inhibit microbial growth.  

PubMed

Some organisms produce antimicrobial substances in nesting foam to favorably manipulate the environment to which their developing offspring are exposed. We tested if fighting fish Betta splendens foamy nest material, which is comprised of bubbles produced in the oral cavity of nesting males, has antimicrobial properties against a pathogenic bacteria (Edwardsiella tarda), a nonpathogenic bacteria (Escherichia coli), or a pathogenic oomycete (Saprolegnia parasitica). We also tested if exposure to nest material increases larval survival by performing in vitro fertilizations and individually incubating eggs in bubble nest extract or tank water (control). Our results show no evidence of antimicrobial properties of bubble nests. On the contrary, bubble nests provided favorable microenvironments for the growth of Saprolegnia parasitica. Our results confirm earlier work citing the importance of male nest attendance, and suggest that the mechanism responsible for decreased survival in the absence of attending males is pathogenic microbes. PMID:22753365

Brown, Alexandria C; Clotfelter, Ethan D

2012-12-01

177

Use of Dual-Pulse Lithotripter to Generate a Localized Intensified Cavitation Field  

SciTech Connect

Localizing cavitation to the kidney stone in extracorporeal shock wave lithotripsy may be desirable since cavitation appears to play a major role in both stone comminution and renal tissue damage. A method has been developed to localize and intensify cavitation damage in vitro. Cavitation fields in water were filmed with a high-speed digital video camera. In a conventional lithotripter (CL), the shock wave produced by a single source creates a 2 x 10 cm cylindrical cloud of bubbles in water. Bubbles in the CL field collapse simultaneously along the focal axis to produce a nearly uniform 1-mm x 8-cm line of pits in 25- mm-thick aluminum foil. Our dual-pulse lithotripter (DPL) uses two shock wave sources, facing each other, confocal, and triggered simultaneously to create a 4 x 5 cm cylindrical cloud of bubbles that collapse over a range of times and strengths such that the greatest pit damage on foils is contained within a few square millimeters of the focus. The time for bubbles to grow and collapse was measured with a focused hydrophone and compared with calculations based on the Gilmore equation. Pressure doubling due to synchronous arrival of the two pulses at the focus created increased bubble growth and increased foil pit depth. Asynchronous timing between the two pulses elsewhere in the DPL field resulted in disruption of radial dynamics and negligible pitting to foils. Translation of bubbles was also investigated, both numerically and experimentally. While net translation was calculated to be ,0.3 mm in all cases, the rapid

Sokolov, Dihlia L.(Washington University) [Washington University; Bailey, Michael R.(8408) [8408; Crum, Lawrence A.(Washington University) [Washington University

2001-09-01

178

The importance of control over bubble size distribution in pulsed megasonic cleaning  

NASA Astrophysics Data System (ADS)

The presence of acoustic cavitation in the cleaning liquid is a crucial precondition for cleaning action. One can achieve enhanced cleaning by periodically switching the ultrasonic agitation on and off rather than sonicating the liquid in a continuous fashion. The physical effects leading to that improvement are investigated experimentally with a dedicated setup and correlated to cleaning results obtained in an experimental cleaning tank. With the first setup, sonoluminescence and cavitation noise are measured simultaneously while imaging the nucleation and the interaction of the bubbles with the sound field using Hi-Speed Stroboscopic Schlieren Imaging. In this way it is possible to identify the role of streamer bubbles and transient cavitation. Furthermore, the attenuation of the sound field due to the highly efficient bubble induced acoustic scattering and the growth of bubbles due to coalescence is investigated. The results give an idea of the stability of the bubble size distribution during and after the nucleation process. The measurements obtained for pulsed megasonic agitation are compared to that obtained while sonicating the liquid continuously. They are further correlated to experimental data on particle removal efficiency for varying pulse duration, and corresponding cavitation noise measurements. Here, the latter proves to be a suitable and easy-to-do method to identify cleaning regimes beforehand.

Hauptmann, Marc; Struyf, Herbert; Mertens, Paul; Heyns, Marc; De Gendt, Stefan; Glorieux, Christ; Brems, Steven

2012-05-01

179

Kinetics of gas bubble nucleation and growth in magmatic melt at its rapid decompression  

NASA Astrophysics Data System (ADS)

The model of gas bubble growth in high-viscous gas-saturated magmatic melt, subjected to rapid decompression, is presented in the current study. It is shown that consideration of unsteady character of the process is extremely important in a wide range of supersaturation. The analytical solution is found for the profile of dissolved gas concentration and the rate of bubble growth. The model of kinetics of overall degassing is developed. This model is based on distinguishing the so-called "forbidden" zone in the melt volume with suppressed formation of the new nucleation sites. The simple analytical dependences of the number of nucleating bubbles and typical nucleation time on the value of initial decompression were derived together with time dependence of volumetric concentration of the gas phase. Our results match the available experimental data.

Chernov, A. A.; Kedrinsky, V. K.; Pil'nik, A. A.

2014-11-01

180

Cavitation in elastomeric solids: II--Onset-of-cavitation surfaces for Neo-Hookean materials  

E-print Network

Cavitation in elastomeric solids: II--Onset-of-cavitation surfaces for Neo-Hookean materials Oscar-existing defects. In this article, the theory is used to determine onset-of-cavitation surfaces for Neo simulations for the growth of a small spherical cavity in a Neo-Hookean block under multi-axial loading. Good

Lopez-Pamies, Oscar

181

Experimental and Theoretical Investigations of Cavitation in Water  

NASA Technical Reports Server (NTRS)

The cavitation in nozzles on airfoils of various shape and on a sphere are experimentally investigated. The limits of cavitation and the extension of the zone of the bubbles in different stages of cavitation are photographically established. The pressure in the bubble area is constant and very low, jumping to high values at the end of the area. The analogy with the gas compression shock is adduced and discussed. The collapse of the bubbles under compression shock produces very high pressures internally, which must be contributory factors to corrosion. The pressure required for purely mechanical corrosion is also discussed.

Ackeret, J.

1945-01-01

182

Three-Dimensional Bubble Size Distributions From Growth at High Water Supersaturation: X-ray Microtomographic Investigations  

NASA Astrophysics Data System (ADS)

The growth of bubbles and exsolution of water from molten rocks is responsible for most volcanic eruptions on Earth. Rapid bubble growth without formation of an interconnected, percolating, cluster of bubbles can create a volcanic eruption, whereas slower bubble growth and a high enough (but still quantitatively unknown) bubble density results in more passive volcanic degassing. Understanding the rates and mechanisms of water exsolution provides better insight into volcanic eruptions and can lead to mitigation of their potentially devastating effects. In order to better understand the mechanisms of volcanic eruptions we are investigating the formation of water bubbles by heating previously hydrated silicate melts at 1 atm pressure and using x-ray microtomography to study the bubble size distribution. Hydrous silicate melts spanning a wide range of composition and physical properties were prepared by dissolving water into silicate melts at high temperatures and high pressure by melting glasses with water in sealed capsules at 500 MPa and 1100 oC in a piston-cylinder apparatus followed by rapid quenching to room temperature and pressure. Chips of these glasses were heated at 1 atm and temperatures up to 1000 oC. Most chips of samples were heated under an optical microscope at 1 atm in the laboratory at McGill University to make bubble-bearing samples, whereas a few chips were degassed a custom-designed, boron-nitride furnace on a bending magnet beamline at the Advanced Photon Source and observed with x-rays during bubble growth. In some cases the chips were heated to sufficiently high temperatures and for durations long enough to grow many large bubbles and convert the sample into a foam; in other cases the samples were only partially degassed so that we could observe the development of bubble formation and possible coalescence prior to foam formation. The bubble-bearing glasses formed during the heating experiment were imaged by x-ray microtomography performed on the GSECARS beamline BM-13 at the Advanced Photon Source. Spatial resolution typically was better than 10 ? m. Reconstruction of the tomographic images was performed using the Gridrec Fourier Transform algorithm. Three-dimensional bubble size distributions were determined for the samples using the Blob3D image analysis software. We plotted the cumulative distribution of bubble volumes and determined that in many, but not all, cases the distribution is well described by a power law distribution. In particular, our results for bubble growth of an albite melt initially containing 11 wt% water produced a power law with an exponent of 0.84. This value is consistent with previous studies of bubbles found in natural lavas and in organic liquids used to simulate explosive volcanic eruptions.

Robert, G.; Allard, E.; Jeff, L.; Rivers, M.; Baker, D. R.

2004-05-01

183

Ultrasonic cavitation for disruption of microalgae.  

PubMed

Challenges with mid-stream fractionation steps in proposed microalgae biofuel pathways arise from the typically dilute cell density in growth media, micron scale cell sizes, and often durable cell walls. For microalgae to be a sustainable source of biofuels and co-products, efficient fractionation by some method will be necessary. This study evaluates ultrasonic cell disruption as a processing step that fractionates microalgae. A range of species types with different sizes and cell wall compositions were treated. The initial seconds of sonication offered the most significant disruption, even for the more durable Nannochloropsis cells. Following this initial period, diminishing effectiveness was attributed, by acoustic measurements, to attenuation of the ultrasound in the ensuing cloud of cavitating bubbles. At longer exposure times, differences between species were more pronounced. Processing higher concentrations of Isochrysis slowed cell disintegration only marginally, making the expenditure of energy more worthwhile. PMID:25435064

Greenly, Justin M; Tester, Jefferson W

2015-05-01

184

Electrical detection of the ultrasonic cavitation onset.  

PubMed

We propose a new technique for the study of ultrasonic cavitation. This method is based on the quantification of the electrical admittance variations of the emitter in a range around the resonance frequency at different excitation levels. As the cavitation threshold is reached, the state of the fluid is changing; we evaluate these changes. The high-power piezoelectric transducer is modelled through an analytical model, which is used to relate the characteristics of the fluid domain (bubble density, extent) to the electrical admittance (peak value, resonance frequency, and bandwidth). Thus, the admittance we measure allows us to determine the characteristics of the bubbly liquid. The procedure is applied to the inertial cavitation field generated at 24kHz at very high amplitudes. The results obtained show that a very high bubble density layer is formed at the surface of the sonotrode. PMID:22579800

Campos-Pozuelo, Cleofé; Vanhille, Christian

2012-11-01

185

A numerical treatment for attached cavitation  

SciTech Connect

A new numerical treatment has been developed for the prediction of the flowfield resulting from an attached cavitation region. The cavitation model has been implemented in a viscous calculation which is an improvement over previous inviscid results. The model requires no a priori knowledge of the wall detachment point or bubble length and comparisons with experimental data indicate good predictions of these quantities for a variety of different body shapes and cavitation numbers. Furthermore, wall pressure distributions are also predicted quite accurately using this method. While the treatment has been applied to an axisymmetric calculation, the approach should be applicable to two-dimensional flows.

Chen, Y.; Heister, S.D. (Purdue Univ., W. Lafayette, IN (United States). School of Aeronautics and Astronautics)

1994-09-01

186

NUMERICAL ANALYSIS OF VAPOR BUBBLE GROWTH AND WALL HEAT TRANSFER DURING FLOW BOILING OF WATER IN A MICROCHANNEL  

E-print Network

NUMERICAL ANALYSIS OF VAPOR BUBBLE GROWTH AND WALL HEAT TRANSFER DURING FLOW BOILING OF WATER in various applications such as electronic chip cooling. At sufficiently high wall superheats, flow boiling boiling, bubbles nucleate on the microchannel walls and eventually grow big enough to fill up the entire

Kandlikar, Satish

187

Enhancement of heat and mass transfer by cavitation  

NASA Astrophysics Data System (ADS)

In this paper, a brief summary of effects of cavitation on the heat and mass transfer are given. The fundamental studies of cavitation bubbles, including its nonlinearity, rectified heat and mass diffusion, are initially introduced. Then selected topics of cavitation enhanced heat and mass transfer were discussed in details including whales stranding caused by active sonar activity, pool boiling heat transfer, oscillating heat pipe and high intensity focused ultrasound treatment.

Zhang, Y. N.; Zhang, Y. N.; Du, X. Z.; Xian, H. Z.

2015-01-01

188

Dissolved water distribution in vesicular magmatic glass records both decompressive bubble growth and quench resorption  

NASA Astrophysics Data System (ADS)

Water distribution in magma varies over the lifetime of an eruption due to a variety of processes, including decompressive degassing of the melt, cooling during the quench from melt to glass, and post-emplacement hydration under ambient conditions. Correct interpretation of water distributions in erupted pyroclasts can therefore offer crucial insights into the dynamics of eruption mechanisms and emplacement histories. Volcanic eruptions are driven by the nucleation and growth of bubbles in magma. Bubbles grow as volatile species in the melt, of which water is volumetrically the most important, diffuse down a concentration gradient towards and across the bubble wall. On cooling, the melt quenches to glass, preserving the spatial distribution of water concentration around the bubbles (now vesicles). We use Backscatter Scanning Electron Microscopy (BSEM), Secondary Ion Mass Spectrometry (SIMS) and Fourier Transform Infra-Red spectroscopy (FTIR) to measure the spatial distribution of water around vesicles in experimentally-vesiculated samples. We find that, contrary to expectation, the total water concentration increases (by up to 2 wt.%) in the ~30 microns closest to the vesicle wall. Our samples record significant resorption of water back into the melt around bubbles during the quench process, a process which represents ';regassing' of the magma. We propose that the observed total water resorption profiles result from the increase in the equilibrium solubility of water as temperature decreases during the quench to glass, and that this resorption locally overprints the pre-existing concentration total water profile resulting from bubble growth during decompression. This resorption occurs over the very short timescales of rapid experimental quench (3-10 seconds) resulting in strongly disequilibrium water speciation. Water re-enters the melt as molecular water leading to enrichment in molecular water around vesicles, while the distribution of hydroxyl groups remains relatively unaltered during quench, thus preserving information about syn-experimental (or syn-eruptive) degassing. Our work demonstrates the effectiveness of two tools for deciphering the water contents of pyroclasts. BSEM imaging of glassy pyroclasts offers an easy, qualitative assessment of whether glass has been affected by quench resorption or secondary alteration processes, which becomes quantitative if calibrated by a technique such as SIMS. FTIR speciation data, meanwhile, enables the cause of bubble resorption to be identified, since resorption caused by pressure increase and by temperature decrease will result in distinctly different distributions of water species. We present here data extracted using these tools that demonstrate the potential impact of temperature-controlled quench resorption, which can reduce bubble volumes and sample porosities by a factor of two and reintroduce significant amounts of water back into the melt, with implications for obsidian and rheomorphic flow mechanisms.

McIntosh, I. M.; Llewellin, E.; Humphreys, M.; Nichols, A. R.; Burgisser, A.; Schipper, C.

2013-12-01

189

Enhancement of Localized Heating by Ultrasonically Induced Cavitation in High Intensity Focused Ultrasound Treatment  

Microsoft Academic Search

There are reports that ultrasonically induced cavitation bubbles locally enhance tissue heating in high intensity focused ultrasound (HIFU) treatment. In this study, a high-intensity burst (named ``a triggering pulse'') above the cavitation threshold was used to trigger cavitation. Immediately after that, CW ultrasound (named ``heating waves''), at an intensity level and duration typical for conventional HIFU ablation was irradiated. Before

Ryo Takagi; Shin Yoshizawa; Shin-ichiro Umemura

2010-01-01

190

Using cavitation to measure statistics of low-pressure events in large-Reynolds-number turbulence  

E-print Network

is reduced until large negative pressure fluctuations trigger cavitation. Cavitation is detected via light. In this paper, we report studies using cavitation to detect large negative pressure fluctuations in a turbulent bubbles and the hydro- static pressure is adjusted so that negative pressure fluctua- tions go below

La Porta, Arthur

191

Single Bubble SonoLuminescence of Particles model M. ADAMA MAIGA  

E-print Network

(Single Bubble SonoLuminescence, SBSL) highlighted by [2]. Bubbles can be produced during a cavitation the evidence of some phenomena following the sonoluminescence (mass and heat transfer between the bubble

Paris-Sud XI, Université de

192

Transient pressure signals in mechanical heart valve cavitation.  

PubMed

The purpose of this investigation was to establish a correlation between mechanical heart valve (MHV) cavitation and transient pressure (TP) signals at MHV closure. This correlation may suggest a possible method to detect in vivo MHV cavitation. In a pulsatile mock flow loop, a study was performed to measure TP and observe cavitation bubble inception at MHV closure under simulated physiologic ventricular and aortic pressures at heart rates of 70, 90, 120, and 140 beats/min with corresponding cardiac outputs of 5.0, 6.0, 7.5, and 8.5 L/min, respectively. The experimental study included two bileaflet MHV prostheses: 1) St. Jude Medical 31 mm and 2) Carbomedics 31 mm. High fidelity piezo-electric pressure transducers were used to measure TP immediately before and after the valve leaflet/housing impact. A stroboscopic lighting imaging technique was developed to capture cavitation bubbles on the MHV inflow surfaces at selected time delays ranging from 25 microseconds to 1 ms after the leaflet/housing impact. The TP traces measured 10 mm away from the valve leaflet tip showed a large pressure reduction peak at the leaflet/housing impact, and subsequent high frequency pressure oscillations (HPOs) while the cavitation bubbles were observed. The occurrence of cavitation bubbles and HPO bursts were found to be random on a beat by beat basis. However, the amplitude of the TP reduction, the intensity of the cavitation bubble (size and number), and the intensity of HPO were found to increase with the test heart rate. A correlation between the MHV cavitation bubbles and the HPO burst was positively established. Power spectrum analysis of the TP signals further showed that the frequency of the HPO (cavitation bubble collapse pressures) ranged from 100 to 450 kHz. PMID:8944941

Wu, Z J; Slonin, J H; Hwang, N H

1996-01-01

193

Passive imaging of cavitational acoustic emissions with ultrasound arrays  

E-print Network

therapies including shock-wave lithotripsy [1], thrombolysis [2], targeted drug delivery [3], and thermal bubble activity plays a role in ultrasound ablation, monitoring cavitation may assist in therapy guidance

Mast, T. Douglas

194

Simultaneous pressure measurement and high-speed photography study of cavitation in a dynamically loaded journal bearing  

NASA Technical Reports Server (NTRS)

Cavitation of the oil film in a dynamically loaded journal bearing was studied using high-speed photography and pressure measurement simultaneously. Comparison of the visual and pressure data provided considerable insight into the occurrence and nonoccurrence of cavitation. It was found that (1) for the submerged journal bearing, cavitation typically occurred in the form of one bubble with the pressure in the cavitation bubble close to the absolute zero; and (2) for cavitation-producing operating conditions, cavitation did not always occur; with the oil film then supporting a tensile stress.

Sun, D. C.; Brewe, David E.; Abel, Philip B.

1994-01-01

195

Activating molecules, ions, and solid particles with acoustic cavitation.  

PubMed

The chemical and physical effects of ultrasound arise not from a direct interaction of molecules with sound waves, but rather from the acoustic cavitation: the nucleation, growth, and implosive collapse of microbubbles in liquids submitted to power ultrasound. The violent implosion of bubbles leads to the formation of chemically reactive species and to the emission of light, named sonoluminescence. In this manuscript, we describe the techniques allowing study of extreme intrabubble conditions and chemical reactivity of acoustic cavitation in solutions. The analysis of sonoluminescence spectra of water sparged with noble gases provides evidence for nonequilibrium plasma formation. The photons and the "hot" particles generated by cavitation bubbles enable to excite the non-volatile species in solutions increasing their chemical reactivity. For example the mechanism of ultrabright sonoluminescence of uranyl ions in acidic solutions varies with uranium concentration: sonophotoluminescence dominates in diluted solutions, and collisional excitation contributes at higher uranium concentration. Secondary sonochemical products may arise from chemically active species that are formed inside the bubble, but then diffuse into the liquid phase and react with solution precursors to form a variety of products. For instance, the sonochemical reduction of Pt(IV) in pure water provides an innovative synthetic route for monodispersed nanoparticles of metallic platinum without any templates or capping agents. Many studies reveal the advantages of ultrasound to activate the divided solids. In general, the mechanical effects of ultrasound strongly contribute in heterogeneous systems in addition to chemical effects. In particular, the sonolysis of PuO2 powder in pure water yields stable colloids of plutonium due to both effects. PMID:24747272

Pflieger, Rachel; Chave, Tony; Virot, Matthieu; Nikitenko, Sergey I

2014-01-01

196

The dynamics of bubble growth for Rayleigh-Taylor unstable interfaces  

NASA Astrophysics Data System (ADS)

A statistical model is analyzed for the growth of bubbles in a Rayleigh-Taylor unstable interface. The model is compared to solutions of the full Euler equations for compressible two phase flow, using numerical solutions based on the method of front tracking. The front tracking method has the distinguishing feature of being a predominantly Eulerian method in which sharp interfaces are preserved with zero numerical diffusion. Various regimes in the statistical model exhibiting qualitatively distinct behavior are explored.

Gardner, C. L.; Glimm, J.; McBryan, O.; Menikoff, R.; Sharp, D. H.; Zhang, Q.

1988-03-01

197

A description of stress driven bubble growth of helium implanted tungsten Shahram Sharafat a,*, Akiyuki Takahashi b  

E-print Network

) simulation to model helium bubble nucleation and growth. The KRT-based HEROS Code establishes defect of inertial fusion energy (IFE) reactor chambers have to mitigate the effects of high temperature pulses

Ghoniem, Nasr M.

198

Bubble formation in microgravity  

NASA Technical Reports Server (NTRS)

An extensive experimental program was initiated for the purpose of understanding the mechanisms leading to bubble generation during fluid handling procedures in a microgravity environment. Several key fluid handling procedures typical for PCG experiments were identified for analysis in that program. Experiments were designed to specifically understand how such procedures can lead to bubble formation. The experiments were then conducted aboard the NASA KC-135 aircraft which is capable of simulating a low gravity environment by executing a parabolic flight attitude. However, such a flight attitude can only provide a low gravity environment of approximately 10-2go for a maximum period of 30 seconds. Thus all of the tests conducted for these experiments were designed to last no longer than 20 seconds. Several experiments were designed to simulate some of the more relevant fluid handling procedures during protein crystal growth experiments. These include submerged liquid jet cavitation, filling of a cubical vessel, submerged surface scratch, attached drop growth, liquid jet impingement, and geysering experiments. To date, four separate KC-135 flight campaigns were undertaken specifically for performing these experiments. However, different experiments were performed on different flights.

Antar, Basil N.

1996-01-01

199

25 July 2002 Sonoluminescence: Bubble power  

E-print Network

25 July 2002 Sonoluminescence: Bubble power When a gas bubble in a liquid is excited by ultrasonic. These flashes of light, known as 'sonoluminescence', occur as the bubble implodes, or cavitates. Now Didenko­397 (2002); doi:10.1038/nature00895 | First Paragraph | Full Text (HTML / PDF) | Sonoluminescence: Inside

Suslick, Kenneth S.

200

Detecting cavitation in mercury exposed to a high-energy pulsed proton beam.  

PubMed

The Oak Ridge National Laboratory Spallation Neutron Source employs a high-energy pulsed proton beam incident on a mercury target to generate short bursts of neutrons. Absorption of the proton beam produces rapid heating of the mercury, resulting in the formation of acoustic shock waves and the nucleation of cavitation bubbles. The subsequent collapse of these cavitation bubbles promote erosion of the steel target walls. Preliminary measurements using two passive cavitation detectors (megahertz-frequency focused and unfocused piezoelectric transducers) installed in a mercury test target to monitor cavitation generated by proton beams with charges ranging from 0.041 to 4.1 muC will be reported on. Cavitation was initially detected for a beam charge of 0.082 muC by the presence of an acoustic emission approximately 250 mus after arrival of the incident proton beam. This emission was consistent with an inertial cavitation collapse of a bubble with an estimated maximum bubble radius of 0.19 mm, based on collapse time. The peak pressure in the mercury for the initiation of cavitation was predicted to be 0.6 MPa. For a beam charge of 0.41 muC and higher, the lifetimes of the bubbles exceeded the reverberation time of the chamber ( approximately 300 mus), and distinct windows of cavitation activity were detected, a phenomenon that likely resulted from the interaction of the reverberation in the chamber and the cavitation bubbles. PMID:20370004

Manzi, Nicholas J; Chitnis, Parag V; Holt, R Glynn; Roy, Ronald A; Cleveland, Robin O; Riemer, Bernie; Wendel, Mark

2010-04-01

201

[Blackbody radiation of cavitation luminescence from glycerin].  

PubMed

An improved conical bubble sonoluminescence U-tube was built. Using this setup, the spectra and light pulses of conical bubble luminescence in glycerin were detected. Results show that the spectra are continuum, which are well fitted by blackbody radiation. The cavitational temperature ranging from 2 600 to 3 050 K was calculated from the fitted spectra. The reasons for the existence of blackbody radiation in conical bubble luminescence were discussed both from special and temporal sides. The value of radius of cavitational bubble is about 1.7 cm theoretically, which is greater than that of the bubble acoustically excited. The width of light pulses of cavitational bubble reached 40-60 ms, and this provided enough time for the blackbody radiation. In addition, the light pulses at different wavelength were measured, and results show that the width of light pulses increased with the raise of wavelength of spectra, which proved the mechanism of blackbody radiation. Finally, based on the spectra and light pulses, the intensity of luminescence was calculated to be about 0.18 J. PMID:20496673

He, Shou-Jie; Ha, Jing; Liu, Li-Fang; Wang, Long

2010-03-01

202

On fiber optic probe hydrophone measurements in a cavitating liquid.  

PubMed

The measurement of high-pressure signals is often hampered by cavitation activity. The usage of a fiber optic probe hydrophone possesses advantages over other hydrophones, yet when measuring in a cavitating liquid large variations in the signal amplitude are found; in particular when the pressure signal recovers back to positive values. With shadowgraphy the wave propagation and cavity dynamics are imaged and the important contributions of secondary shock waves emitted from collapsing cavitation bubbles are revealed. Interestingly, just adding a small amount of acidic acid reduces the cavitation activity to a large extent. With this treatment an altered primary pressure profile which does not force the cavitation bubbles close to fiber tip into collapse has been found. Thereby, the shot-to-shot variations are greatly reduced. PMID:18177133

Zijlstra, Aaldert; Ohl, Claus Dieter

2008-01-01

203

Improvement of growth rate of plants by bubble discharge in water  

NASA Astrophysics Data System (ADS)

The effect of bubble discharge in water on the growth rate of plants was investigated experimentally for application to plant cultivation systems. Spinach (Spinacia oleracea), radish (Raphanus sativus var. sativus), and strawberry (Fragaria × ananassa) were used as specimens to clarify the effect of the discharge treatment on edible parts of the plants. The specimens were cultivated in pots filled with artificial soil, which included chicken manure charcoal. Distilled water was sprayed on the artificial soil and drained through a hole in the pots to a water storage tank. The water was circulated from the water storage tank to the cultivation pots after 15 or 30 min discharge treatment on alternate days. A magnetic compression-type pulsed power generator was used to produce the bubble discharge with a repetition rate of 250 pps. The plant height in the growth phase and the dry weight of the harvested plants were improved markedly by the discharge treatment in water. The soil and plant analyzer development (SPAD) value of the plants also improved in the growth phase of the plants. The concentration of nitrate nitrogen, which mainly contributed to the improvement of the growth rate, in the water increased with the discharge treatment. The Brix value of edible parts of Fragaria × ananassa increased with the discharge treatment. The inactivation of bacteria in the water was also confirmed with the discharge treatment.

Takahata, Junichiro; Takaki, Koichi; Satta, Naoya; Takahashi, Katsuyuki; Fujio, Takuya; Sasaki, Yuji

2015-01-01

204

Inertial confinement fusion based on the ion-bubble trigger  

SciTech Connect

Triggering the ion-bubble in an inertial confinement fusion, we have developed a novel scheme for the fast ignition. This scheme relies on the plasma cavitation by the wake of an intense laser pulse to generate an ion-bubble. The bubble acts both as an intense electron accelerator and as an electron wiggler. Consequently, the accelerated electrons trapped in the bubble can emit an intense tunable laser light. This light can be absorbed by an ablation layer on the outside surface of the ignition capsule, which subsequently drills it and thereby produces a guide channel in the pellet. Finally, the relativistic electron beam created in the bubble is guided through the channel to the high density core igniting the fusion fuel. The normalized beam intensity and beam energy required for triggering the ignition have been calculated when core is heated by the e-beam. In addition, through solving the momentum transfer, continuity and wave equations, a dispersion relation for the electromagnetic and space-charge waves has been analytically derived. The variations of growth rate with the ion-bubble density and electron beam energy have been illustrated. It is found that the growth rates of instability are significantly controlled by the ions concentration and the e-beam energy in the bubble.

Jafari, S., E-mail: SJafari@guilan.ac.ir; Nilkar, M.; Ghasemizad, A. [Department of Physics, University of Guilan, Rasht 41335-1914 (Iran, Islamic Republic of); Mehdian, H. [Department of Physics and Institute for Plasma Research, Tarbiat Moallem University, Tehran 15614 (Iran, Islamic Republic of)

2014-10-15

205

The dynamics of bubble growth for Rayleigh-Taylor unstable interfaces  

NASA Astrophysics Data System (ADS)

A statistical model is analyzed for the growth of bubbles in a Rayleigh-Taylor unstable interface. The model is compared to solutions of the full Euler equations for compressible two phase flow, using numerical solutions based on the method of front tracking. The front tracking method has the distinguishing feature of being a predominantly Eulerian method in which sharp interfaces are preserved with zero numerical diffusion. Various regimes in the statistical model exhibiting qualitatively distinct behavior are explored. It appears that the parameters in the statistical model can be set from first principles on the basis of comparison with numerical solutions of the full Euler equation.

Gardner, C. L.; Glimm, J.; McBryan, O.; Menikoff, R.; Sharp, D.

1987-05-01

206

Use of ultrasonics in shear layer cavitation control.  

PubMed

In this paper we report results from some investigations on the use of ultrasonics in controlling hydrodynamic cavitation in the shear layer downstream of a sudden expansion. Control of this type of cavitation has been achieved by modulating the local pressure that was experienced by a nucleus present in the shear layer. This modulation was made possible by using a piezoelectric device, termed as Ultrasonic Pressure Modulator (UPM). The performance of UPM has been studied at different dissolved gas concentrations with electrolysis bubbles as nuclei. Control of cavitation due to natural nuclei has also been attempted. Efficiency of UPM, in reducing cavitation, was seen to be dependent on the driving frequency employed. Experimental and numerical studies have been conducted to bring out the physics behind this approach of cavitation control. Different measures of cavitation control have been identified and some possible applications of this method have also been outlined. PMID:12853082

Chatterjee, Dhiman

2003-08-01

207

Removal of residual nuclei following a cavitation event using low-amplitude ultrasound.  

PubMed

Microscopic residual bubble nuclei can persist on the order of 1 s following a cavitation event. These bubbles can limit the efficacy of ultrasound therapies such as shock wave lithotripsy and histotripsy, because they attenuate pulses that arrive subsequent to their formation and seed repetitive cavitation activity at a discrete set of sites (cavitation memory). Here, we explore a strategy for the removal of these residual bubbles following a cavitation event, using low-amplitude ultrasound pulses to stimulate bubble coalescence. All experiments were conducted in degassed water and monitored using high-speed photography. In each case, a 2-MHz histotripsy transducer was used to initiate cavitation activity (a cavitational bubble cloud), the collapse of which generated a population of residual bubble nuclei. This residual nuclei population was then sonicated using a 1 ms pulse from a separate 500-kHz transducer, which we term the bubble removal pulse. Bubble removal pulse amplitudes ranging from 0 to 1.7 MPa were tested, and the backlit area of shadow from bubbles remaining in the field following bubble removal was calculated to quantify efficacy. It was found that an ideal amplitude range exists (roughly 180 to 570 kPa) in which bubble removal pulses stimulate the aggregation and subsequent coalescence of residual bubble nuclei, effectively removing them from the field. Further optimization of bubble removal pulse sequences stands to provide an adjunct to cavitation-based ultrasound therapies such as shock wave lithotripsy and histotripsy, mitigating the effects of residual bubble nuclei that currently limit their efficacy. PMID:25265172

Duryea, Alexander P; Cain, Charles A; Tamaddoni, Hedieh A; Roberts, William W; Hall, Timothy L

2014-10-01

208

Removal of Residual Nuclei Following a Cavitation Event using Low-Amplitude Ultrasound  

PubMed Central

Microscopic residual bubble nuclei can persist on the order of 1 second following a cavitation event. These bubbles can limit the efficacy of ultrasound therapies such as shock wave lithotripsy and histotripsy, as they attenuate pulses that arrive subsequent to their formation and seed repetitive cavitation activity at a discrete set of sites (cavitation memory). Here, we explore a strategy for the removal of these residual bubbles following a cavitation event, using low amplitude ultrasound pulses to stimulate bubble coalescence. All experiments were conducted in degassed water and monitored using high speed photography. In each case, a 2 MHz histotripsy transducer was used to initiate cavitation activity (a cavitational bubble cloud), the collapse of which generated a population of residual bubble nuclei. This residual nuclei population was then sonicated using a 1 ms pulse from a separate 500 kHz transducer, which we term the ‘bubble removal pulse.’ Bubble removal pulse amplitudes ranging from 0 to 1.7 MPa were tested, and the backlit area of shadow from bubbles remaining in the field following bubble removal was calculated to quantify efficacy. It was found that an ideal amplitude range exists (roughly 180 – 570 kPa) in which bubble removal pulses stimulate the aggregation and subsequent coalescence of residual bubble nuclei, effectively removing them from the field. Further optimization of bubble removal pulse sequences stands to provide an adjunct to cavitation-based ultrasound therapies such as shock wave lithotripsy and histotripsy, mitigating the effects of residual bubble nuclei that currently limit their efficacy. PMID:25265172

Duryea, Alexander P.; Cain, Charles A.; Tamaddoni, Hedieh A.; Roberts, William W.; Hall, Timothy L.

2014-01-01

209

Controlled Cavitation for Scale-Free Heating, Gum Hydration and Emulsification in Food and Consumer Products  

Microsoft Academic Search

\\u000a Cavitation is defined as the sudden formation and collapse of bubbles in liquid by means of a mechanical force. As bubbles\\u000a rapidly form and collapse, pressurized shock waves, localized heating events and tremendous shearing forces occur. As microscopic\\u000a cavitation bubbles are produced and collapse, shockwaves are given off into the liquid, which can result in heating and\\/or\\u000a mixing, similar to

Douglas G. Mancosky; Paul Milly

2011-01-01

210

Regulating Ultrasound Cavitation in order to Induce Reproducible Sonoporation  

NASA Astrophysics Data System (ADS)

Sonoporation would be linked to cavitation, which generally appears to be a non reproducible and unstationary phenomenon. In order to obtain an acceptable trade-off between cell mortality and transfection, a regulated cavitation generator based on an acoustical cavitation measurement was developed and tested. The medium to be sonicated is placed in a sample tray. This tray is immersed in in degassed water and positioned above the face of a flat ultrasonic transducer (frequency: 445 kHz; intensity range: 0.08-1.09 W/cm2). This technical configuration was admitted to be conducive to standing-wave generation through reflection at the air/medium interface in the well thus enhancing the cavitation phenomenon. Laterally to the transducer, a homemade hydrophone was oriented to receive the acoustical signal from the bubbles. From this spectral signal recorded at intervals of 5 ms, a cavitation index was calculated as the mean of the cavitation spectrum integration in a logarithmic scale, and the excitation power is automatically corrected. The device generates stable and reproducible cavitation level for a wide range of cavitation setpoint from stable cavitation condition up to full-developed inertial cavitation. For the ultrasound intensity range used, the time delay of the response is lower than 200 ms. The cavitation regulation device was evaluated in terms of chemical bubble collapse effect. Hydroxyl radical production was measured on terephthalic acid solutions. In open loop, the results present a great variability whatever the excitation power. On the contrary the closed loop allows a great reproducibility. This device was implemented for study of sonodynamic effect. The regulation provides more reproducible results independent of cell medium and experimental conditions (temperature, pressure). Other applications of this regulated cavitation device concern internalization of different particles (Quantum Dot) molecules (SiRNA) or plasmids (GFP, DsRed) into different types of cells (AT2, RL, LLC…). Preliminary results are presented.

Mestas, J.-L.; Alberti, L.; El Maalouf, J.; Béra, J.-C.; Gilles, B.

2010-03-01

211

Optic cavitation with CW lasers: A review  

NASA Astrophysics Data System (ADS)

The most common method to generate optic cavitation involves the focusing of short-pulsed lasers in a transparent liquid media. In this work, we review a novel method of optic cavitation that uses low power CW lasers incident in highly absorbing liquids. This novel method of cavitation is called thermocavitation. Light absorbed heats up the liquid beyond its boiling temperature (spinodal limit) in a time span of microseconds to milliseconds (depending on the optical intensity). Once the liquid is heated up to its spinodal limit (˜300 °C for pure water), the superheated water becomes unstable to random density fluctuations and an explosive phase transition to vapor takes place producing a fast-expanding vapor bubble. Eventually, the bubble collapses emitting a strong shock-wave. The bubble is always attached to the surface taking a semi-spherical shape, in contrast to that produced by pulsed lasers in transparent liquids, where the bubble is produced at the focal point. Using high speed video (105 frames/s), we study the bubble's dynamic behavior. Finally, we show that heat diffusion determines the water superheated volume and, therefore, the amplitude of the shock wave. A full experimental characterization of thermocavitation is described.

Padilla-Martinez, J. P.; Berrospe-Rodriguez, C.; Aguilar, G.; Ramirez-San-Juan, J. C.; Ramos-Garcia, R.

2014-12-01

212

Dissolved gas and ultrasonic cavitation--a review.  

PubMed

The physics and chemistry of nonlinearly oscillating acoustic cavitation bubbles are strongly influenced by the dissolved gas in the surrounding liquid. Changing the gas alters among others the luminescence spectrum, and the radical production of the collapsing bubbles. An overview of experiments with various gas types and concentration described in literature is given and is compared to mechanisms that lead to the observed changes in luminescence spectra and radical production. The dissolved gas type changes the bubble adiabatic ratio, thermal conductivity, and the liquid surface tension, and consequently the hot spot temperature. The gas can also participate in chemical reactions, which can enhance radical production or luminescence of a cavitation bubble. With this knowledge, the gas content in cavitation can be tailored to obtain the desired output. PMID:22705074

Rooze, Joost; Rebrov, Evgeny V; Schouten, Jaap C; Keurentjes, Jos T F

2013-01-01

213

Effect of phytoplankton growth on air bubble residence time in seawater  

NASA Astrophysics Data System (ADS)

Laboratory experiments were carried out in a seawater mesocosm tank to investigate the influence of marine phytoplankton growth on air bubble residence time (BRT). Air bubbles of 10-1000 ?m in diameter were injected by flushing a water jet into the top of the tank and BRT was determined acoustically. The tank was filled with seawater containing a natural phytoplankton population and growth stimulated by irradiating with artificial fluorescent light. A second experiment was conducted using a monoculture of the diatom Cylindrotheca closterium. BRT and several phytoplankton growth-related parameters (chlorophyll concentration, dissolved inorganic nutrients, dissolved organic carbon (DOC), oxygen saturation and bacteria numbers) as well as the water viscosity were monitored over periods of up to 24 days. BRT showed a statistically significant covariation with oxygen saturation (r = 0.69, ? = 0.01 for natural phytoplankton; r = 0.93, ? = 0.01 for the Cylindrotheca closterium) and chlorophyll concentration (r = 0.69, ? = 0.05 natural phytoplankton; r = 0.76, ? = 0.01 Cylindrotheca closterium) during phytoplankton growth periods. Increases in BRT of a factor >2 were found during the chlorophyll maximum, when the water was sufficiently supersaturated with oxygen (˜>110%). No clear relationship was evident between BRT and measurements of DOC or water viscosity. Model experiments with highly oxygen-supersaturated water and artificial polysaccharide compounds indicated that oxygen supersaturation alone is not the main factor causing increased BRT during phytoplankton growth, but it is most likely a combination of the degree of gas saturation and the composition of the organic exudates derived from the microalgal population.

Kuhnhenn-Dauben, V.; Purdie, D. A.; Knispel, U.; Voss, H.; Horstmann, U.

2008-06-01

214

Numerical investigation of volume of fluid and level set interface capturing methods for bubble growth and detachment  

NASA Astrophysics Data System (ADS)

The injection of an air bubble in a liquid at rest is an interface flow problem where surface tension and its modeling at solid boundaries is a key factor. It is the subject of this study. Numerical simulations have been performed to study 3D axi-symmetrical bubble growth from an orifice through a horizontal wall. The gas inflow velocity used was sufficiently small to ensure that the bubble growth is quasi-static so that surface tension and buoyancy forces are dominant. The wall was considered non-wettable to avoid spreading of the interface along the wall. The Navier-Stokes equations were solved with two different interface capturing methods based on Volume of Fluid (VOF) and Level Set (LS) as well as coupled CVOFLS. In the VOF method the bubble interface was tracked using either an algebraic solver which results in some diffusion of the interface (compressive scheme implemented in OpenFOAM), or it was determined using a geometric reconstruction scheme (Geo-Reconstruct Scheme from Fluent). The TransAT code was used for the LS model which captures the interface using signed distance function. The bubble volume and center of gravity have been investigated during the growth using the three solvers and numerical results have been assessed against experimental data. These results have shown that reconstructing the interface using the LS method gives good agreement with the experiments. In VOF (compressive scheme), the bubble detaches at earlier times resulting in a smaller detachment volume. The coupled CVOFLS-GeoReconstruct was found to be more computationally expensive than the VOF-GeoReconstruct and to present bubble oscillation during the growth.

Albadawi, Abdulaleem; Delauré, Yan; Donoghue, David B.; Robinson, Anthony; Murray, Darina B.

2012-11-01

215

Application of the "Full Cavitation Model" to the fundamental study of cavitation in liquid metal processing  

NASA Astrophysics Data System (ADS)

Ultrasonic cavitation treatment of melt significantly improves the downstream properties and quality of conventional and advanced metallic materials. However, the transfer of this technology has been hindered by difficulties in treating large volumes of liquid metal. To improve the understanding of cavitation processing efficiency, the Full Cavitation Model, which is derived from a reduced form of the Rayleigh-Plesset equation, is modified and applied to the two-phase problem of bubble propagation in liquid melt. Numerical simulations of the sound propagation are performed in the microsecond time scale to predict the maximum and minimum acoustic pressure amplitude fields in the domain. This field is applied to the source term of the bubble transport equation to predict the generation and destruction of cavitation bubbles in a time scale relevant to the fluid flow. The use of baffles to limit flow speed in a launder conduit is studied numerically, to determine the optimum configuration that maximizes the residence time of the liquid in high cavitation activity regions. With this configuration, it is then possible to convert the batch processing of liquid metal into a continuous process. The numerical simulations will be validated against water and aluminium alloy experiments, carried out at Brunel University.

Lebon, G. S. B.; Pericleous, K.; Tzanakis, I.; Eskin, D.

2015-01-01

216

Frequency effects during acoustic cavitation in surfactant solutions.  

PubMed

The acoustic cavitation-induced events, multibubble sonoluminescence (MBSL) and initial growth of MBSL have been studied in surfactant solutions and correlated with bubble coalescence data at three different ultrasound frequencies. For an ionic surfactant, both the number of ultrasonic pulses required to reach a steady state MBSL intensity (N(crit)) and the magnitude of this intensity increases to a maximum as the surfactant concentration increases and then falls again. The total bubble volume generated for a fixed sonication time, which is indirectly related to bubble coalescence, similarly falls as surfactant concentration increases and then rises again. These effects are caused by a combination of electrostatic and coalescence factors at relatively low surfactant concentrations and the screening of the electrostatic factor as surfactant concentration increases further. The peak in coalescence inhibition occurs almost at the same surfactant concentrations as the acoustic frequency is increased; however, the concentrations at which peaks in MBSL and N(crit) occur vary at different frequencies. These results have been discussed in terms of coalescence, electrostatic interactions, rectified diffusion growth, and the adsorption kinetics of the surfactants. PMID:19894683

Wu, Shuhui; Leong, Thomas; Kentish, Sandra; Ashokkumar, Muthupandian

2009-12-31

217

Do not drop: mechanical shock in vials causes cavitation, protein aggregation, and particle formation.  

PubMed

Industry experience suggests that g-forces sustained when vials containing protein formulations are accidentally dropped can cause aggregation and particle formation. To study this phenomenon, a shock tower was used to apply controlled g-forces to glass vials containing formulations of two monoclonal antibodies and recombinant human growth hormone (rhGH). High-speed video analysis showed cavitation bubbles forming within 30 ?s and subsequently collapsing in the formulations. As a result of echoing shock waves, bubbles collapsed and reappeared periodically over a millisecond time course. Fluid mechanics simulations showed low-pressure regions within the fluid where cavitation would be favored. A hydroxyphenylfluorescein assay determined that cavitation produced hydroxyl radicals. When mechanical shock was applied to vials containing protein formulations, gelatinous particles appeared on the vial walls. Size-exclusion chromatographic analysis of the formulations after shock did not detect changes in monomer or soluble aggregate concentrations. However, subvisible particle counts determined by microflow image analysis increased. The mass of protein attached to the vial walls increased with increasing drop height. Both protein in bulk solution and protein that became attached to the vial walls after shock were analyzed by mass spectrometry. rhGH recovered from the vial walls in some samples revealed oxidation of Met and/or Trp residues. PMID:25418950

Randolph, Theodore W; Schiltz, Elise; Sederstrom, Donn; Steinmann, Daniel; Mozziconacci, Olivier; Schöneich, Christian; Freund, Erwin; Ricci, Margaret S; Carpenter, John F; Lengsfeld, Corrine S

2015-02-01

218

Cavitation and acoustic emission around laser-heated microparticles  

Microsoft Academic Search

We studied transient cavitation bubble formation and acoustic emission around individual laser-heated microparticles using subnanosecond time-resolved microscopy. Microcavitation bubbles were observed as early as 0.5 ns after the particles were heated by a 30 ps laser pulse. The bubbles expanded to a few micrometers in size and collapsed on the time scale of 0.1-1 musec. We discuss microcavitation as the

Charles P. Lin; Michael W. Kelly

1998-01-01

219

Cavitation and acoustic emission around laser-heated microparticles  

Microsoft Academic Search

We studied transient cavitation bubble formation and acoustic emission around individual laser-heated microparticles using subnanosecond time-resolved microscopy. Microcavitation bubbles were observed as early as 0.5 ns after the particles were heated by a 30 ps laser pulse. The bubbles expanded to a few micrometers in size and collapsed on the time scale of 0.1–1 ?sec. We discuss microcavitation as the

Charles P. Lin; Michael W. Kelly

1998-01-01

220

Degradation of carbamazepine in environmentally relevant concentrations in water by Hydrodynamic-Acoustic-Cavitation (HAC).  

PubMed

The antiepileptic drug carbamazepine is one of the most abundant pharmaceuticals in the German aquatic environment. The effect of low carbamazepine concentrations (1-50 ?g L(-1)) is discussed controversially, but ecotoxicological studies revealed reproduction toxicity, decreased enzymatic activity and bioaccumulation in different test organisms. Therefore, as a preventive step, an efficient and cost-effective technique for wastewater treatment plants is needed to stop the entry of pharmaceuticals into the aquatic environment. Cavitation, the formation, growth, and subsequent collapse of gas- or vapor-filled bubbles in fluids, was applied to solve this problem. The technique of Hydrodynamic-Acoustic-Cavitation was used showing high synergistic effect. Under optimized conditions carbamazepine (5 ?g L(-1)) was transformed by pseudo-first order kinetics to an extent of >96% within 15 min (27% by hydrodynamic cavitation, 33% by acoustic cavitation). A synergistic effect of 63% based on the sum of the single methods was calculated. Carbamazepine concentrations were monitored by a sensitive and selective immunoassay and after 60 min no known metabolites were detectable by LC-MS/MS. PMID:22365175

Braeutigam, Patrick; Franke, Marcus; Schneider, Rudolf J; Lehmann, Andreas; Stolle, Achim; Ondruschka, Bernd

2012-05-01

221

Effects of acoustic parameters on bubble cloud dynamics in ultrasound tissue erosion (histotripsy)  

PubMed Central

High intensity pulsed ultrasound can produce significant mechanical tissue fractionation with sharp boundaries (“histotripsy”). At a tissue-fluid interface, histotripsy produces clearly demarcated tissue erosion and the erosion efficiency depends on pulse parameters. Acoustic cavitation is believed to be the primary mechanism for the histotripsy process. To investigate the physical basis of the dependence of tissue erosion on pulse parameters, an optical method was used to monitor the effects of pulse parameters on the cavitating bubble cloud generated by histotripsy pulses at a tissue-water interface. The pulse parameters studied include pulse duration, peak rarefactional pressure, and pulse repetition frequency (PRF). Results show that the duration of growth and collapse (collapse cycle) of the bubble cloud increased with increasing pulse duration, peak rarefactional pressure, and PRF when the next pulse arrived after the collapse of the previous bubble cloud. When the PRF was too high such that the next pulse arrived before the collapse of the previous bubble cloud, only a portion of histotripsy pulses could effectively create and collapse the bubble cloud. The collapse cycle of the bubble cloud also increased with increasing gas concentration. These results may explain previous in vitro results on effects of pulse parameters on tissue erosion. PMID:17614482

Xu, Zhen; Hall, Timothy L.; Fowlkes, J. Brian; Cain, Charles A.

2009-01-01

222

High-speed motion picture camera experiments of cavitation in dynamically loaded journal bearings  

NASA Technical Reports Server (NTRS)

A high-speed camera was used to investigate cavitation in dynamically loaded journal bearings. The length-diameter ratio of the bearing, the speeds of the shaft and bearing, the surface material of the shaft, and the static and dynamic eccentricity of the bearing were varied. The results reveal not only the appearance of gas cavitation, but also the development of previously unsuspected vapor cavitation. It was found that gas cavitation increases with time until, after many hundreds of pressure cycles, there is a constant amount of gas kept in the cavitation zone of the bearing. The gas can have pressures of many times the atmospheric pressure. Vapor cavitation bubbles, on the other hand, collapse at pressures lower than the atmospheric pressure and cannot be transported through a high-pressure zone, nor does the amount of vapor cavitation in a bearing increase with time. Analysis is given to support the experimental findings for both gas and vapor cavitation.

Jacobson, B. O.; Hamrock, B. J.

1982-01-01

223

Numerical study of nucleation and growth of bubbles in viscous magmas  

SciTech Connect

The nucleation and growth processes of bubbles in viscous magmas with a constant decompression rate have been numerically investigated based on a formation which accounts for effects of viscosity, as well as diffusivity, interfacial tension, and decompression rate. The numerical solutions show two regimes in the nucleation and growth process, a diffusion-controlled regime and a viscosity-controlled regime, mainly depending on the decompression rate, initial saturation pressure and viscosity. The basic mechanism common to both regimes is that growth governs nucleation through depletion of degassing components. In basaltic eruptions the vesiculation is essentially controlled by diffusion, and the viscosity-controlled regime is limited to very high decompression rate and very small water content. When andesitic magma saturated by water at 10 MPa is decompressed through the propagation of rarefraction wave induced by a landslide, as took place in the Mount St. Helens 1980 eruption, the vesiculation is controlled by the viscosity up to 100 m depth. On the other hand, in a rhyolitic magma for the same situation, vesiculation is controlled by the viscosity over the whole depth of the magma column. In the viscosity-controlled regime, the vesicularity may be 90% or less as seen in silicic pumice, whereas in the diffusion-controlled regime the vesicularity equals or exceeds 98% such as in reticulite in Hawaiian basalt. An observed variation of the number density of bubbles by several orders of magnitude in plinian eruptions and the correlation with the SiO2 content can be attributed approximately to the dependence of diffusivity of viscosity on SiO2 content and temperature, assuming the apparent correlation between SiO2 content and temperature of magma.

Toramaru, A. [Kanazawa Univ., Kanazawa, Ishikawa (Japan)] [Kanazawa Univ., Kanazawa, Ishikawa (Japan)

1995-02-01

224

The role of acoustic cavitation in enhanced ultrasound- induced heating in a tissue-mimicking phantom  

Microsoft Academic Search

A complete understanding of high-intensity focused ultrasound-induced temperature changes in tissue requires insight into all potential mechanisms for heat deposition. Applications of therapeutic ultrasound often utilize acoustic pressures capable of producing cavitation activity. Recognizing the ability of bubbles to transfer acoustic energy into heat generation, a study of the role bubbles play in tissue hyperthermia becomes necessary. These bubbles are

Patrick Lee Edson

2001-01-01

225

Bubbly wake of surface vessels  

NASA Astrophysics Data System (ADS)

We study the length of the bubbly wake of surface vessels. This wake is important for the boat security since it can extend to several ship length and thus increases the detectability of the ship by torpedoes. The image analysis of the wake of real scale ships reveals the sensitivity of the length to propellers. We have thus conducted a systematic study in the laboratory of the interaction bubble/propeller, trying to address several questions:- what is the role of cavitation?- is the propeller able to attract the bubbles present along the ship at the sea surface?- if attracted, can these bubble be broken by the propeller?

Caillé, François; Magnaudet, Jacques; Clanet, Christophe

2006-11-01

226

Synchronized passive imaging of single cavitation events  

NASA Astrophysics Data System (ADS)

Passive cavitation detection techniques are usually of relatively low sensitivity to single cavitation events. Moreover, a single-element transducer is generally used, so that the spatial localization of these cavitation events is not possible, or is limited to the probing volume. To both detect and localize single cavitation events over an extended volume, the following experimental set-up has been used and validated: cavitation is induced with a focused single-element transducer (mean frequency 660 kHz, f? = 1) driven by a high power (up to 5 kW) electric burst of a few cycles, and the acoustic emission of the bubbles is recorded on a standard linear array (4-7 MHz), mounted on the side of the single element to probe its focal spot. Both the frequencies and the geometry used are appropriate to in vivo implementation. The recording of ultrasonic radio-frequency (RF) data was performed simultaneously on 64 channels of the array and was synchronized with the pulsed excitation. A single cavitation event results in a high frequency and coherent wave front on the RF data. Thanks to synchronization, these RF data are beam-formed to localize the event with a axial resolution of 0.3 mm. A small number of discrete events could also be separated with this method. Besides, B-mode images obtained with the linear array prior to passive detection allowed the positioning of the events within the tissue structure. This technique has been used first ex vivo on freshly harve pig and sheep thigh muscle: with a two cycle excitation, a 9 MPa cavitation threshold was found. Cavitation detection was also achieved in vivo with a five cycle burst excitation in sheep thigh muscle for a peak acoustic pressure of 11MPa. This technique could provide useful information in order to better understand, control and monitor the initiation phase of the histotripsy process.

Gateau, Jérôme; Aubry, Jean-François; Pernot, Mathieu; Chauvet, Daurian; Boch, Anne-Laure; Fink, Mathias; Tanter, Mickaël

2011-09-01

227

Effect of overpressure and pulse repetition frequency on cavitation in shock wave lithotripsy.  

PubMed

Cavitation appears to contribute to tissue injury in lithotripsy. Reports have shown that increasing pulse repetition frequency [(PRF) 0.5-100 Hz] increases tissue damage and increasing static pressure (1-3 bar) reduces cell damage without decreasing stone comminution. Our hypothesis is that overpressure or slow PRF causes unstabilized bubbles produced by one shock pulse to dissolve before they nucleate cavitation by subsequent shock pulses. The effects of PRF and overpressure on bubble dynamics and lifetimes were studied experimentally with passive cavitation detection, high-speed photography, and B-mode ultrasound and theoretically. Overpressure significantly reduced calculated (100-2 s) and measured (55-0.5 s) bubble lifetimes. At 1.5 bar static pressure, a dense bubble cluster was measured with clinically high PRF (2-3 Hz) and a sparse cluster with clinically low PRF (0.5-1 Hz), indicating bubble lifetimes of 0.5-1 s, consistent with calculations. In contrast to cavitation in water, high-speed photography showed that overpressure did not suppress cavitation of bubbles stabilized on a cracked surface. These results suggest that a judicious use of overpressure and PRF in lithotripsy could reduce cavitation damage of tissue while maintaining cavitation comminution of stones. PMID:12243163

Sapozhnikov, Oleg A; Khokhlova, Vera A; Bailey, Michael R; Williams, James C; McAteer, James A; Cleveland, Robin O; Crum, Lawrence A

2002-09-01

228

Calcium Is a Major Determinant of Xylem Vulnerability to Cavitation  

PubMed Central

Xylem vulnerability to cavitation is a key parameter in the drought tolerance of trees, but little is known about the control mechanisms involved. Cavitation is thought to occur when an air bubble penetrates through a pit wall, and would hence be influenced by the wall's porosity. We first tested the role of wall-bound calcium in vulnerability to cavitation in Fagus sylvatica. Stems perfused with solutions of oxalic acid, EGTA, or sodium phosphate (NaPO4) were found to be more vulnerable to cavitation. The NaPO4-induced increase in vulnerability to cavitation was linked to calcium removal from the wall. In contrast, xylem hydraulic conductance was unaffected by the chemical treatments, demonstrating that the mechanisms controlling vulnerability to cavitation and hydraulic resistance are uncoupled. The NaPO4 solution was then perfused into stems from 13 tree species possessing highly contrasted vulnerability to cavitation. Calcium was found to be a major determinant of between-species differences in vulnerability to cavitation. This was evidenced in angiosperms as well as conifer species, thus supporting the hypothesis of a common mechanism in drought-induced cavitation. PMID:20547703

Herbette, Stephane; Cochard, Herve

2010-01-01

229

Passive spatial mapping of inertial cavitation during HIFU exposure.  

PubMed

A novel method for mapping inertial cavitation activity during high-intensity focused ultrasound (HIFU) exposure is presented. Inertial cavitation has been previously shown to result in increased heat deposition and to be associated with broadband noise emissions that can be readily monitored using a passive receiver without interference from the main HIFU signal. In the present study, the signals received passively by each of 64 elements on a standard diagnostic array placed coaxially with the HIFU transducer are combined using time exposure acoustics to generate maps of inertially cavitating regions during HIFU exposure of an agar-based tissue-mimicking material. The technique is shown to be effective in localizing single-bubble activity, as well as contiguous and disjoint cavitating regions instigated by creating regions of lower cavitation threshold within the tissue phantom. The cavitation maps obtained experimentally are also found to be in good agreement with computational simulations and theoretical predictions. Unlike B-mode imaging, which requires interleaving with the HIFU pulse, passive array-based mapping of cavitation activity is possible during HIFU exposure. If cavitating regions can be directly correlated to increased tissue damage, this novel cavitation mapping technique could enable real-time HIFU treatment monitoring. PMID:19628450

Gyöngy, Miklós; Coussios, Constantin-C

2010-01-01

230

Sonochemistry and bubble dynamics.  

PubMed

The details of bubble behaviour in chemically active cavitation are still not sufficiently well understood. Here we report on experimental high-speed observations of acoustically driven single-bubble and few-bubble systems with the aim of clarification of the connection of their dynamics with chemical activity. Our experiment realises the sonochemical isomerization reaction of maleic acid to fumaric acid, mediated by bromine radicals, in a bubble trap set-up. The main result is that the reaction product can only be observed in a parameter regime where a small bubble cluster occurs, while a single trapped bubble stays passive. Evaluations of individual bubble dynamics for both cases are given in form of radius-time data and numerical fits to a bubble model. A conclusion is that a sufficiently strong collapse has to be accompanied by non-spherical bubble dynamics for the reaction to occur, and that the reason appears to be an efficient mixing of liquid and gas phase. This finding corroborates previous observations and literature reports on high liquid phase sonochemical activity under distinct parameter conditions than strong sonoluminescence emissions. PMID:25194210

Mettin, Robert; Cairós, Carlos; Troia, Adriano

2015-07-01

231

FOREWORD: International Symposium of Cavitation and Multiphase Flow (ISCM 2014)  

NASA Astrophysics Data System (ADS)

The International Symposium on Cavitation and Multiphase Flow (ISCM 2014) was held in Beijing, China during 18th-21st October, 2014, which was jointly organized by Tsinghua University, Beijing, China and Jiangsu University, Zhenjiang, China. The co-organizer was the State Key Laboratory of Hydroscience and Engineering, Beijing, China. Cavitation and multiphase flow is one of paramount topics of fluid mechanics with many engineering applications covering a broad range of topics, e.g. hydraulic machinery, biomedical engineering, chemical and process industry. In order to improve the performances of engineering facilities (e.g. hydraulic turbines) and to accelerate the development of techniques for medical treatment of serious diseases (e.g. tumors), it is essential to improve our understanding of cavitation and Multiphase Flow. For example, the present development towards the advanced hydrodynamic systems (e.g. space engine, propeller, hydraulic machinery system) often requires that the systems run under cavitating conditions and the risk of cavitation erosion needs to be controlled. The purpose of the ISCM 2014 was to discuss the state-of-the-art cavitation and multiphase flow research and their up-to-date applications, and to foster discussion and exchange of knowledge, and to provide an opportunity for the researchers, engineers and graduate students to report their latest outputs in these fields. Furthermore, the participants were also encouraged to present their work in progress with short lead time and discuss the encountered problems. ISCM 2014 covers all aspects of cavitation and Multiphase Flow, e.g. both fundamental and applied research with a focus on physical insights, numerical modelling and applications in engineering. Some specific topics are: Cavitating and Multiphase Flow in hydroturbines, pumps, propellers etc. Numerical simulation techniques Cavitation and multiphase flow erosion and anti-erosion techniques Measurement techniques for cavitation and multiphase flow detection Fluid-structure interaction induced by cavitation and multiphase flow Multi-scale modelling of cavitating flows and Multiphase Flow Cavitation nuclei: theory and experiments Supercavitation and its applications Synergetic effects of cavitation and silt-laden erosion Shock waves and microjets generated by cavitation Nonlinear oscillations of gas and vapour bubbles Fundamentals of physics of acoustic cavitation Sonochemistry and sonoluminescence Biomedical applications of cavitation effects Ultrasonic cavitation for molten metal treatment Cavitation for enhanced heat transfer The ISCM 2014 brought together 95 scientists, researchers and graduate students from 11 countries, affiliated with universities, technology centers and industrial firms to debate topics related to advanced technologies for cavitation and Multiphase Flow, which would enhance the sustainable development of cavitation and Multiphase Flow in interdisciplinary sciences and technology. The technical committee selected 54 technical papers on the following topics: (i) Hydrodynamic Cavitation, (ii) Super Cavitation, (iii) Pump Cavitation, (iv) Acoustic Cavitation, (v) Interdisciplinary Research of Cavitation and Multi-Phase Flows, and 13 invited plenary and invited forum lectures, which were presented at the symposium, to be included in the proceedings. All the papers of ISCM 2014, which are published in this Volume of IOP Conference Series: Materials Science and Engineering, had been peer reviewed through processes administered by the editors of the ISCM 2014, those are Yulin WU, Shouqi YUAN, Zhengwei WANG, Shuhong LIU, Xingqi LUO, Fujun WANG and Guoyu WANG. The papers published in this Volume include 54 technical papers and 3 full length texts of the invited lectures. We sincerely hope that the International Symposium on Cavitation and Multiphase Flow is a significant step forward in the world wide efforts to address the present challenges in the modern science and technology. Professor Yulin WU Chairman of the Local Organizing Committee International Symposium on Cavitat

Wu, Yulin

2015-01-01

232

Numerical simulation of shock propagation in a polydisperse bubbly liquid Keita Ando  

E-print Network

bubbly flow equations coupled to a single-bubble-dynamic equation that incorporates the effects of heat popula- tions, the interaction with structures often produces tension waves that can cause cavitation

Colonius, Tim

233

Probability of cavitation for single ultrasound pulses applied to tissues and tissue-mimicking materials  

PubMed Central

In this article, the negative pressure values at which inertial cavitation consistently occurs in response to a single, 2-cycle, focused ultrasound pulse were measured in several media relevant to cavitation-based ultrasound therapy. The pulse was focused into a chamber containing one of the media, which included liquids, tissue-mimicking materials, and ex-vivo canine tissue. Focal waveforms were measured by two separate techniques using a fiber-optic hydrophone. Inertial cavitation was identified by high-speed photography in optically transparent media and an acoustic passive cavitation detector. The probability of cavitation (Pcav) for a single pulse as a function of peak negative pressure (p?) followed a sigmoid curve, with the probability approaching 1 when the pressure amplitude was sufficient. The statistical threshold (defined as Pcav = 0.5) was between p? = 26.0–30.0 MPa in all samples with a high water content, but varied between p? = 13.7 to > 36 MPa for other media. A model for radial cavitation bubble dynamics was employed to evaluate the behavior of cavitation nuclei at these pressure levels. A single bubble nucleus with an inertial cavitation threshold of p? = 28.2 MPa was estimated to have a 2.5 nm radius in distilled water. These data may be valuable for cavitation-based ultrasound therapy to predict the likelihood of cavitation at different pressure levels and dimensions of cavitation-induced lesions in tissue. PMID:23380152

Maxwell, Adam D.; Cain, Charles A.; Hall, Timothy L.; Fowlkes, J. Brian; Xu, Zhen

2012-01-01

234

Bursting Bubbles and Bilayers  

PubMed Central

This paper discusses various interactions between ultrasound, phospholipid monolayer-coated gas bubbles, phospholipid bilayer vesicles, and cells. The paper begins with a review of microbubble physics models, developed to describe microbubble dynamic behavior in the presence of ultrasound, and follows this with a discussion of how such models can be used to predict inertial cavitation profiles. Predicted sensitivities of inertial cavitation to changes in the values of membrane properties, including surface tension, surface dilatational viscosity, and area expansion modulus, indicate that area expansion modulus exerts the greatest relative influence on inertial cavitation. Accordingly, the theoretical dependence of area expansion modulus on chemical composition - in particular, poly (ethylene glyclol) (PEG) - is reviewed, and predictions of inertial cavitation for different PEG molecular weights and compositions are compared with experiment. Noteworthy is the predicted dependence, or lack thereof, of inertial cavitation on PEG molecular weight and mole fraction. Specifically, inertial cavitation is predicted to be independent of PEG molecular weight and mole fraction in the so-called mushroom regime. In the “brush” regime, however, inertial cavitation is predicted to increase with PEG mole fraction but to decrease (to the inverse 3/5 power) with PEG molecular weight. While excellent agreement between experiment and theory can be achieved, it is shown that the calculated inertial cavitation profiles depend strongly on the criterion used to predict inertial cavitation. This is followed by a discussion of nesting microbubbles inside the aqueous core of microcapsules and how this significantly increases the inertial cavitation threshold. Nesting thus offers a means for avoiding unwanted inertial cavitation and cell death during imaging and other applications such as sonoporation. A review of putative sonoporation mechanisms is then presented, including those involving microbubbles to deliver cargo into a cell, and those - not necessarily involving microubbles - to release cargo from a phospholipid vesicle (or reverse sonoporation). It is shown that the rate of (reverse) sonoporation from liposomes correlates with phospholipid bilayer phase behavior, liquid-disordered phases giving appreciably faster release than liquid-ordered phases. Moreover, liquid-disordered phases exhibit evidence of two release mechanisms, which are described well mathematically by enhanced diffusion (possibly via dilation of membrane phospholipids) and irreversible membrane disruption, whereas liquid-ordered phases are described by a single mechanism, which has yet to be positively identified. The ability to tune release kinetics with bilayer composition makes reverse sonoporation of phospholipid vesicles a promising methodology for controlled drug delivery. Moreover, nesting of microbubbles inside vesicles constitutes a truly “theranostic” vehicle, one that can be used for both long-lasting, safe imaging and for controlled drug delivery. PMID:23382772

Wrenn, Steven P.; Dicker, Stephen M.; Small, Eleanor F.; Dan, Nily R.; Mleczko, Micha?; Schmitz, Georg; Lewin, Peter A.

2012-01-01

235

Influence of cathodic and anodic currents on cavitation erosion  

SciTech Connect

A vibratory-type cavitation test rig was constructed to study the effect of polarizing currents applied to a cavitating body. The generation of gas by electrolysis reduced mechanical damage suffered by a cavitating body because of bubble collapse cushioning. However, the net effect on overall damage depended on several factors, including the intensity of mechanical attack, corrosion rate, and surface geometrical effects. A cathodic current was shown to always decrease the total volume loss rate, but the volume loss rate sometimes was increased and sometimes was reduced in the anodic current range.

Auret, J.G.; Damm, O.F.R.A.; Wright, G.J. (CSIR, Pretoria (South Africa). Div. of Materials Science and Technology); Robinson, F.P.A. (Univ. of the Witwatersrand (South Africa). Dept. of Metallurgy and Materials Engineering)

1993-11-01

236

Gauging the likelihood of stable cavitation from ultrasound contrast agents  

NASA Astrophysics Data System (ADS)

The mechanical index (MI) was formulated to gauge the likelihood of adverse bioeffects from inertial cavitation. However, the MI formulation did not consider bubble activity from stable cavitation. This type of bubble activity can be readily nucleated from ultrasound contrast agents (UCAs) and has the potential to promote beneficial bioeffects. Here, the presence of stable cavitation is determined numerically by tracking the onset of subharmonic oscillations within a population of bubbles for frequencies up to 7 MHz and peak rarefactional pressures up to 3 MPa. In addition, the acoustic pressure rupture threshold of an UCA population was determined using the Marmottant model. The threshold for subharmonic emissions of optimally sized bubbles was found to be lower than the inertial cavitation threshold for all frequencies studied. The rupture thresholds of optimally sized UCAs were found to be lower than the threshold for subharmonic emissions for either single cycle or steady state acoustic excitations. Because the thresholds of both subharmonic emissions and UCA rupture are linearly dependent on frequency, an index of the form ICAV = Pr/f (where Pr is the peak rarefactional pressure in MPa and f is the frequency in MHz) was derived to gauge the likelihood of subharmonic emissions due to stable cavitation activity nucleated from UCAs.

Bader, Kenneth B.; Holland, Christy K.

2013-01-01

237

Numerical simulation on enhancement of natural convection heat transfer by acoustic cavitation in a square enclosure  

Microsoft Academic Search

Natural convection heat transfer of liquid in a square enclosure with and without acoustic cavitation is numerically investigated. In order to model the effect of sound field, a prescribed periodic change pressure is imposed on liquid in the region with ultrasonic beam. The cavitation model which takes into consideration such effects as phase change, bubble dynamics, and noncondensable gases is

Jun Cai; Xiulan Huai; Runsheng Yan; Yanjun Cheng

2009-01-01

238

Experimental Studies on Sonoluminescence and Ultrasonic Cavitation  

Microsoft Academic Search

Using a miniature spherical hydrophone made of barium titanate, the individual cavity collapse was detected as a sharp impulse (0.5 mus width) slightly after the pressure maximum of sound cycle. When may cavities collapsed simultaneously, sinusoidal sound-pressure waveform was turned into saw-tooth form. By comparing the flash of sonoluminescence with the instantaneous change of scattered light from cavitating bubbles in

Katsuo Negishi

1961-01-01

239

Air emission into a water shear layer through porous media. Part 2: Cavitation induced pressure attenuation  

SciTech Connect

Cavitation near the casing of a hydroturbine can lead to damage through both cavitation erosion and mechanical vibration of the casing and the associated piping. Cavitation erosion results from the collapse of cavitation bubbles on or near a surface such as the casing wall. Mechanical vibrations transmitted to the casing directly through the collapse of bubbles on the casing wall indirectly through a coupling of the acoustic pressure pulse due to a nearby collapse on the turbine blade. Air emission along the casing can reduce the intensity of the tip vortex and the gap cavitation through ventilation of the cavity. Reduction in the machinery vibration is obtained by reduction of the intensity of cavitation bubble collapse and attenuation and scattering of the radiated acoustic pressure. This requires a bubble layer which may be introduced in the vicinity of the turbine blade tips. This layer remains for some distance downstream of the blades and is effective for attenuation of tip vortex induced noise and blade surface cavitation noise. For the purpose of characterizing this bubble layer within a water pipe, the authors spanned a pipe with a two dimensional hydrofoil and emitted air through porous media (20 and 100 micron porosity sintered stainless steel) into the shear flow over the hydrofoil. This paper is limited to an investigation of the attenuation of acoustic pressure propagating to the casing rather than the reduction in acoustic source level due to collapse cushioning effects.

Myer, E.C.; Marboe, R.C. [Pennsylvania State Univ., State College, PA (United States). Applied Research Laboratory

1994-12-31

240

Feasibility of noninvasive cavitation-guided blood-brain barrier opening using focused ultrasound and microbubbles in nonhuman primates  

NASA Astrophysics Data System (ADS)

In vivo transcranial and noninvasive cavitation detection with blood-brain barrier (BBB) opening in nonhuman primates is hereby reported. The BBB in monkeys was opened transcranically using focused ultrasound (FUS) in conjunction with microbubbles. A passive cavitation detector, confocal with the FUS transducer, was used to identify and monitor the bubble behavior. During sonication, the cavitation spectrum, which was found to be region-, pressure-, and bubble-dependent, provided real-time feedback regarding the opening occurrence and its properties. These findings demonstrate feasibility of transcranial, cavitation-guided BBB opening using FUS and microbubbles in noninvasive human applications.

Tung, Yao-Sheng; Marquet, Fabrice; Teichert, Tobias; Ferrera, Vincent; Konofagou, Elisa E.

2011-04-01

241

Analytical and experimental study of the acoustics and the flow field characteristics of cavitating self-resonating water jets  

SciTech Connect

Waterjet nozzles (STRATOJETS) have been developed which achieve passive structuring of cavitating submerged jets into discrete ring vortices, and which possess cavitation incipient numbers six times higher than obtained with conventional cavitating jet nozzles. In this study we developed analytical and numerical techniques and conducted experimental work to gain an understanding of the basic phenomena involved. The achievements are: (1) a thorough analysis of the acoustic dynamics of the feed pipe to the nozzle; (2) a theory for bubble ring growth and collapse; (3) a numerical model for jet simulation; (4) an experimental observation and analysis of candidate second-generation low-sigma STRATOJETS. From this study we can conclude that intensification of bubble ring collapse and design of highly resonant feed tubes can lead to improved drilling rates. The models here described are excellent tools to analyze the various parameters needed for STRATOJET optimizations. Further analysis is needed to introduce such important factors as viscosity, nozzle-jet interaction, and ring-target interaction, and to develop the jet simulation model to describe the important fine details of the flow field at the nozzle exit.

Chahine, G.L.; Genoux, P.F.; Johnson, V.E. Jr.; Frederick, G.S.

1984-09-01

242

Vapor-Gas Bubble Evolution and Growth in Extremely Viscous Fluids Under Vacuum  

NASA Technical Reports Server (NTRS)

Formation of vapor and gas bubbles and voids is normal and expected in flow processes involving extremely viscous fluids in normal gravity. Practical examples of extremely viscous fluids are epoxy-like filler materials before the epoxy fluids cure to their permanent form to create a mechanical bond between two substrates. When these fluids flow with a free liquid interface exposed to vacuum, rapid bubble expansion process may ensue. Bubble expansion might compromise the mechanical bond strength. The potential sources for the origin of the gases might be incomplete out-gassing process prior to filler application; regasification due to seal leakage in the filler applicator; and/or volatiles evolved from cure reaction products formed in the hardening process. We embarked on a study that involved conducting laboratory experiments with imaging diagnostics in order to deduce the seriousness of bubbling caused by entrained air and volatile fluids under space vacuum and low gravity environment. We used clear fluids with the similar physical properties as the epoxy-like filler material to mimic the dynamics of bubbles. Another aspect of the present study was to determine the likelihood of bubbling resulting from dissolved gases nucleating from solution. These experimental studies of the bubble expansion are compared with predictions using a modified Rayleigh- Plesset equation, which models the bubble expansion.

Kizito, John; Balasubramaniam, R.; Nahra, Henry; Agui, Juan; Truong, Duc

2008-01-01

243

Modeling of Vapor Bubble Growth Under Nucleate Boiling Conditions in Reduced Gravity  

NASA Technical Reports Server (NTRS)

A dynamic model is developed to describe the evolution of a vapor bubble growing at a nucleation site on a superheated surface under arbitrary gravity. The bubble is separated from the surface by a thin microlayer and grows due to the evaporation from the microlayer interface. The average thickness of the microlayer increases as the bubble expands along the surface if the evaporation rate is lower than some critical value. The corresponding threshold value of the surface temperature has to be associated with the burn-out crisis. Two main reasons make for bubble separation, which are the buoyancy force and a force caused by the vapor momentum that comes to the bubble with vapor molecules. The latter force is somewhat diminished if condensation takes place at the upper bubble surface in subcooled liquids. The action of the said forces is opposed by inertia of the additional mass of liquid as the bubble center rises above the surface and by inertia of liquid being expelled by the growing bubble in radial directions. An extra pressure force arises due to the liquid inflow into the microlayer with a finite velocity. The last force helps in holding the bubble close to the surface during an initial stage of bubble evolution. Two limiting regimes with distinctly different properties can be singled out, depending on which of the forces that favor bubble detachment dominates. Under conditions of moderately reduced gravity, the situation is much the same as in normal gravity, although the bubble detachment volume increases as gravity diminishes. In microgravity, the buoyancy force is negligible. Then the bubble is capable of staying near the surface for a long time, with intensive evaporation from the microlayer. It suggests a drastic change in the physical mechanism of heat removal as gravity falls below a certain sufficiently low level. Inferences of the model and conclusions pertaining to effects caused on heat transfer processes by changes in bubble hydrodynamics induced by gravity are discussed in connection with experimental evidence, both available in current and in as yet unpublished literature.

Buyevich, Yu A.; Webbon, Bruce W.

1995-01-01

244

The effects of orientation angle, subcooling, heat flux, mass flux, and pressure on bubble growth and detachment in subcooled flow boiling  

E-print Network

The effects of orientation angle, subcooling, heat flux, mass flux, and pressure on bubble growth and detachment in subcooled flow boiling were studied using a high-speed video camera in conjunction with a two-phase flow ...

Sugrue, Rosemary M

2012-01-01

245

Application of computational fluid dynamics on cavitation in journal bearings  

NASA Astrophysics Data System (ADS)

Journal bearings are applied in internal combustion engines due to their favourable wearing quality and operating characteristics. Under certain operating conditions damage of the journal bearing can occur caused by cavitation. The cavitation reduces the load capacity and leads to material erosion. Experimental investigations of cavitating flows in dimension of real journal bearing are difficult to realize or almost impossible caused by the small gap and transient flow conditions. Therefore numerical simulation is a very helpful engineering tool to research the cavitation behaviour. The CFD-Code OpenFOAM is used to analyse the flow field inside the bearing. The numerical cavitation model based on a bubble dynamic approach and requires necessary initial parameter for the calculation, such as nuclei bubble diameter, the number of nuclei and two empirical constants. The first part of this paper shows the influence of these parameters on the solution. For the adjustment of the parameters an experiment of Jakobsson et.al. [1] was used to validate the numerical flow model. The parameters have been varied according to the method Design of Experiments (DoE). With a defined model equation the parameters determined, to identify the parameter for CFD-calculations in comparison to the experimental values. The second part of the paper presents investigations on different geometrical changes in the bearing geometry. The effect of these geometrical changes on cavitation was compared with experimental results from Wollfarth [2] and Garner et.al. [3].

Riedel, Marco; Schmidt, Marcus; Reinke, Peter; Nobis, Matthias; Redlich, Marcel

2014-03-01

246

Multi-resolution analysis of passive cavitation detector signals  

NASA Astrophysics Data System (ADS)

Passive cavitation detectors are widely used for measuring acoustic emissions from cavitating bubbles. Acoustic emissions related to the dynamics of oscillating bubbles contain complex time and frequency domain information. Signal processing techniques traditionally used to analyse transient and stationary signals may be of limited value when analysing such acoustic emissions. This paper describes a multi-resolution approach developed for processing acoustic emissions data. The technique consists of the combination of a discrete wavelet transform and of the statistical and spectral analysis to extract cavitation features. These features include broadband emissions and harmonic, sub-harmonic and ultra-harmonic information. The implementation of the technique on experimental datasets demonstrates that this approach provides detailed information about key features of the acoustic signal, especially in complex situations where different types of cavitation occur simultaneously. Furthermore, statistical metrics used in this technique can provide a quantitative means for classifying signatures of cavitation, particularly the broadband segment of the spectrum created by inertial cavitation, which constitutes novel work.

Haqshenas, S. R.; Saffari, N.

2015-01-01

247

Effect of dilute polymer additives on the acoustic cavitation threshold of water  

SciTech Connect

Measurements are presented of the variation of the acoustic cavitation threshold of water with concentration of the polymer additives polyethylene oxide and guar gum. It was found that small amounts of these additives could significantly increase the cavitation threshold. A theoretical model, based upon nucleation of a gas bubble from a Harvey-type crevice in a mote or solid particle, is developed that gives good agreement with the measurements. The applicability of this approach to an explanation of cavitation index reduction in flow-generated or confined jet cavitation, when polymer additives are introduced, is discussed.

Crum, L.A.; Brosey, J.E.

1984-02-01

248

Cavitational hydrothermal oxidation: A new remediation process. 1998 annual progress report  

SciTech Connect

'The primary goal is to develop a quantitative understanding of cavitation phenomena in aqueous media and the development of applications of cavitation to remediation processes. Efforts have focused on three separate areas: sonoluminescence as a probe of conditions created during cavitational collapse in aqueous media, the use of cavitation for remediation of contaminated water, and an addition of the use of ultrasound in the synthesis of novel heterogeneous catalysts for hydrodehalogenation of halocarbons under mild conditions. This report summarizes work after one year of a three year project. In order to gain further understanding of the conditions present during cavitation, the author has continued his studies of sonoluminescence. He has made recent breakthroughs in the use of emission spectroscopy for temperature and pressure measurement of cavitation events, which he expects to publish shortly. He has been able to measure for the first time the temperature of cavitation in water during multi-bubble cavitation in the presence of aromatic hydrocarbons. The emission from excited states of C{sub 2} in water gives temperatures that are consistent with adiabatic compressional heating, with maximum temperatures of 4,300 K. Prior measurements of cavitation temperatures in low vapor pressure nonaqueous media gave somewhat higher temperatures of 5,000 K. This work lays permanently to rest exotic mechanisms for cavitational chemistry, at least for cavitation fields.'

Suslick, K.S.

1998-06-01

249

Cavitational hydrothermal oxidation: A new remediation process. Annual progress report, September 1996--August 1997  

SciTech Connect

'During the past year, the authors have continued to make substantial scientific progress on the understanding of cavitation phenomena in aqueous media and applications of cavitation to remediation processes. The efforts have focused on three separate areas: sonoluminescence as a probe of conditions created during cavitational collapse in aqueous media, the use of cavitation for remediation of contaminated water, and an addition of the use of ultrasound in the synthesis of novel heterogeneous catalysts for hydrodehalogenation of halocarbons under mild conditions. In order to gain further understanding of the conditions present during cavitation, the author has continued his studies of sonoluminescence. He has made recent breakthroughs in the use of emission spectroscopy for temperature and pressure measurement of cavitation events, which he expects to publish shortly. He has been able to measure for the first time the temperature of cavitation in water during multi-bubble cavitation in the presence of aromatic hydrocarbons. The emission from excited states of C{sub 2} in water gives temperatures that are consistent with adiabatic compressional heating, with maximum temperatures of 4,300 K. Prior measurements of cavitation temperatures in low vapor pressure nonaqueous media gave somewhat higher temperatures of 5,000 K. This work lays permanently to rest exotic mechanisms for cavitational chemistry, at least for cavitation fields.'

Suslick, K.S.

1997-11-21

250

Control of inertial acoustic cavitation in pulsed sonication using a real-time feedback loop system.  

PubMed

Owing to the complex behavior of ultrasound-induced bubble clouds (nucleation, linear and nonlinear oscillations, collapse), acoustic cavitation remains a hardly controllable phenomenon, leading to poorly reproducible ultrasound-based therapies. A better control of the various aspects of cavitation phenomena for in vivo applications is a key requirement to improve emerging ultrasound therapies. Previous publications have reported on systems performing regulation of acoustic cavitation in continuous sonication when applied in vitro, but the main challenge today is to achieve real-time control of cavitation activity in pulsed sonication when used in vivo. The present work aims at developing a system to control acoustic cavitation in a pulsed wave condition using a real-time feedback loop. The experimental setup consists of a water bath in which is submerged a focused transducer (pulsed waves, frequency 550?kHz) used for sonication and a hydrophone used to listen to inertial cavitation. The designed regulation process allows the cavitation activity to be controlled through a 300??s feedback loop. Without regulation, cavitation exhibits numerous bursts of intense activity and large variations of inertial cavitation level over time. In a regulated regime, the control of inertial cavitation activity within a pulse leads to consistent cavitation levels over time with an enhancement of the reproducibility. PMID:23927204

Desjouy, Cyril; Poizat, Adrien; Gilles, Bruno; Inserra, Claude; Bera, Jean-Christophe

2013-08-01

251

Separating nonlinear propagation and cavitation effects in HIFU  

Microsoft Academic Search

High intensity focused ultrasound (HIFU) can destroy tumors or stop internal bleeding. The primary physical mechanism in HIFU is the conversion of acoustic energy to heat, which as HIFU amplitude increases is enhanced by nonlinear acoustic propagation and nonlinear scattering from bubbles. The goal of this work is to study and separate the effects of nonlinear propagation and cavitation during

Justin A. Reed; Michael R. Bailey; Marie Nakazawa; Lawrence A. Crum; Vera A. Khokhlova

2003-01-01

252

Oscillating bubbles in ultrasonic acoustic field  

NASA Astrophysics Data System (ADS)

Behavior of oscillating bubbles is of fundamental study for acoustic cavitations, and is of great importance for medical field. For example, angiographic and diagnosis of cancer of liver. We focused on behavior of multiple air bubbles exposed to ultrasonic wave. The bubbles were injected into the static water from a vertical capillary tube, and then the ultrasonic wave of 20 kHz was applied from above toward the bubbles. Vibrating motion of the bubbles was captured by a high-speed camera at frame rates up to 45000 fps. Excitations of surface wave and shape oscillation with distinct mode number were realized. Correlation between the accelerated bubble behavior and the bubble-bubble distance.

Matsumoto, K.; Ueno, I.

2009-02-01

253

Modelling of flow with cavitation in centrifugal pump  

NASA Astrophysics Data System (ADS)

The paper concerns flow modelling in centrifugal pump with special consideration of cavitation phenomena. Cavitation occurs when local pressure drops below the saturation pressure according to the temperature of the flow. Vapour bubbles are created and then they flow through the areas with higher pressure. The bubbles collapse rapidly generating pressure wave, noise and vibration. Working under cavitation condition is very dangerous to a pump and can significantly shorten its lifetime. The investigated centrifugal pump consists of three two-flow rotors and stators working on a single shaft. The modelling process started with grid independence study. When the grid was chosen, the pump performance curve was obtained using the single phase fluid model. Next, using the results from pump performance curve calculations, the cavitation characteristic was obtained. The constant capacity was held when the pressure at the inlet was reduced. The two - phase model was used with Zwart cavitation model. The results indicate that the pump work in safe range of parameters. The analysis also provides wide range of information about the areas of vapour appearance. The most endangered regions are leading edges of rotor. When pressure at the inlet drops to about one third of pressure that calculations started from the cavitation cloud appears in whole rotor. The intense of vapour bubbles creation is greater near the shroud of the pump, rather than near the hub. As cavitation is strongly unsteady phenomena, the transient calculations were performed to check if the results are close to those obtained using the steady state type. The differences are not significant.

Homa, D.; Wróblewski, W.

2014-08-01

254

Sound field measurement in a double layer cavitation cluster by rugged miniature needle hydrophones.  

PubMed

During multi-bubble cavitation the bubbles tend to organize themselves into clusters and thus the understanding of properties and dynamics of clustering is essential for controlling technical applications of cavitation. Sound field measurements are a potential technique to provide valuable experimental information about the status of cavitation clouds. Using purpose-made, rugged, wide band, and small-sized needle hydrophones, sound field measurements in bubble clusters were performed and time-dependent sound pressure waveforms were acquired and analyzed in the frequency domain up to 20MHz. The cavitation clusters were synchronously observed by an electron multiplying charge-coupled device (EMCCD) camera and the relation between the sound field measurements and cluster behaviour was investigated. Depending on the driving power, three ranges could be identified and characteristic properties were assigned. At low power settings no transient and no or very low stable cavitation activity can be observed. The medium range is characterized by strong pressure peaks and various bubble cluster forms. At high power a stable double layer was observed which grew with further increasing power and became quite dynamic. The sound field was irregular and the fundamental at driving frequency decreased. Between the bubble clouds completely different sound field properties were found in comparison to those in the cloud where the cavitation activity is high. In between the sound field pressure amplitude was quite small and no collapses were detected. PMID:24953962

Koch, Christian

2014-06-01

255

The Numerical Simulation of Unsteady Cavitation Evolution Induced by Pressure Wave  

NASA Astrophysics Data System (ADS)

The present study is focused on the numerical simulation of pressure wave propagation through the cavitating compressible liquid flow, its interaction with cavitation bubble and the resulting unsteady cavitation evolution. The compressibility effects of liquid water are taken into account and the cavitating flow is governed by one-fluid cavitation model which is based on the compressible Euler equations with the assumption that the cavitation is the homogeneous mixture of liquid and vapour which are locally under both kinetic and thermodynamic equilibrium. Several aspects of the method employed to solve the governing equations are outlined. The unsteady features of cavitating flow due to the external perturbation, such as the cavitation deformation and collapse and consequent pressure increase are resolved numerically and discussed in detail. It is observed that the cavitation bubble collapse is accompanied by the huge pressure surge of order of 100 bar, which is thought to be responsible for the material erosion, noise, vibration and loss of efficiency of operating underwater devices.

Khoo, B. C.; Zheng, J. G.

2014-11-01

256

A real-time controller for sustaining thermally relevant acoustic cavitation during ultrasound therapy.  

PubMed

A novel method for sustaining inertial cavitation during high-intensity focused ultrasound (HIFU) exposure in an agar-based tissue-mimicking material is presented. Inertial cavitation occurs during HIFU therapy when the local rarefaction pressure exceeds the inertial cavitation threshold of the insonated medium, and is characterized by broadband acoustic emissions which can be easily detected non-invasively using a passive cavitation detector (PCD). Under the right conditions, inertial cavitation has been previously shown to greatly enhance the rate of heat deposition by redistributing part of the energy carried at the fundamental HIFU frequency to higher frequencies, which are more readily absorbed by visco-elastic media such as soft tissue. However, in the absence of any cavitation control, inertial cavitation activity at the focus decays rapidly over a few seconds of exposure because of the combined effects of cavitation nuclei depletion, bubble dissolution, bubble-bubble interactions, increased vapor pressure caused by heating, and focal shielding caused by pre-focal bubble activity. The present work describes the design, validation, and testing of a real-time adaptive controller, with integrated passive localization capabilities, for sustaining inertial cavitation within the focal region of a HIFU transducer by modulation of the HIFU amplitude. Use of the controller in agar gel, originally at room temperature, has enabled therapeutically relevant temperatures in excess of 55°C to be maintained continuously in the focal region for more than 20 s using significantly less acoustic energy than is required to achieve the same temperature rise in the absence of cavitation control. PMID:21156364

Hockham, Natalie; Coussios, Constantin C; Arora, Manish

2010-12-01

257

In-pile Xe diffusion coefficient in UO 2 determined from the modeling of intragranular bubble growth and destruction under irradiation  

NASA Astrophysics Data System (ADS)

Intragranular bubbles grow in the nuclear fuel by diffusion and precipitation of fission gases, mainly xenon; and are ultimately destroyed, under irradiation, by fission fragments. This article will attempt to determine the in-pile bubble distributions taking into account the evolution of the concentration profile around a bubble during its growth and the destruction process by fission fragments. From these distributions a relation between the bubble mean radius and the diffusion coefficient of xenon can be established, allowing the determination, from experimental measurements of intragranular bubble sizes, of the in-pile Xe diffusion coefficient in UO 2. The estimated activation energy (0.9 eV) is about one order of magnitude lower than the widely used value of 3.9 eV determined from out-of-pile experiments. This effect can be attributed to the presence of point defects created by the irradiation.

Govers, K.; Lemehov, S.; Verwerft, M.

2008-03-01

258

Formulation of multibubble cavitation  

NASA Astrophysics Data System (ADS)

With the appropriate approximation, we have formulated the equation of multibubble motion for two cases: a filament of bubbles and a small spherical cluster of bubbles. Our results have yielded a collective mode of bubble motion in which individual bubbles of similar size expand and compress almost simultaneously. Each vibrating bubble radiates sound waves and originates the radiation sound pressure, which affects the motion of the other bubbles. The numerical simulation has revealed that this interaction suppresses single-bubble motion and tends to homogeneously spread the energy of the acoustic standing wave to each individual bubble.

An, Yu

2011-06-01

259

The influence of air content in water on ultrasonic cavitation field.  

PubMed

Cavitation is a complex physical phenomenon affected by many factors, one of which is the gas dissolved in the medium. Researchers have given some efforts to the influence of gas content on sonoluminescence or some specific chemical reactions in and around the bubble, but limited work has been reported about the influence on the ultrasonic cavitation field distribution. In this work, the intensity distribution of the ultrasound field in a cleaning tank has been measured with the hydrophone. After analysed and visualised by MATLAB software, it was found that the cavitation intensity distribution in degassed water was much better than that in tap water. And further study proved that degassing process can improve the cavitation effect dramatically both in intensity and scope. Finally, the cavitation fields in mediums with different gas content were measured and the specific influence of air content on cavitation field was discussed. PMID:24230967

Liu, Liyan; Yang, Yang; Liu, Penghong; Tan, Wei

2014-03-01

260

Evaluation and interpretation of bubble size distributions in pulsed megasonic fields  

NASA Astrophysics Data System (ADS)

The occurrence of acoustic cavitation is incorporating a multitude of interdependent effects that strongly depend on the bubble size. Therefore, bubble size control would be beneficial for biological and industrial processes that rely on acoustic cavitation. A pulsed acoustic field can result in bubble size control and the repeated dissolution and reactivation ("recycling") of potentially active bubbles. As a consequence, a pulsed field can strongly enhance cavitation activity. In this paper, we present a modified methodology for the evaluation of the active bubble size distribution by means of a combination of cavitation noise measurements and ultrasonic pulsing. The key component of this modified methodology is the definition of an upper size limit, below which bubbles—in between subsequent pulses—have to dissolve, in order to be sustainably recycled. This upper limit makes it possible to explain and link the enhancement of cavitation activity to a bubble size distribution. The experimentally determined bubble size distributions for different power densities are interpreted in the frame of numerical calculations of the oscillatory responses of the bubbles to the intermittent driving sound field. The distributions are found to be shaped by the size dependent interplay between bubble pulsations, rectified diffusion, coalescence, and the development of parametrically amplified shape instabilities. Also, a phenomenological reactivation-deactivation model is proposed to explain and quantify the observed enhancement of cavitation activity under pulsed, with respect to continuous sonication. In this model, the pulse-duration determines the magnitude of the reactivation of partially dissolved bubbles and the deactivation of activated bubbles by coalescence. It is shown that the subsequent recycling of previously active bubbles leads to an accumulation of cavitation activity, which saturates after a certain number of pulses. The model is fitted to the experimental data for the cavitation activity measured by means of ultraharmonic cavitation noise as a function of the pulse duration. Measurements of the development of the cavitation noise and sonochemiluminescence over a sequence of pulses for different pulse durations and separations confirm the general validity of the proposed model. Size distributions of the larger, inactive bubbles that were extracted from High-speed images of the cavitation field, relate the deactivation of activated bubbles by coalescence to the increase in volume concentrations of larger bubbles as observed by others.

Hauptmann, M.; Struyf, H.; De Gendt, S.; Glorieux, C.; Brems, S.

2013-05-01

261

Effect of Noble Gases on Sonoluminescence Temperatures during Multibubble Cavitation  

SciTech Connect

Sonoluminescence spectra were collected from Cr(CO){sub 6} solutions in octanol and dodecane saturated with various noble gases. The emission from excited-state metal atoms serves as an internal thermometer of cavitation. The intensity and temperature of sonoluminescence increases from He to Xe. The intensity of the underlying continuum, however, grows faster with increasing temperature than the line emission. Dissociation of solvent molecules within the bubble consumes a significant fraction of the energy generated by the collapsing bubble, which can limit the final temperature inside the bubble. (c) 2000 The American Physical Society.

Didenko, Yuri T.; McNamara, William B. III; Suslick, Kenneth S.

2000-01-24

262

Cav03-GS-2-013 Fifth International Symposium on Cavitation (CAV2003) Osaka, Japan, November 1-4, 2003  

E-print Network

Cav03-GS-2-013 Fifth International Symposium on Cavitation (CAV2003) Osaka, Japan, November 1 intensive to implement into a continuum model for bubbly cavitating flows, since the diffusion equations of the aver- age heat and mass transfer coefficients. The model captures the damping effects of the diffusion

Dabiri, John O.

263

Bubbly wake: the role of the propeller  

NASA Astrophysics Data System (ADS)

We study the length of the bubbly wake of surface vessels. This wake is important for the boat security since it can extend to several ship length and thus increases the detectability of the ship by torpedoes. The image analysis of the wake of real scale ships reveals the sensitivity of the length to propellers. We have thus conducted a systematic study in the laboratory of the interaction bubble/propeller, trying to address several questions:- what is the role of cavitation?- is the propeller able to attract the bubbles present along the ship at the sea surface?- if attracted, can these bubble be broken by the propeller?

Caille, Francois

2005-11-01

264

ELSEVIER Earth and Planetary Science Letters 160 (1998) 763776 Bubble growth in highly viscous melts: theory, experiments, and  

E-print Network

bubbles observed in melt pockets between large bubbles in pumice represent a second nucleation event: vesicular texture; experimental studies; numerical models; shield volcanoes; pumice 1. Introduction

Lyakhovsky, Vladimir

265

Impact of bubble size on growth and CO2 uptake of Arthrospira (Spirulina) platensis KMMCC CY-007.  

PubMed

Optimisation of cyanobacterial cell productivity should consider the key factors light cycle and carbon source. We studied the influence of CO2 bubble size on carbon uptake and fixation, on basis of mRNA expression levels in Arthrospira platensis KMMCC CY-007 at 30°C (light intensity: 40?molm(-2)s(-1); 1% CO2). Growth rate, carbon fixation and lipid accumulation were examined over 7days under fine bubble (FB) (100?m Ø) bulk bubble (BB) (5000?m Ø) and non-CO2 (NB) aeration. The low affinity CO2 uptake mRNA (NDH-I4 complex) was stronger expressed than the high affinity NDH-I3 complex (bicA and sbtA) under 1% CO2 and FB conditions, with no expression of bicA1 and sbtA1 after 4days. The high affinity CO2 uptake mRNA levels corresponded to biomass, carbon content and lipid accumulation, and increase in NDH-I3 complex (9.72-fold), bicA (5.69-fold), and sbtA (10.61-fold), compared to NB, or BB conditions. PMID:25151075

Kim, Kisok; Choi, Jaeho; Ji, Yosep; Park, Soyoung; Do, Hyungki; Hwang, Cherwon; Lee, Bongju; Holzapfel, Wilhelm

2014-10-01

266

Onset of cavitation in the quark-gluon plasma  

E-print Network

We study the onset of bubble formation (cavitation) in the quark-gluon plasma as a result of the reduction of the effective pressure from bulk-viscous corrections. By calculating velocity gradients in typical models for quark-gluon plasma evolution in heavy-ion collisions, we obtain results for the critical bulk viscosity above which cavitation occurs. Since present experimental data for heavy-ion collisions seems inconsistent with the presence of bubbles above the phase transition temperature of QCD, our results may be interpreted as an upper limit of the bulk viscosity in nature. Our results indicate that bubble formation is consistent with the expectation of hadronisation in low-temperature QCD.

Mathis Habich; Paul Romatschke

2014-07-11

267

Onset of cavitation in the quark-gluon plasma  

NASA Astrophysics Data System (ADS)

We study the onset of bubble formation (cavitation) in the quark-gluon plasma as a result of the reduction of the effective pressure from bulk-viscous corrections. By calculating velocity gradients in typical models for quark-gluon plasma evolution in heavy-ion collisions, we obtain results for the critical bulk viscosity above which cavitation occurs. Since present experimental data for heavy-ion collision seems inconsistent with the presence of bubbles above the phase transition temperature of QCD, our results may be interpreted as an upper limit of the bulk viscosity in nature. Our results indicate that bubble formation is consistent with the expectation of hadronisation in low-temperature QCD.

Habich, Mathis; Romatschke, Paul

2014-12-01

268

Cavitation in flow through a micro-orifice inside a silicon microchannel  

NASA Astrophysics Data System (ADS)

Hydrodynamic cavitation in flows through a micro-orifice entrenched in a microchannel has been detected and experimentally investigated. Microfabrication techniques have been employed to design and develop a microfluidic device containing an 11.5?m wide micro-orifice inside a 100.2?m wide and 101.3?m deep microchannel. The flow of de-ionized water through the micro-orifice reveals the presence of multifarious cavitating flow regimes. This investigation divulges both similarities and differences between cavitation in micro-orifices and cavitation in their macroscale counterparts. The low incipient cavitation number obtained from the current experiments suggests a dominant size scale effect. Choking cavitation is observed to be independent of any pressure or velocity scale effects. However, choking is significantly influenced by the small stream nuclei residence time at such scales. Flow rate choking leads to the establishment of a stationary cavity. Large flow and cavitation hysteresis have been detected at the microscale leading to very high desinent cavitation numbers. The rapid transition from incipient bubbles to choking cavitation and subsequent supercavitation suggests the presence of radically different flow patterns at the microscale. Supercavitation results in a thick cavity, which extends throughout the microchannel, and is encompassed by the liquid. Cavitation at the microscale is expected to considerably influence the design of innovative high-speed microfluidic systems.

Mishra, Chandan; Peles, Yoav

2005-01-01

269

Experimental determination of cavitation thresholds in liquid water and mercury  

SciTech Connect

It is well-known that fluids (like solids) will break apart or form voids when put under sufficient tension. The present study has been motivated by the need to evaluate the impact of fluid cavitation in spallation neutron source target systems, more specifically for the proposed 1-MW Spallation Neutron Source (SNS) project, which is being designed in collaboration between Oak Ridge National Laboratory (ORNL), Los Alamos National Laboratory, Lawrence Berkeley National Laboratory, Brookhaven National Laboratory, and Argonne National Laboratory. Indeed, results of SNS-specific simulations have indicated that the onset of cavitation could play a very significant role in reducing imposed stresses in structural components of the SNS. In general, the cavitation of fluids is target systems is important to consider for a variety of reasons. Its occurrence can have significant impact on heat transfer, pressure pulse generation, fluid jetting on to structures, surface erosion, stresses induced in enclosures, etc. Therefore, it is important to evaluate the threshold pressure under which the fluid in tension will undergo cavitation. Another major aspect concerns the possible onset of cavitation in an oscillating pressure field; i.e., one would need to know if fluids such as mercury and water will cavitate if the imposed tensile pressure in the fluid is of short duration. If indeed it takes sufficiently long for cavitation bubbles to nucleate, then it would be possible to disregard the complexities involved with addressing cavitation-related issues. This paper provides an overview of preliminary work done to date to derive information on cavitation onset in a relatively static and in a high-frequency environment.

Taleyarkhan, R.P.; Gulec, K.; West, C.D.; Haines, J. [Oak Ridge National Lab., TN (United States)

1998-09-01

270

Cavitation in trees monitored using simultaneously acoustics and optics  

NASA Astrophysics Data System (ADS)

Under hydric stress, in dry weather conditions, the sap within trees may reach extreme negative pressures and cavitate: bubbles appear, which eventually causes an embolism in the circulation. It has been shown that cavitation is associated with short acoustic emissions, and they can be recorded in the ultrasound range. However the precise origin of each acoustic emission is still not clear. In particular, the acoustic emissions could be not only the consequence of cavitation, but also of the collapse of xylem conduits, or of fractures in the wood. Here we present an original set-up where we can simultaneously record (i) the acoustic emissions, (ii) the location of cavitation events, by imaging the sap channels under light transmission microscopy. We are then able to correlate the sounds to the visible changes in channels, such as the appearance of cavitation bubbles. We hope the results of the present study might help to better understand the acoustic signals emitted by trees, and to obtain further information in the evolution of wood under dry stress conditions.

Ponomarenko, Alexandre; Vincent, Olivier; Marmottant, Philippe

2013-03-01

271

Acoustic cavitation studies  

NASA Astrophysics Data System (ADS)

The primary thrust of this study was toward a more complete understanding of general aspects of acoustic cavitation. The effect of long-chain polymer additives on the cavitation threshold was investigated to determine if they reduced the acoustic cavitation threshold in a similar manner to the observed reduction in the cavitation index in hydrodynamic cavitation. Measurements were made of the acoustic cavitation threshold as a function of polymer concentration for additives such as guar gum and polyethelene oxide. The measurements were also made as a function of dissolved gas concentration, surface tension and viscosity. It was determined that there was a significant increase in the acoustic cavitation threshold for increased concentrations of the polymer additives (measurable effects could be obtained for concentrations as low as a few parts per million). One would normally expect that an additive that reduces surface tension to decrease the pressure required to cause a cavity to grow and thus these additives, at first thought, should reduce the threshold. However, even in the hydrodynamic case, the threshold was increased. In both of the hydrodynamic cases considered, the explanation for the increased threshold was given in terms of changed fluid dynamics rather than changed physical properties of the fluid.

Crum, L. A.

1981-09-01

272

Monitoring bubble growth in supersaturated blood and tissue ex vivo and the relevance to  

E-print Network

sources, or through behavioral changes leading to bubble nucleation, i.e., decompression sickness-intensity acoustic pulses. Rapid surfacing from a deep dive may lead to decompression sickness. In addition, it is known that exercising after diving can lead to decompression sickness in humans.6 Analogously, abnormal

273

Cavitation by spall fracture of solid walls in liquids  

NASA Astrophysics Data System (ADS)

Experiments are carried out to investigate the cavitation process induced by the spill-off from material from a surface in a liquid environment. Therefore, a simplified physical model was designed which allows the optical observation of the process next to a transparent glass rod submerged in a liquid where the rod is forced to fracture at a pre-defined groove. High-speed shadow-imaging and refractive index matching allow observation of the dynamics of the cavitation generation and cavitation bubble breakdown together with the flow. The results show that the initial phase of spill-off is a vertical lift-off of the rod from the surface that is normal to the direction of pendulum impact. A cavitation bubble is immediately formed during spill-off process and grows in size until lateral motion of the rod sets in. While the rod is transported away, the bubble shrinks into hyperbolic shape and finally collapses. This process is regarded as one contributing factor to the high efficiency of hydro-abrasive wear.

Mikulich, V.; Brücker, Ch.

2014-07-01

274

Probing luminescence from nonspherical bubble collapse Claus-Dieter Ohl  

E-print Network

Probing luminescence from nonspherical bubble collapse Claus-Dieter Ohl Department of Applied May 2002; published 27 June 2002 The luminescence from single laser produced cavitation bubbles light emission events happen during a time interval of 80 ns. The luminescence duration increases

Ohl, Claus-Dieter

275

Effects of the use of ultrasonic waves on biodiesel production in alkaline transesterification of bleached tallow and vegetable oils: Cavitation model  

NASA Astrophysics Data System (ADS)

Experiments of biodiesel production via methanolysis were performed at methanol/triglyceride molar ratios of 3, 4.5, and 6 and temperatures of 25°C, 40°C and 60°C; the reaction was monitored by HPLC, X-Ray, and GC-MS until equilibrium. A mathematical model called CAVITATION MODEL was developed to deal with mass transfer aspects of the alkaline transesterification reaction of vegetable oils; a comparison between the cavitation model and diffusion through spherical pores was made. Gas-vapor bubble dynamics for the methanol-soybean oil and methanol-tallow system were examined at 40°C and 42°C, respectively. The Rayleight-Plesset equations were used to describe the isothermal growth and adiabatic collapse of the bubble formed when a field of ultrasound at 20 KHz is applied. Temperatures of 2265 K and 426 K were estimated for a bubble in soybean oil-methanol and tallow-methanol systems, respectively. These "Hot Spots" could be responsible for the increment of the temperature occurred and the acoustic streaming observed during the alkaline transesterification reaction. Also, a diffusion analysis with the pore model was made to predict the concentration profile of the triglycerides within the liquid drops of alcohol created after the collapse of the gas-vapor bubbles; spherical shapes were studied. A computational model was made in MathCad to evaluate the effectiveness at different Thiele modulus values in order to estimate mass transfer coefficients for the most critical conditions of pure diffusion and these coefficients were compared with those found by the cavitation model estimation. Pictures of the reactant system soybean oil-methanol-potassium hydroxide, with the red dyed methanol using phenolphthalein, showed that the alkalinity of the system represented by potassium hydroxide remains in the interface alcohol-oil and then is displaced into the glycerol or down layer. The present study serves as a basis for the analysis of heterogeneous reactions with immiscible liquids using ultrasonic agitation.

Alape Benitez, Fabio

276

A Generalized Eulerian-Lagrangian Analysis, with Application to Liquid Flows with Vapor Bubbles  

NASA Technical Reports Server (NTRS)

Under a NASA MSFC SBIR Phase 2 effort an analysis has been developed for liquid flows with vapor bubbles such as those in liquid rocket engine components. The analysis is based on a combined Eulerian-Lagrangian technique, in which Eulerian conservation equations are solved for the liquid phase, while Lagrangian equations of motion are integrated in computational coordinates for the vapor phase. The novel aspect of the Lagrangian analysis developed under this effort is that it combines features of the so-called particle distribution approach with those of the so-called particle trajectory approach and can, in fact, be considered as a generalization of both of those traditional methods. The result of this generalization is a reduction in CPU time and memory requirements. Particle time step (stability) limitations have been eliminated by semi-implicit integration of the particle equations of motion (and, for certain applications, the particle temperature equation), although practical limitations remain in effect for reasons of accuracy. The analysis has been applied to the simulation of cavitating flow through a single-bladed section of a labyrinth seal. Models for the simulation of bubble formation and growth have been included, as well as models for bubble drag and heat transfer. The results indicate that bubble formation is more or less 'explosive'. for a given flow field, the number density of bubble nucleation sites is very sensitive to the vapor properties and the surface tension. The bubble motion, on the other hand, is much less sensitive to the properties, but is affected strongly by the local pressure gradients in the flow field. In situations where either the material properties or the flow field are not known with sufficient accuracy, parametric studies can be carried out rapidly to assess the effect of the important variables. Future work will include application of the analysis to cavitation in inducer flow fields.

Dejong, Frederik J.; Meyyappan, Meyya

1993-01-01

277

A generalized Eulerian-Lagrangian analysis, with application to liquid flows with vapor bubbles  

NASA Astrophysics Data System (ADS)

Under a NASA MSFC SBIR Phase 2 effort an analysis has been developed for liquid flows with vapor bubbles such as those in liquid rocket engine components. The analysis is based on a combined Eulerian-Lagrangian technique, in which Eulerian conservation equations are solved for the liquid phase, while Lagrangian equations of motion are integrated in computational coordinates for the vapor phase. The novel aspect of the Lagrangian analysis developed under this effort is that it combines features of the so-called particle distribution approach with those of the so-called particle trajectory approach and can, in fact, be considered as a generalization of both of those traditional methods. The result of this generalization is a reduction in CPU time and memory requirements. Particle time step (stability) limitations have been eliminated by semi-implicit integration of the particle equations of motion (and, for certain applications, the particle temperature equation), although practical limitations remain in effect for reasons of accuracy. The analysis has been applied to the simulation of cavitating flow through a single-bladed section of a labyrinth seal. Models for the simulation of bubble formation and growth have been included, as well as models for bubble drag and heat transfer. The results indicate that bubble formation is more or less 'explosive'. for a given flow field, the number density of bubble nucleation sites is very sensitive to the vapor properties and the surface tension. The bubble motion, on the other hand, is much less sensitive to the properties, but is affected strongly by the local pressure gradients in the flow field. In situations where either the material properties or the flow field are not known with sufficient accuracy, parametric studies can be carried out rapidly to assess the effect of the important variables. Future work will include application of the analysis to cavitation in inducer flow fields.

Dejong, Frederik J.; Meyyappan, Meyya

1993-07-01

278

Magnetic susceptibility based magnetic resonance estimation of micro-bubble size for the vertically upward bubbly flow.  

PubMed

The approach originally developed for the Nuclear Magnetic Resonance analysis of stable micro-bubbles is applied to studies of vertical bubbly flows. A very fast dispersion (diffusion) of water in bubbly flows extends the fast diffusion limit down to short (2-10 ms) measurement times, permitting the use of the simplified analytical expression to extract the micro-bubble size information both in bulk and spatially resolved. The observed strong bubble-induced reduction in T(2)(*) necessitates the use of very short encoding times and pure phase encoding methods to accurately measure the void fraction. There was an expected underestimation of bubble sizes at faster flow rates due to the limitations of the theory derived for small bubble sizes and non-interacting spherical bubbles (low void fractions and slow flow rates). This approach lends itself to studies of bubbly flows and cavitating media characterized by small bubble sizes and low void fractions. PMID:23117260

Arbabi, A; Mastikhin, I V

2012-12-01

279

Detection of cystic structures using pulsed ultrasonically induced resonant cavitation  

NASA Technical Reports Server (NTRS)

Apparatus and method for early detection of cystic structures indicative of ovarian and breast cancers uses ultrasonic wave energy at a unique resonance frequency for inducing cavitation in cystic fluid characteristic of cystic structures in the ovaries associated with ovarian cancer, and in cystic structures in the breast associated with breast cancer. Induced cavitation bubbles in the cystic fluid implode, creating implosion waves which are detected by ultrasonic receiving transducers attached to the abdomen of the patient. Triangulation of the ultrasonic receiving transducers enables the received signals to be processed and analyzed to identify the location and structure of the cyst.

Bar-Cohen, Yoseph (Inventor); Kovach, John S. (Inventor)

2002-01-01

280

Numerical Study on the Inhibition of Cavitation in Piping Systems  

NASA Astrophysics Data System (ADS)

Abrupt closing valve in piping systems is sometimes resulted in cavitation due to the occurrence of high pressure difference. The bubbles generating by cavitation influence operating pressure and then those generate shock wave and vibration. These phenomena can consequentially cause to corrosion and erosion. So, the cavitation is the important factor to consider reliability of piping systems and mechanical lifetime. This paper investigated the various inhibition methods of cavitation in piping systems in which butterfly valves are installed. To prevent cavitation occurrence, it is desirable to analyze its characteristics between the upstream and downstream of process valve. Results show that the fluid velocity is fast when a working fluid passed through butterfly valve. The pressure of these areas was not only under saturation vapor pressure of water, but also cavitation was continuously occurred. We confirmed that the effect of existence of inserted orifice and influence to break condition under saturation vapor pressure of water. Results were graphically depicted by pressure distribution, velocity distribution, and vapor volume fraction.

Byeon, Sun Seok; Lee, Sang Jun; Kim, Youn-Jea

281

Effect of geometrical parameters on submerged cavitation jet discharged from profiled central-body nozzle  

NASA Astrophysics Data System (ADS)

The flow characteristics of cavitation jets are essential issues among relevant studies. The physical properties of the jet are largely determined by the geometrical parameters of the nozzle. The structure and cavitation jets characteristics of the angular-nozzle and the self-resonating cavitation nozzle have been extensively studied, but little research is conducted in the central-body cavitation nozzle mainly because of its hard processing and the cavitation jet effect not satisfactory. In this paper, a novel central-body nozzle (a non-plunger central-body nozzle with square outlet) is studied to solve above problems. Submerged jets discharged from the novel central-body nozzle are simulated, employing the full cavitation model. The impact of nozzle configuration on jet properties is analyzed. The analysis results indicate that when central-body relative diameter keeps constant, there is an optimal contraction degree of nozzle's outlet, which can induce intense cavitation in the jet. The central-body relative diameter also affects jet profiles. In the case of large central-body relative diameter, most of the bubbles settle in the jet core. On the contrary, a smaller relative diameter makes bubbles concentrate in the interface between the jet and its surrounding fluid. Moreover, the shorter outlet part allows the cavitation zone further extend in both the axial and racial directions. The research results further consummate the study on the central-body nozzles and the correlation between cavitation jet and the structure, and elementarily reveal the mechanism of cavitation jet produced in a non-plunger novel central-body nozzle and the effect of the structure parameters on the cavitation jet, moreover, provide the theoretical basis for the optimal design of the nozzle.

Yang, Minguan; Xiao, Shengnan; Kang, Can; Wang, Yuli

2013-05-01

282

Bubble Mania  

NSDL National Science Digital Library

In this math lesson, learners practice measurement skills as they examine a soap bubble print. Learners follow a recipe to make a soap bubble solution. They use the soapy solution to blow large bubbles with a plastic drinking straw until the bubbles pop, leaving behind circular prints. Learners find the diameter, circumference, and area of the bubble print.

2013-07-30

283

Experimental constraints on degassing of magma: isothermal bubble growth during continuous decompression from high pressure  

Microsoft Academic Search

Numerical models predict that rapid ascent of hydrous magma can lead to supersaturation of dissolved volatile constituents, possibly leading to explosive eruption. We have performed controlled decompression experiments to investigate the ascent rates required to maintain bubble–melt equilibrium. High-silica rhyolitic melts were saturated with water at 200 MPa and 825°C, decompressed to lower pressures at constant rates of 0.025, 0.25,

James E. Gardner; Matthew Hilton; Michael R. Carroll

1999-01-01

284

Passive imaging of cavitational acoustic emissions with ultrasound arrays  

NASA Astrophysics Data System (ADS)

A method is presented for imaging emissions from active microbubbles using an ultrasound array. Since bubble activity plays a role in ultrasound ablation, monitoring cavitation may assist in therapy guidance. This is often achieved by listening passively for bubble emissions with a single-element transducer. Such schemes do not capture the variation in cavitation in form of a two dimensional (2D) map or image. The technique presented here obtains spatial information by creating images solely from the beamformed cavitational-emission energy received by an array, dynamically focused at multiple depths. An analytic expression was derived for these passive images by numerically solving the Rayleigh-Sommerfield integral under the Fresnel approximation. To test accuracy in mapping of localized emissions, a 192-element array was employed to passively image scattering of 520-kHz ultrasound by a 1-mm steel wire. The wire position was estimated from the passive images with rms error 0.9 mm in azimuth and 17.2 mm in range. Bubbles created in air-saturated saline sonicated at 520-kHz were imaged passively from both ultraharmonic and broadband emissions. Good agreement was found between azimuthal brightness distributions of the passive images and B-scan images of the bubble cloud. Broadband emission images from ex vivo bovine liver sonicated with 2.2-MHz focused ultrasound were also recorded. The image brightness along the array azimuth was consistent with the source beam profile. This indicates the possibility of mapping therapeutic ultrasound beams in situ.

Salgaonkar, Vasant A.; Datta, Saurabh; Holland, Christy K.; Mast, T. Douglas

2009-04-01

285

Mercury Cavitation Phenomenon in Pulsed Spallation Neutron Sources  

SciTech Connect

Innovative researches will be performed at Materials and Life Science Experimental Facility in J-PARC, in which a mercury target system will be installed as MW-class pulse spallation neutron sources. Proton beams will be injected into mercury target to induce the spallation reaction. At the moment the intense proton beam hits the target, pressure waves are generated in the mercury because of the abrupt heat deposition. The pressure waves interact with the target vessel leading to negative pressure that may cause cavitation along the vessel wall. Localized impacts by micro-jets and/or shock waves which are caused by cavitation bubble collapse impose pitting damage on the vessel wall. The pitting damage which degrades the structural integrity of target vessels is a crucial issue for high power mercury targets. Micro-gas-bubbles injection into mercury may be useful to mitigate the pressure wave and the pitting damage. The visualization of cavitation-bubble and gas-bubble collapse behaviors was carried out by using a high-speed video camera. The differences between them are recognized.

Futakawa, Masatoshi; Naoe, Takashi [Japan Atomic Energy Agency Tokai-mura, Naka-gun, Ibaraki-ken, 319-1195 (Japan); Kawai, Masayoshi [KEK Tsukuba-shi, Ibaraki-ken, 305-0801 (Japan)

2008-06-24

286

Processing of Microalgae: Acoustic Cavitation and Hydrothermal Conversion  

NASA Astrophysics Data System (ADS)

The production of energy dense fuels from renewable algal biomass feedstocks -- if sustainably developed at a sufficiently large scale -- may reduce the consumption of petroleum from fossil fuels and provide many environmental benefits. Achieving economic feasibility has several technical engineering challenges that arise from dilute concentration of growing algae in aqueous media, small cell sizes, and durable cell walls. For microalgae to be a sustainable source of biofuels and co-products, efficient fractionation and conversion of the cellular contents is necessary. Research was carried out to address two processing options for efficient microalgae biofuel production: 1. Ultrasonic cavitation for cell disruption and 2. Hydrothermal conversion of a model algal triglyceride. 1. Ultrasonic cell disruption, which relies on cavitating bubbles in the suspension to produce damaging shock waves, was investigated experimentally over a range of concentrations and species types. A few seconds of high intensity sonication at fixed frequency yielded significant cell disruption, even for the more durable cells. At longer exposure times, effectiveness was seen to decline and was attributed, using acoustic measurements, to ultrasonic power attenuation in the ensuing cloud of cavitating bubbles. Processing at higher cell concentrations slowed cell disintegration marginally, but increased the effectiveness of dissipating ultrasonic energy. A theoretical study effectively predicted optimal conditions for a variety of parameters that were inaccessible in this experimental investigation. In that study, single bubble collapse was modeled to identify operating conditions that would increase cavitation, and thus cell disruption. Simulations were conducted by varying frequency and pressure amplitude of the ultrasound wave, and initial bubble size. The simulation results indicated that low frequency, high sound wave amplitudes, and small initial bubble size generate the highest shock wave pressures. 2. Hydrolysis of a pure model triglyceride compound was experimentally examined for the first time at hydrothermal conditions -- from 225 to 300°C. Lipid product composition assessed by GC-FID was compared to previous studies with mixed vegetable oils and used to develop a kinetic model for this oil phase reaction.

Greenly, Justin Michael

287

Measurements of void fraction distribution in cavitating pipe flow using x-ray CT  

NASA Astrophysics Data System (ADS)

Measuring the void fraction distribution is still one of the greatest challenges in cavitation research. In this paper, a measurement technique for the quantitative void fraction characterization in a cavitating pipe flow is presented. While it is almost impossible to visualize the inside of the cavitation region with visible light, it is shown that with x-ray computed tomography (CT) it is possible to capture the time-averaged void fraction distribution in a quasi-steady pipe flow. Different types of cavitation have been investigated including cloud-like cavitation, bubble cavitation and film cavitation at very high flow rates. A specially designed nozzle was employed to induce very stable quasi-steady cavitation. The obtained results demonstrate the advantages of the measurement technique compared to other ones; for example, structures were observed inside the cavitation region that could not be visualized by photographic images. Furthermore, photographic images and pressure measurements were used to allow comparisons to be made and to prove the superiority of the CT measurement technique.

Bauer, D.; Chaves, H.; Arcoumanis, C.

2012-05-01

288

Cavitation guide for control valves  

SciTech Connect

This guide teaches the basic fundamentals of cavitation to provide the reader with an understanding of what causes cavitation, when it occurs, and the potential problems cavitation can cause to a valve and piping system. The document provides guidelines for understanding how to reduce the cavitation and/or select control valves for a cavitating system. The guide provides a method for predicting the cavitation intensity of control valves, and how the effect of cavitation on a system will vary with valve type, valve function, valve size, operating pressure, duration of operation and details of the piping installation. The guide defines six cavitation limits identifying cavitation intensities ranging from inception to the maximum intensity possible. The intensity of the cavitation at each limit Is described, including a brief discussion of how each level of cavitation influences the valve and system. Examples are included to demonstrate how to apply the method, including making both size and pressure scale effects corrections. Methods of controlling cavitation are discussed providing information on various techniques which can be used to design a new system or modify an existing one so it can operate at a desired level of cavitation.

Tullis, J.P. [Tullis Engineering Consultants, Logan, UT (United States)

1993-04-01

289

Investigation of a Method to Reduce Cavitation in Diesel Engine Bearings  

NASA Technical Reports Server (NTRS)

Sonoluminescence is the effect of producing light from sound and occurs when a gas bubble is trapped in a fluid filled cavity and is forced to collapse under a barrage of sound waves. Frenzel and Schultes discovered this phenomenon in 1934 while exposing acoustic waves to photographic plates. This effect was not well understood until 1988 when Crum and Gaitan discovered the necessary conditions for producing single bubble sonoluminescence in the laboratory. The luminescence is a result of the bubble violently collapsing from sound waves and this shares a close association with vibratory cavitation. Cavitation erosion is known to cause damage to rotational machinery when the collapse is near to surfaces due to the high pressures associated with bubble collapse. With these high pressures and temperatures there is a considerable amount of damage to the outside layer of a bearing, thereby, reducing its useful life. An experiment was constructed to generate sonoluminescence in the laboratory in order to obtain a greater understanding of this phenomenon and its association with bubble cavitation. Most of the research was done to investigate how to obtain single bubble sonoluminescence under different conditions and to determine how to detect it. Success in this has inspired several theories on how to use the methods for generating sonoluminescence to control cavitation in fluids under industrial conditions.

Keith, Theo G., Jr.; Honaker, Robert W.

1998-01-01

290

Disruption of cultured cells by nitrogen cavitation.  

PubMed

Cell disruption by nitrogen decompression from a pressurized vessel is a rapid and effective way to homogenize cells and tissues, to release intact organelles, and to prepare cell membranes. Cells are placed in a pressure vessel and large quantities of oxygen-free nitrogen are dissolved in the cells under high pressure (~5500 kilopascals [kPa], equivalent to 800 pounds per square inch [psi]). When the pressure is released suddenly, the nitrogen bubbles out of solution, rupturing the cell membrane and releasing the cell contents. Nitrogen cavitation is well suited for mammalian and plant cells and fragile bacteria, but is less effective with yeast, fungi, spores, or other cell types with tough cell walls. The chemical and physical stresses imposed by nitrogen cavitation on enzymes and subcellular compartments are minimized compared with ultrasonic and mechanical homogenizing methods. Unlike lysis methods relying on shear stresses and friction, there is no heat damage to proteins and organelles during nitrogen cavitation. Indeed, the method is accompanied by an adiabatic expansion that cools the sample instead. Also, labile cell components are protected from oxidation by the inert nitrogen gas. Furthermore, nitrogen does not alter the pH of the suspending medium. The process is fast and uniform because the same disruptive forces are applied within each cell and throughout the sample, ensuring reproducible cell-free homogenates. Finally, variable sample sizes (e.g., from ~1 mL to 1 L or more) can be accommodated with most commercial systems. PMID:21041386

Simpson, Richard J

2010-11-01

291

Bubble formation in microgravity  

NASA Technical Reports Server (NTRS)

Two KC-135 flight campaigns have been conducted to date which are specifically dedicated to study bubble formation in microgravity. The first flight was conducted during March 14-18, 1994, and the other during June 20-24, 1994. The results from the June 1994 flight have not been analyzed yet, while the results from the March flight have been partially analyzed. In the first flight three different experiments were performed, one with the specific aim at determining whether or not cavitation can take place during any of the fluid handling procedures adopted in the shuttle bioprocessing experiments. The other experiments were concerned with duplicating some of the procedures that resulted in bubble formation, namely the NCS filling procedure and the needle scratch of a solid surface. The results from this set of experiments suggest that cavitation did not take place during any of the fluid handling procedures. The results clearly indicate that almost all were generated as a result of the breakup of the gas/liquid interface. This was convincingly demonstrated in the scratch tests as well as in the liquid fill tests.

Antar, Basil N.

1994-01-01

292

Cavitation erosion of silver plated coating at different temperatures and pressures  

SciTech Connect

Cavitation often occurs in inducer pumps used for space rockets. Silver plated coating on the inducer liner faces the damage of cavitation. Therefore, it is important to study about the cavitation erosion resistance for silver plated coating at several operating conditions in the inducer pumps. In this study, the cavitation erosion tests were carried for silver plated coating in deionized water and ethanol at several liquid temperatures (273K–400K) and pressures (0.10MPa–0.48MPa). The mass loss rate is evaluated in terms of thermodynamic parameter ? proposed by Brennen [9], suppression pressure p–p{sub v} (p{sub v}: saturated vapor pressure) and acoustic impedance ?c (?: density and c: sound speed). Cavitation bubble behaviors depending on the thermodynamic effect and the liquid type were observed by high speed video camera. The mass loss rate is formulated by thermodynamic parameter ?, suppression pressure p–p{sub v} and acoustic impedance ?c.

Hattori, Shuji; Motoi, Yoshihiro [Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fuku-shi, Fukui 910-8507 (Japan); Kikuta, Kengo; Tomaru, Hiroshi [IHI Corperation, TOYOSU IHI BUILDING, 1-1, Toyosu 3-chome, Koto-ku, Tokyo 1358710 (Japan)

2014-04-11

293

Creep cavitation in 304 stainless steel  

Microsoft Academic Search

Creep cavitation in 304 stainless steel at 0.5 T\\/sub m\\/ was investigated. Two specially developed techniques were used to study the nucleation and growth of grain-boundary cavities. It was found that cavities nucleated heterogeneously throughout the creep history and those observed were well in their growth stage. Comparison of these observations with the theory for cavity nucleation requires that a

I. W. Chen; A. S. Argon

1981-01-01

294

A High-Speed Imaging and Modeling Study of Dendrite Fragmentation Caused by Ultrasonic Cavitation  

NASA Astrophysics Data System (ADS)

The dynamic behavior of ultrasound-induced cavitation bubbles and their effect on the fragmentation of dendritic grains of a solidifying succinonitrile 1 wt pct camphor organic transparent alloy have been studied experimentally using high-speed digital imaging and complementary numerical analysis of sound wave propagation, cavitation dynamics, and the velocity field in the vicinity of an imploding cavitation bubble. Real-time imaging and analysis revealed that the violent implosion of bubbles created local shock waves that could shatter dendrites nearby into small pieces in a few tens of milliseconds. These catastrophic events were effective in breaking up growing dendritic grains and creating abundant fragmented crystals that may act as embryonic grains; therefore, these events play an important role in grain refinement of metallurgical alloys.

Shu, Da; Sun, Baode; Mi, Jiawei; Grant, Patrick S.

2012-10-01

295

Detecting vapour bubbles in simulations of metastable water  

NASA Astrophysics Data System (ADS)

The investigation of cavitation in metastable liquids with molecular simulations requires an appropriate definition of the volume of the vapour bubble forming within the metastable liquid phase. Commonly used approaches for bubble detection exhibit two significant flaws: first, when applied to water they often identify the voids within the hydrogen bond network as bubbles thus masking the signature of emerging bubbles and, second, they lack thermodynamic consistency. Here, we present two grid-based methods, the M-method and the V-method, to detect bubbles in metastable water specifically designed to address these shortcomings. The M-method incorporates information about neighbouring grid cells to distinguish between liquid- and vapour-like cells, which allows for a very sensitive detection of small bubbles and high spatial resolution of the detected bubbles. The V-method is calibrated such that its estimates for the bubble volume correspond to the average change in system volume and are thus thermodynamically consistent. Both methods are computationally inexpensive such that they can be used in molecular dynamics and Monte Carlo simulations of cavitation. We illustrate them by computing the free energy barrier and the size of the critical bubble for cavitation in water at negative pressure.

González, Miguel A.; Menzl, Georg; Aragones, Juan L.; Geiger, Philipp; Caupin, Frederic; Abascal, Jose L. F.; Dellago, Christoph; Valeriani, Chantal

2014-11-01

296

Detecting vapour bubbles in simulations of metastable water  

SciTech Connect

The investigation of cavitation in metastable liquids with molecular simulations requires an appropriate definition of the volume of the vapour bubble forming within the metastable liquid phase. Commonly used approaches for bubble detection exhibit two significant flaws: first, when applied to water they often identify the voids within the hydrogen bond network as bubbles thus masking the signature of emerging bubbles and, second, they lack thermodynamic consistency. Here, we present two grid-based methods, the M-method and the V-method, to detect bubbles in metastable water specifically designed to address these shortcomings. The M-method incorporates information about neighbouring grid cells to distinguish between liquid- and vapour-like cells, which allows for a very sensitive detection of small bubbles and high spatial resolution of the detected bubbles. The V-method is calibrated such that its estimates for the bubble volume correspond to the average change in system volume and are thus thermodynamically consistent. Both methods are computationally inexpensive such that they can be used in molecular dynamics and Monte Carlo simulations of cavitation. We illustrate them by computing the free energy barrier and the size of the critical bubble for cavitation in water at negative pressure.

González, Miguel A.; Abascal, Jose L. F.; Valeriani, Chantal, E-mail: christoph.dellago@univie.ac.at, E-mail: cvaleriani@quim.ucm.es [Departamento de Química Fsica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid (Spain); Menzl, Georg; Geiger, Philipp; Dellago, Christoph, E-mail: christoph.dellago@univie.ac.at, E-mail: cvaleriani@quim.ucm.es [Faculty of Physics and Center for Computational Materials Science, University of Vienna, Boltzmanngasse 5, 1090 Vienna (Austria); Aragones, Juan L. [Departamento de Química Fsica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid (Spain); Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Caupin, Frederic [Laboratoire de Physique de la Matiere Condensee et Nanostructures, Universite Claude Bernard, Lyon 1 et CNRS, Institut Universitaire de France, 43 boulevard du 11 novembre 1918, 69100 Villeurbanne (France)

2014-11-14

297

Detecting vapour bubbles in simulations of metastable water.  

PubMed

The investigation of cavitation in metastable liquids with molecular simulations requires an appropriate definition of the volume of the vapour bubble forming within the metastable liquid phase. Commonly used approaches for bubble detection exhibit two significant flaws: first, when applied to water they often identify the voids within the hydrogen bond network as bubbles thus masking the signature of emerging bubbles and, second, they lack thermodynamic consistency. Here, we present two grid-based methods, the M-method and the V-method, to detect bubbles in metastable water specifically designed to address these shortcomings. The M-method incorporates information about neighbouring grid cells to distinguish between liquid- and vapour-like cells, which allows for a very sensitive detection of small bubbles and high spatial resolution of the detected bubbles. The V-method is calibrated such that its estimates for the bubble volume correspond to the average change in system volume and are thus thermodynamically consistent. Both methods are computationally inexpensive such that they can be used in molecular dynamics and Monte Carlo simulations of cavitation. We illustrate them by computing the free energy barrier and the size of the critical bubble for cavitation in water at negative pressure. PMID:25399176

González, Miguel A; Menzl, Georg; Aragones, Juan L; Geiger, Philipp; Caupin, Frederic; Abascal, Jose L F; Dellago, Christoph; Valeriani, Chantal

2014-11-14

298

Numerical investigation on cavitation in pressure relief valve for coal liquefaction  

NASA Astrophysics Data System (ADS)

The pressure relief valve for regulating the level of the high-pressure separator works under a pressure difference up to 15 MPa in the temperature of 415 °C. Severe cavitation erosion and particle impact lead to the valve disc's mass loss. In this paper, three-dimensional turbulent cavitating flows in the pressure relief valve are numerically simulated to reveal the mechanism of mass loss at valve disc. The RNG k-epsilon turbulence model and the mixture model with a mass transfer for cavitation are employed to simulate the cavitating flow in the pressure relief valve. The result shows that there is phase change in the pressure relief process and cavitation bubbles would be transported by high-velocity backflow to the head of valve disc. For the local pressure higher than the saturated vapor pressure, the bubbles collapse at the head of disc and cavitation erosion is formed at the head of the disc. By comparing the cases of opening of 40%, 50%, and 60%, backflow velocity and cavitation region in front of the disc decrease with the opening increase. Therefore, during the actual operation, the pressure relief valve should be kept to a relatively large opening.

Ou, G. F.; Li, W. Z.; Xiao, D. H.; Zheng, Z. J.; Dou, H. S.; Wang, C.

2015-01-01

299

Transient cavitation in high-quality-factor resonators at high static pressures.  

PubMed

It is well known that cavitation collapse can generate intense concentrations of mechanical energy, sufficient to erode even the hardest metals and to generate light emissions visible to the naked eye [sonoluminescence (SL)]. Considerable attention has been devoted to the phenomenon of "single bubble sonoluminescence" (SBSL) in which a single stable cavitation bubble radiates light flashes each and every acoustic cycle. Most of these studies involve acoustic resonators in which the ambient pressure is near 0.1 MPa (1 bar), and with acoustic driving pressures on the order of 0.1 MPa. This study describes a high-quality factor, spherical resonator capable of achieving acoustic cavitation at ambient pressures in excess of 30 MPa (300 bars). This system generates bursts of violent inertial cavitation events lasting only a few milliseconds (hundreds of acoustic cycles), in contrast with the repetitive cavitation events (lasting several minutes) observed in SBSL; accordingly, these events are described as "inertial transient cavitation." Cavitation observed in this high pressure resonator is characterized by flashes of light with intensities up to 1000 times brighter than SBSL flashes, as well as spherical shock waves with amplitudes exceeding 30 MPa at the resonator wall. Both SL and shock amplitudes increase with static pressure. PMID:20550245

Gaitan, D Felipe; Tessien, Ross A; Hiller, Robert A; Gutierrez, Joel; Scott, Corey; Tardif, Henry; Callahan, Brant; Matula, Thomas J; Crum, Lawrence A; Holt, R Glynn; Church, Charles C; Raymond, Jason L

2010-06-01

300

Histotripsy-Induced Cavitation Cloud Initiation Thresholds in Tissues of Different Mechanical Properties  

PubMed Central

Histotripsy is an ultrasound ablation method that depends on the initiation and maintenance of a cavitation bubble cloud to fractionate soft tissue. This paper studies how tissue properties impact the pressure threshold to initiate the cavitation bubble cloud. Our previous study showed that shock scattering off one or more initial bubbles, expanded to sufficient size in the focus, plays an important role in initiating a dense cavitation cloud. In this process, the shock scattering causes the positive pressure phase to be inverted, resulting in a scattered wave that has the opposite polarity of the incident shock. The inverted shock is superimposed on the incident negative pressure phase to form extremely high negative pressures, resulting in a dense cavitation cloud growing toward the transducer. We hypothesize that increased tissue stiffness impedes the expansion of initial bubbles, reducing the scattered tensile pressure, and thus requiring higher initial intensities for cloud initiation. To test this hypothesis, 5-cycle histotripsy pulses at pulse repetition frequencies (PRFs) of 10, 100, or 1000 Hz were applied by a 1-MHz transducer focused inside mechanically tunable tissue-mimicking agarose phantoms and various ex vivo porcine tissues covering a range of Young’s moduli. The threshold to initiate a cavitation cloud and resulting bubble expansion were recorded using acoustic backscatter detection and optical imaging. In both phantoms and ex vivo tissue, results demonstrated a higher cavitation cloud initiation threshold for tissues of higher Young’s modulus. Results also demonstrated a decrease in bubble expansion in phantoms of higher Young’s modulus. These results support our hypothesis, improve our understanding of the effect of histotripsy in tissues with different mechanical properties, and provide a rational basis to tailor acoustic parameters for fractionation of specific tissues. PMID:24474139

Vlaisavljevich, Eli; Maxwell, Adam; Warnez, Matthew; Johnsen, Eric; Cain, Charles A.; Xu, Zhen

2014-01-01

301

Stable tridimensional bubble clusters in multi-bubble sonoluminescence (MBSL).  

PubMed

In the present work, stable clusters made of multiple sonoluminescent bubbles are experimentally and theoretically studied. Argon bubbles were acoustically generated and trapped using bi-frequency driving within a cylindrical chamber filled with a sulfuric acid aqueous solution (SA85w/w). The intensity of the acoustic pressure field was strong enough to sustain, during several minutes, a large number of positionally and spatially fixed (without pseudo-orbits) sonoluminescent bubbles over an ellipsoidally-shaped tridimensional array. The dimensions of the ellipsoids were studied as a function of the amplitude of the applied low-frequency acoustic pressure (PAc(LF)) and the static pressure in the fluid (P0). In order to explain the size and shape of the bubble clusters, we performed a series of numerical simulations of the hydrodynamic forces acting over the bubbles. In both cases the observed experimental behavior was in excellent agreement with the numerical results. The simulations revealed that the positionally stable region, mainly determined by the null primary Bjerknes force (F?Bj), is defined as the outer perimeter of an axisymmetric ellipsoidal cluster centered in the acoustic field antinode. The role of the high-frequency component of the pressure field and the influence of the secondary Bjerknes force are discussed. We also investigate the effect of a change in the concentration of dissolved gas on the positional and spatial instabilities through the cluster dimensions. The experimental and numerical results presented in this paper are potentially useful for further understanding and modeling numerous current research topics regarding multi-bubble phenomena, e.g. forces acting on the bubbles in multi-frequency acoustic fields, transient acoustic cavitation, bubble interactions, structure formation processes, atomic and molecular emissions of equal bubbles and nonlinear or unsteady acoustic pressure fields in bubbly media. PMID:24974006

Rosselló, J M; Dellavale, D; Bonetto, F J

2015-01-01

302

Measurement of acoustic power in studying cavitation processes  

NASA Astrophysics Data System (ADS)

A comparative calorimetric method for measuring the acoustic power generated by a sound source under cavitation conditions and the power absorbed by a liquid with bubbles is developed. The conditions under which the whole of the generated power is absorbed by the liquid with bubbles are determined experimentally. An instrument for power calibration of sound sources operating under cavitation conditions is designed. The instrument is found to provide a high measurement accuracy (3% or better). The requirements on the dimensions of the vessel and on the volume of the liquid in which the sound source operates are formulated to make the power generated under cavitation conditions independent of these parameters. For the first time, it is shown experimentally (by the example of the reaction of nitric oxide formation under the action of sound) that, if these conditions are satisfied and the sound intensity exceeds the threshold intensity, the rate of a number of sonochemical reactions is proportional to the sound intensity in the range from 1.7 to at least 47 W/cm2. It is shown that the dependence of the rate of cavitation processes on the sound intensity with a maximum at 8.6 W/cm2 and a sharp decrease in the rate with a further intensity increase is determined by the fact that the measured quantity was the electric power at the transducer rather than the acoustic one.

Margulis, I. M.; Margulis, M. A.

2005-11-01

303

Shock-induced collapse of a bubble inside a deformable vessel  

PubMed Central

Shockwave lithotripsy repeatedly focuses shockwaves on kidney stones to induce their fracture, partially through cavitation erosion. A typical side effect of the procedure is hemorrhage, which is potentially the result of the growth and collapse of bubbles inside blood vessels. To identify the mechanisms by which shock-induced collapse could lead to the onset of injury, we study an idealized problem involving a preexisting bubble in a deformable vessel. We utilize a high-order accurate, shock- and interface-capturing, finite-volume scheme and simulate the three-dimensional shock-induced collapse of an air bubble immersed in a cylindrical water column which is embedded in a gelatin/water mixture. The mixture is a soft tissue simulant, 10% gelatin by weight, and is modeled by the stiffened gas equation of state. The bubble dynamics of this model configuration are characterized by the collapse of the bubble and its subsequent jetting in the direction of the propagation of the shockwave. The vessel wall, which is defined by the material interface between the water and gelatin/water mixture, is invaginated by the collapse and distended by the impact of the jet. The present results show that the highest measured pressures and deformations occur when the volumetric confinement of the bubble is strongest, the bubble is nearest the vessel wall and/or the angle of incidence of the shockwave reduces the distance between the jet tip and the nearest vessel surface. For a particular case considered, the 40 MPa shockwave utilized in this study to collapse the bubble generated a vessel wall pressure of almost 450 MPa and produced both an invagination and distention of nearly 50% of the initial vessel radius on a 𝒪(10) ns timescale. These results are indicative of the significant potential of shock-induced collapse to contribute to the injury of blood vessels in shockwave lithotripsy. PMID:24015027

Coralic, Vedran; Colonius, Tim

2013-01-01

304

Enhancement of ultrasonically induced cell transfection with artificial cavitation nuclei  

Microsoft Academic Search

Ultrasound mediated gene transfection in cultured immortalized human chondrocytes was enhanced three-fold using artificial cavitation nuclei in the form of Albunex(R). 1.0 MHz ultrasound transmitted through the bottoms of six-well culture plates containing media with green fluorescent protein reporter gene plasmids at a concentration of 40 ?g\\/ml and Albunex(R) at 50×106 bubbles\\/ml, exhibited a peak transfection efficiency of about 50%

William J. Greenleaf; Mark E. Bolander; G. Sarkar; M. B. Goldring; J. F. Greenleaf

1997-01-01

305

Fuel Performance Experiments and Modeling: Fission Gas Bubble Nucleation and Growth in Alloy Nuclear Fuels  

SciTech Connect

Advanced fast reactor systems being developed under the DOE's Advanced Fuel Cycle Initiative are designed to destroy TRU isotopes generated in existing and future nuclear energy systems. Over the past 40 years, multiple experiments and demonstrations have been completed using U-Zr, U-Pu-Zr, U-Mo and other metal alloys. As a result, multiple empirical and semi-empirical relationships have been established to develop empirical performance modeling codes. many mechamistic questions about fission as mobility, bubble coalescience, and gas release have been answered through industrial experience, reearch, and empirical understanding. The advent of modern computational materials science, however, opens new doors of development such that physics-based multi-scale models may be developed to enable a new generation of predictive fuel performance codes that are not limited by empiricism.

McDeavitt, Sean; Shao, Lin; Tsvetkov, Pavel; Wirth, Brian; Kennedy, Rory

2014-04-07

306

Effect of tensile stress on cavitation damage formation in mercury  

NASA Astrophysics Data System (ADS)

Cavitation erosion or so called pitting damage was investigated under tensile stress conditions in mercury. In MW-class liquid metal spallation targets, pitting damage is a critical issue to satisfy required power and/or lifetime of the target vessel. Cavitation occurs by negative pressure which is induced through pressure wave propagation due to proton beam injection. Pitting damage is formed by microjet and/or shock wave during cavitation bubble collapse. A mercury target vessel suffers tensile stress due to thermal stress or welding. In order to investigate the effect of tensile stress on pitting damage formation, cavitation erosion tests were performed using stress imposed specimens in mercury. An ultrasonic vibratory horn and electro-Magnetic IMpact Testing Machine (MIMTM) were used to vary the cavitation intensity. In the incubation period of pitting damage, damaged area was slightly increased with increasing imposed tensile stress. In the steady state period, a mean depth of erosion was increased by the tensile stress. Additionally, in order to quantitatively evaluate the effect of tensile stress, an indentation test with Vickers indenter was carried out to quasi-statically simulate the impact load. From the measurement of the diagonal length of the indent aspect ratio and hardness, it is recognized that the threshold of the deformation, i.e. pitting damage formation, was decreased by the tensile stress.

Naoe, Takashi; Kogawa, Hiroyuki; Yamaguchi, Yoshihito; Futakawa, Masatoshi

2010-03-01

307

Theory of supercompression of vapor bubbles and nanoscale thermonuclear fusion  

SciTech Connect

This paper provides the theoretical basis for energetic vapor bubble implosions induced by a standing acoustic wave. Its primary goal is to describe, explain, and demonstrate the plausibility of the experimental observations by Taleyarkhan et al. [Science 295, 1868 (2002); Phys. Rev. E 69, 036109 (2004)] of thermonuclear fusion for imploding cavitation bubbles in chilled deuterated acetone. A detailed description and analysis of these data, including a resolution of the criticisms that have been raised, together with some preliminary HYDRO code simulations, has been given by Nigmatulin et al. [Vestnik ANRB (Ufa, Russia) 4, 3 (2002); J. Power Energy 218-A, 345 (2004)] and Lahey et al. [Adv. Heat Transfer (to be published)]. In this paper a hydrodynamic shock (i.e., HYDRO) code model of the spherically symmetric motion for a vapor bubble in an acoustically forced liquid is presented. This model describes cavitation bubble cluster growth during the expansion period, followed by a violent implosion during the compression period of the acoustic cycle. There are two stages of the bubble dynamics process. The first, low Mach number stage, comprises almost all the time of the acoustic cycle. During this stage, the radial velocities are much less than the sound speeds in the vapor and liquid, the vapor pressure is very close to uniform, and the liquid is practically incompressible. This process is characterized by the inertia of the liquid, heat conduction, and the evaporation or condensation of the vapor. The second, very short, high Mach number stage is when the radial velocities are the same order, or higher, than the sound speeds in the vapor and liquid. In this stage high temperatures, pressures, and densities of the vapor and liquid take place. The model presented herein has realistic equations of state for the compressible liquid and vapor phases, and accounts for nonequilibrium evaporation/condensation kinetics at the liquid/vapor interface. There are interacting shock waves in both phases, which converge toward and reflect from the center of the bubble, causing dissociation, ionization, and other related plasma physics phenomena during the final stage of bubble collapse. For a vapor bubble in a deuterated organic liquid (e.g., acetone), during the final stage of collapse there is a nanoscale region (diameter {approx}100 nm) near the center of the bubble in which, for a fraction of a picosecond, the temperatures and densities are extremely high ({approx}10{sup 8} K and {approx}10 g/cm{sup 3}, respectively) such that thermonuclear fusion may take place. To quantify this, the kinetics of the local deuterium/deuterium (D/D) nuclear fusion reactions was used in the HYDRO code to determine the intensity of the fusion reactions. Numerical HYDRO code simulations of the bubble implosion process have been carried out for the experimental conditions used by Taleyarkhan et al. [Science 295, 1868 (2002); Phys. Rev. E 69, 036109 (2004)] at Oak Ridge National Laboratory. The results show good agreement with the experimental data on bubble fusion that was measured in chilled deuterated acetone.

Nigmatulin, Robert I.; Akhatov, Iskander Sh.; Topolnikov, Andrey S.; Bolotnova, Raisa Kh.; Vakhitova, Nailya K.; Lahey, Richard T. Jr.; Taleyarkhan, Rusi P. [Institute of Mechanics, Ufa Branch of the Russian Academy of Sciences, 6 Karl Marx Street, Ufa 450000 (Russian Federation); Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590 (United States); School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907-1290 (United States)

2005-10-01

308

Tumour-associated macrophages targeted transfection with NF-?B decoy/mannose-modified bubble lipoplexes inhibits tumour growth in tumour-bearing mice.  

PubMed

Tumour-associated macrophages (TAM) exhibit an M2 phenotype that promotes tumour progression, and conversion of M2 TAM toward a tumouricidal M1 phenotype is a promising anti-cancer therapy. As NF-?B is a key regulator of macrophage polarization, we developed an in vivo TAM-targeting delivery system that combines mannose-modified bubble liposomes/NF-?B decoy complexes (Man-PEG bubble lipoplexes) and ultrasound (US) exposure. We investigated the effects of NF-?B decoy transfection on TAM phenotype in solid tumour-bearing mice. Post-transfection tumour growth and survival rates were also recorded. Th2 cytokine (IL-10) level in TAM was significantly lower by NF-?B decoy transfection using Man-PEG bubble lipoplexes and US exposure, while Th1 cytokine levels (IL-1?, TNF-? and IL-6) were significantly higher when compared with controls. In addition, mRNA levels of vascular endothelial growth factor, matrix metalloproteinase-9 and arginase were significantly lower in TAM post-NF-?B decoy transfection. Importantly, TAM-targeted NF-?B decoy transfection inhibited tumour growth and prolonged survival rates in mice. Therefore, TAM-targeted NF-?B decoy transfection using Man-PEG bubble lipoplexes and US exposure may be an effective approach for anti-cancer therapy based on TAM phenotypic conversion from M2 toward M1. PMID:24579693

Kono, Yusuke; Kawakami, Shigeru; Higuchi, Yuriko; Maruyama, Kazuo; Yamashita, Fumiyoshi; Hashida, Mitsuru

2014-06-01

309

Salt precipitation and trapped liquid cavitation in micrometric capillary tubes.  

PubMed

Laboratory evidence shows that the occurrence of solid salt in soil pores causes drastic changes in the topology of the porous spaces and possibly also in the properties of the occluded liquid. Observations were made on NaCl precipitation in micrometric cylindrical capillary tubes, filled with a 5.5 M NaCl aqueous solution and submitted to drying conditions. Solid plug-shaped NaCl (halite) commonly grows at the two liquid-air interfaces, isolating the inner liquid column. The initially homogeneous porosity of the capillary tube becomes heterogeneous because of these two NaCl plugs, apparently closing the micro-system on itself. After three months, we observed cavitation of a vapor bubble in the liquid behind the NaCl plugs. This event demonstrates that the occluded liquid underwent a metastable superheated state, controlled by the capillary state of thin capillary films persisting around the NaCl precipitates. These observations show, first, that salt precipitation can create a heterogeneous porous medium in an initially regular network, thus changing the transfer properties due to isolating significant micro-volumes of liquid. Second, our experiment illustrates that the secondary salt growth drastically modifies the thermo-chemical properties of the occluded liquid and thus its reactive behavior. PMID:21600580

Bouzid, Majda; Mercury, Lionel; Lassin, Arnault; Matray, Jean-Michel

2011-08-15

310

Assessment of shock wave lithotripters via cavitation potential  

PubMed Central

A method to characterize shock wave lithotripters by examining the potential for cavitation associated with the lithotripter shock wave (LSW) has been developed. The method uses the maximum radius achieved by a bubble subjected to a LSW as a representation of the cavitation potential for that region in the lithotripter. It is found that the maximum radius is determined by the work done on a bubble by the LSW. The method is used to characterize two reflectors: an ellipsoidal reflector and an ellipsoidal reflector with an insert. The results show that the use of an insert reduced the ?6 dB volume (with respect to peak positive pressure) from 1.6 to 0.4 cm3, the ?6 dB volume (with respect to peak negative pressure) from 14.5 to 8.3 cm3, and reduced the volume characterized by high cavitation potential (i.e., regions characterized by bubbles with radii larger than 429 µm) from 103 to 26 cm3. Thus, the insert is an effective way to localize the potentially damaging effects of shock wave lithotripsy, and suggests an approach to optimize the shape of the reflector. PMID:19865493

Iloreta, Jonathan I.; Zhou, Yufeng; Sankin, Georgy N.; Zhong, Pei; Szeri, Andrew J.

2008-01-01

311

The effects of total dissolved gas on chum salmon fry survival, growth, gas bubble disease, and seawater tolerance  

SciTech Connect

Chum salmon Oncorhynchus keta alevin developing in gravel habitats downstream of Bonneville Dam on the Columbia River are exposed to elevated levels of total dissolved gas (TDG) when water is spilled at the dam to move migrating salmon smolts downstream to the Pacific Ocean. Current water quality criteria for the management of dissolved gas in dam tailwaters were developed primarily to protect salmonid smolts and are assumed to be protective of alevin if adequate depth compensation is provided. We studied whether chum salmon alevin exposed to six levels of dissolved gas ranging from 100% to 130% TDG at three development periods between hatch and emergence (hereafter early, middle, and late stage) suffered differential mortality, growth, gas bubble disease, or seawater tolerance. Each life stage was exposed for 50 d (early stage), 29 d (middle stage), or 16 d (late stage) beginning at 13, 34, and 37 d post-hatch, respectively, through 50% emergence. The mortality for all stages from exposure to emergence was estimated to be 8% (95% confidence interval (CI) of 4% to 12%) when dissolved gas levels were between 100% and 117% TDG. Mortality significantly increased as dissolved gas levels rose above 117% TDG,; with the lethal concentration that produced 50% mortality (LC50 ) was estimated to be 128.7% TDG (95% CI of 127.2% to 130.2% TDG) in the early and middle stages. By contrast, there was no evidence that dissolved gas level significantly affected growth in any life stage except that the mean wet weight at emergence of early stage fish exposed to 130% TDG was significantly less than the modeled growth of unexposed fish. The proportion of fish afflicted with gas bubble disease increased with increasing gas concentrations and occurred most commonly in the nares and gastrointestinal tract. Early stage fish exhibited higher ratios of filament to lamellar gill chloride cells than late stage fish, and these ratios increased and decreased for early and late stage fish, respectively, as gas levels increased; however, there were no significant differences in mortality between life stages after 96 h in seawater. The study results suggest that current water quality guidelines for the management of dissolved gas appear to offer a conservative level of protection to chum salmon alevin incubating in gravel habitat downstream of Bonneville Dam.

Geist, David R.; Linley, Timothy J.; Cullinan, Valerie I.; Deng, Zhiqun

2013-02-01

312

Multi million-to-Billion Atom Molecular Dynamics Simulations of Cavitation-Induced Damage on a Silica Slab  

NASA Astrophysics Data System (ADS)

Cavitation bubble collapse causes severe damage to materials. For example, cavitation erosion is a major threat to the safety of nuclear power plants. The cavitation bubbles may also be utilized for preventing stress corrosion cracking with water jet peening technology. We have performed multi million-to-billion atoms molecular dynamics simulations to investigate the shock-induced cavitation damage mechanism on an amorphous silica slab in water. The system consists of a 60nm thick silica slab immersed in water in an MD box of dimension 285 x 200 x 200 nm3. A nanobubble is created by removing water molecules within a sphere of radius 100 nm. To apply a planar shock, we assign a uniform particle velocity vp on the entire system towards a planar momentum mirror. We have performed the simulation with two kinds of bubbles, an empty bubble and a bubble filled with inert gas. The simulation results reveal nanojet formation during bubble collapse causing damage on the silica surface; however, the damage was significantly reduced in the case of the filled bubble. We will discuss the effect of the presence of inter gas inside the nanobubble on the pressure distribution, the extent of damage, and collapse behavior corresponding the shock front.

Shekhar, Adarsh; Nomura, Ken-Ichi; Kalia, Rajiv; Nakano, Aiichiro; Vashishta, Priya

2012-02-01

313

Cavitation on a semicircular leading-edge plate and NACA0015 hydrofoil: Visualization and velocity measurement  

NASA Astrophysics Data System (ADS)

Using high-speed visualization and particle image velocimetry (PIV), cavitating flows near a plane plate with a rounded leading edge and NACA0015 hydrofoil at angles of attack from 0° to 9° are studied. In the experiments, several known types of cavitation, as well as some differences, were detected with variation of the cavitation number. In particular, at small angles of attack (up to 3°), cavitation on the plate appears in the form of a streak array; on the hydrofoil, it appears in the form of individual bubbles. For the NACA0015 hydrofoil, isolated and intermittent streaks are divided and grow in regimes with developed cavitation; then, however, they merge in bubble clouds and form an extremely regular cellular structure. With an increase in the angle of attack to 9°, the structure of the cavitation cavity on the hydrofoil is changed by the streak structure, like in the case with the plate. In this work, it is shown that PIV permits one to measure the velocity in cavitating flows, in particular, within the gas-vapor phase. It was established from the analysis of distributions of the average flow velocity and moments of velocity fluctuations that the cavitation generation is caused by the development of the carrier fluid flow near the leading edge of the hydrofoil. Down the stream, however, the flow structure strongly depends on the cavitation regime, which is seen from the comparison of the distributions with the case of a single-phase flow. The presented measurements qualitatively verify general trends and show some quantitative distinctions for the two considered flowpast bodies.

Kravtsova, A. Yu.; Markovich, D. M.; Pervunin, K. S.; Timoshevskii, M. V.; Hanjali?, K.

2014-12-01

314

Buoyant Bubbles  

NSDL National Science Digital Library

What keeps bubbles and other things, like airplanes, floating or flying in the air? In this activity, learners blow bubbles and wave 3x5 cards above, below and on different sides of the bubbles to keep them afloat as long as possible. The Did You Know section explains the Bernoulli principle: how waving cards above the bubbles helps keep them afloat because faster moving air exerts less pressure to push the bubbles down. The activity can be extended by having learners wave their bubbles through an obstacle course they design themselves.

2012-06-26

315

Correlation between simulations and cavitation-induced erosion damage in Spallation Neutron Source target modules after operation  

SciTech Connect

An explicit finite element (FE) technique developed for estimating dynamic strain in the Spallation Neutron Source (SNS) mercury target module vessel is now providing insight into cavitation damage patterns observed in used targets. The technique uses an empirically developed material model for the mercury that describes liquid-like volumetric stiffness combined with a tensile pressure cut-off limit that approximates cavitation. The longest period each point in the mercury is at the tensile cut-off threshold is denoted its saturation time. Now, the pattern of saturation time can be obtained from these simulations and is being positively correlated with observed damage patterns and is interpreted as a qualitative measure of damage potential. Saturation time has been advocated by collaborators at J-Parc as a factor in predicting bubble nuclei growth and collapse intensity. The larger the ratio of maximum bubble size to nucleus, the greater the bubble collapse intensity to be expected; longer saturation times result in greater ratios. With the recent development of a user subroutine for the FE solver saturation time is now provided over the entire mercury domain. Its pattern agrees with spots of damage seen above and below the beam axis on the SNS inner vessel beam window and elsewhere. The other simulation result being compared to observed damage patterns is mercury velocity at the wall. Related R&D has provided evidence for the damage mitigation that higher wall velocity provides. In comparison to observations in SNS targets, inverse correlation of high velocity to damage is seen. In effect, it is the combination of the patterns of saturation time and low velocity that seems to match actual damage patterns.

Riemer, Bernie [ORNL] [ORNL; McClintock, David A [ORNL] [ORNL; Kaminskas, Saulius [ORNL] [ORNL; Abdou, Ashraf A [ORNL] [ORNL

2014-01-01

316

Characterization of the HIFU-induced cloud cavitation for the optimization of high pressure concentration for lithotripsy  

NASA Astrophysics Data System (ADS)

The bubble cloud is a highly scattering object; to the contrary, it is also a strong pressure wave enhancer, if the wavelength and amplitude of the wave is appropriate ones. We've been investigated the stone erosion enhancement in the existence of bubble cloud on the stone surface by using high frequency waveform that immediately followed by low frequency trailing pulse (C-C waveform; Cavitation Control waveform). For the optimization of the high pressure concentration it is needed to know, "how the enhancement of the pressure wave through the bubble cloud" and "how we can estimate the efficiency thorough the passive detection of the reflected signal from the bubble cloud". We measured the "Transmittance" and "Reflection" by two types of acoustic emission sensors, PCD (Passive Cavitation Detector) and DCD (Direct Collapse Detector). The results well depict the characteristics of the HIFU-induced bubble cloud responses. The response curves reveal that the local maxima of the "Transmittance" and "Reflection" occur at the different bubble cloud volume. The PCD signal is higher in the larger bubble cloud band. The DCD signal is larger in the smaller bubble cloud band. These tendencies imply the therapeutic effect through the bubble cloud is optimized in the small bubble cloud region and too much bubbles scatter the incoming ultrasound wave and the ultrasound wave does not efficiently propagates inward the bubble cloud. Thus, for the optimization of the bubble cloud collapse, the cavitation threshold can be the lower limit and the large scattering amplitude from bubble cloud can be the upper limit of the ultrasound conditions.

Ikeda, Teiichiro; Yoshizawa, Shin; Kaneko, Yukio; Matsumoto, Yoichiro

2006-05-01

317

Cavitation behavior observed in three monoleaflet mechanical heart valves under accelerated testing conditions.  

PubMed

Accelerated testing provides a substantial amount of data on mechanical heart valve durability in a short period of time, but such conditions may not accurately reflect in vivo performance. Cavitation, which occurs during mechanical heart valve closure when local flow field pressure decreases below vapor pressure, is thought to play a role in valve damage under accelerated conditions. The underlying flow dynamics and mechanisms behind cavitation bubble formation are poorly understood. Under physiologic conditions, random perivalvular cavitation is difficult to capture. We applied accelerated testing at a pulse rate of 600 bpm and transvalvular pressure of 120 mm Hg, with synchronized videographs and high-frequency pressure measurements, to study cavitation of the Medtronic Hall Standard (MHS), Medtronic Hall D-16 (MHD), and Omni Carbon (OC) valves. Results showed cavitation bubbles between 340 and 360 micros after leaflet/housing impact of the MHS, MHD, and OC valves, intensified by significant leaflet rebound. Squeeze flow, Venturi, and water hammer effects each contributed to cavitation, depending on valve design. PMID:18356649

Lo, Chi-Wen; Liu, Jia-Shing; Li, Chi-Pei; Lu, Po-Chien; Hwang, Ned H

2008-01-01

318

A review and assessment of hydrodynamic cavitation as a technology for the future.  

PubMed

In the present work, the current status of the hydrodynamic cavitation reactors has been reviewed discussing the bubble dynamics analysis, optimum design considerations, design correlations for cavitational intensity (in terms of collapse pressure)/cavitational yield and different successful chemical synthesis applications clearly illustrating the utility of these types of reactors. The theoretical discussion based on the modeling of the bubble dynamics equations aims at understanding the design information related to the dependency of the cavitational intensity on the operating parameters and recommendations have been made for the choice of the optimized conditions of operating parameters. The design information based on the theoretical analysis has also been supported with some experimental illustrations concentrating on the chemical synthesis applications. Assessment of the hydrodynamic cavitation reactors and comparison with the sonochemical reactors has been done by citing the different industrially important reactions (oxidation of toluene, o-xylene, m-xylene, p-xylene, mesitylene, o-nitrotoluene, p-nitrotoluene, m-nitrotoluene, o-chlorotoluene and p-chlorotoulene, and trans-esterification reaction i.e., synthesis of bio-diesel). Some recommendations have also been made for the future work to be carried out as well as the choice of the operating conditions for realizing the dream of industrial scale applications of the cavitational reactors. PMID:15474948

Gogate, Parag R; Pandit, Aniruddha B

2005-01-01

319

A new method of quantitative cavitation assessment in the field of a lithotripter.  

PubMed

Transient cavitation seems to be a very important effect regarding the interaction of pulsed high-energy ultrasound with biologic tissues. Using a newly developed laser optical system we are able to determine the life-span of transient cavities (relative error less than +/- 5%) in the focal region of a lithotripter (Lithostar, Siemens). The laser scattering method is based on the detection of scattered laser light reflected during a bubble's life. This method requires no sort of sensor material in the pathway of the sound field. Thus, the method avoids any interference with bubble dynamics during the measurement. The knowledge of the time of bubble decay allows conclusions to be reached on the destructive power of the cavities. By combining the results of life-span measurements with the maximum bubble radius using stroboscopic photographs we found that the measured time of bubble decay and the predicted time using Rayleigh's law only differs by about 13% even in the case of complex bubble fields. It can be shown that the laser scattering method is feasible to assess cavitation events quantitatively. Moreover, it will enable us to compare different medical ultrasound sources that have the capability to generate cavitation. PMID:8783465

Jöchle, K; Debus, J; Lorenz, W J; Huber, P

1996-01-01

320

Soap Bubbles  

NSDL National Science Digital Library

Learners explore three-dimensional geometric frames including cubes and tetrahedrons, as they create bubble wands with pipe cleaners and drinking straws. Then they investigate how soap film flows into a state of minimum energy when they lift the wand up from the bubble solution. Learners also see how light reflection and interference create shimmering colors in the bubbles.

2011-12-07

321

Best Bubbles  

NSDL National Science Digital Library

In this activity, learners experiment with creating various types of bubble solutions and testing which ingredients form longer-lasting bubbles. Learners investigate how surface tension works and the importance of using a surfactant to make bubbles. This activity includes a video about NASA astronaut Don Pettit, who used candy corn to conduct science experiments during his stint aboard the International Space Station.

Austen Saltz

2010-01-01

322

Attached cavitation at a small diameter ultrasonic horn tip  

NASA Astrophysics Data System (ADS)

Ultrasonic horn transducers are frequently used in applications of acoustic cavitation in liquids, for instance, for cell disruption or sonochemical reactions. They are operated typically in the frequency range up to about 50 kHz and have tip diameters from some mm to several cm. It has been observed that if the horn tip is sufficiently small and driven at high amplitude, cavitation is very strong, and the tip can be covered entirely by the gas/vapor phase for longer time intervals. A peculiar dynamics of the attached cavity can emerge with expansion and collapse at a self-generated frequency in the subharmonic range, i.e., below the acoustic driving frequency. Here, we present a systematic study of the cavitation dynamics in water at a 20 kHz horn tip of 3 mm diameter. The system was investigated by high-speed imaging with simultaneous recording of the acoustic emissions. Measurements were performed under variation of acoustic power, air saturation, viscosity, surface tension, and temperature of the liquid. Our findings show that the liquid properties play no significant role in the dynamics of the attached cavitation at the small ultrasonic horn. Also the variation of the experimental geometry, within a certain range, did not change the dynamics. We believe that the main two reasons for the peculiar dynamics of cavitation on a small ultrasonic horn are the higher energy density on a small tip and the inability of the big tip to "wash" away the gaseous bubbles. Calculation of the somewhat adapted Strouhal number revealed that, similar to the hydrodynamic cavitation, values which are relatively low characterize slow cavitation structure dynamics. In cases where the cavitation follows the driving frequency this value lies much higher - probably at Str > 20. In the spirit to distinguish the observed phenomenon with other cavitation dynamics at ultrasonic transducer surfaces, we suggest to term the observed phenomenon of attached cavities partly covering the full horn tip as "acoustic supercavitation." This reflects the conjecture that not the sound field in terms of acoustic (negative) pressure in the liquid is responsible for nucleation, but the motion of the transducer surface.

Žnidar?i?, Anton; Mettin, Robert; Cairós, Carlos; Dular, Matevž

2014-02-01

323

Numerical investigation on the cavitating flow in Annular Jet Pump under different flow rate ratio  

NASA Astrophysics Data System (ADS)

The nozzle of annular jet pump (AJP) is annular and the secondary flow is encircled by the primary flow which is of great differences with that of central jet pump (CJP). Since the high velocity working flow soaring out the annular nozzle adheres to the inner wall, the cavitation is considerably easy to be induced at the intersection of the suction chamber and the throat. This paper mainly investigated the inception and development of the cavitation in an AJP under different flow rate ratio q by numerical methods and the results was validated by the experimentation. The turbulent model is set as Realizable k-? model, which combined with the mixture multiphase model and the Schnerr-Sauer cavitation model. The SIMPLEC algorithm is applied to solve the coupling of pressure and velocity. The simulated results confirms well with experimental data. As the working condition varies, specifically when the pressure of the outlet decreases to a certain value, the intersection of the suction chamber and the throat sees the inception and development of the cavitation and the bubble generates there adheres to the inner wall. With the decreasing outlet pressure, the cavitation region expands to the diffuser along the inner wall, and also to the axis. When the cavitation region develops to the axis and the pressure there reaches to the critical cavitation pressure (generally vapor pressure), the pump turns into the operation limits and the efficiency drops abruptly. Furthermore, when the flow rate ratio q is considerably low (generally <0.2), the shearing layer and the center of the recirculation also experience the cavitation inception. It is for this reason that the relationship between the critical cavitation number qc and the cavitation flow rate ratio qc can be divided into two parts. When ?c<0.31, it varies little with the increasing qc, while it increases linearly with the increasing qc when ranging from 0.31 to 1.58.

Xiao, L. Z.; Long, X. P.; Lyu, Q.; Hu, Y.; Wang, Q. Q.

2014-12-01

324

Lowering Cavitation Threshold Using Bifrequency Excitation: Nonlinear Aspect And Influence Of The Difference Frequency  

NASA Astrophysics Data System (ADS)

The control of cavitation phenomena is a challenge in ultrasound therapy. Within the scope of investigating the influence of the excitation waveform on the cavitation activity, we have shown that using a signal combining two neighbouring frequencies (f1 and f2) instead of a pure sine wave excitation (f0), a reduction of more than 40% of the power needed to initiate inertial cavitation can be obtained. The present work focused on the influence of such parameters as dissolved gas concentration and the difference frequency ?f = f2-f1, on cavitation thresholds and cavitation activity. Experiments were carried out in a water tank, using a piezoelectric transducer focused on targets of controlled roughness. The acoustic signal diffused, either by the target or by the cavitation bubbles, was filtered using a spectral and cepstral-like method enabling the extraction of a broadband criterion for inertial cavitation. The pulsed excitations (center frequency f0 = 550 kHz) were 1.8 ms long. For experimental conditions where low intensities were needed to trigger cavitation (high dissolved gas concentration), cavitation thresholds measured using bi-frequency excitation were higher than when using mono-frequency excitation. This result indicates that the mechanism responsible for the effect should be the nonlinear combination of two neighbouring frequency components f1 and f2. Concerning the influence of the difference between frequency components for bifrequency excitations, cavitation activity just beyond the threshold was much higher when using bi-frequency signals and was increased when ?f = f2-f1 was increased.

Saletes, Izella; Gilles, Bruno; Béra, Jean-Christophe

2009-04-01

325

The effect of acoustically-induced cavitation on the permeance of a bullfrog urinary bladder.  

PubMed

It is well known that ultrasound enhances drug delivery to tissues, although there is not a general consensus about the responsible mechanisms. However, it is known that the most important factor associated with ultrasonically-enhanced drug permeance through tissues is cavitation. Here we report results from research conducted using a experimental approach adapted from single bubble sonoluminescence experiments which generates very well defined acoustic fields and allows controlled activation and location of cavitation. The experimental design requires that a biological tissue be immersed inside a highly degassed liquid media to avoid random bubble nucleation. Therefore, live frog bladders were used as the living tissue due to their high resistance to hypoxia. Tissue membrane permeance was measured using radiolabeled urea. The results show that an increase in tissue permeance only occurs when cavitation is present near the tissue membrane. Moreover, confocal microscopy shows a direct correlation between permeance increases and physical damage to the tissue. PMID:21110568

Cancelos, Silvina; Moraga, Francisco J; Lahey, Richard T; Shain, William; Parsons, Robert H

2010-11-01

326

Modeling algal growth in bubble columns under sparging with CO2-enriched air.  

PubMed

A theoretical model for predicting biomass growth in semi-continuous mode under sparging with CO(2)-enriched air was developed. The model includes gas-to-liquid mass transfer, algal uptake of carbon dioxide, algal growth kinetics, and light and temperature effects. The model was validated using experimental data on growth of two microalgal species in an internally illuminated photobioreactor: Nannochloropsis salina under gas flow rates of 800 and 1200 mL min(-1) and CO(2) enrichments of 0.5, 1, and 2%; and Scenedesmus sp. at a gas flow rate of 800 mL min(-1) and CO(2) enrichments of 3 and 4%. Temporal algal concentration profiles predicted by the model under semi-continuous mode with harvesting under the different test conditions agreed well with the measured data, with r(2) values ranging from 0.817 to 0.944, p<0.001. As demonstrated, this model can be beneficial in predicting temporal variations in algal concentration and in scheduling harvesting operations under semi-continuous cultivation mode. PMID:22989642

Pegallapati, Ambica Koushik; Nirmalakhandan, Nagamany

2012-11-01

327

EUROMECH Young Scientist Prize Paper "Cavitation in rubber: The role of elasticity"  

E-print Network

EUROMECH Young Scientist Prize Paper "Cavitation in rubber: The role of elasticity" AUTHOR won suddenly "appear" in the interior of rubber. This phenomenon has come to be popularly known as cavitation. It corresponds, at heart, to nothing more than to the growth of defects inherent in rubber. Such defects can

Lopez-Pamies, Oscar

328

Cavitation: a contributory factor in the transition from symmetric to asymmetric jets in cross-flow nozzles  

Microsoft Academic Search

The structure and evolution of cavitation and its influence on jet patterns from two transparent cross-flow nozzles with holes inclined at 90 degrees (nozzle A) and 80 degrees (nozzle B) to the nozzle axis have been investigated using high-speed motion pictures, flash photography and stroboscopic visualization. At the onset, cavitation inception was in the form of travelling bubbles, which were transported along

L. C. Ganippa; G. Bark; S. Andersson; J. Chomiak

2004-01-01

329

Numerical investigation of unsteady cavitation around a NACA 66 hydrofoil using OpenFOAM  

NASA Astrophysics Data System (ADS)

The prediction and control of cavitation damage in pumps, propellers, hydro turbines and fluid machinery in general is necessary during the design stage. The present paper deals with a numerical investigation of unsteady cloud cavitation around a NACA 66 hydrofoil. The current study is focused on understanding the dynamic pressures generated during the cavity collapses as a fundamental characteristic in cavitation erosion. A 2D and 3D unsteady flow simulation has been carried out using OpenFOAM. Then, Paraview and Python programming language have been used to characterize dynamic pressure field. Adapted Large Eddy Simulation (LES) and Zwart cavitation model have been implemented to improve the analysis of cloud motion and to visualize the bubble expansions. Additional results also confirm the correlation between cavity formation and generated pressures.

Hidalgo, V. H.; Luo, X. W.; Escaler, X.; Ji, J.; Aguinaga, A.

2014-12-01

330

Passive cavitation imaging with ultrasound arrays  

PubMed Central

A method is presented for passive imaging of cavitational acoustic emissions using an ultrasound array, with potential application in real-time monitoring of ultrasound ablation. To create such images, microbubble emissions were passively sensed by an imaging array and dynamically focused at multiple depths. In this paper, an analytic expression for a passive image is obtained by solving the Rayleigh–Sommerfield integral, under the Fresnel approximation, and passive images were simulated. A 192-element array was used to create passive images, in real time, from 520-kHz ultrasound scattered by a 1-mm steel wire. Azimuthal positions of this target were accurately estimated from the passive images. Next, stable and inertial cavitation was passively imaged in saline solution sonicated at 520 kHz. Bubble clusters formed in the saline samples were consistently located on both passive images and B-scans. Passive images were also created using broadband emissions from bovine liver sonicated at 2.2 MHz. Agreement was found between the images and source beam shape, indicating an ability to map therapeutic ultrasound beams in situ. The relation between these broadband emissions, sonication amplitude, and exposure conditions are discussed. PMID:20000921

Salgaonkar, Vasant A.; Datta, Saurabh; Holland, Christy K.; Mast, T. Douglas

2009-01-01

331

Extreme conditions during multibubble cavitation: Sonoluminescence as a spectroscopic probe.  

PubMed

We review recent work on the use of sonoluminescence (SL) to probe spectroscopically the conditions created during cavitation, both in clouds of collapsing bubbles (multibubble sonoluminescence, (MBSL)) and in single bubble events. The effective MBSL temperature can be controlled by the vapor pressure of the liquid or the thermal conductivity of the dissolved gas over a range from ?1600 to ?9000K. The effective pressure during MBSL is ?300bar, based on atomic line shifts. Given nanosecond emission times, this means that cooling rates are >10(12)K/s. In sulfuric and phosphoric acid, the low volatility and high solubility of any sonolysis products make bubble collapse more efficient and evidence for an optically opaque plasma core is found. PMID:21247788

Suslick, Kenneth S; Eddingsaas, Nathan C; Flannigan, David J; Hopkins, Stephen D; Xu, Hangxun

2011-07-01

332

Recalcitrant bubbles  

PubMed Central

We demonstrate that thermocapillary forces may drive bubbles against liquid flow in ‘anomalous' mixtures. Unlike ‘ordinary' liquids, in which bubbles migrate towards higher temperatures, we have observed vapour bubbles migrating towards lower temperatures, therefore against the flow. This unusual behaviour may be explained by the temperature dependence of surface tension of these binary mixtures. Bubbles migrating towards their equilibrium position follow an exponential trend. They finally settle in a stationary position just ‘downstream' of the minimum in surface tension. The exponential trend for bubbles in ‘anomalous' mixtures and the linear trend in pure liquids can be explained by a simple model. For larger bubbles, oscillations were observed. These oscillations can be reasonably explained by including an inertial term in the equation of motion (neglected for smaller bubbles). PMID:24740256

Shanahan, Martin E. R.; Sefiane, Khellil

2014-01-01

333

Periodic shock-emission from acoustically driven cavitation clouds: a source of the subharmonic signal.  

PubMed

Single clouds of cavitation bubbles, driven by 254kHz focused ultrasound at pressure amplitudes in the range of 0.48-1.22MPa, have been observed via high-speed shadowgraphic imaging at 1×10(6) frames per second. Clouds underwent repetitive growth, oscillation and collapse (GOC) cycles, with shock-waves emitted periodically at the instant of collapse during each cycle. The frequency of cloud collapse, and coincident shock-emission, was primarily dependent on the intensity of the focused ultrasound driving the activity. The lowest peak-to-peak pressure amplitude of 0.48MPa generated shock-waves with an average period of 7.9±0.5?s, corresponding to a frequency of f0/2, half-harmonic to the fundamental driving. Increasing the intensity gave rise to GOC cycles and shock-emission periods of 11.8±0.3, 15.8±0.3, 19.8±0.2?s, at pressure amplitudes of 0.64, 0.92 and 1.22MPa, corresponding to the higher-order subharmonics of f0/3, f0/4 and f0/5, respectively. Parallel passive acoustic detection, filtered for the fundamental driving, revealed features that correlated temporally to the shock-emissions observed via high-speed imaging, p(two-tailed) < 0.01 (r=0.996, taken over all data). Subtracting the isolated acoustic shock profiles from the raw signal collected from the detector, demonstrated the removal of subharmonic spectral peaks, in the frequency domain. The larger cavitation clouds (>200?m diameter, at maximum inflation), that developed under insonations of peak-to-peak pressure amplitudes >1.0MPa, emitted shock-waves with two or more fronts suggesting non-uniform collapse of the cloud. The observations indicate that periodic shock-emissions from acoustically driven cavitation clouds provide a source for the cavitation subharmonic signal, and that shock structure may be used to study intra-cloud dynamics at sub-microsecond timescales. PMID:25015000

Johnston, Keith; Tapia-Siles, Cecilia; Gerold, Bjoern; Postema, Michiel; Cochran, Sandy; Cuschieri, Alfred; Prentice, Paul

2014-12-01

334

Effects of viscoelasticity on cavitation in drag reducing fluids  

NASA Technical Reports Server (NTRS)

To study cavitation inception in polymer solutions, a blow-down water tunnel with short running times was used. Tests were made using 1/4 and 1/2 inch diameter models of hemispherical-nose cylinders. To accurately detect the inception of cavitation, a reliable technique was developed using a continuously operating He-Ne gas laser. The laser beam was adjusted to grazing incidence with the model at the minimum pressure point where cavitation inception was to be expected. A sensitive photocell was placed at ninety degrees to detect the beam. As incipient cavitation occurred, the bubbles caused scattering of the laser beam which was picked up by the photocell. Static pressure near the model in the working section of the tunnel was measured using a solid-state pressure pick-up. The signals from the photocell and the pressure pick-up were recorded on an oscillograph. Velocity field visualization was achieved using one microsecond duration light pulses scattered by small polystryrene latex spheres in the flow.

Ting, R. Y.

1974-01-01

335

Real-Time Visualization of Joint Cavitation  

PubMed Central

Cracking sounds emitted from human synovial joints have been attributed historically to the sudden collapse of a cavitation bubble formed as articular surfaces are separated. Unfortunately, bubble collapse as the source of joint cracking is inconsistent with many physical phenomena that define the joint cracking phenomenon. Here we present direct evidence from real-time magnetic resonance imaging that the mechanism of joint cracking is related to cavity formation rather than bubble collapse. In this study, ten metacarpophalangeal joints were studied by inserting the finger of interest into a flexible tube tightened around a length of cable used to provide long-axis traction. Before and after traction, static 3D T1-weighted magnetic resonance images were acquired. During traction, rapid cine magnetic resonance images were obtained from the joint midline at a rate of 3.2 frames per second until the cracking event occurred. As traction forces increased, real-time cine magnetic resonance imaging demonstrated rapid cavity inception at the time of joint separation and sound production after which the resulting cavity remained visible. Our results offer direct experimental evidence that joint cracking is associated with cavity inception rather than collapse of a pre-existing bubble. These observations are consistent with tribonucleation, a known process where opposing surfaces resist separation until a critical point where they then separate rapidly creating sustained gas cavities. Observed previously in vitro, this is the first in-vivo macroscopic demonstration of tribonucleation and as such, provides a new theoretical framework to investigate health outcomes associated with joint cracking. PMID:25875374

Rowe, Lindsay

2015-01-01

336

Bubble dynamics under acoustic excitation with multiple frequencies  

NASA Astrophysics Data System (ADS)

Because of its magnificent mechanical and chemical effects, acoustic cavitation plays an important role in a broad range of biomedical, chemical and mechanical engineering problems. Particularly, irradiation of the multiple frequency acoustic wave could enhance the effects of cavitation. The advantages of employment of multi-frequency ultrasonic field include decreasing the cavitation thresholds, promoting cavitation nuclei generation, increasing the mass transfer and improving energy efficiency. Therefore, multi-frequency ultrasonic systems are employed in a variety of applications, e.g., to enhance the intensity of sonoluminenscence, to increase efficiency of sonochemical reaction, to improve the accuracy of ultrasound imaging and the efficiency of tissue ablation. Compared to single-frequency systems, a lot of new features of bubble dynamics exist in multi-frequency systems, such as special properties of oscillating bubbles, unique resonances in the bubble response curves, and unusual chaotic behaviours. In present paper, the underlying mechanisms of the cavitation effects under multi-frequency acoustical excitation are also briefly introduced.

Zhang, Y. N.; Zhang, Y. N.; Li, S. C.

2015-01-01

337

Inertial cavitation of microbubbles in ultrasound contrast agents: potential hazards of localized heating  

NASA Astrophysics Data System (ADS)

Microbubbles used as contrast agents in ultrasound diagnostics can undergo highly nonlinear oscillations under the influence of the driving sound pulses. We simulate the dynamics of inertially cavitating bubbles and show that a large part of the incident energy is re-emitted as sound at ultra-high frequencies. Its subsequent absorption and conversion into heat generates very high temperatures at micrometer distances from the bubble. The amount of energy deposited in blood or tissue is highly sensitive to the size distribution of the bubbles and to the amplitude of the driving pressure. We discuss the potential for harmful effects of the localized heating on the patient.

Hilgenfeldt, Sascha; Lohse, Detlef; Zomack, Michael

1999-11-01

338

Etiology of gas bubble disease  

SciTech Connect

Gas bubble disease is a noninfectious, physically induced process caused by uncompensated hyperbaric pressure of total dissolved gases. When pressure compensation is inadequate, dissolved gases may form emboli (in blood) and emphysema (in tissues). The resulting abnormal physical presence of gases can block blood vessels (hemostasis) or tear tissues, and may result in death. Population mortality is generally skewed, in that the median time to death occurs well before the average time to death. Judged from mortality curves, three stages occur in gas bubble disease: (1) a period of gas pressure equilibrium, nonlethal cavitation, and increasing morbidity; (2) a period of rapid and heavy mortality; and (3) a period of protracted survival, despite lesions, and dysfunction that eventually terminates in total mortality. Safe limits for gas supersaturation depend on species tolerance and on factors that differ among hatcheries and rivers, between continuous and intermittent exposures, and across ranges of temperature and salinity.

Bouck, G.R.

1980-11-01

339

Enhancing gas-liquid mass transfer rates in non-newtonian fermentations by confining mycelial growth to microbeads in a bubble column  

SciTech Connect

The performance of a penicillin fermentation was assessed in a laboratory-scale bubble column fermentor, with mycelial growth confined to the pore matrix of celite beads. Final cell densities of 29 g/L and penicillin titres of 5.5 g/L were obtained in the confined cell cultures. In comparison, cultures of free mycelial cells grown in the absence of beads experienced dissolved oxygen limitations in the bubble column, giving only 17 g/L final cell concentrations with equally low penicillin titres of 2 g/L. The better performance of the confined cell cultures was attributed to enhanced gas liquid mass transfer rates, with mass transfer coefficients (k /SUB L/ a) two to three times higher than those determined in the free cell cultures. Furthermore, the confined cell cultures showed more efficient utilization of power input for mass transfer, providing up to 50% reduction in energy requirements for aeration.

Gbewonyo, K.; Wang, D.I.C.

1983-12-01

340

Big Bubbles  

NSDL National Science Digital Library

How do you measure a bubble when it's floating? You can't really, but in this activity, learners can measure the diameter of the ring of suds a bubble leaves on a flat surface. The fun is blowing up the bubbles as big as possible with a straw. Then comes the measuring. This activity can be used to connect science and math, and makes a great rainy day or indoor lunch activity.

2012-06-26

341

Cavitation-resistant inducer  

DOEpatents

An improvement in an inducer for a pump is disclosed wherein the inducer includes a hub, a plurality of radially extending substantially helical blades and a wall member extending about and encompassing an outer periphery of the blades. The improvement comprises forming adjacent pairs of blades and the hub to provide a substantially rectangular cross-sectional flow area which cross-sectional flow area decreases from the inlet end of the inducer to a discharge end of the inducer, resulting in increased inducer efficiency improved suction performance, reduced susceptibility to cavitation, reduced susceptibility to hub separation and reduced fabrication costs. 11 figs.

Dunn, C.; Subbaraman, M.R.

1989-06-13

342

Cavitation-resistant inducer  

DOEpatents

An improvement in an inducer for a pump wherein the inducer includes a hub, a plurality of radially extending substantially helical blades and a wall member extending about and encompassing an outer periphery of the blades. The improvement comprises forming adjacent pairs of blades and the hub to provide a substantially rectangular cross-sectional flow area which cross-sectional flow area decreases from the inlet end of the inducer to a discharge end of the inducer, resulting in increased inducer efficiency improved suction performance, reduced susceptibility to cavitation, reduced susceptibility to hub separation and reduced fabrication costs.

Dunn, Charlton (Calabasas, CA); Subbaraman, Maria R. (Canoga Park, CA)

1989-01-01

343

Cavitation phenomena in mechanical heart valves: studied by using a physical impinging rod system.  

PubMed

When studying mechanical heart valve cavitation, a physical model allows direct flow field and pressure measurements that are difficult to perform with actual valves, as well as separate testing of water hammer and squeeze flow effects. Movable rods of 5 and 10 mm diameter impinged same-sized stationary rods to simulate squeeze flow. A 24 mm piston within a tube simulated water hammer. Adding a 5 mm stationary rod within the tube generated both effects simultaneously. Charged-coupled device (CCD) laser displacement sensors, strobe lighting technique, laser Doppler velocimetry (LDV), particle image velocimetry (PIV) and high fidelity piezoelectric pressure transducers measured impact velocities, cavitation images, squeeze flow velocities, vortices, and pressure changes at impact, respectively. The movable rods created cavitation at critical impact velocities of 1.6 and 1.2 m/s; squeeze flow velocities were 2.8 and 4.64 m/s. The isolated water hammer created cavitation at 1.3 m/s piston speed. The combined piston and stationary rod created cavitation at an impact speed of 0.9 m/s and squeeze flow of 3.2 m/s. These results show squeeze flow alone caused cavitation, notably at lower impact velocity as contact area increased. Water hammer alone also caused cavitation with faster displacement. Both effects together were additive. The pressure change at the vortex center was only 150 mmHg, which cannot generate the magnitude of pressure drop required for cavitation bubble formation. Cavitation occurred at 3-5 m/s squeeze flow, significantly different from the 14 m/s derived by Bernoulli's equation; the temporal acceleration of unsteady flow requires further study. PMID:20490686

Lo, Chi-Wen; Chen, Sheng-Fu; Li, Chi-Pei; Lu, Po-Chien

2010-10-01

344

Sonochemical and high-speed optical characterization of cavitation generated by an ultrasonically oscillating dental file in root canal models.  

PubMed

Ultrasonically Activated Irrigation makes use of an ultrasonically oscillating file in order to improve the cleaning of the root canal during a root canal treatment. Cavitation has been associated with these oscillating files, but the nature and characteristics of the cavitating bubbles were not yet fully elucidated. Using sensitive equipment, the sonoluminescence (SL) and sonochemiluminescence (SCL) around these files have been measured in this study, showing that cavitation occurs even at very low power settings. Luminol photography and high-speed visualizations provided information on the spatial and temporal distribution of the cavitation bubbles. A large bubble cloud was observed at the tip of the files, but this was found not to contribute to SCL. Rather, smaller, individual bubbles observed at antinodes of the oscillating file with a smaller amplitude were leading to SCL. Confinements of the size of bovine and human root canals increased the amount of SL and SCL. The root canal models also showed the occurrence of air entrainment, resulting in the generation of stable bubbles, and of droplets, near the air-liquid interface and leading eventually to a loss of the liquid. PMID:23735893

Macedo, R G; Verhaagen, B; Fernandez Rivas, D; Gardeniers, J G E; van der Sluis, L W M; Wesselink, P R; Versluis, M

2014-01-01

345

Dynamics of a Spherical Vapor\\/Gas Bubble in Varying Pressure Fields  

Microsoft Academic Search

A mathematical model is developed to simulate the radial motion of cavitation bubbles. The heat and mass transports including phase change are formulated precisely. In order to reduce the computational cost without loss of the important thermo-fluid phenomena, two simplifications are employed: time-dependent bubble radius is described using the Rayleigh-Plesset equation; the pressure in the bubble is assumed to be

Hisanobu Kawashima; Masaharu Kameda

2008-01-01

346

A study on measurement technique for amount of generated acoustic cavitation-investigation of broadband integrated voltage by comparing with sound pressure and sonochemical luminescence-  

NASA Astrophysics Data System (ADS)

We have been studying a quantitative technique for measuring the amount of generated acoustic cavitation. Cavitation plays a key role in several fields. Therefore, a precise technique for measuring the amount of generated cavitation is required in order to attain a balance between safety and effectiveness. Hence, we have been investigating a measurement technique based on broadband integrated voltage (BIV). BIV is a value integrated from the high-frequency components of broadband noise in frequency spectra of a signal received from a cavitation sensor. Broadband noise is changed by the production of cavitation bubbles. In previous studies, we reported that BIV is a parameter which reflects the energy of broadband noise generated by cavitation. In this study, the spatial distribution of cavitation generation in a water vessel was measured in terms of BIV. As a result, the respective peak positions of BIV and the acoustic pressure differed in the horizontal direction. Although the acoustic pressure showed a peak at the center position, BIV was low at the same position, and the peaks of BIV were found on both sides of the acoustic pressure peak. The reason for this was the absence of cavitation bubbles at the center due to the flow of cavitation bubbles towards the water surface induced by acoustic streaming. Also, BIV was higher around the water surface in the vertical direction. The results revealed a correlation with the emission distribution of sonochemical luminescence. As a consequence, BIV has the potential to become an accurate tool for measuring the spatial distribution of cavitation generation in a water vessel.

Uchida, Takeyoshi; Takeuchi, Shinichi; Kikuchi, Tsuneo

2012-05-01

347

A simple model of ultrasound propagation in a cavitating liquid. Part I: Theory, nonlinear attenuation and traveling wave generation  

E-print Network

The bubbles involved in sonochemistry and other applications of cavitation oscillate inertially. A correct estimation of the wave attenuation in such bubbly media requires a realistic estimation of the power dissipated by the oscillation of each bubble, by thermal diffusion in the gas and viscous friction in the liquid. Both quantities and calculated numerically for a single inertial bubble driven at 20 kHz, and are found to be several orders of magnitude larger than the linear prediction. Viscous dissipation is found to be the predominant cause of energy loss for bubbles small enough. Then, the classical nonlinear Caflish equations describing the propagation of acoustic waves in a bubbly liquid are recast and simplified conveniently. The main harmonic part of the sound field is found to fulfill a nonlinear Helmholtz equation, where the imaginary part of the squared wave number is directly correlated with the energy lost by a single bubble. For low acoustic driving, linear theory is recovered, but for larger ...

Louisnard, Olivier

2013-01-01

348

Bubble Trouble  

NSDL National Science Digital Library

In this activity on page 15 of the PDF, learners measure the amount of bubbles that they make using a detergent. Learners investigate whether adding Epsom salt to the solution affects its "sudsiness"--an important attribute of soap, since sudsy bubbles help soap clean greasy dirt. Use this activity to explore how chemicals can change a material's properties and how substances dissolve.

2013-07-08

349

Bubble Tray  

NSDL National Science Digital Library

In this activity, learners use simple materials to create giant bubbles. Learners will explore what gives bubbles their shape, what makes them break or last, what causes the colors and patterns in the soap film, and why do they change? Use this activity to introduce the concepts of surface tension and interference.

The Exploratorium

2012-06-26

350

Dynamic response of cavitating turbomachines  

NASA Technical Reports Server (NTRS)

Stimulated by the pogo instability encountered in many liquid propellant rockets, the dynamic behavior of cavitating inducers is discussed. An experimental facility where the upstream and downstream flows of a cavitating inducer could be perturbed was constructed and tested. The upstream and downstream pressure and mass flow fluctuations were measured. Matrices representing the transfer functions across the inducer pump were calculated from these measurements and from the hydraulic system characteristics for two impellers in various states of cavitation. The transfer matrices when plotted against the perturbing frequency showed significant departure from steady state or quasi-steady predictions especially at higher frequencies.

Ng, S. L.

1976-01-01

351

Homogeneous bubble nucleation driven by local hot spots: a molecular dynamics study.  

PubMed

We report a molecular dynamics study of homogeneous bubble nucleation in a Lennard-Jones fluid. The rate of bubble nucleation is estimated using forward-flux sampling (FFS). We find that cavitation starts with compact bubbles rather than with ramified structures, as had been suggested by Shen and Debenedetti (J. Chem. Phys. 1999, 111, 3581). Our estimate of the bubble-nucleation rate is higher than predicted on the basis of classical nucleation theory (CNT). Our simulations show that local temperature fluctuations correlate strongly with subsequent bubble formation; this mechanism is not taken into account in CNT. PMID:19007279

Wang, Zun-Jing; Valeriani, Chantal; Frenkel, Daan

2009-03-26

352

Competing Kinetics and He Bubble Morphology in W  

NASA Astrophysics Data System (ADS)

The growth process of He bubbles in W is investigated using molecular dynamics and parallel replica dynamics for growth rates spanning 6 orders of magnitude. Fast and slow growth regimes are defined relative to typical diffusion hopping times of W interstitials around the He bubble. Slow growth rates allow the diffusion of interstitials around the bubble, favoring the biased growth of the bubble towards the surface. In contrast, at fast growth rates interstitials do not have time to diffuse around the bubble, leading to a more isotropic growth and increasing the surface damage.

Sandoval, Luis; Perez, Danny; Uberuaga, Blas P.; Voter, Arthur F.

2015-03-01

353

Dynamic adsorption properties of n-alkyl glucopyranosides determine their ability to inhibit cytolysis mediated by acoustic cavitation  

PubMed Central

Suspensions of human leukemia (HL-60) cells readily undergo cytolysis when exposed ultrasound above the acoustic cavitation threshold. However, n-alkyl glucopyranosides (hexyl-,heptyl- and octyl-) completely inhibit ultrasound-induced (1057 kHz) cytolysis (Sostaric, et al., Free Radic. Biol. Med. 2005, 39, 1539–1548). The efficacy of protection from ultrasound-induced cytolysis was determined by the n-alkyl chain length of the glucopyranosides, indicating that protection efficacy depended on adsorption of n-alkyl glucopyranosides to the gas/solution interface of cavitation bubbles and/or the lipid membrane of cells. The current study tests the hypothesis that “sonoprotection” (i.e., protection of cells from ultrasound-induced cytolysis) in vitro depends on the adsorption of glucopyranosides at the gas/solution interface of cavitation bubbles. To test this hypothesis, the effect of ultrasound frequency (from 42 kHz to 1 MHz) on the ability of a homologous series of n-alkyl glucopyranosides to protect cells from ultrasound-induced cytolysis was investigated. It is expected that ultrasound frequency will affect sonoprotection ability, since the nature of the cavitation bubble field will change. This will affect the relative importance of the possible mechanisms for ultrasound-induced cytolysis. Additionally, ultrasound frequency will affect the lifetime and the rate of change of the surface area of cavitation bubbles, hence the dynamically controlled adsorption of glucopyranosides to their surface. The data support the hypothesis that sonoprotection efficiency depends on the ability of glucopyranosides to adsorb at the gas/solution interface of cavitation bubbles. PMID:18793018

Sostaric, Joe Z.; Miyoshi, Norio; Cheng, Jason Y.; Riesz, Peter

2009-01-01

354

Measurements of Gas Bubble Size Distributions in Flowing Liquid Mercury  

SciTech Connect

ABSTRACT Pressure waves created in liquid mercury pulsed spallation targets have been shown to induce cavitation damage on the target container. One way to mitigate such damage would be to absorb the pressure pulse energy into a dispersed population of small bubbles, however, measuring such a population in mercury is difficult since it is opaque and the mercury is involved in a turbulent flow. Ultrasonic measurements have been attempted on these types of flows, but the flow noise can interfere with the measurement, and the results are unverifiable and often unrealistic. Recently, a flow loop was built and operated at Oak Ridge National Labarotory to assess the capability of various bubbler designs to deliver an adequate population of bubbles to mitigate cavitation damage. The invented diagnostic technique involves flowing the mercury with entrained gas bubbles in a steady state through a horizontal piping section with a glass-window observation port located on the top. The mercury flow is then suddenly stopped and the bubbles are allowed to settle on the glass due to buoyancy. Using a bright-field illumination and a high-speed camera, the arriving bubbles are detected and counted, and then the images can be processed to determine the bubble populations. After using this technique to collect data on each bubbler, bubble size distributions were built for the purpose of quantifying bubbler performance, allowing the selection of the best bubbler options. This paper presents the novel procedure, photographic technique, sample visual results and some example bubble size distributions. The best bubbler options were subsequently used in proton beam irradiation tests performed at the Los Alamos National Laboratory. The cavitation damage results from the irradiated test plates in contact with the mercury are available for correlation with the bubble populations. The most effective mitigating population can now be designed into prototypical geometries for implementation into an actual SNS target.

Wendel, Mark W [ORNL; Riemer, Bernie [ORNL; Abdou, Ashraf A [ORNL

2012-01-01

355

Drying by Cavitation and Poroelastic Relaxations in Porous Media with Macroscopic Pores Connected by Nanoscale Throats  

E-print Network

We investigate the drying dynamics of porous media with two pore diameters separated by several orders of magnitude. Nanometer-sized pores at the edge of our samples prevent air entry, while drying proceeds by heterogeneous nucleation of vapor bubbles (cavitation) in the liquid in micrometer-sized voids within the sample. We show that the dynamics of cavitation and drying are set by the interplay of the deterministic poroelastic mass transport in the porous medium and the stochastic nucleation process. Spatio-temporal patterns emerge in this unusual reaction-diffusion system, with temporal oscillations in the drying rate and variable roughness of the drying front.

Olivier Vincent; David A. Sessoms; Erik J. Huber; Jules Guioth; Abraham D. Stroock

2014-09-30

356

EFFECT OF CAVITATION CONDITIONS ON AMORPHOUS METAL SYNTHESIS  

Microsoft Academic Search

Acoustic cavitation is an effective means of concentrating energy and\\u000a can be used to drive a variety of chemical reactions. By changing the\\u000a experimental parameters that control conditions during bubble collapse,\\u000a different chemical environments can be created. The sonochemical\\u000a reactions associated with metal carbonyls in alkane solvents are quite\\u000a diverse and illustrate this phenomena. For example, ultrasonic\\u000a irradiation of iron

MW GRINSTAFF; AA CICHOWLAS; SB CHOE; KS SUSLICK

1992-01-01

357

Plastic deformation of a magnesium oxide 001-plane surface produced by cavitation  

NASA Technical Reports Server (NTRS)

An investigation was conducted to examine plastic deformation of a cleaved single-crystal magnesium oxide 001-plane surface exposed to cavitation. Cavitation damage experiments were carried out in distilled water at 25 C by using a magnetostrictive oscillator in close proximity (2 mm) to the surface of the cleaved specimen. The dislocation-etch-pit patterns induced by cavitation were examined and compared with that of microhardness indentations. The results revealed that dislocation-etch-pit patterns around hardness indentations contain both screw and edge dislocations, while the etch-pit patterns on the surface exposed to cavitation contain only screw dislocations. During cavitation, deformation occurred in a thin surface layer, accompanied by work-hardening of the ceramic. The row of screw dislocations underwent a stable growth, which was analyzed crystallographically.

Hattori, S.; Miyoshi, K.; Buckley, D. H.; Okada, T.

1986-01-01

358

Bubble, Bubble, Toil and Trouble.  

ERIC Educational Resources Information Center

Bubbles are a fun way to introduce the concepts of surface tension, intermolecular forces, and the use of surfactants. Presents two activities in which students add chemicals to liquid dishwashing detergent with water in order to create longer lasting bubbles. (ASK)

Journal of Chemical Education, 2001

2001-01-01

359

Current research in cavitating fluid films  

NASA Technical Reports Server (NTRS)

A review of the current research of cavitation in fluid films is presented. Phenomena and experimental observations include gaseous cavitation, vapor cavitation, and gas entrainment. Cavitation in flooded, starved, and dynamically loaded journal bearings, as well as squeeze films are reviewed. Observations of cavitation damage in bearings and the possibility of cavitation between parallel plates with microasperities were discussed. The transcavity fluid transport process, meniscus motion and geometry or form of the film during rupture, and reformation were summarized. Performance effects were related to heat transfer models in the cavitated region and hysteresis influence on rotor dynamics coefficients. A number of cavitation algorithms was presented together with solution procedures using the finite difference and finite element methods. Although Newtonian fluids were assumed in most of the discussions, the effect of non-Newtonian fluids on cavitation was also discussed.

Brewe, D. E. (editor); Ball, J. H. (editor); Khonsari, M. M. (editor)

1990-01-01

360

Design approach for cavitation tolerant hydrofoils and blades  

NASA Astrophysics Data System (ADS)

Cavitation inception and growth on conventional shape hydrofoils and blades leads initially to a jump of their flow-induced noise, further to an amplification of flow-induced vibration with frequently assisted erosion and finally, to a lift/thrust decrease combined with the drag increase. These undesirable cavitation effects can be mitigated or even suppressed for stable partial cavities experiencing no tail pulsations. A design approach enhancing performance of cavitating hydrofoils/blades by maintaining stable partial cavities is described. Experimental data manifesting an increase of hydrofoil lift with reduction of its drag and of force pulsations by such design are provided. Application of this design approach to propeller/turbine blades and advantages of its employment for blades operating in non-uniform incoming flows are analyzed. The possibility of an increase of the lift to drag ratio and of a reduction of the cavity volume oscillation in gust flows for blade sections is numerically manifested.

Amromin, E. L.

2014-02-01

361

Unsteady flow in cavitating turbopumps  

NASA Technical Reports Server (NTRS)

Unsteady flow in a cavitating axial inducer pump is analyzed with the help of a simple two-dimensional cascade model. This problem was motivated by a desire to study the effect of unsteady cavitation on the so-called POGO instability in the operation of liquid rocket engines. Here, an important feature is a closed loop coupling between several different modes of oscillation, one of which is due to the basic unsteady characteristics of the cavitation itself. The approaching and leaving flow velocities up- and downstream of the inducer oscillate, and the cavity-blade system participates dynamically with the basic pulsating flow. In the present work, attention is focused on finding a transfer matrix that relates the set of upstream variables to those downstream. This quantity, which is essentially equivalent to cavitation compliance in the quasi-static analyses, is found to be complex and frequency dependent.

Kim, J. H.; Acosta, A. J.

1975-01-01

362

Multi-bubble sonoluminescence of phosphoric acid  

NASA Astrophysics Data System (ADS)

Multi-bubble sonoluminescence spectra of 85% H3PO4 and the dependences of sonoluminescence intensity on the acid concentration and temperature are obtained. The spectra contain a weakly structured 300-600-nm band formed by the superposition of radiation from several emitters (presumably, oxygencontaining products of acid sonolysis, viz., PO, HOPO, and PO2). Weak luminescence at a wavelength exceeding 600 nm can be due to emission from excited O* and Ar* atoms. The shape of the fundamental band changes upon a transition from multi-bubble sonolysis to sonolysis in the setup for one-bubble sonoluminescence, in which several clusters of cavitation bubbles are formed in a spherical flask at ultrasonic frequencies multiple of the first acoustic resonance frequency (multi-cluster sonoluminescence). The form of the temperature dependence of the sonoluminescence intensity depends on the detection regime: for natural heating of 85% acid under the action of ultrasound, a curve with a luminescence peak at 40°C is observed, while in detection with preliminary thermostating “over points,” only an inflection exists on a monotonic curve describing a decrease of intensity upon heating. An analogous curve for acids with a lower viscosity (hydrochloric and nitric acids) has neither a peak nor inflection irrespective of the detection regime. It is concluded that the viscosity of phosphoric acid plays a decisive role in the evolution of cavitation and in obtaining intense sonoluminescence.

Sharipov, G. L.; Abdrakhmanov, A. M.; Zagretdinova, L. R.

2010-11-01

363

Using acoustic cavitation to enhance chemotherapy of DOX liposomes: experiment in vitro and in vivo.  

PubMed

Experiments in vitro and in vivo were designed to investigate tumor growth inhibition of chemotherapeutics-loaded liposomes enhanced by acoustic cavitation. Doxorubicin-loaded liposomes (DOX liposomes) were used in experiments to investigate acoustic cavitation mediated effects on cell viability and chemotherapeutic function. The influence of lingering sensitive period after acoustic cavitation on tumor inhibition was also investigated. Animal experiment was carried out to verify the practicability of this technique in vivo. From experiment results, blank phospholipid-based microbubbles (PBM) combined with ultrasound (US) at intensity below 0.3 W/cm² could produce acoustic cavitation which maintained cell viability at high level. Compared with DOX solution, DOX liposomes combined with acoustic cavitation exerted effective tumor inhibition in vitro and in vivo. The lingering sensitive period after acoustic cavitation could also enhance the susceptibility of tumor to chemotherapeutic drugs. DOX liposomes could also exert certain tumor inhibition under preliminary acoustic cavitation. Acoustic cavitation could enhance the absorption efficiency of DOX liposomes, which could be used to reduce DOX adverse effect on normal organs in clinical chemotherapy. PMID:22188116

Zhao, Ying-Zheng; Dai, Dan-Dan; Lu, Cui-Tao; Lv, Hai-Feng; Zhang, Yan; Li, Xing; Li, Wen-Feng; Wu, Yan; Jiang, Lei; Li, Xiao-Kun; Huang, Pin-Tong; Chen, Li-Juan; Lin, Min

2012-09-01

364

Role of H2O2 in the fluctuating patterns of COD (chemical oxygen demand) during the treatment of palm oil mill effluent (POME) using pilot scale triple frequency ultrasound cavitation reactor.  

PubMed

Palm oil mill effluent (POME) is a highly contaminating wastewater due to its high chemical oxygen demand (COD) and biochemical oxygen demand (BOD). Conventional treatment methods require longer residence time (10-15 days) and higher operating cost. Owing to this, finding a suitable and efficient method for the treatment of POME is crucial. In this investigation, ultrasound cavitation technology has been used as an alternative technique to treat POME. Cavitation is the phenomenon of formation, growth and collapse of bubbles in a liquid. The end process of collapse leads to intense conditions of temperature and pressure and shock waves which assist various physical and chemical transformations. Two different ultrasound systems i.e. ultrasonic bath (37 kHz) and a hexagonal triple frequency ultrasonic reactor (28, 40 and 70 kHz) of 15 L have been used. The results showed a fluctuating COD pattern (in between 45,000 and 60,000 mg/L) while using ultrasound bath alone, whereas a non-fluctuating COD pattern with a final COD of 27,000 mg/L was achieved when hydrogen peroxide was introduced. Similarly for the triple frequency ultrasound reactor, coupling all the three frequencies resulted into a final COD of 41,300 mg/L compared to any other individual or combination of two frequencies. With the possibility of larger and continuous ultrasonic cavitational reactors, it is believed that this could be a promising and a fruitful green process engineering technique for the treatment of POME. PMID:24485395

Manickam, Sivakumar; Abidin, Norhaida binti Zainal; Parthasarathy, Shridharan; Alzorqi, Ibrahim; Ng, Ern Huay; Tiong, Timm Joyce; Gomes, Rachel L; Ali, Asgar

2014-07-01

365

Experimental evidence for seismically initiated gas bubble nucleation and growth in groundwater as a mechanism for coseismic borehole water level rise and remotely triggered seismicity  

NASA Astrophysics Data System (ADS)

Changes in borehole water levels and remotely triggered seismicity occur in response to near and distant earthquakes at locations around the globe, but the mechanisms for these phenomena are not well understood. Experiments were conducted to show that seismically initiated gas bubble growth in groundwater can trigger a sustained increase in pore fluid pressure consistent in magnitude with observed coseismic borehole water level rise, constituting a physically plausible mechanism for remote triggering of secondary earthquakes through the reduction of effective stress in critically loaded geologic faults. A portion of the CO2 degassing from the Earth's crust dissolves in groundwater where seismic Rayleigh and P waves cause dilational strain, which can reduce pore fluid pressure to or below the bubble pressure, triggering CO2 gas bubble growth in the saturated zone, indicated by a spontaneous buildup of pore fluid pressure. Excess pore fluid pressure was measured in response to the application of 0.1-1.0 MPa, 0.01-0.30 Hz confining stress oscillations to a Berea sandstone core flooded with initially subsaturated aqueous CO2, under conditions representative of a confined aquifer. Confining stress oscillations equivalent to the dynamic stress of the 28 June 1992 Mw 7.3 Landers, California, earthquake Rayleigh wave as it traveled through the Long Valley caldera, and Parkfield, California, increased the pore fluid pressure in the Berea core by an average of 36 ± 15 cm and 23 ± 15 cm of equivalent freshwater head, respectively, in agreement with 41.8 cm and 34 cm rises recorded in wells at those locations.

Crews, Jackson B.; Cooper, Clay A.

2014-09-01

366

Analysis of freeze-thaw embolism in conifers. The interaction between cavitation pressure and tracheid size.  

PubMed

Ice formation in the xylem sap produces air bubbles that under negative xylem pressures may expand and cause embolism in the xylem conduits. We used the centrifuge method to evaluate the relationship between freeze-thaw embolism and conduit diameter across a range of xylem pressures (Px) in the conifers Pinus contorta and Juniperus scopulorum. Vulnerability curves showing loss of conductivity (embolism) with Px down to -8 MPa were generated with versus without superimposing a freeze-thaw treatment. In both species, the freeze-thaw plus water-stress treatment caused more embolism than water stress alone. We estimated the critical conduit diameter (Df) above which a tracheid will embolize due to freezing and thawing and found that it decreased from 35 microm at a Px of -0.5 MPa to 6 microm at -8 MPa. Further analysis showed that the proportionality between diameter of the air bubble nucleating the cavitation and the diameter of the conduit (kL) declined with increasingly negative Px. This suggests that the bubbles causing cavitation are smaller in proportion to tracheid diameter in narrow tracheids than in wider ones. A possible reason for this is that the rate of dissolving increases with bubble pressure, which is inversely proportional to bubble diameter (La Place's law). Hence, smaller bubbles shrink faster than bigger ones. Last, we used the empirical relationship between Px and Df to model the freeze-thaw response in conifer species. PMID:16377751

Pittermann, Jarmila; Sperry, John S

2006-01-01

367

Cavitation-induced ignition of cryogenic hydrogen-oxygen fluids  

E-print Network

The Challenger disaster and purposeful experiments with liquid hydrogen (H2) and oxygen (Ox) tanks demonstrated that cryogenic H2/Ox fluids always self-ignite in the process of their mixing. Here we propose a cavitation-induced self-ignition mechanism that may be realized under these conditions. In one possible scenario, self-ignition is caused by the strong shock waves generated by the collapse of pure Ox vapor bubble near the surface of the Ox liquid that may initiate detonation of the gaseous H2/Ox mixture adjacent to the gas-liquid interface. This effect is further enhanced by H2/Ox combustion inside the collapsing bubble in the presence of admixed H2 gas.

Osipov, V V; Ponizovskya-Devine, E; Foygel, M; Smelyanskiy, V N

2011-01-01

368

Cavitation-induced ignition of cryogenic hydrogen-oxygen fluids  

NASA Astrophysics Data System (ADS)

The Challenger disaster and purposeful experiments with liquid hydrogen (H2) and oxygen (Ox) tank breaches demonstrated that cryogenic H2/Ox fluids always self-ignite in the process of their sudden mixing. Here, we propose a cavitation-induced self-ignition mechanism that may be realized under these conditions. In one possible scenario, self-ignition is caused by the strong shock waves generated by the collapse of pure Ox vapor bubble near the surface of the Ox liquid that may initiate detonation of the gaseous H2/Ox mixture next to the gas-liquid interface. This effect is further enhanced by H2/Ox combustion inside the collapsing bubble in the presence of admixed H2 gas.

Osipov, V. V.; Muratov, C. B.; Ponizovskaya-Devine, E.; Foygel, M.; Smelyanskiy, V. N.

2011-03-01

369

Controlling bubbles  

NASA Astrophysics Data System (ADS)

In this short overview we report on our ongoing work on the dynamics of bubbles in various flows. Three different situations are explored: the competition between acoustic and hydrodynamics forces in a vertical pipe (Rensen J, Bosman D, Magnaudet J, Ohl C D, Prosperetti A, Tögel R, Versluis M and Lohse D 2001 Phys. Rev. Lett. 86 4819), a rising bubble on which shape oscillations have been induced (de Vries J, Luther S and Lohse D 2002 Eur. J. Phys. B 29 503), and a bubble in a rotating horizontal cylinder. Whereas for the first two situations the standard bubble force models (Magnaudet J and Eames I 2000 Annu. Rev. Fluid Mech. 32 659) are consistent with our measurements, modifications for the lift force model seem to be required in the last case.

Lohse, Detlef; Prosperetti, Andrea

2003-01-01

370

Cauldron Bubbles  

NSDL National Science Digital Library

In this activity, learners mix up a bubbly brew and examine density. Learners explore how they can make different materials fall and rise in water using oil, water, and salt. Learners can experiment using other materials like sugar and sand.

WGBH Boston

2003-01-01

371

Cavitation in a Mercury Target  

SciTech Connect

Recent theoretical work on the formation of bubble nucleation centers by energetic particles leads to some reasonably credible calculations of the maximum negative pressure that might be sustained without bubble formation in the mercury target of the Spallation Neutron Source.

West, C.D.

2000-09-01

372

"Cavitation in a Mercury Target"  

SciTech Connect

Recent theoretical work on the formation of bubble nucleation centers by energetic particles leads to some reasonably credible calculations of the maximum negative pressure that might be sustained without bubble formation in the mercury target of the Spallation Neutron Source.

West, C.D.

2000-09-06

373

To appear in the International Journal of Fracture Cavitation in Rubber: An Elastic Instability or a Fracture Phenomenon?  

E-print Network

To appear in the International Journal of Fracture Cavitation in Rubber: An Elastic Instability that cavitation in rubber -- that is, the sudden growth of inherent defects in rubber into large enclosed cavities far exceed the elastic limit of the rubber, which therefore ought to inelastically deform

Lopez-Pamies, Oscar

374

Cavitation flow. 1976-May, 1980 (citations from the international aerospace abstracts data base). Report for 1976-May 80  

SciTech Connect

These citations from the international literature concern various aspects of cavitation flow. Articles dealing with bubble behavior relating to two phase flow, oscillating flow, unsteady flow, wall flow, and flow stability are cited. (This updated bibliography contains 348 citations, 154 of which are new entries to the previous edition.)

Zollars, G.F.

1980-07-01

375

Title: Combined passive detection and ultrafast active imaging of cavitation events induced by short pulses of high intensity  

E-print Network

is possible using short ultrasonic excitations of high amplitude, and is required for ultrasound cavitation#=1) driven by a high power (up to 300 W) electric burst of one to two cycles. Detection was performed. The high rarefaction pressure necessary to induce bubbles using a short ultrasonic excitation [5] tends

Boyer, Edmond

376

Bubble diagnostics  

DOEpatents

The present invention is intended as a means of diagnosing the presence of a gas bubble and incorporating the information into a feedback system for opto-acoustic thrombolysis. In opto-acoustic thrombolysis, pulsed laser radiation at ultrasonic frequencies is delivered intraluminally down an optical fiber and directed toward a thrombus or otherwise occluded vessel. Dissolution of the occlusion is therefore mediated through ultrasonic action of propagating pressure or shock waves. A vapor bubble in the fluid surrounding the occlusion may form as a result of laser irradiation. This vapor bubble may be used to directly disrupt the occlusion or as a means of producing a pressure wave. It is desirable to detect the formation and follow the lifetime of the vapor bubble. Knowledge of the bubble formation and lifetime yields critical information as to the maximum size of the bubble, density of the absorbed radiation, and properties of the absorbing material. This information can then be used in a feedback system to alter the irradiation conditions.

Visuri, Steven R. (Livermore, CA); Mammini, Beth M. (Walnut Creek, CA); Da Silva, Luiz B. (Danville, CA); Celliers, Peter M. (Berkeley, CA)

2003-01-01

377

Dual-frequency focused ultrasound using optoacoustic and piezoelectric transmitters for single-pulsed free-field cavitation in water  

NASA Astrophysics Data System (ADS)

Pulsed ultrasonic cavitation is a promising modality for non-contact targeted therapy, enabling mechanical ablation of the tissue. We demonstrate a spatio-temporal superposition approach of two ultrasound pulses (high and low frequencies) producing a tight cavitation zone of 100 ?m in water, which is an-order-of-magnitudes smaller than those obtained by the existing high-amplitude transducers. Particularly, laser-generated focused ultrasound (LGFU) was employed for the high-frequency operation (15 MHz). As demonstrated, LGFU plays a primary role to define the cavitation zone. The generation rate of cavitation bubbles could be dramatically increased up to 4.1% (cf. 0.06% without the superposition) with moderated threshold requirement.

Baac, Hyoung Won; Lee, Taehwa; Ok, Jong G.; Hall, Timothy; Jay Guo, L.

2013-12-01

378

Non-Invasive Thrombolysis Using Pulsed Ultrasound Cavitation Therapy – Histotripsy  

PubMed Central

Clinically available thrombolysis techniques are limited by either slow reperfusion (drugs) or invasiveness (catheters), and carry significant risks of bleeding. In this study, the feasibility of using histotripsy as an efficient and non-invasive thrombolysis technique was investigated. Histotripsy fractionates soft tissue through controlled cavitation using focused, short, high-intensity ultrasound pulses. In-vitro blood clots formed from fresh canine blood were treated by histotripsy. The treatment was applied using a focused 1-MHz transducer, with 5-cycle pulses at a pulse repetition rate of 1 kHz. Acoustic pressures varying from 2 – 12 MPa peak negative pressure were tested. Our results show that histotripsy can perform effective thrombolysis with ultrasound energy alone. Histotripsy thrombolysis only occurred at peak negative pressure ?6 MPa when initiation of a cavitating bubble cloud was detected using acoustic backscatter monitoring. Blood clots weighing 330 mg were completely broken down by histotripsy in 1.5 – 5 minutes. The clot was fractionated to debris with >96% weight smaller than 5 ?m diameter. Histotripsy thrombolysis treatment remained effective under a fast, pulsating flow (a circulatory model) as well as in static saline. Additionally, we observed that fluid flow generated by a cavitation cloud can attract, trap, and further break down clot fragments. This phenomenon may provide a non-invasive method to filter and eliminate hazardous emboli during thrombolysis. PMID:19854563

Maxwell, Adam D.; Cain, Charles A.; Duryea, Alexander P.; Yuan, Lingqian; Gurm, Hitinder S.; Xu, Zhen

2009-01-01

379

Prediction of shock-induced cavitation in water  

NASA Astrophysics Data System (ADS)

Fluid-structure interaction problems that require estimating the response of thin structures within fluids to shock loading have wide applicability. For example, these problems may include underwater explosions and the dynamic response of ships and submarines; and biological applications such as Traumatic Brain Injury (TBI) and wound ballistics. In all of these applications the process of cavitation, where small cavities with dissolved gases or vapor are formed as the local pressure drops below the vapor pressure due to shock hydrodynamics, can cause significant damage to the surrounding thin structures or membranes if these bubbles collapse, generating additional shock loading. Hence, a two-phase equation of state (EOS) with three distinct regions of compression, expansion, and tension was developed to model shock-induced cavitation. This EOS was evaluated by comparing data from pressure and temperature shock Hugoniot measurements for water up to 400 kbar, and data from ultrasonic pressure measurements in tension to -0.3 kbar, to simulated responses from CTH, an Eulerian, finite volume shock code. The new EOS model showed significant improvement over preexisting CTH models such as the SESAME EOS for capturing cavitation.

Brundage, A.

2014-05-01

380

Spatial control of cavitation in therapeutic ultrasound  

E-print Network

Inertial cavitation has been implicated as the primary mechanism for a host of emerging applications. In all these applications, the main concern is to induce cavitation in perfectly controlled locations in the field; this ...

Gauthier, Thomas P., 1980-

2005-01-01

381

Effect of shaft frequency on cavitation in a journal bearing for noncentered circular whirl  

NASA Technical Reports Server (NTRS)

The effect of shaft frequency on the performance of a submerged journal undergoing noncentered circular whirl is examined. The main emphasis of the paper is on the behavior of the vapor cavitation bubble and its effect on the bearing performance as a function of frequency. A cavitation algorithm due to Elrod was implemented in a computer program which solves a time-dependent Reynolds equation. This algorithm automatically handles the boundary conditions by using a switch function and a control volume approach which conserves mass throughout the entire flow. The shaft frequencies in this investigation ranged from 0 rad/s (squeeze-film damper) to -104 rad/s (a case in which oil-whip condition was produced momentarily). For the particular vibration amplitude chosen in this investigation it was observed that vapor cavitation had an effect on the load components for the full range of shaft frequencies investigated.

Brewe, David E.; Khonsari, M. M.

1987-01-01

382

The Speed of Axial Propagation of a Cylindrical Bubble Through a Cylindrical Vortex  

NASA Technical Reports Server (NTRS)

Inspired by the rapid elongation of air columns injected into vortices by dolphins, we present an exact inviscid solution for the axial speed (assumed steady) of propagation of the tip of a semi-infinite cylindrical bubble along the axis of a cylindrical vortex. The bubble is assumed to be held at constant pressure by being connected to a reservoir, the lungs of the dolphin, say. For a given bubble pressure, there is a modest critical rotation rate above which steadily propagating bubbles exist. For a bubble at ambient pressure, the propagation speed of the bubble (relative to axial velocity within the vortex) varies between 0.5 and 0.6 of the maximum rotational speed of the vortex. Surprisingly, the bubble tip can propagate (almost as rapidly) even when the pressure minimum in the vortex core is greater than the bubble pressure; in this case, solutions exhibit a dimple on the nose of the bubble. A situation important for incipient vortex cavitation, and one which dolphins also demonstrate, is elongation of a free bubble, i.e., one whose internal pressure may vary. Under the assumption that the acceleration term is small (checked a posteriori), the steady solution is applied at each instant during the elongation. Three types of behavior are then possible depending on physical parameters and initial conditions: (A) Unabated elongation with slowly increasing bubble pressure, and nearly constant volume. Volume begins to decrease in the late stages. (B1) Elongation with decreasing bubble pressure. A limit point of the steady solution is encountered at a finite bubble length. (B2) Unabated elongation with decreasing bubble pressure and indefinite creation of volume. This is made possible by the existence of propagating solutions at bubble pressures below the minimum vortex pressure. As the bubble stretches, its radius initially decreases but then becomes constant; this is also observed in experiments on incipient vortex cavitation.

Shariff, Karim; Mansour, Nagi N. (Technical Monitor)

2002-01-01

383

Compressible fluid model for hydrodynamic lubrication cavitation  

E-print Network

Compressible fluid model for hydrodynamic lubrication cavitation G. Bayada L. Chupin I.C.J. UMR how vaporous cavitation in lubricant films can be modelled in a physically justified manner through equation as a thin film approximation model. Cavitation is a phenomenon occurring in numerous lubricated

Sart, Remi

384

Detection of cavitation vortex in hydraulic turbines using acoustic techniques  

NASA Astrophysics Data System (ADS)

Cavitation phenomena are known for their destructive capacity in hydraulic machineries and are caused by the pressure decrease followed by an implosion when the cavitation bubbles find an adverse pressure gradient. A helical vortex appears in the turbine diffuser cone at partial flow rate operation and can be cavitating in its core. Cavity volumes and vortex frequencies vary with the under-pressure level. If the vortex frequency comes close to one of the eigen frequencies of the turbine, a resonance phenomenon may occur, the unsteady fluctuations can be amplified and lead to important turbine and hydraulic circuit damage. Conventional cavitation vortex detection techniques are based on passive devices (pressure sensors or accelerometers). Limited sensor bandwidths and low frequency response limit the vortex detection and characterization information provided by the passive techniques. In order to go beyond these techniques and develop a new active one that will remove these drawbacks, previous work in the field has shown that techniques based on acoustic signals using adapted signal content to a particular hydraulic situation, can be more robust and accurate. The cavitation vortex effects in the water flow profile downstream hydraulic turbines runner are responsible for signal content modifications. Basic signal techniques use narrow band signals traveling inside the flow from an emitting transducer to a receiving one (active sensors). Emissions of wide band signals in the flow during the apparition and development of the vortex embeds changes in the received signals. Signal processing methods are used to estimate the cavitation apparition and evolution. Tests done in a reduced scale facility showed that due to the increasing flow rate, the signal -- vortex interaction is seen as modifications on the received signal's high order statistics and bandwidth. Wide band acoustic transducers have a higher dynamic range over mechanical elements; the system's reaction time is reduced, resulting in a faster detection of the unwanted effects. The paper will present an example of this new investigation technique on a vortex generator in the test facility that belongs to ICPE- CA.

Candel, I.; Bunea, F.; Dunca, G.; Bucur, D. M.; Ioana, C.; Reeb, B.; Ciocan, G. D.

2014-12-01

385

Cavitation effect of holmium laser pulse applied to ablation of hard tissue underwater.  

PubMed

To overcome the inconsecutive drawback of shadow and schlieren photography, the complete dynamics of cavitation bubble oscillation or ablation products induced by a single holmium laser pulse [2.12 microm, 300 micros (FWHM)] transmitted in different core diameter (200, 400, and 600 microm) fibers is recorded by means of high-speed photography. Consecutive images from high-speed cameras can stand for the true and complete process of laser-water or laser-tissue interaction. Both laser pulse energy and fiber diameter determine cavitation bubble size, which further determines acoustic transient amplitudes. Based on the pictures taken by high-speed camera and scanned by an optical coherent microscopy (OCM) system, it is easily seen that the liquid layer at the distal end of the fiber plays an important role during the process of laser-tissue interaction, which can increase ablation efficiency, decrease heat side effects, and reduce cost. PMID:20799845

Lü, Tao; Xiao, Qing; Xia, Danqing; Ruan, Kai; Li, Zhengjia

2010-01-01

386

Submicron-Bubble-Enhanced Focused Ultrasound for Blood–Brain Barrier Disruption and Improved CNS Drug Delivery  

PubMed Central

The use of focused ultrasound (FUS) with microbubbles has been proven to induce transient blood–brain barrier opening (BBB-opening). However, FUS-induced inertial cavitation of microbubbles can also result in erythrocyte extravasations. Here we investigated whether induction of submicron bubbles to oscillate at their resonant frequency would reduce inertial cavitation during BBB-opening and thereby eliminate erythrocyte extravasations in a rat brain model. FUS was delivered with acoustic pressures of 0.1–4.5 MPa using either in-house manufactured submicron bubbles or standard SonoVue microbubbles. Wideband and subharmonic emissions from bubbles were used to quantify inertial and stable cavitation, respectively. Erythrocyte extravasations were evaluated by in vivo post-treatment magnetic resonance susceptibility-weighted imaging, and finally by histological confirmation. We found that excitation of submicron bubbles with resonant frequency-matched FUS (10 MHz) can greatly limit inertial cavitation while enhancing stable cavitation. The BBB-opening was mainly caused by stable cavitation, whereas the erythrocyte extravasation was closely correlated with inertial cavitation. Our technique allows extensive reduction of inertial cavitation to induce safe BBB-opening. Furthermore, the safety issue of BBB-opening was not compromised by prolonging FUS exposure time, and the local drug concentrations in the brain tissues were significantly improved to 60 times (BCNU; 18.6 µg versus 0.3 µg) by using chemotherapeutic agent-loaded submicron bubbles with FUS. This study provides important information towards the goal of successfully translating FUS brain drug delivery into clinical use. PMID:24788566

Ting, Chien-Yu; Lee, Ya-Hsuan; Huang, Chih-Ying; Ma, Yan-Jung; Wei, Kuo-Chen; Yen, Tzu-Chen; Yeh, Chih-Kuang

2014-01-01

387

Transient cavitation produced by extracorporeal shock wave lithotripsy  

NASA Astrophysics Data System (ADS)

Two decades ago, a new medical procedure was introduced, allowing the fragmentation of kidney stones from outside the human body (noninvasively) using a shock wave device termed lithotripter ('stone crusher'). Considered as one of the most important medical inventions of this century, lithotripsy is currently used in more than 80% of urolithiasis cases. Experimental studies have shown that transient or inertial cavitation is generated by this procedure near the stones and in renal tissue. To find a correlation between the number of shocks delivered and the treatment efficiency, the acoustic emission (AE) generated by the oscillation of cavitation bubbles, and its relation with stone fragmentation and tissue damage during shock wave lithotripsy were studied. In vitro experiments were carried out to identify the correlation between the AE signals and the expansion and collapse of cavitation bubbles, which were captured by high-speed photography (20,000 frames per second). This correlation has been verified on four different electrohydraulic lithotripters, under multiple experimental conditions. The effects of tissue attenuation on AE and stone fragmentation were also studied. The in vitro results have further allowed the interpretation of AE signals from in vivo experiments with pigs. Although similar in general trend, in vivo AE signals are found to be shorter in expansion and longer in the total ringing times (including the rebound phenomenon) than for in vitro AE signals, indicating a tissue constraining effect on bubble oscillation. Based on this observation a new mechanism for renal vascular and tubular injury is proposed. In addition, changes in AE signals have been observed as the total number of shocks increases, and this dose dependence feature has allowed the determination of a threshold value for extended tissue injury at 20 kV. This result has been confirmed by histological analysis and by results of a theoretical model study of bubble oscillation in a tissue mimicking membrane structure. To improve the efficiency of stone fragmentation and to reduce tissue injury, a new design for lithotripters shock wave reflector has been proposed and tested in vitro.

Cioanta, Iulian

1998-12-01

388

Advanced Cavitation Induction for Improved Reproducibility and In Situ Monitoring of Sonodynamic Cancer Treatment  

Microsoft Academic Search

We developed a method for in situ monitoring of sonodynamic cancer treatment. When we used a protocol composed of ultrasound exposure at an acoustic intensity of several hundreds of W\\/cm2 for a few seconds prior to exposure at an intensity of several tens of W\\/cm2 for 60 s, the generation of bubbles that caused cavitation were observed as brightness changes

Nami Sugita; Ken-Ichi Kawabata; Takashi Azuma; Hideki Yoshikawa; Shin-Ichiro Umemura

2006-01-01

389

CAVITATION-ENHANCED ULTRASOUND THERMAL THERAPY BY COMBINED LOW AND HIGH-FREQUENCY ULTRASOUND EXPOSURE  

Microsoft Academic Search

This paper demonstrates a novel approach for enhancing ultrasound-induced heating by the intro- duction of acoustic cavitation using simultaneous sonication with low- and high-frequency ultrasound. A spherical focused transducer (566 or 1155 kHz) was used to generate the thermal lesions, and a low-frequency planar transducer (40 or 28 kHz) was used to enhance the bubble activity. Ex vivo fresh porcine

HAO-LI LIU; WEN-SHIANG CHEN; JHAO-SYONG CHEN; TZU-CHING SHIH; YUNG-YAW CHEN; WIN-LI LIN

2006-01-01

390

Cavitation-enhanced ultrasound thermal therapy by combined low- and high-frequency ultrasound exposure  

Microsoft Academic Search

This paper demonstrates a novel approach for enhancing ultrasound-induced heating by the introduction of acoustic cavitation using simultaneous sonication with low- and high-frequency ultrasound. A spherical focused transducer (566 or 1155 kHz) was used to generate the thermal lesions, and a low-frequency planar transducer (40 or 28 kHz) was used to enhance the bubble activity. Ex vivo fresh porcine muscles

Hao-Li Liu; Wen-Shiang Chen; Jhao-Syong Chen; Tzu-Ching Shih; Yung-Yaw Chen; Win-Li Lin

2006-01-01

391

Tiny Bubbles  

NSDL National Science Digital Library

In this activity, which can be performed as a demonstration by the teacher or by the students themselves, carbon dioxide is generated in a fish tank using sodium bicarbonate and vinegar. The students can observe as the accumulating carbon dioxide extinguishes candles of different heights, marking rising levels of CO2 in the tank. They can also blow soap bubbles (which contain air) into the tank and observe them floating on the denser CO2 at first, then sinking as the gas diffuses through the soap film that forms the bubbles.

Glenn Dolphin

392

Dynamics of Vapour Bubbles in Nucleate Boiling. 2; Evolution of Thermally Controlled Bubbles  

NASA Technical Reports Server (NTRS)

The previously developed dynamic theory of growth and detachment of vapour bubbles under conditions of nucleate pool boiling is applied to study motion and deformation of a bubble evolving at a single nucleation site. The bubble growth is presumed to be thermally controlled, and two components of heat transfer to the bubble are accounted of: the one from the bulk of surrounding liquid and the one due to heat conduction across a liquid microlayer formed underneath the bubble. Bubble evolution is governed by the buoyancy and an effective surface tension force, both the forces making the bubble centre of mass move away from the wall and, thus, assisting its detachment. Buoyancy-controlled and surface-tension-controlled regimes are considered separately in a meticulous way. The duration of the whole process of bubble evolution till detachment, the rate of growth, and the bubble departure size are found as functions of time and physical and operating parameters. Some repeatedly observed phenomena, such as an influence of gravity on the growth rate, are explained. Inferences of the model agree qualitatively with available experimental evidence, and conclusions pertaining to the dependence on gravity of the bubble radius at detachment and the whole time of the bubble development when being attached to the wall are confirmed quantitatively.

Buyevich, Yu A.; Webbon, Bruce W.; Callaway, Robert (Technical Monitor)

1995-01-01

393

Preventing cavitation in butterfly valves  

SciTech Connect

Some of the mechanical problems that plagued butterfly valves in the past are discussed. The authors suggest integrated packages to alleviate these problems. These packages include such innovations as backlash-free stem connections, allenclosed actuator packages, and torque-compensated vanes. Some disadvantages to these packages are outlined and examined, including: high noise levels with compressible fluids, and an increased tendency to cavitate with liquids. A discussion follows on cavitation--how it is caused, just how much of it can be tolerated, and how it can be avoided or reduced.

Baumann, H.D.

1985-03-18

394

Simulation of the effects of cavitation and anatomy in the shock path of model lithotripters  

PubMed Central

We report on recent efforts to develop predictive models for the pressure and other flow variables in the focal region of shock wave lithotripters. Baseline simulations of three representative lithotripters (electrohydraulic, electromagnetic, and piezoelectric) compare favorably with in vitro experiments (in a water bath). We proceed to model and investigate how shock focusing is altered by the presence of material interfaces associated with different types of tissue encountered along the shock path, and by the presence of cavitation bubbles that are excited by tensile pressures associated with the focused shock wave. We use human anatomical data, but simplify the description by assuming that the tissue behaves as a fluid, and by assuming cylindrical symmetry along the shock path. Scattering by material interfaces is significant, and regions of high pressure amplitudes (both compressive and tensile) are generated almost 4 cm postfocus. Bubble dynamics generate secondary shocks whose strength depends on the density of bubbles and the pulse repetition frequency (PRF). At sufficiently large densities, the bubbles also attenuate the shock. Together with experimental evidence, the simulations suggest that high PRF may be counter-productive for stone comminution. Finally, we discuss how the lithotripter simulations can be used as input to more detailed physical models that attempt to characterize the mechanisms by which collapsing cavitation models erode stones, and by which shock waves and bubbles may damage tissue. PMID:21063697

Krimmel, Jeff; Colonius, Tim; Tanguay, Michel

2011-01-01

395

Optical and acoustic monitoring of bubble cloud dynamics at a tissue-fluid interface in ultrasound tissue erosion  

PubMed Central

Short, high-intensity ultrasound pulses have the ability to achieve localized, clearly demarcated erosion in soft tissue at a tissue-fluid interface. The primary mechanism for ultrasound tissue erosion is believed to be acoustic cavitation. To monitor the cavitating bubble cloud generated at a tissue-fluid interface, an optical attenuation method was used to record the intensity loss of transmitted light through bubbles. Optical attenuation was only detected when a bubble cloud was seen using high speed imaging. The light attenuation signals correlated well with a temporally changing acoustic backscatter which is an excellent indicator for tissue erosion. This correlation provides additional evidence that the cavitating bubble cloud is essential for ultrasound tissue erosion. The bubble cloud collapse cycle and bubble dissolution time were studied using the optical attenuation signals. The collapse cycle of the bubble cloud generated by a high intensity ultrasound pulse of 4–14 ?s was ~40–300 ?s depending on the acoustic parameters. The dissolution time of the residual bubbles was tens of ms long. This study of bubble dynamics may provide further insight into previous ultrasound tissue erosion results. PMID:17471753

Xu, Zhen; Hall, Timothy L.; Fowlkes, J. Brian; Cain, Charles A.

2009-01-01

396

Stabilization and acoustic spectra of a cavitation cluster in an ultrasonic spherical cavity  

NASA Astrophysics Data System (ADS)

The dynamics, stabilization, and acoustic spectra of a bubble cluster in different liquids are investigated under the condition of ultrasonic cavitation. Experimental data for the dynamics of a spherical ultrasonic cluster near the end face of a rod, capillary, or pressure sensor placed in the antinode of a pressure standing wave at the center of a single-wave spherical piezoelectric concentrator (piezoelectric sphere) are presented. The variation of the cluster size with the parameters of the ultrasonic field and properties of the liquid is studied. It is found that the shape, collapse dynamics, and stability of the cavitation cluster have a significant influence on the acoustocapillary effect. It is shown that the maximal acoustocapillary effect and sonoluminescence are observed when a stable cluster with spherically symmetric collapse dynamics is provided at the end of a capillary in a 50% solution of glycerol. Using a small-size piezotransducer placed at the center of the sphere, the acoustic pressure is measured and acoustic spectra are studied for different voltages across the piezosphere and during the formation of variously shaped cavitation clusters. In the case of fully developed cavitation and a spherical cluster, the acoustic spectra contain subharmonic components, the cavitation noise factor rises to 35%, and the maximum of the noise envelope shifts toward higher frequencies.

Malykh, N. V.; Sankin, G. N.

2010-01-01

397

High speed observation of HIFU-induced cavitation cloud near curved rigid boundaries  

NASA Astrophysics Data System (ADS)

This paper focuses on the experimental study of the influence of surface curvature to the behaviour of HIFU-induced cavitation cloud. A Q-switched ruby pulse laser is used to induce cavitation nuclei in deionized water. A piezoelectric ultrasonic transducer (1.7 MHz) provides a focused ultrasound field to inspire the nucleus to cavitation cloud. A PZT probe type hydrophone is applied for measuring the HIFU sound field. It was observed that the motion of cavitation cloud located near the boundary is significantly influenced by the distance between cloud and boundary, as well as the curvature of the boundary. The curvature was defined by parameters ? and ?. Convex boundary, concave boundary, and flat boundary correspond to ? <1, ? >1 and ? = 1, respectively. Different behaviours of the cloud, including the migration of the cloud, the characteristics of oscillation, etc., were observed under different boundary curvatures by high-speed photography. Sonoluminescence of the acoustic cavitation bubble clouds were also studied to illustrate the characteristics of acoustic streaming.

Zuo, Z. G.; Wang, F. B.; Liu, S. H.; Wu, S. J.

2015-01-01

398

Temporal effect of inertial cavitation with and without microbubbles on surface deformation of agarose S gel in the presence of 1-MHz focused ultrasound.  

PubMed

Sonoporation has the potential to deliver extraneous molecules into a target tissue non-invasively. There have been numerous investigations of cell membrane permeabilization induced by microbubbles, but very few studies have been carried out to investigate sonoporation by inertial cavitation, especially from a temporal perspective. In the present paper, we show the temporal variations in nano/micro-pit formations following the collapse of inertial cavitation bubbles, with and without Sonazoid® microbubbles. Using agarose S gel as a target material, erosion experiments were conducted in the presence of 1-MHz focused ultrasound applied for various exposure times, Tex (0.002-60 s). Conventional microscopy was used to measure temporal variations in micrometer-scale pit numbers, and atomic force microscopy utilized to detect surface roughness on a nanometer scale. The results demonstrated that nanometer-scale erosion was predominantly caused by Sonazoid® microbubbles and C4F10 gas bubbles for 0.002 scavitation bubbles such as C4F10 gas bubbles and vapor bubbles, increased exponentially with increasing Tex in the range 0.1 scavitation-induced sonoporation can produce various pore sizes in membranes, enabling the delivery of external molecules of differing sizes into cells or tissues. PMID:25130135

Tomita, Y; Matsuura, T; Kodama, T

2015-01-01

399

Bubble cloud dynamics in a high-pressure spherical resonator  

NASA Astrophysics Data System (ADS)

A bubble cloud is a population of bubbles confined to a region within a fluid. Bubble clouds play a large role in a variety of naturally occurring phenomena and man-made applications (e.g., ocean noise, cavitation damage, sonoluminescence, ultrasonic cleaning, drug delivery, lithotripsy). It is important, therefore, to understand the behavior of bubble clouds so that their effects may be enhanced or diminished as desired. This work explores and characterizes the properties of bubble clouds nucleated inside a high-pressure spherical acoustic resonator, in connection with recent interest in acoustic inertial confinement fusion (acoustic ICF). A laser system was developed to repeatably nucleate a cloud of bubbles inside the resonator. The resulting events were then observed, primarily with schlieren imaging methods. Preliminary studies of the bubble cloud dynamics showed the sensitivity of the initial cloud to nucleation parameters including the phase of nucleation, the laser energy, and the acoustic power. After many acoustic cycles, some bubble clouds are observed to evolve into a tight cluster. The formation of these clusters correlates with initial bubble distributions which have a large cloud interaction parameter, ?. Cluster dynamics are seen to be largely driven by reconverging shock waves from previous collapses reflected from the resonator's interior surface. Initial expansion of the cluster boundary is on the order of 8 mm/µs and the maximum radius approaches 3 mm. Shock pressures are estimated to be > 10 GPa at a radius of 100 µm using weak shock theory.

Anderson, Phillip Andrew

400

Mercury Bubbles  

Microsoft Academic Search

I HAVE on several occasions noticed the beautiful bubbles described by Mr. Wright and Sir William Crookes (pp. 8 and 37). On each occasion I was purifying mercury in the following way. I half filled a rather large Woulffe's bottle with mercury and poured on to it weak nitric acid. Then, in order to keep, the whole in a state

A. T. Hare

1908-01-01

401

Tiny Bubbles.  

ERIC Educational Resources Information Center

A simple oxygen-collecting device (easily constructed from glass jars and a lid) can show bubbles released by water plants during photosynthesis. Suggestions are given for: (1) testing the collected gas; (2) using various carbon dioxide sources; and (3) measuring respiration. (DH)

Kim, Hy

1985-01-01

402

Mechanistic analysis of cavitation assisted transesterification on biodiesel characteristics.  

PubMed

The influence of sonoluminescence transesterification on biodiesel physicochemical properties was investigated and the results were compared to those of traditional mechanical stirring. This study was conducted to identify the mechanistic features of ultrasonication by coupling statistical analysis of the experiments into the simulation of cavitation bubble. Different combinations of operational variables were employed for alkali-catalysis transesterification of palm oil. The experimental results showed that transesterification with ultrasound irradiation could change the biodiesel density by about 0.3kg/m(3); the viscosity by 0.12mm(2)/s; the pour point by about 1-2°C and the flash point by 5°C compared to the traditional method. Furthermore, 93.84% of yield with alcohol to oil molar ratio of 6:1 could be achieved through ultrasound assisted transesterification within only 20min. However, only 89.09% of reaction yield was obtained by traditional macro mixing/heating under the same condition. Based on the simulated oscillation velocity value, the cavitation phenomenon significantly contributed to generation of fine micro emulsion and was able to overcome mass transfer restriction. It was found that the sonoluminescence bubbles reached the temperature of 758-713K, pressure of 235.5-159.55bar, oscillation velocity of 3.5-6.5cm/s, and equilibrium radius of 17.9-13.7 times greater than its initial size under the ambient temperature of 50-64°C at the moment of collapse. This showed that the sonoluminescence bubbles were in the condition in which the decomposition phenomena were activated and the reaction rate was accelerated together with a change in the biodiesel properties. PMID:24981808

Sajjadi, Baharak; Abdul Aziz, A R; Ibrahim, Shaliza

2015-01-01

403

Stochastic-field cavitation model  

SciTech Connect

Nonlinear phenomena can often be well described using probability density functions (pdf) and pdf transport models. Traditionally, the simulation of pdf transport requires Monte-Carlo codes based on Lagrangian “particles” or prescribed pdf assumptions including binning techniques. Recently, in the field of combustion, a novel formulation called the stochastic-field method solving pdf transport based on Eulerian fields has been proposed which eliminates the necessity to mix Eulerian and Lagrangian techniques or prescribed pdf assumptions. In the present work, for the first time the stochastic-field method is applied to multi-phase flow and, in particular, to cavitating flow. To validate the proposed stochastic-field cavitation model, two applications are considered. First, sheet cavitation is simulated in a Venturi-type nozzle. The second application is an innovative fluidic diode which exhibits coolant flashing. Agreement with experimental results is obtained for both applications with a fixed set of model constants. The stochastic-field cavitation model captures the wide range of pdf shapes present at different locations.

Dumond, J., E-mail: julien.dumond@areva.com [AREVA Nuclear Professional School, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); AREVA GmbH, Erlangen, Paul-Gossen-Strasse 100, D-91052 Erlangen (Germany); Magagnato, F. [Institute of Fluid Mechanics, Karlsruhe Institute of Technology, Kaiserstrasse 12, D-76131 Karlsruhe (Germany); Class, A. [AREVA Nuclear Professional School, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Institute for Nuclear and Energy Technologies, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)

2013-07-15

404

Cavitation data for hydraulic equipment  

NASA Technical Reports Server (NTRS)

Development of cavitation B-factors for helium, parahydrogen, nitrogen, fluorine, oxygen, refrigerant 114, and water is discussed. B-factor is defined and numerical relationships are established. Mathematical models are included and alternative methods of determining B-factor are explained.

Hord, J.; Voth, R. O.

1972-01-01

405

Cavitation Inception in Spool Valves  

Microsoft Academic Search

Cavitation has been investigated in directional control valves in order to identify damage mechanisms characteristic of components of aircraft hydraulic systems. Tests have been conducted in a representative metal spool valve and in a model three times larger. Data taken under noncavitating conditions with both valves showed that the position of the high-velocity annular jet shifts orientation, depending upon valve

C. Samuel Martin; H. Medlarz; D. C. Wiggert; C. Brennen

1981-01-01

406

Ultrasound line-by-line scanning method of spatial-temporal active cavitation mapping for high-intensity focused ultrasound.  

PubMed

This paper presented an ultrasound line-by-line scanning method of spatial-temporal active cavitation mapping applicable in a liquid or liquid filled tissue cavities exposed by high-intensity focused ultrasound (HIFU). Scattered signals from cavitation bubbles were obtained in a scan line immediately after one HIFU exposure, and then there was a waiting time of 2 s long enough to make the liquid back to the original state. As this pattern extended, an image was built up by sequentially measuring a series of such lines. The acquisition of the beamformed radiofrequency (RF) signals for a scan line was synchronized with HIFU exposure. The duration of HIFU exposure, as well as the delay of the interrogating pulse relative to the moment while HIFU was turned off, could vary from microseconds to seconds. The feasibility of this method was demonstrated in tap-water and a tap-water filled cavity in the tissue-mimicking gelatin-agar phantom as capable of observing temporal evolutions of cavitation bubble cloud with temporal resolution of several microseconds, lateral and axial resolution of 0.50 mm and 0.29 mm respectively. The dissolution process of cavitation bubble cloud and spatial distribution affected by cavitation previously generated were also investigated. Although the application is limited by the requirement for a gassy fluid (e.g. tap water, etc.) that allows replenishment of nuclei between HIFU exposures, the technique may be a useful tool in spatial-temporal cavitation mapping for HIFU with high precision and resolution, providing a reference for clinical therapy. PMID:23673346

Ding, Ting; Zhang, Siyuan; Fu, Quanyou; Xu, Zhian; Wan, Mingxi

2014-01-01

407

Ostwald ripening in multiple-bubble nuclei  

NASA Astrophysics Data System (ADS)

The Ostwald ripening of bubbles is studied by molecular dynamics simulations involving up to 679 × 106 Lennard-Jones particles. Many bubbles appear after depressurizing a system that is initially maintained in the pure-liquid phase, and the coarsening of bubbles follows. The self-similarity of the bubble-size distribution function predicted by Lifshitz-Slyozov-Wagner theory is directly confirmed. The total number of bubbles decreases asymptotically as t-x with scaling exponent x. As the initial temperature increases, the exponent changes from x = 3/2 to 1, which implies that the growth of bubbles changes from interface-limited (the t1/2 law) to diffusion-limited (the t1/3 law) growth.

Watanabe, Hiroshi; Suzuki, Masaru; Inaoka, Hajime; Ito, Nobuyasu

2014-12-01

408

Seismically Initiated Carbon Dioxide Gas Bubble Growth in Groundwater: A Mechanism for Co-seismic Borehole Water Level Rise and Remotely Triggered Secondary Seismicity  

NASA Astrophysics Data System (ADS)

Visualization experiments, core-scale laboratory experiments, and numerical simulations were conducted to examine the transient effect of dilational seismic wave propagation on pore fluid pressure in aquifers hosting groundwater that is near saturation with respect to dissolved carbon dioxide (CO2) gas. Groundwater can become charged with dissolved CO2 through contact with gas-phase CO2 in the Earth's crust derived from magma degasing, metamorphism, and biogenic processes. The propagation of dilational seismic waves (e.g., Rayleigh and p-waves) causes oscillation of the mean normal confining stress and pore fluid pressure. When the amplitude of the pore fluid pressure oscillation is large enough to drive the pore fluid pressure below the bubble pressure, an aqueous-to-gas-phase transition can occur in the pore space, which causes a buildup of pore fluid pressure and reduces the inter-granular effective stress under confined conditions. In visualization experiments conducted in a Hele-Shaw cell representing a smooth-walled, vertically oriented fracture, millisecond-scale pressure perturbations triggered bubble nucleation and growth lasting tens of seconds, with resulting pore fluid overpressure proportional to the magnitude of the pressure perturbation. In a Berea sandstone core flooded with initially under-saturated aqueous CO2 under conditions representative of a confined aquifer, rapid reductions in confining stress triggered transient pore pressure rise up to 0.7 MPa (100 psi) overpressure on a timescale of ~10 hours. The rate of pore pressure buildup in the first 100 seconds was proportional to the saturation with respect to dissolved CO 2 at the pore pressure minimum. Sinusoidal confining stress oscillations on a Berea sandstone core produced excess pore fluid pressure after the oscillations were terminated. Confining stress oscillations in the 0.1-0.4 MPa (15-60 psi) amplitude range and 0.05-0.30 Hz frequency band increased the pore fluid pressure by 13-60 cm of freshwater. Co-seismic borehole water level increases of the same magnitude were observed in Parkfield, California, and Long Valley caldera, California, in response to the propagation of a Rayleigh wave in the same amplitude and frequency range produced by the June 28, 1992 MW 7.3 Landers, California, earthquake. Co-seismic borehole water level rise is well documented in the literature, but the mechanism is not well understood, and the results of core-scale experiments indicate that seismically initiated CO2 gas bubble nucleation and growth in groundwater is a reasonable mechanism. Remotely triggered secondary seismicity is also well documented, and the reduction of effective stress due to CO2 bubble nucleation and growth in critically loaded faults may potentially explain how, for example, the June 28, 1992 MW 7.3 Landers, California, earthquake triggered seismicity as far away as Yellowstone, Wyoming, 1250 km from the hypocenter. A numerical simulation was conducted using Euler's method and a first-order kinetic model to compute the pore fluid pressure response to confining stress excursions on a Berea sandstone core flooded with initially under-saturated aqueous CO2. The model was calibrated on the pore pressure response to a rapid drop and later recovery of the confining stress. The model predicted decreasing overpressure as the confining stress oscillation frequency increased from 0.05 Hz to 0.30 Hz, in contradiction with the experimental results and field observations, which exhibit larger excess pore fluid pressure in response to higher frequency oscillations. The limitations of the numerical model point to the important influence of non-ideal behavior arising from a discontinuous gas phase and complex dynamics at the gas-liquid interface.

Crews, Jackson B.

409

Periodic Orbit Theory Applied to a Chaotically Oscillating Gas Bubble in Water G. Simon 1 , P. Cvitanovi c 2 , M. T. Levinsen 3 , I. Csabai 4 , and  

E-print Network

. As a result the gas inside the bubble compresses and heats up to the extent that light emission occurs [4 model in the context of acoustic cavitation [14] and showed that the radial oscillations of a gas bubble by the assumptions of ideal gas law, absence of heat transfer, and negligence of surface tension e#11;ects. One

Levinsen, Mogens T.

410

Experimental study into the formation of nanodiamonds and fullerenes during cavitation in an ethanol-aniline mixture  

NASA Astrophysics Data System (ADS)

In this study, products forming due to cavitation synthesis in an ethanol-aniline mixture are investigated. A procedure of chemical purification of nanodiamonds, which makes it possible to isolate chemically pure products, is developed. Nanodiamond particles 3-5 nm in size are obtained. New data that indicate that complex fullerenes C70, C60, and C84 form during cavitation synthesis along with the diamond phase are presented, and a question on the account for the development of the sequence of complex forms of carbon during bubble collapse is stated.

Voropaev, S. A.; Dnestrovskii, A. Yu.; Skorobogatskii, V. N.; Aronin, A. S.; Shkinev, V. M.; Bondarev, O. L.; Strazdovskii, V. V.; Eliseev, A. A.; Ponomareva, E. A.; Dushenko, N. V.; Galimov, E. M.

2014-11-01

411

Temporal and spatial detection of HIFU-induced inertial and hot-vapor cavitation with a diagnostic ultrasound system.  

PubMed

The onset and presence of inertial cavitation and near-boiling temperatures in high-intensity focused ultrasound (HIFU) therapy have been identified as important indicators of energy deposition for therapy guidance. Passive cavitation detection is commonly used to detect bubble emissions, where a fixed-focus single-element acoustic transducer is typically used as a passive cavitation detector (PCD). This technique is suboptimal for clinical applications, because most PCD transducers are tightly focused and afford limited spatial coverage of the HIFU focal region. A Terason 2000 Ultrasound System was used as a PCD array to expand the spatial detection region for cavitation by operating in passive mode, obtaining the radiofrequency signals corresponding to each scan line and filtering the contribution from scattering of the HIFU signal harmonics. This approach allows for spatially resolved detection of both inertial and stable cavitation throughout the focal region. Measurements with the PCD array during sonication with a 1.1-MHz HIFU source in tissue phantoms were compared with single-element PCD and thermocouple sensing. Stable cavitation signals at the harmonics and superharmonics increased in a threshold fashion for temperatures >90 degrees C, an effect attributed to high vapor pressure in the cavities. Incorporation of these detection techniques in a diagnostic ultrasound platform could result in a powerful tool for improving HIFU guidance and treatment. PMID:19110368

Farny, Caleb H; Holt, R Glynn; Roy, Ronald A

2009-04-01

412

Acoustic bubble removal to enhance SWL efficacy at high shock rate: an in vitro study.  

PubMed

Rate-dependent efficacy has been extensively documented in shock wave lithotripsy (SWL) stone comminution, with shock waves (SWs) delivered at a low rate producing more efficient fragmentation in comparison to those delivered at high rates. Cavitation is postulated to be the primary source underlying this rate phenomenon. Residual bubble nuclei that persist along the axis of SW propagation can drastically attenuate the waveform's negative phase, decreasing the energy which is ultimately delivered to the stone and compromising comminution. The effect is more pronounced at high rates, as residual nuclei have less time to passively dissolve between successive shocks. In this study, we investigate a means of actively removing such nuclei from the field using a low-amplitude acoustic pulse designed to stimulate their aggregation and subsequent coalescence. To test the efficacy of this bubble removal scheme, model kidney stones were treated in vitro using a research electrohydraulic lithotripter. SWL was applied at rates of 120, 60, or 30?SW/min with or without the incorporation of bubble removal pulses. Optical images displaying the extent of cavitation in the vicinity of the stone were also collected for each treatment. Results show that bubble removal pulses drastically enhance the efficacy of stone comminution at the higher rates tested (120 and 60?SW/min), while optical images show a corresponding reduction in bubble excitation along the SW axis when bubble removal pulses are incorporated. At the lower rate of 30?SW/min, no difference in stone comminution or bubble excitation was detected with the addition of bubble removal pulses, suggesting that remnant nuclei had sufficient time for more complete dissolution. These results corroborate previous work regarding the role of cavitation in rate-dependent SWL efficacy, and suggest that the effect can be mitigated via appropriate control of the cavitation environment surrounding the stone. PMID:23957846

Duryea, Alexander P; Roberts, William W; Cain, Charles A; Tamaddoni, Hedieh A; Hall, Timothy L

2014-01-01