Science.gov

Sample records for cavitation bubble growth

  1. Mechanics of collapsing cavitation bubbles.

    PubMed

    van Wijngaarden, Leen

    2016-03-01

    A brief survey is given of the dynamical phenomena accompanying the collapse of cavitation bubbles. The discussion includes shock waves, microjets and the various ways in which collapsing bubbles produce damage. PMID:25890856

  2. Particle motion induced by bubble cavitation.

    PubMed

    Poulain, Stéphane; Guenoun, Gabriel; Gart, Sean; Crowe, William; Jung, Sunghwan

    2015-05-29

    Cavitation bubbles induce impulsive forces on surrounding substrates, particles, or surfaces. Even though cavitation is a traditional topic in fluid mechanics, current understanding and studies do not capture the effect of cavitation on suspended objects in fluids. In the present work, the dynamics of a spherical particle due to a cavitation bubble is experimentally characterized and compared with an analytical model. Three phases are observed: the growth of the bubble where the particle is pushed away, its collapse where the particle approaches the bubble, and a longer time scale postcollapse where the particle continues to move toward the collapsed bubble. The particle motion in the longer time scale presumably results from the asymmetric cavitation evolution at an earlier time. Our theory considering the asymmetric bubble dynamics shows that the particle velocity strongly depends on the distance from the bubble as an inverse-fourth-power law, which is in good agreement with our experimentation. This study sheds light on how small free particles respond to cavitation bubbles in fluids. PMID:26066438

  3. Discrete Bubble Modeling for Cavitation Bubbles

    NASA Astrophysics Data System (ADS)

    Choi, Jin-Keun; Chahine, Georges; Hsiao, Chao-Tsung

    2007-03-01

    Dynaflow, Inc. has conducted extensive studies on non-spherical bubble dynamics and interactions with solid and free boundaries, vortical flow structures, and other bubbles. From these studies, emerged a simplified Surface Averaged Pressure (SAP) spherical bubble dynamics model and a Lagrangian bubble tracking scheme. In this SAP scheme, the pressure and velocity of the surrounding flow field are averaged on the bubble surface, and then used for the bubble motion and volume dynamics calculations. This model is implemented using the Fluent User Defined Function (UDF) as Discrete Bubble Model (DBM). The Bubble dynamics portion can be solved using an incompressible liquid modified Rayleigh-Plesset equation or a compressible liquid modified Gilmore equation. The Discrete Bubble Model is a very suitable tool for the studies on cavitation inception of foils and turbo machinery, bubble nuclei effects, noise from the bubbles, and can be used in many practical problems in industrial and naval applications associated with flows in pipes, jets, pumps, propellers, ships, and the ocean. Applications to propeller cavitation, wake signatures of waterjet propelled ships, bubble-wake interactions, modeling of cavitating jets, and bubble entrainments around a ship will be presented.

  4. Cavitation inception from bubble nuclei.

    PubMed

    Mørch, K A

    2015-10-01

    The tensile strength of ordinary water such as tap water or seawater is typically well below 1 bar. It is governed by cavitation nuclei in the water, not by the tensile strength of the water itself, which is extremely high. Different models of the nuclei have been suggested over the years, and experimental investigations of bubbles and cavitation inception have been presented. These results suggest that cavitation nuclei in equilibrium are gaseous voids in the water, stabilized by a skin which allows diffusion balance between gas inside the void and gas in solution in the surrounding liquid. The cavitation nuclei may be free gas bubbles in the bulk of water, or interfacial gaseous voids located on the surface of particles in the water, or on bounding walls. The tensile strength of these nuclei depends not only on the water quality but also on the pressure-time history of the water. A recent model and associated experiments throw new light on the effects of transient pressures on the tensile strength of water, which may be notably reduced or increased by such pressure changes. PMID:26442138

  5. Acoustic Shielding by Cavitation Bubbles in Shock Wave Lithotripsy (SWL)

    NASA Astrophysics Data System (ADS)

    Pishchalnikov, Yuri A.; McAteer, James A.; Bailey, Michael R.; Pishchalnikova, Irina V.; Williams, James C.; Evan, Andrew P.

    2006-05-01

    Lithotripter pulses (˜7-10 μs) initiate the growth of cavitation bubbles, which collapse hundreds of microseconds later. Since the bubble growth-collapse cycle trails passage of the pulse, and is ˜1000 times shorter than the pulse interval at clinically relevant firing rates, it is not expected that cavitation will affect pulse propagation. However, pressure measurements with a fiber-optic hydrophone (FOPH-500) indicate that bubbles generated by a pulse can, indeed, shield the propagation of the negative tail. Shielding was detected within 1 μs of arrival of the negative wave, contemporaneous with the first observation of expanding bubbles by high-speed camera. Reduced negative pressure was observed at 2 Hz compared to 0.5 Hz firing rate, and in water with a higher content of dissolved gas. We propose that shielding of the negative tail can be attributed to loss of acoustic energy into the expansion of cavitation bubbles.

  6. Cavitation inception by the backscattering of pressure waves from a bubble interface

    NASA Astrophysics Data System (ADS)

    Takahira, Hiroyuki; Ogasawara, Toshiyuki; Mori, Naoto; Tanaka, Moe

    2015-10-01

    The secondary cavitation that occurs by the backscattering of focused ultrasound from a primary cavitation bubble caused by the negative pressure part of the ultrasound (Maxwell, et al., 2011) might be useful for the energy exchange due to bubble oscillations in High Intensity Focused Ultrasound (HIFU). The present study is concerned with the cavitation inception by the backscattering of ultrasound from a bubble. In the present experiment, a laser-induced bubble which is generated by a pulsed focused laser beam with high intensity is utilized as a primary cavitation bubble. After generating the bubble, focused ultrasound is emitted to the bubble. The acoustic field and the bubble motion are observed with a high-speed video camera. It is confirmed that the secondary cavitation bubble clouds are generated by the backscattering from the laser-induced bubble. The growth of cavitation bubble clouds is analyzed with the image processing method. The experimental results show that the height and width of the bubble clouds grow in stepwise during their evolution. The direct numerical simulations are also conducted for the backscattering of incident pressure waves from a bubble in order to evaluate a pressure field near the bubble. It is shown that the ratio of a bubble collapse time t0 to a characteristic time of wave propagation tS, η = t0/ts, is an important determinant for generating negative pressure region by backscattering. The minimum pressure location by the backscattering in simulations is in good agreement with the experiment.

  7. Intensely oscillating cavitation bubble in microfluidics

    NASA Astrophysics Data System (ADS)

    Siew-Wan, Ohl; Tandiono; Klaseboer, Evert; Dave, Ow; Choo, Andre; Claus-Dieter, Ohl

    2015-12-01

    This study reports the technical breakthrough in generating intense ultrasonic cavitation in the confinement of a microfluidics channel [1], and applications that has been developed on this platform for the past few years [2,3,4,5]. Our system consists of circular disc transducers (10-20 mm in diameter), the microfluidics channels on PDMS (polydimethylsiloxane), and a driving circuitry. The cavitation bubbles are created at the gas- water interface due to strong capillary waves which are generated when the system is driven at its natural frequency (around 100 kHz) [1]. These bubbles oscillate and collapse within the channel. The bubbles are useful for sonochemistry and the generation of sonoluminescence [2]. When we add bacteria (Escherichia coli), and yeast cells (Pichia pastoris) into the microfluidics channels, the oscillating and collapsing bubbles stretch and lyse these cells [3]. Furthermore, the system is effective (DNA of the harvested intracellular content remains largely intact), and efficient (yield reaches saturation in less than 1 second). In another application, human red blood cells are added to a microchamber. Cell stretching and rapture are observed when a laser generated cavitation bubble expands and collapses next to the cell [4]. A numerical model of a liquid pocket surrounded by a membrane with surface tension which was placed next to an oscillating bubble was developed using the Boundary Element Method. The simulation results showed that the stretching of the liquid pocket occurs only when the surface tension is within a certain range.

  8. Observation of Microhollows Produced by Bubble Cloud Cavitation

    NASA Astrophysics Data System (ADS)

    Yamakoshi, Yoshiki; Miwa, Takashi

    2012-07-01

    When an ultrasonic wave with sound pressure less than the threshold level of bubble destruction irradiates microbubbles, the microbubbles aggregate by an acoustic radiation force and form bubble clouds. The cavitation of bubble clouds produces a large number of microhollows (microdips) on the flow channel wall. In this study, microhollow production by bubble cloud cavitation is evaluated using a blood vessel phantom made of N-isopropylacrylamide (NIPA) gel. Microbubble dynamics in bubble cloud cavitation is observed by a microscope with a short pulse light emitted diode (LED) light source. Microhollows produced on the flow channel wall are evaluated by a confocal laser microscope with a water immersion objective. It is observed that a mass of low-density bubbles (bubble mist) is formed by bubble cloud cavitation. The spatial correlation between the bubble mist and the microhollows shows the importance of the bubble mist in microhollow production by bubble cloud cavitation.

  9. The inception of cavitation bubble clouds induced by high-intensity focused ultrasound.

    PubMed

    Chen, Hong; Li, Xiaojing; Wan, Mingxi

    2006-12-22

    In many therapeutic applications of high-intensity focused ultrasound (HIFU) the appearance of cavitation bubbles is unavoidable, whereas the dynamics of the bubbles induced by HIFU have not been clarified. The objective of the present work is to observe the inception process of cavitation bubble clouds generated by HIFU transducer in water using high-speed photography. Sequential images captured within 600 micros after the onset of ultrasound transmission show the dynamics of cavitation bubbles' generation, growth, deformation, expansion and collapse in the focal region. However, when the observation time is narrowed to the initial 145 micros, both the still and streak images reveal that the cavitation bubbles astonishingly stay stable in the focal region for at least 60 micros. The results imply that through adjusting the HIFU exposure time while other physical parameters are appropriately chosen, it might be possible to control the generation of stable cavitation bubbles locally in the focal region. PMID:16782158

  10. Multiscale Modeling of Cavitating Bubbly Flows

    NASA Astrophysics Data System (ADS)

    Ma, J.; Hsiao, C.-T.; Chahine, G. L.

    2013-03-01

    Modeling of cavitating bubbly flows is challenging due to the wide range of characteristic lengths of the physics at play: from micrometers (e.g., bubble nuclei radius) to meters (e.g., propeller diameter or sheet cavity length). To address this, we present here a multiscale approach which integrates a Discrete Bubble Model for dispersed microbubbles and a level set N-S solver for macro cavities, along with a mesoscale transition model to bridge the two. This approach was implemented in 3DYNAFScopyright and used to simulate sheet-to-cloud cavitation over a hydrofoil. The hybrid model captures well the full cavitation process starting from free field nuclei and nucleation from solid surfaces. In low pressure region of the foil small nuclei are seen to grow large and eventually merge to form a large scale sheet cavity. A reentrant jet forms under the cavity, travels upstream, and breaks it, resulting in a bubble cloud of a large amount of microbubbles as the broken pockets shrink and travel downstream. This is in good agreement with experimental observations based of sheet lengths and frequency of lift force oscillation. DOE-SBIR, ONR (monitored by Dr. Ki-Han Kim)

  11. Modeling of surface cleaning by cavitation bubble dynamics and collapse.

    PubMed

    Chahine, Georges L; Kapahi, Anil; Choi, Jin-Keun; Hsiao, Chao-Tsung

    2016-03-01

    Surface cleaning using cavitation bubble dynamics is investigated numerically through modeling of bubble dynamics, dirt particle motion, and fluid material interaction. Three fluid dynamics models; a potential flow model, a viscous model, and a compressible model, are used to describe the flow field generated by the bubble all showing the strong effects bubble explosive growth and collapse have on a dirt particle and on a layer of material to remove. Bubble deformation and reentrant jet formation are seen to be responsible for generating concentrated pressures, shear, and lift forces on the dirt particle and high impulsive loads on a layer of material to remove. Bubble explosive growth is also an important mechanism for removal of dirt particles, since strong suction forces in addition to shear are generated around the explosively growing bubble and can exert strong forces lifting the particles from the surface to clean and sucking them toward the bubble. To model material failure and removal, a finite element structure code is used and enables simulation of full fluid-structure interaction and investigation of the effects of various parameters. High impulsive pressures are generated during bubble collapse due to the impact of the bubble reentrant jet on the material surface and the subsequent collapse of the resulting toroidal bubble. Pits and material removal develop on the material surface when the impulsive pressure is large enough to result in high equivalent stresses exceeding the material yield stress or its ultimate strain. Cleaning depends on parameters such as the relative size between the bubble at its maximum volume and the particle size, the bubble standoff distance from the particle and from the material wall, and the excitation pressure field driving the bubble dynamics. These effects are discussed in this contribution. PMID:25982895

  12. On thermonuclear processes in cavitation bubbles

    NASA Astrophysics Data System (ADS)

    Nigmatulin, R. I.; Lahey, R. T., Jr.; Taleyarkhan, R. P.; West, C. D.; Block, R. C.

    2014-09-01

    The theoretical and experimental foundations of so-called bubble nuclear fusion are reviewed. In the nuclear fusion process, a spherical cavitation cluster ˜ 10-2 m in diameter is produced of spherical bubbles at the center of a cylindrical chamber filled with deuterated acetone using a focused acoustic field having a resonant frequency of about 20 kHz. The acoustically-forced bubbles effectuate volume oscillations with sharp collapses during the compression stage. At the final stages of collapse, the bubble cluster emits 2.5 MeV D-D fusion neutron pulses at a rate of ˜ 2000 per second. The neutron yield is ˜ 10^5 s -1. In parallel, tritium nuclei are produced at the same yield. It is shown numerically that, for bubbles having sufficient molecular mass, spherical shock waves develop in the center of the cluster and that these spherical shock waves (microshocks) produce converging shocks within the interior bubbles, which focus energy on the centers of the bubbles. When these shock waves reflect from the centers of the bubbles, extreme conditions of temperature ( ˜ 10^8 K) and density ( ˜ 10^4 kg m -3) arise in a (nano)spherical region ( ˜ 10-7 m in size) that last for ˜ 10-12 s, during which time about ten D-D fusion neutrons and tritium nuclei are produced in the region. A paradoxical result in our experiments is that it is bubble cluster (not streamer) cavitation and the sufficiently high molecular mass of (and hence the low sound speed in) D-acetone ( C3D6O) vapor (as compared, for example, to deuterated water D2O) which are necessary conditions for the formation of convergent spherical microshock waves in central cluster bubbles. It is these waves that allow the energy to be sufficiently focused in the nanospherical regions near the bubble centers for fusion events to occur. The criticism to which the concept of 'bubble fusion' has been subjected in the literature, in particular, most recently in Uspekhi Fizicheskikh Nauk (Physics - Uspekhi) journal, is

  13. Bubble proliferation in the cavitation field of a shock wave lithotripter.

    PubMed

    Pishchalnikov, Yuri A; Williams, James C; McAteer, James A

    2011-08-01

    Lithotripter shock waves (SWs) generated in non-degassed water at 0.5 and 2 Hz pulse repetition frequency (PRF) were characterized using a fiber-optic hydrophone. High-speed imaging captured the inertial growth-collapse-rebound cycle of cavitation bubbles, and continuous recording with a 60 fps camcorder was used to track bubble proliferation over successive SWs. Microbubbles that seeded the generation of bubble clouds formed by the breakup of cavitation jets and by bubble collapse following rebound. Microbubbles that persisted long enough served as cavitation nuclei for subsequent SWs, as such bubble clouds were enhanced at fast PRF. Visual tracking suggests that bubble clouds can originate from single bubbles. PMID:21877776

  14. Cavitation inception by the backscattering of pressure waves from a bubble interface

    SciTech Connect

    Takahira, Hiroyuki Ogasawara, Toshiyuki Mori, Naoto Tanaka, Moe

    2015-10-28

    The secondary cavitation that occurs by the backscattering of focused ultrasound from a primary cavitation bubble caused by the negative pressure part of the ultrasound (Maxwell, et al., 2011) might be useful for the energy exchange due to bubble oscillations in High Intensity Focused Ultrasound (HIFU). The present study is concerned with the cavitation inception by the backscattering of ultrasound from a bubble. In the present experiment, a laser-induced bubble which is generated by a pulsed focused laser beam with high intensity is utilized as a primary cavitation bubble. After generating the bubble, focused ultrasound is emitted to the bubble. The acoustic field and the bubble motion are observed with a high-speed video camera. It is confirmed that the secondary cavitation bubble clouds are generated by the backscattering from the laser-induced bubble. The growth of cavitation bubble clouds is analyzed with the image processing method. The experimental results show that the height and width of the bubble clouds grow in stepwise during their evolution. The direct numerical simulations are also conducted for the backscattering of incident pressure waves from a bubble in order to evaluate a pressure field near the bubble. It is shown that the ratio of a bubble collapse time t{sub 0} to a characteristic time of wave propagation t{sub S}, η = t{sub 0}/t{sub s}, is an important determinant for generating negative pressure region by backscattering. The minimum pressure location by the backscattering in simulations is in good agreement with the experiment.

  15. Nucleus factory on cavitation bubble for amyloid β fibril

    PubMed Central

    Nakajima, Kichitaro; Ogi, Hirotsugu; Adachi, Kanta; Noi, Kentaro; Hirao, Masahiko; Yagi, Hisashi; Goto, Yuji

    2016-01-01

    Structural evolution from monomer to fibril of amyloid β peptide is related to pathogenic mechanism of Alzheimer disease, and its acceleration is a long-running problem in drug development. This study reveals that ultrasonic cavitation bubbles behave as catalysts for nucleation of the peptide: The nucleation reaction is highly dependent on frequency and pressure of acoustic wave, and we discover an optimum acoustical condition, at which the reaction-rate constant for nucleation is increased by three-orders-of magnitudes. A theoretical model is proposed for explaining highly frequency and pressure dependent nucleation reaction, where monomers are captured on the bubble surface during its growth and highly condensed by subsequent bubble collapse, so that they are transiently exposed to high temperatures. Thus, the dual effects of local condensation and local heating contribute to dramatically enhance the nucleation reaction. Our model consistently reproduces the frequency and pressure dependences, supporting its essential applicability. PMID:26912021

  16. Nucleus factory on cavitation bubble for amyloid β fibril.

    PubMed

    Nakajima, Kichitaro; Ogi, Hirotsugu; Adachi, Kanta; Noi, Kentaro; Hirao, Masahiko; Yagi, Hisashi; Goto, Yuji

    2016-01-01

    Structural evolution from monomer to fibril of amyloid β peptide is related to pathogenic mechanism of Alzheimer disease, and its acceleration is a long-running problem in drug development. This study reveals that ultrasonic cavitation bubbles behave as catalysts for nucleation of the peptide: The nucleation reaction is highly dependent on frequency and pressure of acoustic wave, and we discover an optimum acoustical condition, at which the reaction-rate constant for nucleation is increased by three-orders-of magnitudes. A theoretical model is proposed for explaining highly frequency and pressure dependent nucleation reaction, where monomers are captured on the bubble surface during its growth and highly condensed by subsequent bubble collapse, so that they are transiently exposed to high temperatures. Thus, the dual effects of local condensation and local heating contribute to dramatically enhance the nucleation reaction. Our model consistently reproduces the frequency and pressure dependences, supporting its essential applicability. PMID:26912021

  17. Nucleus factory on cavitation bubble for amyloid β fibril

    NASA Astrophysics Data System (ADS)

    Nakajima, Kichitaro; Ogi, Hirotsugu; Adachi, Kanta; Noi, Kentaro; Hirao, Masahiko; Yagi, Hisashi; Goto, Yuji

    2016-02-01

    Structural evolution from monomer to fibril of amyloid β peptide is related to pathogenic mechanism of Alzheimer disease, and its acceleration is a long-running problem in drug development. This study reveals that ultrasonic cavitation bubbles behave as catalysts for nucleation of the peptide: The nucleation reaction is highly dependent on frequency and pressure of acoustic wave, and we discover an optimum acoustical condition, at which the reaction-rate constant for nucleation is increased by three-orders-of magnitudes. A theoretical model is proposed for explaining highly frequency and pressure dependent nucleation reaction, where monomers are captured on the bubble surface during its growth and highly condensed by subsequent bubble collapse, so that they are transiently exposed to high temperatures. Thus, the dual effects of local condensation and local heating contribute to dramatically enhance the nucleation reaction. Our model consistently reproduces the frequency and pressure dependences, supporting its essential applicability.

  18. Importance of the implosion of ESWL-induced cavitation bubbles.

    PubMed

    Delacrétaz, G; Rink, K; Pittomvils, G; Lafaut, J P; Vandeursen, H; Boving, R

    1995-01-01

    The damage induced by an extracorporeal shock wave lithotripter is observed with a fiber optic stress sensing technique. When a stone is placed in the focus, besides the expected stress induced by the incoming shock wave emitted by the ESWL apparatus, a second delayed stress is observed some hundreds of microseconds later. The second stress is induced by a shock wave generated at the collapse of a cavitation bubble. Partial reflection of the incoming shock wave at the stone boundary is at the origin of the large cavitation bubble formation. Sensing fiber fracture results always from the second shock wave due to the collapse of the cavitation bubble. Thus the largest stress is generated at the collapse. When no target is placed in the focus of the lithotripter, no large cavitation bubble is formed and no delayed shock wave is observed. Our results demonstrate unambiguously the decisive role of cavitation in ESWL procedures. PMID:7754583

  19. Cavitation Bubble Nucleation by Energetic Particles

    SciTech Connect

    West, C.D.

    1998-12-01

    In the early sixties, experimental measurements using a bubble chamber confirmed quantitatively the thermal spike theory of bubble nucleation by energetic particles: the energy of the slow, heavy alpha decay recoils used in those experiments matched the calculated bubble nucleation energy to within a few percent. It was a triumph, but was soon to be followed by a puzzle. Within a couple of years, experiments on similar liquids, but well below their normal boiling points, placed under tensile stress showed that the calculated bubble nucleation energy was an order of magnitude less than the recoil energy. Why should the theory work so well in the one case and so badly in the other? How did the liquid, or the recoil particle, "know" the difference between the two experiments? Another mathematical model of the same physical process, introduced in 1967, showed qualitatively why different analyses would be needed for liquids with high and low vapor pressures under positive or negative pressures. But, the quantitative agreement between the calculated nucleation energy and the recoil energy was still poor--the former being smaller by a factor of two to three. In this report, the 1967 analysis is extended and refined: the qualitative understanding of the difference between positive and negative pressure nucleation, "boiling" and "cavitation" respectively, is retained, and agreement between the negative pressure calculated to be needed for nucleation and the energy calculated to be available is much improved. A plot of the calculated negative pressure needed to induce bubble formation against the measured value now has a slope of 1.0, although there is still considerable scatter in the individual points.

  20. Cavitation bubble dynamics in microfluidic gaps of variable height.

    PubMed

    Quinto-Su, Pedro A; Lim, Kang Y; Ohl, Claus-Dieter

    2009-10-01

    We study experimentally the dynamics of laser-induced cavitation bubbles created inside a narrow gap. The gap height, h , is varied from 15 to 400 microm and the resulting bubble dynamics is compared to a semiunbounded fluid. The cavitation bubbles are created with pulsed laser light at constant laser energy and are imaged with a high-speed camera. The bubble lifetime increases with decreasing gap height by up to 50% whereas the maximum projected bubble radius remains constant. Comparing the radial dynamics to potential flow models, we find that with smaller gaps, the bubble-induced flow becomes essentially planar, thus slower flows with reduced shear. These findings might have important consequences for microfluidic applications where it is desirable to tune the strength and range of the interactions such as in the case of cell lysis and cell membrane poration. PMID:19905487

  1. Controlled permeation of cell membrane by single bubble acoustic cavitation.

    PubMed

    Zhou, Y; Yang, K; Cui, J; Ye, J Y; Deng, C X

    2012-01-10

    Sonoporation is the membrane disruption generated by ultrasound and has been exploited as a non-viral strategy for drug and gene delivery. Acoustic cavitation of microbubbles has been recognized to play an important role in sonoporation. However, due to the lack of adequate techniques for precise control of cavitation activities and real-time assessment of the resulting sub-micron process of sonoporation, limited knowledge has been available regarding the detail processes and correlation of cavitation with membrane disruption at the single cell level. In the current study, we developed a combined approach including optical, acoustical, and electrophysiological techniques to enable synchronized manipulation, imaging, and measurement of cavitation of single bubbles and the resulting cell membrane disruption in real-time. Using a self-focused femtosecond laser and high frequency ultrasound (7.44MHz) pulses, a single microbubble was generated and positioned at a desired distance from the membrane of a Xenopus oocyte. Cavitation of the bubble was achieved by applying a low frequency (1.5MHz) ultrasound pulse (duration 13.3 or 40μs) to induce bubble collapse. Disruption of the cell membrane was assessed by the increase in the transmembrane current (TMC) of the cell under voltage clamp. Simultaneous high-speed bright field imaging of cavitation and measurements of the TMC were obtained to correlate the ultrasound-generated bubble activities with the cell membrane poration. The change in membrane permeability was directly associated with the formation of a sub-micrometer pore from a local membrane rupture generated by bubble collapse or bubble compression depending on ultrasound amplitude and duration. The impact of the bubble collapse on membrane permeation decreased rapidly with increasing distance (D) between the bubble (diameter d) and the cell membrane. The effective range of cavitation impact on membrane poration was determined to be D/d=0.75. The maximum mean

  2. Dual pulses for cavitation control in lithotripsy: Shock wave-bubble interactions and bioeffects

    NASA Astrophysics Data System (ADS)

    Sokolov, Dahlia L.

    2002-08-01

    Cavitation, the growth and collapse of gas/vapor bubbles, appears to play an important role in both stone comminution and tissue injury during shock wave lithotripsy, the clinical treatment in which focused, high amplitude shock pulses are used to comminute kidney stones. The goal of this research was to characterize in vitro cavitation activity and stone and cell damage in a novel system that uses converging dual pulses, produced by two identical, confocal lithotripters, to modify the cavitation field. The cavitation bubble dynamics were numerically calculated, and experiments were performed in a research electrohydraulic shock wave lithotripter to determine bubble size, lifetime, and pit depth created in aluminum foils by cavitation collapse. Furthermore, damage to model stones and to red blood cells was measured for both single and dual-pulses. A single shock pulse creates a ˜15 x 100 mm cloud of bubbles in water. The greatest cavitation activity and stone damage from single-pulses was found to occur 2 cm proximal to the geometric focus, F2, where the stone is normally aligned. Therefore, a 2 cm shift in stone alignment may potentially improve stone comminution and reduce tissue injury in clinical treatment. The dual-pulse lithotripter, on the other hand, generates a localized and intensified cavitation field that increased stone comminution efficiency at F2 by at least three times the maximum values achieved by single-pulses. At F2, acoustic pressure approximately doubled, as did bubble size, collapse time, and pit depth on foils. A significant reduction in comminution of stones suspended in glycerol indicates that cavitation activity, not the doubling of acoustic pressure, explains the increased comminution. On either side of F2, the second delayed pulse mitigated bubble collapse, resulting in little or no pitting on foils and reduced hemolysis, even when compared with single pulses. Numerical calculations of radial dynamics agreed with experimental findings

  3. Synchrotron quantification of ultrasound cavitation and bubble dynamics in Al-10Cu melts.

    PubMed

    Xu, W W; Tzanakis, I; Srirangam, P; Mirihanage, W U; Eskin, D G; Bodey, A J; Lee, P D

    2016-07-01

    Knowledge of the kinetics of gas bubble formation and evolution under cavitation conditions in molten alloys is important for the control casting defects such as porosity and dissolved hydrogen. Using in situ synchrotron X-ray radiography, we studied the dynamic behaviour of ultrasonic cavitation gas bubbles in a molten Al-10 wt%Cu alloy. The size distribution, average radius and growth rate of cavitation gas bubbles were quantified under an acoustic intensity of 800 W/cm(2) and a maximum acoustic pressure of 4.5 MPa (45 atm). Bubbles exhibited a log-normal size distribution with an average radius of 15.3 ± 0.5 μm. Under applied sonication conditions the growth rate of bubble radius, R(t), followed a power law with a form of R(t)=αt(β), and α=0.0021 &β=0.89. The observed tendencies were discussed in relation to bubble growth mechanisms of Al alloy melts. PMID:26964960

  4. The recreation of a unique shrimp's mechanically induced cavitation bubble

    NASA Astrophysics Data System (ADS)

    Miller, Ryan; Dougherty, Christopher; Eliasson, Veronica; Khanolkar, Gauri

    2014-11-01

    The Alpheus heterochaelis, appropriately nicknamed the ``pistol shrimp,'' possesses an oversized claw that creates a cavitation bubble upon rapid closure. The implosion of this bubble results in a shock wave that can stun or even kill the shrimp's prey (Versluis et al., 2000). Additionally, the implosion is so violent that sonoluminescence may occur. This light implies extreme temperatures, which have been recorded to reach as high as 10,000 K (Roach, 2001). By developing an analogous mechanism to the oversized claw, the goal of this experiment is to verify that cavitation can be produced similar to that of the pistol shrimp in nature as well as to analyze the resulting shock wave and sonoluminescence. High-speed schlieren imaging was used to observe the shock dynamics. Furthermore, results on cavitation collapse and light emission will be presented. USC Provost Undergraduate Research Fellowship/Rose Hills Undergraduate Research Fellowship.

  5. Quantitative assessment of reactive oxygen sonochemically generated by cavitation bubbles

    NASA Astrophysics Data System (ADS)

    Yasuda, Jun; Miyashita, Takuya; Taguchi, Kei; Yoshizawa, Shin; Umemura, Shin-ichiro

    2015-07-01

    Acoustic cavitation bubbles can induce not only a thermal bioeffect but also a chemical bioeffect. When cavitation bubbles collapse and oscillate violently, they produce reactive oxygen species (ROS) that cause irreversible changes to the tissue. A sonosensitizer can promote such ROS generation. A treatment method using a sonosensitizer is called sonodynamic treatment. Rose bengal (RB) is one of the sonosensitizers whose in vivo and in vitro studies have been reported. In sonodynamic treatment, it is important to produce ROS at a high efficiency. For the efficient generation of ROS, a triggered high-intensity focused ultrasound (HIFU) sequence has been proposed. In this study, cavitation bubbles were generated in a chamber where RB solution was sealed, and a high-speed camera captured the behavior of these cavitation bubbles. The amount of ROS was also quantified by a potassium iodide (KI) method and compared with high-speed camera pictures to investigate the effectiveness of the triggered HIFU sequence. As a result, ROS could be obtained efficiently by this sequence.

  6. Cavitation and bubble dynamics: the Kelvin impulse and its applications.

    PubMed

    Blake, John R; Leppinen, David M; Wang, Qianxi

    2015-10-01

    Cavitation and bubble dynamics have a wide range of practical applications in a range of disciplines, including hydraulic, mechanical and naval engineering, oil exploration, clinical medicine and sonochemistry. However, this paper focuses on how a fundamental concept, the Kelvin impulse, can provide practical insights into engineering and industrial design problems. The pathway is provided through physical insight, idealized experiments and enhancing the accuracy and interpretation of the computation. In 1966, Benjamin and Ellis made a number of important statements relating to the use of the Kelvin impulse in cavitation and bubble dynamics, one of these being 'One should always reason in terms of the Kelvin impulse, not in terms of the fluid momentum…'. We revisit part of this paper, developing the Kelvin impulse from first principles, using it, not only as a check on advanced computations (for which it was first used!), but also to provide greater physical insights into cavitation bubble dynamics near boundaries (rigid, potential free surface, two-fluid interface, flexible surface and axisymmetric stagnation point flow) and to provide predictions on different types of bubble collapse behaviour, later compared against experiments. The paper concludes with two recent studies involving (i) the direction of the jet formation in a cavitation bubble close to a rigid boundary in the presence of high-intensity ultrasound propagated parallel to the surface and (ii) the study of a 'paradigm bubble model' for the collapse of a translating spherical bubble, sometimes leading to a constant velocity high-speed jet, known as the Longuet-Higgins jet. PMID:26442141

  7. Cavitation in confined water: ultra-fast bubble dynamics

    NASA Astrophysics Data System (ADS)

    Vincent, Olivier; Marmottant, Philippe

    2012-02-01

    In the hydraulic vessels of trees, water can be found at negative pressure. This metastable state, corresponding to mechanical tension, is achieved by evaporation through a porous medium. It can be relaxed by cavitation, i.e. the sudden nucleation of vapor bubbles. Harmful for the tree due to the subsequent emboli of sap vessels, cavitation is on the contrary used by ferns to eject spores very swiftly. We will focus here on the dynamics of the cavitation bubble, which is of primary importance to explain the previously cited natural phenomena. We use the recently developed method of artificial tress, using transparent hydrogels as the porous medium. Our experiments, on water confined in micrometric hydrogel cavities, show an extremely fast dynamics: bubbles are nucleated at the microsecond timescale. For cavities larger than 100 microns, the bubble ``rings'' with damped oscillations at MHz frequencies, whereas for smaller cavities the oscillations become overdamped. This rich dynamics can be accounted for by a model we developed, leading to a modified Rayleigh-Plesset equation. Interestingly, this model predicts the impossibility to nucleate bubbles above a critical confinement that depends on liquid negative pressure and corresponds to approximately 100 nm for 20 MPa tensions.

  8. Spatial-temporal dynamics of cavitation bubble clouds in 1.2 MHz focused ultrasound field.

    PubMed

    Chen, Hong; Li, Xiaojing; Wan, Mingxi

    2006-09-01

    Cavitation bubbles have been recognized as being essential to many applications of ultrasound. Temporal evolution and spatial distribution of cavitation bubble clouds induced by a focused ultrasound transducer of 1.2 MHz center frequency are investigated by high-speed photography. It is revealed that at a total acoustic power of 72 W the cavitation bubble cloud first emerges in the focal region where cavitation bubbles are observed to generate, grow, merge and collapse during the initial 600 micros. The bubble cloud then grows upward to the post-focal region, and finally becomes visible in the pre-focal region. The structure of the final bubble cloud is characterized by regional distribution of cavitation bubbles in the ultrasound field. The cavitation bubble cloud structure remains stable when the acoustic power is increased from 25 W to 107 W, but it changes to a more violent form when the acoustic power is further increased to 175 W. PMID:16571378

  9. Effect of supercritical water shell on cavitation bubble dynamics

    NASA Astrophysics Data System (ADS)

    Shao, Wei-Hang; Chen, Wei-Zhong

    2015-05-01

    Based on reported experimental data, a new model for single cavitation bubble dynamics is proposed considering a supercritical water (SCW) shell surrounding the bubble. Theoretical investigations show that the SCW shell apparently slows down the oscillation of the bubble and cools the gas temperature inside the collapsing bubble. Furthermore, the model is simplified to a Rayleigh-Plesset-like equation for a thin SCW shell. The dependence of the bubble dynamics on the thickness and density of the SCW shell is studied. The results show the bubble dynamics depends on the thickness but is insensitive to the density of the SCW shell. The thicker the SCW shell is, the smaller are the wall velocity and the gas temperature in the bubble. In the authors’ opinion, the SCW shell works as a buffering agent. In collapsing, it is compressed to absorb a good deal of the work transformed into the bubble internal energy during bubble collapse so that it weakens the bubble oscillations. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174145 and 11334005).

  10. A Study of Cavitation-Ignition Bubble Combustion

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet; Jacqmin, David A.

    2005-01-01

    We present the results of an experimental and computational study of the physics and chemistry of cavitation-ignition bubble combustion (CIBC), a process that occurs when combustible gaseous mixtures are ignited by the high temperatures found inside a rapidly collapsing bubble. The CIBC process was modeled using a time-dependent compressible fluid-dynamics code that includes finite-rate chemistry. The model predicts that gas-phase reactions within the bubble produce CO and other gaseous by-products of combustion. In addition, heat and mechanical energy release through a bubble volume-expansion phase are also predicted by the model. We experimentally demonstrate the CIBC process using an ultrasonically excited cavitation flow reactor with various hydrocarbon-air mixtures in liquid water. Low concentrations (< 160 ppm) of carbon monoxide (CO) emissions from the ultrasonic reactor were measured, and found to be proportional to the acoustic excitation power. The results of the model were consistent with the measured experimental results. Based on the experimental findings, the computational model, and previous reports of the "micro-diesel effect" in industrial hydraulic systems, we conclude that CIBC is indeed possible and exists in ultrasonically- and hydrodynamically-induced cavitation. Finally, estimates of the utility of CIBC process as a means of powering an idealized heat engine are also presented.

  11. Cavitation bubble dynamics during thulium fiber laser lithotripsy

    NASA Astrophysics Data System (ADS)

    Hardy, Luke A.; Kennedy, Joshua D.; Wilson, Christopher R.; Irby, Pierce B.; Fried, Nathaniel M.

    2016-02-01

    The Thulium fiber laser (TFL) is being explored for lithotripsy. TFL parameters differ from standard Holmium:YAG laser in several ways, including smaller fiber delivery, more strongly absorbed wavelength, low pulse energy/high pulse rate operation, and more uniform temporal pulse structure. High speed imaging of cavitation bubbles was performed at 105,000 fps and 10 μm spatial resolution to determine influence of these laser parameters on bubble formation. TFL was operated at 1908 nm with pulse energies of 5-75 mJ, and pulse durations of 200-1000 μs, delivered through 100-μm-core fiber. Cavitation bubble dynamics using Holmium laser at 2100 nm with pulse energies of 200-1000 mJ and pulse duration of 350 μs was studied, for comparison. A single, 500 μs TFL pulse produced a bubble stream extending 1090 +/- 110 μm from fiber tip, and maximum bubble diameters averaged 590 +/- 20 μm (n=4). These observations are consistent with previous studies which reported TFL ablation stallout at working distances < 1.0 mm. TFL bubble dimensions were five times smaller than for Holmium laser due to lower pulse energy, higher water absorption coefficient, and smaller fiber diameter used.

  12. Numerical simulation of cavitation bubble dynamics induced by ultrasound waves in a high frequency reactor.

    PubMed

    Servant, G; Caltagirone, J P; Gérard, A; Laborde, J L; Hita, A

    2000-10-01

    The use of high frequency ultrasound in chemical systems is of major interest to optimize chemical procedures. Characterization of an open air 477 kHz ultrasound reactor shows that, because of the collapse of transient cavitation bubbles and pulsation of stable cavitation bubbles, chemical reactions are enhanced. Numerical modelling is undertaken to determine the spatio-temporal evolution of cavitation bubbles. The calculus of the emergence of cavitation bubbles due to the acoustic driving (by taking into account interactions between the sound field and bubbles' distribution) gives a cartography of bubbles' emergence within the reactor. Computation of their motion induced by the pressure gradients occurring in the reactor show that they migrate to the pressure nodes. Computed bubbles levitation sites gives a cartography of the chemical activity of ultrasound. Modelling of stable cavitation bubbles' motion induced by the motion of the liquid gives some insight on degassing phenomena. PMID:11062879

  13. Shock wave emission during the collapse of cavitation bubbles

    NASA Astrophysics Data System (ADS)

    Garen, W.; Hegedűs, F.; Kai, Y.; Koch, S.; Meyerer, B.; Neu, W.; Teubner, U.

    2016-02-01

    Shock wave emission induced by intense laser pulses is investigated experimentally. The present work focuses on the conditions of shock wave emission in glycerine and distilled water during the first bubble collapse. Experimental investigations are carried out in liquids as a function of temperature and viscosity. Comparison is made with the theoretical work of Poritsky (Proc 1st US Natl Congress Appl Mech 813-821, 1952) and Brennen (Cavitation and bubble dynamics, Oxford University Press 1995). To the best knowledge of the authors, this is the first experimental verification of those theories.

  14. Evidence for liquid phase reactions during single bubble acoustic cavitation.

    PubMed

    Troia, A; Madonna Ripa, D; Lago, S; Spagnolo, R

    2004-07-01

    We extended the recent experiment by Lepoint et al. [Sonochemistry and Sonoluminescence, NATO ASI Series, Series C 524, Kluwer Academic Publishers, Dordrecht/Boston/London, 1999, p. 285], involving a so-called single bubble sonochemistry process, to a three-phase system. We have found experimental evidence that a single cavitating bubble can activate the oxidation of I- ions after the injection of a CCl4 liquid drop in the bubble trapping apparatus. The solvent drop (CCl4 is almost water insoluble) is pushed towards the bubble position and forms a thin film on the bubble surface. When the acoustic pressure drive is increased above 100 kPa, the three-phase system gives rise to a dark filament, indicating the complexation reaction between starch (added to the water phase) and I2. I2 species is the product of surface reactions involving bubble-induced decomposition of CCl4. Further increase of the acoustic drive causes the thin CCl4 film to separate from the bubble and stops I2 production. The study of the chemical activity of this three-phase system could give new advances on dynamics of the bubble collapse. PMID:15157862

  15. Drop fragmentation by laser-induced cavitation bubbles

    NASA Astrophysics Data System (ADS)

    Gonzalez-A, S. Roberto; Kerssens, Pjotr; Ohl, Claus-Dieter

    2015-11-01

    The fragmentation of water droplets by a short laser pulse has received significant attention since the 70's. The fundamental understanding of droplet vaporization/fragmentation is of interest in laser beam propagation in the atmosphere, in situ analysis of combustion products -a great concern due to its ecological implications- and more recently driven by a better understanding of the drop shaping by a laser pulse which is of interest in the development of extreme ultraviolet (EUV) machines. In this presentation we discuss about the incipient events that lead to the fragmentation of a drop produced by a cavitation bubble. When the bubble expands, it stretches the drop into a thin liquid film; this liquid film is eventually ruptured and a shockwave and small droplets are ejected as fast as 4 times the speed of sound in air. Interestingly, we also observe bubbles on the surface of the stretched film. Numerical simulations of a shock wave propagating inside a droplet show that cavitation bubbles appear when counter propagating shock waves that rebound from the walls of the drop meet. We also show different fragmentation scenarios recorded with high-speed video, one of them being a jelly fish like liquid film that eventually fragments into smaller drops.

  16. Bubbles in drops: from cavitation to exploding stars

    NASA Astrophysics Data System (ADS)

    Kobel, Philippe; Obreschkow, Danail; Dorsaz, Nicolas; de Bosset, Aurele; Tinguely, Marc; Farhat, Mohamed

    2011-11-01

    We performed an experiment to generate single cavitation bubbles inside centimetric quasi-spherical water drops. To produce such drops, our experiment was realized under microgravity conditions (42nd ESA parabolic flight campaign). The ultra-fast recording of the bubble collapse and ensuing dynamics revealed consequences of the unique geometry of the drop's free surface. We obtained the first visualizations of a jet pair escaping the drop after the collapse of eccentrically-placed bubbles. The high quality of the images also disclosed some features of the inner drop dynamics. Due to their confinement within the isolated drop volume, shock waves emitted at the bubble collapse bounce back and forth thereby exciting gas nuclei into sub-millimetric bubbles. When located beneath the free surface, the collapse of these bubbles gives rise to narrow ``hair-like'' jets on the surface. Here we briefly describe the physics underlying these observations while discussing possible analogies with various astrophysical processes from the Sun (spicules) to asymmetric supernovae.

  17. Modeling and experimental analysis of acoustic cavitation bubbles for Burst Wave Lithotripsy

    NASA Astrophysics Data System (ADS)

    Maeda, Kazuki; Kreider, Wayne; Maxwell, Adam; Cunitz, Bryan; Colonius, Tim; Bailey, Michael

    2015-12-01

    Cavitation bubbles initiated by focused ultrasound waves are investigated through experiments and modeling. Pulses of focused ultrasound with a frequency of 335 kHz and a peak negative pressure of 8 MPa is generated in a water tank by a piezoelectric transducer to initiate cavitation. The pressure field is modeled by solving the Euler equations and used to simulate single bubble oscillation. The characteristics of cavitation bubbles observed by highspeed photography qualitatively agree with the simulation results. Finally, bubble clouds are captured using acoustic B-mode imaging that works synchronized with high-speed photography.

  18. Modeling and experimental analysis of acoustic cavitation bubbles for Burst Wave Lithotripsy

    PubMed Central

    Maeda, Kazuki; Colonius, Tim; Kreider, Wayne; Maxwell, Adam; Cunitz, Bryan; Bailey, Michael

    2016-01-01

    A combined modeling and experimental study of acoustic cavitation bubbles that are initiated by focused ultrasound waves is reported. Focused ultrasound waves of frequency 335 kHz and peak negative pressure 8 MPa are generated in a water tank by a piezoelectric transducer to initiate cavitation. The resulting pressure field is obtained by direct numerical simulation (DNS) and used to simulate single bubble oscillation. The characteristics of cavitation bubbles observed by high-speed photography qualitatively agree withs the simulation result. Finally, bubble clouds are captured using acoustic B-mode imaging that works in synchronization with high-speed photography. PMID:27087826

  19. Hysteresis of inertial cavitation activity induced by fluctuating bubble size distribution.

    PubMed

    Muleki Seya, Pauline; Desjouy, Cyril; Béra, Jean-Christophe; Inserra, Claude

    2015-11-01

    Amongst the variety of complex phenomena encountered in nonlinear physics, a hysteretic effect can be expected on ultrasound cavitation due to the intrinsic nonlinearity of bubble dynamics. When applying successive ultrasound shots for increasing and decreasing acoustic intensities, a hysteretic behaviour is experimentally observed on inertial cavitation activity, with a loop area sensitive to the inertial cavitation threshold. To get a better insight of the phenomena underlying this hysteretic effect, the evolution of the bubble size distribution is studied numerically by implementing rectified diffusion, fragmentation process, rising and dissolution of bubbles from an initial bubble size distribution. When applying increasing and decreasing acoustic intensities, the numerical distribution exhibits asymmetry in bubble number and distribution. The resulting inertial cavitation activity is assessed through the numerical broadband noise of the emitted acoustic radiation of the bubble cloud dynamics. This approach allows obtaining qualitatively the observed hysteretic effect and its interest in terms of control is discussed. PMID:26186844

  20. Cavitation bubble generation and control for HIFU transcranial adaptive focusing

    NASA Astrophysics Data System (ADS)

    Gâteau, J.; Marsac, L.; Pernot, M.; Aubry, J.-F.; Tanter, M.; Fink, M.

    2009-04-01

    Brain treatment with High Intensity Focused Ultrasound (HIFU) can be achieved by multichannel arrays through the skull using time-reversal focusing. Such a method requires a reference signal either sent by a real source embedded in brain tissues or computed from a virtual source, using the acoustic properties of the skull deduced from CT images. This noninvasive computational method allows precise focusing, but is time consuming and suffers from unavoidable modeling errors which reduce the accessible acoustic pressure at the focus in comparison with real experimental time-reversal using an implanted hydrophone. Ex vivo simulations with a half skull immersed in a water tank allow us to reach at low amplitude levels a pressure ratio of 83% of the reference pressure (real time reversal) at 1MHz. Using this method to transcranially focus a pulse signal in an agar gel (model for in vivo bubble formation), we induced a cavitation bubble that generated an ultrasonic wave received by the array. Selecting the 1MHz component, the signal was time reversed and re-emitted, allowing 97%±1.1% of pressure ratio to be restored. To target points in the vicinity of the geometrical focus, electronic steering from the reference signal has been achieved. Skull aberrations severely degrade the accessible pressure while moving away from the focus ( ˜90% at 10mm in the focal plane). Nevertheless, inducing cavitation bubbles close to the limit of the primary accessible zone allowed us to acquire multiple references signal to increase the electronic steering area by 50%.

  1. Experimental investigation on dynamic characteristics and strengthening mechanism of laser-induced cavitation bubbles.

    PubMed

    Ren, X D; He, H; Tong, Y Q; Ren, Y P; Yuan, S Q; Liu, R; Zuo, C Y; Wu, K; Sui, S; Wang, D S

    2016-09-01

    The dynamic features of nanosecond laser-induced cavitation bubbles near the light alloy boundary were investigated with the high-speed photography. The shock-waves and the dynamic characteristics of the cavitation bubbles generated by the laser were detected using the hydrophone. The dynamic features and strengthening mechanism of cavitation bubbles were studied. The strengthening mechanisms of cavitation bubble were discussed when the relative distance parameter γ was within the range of 0.5-2.5. It showed that the strengthening mechanisms caused by liquid jet or shock-waves depended on γ much. The research results provided a new strengthening method based on laser-induced cavitation shotless peening (CSP). PMID:27150764

  2. Hydrodynamics of an endothermic gas with application to bubble cavitation

    NASA Astrophysics Data System (ADS)

    Lutsko, James F.

    2006-10-01

    The hydrodynamics for a gas of hard spheres which sometimes experience inelastic collisions resulting in the loss of a fixed, velocity-independent, amount of energy Δ is investigated with the goal of understanding the coupling between hydrodynamics and endothermic chemistry. The homogeneous cooling state of a uniform system and the modified Navier-Stokes equations are discussed and explicit expressions given for the pressure, cooling rates, and all transport coefficients for D dimensions. The Navier-Stokes equations are solved numerically for the case of a two-dimensional gas subject to a circular piston so as to illustrate the effects of the enegy loss on the structure of shocks found in cavitating bubbles. It is found that the maximal temperature achieved is a sensitive function of Δ with a minimum occurring near the physically important value of Δ ˜12000K˜1eV.

  3. Shockwave and cavitation bubble dynamics of atmospheric air

    NASA Astrophysics Data System (ADS)

    Leela, Ch.; Bagchi, S.; Tewari, Surya P.; Kiran, P. Prem

    2013-11-01

    The generation and evolution of laser induced shock waves (SWs) and the hot core plasma (HCP) created by focusing 7 ns, 532 nm laser pulses in ambient air is studied using time resolved shadowgraphic imaging technique. The dynamics of rapidly expanding plasma releasing SWs into the ambient atmosphere were studied for time delays ranging from nanoseconds to milliseconds with ns temporal resolution. The SW is observed to get detached from expanding HCP at around 3μs. Though the SWs were found to expand spherically following the Sedov-Taylor theory, the rapidly expanding HCP shows asymmetric expansion during both the expansion and cooling phase similar to that of inertial cavitation bubble (CB) dynamics. The asymmetric expansion of HCP leads to oscillation of the plasma boundary, eventually leading to collapse by forming vortices formed by the interaction of ambient air.

  4. Relationship between thrombolysis efficiency induced by pulsed focused ultrasound and cavitation bubble size

    NASA Astrophysics Data System (ADS)

    Xu, S.; Liu, X.; Wang, S.; Wan, M.

    2015-12-01

    In this study, the relationship between the efficiency of pulsed focused ultrasound (FUS)-induced thrombolysis and the size distribution of cavitation bubbles has been studied. Firstly, the thrombolysis efficiency, evaluated by degree of mechanical fragmentation was investigated with varying duty cycle. Secondly, the size distribution of cavitation bubbles after the 1st, 103th and 105th pulse during experiments for various duty cycles was studied. It was revealed that the thrombolysis efficiency was highest when the cavitation bubble size distribution was centred around linear resonance radius of the emission frequency of the FUS transducer. Therefore, in cavitation enhanced therapeutic applications, the essential of using a pulsed FUS may be controlling the size distribution of cavitation nuclei within an active size range so as to increase the treatment efficiency.

  5. Efficient Generation of Cavitation Bubbles in Gel Phantom by Ultrasound Exposure with Negative-Followed by Positive-Peak-Pressure-Emphasized Waves

    NASA Astrophysics Data System (ADS)

    Yasuda, Jun; Asai, Ayumu; Yoshizawa, Shin; Umemura, Shin-ichiro

    2013-07-01

    Cavitation bubbles have much potential for emphasizing therapeutic treatments such as high-intensity focused ultrasound (HIFU) treatment, histotripsy, and sonodynamic therapy. Their highly efficient as well as controlled generation is important to utilize them effectively as well as safely. However, producing negative pressure over the cavitation threshold by focused ultrasound is difficult because of the nonlinear propagation combined with the focal phase shift. We have suggested a dual-frequency ultrasound exposure method, in which N- and P-waves emphasizing either the peak negative or positive pressure, respectively, are synthesized by superimposing the second harmonic onto the fundamental frequency. In this study, high-speed camera observation demonstrated that the exposure with N-waves immediately followed by P-waves could generate cavitation bubbles most efficiently in gel phantom. Furthermore, the measured negative and positive pressure distributions of the N- and P-wave fields, respectively, agreed well with the optically observed distributions of cavitation inception and cavitation cloud growth.

  6. Hollow nanoparticle generation on laser-induced cavitation bubbles via bubble interface pinning

    NASA Astrophysics Data System (ADS)

    Yan, Zijie; Bao, Ruqiang; Wright, Roger N.; Chrisey, Douglas B.

    2010-09-01

    We report the self-assembly of ZnOx (0≤x≤1) (and permalloy) nanoclusters into hollow nanoparticles using pulsed laser ablation of bulk Zn (or permalloy) in ethanol-water binary mixture. The self-assembly is due to the trapping of laser-produced nanoclusters by the interfaces of cavitation bubbles and the bonding of the nanoclusters by capillary attraction. It was found that the bubbles generated in the mixture have significantly longer lifetimes compared to water alone, which provide an increasing chance to absorb diffusive nanoclusters. The mixture could be adjusted by adding viscous surfactant that makes the pulsed laser ablation in liquid a promising method for the discovery and fabrication of other hollow geometries.

  7. Acceleration of lithotripsy using cavitation bubbles induced by second-harmonic superimposition

    NASA Astrophysics Data System (ADS)

    Osuga, Masamizu; Yasuda, Jun; Jimbo, Hayato; Yoshizawa, Shin; Umemura, Shin-ichiro

    2016-07-01

    Shock wave lithotripsy potentially produces residual stone fragments too large to pass through ureters and significant injury to the normal tissue surrounding the stone. Previous works have shown that the collapse of cavitation bubbles induced by high-intensity focused ultrasound can produce small stone fragments via cavitation erosion. However, the erosion rate is hypothesized to be reduced by ultrasound attenuation by excessively generated bubble clouds. If so, it is important to generate the bubbles only on the stone surface. The effects of peak-negative-enhanced (PNE) and peak-positive-enhanced (PPE) waves obtained by second-harmonic superimposition were investigated to control cavitation bubbles. With the PNE waves, the bubbles were generated only on the stone surface and the maximum erosion rate was 232 ± 32 mg/min. All the fragments were smaller than 2 mm, which makes them pass through ureters naturally. The proposed method shows the potential to significantly improve the speed of lithotripsy.

  8. Quantification of optison bubble size and lifetime during sonication dominant role of secondary cavitation bubbles causing acoustic bioeffects.

    PubMed

    Kamaev, Pavel P; Hutcheson, Joshua D; Wilson, Michelle L; Prausnitz, Mark R

    2004-04-01

    Acoustic cavitation has been shown to deliver molecules into viable cells, which is of interest for drug and gene delivery applications. To address mechanisms of these acoustic bioeffects, this work measured the lifetime of albumin-stabilized cavitation bubbles (Optison) and correlated it with desirable (intracellular uptake of molecules) and undesirable (loss of cell viability) bioeffects. Optison was exposed to 500 kHz ultrasound (acoustic pressures of 0.6-3.0 MPa and energy exposures of 0.2-200 J/cm2) either with or without the presence of DU145 prostate cancer cells (10(6) cells/ml) bathed in calcein, a cell-impermeant tracer molecule. Bubble lifetime was determined using a Coulter counter and flow cytometer, while bioeffects were evaluated by flow cytometry. The lifetime of Optison cavitation nuclei was found to decrease and bioeffects (molecular uptake and loss of cell viability) were found to increase with increasing acoustic energy exposure. These bioeffects correlated well with the disappearance of bubbles, suggesting that contrast agent destruction either directly or indirectly affected cells, probably involving unstabilized cavitation nuclei created upon the destruction of Optison. Because Optison solutions presonicated to destroy all detectable bubbles also caused significant bioeffects, the indirect mechanism involving secondary cavitation bubbles is more likely. PMID:15101659

  9. Cloud cavitation induced by shock-bubble interaction in a viscoelastic solid

    NASA Astrophysics Data System (ADS)

    Oguri, Ryota; Ando, Keita

    2015-12-01

    We experimentally study a shock-bubble interaction problem in a viscoelastic solid, which is relevant to shock wave lithotripsy. A gas bubble is produced by focusing an infrared laser pulse into gelatin. A spherical shock is then created, through rapid expansion of plasma that results from the laser focusing, in the vicinity of the gas bubble. The shock-bubble interaction is recorded by a CCD camera with flash illumination of a nanosecond green laser pulse. The observation captures cavitation inception in the gelatin under tension that results from acoustic impedance mismatching at the bubble wall. Namely, the shock reflects at the bubble interface as a rarefaction wave, which induces the nucleation of cavitation bubbles as a result of rupturing the gelatin.

  10. Optical measurements of gas bubbles in oil behind a cavitating micro-orifice flow

    NASA Astrophysics Data System (ADS)

    Iben, Uwe; Wolf, Fabian; Freudigmann, Hans-Arndt; Fröhlich, Jochen; Heller, Winfried

    2015-06-01

    In hydraulic systems, it is common for air release to occur behind valves or throttles in the form of bubbles. These air bubbles can affect the behavior and the performance of these systems to a substantial extent. In the paper, gas release in a liquid flow behind an orifice is analyzed by optical methods for various operation points. The bubbles are observed with a digital camera, and a detection algorithm based on the Hough transformation is used to determine their number and size. The appearance of gas bubbles is very sensitive to the inlet and outlet pressure of the orifice. Gas bubbles are only observed if choking cavitation occurs. An empirical relationship between an adjusted cavitation number and the appearance of gas release is presented. It is assumed that the observed bubbles contain mostly air. With the applied pressure differences, up to 30 % of the dissolved air was degassed in the form of bubbles.

  11. High-speed observation of cavitation bubble clouds near a tissue boundary in high-intensity focused ultrasound fields.

    PubMed

    Chen, Hong; Li, Xiaojing; Wan, Mingxi; Wang, Supin

    2009-03-01

    Cavitation bubble clouds generated near a tissue boundary by high-intensity focused ultrasound (HIFU) were studied using high-speed photography. In all, 171 image series were captured during the initial 100 ms of continuous HIFU exposure, which showed that cavitation bubble clouds at the tissue boundary organized into two structures - "cone-shape bubble cloud structure" recorded in 146 image series and "crown-shape bubble cloud structure" recorded in 18 image series. The remaining 7 image series showed the interchanging of these two structures. It was found that when cavitation bubbles first appeared at the tissue boundary, they developed to cone-shape bubble cloud. The cone-shape bubble cloud structure was characterized by a nearly fixed tip in front of the tissue boundary. When the cavitation bubbles initially appeared away from the tissue boundary they evolved into a crown-shape bubble cloud. Deformation of tissue boundary was shown in all the recorded image series. PMID:19041998

  12. High-contrast active cavitation imaging technique based on multiple bubble wavelet transform.

    PubMed

    Lu, Shukuan; Xu, Shanshan; Liu, Runna; Hu, Hong; Wan, Mingxi

    2016-08-01

    In this study, a unique method that combines the ultrafast active cavitation imaging technique with multiple bubble wavelet transform (MBWT) for improving cavitation detection contrast was presented. The bubble wavelet was constructed by the modified Keller-Miksis equation that considered the mutual effect among bubbles. A three-dimensional spatial model was applied to simulate the spatial distribution of multiple bubbles. The effects of four parameters on the signal-to-noise ratio (SNR) of cavitation images were evaluated, including the following: initial radii of bubbles, scale factor in the wavelet transform, number of bubbles, and the minimum inter-bubble distance. And the other two spatial models and cavitation bubble size distributions were introduced in the MBWT method. The results suggested that in the free-field experiments, the averaged SNR of images acquired by the MBWT method was improved by 7.16 ± 0.09 dB and 3.14 ± 0.14 dB compared with the values of images acquired by the B-mode and single bubble wavelet transform (SBWT) methods. In addition, in the tissue experiments, the averaged cavitation-to-tissue ratio of cavitation images acquired by the MBWT method was improved by 4.69 ± 0.25 dB and 1.74± 0.29 dB compared with that of images acquired by B-mode and SBWT methods. PMID:27586732

  13. A two-dimensional nonlinear model for the generation of stable cavitation bubbles.

    PubMed

    Vanhille, Christian

    2016-07-01

    Bubbles appear by acoustic cavitation in a liquid when rarefaction pressures attain a specific threshold value in a liquid. Once they are created, the stable cavitation bubbles oscillate nonlinearly and affect the ultrasonic field. Here we present a model developed for the study of bubble generation in a liquid contained in a two-dimensional cavity in which a standing ultrasonic field is established. The model considers dissipation and dispersion due to the bubbles. It also assumes that both the ultrasonic field and the bubble oscillations are nonlinear. The numerical experiments predict where the bubbles are generated from a population of nuclei distributed in the liquid and show how they affect the ultrasonic field. PMID:26964990

  14. Visualization of ultrasound induced cavitation bubbles using the synchrotron x-ray Analyzer Based Imaging technique

    NASA Astrophysics Data System (ADS)

    Izadifar, Zahra; Belev, George; Izadifar, Mohammad; Izadifar, Zohreh; Chapman, Dean

    2014-12-01

    Observing cavitation bubbles deep within tissue is very difficult. The development of a method for probing cavitation, irrespective of its location in tissues, would improve the efficiency and application of ultrasound in the clinic. A synchrotron x-ray imaging technique, which is capable of detecting cavitation bubbles induced in water by a sonochemistry system, is reported here; this could possibly be extended to the study of therapeutic ultrasound in tissues. The two different x-ray imaging techniques of Analyzer Based Imaging (ABI) and phase contrast imaging (PCI) were examined in order to detect ultrasound induced cavitation bubbles. Cavitation was not observed by PCI, however it was detectable with ABI. Acoustic cavitation was imaged at six different acoustic power levels and six different locations through the acoustic beam in water at a fixed power level. The results indicate the potential utility of this technique for cavitation studies in tissues, but it is time consuming. This may be improved by optimizing the imaging method.

  15. A New Active Cavitation Mapping Technique for Pulsed HIFU Applications – Bubble Doppler

    PubMed Central

    Li, Tong; Khokhlova, Tatiana; Sapozhnikov, Oleg; Hwang, Joo Ha; Sapozhnikov, Oleg; O’Donnell, Matthew

    2015-01-01

    In this work, a new active cavitation mapping technique for pulsed high-intensity focused ultrasound (pHIFU) applications termed bubble Doppler is proposed and its feasibility tested in tissue-mimicking gel phantoms. pHIFU therapy uses short pulses, delivered at low pulse repetition frequency, to cause transient bubble activity that has been shown to enhance drug and gene delivery to tissues. The current gold standard for detecting and monitoring cavitation activity during pHIFU treatments is passive cavitation detection (PCD), which provides minimal information on the spatial distribution of the bubbles. B-mode imaging can detect hyperecho formation, but has very limited sensitivity, especially to small, transient microbubbles. The bubble Doppler method proposed here is based on a fusion of the adaptations of three Doppler techniques that had been previously developed for imaging of ultrasound contrast agents – color Doppler, pulse inversion Doppler, and decorrelation Doppler. Doppler ensemble pulses were interleaved with therapeutic pHIFU pulses using three different pulse sequences and standard Doppler processing was applied to the received echoes. The information yielded by each of the techniques on the distribution and characteristics of pHIFU-induced cavitation bubbles was evaluated separately, and found to be complementary. The unified approach - bubble Doppler – was then proposed to both spatially map the presence of transient bubbles and to estimate their sizes and the degree of nonlinearity. PMID:25265178

  16. Study of cavitation bubble dynamics during Ho:YAG laser lithotripsy by high-speed camera

    NASA Astrophysics Data System (ADS)

    Zhang, Jian J.; Xuan, Jason R.; Yu, Honggang; Devincentis, Dennis

    2016-02-01

    Although laser lithotripsy is now the preferred treatment option for urolithiasis, the mechanism of laser pulse induced calculus damage is still not fully understood. This is because the process of laser pulse induced calculus damage involves quite a few physical and chemical processes and their time-scales are very short (down to sub micro second level). For laser lithotripsy, the laser pulse induced impact by energy flow can be summarized as: Photon energy in the laser pulse --> photon absorption generated heat in the water liquid and vapor (super heat water or plasma effect) --> shock wave (Bow shock, acoustic wave) --> cavitation bubble dynamics (oscillation, and center of bubble movement , super heat water at collapse, sonoluminscence) --> calculus damage and motion (calculus heat up, spallation/melt of stone, breaking of mechanical/chemical bond, debris ejection, and retropulsion of remaining calculus body). Cavitation bubble dynamics is the center piece of the physical processes that links the whole energy flow chain from laser pulse to calculus damage. In this study, cavitation bubble dynamics was investigated by a high-speed camera and a needle hydrophone. A commercialized, pulsed Ho:YAG laser at 2.1 mu;m, StoneLightTM 30, with pulse energy from 0.5J up to 3.0 J, and pulse width from 150 mu;s up to 800 μs, was used as laser pulse source. The fiber used in the investigation is SureFlexTM fiber, Model S-LLF365, a 365 um core diameter fiber. A high-speed camera with frame rate up to 1 million fps was used in this study. The results revealed the cavitation bubble dynamics (oscillation and center of bubble movement) by laser pulse at different energy level and pulse width. More detailed investigation on bubble dynamics by different type of laser, the relationship between cavitation bubble dynamics and calculus damage (fragmentation/dusting) will be conducted as a future study.

  17. Numerical simulation of cavitation erosion on a NACA0015 hydrofoil based on bubble collapse strength

    NASA Astrophysics Data System (ADS)

    Hidalgo, V.; Luo, X.; Escaler, X.; Huang, R.; Valencia, E.

    2015-12-01

    The prediction of erosion under unsteady cavitation is crucial to prevent damage in hydraulic machinery. The present investigation deals with the numerical simulation of erosive partial cavitation around a NACA0015 hydrofoil. The study presents the calculation of the bubble collapse strength, Sb, based on the bubble potential energy to identify the surface areas with highest risk of damage. The results are obtained with a numerical scheme assuming homogeneous mixture flow, implicit LES and Zwart cavitation model. The 3D unsteady flow simulation has been solved using OpenFOAM. Python language and OpenFOAM calculator (foamCalcEx) have been used to obtain and represent Sb. The obtained results clearly show the instants of erosive bubble collapse and the affected surface areas.

  18. The dynamic behavior and compliance of a stream of cavitating bubbles.

    NASA Technical Reports Server (NTRS)

    Brennen, C.

    1973-01-01

    Study of the dynamic response of streams of cavitating bubbles to imposed pressure fluctuations to determine the role played by turbopump cavitation in the POGO instability of liquid rockets. Both quasi-static and more general linearized dynamic analyses are made of the perturbations to a cavitating flow through a region of reduced pressure in which the bubbles first grow and then collapse. The results, when coupled with typical bubble number density distribution functions, yield compliances which compare favorably with the existing measurements. Since the fluids involved are frequently cryogenic, a careful examination was made of the thermal effects both on the mean flow and on the perturbations. As a result, the discrepancy between theory and experiment for particular engines could be qualitatively ascribed to reductions in the compliance caused either by these thermal effects or by relatively high reduced frequencies.

  19. Cavitation and bubble cloud dynamics in a high-intensity focused ultrasonic field

    NASA Astrophysics Data System (ADS)

    Lu, Yuan; Katz, Joseph; Prosperetti, Andrea

    2011-11-01

    We focus a high power (200 W max, 500 kHz) ultrasonic beam to generate cavitation in quiescent water, and observe the process using high-speed holography. The intense pressure fluctuations cause corresponding variations in water density and refractive index, generating diffraction patterns that are evident in the holograms. These enable us to map the instantaneous spatial structures of the pressure field, and resolve its mean features, such as pressure nodes in a partial standing wave. At low powers, we observe slow growth of bubbles and their migration to the nodes due to the primary Bjerknes force. At high powers, this process persists in the periphery of the focal zone, but bubble clouds grow explosively near the center of the beam. These clouds travel in the sound propagation direction at a velocity of up to 5 m/s, but slow down briefly at the pressure nodes, while growing and shrinking. The bubbles contain mostly vapor, as the clouds vanishes in <100 μ s when the sound is turned off. Likely causes for these phenomena include acoustic streaming, Bjerknes forces, and attenuation of sound in the clouds.

  20. Optical observation of shock waves and cavitation bubbles in high intensity laser-induced shock processes

    SciTech Connect

    Marti-Lopez, L.; Ocana, R.; Porro, J. A.; Morales, M.; Ocana, J. L.

    2009-07-01

    We report an experimental study of the temporal and spatial dynamics of shock waves, cavitation bubbles, and sound waves generated in water during laser shock processing by single Nd:YAG laser pulses of nanosecond duration. A fast ICCD camera (2 ns gate time) was employed to record false schlieren photographs, schlieren photographs, and Mach-Zehnder interferograms of the zone surrounding the laser spot site on the target, an aluminum alloy sample. We recorded hemispherical shock fronts, cylindrical shock fronts, plane shock fronts, cavitation bubbles, and phase disturbance tracks.

  1. Bubble Growth in Lunar Basalts

    NASA Astrophysics Data System (ADS)

    Zhang, Y.

    2009-05-01

    Although Moon is usually said to be volatile-"free", lunar basalts are often vesicular with mm-size bubbles. The vesicular nature of the lunar basalts suggests that they contained some initial gas concentration. A recent publication estimated volatile concentrations in lunar basalts (Saal et al. 2008). This report investigates bubble growth on Moon and compares with that on Earth. Under conditions relevant to lunar basalts, bubble growth in a finite melt shell (i.e., growth of multiple regularly-spaced bubbles) is calculated following Proussevitch and Sahagian (1998) and Liu and Zhang (2000). Initial H2O content of 700 ppm (Saal et al. 2008) or lower is used and the effect of other volatiles (such as carbon dioxide, halogens, and sulfur) is ignored. H2O solubility at low pressures (Liu et al. 2005), concentration-dependent diffusivity in basalt (Zhang and Stolper 1991), and lunar basalt viscosity (Murase and McBirney 1970) are used. Because lunar atmospheric pressure is essentially zero, the confining pressure on bubbles is completely supplied by the overlying magma. Due to low H2O content in lunar basaltic melt (700 ppm H2O corresponds to a saturation pressure of 75 kPa), H2O bubbles only grow in the upper 16 m of a basalt flow or lake. A depth of 20 mm corresponds to a confining pressure of 100 Pa. Hence, vesicular lunar rocks come from very shallow depth. Some findings from the modeling are as follows. (a) Due to low confining pressure as well as low viscosity, even though volatile concentration is very low, bubble growth rate is extremely high, much higher than typical bubble growth rates in terrestrial melts. Hence, mm-size bubbles in lunar basalts are not strange. (b) Because the pertinent pressures are so low, bubble pressure due to surface tension plays a main role in lunar bubble growth, contrary to terrestrial cases. (c) Time scale to reach equilibrium bubble size increases as the confining pressure increases. References: (1) Liu Y, Zhang YX (2000) Earth

  2. Studies on the tempo of bubble formation in recently cavitated vessels: a model to predict the pressure of air bubbles.

    PubMed

    Wang, Yujie; Pan, Ruihua; Tyree, Melvin T

    2015-06-01

    A cavitation event in a vessel replaces water with a mixture of water vapor and air. A quantitative theory is presented to argue that the tempo of filling of vessels with air has two phases: a fast process that extracts air from stem tissue adjacent to the cavitated vessels (less than 10 s) and a slow phase that extracts air from the atmosphere outside the stem (more than 10 h). A model was designed to estimate how water tension (T) near recently cavitated vessels causes bubbles in embolized vessels to expand or contract as T increases or decreases, respectively. The model also predicts that the hydraulic conductivity of a stem will increase as bubbles collapse. The pressure of air bubbles trapped in vessels of a stem can be predicted from the model based on fitting curves of hydraulic conductivity versus T. The model was validated using data from six stem segments each of Acer mono and the clonal hybrid Populus 84 K (Populus alba × Populus glandulosa). The model was fitted to results with root mean square error less than 3%. The model provided new insight into the study of embolism formation in stem tissue and helped quantify the bubble pressure immediately after the fast process referred to above. PMID:25907963

  3. High Speed Imaging of Bubble Clouds Generated in Pulsed Ultrasound Cavitational Therapy—Histotripsy

    PubMed Central

    Xu, Zhen; Raghavan, Mekhala; Hall, Timothy L.; Chang, Ching-Wei; Mycek, Mary-Ann; Fowlkes, J. Brian; Cain, Charles A.

    2009-01-01

    Our recent studies have demonstrated that mechanical fractionation of tissue structure with sharply demarcated boundaries can be achieved using short (<20 μs), high intensity ultrasound pulses delivered at low duty cycles. We have called this technique histotripsy. Histotripsy has potential clinical applications where noninvasive tissue fractionation and/or tissue removal are desired. The primary mechanism of histotripsy is thought to be acoustic cavitation, which is supported by a temporally changing acoustic backscatter observed during the histotripsy process. In this paper, a fast-gated digital camera was used to image the hypothesized cavitating bubble cloud generated by histotripsy pulses. The bubble cloud was produced at a tissue-water interface and inside an optically transparent gelatin phantom which mimics bulk tissue. The imaging shows the following: 1) Initiation of a temporally changing acoustic backscatter was due to the formation of a bubble cloud; 2) The pressure threshold to generate a bubble cloud was lower at a tissue-fluid interface than inside bulk tissue; and 3) at higher pulse pressure, the bubble cloud lasted longer and grew larger. The results add further support to the hypothesis that the histotripsy process is due to a cavitating bubble cloud and may provide insight into the sharp boundaries of histotripsy lesions. PMID:18019247

  4. A reduced-order, single-bubble cavitation model with applications to therapeutic ultrasound

    PubMed Central

    Kreider, Wayne; Crum, Lawrence A.; Bailey, Michael R.; Sapozhnikov, Oleg A.

    2011-01-01

    Cavitation often occurs in therapeutic applications of medical ultrasound such as shock-wave lithotripsy (SWL) and high-intensity focused ultrasound (HIFU). Because cavitation bubbles can affect an intended treatment, it is important to understand the dynamics of bubbles in this context. The relevant context includes very high acoustic pressures and frequencies as well as elevated temperatures. Relative to much of the prior research on cavitation and bubble dynamics, such conditions are unique. To address the relevant physics, a reduced-order model of a single, spherical bubble is proposed that incorporates phase change at the liquid-gas interface as well as heat and mass transport in both phases. Based on the energy lost during the inertial collapse and rebound of a millimeter-sized bubble, experimental observations were used to tune and test model predictions. In addition, benchmarks from the published literature were used to assess various aspects of model performance. Benchmark comparisons demonstrate that the model captures the basic physics of phase change and diffusive transport, while it is quantitatively sensitive to specific model assumptions and implementation details. Given its performance and numerical stability, the model can be used to explore bubble behaviors across a broad parameter space relevant to therapeutic ultrasound. PMID:22088026

  5. Analysis of Temperature Rise Induced by High-Intensity Focused Ultrasound in Tissue-Mimicking Gel Considering Cavitation Bubbles

    NASA Astrophysics Data System (ADS)

    Asai, Ayumu; Okano, Hiroki; Yoshizawa, Shin; Umemura, Shin-ichiro

    2013-07-01

    High-intensity focused ultrasound (HIFU) causes a selective temperature rise in tissue and is used as a noninvasive method for tumor treatment. However, there is a problem in that it typically takes several hours to treat a large tumor. The development of a highly efficient method is required to shorten the treatment time. It is known that cavitation bubbles generated by HIFU enhance HIFU heating. In this study, the enhancement of the heating effect by cavitation was estimated in a numerical simulation solving a bio-heat transfer equation (BHTE) by increasing the absorption coefficients in and out of the volume of cavitation bubbles. The absorption coefficients were obtained by a curve fitting the temperature rise near the focal point between experiment and simulation. The results show that cavitation bubbles caused the increase in ultrasonic absorption not only in but also near the volume of cavitation bubbles.

  6. Molecular dynamics simulations of bubble formation and cavitation in liquid metals.

    SciTech Connect

    Insepov, Z.; Hassanein, A.; Bazhirov, T. T.; Norman, G. E.; Stegailov, V. V.; Mathematics and Computer Science; Inst. for High Energy Densities of Joint Inst. for High Temperatures of RAS

    2007-11-01

    Thermodynamics and kinetics of nano-scale bubble formation in liquid metals such as Li and Pb were studied by molecular dynamics (MD) simulations at pressures typical for magnetic and inertial fusion. Two different approaches to bubble formation were developed. In one method, radial densities, pressures, surface tensions, and work functions of the cavities in supercooled liquid lithium were calculated and compared with the surface tension experimental data. The critical radius of a stable cavity in liquid lithium was found for the first time. In the second method, the cavities were created in the highly stretched region of the liquid phase diagram; and then the stability boundary and the cavitation rates were calculated in liquid lead. The pressure dependences of cavitation frequencies were obtained over the temperature range 700-2700 K in liquid Pb. The results of MD calculations for cavitation rate were compared with estimates of classical nucleation theory (CNT).

  7. Interaction of lithotripter shockwaves with single inertial cavitation bubbles

    PubMed Central

    Klaseboer, Evert; Fong, Siew Wan; Turangan, Cary K.; Khoo, Boo Cheong; Szeri, Andrew J.; Calvisi, Michael L.; Sankin, Georgy N.; Zhong, Pei

    2008-01-01

    The dynamic interaction of a shockwave (modelled as a pressure pulse) with an initially spherically oscillating bubble is investigated. Upon the shockwave impact, the bubble deforms non-spherically and the flow field surrounding the bubble is determined with potential flow theory using the boundary-element method (BEM). The primary advantage of this method is its computational efficiency. The simulation process is repeated until the two opposite sides of the bubble surface collide with each other (i.e. the formation of a jet along the shockwave propagation direction). The collapse time of the bubble, its shape and the velocity of the jet are calculated. Moreover, the impact pressure is estimated based on water-hammer pressure theory. The Kelvin impulse, kinetic energy and bubble displacement (all at the moment of jet impact) are also determined. Overall, the simulated results compare favourably with experimental observations of lithotripter shockwave interaction with single bubbles (using laser-induced bubbles at various oscillation stages). The simulations confirm the experimental observation that the most intense collapse, with the highest jet velocity and impact pressure, occurs for bubbles with intermediate size during the contraction phase when the collapse time of the bubble is approximately equal to the compressive pulse duration of the shock wave. Under this condition, the maximum amount of energy of the incident shockwave is transferred to the collapsing bubble. Further, the effect of the bubble contents (ideal gas with different initial pressures) and the initial conditions of the bubble (initially oscillating vs. non-oscillating) on the dynamics of the shockwave–bubble interaction are discussed. PMID:19018296

  8. Interaction of lithotripter shockwaves with single inertial cavitation bubbles.

    PubMed

    Klaseboer, Evert; Fong, Siew Wan; Turangan, Cary K; Khoo, Boo Cheong; Szeri, Andrew J; Calvisi, Michael L; Sankin, Georgy N; Zhong, Pei

    2007-01-01

    The dynamic interaction of a shockwave (modelled as a pressure pulse) with an initially spherically oscillating bubble is investigated. Upon the shockwave impact, the bubble deforms non-spherically and the flow field surrounding the bubble is determined with potential flow theory using the boundary-element method (BEM). The primary advantage of this method is its computational efficiency. The simulation process is repeated until the two opposite sides of the bubble surface collide with each other (i.e. the formation of a jet along the shockwave propagation direction). The collapse time of the bubble, its shape and the velocity of the jet are calculated. Moreover, the impact pressure is estimated based on water-hammer pressure theory. The Kelvin impulse, kinetic energy and bubble displacement (all at the moment of jet impact) are also determined. Overall, the simulated results compare favourably with experimental observations of lithotripter shockwave interaction with single bubbles (using laser-induced bubbles at various oscillation stages). The simulations confirm the experimental observation that the most intense collapse, with the highest jet velocity and impact pressure, occurs for bubbles with intermediate size during the contraction phase when the collapse time of the bubble is approximately equal to the compressive pulse duration of the shock wave. Under this condition, the maximum amount of energy of the incident shockwave is transferred to the collapsing bubble. Further, the effect of the bubble contents (ideal gas with different initial pressures) and the initial conditions of the bubble (initially oscillating vs. non-oscillating) on the dynamics of the shockwave-bubble interaction are discussed. PMID:19018296

  9. The penetration of acoustic cavitation bubbles into micrometer-scale cavities.

    PubMed

    Vaidya, Haresh Anant; Ertunç, Özgür; Lichtenegger, Thomas; Delgado, Antonio; Skupin, Andreas

    2016-04-01

    The penetration of acoustically induced cavitation bubbles in micrometer-scale cavities is investigated experimentally by means of high-speed photography and acoustic measurements. Micrometer-scale cavities of different dimensions (width=40 μm, 80 μm, 10 mm and depth=50 μm) are designed to replicate the cross section of microvias in a PCB. The aim here is to present a method for enhancing mass transfer due to the penetration of bubbles in such narrow geometries under the action of ultrasound. The micrometer-scale cavities are placed in a test-cell filled with water and subjected to an ultrasound excitation at 75 kHz. A cavitation bubble cluster is generated at the mouth of the cavity which acts as a continuous source of bubbles that penetrate into the cavity. The radial oscillation characteristics and translation of these bubbles are investigated in detail here. It is observed that the bubbles arrange themselves into streamer-like structures inside the cavity. Parameters such as bubble population and size distribution and their correlation with the phase of the incident ultrasound radiation are investigated in detail here. This provides a valuable insight into the dynamics of bubbles in narrow confined spaces. Mass transfer investigations show that fresh liquid can be continuously introduced in the cavities under the action of ultrasound. Our findings may have important consequences in optimizing the filling processes for microvias with high aspect ratios. PMID:26763751

  10. Localized removal of layers of metal, polymer, or biomaterial by ultrasound cavitation bubbles

    PubMed Central

    Fernandez Rivas, David; Verhaagen, Bram; Seddon, James R. T.; Zijlstra, Aaldert G.; Jiang, Lei-Meng; van der Sluis, Luc W. M.; Versluis, Michel; Lohse, Detlef; Gardeniers, Han J. G. E.

    2012-01-01

    We present an ultrasonic device with the ability to locally remove deposited layers from a glass slide in a controlled and rapid manner. The cleaning takes place as the result of cavitating bubbles near the deposited layers and not due to acoustic streaming. The bubbles are ejected from air-filled cavities micromachined in a silicon surface, which, when vibrated ultrasonically at a frequency of 200 kHz, generate a stream of bubbles that travel to the layer deposited on an opposing glass slide. Depending on the pressure amplitude, the bubble clouds ejected from the micropits attain different shapes as a result of complex bubble interaction forces, leading to distinct shapes of the cleaned areas. We have determined the removal rates for several inorganic and organic materials and obtained an improved efficiency in cleaning when compared to conventional cleaning equipment. We also provide values of the force the bubbles are able to exert on an atomic force microscope tip. PMID:23964308

  11. Effect of static pressure on acoustic energy radiated by cavitation bubbles in viscous liquids under ultrasound.

    PubMed

    Yasui, Kyuichi; Towata, Atsuya; Tuziuti, Toru; Kozuka, Teruyuki; Kato, Kazumi

    2011-11-01

    The effect of static pressure on acoustic emissions including shock-wave emissions from cavitation bubbles in viscous liquids under ultrasound has been studied by numerical simulations in order to investigate the effect of static pressure on dispersion of nano-particles in liquids by ultrasound. The results of the numerical simulations for bubbles of 5 μm in equilibrium radius at 20 kHz have indicated that the optimal static pressure which maximizes the energy of acoustic waves radiated by a bubble per acoustic cycle increases as the acoustic pressure amplitude increases or the viscosity of the solution decreases. It qualitatively agrees with the experimental results by Sauter et al. [Ultrason. Sonochem. 15, 517 (2008)]. In liquids with relatively high viscosity (∼200 mPa s), a bubble collapses more violently than in pure water when the acoustic pressure amplitude is relatively large (∼20 bar). In a mixture of bubbles of different equilibrium radius (3 and 5 μm), the acoustic energy radiated by a 5 μm bubble is much larger than that by a 3 μm bubble due to the interaction with bubbles of different equilibrium radius. The acoustic energy radiated by a 5 μm bubble is substantially increased by the interaction with 3 μm bubbles. PMID:22087995

  12. Effects of Tissue Stiffness, Ultrasound Frequency, and Pressure on Histotripsy-induced Cavitation Bubble Behavior

    PubMed Central

    Vlaisavljevich, Eli; Lin, Kuang-Wei; Warnez, Matthew; Singh, Rahul; Mancia, Lauren; Putnam, Andrew J.; Johnsen, Eric; Cain, Charles; Xu, Zhen

    2015-01-01

    Histotripsy is an ultrasound ablation method that controls cavitation to fractionate soft tissue. In order to effectively fractionate tissue, histotripsy requires cavitation bubbles to rapidly expand from nanometer-sized initial nuclei into bubbles often larger than 50 microns. Using a negative pressure high enough to initiate a bubble cloud and expand bubbles to a sufficient size, histotripsy has been shown capable of completely fractionating soft tissue into acelluar debris resulting in effective tissue removal. Previous work has shown that the histotripsy process is affected by tissue mechanical properties with stiffer tissues showing increased resistance to histotripsy fractionation, which we hypothesize to be caused by impeded bubble expansion in stiffer tissues. In this study, the hypothesis that increases in tissue stiffness causes a reduction in bubble expansion was investigated both theoretically and experimentally. High speed optical imaging was used to capture a series of time delayed images of bubbles produced inside mechanically tunable agarose tissue phantoms using histotripsy pulses produced by 345 kHz, 500 kHz, 1.5 MHz, and 3 MHz histotripsy transducers. The results demonstrated a significant decrease in maximum bubble radius (Rmax) and collapse time (tc) with both increasing Young’s modulus and increasing frequency. Furthermore, results showed that Rmax was not increased by raising the pressure above the intrinsic threshold. Finally, this work demonstrated the potential of using a dual-frequency strategy to modulate the expansion of histotripsy bubbles. Overall, the results of this study improve our understanding of how tissue stiffness and ultrasound parameters affect histotripsy-induced bubble behavior and provide a rational basis to tailor acoustic parameters for treatment of the specific tissues of interest. PMID:25715732

  13. Effects of tissue stiffness, ultrasound frequency, and pressure on histotripsy-induced cavitation bubble behavior

    NASA Astrophysics Data System (ADS)

    Vlaisavljevich, Eli; Lin, Kuang-Wei; Warnez, Matthew T.; Singh, Rahul; Mancia, Lauren; Putnam, Andrew J.; Johnsen, Eric; Cain, Charles; Xu, Zhen

    2015-03-01

    Histotripsy is an ultrasound ablation method that controls cavitation to fractionate soft tissue. In order to effectively fractionate tissue, histotripsy requires cavitation bubbles to rapidly expand from nanometer-sized initial nuclei into bubbles often larger than 50 µm. Using a negative pressure high enough to initiate a bubble cloud and expand bubbles to a sufficient size, histotripsy has been shown capable of completely fractionating soft tissue into acelluar debris resulting in effective tissue removal. Previous work has shown that the histotripsy process is affected by tissue mechanical properties with stiffer tissues showing increased resistance to histotripsy fractionation, which we hypothesize to be caused by impeded bubble expansion in stiffer tissues. In this study, the hypothesis that increases in tissue stiffness cause a reduction in bubble expansion was investigated both theoretically and experimentally. High speed optical imaging was used to capture a series of time delayed images of bubbles produced inside mechanically tunable agarose tissue phantoms using histotripsy pulses produced by 345 kHz, 500 kHz, 1.5 MHz, and 3 MHz histotripsy transducers. The results demonstrated a significant decrease in maximum bubble radius (Rmax) and collapse time (tc) with both increasing Young’s modulus and increasing frequency. Furthermore, results showed that Rmax was not increased by raising the pressure above the intrinsic threshold. Finally, this work demonstrated the potential of using a dual-frequency strategy to modulate the expansion of histotripsy bubbles. Overall, the results of this study improve our understanding of how tissue stiffness and ultrasound parameters affect histotripsy-induced bubble behavior and provide a rational basis to tailor acoustic parameters for treatment of the specific tissues of interest.

  14. Interaction dynamics of temporal and spatial separated cavitation bubbles in water

    NASA Astrophysics Data System (ADS)

    Tinne, N.; Ripken, T.; Lubatschowski, H.

    2010-02-01

    The LASIK procedure is a well established laser based treatment in ophthalmology. Nowadays it includes a cutting of the corneal tissue bases on ultra short pulses which are focused below the tissue surface to create an optical breakdown and hence a dissection of the tissue. The energy of the laser pulse is absorbed by non-linear processes that result in an expansion of a cavitation bubble and rupturing of the tissue. Due to a reduction of the duration of treatment the current development of ultra short laser systems points to higher repetition rates. This in turn results in a probable interaction between different cavitation bubbles of adjacent optical breakdowns. While the interaction of one single laser pulse with biological tissue is analyzed reasonably well experimentally and theoretically, the interaction of several spatial and temporal following pulses is scarcely determined yet. We present a high-speed photography analysis of cavitation bubble interaction for two spatial separated laser-induced optical breakdowns varying the laser pulse energy as well as the spatial distance. Depending on a change of these parameters different kinds of interactions such as a flattening and deformation of bubble shape, asymmetric water streams and jet formation were observed. The results of this research can be used to comprehend and optimize the cutting effect of ultra short pulse laser systems with high repetition rates (> 1 MHz).

  15. Ultrasonic emissions reveal individual cavitation bubbles in water-stressed wood

    PubMed Central

    Ponomarenko, A.; Vincent, O.; Pietriga, A.; Cochard, H.; Badel, É.; Marmottant, P.

    2014-01-01

    Under drought conditions, the xylem of trees that conducts ascending sap produces ultrasonic emissions whose exact origin is not clear. We introduce a new method to record simultaneously both acoustic events and optical observation of the xylem conduits within slices of wood that were embedded in a transparent material setting a hydric stress. In this article, we resolved the rapid development of all cavitation bubbles and demonstrated that each ultrasound emission was linked to the nucleation of one single bubble, whose acoustic energy is an increasing function of the size of the conduit where nucleation occurred and also of the hydric stress. We modelled these observations by the fact that water columns in conduits store elastic energy and release it into acoustic waves when they are broken by cavitation bubbles. Water columns are thus elastic, and not rigid, ‘wires of water’ set under tension by hydric stresses. Cavitation bubbles are at the origin of an embolism, whose development was followed in our experiments. Such an embolism of sap circulation can result in a fatal condition for living trees. These findings provide new insights for the non-destructive monitoring of embolisms within trees, and suggest a new approach to study porous media under hydric stress. PMID:25056212

  16. Effects of cavitation bubble interaction with temporally separated fs-laser pulses.

    PubMed

    Tinne, Nadine; Knoop, Gesche; Kallweit, Nicole; Veith, Sonja; Bleeker, Sebastian; Lubatschowski, Holger; Krüger, Alexander; Ripken, Tammo

    2014-04-01

    We present a time-resolved photographic analysis of the pulse-to-pulse interaction. In particular, we studied the influence of the cavitation bubble induced by a fs-pulse on the optical focusing of the consecutive pulse and its cavitation bubble dynamics in dependence on temporal pulse separation in water. As a first result, by decreasing the temporal separation of laser pulses, there is a diminishment of the laser-induced optical breakdown (LIOB) efficiency in terms of energy conversion, caused by disturbed focusing into persisting gas bubbles at the focal volume. A LIOB at the focal spot is finally suppressed by impinging the expanding or collapsing cavitation bubble of the preceding pulse. These results could be additionally confirmed in porcine gelatin solution with various concentrations. Hence, the interaction between the laser and transparent ophthalmic tissue may be accompanied by a raised central laser energy transmission, which could be observed in case of a temporal pulse overlap. In conclusion, our experimental results are of particular importance for the optimization of the prospective ophthalmic surgical process with future generation fs-lasers. PMID:24781592

  17. Single bubble perturbation in cavitation proximity of solid glass: hot spot versus distance.

    PubMed

    Radziuk, Darya; Möhwald, Helmuth; Suslick, Kenneth

    2014-02-28

    A systematic study of the energy loss of a cavitation bubble in a close proximity of a glass surface is introduced for the first time in a low acoustic field (1.2-2.4 bar). Single bubble sonoluminescence (SBSL) is used as a tool to predict the temperature and pressure decrease of bubble (μm) versus surface distance. A glass as a model system is used to imitate the boundary conditions relevant for nano- or micromaterials. SBSL preequilibrated with 5% argon is perturbed by a glass rod with the tip (Z-perturbation) and with the long axis (X-perturbation) at a defined distance. From 2 mm to 500 μm argon-SBSL lines monotonically narrow and the effective emission temperature decreases from 9000 K to 6800 K comparable to multiple bubbles. The electron density decreases by two orders of magnitude in Z-perturbation and is by a factor of two higher in X-perturbation than the unperturbed cavitating bubble. The perturbed single bubble sonoluminescence pressure decreases from 2700 atm to 1200 atm at 2.4 bar. In water new non-SBSL SiO molecular emission lines are observed and OH emission disappears. PMID:24068109

  18. Dynamic and interaction of fs-laser induced cavitation bubbles for analyzing the cutting effect

    NASA Astrophysics Data System (ADS)

    Tinne, N.; Schumacher, S.; Nuzzo, V.; Ripken, T.; Lubatschowski, H.

    2009-07-01

    A prominent laser based treatment in ophthalmology is the LASIK procedure which nowadays includes a cutting of the corneal tissue based on ultra short pulses. Focusing an ultra short laser pulse below the surface of biological tissue an optical breakdown is caused and hence a dissection is obtained. The laser energy of the laser pulses is absorbed by nonlinear processes. As a result a cavitation bubble expands and ruptures the tissue. Hence positioning of several optical breakdowns side by side generates an incision. Due to a reduction of the duration of the treatment the current development of ultra short laser systems points to higher repetition rates in the range of hundreds of KHz or even MHz instead of tens of kHz. This in turn results in a probable occurrence of interaction between different optical breakdowns and respectively cavitation bubbles of adjacent optical breakdowns. While the interaction of one single laser pulse with biological tissue is analyzed reasonably well experimentally and theoretically, the interaction of several spatial and temporal following pulses is scarcely determined yet. Thus the aim of this study is to analyse the dynamic and interaction of two cavitation bubbles by using high speed photography. The applied laser pulse energy, the energy ratio and the spot distance between different cavitation bubbles were varied. Depending on a change of these parameters different kinds of interactions such as a flattening and deformation of bubble shape or jet formation are observed. Based on these results a further research seems to be inevitable to comprehend and optimize the cutting effect of ultra short pulse laser systems with high (> 1 MHz) repetition rates.

  19. Dynamic features of a laser-induced cavitation bubble near a solid boundary.

    PubMed

    Yang, Yuan Xiang; Wang, Qian Xi; Keat, T S

    2013-07-01

    This paper deals with detailed features of bubble dynamics near a solid boundary. The cavitation bubble was created by using a Q-switched Nd: YAG laser pulse and observed using a high-speed camera (up to 100,000 frames per second). A hydrophone system was employed to monitor the acoustic signals generated by the transient pressure impulses and estimate the bubble oscillation periods. Experimental observations were carried out for bubbles with various maximum expanded radius Rmax (between 1.0mm and 1.6mm) and stand-off distances, ds (defined as the distance between the solid boundary and the bubble center at inception) of 0.4≤γ≤3.0, and γ=ds/Rmax. The existence of a solid boundary created asymmetry in the flow field and forced the bubble to collapse non-spherically, which finally brought forth the jet impact phenomenon. The dimensionless first and second oscillation periods were dependent on γ. A series of expansion and collapse of the bubble with cascading loss of energy were observed after the bubble had been generated. This study revealed that most bubbles lost about two-thirds of the total energy from the first maximum expansion to the second maximum expansion. PMID:23411165

  20. Effect of picosecond laser induced cavitation bubbles generated on Au targets in a nanoparticle production set-up

    NASA Astrophysics Data System (ADS)

    Tiberi, M.; Simonelli, A.; Cristoforetti, G.; Marsili, P.; Giammanco, F.; Giorgetti, E.

    2013-03-01

    This work is aimed at an analysis of the influence on the efficiency of nanoparticle production of a cavitation bubble (CB), which forms during the laser ablation process in high-fluence regime. The CB is produced on an Au metal target immersed in water by 1064 nm ps Nd:YAG laser pulses at different fluences. Its time-space evolution is monitored by a shadowgraphic set-up, while the Au nanoparticles production rate is tagged by the growth of the plasmon resonance, which is detected by measuring shot-by-shot the UV-Vis absorbance. We analyze the dependence of bubble size on the experimental parameters. Our results appear of interest to enhance the nanoparticle production efficiency in a liquid medium.

  1. A New Unsteady Model for Dense Cloud Cavitation in Cryogenic Fluids

    NASA Technical Reports Server (NTRS)

    Hosangadi, Ashvin; Ahuja, Vineet

    2005-01-01

    Contents include the following: Background on thermal effects in cavitation. Physical properties of hydrogen. Multi-phase cavitation with thermal effect. Solution procedure. Cavitation model overview. Cavitation source terms. New cavitation model. Source term for bubble growth. One equation les model. Unsteady ogive simulations: liquid nitrogen. Unsteady incompressible flow in a pipe. Time averaged cavity length for NACA15 flowfield.

  2. Cavitation bubbles induced by Erbium lasers: implications for dentistry

    NASA Astrophysics Data System (ADS)

    Verleng, Marja; Verdaasdonk, Rudolf; van der Veen, Albert; Lemberg, Vladimir; Boutoussov, Dmitri

    2014-02-01

    With new fiber systems available for 3 μm, Erbium lasers become more interesting for precise tissue ablation in a water environment enabling new application in e.g. dentistry. The dynamics of explosive bubble formation was investigated at 2.78 μm (Er,Cr;YSGG) and 2.94 μm (Er:YAG), in relation to energy (10-50 mJ), pulse length (20-150 μs) and fiber tip shape (flat or taper). The dynamics of exploding and imploding vapor bubbles were captured with high speed imaging (10 - 300 μs range). Increasing the pulse length and energy, the vapor bubble became more elongated with an opaque surface for flat tip fibers. Tapered fibers produced spherical vapor bubbles with an optically transparent surface expected to be more forceful for creating mechanical effects in both hard and soft tissues. There was no significant difference between bubbles formed at 2.78 μm (Er,Cr;YSGG) and 2.94 μm (Er:YAG).

  3. An Acoustofluidic Micromixer via Bubble Inception and Cavitation from Microchannel Sidewalls

    PubMed Central

    2015-01-01

    During the deep reactive ion etching process, the sidewalls of a silicon mold feature rough wavy structures, which can be transferred onto a polydimethylsiloxane (PDMS) microchannel through the soft lithography technique. In this article, we utilized the wavy structures of PDMS microchannel sidewalls to initiate and cavitate bubbles in the presence of acoustic waves. Through bubble cavitation, this acoustofluidic approach demonstrates fast, effective mixing in microfluidics. We characterized its performance by using viscous fluids such as poly(ethylene glycol) (PEG). When two PEG solutions with a resultant viscosity 54.9 times higher than that of water were used, the mixing efficiency was found to be 0.92, indicating excellent, homogeneous mixing. The acoustofluidic micromixer presented here has the advantages of simple fabrication, easy integration, and capability to mix high-viscosity fluids (Reynolds number: ∼0.01) in less than 100 ms. PMID:24754496

  4. Acoustic cavitation bubbles in the kidney induced by focused shock waves in extracorporeal shock wave lithotripsy (ESWL)

    NASA Astrophysics Data System (ADS)

    Kuwahara, M.; Ioritani, N.; Kambe, K.; Taguchi, K.; Saito, T.; Igarashi, M.; Shirai, S.; Orikasa, S.; Takayama, K.

    1990-07-01

    On an ultrasonic imaging system a hyperechoic region was observed in a focal area of fucused shock waves in the dog kidney. This study was performed to learn whether cavitation bubbles are responsible for this hyperechoic region. The ultrasonic images in water of varying temperatures were not markedly different. In the flowing stream of distilled water, the stream was demonstrated as a hyperechoic region only with a mixture of air bubbles. Streams of 5%-50% glucose solutions were also demonstrated as a hyperechoic region. However, such concentration changes in living tissue, as well as thermal changes, are hardly thought to be induced. The holographic interferometry showed that the cavitation bubbles remained for more than 500 msec. in the focal area in water. This finding indicate that the bubble can remain for longer period than previously supposed. These results support the contentions that cavitation bubbles are responsible for the hyperechoic region in the kidney in situ.

  5. Reduction of Bubble Cavitation by Modifying the Diffraction Wave from a Lithotripter Aperture

    PubMed Central

    2012-01-01

    Abstract Purpose A new method was devised to suppress the bubble cavitation in the lithotripter focal zone to reduce the propensity of shockwave-induced renal injury. Materials and Methods An edge extender was designed and fabricated to fit on the outside of the ellipsoidal reflector of an electrohydraulic lithotripter to disturb the generation of diffraction wave at the aperture, but with little effect on the acoustic field inside the reflector. Results Although the peak negative pressures at the lithotripter focus using the edge extender at 20 kV were similar to that of the original configuration (-11.1±0.9 vs −10.6±0.7 MPa), the duration of the tensile wave was shortened significantly (3.2±0.54 vs 5.83±0.56 μs, P<0.01). There is no difference, however, in both the amplitude and duration of the compressive shockwaves between these two configurations as well as the −6 dB beam width in the focal plane. The significant suppression effect of bubble cavitation was confirmed by the measured bubble collapse time using passive cavitation detection. At the lithotripter focus, while only about 30 shocks were needed to rupture a blood vessel phantom using the original HM-3 reflector at 20 kV, no damage could be produced after 300 shocks using the edge extender. Meanwhile, the original HM-3 lithotripter at 20 kV can achieve a stone comminution efficiency of 50.4±2.0% on plaster-of-Paris stone phantom after 200 shocks, which is comparable to that of using the edge extender (46.8±4.1%, P=0.005). Conclusions Modifying the diffraction wave at the lithotripter aperture can suppress the shockwave-induced bubble cavitation with significant reduced damage potential on the vessel phantom but satisfactory stone comminution ability. PMID:22332839

  6. Variations of bubble cavitation and temperature elevation during lesion formation by high-intensity focused ultrasound.

    PubMed

    Zhou, Yufeng; Gao, Xiaobin Wilson

    2013-08-01

    High-intensity focused ultrasound (HIFU) is emerging as an effective therapeutic modality in both thermal ablations for solid tumor/cancer and soft-tissue fragmentation. Mechanical and thermal effects, which play an important role in the HIFU treatment simultaneously, are dependent on the operating parameters and may vary with the progress of therapy. Mechanical erosion in the shape of a "squid," a "dumbbell" lesion with both mechanical and thermal lesions, or a "tadpole" lesion with mechanical erosion at the center and thermal necrosis on the boundary in the transparent gel phantom could be produced correspondingly with the pulse duration of 5-30 ms, which is much longer than histotripsy burst but shorter than the time for tissue boiling, and pulse repetition frequency (PRF) of 0.2-5 Hz. Meanwhile, variations of bubble cavitation (both inertial and stable cavitation) and temperature elevation in the focal region (i.e., z = -2.5, 0, and 2.5 mm) were measured by passive cavitation detection (PCD) and thermocouples during the therapeutic procedure, respectively. Stable cavitation increased with the pulse duration, PRF, and the number of pulses delivered. However, inertial cavitation was found to increase initially and then decrease with long pulse duration and high PRF. Temperature in the pre-focal region is always higher than those at the focal and post-focal position in all tests. Great variations of PCD signals and temperature elevation are due to the generation and persistence of large bubble, which is resistant to collapse and occurs with the increase of pulse duration and PRF. Similar lesion pattern and variations were also observed in ex vivo porcine kidneys. Hyperechoes in the B-mode ultrasound image were comparable to the shape and size of lesions in the dissected tissue. Thermal lesion volume increased with the increase of pulse duration and PRF, but mechanical erosion reached its maximum volume with the pulse duration of 20 ms and PRF of 1

  7. Holmium laser ablation of cartilage: effects of cavitation bubbles

    NASA Astrophysics Data System (ADS)

    Asshauer, Thomas; Jansen, Thomas; Oberthur, Thorsten; Delacretaz, Guy P.; Gerber, Bruno E.

    1995-05-01

    The ablation of fresh harvested porcine femur patellar groove cartilage by a 2.12 micrometers Cr:Tm:Ho:YAG laser in clinically used irradiation conditions was studied. Laser pulses were delivered via a 600 micrometers diameter fiber in isotonic saline. Ablation was investigated as a function of the angle of incidence of the delivery fiber with respect to the cartilage surface (0-90 degrees) and of radiant exposure. Laser pulses with energies of 0.5, 1.0 and 1.5 J and a duration of 250 microseconds were used. A constant fiber tip-tissue distance of 1 mm was maintained for all experiments. The dynamics of the induced vapor bubble and of the ablation process was monitored by time resolved flash videography with a 1 microseconds illumination. Acoustic transients were measured with a piezoelectric PVDF needle probe hydrophone. Bubble attachment to the cartilage surface during the collapse phase, leading to the direct exposition of the cartilage surface to the maximal pressure generated, was observed in all investigated irradiation conditions. Maximal pressure transients of up to 200 bars (at 1 mm distance from the collapse center) were measured at the bubble collapse at irradiation angles >= 60 degrees. No significant pressure variation was observed in perpendicular irradiation conditions as a function of radiant exposure. A significant reduction of the induced pressure for irradiation angles

  8. Wavelet-transform-based active imaging of cavitation bubbles in tissues induced by high intensity focused ultrasound.

    PubMed

    Liu, Runna; Xu, Shanshan; Hu, Hong; Huo, Rui; Wang, Supin; Wan, Mingxi

    2016-08-01

    Cavitation detection and imaging are essential for monitoring high-intensity focused ultrasound (HIFU) therapies. In this paper, an active cavitation imaging method based on wavelet transform is proposed to enhance the contrast between the cavitation bubbles and surrounding tissues. The Yang-Church model, which is a combination of the Keller-Miksis equation with the Kelvin-Voigt equation for the pulsations of gas bubbles in simple linear viscoelastic solids, is utilized to construct the bubble wavelet. Experiments with porcine muscles demonstrate that image quality is associated with the initial radius of the bubble wavelet and the scale. Moreover, the Yang-Church model achieves a somewhat better performance compared with the Rayleigh-Plesset-Noltingk-Neppiras-Poritsky model. Furthermore, the pulse inversion (PI) technique is combined with bubble wavelet transform to achieve further improvement. The cavitation-to-tissue ratio (CTR) of the best tissue bubble wavelet transform (TBWT) mode image is improved by 5.1 dB compared with that of the B-mode image, while the CTR of the best PI-based TBWT mode image is improved by 7.9 dB compared with that of the PI-based B-mode image. This work will be useful for better monitoring of cavitation in HIFU-induced therapies. PMID:27586712

  9. Bubble-induced sheet cavitation inception on an isolated roughness element

    NASA Astrophysics Data System (ADS)

    van Rijsbergen, Martijn; Slot, Jesse

    2015-12-01

    The nucleation process on an isolated roughness element, located at the point of minimum pressure of a NACA 0015 hydrofoil was studied experimentally and computationally. The objective of this study was to investigate the working mechanism of bubble-induced sheet cavitation inception. High-speed micro-scale observations show the generation of a streak of cavitation—attached to the roughness element—in the wake of the bubble. Below its critical diameter, the bubble can detach from the streak cavity and travel on while the streak cavity remains. The solutions of a Rayleigh-Plesset equation along a streamline extracted from a RANS calculation show strong similarities with the experimental observations, but a factor 5 to 10 higher frame rate is needed to validate the calculations.

  10. Sonoporation at Small and Large Length Scales: Effect of Cavitation Bubble Collapse on Membranes.

    PubMed

    Fu, Haohao; Comer, Jeffrey; Cai, Wensheng; Chipot, Christophe

    2015-02-01

    Ultrasound has emerged as a promising means to effect controlled delivery of therapeutic agents through cell membranes. One possible mechanism that explains the enhanced permeability of lipid bilayers is the fast contraction of cavitation bubbles produced on the membrane surface, thereby generating large impulses, which, in turn, enhance the permeability of the bilayer to small molecules. In the present contribution, we investigate the collapse of bubbles of different diameters, using atomistic and coarse-grained molecular dynamics simulations to calculate the force exerted on the membrane. The total impulse can be computed rigorously in numerical simulations, revealing a superlinear dependence of the impulse on the radius of the bubble. The collapse affects the structure of a nearby immobilized membrane, and leads to partial membrane invagination and increased water permeation. The results of the present study are envisioned to help optimize the use of ultrasound, notably for the delivery of drugs. PMID:26261957

  11. Helium Bubble Injection Solution To The Cavitation Damage At The Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Francis, M. W.; Ruggles, A. E.

    2009-03-01

    The Spallation Neutron Source (SNS) is one of the largest science projects in the United States, with total cost near 1.4 Billion Dollars. The limiting factor of the facility had always been assumed to be the lifetime of the target window due to radiation damage. After further investigation, the lifetime of the target was determined not to be limited by radiation damage but by cavitation damage. The cavitation damage derives from pressure waves caused by the beam energy deposition. Vapor bubbles form when low to negative pressures occur in the mercury near the stainless steel target window due to wave interaction with the structure. Collapse of these bubbles can focus wave energy in small liquid jets that erode the window surface. Compressibility of the mercury can be enhanced to reduce the amplitude of the pressure wave caused by the beam energy deposition. To enhance compressibility, small (10 to 30 micron diameter) gas bubbles could be injected into the bulk of the mercury. Solubility and diffusivity parameters of inert gas in mercury are required for a complete mechanical simulation and engineering of these strategies. Using current theoretical models, one obtains a theoretical Henry coefficient of helium in mercury on the order of 3.9E15 Pa-molHg/molHe at 300 K. This low solubility was confirmed by a direct, offline experimental method. Mercury was charged with helium and any pressure change was recorded. Any pressure change was attributed to gas going into solution. Therefore, with the sensitivity of the experiment, a lower limit of 9E12 Pa-molHg/molHe was placed on the mercury-helium system. These values guarantee a stable bubble lifetime needed within the SNS mercury target to mitigate cavitation issues.

  12. Helium Bubble Injection Solution To The Cavitation Damage At The Spallation Neutron Source

    SciTech Connect

    Francis, M. W.; Ruggles, A. E.

    2009-03-10

    The Spallation Neutron Source (SNS) is one of the largest science projects in the United States, with total cost near 1.4 Billion Dollars. The limiting factor of the facility had always been assumed to be the lifetime of the target window due to radiation damage. After further investigation, the lifetime of the target was determined not to be limited by radiation damage but by cavitation damage. The cavitation damage derives from pressure waves caused by the beam energy deposition. Vapor bubbles form when low to negative pressures occur in the mercury near the stainless steel target window due to wave interaction with the structure. Collapse of these bubbles can focus wave energy in small liquid jets that erode the window surface. Compressibility of the mercury can be enhanced to reduce the amplitude of the pressure wave caused by the beam energy deposition. To enhance compressibility, small (10 to 30 micron diameter) gas bubbles could be injected into the bulk of the mercury. Solubility and diffusivity parameters of inert gas in mercury are required for a complete mechanical simulation and engineering of these strategies. Using current theoretical models, one obtains a theoretical Henry coefficient of helium in mercury on the order of 3.9E15 Pa-molHg/molHe at 300 K. This low solubility was confirmed by a direct, offline experimental method. Mercury was charged with helium and any pressure change was recorded. Any pressure change was attributed to gas going into solution. Therefore, with the sensitivity of the experiment, a lower limit of 9E12 Pa-molHg/molHe was placed on the mercury-helium system. These values guarantee a stable bubble lifetime needed within the SNS mercury target to mitigate cavitation issues.

  13. Water Treatment using Discharge Generated in Cavitation Field with Micro Bubble Cloud

    NASA Astrophysics Data System (ADS)

    Ihara, Satoshi; Hirohata, Taiki; Kominato, Yuichi; Yamabe, Chobei; Ike, Hideaki; Hakiai, Kazunori; Hirabayashi, Kazuya; Tamagawa, Masaaki

    New method of water treatment for wastewater using discharge in water cavitation field, in which numerous micro bubbles were generated by high-speed water flow, was proposed in this paper. Indigo carmine solution, which is a type of dye, with a concentration of 9mg/Liter was used as a specimen for demonstration of water treatment. The total volume of solution and average speed of solution in the cavitation field was 20 Liter and about 7.4 m/s, respectively. A reduction ratio of absorbance of 96% was obtained in 50 min of treatment time at an electrode distance of 2 mm and a discharge power of 16 W. Also it was found that the efficiency of decolorization was improved by changing the electrode location.

  14. Interaction Mechanisms of Cavitation Bubbles Induced by Spatially and Temporally Separated fs-Laser Pulses

    PubMed Central

    Tinne, Nadine; Kaune, Brigitte; Krüger, Alexander; Ripken, Tammo

    2014-01-01

    The emerging use of femtosecond lasers with high repetition rates in the MHz regime together with limited scan speed implies possible mutual optical and dynamical interaction effects of the individual cutting spots. In order to get more insight into the dynamics a time-resolved photographic analysis of the interaction of cavitation bubbles is presented. Particularly, we investigated the influence of fs-laser pulses and their resulting bubble dynamics with various spatial as well as temporal separations. Different time courses of characteristic interaction effects between the cavitation bubbles were observed depending on pulse energy and spatio-temporal pulse separation. These ranged from merely no interaction to the phenomena of strong water jet formation. Afterwards, the mechanisms are discussed regarding their impact on the medical application of effective tissue cutting lateral to the laser beam direction with best possible axial precision: the mechanical forces of photodisruption as well as the occurring water jet should have low axial extend and a preferably lateral priority. Furthermore, the overall efficiency of energy conversion into controlled mechanical impact should be maximized compared to the transmitted pulse energy and unwanted long range mechanical side effects, e.g. shock waves, axial jet components. In conclusion, these experimental results are of great importance for the prospective optimization of the ophthalmic surgical process with high-repetition rate fs-lasers. PMID:25502697

  15. Theoretical model of ice nucleation induced by acoustic cavitation. Part 1: Pressure and temperature profiles around a single bubble.

    PubMed

    Cogné, C; Labouret, S; Peczalski, R; Louisnard, O; Baillon, F; Espitalier, F

    2016-03-01

    This paper deals with the inertial cavitation of a single gas bubble in a liquid submitted to an ultrasonic wave. The aim was to calculate accurately the pressure and temperature at the bubble wall and in the liquid adjacent to the wall just before and just after the collapse. Two different approaches were proposed for modeling the heat transfer between the ambient liquid and the gas: the simplified approach (A) with liquid acting as perfect heat sink, the rigorous approach (B) with liquid acting as a normal heat conducting medium. The time profiles of the bubble radius, gas temperature, interface temperature and pressure corresponding to the above models were compared and important differences were observed excepted for the bubble size. The exact pressure and temperature distributions in the liquid corresponding to the second model (B) were also presented. These profiles are necessary for the prediction of any physical phenomena occurring around the cavitation bubble, with possible applications to sono-crystallization. PMID:26044460

  16. Ultrasonic cavitation erosion of Ti in 0.35% NaCl solution with bubbling oxygen and nitrogen.

    PubMed

    Li, D G; Wang, J D; Chen, D R; Liang, P

    2015-09-01

    The influences of oxygen and nitrogen on the ultrasonic cavitation erosion of Ti in 0.35%NaCl solution at room temperature, were investigated using a magnetostrictive-induced ultrasonic cavitation erosion (CE) facility and scanning electron microscopy (SEM). The roles of oxygen and nitrogen in the composition and the electronic property of the passive film on Ti, were studied by Mott-Schottky plot and X-ray photoelectron spectroscopy (XPS). The results showed that the mass loss of Ti in 0.35%NaCl solution increased with increasing cavitation time. Bubbling oxygen can evidently increase the resistance of ultrasonic cavitation erosion comparing with bubbling nitrogen. XPS results showed that the thickness of the passive film on Ti in 0.35%NaCl solution in the case of bubbling oxygen for 3 weeks, was about 7 nm, and the passive film was mainly composed of TiO2 with an anatase structure. While TiO2 with a rutile structure was found to be the major component of the passive film on Ti in 0.35%NaCl solution in the case of bubbling nitrogen for 3 weeks, and the film thickness was 5 nm. The results extracted from Mott-Schottky plot showed that the passive film on Ti in the case of bubbling oxygen had more donor density than the passive film on Ti in the case of bubbling nitrogen. PMID:25818362

  17. Study on the spatial distribution of the liquid temperature near a cavitation bubble wall.

    PubMed

    Shen, Yang; Yasui, Kyuichi; Sun, Zhicheng; Mei, Bin; You, Meiyan; Zhu, Tong

    2016-03-01

    A simple new model of the spatial distribution of the liquid temperature near a cavitation bubble wall (Tli) is employed to numerically calculate Tli. The result shows that Tli is almost same with the ambient liquid temperature (T0) during the bubble oscillations except at strong collapse. At strong collapse, Tli can increase to about 1510 K, the same order of magnitude with that of the maximum temperature inside the bubble, which means that the chemical reactions occur not only in gas-phase inside the collapsing bubble but also in liquid-phase just outside the collapsing bubble. Four factors (ultrasonic vibration amplitude, ultrasonic frequency, the surface tension and the viscosity) are considered to study their effects for the thin liquid layer. The results show that for the thin layer, the thickness and the temperature increase as the ultrasonic vibration amplitude rise; conversely, the thickness and the temperature decrease with the increase of the ultrasonic frequency, the surface tension or the viscosity. PMID:26585020

  18. Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom

    NASA Astrophysics Data System (ADS)

    Brujan, Emil-Alexandru; Vogel, Alfred

    2006-07-01

    Stress wave emission and cavitation bubble dynamics after optical breakdown in water and a tissue phantom with Nd: YAG laser pulses of 6 ns duration were investigated both experimentally and numerically to obtain a better understanding of the physical mechanisms involved in plasma-mediated laser surgery. Experimental tools were high-speed photography with 50000 frames s(-1) , and acoustic measurements. The tissue phantom consisted of a transparent polyacrylamide (PAA) gel, the elastic properties of which can be controlled by modifying the water content. Breakdown in water produced a purely compressive stress wave. By contrast, in stiff PAA samples and for sufficiently large pulse energies, the compression wave was followed by an intense tensile wave, similar to the behaviour previously observed in cornea. The elastic/plastic response of the medium led to a significant decrease of the maximum size of the cavitation bubble and to a shortening of its oscillation period which was found to be related to the generation of the tensile stress wave upon breakdown. For increasing elastic modulus of the PAA, both the amplitudes of the bubble oscillation and of the stress wave emitted during bubble collapse decreased until the bubble oscillation was so strongly damped that no collapse stress wave was emitted. Numerical simulations were performed using a spherical model of bubble dynamics which includes the compressibility and elastic/plastic behaviour of the medium, viscosity, density and surface tension. The calculations revealed that consideration of the elastic/plastic behaviour of the medium surrounding the bubble is essential to describe the experimentally observed bipolar shape of the stress wave emitted upon optical breakdown. Water is a poor tissue model because the shape of the emitted stress waves and the bubble dynamics differ strongly for both materials. The mechanical properties of PAA were also found to be quite different from those of tissues. Experimental and

  19. Interferometric studies of the pressures developed in a liquid during infrared-laser-induced cavitation-bubble oscillation

    NASA Astrophysics Data System (ADS)

    Ward, B.; Emmony, D. C.

    The study of the behaviour of cavitation bubbles close to rigid boundaries is of particular importance because of the associated phenomenon of cavitation erosion which arises from the resulting changes in pressure in the surrounding liquid. In this paper, we present four sequences of Mach-Zehnder interferograms and shadowgraphs of IR-laser-generated bubbles in water for two distinct positions relative to a solid perspex block. Direct optical measurements of the transient pressure distributions in the nearby liquid are made for the initial expansion of the bubbles and around each of their subsequent collapse phases. In addition to the generation of spherical acoustic waves, the pressures developed around the bubble prior to collapse and the formation of a high-speed liquid jet are precisely quantified. Furthermore, calculations of the changes in potential energy of the enclosed vapour are carried out and related to the magnitudes of the energy radiated via acoustic waves.

  20. The dynamics of cavitation bubble clouds in high-intensity focused ultrasound field observed by high-speed photography

    NASA Astrophysics Data System (ADS)

    Li, Xiaojing; Chen, Hong; Wan, Mingxi

    2007-01-01

    High-speed photography is being considered as an effective technique to record the transient phenomena in medical field. This presentation summarizes our previous work of using high-speed photography in the observation of cavitation bubble clouds generated in high-intensity focused ultrasound (HIFU) field, aiming at the better understanding of the cavitation mechanism during the medical application of HIFU. A high-speed photography system synchronized with HIFU emission facilities was built up, and using this system we have investigated the dynamics of cavitation bubble clouds (i) in the whole HIFU free field; (ii) in the focal region of HIFU free field; and (iii) near the tissue surface in HIFU field. The spatial-temporal evolution of the bubble cloud and the characteristics of bubble cloud structures as well as the possible explanations to the recorded phenomena are reviewed. All the results we got elucidated that the highspeed camera is a potent tool to detect the cavitation phenomena in HIFU field.

  1. Real-Time Monitoring and Quantitative Evaluation of Cavitation Bubbles Induced by High Intensity Focused Ultrasound Using B-Mode Imaging

    NASA Astrophysics Data System (ADS)

    Yu, Jie; Chen, Chu-Yi; Chen, Gong; Guo, Xia-Sheng; Ma, Yong; Tu, Juan; Zhang, Dong

    2014-03-01

    A software-based method is proposed to eliminate the flooding interference strips in B-mode images, and to evaluate the cavitation bubbles generated during high intensity focused ultrasound (HIFU) exposures. In vitro tissue phantoms are exposed to 1.12 MHz HIFU pulses with a fixed 100 Hz pulse repetition frequency. HIFU-induced cavitation bubbles are detected as hyperechoic regions in B-mode images. The temporal evolution of cavitation bubbles, generated by HIFU pulses with varying driving amplitude and pulse length, is analyzed by measuring the time-varying area of the hyperechoic region. The results show that: first, it is feasible to monitor HIFU-induced cavitation bubble activity in real-time using B-mode imaging; second, more cavitation bubbles can be generated with higher acoustic energy delivered; third, the hyperechoic region is observed to shrink gradually after ceasing the HIFU pulses, which indicates the dissolution of cavitation bubbles. This work will be helpful for developing an effective tool to realize real-time monitoring and quantitative evaluation of HIFU-induced cavitation bubble activity using a current commercialized B-mode machine.

  2. Transcranial ultrasonic therapy based on time reversal of acoustically induced cavitation bubble signature

    PubMed Central

    Gâteau, Jérôme; Marsac, Laurent; Pernot, Mathieu; Aubry, Jean-Francois; Tanter, Mickaël; Fink, Mathias

    2010-01-01

    Brain treatment through the skull with High Intensity Focused Ultrasound (HIFU) can be achieved with multichannel arrays and adaptive focusing techniques such as time-reversal. This method requires a reference signal to be either emitted by a real source embedded in brain tissues or computed from a virtual source, using the acoustic properties of the skull derived from CT images. This non-invasive computational method focuses with precision, but suffers from modeling and repositioning errors that reduce the accessible acoustic pressure at the focus in comparison with fully experimental time-reversal using an implanted hydrophone. In this paper, this simulation-based targeting has been used experimentally as a first step for focusing through an ex vivo human skull at a single location. It has enabled the creation of a cavitation bubble at focus that spontaneously emitted an ultrasonic wave received by the array. This active source signal has allowed 97%±1.1% of the reference pressure (hydrophone-based) to be restored at the geometrical focus. To target points around the focus with an optimal pressure level, conventional electronic steering from the initial focus has been combined with bubble generation. Thanks to step by step bubble generation, the electronic steering capabilities of the array through the skull were improved. PMID:19770084

  3. Bubble growth and rise in soft sediments

    NASA Astrophysics Data System (ADS)

    Boudreau, Bernard P.; Algar, Chris; Johnson, Bruce D.; Croudace, Ian; Reed, Allen; Furukawa, Yoko; Dorgan, Kelley M.; Jumars, Peter A.; Grader, Abraham S.; Gardiner, Bruce S.

    2005-06-01

    The mechanics of uncemented soft sediments during bubble growth are not widely understood and no rheological model has found wide acceptance. We offer definitive evidence on the mode of bubble formation in the form of X-ray computed tomographic images and comparison with theory. Natural and injected bubbles in muddy cohesive sediments are shown to be highly eccentric oblate spheroids (disks) that grow either by fracturing the sediment or by reopening preexisting fractures. In contrast, bubbles in soft sandy sediment tend to be spherical, suggesting that sand acts fluidly or plastically in response to growth stresses. We also present bubble-rise results from gelatin, a mechanically similar but transparent medium, that suggest that initial rise is also accomplished by fracture. Given that muddy sediments are elastic and yield by fracture, it becomes much easier to explain physically related phenomena such as seafloor pockmark formation, animal burrowing, and gas buildup during methane hydrate melting.

  4. Spectrum of laser light scattered by nanoparticles in an ablation-induced cavitation bubble

    NASA Astrophysics Data System (ADS)

    Takeuchi, Masato; Sasaki, Koichi

    2016-04-01

    The spectrum of the laser light scattered by nanoparticles in a cavitation bubble, which was induced by laser ablation of a titanium target in water, was measured using a triple-grating spectrograph. The scattered laser light observed at 100 \\upmu s after laser ablation had no wavelength-shifted component, suggesting that nanoparticles at this delay time were metallic. The wavelength-shifted component was observed in the spectrum at a delay time of 200 \\upmu s, suggesting the formation of oxidized nanoparticles. However, we observed no peaks in the spectrum of the scattered laser light in the present in situ laser-light scattering experiment. On the other hand, we observed clear peaks in the Raman spectrum of synthesized nanoparticles. The experimental results suggest slow crystallization of nanoparticles in liquid in liquid-phase laser ablation.

  5. CO2 bubbling-based 'Nanobomb' System for Targetedly Suppressing Panc-1 Pancreatic Tumor via Low Intensity Ultrasound-activated Inertial Cavitation

    PubMed Central

    Zhang, Kun; Xu, Huixiong; Chen, Hangrong; Jia, Xiaoqing; Zheng, Shuguang; Cai, Xiaojun; Wang, Ronghui; Mou, Juan; Zheng, Yuanyi; Shi, Jianlin

    2015-01-01

    Noninvasive and targeted physical treatment is still desirable especially for those cancerous patients. Herein, we develop a new physical treatment protocol by employing CO2 bubbling-based 'nanobomb' system consisting of low-intensity ultrasound (1.0 W/cm2) and a well-constructed pH/temperature dual-responsive CO2 release system. Depending on the temperature elevation caused by exogenous low-intensity therapeutic ultrasound irradiation and the low pH caused by the endogenous acidic-environment around/within tumor, dual-responsive CO2 release system can quickly release CO2 bubbles, and afterwards, the generated CO2 bubbles waves will timely explode before dissolution due to triggering by therapeutic ultrasound waves. Related bio-effects (e.g., cavitation, mechanical, shock waves, etc) caused by CO2 bubbles' explosion effectively induce instant necrosis of panc-1 cells and blood vessel destruction within panc-1 tumor, and consequently inhibit the growth of panc-1 solid tumor, simultaneously minimizing the side effects to normal organs. This new physiotherapy employing CO2 bubbling-based 'nanobomb' system promises significant potentials in targetedly suppressing tumors, especially for those highly deadly cancers. PMID:26379793

  6. CO2 bubbling-based 'Nanobomb' System for Targetedly Suppressing Panc-1 Pancreatic Tumor via Low Intensity Ultrasound-activated Inertial Cavitation.

    PubMed

    Zhang, Kun; Xu, Huixiong; Chen, Hangrong; Jia, Xiaoqing; Zheng, Shuguang; Cai, Xiaojun; Wang, Ronghui; Mou, Juan; Zheng, Yuanyi; Shi, Jianlin

    2015-01-01

    Noninvasive and targeted physical treatment is still desirable especially for those cancerous patients. Herein, we develop a new physical treatment protocol by employing CO2 bubbling-based 'nanobomb' system consisting of low-intensity ultrasound (1.0 W/cm(2)) and a well-constructed pH/temperature dual-responsive CO2 release system. Depending on the temperature elevation caused by exogenous low-intensity therapeutic ultrasound irradiation and the low pH caused by the endogenous acidic-environment around/within tumor, dual-responsive CO2 release system can quickly release CO2 bubbles, and afterwards, the generated CO2 bubbles waves will timely explode before dissolution due to triggering by therapeutic ultrasound waves. Related bio-effects (e.g., cavitation, mechanical, shock waves, etc) caused by CO2 bubbles' explosion effectively induce instant necrosis of panc-1 cells and blood vessel destruction within panc-1 tumor, and consequently inhibit the growth of panc-1 solid tumor, simultaneously minimizing the side effects to normal organs. This new physiotherapy employing CO2 bubbling-based 'nanobomb' system promises significant potentials in targetedly suppressing tumors, especially for those highly deadly cancers. PMID:26379793

  7. Impact of shock wave pattern and cavitation bubble size on tissue damage during ureteroscopic electrohydraulic lithotripsy.

    PubMed

    Vorreuther, R; Corleis, R; Klotz, T; Bernards, P; Engelmann, U

    1995-03-01

    It is known that electrohydraulic lithotripsy (EHL) during ureteroscopy may cause ureteral damage. To evaluate this trauma potential, find its mechanism and make it possible to avoid it, our research employed photographic evaluation, tissue studies, shock wave measurements and disintegration tests. The setup included a 3.3 F probe attached to an experimental generator with adjustable voltages and capacities providing energies from 25 mJ. to 1300 mJ. per pulse. In general, we distinguish between two traumatic mechanisms: (1) After placing the probe directly on the mucosa the rapid initial plasma penetrates the tissue resulting in a small, nonthermal, punched-like defect, whose depth depends on the energy applied. This trauma has minor clinical implications and is avoided by maintaining a minimum safety distance of 1 mm.; (2) According to physics, each plasma is followed by a cavitation bubble. The maximum size of this bubble depends on the energy applied and ranges from 3 mm. (25 mJ) to > 15 mm. (1300 mJ). In proportion to the bubble size, the ureteral wall may be distended or disrupted, even when the probe is not in direct contact with the mucosa. Therefore, the goal should be to obtain a low energy pressure pulse with high disintegration efficacy. Our evaluation of the pressure waves revealed that the selection of a high voltage and a low capacity leads to short and steep "laser-like" pulses. These pulses have a significant higher impact on stone disintegration than the broader pulses of the same energy provided by currently available generators. PMID:7861549

  8. Contribution of stress wave and cavitation bubble in evaluation of cell-cell adhesion by femtosecond laser-induced impulse

    NASA Astrophysics Data System (ADS)

    Iino, Takanori; Li, Po-Lin; Wang, Wen-Zhe; Deng, Jia-Huei; Lu, Yun-Chang; Kao, Fu-Jen; Hosokawa, Yoichiroh

    2014-10-01

    When an intense femtosecond laser is focused in a cell culture medium, shock wave, stress wave, and cavitation bubble are generated at the laser focal point. Cell-cell adhesion can be broken at the cellular level by the impacts of these factors. We have applied this breaking of the adhesion to an estimation of the cell-cell adhesion strength. In this application, it is important to identify which of these factors is the dominant factor that breaks the adhesion. Here we investigated this issue using streptavidin-coated microbeads adhering to a biotin-coated substrate as a mimic of the cell-cell adhesion. The results indicated that the break was induced mainly by the stress wave, not by the impact of the cavitation bubble.

  9. High-speed observation of cavitation bubble cloud structures in the focal region of a 1.2 MHz high-intensity focused ultrasound transducer.

    PubMed

    Chen, Hong; Li, Xiaojing; Wan, Mingxi; Wang, Supin

    2007-03-01

    Cavitation bubble clouds in the focal region of HIFU play important roles in therapeutic applications of HIFU. Temporal evolution and spatial distribution of cavitation bubble clouds generated in the focal region of a 1.2 MHz single element concave HIFU transducer in water are investigated by high-speed photography. It is found that during the initial 600 micro s insonation cavitation bubble clouds organize to the "screw-like structure" or "cap-like structure". The screw-like structure is characterized by a nearly fixed tip at the geometrical focus of the HIFU transducer, and the cap-like structure is marked by a dent formed in the direction of ultrasound transmission. After 600 micro s, another two structures are recorded - "streamer structure" and "cluster structure". The streamer structure is also featured by a nearly fixed bottom position at the focus, while the cluster structure is distinguished by agglomerations of bubbles around the focus. PMID:17071124

  10. Some problems of the theory of bubble growth and condensation in bubble chambers

    NASA Technical Reports Server (NTRS)

    Tkachev, L. G.

    1988-01-01

    This work is an attempt to explain the reasons for the discrepancies between the theoretical and experimental values of bubble growth rate in an overheated liquid, and to provide a brief formulation of the main premises of the theory on bubble growth in liquid before making a critical analysis. To simplify the problem, the floating upward of bubbles is not discussed; moreover, the study is based on the results of the theory of the behavior of fixed bubbles.

  11. Cavitation-induced damage of soft materials by focused ultrasound bursts: A fracture-based bubble dynamics model.

    PubMed

    Movahed, Pooya; Kreider, Wayne; Maxwell, Adam D; Hutchens, Shelby B; Freund, Jonathan B

    2016-08-01

    A generalized Rayleigh-Plesset-type bubble dynamics model with a damage mechanism is developed for cavitation and damage of soft materials by focused ultrasound bursts. This study is linked to recent experimental observations in tissue-mimicking polyacrylamide and agar gel phantoms subjected to bursts of a kind being considered specifically for lithotripsy. These show bubble activation at multiple sites during the initial pulses. More cavities appear continuously through the course of the observations, similar to what is deduced in pig kidney tissues in shock-wave lithotripsy. Two different material models are used to represent the distinct properties of the two gel materials. The polyacrylamide gel is represented with a neo-Hookean elastic model and damaged based upon a maximum-strain criterion; the agar gel is represented with a strain-hardening Fung model and damaged according to the strain-energy-based Griffith's fracture criterion. Estimates based upon independently determined elasticity and viscosity of the two gel materials suggest that bubble confinement should be sufficient to prevent damage in the gels, and presumably injury in some tissues. Damage accumulation is therefore proposed to occur via a material fatigue, which is shown to be consistent with observed delays in widespread cavitation activity. PMID:27586763

  12. Chromatically encoded high-speed photography of cavitation bubble dynamics inside inhomogeneous ophthalmic tissue

    NASA Astrophysics Data System (ADS)

    Tinne, N.; Matthias, B.; Kranert, F.; Wetzel, C.; Krüger, A.; Ripken, T.

    2016-03-01

    The interaction effect of photodisruption, which is used for dissection of biological tissue with fs-laser pulses, has been intensively studied inside water as prevalent sample medium. In this case, the single effect is highly reproducible and, hence, the method of time-resolved photography is sufficiently applicable. In contrast, the reproducibility significantly decreases analyzing more solid and anisotropic media like biological tissue. Therefore, a high-speed photographic approach is necessary in this case. The presented study introduces a novel technique for high-speed photography based on the principle of chromatic encoding. For illumination of the region of interest within the sample medium, the light paths of up to 12 LEDs with various emission wavelengths are overlaid via optical filters. Here, MOSFET-electronics provide a LED flash with a duration <100 ns; the diodes are externally triggered with a distinct delay for every LED. Furthermore, the different illumination wavelengths are chromatically separated again for detection via camera chip. Thus, the experimental setup enables the generation of a time-sequence of <= 12 images of a single cavitation bubble dynamics. In comparison to conventional time-resolved photography, images in sample media like water and HEMA show the significant advantages of this novel illumination technique. In conclusion, the results of this study are of great importance for the fundamental evaluation of the laser-tissue interaction inside anisotropic biological tissue and for the optimization of the surgical process with high-repetition rate fs-lasers. Additionally, this application is also suitable for the investigation of other microscopic, ultra-fast events in transparent inhomogeneous materials.

  13. Target geometry and rigidity determines laser-induced cavitation bubble transport and nanoparticle productivity - a high-speed videography study.

    PubMed

    Kohsakowski, Sebastian; Gökce, Bilal; Tanabe, Rie; Wagener, Philipp; Plech, Anton; Ito, Yoshiro; Barcikowski, Stephan

    2016-06-28

    Laser-induced cavitation has mostly been studied in bulk liquid or at a two-dimensional wall, although target shapes for the particle synthesis may strongly affect bubble dynamics and interfere with particle productivity. We investigated the dynamics of the cavitation bubble induced by pulsed-laser ablation in liquid for different target geometries with high-speed laser microsecond videography and focus on the collapse behaviour. This method enables us observations in a high time resolution (intervals of 1 μs) and single-pulse experiments. Further, we analyzed the nanoparticle productivity, the sizes of the synthesized nanoparticles and the evolution of the bubble volume for each different target shape and geometry. For the ablation of metal (Ag, Cu, Ni) wire tips a springboard-like behaviour after the first collapse is observed which can be correlated with vertical projectile motion. Its turbulent friction in the liquid causes a very efficient transport and movement of the bubble and ablated material into the bulk liquid and prevents particle redeposition. This effect is influenced by the degree of freedom of the wire as well as the material properties and dimensions, especially the Young's modulus. The most efficient and largest bubble movement away from the wire was observed for a thin (500 μm) silver wire with velocities up to 19.8 m s(-1) and for materials with a small Young's modulus and flexural rigidity. We suggest that these observations may contribute to upscaling strategies and increase of particle yield towards large synthesis of colloids based on targets that may continuously be fed. PMID:27273693

  14. Cavitations induced by plasmas, plasmas induced by cavitations, and plasmas produced in cavitations

    NASA Astrophysics Data System (ADS)

    Sasaki, Koichi

    2015-11-01

    Cavitation bubbles are not static bubbles but have dynamics of expansion, shrinkage, and collapse. Since the collapse of a cavitation bubble is roughly an adiabatic process, the inside of the bubble at the collapse has a high temperature and a high pressure, resulting in the production of a plasma. This talk will be focused on cavitation-related plasma phenomena and the role of the cavitation bubble in the synthesis of nanoparticles. A method for inducing a cavitation bubble is laser ablation in liquid. After the disappearance of laser-produced plasma with optical emission, we have observed the formation of a cavitation bubble. We have found that the inside of the cavitation bubble is the reaction field for the synthesis of nanoparticles. The atomic and molecular species ejected from the ablation target toward the liquid are transported into the cavitation bubble, and they condense into nanoparticles inside it. It is important to note that nanoparticles are stored inside the cavitation bubble until its collapse. We have shown that the size and the structure of nanoparticles are controlled by controlling the dynamics of the cavitation bubbles. Another method for inducing cavitation bubbles is to use ultrasonic power. We have found a simple method for the efficient production of standing cavitation bubbles. The method is just inserting a punching metal plate into water irradiated by ultrasonic wave. The depth of water and the position of the punching plate should be tuned precisely. We have proposed the mechanism of the efficient production of cavitation bubbles by this method. Currently, we try to have electric discharges in cavitation bubbles with the intention of realizing nonequilibrium sonochemistry. In particular, the electric discharge in a laser-induced cavitation bubble shows interesting distortion of the bubble shape, which suggests the electrostatic characteristics of the cavitation bubble.

  15. Enhancing the aggressive intensity of hydrodynamic cavitation through a Venturi tube by increasing the pressure in the region where the bubbles collapse

    NASA Astrophysics Data System (ADS)

    Soyama, H.; Hoshino, J.

    2016-04-01

    In this paper, we used a Venturi tube for generating hydrodynamic cavitation, and in order to obtain the optimum conditions for this to be used in chemical processes, the relationship between the aggressive intensity of the cavitation and the downstream pressure where the cavitation bubbles collapse was investigated. The acoustic power and the luminescence induced by the bubbles collapsing were investigated under various cavitating conditions, and the relationships between these and the cavitation number, which depends on the upstream pressure, the downstream pressure at the throat of the tube and the vapor pressure of the test water, was found. It was shown that the optimum downstream pressure, i.e., the pressure in the region where the bubbles collapse, increased the aggressive intensity by a factor of about 100 compared to atmospheric pressure without the need to increase the input power. Although the optimum downstream pressure varied with the upstream pressure, the cavitation number giving the optimum conditions was constant for all upstream pressures.

  16. Small Gas Bubble Experiment for Mitigation of Cavitation Damage and Pressure Waves in Short-pulse Mercury Spallation Targets

    SciTech Connect

    Wendel, Mark W; Felde, David K; Sangrey, Robert L; Abdou, Ashraf A; West, David L; Shea, Thomas J; Hasegawa, Shoichi; Kogawa, Hiroyuki; Naoe, Dr. Takashi; Farny, Dr. Caleb H.; Kaminsky, Andrew L

    2014-01-01

    Populations of small helium gas bubbles were introduced into a flowing mercury experiment test loop to evaluate mitigation of beam-pulse induced cavitation damage and pressure waves. The test loop was developed and thoroughly tested at the Spallation Neutron Source (SNS) prior to irradiations at the Los Alamos Neutron Science Center - Weapons Neutron Research Center (LANSCE-WNR) facility. Twelve candidate bubblers were evaluated over a range of mercury flow and gas injection rates by use of a novel optical measurement technique that accurately assessed the generated bubble size distributions. Final selection for irradiation testing included two variations of a swirl bubbler provided by Japan Proton Accelerator Research Complex (J-PARC) collaborators and one orifice bubbler developed at SNS. Bubble populations of interest consisted of sizes up to 150 m in radius with achieved gas void fractions in the 10^-5 to 10^-4 range. The nominal WNR beam pulse used for the experiment created energy deposition in the mercury comparable to SNS pulses operating at 2.5 MW. Nineteen test conditions were completed each with 100 pulses, including variations on mercury flow, gas injection and protons per pulse. The principal measure of cavitation damage mitigation was surface damage assessment on test specimens that were manually replaced for each test condition. Damage assessment was done after radiation decay and decontamination by optical and laser profiling microscopy with damaged area fraction and maximum pit depth being the more valued results. Damage was reduced by flow alone; the best mitigation from bubble injection was between half and a quarter that of flow alone. Other data collected included surface motion tracking by three laser Doppler vibrometers (LDV), loop wall dynamic strain, beam diagnostics for charge and beam profile assessment, embedded hydrophones and pressure sensors, and sound measurement by a suite of conventional and contact microphones.

  17. A simple model of ultrasound propagation in a cavitating liquid. Part II: Primary Bjerknes force and bubble structures.

    PubMed

    Louisnard, O

    2012-01-01

    In a companion paper, a reduced model for propagation of acoustic waves in a cloud of inertial cavitation bubbles was proposed. The wave attenuation was calculated directly from the energy dissipated by a single bubble, the latter being estimated directly from the fully nonlinear radial dynamics. The use of this model in a mono-dimensional configuration has shown that the attenuation near the vibrating emitter was much higher than predictions obtained from linear theory, and that this strong attenuation creates a large traveling wave contribution, even for closed domain where standing waves are normally expected. In this paper, we show that, owing to the appearance of traveling waves, the primary Bjerknes force near the emitter becomes very large and tends to expel the bubbles up to a stagnation point. Two-dimensional axi-symmetric computations of the acoustic field created by a large area immersed sonotrode are also performed, and the paths of the bubbles in the resulting Bjerknes force field are sketched. Cone bubble structures are recovered and compare reasonably well to reported experimental results. The underlying mechanisms yielding such structures is examined, and it is found that the conical structure is generic and results from the appearance a sound velocity gradient along the transducer area. Finally, a more complex system, similar to an ultrasonic bath, in which the sound field results from the flexural vibrations of a thin plate, is also simulated. The calculated bubble paths reveal the appearance of other commonly observed structures in such configurations, such as streamers and flare structures. PMID:21764349

  18. Current Status in Cavitation Modeling

    NASA Technical Reports Server (NTRS)

    Singhal, Ashok K.; Avva, Ram K.

    1993-01-01

    Cavitation is a common problem for many engineering devices in which the main working fluid is in liquid state. In turbomachinery applications, cavitation generally occurs on the inlet side of pumps. The deleterious effects of cavitation include: lowered performance, load asymmetry, erosion and pitting of blade surfaces, vibration and noise, and reduction of the overall machine life. Cavitation models in use today range from rather crude approximations to sophisticated bubble dynamics models. Details about bubble inception, growth and collapse are relevant to the prediction of blade erosion, but are not necessary to predict the performance of pumps. An engineering model of cavitation is proposed to predict the extent of cavitation and performance. The vapor volume fraction is used as an indicator variable to quantify cavitation. A two-phase flow approach is employed with the assumption of the thermal equilibrium between liquid and vapor. At present velocity slip between the two phases is selected. Preliminary analyses of 2D flows shows qualitatively correct results.

  19. Characterization of the shock pulse-induced cavitation bubble activities recorded by an optical fiber hydrophone.

    PubMed

    Kang, Gwansuk; Cho, Sung Chan; Coleman, Andrew John; Choi, Min Joo

    2014-03-01

    A shock pressure pulse used in an extracorporeal shock wave treatment has a large negative pressure (<-5 MPa) which can produce cavitation. Cavitation cannot be measured easily, but may have known therapeutic effects. This study considers the signal recorded for several hundred microseconds using an optical hydrophone submerged in water at the focus of shock pressure field. The signal is characterized by shock pulse followed by a long tail after several microseconds; this signal is regarded as a cavitation-related signal (CRS). An experimental investigation of the CRS was conducted in the shock pressure field produced in water using an optical hydrophone (FOPH2000, RP Acoustics, Germany). The CRS was found to contain characteristic information about the shock pulse-induced cavitation. The first and second collapse times (t1 and t2) were identified in the CRS. The collapse time delay (tc = t2 - t1) increased with the driving shock pressures. The signal amplitude integrated for time from t1 to t2 was highly correlated with tc (adjusted R(2) = 0.990). This finding suggests that a single optical hydrophone can be used to measure shock pulse and to characterize shock pulse-induced cavitation. PMID:24606257

  20. Computer Simulation of Bubble Growth in Metals Due to He

    SciTech Connect

    FOILES, STEPHEN M.; HOYT, JEFFREY J.

    2001-03-01

    Atomistic simulations of the growth of helium bubbles in metals are performed. The metal is represented by embedded atom method potentials for palladium. The helium bubbles are treated via an expanding repulsive spherical potential within the metal lattice. The simulations predict bubble pressures that decrease monotonically with increasing helium to metal ratios. The swelling of the material associated with the bubble growth is also computed. It is found that the rate of swelling increases with increasing helium to metal ratio consistent with experimental observations on the swelling of metal tritides. Finally, the detailed defect structure due to the bubble growth was investigated. Dislocation networks are observed to form that connect the bubbles. Unlike early model assumptions, prismatic loops between the bubbles are not retained. These predictions are compared to available experimental evidence.

  1. Dynamics of diffusive bubble growth in magmas: Isothermal case

    NASA Astrophysics Data System (ADS)

    Prousevitch, A. A.; Sahagian, D. L.; Anderson, A. T.

    1993-12-01

    We have conducted a parametric study and developed a new cell model describing diffusion-induced growth of closely spaced bubbles in magmatic sytems. The model accounts for (1) the effects of advection of melt resulting from bubble growth, and its affect on the local concentration profile; (2) dynamic resistence of the viscous melt during diffusive growth; (3) diffusion of volatiles in response to evolving concentration gradients; (4) mass balance between dissolved volatiles and gas inside the bubble; (5) changes in the equilibrium saturation concentration at the bubble-melt interface; (6) total pressure within the bubble consisting of ambient, surface tension, and dynamic pressures. The results of this study reveal that bubble growth depends strongly on ambient pressure, volatile oversaturation in the melt, and diffusivity coefficients, but only weakly on bubble separation and inital bubble radius. Increased volatile oversaturation increases growth rate to the point at which it actually reduces time for complete bubble growth. This counterintuitive result is due to significant advective volatile flux toward the bubble interface during growth. Viscosity controls growth dynamics only for cases of high viscosity (greater than 10(exp 4) Pa s). The documentation of the evolution of gas fraction in the melt and bubble wall thickness as a function of time makes it possible to estimate bubble disruption thresholds which bear on volcanic eruption mechanisms. Model results can be applied to the larger-scale problem of magmatic degassing in terms of bubble coalescence, flotation and the development of foams in magma chambers and vent systems, and ultimately to the dynamics of eruption mechanisms.

  2. Numerical simulation of the nonlinear ultrasonic pressure wave propagation in a cavitating bubbly liquid inside a sonochemical reactor.

    PubMed

    Dogan, Hakan; Popov, Viktor

    2016-05-01

    We investigate the acoustic wave propagation in bubbly liquid inside a pilot sonochemical reactor which aims to produce antibacterial medical textile fabrics by coating the textile with ZnO or CuO nanoparticles. Computational models on acoustic propagation are developed in order to aid the design procedures. The acoustic pressure wave propagation in the sonoreactor is simulated by solving the Helmholtz equation using a meshless numerical method. The paper implements both the state-of-the-art linear model and a nonlinear wave propagation model recently introduced by Louisnard (2012), and presents a novel iterative solution procedure for the nonlinear propagation model which can be implemented using any numerical method and/or programming tool. Comparative results regarding both the linear and the nonlinear wave propagation are shown. Effects of bubble size distribution and bubble volume fraction on the acoustic wave propagation are discussed in detail. The simulations demonstrate that the nonlinear model successfully captures the realistic spatial distribution of the cavitation zones and the associated acoustic pressure amplitudes. PMID:26611813

  3. A new bubble dynamics model to study bubble growth, deformation, and coalescence

    NASA Astrophysics Data System (ADS)

    Huber, C.; Su, Y.; Nguyen, C. T.; Parmigiani, A.; Gonnermann, H. M.; Dufek, J.

    2014-01-01

    We propose a new bubble dynamics model to study the evolution of a suspension of bubbles over a wide range of vesicularity, and that accounts for hydrodynamical interactions between bubbles while they grow, deform under shear flow conditions, and exchange mass by diffusion coarsening. The model is based on a lattice Boltzmann method for free surface flows. As such, it assumes an infinite viscosity contrast between the exsolved volatiles and the melt. Our model allows for coalescence when two bubbles approach each other because of growth or deformation. The parameter (disjoining pressure) that controls the coalescence efficiency, i.e., drainage time for the fluid film between the bubbles, can be set arbitrarily in our calculations. We calibrated this parameter by matching the measured time for the drainage of the melt film across a range of Bond numbers (ratio of buoyancy to surface tension stresses) with laboratory experiments of a bubble rising to a free surface. The model is then used successfully to model Ostwald ripening and bubble deformation under simple shear flow conditions. The results we obtain for the deformation of a single bubble are in excellent agreement with previous experimental and theoretical studies. For a suspension, we observe that the collective effect of bubbles is different depending on the relative magnitude of viscous and interfacial stresses (capillary number). At low capillary number, we find that bubbles deform more readily in a suspension than for the case of a single bubble, whereas the opposite is observed at high capillary number.

  4. Dynamics of shock waves and cavitation bubbles in bilinear elastic-plastic media, and the implications to short-pulsed laser surgery

    NASA Astrophysics Data System (ADS)

    Brujan, E.-A.

    2005-01-01

    The dynamics of shock waves and cavitation bubbles generated by short laser pulses in water and elastic-plastic media were investigated theoretically in order to get a better understanding of their role in short-pulsed laser surgery. Numerical simulations were performed using a spherical model of bubble dynamics which include the elastic-plastic behaviour of the medium surrounding the bubble, compressibility, viscosity, density and surface tension. Breakdown in water produces a monopolar acoustic signal characterized by a compressive wave. Breakdown in an elastic-plastic medium produces a bipolar acoustic signal, with a leading positive compression wave and a trailing negative tensile wave. The calculations revealed that consideration of the tissue elasticity is essential to describe the bipolar shape of the shock wave emitted during optical breakdown. The elastic-plastic response of the medium surrounding the bubble leads to a significant decrease of the maximum size of the cavitation bubble and pressure amplitude of the shock wave emitted during bubble collapse, and shortening of the oscillation period of the bubble. The results are discussed with respect to collateral damage in short-pulsed laser surgery.

  5. Efficient generation of cavitation bubbles and reactive oxygen species using triggered high-intensity focused ultrasound sequence for sonodynamic treatment

    NASA Astrophysics Data System (ADS)

    Yasuda, Jun; Yoshizawa, Shin; Umemura, Shin-ichiro

    2016-07-01

    Sonodynamic treatment is a method of treating cancer using reactive oxygen species (ROS) generated by cavitation bubbles in collaboration with a sonosensitizer at a target tissue. In this treatment method, both localized ROS generation and ROS generation with high efficiency are important. In this study, a triggered high-intensity focused ultrasound (HIFU) sequence, which consists of a short, extremely high intensity pulse immediately followed by a long, moderate-intensity burst, was employed for the efficient generation of ROS. In experiments, a solution sealed in a chamber was exposed to a triggered HIFU sequence. Then, the distribution of generated ROS was observed by the luminol reaction, and the amount of generated ROS was quantified using KI method. As a result, the localized ROS generation was demonstrated by light emission from the luminol reaction. Moreover, it was demonstrated that the triggered HIFU sequence has higher efficiency of ROS generation by both the KI method and the luminol reaction emission.

  6. A numerical study on the effects of cavitation on orifice flow

    NASA Astrophysics Data System (ADS)

    Dabiri, S.; Sirignano, W. A.; Joseph, D. D.

    2010-04-01

    Previous experimental studies have shown better atomization of sprays generated by high-pressure liquid injectors when cavitation occurs inside the nozzle. It has been proposed that the collapse of traveling cavitation bubbles increases the disturbances inside the liquid flow. These disturbances will later trigger the instabilities in the emerged jet and cause a shorter breakup distance. In this paper, effects of cavitation on increasing the disturbances in the flow through the orifice of an atomizer are studied. In previous cavitation models, spherical cavitation bubbles are considered. Here, the cavitation bubbles are allowed to deform as they travel through the orifice. Dynamics of the cavitation bubble, traveling in the separated shear layer in the orifice, is analyzed through a one-way coupling between the orifice flow and bubble dynamics. Effects of shear strain, normal strain, and pressure variation are examined. Three mechanisms are suggested that could be responsible for the increase in disturbances in the flow due to cavitation. These mechanisms are monopole, quadrupole, and vorticities generated during growth and collapse of cavitation bubbles. The effects of these mechanisms are estimated by postprocessing of the solutions to the Navier-Stokes equations to identify monopole and quadrupole behaviors.

  7. Shadowgraph Imaging and Numerical Simulation of Cavitation Bubbles Formed in Pulsed Laser Ablation Plasmas in the Vicinity of the Critical Point of CO2

    NASA Astrophysics Data System (ADS)

    Muneoka, Hitoshi; Himeno, Shohei; Urabe, Keiichiro; Stauss, Sven; Baba, Motoyoshi; Suemoto, Tohru; Terashima, Kazuo

    2015-09-01

    The characteristic behavior of cavitation bubbles formed in pulsed laser ablation plasmas in supercritical CO2 were investigated by shadowgraph imaging and numerical simulations. The time evolution of the cavitation bubbles could be divided into three phases near the critical point: Expansion, Double layer formation, and Contraction. The distribution of the refractive index was estimated from the variation of the direction of the refracted light in the shockwave in the expansion phase. It was suggested that the cause of the reduction of the transmitted light in the outer shell in the double-layer phase was not due to refraction, and the contributions of nanoparticles and clusters generated in supercritical fluids were implied. The characteristics in time evolution of the bubble size in the contraction phase, in particular almost constant position of the interface in a relatively long time, was proposed to be due to zero surface tension by numerical simulations. The results suggest that the properties and fluid structure peculiar to SCF affect the structure of cavitation bubbles.

  8. Interaction dynamics of fs-laser induced cavitation bubbles and their impact on the laser-tissue-interaction of modern ophthalmic laser systems

    NASA Astrophysics Data System (ADS)

    Tinne, N.; Ripken, T.; Lubatschowski, H.; Heisterkamp, A.

    2011-07-01

    A today well-known laser based treatment in ophthalmology is the LASIK procedure which nowadays includes cutting of the corneal tissue with ultra-short laser pulses. Instead of disposing a microkeratome for cutting a corneal flap, a focused ultra-short laser pulse is scanned below the surface of biological tissue causing the effect of an optical breakdown and hence obtaining a dissection. Inside the tissue, the energy of the laser pulses is absorbed by non-linear processes; as a result a cavitation bubble expands and ruptures the tissue. Hence, positioning of several optical breakdowns side by side generates an incision. Due to a reduction of the amount of laser energy, with a moderate duration of treatment at the same time, the current development of ultra-short pulse laser systems points to higher repetition rates in the range of even Megahertz instead of tens or hundreds of Kilohertz. In turn, this results in a pulse overlap and therefor a probable occurrence of interaction between different optical breakdowns and respectively cavitation bubbles of adjacent optical breakdowns. While the interaction of one single laser pulse with biological tissue is analyzed reasonably well experimentally and theoretically, the interaction of several spatial and temporal following pulses is scarcely determined yet. Thus, the aim of this study is to analyse the dynamic and interaction of two cavitation bubbles by using high speed photography. The applied laser pulse energy, the energy ratio and the spot distance between different cavitation bubbles were varied. Depending on a change of these parameters different kinds of interactions such as a flattening and deformation of bubble shape or jet formation are observed. The effects will be discussed regarding the medical ophthalmic application of fs-lasers. Based on these results a further research seems to be inevitable to comprehend and optimize the cutting effect of ultra-short pulse laser systems with high (> 500 kHz) repetition

  9. Bubble growth by rectified diffusion at high gas supersaturation levels.

    PubMed

    Ilinskii, Yurii A; Wilson, Preston S; Hamilton, Mark F

    2008-10-01

    For high gas supersaturation levels in liquids, on the order of 300% as predicted in capillaries of marine mammals following a series of dives [D. S. Houser, R. Howard, and S. Ridgway, J. Theor. Biol. 213, 183-195 (2001)], standard mathematical models of both static and rectified diffusion are found to underestimate the rate of bubble growth by 10%-20%. The discrepancy is demonstrated by comparing predictions based on existing mathematical models with direct numerical solutions of the differential equations for gas diffusion in the liquid and thermal conditions in the bubble. Underestimation of bubble growth by existing mathematical models is due to the underlying assumption that the gas concentration in the liquid is given by its value for a bubble of constant equilibrium radius. This assumption is violated when high supersaturation causes the bubble to grow too fast in relation to the time scale associated with diffusion. Rapid bubble growth results in an increased gas concentration gradient at the bubble wall and therefore a growth rate in excess of predictions based on constant equilibrium bubble radius. PMID:19062834

  10. Study on Prediction of Underwater Radiated Noise from Propeller Tip Vortex Cavitation

    NASA Astrophysics Data System (ADS)

    Yamada, Takuyoshi; Sato, Kei; Kawakita, Chiharu; Oshima, Akira

    2015-12-01

    The method to predict underwater radiated noise from tip vortex cavitation was studied. The growth of a single cavitation bubble in tip vortex was estimated by substituting the tip vortex to Rankine combined vortex. The ideal spectrum function for the sound pressure generated by a single cavitation bubble was used, also the empirical factor for the number of collapsed bubbles per unit time was introduced. The estimated noise data were compared with measured ship's ones and it was found out that this method can estimate noise data within 3dB difference.

  11. Physical effects in cavitating flows

    NASA Technical Reports Server (NTRS)

    Plesset, M. S.

    1974-01-01

    The microscopic and macroscopic aspects of the physical effects of cavitating flows are discussed. The microscopic features are related to the properties of nuclei in liquids and to the moderate tensile strengths which are usually encountered in flows. The macroscopic features are concerned with the growth of vapor or gaseous cavities from a small initial size and with their eventual collapse. Mathematical models are developed to analyze the characteristics of: (1) tensile strength in liquids, (2) growth of vapor bubbles, and (3) collapse of vapor bubbles.

  12. Helium ion implantation in zirconium: Bubble formation and growth

    NASA Astrophysics Data System (ADS)

    Totemeier, Aaron Robert

    To evaluate the behavior of inert helium gas bubbles in zirconium three variants of the metal were implanted with 140 keV helium ions to a total fluence of 3x1017 cm--2 and characterized in cross-section TEM in their as-implanted state as well as during annealing at different temperatures. The three zirconium alloys included high-purity crystal bar material, Zircaloy-4, and a powder-metallurgically extruded material with high carbon and oxygen concentrations. At a sample depth consistent with a helium concentration of approximately 5 atomic percent, a change in the structure of the zirconium was observed a high density region of small (4nm diameter) bubbles formed at concentrations above 10 atom percent. Initial bubble formation and growth was observed to occurred at a temperature between 400-450 °C and these initial bubbles had a unique planar geometry prior to migration and coalescence into more three-dimensional bubbles. These planar bubbles appear to be aligned with major axes parallel to the TEM specimen surface and their formation and growth is possibly due to an increase in the thermal vacancy flux within the zirconium. The observations of bubble response to high temperature annealing suggest that in zirconium, as in other metals, maximum bubble size is weakly dependent on annealing time, whereas the bubble size distribution is strongly dependent on time. Specimens that underwent a prolonged room temperature aging developed a multimodal bubble size distribution within the high density region of small bubbles, concentrated near the highest helium concentration depth.

  13. EXPERIMENTS AND SIMULATIONS WITH LARGE GAS BUBBLES IN MERCURY TOWARDS ESTABLISHING A GAS LAYER TO MITIGATE CAVITATION DAMAGE

    SciTech Connect

    Wendel, Mark W; Riemer, Bernie; Felde, David K; Ruggles, Arthur; Karnowski, Thomas Paul

    2006-01-01

    One of several options that shows promise for protecting solid surfaces from cavitation damage in liquid metal spallation targets, involves introducing an interstitial gas layer between the liquid metal and the containment vessel wall. Several approaches toward establishing such a protective gas layer are being investigated at the Oak Ridge National Laboratory including large bubble injection, and methods that involve stabilization of the layer by surface modifications to enhance gas hold-up on the wall or by inserting a porous media. It has previously been reported that using a gas layer configuration in a test target showed an order-of-magnitude decrease in damage for an in-beam experiment. Video images that were taken of the successful gas/mercury flow configuration have been analyzed and correlated. The results show that the success was obtained under conditions where only 60% of the solid wall was covered with gas. Such a result implies that this mitigation scheme may have much more potential. Additional experiments with gas injection into water are underway. Multi-component flow simulations are also being used to provide direction for these new experiments. These simulations have been used to size the gas layer and position multiple inlet nozzles.

  14. Toward the optimization of double-pulse LIBS underwater: effects of experimental parameters on the reproducibility and dynamics of laser-induced cavitation bubble.

    PubMed

    Cristoforetti, Gabriele; Tiberi, Marco; Simonelli, Andrea; Marsili, Paolo; Giammanco, Francesco

    2012-03-01

    Double-pulse laser-induced breakdown spectroscopy (LIBS) was recently proposed for the analysis of underwater samples, since it overcomes the drawbacks of rapid plasma quenching and of large continuum emission, typical of single-pulse ablation. Despite the attractiveness of the method, this approach suffers nevertheless from a poor spectroscopic reproducibility, which is partially due to the scarce reproducibility of the cavitation bubble induced by the first laser pulse, since pressure and dimensions of the bubble strongly affect plasma emission. In this work, we investigated the reproducibility and the dynamics of the cavitation bubble induced on a solid target in water, and how they depend on pulse duration, energy, and wavelength, as well as on target composition. Results are discussed in terms of the effects on the laser ablation process produced by the crater formation and by the interaction of the laser pulse with floating particles and gas bubbles. This work, preliminary to the optimization of the spectroscopic signal, provides an insight of the phenomena occurring during laser ablation in water, together with useful information for the choice of the laser source to be used in the apparatus. PMID:22410923

  15. Numerical estimation of cavitation intensity

    NASA Astrophysics Data System (ADS)

    Krumenacker, L.; Fortes-Patella, R.; Archer, A.

    2014-03-01

    Cavitation may appear in turbomachinery and in hydraulic orifices, venturis or valves, leading to performance losses, vibrations and material erosion. This study propose a new method to predict the cavitation intensity of the flow, based on a post-processing of unsteady CFD calculations. The paper presents the analyses of cavitating structures' evolution at two different scales: • A macroscopic one in which the growth of cavitating structures is calculated using an URANS software based on a homogeneous model. Simulations of cavitating flows are computed using a barotropic law considering presence of air and interfacial tension, and Reboud's correction on the turbulence model. • Then a small one where a Rayleigh-Plesset software calculates the acoustic energy generated by the implosion of the vapor/gas bubbles with input parameters from macroscopic scale. The volume damage rate of the material during incubation time is supposed to be a part of the cumulated acoustic energy received by the solid wall. The proposed analysis method is applied to calculations on hydrofoil and orifice geometries. Comparisons between model results and experimental works concerning flow characteristic (size of cavity, pressure,velocity) as well as pitting (erosion area, relative cavitation intensity) are presented.

  16. Numerical study on the effective heating due to inertial cavitation in microbubble-enhanced HIFU therapy

    NASA Astrophysics Data System (ADS)

    Okita, Kohei; Sugiyama, Kazuyasu; Takagi, Shu; Matsumoto, Yoichiro

    2015-10-01

    The enhancement of heating due to inertial cavitation was focused in high-intensity focused ultrasound (HIFU) therapy. The influences of the rectified diffusion on microbubble-enhanced HIFU were examined numerically. A bubble dynamics equation in consideration of the spherical shell bubble and the elasticity of surrounding tissue was employed. Mass and heat transfer between the surrounding medium and the bubble were considered. The basic equations were discretized by finite difference method. The mixture phase and bubbles are coupled by the Euler-Lagrange method to take into account the interaction between ultrasound and bubbles. The mass transfer rate of gas from the surrounding medium to the bubble was examined as function of the initial bubble radius and the driving pressure amplitude. As the results, the pressure required to bubble growth was decreases with increasing the initial bubble radius. Thus, the injection of microbubble reduces the cavitation threshold pressure. On the other hand, the influence of the rectified diffusion on the triggered HIFU therapy which generates cavitation bubbles by high-intensity burst and induces the localized heating owing to cavitation bubble oscillation by low-intensity continuous waves. The calculation showed that the localized heating was enhanced by the increase of the equilibrium bubble size due to the rectified diffusion.

  17. Tip Vortex Cavitation

    NASA Astrophysics Data System (ADS)

    Maines, Brant H.; Arndt, Roger E. A.

    2000-11-01

    Cavitation in vortical flows is a problem of practical importance, that is relatively unexplored. Vortical structures of importance range from the eddies occurring randomly in space and time in turbulent flows to the developed vortices that occur at the tips of lifting surfaces and at the hubs of propellers and hydraulic turbines. A variety of secondary flow phenomena such as the horse shoe vortices that form around bridge piers, chute blocks and struts, and the secondary vortices found in the clearance passages of turbomachinery are also important cavitation sites. Tip vortex cavitation can be viewed as a canonical problem that captures many of the essential physics associated with vortex cavitation in general. This paper describes the inception process and focuses on the high levels of tension that can be sustained in the flow, which appears to scale with the blade loading. High speed video visualization indicates that the details of how free stream nuclei are ingested plays a major role in the nucleation and inception process. A new photographic technique was used to obtain high quality images of the bubble growth process at framing rates as high as 40,000 fps. Sponsored by the Office of Naval Research

  18. Aspherical bubble dynamics and oscillation times

    SciTech Connect

    Vogel, A.; Noack, J.; Chapyak, E.J.; Godwin, R.P.

    1999-06-01

    The cavitation bubbles common in laser medicine are rarely perfectly spherical and are often located near tissue boundaries, in vessels, etc., which introduce aspherical dynamics. Here, novel features of aspherical bubble dynamics are explored by time-resolved photography and numerical simulations. The growth-collapse period of cylindrical bubbles of large aspect ratio (length:diameter {approximately}20) differs only slightly from twice the Rayleigh collapse time for a spherical bubble with an equivalent maximum volume. This fact justifies using the temporal interval between the acoustic signals emitted upon bubble creation and collapse to estimate the maximum bubble volume. As a result, hydrophone measurements can provide an estimate of the bubble size and energy even for aspherical bubbles. The change of the oscillation period of bubbles near solid walls and elastic (tissue-like) boundaries relative to that of isolated spherical bubbles is also investigated.

  19. Cavitation bubble-driven cell and particle behavior in an ultrasound standing wave.

    PubMed

    Kuznetsova, Larisa A; Khanna, Sanjay; Amso, Nazar N; Coakley, W Terence; Doinikov, Alexander A

    2005-01-01

    The behavior of human erythrocytes and 1-microm-diameter fluorescent latex beads in the presence of Optison contrast agent in a single half-wavelength (lambda/2) ultrasound standing wave (USSW) resonator has been studied. The particle movements were observed with an epi-fluorescent microscope and the velocity of the particles and cells was measured by particle image velocimetry (PIV). Acoustic emissions were monitored with a microphone and a spectrum analyzer. Optison contrast agent disintegrated immediately on exposure to ultrasound of 0.98-MPa acoustic pressure amplitude or higher in a chamber driven at its resonance frequency of 1.56 MHz. A discrete cloud of active microbubbles, detected at the pressure node plane, disappeared gradually and was completely lost within 15 s. The microscopy showed three-dimensional regions of circulation of both 1-microm tracer particles and erythrocytes in planes perpendicular to the pressure node plane. A numerical simulation showed that, for parameters that conform to the experimental conditions, a bubble of a subresonance size moves towards and translates about a pressure node plane. This result is in agreement with the experimental observation that the particle and cell circulation is induced by the presence and/or translational motion of microbubbles at the pressure node plane. PMID:15704403

  20. Simulation of bubble growth and coalescence in reacting polymer foams

    NASA Astrophysics Data System (ADS)

    Marchisio, Daniele; Karimi, Mohsen

    2015-11-01

    This work concerns with the simulation of reacting polymer foams with computational fluid dynamics (CFD). In these systems upon mixing of different ingredients polymerization starts and some gaseous compounds are produced, resulting in the formation of bubbles that growth and coalesce. As the foam expands, the polymerization proceeds resulting in an increase of the apparent viscosity. The evolution of the collective behavior of the bubbles within the polymer foam is tracked by solving a master kinetic equation, formulated in terms of the bubble size distribution. The rate with which individual bubbles grow is instead calculated by resolving the momentum and concentration boundary layers around the bubbles. Moreover, since it is useful to track the evolution of the interface between the foam and the surrounding air, a volume-of-fluid (VOF) model is adopted. The final computational model is implemented in the open-source CFD code openFOAM by making use of the compressibleInterFoam solver. The master kinetic equation is solved with a quadrature-based moment method (QBMM) directly implemented in openFOAM, whereas the bubble growth model is solved independently and ''called'' from the CFD code by using an unstructured database. Model predictions are validated against experimental data. This work was funded by the European Commission under the grant agreement number 604271 (Project acronym: MoDeNa; call identifier: FP7-NMP-2013-SMALL-7).

  1. Enhancement and quenching of high-intensity focused ultrasound cavitation activity via short frequency sweep gaps.

    PubMed

    Hallez, Loïc; Lee, Judy; Touyeras, Francis; Nevers, Aymeric; Ashokkumar, Muthupandian; Hihn, Jean-Yves

    2016-03-01

    This letter reports on the use of frequency sweeps to probe acoustic cavitation activity generated by high-intensity focused ultrasound (HIFU). Unprecedented enhancement and quenching of HIFU cavitation activity were observed when short frequency sweep gaps were applied in negative and positive directions, respectively. It was revealed that irrespective of the frequency gap, it is the direction and frequency sweep rate that govern the cavitation activity. These effects are related to the response of bubbles generated by the starting frequency to the direction of the frequency sweep, and the influence of the sweep rate on growth and coalescence of bubbles, which in turn affects the active bubble population. These findings are relevant for the use of HIFU in chemical and therapeutic applications, where greater control of cavitation bubble population is critical. PMID:26584998

  2. Analogy between fluid cavitation and fracture mechanics

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Mullen, R. L.; Braun, M. J.

    1983-01-01

    When the stresses imposed on a fluid are sufficiently large, rupture or cavitation can occur. Such conditions can exist in many two-phase flow applications, such as the choked flows, which can occur in seals and bearings. Nonspherical bubbles with large aspect ratios have been observed in fluids under rapid acceleration and high shear fields. These bubbles are geometrically similar to fracture surface patterns (Griffith crack model) existing in solids. Analogies between crack growth in solid and fluid cavitation are proposed and supported by analysis and observation (photographs). Healing phenomena (void condensation), well accepted in fluid mechanics, have been observed in some polymers and hypothesized in solid mechanics. By drawing on the strengths of the theories of solid mechanics and cavitation, a more complete unified theory can be developed.

  3. The growth of vapor bubble and relaxation between two-phase bubble flow

    NASA Astrophysics Data System (ADS)

    Mohammadein, S. A.; Subba Reddy Gorla, Rama

    2002-10-01

    This paper presents the behavior of the bubble growth and relaxation between vapor and superheated liquid. The growth and thermal relaxation time between the two-phases are obtained for different levels of superheating. The heat transfer problem is solved numerically by using the extended Scriven model. Results are compared with those of Scriven theory and MOBY DICK experiment with reasonably good agreement for lower values of superheating.

  4. Percolation models for boiling and bubble growth in porous media

    SciTech Connect

    Yortsos, Y.C.

    1991-05-01

    We analyze the liquid-to-vapor phase change in single-component fluids in porous media at low superheats. Conditions typical to steam injection in porous media are taken. We examine nucleation, phase equilibria and their stability, and the growth of vapor bubbles. Effects of pore structure are emphasized. It is shown that at low supersaturations, bubble growth can be described as a percolation process. In the absence of spatial gradients, macroscopic flow properties are calculated in terms of nucleation parameters. A modification of gradient percolation is also proposed in the case of spatial temperature gradients, when solid conduction predominates. 22 refs., 10 figs., 1 tab.

  5. Visualization and simulation of bubble growth in pore networks

    SciTech Connect

    Li, Xuehai; Yortsos, Y.C.

    1994-03-01

    Bubble nucleation and bubble growth in porous media is an important problem encountered in processes, such as pressure depletion and boiling. To understand its basic aspects, experiments and numerical simulations in micromodel geometries were undertaken. Experiments of bubble growth by pressure depletion were carried out in 2-D etched-glass micromodels and in Hele-Shaw cells. Nucleation of bubbles and the subsequent growth of gas clusters were visualized. Contrary to the bulk or to Hele-Shaw cells, gas clusters in the micromodel have irregular and ramified shapes and share many of the features of an external invasion process (e.g. of percolation during drainage). A pore network numerical model was developed to simulate the growth of multiple gas clusters under various conditions. The model is based on the solution of the convection-diffusions equation and also accounts for capillary and viscous forces, which play an important role in determining the growth patterns. Numerical simulation resulted in good agreement with the experimental results.

  6. He bubble growth and interaction in W nano-tendrils

    NASA Astrophysics Data System (ADS)

    Smirnov, R. D.; Krasheninnikov, S. I.

    2015-11-01

    Tungsten plasma-facing components (PFCs) in fusion devices are exposed to variety of extreme plasma conditions, which can lead to alteration of tungsten micro-structure and degradation of the PFCs. In particular, it is known that filamentary nano-structures called fuzz can grow on helium plasma exposed tungsten surfaces. However, mechanism of the fuzz growth is still not fully understood. Existing experimental observations indicate that formation of helium nano-bubbles in tungsten plays essential role in fuzz formation and growth. In this work we investigate mechanisms of growth and interaction of helium bubbles in fuzz-like nano-tendrils using molecular dynamics simulations with LAMMPS code. We show that growth of the bubbles has anisotropic character producing complex stress field in the nano-tendrils with distinct compression and tension regions. We found that formation of large inter-bubble tension regions can cause lateral stretching and bending of the tendrils that consequently lead to their elongation and thinning at the stretching sites. The rate of nano-tendril growth due to the described mechanism is also evaluated from the simulations.

  7. Effects of system pressure and heat flux on bubble nucleation and growth

    NASA Astrophysics Data System (ADS)

    Qiu, Chao; Zhang, Huichen

    2015-09-01

    Characteristics of bubble nucleation and growth are critical for its application. It is affected by several factors including viscosity, surface tension and temperature. However, the effect of pressure on bubble nucleation and growth has been underreported, although it processes significant effect on above characteristics. In this work, a micro copper electrode is etched on a slab covered with copper to produce bubble on the surface by current input. The nucleation time of bubble is measured under different heat flux and system pressures. The nucleation and growth processes are recorded with a high speed camera in order to discuss the effects of heat flux and system pressure on bubble characteristics. The experiment results indicate that the micro electrode with higher heat flux produces more thermal energy, which makes the time of bubble nucleation shorter and the speed of bubble growth faster. Higher system pressure causes the increase of the critical nucleation temperature and also baffles the bubble nucleation and growth. Bubble growth includes the stages of rapid growth and dynamic equilibrium, with the speed being from fast to slow. In the former part of rapid growth, heat flux plays a dominant role in bubble growth. While the effect of system pressure on bubble growth becomes significant in the latter part of rapid growth. Both the nucleation time and bubble growth agree well with the theoretical analysis. The obtained results help to accurately control bubble nucleation and growth required in different application.

  8. Optimization of centrifugal pump cavitation performance based on CFD

    NASA Astrophysics Data System (ADS)

    Xie, S. F.; Wang, Y.; Liu, Z. C.; Zhu, Z. T.; Ning, C.; Zhao, L. F.

    2015-01-01

    In order to further improve the cavitation performance of a centrifugal pump, slots on impeller blade near inlet were studied and six groups of hydraulic model were designed. Base on cavitating flow feature inside a centrifugal pump, bubble growth and implosion are calculated from the Rayleigh-Plesset equation which describes the dynamic behavior of spherical bubble and RNG κ-epsilon model was employed to simulate and analyze the internal two-phase flow of the model pump under the same conditions. The simulation results show that slots on blade near inlet could improve the cavitation performance and cavitation performance improvement of the second group was more obvious. Under the same conditions, the pressure on the back of blade near inlet was higher than the pressure on the back of unmodified blade near inlet, and energy distribution in the flow channel between the two blades was more uniform with a small change of head.

  9. Cavitation in medicine.

    PubMed

    Brennen, Christopher Earls

    2015-10-01

    We generally think of bubbles as benign and harmless and yet they can manifest the most remarkable range of physical effects. Some of those effects are the stuff of our everyday experience as in the tinkling of a brook or the sounds of breaking waves at the beach. But even these mundane effects are examples of the ability of bubbles to gather, focus and radiate energy (acoustic energy in the above examples). In other contexts that focusing of energy can lead to serious technological problems as when cavitation bubbles eat great holes through ships' propeller blades or cause a threat to the integrity of the spillways at the Hoover Dam. In liquid-propelled rocket engines, bubbles pose a danger to the stability of the propulsion system, and in artificial heart valves they can cause serious damage to the red blood cells. In perhaps the most extraordinary example of energy focusing, collapsing cavitation bubbles can emit not only sound, but also light with black body radiation temperatures equal to that of the sun (Brennen 1995 Cavitation and bubble dynamics). But, harnessed carefully, this almost unique ability to focus energy can also be put to remarkably constructive use. Cavitation bubbles are now used in a remarkable range of surgical and medical procedures, for example to emulsify tissue (most commonly in cataract surgery or in lithotripsy procedures for the reduction of kidney and gall stones) or to manipulate the DNA in individual cells. By creating cavitation bubbles non-invasively thereby depositing and focusing energy non-intrusively, one can generate minute incisions or target cancer cells. This paper will begin by briefly reviewing the history of cavitation phenomena and will end with a vision of the new horizons for the amazing cavitation bubble. PMID:26442145

  10. One-way-coupling simulation of cavitation accompanied by high-speed droplet impact

    NASA Astrophysics Data System (ADS)

    Kondo, Tomoki; Ando, Keita

    2016-03-01

    Erosion due to high-speed droplet impact is a crucial issue in industrial applications. The erosion is caused by the water-hammer loading on material surfaces and possibly by the reloading from collapsing cavitation bubbles that appear within the droplet. Here, we simulate the dynamics of cavitation bubbles accompanied by high-speed droplet impact against a deformable wall in order to see whether the bubble collapse is violent enough to give rise to cavitation erosion on the wall. The evolution of pressure waves in a single water (or gelatin) droplet to collide with a deformable wall at speed up to 110 m/s is inferred from simulations of multicomponent Euler flow where phase changes are not permitted. Then, we examine the dynamics of cavitation bubbles nucleated from micron/submicron-sized gas bubble nuclei that are supposed to exist inside the droplet. For simplicity, we perform Rayleigh-Plesset-type calculations in a one-way-coupling manner, namely, the bubble dynamics are determined according to the pressure variation obtained from the Euler flow simulation. In the simulation, the preexisting bubble nuclei whose size is either micron or submicron show large growth to submillimeters because tension inside the droplet is obtained through interaction of the pressure waves and the droplet interface; this supports the possibility of having cavitation due to the droplet impact. It is also found, in particular, for the case of cavitation arising from very small nuclei such as nanobubbles, that radiated pressure from the cavitation bubble collapse can overwhelm the water-hammer pressure directly created by the impact. Hence, cavitation may need to be accounted for when it comes to discussing erosion in the droplet impact problem.

  11. Accelerated Molecular Dynamics studies of He Bubble Growth in Tungsten

    NASA Astrophysics Data System (ADS)

    Uberuaga, Blas; Sandoval, Luis; Perez, Danny; Voter, Arthur

    2015-11-01

    Understanding how materials respond to extreme environments is critical for predicting and improving performance. In materials such as tungsten exposed to plasmas for nuclear fusion applications, novel nanoscale fuzzes, comprised of tendrils of tungsten, form as a consequence of the implantation of He into the near surface. However, the detailed mechanisms that link He bubble formation to the ultimate development of fuzz are unclear. Molecular dynamics simulations provide insight into the He implantation process, but are necessarily performed at implantation rates that are orders of magnitudes faster than experiment. Here, using accelerated molecular dynamics methods, we examine the role of He implantation rates on the physical evolution of He bubbles in tungsten. We find that, as the He rate is reduced, new types of events involving the response of the tungsten matrix to the pressure in the bubble become competitive and change the overall evolution of the bubble as well as the subsequent morphology of the tungsten surface. We have also examined how bubble growth differs at various microstructural features. These results highlight the importance of performing simulations at experimentally relevant conditions in order to correctly capture the contributions of the various significant kinetic processes and predict the overall response of the material.

  12. The dynamics of histotripsy bubbles

    NASA Astrophysics Data System (ADS)

    Kreider, Wayne; Bailey, Michael R.; Sapozhnikov, Oleg A.; Khokhlova, Vera A.; Crum, Lawrence A.

    2011-09-01

    Histotripsy describes treatments in which high-amplitude acoustic pulses are used to excite bubbles and erode tissue. Though tissue erosion can be directly attributed to bubble activity, the genesis and dynamics of bubbles remain unclear. Histotripsy lesions that show no signs of thermal coagulative damage have been generated with two different acoustic protocols: relatively long acoustic pulses that produce local boiling within milliseconds and relatively short pulses that are higher in amplitude but likely do not produce boiling. While these two approaches are often distinguished as `boiling' versus `cavitation', such labels can obscure similarities. In both cases, a bubble undergoes large changes in radius and vapor is transported into and out of the bubble as it oscillates. Moreover, observations from both approaches suggest that bubbles grow to a size at which they cease to collapse violently. In order to better understand the dynamics of histotripsy bubbles, a single-bubble model has been developed that couples acoustically excited bubble motions to the thermodynamic state of the surrounding liquid. Using this model for bubbles exposed to histotripsy sound fields, simulations suggest that two mechanisms can act separately or in concert to lead to the typically observed bubble growth. First, nonlinear acoustic propagation leads to the evolution of shocks and an asymmetry in the positive and negative pressures that drive bubble motion. This asymmetry can have a rectifying effect on bubble oscillations whereby the bubble grows on average during each acoustic cycle. Second, vapor transport to/from the bubble tends to produce larger bubbles, especially at elevated temperatures. Vapor transport by itself can lead to rectified bubble growth when the ambient temperature exceeds 100 °C (`boiling') or local heating in the vicinity of the bubble leads to a superheated boundary layer.

  13. A molecular dynamics study on bubble growth in tungsten under helium irradiation

    NASA Astrophysics Data System (ADS)

    Kobayashi, Ryo; Hattori, Tatsunori; Tamura, Tomoyuki; Ogata, Shuji

    2015-08-01

    Molecular dynamics simulation has been performed to investigate the effects of irradiated helium atoms in tungsten on the bubble nucleation and the dislocation loop formation. Simulation results clearly show that helium atoms in tungsten tend to migrate as isolated interstitials at high temperatures and to be absorbed to existing tungsten-vacancies or defects such as bubbles or dislocations. Tungsten self-interstitial atoms pushed out from the helium bubble tend to stay in the vicinity of the bubble and, then form a dislocation loop when the number of the atoms exceed the threshold. Since the bubbles and dislocation loops cause further nucleation of bubbles, there appears a helium bubble array along < 1 1 1 > direction. The bubble growth rate within this self induced bubble growth mechanism will be much faster than that of existing growth model. The growth model needs to be reformulated by taking the self-induced effects into account.

  14. Bubbles

    NASA Astrophysics Data System (ADS)

    Prosperetti, Andrea

    2004-06-01

    Vanitas vanitatum et omnia vanitas: bubbles are emptiness, non-liquid, a tiny cloud shielding a mathematical singularity. Born from chance, a violent and brief life ending in the union with the (nearly) infinite. But a wealth of phenomena spring forth from this nothingness: underwater noise, sonoluminescence, boiling, and many others. Some recent results on a "blinking bubble" micropump and vapor bubbles in sound fields are outlined. The last section describes Leonardo da Vinci's observation of the non-rectlinear ascent of buoyant bubbles and justifies the name Leonardo's paradox recently attributed to this phenomenon.

  15. Cavitation in a metallic liquid: Homogeneous nucleation and growth of nanovoids

    SciTech Connect

    Cai, Y.; Wu, H. A.; Luo, S. N.

    2014-06-07

    Large-scale molecular dynamics (MD) simulations are performed to investigate homogeneous nucleation and growth of nanovoids during cavitation in liquid Cu. We characterize in detail the atomistic cavitation processes by following the temporal evolution of cavities or voids, analyze the nucleation behavior with the mean first-passage time (MFPT) and survival probability (SP) methods, and discuss the results against classical nucleation theory (CNT), the Tolman equation for surface energy, independent calculation of surface tension via integrating the stress profiles, the Johnson-Mehl-Avrami (JMA) growth law, and the power law for nucleus size distributions. Cavitation in this representative metallic liquid is a high energy barrier Poisson processes, and the steady-state nucleation rates obtained from statistical runs with the MFPT and SP methods are in agreement. The MFPT method also yields the critical nucleus size and the Zeldovich factor. Fitting with the Tolman's equation to the MD simulations yields the surface energy of a planar interface (∼0.9 J m{sup −2}) and the Tolman length (0.4–0.5 Å), and those values are in accord with those from integrating the stress profiles of a planar interface. Independent CNT predictions of the nucleation rate (10{sup 33−34} s{sup −1} m{sup −3}) and critical size (3–4 Å in radius) are in agreement with the MFPT and SP results. The JMA law can reasonably describe the nucleation and growth process. The size distribution of subcritical nuclei appears to follow a power law with an exponent decreasing with increasing tension owing to coupled nucleation and growth, and that of the supercritical nuclei becomes flattened during further stress relaxation due to void coalescence.

  16. Cavitation in a metallic liquid: homogeneous nucleation and growth of nanovoids.

    PubMed

    Cai, Y; Wu, H A; Luo, S N

    2014-06-01

    Large-scale molecular dynamics (MD) simulations are performed to investigate homogeneous nucleation and growth of nanovoids during cavitation in liquid Cu. We characterize in detail the atomistic cavitation processes by following the temporal evolution of cavities or voids, analyze the nucleation behavior with the mean first-passage time (MFPT) and survival probability (SP) methods, and discuss the results against classical nucleation theory (CNT), the Tolman equation for surface energy, independent calculation of surface tension via integrating the stress profiles, the Johnson-Mehl-Avrami (JMA) growth law, and the power law for nucleus size distributions. Cavitation in this representative metallic liquid is a high energy barrier Poisson processes, and the steady-state nucleation rates obtained from statistical runs with the MFPT and SP methods are in agreement. The MFPT method also yields the critical nucleus size and the Zeldovich factor. Fitting with the Tolman's equation to the MD simulations yields the surface energy of a planar interface (~0.9 J m⁻²) and the Tolman length (0.4-0.5 Å), and those values are in accord with those from integrating the stress profiles of a planar interface. Independent CNT predictions of the nucleation rate (10(33 - 34) s(-1) m(-3)) and critical size (3-4 Å in radius) are in agreement with the MFPT and SP results. The JMA law can reasonably describe the nucleation and growth process. The size distribution of subcritical nuclei appears to follow a power law with an exponent decreasing with increasing tension owing to coupled nucleation and growth, and that of the supercritical nuclei becomes flattened during further stress relaxation due to void coalescence. PMID:24908018

  17. Nonlinear bubble nucleation and growth following filament and white-light continuum generation induced by a single-shot femtosecond laser pulse into dielectrics based on consideration of the time scale

    SciTech Connect

    Mizushima, Yuki; Saito, Takayuki

    2015-09-14

    Bubble nucleation and growth following plasma channeling (filament) and white-light continuum in liquid irradiated by a single-shot fs-pulse were experimentally investigated with close observation of the time scale. Making full use of a new confocal system and time-resolved visualization techniques, we obtained evidence suggestive of a major/minor role of the non-linear/thermal effects during the fs-pulse-induced bubble's fountainhead (10{sup −13} s) and growth (10{sup −7} s), which was never observed with the use of the ns-pulse (i.e., optic cavitation). In this context, the fs-pulse-induced bubble is not an ordinary optic cavitation but rather is nonlinear-optic cavitation. We present the intrinsic differences in the dominant-time domain of the fs-pulse and ns-pulse excitation, and intriguingly, a mere hundred femtoseconds' excitation predetermines the size of the bubble appearing several microseconds after irradiation. That is, the nucleation happens temporally beyond a six-order-of-magnitude difference.

  18. Nonlinear bubble nucleation and growth following filament and white-light continuum generation induced by a single-shot femtosecond laser pulse into dielectrics based on consideration of the time scale

    NASA Astrophysics Data System (ADS)

    Mizushima, Yuki; Saito, Takayuki

    2015-09-01

    Bubble nucleation and growth following plasma channeling (filament) and white-light continuum in liquid irradiated by a single-shot fs-pulse were experimentally investigated with close observation of the time scale. Making full use of a new confocal system and time-resolved visualization techniques, we obtained evidence suggestive of a major/minor role of the non-linear/thermal effects during the fs-pulse-induced bubble's fountainhead (10-13 s) and growth (10-7 s), which was never observed with the use of the ns-pulse (i.e., optic cavitation). In this context, the fs-pulse-induced bubble is not an ordinary optic cavitation but rather is nonlinear-optic cavitation. We present the intrinsic differences in the dominant-time domain of the fs-pulse and ns-pulse excitation, and intriguingly, a mere hundred femtoseconds' excitation predetermines the size of the bubble appearing several microseconds after irradiation. That is, the nucleation happens temporally beyond a six-order-of-magnitude difference.

  19. Bubble evolution and properties in homogeneous nucleation simulations.

    PubMed

    Angélil, Raymond; Diemand, Jürg; Tanaka, Kyoko K; Tanaka, Hidekazu

    2014-12-01

    We analyze the properties of naturally formed nanobubbles in Lennard-Jones molecular dynamics simulations of liquid-to-vapor nucleation in the boiling and the cavitation regimes. The large computational volumes provide a realistic environment at unchanging average temperature and liquid pressure, which allows us to accurately measure properties of bubbles from their inception as stable, critically sized bubbles, to their continued growth into the constant speed regime. Bubble gas densities are up to 50% lower than the equilibrium vapor densities at the liquid temperature, yet quite close to the gas equilibrium density at the lower gas temperatures measured in the simulations: The latent heat of transformation results in bubble gas temperatures up to 25% below those of the surrounding bulk liquid. In the case of rapid bubble growth-typical for the cavitation regime-compression of the liquid outside the bubble leads to local temperature increases of up to 5%, likely significant enough to alter the surface tension as well as the local viscosity. The liquid-vapor bubble interface is thinner than expected from planar coexistence simulations by up to 50%. Bubbles near the critical size are extremely nonspherical, yet they quickly become spherical as they grow. The Rayleigh-Plesset description of bubble-growth gives good agreement in the cavitation regime. PMID:25615216

  20. Simulation of hydrogen bubble growth in tungsten by a hybrid model

    NASA Astrophysics Data System (ADS)

    Sang, Chaofeng; Sun, Jizhong; Bonnin, Xavier; Wang, L.; Wang, Dezhen

    2015-08-01

    A two dimensional hybrid code (HIIPC-MC) joining rate-theory and Monte Carlo (MC) methods is developed in this work. We evaluate the cascade-coalescence mechanism contribution to the bubble growth by MC. First, effects of the starting radius and solute deuterium concentration on the bubble growth are studied; then the impacts of the wall temperature and implantation ion flux on the bubble growth are assessed. The simulation indicates that the migration-coalescence of the bubbles and the high pressure inside the bubbles are the main driving forces for the bubble growth, and that neglect of the migration and coalescence would lead to an underestimation of the bubble growth or blistering.

  1. Bubble evolution and properties in homogeneous nucleation simulations

    NASA Astrophysics Data System (ADS)

    Angélil, Raymond; Diemand, Jürg; Tanaka, Kyoko K.; Tanaka, Hidekazu

    2014-12-01

    We analyze the properties of naturally formed nanobubbles in Lennard-Jones molecular dynamics simulations of liquid-to-vapor nucleation in the boiling and the cavitation regimes. The large computational volumes provide a realistic environment at unchanging average temperature and liquid pressure, which allows us to accurately measure properties of bubbles from their inception as stable, critically sized bubbles, to their continued growth into the constant speed regime. Bubble gas densities are up to 50 % lower than the equilibrium vapor densities at the liquid temperature, yet quite close to the gas equilibrium density at the lower gas temperatures measured in the simulations: The latent heat of transformation results in bubble gas temperatures up to 25 % below those of the surrounding bulk liquid. In the case of rapid bubble growth—typical for the cavitation regime—compression of the liquid outside the bubble leads to local temperature increases of up to 5 %, likely significant enough to alter the surface tension as well as the local viscosity. The liquid-vapor bubble interface is thinner than expected from planar coexistence simulations by up to 50 % . Bubbles near the critical size are extremely nonspherical, yet they quickly become spherical as they grow. The Rayleigh-Plesset description of bubble-growth gives good agreement in the cavitation regime.

  2. Behavior of bubbles in glassmelts. III - Dissolution and growth of a rising bubble containing a single gas

    NASA Technical Reports Server (NTRS)

    Onorato, P. I. K.; Weinberg, M. C.; Uhlmann, D. R.

    1981-01-01

    Finite difference solutions of the mass transport equations governing the dissolution (growth) of a rising gas bubble, containing a single gas, in a glassmelt were obtained. These solutions were compared with those obtained from an approximate procedure for a range of the controlling parameters. Applications were made to describe various aspects of O2 and CO2 gas-bubble behavior in a soda-lime-silicate melt.

  3. A cavitation model for computations of unsteady cavitating flows

    NASA Astrophysics Data System (ADS)

    Zhao, Yu; Wang, Guoyu; Huang, Biao

    2016-04-01

    A local vortical cavitation (LVC) model for the computation of unsteady cavitation is proposed. The model is derived from the Rayleigh-Plesset equations, and takes into account the relations between the cavitation bubble radius and local vortical effects. Calculations of unsteady cloud cavitating flows around a Clark-Y hydrofoil are performed to assess the predictive capability of the LVC model using well-documented experimental data. Compared with the conventional Zwart's model, better agreement is observed between the predictions of the LVC model and experimental data, including measurements of time-averaged flow structures, instantaneous cavity shapes and the frequency of the cloud cavity shedding process. Based on the predictions of the LVC model, it is demonstrated that the evaporation process largely concentrates in the core region of the leading edge vorticity in accordance with the growth in the attached cavity, and the condensation process concentrates in the core region of the trailing edge vorticity, which corresponds to the spread of the rear component of the attached cavity. When the attached cavity breaks up and moves downstream, the condensation area fully transports to the wake region, which is in accordance with the dissipation of the detached cavity. Furthermore, using vorticity transport equations, we also find that the periodic formation, breakup, and shedding of the sheet/cloud cavities, along with the associated baroclinic torque, are important mechanisms for vorticity production and modification. When the attached cavity grows, the liquid-vapour interface that moves towards the trailing edge enhances the vorticity in the attached cavity closure region. As the re-entrant jet moves upstream, the wavy/bubbly cavity interface enhances the vorticity near the trailing edge. At the end of the cycle, the break-up of the stable attached cavity is the main reason for the vorticity enhancement near the suction surface.

  4. Harness cavitation to improve processing

    SciTech Connect

    Pandit, A.G.; Moholkar, V.S.

    1996-07-01

    Mention cavitation to most chemical engineers, and they undoubtedly think of it as an operational problem. Indeed, the rapid creation and then collapse of bubbles, which is after all what cavitation involves, can destroy pumps and erode other equipment. Cavitation, however, also can have a positive side--presuming it is designed for and not unplanned. In this article, the authors look at how cavitation can be harnessed to improve processes, and the mechanisms for inducing cavitation--ultrasonics and hydrodynamics--and their likely roles. Sonication, that is, the use of ultrasound, is the conventional approach for creating cavitation, and so they turn to it first. Over the past few years, a number of groups have attempted to solve the problem of scale-up and design of ultrasonic reactors. The authors review the systems that already exist and also explore a simpler and efficient alternative to the ultrasonic reactor, the hydrodynamic cavitation reactor.

  5. Aspherical bubble dynamics and oscillation times

    SciTech Connect

    Godwin, R.P.; Chapyak, E.J.; Noack, J.; Vogel, A.

    1999-03-01

    The cavitation bubbles common in laser medicine are rarely perfectly spherical and are often located near tissue boundaries, in vessels, etc., which introduce aspherical dynamics. Here, novel features of aspherical bubble dynamics are explored. Time-resolved experimental photographs and simulations of large aspect ratio (length:diameter {approximately}20) cylindrical bubble dynamics are presented. The experiments and calculations exhibit similar dynamics. A small high-pressure cylindrical bubble initially expands radially with hardly any axial motion. Then, after reaching its maximum volume, a cylindrical bubble collapses along its long axis with relatively little radial motion. The growth-collapse period of these very aspherical bubbles differs only sightly from twice the Rayleigh collapse time for a spherical bubble with an equivalent maximum volume. This fact justifies using the temporal interval between the acoustic signals emitted upon bubble creation and collapse to estimate the maximum bubble volume. As a result, hydrophone measurements can provide an estimate of the bubble energy even for aspherical bubbles. The prolongation of the oscillation period of bubbles near solid boundaries relative to that of isolated spherical bubbles is also discussed.

  6. Reconstructing the Growth History of Bubbles in Magma from Preserved Volatile Concentrations in Glass

    NASA Astrophysics Data System (ADS)

    McIntosh, I. M.; Llewellin, E. W.; Humphreys, M.; Larsen, J. F.; Blower, J. D.

    2010-12-01

    Volcanic eruptions are driven by the nucleation and growth of bubbles that are formed when volatile species (particularly water) exsolve from magma. Once nucleated, bubbles may continue to grow through a combination of diffusion of volatiles from the melt and decompressive expansion. The kinetics of bubble formation and growth exert a critical influence on eruption dynamics, particularly on the explosivity of the eruption; consequently, numerical models of volcanic eruptions are sensitive to the choice of bubble growth model. We present preliminary results of analyses of experimentally-decompressed phonolite and rhyolite samples, which provide data against which bubble growth models can be validated. Data interpretation is supported by numerical modelling of the growth of isolated and paired bubbles in three-dimensions. Previous numerical modelling of bubble growth has demonstrated the importance of the dynamic feedback between the concentration of water in the melt, its diffusivity, and the viscosity of the melt shell in which the bubble grows (e.g. Blower et al., 2001). Diffusion of water, therefore, not only alters the water concentration profile surrounding the bubble, but is itself modified by the resulting concentration profile. This concentration profile may be preserved when the magma is quenched to glass. We adapt the technique of Humphreys et al (2008) to extract sub-micron resolution water concentration data from backscatter SEM images of volcanic glasses by using greyscale variation as a proxy for water content. The profiles are calibrated using SEM-Raman and FTIR. We present preliminary two-dimensional maps of water concentration around isolated bubbles and bubble-pairs in synthetically hydrated and decompressed samples of volcanic glass. To support the interpretation of the data, we have developed a finite element model of bubble growth, which couples volatile diffusion with concentration dependent viscosity and melt hydrodynamics around the growing

  7. Thresholds of Transient Cavitation Produced by Pulsed Ultrasound in a Controlled Nuclei Environment.

    NASA Astrophysics Data System (ADS)

    Holland, Christy Katherine Smith

    The possibility of hazardous bioeffects from medical ultrasound examinations and therapy, although not demonstrated in current epidemiologic data, is still of interest to the medical community. In particular, concern persists over the potential of damage at the cellular level due to transient cavitation produced by diagnostic and high intensity therapeutic ultrasound. Transient cavitation is a discrete phenomenon which relies on the existence of stabilized nuclei, or pockets of gas within a host fluid, for its genesis. A convenient descriptor for assessing the likelihood of transient cavitation is the threshold pressure, or the minimum acoustic pressure necessary to initiate bubble growth and subsequent collapse. Experimental measurements of cavitation thresholds are presented here which elucidate the importance of ultrasound host fluid and nuclei parameters in determining these thresholds. These results are interpreted in the context of an approximate theory, included as an appendix, describing the relationship between these parameters and cavitation threshold pressures. An automated experimental apparatus has been developed to determine thresholds for cavitation produced in a fluid by short tone bursts of ultrasound at 0.76, 0.99, and 2.30 MHz. A fluid jet was used to convect potential cavitation nuclei through the focal region of the insonifying transducer. Potential nuclei tested include 1mum polystyrene spheres, microbubbles in the 1-10 μm range that are stabilized with human serum albumin, and whole blood constituents. Cavitation was detected by a passive acoustical technique which is sensitive to sound scattered from cavitation bubbles. Measurements of the transient cavitation threshold in water, in a fluid of higher viscosity, and in diluted whole blood are presented. Results from these experiments which permit the control of nuclei and host fluid properties are compared to the approximate analytical theory for the prediction of the onset of cavitation.

  8. Dynamics of diffusive bubble growth and pressure recovery in a bubbly rhyolitic melt embedded in an elastic solid

    USGS Publications Warehouse

    Chouet, Bernard A.; Dawson, Phillip B.; Nakano, Masaru

    2006-01-01

    We present a model of gas exsolution and bubble expansion in a melt supersaturated in response to a sudden pressure drop. In our model, the melt contains a suspension of gas bubbles of identical sizes and is encased in a penny-shaped crack embedded in an elastic solid. The suspension is modeled as a three-dimensional lattice of spherical cells with slight overlap, where each elementary cell consists of a gas bubble surrounded by a shell of volatile-rich melt. The melt is then subjected to a step drop in pressure, which induces gas exsolution and bubble expansion, resulting in the compression of the melt and volumetric expansion of the crack. The dynamics of diffusion-driven bubble growth and volumetric crack expansion span 9 decades in time. The model demonstrates that the speed of the crack response depends strongly on volatile diffusivity in the melt and bubble number density and is markedly sensitive to the ratio of crack thickness to crack radius and initial bubble radius but is relatively insensitive to melt viscosity. The net drop in gas concentration in the melt after pressure recovery represents only a small fraction of the initial concentration prior to the drop, suggesting the melt may undergo numerous pressure transients before becoming significantly depleted of gases. The magnitude of pressure and volume recovery in the crack depends sensitively on the size of the input-pressure transient, becoming relatively larger for smaller-size transients in a melt containing bubbles with initial radii less than 10-5 m. Amplification of the input transient may be large enough to disrupt the crack wall and induce brittle failure in the rock matrix surrounding the crack. Our results provide additional basis for the interpretation of volume changes in the magma conduit under Popocatépetl Volcano during Vulcanian degassing bursts in its eruptive activity in April–May 2000.

  9. Atomistic modeling of growth and coalescence of helium nano-bubbles in tungsten

    NASA Astrophysics Data System (ADS)

    Smirnov, R. D.; Krasheninnikov, S. I.; Guterl, J.

    2015-08-01

    The mechanisms of growth and coalescence of helium nano-bubbles in tungsten are investigated using molecular dynamics simulations. It is shown that crystal symmetries and governed by them properties of dislocations, generated by the growing nano-bubbles, are responsible for main nano-bubble features revealed, including non-spherical shape and anisotropy of surrounding stress field. The transport of helium atoms in non-uniform stress field is simulated at different temperatures and the transport coefficients are determined. The implications of the considered dislocation and helium dynamics on nucleation and growth of bubbles in tungsten with implanted helium are discussed.

  10. Plasma and Cavitation Dynamics during Pulsed Laser Microsurgery in vivo

    SciTech Connect

    Hutson, M. Shane; Ma Xiaoyan

    2007-10-12

    We compare the plasma and cavitation dynamics underlying pulsed laser microsurgery in water and in fruit fly embryos (in vivo)--specifically for nanosecond pulses at 355 and 532 nm. We find two key differences. First, the plasma-formation thresholds are lower in vivo --especially at 355 nm--due to the presence of endogenous chromophores that serve as additional sources for plasma seed electrons. Second, the biological matrix constrains the growth of laser-induced cavitation bubbles. Both effects reduce the disrupted region in vivo when compared to extrapolations from measurements in water.

  11. A method for real-time in vitro observation of cavitation on prosthetic heart valves.

    PubMed

    Zapanta, C M; Liszka, E G; Lamson, T C; Stinebring, D R; Deutsch, S; Geselowitz, D B; Tarbell, J M

    1994-11-01

    A method for real-time in vitro observation of cavitation on a prosthetic heart valve has been developed. Cavitation of four blood analog fluids (distilled water, aqueous glycerin, aqueous polyacrylamide, and aqueous xanthan gum) has been documented for a Medtronic/Hall prosthetic heart valve. This method employed a Penn State Electrical Ventricular Assist Device in a mock circulatory loop that was operated in a partial filling mode associated with reduced atrial filling pressure. The observations were made on a valve that was located in the mitral position, with the cavitation occurring on the inlet side after valve closure on every cycle. Stroboscopic videography was used to document the cavity life cycle. Bubble cavitation was observed on the valve occluder face. Vortex cavitation was observed at two locations in the vicinity of the valve occluder and housing. For each fluid, cavity growth and collapse occurred in less than one millisecond, which provides strong evidence that the cavitation is vaporous rather than gaseous. The cavity duration time was found to decrease with increasing atrial pressure at constant aortic pressure and beat rate. The area of cavitation was found to decrease with increasing delay time at a constant aortic pressure, atrial pressure, and beat rate. Cavitation was found to occur in each of the fluids, with the most cavitation seen in the Newtonian fluids (distilled water and aqueous glycerin). PMID:7869722

  12. Cavitating vortex generation by a submerged jet

    SciTech Connect

    Belyakov, G. V.; Filippov, A. N.

    2006-05-15

    The surface geometry of a cavitating vortex is determined in the limit of inviscid incompressible flow. The limit surface is an ovaloid of revolution with an axis ratio of 5: 3. It is shown that a cavitating vortex ring cannot develop if the cavitation number is lower than a certain critical value. Experiments conducted at various liquid pressures and several jet exit velocities confirm the existence of a critical cavitation number close to 3. At cavitation numbers higher than the critical one, the cavitating vortex ring does not develop. At substantially lower cavitation numbers (k {<=} 0.1), an elongated asymmetric cavitation bubble is generated, with an axial reentrant jet whose length can exceed the initial jet length by several times. This flow structure is called an asymmetric cavitating vortex, even though steady motion of this structure has not been observed.

  13. Particle image velocimetry studies of bubble growth and detachment by high-speed photography

    NASA Astrophysics Data System (ADS)

    Stickland, Mathew; Dempster, William; Lothian, Lee; Oldroyd, Andrew

    1997-05-01

    An understanding of bubble flows is important in the design of process equipment, particularly in the chemical and power industries. In vapor-liquid processes the mass and heat transfer between the phases is dominated by the liquid-vapor interface and is determined by the number, size, and shape of the bubbles. For bubble flows these characteristics are often controlled by the generation mechanisms and, since bubble flows are often generated at an orifice, it is important to determine the controlling parameters which dictate how bubbles grow and detach. For bubbles growing at orifices the liquid displacement is an important feature and affects the pressure distribution acting on the bubble and the heat and mass transfer that may occur at the bubble interface. Therefore, in this study, the characteristics of the liquid velocity field are studied experimentally using Particle image Velocimetry (PIV) during growth, detachment and translation of a bubble being generated at an orifice supplied with a constant mass flow rate of air. The process is transient and occurs over a period of approximately 50 msecs. In order to map the transient flow field a combination of high speed cine and cross correlation PIV image processing has been used to determine the liquid velocity vector field during the bubble growth process. The paper contains details of the PIV technique and presents several of the velocity vector maps calculated.

  14. Electron irradiation effect on bubble formation and growth in a sodium borosilicate glass

    SciTech Connect

    Chen, X.; Birtcher, R. C.; Donnelly, S. E.

    2000-02-08

    In this study, the authors studied simultaneous and intermittent electron irradiation effects on bubble growth in a simple sodium borosilicate glass during Xe ion implantation at 200 C. Simultaneous electron irradiation increases the average bubble size in the glass. This enhanced diffusion is also shown by the migration of Xe from bubbles into the matrix when the sample is irradiated by an electron beam after the Xe implantation.

  15. Molecular dynamics investigation of nanoscale cavitation dynamics

    NASA Astrophysics Data System (ADS)

    Sasikumar, Kiran; Keblinski, Pawel

    2014-12-01

    We use molecular dynamics simulations to investigate the cavitation dynamics around intensely heated solid nanoparticles immersed in a model Lennard-Jones fluid. Specifically, we study the temporal evolution of vapor nanobubbles that form around the solid nanoparticles heated over ps time scale and provide a detail description of the following vapor formation and collapse. For 8 nm diameter nanoparticles we observe the formation of vapor bubbles when the liquid temperature 0.5-1 nm away from the nanoparticle surface reaches ˜90% of the critical temperature, which is consistent with the onset of spinodal decomposition. The peak heat flux from the hot solid to the surrounding liquid at the bubble formation threshold is ˜20 times higher than the corresponding steady state critical heat flux. Detailed analysis of the bubble dynamics indicates adiabatic formation followed by an isothermal final stage of growth and isothermal collapse.

  16. Gas-bubble growth mechanisms in the analysis of metal fuel swelling

    SciTech Connect

    Gruber, E.E.; Kramer, J.M.

    1986-06-01

    During steady-state irradiation, swelling rates associated with growth of fission-gas bubbles in metallic fast reactor fuels may be expected to remain small. As a consequence, bubble-growth mechanisms are not a major consideration in modeling the steady-state fuel behavior, and it is usually adequate to consider the gas pressure to be in equilibrium with the external pressure and surface tension restraint. On transient time scales, however, various bubble-growth mechanisms become important components of the swelling rate. These mechanisms include growth by diffusion, for bubbles within grains and on grain boundaries; dislocation nucleation at the bubble surface, or ''punchout''; and bubble growth by creep. Analyses of these mechanisms are presented and applied to provide information on the conditions and the relative time scales for which the various processes should dominate fuel swelling. The results are compared to a series of experiments in which the swelling of irradiated metal fuel was determined after annealing at various temperatures and pressures. The diffusive growth of bubbles on grain boundaries is concluded to be dominant in these experiments.

  17. Computer simulation of boundary effects on bubble growth in metals due to He.

    SciTech Connect

    Zimmerman, Jonathan A.

    2003-03-01

    Atomistic simulation methods were used to investigate and identify the relevant physical mechanisms necessary to describe the growth of helium gas bubbles within a metal lattice. Specifically, molecular dynamics simulations were performed to examine the material defects that originate from growing spherical He bubbles in a palladium crystal. These simulations consist of a model system containing bubbles within a metal and near a free surface. The simulation code employed was ParaDyn using the Embedded Atom Method to model the constitutive properties of Pd atoms in a FCC lattice. The results of these simulations are compared with previously run calculations of He bubbles in a bulk lattice [l]. These simulations show the influence of the free surface on defect creation and evolution. Features compared include the formation of inter-bubble dislocations, bubble pressure and swelling as functions of He to metal (He/M) concentration.

  18. Cavitation studies in microgravity

    NASA Astrophysics Data System (ADS)

    Kobel, Philippe; Obreschkow, Danail; Farhat, Mohamed; Dorsaz, Nicolas; de Bosset, Aurele

    The hydrodynamic cavitation phenomenon is a major source of erosion for many industrial systems such as cryogenic pumps for rocket propulsion, fast ship propellers, hydraulic pipelines and turbines. Erosive processes are associated with liquid jets and shockwaves emission fol-lowing the cavity collapse. Yet, fundamental understanding of these processes requires further cavitation studies inside various geometries of liquid volumes, as the bubble dynamics strongly depends the surrounding pressure field. To this end, microgravity represents a unique platform to produce spherical fluid geometries and remove the hydrostatic pressure gradient induced by gravity. The goal of our first experiment (flown on ESA's parabolic flight campaigns 2005 and 2006) was to study single bubble dynamics inside large spherical water drops (having a radius between 8 and 13 mm) produced in microgravity. The water drops were created by a micro-pump that smoothly expelled the liquid through a custom-designed injector tube. Then, the cavitation bubble was generated through a fast electrical discharge between two electrodes immersed in the liquid from above. High-speed imaging allowed to analyze the implications of isolated finite volumes and spherical free surfaces on bubble evolution, liquid jets formation and shock wave dynamics. Of particular interest are the following results: (A) Bubble lifetimes are shorter than in extended liquid volumes, which could be explain by deriving novel corrective terms to the Rayleigh-Plesset equation. (B) Transient crowds of micro-bubbles (smaller than 1mm) appeared at the instants of shockwaves emission. A comparison between high-speed visualizations and 3D N-particle simulations of a shock front inside a liquid sphere reveals that focus zones within the drop lead to a significantly increased density of induced cavitation. Considering shock wave crossing and focusing may hence prove crucially useful to understand the important process of cavitation erosion

  19. Aerator Combined With Bubble Remover

    NASA Technical Reports Server (NTRS)

    Dreschel, Thomas W.

    1993-01-01

    System produces bubble-free oxygen-saturated water. Bubble remover consists of outer solid-walled tube and inner hydrophobic, porous tube. Air bubbles pass from water in outer tube into inner tube, where sucked away. Developed for long-term aquaculture projects in space. Also applicable to terrestrial equipment in which entrained bubbles dry membranes or give rise to cavitation in pumps.

  20. A New Unsteady Model for Dense Cloud Cavitation in Cryogenic Fluids

    NASA Technical Reports Server (NTRS)

    Hosangadi, A.; Ahuja, V.

    2005-01-01

    A new unsteady, cavitation model is presented wherein the phase change process (bubble growth/collapse) is coupled to the acoustic field in a cryogenic fluid. It predicts the number density and radius of bubbles in vapor clouds by tracking both the aggregate surface area and volume fraction of the cloud. Hence, formulations for the dynamics of individual bubbles (e.g. Rayleigh-Plesset equation) may be integrated within the macroscopic context of a dense vapor cloud i.e. a cloud that occupies a significant fraction of available volume and contains numerous bubbles. This formulation has been implemented within the CRUNCH CFD, which has a compressible real fluid formulation, a multi-element, unstructured grid framework, and has been validated extensively for liquid rocket turbopump inducers. Detailed unsteady simulations of a cavitating ogive in liquid nitrogen are presented where time-averaged mean cavity pressure and temperature depressions due to cavitation are compared with experimental data. The model also provides the spatial and temporal history of the bubble size distribution in the vapor clouds that are shed, an important physical parameter that is difficult to measure experimentally and is a significant advancement in the modeling of dense cloud cavitation.

  1. A Model for Surface Induced Growth of Inert Gas Bubbles in Irradiated Copper-Boron Alloys

    SciTech Connect

    Tiwari, G.P.; Ramadasan, E.

    2006-07-01

    A matrix containing inert gas bubbles dilates in direct proportion to the growth experienced by the gas bubbles. This phenomenon is termed as swelling. A model for the swelling induced by the growth of the helium gas bubbles in irradiated copper-boron alloys is presented. The bubbles grow by acquiring vacancies from the external surface, which acts as a source of vacancies. The vacancies reach the surface of the bubbles mainly via lattice diffusion and to a limited extent via diffusion through short-circuiting paths such as grain boundaries and dislocation pipes. The model predicts that overall swelling of the matrix varies as 1.5 power of time. Another consequence of the present model is that the growth rate of a gas bubble varies inversely as the cube of its distance from the external surface. The model has been applied to the data on irradiated copper-boron alloys and found to be in accord with the experimental results. The model is general and can be applied to the growth of all kinds of stationary inert gas bubbles trapped within a crystalline matrix. (authors)

  2. The dissolution or growth of a gas bubble inside a drop in zero gravity

    NASA Technical Reports Server (NTRS)

    Kondos, Pericles A.; Subramanian, R. Shankar; Weinberg, Michael C.

    1987-01-01

    The radius-time history of a gas bubble located concentrically within a spherical liquid drop in a space laboratory is analyzed within the framework of the quasi-stationary approximation. Illustrative results are calculated from the theory which demonstrate interesting qualitative features. For instance, when a pure gas bubble dissolves within a liquid drop in an environment containing the same gas and some inert species, the dissolution can be more or less rapid than that in an unbounded liquid depending on the initial relative size of the drop. Further, given a similar growth situation, indefinite growth is not possible, and the bubble will initially grow, but always dissolve in the end.

  3. Phase-field simulation of gas bubble growth and flow in a Hele-Shaw cell

    NASA Astrophysics Data System (ADS)

    Sun, Ying

    2005-11-01

    A diffuse interface model has been developed for gas bubble growth and dynamics in a supersaturated liquid. The liquid becomes supersaturated in the gas species because of a drop in the pressure or temperature. The bubbles grow by gas diffusion in the liquid towards the bubble interfaces. During bubble growth, flows are induced by the large density contrast between the phases. The bubbles coarsen due to surface tension effects. The process widely exists in biological systems, materials processing, oil recovery, and other applications. The flows in the gas and liquid phases are solved using a diffuse interface model for two-phase flows with surface tension, phase change, and density and viscosity differences between the phases. This diffuse-interface model for flow is coupled with a phase-field equation for calculating the interface motion, and a species conservation equation for the gas transport. The model is validated for a single bubble growing inside a semi-infinite liquid, and convergence of the results with respect to the interface width is demonstrated. Large-scale numerical simulations for multiple bubbles inside a Hele-Shaw cell reveal the presence of complex interface dynamics and flows. The bubble dynamics, including coarsening and coalescence, are investigated as a function of the initial gas concentration, surface tension, and the density and viscosity contrasts between the phases.

  4. Taxing the rich: recombinations and bubble growth during reionization

    NASA Astrophysics Data System (ADS)

    Furlanetto, Steven R.; Oh, S. Peng

    2005-11-01

    Reionization is inhomogeneous for two reasons: the clumpiness of the intergalactic medium (IGM), and clustering of the discrete ionizing sources. While numerical simulations can in principle take both into account, they are at present limited by small box sizes. On the other hand, analytic models have only examined the limiting cases of a clumpy IGM (with uniform ionizing emissivity) and clustered sources (embedded in a uniform IGM). Here, we present the first analytic model that includes both factors. At first, recombinations can be ignored and ionized bubbles grow primarily through major mergers, because at any given moment the bubbles have a well-defined characteristic size. As a result, reionization resembles `punctuated equilibrium,' with a series of well-separated sharp jumps in the ionizing background. These features are local effects and do not reflect similar jumps in the global ionized fraction. We then combine our bubble model with a simple description of recombinations in the IGM. We show that the bubbles grow until recombinations balance ionizations, when their expansion abruptly halts. If the IGM density structure is similar to that at moderate redshifts, this limits the bubble radii to ~20 comoving Mpc; however, if the IGM is significantly clumpier at higher redshifts (because of minihalo formation, for example), the limit could be much smaller. Once a bubble reaches saturation, that region of the Universe has for all intents and purposes entered the `post-overlap' stage. Because different HII regions saturate over a finite time interval, the overlap epoch actually has a finite width. Our model also predicts a mean recombination rate several times larger than expected for a uniformly illuminated IGM. This picture naturally explains the substantial large-scale variation in Lyman-series opacity along the lines of sight to the known z > 6 quasars. More quasar spectra will shed light on the transition between the `bubble-dominated' topology

  5. Effect of surfactants on the rate of growth of an air bubble by rectified diffusion.

    PubMed

    Lee, Judy; Kentish, Sandra; Ashokkumar, Muthupandian

    2005-08-01

    The rectified diffusion growth of a single air bubble levitated in an acoustic field (frequency = 22.35 kHz) in water and in aqueous solutions containing surfactants (sodium dodecyl sulfate and sodium dodecylbenzene sulfonate) was investigated. As reported by Crum (J. Acoust. Soc. Am. 1980, 68, 203), the presence of surfactants at the bubble/liquid interface enhanced the growth rate of the bubble by rectified diffusion. It is suggested in this paper that in addition to the effect of surfactants on the surface tension and interfacial resistance to mass transfer, the effect of surface rheological properties may also contribute to the cause of the enhancement observed in the bubble growth rate. PMID:16852840

  6. The size of active bubbles for the production of hydrogen in sonochemical reaction field.

    PubMed

    Merouani, Slimane; Hamdaoui, Oualid

    2016-09-01

    The sonication of aqueous solution generates microscopic cavitation bubbles that may growth and violently collapse to produce highly reactive species (i.e. OH, HO2 and H2O2), hydrogen and emit light, sonoluminescence. The bubble size is a key parameter that influences the chemical activity of the system. This wok aims to study theoretically the size of active bubbles for the production of hydrogen in ultrasonic cavitation field in water using a single bubble sonochemistry model. The effect of several parameters such as frequency of ultrasound, acoustic intensity and liquid temperature on the range of sonochemically active bubbles for the production of hydrogen was clarified. The numerical simulation results showed that the size of active bubbles is an interval which includes an optimum value at which the production rate of H2 is maximal. It was shown that the range of ambient radius for an active bubble as well as the optimum bubble radius for the production of hydrogen increased with increasing acoustic intensity and decreased with increasing ultrasound frequency and bulk liquid temperature. It was found that the range of ambient bubble radius dependence of the operational conditions followed the same trend as those reported experimentally for sonoluminescing bubbles. Comparison with literature data showed a good agreement between the theoretical determined optimum bubble sizes for the production of hydrogen and the experimental reported sizes for sonoluminescing bubbles. PMID:27150777

  7. Formation and Growth of Micro and Macro Bubbles on Copper-Graphite Composite Surfaces

    NASA Technical Reports Server (NTRS)

    Chao, David F.; Sankovic, John M.; Motil, Brian J.; Zhang, Nengli

    2007-01-01

    Micro scale boiling behavior in the vicinity of graphite micro-fiber tips on the coppergraphite composite boiling surfaces is investigated. It is discovered that a large number of micro bubbles are formed first at the micro scratches and cavities on the copper matrix in pool boiling. In virtue of the non-wetting property of graphite, once the growing micro bubbles touch the graphite tips, the micro bubbles are sucked by the tips and merged into larger micro bubbles sitting on the tips. The micro bubbles grow rapidly and coalesce to form macro bubbles, each of which sitting on several tips. The growth processes of the micro and macro bubbles are analyzed and formulated followed by an analysis of bubble departure on the composite surfaces. Based on these analyses, the enhancement mechanism of the pool boiling heat transfer on the composite surfaces is clearly revealed. Experimental results of pool boiling heat transfer both for water and Freon-113 on the composite surfaces convincingly demonstrate the enhancement effects of the unique structure of Cu-Gr composite surfaces on boiling heat transfer.

  8. Molecular dynamics simulations of growth and coalescence of helium nano-bubbles in tungsten

    NASA Astrophysics Data System (ADS)

    Smirnov, Roman; Krasheninnikov, Sergei; Guterl, Jerome

    2014-10-01

    It was experimentally observed that filamentary nano-structures, called fuzz, can grow on tungsten surfaces irradiated with plasma containing helium. Although the mechanism of the fuzz growth is not clearly understood, experiments show that formation of helium nano-bubbles in tungsten always precedes fuzz creation. In this work we investigate mechanisms of growth and coalescence of helium bubbles using molecular dynamics code LAMMPS. We demonstrate that the growth process is governed by crystal symmetries and properties of generated dislocations forming helium nano-bubbles of non-spherical geometry. This produces complex stress field in the tungsten lattice around the bubble with distinct compression and tension regions. We show that helium transport in the stressed lattice in bubble vicinity can be dominated by drift from the compression to tension regions. Helium transport coefficients in tungsten are also obtained. Modeling of two closely positioned helium nano-bubbles demonstrates that their coalescence proceeds preferentially by lateral growth. The implications of the obtained results on fuzz formation mechanism are discussed.

  9. Experimental Study of Bubble Growth in Stromboli Basalt Melts at 370 MPa and 1 Atmosphere

    NASA Astrophysics Data System (ADS)

    Bai, L.; Baker, D. R.; Rivers, M.

    2006-05-01

    Volcanic degassing involves gas bubble formation and growth due to the exsolution of the volatiles dissolved in the melts. Although we know that bubble size distributions in natural rocks are controlled by bubble nucleation and growth processes, we are far from a quantitative understanding of their growth. In order to investigate bubble formation and growth under different pressures, degassing experiments using a Stromboli basalt with dissolved H2O, or H2O+CO2, were conducted in a piston-cylinder at 370 MPa and on the GSECARS (Advanced Photon Source) Synchrotron beamline in a custom furnace at one atmosphere. In the high pressure degassing experiments the melts were synthesized at 1250 ° C and 1000 MPa with either about 3.0, 5.0, or 8.0 % H2O or with mixtures of H2O+CO2: approximately 3.0 % H2O and 440 ppm CO2, 5.0 % H2O and 880 ppm CO2, or 8.0 % H2O and 1480 ppm CO2. After homogenization of the dissolved volatiles in the melt, the samples were isothermally decompressed to a final pressure of 370 MPa. The decompressed samples were held at 370 MPa for 0 to 3600 seconds before quenching. In the one atmosphere experiments, the hydrated, volatile-undersaturated melts of the same compositions as the high pressure experiments were synthesized at 1250 ° C and 1000 MPa and quenched to bubble-free glasses. These glasses were heated in-situ on the Synchrotron X-ray beamline at one atmosphere, and then were quenched from different temperatures. The 3D bubble size distributions in the quenched samples were then studied with synchrotron X-ray microtomography. Bubbles nucleated and grew in all samples, producing bubbles with volumes varying between 10-5 and 10-7 mm3 in the high pressure experiments and between 10-1 and 10-7 mm3 in the one atmosphere experiments. The vesicularities of samples from high pressure degassing experiments vary between 0.1 and 6.6 percent. In the one atmosphere degassing experiments the bubbles grew and coalesced, and occasionally popped when the

  10. Bubble Growth and Dynamics in a Strongly Superheated Electrolyte within a Solid-State Nanopore

    NASA Astrophysics Data System (ADS)

    Levine, Edlyn; Nagashima, Gaku; Burns, Michael; Golovchenko, Jene

    2015-03-01

    Extreme localized superheating and homogeneous vapor bubble nucleation have recently been demonstrated in a single nanopore in thin, solid state membranes. Aqueous electrolytic solution within the pore is superheated to well above its boiling point by Joule heating from ionic current driven through the pore. Continued heating of the metastable liquid leads to nucleation of a vapor bubble in the pore followed by explosive growth. Here we report on the growth dynamics of the vapor bubble after nucleation in the strongly superheated liquid. The process is modeled by numerically solving the Rayleigh-Plesset equation coupled with energy conservation and a Stefan boundary condition. The initial temperature distribution, peaked at the pore center, is taken to be radially symmetric. Energy conservation includes a Joule heating source term dependent on the bubble radius, which grows to constrict ionic current through the nanopore. Temperature-dependent properties of the electrolyte and the vapor are incorporated in the calculation. Comparison of the model to experimental results shows an initial bubble growth velocity of 50m/s and total bubble lifetime of 16ns. This work was supported by NIH Grant #5R01HG003703 to J.A. Golovchenko.

  11. Evolution of disturbances of the sphericity of a bubble under strong compression

    NASA Astrophysics Data System (ADS)

    Nigmatulin, R. I.; Aganin, A. A.; Toporkov, D. Yu.; Ilgamov, M. A.

    2016-03-01

    The growth in the amplitude of the small nonsphericity of cavitation bubbles in acetone and water under strong compression is considered. A hydrodynamic model is used in which the compressibility of the liquid, the nonstationary thermal conduction of the vapor and the liquid, and nonequilibrium evaporation-condensation processes, as well as imperfection of the vapor, are considered. It has been shown that the increase in the amplitude of the small nonsphericity of cavitation bubbles in the form of separate spherical harmonics during compression in water is substantially (more than 10 times) higher than during compression in acetone. This indicates that acetone is much more advantageous over water to implement a process of the nearer-to-spherical extreme compression of the medium in the cavitation bubbles.

  12. Modeling methane bubble growth in fine-grained muddy aquatic sediments: correlation with sediment properties

    NASA Astrophysics Data System (ADS)

    Katsman, Regina

    2015-04-01

    Gassy sediments contribute to destabilization of aquatic infrastructure, air pollution, and global warming. In the current study a precise shape and size of the buoyant mature methane bubble in fine-grained muddy aquatic sediment is defined by numerical and analytical modeling, their results are in a good agreement. A closed-form analytical solution defining the bubble parameters is developed. It is found that the buoyant mature bubble is elliptical in its front view and resembles an inverted tear drop in its cross-section. The size and shape of the mature bubble strongly correlate with sediment fracture toughness. Bubbles formed in the weaker sediments are smaller and characterized by a larger surface-to volume ratio that induces their faster growth and may lead to their faster dissolution below the sediment-water interface. This may prevent their release to the water column and to the atmosphere. Shapes of the bubbles in the weaker sediments deviate further from the spherical configuration, than those in the stronger sediments. Modeled bubble characteristics, important for the acoustic applications, are in a good agreement with field observations and lab experiments.

  13. Nucleation and Growth of Bubbles in He Ion Implanted V/Ag Multilayers

    SciTech Connect

    Wei, Q. M.; Wang, Y. Q.; Nastasi, Michael; Misra, A.

    2011-11-18

    Microstructures of He ion-implanted pure Ag, pure V and polycrystalline V/Ag multilayers with individual layer thickness ranging from 1 nm to 50 nm were investigated by transmission electron microscopy (TEM). The bubbles in the Ag layer were faceted and larger than the non-faceted bubbles in the V layer under the same implantation conditions for both pure metals and multilayers. The substantially higher single defects surviving the spike phase and lower mobility of trapped He in bcc than those in fcc could account for this difference. For multilayers, the bubbles nucleate at interfaces but grow preferentially in Ag layers due to high mobility of trapped He in fcc Ag. In addition, the He concentration above which bubbles can be detected in defocused TEM images increases with decreasing layer thickness, from 0 for pure Ag to 4–5 at. % for 1 nm V/1 nm Ag multilayers. In contrast, the bubble size decreases with decreasing layer thickness, from approximately 4 nm in diameter in pure Ag to 1 nm in the 1 nm V/1 nm Ag multilayers. Elongated bubbles confined in the Ag layer by the V–Ag interfaces were observed in 1 nm multilayers. These observations show that bubble nucleation and growth can be suppressed to high He concentrations in nanoscale composites with interfaces that have high He solubility.

  14. Bubble Combustion

    NASA Technical Reports Server (NTRS)

    Corrigan, Jackie

    2004-01-01

    A method of energy production that is capable of low pollutant emissions is fundamental to one of the four pillars of NASA s Aeronautics Blueprint: Revolutionary Vehicles. Bubble combustion, a new engine technology currently being developed at Glenn Research Center promises to provide low emissions combustion in support of NASA s vision under the Emissions Element because it generates power, while minimizing the production of carbon dioxide (CO2) and nitrous oxides (NOx), both known to be Greenhouse gases. and allows the use of alternative fuels such as corn oil, low-grade fuels, and even used motor oil. Bubble combustion is analogous to the inverse of spray combustion: the difference between bubble and spray combustion is that spray combustion is spraying a liquid in to a gas to form droplets, whereas bubble combustion involves injecting a gas into a liquid to form gaseous bubbles. In bubble combustion, the process for the ignition of the bubbles takes place on a time scale of less than a nanosecond and begins with acoustic waves perturbing each bubble. This perturbation causes the local pressure to drop below the vapor pressure of the liquid thus producing cavitation in which the bubble diameter grows, and upon reversal of the oscillating pressure field, the bubble then collapses rapidly with the aid of the high surface tension forces acting on the wall of the bubble. The rapid and violent collapse causes the temperatures inside the bubbles to soar as a result of adiabatic heating. As the temperatures rise, the gaseous contents of the bubble ignite with the bubble itself serving as its own combustion chamber. After ignition, this is the time in the bubble s life cycle where power is generated, and CO2, and NOx among other species, are produced. However, the pollutants CO2 and NOx are absorbed into the surrounding liquid. The importance of bubble combustion is that it generates power using a simple and compact device. We conducted a parametric study using CAVCHEM

  15. The origin of the dynamic growth of vapor bubbles associated with vapor explosions

    SciTech Connect

    Lee, H.S.; Merte, H. Jr.

    1996-12-31

    An explosive type of vapor bubble growth was observed during pool boiling experiments in microgravity using R-113, where heater surface superheats as high as 70 C were attained at nucleation. This corresponds to approximately 65% of the computed superheat limit of the fluid, compared to the approximate 30% observed at earth gravity for the same system. Photographs and measurements of the vapor bubble growth provide evidence for rates of growth not accountable by conventional models. The photographs reveal that the liquid-vapor interface of the explosive bubbles become wrinkled and corrugated, leading to the conclusion that some type of instability mechanism is acting. The classical hydrodynamic instability theories of Landau and Rayleigh-Taylor, used in conjunction with a model of the early growth of spherical vapor bubbles developed by the authors, predict that the early growth should be stable. These theories do not consider the effects of heat transfer at the interface, which is believed responsible for the observed instability of the evaporating surface. This was confirmed by the mechanisms proposed by Prosperetti and Plesset which, although including the effects of heat transfer, required that the unperturbed liquid temperature distribution be known at the moment of onset of the instability. This is generally unknown, so that no comparisons with experiments were possible up to this point. The present pool boiling experiments conducted in microgravity, some of which result in the explosive vapor bubble growth referred to, permit the precise determination of the unperturbed liquid temperature distribution using a model of the early vapor bubble growth along with the measurement of heater surface temperature at nucleation. The limited results to date provide good agreement with the mechanisms proposed by Prosperetti and Plesset.

  16. Helium bubble nucleation and growth in α-Fe: insights from first-principles simulations.

    PubMed

    Xiao, W; Zhang, X; Geng, W T; Lu, G

    2014-06-25

    We have carried out a first-principles study on the nucleation and early-stage growth of He bubbles in Fe. The energetics, atomic and electronic structure of He-vacancy complexes, involving both a monovacancy and a nine-vacancy cluster, are examined. Based on the energetics, we then perform thermodynamics analysis to gain deeper insights into He bubble nucleation and growth. We have determined the energy cost for the nucleation of He bubbles and found that up to eight He atoms can be trapped at a single vacancy. In order to capture more He atoms, the vacancy has to emit Frenkel pairs to release the substantial stress building on the surrounding Fe lattice. Compared to the monovacancy, the nine-vacancy cluster has a lower energy cost for He bubble nucleation and growth. He atoms at the vacancy repel the surrounding electronic charge and redistribute it on the neighboring Fe atoms. The thermodynamic analysis reveals that He chemical potential provides a driving force for He bubble nucleation and growth. There are two critical He chemical potentials that are of particular importance: one of them marks the transition from single He occupation to multiple He occupation at a monovacancy while the other sets off He-induced superabundant vacancy formation. PMID:24871542

  17. Improving microalgal growth with small bubbles in a raceway pond with swing gas aerators.

    PubMed

    Yang, Zongbo; Cheng, Jun; Liu, Jianzhong; Zhou, Junhu; Cen, Kefa

    2016-09-01

    A novel swing gas aerator was developed to generate small bubbles for improving the mass transfer coefficient and microalgal growth rate in a raceway pond. A high-speed photography system (HSP) was used to measure the bubble diameter and generation time, and online precise dissolved oxygen probes and pH probes were used to measure the mass transfer coefficient and mixing time. Bubble generation time and diameter decreased by 21% and 9%, respectively, when rubber gas aerators were swung in the microalgae solution. When water pump power and gas aeration rate increased in a raceway pond with swing gas aerators and oscillating baffles (SGAOB), bubble generation time and diameter decreased but solution velocity and mass transfer coefficient increased. The mass transfer coefficient increased by 25% and the solution velocity increased by 11% when SGAOB was used, and the microalgal biomass yield increased by 18%. PMID:27243604

  18. Fighting fish (Betta splendens) bubble nests do not inhibit microbial growth.

    PubMed

    Brown, Alexandria C; Clotfelter, Ethan D

    2012-12-01

    Some organisms produce antimicrobial substances in nesting foam to favorably manipulate the environment to which their developing offspring are exposed. We tested if fighting fish Betta splendens foamy nest material, which is comprised of bubbles produced in the oral cavity of nesting males, has antimicrobial properties against a pathogenic bacteria (Edwardsiella tarda), a nonpathogenic bacteria (Escherichia coli), or a pathogenic oomycete (Saprolegnia parasitica). We also tested if exposure to nest material increases larval survival by performing in vitro fertilizations and individually incubating eggs in bubble nest extract or tank water (control). Our results show no evidence of antimicrobial properties of bubble nests. On the contrary, bubble nests provided favorable microenvironments for the growth of Saprolegnia parasitica. Our results confirm earlier work citing the importance of male nest attendance, and suggest that the mechanism responsible for decreased survival in the absence of attending males is pathogenic microbes. PMID:22753365

  19. Growth and shape of bubbles in viscous liquids and confined geometries

    NASA Astrophysics Data System (ADS)

    Ortiz, Arnulfo; Lopez, Abel; Higuera, Francisco; Medina, Abraham

    2008-11-01

    In this work we have considered the problem of the growth and detachment of bubbles in a viscous liquid in finite reservoirs where axisymmetrical walls were located near the gas injection orifice. We studied numerically and experimentally how the coaxial pipe and inverted-cone walls affect the shape, final volume and coalescence of bubbles under conditions of constant gas flow rate, Q. The numerical solution of the Stokes equations and the free surface were determined as a function of a capillary number and Bond number in the absence of inertial effects. Detailed experimental visualizations are presented that display the sequences of growth and detachment computed numerically.

  20. The microjetting behavior from single laser-induced bubbles generated above a solid boundary with a through hole

    NASA Astrophysics Data System (ADS)

    Abboud, Jack E.; Oweis, Ghanem F.

    2013-01-01

    An inertial bubble collapsing near a solid boundary generates a fast impulsive microjet directed toward the boundary. The jet impacts the solid boundary at a high velocity, and this effect has been taken advantage of in industrial cleaning such as when tiny bubbles are driven ultrasonically to cavitate around machined parts to produce jets that are believed to induce the cleaning effect. In this experimental investigation, we are interested in the jetting from single cavities near a boundary. By introducing a through hole in the boundary beneath a laser-induced bubble, it is hypothesized that the forming jet, upon bubble implosion, will proceed to penetrate through the hole to the other side and that it may be utilized in useful applications such as precise surgeries. It was found that the growth of the bubble induced a fast flow through the hole and lead to the formation of secondary hydrodynamic cavitation. The experiments also showed the formation of a counter jet directed away from the hole and into the bubble. During the growth phase of the bubble, and near the point of maximum expansion, the bubble wall bulged out toward the hole in a `bulb' like formation, which sometimes resulted in the pinching-off of a secondary small bubble. This was ensued by the inward recoiling of the primary bubble wall near the pinch-off spot, which developed into a counter jet seen to move away from the hole and inward into the bubble.

  1. The microjetting behavior from single laser-induced bubbles generated above a solid boundary with a through hole

    NASA Astrophysics Data System (ADS)

    Abboud, Jack E.; Oweis, Ghanem F.

    2012-12-01

    An inertial bubble collapsing near a solid boundary generates a fast impulsive microjet directed toward the boundary. The jet impacts the solid boundary at a high velocity, and this effect has been taken advantage of in industrial cleaning such as when tiny bubbles are driven ultrasonically to cavitate around machined parts to produce jets that are believed to induce the cleaning effect. In this experimental investigation, we are interested in the jetting from single cavities near a boundary. By introducing a through hole in the boundary beneath a laser-induced bubble, it is hypothesized that the forming jet, upon bubble implosion, will proceed to penetrate through the hole to the other side and that it may be utilized in useful applications such as precise surgeries. It was found that the growth of the bubble induced a fast flow through the hole and lead to the formation of secondary hydrodynamic cavitation. The experiments also showed the formation of a counter jet directed away from the hole and into the bubble. During the growth phase of the bubble, and near the point of maximum expansion, the bubble wall bulged out toward the hole in a `bulb' like formation, which sometimes resulted in the pinching-off of a secondary small bubble. This was ensued by the inward recoiling of the primary bubble wall near the pinch-off spot, which developed into a counter jet seen to move away from the hole and inward into the bubble.

  2. Growth of oxygen bubbles during recharge process in zinc-air battery

    NASA Astrophysics Data System (ADS)

    Wang, Keliang; Pei, Pucheng; Ma, Ze; Chen, Huicui; Xu, Huachi; Chen, Dongfang; Xing, Haoqiang

    2015-11-01

    Rechargeable zinc-air battery used for energy storage has a serious problem of charging capacity limited by oxygen bubble coalescence. Fast removal of oxygen bubbles adhered to the charging electrode surface is of great importance for improving the charging performance of the battery. Here we show that the law of oxygen bubble growth can be achieved by means of phase-field simulation, revealing two phenomena of bubble detachment and bubble coalescence located in the charging electrode on both sides. Hydrodynamic electrolyte and partial insulation structure of the charging electrode are investigated to solve the problem of oxygen bubble coalescence during charging. Two types of rechargeable zinc-air battery are developed on the basis of different tri-electrode configurations, demonstrating that the charging performance of the battery with electrolyte flow (Ⅰ) is better than that of the battery with the partially insulated electrode (Ⅱ), while the battery Ⅱ is superior to the battery Ⅰ in the discharging performance, cost and portability. The proposed solutions and results would be available for promoting commercial application of rechargeable zinc-air batteries or other metal-air batteries.

  3. Growth and structural determination of He bubbles in iron/chromium alloys using molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Abhishek, A.; Warrier, M.; Ganesh, R.; Caro, A.

    2016-04-01

    Helium(He) produced by transmutation process inside structural material due to neutron irradiation plays a vital role in the degradation of material properties. We have carried out Molecular dynamics(MD) simulations to study the growth of He bubble in Iron-Chromium alloy. Simulations are carried out at two different temperatures, viz. 0.1 K and 800 K, upto He bubble radius of 2.5 nm. An equation for variation of volume of He bubbles with the number of He atoms is obtained at both the temperatures. Bubble pressure and potential energy variation is obtained with increasing bubble radius. Dislocations are also found to be emitted after the bubble reaches a critical radius of 0.39 nm at 800 K. Separate MD simulations of He with pre-created voids are also carried out to study the binding energies of He and Vacancy (V) to Hem-Vn cluster. Binding energies are found to be in the range of 1-5.5 eV.

  4. Formation of methane nano-bubbles during hydrate decomposition and their effect on hydrate growth.

    PubMed

    Bagherzadeh, S Alireza; Alavi, Saman; Ripmeester, John; Englezos, Peter

    2015-06-01

    Molecular dynamic simulations are performed to study the conditions for methane nano-bubble formation during methane hydrate dissociation in the presence of water and a methane gas reservoir. Hydrate dissociation leads to the quick release of methane into the liquid phase which can cause methane supersaturation. If the diffusion of methane molecules out of the liquid phase is not fast enough, the methane molecules agglomerate and form bubbles. Under the conditions of our simulations, the methane-rich quasi-spherical bubbles grow to become cylindrical with a radius of ∼11 Å. The nano-bubbles remain stable for about 35 ns until they are gradually and homogeneously dispersed in the liquid phase and finally enter the gas phase reservoirs initially set up in the simulation box. We determined that the minimum mole fraction for the dissolved methane in water to form nano-bubbles is 0.044, corresponding to about 30% of hydrate phase composition (0.148). The importance of nano-bubble formation to the mechanism of methane hydrate formation, growth, and dissociation is discussed. PMID:26049510

  5. Formation of methane nano-bubbles during hydrate decomposition and their effect on hydrate growth

    NASA Astrophysics Data System (ADS)

    Bagherzadeh, S. Alireza; Alavi, Saman; Ripmeester, John; Englezos, Peter

    2015-06-01

    Molecular dynamic simulations are performed to study the conditions for methane nano-bubble formation during methane hydrate dissociation in the presence of water and a methane gas reservoir. Hydrate dissociation leads to the quick release of methane into the liquid phase which can cause methane supersaturation. If the diffusion of methane molecules out of the liquid phase is not fast enough, the methane molecules agglomerate and form bubbles. Under the conditions of our simulations, the methane-rich quasi-spherical bubbles grow to become cylindrical with a radius of ˜11 Å. The nano-bubbles remain stable for about 35 ns until they are gradually and homogeneously dispersed in the liquid phase and finally enter the gas phase reservoirs initially set up in the simulation box. We determined that the minimum mole fraction for the dissolved methane in water to form nano-bubbles is 0.044, corresponding to about 30% of hydrate phase composition (0.148). The importance of nano-bubble formation to the mechanism of methane hydrate formation, growth, and dissociation is discussed.

  6. Growth of multifractal tungsten nanostructure by He bubble induced directional swelling

    NASA Astrophysics Data System (ADS)

    Kajita, Shin; Yoshida, Naoaki; Ohno, Noriyasu; Tsuji, Yoshiyuki

    2015-04-01

    Helium (He) plasma irradiation to tungsten (W) leads to morphology changes in nanometer scale by the formation and growth of He bubbles. Initially pinholes and protrusions are formed on the surface followed by the formation of nanostructures. In this study, based on experimental observation, the growth process of the fiberform nanostructures are revisited and the swelling process of the structure is discussed. The novel nanostructures are analyzed from the viewpoint of fractality. It is found that the number of the initially formed pinholes and its sizes have a fractal relation, indicating that the size and number of bubbles formed near the surface have fractality. The fractal dimension is estimated from the brightness variation of a transmission electron microscope (TEM) micrograph and gas adsorption property. Moreover, it is revealed from TEM image analysis that the nanostructure has multifractal feature, probably because of the fractality identified between the number and the size of bubbles near the surface.

  7. CAVITATION DAMAGE STUDY VIA A NOVEL REPETITIVE PRESSURE PULSE APPROACH

    SciTech Connect

    Wang, Jy-An John; Ren, Fei; Wang, Hong

    2010-01-01

    Cavitation damage can significantly affect system performance. Thus, there is great interest in characterizing cavitation damage and improving materials resistance to cavitation damage. In this paper, we present a novel methodology to simulate cavitation environment. A pulsed laser is utilized to induce optical breakdown in the cavitation media, with the emission of shock wave and the generation of bubbles. The pressure waves induced by the optical breakdown fluctuate/propagate within the media, which enables the cavitation to occur and to further develop cavitation damage at the solid boundary. Using the repetitive pulsed-pressure apparatus developed in the current study, cavitation damage in water media was verified on stainless steel and aluminum samples. Characteristic cavitation damages such as pitting and indentation are observed on sample surfaces using scanning electron microscopy.

  8. Studies on pressure response of gas bubbles contributions of condensed droplets in bubbles generated by a uniform nucleation

    NASA Technical Reports Server (NTRS)

    Matsumoto, Y.

    1988-01-01

    The response of a tiny gas bubble under reduced pressure is investigated in its relation to cavitation. Equations of motion are formulated for gas mixtures inside the bubble and numerical calculations performed for several examples. The conclusions are as follows: (1) at the onset of bubble growth, the gas mixture inside it adiabatically expands and the temperature decreases. Condensed droplets appear inside the gas mixture due to a uniform nucleation and the temperature recovers, thus the motion of the bubble is apparently isothermal; (2) the evaporation and condensation coefficient largely affects bubble motions (maximum radius, period and rate of attenuation of the bubble oscillation) including the uniform contraction; (3) the oscillation period of the bubble is longer as the equilibrium bubble radius is larger when the surrounding pressure decreases stepwise. In this circumstance the temperature inside the bubble is kept constant due to condensation evaporation phenomena and is nearly isothermal; and (4) when the surrounding pressure decreases in a stepwise fashion, the critical pressure bubble radius relation becomes closer to that for the isothermal process if the bubble radius is larger than 8 microns.

  9. Scaling of bubble growth in a porous medium

    SciTech Connect

    Satik, C.; Li, X.; Yortsos, Y.C.

    1994-09-01

    Processes involving liquid-to-gas phase change in porous media are routinely encountered. Growth of a gas phase by solute diffusion in the liquid is typical of the `solution gas-drive` process for the recovery of oil. The growth of a single gas cluster in a porous medium driven by a constant supersaturation is examined. Patterns and rates of growth are derived. It is shown that the growth pattern is not compact and changes from pure percolation to pure Diffusion-Limited-Aggregation (DLA) as the size of the cluster increases. The scaling of the cluster sizes that delineate these patterns, with supersaturation and diffusivity is presented for the case of quasi-static diffusion. In 3-D, the diffusive growth law is found to be R{sub g} {approximately} t{sup 2/3}, which is different than the classical R{sub g} {approximately} t{sup 1/2}.

  10. Using a dynamic point-source percolation model to simulate bubble growth.

    SciTech Connect

    Zimmerman, Jonathan A.; Zeigler, David A.; Cowgill, Donald F.

    2004-05-01

    Accurate modeling of nucleation, growth and clustering of helium bubbles within metal tritide alloys is of high scientific and technological importance. Of interest is the ability to predict both the distribution of these bubbles and the manner in which these bubbles interact at a critical concentration of helium-to-metal atoms to produce an accelerated release of helium gas. One technique that has been used in the past to model these materials, and again revisited in this research, is percolation theory. Previous efforts have used classical percolation theory to qualitatively and quantitatively model the behavior of interstitial helium atoms in a metal tritide lattice; however, higher fidelity models are needed to predict the distribution of helium bubbles and include features that capture the underlying physical mechanisms present in these materials. In this work, we enhance classical percolation theory by developing the dynamic point-source percolation model. This model alters the traditionally binary character of site occupation probabilities by enabling them to vary depending on proximity to existing occupied sites, i.e. nucleated bubbles. This revised model produces characteristics for one and two dimensional systems that are extremely comparable with measurements from three dimensional physical samples. Future directions for continued development of the dynamic model are also outlined.

  11. Enhanced Generic Phase-field Model of Irradiation Materials: Fission Gas Bubble Growth Kinetics in Polycrystalline UO2

    SciTech Connect

    Li, Yulan; Hu, Shenyang Y.; Montgomery, Robert O.; Gao, Fei; Sun, Xin

    2012-05-30

    Experiments show that inter-granular and intra-granular gas bubbles have different growth kinetics which results in heterogeneous gas bubble microstructures in irradiated nuclear fuels. A science-based model predicting the heterogeneous microstructure evolution kinetics is desired, which enables one to study the effect of thermodynamic and kinetic properties of the system on gas bubble microstructure evolution kinetics and morphology, improve the understanding of the formation mechanisms of heterogeneous gas bubble microstructure, and provide the microstructure to macroscale approaches to study their impact on thermo-mechanical properties such as thermo-conductivity, gas release, volume swelling, and cracking. In our previous report 'Mesoscale Benchmark Demonstration, Problem 1: Mesoscale Simulations of Intra-granular Fission Gas Bubbles in UO2 under Post-irradiation Thermal Annealing', we developed a phase-field model to simulate the intra-granular gas bubble evolution in a single crystal during post-irradiation thermal annealing. In this work, we enhanced the model by incorporating thermodynamic and kinetic properties at grain boundaries, which can be obtained from atomistic simulations, to simulate fission gas bubble growth kinetics in polycrystalline UO2 fuels. The model takes into account of gas atom and vacancy diffusion, vacancy trapping and emission at defects, gas atom absorption and resolution at gas bubbles, internal pressure in gas bubbles, elastic interaction between defects and gas bubbles, and the difference of thermodynamic and kinetic properties in matrix and grain boundaries. We applied the model to simulate gas atom segregation at grain boundaries and the effect of interfacial energy and gas mobility on gas bubble morphology and growth kinetics in a bi-crystal UO2 during post-irradiation thermal annealing. The preliminary results demonstrate that the model can produce the equilibrium thermodynamic properties and the morphology of gas bubbles at

  12. Dissolved water distribution in vesicular magmatic glass records both decompressive bubble growth and quench resorption

    NASA Astrophysics Data System (ADS)

    McIntosh, I. M.; Llewellin, E.; Humphreys, M.; Nichols, A. R.; Burgisser, A.; Schipper, C.

    2013-12-01

    Water distribution in magma varies over the lifetime of an eruption due to a variety of processes, including decompressive degassing of the melt, cooling during the quench from melt to glass, and post-emplacement hydration under ambient conditions. Correct interpretation of water distributions in erupted pyroclasts can therefore offer crucial insights into the dynamics of eruption mechanisms and emplacement histories. Volcanic eruptions are driven by the nucleation and growth of bubbles in magma. Bubbles grow as volatile species in the melt, of which water is volumetrically the most important, diffuse down a concentration gradient towards and across the bubble wall. On cooling, the melt quenches to glass, preserving the spatial distribution of water concentration around the bubbles (now vesicles). We use Backscatter Scanning Electron Microscopy (BSEM), Secondary Ion Mass Spectrometry (SIMS) and Fourier Transform Infra-Red spectroscopy (FTIR) to measure the spatial distribution of water around vesicles in experimentally-vesiculated samples. We find that, contrary to expectation, the total water concentration increases (by up to 2 wt.%) in the ~30 microns closest to the vesicle wall. Our samples record significant resorption of water back into the melt around bubbles during the quench process, a process which represents ';regassing' of the magma. We propose that the observed total water resorption profiles result from the increase in the equilibrium solubility of water as temperature decreases during the quench to glass, and that this resorption locally overprints the pre-existing concentration total water profile resulting from bubble growth during decompression. This resorption occurs over the very short timescales of rapid experimental quench (3-10 seconds) resulting in strongly disequilibrium water speciation. Water re-enters the melt as molecular water leading to enrichment in molecular water around vesicles, while the distribution of hydroxyl groups remains

  13. Numerical simulation of high-speed cavitating flows in submerged water jet

    NASA Astrophysics Data System (ADS)

    Peng, G.; Shimizu, S.

    2013-12-01

    Properties of existing cavitation models are discussed and a compressible mixture flow method based a simplified estimation of bubble cavitation is then presented for numerical simulation of high-speed water jets accompanied by intensive cavitation. Two-phase fluid media of cavitating flow are treated as a mixture of liquid and bubbles, and the mean flow is computed by solving RANS equations for compressible fluids considering the effect of bubble expansion a/o contraction. The intensity of cavitation is evaluated by the gas volume fraction, which is governed by the compressibility of bubble-liquid mixture corresponding to the status of mean flow field. Numerical results of cavitating water jet issuing from a submerged nozzle are presented and its applicability to intensively cavitating jets is demonstrated.

  14. A numerical model for the evolution of internal structure of cavitation cloud

    NASA Astrophysics Data System (ADS)

    Du, Tezhuan; Wang, Yiwei; Liao, Lijuan; Huang, Chenguang

    2016-07-01

    Bubble size distributions in cloud cavitation are important in cavitating flows. In this study, a numerical model was developed to study the evolution of the internal structure of cloud cavitation. The model includes (1) an evolution equation of bubble number density, which considers the bubble breakup effect and (2) the multiphase Reynolds-averaged Navier-Stokes equations with a modified cavitation model for background cavitating flows. The proposed model was validated with a flow over a projectile. Results show that the numerical model can predict the evolution of the internal structure of cloud cavitation. Comparisons of the proposed model and Singhal model were discussed. The effects of re-entrant jet and bubble number density on cavitating flows were also investigated.

  15. Bacterial Sterilization Using Cavitating Jet

    NASA Astrophysics Data System (ADS)

    Azuma, Yohei; Kato, Hiroharu; Usami, Ron; Fukushima, Tadamasa

    In this paper, a new sterilization method using cavitating flow is presented. Water with bacteria was pressurized up to 105 MPa and flushed out through two very small nozzles 0.1-0.31 mm in diameter, where a cavitating jet was generated containing bubbles that collapsed downstream. First, the effects of jet velocity and cavitation number on the sterilization rate of Escherichia coli JCM1649T (E. coli) were examined. The sterilization rate increased with jet velocity. The rate was proportional to the 3rd power of the velocity. All the E. coli cells were killed by three successive treatments at V=355.7 m/s and cavitation number σ=0.154. The sterilization rate has a peak depending on cavitation number at the low-jet-velocity region of less than 300 m/s. An experiment was also performed to compare two types of bacteria, E. coli, as typical Gram-negative bacteria and Bacillus subtilis JCM1465T (B. subtilis), as typical Gram-positive bacteria. Additional tests were performed using Pseudomonas putida JCM13063T, Gram-negative bacteria and Bacillus halodurans JCTM9153, Gram-positive bacteria. The sterilization rate of the Gram-positive bacteria was much lower than that of the Gram-negative bacteria under the same experimental conditions. Gram-positive bacteria have a thicker peptidoglycan layer than Gram-negative bacteria. This may be the reason why B. subtilis is more resistant to the mechanical stress caused by cavitating flow.

  16. Removal of nutrient limitations in forest gaps enhances growth rate and resistance to cavitation in subtropical canopy tree species differing in shade tolerance.

    PubMed

    Villagra, Mariana; Campanello, Paula I; Montti, Lia; Goldstein, Guillermo

    2013-03-01

    A 4-year fertilization experiment with nitrogen (N) and phosphorus (P) was carried out in natural gaps of a subtropical forest in northeastern Argentina. Saplings of six dominant canopy species differing in shade tolerance were grown in five control and five N + P fertilized gaps. Hydraulic architectural traits such as wood density, the leaf area to sapwood area ratio (LA : SA), vulnerability to cavitation (P50) and specific and leaf-specific hydraulic conductivity were measured, as well as the relative growth rate, specific leaf area (SLA) and percentage of leaf damage by insect herbivores. Plant growth rates and resistance to drought-induced embolisms increased when nutrient limitations were removed. On average, the P50 of control plants was -1.1 MPa, while the P50 of fertilized plants was -1.6 MPa. Wood density and LA : SA decreased with N + P additions. A trade-off between vulnerability to cavitation and efficiency of water transport was not observed. The relative growth rate was positively related to the total leaf surface area per plant and negatively related to LA : SA, while P50 was positively related to SLA across species and treatments. Plants with higher growth rates and higher total leaf area in fertilized plots were able to avoid hydraulic dysfunction by becoming less vulnerable to cavitation (more negative P50). Two high-light-requiring species exhibited relatively low growth rates due to heavy herbivore damage. Contrary to expectations, shade-tolerant plants with relatively high resistance to hydraulic dysfunction and reduced herbivory damage were able to grow faster. These results suggest that during the initial phase of sapling establishment in gaps, species that were less vulnerable to cavitation and exhibited reduced herbivory damage had faster realized growth rates than less shade-tolerant species with higher potential growth rates. Finally, functional relationships between hydraulic traits and growth rate across species and treatments

  17. Experimental and Theoretical Investigations of Cavitation in Water

    NASA Technical Reports Server (NTRS)

    Ackeret, J.

    1945-01-01

    The cavitation in nozzles on airfoils of various shape and on a sphere are experimentally investigated. The limits of cavitation and the extension of the zone of the bubbles in different stages of cavitation are photographically established. The pressure in the bubble area is constant and very low, jumping to high values at the end of the area. The analogy with the gas compression shock is adduced and discussed. The collapse of the bubbles under compression shock produces very high pressures internally, which must be contributory factors to corrosion. The pressure required for purely mechanical corrosion is also discussed.

  18. POD study of aerated cavitation in a venturi nozzle

    NASA Astrophysics Data System (ADS)

    Tomov, P.; Danlos, A.; Khelladi, S.; Ravelet, F.; Sarraf, C.; Bakir, F.

    2015-12-01

    The fact of injecting bubbles into a cavitating flow influences typical cavitating behavior. Cavitation and aerated cavitation experiments has been carried out on a symmetrical venturi nozzle with convergent/divergent angles of 18° and 8°, respectively. A snapshot Proper Orthogonal Decomposition (POD) technique is used to identify different modes in terms of discharge flow velocity, pressure and injected quantity of air. The energy spectrum per given mode is also presented. The first four modes are outlined in the present paper for an aerated and non-aerated cavitating flows.

  19. Large-scale atomistic simulations of helium-3 bubble growth in complex palladium alloys

    NASA Astrophysics Data System (ADS)

    Hale, Lucas M.; Zimmerman, Jonathan A.; Wong, Bryan M.

    2016-05-01

    Palladium is an attractive material for hydrogen and hydrogen-isotope storage applications due to its properties of large storage density and high diffusion of lattice hydrogen. When considering tritium storage, the material's structural and mechanical integrity is threatened by both the embrittlement effect of hydrogen and the creation and evolution of additional crystal defects (e.g., dislocations, stacking faults) caused by the formation and growth of helium-3 bubbles. Using recently developed inter-atomic potentials for the palladium-silver-hydrogen system, we perform large-scale atomistic simulations to examine the defect-mediated mechanisms that govern helium bubble growth. Our simulations show the evolution of a distribution of material defects, and we compare the material behavior displayed with expectations from experiment and theory. We also present density functional theory calculations to characterize ideal tensile and shear strengths for these materials, which enable the understanding of how and why our developed potentials either meet or confound these expectations.

  20. A four-dimensional X-ray tomographic microscopy study of bubble growth in basaltic foam.

    PubMed

    Baker, Don R; Brun, Francesco; O'Shaughnessy, Cedrick; Mancini, Lucia; Fife, Julie L; Rivers, Mark

    2012-01-01

    Understanding the influence of bubble foams on magma permeability and strength is critical to investigations of volcanic eruption mechanisms. Increasing foam porosity decreases strength, enhancing the probability of an eruption. However, higher porosities lead to larger permeabilities, which can lessen the eruption hazard. Here we measure bubble size and wall thickness distributions, as well as connectivity, and calculate permeabilities and tensile strengths of basaltic foams imaged by synchrotron X-ray tomographic microscopy during bubble growth in hydrated basaltic melts. Rapid vesiculation produces porous foams whose fragmentation thresholds are only 5-6 MPa and whose permeabilities increase from approximately 1×10(-10) to 1×10(-9) m(2) between 10 and 14 s despite decreasing connectivity between bubbles. These results indicate that basaltic magmas are most susceptible to failure immediately upon vesiculation and at later times, perhaps only 10's of seconds later, permeability increases may lessen the hazard of explosive, basaltic, Plinian eruptions. PMID:23072805

  1. Mechanisms of thrombolysis acceleration by cavitation

    NASA Astrophysics Data System (ADS)

    Weiss, Hope; Selvaraj, Prashanth; Ahadi, Golnaz; Voie, Arne; Hoelscher, Thilo; Okita, Kohei; Matsumoto, Yoichiro; Szeri, Andrew

    2012-11-01

    Recent studies, in vitro and in vivo, have shown that High Intensity Focused Ultrasound (HIFU) accelerates thrombolysis, the dissolution of blood clots, for ischemic stroke. Although the mechanisms are not fully understood, cavitation is thought to play an important role in sonothrombolysis. The damage to a blood clot's fibrin fiber network from cavitation in a HIFU field is studied using two independent approaches for an embedded bubble. One method is extended to the more important scenario of a bubble outside a blood clot that collapses asymmetrically creating a jet towards the clot. There is significantly more damage potential from a bubble undergoing cavitation collapse outside the clot compared to a rapidly expanding bubble embedded within the clot structure. Also, the effects of the physical properties of skull bone when a HIFU wave propagates through it are examined by use of computer simulation. The dynamics of a test bubble placed at the focus is used in understanding of the pressure field. All other things being equal, the analysis suggests that skull thickness can alter the wave at the focus, which in turn can change the nature of cavitation bubble dynamics and the amount of energy available for clot damage. Now at MSOE.

  2. Experimental investigation of cavitation in pump inlet

    NASA Astrophysics Data System (ADS)

    Sikora, Roman; Bureček, Adam; Hružík, Lumír; Vašina, Martin

    2015-05-01

    The article deals with experimental research of cavitation development in inlet tube of hydraulic pump. The pressures in inlet and outlet tube of the pump and flow rate were measured. Mineral oil was used as working fluid. The cavitation was visually evaluated in transparent inlet tube. The inlet tube underpressure was achieved by throttle valve. The relationship between the generation of bubbles and the inlet pressure is evaluated.

  3. Bubble formation in microgravity

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.

    1996-01-01

    An extensive experimental program was initiated for the purpose of understanding the mechanisms leading to bubble generation during fluid handling procedures in a microgravity environment. Several key fluid handling procedures typical for PCG experiments were identified for analysis in that program. Experiments were designed to specifically understand how such procedures can lead to bubble formation. The experiments were then conducted aboard the NASA KC-135 aircraft which is capable of simulating a low gravity environment by executing a parabolic flight attitude. However, such a flight attitude can only provide a low gravity environment of approximately 10-2go for a maximum period of 30 seconds. Thus all of the tests conducted for these experiments were designed to last no longer than 20 seconds. Several experiments were designed to simulate some of the more relevant fluid handling procedures during protein crystal growth experiments. These include submerged liquid jet cavitation, filling of a cubical vessel, submerged surface scratch, attached drop growth, liquid jet impingement, and geysering experiments. To date, four separate KC-135 flight campaigns were undertaken specifically for performing these experiments. However, different experiments were performed on different flights.

  4. First-order description of the mechanical fracture behavior of fine-grained surficial marine sediments during gas bubble growth

    NASA Astrophysics Data System (ADS)

    Barry, M. A.; Boudreau, B. P.; Johnson, B. D.; Reed, A. H.

    2010-12-01

    Bubbles in sediments, imaged via Computed Tomography (CT) scanning, and in surrogate transparent material (gelatin), are well-described geometrically as eccentric oblate spheroids. While sediments are undoubtedly visco-elasto-plastic solids, only part of that complex behavior appears to influence significantly the formation and shape of gas bubbles. Specifically, the shape of these bubbles can be explained if the mechanical response of fine-grained sediment is approximated by Linear Elastic Fracture Mechanics (LEFM). To determine the adequacy of the LEFM approximation for gas bubble growth in fine-grained sediments, a number of gas bubbles were injected and grown in natural sediments, while monitoring the size and shape using an industrial CT scanner. A comparison of measured inverse aspect ratios (IARs) of the injected bubbles with calculated IARs from pressure records provides support for the LEFM theory. Deviations from LEFM are observable in the data, but as bubbles grow larger they trend more closely toward the theory. The use of LEFM has been shown to describe gas bubble growth in shallow coastal sediments to first order.

  5. Enhancement of heat and mass transfer by cavitation

    NASA Astrophysics Data System (ADS)

    Zhang, Y. N.; Zhang, Y. N.; Du, X. Z.; Xian, H. Z.

    2015-01-01

    In this paper, a brief summary of effects of cavitation on the heat and mass transfer are given. The fundamental studies of cavitation bubbles, including its nonlinearity, rectified heat and mass diffusion, are initially introduced. Then selected topics of cavitation enhanced heat and mass transfer were discussed in details including whales stranding caused by active sonar activity, pool boiling heat transfer, oscillating heat pipe and high intensity focused ultrasound treatment.

  6. Cavitation dynamics on the nanoscale

    SciTech Connect

    Kotaidis, Vassilios; Plech, Anton

    2005-11-21

    The ultrafast excitation of gold nanoparticle sols causes a strong nonequilibrium heating of the particle lattice and subsequently of the water shell close to the particle surface. Above a threshold in laser fluence, which is defined by the onset of homogeneous nucleation, nanoscale vapor bubbles develop around the particles, expand and collapse again within the first nanosecond after excitation. We show the existence of cavitation on the nanometer and subnanosecond time scale, described within the framework of continuum thermodynamics.

  7. Radiation induced cavitation: A possible phenomenon in liquid targets?

    SciTech Connect

    West, C.D.

    1998-07-01

    The proposed design of a new, short-pulse spallation neutron source includes a liquid mercury target irradiated with a 1 GeV proton beam. This paper explores the possibility that cavitation bubbles may be formed in the mercury and briefly discusses some design features that could avoid harmful effects should cavitation take place.

  8. Numerical investigation of cavitation performance on bulb tubular turbine

    NASA Astrophysics Data System (ADS)

    Sun, L. G.; Guo, P. C.; Zheng, X. B.; Luo, X. Q.

    2016-05-01

    The cavitation flow phenomena may occur in the bulb tubular turbine at some certain operation conditions, which even decrease the performance of units and causes insatiably noise and vibration when it goes worse. A steady cavitating flow numerical simulations study is carried out on the bulb tubular unit with the same blade pitch angle and different guide vane openings by using the commercial code ANSYS CFX in this paper. The phenomena of cavitation induction areas and development process are obtained and draws cavitation performance curves. The numerical results show that the travelling bubble cavity is the main types of cavitation development over a wide operating range of discharge and this type of cavitation begins to sensitive to the value of cavitation number when the discharge exceeding a certain valve, in this condition, it can lead to a severe free bubble formation with the gradually decrement of cavitation number. The reported cavitation performance curves results indicate that the flow blockage incident would happen because of a mount of free bubble formation in the flow passage when the cavity developed to certain extend, which caused head drop behavior and power broken dramatically and influenced the output power.

  9. Acoustic methods for cavitation mapping in biomedical applications

    NASA Astrophysics Data System (ADS)

    Wan, M.; Xu, S.; Ding, T.; Hu, H.; Liu, R.; Bai, C.; Lu, S.

    2015-12-01

    In recent years, cavitation is increasingly utilized in a wide range of applications in biomedical field. Monitoring the spatial-temporal evolution of cavitation bubbles is of great significance for efficiency and safety in biomedical applications. In this paper, several acoustic methods for cavitation mapping proposed or modified on the basis of existing work will be presented. The proposed novel ultrasound line-by-line/plane-by-plane method can depict cavitation bubbles distribution with high spatial and temporal resolution and may be developed as a potential standard 2D/3D cavitation field mapping method. The modified ultrafast active cavitation mapping based upon plane wave transmission and reception as well as bubble wavelet and pulse inversion technique can apparently enhance the cavitation to tissue ratio in tissue and further assist in monitoring the cavitation mediated therapy with good spatial and temporal resolution. The methods presented in this paper will be a foundation to promote the research and development of cavitation imaging in non-transparent medium.

  10. Simultaneous pressure measurement and high-speed photography study of cavitation in a dynamically loaded journal bearing

    NASA Technical Reports Server (NTRS)

    Sun, D. C.; Brewe, David E.; Abel, Philip B.

    1994-01-01

    Cavitation of the oil film in a dynamically loaded journal bearing was studied using high-speed photography and pressure measurement simultaneously. Comparison of the visual and pressure data provided considerable insight into the occurrence and nonoccurrence of cavitation. It was found that (1) for the submerged journal bearing, cavitation typically occurred in the form of one bubble with the pressure in the cavitation bubble close to the absolute zero; and (2) for cavitation-producing operating conditions, cavitation did not always occur; with the oil film then supporting a tensile stress.

  11. Quantitative assessment of reactive oxygen species generation by cavitation incepted efficiently using nonlinear propagation effect

    NASA Astrophysics Data System (ADS)

    Yasuda, Jun; Yoshizawa, Shin; Umemura, Shin-ichiro

    2015-10-01

    Sonodynamic treatment is a treatment method that uses chemical bio-effect of cavitation bubbles. Reactive oxygen species that can kill cancerous tissue is induced by such chemical effect of cavitation bubbles and it is important to generate them efficiently for effective sonodynamic treatment. Cavitation cloud can be formed by an effect of nonlinear propagation and focus and in this study, it was experimentally investigated if cavitation cloud was useful for efficient generation of reactive oxygen species. As a result, it was demonstrated that cavitation cloud would be useful for efficient generation of reactive oxygen species.

  12. Experimental investigation on noise of cavitation nozzle and its chaotic behaviour

    NASA Astrophysics Data System (ADS)

    Zhang, Fenghua; Liu, Haifeng; Xu, Junchao; Tang, Chuanlin

    2013-07-01

    The researches of cavitation noise mainly focus on the incipiency and developing of cavitation to prevent the cavititation erosion in the hydraulic machinery, while there is few report about the collapse strength of cavitation bubbles produced by water jet through the cavitation nozzle to utilize efficiently the collapse energy of cavitation bubbles. The cavitation noise signals are collected with hydrophones for the cavitation nozzle and general nozzle at the target position and the nozzle exit separately in the conditions of different standoff distance. The features of signal's frequency spectrum and power spectrum are analyzed for various nozzles by way of classical methods. Meanwhile, based on chaotic theory, phase space reconstruction is processed and the maximum Lyapunov index is calculated separately for each cavitation signal's time series. The results of chaotic analysis are compared with the one of conventional analysis. The analyzed data show that there are the marked differences at the spectrum between the cavitation nozzle and general nozzle at the target position while the standoff distance is 35 mm, which mainly displays at the high frequency segment (60-120 kHz). The maximum Lyapunov index calculated appear at standoff distance 35 mm, which is an optimum standoff distance for the most bubbles to collapse at the target. At the nozzle exit, the noise signal of cavitation nozzle is different from the general nozzle, which also displays at the high frequency segment. The results demonstrate that the water jet modulated by the cavitation nozzle can produce effectually cavitation, and at the target position the amplitude and energy of noise spectrum in high frequency segment for cavitation nozzle are higher than conventional nozzle and the Lyapunov index of cavitation nozzle is larger than conventional nozzle as the standoff distance is less than 55 mm. The proposed research reveals that the cavitation noise produced by collapse of cavitation bubbles

  13. Stem Hydraulic Conductivity depends on the Pressure at Which It Is Measured and How This Dependence Can Be Used to Assess the Tempo of Bubble Pressurization in Recently Cavitated Vessels1[OPEN

    PubMed Central

    Liu, Jinyu; Tyree, Melvin T.

    2015-01-01

    Cavitation of water in xylem vessels followed by embolism formation has been authenticated for more than 40 years. Embolism formation involves the gradual buildup of bubble pressure (air) to atmospheric pressure as demanded by Henry’s law of equilibrium between gaseous and liquid phases. However, the tempo of pressure increase has not been quantified. In this report, we show that the rate of pressurization of embolized vessels is controlled by both fast and slow kinetics, where both tempos are controlled by diffusion but over different spatial scales. The fast tempo involves a localized diffusion from endogenous sources: over a distance of about 0.05 mm from water-filled wood to the nearest embolized vessels; this process, in theory, should take <2 min. The slow tempo involves diffusion of air from exogenous sources (outside the stem). The latter diffusion process is slower because of the increased distance of diffusion of up to 4 mm. Radial diffusion models and experimental measurements both confirm that the average time constant is >17 h, with complete equilibrium requiring 1 to 2 d. The implications of these timescales for the standard methods of measuring percentage loss of hydraulic conductivity are discussed in theory and deserve more research in future. PMID:26468516

  14. Pore-network study of bubble growth in porous media driven by heat transfer

    SciTech Connect

    Satik, C.; Yortsos, Y.C.

    1996-05-01

    We present experimental and theoretical investigations of vapor phase growth in pore-network models of porous media. Visualization experiments of boiling of ethyl alcohol in horizontal etched-glass micromodels were conducted. The vapor phase was observed to grow into a disordered pattern following a sequence of pressurization and pore-filling steps. At sufficiently small cluster sizes, growth occurred `one pore at a time,` leading to invasion percolation patterns. Single-bubble (cluster) growth was next simulated with a pore-network simulator that includes heat transfer (convection and conduction), and capillary and viscous forces, although not gravity. A boundary in the parameter space was delineated that separates patterns of growth dictated solely by capillarity (invasion percolation) from other patterns. The region of validity of invasion percolation was found to decrease as the supersaturation (heat flux), the capillary number, the thermal diffusivity, and the vapor cluster size increase. Implications to continuum models are discussed. 33 refs., 9 figs.

  15. Activating Molecules, Ions, and Solid Particles with Acoustic Cavitation

    PubMed Central

    Pflieger, Rachel; Chave, Tony; Virot, Matthieu; Nikitenko, Sergey I.

    2014-01-01

    The chemical and physical effects of ultrasound arise not from a direct interaction of molecules with sound waves, but rather from the acoustic cavitation: the nucleation, growth, and implosive collapse of microbubbles in liquids submitted to power ultrasound. The violent implosion of bubbles leads to the formation of chemically reactive species and to the emission of light, named sonoluminescence. In this manuscript, we describe the techniques allowing study of extreme intrabubble conditions and chemical reactivity of acoustic cavitation in solutions. The analysis of sonoluminescence spectra of water sparged with noble gases provides evidence for nonequilibrium plasma formation. The photons and the "hot" particles generated by cavitation bubbles enable to excite the non-volatile species in solutions increasing their chemical reactivity. For example the mechanism of ultrabright sonoluminescence of uranyl ions in acidic solutions varies with uranium concentration: sonophotoluminescence dominates in diluted solutions, and collisional excitation contributes at higher uranium concentration. Secondary sonochemical products may arise from chemically active species that are formed inside the bubble, but then diffuse into the liquid phase and react with solution precursors to form a variety of products. For instance, the sonochemical reduction of Pt(IV) in pure water provides an innovative synthetic route for monodispersed nanoparticles of metallic platinum without any templates or capping agents. Many studies reveal the advantages of ultrasound to activate the divided solids. In general, the mechanical effects of ultrasound strongly contribute in heterogeneous systems in addition to chemical effects. In particular, the sonolysis of PuO2 powder in pure water yields stable colloids of plutonium due to both effects. PMID:24747272

  16. Improvement of growth rate of plants by bubble discharge in water

    NASA Astrophysics Data System (ADS)

    Takahata, Junichiro; Takaki, Koichi; Satta, Naoya; Takahashi, Katsuyuki; Fujio, Takuya; Sasaki, Yuji

    2015-01-01

    The effect of bubble discharge in water on the growth rate of plants was investigated experimentally for application to plant cultivation systems. Spinach (Spinacia oleracea), radish (Raphanus sativus var. sativus), and strawberry (Fragaria × ananassa) were used as specimens to clarify the effect of the discharge treatment on edible parts of the plants. The specimens were cultivated in pots filled with artificial soil, which included chicken manure charcoal. Distilled water was sprayed on the artificial soil and drained through a hole in the pots to a water storage tank. The water was circulated from the water storage tank to the cultivation pots after 15 or 30 min discharge treatment on alternate days. A magnetic compression-type pulsed power generator was used to produce the bubble discharge with a repetition rate of 250 pps. The plant height in the growth phase and the dry weight of the harvested plants were improved markedly by the discharge treatment in water. The soil and plant analyzer development (SPAD) value of the plants also improved in the growth phase of the plants. The concentration of nitrate nitrogen, which mainly contributed to the improvement of the growth rate, in the water increased with the discharge treatment. The Brix value of edible parts of Fragaria × ananassa increased with the discharge treatment. The inactivation of bacteria in the water was also confirmed with the discharge treatment.

  17. Numerical modeling of bubble dynamics in viscoelastic media with relaxation

    NASA Astrophysics Data System (ADS)

    Warnez, M. T.; Johnsen, E.

    2015-06-01

    Cavitation occurs in a variety of non-Newtonian fluids and viscoelastic materials. The large-amplitude volumetric oscillations of cavitation bubbles give rise to high temperatures and pressures at collapse, as well as induce large and rapid deformation of the surroundings. In this work, we develop a comprehensive numerical framework for spherical bubble dynamics in isotropic media obeying a wide range of viscoelastic constitutive relationships. Our numerical approach solves the compressible Keller-Miksis equation with full thermal effects (inside and outside the bubble) when coupled to a highly generalized constitutive relationship (which allows Newtonian, Kelvin-Voigt, Zener, linear Maxwell, upper-convected Maxwell, Jeffreys, Oldroyd-B, Giesekus, and Phan-Thien-Tanner models). For the latter two models, partial differential equations (PDEs) must be solved in the surrounding medium; for the remaining models, we show that the PDEs can be reduced to ordinary differential equations. To solve the general constitutive PDEs, we present a Chebyshev spectral collocation method, which is robust even for violent collapse. Combining this numerical approach with theoretical analysis, we simulate bubble dynamics in various viscoelastic media to determine the impact of relaxation time, a constitutive parameter, on the associated physics. Relaxation time is found to increase bubble growth and permit rebounds driven purely by residual stresses in the surroundings. Different regimes of oscillations occur depending on the relaxation time.

  18. Numerical modeling of bubble dynamics in viscoelastic media with relaxation

    PubMed Central

    Warnez, M. T.; Johnsen, E.

    2015-01-01

    Cavitation occurs in a variety of non-Newtonian fluids and viscoelastic materials. The large-amplitude volumetric oscillations of cavitation bubbles give rise to high temperatures and pressures at collapse, as well as induce large and rapid deformation of the surroundings. In this work, we develop a comprehensive numerical framework for spherical bubble dynamics in isotropic media obeying a wide range of viscoelastic constitutive relationships. Our numerical approach solves the compressible Keller–Miksis equation with full thermal effects (inside and outside the bubble) when coupled to a highly generalized constitutive relationship (which allows Newtonian, Kelvin–Voigt, Zener, linear Maxwell, upper-convected Maxwell, Jeffreys, Oldroyd-B, Giesekus, and Phan-Thien-Tanner models). For the latter two models, partial differential equations (PDEs) must be solved in the surrounding medium; for the remaining models, we show that the PDEs can be reduced to ordinary differential equations. To solve the general constitutive PDEs, we present a Chebyshev spectral collocation method, which is robust even for violent collapse. Combining this numerical approach with theoretical analysis, we simulate bubble dynamics in various viscoelastic media to determine the impact of relaxation time, a constitutive parameter, on the associated physics. Relaxation time is found to increase bubble growth and permit rebounds driven purely by residual stresses in the surroundings. Different regimes of oscillations occur depending on the relaxation time. PMID:26130967

  19. Experimental investigation of remote seismic triggering by gas bubble growth in groundwater

    NASA Astrophysics Data System (ADS)

    Crews, J. B.; Cooper, C. A.

    2014-12-01

    Remotely triggered seismicity is the process by which an earthquake at one location initiates others after a time delay ranging from seconds to days, over distances up to thousands of kilometers. Candidate mechanisms have been proposed, but none specifically address the role of carbon dioxide (CO2) gas bubble growth in groundwater as a driver of remote seismic triggering in active volcanic and geothermal regions, where shallow crustal CO2 gas is abundant. In the present study, we hypothesize that a seismic wave from a distant source can initiate rapid gas bubble growth in CO2-rich groundwater, resulting in a persistent increase in pore fluid pressure and a reduction of effective stress, which can trigger failure on a critically loaded geologic fault. Under conditions representative of a confined aquifer, a Berea sandstone core flooded with an aqueous CO2 solution was subjected to a six-period burst of 0.05-0.3 Hz, 0.1-0.4 MPa confining stress oscillations. After the oscillations were terminated, the pore fluid pressure exceeded its initial value by 13-60 cm equivalent freshwater head, scaling with the amplitude and frequency - a surplus that is consistent with borehole water level changes [Roeloffs et al. (1995) USGS Open File Report, 95-42] observed in response to the June 28 1992 MW 7.3 Landers, California earthquake Rayleigh wave in Parkfield and Long Valley caldera, California, where remotely triggered earthquakes occurred [Hill et al. (1993) Science, 260(5114); Hill et al. (1995) Journal of Geophysical Research, 100(B7)]. Our experimental results indicate that seismically initiated gas bubble growth in groundwater is a physically plausible mechanism for remote seismic triggering in active volcanic and geothermal regions, suggesting that the aqueous CO2 saturation state in a confined aquifer may be used to assess susceptibility to remote seismic triggering.

  20. Investigation of noninertial cavitation produced by an ultrasonic horn.

    PubMed

    Birkin, Peter R; Offin, Douglas G; Vian, Christopher J B; Leighton, Timothy G; Maksimov, Alexey O

    2011-11-01

    This paper reports on noninertial cavitation that occurs beyond the zone close to the horn tip to which the inertial cavitation is confined. The noninertial cavitation is characterized by collating the data from a range of measurements of bubbles trapped on a solid surface in this noninertial zone. Specifically, the electrochemical measurement of mass transfer to an electrode is compared with high-speed video of the bubble oscillation. This gas bubble is shown to be a "noninertial" event by electrochemical surface erosion measurements and "ring-down" experiments showing the activity and motion of the bubble as the sound excitation was terminated. These measurements enable characterization of the complex environment produced below an operating ultrasonic horn outside of the region where inertial collapse can be detected. The extent to which solid boundaries in the liquid cause the frequencies and shapes of oscillatory modes on the bubble wall to differ from their free field values is discussed. PMID:22088002

  1. Inertial confinement fusion based on the ion-bubble trigger

    SciTech Connect

    Jafari, S. Nilkar, M.; Ghasemizad, A.; Mehdian, H.

    2014-10-15

    Triggering the ion-bubble in an inertial confinement fusion, we have developed a novel scheme for the fast ignition. This scheme relies on the plasma cavitation by the wake of an intense laser pulse to generate an ion-bubble. The bubble acts both as an intense electron accelerator and as an electron wiggler. Consequently, the accelerated electrons trapped in the bubble can emit an intense tunable laser light. This light can be absorbed by an ablation layer on the outside surface of the ignition capsule, which subsequently drills it and thereby produces a guide channel in the pellet. Finally, the relativistic electron beam created in the bubble is guided through the channel to the high density core igniting the fusion fuel. The normalized beam intensity and beam energy required for triggering the ignition have been calculated when core is heated by the e-beam. In addition, through solving the momentum transfer, continuity and wave equations, a dispersion relation for the electromagnetic and space-charge waves has been analytically derived. The variations of growth rate with the ion-bubble density and electron beam energy have been illustrated. It is found that the growth rates of instability are significantly controlled by the ions concentration and the e-beam energy in the bubble.

  2. Synchronised electrical monitoring and high speed video of bubble growth associated with individual discharges during plasma electrolytic oxidation

    NASA Astrophysics Data System (ADS)

    Troughton, S. C.; Nominé, A.; Nominé, A. V.; Henrion, G.; Clyne, T. W.

    2015-12-01

    Synchronised electrical current and high speed video information are presented from individual discharges on Al substrates during PEO processing. Exposure time was 8 μs and linear spatial resolution 9 μm. Image sequences were captured for periods of 2 s, during which the sample surface was illuminated with short duration flashes (revealing bubbles formed where the discharge reached the surface of the coating). Correlations were thus established between discharge current, light emission from the discharge channel and (externally-illuminated) dimensions of the bubble as it expanded and contracted. Bubbles reached radii of 500 μm, within periods of 100 μs, with peak growth velocity about 10 m/s. It is deduced that bubble growth occurs as a consequence of the progressive volatilisation of water (electrolyte), without substantial increases in either pressure or temperature within the bubble. Current continues to flow through the discharge as the bubble expands, and this growth (and the related increase in electrical resistance) is thought to be responsible for the current being cut off (soon after the point of maximum radius). A semi-quantitative audit is presented of the transformations between different forms of energy that take place during the lifetime of a discharge.

  3. Detecting cavitation in mercury exposed to a high-energy pulsed proton beam.

    PubMed

    Manzi, Nicholas J; Chitnis, Parag V; Holt, R Glynn; Roy, Ronald A; Cleveland, Robin O; Riemer, Bernie; Wendel, Mark

    2010-04-01

    The Oak Ridge National Laboratory Spallation Neutron Source employs a high-energy pulsed proton beam incident on a mercury target to generate short bursts of neutrons. Absorption of the proton beam produces rapid heating of the mercury, resulting in the formation of acoustic shock waves and the nucleation of cavitation bubbles. The subsequent collapse of these cavitation bubbles promote erosion of the steel target walls. Preliminary measurements using two passive cavitation detectors (megahertz-frequency focused and unfocused piezoelectric transducers) installed in a mercury test target to monitor cavitation generated by proton beams with charges ranging from 0.041 to 4.1 muC will be reported on. Cavitation was initially detected for a beam charge of 0.082 muC by the presence of an acoustic emission approximately 250 mus after arrival of the incident proton beam. This emission was consistent with an inertial cavitation collapse of a bubble with an estimated maximum bubble radius of 0.19 mm, based on collapse time. The peak pressure in the mercury for the initiation of cavitation was predicted to be 0.6 MPa. For a beam charge of 0.41 muC and higher, the lifetimes of the bubbles exceeded the reverberation time of the chamber ( approximately 300 mus), and distinct windows of cavitation activity were detected, a phenomenon that likely resulted from the interaction of the reverberation in the chamber and the cavitation bubbles. PMID:20370004

  4. Detecting cavitation in mercury exposed to a high-energy pulsed proton beam

    SciTech Connect

    Manzi, Nicholas J; Chitnis, Parag V; Holt, Ray G; Roy, Ronald A; Cleveland, Robin O; Riemer, Bernie; Wendel, Mark W

    2010-01-01

    The Oak Ridge National Laboratory Spallation Neutron Source employs a high-energy pulsed proton beam incident on a mercury target to generate short bursts of neutrons. Absorption of the proton beam produces rapid heating of the mercury, resulting in the formation of acoustic shock waves and the nucleation of cavitation bubbles. The subsequent collapse of these cavitation bubbles promote erosion of the steel target walls. Preliminary measurements using two passive cavitation detectors (megahertz-frequency focused and unfocused piezoelectric transducers) installed in a mercury test target to monitor cavitation generated by proton beams with charges ranging from 0.041 to 4.1 C will be reported on. Cavitation was initially detected for a beam charge of 0.082 C by the presence of an acoustic emission approximately 250 s after arrival of the incident proton beam. This emission was consistent with an inertial cavitation collapse of a bubble with an estimated maximum bubble radius of 0.19 mm, based on collapse time. The peak pressure in the mercury for the initiation of cavitation was predicted to be 0.6 MPa. For a beam charge of 0.41 C and higher, the lifetimes of the bubbles exceeded the reverberation time of the chamber (~300 s), and distinct windows of cavitation activity were detected, a phenomenon that likely resulted from the interaction of the reverberation in the chamber and the cavitation bubbles.

  5. Photoacoustic cavitation for theranostics: mechanism, current progress and applications

    NASA Astrophysics Data System (ADS)

    Feng, Y.; Qin, D.; Wan, M.

    2015-12-01

    As an emerging cavitation technology, photoacoustic cavitation (PAC) means the formation of bubbles in liquids using focused laser and pre-established ultrasound synchronously. Its significant advantages include the decreased threshold of each modality and the precise location of cavitation determined by the focused laser. In this paper, a brief review of PAC is presented, including the physical mechanism description, the classic experimental technology, the representative results in variety of media, and its applications in biomedical imaging and therapy. Moreover, some preliminary results of PAC in perfluoropentane (PFP) liquid and PFP droplets investigated by passive cavitation detection (PCD) in our group are also presented.

  6. Large-scale atomistic simulations of helium-3 bubble growth in complex palladium alloys

    DOE PAGESBeta

    Hale, Lucas M.; Zimmerman, Jonathan A.; Wong, Bryan M.

    2016-05-18

    Palladium is an attractive material for hydrogen and hydrogen-isotope storage applications due to its properties of large storage density and high diffusion of lattice hydrogen. When considering tritium storage, the material’s structural and mechanical integrity is threatened by both the embrittlement effect of hydrogen and the creation and evolution of additional crystal defects (e.g., dislocations, stacking faults) caused by the formation and growth of helium-3 bubbles. Using recently developed inter-atomic potentials for the palladium-silver-hydrogen system, we perform large-scale atomistic simulations to examine the defect-mediated mechanisms that govern helium bubble growth. Our simulations show the evolution of a distribution of materialmore » defects, and we compare the material behavior displayed with expectations from experiment and theory. In conclusion, we also present density functional theory calculations to characterize ideal tensile and shear strengths for these materials, which enable the understanding of how and why our developed potentials either meet or confound these expectations.« less

  7. Large-scale atomistic simulations of helium-3 bubble growth in complex palladium alloys.

    PubMed

    Hale, Lucas M; Zimmerman, Jonathan A; Wong, Bryan M

    2016-05-21

    Palladium is an attractive material for hydrogen and hydrogen-isotope storage applications due to its properties of large storage density and high diffusion of lattice hydrogen. When considering tritium storage, the material's structural and mechanical integrity is threatened by both the embrittlement effect of hydrogen and the creation and evolution of additional crystal defects (e.g., dislocations, stacking faults) caused by the formation and growth of helium-3 bubbles. Using recently developed inter-atomic potentials for the palladium-silver-hydrogen system, we perform large-scale atomistic simulations to examine the defect-mediated mechanisms that govern helium bubble growth. Our simulations show the evolution of a distribution of material defects, and we compare the material behavior displayed with expectations from experiment and theory. We also present density functional theory calculations to characterize ideal tensile and shear strengths for these materials, which enable the understanding of how and why our developed potentials either meet or confound these expectations. PMID:27208963

  8. Optical Measurements of Cavitation in Tribological Contacts

    NASA Astrophysics Data System (ADS)

    Tang, Tian; Morris, Nick; Coupland, Jeremy

    2015-12-01

    The paper describes the use of a white light interformeter to measure the cavitation bubble and oil film thickness in a tribological contact and compares the results to theory. It is found that oil film thickness is best predicted by the theory proposed by Coyne and Elrod.

  9. Detection of cavitation in hydraulic turbines

    NASA Astrophysics Data System (ADS)

    Escaler, Xavier; Egusquiza, Eduard; Farhat, Mohamed; Avellan, François; Coussirat, Miguel

    2006-05-01

    An experimental investigation has been carried out in order to evaluate the detection of cavitation in actual hydraulic turbines. The methodology is based on the analysis of structural vibrations, acoustic emissions and hydrodynamic pressures measured in the machine. The proposed techniques have been checked in real prototypes suffering from different types of cavitation. In particular, one Kaplan, two Francis and one Pump-Turbine have been investigated in the field. Additionally, one Francis located in a laboratory has also been tested. First, a brief description of the general features of cavitation phenomenon is given as well as of the main types of cavitation occurring in hydraulic turbines. The work presented here is focused on the most important ones which are the leading edge cavitation due to its erosive power, the bubble cavitation because it affects the machine performance and the draft tube swirl that limits the operation stability. Cavitation detection is based on the previous understanding of the cavity dynamics and its location inside the machine. This knowledge has been gained from flow visualisations and measurements in laboratory devices such as a high-speed cavitation tunnel and a reduced scale turbine test rig. The main techniques are the study of the high frequency spectral content of the signals and of their amplitude demodulation for a given frequency band. Moreover, low frequency spectral content can also be used in certain cases. The results obtained for the various types of cavitation found in the selected machines are presented and discussed in detail in the paper. Conclusions are drawn about the best sensor, measuring location, signal processing and analysis for each type of cavitation, which serve to validate and to improve the detection techniques.

  10. Improving microalgal growth with reduced diameters of aeration bubbles and enhanced mass transfer of solution in an oscillating flow field.

    PubMed

    Yang, Zongbo; Cheng, Jun; Lin, Richen; Zhou, Junhu; Cen, Kefa

    2016-07-01

    A novel oscillating gas aerator combined with an oscillating baffle was proposed to generate smaller aeration bubbles and enhance solution mass transfer, which can improve microalgal growth in a raceway pond. A high-speed photography system (HSP) was used to measure bubble diameter and generation time, and online precise dissolved oxygen probes and pH probes were used to measure mass-transfer coefficient and mixing time. Bubble diameter and generation time decreased with decreased aeration gas rate, decreased orifice diameter, and increased water velocity in the oscillating gas aerator. The optimized oscillating gas aerator decreased bubble diameter and generation time by 25% and 58%, respectively, compared with a horizontal tubular gas aerator. Using an oscillating gas aerator and an oscillating baffle in a raceway pond increased the solution mass-transfer coefficient by 15% and decreased mixing time by 32%; consequently, microalgal biomass yield increased by 19%. PMID:27035474