Science.gov

Sample records for cavity-enhanced down-conversion high

  1. Bright source of indistinguishable photons based on cavity-enhanced parametric down-conversion utilizing the cluster effect

    NASA Astrophysics Data System (ADS)

    Ahlrichs, Andreas; Benson, Oliver

    2016-01-01

    We present a bright, simple-to-setup, single-mode source of indistinguishable photon pairs at the cesium D1-line with a bandwidth of about 100 MHz. The source is based on degenerate, cavity enhanced spontaneous parametric down-conversion utilizing the cluster effect. The setup relies on a microcontroller-based digital locking system. A brightness of 1.1 ×103/(s m W ) detected, indistinguishable photon pairs could be measured.

  2. High-efficiency microwave photonic harmonic down-conversion with tunable and reconfigurable filtering.

    PubMed

    Liao, Jinxin; Zheng, Xiaoping; Li, Shangyuan; Zhang, Hanyi; Zhou, Bingkun

    2014-12-01

    A new optical-frequency comb-based microwave photonic harmonic down-convertor with tunable and reconfigurable filtering is proposed and experimentally demonstrated. The coherent evenly spaced optical carriers offer harmonic down-conversion for ultrahigh radio frequency signals with low-frequency local oscillator, and construct a tunable and reconfigurable bandpass filter for the intermediate-frequency (IF) signal combined with dispersion. This implementation features high conversion efficiency. Experimental results show the filtered output IF signal has a clean spectrum with high quality. Measured conversion loss is 8.3 dB without extra electrical amplification. PMID:25490622

  3. Type I parametric down conversion of highly focused Gaussian beams in finite length crystals

    NASA Astrophysics Data System (ADS)

    Jeronimo-Moreno, Yasser; Jáuregui, R.

    2014-06-01

    This paper presents a study of the correlations in wave vector space of photon pairs generated by type I spontaneous parametric down conversion using a Gaussian pump beam. The analysis covers both moderate focused and highly focused regimes, paying special attention to the angular spectrum and the conditional angular spectrum. Simple analytic expressions are derived that allow a detailed study of the dependence of these spectra on the waist of the source and the length of the nonlinear crystal. These expressions are in good agreement with numerical expectations and reported experimental results. They are used to make a systematic search of optimization parameters that improve the feasibility of using highly focused Gaussian beams to generate idler and signal photons with predetermined mean values and spread of their transverse wave vectors.

  4. High-Fidelity Down-Conversion Source for Secure Communications Using On-Demand Single Photons

    NASA Technical Reports Server (NTRS)

    Roberts, Tony

    2015-01-01

    AdvR, Inc., has built an efficient, fully integrated, waveguide-based source of spectrally uncorrelated photon pairs that will accelerate research and development (R&D) in the emerging field of quantum information science. Key to the innovation is the use of submicron periodically poled waveguides to produce counter propagating photon pairs, which is enabled by AdvR's patented segmented microelectrode poling technique. This novel device will provide a high brightness source of down-conversion pairs with enhanced spectral properties and low attenuation, and it will operate in the visible to the mid-infrared spectral region. A waveguide-based source of spectrally and spatially pure heralded photons will contribute to a wide range of NASA's advanced technology development efforts, including on-demand single photon sources for high-rate spaced-based secure communications.

  5. High efficiency light source using solid-state emitter and down-conversion material

    DOEpatents

    Narendran, Nadarajah; Gu, Yimin; Freyssinier, Jean Paul

    2010-10-26

    A light emitting apparatus includes a source of light for emitting light; a down conversion material receiving the emitted light, and converting the emitted light into transmitted light and backward transmitted light; and an optic device configured to receive the backward transmitted light and transfer the backward transmitted light outside of the optic device. The source of light is a semiconductor light emitting diode, a laser diode (LD), or a resonant cavity light emitting diode (RCLED). The down conversion material includes one of phosphor or other material for absorbing light in one spectral region and emitting light in another spectral region. The optic device, or lens, includes light transmissive material.

  6. Improving solar cell efficiencies by down-conversion of high-energy photons

    NASA Astrophysics Data System (ADS)

    Trupke, T.; Green, M. A.; Wurfel, P.

    2002-08-01

    One of the major loss mechanisms leading to low energy conversion efficiencies of solar cells is the thermalization of charge carriers generated by the absorption of high-energy photons. These losses can largely be reduced in a solar cell if more than one electron-hole pair can be generated per incident photon. A method to realize multiple electron-hole pair generation per incident photon is proposed in this article. Incident photons with energies larger than twice the band gap of the solar cell are absorbed by a luminescence converter, which transforms them into two or more lower energy photons. The theoretical efficiency limit of this system for nonconcentrated sunlight is determined as a function of the solar cell's band gap using detailed balance calculations. It is shown that a maximum conversion efficiency of 39.63% can be achieved for a 6000 K blackbody spectrum and for a luminescence converter with one intermediate level. This is a substantial improvement over the limiting efficiency of 30.9%, which a solar cell exposed directly to nonconcentrated radiation may have under the same assumption of radiative recombination only.

  7. Quantum-to-classical transition via fuzzy measurements on high-gain spontaneous parametric down-conversion

    SciTech Connect

    Vitelli, Chiara; Spagnolo, Nicolo; Toffoli, Lorenzo; Sciarrino, Fabio; De Martini, Francesco

    2010-03-15

    We consider the high-gain spontaneous parametric down-conversion in a noncollinear geometry as a paradigmatic scenario to investigate the quantum-to-classical transition by increasing the pump power, that is, the average number of generated photons. The possibility of observing quantum correlations in such a macroscopic quantum system through dichotomic measurement will be analyzed by addressing two different measurement schemes, based on different dichotomization processes. More specifically, we will investigate the persistence of nonlocality in an increasing size (n/2)-spin singlet state by studying the change in the correlations form as n increases, both in the ideal case and in presence of losses. We observe a fast decrease in the amount of Bell's inequality violation for increasing system size. This theoretical analysis is supported by the experimental observation of macro-macro correlations with an average number of photons of about 10{sup 3}. Our results shed light on the practical extreme difficulty of observing nonlocality by performing such a dichotomic fuzzy measurement.

  8. Supercontinuum high-speed cavity-enhanced absorption spectroscopy for sensitive multispecies detection.

    PubMed

    Werblinski, Thomas; Lämmlein, Bastian; Huber, Franz J T; Zigan, Lars; Will, Stefan

    2016-05-15

    Cavity-enhanced absorption spectroscopy is promising for many applications requiring a very high concentration sensitivity but often accompanied by low temporal resolution. In this Letter, we demonstrate a broadband cavity-enhanced absorption spectrometer capable of detection rates of up to 50 kHz, based on a spatially coherent supercontinuum (SC) light source and an in-house-built, high-speed near-infrared spectrograph. The SC spectrometer allows for the simultaneous quantitative detection of CO2, C2H2, and H2O within a spectral range from 1420 to 1570 nm. Using cavity mirrors with a specified reflectivity of R=98.0±0.3% a minimal spectrally averaged absorption coefficient of αmin=1·10-5  cm-1 can be detected at a repetition rate of 50 kHz. PMID:27176993

  9. Optomechanical down-conversion

    NASA Astrophysics Data System (ADS)

    Groeblacher, Simon; Hofer, Sebastian; Wieczorek, Witlef; Vanner, Michael; Hammerer, Klemens; Aspelmeyer, Markus

    2011-03-01

    One of the central interactions in quantum optics is two-mode squeezing, also known as down-conversion. It has been used in a multitude of pioneering experiments to demonstrate non-classical states of light and it is at the heart of generating quantum entanglement in optical fields. Here we demonstrate first experimental results towards the optomechanical analogue, in which an optical and a mechanical mode interact via a two-mode squeezing operation. In addition, we make use of the fact that large optomechanical coupling strengths provide access to an interaction regime beyond the rotating wave approximation. This allows for simultaneous cooling of the mechanical mode, which will eventually enable the preparation of pure initial mechanical states and is hence an important precondition to achieve the envisioned optomechanical entanglement.

  10. Cavity-Enhanced Field-Free Molecular Alignment at a High Repetition Rate

    NASA Astrophysics Data System (ADS)

    Benko, Craig; Hua, Linqiang; Allison, Thomas K.; Labaye, François; Ye, Jun

    2015-04-01

    Extreme ultraviolet frequency combs are a versatile tool with applications including precision measurement, strong-field physics, and solid-state physics. Here we report on an application of extreme ultraviolet frequency combs and their driving lasers for studying strong-field effects in molecular systems. We perform field-free molecular alignment and high-order harmonic generation with aligned molecules in a gas jet at a repetition rate of 154 MHz using a high-powered optical frequency comb inside a femtosecond enhancement cavity. The cavity-enhanced system provides a means to reach suitable intensities to study field-free molecular alignment and enhance the observable effects of the molecule-field interaction. We observe modulations of the driving field, arising from the nature of impulsive stimulated Raman scattering responsible for coherent molecular rotations. We foresee the impact of this work on the study of molecule-based strong-field physics, with improved precision and a more fundamental understanding of the interaction effects on both the field and molecules.

  11. Cavity-enhanced field-free molecular alignment at a high repetition rate.

    PubMed

    Benko, Craig; Hua, Linqiang; Allison, Thomas K; Labaye, François; Ye, Jun

    2015-04-17

    Extreme ultraviolet frequency combs are a versatile tool with applications including precision measurement, strong-field physics, and solid-state physics. Here we report on an application of extreme ultraviolet frequency combs and their driving lasers for studying strong-field effects in molecular systems. We perform field-free molecular alignment and high-order harmonic generation with aligned molecules in a gas jet at a repetition rate of 154 MHz using a high-powered optical frequency comb inside a femtosecond enhancement cavity. The cavity-enhanced system provides a means to reach suitable intensities to study field-free molecular alignment and enhance the observable effects of the molecule-field interaction. We observe modulations of the driving field, arising from the nature of impulsive stimulated Raman scattering responsible for coherent molecular rotations. We foresee the impact of this work on the study of molecule-based strong-field physics, with improved precision and a more fundamental understanding of the interaction effects on both the field and molecules. PMID:25933311

  12. Tunable resonant-cavity-enhanced photodetector with double high-index-contrast grating mirrors

    NASA Astrophysics Data System (ADS)

    Learkthanakhachon, Supannee; Yvind, Kresten; Chung, Il-Sug

    2013-03-01

    In this paper, we propose a broadband-tunable resonant-cavity-enhanced photodetector (RCE-PD) structure with double high-index-contrast grating (HCG) mirrors and numerically investigate its characteristics. The detector is designed to operate at 1550-nm wavelength. The detector structure consists of a top InP HCG mirror, a p-i-n photodiode embedding multiple quantum wells, and a Si HCG mirror formed in the Si layer of a silicon-on-insulator wafer. The detection wavelength can be changed by moving the top InP HCG mirror suspended in the air. High reflectivity and small penetration length of HCGs lead to a narrow absorption linewidth of 0.38 nm and a broad tuning range of 111 nm. The peak absorption efficiency is 76-84% within the tuning range. This broadband-tunable and narrow-absorption-linewidth RCE-PD is desirable for applications where selective wavelength demultiplexing is required. Furthermore, the fact that it can be fabricated on a silicon platform offers us a possibility of integration with electronics.

  13. High-fidelity frequency down-conversion of visible entangled photon pairs with superconducting single-photon detectors

    SciTech Connect

    Ikuta, Rikizo; Kato, Hiroshi; Kusaka, Yoshiaki; Yamamoto, Takashi; Imoto, Nobuyuki; Miki, Shigehito; Yamashita, Taro; Terai, Hirotaka; Wang, Zhen; Fujiwara, Mikio; Sasaki, Masahide; Koashi, Masato

    2014-12-04

    We experimentally demonstrate a high-fidelity visible-to-telecommunicationwavelength conversion of a photon by using a solid-state-based difference frequency generation. In the experiment, one half of a pico-second visible entangled photon pair at 780 nm is converted to a 1522-nm photon. Using superconducting single-photon detectors with low dark count rates and small timing jitters, we observed a fidelity of 0.93±0.04 after the wavelength conversion.

  14. Very high finesse optical-feedback cavity-enhanced absorption spectrometer for low concentration water vapor isotope analyses.

    PubMed

    Landsberg, J; Romanini, D; Kerstel, E

    2014-04-01

    So far, cavity-enhanced absorption spectroscopy (CEAS) has been based on optical cavities with a high finesse F that, however, has been limited by mirror reflectivity and by cavity transmission considerations to a few times 10,000. Here, we demonstrate a compact near-infrared optical-feedback CEAS instrument for water vapor isotope ratio measurements, with F>140,000. We show that this very high finesse can be effectively exploited to improve the detection sensitivity to the full extent predicted by the increased effective path length to reach a noise equivalent absorption sensitivity of 5.7×10(-11)  cm(-1) Hz(-1/2) for a full spectrum registration (including possible effects of interference fringes and fit model inadequacies). PMID:24686607

  15. High sensitivity liquid phase measurements using broadband cavity enhanced absorption spectroscopy (BBCEAS) featuring a low cost webcam based prism spectrometer.

    PubMed

    Qu, Zhechao; Engstrom, Julia; Wong, Donald; Islam, Meez; Kaminski, Clemens F

    2013-11-01

    Cavity enhanced techniques enable high sensitivity absorption measurements in the liquid phase but are typically more complex, and much more expensive, to perform than conventional absorption methods. The latter attributes have so far prevented a wide spread use of these methods in the analytical sciences. In this study we demonstrate a novel BBCEAS instrument that is sensitive, yet simple and economical to set up and operate. We use a prism spectrometer with a low cost webcam as the detector in conjunction with an optical cavity consisting of two R = 0.99 dielectric mirrors and a white light LED source for illumination. High sensitivity liquid phase measurements were made on samples contained in 1 cm quartz cuvettes placed at normal incidence to the light beam in the optical cavity. The cavity enhancement factor (CEF) with water as the solvent was determined directly by phase shift cavity ring down spectroscopy (PS-CRDS) and also by calibration with Rhodamine 6G solutions. Both methods yielded closely matching CEF values of ~60. The minimum detectable change in absorption (αmin) was determined to be 6.5 × 10(-5) cm(-1) at 527 nm and was limited only by the 8 bit resolution of the particular webcam detector used, thus offering scope for further improvement. The instrument was used to make representative measurements on dye solutions and in the determination of nitrite concentrations in a variation of the widely used Griess Assay. Limits of detection (LOD) were ~850 pM for Rhodamine 6G and 3.7 nM for nitrite, respectively. The sensitivity of the instrument compares favourably with previous cavity based liquid phase studies whilst being achieved at a small fraction of the cost hitherto reported, thus opening the door to widespread use in the community. Further means of improving sensitivity are discussed in the paper. PMID:24049768

  16. Fast cavity-enhanced atom detection with low noise and high fidelity

    PubMed Central

    Goldwin, J.; Trupke, M.; Kenner, J.; Ratnapala, A.; Hinds, E.A.

    2011-01-01

    Cavity quantum electrodynamics describes the fundamental interactions between light and matter, and how they can be controlled by shaping the local environment. For example, optical microcavities allow high-efficiency detection and manipulation of single atoms. In this regime, fluctuations of atom number are on the order of the mean number, which can lead to signal fluctuations in excess of the noise on the incident probe field. Here we demonstrate, however, that nonlinearities and multi-atom statistics can together serve to suppress the effects of atomic fluctuations when making local density measurements on clouds of cold atoms. We measure atom densities below 1 per cavity mode volume near the photon shot-noise limit. This is in direct contrast to previous experiments where fluctuations in atom number contribute significantly to the noise. Atom detection is shown to be fast and efficient, reaching fidelities in excess of 97% after 10 μs and 99.9% after 30 μs. PMID:21829180

  17. High-resolution luminescence spectroscopy study of down-conversion routes in NaGdF4:Nd3+ and NaGdF4:Tm3+ using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    van der Kolk, E.; Dorenbos, P.; Krämer, K.; Biner, D.; Güdel, H. U.

    2008-03-01

    Down-conversion in lanthanide doped luminescent materials is a promising route to significantly enhance the energy efficiency of silicon solar cells, plasma display panels, or mercury-free lighting tubes because it results in the emission of two photons for each absorbed higher energy photon. The Gd3+/Eu3+ ion couple shows down-conversion of vacuum-ultraviolet light into visible light with an efficiency close to 190%. The low absorption strength of the G7/26 levels of Gd3+ (the starting point of the down-conversion process), however, prevents efficient excitation of the down-conversion process and therefore application. We have performed a high resolution luminescence spectroscopy study, using synchrotron radiation, in order to investigate the possibility to use the strong 4f→5d absorption transitions of Nd3+ and Tm3+ to sensitize the high energy G7/26 level of Gd3+ in the phosphors NaGdF4:2%Nd3+ and NaGdF4:2%Tm3+ . Tm3+ appears to be an efficient sensitizer of the G7/26 state of Gd3+ . It was also found that sensitization is followed by two successive energy transfer processes exciting two Tm3+ ions in the H43 state which results in the emission of two infrared photons for one absorbed vacuum-ultraviolet photon. Nd3+ is not a good sensitizer of the G7/26 state in NaGdF4 . Instead Nd3+ efficiently transfers its energy by cross relaxation to the lower energy DJ6 states of Gd3+ but leaving the Nd3+ ion excited in the F3/24 state. Successive energy transfer from Gd3+ back to Nd3+ excites a second Nd3+ ion in the F3/24 state. Also, in this case, two infrared photons can be emitted for one absorbed vacuum-ultraviolet photon.

  18. Resonant cavity enhanced InGaAs photodiodes for high speed detection of 1.55 μm infrared radiation

    NASA Astrophysics Data System (ADS)

    Kaniewski, J.; Muszalski, J.; Pawluczyk, J.; Piotrowski, J.

    2005-05-01

    Resonant cavity enhanced photodetectors are promising candidates for applications in high-speed optical communications due to their high quantum efficiency and large bandwidth. This is a consequence of placing the thin absorber of the photodetector inside a Fabry-Perot microcavity so the absorption could be enhanced by recycling the photons with resonance wavelength. The performance of uncooled resonant cavity enhanced InGaAs/InAlAs photovoltaic devices operating near 1.55 μm has been studied both theoretically and experimentally. The analyses include two different types of structures with cavity end mirrors made of semiconducting and metallic reflectors as well as semiconducting and hybrid (dielectric Si3N4/SiO2 + metal) Bragg reflectors. Optimization of the device design includes: absorption layer thickness, position of absorption layer within the cavity and number of layers in distributed Bragg reflectors. Dependence of absorption on wavelength and incidence angle are discussed. Various issues related to applications of resonance cavity enhanced photodiodes in optical systems are considered. Practical devices with metallic and hybrid mirrors were fabricated by molecular beam epitaxy and by microwave-compatible processing. A properly designed device of this type has potential for subpicosecond response time.

  19. Cavity enhanced atomic magnetometry.

    PubMed

    Crepaz, Herbert; Ley, Li Yuan; Dumke, Rainer

    2015-01-01

    Atom sensing based on Faraday rotation is an indispensable method for precision measurements, universally suitable for both hot and cold atomic systems. Here we demonstrate an all-optical magnetometer where the optical cell for Faraday rotation spectroscopy is augmented with a low finesse cavity. Unlike in previous experiments, where specifically designed multipass cells had been employed, our scheme allows to use conventional, spherical vapour cells. Spherical shaped cells have the advantage that they can be effectively coated inside with a spin relaxation suppressing layer providing long spin coherence times without addition of a buffer gas. Cavity enhancement shows in an increase in optical polarization rotation and sensitivity compared to single-pass configurations. PMID:26481853

  20. Cavity enhanced atomic magnetometry

    NASA Astrophysics Data System (ADS)

    Crepaz, Herbert; Ley, Li Yuan; Dumke, Rainer

    2015-10-01

    Atom sensing based on Faraday rotation is an indispensable method for precision measurements, universally suitable for both hot and cold atomic systems. Here we demonstrate an all-optical magnetometer where the optical cell for Faraday rotation spectroscopy is augmented with a low finesse cavity. Unlike in previous experiments, where specifically designed multipass cells had been employed, our scheme allows to use conventional, spherical vapour cells. Spherical shaped cells have the advantage that they can be effectively coated inside with a spin relaxation suppressing layer providing long spin coherence times without addition of a buffer gas. Cavity enhancement shows in an increase in optical polarization rotation and sensitivity compared to single-pass configurations.

  1. Cavity enhanced atomic magnetometry

    PubMed Central

    Crepaz, Herbert; Ley, Li Yuan; Dumke, Rainer

    2015-01-01

    Atom sensing based on Faraday rotation is an indispensable method for precision measurements, universally suitable for both hot and cold atomic systems. Here we demonstrate an all-optical magnetometer where the optical cell for Faraday rotation spectroscopy is augmented with a low finesse cavity. Unlike in previous experiments, where specifically designed multipass cells had been employed, our scheme allows to use conventional, spherical vapour cells. Spherical shaped cells have the advantage that they can be effectively coated inside with a spin relaxation suppressing layer providing long spin coherence times without addition of a buffer gas. Cavity enhancement shows in an increase in optical polarization rotation and sensitivity compared to single-pass configurations. PMID:26481853

  2. Nonseparable Werner states in spontaneous parametric down-conversion

    SciTech Connect

    Caminati, Marco; De Martini, Francesco; Perris, Riccardo; Secondi, Veronica; Sciarrino, Fabio

    2006-03-15

    The multiphoton states generated by high-gain spontaneous parametric down-conversion (SPDC) in the presence of large losses are investigated theoretically and experimentally. The explicit form for the two-photon output state has been found to exhibit a Werner structure very resilient to losses for any value of the nonlinear gain parameter g. The theoretical results are found to be in agreement with experimental data obtained by 'entanglement witness' methods and by the quantum tomography of the state generated by a high-g SPDC.

  3. Influence of some design parameters on the efficiency of solar cells with down-conversion and down shifting of high-energy photons

    NASA Astrophysics Data System (ADS)

    Badescu, Viorel; De Vos, Alexis

    2007-10-01

    In this paper we analyze the system proposed by Trupke et al. [J. Appl. Phys. 92, 1668 (2002)] to increase solar cell efficiency. The system consists of adding to the solar cell a so-called down-converter, which is a device able to convert the high-energy incident photons into photons of lower energy. The contribution consists of taking account (i) the nonradiative recombination in both solar cell and converter, (ii) the refractive index of solar cell and converter materials, and (iii) the solar radiation concentration. Two configurations are studied: the cell and rear converter (C-RC) and front converter and cell (FC-C). The main conclusions of this work are as follow. (1) For ideal down-converters, with radiative recombination only, the solar energy conversion efficiency may be, or may not be, increased by adding a front (or a rear) down-converter to the cell, depending on the value of the solar cell refractive index. (2) More realistic systems, where nonradiative recombinations exist inside the converter, are also considered. The efficiency of the FC-C system is generally less than the efficiency of a single cell. C-RC systems perform better than the cell operating alone for some values of the refractive indices. (3) C-RC systems perform generally better than FC-C systems whatever the values of the refractive indices and the concentration ratio.

  4. Cavity enhanced terahertz modulation

    SciTech Connect

    Born, N.; Scheller, M.; Moloney, J. V.; Koch, M.

    2014-03-10

    We present a versatile concept for all optical terahertz (THz) amplitude modulators based on a Fabry-Pérot semiconductor cavity design. Employing the high reflectivity of two parallel meta-surfaces allows for trapping selected THz photons within the cavity and thus only a weak optical modulation of the semiconductor absorbance is required to significantly damp the field within the cavity. The optical switching yields to modulation depths of more than 90% with insertion efficiencies of 80%.

  5. Highly-precise measurements of ambient oxygen using near-infrared cavity-enhanced laser absorption spectrometry.

    PubMed

    Gupta, Manish

    2012-09-18

    Highly precise measurements of ambient oxygen have been used to constrain the carbon budget, study photosynthesis, estimate marine productivity, and prescribe individual pollution events to their point of origin. These studies require analyzers that can measure ambient oxygen with ppm-level precision. In this work, we utilize near-infrared off-axis integrated cavity output spectroscopy (off-axis ICOS) to quantify ambient oxygen with a precision (1σ, 100s) of ±7 ppm. By periodically calibrating the instrument, the analyzer is capable of making oxygen measurements to better than ±1 ppm (1σ). The sensor is highly linear (R(2) > 0.9999) over a wide dynamic range (0-100% oxygen). The sensor was combined with a commercial CO(2)/CH(4)/H(2)O Analyzer, and used to make measurements of respiration and fossil fuel pollution events with oxidative ratios ranging from 1.15-1.60. Future improvements will increase the analyzer precision (1σ, 100s) to better than ±1.4 ppm, and decrease the periodic referencing interval to >1 h. By including an additional diode laser, the instrument can be extended to make simultaneous measurements of O(2), CO(2), and H(2)O to enable improved understanding of carbon dioxide production and loss. PMID:22924385

  6. Cavity-Enhanced Ultrafast Transient Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Yuning; Reber, Melanie Roberts; Keleher, Kevin; Allison, Thomas K.

    2014-06-01

    We introduce cavity enhanced ultrafast transient absorption spectroscopy, which employs frequency combs and high-finesse optical cavities. % The schematic of apparatus is shown in Figure 1. Sub-100 fs pulses with a repetition rate of 90 MHz are generated by a home-built Ytterbium fiber laser. The amplified light has a power up to 10 W, which is used to pump an optical parametric oscillator, followed by second-harmonic generation(SHG) that converts the wavelength from near-IR to visible. A pump comb at 530 nm is separately generated by SHG. Both pump and probe combs are coupled into high-finesse cavities. Compared to the conventional transient absorption spectroscopy method, the detection sensitivity can be improved by a factor of (F/π)^2 ˜ 10^5, where F is the finesse of cavity. This ultrasensitive technology enables the direct all-optical dynamics study in molecular beams. We will apply the cavity enhanced ultrafast transient absorption spectroscopy to investigate the dynamics of visible chromophores and then extend the wavelength to mid-IR to study vibrational dynamics of small hydrogen-bonded clusters.

  7. Down-conversion IM-DD RF photonic link utilizing MQW MZ modulator.

    PubMed

    Xu, Longtao; Jin, Shilei; Li, Yifei

    2016-04-18

    We present the first down-conversion intensity modulated-direct detection (IM-DD) RF photonic link that achieves frequency down-conversion using the nonlinear optical phase modulation inside a Mach-Zehnder (MZ) modulator. The nonlinear phase modulation is very sensitive and it can enable high RF-to-IF conversion efficiency. Furthermore, the link linearity is enhanced by canceling the nonlinear distortions from the nonlinear phase modulation and the MZ interferometer. Proof-of-concept measurement was performed. The down-conversion IM-DD link demonstrated 28dB improvement in distortion levels over that of a conventional IM-DD link using a LiNbO3 MZ modulator. PMID:27137278

  8. Evaluation of multiphoton effects in down-conversion

    SciTech Connect

    Yoshimi, Kazuyoshi; Koshino, Kazuki

    2010-04-15

    Multiphoton effects in down-conversion are investigated based on the full-quantum multimode formalism by considering a three-level system as a prototype nonlinear system. We analytically derive the three-photon output wave function for two input photons, where one of the two input photons is down-converted and the other one is not. Using this output wave function, we calculate the down-conversion probability, the purity, and the fidelity to evaluate the entanglement between a down-converted photon pair and a non-down-converted photon. It is shown that the saturation effect occurs by multiphoton input and that it affects both the down-conversion probability and the quantum correlation between the down-converted photon pair and the non-down-converted photon. We also reveal the necessary conditions for multiphoton effects to be strong.

  9. Atmospheric Measurements by Cavity Enhanced Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Yi, Hongming; Wu, Tao; Coeur-Tourneur, Cécile; Fertein, Eric; Gao, Xiaoming; Zhao, Weixiong; Zhang, Weijun; Chen, Weidong

    2015-04-01

    Since the last decade, atmospheric environmental monitoring has benefited from the development of novel spectroscopic measurement techniques owing to the significant breakthroughs in photonic technology from the UV to the infrared spectral domain [1]. In this presentation, we will overview our recent development and applications of cavity enhanced absorption spectroscopy techniques for in situ optical monitoring of chemically reactive atmospheric species (such as HONO, NO3, NO2, N2O5) in intensive campaigns [2] and/or in smog chamber studies [3]. These field deployments demonstrated that modern photonic technologies (newly emergent light sources combined with high sensitivity spectroscopic techniques) can provide a useful tool to improve our understanding of tropospheric chemical processes which affect climate, air quality, and the spread of pollution. Experimental detail and preliminary results will be presented. Acknowledgements. The financial support from the French Agence Nationale de la Recherche (ANR) under the NexCILAS (ANR-11-NS09-0002) and the CaPPA (ANR-10-LABX-005) contracts is acknowledged. References [1] X. Cui, C. Lengignon, T. Wu, W. Zhao, G. Wysocki, E. Fertein, C. Coeur, A. Cassez,L. Croisé, W. Chen, et al., "Photonic Sensing of the Atmosphere by absorption spectroscopy", J. Quant. Spectrosc. Rad. Transfer 113 (2012) 1300-1316 [2] T. Wu, Q. Zha, W. Chen, Z. XU, T. Wang, X. He, "Development and deployment of a cavity enhanced UV-LED spectrometer for measurements of atmospheric HONO and NO2 in Hong Kong", Atmos. Environ. 95 (2014) 544-551 [3] T. Wu, C. Coeur-Tourneur, G. Dhont,A. Cassez, E. Fertein, X. He, W. Chen,"Application of IBBCEAS to kinetic study of NO3 radical formation from O3 + NO2 reaction in an atmospheric simulation chamber", J. Quant. Spectrosc. Rad. Transfer 133 (2014)199-205

  10. Single-photon frequency down-conversion experiment

    SciTech Connect

    Takesue, Hiroki

    2010-07-15

    We report a single-photon frequency down-conversion experiment. Using the difference frequency generation process in a periodically poled lithium niobate waveguide, we successfully observed the phase-preserved frequency down-conversion of a coherent pulse train with an average photon number per pulse of <1, from the 0.7 {mu}m visible wavelength band to the 1.3 {mu}m telecom band. We expect this technology to become an important tool for flexible photonic quantum networking, including the realization of quantum repeater systems over optical fiber using atom-photon entanglement sources for the visible wavelength bands.

  11. Generalized parametric down conversion, many particle interferometry, and Bell's theorem

    NASA Technical Reports Server (NTRS)

    Choi, Hyung Sup

    1992-01-01

    A new field of multi-particle interferometry is introduced using a nonlinear optical spontaneous parametric down conversion (SPDC) of a photon into more than two photons. The study of SPDC using a realistic Hamiltonian in a multi-mode shows that at least a low conversion rate limit is possible. The down converted field exhibits many stronger nonclassical phenomena than the usual two photon parametric down conversion. Application of the multi-particle interferometry to a recently proposed many particle Bell's theorem on the Einstein-Podolsky-Rosen problem is given.

  12. Tuning curve of type-0 spontaneous parametric down-conversion

    NASA Astrophysics Data System (ADS)

    Lerch, Stefan; Bessire, Bänz; Bernhard, Christof; Feurer, Thomas; Stefanov, André

    2013-04-01

    We study the tuning curve of entangled photons generated by type-0 spontaneous parametric down-conversion in a periodically poled KTP crystal. We demonstrate the X-shaped spatiotemporal structure of the spectrum by means of measurements and numerical simulations. Experiments for different pump waists, crystal temperatures, and crystal lengths are in good agreement with numerical simulations.

  13. New Developments of Broadband Cavity Enhanced Spectroscopic Techniques

    NASA Astrophysics Data System (ADS)

    Walsh, A.; Zhao, D.; Linnartz, H.; Ubachs, W.

    2013-06-01

    In recent years, cavity enhanced spectroscopic techniques, such as cavity ring-down spectroscopy (CRDS), cavity enhanced absorption spectroscopy (CEAS), and broadband cavity enhanced absorption spectroscopy (BBCEAS), have been widely employed as ultra-sensitive methods for the measurement of weak absorptions and in the real-time detection of trace species. In this contribution, we introduce two new cavity enhanced spectroscopic concepts: a) Optomechanical shutter modulated BBCEAS, a variant of BBCEAS capable of measuring optical absorption in pulsed systems with typically low duty cycles. In conventional BBCEAS applications, the latter substantially reduces the signal-to-noise ratio (S/N), consequently also reducing the detection sensitivity. To overcome this, we incorporate a fast optomechanical shutter as a time gate, modulating the detection scheme of BBCEAS and increasing the effective duty cycle reaches a value close to unity. This extends the applications of BBCEAS into pulsed samples and also in time-resolved studies. b) Cavity enhanced self-absorption spectroscopy (CESAS), a new spectroscopic concept capable of studying light emitting matter (plasma, flames, combustion samples) simultaneously in absorption and emission. In CESAS, a sample (plasma, flame or combustion source) is located in an optically stable cavity consisting of two high reflectivity mirrors, and here it acts both as light source and absorbing medium. A high detection sensitivity of weak absorption is reached without the need of an external light source, such as a laser or broadband lamp. The performance is illustrated by the first CESAS result on a supersonically expanding hydrocarbon plasma. We expect CESAS to become a generally applicable analytical tool for real time and in situ diagnostics. A. Walsh, D. Zhao, W. Ubachs, H. Linnartz, J. Phys. Chem. A, {dx.doi.org/10.1021/jp310392n}, in press, 2013. A. Walsh, D. Zhao, H. Linnartz Rev. Sci. Instrum. {84}(2), 021608 2013. A. Walsh, D. Zhao

  14. Cavity-enhanced absorption spectroscopy with a ps-pulsed UV laser for sensitive, high-speed measurements in a shock tube.

    PubMed

    Wang, Shengkai; Sun, Kai; Davidson, David F; Jeffries, Jay B; Hanson, Ronald K

    2016-01-11

    We report the first application of cavity-enhanced absorption spectroscopy (CEAS) with a ps-pulsed UV laser for sensitive and rapid gaseous species time-history measurements in a transient environment (in this study, a shock tube). The broadband nature of the ps pulses enabled instantaneous coupling of the laser beam into roughly a thousand cavity modes, which grants excellent immunity to laser-cavity coupling noise in environments with heavy vibrations, even with an on-axis alignment. In this proof-of-concept experiment, we demonstrated an absorption gain of 49, which improved the minimum detectable absorbance by ~20 compared to the conventional single-pass strategy at similar experimental conditions. For absorption measurements behind reflected shock waves, an effective time-resolution of ~2 μs was achieved, which enabled time-resolved observations of transient phenomena, such as the vibrational relaxation of O(2) demonstrated here. The substantial improvement in detection sensitivity, together with microsecond measurement resolution implies excellent potential for studies of transient physical and chemical processes in nonequilibrium situations, particularly via measurements of weak absorptions of trace species in dilute reactive systems. PMID:26832262

  15. Cavity-Enhanced Optical Frequency Comb Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ye, Jun; Thorpe, Michael J.; Adler, Florian; Cossel, Kevin C.

    2009-06-01

    Cavity-enhanced optical frequency comb spectroscopy is a new technique that realizes simultaneously broad spectral coverage and high spectral resolution provided by an optical frequency comb as well as ultrahigh detection sensitivities enabled with a high-finesse optical cavity [1]. These powerful capabilities have been demonstrated in a series of experiments where real-time detection and identification of many different molecular states or species are achieved in a massively parallel fashion [2,3]. We will discuss the principle, technical requirements, and various implementations for this spectroscopic approach, as well as applications that include trace gas detections, human breath analysis, and characterization of cold and ultracold molecules [4,5,6]. References: [1] M. J. Thorpe, K. D. Moll, B. Safdi, and J. Ye, Science 311, 1595 (2006). [2] M. J. Thorpe, D. D. Hudson, K. D. Moll, J. Lasri, and J. Ye, Opt. Lett. 32, 307 (2007). [3] C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hänsch, Phys. Rev. Lett. 99, 263902 (2007). [4] M. J. Thorpe, D. Balslev-Clausen, M. Kirchner, and J. Ye, Opt. Express. 16, 2387 (2008). [5] M. J. Thorpe and J. Ye, Appl. Phys. B 91, 397 (2008). [6] M. J. Thorpe, F. Adler, K. C. Cossel, M. H. G. de Miranda, and J. Ye, Chem. Phys. Lett. 468, 1 (2009).

  16. Practical quantum repeaters with parametric down-conversion sources

    NASA Astrophysics Data System (ADS)

    Krovi, Hari; Guha, Saikat; Dutton, Zachary; Slater, Joshua A.; Simon, Christoph; Tittel, Wolfgang

    2016-03-01

    Conventional wisdom suggests that realistic quantum repeaters will require quasi-deterministic sources of entangled photon pairs. In contrast, we here study a quantum repeater architecture that uses simple parametric down-conversion sources, as well as frequency-multiplexed multimode quantum memories and photon-number-resolving detectors. We show that this approach can significantly extend quantum communication distances compared to direct transmission. This shows that important trade-offs are possible between the different components of quantum repeater architectures.

  17. Schemes for realizing frequency up- and down-conversions in two-mode cavity QED

    SciTech Connect

    Zou Xubo; Dong Yuli; Guo Guangcang

    2006-02-15

    We propose experimental schemes for realizing frequency up- and down-conversion in two-mode cavity QED by considering the atom-cavity interaction in the presence of a strong driving classical field. In contrast to the recent paper based on dispersive atom-cavity interaction [Serra et al., Phys. Rev. A 71, 045802 (2005)], our scheme is based on resonant interaction of the cavity modes with a single driven three-level atom, so that the quantum dynamics operates at a high speed, which is important in view of decoherence. It is shown that, with the help of a strong driving classical field, frequency up- and down-conversion operations can be realized by initially preparing the atom in a certain state.

  18. Dynamic tracking down-conversion signal processing method based on reference signal for grating heterodyne interferometer

    NASA Astrophysics Data System (ADS)

    Wang, Guochao; Yan, Shuhua; Zhou, Weihong; Gu, Chenhui

    2012-08-01

    Traditional displacement measurement systems by grating, which purely make use of fringe intensity to implement fringe count and subdivision, have rigid demands for signal quality and measurement condition, so they are not easy to realize measurement with nanometer precision. Displacement measurement with the dual-wavelength and single-grating design takes advantage of the single grating diffraction theory and the heterodyne interference theory, solving quite well the contradiction between large range and high precision in grating displacement measurement. To obtain nanometer resolution and nanometer precision, high-power subdivision of interference fringes must be realized accurately. A dynamic tracking down-conversion signal processing method based on the reference signal is proposed. Accordingly, a digital phase measurement module to realize high-power subdivision on field programmable gate array (FPGA) was designed, as well as a dynamic tracking down-conversion module using phase-locked loop (PLL). Experiments validated that a carrier signal after down-conversion can constantly maintain close to 100 kHz, and the phase-measurement resolution and phase precision are more than 0.05 and 0.2 deg, respectively. The displacement resolution and the displacement precision, corresponding to the phase results, are 0.139 and 0.556 nm, respectively.

  19. Long Wave Infrared Cavity Enhanced Sensors

    SciTech Connect

    Taubman, Matthew S.; Scott, David C.; Cannon, Bret D.; Myers, Tanya L.; Bonebrake, Christopher A.; Aker, Pam M.; Wojcik, Michael D.; Munley, John T.; Nguyen, Vinh T.; Schultz, John F.

    2004-10-01

    The principal goal of Pacific Northwest National Laboratory's (PNNL's) long wave infrared (LWIR) cavity enhanced sensor (CES) project is to explore ultra-sensitive spectroscopic techniques and apply them to the development of LWIR chemical sensors needed for detecting weapons proliferation. This includes detecting not only the weapons of mass destruction (WMDs) themselves, but also signatures of their production and/or detonation. The LWIR CES project is concerned exclusively with developing point sensors; other portions of PNNL's IR Sensors program address stand off detection. PNNL's LWIR CES research is distinguished from that done by others by the use quantum cascade lasers (QCLs) as the light source. QCLs are novel devices, and a significant fraction of our research has been devoted to developing the procedures and hardware required to implement them most effectively for chemical sensing. This report details the progress we have made on our LWIR CES sensor development. During FY02, PNNL investigated three LWIR CES implementations beginning with the easiest to implement, direct cavity-enhanced detection (simple CES), including a technique of intermediate difficulty, cavity-dithered phase-sensitive detection (FM recovery CES) through to the most complex technique, that of resonant sideband cavity-enhanced detection also known as noise-immune cavity-enhanced optical heterodyne molecular spectroscopy, or NICE-OHMS.

  20. Cavity-Enhanced Ultrafast Spectroscopy

    NASA Astrophysics Data System (ADS)

    Allison, Thomas

    2016-05-01

    Ultrafast optical spectroscopy methods, such as transient absorption spectroscopy and 2D-spectroscopy, are widely used across many disciplines. However, these techniques are typically restricted to optically thick samples, such as solids and liquid solutions. Using a frequency comb laser and optical cavities, we present a new technique for performing ultrafast optical spectroscopy with high sensitivity, enabling work in dilute gas-phase molecular beams. Resonantly enhancing the probe pulses, we demonstrate transient absorption measurements with a detection limit of ΔOD = 2 ×10-10 (1 ×10-9 /√{Hz}). Resonantly enhancing the pump pulses allows us to produce a high excitation fraction at high repetition-rate, so that signals can be recorded from samples with optical densities as low as OD 10-8 , or column densities < 1010 molecules/ cm2. To our knowledge, this represents a 5,000-fold improvement of the state-of-the-art. This work was supported by the National Science Foundation under Grant Number 1404296.

  1. Long Wave Infrared Cavity Enhanced Sensors

    SciTech Connect

    Taubman, Matthew S.; Cannon, Bret D.; Myers, Tanya L.; Bonebrake, Christopher A.; Aker, Pam M.; Schultz, John F.

    2003-10-01

    The LWIR-CES report details the progress made on development of cavity-enhanced chemical sensors operating in the long wave infrared during FY03. This includes confirmation of the operating sensitivities and a detailed investigation of the limitations of these techniques. The principal goal of Pacific Northwest National Laboratory's (PNNL's) long wave infrared (LWIR) cavity enhanced sensor (CES) project is to explore ultra-sensitive spectroscopic techniques and apply them to the development of LWIR chemical sensors needed for detecting signs of weapons proliferation and/or terrorist activities. This includes detecting not only the weapons of mass destruction (WMDs) themselves, but also signatures of their production and/or detonation. The LWIR CES project is concerned exclusively with developing point sensors; other portions of PNNL's IR Sensors program address stand off detection. PNNL's LWIR CES research is distinguished from that done by others by the use of quantum cascade lasers (QCLs) as the light source. QCLs are novel devices, and a significant fraction of our research has been devoted to developing the procedures and hardware required to implement them most effectively for chemical sensing. This report details the progress we have made on our LWIR CES sensor development.

  2. Significance of heralding in spontaneous parametric down-conversion

    NASA Astrophysics Data System (ADS)

    Bashkansky, Mark; Vurgaftman, Igor; Pipino, Andrew C. R.; Reintjes, J.

    2014-11-01

    Single photons exhibit nonclassical, counterintuitive behavior that can be exploited in the developing field of quantum technology. They are needed for various applications such as quantum key distribution, optical quantum information processing, quantum computing, intensity measurement standards, and others yet to be discovered in this developing field. This drives the current intensive research into the realization of true deterministic sources of single photons on demand. Lacking such a source, many researchers default to the well-established workhorse: spontaneous parametric down-conversion that generates entangled signal-idler pairs. Since this source is thermal statistical in nature, it is common to use a detected idler photon to herald the production of a signal photon. The need exists to determine the quality of the single photons generated in the heralded signal beam. Quite often, the literature reports a heralded second-order coherence function of the signal photons conditioned on the idler photons using readily available single-photon detectors. In this work we examine the applicability of this technique to single-photon characterization and the consequences of the fact that the most commonly used single-photon detectors are not photon-number resolving. Our results show that this method using non-photon-resolving detectors can only be used to characterize the signal-idler correlations rather than the nature of the signal-photon state alone.

  3. Long Wave Infrared Cavity Enhanced Sensors

    SciTech Connect

    Taubman, Matthew S.; Scott, David C.; Cannon, Bret D.; Myers, Tanya L.; Munley, John T.; Nguyen, Vinh T.; Schultz, John F.

    2005-12-01

    The principal goal of Pacific Northwest National Laboratory's (PNNL's) long wave infrared (LWIR) cavity enhanced sensor (CES) task is to explore ultra-sensitive spectroscopic chemical sensing techniques and apply them to detecting proliferation of weapons of mass destruction (WMD). Our primary application is detecting signatures of WMD production, but LWIR CES techniques are also capable of detecting chemical weapons. The LWIR CES task is concerned exclusively with developing novel point sensors; stand-off detection is addressed by other PNNL tasks and projects. PNNL's LWIR CES research is distinguished from that done by others by the use quantum cascade lasers (QCLs) as the light source. QCLs are novel devices, and a significant fraction of our research has been devoted to developing the procedures and hardware required to implement them most effectively for chemical sensing. This report details the progress we have made on LWIR CES sensor development.

  4. Characterization of photons generated in spontaneous parametric down-conversion

    NASA Astrophysics Data System (ADS)

    Bashkansky, Mark; Vurgaftman, Igor; Reintjes, J.

    2014-05-01

    Low-photon-number sources can exhibit non-classical, counterintuitive behavior that can be exploited in the developing field of quantum technology. Single photons play a special role in this arena since they represent the ultimate lowphoton- number source. They are considered an important element in various applications such as quantum key distribution, optical quantum information processing, quantum computing, intensity measurement standards, and others yet to be discovered in this developing field. True deterministic sources of single photons on demand are currently an area of intensive research, but have not been demonstrated in a practical setting. As a result, researchers commonly default to the well-established workhorse: spontaneous parametric down-conversion generating entangled signal-idler pairs. Since this source is thermal-statistical in nature, it is common to use a detected idler photon to herald the production of a signal photon. The need exists to determine the quality of the single photons generated in the heralded signal beam. Quite often, the literature reports a "heralded second-order coherence function" of the signal photons conditioned on the idler photons using readily available single-photon detectors. In this work, we examine the applicability of this technique to single-photon characterization and the consequences of the fact that the most commonly used single-photon detectors are not photon-number resolving. Our results show that this method using non-photonresolving detectors can only be used to characterize the signal-idler correlations rather than the nature of the signalphoton state alone.

  5. Down conversion of Er3+-Yb3+ couple in Y2BaZnO5

    NASA Astrophysics Data System (ADS)

    Xia, Wenbin; Jin, Xiangliang; Yang, Xiaoliang; Xiao, Siguo

    2016-04-01

    Er3+-Yb3+ co-doped Y2BaZnO5 phosphors were synthesized via high temperature solid-state reaction method. The quantum cutting properties for Er3+-Yb3+ co-doped Y2BaZnO5 phosphors have been detailedly exploited under different wavelength excitation. Unlike in fluoride host, only the Er(4S3/2) + Yb(2F7/2) → Er(4I13/2) + Yb(2F5/2) energy transfer process in Y2BaZnO5 effectively performs the down-conversion, which can split an absorbed high-energy photon into two photons of 1000 nm and 1550 nm radiations. The quantum cutting properties of Er3+-Yb3+ couple in Y2BaZnO5 provides meaningful reference in search of new efficient Er3+-Yb3+ co-doped quantum cutting phosphors.

  6. Parameter Estimation with Entangled Photons Produced by Parametric Down-Conversion

    NASA Technical Reports Server (NTRS)

    Cable, Hugo; Durkin, Gabriel A.

    2010-01-01

    We explore the advantages offered by twin light beams produced in parametric down-conversion for precision measurement. The symmetry of these bipartite quantum states, even under losses, suggests that monitoring correlations between the divergent beams permits a high-precision inference of any symmetry-breaking effect, e.g., fiber birefringence. We show that the quantity of entanglement is not the key feature for such an instrument. In a lossless setting, scaling of precision at the ultimate "Heisenberg" limit is possible with photon counting alone. Even as photon losses approach 100% the precision is shot-noise limited, and we identify the crossover point between quantum and classical precision as a function of detected flux. The predicted hypersensitivity is demonstrated with a Bayesian simulation.

  7. Silicon coding-decoding photonic device by electron irradiation and light down conversion

    NASA Astrophysics Data System (ADS)

    Malyutenko, V. K.; Tykhonov, A. N.; Malyutenko, O. Yu.; Rohutskii, I. S.; Danilchenko, B. A.

    2012-10-01

    We propose and demonstrate a coding-decoding procedure as an important step to realize one more Si-based photonic device. Low-fluence (<1014 e/cm2) high-energy (1 MeV) electron irradiation of a bulk Si matrix is used to code an information by forming local regions with lower free carrier lifetime that are hidden under the surface and invisible to the eye. Short-wavelength (<1 μm) free carrier generation stands for multiple, remote, and nondestructive decoding process, which makes it easy to dynamically (ms range) visualize a code by capturing two-dimensional pattern of thermal emission in the longer-wavelength (3-12 μm) band (light down conversion).

  8. Cavity-enhanced Raman microscopy of individual carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Hümmer, Thomas; Noe, Jonathan; Hofmann, Matthias S.; Hänsch, Theodor W.; Högele, Alexander; Hunger, David

    2016-07-01

    Raman spectroscopy reveals chemically specific information and provides label-free insight into the molecular world. However, the signals are intrinsically weak and call for enhancement techniques. Here, we demonstrate Purcell enhancement of Raman scattering in a tunable high-finesse microcavity, and utilize it for molecular diagnostics by combined Raman and absorption imaging. Studying individual single-wall carbon nanotubes, we identify crucial structural parameters such as nanotube radius, electronic structure and extinction cross-section. We observe a 320-times enhanced Raman scattering spectral density and an effective Purcell factor of 6.2, together with a collection efficiency of 60%. Potential for significantly higher enhancement, quantitative signals, inherent spectral filtering and absence of intrinsic background in cavity-vacuum stimulated Raman scattering render the technique a promising tool for molecular imaging. Furthermore, cavity-enhanced Raman transitions involving localized excitons could potentially be used for gaining quantum control over nanomechanical motion and open a route for molecular cavity optomechanics.

  9. Cavity-enhanced resonant tunneling photodetector at telecommunication wavelengths

    SciTech Connect

    Pfenning, Andreas Hartmann, Fabian; Langer, Fabian; Höfling, Sven; Kamp, Martin; Worschech, Lukas

    2014-03-10

    An AlGaAs/GaAs double barrier resonant tunneling diode (RTD) with a nearby lattice-matched GaInNAs absorption layer was integrated into an optical cavity consisting of five and seven GaAs/AlAs layers to demonstrate cavity enhanced photodetection at the telecommunication wavelength 1.3 μm. The samples were grown by molecular beam epitaxy and RTD-mesas with ring-shaped contacts were fabricated. Electrical and optical properties were investigated at room temperature. The detector shows maximum photocurrent for the optical resonance at a wavelength of 1.29 μm. At resonance a high sensitivity of 3.1×10{sup 4} A/W and a response up to several pA per photon at room temperature were found.

  10. Low-noise quantum frequency down-conversion of indistinguishable photons (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kambs, Benjamin; Kettler, Jan; Bock, Matthias; Becker, Jonas; Arend, Carsten; Jetter, Michael; Michler, Peter; Becher, Christoph

    2016-04-01

    Single-photon sources based on quantum dots have been shown to exhibit almost ideal properties such as high brightness and purity in terms of clear anti-bunching as well as high two-photon interference visibilities of the emitted photons, making them promising candidates for different quantum information applications such as quantum computing, quantum communication and quantum teleportation. However, as most single-photon sources also quantum dots typically emit light at wavelengths of electronic transitions within the visible or the near infrared range. In order to establish quantum networks with remote building blocks, low-loss single photons at telecom wavelengths are preferable, though. Despite recent progress on emitters of telecom-photons, the most efficient single-photon sources still work at shorter wavelengths. On that matter, quantum frequency down-conversion, being a nonlinear optical process, has been used in recent years to alter the wavelength of single photons to the telecom wavelength range while conserving their nonclassical properties. Characteristics such as lifetime, first-order coherence, anti-bunching and entanglement have been shown to be conserved or even improved due to background suppression during the conversion process, while the conservation of indistinguishability was yet to be shown. Here we present our experimental results on quantum frequency down-conversion of single photons emitted by an InAs/GaAs quantum dot at 903.6 nm following a pulsed excitation of a p-shell exciton at 884 nm. The emitted fluorescence photons are mixed with a strong pump-field at 2155 nm inside a periodically poled lithium niobate ridge waveguide and converted to 1557 nm. Common issues of a large background due to Raman-scattered pump-light photons spectrally overlapping with the converted single photons could largely be avoided, as the pump-wavelength was chosen to be fairly longer than the target wavelength. Additional narrowband spectral filtering at the

  11. Noise-Immune Cavity-Enhanced Optical Frequency Comb Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rutkowski, Lucile; Khodabakhsh, Amir; Johanssson, Alexandra C.; Foltynowicz, Aleksandra

    2015-06-01

    We present noise-immune cavity-enhanced optical frequency comb spectroscopy (NICE-OFCS), a recently developed technique for sensitive, broadband, and high resolution spectroscopy. In NICE-OFCS an optical frequency comb (OFC) is locked to a high finesse cavity and phase-modulated at a frequency precisely equal to (a multiple of) the cavity free spectral range. Since each comb line and sideband is transmitted through a separate cavity mode in exactly the same way, any residual frequency noise on the OFC relative to the cavity affects each component in an identical manner. The transmitted intensity contains a beat signal at the modulation frequency that is immune to frequency-to-amplitude noise conversion by the cavity, in a way similar to continuous wave noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS). The light transmitted through the cavity is detected with a fast-scanning Fourier-transform spectrometer (FTS) and the NICE-OFCS signal is obtained by fast Fourier transform of the synchronously demodulated interferogram. Our NICE-OFCS system is based on an Er:fiber femtosecond laser locked to a cavity with a finesse of ˜9000 and a fast-scanning FTS equipped with a high-bandwidth commercial detector. We measured NICE-OFCS signals from the 3νb{1}+νb{3} overtone band of CO_2 around 1.57 μm and achieved absorption sensitivity 6.4×10-11cm-1 Hz-1/2 per spectral element, corresponding to a minimum detectable CO_2 concentration of 25 ppb after 330 s integration time. We will describe the principles of the technique and its technical implementation, and discuss the spectral lineshapes of the NICE-OFCS signals. A. Khodabakhsh, C. Abd Alrahman, and A. Foltynowicz, Opt. Lett. 39, 5034-5037 (2014). J. Ye, L. S. Ma, and J. L. Hall, J. Opt. Soc. Am. B 15, 6-15 (1998). A. Khodabakhsh, A. C. Johansson, and A. Foltynowicz, Appl. Phys. B (2015) doi:10.1007/s00340-015-6010-7.

  12. Broadband Comb-Resolved Cavity Enhanced Spectrometer with Graphene Modulator

    NASA Astrophysics Data System (ADS)

    Lee, Kevin; Mohr, Christian; Jiang, Jie; Fermann, Martin; Lee, Chien-Chung; Schibli, Thomas R.; Kowzan, Grzegorz; Maslowski, Piotr

    2015-06-01

    Optical cavities enhance sensitivity in absorption spectroscopy. While this is commonly done with single wavelengths, broad bandwidths can be coupled into the cavity using frequency combs. The combination of cavity enhancement and broad bandwidth allows simultaneous measurement of tens of transitions with high signal-to-noise for even weak near-infrared transitions. This removes the need for time-consuming sequencing acquisition or long-term averaging, so any systematic errors from long-term drifts of the experimental setup or slow changes of sample composition are minimized. Resolving comb lines provides a high accuracy, absolute frequency axis. This is of great importance for gas metrology and data acquisition for future molecular lines databases, and can be applied to simultaneous trace-gas detection of gas mixtures. Coupling of a frequency comb into a cavity can be complex, so we introduce and demonstrate a simplification. The Pound-Drever-Hall method for locking a cavity and a frequency comb together requires a phase modulation of the laser output. We use the graphene modulator that is already in the Tm fiber laser cavity for controlling the carrier envelope offset of the frequency comb, rather than adding a lossy external modulator. The graphene modulator can operate at frequencies of over 1~ MHz, which is sufficient for controlling the laser cavity length actuator which operates below 100~kHz. We match the laser cavity length to fast variations of the enhancement cavity length. Slow variations are stabilized by comparison of the pulse repetition rate to a GPS reference. The carrier envelope offset is locked to a constant value chosen to optimize the transmitted spectrum. The transmitted pulse train is a stable frequency comb suitable for long measurements, including the acquisition of comb-resolved Fourier transform spectra with a minimum absorption coefficient of about 2×10-7 wn. For our 38 cm long enhancement cavity, the comb spacing is 394~MHz. With our

  13. Applications of Cavity-Enhanced Direct Frequency Comb Spectroscopy

    NASA Astrophysics Data System (ADS)

    Cossel, Kevin C.; Adler, Florian; Maslowski, Piotr; Ye, Jun

    2010-06-01

    Cavity-enhanced direct frequency comb spectroscopy (CE-DFCS) is a unique technique that provides broad bandwidth, high resolution, and ultra-high detection sensitivities. This is accomplished by combining a femtosecond laser based optical frequency comb with an enhancement cavity and a broadband, multichannel imaging system. These systems are capable of simultaneously recording many terahertz of spectral bandwidth with sub-gigahertz resolution and absorption sensitivities of 1×10-7 cm-1 Hz-1/2. In addition, the ultrashort pulses enable efficient nonlinear processes, which makes it possible to reach spectral regions that are difficult to access with conventional laser sources. We will present an application of CE-DFCS for trace impurity detection in the semiconductor processing gas arsine near 1.8 μm and the development of a high-power, mid-infrared frequency comb for breath analysis in the 2.8-4.8 μm region. M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye. Science 311, 1595-1599 (2006) F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye. Annu. Rev. Anal. Chem. 3, 175-205 (2010) F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye. Opt. Lett. 34, 1330-1332 (2009)

  14. Entangled photon pair generation by spontaneous parametric down-conversion in finite-length one-dimensional photonic crystals

    SciTech Connect

    Centini, M.; Sciscione, L.; Sibilia, C.; Bertolotti, M.; Perina, J. Jr.; Scalora, M.; Bloemer, M.J.

    2005-09-15

    A description of spontaneous parametric down-conversion in finite-length one-dimensional nonlinear photonic crystals is developed using semiclassical and quantum approaches. It is shown that if a suitable averaging is added to the semiclassical model, its results are in very good agreement with the quantum approach. We propose two structures made with GaN/AlN that generate both degenerate and nondegenerate entangled photon pairs. Both structures are designed so as to achieve a high efficiency of the nonlinear process.

  15. A versatile design for resonant guided-wave parametric down-conversion sources for quantum repeaters

    NASA Astrophysics Data System (ADS)

    Brecht, Benjamin; Luo, Kai-Hong; Herrmann, Harald; Silberhorn, Christine

    2016-05-01

    Quantum repeaters—fundamental building blocks for long-distance quantum communication—are based on the interaction between photons and quantum memories. The photons must fulfil stringent requirements on central frequency, spectral bandwidth and purity in order for this interaction to be efficient. We present a design scheme for monolithically integrated resonant photon-pair sources based on parametric down-conversion in nonlinear waveguides, which facilitate the generation of such photons. We investigate the impact of different design parameters on the performance of our source. The generated photon spectral bandwidths can be varied between several tens of MHz up to around 1 GHz, facilitating an efficient coupling to different memories. The central frequency of the generated photons can be coarsely tuned by adjusting the pump frequency, poling period and sample temperature, and we identify stability requirements on the pump laser and sample temperature that can be readily fulfilled with off-the-shelf components. We find that our source is capable of generating high-purity photons over a wide range of photon bandwidths. Finally, the PDC emission can be frequency fine-tuned over several GHz by simultaneously adjusting the sample temperature and pump frequency. We conclude our study with demonstrating the adaptability of our source to different quantum memories.

  16. Real-time multiplexed digital cavity-enhanced spectroscopy

    DOE PAGESBeta

    Boyson, Toby K.; Dagdigian, Paul J.; Pavey, Karl D.; Fitzgerald, Nicholas J.; Spence, Thomas G.; Moore, David S.; Harb, Charles C.

    2015-10-01

    Cavity-enhanced spectroscopy is a sensitive optical absorption technique but one where the practical applications have been limited to studying small wavelength ranges. In addition, this Letter shows that wideband operation can be achieved by combining techniques usually reserved for the communications community with that of cavity-enhanced spectroscopy, producing a multiplexed real-time cavity-enhanced spectrometer. We use multiple collinear laser sources operating asynchronously and simultaneously while being detected on a single photodetector. This is synonymous with radio frequency (RF) cellular systems in which signals are detected on a single antenna but decoded uniquely. Here, we demonstrate results with spectra of methyl salicylatemore » and show parts-per-billion per root hertz sensitivity measured in real-time.« less

  17. Real-time multiplexed digital cavity-enhanced spectroscopy

    SciTech Connect

    Boyson, Toby K.; Dagdigian, Paul J.; Pavey, Karl D.; Fitzgerald, Nicholas J.; Spence, Thomas G.; Moore, David S.; Harb, Charles C.

    2015-10-01

    Cavity-enhanced spectroscopy is a sensitive optical absorption technique but one where the practical applications have been limited to studying small wavelength ranges. In addition, this Letter shows that wideband operation can be achieved by combining techniques usually reserved for the communications community with that of cavity-enhanced spectroscopy, producing a multiplexed real-time cavity-enhanced spectrometer. We use multiple collinear laser sources operating asynchronously and simultaneously while being detected on a single photodetector. This is synonymous with radio frequency (RF) cellular systems in which signals are detected on a single antenna but decoded uniquely. Here, we demonstrate results with spectra of methyl salicylate and show parts-per-billion per root hertz sensitivity measured in real-time.

  18. Real-time multiplexed digital cavity-enhanced spectroscopy.

    PubMed

    Boyson, Toby K; Dagdigian, Paul J; Pavey, Karl D; FitzGerald, Nicholas J; Spence, Thomas G; Moore, David S; Harb, Charles C

    2015-10-01

    Cavity-enhanced spectroscopy is a sensitive optical absorption technique but one where the practical applications have been limited to studying small wavelength ranges. This Letter shows that wideband operation can be achieved by combining techniques usually reserved for the communications community with that of cavity-enhanced spectroscopy, producing a multiplexed real-time cavity-enhanced spectrometer. We use multiple collinear laser sources operating asynchronously and simultaneously while being detected on a single photodetector. This is synonymous with radio frequency (RF) cellular systems in which signals are detected on a single antenna but decoded uniquely. Here, we demonstrate results with spectra of methyl salicylate and show parts-per-billion per root hertz sensitivity measured in real-time. PMID:26421581

  19. Spatial Symmetry and Conservation of Orbital Angular Momentum in Spontaneous Parametric Down-Conversion

    SciTech Connect

    Feng Sheng; Kumar, Prem

    2008-10-17

    Directly contradictory arguments coexist regarding the conservation rule of orbital angular momentum in spontaneous parametric down-conversion. We analytically show how this rule is decided by spatial symmetry. We discover that the down-converted photon pairs can carry non-negligible extrinsic orbital angular momentum in the degrees of relative-movement freedom due to spatial symmetry breaking, leading to nonconservation of total orbital angular momentum in type-II down-conversion. Also, we demonstrate that the traditional technique does not measure the extrinsic orbital angular momentum.

  20. Spatial symmetry and conservation of orbital angular momentum in spontaneous parametric down-conversion.

    PubMed

    Feng, Sheng; Kumar, Prem

    2008-10-17

    Directly contradictory arguments coexist regarding the conservation rule of orbital angular momentum in spontaneous parametric down-conversion. We analytically show how this rule is decided by spatial symmetry. We discover that the down-converted photon pairs can carry non-negligible extrinsic orbital angular momentum in the degrees of relative-movement freedom due to spatial symmetry breaking, leading to nonconservation of total orbital angular momentum in type-II down-conversion. Also, we demonstrate that the traditional technique does not measure the extrinsic orbital angular momentum. PMID:18999668

  1. Cavity-enhanced Raman microscopy of individual carbon nanotubes

    PubMed Central

    Hümmer, Thomas; Noe, Jonathan; Hofmann, Matthias S.; Hänsch, Theodor W.; Högele, Alexander; Hunger, David

    2016-01-01

    Raman spectroscopy reveals chemically specific information and provides label-free insight into the molecular world. However, the signals are intrinsically weak and call for enhancement techniques. Here, we demonstrate Purcell enhancement of Raman scattering in a tunable high-finesse microcavity, and utilize it for molecular diagnostics by combined Raman and absorption imaging. Studying individual single-wall carbon nanotubes, we identify crucial structural parameters such as nanotube radius, electronic structure and extinction cross-section. We observe a 320-times enhanced Raman scattering spectral density and an effective Purcell factor of 6.2, together with a collection efficiency of 60%. Potential for significantly higher enhancement, quantitative signals, inherent spectral filtering and absence of intrinsic background in cavity-vacuum stimulated Raman scattering render the technique a promising tool for molecular imaging. Furthermore, cavity-enhanced Raman transitions involving localized excitons could potentially be used for gaining quantum control over nanomechanical motion and open a route for molecular cavity optomechanics. PMID:27402165

  2. Cavity-enhanced Raman microscopy of individual carbon nanotubes.

    PubMed

    Hümmer, Thomas; Noe, Jonathan; Hofmann, Matthias S; Hänsch, Theodor W; Högele, Alexander; Hunger, David

    2016-01-01

    Raman spectroscopy reveals chemically specific information and provides label-free insight into the molecular world. However, the signals are intrinsically weak and call for enhancement techniques. Here, we demonstrate Purcell enhancement of Raman scattering in a tunable high-finesse microcavity, and utilize it for molecular diagnostics by combined Raman and absorption imaging. Studying individual single-wall carbon nanotubes, we identify crucial structural parameters such as nanotube radius, electronic structure and extinction cross-section. We observe a 320-times enhanced Raman scattering spectral density and an effective Purcell factor of 6.2, together with a collection efficiency of 60%. Potential for significantly higher enhancement, quantitative signals, inherent spectral filtering and absence of intrinsic background in cavity-vacuum stimulated Raman scattering render the technique a promising tool for molecular imaging. Furthermore, cavity-enhanced Raman transitions involving localized excitons could potentially be used for gaining quantum control over nanomechanical motion and open a route for molecular cavity optomechanics. PMID:27402165

  3. Nondestructive measurement of intensity of optical fields using spontaneous parametric down conversion

    NASA Technical Reports Server (NTRS)

    Penin, A. N.; Kitaeva, G. KH.; Sergienko, A. V.

    1992-01-01

    Results of nondestructive measurements of intensity (photons per mode) of light from different sources are discussed. The procedure of measurement does not destroy the state of the optical field. The method is based on using the second order nonlinearity of crystal media lacking a center of symmetry and the nonclassical properties of the process of Spontaneous Parametric Down Conversion (SPDC).

  4. Simple class of nonclassical states generated by seeded down-conversion and imperfect photon detection

    NASA Astrophysics Data System (ADS)

    Söderholm, Jonas; Inoue, Shuichiro

    2009-04-01

    We have analyzed a scheme employing seeded nondegenerate down-conversion and a single-photon threshold detector with non-unit quantum efficiency and finite dark-count probability. The single-mode state generated conditioned on the click of the detector is found to be easily expressed using the negative binomial distribution.

  5. Cavity-Enhanced Frequency-Agile Rapid Scanning (fars) Spectroscopy: Measurement Principles

    NASA Astrophysics Data System (ADS)

    Hodges, Joseph T.; Long, David A.; Truong, Gar-Wing; Douglass, Kevin O.; Maxwell, Stephen E.; Zee, Roger Van; Plusquellic, David F.

    2013-06-01

    We present the principles of frequency-agile, rapid scanning (FARS) spectroscopy, a new technique for high-bandwidth, cavity-enhanced, laser absorption measurements. This method enables a visible or near-infrared probe laser beam to be frequency tuned over several tens of GHz using a microwave source, a waveguide phase modulator and a filter cavity. For the types of cavity-enhanced methods discussed here, the optical resonator itself is used to select a single sideband of the modulated laser spectrum, obviating the need for a separate filter cavity. FARS offers several important advantages over conventional cw laser tuning methods based on thermal or mechanical methods. These include, high speed tuning with sub-ms switching times, the ability to select arbitrary frequency steps or chirp rates, and the realization of a spectrum detuning axis with sub-kHz level precision. We discuss how FARS can be applied to cavity ring-down spectroscopy and other cavity-enhanced methods to enable rapid and accurate measurements of line parameters and to give noise-equivalent absorption coefficients at the 10^{-12} cm^{-1} Hz^{-1/2} level.

  6. Cavity Enhanced Ultrafast Transient Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Allison, Thomas K.; Reber, Melanie Roberts; Chen, Yuning

    2015-06-01

    Ultrafast spectroscopy on gas phase systems is typically restricted to techniques involving photoionization, whereas solution phase experiments utilize the detection of light. At Stony Brook, we are developing new techniques for performing femtosecond time-resolved spectroscopy using frequency combs and high-finesse optical resonators. A large detection sensitivity enhancement over traditional methods enables the extension of all-optical ultrafast spectroscopies, such as broad-band transient absorption spectroscopy (TAS) and 2D spectroscopy, to dilute gas phase samples produced in molecular beams. Here, gas phase data can be directly compared to solution phase data. Initial demonstration experiments are focusing on the photodissociation of iodine in small neutral argon clusters, where cluster size strongly influences the effects solvent-caging and geminate recombination. I will discuss these initial results, our high power home-built Yb:fiber laser systems, and also extensions of the methods to the mid-IR to study the vibrational dynamics of hydrogen bonded clusters.

  7. Warm white LED light by frequency down-conversion of mixed yellow and red Lumogen

    NASA Astrophysics Data System (ADS)

    Mosca, Mauro; Caruso, Fulvio; Zambito, Leandro; Seminara, Biagio; Macaluso, Roberto; Calı, Claudio; Feltin, Eric

    2013-05-01

    This work reports on the benefits and promising opportunities offered by white LED hybrid technology, based on a mixing perylene-based dyes in order to obtain a warm white light for frequency-down conversion. In a standard Ce:YAG-based white LED, the white light appears cold due to the weakness of red wavelength components in the emission spectrum. In order to obtain a warmer white, one possible solution is to add a red phosphor to the yellow one to move the chromatic coordinates properly, though the luminous efficiency drastically decreases due to the increased light absorption of the coating layer. It is generally believed that the low efficiency of warm white LEDs is the main issue today for LED-based lighting. Using photoluminescence of Lumogen® F Yellow 083, a perylene-based polymer dye commercialized by BASF, and adding a small quantity of another perylene-based dye, Lumogen® F Red 305 (BASF), we obtained high-efficiency warm white LEDs by yellow and red conversion from a standard 450 nm GaN/InGaN royal blue LED. Different weight proportions of dyes were dissolved in solutions with equal amounts of poly-methyl-methacrylate (PMMA) in ethyl acetate, then the LEDs were dip-coated in each solution and optically characterized. Record values of 8.03 lm of luminous flux and 116.11 lm/W of optical efficiency were achieved. Finally, the effects of both driving current, and pump wavelength on LED performances - such as chromatic coordinates, correlated color temperature, color rendering index (CRI), and optical efficiency - were investigated.

  8. Nanophotonics and nanochemistry: controlling the excitation dynamics for frequency up- and down-conversion in lanthanide-doped nanoparticles.

    PubMed

    Chen, Guanying; Yang, Chunhui; Prasad, Paras N

    2013-07-16

    Nanophotonics is an emerging science dealing with the interaction of light and matter on a nanometer scale and holds promise to produce new generation nanophosphors with highly efficient frequency conversion of infrared (IR) light. Scientists can control the excitation dynamics by using nanochemistry to produce hierarchically built nanostructures and tailor their interfaces. These nanophosphors can either perform frequency up-conversion from IR to visible or ultraviolet (UV) or down-conversion, which results in the IR light being further red shifted. Nanophotonics and nanochemistry open up numerous opportunities for these photon converters, including in high contrast bioimaging, photodynamic therapy, drug release and gene delivery, nanothermometry, and solar cells. Applications of these nanophosphors in these directions derive from three main stimuli. Light excitation and emission within the near-infrared (NIR) "optical transparency window" of tissues is ideal for high contrast in vitro and in vivo imaging. This is due to low natural florescence, reduced scattering background, and deep penetration in tissues. Secondly, the naked eye is highly sensitive in the visible range, but it has no response to IR light. Therefore, many scientists have interest in the frequency up-conversion of IR wavelengths for security and display applications. Lastly, frequency up-conversion can convert IR photons to higher energy photons, which can then readily be absorbed by solar materials. Current solar devices do not use abundant IR light that comprises almost half of solar energy. In this Account, we present our recent work on nanophotonic control of frequency up- and down-conversion in fluoride nanophosphors, and their biophotonic and nanophotonic applications. Through nanoscopic control of phonon dynamics, electronic energy transfer, local crystal field, and surface-induced non-radiative processes, we were able to produce new generation nanophosphors with highly efficient frequency

  9. Resonant cavity enhanced multi-analyte sensing

    NASA Astrophysics Data System (ADS)

    Bergstein, David Alan

    Biological research and medicine increasingly depend on interrogating binding interactions among small segments of DNA, RNA, protein, and bio-specific small molecules. Microarray technology, which senses the affinity for target molecules in solution for a multiplicity of capturing agents fixed to a surface, has been used in biological research for gene expression profiling and in medicine for molecular biomarker detection. Label-free affinity sensing is preferable as it avoids fluorescent labeling of the target molecules, reducing test cost and variability. The Resonant Cavity Imaging Biosensor (RCIB) is a label-free optical inference based technique introduced that scales readily to high throughput and employs an optical resonant cavity to enhance sensitivity by a factor of 100 or more. Near-infrared light centered at 1512.5 nm couples resonantly through a cavity constructed from Si/SiO2 Bragg reflectors, one of which serves as the binding surface. As the wavelength is swept 5 nm, an Indium-Gallium-Arsenide digital camera monitors cavity transmittance at each pixel with resolution 128 x 128. A wavelength shift in the local resonant response of the optical cavity indicates binding. Positioning the sensing surface with respect to the standing wave pattern of the electric field within the cavity, one can control the sensitivity of the measurement to the presence of bound molecules thereby enhancing or suppressing sensitivity where appropriate. Transmitted intensity at thousands of pixel locations are recorded simultaneously in a 10 s, 5 nm scan. An initial proof-of-principle setup was constructed. A sample was fabricated with 25, 100 mum wide square regions, each with a different density of 1 mum square depressions etched 12 nm into the S1O 2 surface. The average depth of each etched region was found with 0.05 nm RMS precision when the sample remains loaded in the setup and 0.3 nm RMS precision when the sample is removed and replaced. Selective binding of the protein

  10. Large-scale silicon photonic infrared scene projector by down conversion

    NASA Astrophysics Data System (ADS)

    Malyutenko, V. K.

    2012-06-01

    Aimed to pursue the development of infrared scene projection technology beyond the current state-of-the-art, we consider advantages of all-silicon bulk pixelless photonic projectors by light down conversion in comparison with thermal emitter micromachining devices available in the market. There are several reasons for this. First, there are firm evidences that the technology and performance of thermal emitters have already plateaued and future advances in the field do not seem assured. Second, we show that photonic devices by light down conversion evolved from scientific curiosity into technology poised to offer new capabilities to broadband projector applications. Finally, we demonstrate that silicon becomes enabling material for emitting structures operating in the short, mid, and long wave IR spectral bands.

  11. Parametric down-conversion and polariton pair generation in optomechanical systems.

    PubMed

    Liu, Yong-Chun; Xiao, Yun-Feng; Chen, You-Ling; Yu, Xiao-Chong; Gong, Qihuang

    2013-08-23

    We demonstrate that the nonlinear optomechanical interaction leads to parametric down-conversion, capable of generating polariton pairs formed by photons and phonons. The nonlinearity is resonantly enhanced through frequency matching, and such parametric down-conversion does not require the stringent condition that the single-photon optomechanical coupling strength g be on the order of the mechanical resonance frequency ω(m). We provide analytical results for the frequency matching condition and derive the nonlinear coefficient. Numerical simulations on polariton pair generation are presented, showing that photonlike polaritons, phononlike polaritons, and mixed photon-phonon polaritons can be selectively generated. Such nonlinear interaction offers a promising way for harnessing the optomechanical nonlinearity to manipulate photons and phonons. PMID:24010437

  12. Formalization and experimental evaluation of cavity-enhanced holographic readout

    NASA Astrophysics Data System (ADS)

    Miller, Bo E.; Takashima, Yuzuru

    2014-09-01

    We formalize the theoretical effects of optical resonator enhancement on diffraction efficiency, read rate, and write rate of plane wave holograms, with a view toward page based holographic data storage. Trade-offs in cavity enhancement are also examined. Theory predicts ~160% of enhancement in diffraction efficiency is feasible when power loss of the hologram is ~8% and diffraction efficiency is ~8%. We report experimental verification of ~30% enhancement of diffraction efficiency for a hologram written in 0.03% Fe:LiNbO3 (Deltronic Crystal Industries, Inc.) with a 532 nm wavelength, pulsed, DPSS, Nd-YAG, laser and read by a red He-Ne laser. The Bragg selectivity width under the cavityenhanced readout is experimentally confirmed to be unaffected by cavity enhancement, and it agrees with theoretical prediction.

  13. Two-Photon Entanglement and EPR Experiments Using Type-2 Spontaneous Parametric Down Conversion

    NASA Technical Reports Server (NTRS)

    Sergienko, A. V.; Shih, Y. H.; Pittman, T. B.; Rubin, M. H.

    1996-01-01

    Simultaneous entanglement in spin and space-time of a two-photon quantum state generated in type-2 spontaneous parametric down-conversion is demonstrated by the observation of quantum interference with 98% visibility in a simple beam-splitter (Hanburry Brown-Twiss) anticorrelation experiment. The nonlocal cancellation of two-photon probability amplitudes as a result of this double entanglement allows us to demonstrate two different types of Bell's inequality violations in one experimental setup.

  14. Derivation of the density matrix of a single photon produced in parametric down-conversion

    SciTech Connect

    Kolenderski, Piotr; Wasilewski, Wojciech

    2009-07-15

    We discuss an effective numerical method of density matrix determination of fiber coupled single photon generated in process of spontaneous parametric down conversion in type I noncollinear configuration. The presented theory has been successfully applied in case of source utilized to demonstrate the experimental characterization of spectral state of single photon, what was reported in Wasilewski, Kolenderski, and Frankowski [Phys. Rev. Lett. 99, 123601 (2007)].

  15. Frequency up- and down-conversions in two-mode cavity quantum electrodynamics

    SciTech Connect

    Serra, R.M.; Villas-Boas, C.J.; Moussa, M.H.Y.; Almeida, N.G. de

    2005-04-01

    In this Brief Report we present a scheme for the implementation of frequency up- and down-conversion operations in two-mode cavity quantum electrodynamics (QED). This protocol for engineering bilinear two-mode interactions could enlarge perspectives for quantum-information manipulation and also be employed for fundamental tests of quantum theory in cavity QED. As an application we show how to generate a two-mode squeezed state in cavity QED (the original entangled state of Einstein, Podolsky, and Rosen)

  16. Quadripartite continuous-variable entanglement via quadruply concurrent down-conversion

    SciTech Connect

    Midgley, S. L. W.; Olsen, M. K.; Bradley, A. S.; Pfister, O.

    2010-06-15

    We investigate an experimentally feasible intracavity coupled down-conversion scheme to generate quadripartite entanglement using concurrent nonlinearities. We verify that quadripartite entanglement is present in this system by calculating the output fluctuation spectra and then considering violations of optimized inequalities of the van Loock-Furusawa type. The entanglement characteristics both above and below the oscillation threshold are considered. We also present analytic solutions for the quadrature operators and the van Loock-Furusawa correlations in the undepleted pump approximation.

  17. Cavity-Enhanced Immunoassay Measurements in Microtiter Plates Using BBCEAS.

    PubMed

    Bajuszova, Zuzana; Ali, Zulfiqur; Scott, Simon; Seetohul, L Nitin; Islam, Meez

    2016-05-17

    We report on the first detailed use of broadband cavity enhanced absorption spectroscopy (BBCEAS) as a detection system for immunoassay. A vertical R ≥ 0.99 optical cavity was integrated with a motorized XY stage, which functioned as a receptacle for 96-well microtiter plates. The custom-built cavity enhanced microplate reader was used to make measurements on a commercially available osteocalcin sandwich ELISA kit. A 30-fold increase in path length was obtained with a minimum detectable change in the absorption coefficient, αmin(t), of 5.3 × 10(-5) cm(-1) Hz(-1/2). This corresponded to a 39-fold increase in the sensitivity of measurement when directly compared to measurements in a conventional microplate reader. Separate measurements of a standard STREP-HRP colorimetric reaction in microtiter plates of differing optical quality produced an increase in sensitivity of up to 115-fold compared to a conventional microplate reader. The sensitivity of the developed setup compared favorably with previous liquid-phase cavity enhanced studies and approaches the sensitivity of typical fluorometric ELISAs. It could benefit any biochemical test which uses single pass absorption as a detection method, through either the label free detection of biologically important molecules at lower concentrations or the reduction in the amount of expensive biochemicals needed for a particular test, leading to cheaper tests. PMID:27089516

  18. Measurement of SFDR and noise in EDF amplified analog RF links using all-optical down-conversion and balanced receivers

    NASA Astrophysics Data System (ADS)

    Middleton, Charles; Borbath, Michael; Wyatt, Jeff; DeSalvo, Richard

    2008-04-01

    Optical down-conversion techniques have become an increasingly popular architecture to realize Multi-band Enterprise Terminals (MET), Synthetic Aperture Radar (SAR), Optical Arbitrary Waveform Generation (OAWG), RF Channelizers and other technologies that need rapid frequency agile tunability in the microwave and millimeter RF bands. We describe recent SFDR, NF, Gain, and Noise modeling and measurements of Erbium-doped-fiber amplified analog RF optical links implementing all-optical down-conversion and balanced photodiode receivers. We describe measurements made on our newly designed extensive test-bed utilizing a wide array of high powered single and balanced photodiodes, polarization preserving output LN modulators, EAMs, LIMs, tunable lasers, EDFAs, RF Amplifiers, and other components to fully characterize direct and coherent detection techniques. Additionally, we compare these experimental results to our comprehensive MATLAB system modeling and optimization software tools.

  19. The biaxial nonlinear crystal BiB₃O₆ as a polarization entangled photon source using non-collinear type-II parametric down-conversion.

    PubMed

    Halevy, A; Megidish, E; Dovrat, L; Eisenberg, H S; Becker, P; Bohatý, L

    2011-10-10

    We describe the full characterization of the biaxial nonlinear crystal BiB₃O₆ (BiBO) as a polarization entangled photon source using non-collinear type-II parametric down-conversion. We consider the relevant parameters for crystal design, such as cutting angles, polarization of the photons, effective nonlinearity, spatial and temporal walk-offs, crystal thickness and the effect of the pump laser bandwidth. Experimental results showing entanglement generation with high rates and a comparison to the well investigated β-BaB₂O₄ (BBO) crystal are presented as well. Changing the down-conversion crystal of a polarization entangled photon source from BBO to BiBO enhances the generation rate as if the pump power was increased by 2.5 times. Such an improvement is currently required for the generation of multiphoton entangled states. PMID:21997051

  20. Few-Cycle and Cavity-Enhanced Optical Parametric Amplification

    NASA Astrophysics Data System (ADS)

    Siddiqui, Aleem Mohammad

    Optical parametric amplifiers have emerged as important optical sources by extending the properties of few-cycle laser sources, which exist only in materials with sufficiently large gain bandwidths, to wide array of spectral ranges. The work reported in this thesis relates to two areas for the continued development of optical parametric amplification based sources. First, we present a white light seeded, carrier-envelope stable, degenerately pumped OPA producing near tranform-limited sub 7 fs, 3 microJ pulses at the driver wavelength from a long pulse, non-CEP stable Ti:sapphire regenerative amplifier. Problems to the spectral phase jump at the driver wavelength, 800 nm, were avoided by using a near infrared OPA to produce white light continuum down to 800 nm where the spectral phase is smooth. Secondly, enhancement cavities are used in conjunction with parametric amplifiers resulting in a new technique entitled, cavity-enhanced optical parametric chirped-pulse amplification (C-OPCPA). C-OPCPA increases the capabilities of nonlinear crystals and can allow continued scaling of parametric amplifier systems to high repetition rate. This work contains the first theoretical and experimental investigation of C-OPCPA. Numerically, passive pump pulse shaping of the intracavity pump power is shown to enable octave spanning gain. Experimentally, a first proof-of-principle experiment demonstrates a 78 MHz C-OPCPA with more than 50% conversion with under 1 W of incident pump power. A comparison to a single pass system shows improvements in the C-OPCPA of orders of magnitude in conversion efficiency and 3 fold increase in phase matching bandwidth in 10 and 20 mm periodically poled lithium niobate phase matched for parametric amplification with 1030 nm pump wavelength and a 1550 nm signal wavelength. A Yb-fiber laser based CPA system producing up to 5 W of 500 fs pulses comprises the pump source, and a Er-fiber laser the signal. (Copies available exclusively from MIT Libraries

  1. Cavity Enhanced Absorption Spectroscopy using a Prism Cavity and Supercontinuum Source

    NASA Astrophysics Data System (ADS)

    Lehmann, Kevin K.; Johnston, Paul S.

    2010-03-01

    The multiplex advantage of current cavity enhanced spectrometers is limited by the limited high reflectivity bandwidth of the dielectric mirrors used to construct the high finesse cavity. We report on our development of a spectrometer that uses Brewster's angle retroreflectors that is excited with supercontinuum radiation generated by a 1.06 μm pumped photonic crystal fiber, which covers the 500-1800 nm spectral range. Recent progress will be discussed including modeling of the prism cavity losses, alternative prism materials for use in the UV and mid-IR, and a new higher power source pumped by a mode-locked laser.

  2. Pump Spectral Bandwidth, Birefringence, and Entanglement in Type-II Parametric Down Conversion

    DOE PAGESBeta

    Erenso, Daniel

    2009-01-01

    The twin photons produced by a type-II spontaneous parametric down conversion are well know as a potential source of photons for quantum teleportation due to the strong entanglement in polarization. This strong entanglement in polarization, however, depends on the spectral composition of the pump photon and the nature of optical isotropy of the crystal. By exact numerical calculation of the concurrence, we have shown that how pump photons spectral width and the birefringence nature of the crystal directly affect the degree of polarization entanglement of the twin photons.

  3. Einstein-Podolsky-Rosen-Bohm experiment and Bell inequality violation using Type 2 parametric down conversion

    NASA Technical Reports Server (NTRS)

    Kiess, Thomas E.; Shih, Yan-Hua; Sergienko, A. V.; Alley, Carroll O.

    1994-01-01

    We report a new two-photon polarization correlation experiment for realizing the Einstein-Podolsky-Rosen-Bohm (EPRB) state and for testing Bell-type inequalities. We use the pair of orthogonally-polarized light quanta generated in Type 2 parametric down conversion. Using 1 nm interference filters in front of our detectors, we observe from the output of a 0.5mm beta - BaB2O4 (BBO) crystal the EPRB correlations in coincidence counts, and measure an associated Bell inequality violation of 22 standard deviations. The quantum state of the photon pair is a polarization analog of the spin-1/2 singlet state.

  4. Towards correcting atmospheric beam wander via pump beam control in a down conversion process.

    PubMed

    Pugh, Christopher J; Kolenderski, Piotr; Scarcella, Carmelo; Tosi, Alberto; Jennewein, Thomas

    2016-09-01

    Correlated photon pairs produced by a spontaneous parametric down conversion (SPDC) process can be used for secure quantum communication over long distances including free space transmission over a link through turbulent atmosphere. We experimentally investigate the possibility to utilize the intrinsic strong correlation between the pump and output photon spatial modes to mitigate the negative targeting effects of atmospheric beam wander. Our approach is based on a demonstration observing the deflection of the beam on a spatially resolved array of single photon avalanche diodes (SPAD-array). PMID:27607697

  5. Parametric down-conversion with optimized spectral properties in nonlinear photonic crystals

    SciTech Connect

    Corona, Maria; U'Ren, Alfred B.

    2007-10-15

    We study the joint spectral properties of photon pairs generated by spontaneous parametric down-conversion in a one-dimensional nonlinear photonic crystal in a collinear, degenerate, type-II geometry. We show that the photonic crystal properties may be exploited to compensate for material dispersion and obtain photon pairs that are nearly factorable, in principle, for arbitrary materials and spectral regions, limited by the ability to fabricate the nonlinear crystal with the required periodic variation in the refractive indices for the ordinary and extraordinary waves.

  6. Time resolved imaging using non-collinear parametric down-conversion

    NASA Astrophysics Data System (ADS)

    Park, Jung-Rae

    In this thesis I present a method for measuring the time resolved spatial profile of a single laser pulse and its application to the semiconductor devices. In OMEGA laser system, spatial profile of a laser beam can change as a function of time due to spontaneous effects such as the B-integral or imposed effects such as smoothing by spectral dispersion. The method presented here uses a non-collinear parametric down-conversion process to multiply sample a single laser pulse. In the non-collinear parametric down-conversion process, an infrared laser beam at 1064 nm is mixed with an intense ultraviolet beam at 351 nm to generate the green signal beam at 524 nm. Calculations have been carried out to determine the threshold power of the infrared probe beam for generating a detectable signal beam. The generated green beam is captured by a cooled optical multichannel analyzer camera and the image of signal beam is analyzed. This temporal spatial measurement can also be applied to the dynamic image detection schemes of semiconductor devices.

  7. NO and N2O detection employing cavity enhanced technique

    NASA Astrophysics Data System (ADS)

    Wojtas, J.; Medrzycki, R.; Rutecka, B.; Mikolajczyk, J.; Nowakowski, M.; Szabra, D.; Gutowska, M.; Stacewicz, T.; Bielecki, Z.

    2012-06-01

    The article describes an application of cavity enhanced absorption spectroscopy for nitric oxide and nitrous oxide detection. Both oxides are important greenhouse gases that are of large influence on environment, living organisms and human health. These compounds are also biomarkers of some human diseases. They determine the level of acid rain, and can be used for characterization of specific explosive materials. Therefore the sensitive detectors of these gases are of great importance for many applications: from routine air monitoring in industrial and intensive traffic areas, to detection of explosives in airports, finally for medicine investigation, for health care, etc. Our compact detection system provides opportunity for simultaneous measure of both NO and N2O concentration at ppb level. Its sensitivity is comparable with sensitivities of instruments based on other methods, e.g. gas chromatography or mass spectrometry.

  8. Linear-optical qubit amplification with spontaneous parametric down-conversion source

    NASA Astrophysics Data System (ADS)

    Ou-Yang, Yang; Feng, Zhao-Feng; Zhou, Lan; Sheng, Yu-Bo

    2016-01-01

    A single photon is the basic building block in quantum communication. However, it is sensitive to photon loss. In this paper, we discuss a linear-optical amplification protocol for protecting a single photon with a practical spontaneous parametric down-conversion (SPDC) source. Our protocol revealed that in a practical experimental condition, the amplification using entanglement as an auxiliary is more powerful than the amplification using a single photon as an auxiliary, for the vacuum state in the SPDC source does not disturb the amplification and can be eliminated automatically. Moreover, the weak SPDC source will become another advantage to benefit the amplification, as the double-pair emission error can be decreased. Our protocol may be useful in future quantum cryptography, especially in the device-independent quantum key distribution.

  9. Indistinguishability of orbital angular-momentum modes in spontaneous parametric down-conversion

    SciTech Connect

    Barbosa, Geraldo Alexandre

    2009-05-15

    Identification of light modes usually requires careful considerations of the collecting geometry. This is particularly true for states carrying orbital angular-momentum modes from spontaneous parametric down-conversion due to the entanglement of the signal and idler fields. A detailed understanding of the generated modes in a general case allows the design of efficient detection setups. This is true for distinct cases, e.g., when multiple samplings are performed by repeated state generation or in single-photon cryptography or quantum computation, where a photon state is generated within a short-time window and a single measurement is performed. Aspects of nonorthogonality of signal and idler modes and effects of restrictions on the collecting geometry are discussed in this work.

  10. Spatial correlation of photon pairs produced in spontaneous parametric down-conversion

    SciTech Connect

    Procopio, L. M.; Rosas-Ortiz, O.; Velazquez, V.

    2010-10-11

    We report the observation of spatial biphoton correlation in spontaneous parametric down conversion. The optical bench includes a type-I BBO crystal of effective length 2 mm, pumped by a 100 mW violet laser diode centered at 405.38 nm. Photon pairs are created with degenerate wavelength {approx_equal}810.76 nm. Once the horizontal counting rates have been measured, a simple geometrical recipe is shown to be useful in calculating bounds for the width of vertical counting rates. The spatial correlation between idler and signal photons is illustrated with a coincidence distribution of the coordinate pair (x{sub s},x{sub i}), with x{sub i,s} the idler (signal) detector position in horizontal scan.

  11. Parametric down-conversion with nonideal and random quasi-phase-matching

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Yao; Lin, Chun; Liljestrand, Charlotte; Su, Wei-Min; Canalias, Carlota; Chuu, Chih-Sung

    2016-05-01

    Quasi-phase-matching (QPM) has enriched the capacity of parametric down-conversion (PDC) in generating biphotons for many fundamental tests and advanced applications. However, it is not clear how the nonidealities and randomness in the QPM grating of a parametric down-converter may affect the quantum properties of the biphotons. This paper intends to provide insights into the interplay between PDC and nonideal or random QPM structures. Using a periodically poled nonlinear crystal with short periodicity, we conduct experimental and theoretical studies of PDC subject to nonideal duty cycle and random errors in domain lengths. We report the observation of biphotons emerging through noncritical birefringent-phasematching, which is impossible to occur in PDC with an ideal QPM grating, and a biphoton spectrum determined by the details of nonidealities and randomness. We also observed QPM biphotons with a diminished strength. These features are both confirmed by our theory. Our work provides new perspectives for biphoton engineering with QPM.

  12. Parametric down-conversion with nonideal and random quasi-phase-matching

    PubMed Central

    Yang, Chun-Yao; Lin, Chun; Liljestrand, Charlotte; Su, Wei-Min; Canalias, Carlota; Chuu, Chih-Sung

    2016-01-01

    Quasi-phase-matching (QPM) has enriched the capacity of parametric down-conversion (PDC) in generating biphotons for many fundamental tests and advanced applications. However, it is not clear how the nonidealities and randomness in the QPM grating of a parametric down-converter may affect the quantum properties of the biphotons. This paper intends to provide insights into the interplay between PDC and nonideal or random QPM structures. Using a periodically poled nonlinear crystal with short periodicity, we conduct experimental and theoretical studies of PDC subject to nonideal duty cycle and random errors in domain lengths. We report the observation of biphotons emerging through noncritical birefringent-phasematching, which is impossible to occur in PDC with an ideal QPM grating, and a biphoton spectrum determined by the details of nonidealities and randomness. We also observed QPM biphotons with a diminished strength. These features are both confirmed by our theory. Our work provides new perspectives for biphoton engineering with QPM. PMID:27173482

  13. Parametric down-conversion with nonideal and random quasi-phase-matching.

    PubMed

    Yang, Chun-Yao; Lin, Chun; Liljestrand, Charlotte; Su, Wei-Min; Canalias, Carlota; Chuu, Chih-Sung

    2016-01-01

    Quasi-phase-matching (QPM) has enriched the capacity of parametric down-conversion (PDC) in generating biphotons for many fundamental tests and advanced applications. However, it is not clear how the nonidealities and randomness in the QPM grating of a parametric down-converter may affect the quantum properties of the biphotons. This paper intends to provide insights into the interplay between PDC and nonideal or random QPM structures. Using a periodically poled nonlinear crystal with short periodicity, we conduct experimental and theoretical studies of PDC subject to nonideal duty cycle and random errors in domain lengths. We report the observation of biphotons emerging through noncritical birefringent-phasematching, which is impossible to occur in PDC with an ideal QPM grating, and a biphoton spectrum determined by the details of nonidealities and randomness. We also observed QPM biphotons with a diminished strength. These features are both confirmed by our theory. Our work provides new perspectives for biphoton engineering with QPM. PMID:27173482

  14. Spatial correlation of photon pairs produced in spontaneous parametric down-conversion

    NASA Astrophysics Data System (ADS)

    Procopio, L. M.; Rosas-Ortiz, O.; Velázquez, V.

    2010-10-01

    We report the observation of spatial biphoton correlation in spontaneous parametric down conversion. The optical bench includes a type-I BBO crystal of effective length 2 mm, pumped by a 100 mW violet laser diode centered at 405.38 nm. Photon pairs are created with degenerate wavelength ≈810.76 nm. Once the horizontal counting rates have been measured, a simple geometrical recipe is shown to be useful in calculating bounds for the width of vertical counting rates. The spatial correlation between idler and signal photons is illustrated with a coincidence distribution of the coordinate pair (xs,xi), with xi,s the idler (signal) detector position in horizontal scan.

  15. On the geometry of spatial biphoton correlation in spontaneous parametric down conversion

    NASA Astrophysics Data System (ADS)

    Procopio, L. M.; Rosas-Ortiz, O.; Velázquez, V.

    2015-07-01

    Analytical expressions are derived for the distribution rates of spatial coincidences in the counting of photons produced by spontaneous parametric down conversion (SPDC). Gaussian profiles are assumed for the wave function of the idler and signal light created in type-I SPDC. The distribution rates describe ellipses on the detection planes that are oriented at different angles according to the photon coincidences in either horizontal-horizontal, vertical-vertical, horizontal-vertical or vertical-horizontal position variables. The predictions are in agreement with the experimental data obtained with a type-I BBO crystal that is illuminated by a 100 mW violet pump laser as well as with the results obtained from the geometry defined by the phase-matching conditions.

  16. Coordination polymer core/shell structures: Preparation and up/down-conversion luminescence.

    PubMed

    Li, Bingmei; Xu, Hualan; Xiao, Chen; Shuai, Min; Chen, Weimin; Zhong, Shengliang

    2016-10-01

    Coordination polymer (CP) core-shell nanoparticles with Gd-based CP (GdCP) as core and Eu-based CP (EuCP) as shell have been successfully prepared. Allantoin was employed as the organic building block without the assistance of any template. The composition, size and structure of the core-shell nanospheres were well characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX), powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR), thermo-gravimetric analysis (TG). Results show that the resultant cores are uniform nanospheres with diameter of approximately 45nm, while the diameters of the core-shell nanospheres are increased to approximately 60nm. The core-shell products show enhanced luminescence efficiency than the core under 980nm laser excitation and decreased down-conversion luminescence when excited at 394nm. PMID:27344485

  17. Cavity Enhanced Absorption Spectroscopy Using a Broadband Prism Cavity and a Supercontinuum Source

    NASA Astrophysics Data System (ADS)

    Johnston, Paul S.; Lehmann, Kevin K.

    2009-06-01

    The multiplex advantage of current cavity enhanced spectrometers is limited by the high reflectivity bandwidth of the mirrors used to construct the high finesse cavity. Previously, we reported the design and construction of a new spectrometer that circumvents this limitation by utilizing Brewster^{,}s angle prism retroreflectors. The prisms, made from fused silica and combined with a supercontinuum source generated by pumping a highly nonlinear photonic crystal fiber, yields a spectral window ranging from 500 nm to 1750 nm. Recent progress in the instruments development will be discussed, including work on modeling the prism cavity losses, alternative prism material for use in the UV and mid-IR spectral regions, and a new high power supercontinuum source based on mode-locked picosecond laser.

  18. Localization of one-photon state in space and Einstein-Podolsky-Rosen paradox in spontaneous parametric down conversion

    NASA Technical Reports Server (NTRS)

    Penin, A. N.; Reutova, T. A.; Sergienko, A. V.

    1992-01-01

    An experiment on one-photon state localization in space using a correlation technique in Spontaneous Parametric Down Conversion (SPDC) process is discussed. Results of measurements demonstrate an idea of the Einstein-Podolsky-Rosen (EPR) paradox for coordinate and momentum variables of photon states. Results of the experiment can be explained with the help of an advanced wave technique. The experiment is based on the idea that two-photon states of optical electromagnetic fields arising in the nonlinear process of the spontaneous parametric down conversion (spontaneous parametric light scattering) can be explained by quantum mechanical theory with the help of a single wave function.

  19. Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Siller, Brian; Mills, Andrew; Porambo, Michael; McCall, Benjamin

    2011-06-01

    The technique of Cavity Enhanced Velocity Modulation Spectroscopy (CEVMS) has recently been developed. By demodulating the detector signal at twice the plasma modulation frequency (2f), the velocity-modulated ionic absorption signal can be extracted. Although the concentration-modulated excited neutral molecules are also observed at 2f, the ion and neutral signals can be distinguished and separated with phase-sensitive demodulation. The optical cavity provides two major benefits. It increases both the optical path length and the intracavity laser power by a factor of 2×Finesse/π. The multipass advantage allows for much longer path length than was previously possible with unidirectional multipass White cells. The power enhancement combined with perfectly overlapped counterpropagating beams within the cavity allows for sub-Doppler spectroscopy. Although CEVMS showed much potential, its sensitivity was ultimately limited by electronic noise from the plasma interfering with the cavity-locking electronics. We have further improved upon CEVMS by combining it with Noise Immune Cavity Enhanced Optical Heterodyne Molecular Spectroscopy (NICE-OHMS). The laser is frequency modulated at precisely an integer multiple of the free spectral range of the optical cavity; this allows the heterodyne sidebands to be coupled into the optical cavity. Heterodyne detection of the cavity leak-out is immune to noise in the laser-cavity lock, and 2f demodulation further decreases electronic noise in the system and retains ion-neutral discrimination. The additional level of modulation beyond ordinary CEVMS has the added advantage of enabling the observation of both absorption and dispersion signals simultaneously by using two RF mixers, each driving its own lock-in amplifier. In a single scan, four distinct signals can be obtained: absorption and dispersion for ions and excited neutrals. The technique has been demonstrated in the near-IR for N_2^+. B. M. Siller, A. A. Mills and B. J. Mc

  20. Broadband Spectroscopy with Dual Combs and Cavity Enhancement

    NASA Astrophysics Data System (ADS)

    Holzwarth, Ronald; Bernhardt, Birgitta; Ozawa, Akira; Udem, Thomas; Hänsch, Theodor W.; Jacquet, Patrick; Jacquey, Marion; Guelachvili, Guy; Kobayashi, Yohei; Picque, Nathalie

    2010-06-01

    Classical FTIRs handle the task of massively parallel spectroscopic probing by interferometric detection. In contrast a frequency comb Fourier transform spectrometer (FC-FTS) retains the principle of combining two interferometer beams but uses two inputs from two independent sources. Thus we can offset their frequencies to facilitate multifrequency heterodyne signal processing. The advantages of this spectrometer compared with the classical FTIR include ease of operation (no cumbersome moving delay lines), speed of acquisition (18 μs demonstrated), collimated long-distance propagation, possibly diffraction-limited microscopic probing, and mid infrared as well as THz operation if necessary. In a recent proof of principle experiment we have dramatically improved the sensitivity by the implementation of an enhancement cavity around the probing volume We recorded, within 18 μs, spectra of the ammonia 1.0 μm overtone bands comprising 1500 spectral elements and spanning 20 nm with 4.5 GHz resolution and a noise-equivalent-absorption at one-second-averaging of 1 10-10 cm-1Hz-1/2, thus opening a route to time-resolved spectroscopy of rapidly-evolving single-events. Since FC-FTS only needs one detector that is easily available in practically all spectral regions, it can be envisioned that cavity-enhanced FC-FTS will assume a position of dominance for the measurements of real-time ultra-sensitive spectra in the molecular fingerprint region. B. Bernhardt et. al., Nature Photonics, 4 (55), January 2010.

  1. Broadband cavity enhanced spectroscopy in the ultraviolet spectral region for measurements of nitrogen dioxide and formaldehyde

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Attwood, A. R.; Flores, J. M.; Rudich, Y.; Brown, S. S.

    2015-09-01

    Formaldehyde (CH2O) is the most abundant aldehyde in the atmosphere, and strongly affects photochemistry through its photolysis. We describe simultaneous measurements of CH2O and nitrogen dioxide (NO2) using broadband cavity enhanced spectroscopy in the ultraviolet spectral region. The light source consists of a continuous-wave diode laser focused into a Xenon bulb to produce a plasma that emits high-intensity, broadband light. The plasma discharge is optically filtered and coupled into a 1 m optical cavity. The reflectivity of the cavity mirrors is 0.99933 ± 0.00003 (670 ppm loss) at 338 nm, as determined from the known Rayleigh scattering of He and zero air. This mirror reflectivity corresponds to an effective path length of 1.49 km within the 1 m cell. We measure the cavity output over the 315-350 nm spectral region using a grating monochromator and charge-coupled device (CCD) array detector. We use published reference spectra with spectral fitting software to simultaneously retrieve CH2O and NO2 concentrations. Independent measurements of NO2 standard additions by broadband cavity enhanced spectroscopy and cavity ringdown spectroscopy agree within 2 % (slope for linear fit = 0.98 ± 0.03 with r2 = 0.998). Standard additions of CH2O measured by broadband cavity enhanced spectroscopy and calculated based on flow dilution are also well-correlated, with r2 = 0.9998. During constant, mixed additions of NO2 and CH2O, the 30 s measurement precisions (1σ) of the current configuration were 140 and 210 pptv, respectively. The current 1-min detection limit for extinction measurements at 315-350 nm provides sufficient sensitivity for measurement of trace gases in laboratory experiments and ground-based field experiments. Additionally, the instrument provides highly accurate, spectroscopically-based trace gas detection that may complement higher precision techniques based on non-absolute detection methods. In addition to trace gases, this approach will be appropriate for

  2. Spontaneous Parametric Down-Conversion to Create a Quantum Key Distribution System

    NASA Astrophysics Data System (ADS)

    Salgado, Erik; Aragoneses, Andres, , Dr.

    Quantum Key Distribution (QKD) aims to share a secret key between two parties in a secure manner. It provides security benefits over classical communication systems. We have constructed a QKD system that uses quantum entanglement to ensure security against eavesdroppers. We use polarization to encode the binary information of an encryption key. This key is secure due to the quantum properties of light. We use the process of spontaneous parametric down-conversion (SPDC) to create entangled photon pairs. Experimentally, we fire pump (laser) photons through a nonlinear crystal, where there exists a probability of them being annihilated and spontaneously generating two entangled photons of lower energies. A coincidence measurement between two entangled photons indicates the successful transfer of one bit of information, and a coincidence measurement between two disparate photons indicates an error in data transfer. We aim to optimize data transfer rate and reduce error rate. The project is still in development and we look forward to collecting data in the near future.

  3. Modeling and optimization of photon pair sources based on spontaneous parametric down-conversion

    SciTech Connect

    Kolenderski, Piotr; Banaszek, Konrad; Wasilewski, Wojciech

    2009-07-15

    We address the problem of efficient modeling of photon pairs generated in spontaneous parametric down-conversion and coupled into single-mode fibers. It is shown that when the range of relevant transverse wave vectors is restricted by the pump and fiber modes, the computational complexity can be reduced substantially with the help of the paraxial approximation, while retaining the full spectral characteristics of the source. This approach can serve as a basis for efficient numerical calculations or can be combined with analytically tractable approximations of the phase-matching function. We introduce here a cosine-Gaussian approximation of the phase-matching function that works for a broader range of parameters than the Gaussian model used previously. The developed modeling tools are used to evaluate characteristics of the photon pair sources such as the pair production rate and the spectral purity quantifying frequency correlations. Strategies to generate spectrally uncorrelated photons, necessary in multiphoton interference experiments, are analyzed with respect to trade-offs between parameters of the source.

  4. A small-form-factor piezoelectric vibration energy harvester using a resonant frequency-down conversion

    NASA Astrophysics Data System (ADS)

    Sun, Kyung Ho; Kim, Young-Cheol; Kim, Jae Eun

    2014-10-01

    While environmental vibrations are usually in the range of a few hundred Hertz, small-form-factor piezoelectric vibration energy harvesters will have higher resonant frequencies due to the structural size effect. To address this issue, we propose a resonant frequency-down conversion based on the theory of dynamic vibration absorber for the design of a small-form-factor piezoelectric vibration energy harvester. The proposed energy harvester consists of two frequency-tuned elastic components for lowering the first resonant frequency of an integrated system but is so configured that an energy harvesting beam component is inverted with respect to the other supporting beam component for a small form factor. Furthermore, in order to change the unwanted modal characteristic of small separation of resonant frequencies, as is the case with an inverted configuration, a proof mass on the supporting beam component is slightly shifted toward a second proof mass on the tip of the energy harvesting beam component. The proposed small-form-factor design capability was experimentally verified using a fabricated prototype with an occupation volume of 20 × 39 × 6.9 mm3, which was designed for a target frequency of as low as 100 Hz.

  5. Aspects for efficient wide spectral band THz generation via CO2 laser down conversion

    NASA Astrophysics Data System (ADS)

    Panchenko, Yu. N.; Andreev, Yu. M.; Lanskii, G. V.; Losev, V. F.; Lubenko, D. M.

    2015-02-01

    Detailed model study of THz generation by CO2 laser down-conversion in pure and solid solution crystals GaSe1-xSx is carried out for the first time. Both forward and backward collinear interactions of common (eo-e, oe-e, oe-o, oo-e, ee-o) and original (ee-e, oo-o) types are considered. Possibility of realization, phase matching angles and figure of merits are estimated for line mixing within 9 μm and 10 μm emission bands, as well between them. Dispersion properties of o- and e-wave refractive indices and absorption coefficients for GaSe, GaS and GaSe1-xSx crystals were preliminary measured by THz-TDS, approximated in the equation form and then used in the study. Estimated results are presented in the form of 3-D figures that are suitable for rapid analyses of DFG parameters. The most efficient type of interaction is eo-o type. Optimally doped (x = 0.09-0.13) GaSe1-xSx crystals are from 4 to 5 times more efficient at limit pump intensity than not doped GaSe crystals.

  6. A small-form-factor piezoelectric vibration energy harvester using a resonant frequency-down conversion

    SciTech Connect

    Sun, Kyung Ho; Kim, Young-Cheol; Kim, Jae Eun

    2014-10-15

    While environmental vibrations are usually in the range of a few hundred Hertz, small-form-factor piezoelectric vibration energy harvesters will have higher resonant frequencies due to the structural size effect. To address this issue, we propose a resonant frequency-down conversion based on the theory of dynamic vibration absorber for the design of a small-form-factor piezoelectric vibration energy harvester. The proposed energy harvester consists of two frequency-tuned elastic components for lowering the first resonant frequency of an integrated system but is so configured that an energy harvesting beam component is inverted with respect to the other supporting beam component for a small form factor. Furthermore, in order to change the unwanted modal characteristic of small separation of resonant frequencies, as is the case with an inverted configuration, a proof mass on the supporting beam component is slightly shifted toward a second proof mass on the tip of the energy harvesting beam component. The proposed small-form-factor design capability was experimentally verified using a fabricated prototype with an occupation volume of 20 × 39 × 6.9 mm{sup 3}, which was designed for a target frequency of as low as 100 Hz.

  7. Quantitative determination of the O({sup 3}P) density via visible cavity-enhanced spectroscopy

    SciTech Connect

    Gupta, Manish; Owano, Thomas; Baer, Douglas; O'Keefe, Anthony

    2006-12-11

    A simple method has been developed to quantitatively measure the ground state oxygen atom, O({sup 3}P), density. The technique exploits cavity-enhanced spectroscopy to probe the relatively weak O({sup 1}D)(leftarrow)O({sup 3}P{sub 1}) transition near 636 nm. O({sup 3}P{sub 1}) densities of approximately 3.4x10{sup 14} at./cm{sup 3} were measured in an inductively coupled plasma produced within a high-finesse optical cavity, and a minimum detectable atom state density of 1.3x10{sup 12} at./cm{sup 3} was determined. The absorption profile yielded a translational temperature of 453 K. The technique can be readily extended to other atomic species.

  8. Cavity-Enhanced Absorption Spectroscopy and Photoacoustic Spectroscopy for Human Breath Analysis

    NASA Astrophysics Data System (ADS)

    Wojtas, J.; Tittel, F. K.; Stacewicz, T.; Bielecki, Z.; Lewicki, R.; Mikolajczyk, J.; Nowakowski, M.; Szabra, D.; Stefanski, P.; Tarka, J.

    2014-12-01

    This paper describes two different optoelectronic detection techniques: cavity-enhanced absorption spectroscopy and photoacoustic spectroscopy. These techniques are designed to perform a sensitive analysis of trace gas species in exhaled human breath for medical applications. With such systems, the detection of pathogenic changes at the molecular level can be achieved. The presence of certain gases (biomarkers), at increased concentration levels, indicates numerous human diseases. Diagnosis of a disease in its early stage would significantly increase chances for effective therapy. Non-invasive, real-time measurements, and high sensitivity and selectivity, capable of minimum discomfort for patients, are the main advantages of human breath analysis. At present, monitoring of volatile biomarkers in breath is commonly useful for diagnostic screening, treatment for specific conditions, therapy monitoring, control of exogenous gases (such as bacterial and poisonous emissions), as well as for analysis of metabolic gases.

  9. Optical re-injection in cavity-enhanced absorption spectroscopy

    PubMed Central

    Leen, J. Brian; O’Keefe, Anthony

    2014-01-01

    Non-mode-matched cavity-enhanced absorption spectrometry (e.g., cavity ringdown spectroscopy and integrated cavity output spectroscopy) is commonly used for the ultrasensitive detection of trace gases. These techniques are attractive for their simplicity and robustness, but their performance may be limited by the reflection of light from the front mirror and the resulting low optical transmission. Although this low transmitted power can sometimes be overcome with higher power lasers and lower noise detectors (e.g., in the near-infrared), many regimes exist where the available light intensity or photodetector sensitivity limits instrument performance (e.g., in the mid-infrared). In this article, we describe a method of repeatedly re-injecting light reflected off the front mirror of the optical cavity to boost the cavity's circulating power and deliver more light to the photodetector and thus increase the signal-to-noise ratio of the absorption measurement. We model and experimentally demonstrate the method's performance using off-axis cavity ringdown spectroscopy (OA-CRDS) with a broadly tunable external cavity quantum cascade laser. The power coupled through the cavity to the detector is increased by a factor of 22.5. The cavity loss is measured with a precision of 2 × 10−10 cm−1/\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$\\sqrt {{\\rm Hz;}}$\\end{document} Hz ; an increase of 12 times over the standard off-axis configuration without reinjection and comparable to the best reported sensitivities in the mid-infrared. Finally, the re-injected CRDS system is used to measure the spectrum of several volatile organic compounds, demonstrating the improved ability to resolve weakly absorbing spectroscopic features. PMID:25273701

  10. Optical re-injection in cavity-enhanced absorption spectroscopy.

    PubMed

    Leen, J Brian; O'Keefe, Anthony

    2014-09-01

    Non-mode-matched cavity-enhanced absorption spectrometry (e.g., cavity ringdown spectroscopy and integrated cavity output spectroscopy) is commonly used for the ultrasensitive detection of trace gases. These techniques are attractive for their simplicity and robustness, but their performance may be limited by the reflection of light from the front mirror and the resulting low optical transmission. Although this low transmitted power can sometimes be overcome with higher power lasers and lower noise detectors (e.g., in the near-infrared), many regimes exist where the available light intensity or photodetector sensitivity limits instrument performance (e.g., in the mid-infrared). In this article, we describe a method of repeatedly re-injecting light reflected off the front mirror of the optical cavity to boost the cavity's circulating power and deliver more light to the photodetector and thus increase the signal-to-noise ratio of the absorption measurement. We model and experimentally demonstrate the method's performance using off-axis cavity ringdown spectroscopy (OA-CRDS) with a broadly tunable external cavity quantum cascade laser. The power coupled through the cavity to the detector is increased by a factor of 22.5. The cavity loss is measured with a precision of 2 × 10(-10) cm(-1)/√Hz; an increase of 12 times over the standard off-axis configuration without reinjection and comparable to the best reported sensitivities in the mid-infrared. Finally, the re-injected CRDS system is used to measure the spectrum of several volatile organic compounds, demonstrating the improved ability to resolve weakly absorbing spectroscopic features. PMID:25273701

  11. Optical re-injection in cavity-enhanced absorption spectroscopy

    SciTech Connect

    Leen, J. Brian O’Keefe, Anthony

    2014-09-15

    Non-mode-matched cavity-enhanced absorption spectrometry (e.g., cavity ringdown spectroscopy and integrated cavity output spectroscopy) is commonly used for the ultrasensitive detection of trace gases. These techniques are attractive for their simplicity and robustness, but their performance may be limited by the reflection of light from the front mirror and the resulting low optical transmission. Although this low transmitted power can sometimes be overcome with higher power lasers and lower noise detectors (e.g., in the near-infrared), many regimes exist where the available light intensity or photodetector sensitivity limits instrument performance (e.g., in the mid-infrared). In this article, we describe a method of repeatedly re-injecting light reflected off the front mirror of the optical cavity to boost the cavity's circulating power and deliver more light to the photodetector and thus increase the signal-to-noise ratio of the absorption measurement. We model and experimentally demonstrate the method's performance using off-axis cavity ringdown spectroscopy (OA-CRDS) with a broadly tunable external cavity quantum cascade laser. The power coupled through the cavity to the detector is increased by a factor of 22.5. The cavity loss is measured with a precision of 2 × 10{sup −10} cm{sup −1}/√(Hz;) an increase of 12 times over the standard off-axis configuration without reinjection and comparable to the best reported sensitivities in the mid-infrared. Finally, the re-injected CRDS system is used to measure the spectrum of several volatile organic compounds, demonstrating the improved ability to resolve weakly absorbing spectroscopic features.

  12. Cavity Enhanced absorption spectroscopy with an Optical Comb: Detection of atmospheric radicals in the near UV.

    NASA Astrophysics Data System (ADS)

    Méjean, G.; Kassi, S.; Romanini, D.

    2009-04-01

    The atmospheric chemistry community suffers a lack of fast, reliable and space resolved measurement for a wide set of very reactive molecules (e.g. radicals such as OH, NO3, BrO, IO, etc.). Due to their high reactivity, these molecules largely control the lifetime and concentration of numerous key atmospheric species. The concentrations of radicals are extremely low (ppbv or less) and highly variable in time and space. Measuring their concentration is often extremely laborious, expensive and requires heavy equipment (chemical sampling and treatment followed by mass spectrometry and/or chromatography). We recently introduced an optical spectroscopy technique based on a femtosecond laser oscillator, "Mode-Locked Cavity-Enhanced Absorption Spectroscopy", that we propose to develop into an instrument for in situ measurement of local concentration of traces of reactive molecules [1-3]. We have already demonstrated the possibility of measuring part in 1E12 by volume concentrations of radicals of high atmospheric interest, such as IO or BrO [4], as needed for monitoring these species in the environment. We apply cavity-enhanced absorption spectroscopy in the near UV range using a frequency-doubled Ti:Sa modelocked femtosecond laser. Efficient broadband injection of a high finesse cavity is obtained by matching this optical frequency-comb source to the comb of cavity transmission resonances. A grating spectrograph and a detector array disperse and detect the spectrum transmitted by the cavity carrying the absorption features of intracavity molecules. IO traces were obtained by mixing together controlled flows of gaseous iodine and ozone inside a high finesse cavity (F~6000). A Chameleon Ultra II ML-Laser (gracefully lent during 1 month by Coherent Inc.) was frequency doubled to address an absorption band of IO at 436 nm. A locking scheme allowed the cavity transmission to be smooth and stable. The transmitted light was dispersed using a high resolution (0.07nm) grating

  13. Hydrothermal synthesis, characterization and up/down-conversion luminescence of barium rare earth fluoride nanocrystals

    SciTech Connect

    Jia, Li-Ping; Zhang, Qiang; Yan, Bing

    2014-07-01

    Graphical abstract: Lanthanide ions doped bare earth rare earth fluoride nanocrystals are synthesized by hydrothermal technology and characterized. The down/up-conversion luminescence of them are discussed. - Highlights: • Mixed hydrothermal system H{sub 2}O–OA (EDA)–O-A(LO-A) is used for synthesis. • Barium rare earth fluoride nanocrystals are synthesized comprehensively. • Luminescence for down-conversion and up-conversion are obtained for these systems. - Abstract: Mixed hydrothermal system H{sub 2}O–OA (EDA)–O-A(LO-A) is developed to synthesize barium rare earth fluorides nanocrystals (OA = oleylamine, EDA = ethylenediamine, O-A = oleic acid and LO-A = linoleic acid). They are presented as BaREF{sub 5} (RE = Ce, Pr, Nd, Eu, Gd, Tb, Dy, Y, Tm, Lu) and Ba{sub 2}REF{sub 7} (RE = La, Sm, Ho, Er, Yb). The influence of reaction parameters (rare earth species, hydrothermal system and temperature) is checked on the phase and shape evolution of the fluoride nanocrystals. It is found that reaction time and temperature of these nanocrystals using EDA (180 °C, 6 h) is lower than those of them using OA (220 °C, 10 h). The photoluminescence properties of these fluorides activated by some rare earth ions (Nd{sup 3+}, Eu{sup 3+}, Tb{sup 3+}) are studied, and especially up-conversion luminescence of the four fluoride nanocrystal systems (Ba{sub 2}LaF{sub 7}:Yb, Tm(Er), Ba{sub 2}REF{sub 7}:Yb, Tm(Er) (RE = Gd, Y, Lu)) is observed.

  14. Full analysis of multi-photon pair effects in spontaneous parametric down conversion based photonic quantum information processing

    NASA Astrophysics Data System (ADS)

    Takeoka, Masahiro; Jin, Rui-Bo; Sasaki, Masahide

    2015-04-01

    In spontaneous parametric down conversion (SPDC) based quantum information processing (QIP) experiments, there is a tradeoff between the coincidence count rates (i.e. the pumping power of the SPDC), which limits the rate of the protocol, and the visibility of the quantum interference, which limits the quality of the protocol. This tradeoff is mainly caused by the multi-photon pair emissions from the SPDCs. In theory, the problem is how to model the experiments without truncating these multi-photon emissions while including practical imperfections. In this paper, we establish a method to theoretically simulate SPDC-based QIPs which fully incorporates the effect of multi-photon emissions and various practical imperfections. The key ingredient in our method is the application of the characteristic function formalism which has been used in continuous variable QIPs. We apply our method to three examples, the Hong-Ou-Mandel interference and the Einstein-Podolsky-Rosen interference experiments, and the concatenated entanglement swapping protocol. For the first two examples, we show that our theoretical results quantitatively agree with the recent experimental results. Also we provide the closed expressions for these interference visibilities with the full multi-photon components and various imperfections. For the last example, we provide the general theoretical form of the concatenated entanglement swapping protocol in our method and show the numerical results up to five concatenations. Our method requires only a small computational resource (a few minutes by a commercially available computer), which was not possible in the previous theoretical approach. Our method will have applications in a wide range of SPDC-based QIP protocols with high accuracy and a reasonable computational resource.

  15. Molecular-like Ag clusters sensitized near-infrared down-conversion luminescence in oxyfluoride glasses for broadband spectral modification

    NASA Astrophysics Data System (ADS)

    Lin, Hang; Chen, Daqin; Yu, Yunlong; Zhang, Rui; Wang, Yuansheng

    2013-08-01

    Molecular-like Ag clusters sized at 1-4 nm have been stabilized in Pb/Cd-free oxyfluoride glasses, showing broadband excitation/emission characteristics and unique wavelength-dependent luminescent performance with a maximal quantum yield of 26.9%. It was experimentally demonstrated that an energy transfer route of Ag clusters → Tb3+ → Yb3+ occurs in Ag+/Tb3+/Yb3+ tri-doped sample, wherein Ag clusters act as sensitizers for near-infrared down-conversion spectral modification. Hopefully, the proposed strategy that noble metal clusters being applied for harvesting solar radiation may potentially solve the sticky problems of the narrow excitation bandwidth and the low excitation efficiency in rare earth ions doped down-conversion materials.

  16. Molecular-like Ag clusters sensitized near-infrared down-conversion luminescence in oxyfluoride glasses for broadband spectral modification

    SciTech Connect

    Lin, Hang; Chen, Daqin; Yu, Yunlong; Zhang, Rui; Wang, Yuansheng

    2013-08-26

    Molecular-like Ag clusters sized at 1–4 nm have been stabilized in Pb/Cd-free oxyfluoride glasses, showing broadband excitation/emission characteristics and unique wavelength-dependent luminescent performance with a maximal quantum yield of 26.9%. It was experimentally demonstrated that an energy transfer route of Ag clusters → Tb{sup 3+} → Yb{sup 3+} occurs in Ag{sup +}/Tb{sup 3+}/Yb{sup 3+} tri-doped sample, wherein Ag clusters act as sensitizers for near-infrared down-conversion spectral modification. Hopefully, the proposed strategy that noble metal clusters being applied for harvesting solar radiation may potentially solve the sticky problems of the narrow excitation bandwidth and the low excitation efficiency in rare earth ions doped down-conversion materials.

  17. NO_2 Trace Measurements by Optical-Feedback Cavity-Enhanced Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ventrillard-Courtillot, I.; Desbois, Th.; Foldes, T.; Romanini, D.

    2009-06-01

    In order to reach the sub-ppb NO_2 detection level required for environmental applications in remote areas, we develop a spectrometer based on a technique introduced a few years ago, named Optical-Feedback Cavity-Enhanced Absorption Spectroscopy (OF-CEAS) [1]. It allows very sensitive and selective measurements, together with the realization of compact and robust set-ups as was subsequently demonstrated during measurements campaigns in harsh environments [2]. OF-CEAS benefits from the optical feedback to efficiently inject a cw-laser in a V-shaped high finesse cavity (typically 10 000). Cavity-enhanced absorption spectra are acquired on a small spectral region (˜1 cm^{-1}) that enables selective and quantitative measurements at a fast acquisition rate with a detection limit of several 10^{-10} cm^{-1} as reported in this work. Spectra are obtained with high spectral definition (150 MHz highly precisely spaced data points) and are self calibrated by cavity rind-down measurements regularly performed (typically every second). NO_2 measurements are performed with a commercial extended cavity diode laser around 411 nm, spectral region where intense electronic transitions occur. We will describe the set-up developed for in-situ measurements allowing real time concentration measurements at typically 5 Hz; and then report on the measurements performed with calibrated NO_2 reference samples to evaluate the linearity of the apparatus. The minimum detectable absorption loss is estimated by considering the standard deviation of the residual of one spectrum. We achieved 2x10^{-10} cm^{-1} for a single spectrum recorded in less than 100 ms at 100 mbar. It leads to a potential detection limit of 3x10^8 molecules/cm^3, corresponding to about 150 pptv at this pressure. [1] J. Morville, S. Kassi, M. Chenevier, and D. Romanini, Appl. Phys. B, 80, 1027 (2005). [2] D. Romanini, M. Chenevrier, S. Kassi, M. Schmidt, C. Valant, M. Ramonet, J. Lopez, and H.-J. Jost, Appl. Phys. B, 83, 659

  18. Evidence of significant down-conversion in a Si-based solar cell using CuInS{sub 2}/ZnS core shell quantum dots

    SciTech Connect

    Gardelis, Spiros Nassiopoulou, Androula G.

    2014-05-05

    We report on the increase of up to 37.5% in conversion efficiency of a Si-based solar cell after deposition of light-emitting Cd-free, CuInS{sub 2}/ZnS core shell quantum dots on the active area of the cell due to the combined effect of down-conversion and the anti- reflecting property of the dots. We clearly distinguished the effect of down-conversion from anti-reflection and estimated an enhancement of up to 10.5% in the conversion efficiency due to down-conversion.

  19. Analysis of trace impurities in semiconductor gas via cavity-enhanced direct frequency comb spectroscopy

    NASA Astrophysics Data System (ADS)

    Cossel, K. C.; Adler, F.; Bertness, K. A.; Thorpe, M. J.; Feng, J.; Raynor, M. W.; Ye, J.

    2010-09-01

    Cavity-enhanced direct frequency comb spectroscopy (CE-DFCS) has demonstrated powerful potential for trace-gas detection based on its unique combination of high bandwidth, rapid data acquisition, high sensitivity, and high resolution, which is unavailable with conventional systems. However, previous demonstrations have been limited to proof-of-principle experiments or studies of fundamental laboratory science. Here, we present the development of CE-DFCS towards an industrial application—measuring impurities in arsine, an important process gas used in III-V semiconductor compound manufacturing. A strongly absorbing background gas with an extremely complex, congested, and broadband spectrum renders trace detection exceptionally difficult, but the capabilities of CE-DFCS overcome this challenge and make it possible to identify and quantify multiple spectral lines associated with water impurities. Further, frequency combs allow easy access to new spectral regions via efficient nonlinear optical processes. Here, we demonstrate detection of multiple potential impurities across 1.75-1.95 μm (5710-5130 cm-1), with a single-channel detection sensitivity (simultaneously over 2000 channels) of ˜4×10-8 cm-1 Hz-1/2 in nitrogen and, specifically, an absorption sensitivity of ˜4×10-7 cm-1 Hz-1/2 for trace water doped in arsine.

  20. Atmospheric HONO and NO2 measurement based on a broadband cavity enhanced UV-LED spectrometer

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Zha, Qiaozhi; Chen, Weidong; Xu, Zheng; Wang, Tao; He, Xingdao

    2015-04-01

    Nitrous acid (HONO) is a key component in tropospheric oxidant chemistry due to its contribution to the cycles of nitrogen oxides (NOx) and hydrogen oxides (HOx). Though numerous laboratory, field, and modeling studies were performed to explain the observed HONO concentrations in the atmosphere, the knowledge of atmospheric HONO chemistry is still not well understood and sometimes controversial [1]. Accurate measurements of HONO and its precursors with high precision should aid in understanding the HONO chemistry. In this paper we report on the measurements of HONO and NO2 concentrations at a suburban site of Tung Chung in Hong Kong during a field intercomparison campaign using a broadband cavity enhanced UV-LED spectrometer. 1σ detection limits of 0.3 ppbv for HONO and 1 ppbv for NO2 were achieved with an optimum acquisition time of 120 s. The measured HONO and NO2 concentrations were compared with the data from commercial HONO (LOPAP) and NO2 (NOX-analyzer) measurement instrument. Typical diurnal pattern of HONO have been observed and the potential formation sources have been analyzed [2]. Acknowledgements The supported by National Natural Science Foundation of China (No. 41265011), Educational Commission of Jiangxi Province of China (No.GJJ14548) and Environment and Conservation Fund of the Hong Kong Special Administrative Region (No. 7/2009). The support of the IRENI program of the Région Nord-Pas de Calaisn, is acknowledged. References [1] W. Chen, R. Maamary, X. Cui, T. Wu, E. Fertein, D. Dewaele, F. Cazier, Q. Zha, Z. Xu, T. Wang, Y. Wang, W. Zhang, X. Gao, W. Liu, F. Dong, 'Photonic Sensing of Environmental Gaseous Nitrous Acid (HONO): Opportunities and Challenges' in The Wonder of Nanotechnology: Quantum Optoelectronic Devices and Applications, M. Razeghi. L. Esaki, and K. von Klitzing, Eds., SPIE Press, Bellingham, WA, 2013, pp. 693-737 [2] T. Wu, Q. Zha, W. Chen, Z. XU, T. Wang, X. He, 'Development and deployment of a cavity enhanced UV

  1. Microwave cavity-enhanced transduction for plug and play nanomechanics at room temperature

    PubMed Central

    Faust, T.; Krenn, P.; Manus, S.; Kotthaus, J.P.; Weig, E.M.

    2012-01-01

    Following recent insights into energy storage and loss mechanisms in nanoelectromechanical systems (NEMS), nanomechanical resonators with increasingly high quality factors are possible. Consequently, efficient, non-dissipative transduction schemes are required to avoid the dominating influence of coupling losses. Here we present an integrated NEMS transducer based on a microwave cavity dielectrically coupled to an array of doubly clamped pre-stressed silicon nitride beam resonators. This cavity-enhanced detection scheme allows resolving of the resonators' Brownian motion at room temperature while preserving their high mechanical quality factor of 290,000 at 6.6 MHz. Furthermore, our approach constitutes an 'opto'-mechanical system in which backaction effects of the microwave field are employed to alter the effective damping of the resonators. In particular, cavity-pumped self-oscillation yields a linewidth of only 5 Hz. Thereby, an adjustement-free, all-integrated and self-driven nanoelectromechanical resonator array interfaced by just two microwave connectors is realised, which is potentially useful for applications in sensing and signal processing. PMID:22395619

  2. Down-conversion photoluminescence sensitizing plasmonic silver nanoparticles on ZnO nanorods to generate hydrogen by water splitting photochemistry

    NASA Astrophysics Data System (ADS)

    Kung, Po-Yen; Huang, Li-Wen; Shen, Tin-Wei; Wang, Wen-Lin; Su, Yen-Hsun; Lin, Melody I.

    2015-01-01

    Silver nanoparticles fabricated onto the surface of the ZnO nanorods form the photoanode and generate photoelectric current due to surface plasmon resonance, which serves as anode electrodes in photoelectrochemical hydrogen production. In order to increase the absorption spectrum of photoanode, organic pigments were utilized as photo-sensitizers to generate down-conversion photoluminescence to excite surface plasmon resonances of silver nanoparticles. The way of using light to carry the energy in electronic scattering regime runs the system for the enhancement of solar water splitting efficiency. It was significantly tuned in environmentally sustainable applications for power generation and development of alternative energy.

  3. Title: Development of Single photon Quantum Optical Experiments using Type-I and Type-II Spontaneous Parametric Down Conversion

    NASA Astrophysics Data System (ADS)

    Laugharn, Andrew; Maleki, Seyfollah

    We constructed a quantum optical apparatus to control and detect single photons. We generated these photons via Type-I and Type-II spontaneous parametric down conversion by pumping a GaN laser (405nm) incident on a BBO crystal. We detected the two down converted photons (810nm), denoted signal and idler, in coincidence so as to measure and control single photons. We implemented a coincidence counting unite onto an Altera DE2 board and used LabView for data acquisition. We used these photon pairs to demonstrate quantum entanglement and indistinguishability using multiple optical experiments.

  4. W-band OFDM Radio-over-Fiber system with power detector for vector signal down-conversion.

    PubMed

    Lin, Chun-Ting; Wu, Meng-Fan; Ho, Chun-Hung; Li, Che-Hao; Lin, Chi-Hsiang; Huang, Hou-Tzu

    2015-06-01

    This Letter proposes a W-band OFDM RoF system at 103.5 GHz employing power detector to support vector signal down-conversion. Additional RF tone is generated and transmitted from central office to replace the local oscillator at a wireless receiver. With a proper frequency gap and power ratio between the RF tone and the OFDM-modulated signal, the impact from signal-to-signal beating interference can be minimized. The data rate can achieve a 40 Gbps 16 QAM OFDM signal over 25 km fiber and 2 m wireless transmission. PMID:26030536

  5. Down-conversion photoluminescence sensitizing plasmonic silver nanoparticles on ZnO nanorods to generate hydrogen by water splitting photochemistry

    SciTech Connect

    Kung, Po-Yen; Huang, Li-Wen; Shen, Tin-Wei; Wang, Wen-Lin; Su, Yen-Hsun; Lin, Melody I.

    2015-01-12

    Silver nanoparticles fabricated onto the surface of the ZnO nanorods form the photoanode and generate photoelectric current due to surface plasmon resonance, which serves as anode electrodes in photoelectrochemical hydrogen production. In order to increase the absorption spectrum of photoanode, organic pigments were utilized as photo-sensitizers to generate down-conversion photoluminescence to excite surface plasmon resonances of silver nanoparticles. The way of using light to carry the energy in electronic scattering regime runs the system for the enhancement of solar water splitting efficiency. It was significantly tuned in environmentally sustainable applications for power generation and development of alternative energy.

  6. Spatial and spectral properties of entangled photons from spontaneous parametric down-conversion with a focused pump

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Chan; Kim, Yoon-Ho

    2016-05-01

    The spatial and spectral properties of entangled photons from spontaneous parametric down-conversion (SPDC) with a focused pump are investigated with theoretical analysis and numerical simulation. Here, the spatial and spectral properties of down-converted photons are fully calculated without using the transverse momentum conservation assumption. We have obtained the spatial and spectral properties of SPDC photons under focused pumping in various SPDC configurations, including type-I, type-II for both positive and negative uniaxial crystals. Our result not only helps to understand the effect of pump focusing in SPDC better but also can find use in application of SPDC in realizing quantum information protocols.

  7. Measurements of the dependence of the photon-number distribution on the number of modes in parametric down-conversion.

    PubMed

    Dovrat, L; Bakstein, M; Istrati, D; Shaham, A; Eisenberg, H S

    2012-01-30

    Optical parametric down-conversion (PDC) is a central tool in quantum optics experiments. The number of collected down-converted modes greatly affects the quality of the produced photon state. We use Silicon Photomultiplier (SiPM) number-resolving detectors in order to observe the photon-number distribution of a PDC source, and show its dependence on the number of collected modes. Additionally, we show how the stimulated emission of photons and the partition of photons into several modes determine the overall photon number. We present a novel analytical model for the optical crosstalk effect in SiPM detectors, and use it to analyze the results. PMID:22330466

  8. Real-time trace gas sensor using a multimode diode laser and multiple-line integrated cavity enhanced absorption spectroscopy.

    PubMed

    Karpf, Andreas; Rao, Gottipaty N

    2015-07-01

    We describe and demonstrate a highly sensitive trace gas sensor based on a simplified design that is capable of measuring sub-ppb concentrations of NO2 in tens of milliseconds. The sensor makes use of a relatively inexpensive Fabry-Perot diode laser to conduct off-axis cavity enhanced spectroscopy. The broad frequency range of a multimode Fabry-Perot diode laser spans a large number of absorption lines, thereby removing the need for a single-frequency tunable laser source. The use of cavity enhanced absorption spectroscopy enhances the sensitivity of the sensor by providing a pathlength on the order of 1 km in a small volume. Off-axis alignment excites a large number of cavity modes simultaneously, thereby reducing the sensor's susceptibility to vibration. Multiple-line integrated absorption spectroscopy (where one integrates the absorption spectra over a large number of rovibronic transitions of the molecular species) further improves the sensitivity of detection. Relatively high laser power (∼400  mW) is used to compensate for the low coupling efficiency of a broad linewidth laser to the optical cavity. The approach was demonstrated using a 407 nm diode laser to detect trace quantities of NO2 in zero air. Sensitivities of 750 ppt, 110 ppt, and 65 ppt were achieved using integration times of 50 ms, 5 s, and 20 s respectively. PMID:26193156

  9. Aspects of the Application of Cavity Enhanced Spectroscopy to Nitrogen Oxides Detection

    PubMed Central

    Wojtas, Jacek; Mikolajczyk, Janusz; Bielecki, Zbigniew

    2013-01-01

    This article presents design issues of high-sensitive laser absorption spectroscopy systems for nitrogen oxides (NOx) detection. Examples of our systems and their investigation results are also described. The constructed systems use one of the most sensitive methods, cavity enhanced absorption spectroscopy (CEAS). They operate at different wavelength ranges using a blue—violet laser diode (410 nm) as well as quantum cascade lasers (5.27 μm and 4.53 μm). Each of them is configured as a one or two channel measurement device using, e.g., time division multiplexing and averaging. During the testing procedure, the main performance features such as detection limits and measurements uncertainties have been determined. The obtained results are 1 ppb NO2, 75 ppb NO and 45 ppb N2O. For all systems, the uncertainty of concentration measurements does not exceed a value of 13%. Some experiments with explosives are also discussed. A setup equipped with a concentrator of explosives vapours was used. The detection method is based either on the reaction of the sensors to the nitrogen oxides directly emitted by the explosives or on the reaction to the nitrogen oxides produced during thermal decomposition of explosive vapours. For TNT, PETN, RDX and HMX a detection limit better than 1 ng has been achieved. PMID:23752566

  10. Cavity-enhanced parity-nonconserving optical rotation in metastable Xe and Hg.

    PubMed

    Bougas, L; Katsoprinakis, G E; von Klitzing, W; Sapirstein, J; Rakitzis, T P

    2012-05-25

    We propose the measurement of cavity-enhanced parity-nonconserving (PNC) optical rotation in several transitions of metastable Xe and Hg, including Xe (2P(3/2)(o))6s(2)[3/2](2)(o)→(2P(1/2)(o))6s(2)[1/2](1)(o) and Hg 6s6p (3)P(2)(o)→6s6p (1)P(1)(o), with calculated amplitude ratios of E(1)(PNC)/M1=11×10(-8) and 10×10(-8), respectively. We demonstrate the use of a high-finesse bow-tie cavity with counterpropagating beams and a longitudinal magnetic field, which allows the absolute measurement of chiral optical rotation, with a path length enhancement of about 10(4), necessary for PNC measurement from available column densities of 10(14) cm(-2) for metastable Xe or Hg. Rapid PNC-signal reversal, allowing robust background subtraction, is achieved by shifting the cavity resonance to an opposite polarization mode or by inverting the magnetic field. The precise measurement of isotope and nuclear-spin dependent E(1)(PNC) amplitudes provides a sensitive low-energy test of the standard model. PMID:23003234

  11. Optical-feedback cavity-enhanced absorption spectroscopy in a linear cavity: model and experiments

    NASA Astrophysics Data System (ADS)

    Manfred, Katherine M.; Ciaffoni, Luca; Ritchie, Grant A. D.

    2015-08-01

    Optical-feedback cavity-enhanced absorption spectroscopy is a highly sensitive trace gas sensing technique that relies on feedback from a resonant intracavity field to successively lock the laser to the cavity as the wavelength is scanned across a molecular absorption with a comb of resonant frequencies. V-shaped optical cavities have been favoured in the past in order to avoid additional feedback fields from non-resonant reflections that potentially suppress the locking to the resonant cavity frequency. A model of the laser-cavity coupling demonstrates, however, that the laser can stably lock to a resonant linear cavity, within certain constraints on the relative intensity of the two feedback sources. By mode mismatching the field into the linear cavity, we have shown that it is theoretically and practically possible to spatially filter out the unwanted non-resonant component in order for the resonant field to dominate the feedback competition at the laser. A 5.3 cw quantum cascade laser scanning across a absorption feature demonstrated stable locking to achieve a minimum detectable absorption coefficient of for 1-s averaging. Detailed investigations of feedback effects on the laser output verified the validity of our theoretical models.

  12. Efficiency enhancement in dye-sensitized solar cells with down conversion material ZnO: Eu3+, Dy3+

    NASA Astrophysics Data System (ADS)

    Yao, Nannan; Huang, Jinzhao; Fu, Ke; Liu, Shiyou; E, Dong; Wang, Yanhao; Xu, Xijin; Zhu, Min; Cao, Bingqiang

    2014-12-01

    The down conversion (DC) material ZnO: Eu3+, Dy3+ are synthesized by precipitation method and used to prepare the photo anode of dye-sensitized solar cells (DSSCs). The effects of down conversion material on the photoelectric performance of the DSSC were characterized by the X-ray diffraction (XRD), photoluminescence (PL), scanning electron microscope (SEM), current-voltage (I-V) curve, incident-photon-to-current conversion efficiency (IPCE) and UV-vis-NIR absorption spectroscopy. In this paper, Eu3+, Dy3+ codoped ZnO excited by from UV to blue light converts blue to red light emission, corresponding to the absorption region of the dye (N719). At the concentration 1.75% of ZnO: Eu3+, Dy3+ (weight ratio of DC to TiO2), the short-circuit current density and conversion efficiency of the DSSCs reached to the optimal values: 8.92 mA cm-2 and 4.48%, about 212% and 245% higher than with pure TiO2 and about 91.4% and 105% higher than with TiO2/graphene (G) structure, respectively. The research result reveals that the application of DC material can improve the efficiency of DSSCs.

  13. Tm{sup 3+}-sensitized up- and down-conversions in nano-structured oxyfluoride glass ceramics

    SciTech Connect

    Lin, Hang; Marqués-Hueso, José; Chen, Daqin; Wang, Yuansheng; Richards, Bryce S.

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► UC and DC are achieved in a single-ion sensitized phosphor for PV applications. ► The most intense fractions of AM 1.5G spectrum below/above c-Si bandgap are absorbed. ► The converted photons match the optimal spectral response of c-Si. -- Abstract: Tm{sup 3+}-sensitized up-conversion and down-conversion are studied in transparent glass ceramics embedded with β-YF{sub 3} nanocrystals. Upon excitation at 1220 nm, where crystalline silicon (c-Si) solar cells no longer absorb, the sub-bandgap photons could be converted to the higher-energy ones via up-conversion. In addition, under excitation at 468 nm (a wavelength close to the peak in the air-mass 1.5 global solar spectrum), one blue photon might be split in up to two near-infrared ones via down-conversion. In both cases, the frequency-converted photons match the spectral response of c-Si solar cell well. Hopefully, the investigated luminescent materials may act as the spectral conversion layers to reduce the sub-bandgap transmission and charge carrier thermalization losses of c-Si solar cells, and in turn, enhance the energy efficiency.

  14. Cavity Enhanced Thomson Scattering for Low Temperature Plasmas

    NASA Astrophysics Data System (ADS)

    Yalin, Azer; Friss, Adam; Lee, Brian; Franka, Isaiah

    2013-09-01

    This contribution describes the design, simulation, and initial experimental development of a novel laser Thomson scattering (LTS) system for measurement of weakly-ionized low temperature plasmas. The LTS approach uses a high power intra-cavity beam of power ~10-100 kW to provide increased scattered photon counts and sensitivity as compared to conventional LTS experiments that use light sources with orders of magnitude lower average power. The high power intra-cavity beam is generated by locking a narrow linewidth source laser to a high-finesse optical cavity via Pound-Drever-Hall locking. The plasma (to be studied) is housed with the high-finesse optical cavity. The high-power source is combined with a detection system comprised of a high-suppression triple monochromator and a low-noise photomultiplier tube used in photon counting mode. We present simulations of signal strengths and scattering spectra including elastic scatter background, detector dark counts, and random (counting) noise contributions. Expected experimental performance is assessed from fits to the simulated data. The number density and electron temperature of a 1010 cm-3 plasma should be accurately measurable with standard deviation of <5% in a measurement time of 5 minutes per wavelength channel. We also present experimental development including characterization of laser locking, and initial Rayleigh and Raman signals which will be used to calibrate the Thomson system.

  15. Cavity-enhanced frequency up-conversion in rubidium vapor.

    PubMed

    Offer, Rachel F; Conway, Johnathan W C; Riis, Erling; Franke-Arnold, Sonja; Arnold, Aidan S

    2016-05-15

    We report the first use of a ring cavity to both enhance the output power and dramatically narrow the linewidth (<1  MHz) of blue light generated by four-wave mixing in a rubidium vapor cell. We find that the high output power available in our cavity-free system leads to power broadening of the generated blue light linewidth. Our ring cavity removes this limitation, allowing high output power and narrow linewidth to be achieved concurrently. As the cavity blue light is widely tunable over the Rb855S1/2F=3→6P3/2 transition, this narrow linewidth light would be suitable for near-resonant rubidium studies including, for example, second-stage laser cooling. PMID:27176956

  16. Cavity-enhanced light emission from electrically driven carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Pyatkov, Felix; Fütterling, Valentin; Khasminskaya, Svetlana; Flavel, Benjamin S.; Hennrich, Frank; Kappes, Manfred M.; Krupke, Ralph; Pernice, Wolfram H. P.

    2016-06-01

    An important advancement towards optical communication on a chip would be the development of integratable, nanoscale photonic emitters with tailored optical properties. Here we demonstrate the use of carbon nanotubes as electrically driven high-speed emitters in combination with a nanophotonic cavity that allows for exceptionally narrow linewidths. The one-dimensional photonic crystal cavities are shown to spectrally select desired emission wavelengths, enhance intensity and efficiently couple light into the underlying photonic network with high reproducibility. Under pulsed voltage excitation, we realize on-chip modulation rates in the GHz range, compatible with active photonic networks. Because the linewidth of the molecular emitter is determined by the quality factor of the photonic crystal, our approach effectively eliminates linewidth broadening due to temperature, surface interaction and hot-carrier injection.

  17. Cavity-enhanced frequency up-conversion in rubidium vapor

    NASA Astrophysics Data System (ADS)

    Offer, Rachel F.; Conway, Johnathan W. C.; Riis, Erling; Franke-Arnold, Sonja; Arnold, Aidan S.

    2016-05-01

    We report the first use of a ring cavity to both enhance the output power and dramatically narrow the linewidth ($<1\\,$MHz) of blue light generated by four wave mixing in a rubidium vapour cell. We find that the high output power available in our cavity-free system leads to power broadening of the generated blue light linewidth. Our ring cavity removes this limitation, allowing high output power and narrow linewidth to be achieved concurrently. As the cavity blue light is widely tunable over the $^{85}$Rb 5S$_{1/2} \\,\\,F=3$ $\\rightarrow$ 6P$_{3/2}$ transition, this narrow linewidth light would be suitable for second-stage laser cooling, which could be valuable for efficient $^{85}$Rb BEC production.

  18. Effects of polarization mode dispersion on polarization-entangled photons generated via broadband pumped spontaneous parametric down-conversion.

    PubMed

    Lim, Hyang-Tag; Hong, Kang-Hee; Kim, Yoon-Ho

    2016-01-01

    An inexpensive and compact frequency multi-mode diode laser enables a compact two-photon polarization entanglement source via the continuous wave broadband pumped spontaneous parametric down-conversion (SPDC) process. Entanglement degradation caused by polarization mode dispersion (PMD) is one of the critical issues in optical fiber-based polarization entanglement distribution. We theoretically and experimentally investigate how the initial entanglement is degraded when the two-photon polarization entangled state undergoes PMD. We report an effect of PMD unique to broadband pumped SPDC, equally applicable to pulsed pumping as well as cw broadband pumping, which is that the amount of the entanglement degradation is asymmetrical to the PMD introduced to each quantum channel. We believe that our results have important applications in long-distance distribution of polarization entanglement via optical fiber channels. PMID:27174100

  19. Effects of polarization mode dispersion on polarization-entangled photons generated via broadband pumped spontaneous parametric down-conversion

    NASA Astrophysics Data System (ADS)

    Lim, Hyang-Tag; Hong, Kang-Hee; Kim, Yoon-Ho

    2016-05-01

    An inexpensive and compact frequency multi-mode diode laser enables a compact two-photon polarization entanglement source via the continuous wave broadband pumped spontaneous parametric down-conversion (SPDC) process. Entanglement degradation caused by polarization mode dispersion (PMD) is one of the critical issues in optical fiber-based polarization entanglement distribution. We theoretically and experimentally investigate how the initial entanglement is degraded when the two-photon polarization entangled state undergoes PMD. We report an effect of PMD unique to broadband pumped SPDC, equally applicable to pulsed pumping as well as cw broadband pumping, which is that the amount of the entanglement degradation is asymmetrical to the PMD introduced to each quantum channel. We believe that our results have important applications in long-distance distribution of polarization entanglement via optical fiber channels.

  20. Heralded quantum repeater based on the scattering of photons off single emitters using parametric down-conversion source

    PubMed Central

    Song, Guo-Zhu; Wu, Fang-Zhou; Zhang, Mei; Yang, Guo-Jian

    2016-01-01

    Quantum repeater is the key element in quantum communication and quantum information processing. Here, we investigate the possibility of achieving a heralded quantum repeater based on the scattering of photons off single emitters in one-dimensional waveguides. We design the compact quantum circuits for nonlocal entanglement generation, entanglement swapping, and entanglement purification, and discuss the feasibility of our protocols with current experimental technology. In our scheme, we use a parametric down-conversion source instead of ideal single-photon sources to realize the heralded quantum repeater. Moreover, our protocols can turn faulty events into the detection of photon polarization, and the fidelity can reach 100% in principle. Our scheme is attractive and scalable, since it can be realized with artificial solid-state quantum systems. With developed experimental technique on controlling emitter-waveguide systems, the repeater may be very useful in long-distance quantum communication. PMID:27350159

  1. Spontaneous parametric down conversion of vectorial beams: helicity effects on the orbital angular momentum of the photon pairs

    NASA Astrophysics Data System (ADS)

    Jáuregui, R.

    2015-06-01

    We study the process of spontaneous parametric down conversion of a coherent structured electromagnetic (EM) field into a pair of photons that are also described by structured EM modes. We explore the relevance of a full vectorial description when the pump beam is outside the paraxial regime. A particularly interesting new phenomenon in such a regime corresponds to the conversion of angular momentum of the EM field associated with its polarization (usually referred to as spin angular momentum or SAM) into angular momentum related to optical vortices (usually referred to as orbital angular momentum or OAM). We show that such a conversion can take place using Bessel pump beams and standard nonlinear crystals with their birefringent axis parallel to the vector normal to its surface. Phase matching conditions are studied in detail for this configuration. Signatures of the conversion of SAM into OAM on the angular spectrum of the down converted photons are described.

  2. Heralded quantum repeater based on the scattering of photons off single emitters using parametric down-conversion source

    NASA Astrophysics Data System (ADS)

    Song, Guo-Zhu; Wu, Fang-Zhou; Zhang, Mei; Yang, Guo-Jian

    2016-06-01

    Quantum repeater is the key element in quantum communication and quantum information processing. Here, we investigate the possibility of achieving a heralded quantum repeater based on the scattering of photons off single emitters in one-dimensional waveguides. We design the compact quantum circuits for nonlocal entanglement generation, entanglement swapping, and entanglement purification, and discuss the feasibility of our protocols with current experimental technology. In our scheme, we use a parametric down-conversion source instead of ideal single-photon sources to realize the heralded quantum repeater. Moreover, our protocols can turn faulty events into the detection of photon polarization, and the fidelity can reach 100% in principle. Our scheme is attractive and scalable, since it can be realized with artificial solid-state quantum systems. With developed experimental technique on controlling emitter-waveguide systems, the repeater may be very useful in long-distance quantum communication.

  3. Effects of polarization mode dispersion on polarization-entangled photons generated via broadband pumped spontaneous parametric down-conversion

    PubMed Central

    Lim, Hyang-Tag; Hong, Kang-Hee; Kim, Yoon-Ho

    2016-01-01

    An inexpensive and compact frequency multi-mode diode laser enables a compact two-photon polarization entanglement source via the continuous wave broadband pumped spontaneous parametric down-conversion (SPDC) process. Entanglement degradation caused by polarization mode dispersion (PMD) is one of the critical issues in optical fiber-based polarization entanglement distribution. We theoretically and experimentally investigate how the initial entanglement is degraded when the two-photon polarization entangled state undergoes PMD. We report an effect of PMD unique to broadband pumped SPDC, equally applicable to pulsed pumping as well as cw broadband pumping, which is that the amount of the entanglement degradation is asymmetrical to the PMD introduced to each quantum channel. We believe that our results have important applications in long-distance distribution of polarization entanglement via optical fiber channels. PMID:27174100

  4. Heralded quantum repeater based on the scattering of photons off single emitters using parametric down-conversion source.

    PubMed

    Song, Guo-Zhu; Wu, Fang-Zhou; Zhang, Mei; Yang, Guo-Jian

    2016-01-01

    Quantum repeater is the key element in quantum communication and quantum information processing. Here, we investigate the possibility of achieving a heralded quantum repeater based on the scattering of photons off single emitters in one-dimensional waveguides. We design the compact quantum circuits for nonlocal entanglement generation, entanglement swapping, and entanglement purification, and discuss the feasibility of our protocols with current experimental technology. In our scheme, we use a parametric down-conversion source instead of ideal single-photon sources to realize the heralded quantum repeater. Moreover, our protocols can turn faulty events into the detection of photon polarization, and the fidelity can reach 100% in principle. Our scheme is attractive and scalable, since it can be realized with artificial solid-state quantum systems. With developed experimental technique on controlling emitter-waveguide systems, the repeater may be very useful in long-distance quantum communication. PMID:27350159

  5. Third-order spontaneous parametric down-conversion in thin optical fibers as a photon-triplet source

    SciTech Connect

    Corona, Maria; Garay-Palmett, Karina; U'Ren, Alfred B.

    2011-09-15

    We study the third-order spontaneous parametric down-conversion (TOSPDC) process, as a means to generate entangled photon triplets. Specifically, we consider thin optical fibers as the nonlinear medium to be used as the basis for TOSPDC in configurations where phase matching is attained through the use of more than one fiber transverse modes. Our analysis in this paper, which follows from our earlier paper [Opt. Lett. 36, 190-192 (2011)], aims to supply experimentalists with the details required in order to design a TOSPDC photon-triplet source. Specifically, our analysis focuses on the photon triplet state, on the rate of emission, and on the TOSPDC phase-matching characteristics for the cases of frequency-degenerate and frequency nondegenerate TOSPDC.

  6. Fluorescent MoS2 Quantum Dots: Ultrasonic Preparation, Up-Conversion and Down-Conversion Bioimaging, and Photodynamic Therapy.

    PubMed

    Dong, Haifeng; Tang, Songsong; Hao, Yansong; Yu, Haizhu; Dai, Wenhao; Zhao, Guifeng; Cao, Yu; Lu, Huiting; Zhang, Xueji; Ju, Huangxian

    2016-02-10

    Small size molybdenum disulfide (MoS2) quantum dots (QDs) with desired optical properties were controllably synthesized by using tetrabutylammonium-assisted ultrasonication of multilayered MoS2 powder via OH-mediated chain-like Mo-S bond cleavage mode. The tunable up-bottom approach of precise fabrication of MoS2 QDs finally enables detailed experimental investigations of their optical properties. The synthesized MoS2 QDs present good down-conversion photoluminescence behaviors and exhibit remarkable up-conversion photoluminescence for bioimaging. The mechanism of the emerging photoluminescence was investigated. Furthermore, superior (1)O2 production ability of MoS2 QDs to commercial photosensitizer PpIX was demonstrated, which has great potential application for photodynamic therapy. These early affording results of tunable synthesis of MoS2 QDs with desired photo properties can lead to application in fields of biomedical and optoelectronics. PMID:26761391

  7. A broadband cavity enhanced absorption spectrometer for aircraft measurements of glyoxal, methylglyoxal, nitrous acid, nitrogen dioxide, and water vapor

    NASA Astrophysics Data System (ADS)

    Min, K.-E.; Washenfelder, R. A.; Dubé, W. P.; Langford, A. O.; Edwards, P. M.; Zarzana, K. J.; Stutz, J.; Lu, K.; Rohrer, F.; Zhang, Y.; Brown, S. S.

    2016-02-01

    We describe a two-channel broadband cavity enhanced absorption spectrometer (BBCEAS) for aircraft measurements of glyoxal (CHOCHO), methylglyoxal (CH3COCHO), nitrous acid (HONO), nitrogen dioxide (NO2), and water (H2O). The instrument spans 361-389 and 438-468 nm, using two light-emitting diodes (LEDs) and a single grating spectrometer with a charge-coupled device (CCD) detector. Robust performance is achieved using a custom optical mounting system, high-power LEDs with electronic on/off modulation, high-reflectivity cavity mirrors, and materials that minimize analyte surface losses. We have successfully deployed this instrument during two aircraft and two ground-based field campaigns to date. The demonstrated precision (2σ) for retrievals of CHOCHO, HONO and NO2 are 34, 350, and 80 parts per trillion (pptv) in 5 s. The accuracy is 5.8, 9.0, and 5.0 %, limited mainly by the available absorption cross sections.

  8. The time-dependent emission of molecular iodine from Laminaria Digitata measured with incoherent broadband cavity-enhanced absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Dixneuf, S.

    2009-04-01

    The release of molecular iodine (I2) from the oceans into the atmosphere has been recognized to correlate strongly with ozone depletion events and aerosol formation in the Marine Boundary Layer (MBL), which affects in turn global radiative forcing. The detailed mechanisms and dominant sources leading to the observed concentrations of I2 in the marine troposphere are still under intense investigation. In a recent campaign on the Irish west coast at Mace Head Atmospheric Research Station [1], it was found that significant levels of molecular iodine correlated with times of low tide, suggesting that the emission of air-exposed macro-algae may be a prime source of molecular iodine in coastal areas [2]. To further investigate this hypothesis we tried to detect the I2 emission of the brown seaweed Laminaria digitata, one of the most efficient iodine accumulators among living systems, directly by means of highly sensitive incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) [3]. IBBCEAS combines a good temporal and spatial resolution with high molecule-specific detection limits [4] comparable to that of typical LP-DOAS. IBBCEAS thus complements LP-DOAS in the search for sources of tropospheric trace gases. In this presentation the first direct observation of the time dependence of molecular iodine emission from Laminaria digitata will be shown. Plants were studied under naturally occurring stress for quasi in situ conditions for many hours. Surprisingly, the release of I2 occurs in short, strong bursts with quasi-oscillatory behaviour, bearing similarities to well known "iodine clock reactions". References [1] Saiz-Lopez A. & Plane, J. M. C. Novel iodine chemistry in the marine boundary layer. Geophys. Res. Lett. 31, L04112 (2004) doi:10.1029/2003GL019215. [2] McFiggans, G., Coe, H., Burgess, R., Allan, J., Cubison, M., Alfarra, M. R., Saunders, R., Saiz-Lopez, A., Plane, J. M. C., Wevill, D. J., Carpenter, L. J., Rickard, A. R. & Monks, P. S. Direct

  9. Broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region for measurements of nitrogen dioxide and formaldehyde

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Attwood, A. R.; Flores, J. M.; Zarzana, K. J.; Rudich, Y.; Brown, S. S.

    2016-01-01

    Formaldehyde (CH2O) is the most abundant aldehyde in the atmosphere, and it strongly affects photochemistry through its photolysis. We describe simultaneous measurements of CH2O and nitrogen dioxide (NO2) using broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region. The light source consists of a continuous-wave diode laser focused into a Xenon bulb to produce a plasma that emits high-intensity, broadband light. The plasma discharge is optically filtered and coupled into a 1 m optical cavity. The reflectivity of the cavity mirrors is 0.99930 ± 0.00003 (1- reflectivity = 700 ppm loss) at 338 nm, as determined from the known Rayleigh scattering of He and zero air. This mirror reflectivity corresponds to an effective path length of 1.43 km within the 1 m cell. We measure the cavity output over the 315-350 nm spectral region using a grating monochromator and charge-coupled device array detector. We use published reference spectra with spectral fitting software to simultaneously retrieve CH2O and NO2 concentrations. Independent measurements of NO2 standard additions by broadband cavity-enhanced absorption spectroscopy and cavity ring-down spectroscopy agree within 2 % (slope for linear fit = 1.02 ± 0.03 with r2 = 0.998). Standard additions of CH2O measured by broadband cavity-enhanced absorption spectroscopy and calculated based on flow dilution are also well correlated, with r2 = 0.9998. During constant mixed additions of NO2 and CH2O, the 30 s measurement precisions (1σ) of the current configuration were 140 and 210 pptv, respectively. The current 1 min detection limit for extinction measurements at 315-350 nm provides sufficient sensitivity for measurement of trace gases in laboratory experiments and ground-based field experiments. Additionally, the instrument provides highly accurate, spectroscopically based trace gas detection that may complement higher precision techniques based on non

  10. Cavity-Enhanced Room-Temperature Broadband Raman Memory.

    PubMed

    Saunders, D J; Munns, J H D; Champion, T F M; Qiu, C; Kaczmarek, K T; Poem, E; Ledingham, P M; Walmsley, I A; Nunn, J

    2016-03-01

    Broadband quantum memories hold great promise as multiplexing elements in future photonic quantum information protocols. Alkali-vapor Raman memories combine high-bandwidth storage, on-demand readout, and operation at room temperature without collisional fluorescence noise. However, previous implementations have required large control pulse energies and have suffered from four-wave-mixing noise. Here, we present a Raman memory where the storage interaction is enhanced by a low-finesse birefringent cavity tuned into simultaneous resonance with the signal and control fields, dramatically reducing the energy required to drive the memory. By engineering antiresonance for the anti-Stokes field, we also suppress the four-wave-mixing noise and report the lowest unconditional noise floor yet achieved in a Raman-type warm vapor memory, (15±2)×10^{-3} photons per pulse, with a total efficiency of (9.5±0.5)%. PMID:26991164

  11. Cavity-Enhanced Room-Temperature Broadband Raman Memory

    NASA Astrophysics Data System (ADS)

    Saunders, D. J.; Munns, J. H. D.; Champion, T. F. M.; Qiu, C.; Kaczmarek, K. T.; Poem, E.; Ledingham, P. M.; Walmsley, I. A.; Nunn, J.

    2016-03-01

    Broadband quantum memories hold great promise as multiplexing elements in future photonic quantum information protocols. Alkali-vapor Raman memories combine high-bandwidth storage, on-demand readout, and operation at room temperature without collisional fluorescence noise. However, previous implementations have required large control pulse energies and have suffered from four-wave-mixing noise. Here, we present a Raman memory where the storage interaction is enhanced by a low-finesse birefringent cavity tuned into simultaneous resonance with the signal and control fields, dramatically reducing the energy required to drive the memory. By engineering antiresonance for the anti-Stokes field, we also suppress the four-wave-mixing noise and report the lowest unconditional noise floor yet achieved in a Raman-type warm vapor memory, (15 ±2 )×10-3 photons per pulse, with a total efficiency of (9.5 ±0.5 )%.

  12. A broadband cavity enhanced absorption spectrometer for aircraft measurements of glyoxal, methylglyoxal, nitrous acid, nitrogen dioxide, and water vapor

    NASA Astrophysics Data System (ADS)

    Min, K.-E.; Washenfelder, R. A.; Dubé, W. P.; Langford, A. O.; Edwards, P. M.; Zarzana, K. J.; Stutz, J.; Lu, K.; Rohrer, F.; Zhang, Y.; Brown, S. S.

    2015-10-01

    We describe a two-channel broadband cavity enhanced absorption spectrometer (BBCEAS) for aircraft measurements of glyoxal (CHOCHO), methylglyoxal (CH3COCHO), nitrous acid (HONO), nitrogen dioxide (NO2), and water (H2O). The instrument spans 361-389 and 438-468 nm, using two light emitting diodes (LEDs) and a grating spectrometer with a charge-coupled device (CCD) detector. Robust performance is achieved using a custom optical mounting system, high power LEDs with electronic on/off modulation, state-of-the-art cavity mirrors, and materials that minimize analyte surface losses. We have successfully deployed this instrument during two aircraft and two ground-based field campaigns to date. The demonstrated precision (2σ) for retrievals of CHOCHO, HONO and NO2 are 34, 350 and 80 pptv in 5 s. The accuracy is 5.8, 9.0 and 5.0 % limited mainly by the available absorption cross sections.

  13. Complementary cavity-enhanced spectrometers to investigate the OH + CH combination band in trans-formic acid.

    PubMed

    Golebiowski, D; Földes, T; Vanfleteren, T; Herman, M; Perrin, A

    2015-07-01

    We have used continuous-wave cavity ring-down and femto-Fourier transform-cavity-enhanced absorption spectrometers to record the spectrum of the OH-stretching + CH-stretching (ν1 + ν2) combination band in trans-formic acid, with origin close to 6507 cm(-1). They, respectively, allowed resolving and simplifying the rotational structure of the band near its origin under jet-cooled conditions (Trot = 10 K) and highlighting the overview of the band under room temperature conditions. The stronger B-type and weaker A-type subbands close to the band origin could be assigned, as well as the main B-type Q branches. The high-resolution analysis was hindered by numerous, severe perturbations. Rotational constants are reported with, however, limited physical meaning. The ν1 + ν2 transition moment is estimated from relative intensities to be 24° away from the principal b-axis of inertia. PMID:26156476

  14. Design of diamond microcavities for single photon frequency down-conversion

    NASA Astrophysics Data System (ADS)

    Lin, Z.; Johnson, S. G.; Rodriguez, A. W.; Loncar, M.

    2015-09-01

    We propose monolithic diamond cavities that can be used to convert color-center Fock-state single photons from emission wavelengths to telecommunication bands. We present a detailed theoretical description of the conversion process, analyzing important practical concerns such as nonlinear phase shifts and frequency mismatch. Our analysis predicts sustainable power requirements ($ \\lesssim 1~\\mathrm{W}$) for a chipscale nonlinear device with high conversion efficiencies.

  15. Cavity Enhanced Absorption Spectroscopy with a red LED source for NOx trace analysis

    NASA Astrophysics Data System (ADS)

    Ventrillard Courtillot, I.; Sciamma O'Brien, E.; Méjean, G.; Romanini, D.

    2009-04-01

    This study presents a high sensitivity absorption system using a red LED source emitting at 625 nm and a small CCD spectrometer as detector [1]. This system is based on IBB-CEAS (Incoherent Broad Band Cavity Enhanced Absorption Spectroscopy). The expected application is the measurement of NO2 and NO3 in urban concentration (ppbv and ppmv levels). The IBB-CEAS was firstly developed with arc lamps and then with LED. Systems based on this technique are easy to use, highly sensitive, compact and robust. They also are inexpensive. Existent techniques to measure NO2 and NO3 are generally slow or not sensitive enough and need frequently calibrations (chemical luminescent) or are characterized by a low spatial resolution (Long Path Differential Optical Absorption Spectroscopy). Previous works based on diodes lasers emitting around 410 nm and coupled with High Finess Cavity proved a highest sensibility than ppbv and a time measurement of 0.1 s [2]. This sensibility is necessary for measurements in unpolluted environment but a more expensive and more complex system is needed. NO2 is chosen for testing as it is stable and available in calibrated diluted samples. An excellent agreement in the range from 610 nm to 630 nm was gotten between an absorption spectrum obtained by IBB-CEAS and a spectrum calculated using a reference NO2 absorption cross section by Voigt et al [3] (after convolution with a 2.05-nm FWHM Gaussian simulating our spectrometer response function). The reflectivity of the mirrors was determined with a commercial spectrophotometer and was used to deduce the absorption spectrum of NO2 from the transmission spectrum of the cavity. We obtained by estimating the sensitivity of our setup from the noise in a baseline measurement of absorption, (standard deviation = 2E-10 cm-1). This corresponds (under atmospheric conditions) to a sensitivity about 0.5 ppbv. NO3 cross-section absorption is 600 times higher than the NO2 (at 623 nm), so a detection limit of 1 pptv is

  16. Intrinsic upper bound on two-qubit polarization entanglement predetermined by pump polarization correlations in parametric down-conversion

    NASA Astrophysics Data System (ADS)

    Kulkarni, Girish; Subrahmanyam, V.; Jha, Anand K.

    2016-06-01

    We study how one-particle correlations transfer to manifest as two-particle correlations in the context of parametric down-conversion (PDC), a process in which a pump photon is annihilated to produce two entangled photons. We work in the polarization degree of freedom and show that for any two-qubit generation process that is both trace-preserving and entropy-nondecreasing, the concurrence C (ρ ) of the generated two-qubit state ρ follows an intrinsic upper bound with C (ρ )≤(1 +P )/2 , where P is the degree of polarization of the pump photon. We also find that for the class of two-qubit states that is restricted to have only two nonzero diagonal elements such that the effective dimensionality of the two-qubit state is the same as the dimensionality of the pump polarization state, the upper bound on concurrence is the degree of polarization itself, that is, C (ρ )≤P . Our work shows that the maximum manifestation of two-particle correlations as entanglement is dictated by one-particle correlations. The formalism developed in this work can be extended to include multiparticle systems and can thus have important implications towards deducing the upper bounds on multiparticle entanglement, for which no universally accepted measure exists.

  17. Effect of annealing on down-conversion properties of monoclinic Gd2O3:Er3+ nanophosphors.

    PubMed

    Tamrakar, Raunak Kumar; Bisen, D P; Upadhyay, Kanchan

    2015-09-01

    Erbium-doped nano-sized Gd2O3 phosphor was prepared by a solution combustion method in the presence of urea as a fuel. The phosphor was characterized by X-ray diffractometry (XRD), Fourier transform infra-red spectroscopy, energy dispersive X-ray analysis (EDX) and transmission electron microscopy (TEM). The results of the XRD shows that the phosphor has a monoclinic phase, which was further confirmed by the TEM results. Particle size was calculated by the Debye-Scherrer formula. The erbium-doped Gd2O3 nanophosphor was revealed to have good down-conversion (DC) properties and the intensity of phosphor could be modified by annealing. The effects of annealing at 900°C on the particle size and luminescence properties were studied and compared with freshly prepared Gd2O3:Er(3+) nanoparticles. The average particle sizes were calculated as 8 and 20 nm for the freshly prepared samples and samples annealed at 900°C for 1 h, respectively. The results show that both freshly prepared and annealed Gd2O3:Er(3+) have monoclinic structure. PMID:25529921

  18. Detection of nitric oxide in exhaled air using cavity enhanced absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Medrzycki, R.; Wojtas, J.; Rutecka, B.; Bielecki, Z.

    2013-07-01

    The article describes an application one of the most sensitive optoelectronic method - Cavity Enhanced Absorption Spectroscopy in investigation of nitric oxide in exhaled breath. Measurement of nitric oxide concentration in exhaled breath is a quantitative, non-invasive, simple, and safe method of respiratory inflammation and asthma diagnosis. For detection of nitric oxide by developed optoelectronic sensor the vibronic molecular transitions were used. The wavelength ranges of these transitions are situated in the infrared spectral region. A setup consists of the optoelectronic nitric oxide sensor integrated with sampling and sample conditioning unit. The constructed detection system provides to measure nitric oxide in a sample of 0-97% relative humidity.

  19. Ultrasensitive detection of waste products in water using fluorescence emission cavity-enhanced spectroscopy

    PubMed Central

    Bixler, Joel N.; Cone, Michael T.; Hokr, Brett H.; Mason, John D.; Figueroa, Eleonora; Fry, Edward S.; Yakovlev, Vladislav V.; Scully, Marlan O.

    2014-01-01

    Clean water is paramount to human health. In this article, we present a technique for detection of trace amounts of human or animal waste products in water using fluorescence emission cavity-enhanced spectroscopy. The detection of femtomolar concentrations of urobilin, a metabolic byproduct of heme metabolism that is excreted in both human and animal waste in water, was achieved through the use of an integrating cavity. This technique could allow for real-time assessment of water quality without the need for expensive laboratory equipment. PMID:24799690

  20. Sensing atmospheric reactive species using light emitting diode by incoherent broadband cavity enhanced absorption spectroscopy.

    PubMed

    Yi, Hongming; Wu, Tao; Wang, Guishi; Zhao, Weixiong; Fertein, Eric; Coeur, Cécile; Gao, Xiaoming; Zhang, Weijun; Chen, Weidong

    2016-05-16

    We overview our recent progress in the developments and applications of light emitting diode-based incoherent broadband cavity enhanced absorption spectroscopy (LED-IBBCEAS) techniques for real-time optical sensing chemically reactive atmospheric species (HONO, NO3, NO2) in intensive campaigns and in atmospheric simulation chamber. New application of optical monitoring of NO3 concentration-time profile for study of the NO3-initiated oxidation process of isoprene in a smog chamber is reported. PMID:27409951

  1. Cavity-Enhanced Frequency-Agile Rapid Scanning (fars) Spectroscopy: Experimental Realizations and Measurement Results

    NASA Astrophysics Data System (ADS)

    Long, David A.; Truong, Gar-Wing; Zee, Roger Van; Plusquellic, David F.; Hodges, Joseph T.

    2013-06-01

    We present a series of experimental realizations of cavity-enhanced, frequency-agile rapid scanning (FARS) spectroscopy using distributed feedback diode lasers, external cavity diode lasers, and ultra-narrow linewidth fiber lasers. FARS offers a scanning rate which is limited only by the cavity response time itself as well as a microwave-level frequency axis. Finally, it allows for an absorption sensitivity which is one of the highest ever reported. These realizations offer a range of applications from low-cost field measurements of trace gases to laboratory-based metrology.

  2. Ultrasensitive detection of waste products in water using fluorescence emission cavity-enhanced spectroscopy.

    PubMed

    Bixler, Joel N; Cone, Michael T; Hokr, Brett H; Mason, John D; Figueroa, Eleonora; Fry, Edward S; Yakovlev, Vladislav V; Scully, Marlan O

    2014-05-20

    Clean water is paramount to human health. In this article, we present a technique for detection of trace amounts of human or animal waste products in water using fluorescence emission cavity-enhanced spectroscopy. The detection of femtomolar concentrations of urobilin, a metabolic byproduct of heme metabolism that is excreted in both human and animal waste in water, was achieved through the use of an integrating cavity. This technique could allow for real-time assessment of water quality without the need for expensive laboratory equipment. PMID:24799690

  3. Line-Parameter Measurements and Stringent Tests of Line-Shape Models Based on Cavity-Enhanced Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bielska, Katarzyna; Fleisher, Adam J.; Hodges, Joseph T.; Lin, Hong; Long, David A.; Reed, Zachary D.; Sironneau, Vincent; Truong, Gar-Wing; Wójtewicz, Szymon

    2014-06-01

    Laser methods that are based on cavity-enhanced absorption spectroscopy (CEAS) are well-suited for measuring molecular line parameters under conditions of low optical density, and as such they are complementary to broadband Fourier-transform spectroscopy (FTS) techniques. Attributes of CEAS include relatively low detection limits, accurate and precise detuning axes and high fidelity measurements of line shape. In many cases these performance criteria are superior to those obtained using direct laser absorption spectroscopy and FTS-based systems. In this presentation we will survey several examples of frequency-stabilized cavity ring-down spectroscopy (FS-CRDS)1 measurements obtained with laser spectrometers developed at the National Institute of Standards and Technology (NIST) in Gaithersburg Maryland. These experiments, which are motivated by atmospheric monitoring and remote-sensing applications that require high-precision and accuracy, involve nearinfrared transitions of carbon dioxide, water, oxygen and methane. We discuss spectra with signal-to-noise ratios exceeding 106, frequency axes with absolute uncertainties in the 10 kHz to 100 kHz range and linked to a Cs clock, line parameters with relative uncertainties at the 0.2 % level and isotopic ratios measured with a precision of 0.03 %. We also present FS-CRDS measurements of CO2 line intensities which are measured at atmospheric concentration levels and linked to gravimetric standards for CO2 in air, and we quantify pressure-dependent deviations between various theoretical line profiles and measured line shapes. Finally we also present recent efforts to increase data throughput and spectral coverage in CEAS experiments. We describe three new high-bandwidth CEAS techniques including frequency-agile, rapid scanning spectroscopy (FARS)2, which enables continuous-wave measurements of cavity mode linewidth and acquisition of ringdown decays with no dead time during laser frequency tuning, heterodyne

  4. Laser-induced down-conversion and infrared phosphorescence emissivity of novel ligand-free perovskite nanomaterials

    NASA Astrophysics Data System (ADS)

    Ahmed, M. A.; Khafagy, Rasha M.; El-sayed, O.

    2014-03-01

    For the first time, standalone and ligand-free series of novel rare-earth-based perovskite nanomaterials are used as near infrared (NIR) and mid infrared (MIR) emitters. Nano-sized La0.7Sr0.3M0.1Fe0.9O3; where M = 0, Mn2+, Co2+ or Ni2+ were synthesized using the flash auto-combustion method and characterized using FTIR, FT-Raman, SEM and EDX. Photoluminescence spectra were spontaneously recorded during pumping the samples with 0.5 mW of green laser emitting continuously at 532 nm. La0.7Sr0.3FeO3 (where M = 0) did not result in any infrared emissivity, while intense near and mid infrared down-converted phosphorescence was released from the M-doped samples. The released phosphorescence greatly shifted among the infrared spectral region with changing the doping cation. Ni2+-doped perovskite emitted at the short-wavelength near-infrared region, while Mn2+ and Co2+-doped perovskites emitted at the mid-wavelength infrared region. The detected laser-induced spontaneous parametric down-conversion phosphorescence (SPDC) occurred through a two-photon process by emitting two NIR or MIR photons among a cooperative energy transfer between the La3+ cations and the M2+ cations. Combining SrFeO3 ceramic with both a rare earth cation (RE3+) and a transition metal cation (Mn2+, Co2+ or Ni2+), rather than introducing merely RE3+ cations, greatly improved and controlled the infrared emissivity properties of synthesized perovskites through destroying their crystal symmetry and giving rise to asymmetrical lattice vibration and the nonlinear optical character. The existence of SPDC in the M2+-doped samples verifies their nonlinear character after the absence of this character in La0.7Sr0.3FeO3. Obtained results verify that, for the first time, perovskite nanomaterials are considered as nonlinear optical crystals with intense infrared emissivity at low pumping power of visible wavelengths, which nominates them for photonic applications and requires further studies regarding their lasing

  5. Development of a Near-Ir Cavity Enhanced Absorption Spectrometer for the Detection of Atmospheric Oxidation Products and Organoamines

    NASA Astrophysics Data System (ADS)

    Eddingsaas, Nathan C.; Jewell, Breanna; Thurnherr, Emily

    2014-06-01

    An estimated 10,000 to 100,000 different compounds have been measured in the atmosphere, each one undergoes many oxidation reactions that may or may not degrade air quality. To date, the fate of even some of the most abundant hydrocarbons in the atmosphere is poorly understood. One difficulty is the detection of atmospheric oxidation products that are very labile and decompose during analysis. To study labile species under atmospheric conditions, a highly sensitive, non-destructive technique is needed. Here we describe a near-IR incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS) setup that we are developing to meet this end. We have chosen to utilize the near-IR, where vibrational overtone absorptions are observed, due to the clean spectral windows and better spectral separation of absorption features. In one spectral window we can simultaneously and continuously monitor the composition of alcohols, hydroperoxides, and carboxylic acids in an air mass. In addition, we have used our CEAS setup to detect organoamines. The long effective path length of CEAS allows for low detection limits, even of the overtone absorption features, at ppb and ppt levels.

  6. Cavity-enhanced spontaneous emission rates for rhodamine 6-G in levitated microdroplets

    SciTech Connect

    Barnes, M.D.; Whitten, W.B.; Ramsey, J.M. ); Arnold, S. )

    1992-01-01

    Fluorescence decay kinetics of Rhodamine 6-G molecules in levitated glycerol microdroplets (4--20 microns in diameter) have been investigated to determine the effects of spherical cavity resonances on spontaneous emission rates. For droplet diameters greater than 10 microns, the fluorescence lifetime is essentially the same as in bulk glycerol. As the droplet diameter is decreased below 10 microns, bi-exponential decay behavior is observed with a slow component whose rate is similar to bulk glycerol, and a fast component whose rate is as much as a factor of 10 larger than the bulk decay rate. This fast component is attributed to cavity enhancement of the spontaneous emission rate and, within the weak coupling approximation, a value for the homogeneous linewidth at room temperature can be estimated from the fluorescence lifetime data.

  7. Cavity-enhanced spontaneous emission rates for rhodamine 6-G in levitated microdroplets

    SciTech Connect

    Barnes, M.D.; Whitten, W.B.; Ramsey, J.M.; Arnold, S.

    1992-11-01

    Fluorescence decay kinetics of Rhodamine 6-G molecules in levitated glycerol microdroplets (4--20 microns in diameter) have been investigated to determine the effects of spherical cavity resonances on spontaneous emission rates. For droplet diameters greater than 10 microns, the fluorescence lifetime is essentially the same as in bulk glycerol. As the droplet diameter is decreased below 10 microns, bi-exponential decay behavior is observed with a slow component whose rate is similar to bulk glycerol, and a fast component whose rate is as much as a factor of 10 larger than the bulk decay rate. This fast component is attributed to cavity enhancement of the spontaneous emission rate and, within the weak coupling approximation, a value for the homogeneous linewidth at room temperature can be estimated from the fluorescence lifetime data.

  8. a New Broadband Cavity Enhanced Frequency Comb Spectroscopy Technique Using GHz Vernier Filtering.

    NASA Astrophysics Data System (ADS)

    Morville, Jérôme; Rutkowski, Lucile; Dobrev, Georgi; Crozet, Patrick

    2015-06-01

    We present a new approach to Cavity Enhanced - Direct Frequency Comb Spectroscopy where the full emission bandwidth of a Titanium:Sapphire laser is exploited at GHz resolution. The technique is based on a low-resolution Vernier filtering obtained with an appreciable -actively stabilized- mismatch between the cavity Free Spectral Range and the laser repetition rate, using a diffraction grating and a split-photodiode. This particular approach provides an immunity to frequency-amplitude noise conversion, reaching an absorption baseline noise in the 10-9 cm-1 range with a cavity finesse of only 3000. Spectra covering 1800 cm-1 (˜ 55 THz) are acquired in recording times of about 1 second, providing an absorption figure of merit of a few 10-11 cm-1/√{Hz}. Initially tested with ambient air, we report progress in using the Vernier frequency comb method with a discharge source of small radicals. Rutkowski et al, Opt. Lett., 39(23)2014

  9. Cavity-Enhanced Room-Temperature Magnetometry Using Absorption by Nitrogen-Vacancy Centers in Diamond

    NASA Astrophysics Data System (ADS)

    Jensen, K.; Leefer, N.; Jarmola, A.; Dumeige, Y.; Acosta, V. M.; Kehayias, P.; Patton, B.; Budker, D.

    2014-04-01

    We demonstrate a cavity-enhanced room-temperature magnetic field sensor based on nitrogen-vacancy centers in diamond. Magnetic resonance is detected using absorption of light resonant with the 1042 nm spin-singlet transition. The diamond is placed in an external optical cavity to enhance the absorption, and significant absorption is observed even at room temperature. We demonstrate a magnetic field sensitivity of 2.5 nT/√Hz , and project a photon shot-noise-limited sensitivity of 70 pT/√Hz for a few mW of infrared light, and a quantum projection-noise-limited sensitivity of 250 fT/√Hz for the sensing volume of ˜90 μm ×90 μm×200 μm.

  10. Time-resolved broadband cavity-enhanced absorption spectroscopy for chemical kinetics.

    SciTech Connect

    Sheps, Leonid; Chandler, David W.

    2013-04-01

    Experimental measurements of elementary reaction rate coefficients and product branching ratios are essential to our understanding of many fundamentally important processes in Combustion Chemistry. However, such measurements are often impossible because of a lack of adequate detection techniques. Some of the largest gaps in our knowledge concern some of the most important radical species, because their short lifetimes and low steady-state concentrations make them particularly difficult to detect. To address this challenge, we propose a novel general detection method for gas-phase chemical kinetics: time-resolved broadband cavity-enhanced absorption spectroscopy (TR-BB-CEAS). This all-optical, non-intrusive, multiplexed method enables sensitive direct probing of transient reaction intermediates in a simple, inexpensive, and robust experimental package.

  11. Ultra-Trace Chemical Sensing with Long-Wave Infrared Cavity-Enhanced Spectroscopic Sensors

    SciTech Connect

    Taubman, Matthew S.; Myers, Tanya L.; Cannon, Bret D.; Williams, Richard M.; Schultz, John F.

    2003-02-20

    The infrared sensors task of Pacific Northwest National Laboratory's (PNNL's) Remote Spectroscopy Project (Task B of Project PL211) is focused on the science and technology of remote and in-situ spectroscopic chemical sensors for detecting proliferation and coun-tering terrorism. Missions to be addressed by remote chemical sensor development in-clude detecting proliferation of nuclear or chemical weapons, and providing warning of terrorist use of chemical weapons. Missions to be addressed by in-situ chemical sensor development include countering terrorism by screening luggage, personnel, and shipping containers for explosives, firearms, narcotics, chemical weapons, or chemical weapons residues, and mapping contaminated areas. The science and technology is also relevant to chemical weapons defense, air operations support, monitoring emissions from chemi-cal weapons destruction or industrial activities, law enforcement, medical diagnostics, and other applications. Sensors for most of these missions will require extreme chemical sensitivity and selectiv-ity because the signature chemicals of importance are expected to be present in low con-centrations or have low vapor pressures, and the ambient air is likely to contain pollutants or other chemicals with interfering spectra. Cavity-enhanced chemical sensors (CES) that draw air samples into optical cavities for laser-based interrogation of their chemical content promise real-time, in-situ chemical detection with extreme sensitivity to specified target molecules and superb immunity to spectral interference and other sources of noise. PNNL is developing CES based on quantum cascade (QC) lasers that operate in the mid-wave infrared (MWIR - 3 to 5 microns) and long-wave infrared (LWIR - 8 to 14 mi-crons), and CES based on telecommunications lasers operating in the short-wave infrared (SWIR - 1 to 2 microns). All three spectral regions are promising because smaller mo-lecular absorption cross sections in the SWIR are offset

  12. Scheme for generating distillation-favorable continuous-variable entanglement via three concurrent parametric down-conversions in a single χ(2) nonlinear photonic crystal.

    PubMed

    Gong, Yan-Xiao; Zhang, ShengLi; Xu, P; Zhu, S N

    2016-03-21

    We propose to generate a single-mode-squeezing two-mode squeezed vacuum state via a single χ(2) nonlinear photonic crystal. The state is favorable for existing Gaussian entanglement distillation schemes, since local squeezing operations can enhance the final entanglement and the success probability. The crystal is designed for enabling three concurrent quasi-phase-matching parametric-down conversions, and hence relieves the auxiliary on-line bi-side local squeezing operations. The compact source opens up a way for continuous-variable quantum technologies and could find more potential applications in future large-scale quantum networks. PMID:27136831

  13. [Measurement of Trace C2H6 Based on Optical-Feedback Cavity-Enhanced Absorption Spectroscopy].

    PubMed

    Wan, Fu; Chen, Wei-gen; Gu, Zhao-liang; Zou, Jing-xin; DU, Ling-Ling; Qi, Wei; Zhou, Qu

    2015-10-01

    Ethane is one of major fault characteristic gases dissolved in power transformer, the detection of Ethane with high accuracy and sensitivity is the key of dissolved gas analysis. In this paper, based on optical feedback theory and cavity-enhanced absorption spectroscopy, combined with quantum cascade laser, a detection system for dissolved gas C2 H6 in transformer oil was built up. Based on the symmetry of the individual cavity modes, the phase matching of returning light in resonance with the cavity was achieved through LabVIEW codes. The optical feedback effect that the emitted light return to the laser cavity after a small delay time and lock to the resonance frequency of cavity, even and odd modes effect that the higher modes and lower modes structure will build up alternatively, and threshold current lowering effect of about 1.2 mA were studied and achieved. By cavity ring-down spectroscopy, the effective reflectivity of 99.978% and cavity finesse of 7 138.4 is obtained respectively. The frequency selectivity is 0.005 2 cm(-1). With an acquisition time of 1s, this optical system allows detection for the PQ3 band of C2 H6 with high accuracy of 95.72% ± 0.17% and detection limit of (1.97 ± 0.06) x 10(-3) μL x L(-1) at atmospheric pressure and temperature of 20 degrees C, which lays a foundation for fault diagnose from dissolved gas analysis. PMID:26904820

  14. Chemical Sensing Using Infrared Cavity Enhanced Spectroscopy: Short Wave Infrared Cavity Ring Down Spectroscopy (SWIR CRDS) Sensor

    SciTech Connect

    Williams, Richard M.; Harper, Warren W.; Aker, Pam M.; Thompson, Jason S.; Stewart, Timothy L.

    2003-10-01

    The principal goal of Pacific Northwest National Laboratory's (PNNL's) Remote Spectroscopy Project is to explore and develop the science and technology behind point and stand off infrared (IR) spectroscopic chemical sensors that are needed for detecting weapons proliferation activity and countering terrorism. Missions addressed include detecting chemical, biological, and nuclear weapons and their production; counter terrorism measures that involve screening luggage, personnel, and shipping containers for explosives, firearms, narcotics, chemical weapons and/or their residues; and mapping of contaminated areas. The science and technology developed in this program is dual use in that it additionally supports progress in a diverse set of agendas that include chemical weapons defense programs, air operations activities, emissions monitoring, law enforcement, and medical diagnostics. Sensors for these missions require extremely low limits of detection because many of the targeted signature species are either present in low concentrations or have extremely low vapor pressures. The sensors also need to be highly selective as the environments that they will be operated in will contain a variety of interferent species and false positive detection is not an option. PNNL has been working on developing a class of sensors that draw vapor into optical cavities and use laser-based spectroscopy to identify and quantify the vapor chemical content. The cavity enhanced spectroscopies (CES) afford extreme sensitivity, excellent selectivity, noise immunity, and rapid, real-time, in-situ chemical characterization. PNNL's CES program is currently focused on developing two types of sensors. The first one, which is based on cavity ring down spectroscopy (CRDS), uses short wave infrared (SWIR) lasers to interrogate species. The second sensor, which is based on noise immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE OHMS), uses long wave infrared (LWIR) quantum cascade

  15. Near infrared cavity enhanced absorption spectra of atmospherically relevant ether-1, 4-Dioxane

    NASA Astrophysics Data System (ADS)

    Chandran, Satheesh; Varma, Ravi

    2016-01-01

    1, 4-Dioxane (DX) is a commonly found ether in industrially polluted atmosphere. The near infrared absorption spectra of this compound has been recorded in the region 5900-8230 cm- 1 with a resolution of 0.08 cm- 1 using a novel Fourier transform incoherent broadband cavity-enhanced absorption spectrometer (FT-IBBCEAS). All recorded spectra were found to contain regions that are only weakly perturbed. The possible combinations of fundamental modes and their overtone bands corresponding to selected regions in the measured spectra are tabulated. Two interesting spectral regions were identified as 5900-6400 cm- 1 and 8100-8230 cm- 1. No significant spectral interference due to presence of water vapor was observed suggesting the suitability of these spectral signatures for spectroscopic in situ detection of DX. The technique employed here is much more sensitive than standard Fourier transform spectrometer measurements on account of long effective path length achieved. Hence significant enhancement of weaker absorption lines above the noise level was observed as demonstrated by comparison with an available measurement from database.

  16. Absolute molecular transition frequencies measured by three cavity-enhanced spectroscopy techniques.

    PubMed

    Cygan, A; Wójtewicz, S; Kowzan, G; Zaborowski, M; Wcisło, P; Nawrocki, J; Krehlik, P; Śliwczyński, Ł; Lipiński, M; Masłowski, P; Ciuryło, R; Lisak, D

    2016-06-01

    Absolute frequencies of unperturbed (12)C(16)O transitions from the near-infrared (3-0) band were measured with uncertainties five-fold lower than previously available data. The frequency axis of spectra was linked to the primary frequency standard. Three different cavity enhanced absorption and dispersion spectroscopic methods and various approaches to data analysis were used to estimate potential systematic instrumental errors. Except for a well established frequency-stabilized cavity ring-down spectroscopy, we applied the cavity mode-width spectroscopy and the one-dimensional cavity mode-dispersion spectroscopy for measurement of absorption and dispersion spectra, respectively. We demonstrated the highest quality of the dispersion line shape measured in optical spectroscopy so far. We obtained line positions of the Doppler-broadened R24 and R28 transitions with relative uncertainties at the level of 10(-10). The pressure shifting coefficients were measured and the influence of the line asymmetry on unperturbed line positions was analyzed. Our dispersion spectra are the first demonstration of molecular spectroscopy with both axes of the spectra directly linked to the primary frequency standard, which is particularly desirable for the future reference-grade measurements of molecular spectra. PMID:27276950

  17. Near infrared cavity enhanced absorption spectra of atmospherically relevant ether-1, 4-Dioxane.

    PubMed

    Chandran, Satheesh; Varma, Ravi

    2016-01-15

    1, 4-Dioxane (DX) is a commonly found ether in industrially polluted atmosphere. The near infrared absorption spectra of this compound has been recorded in the region 5900-8230 cm(-1) with a resolution of 0.08 cm(-1) using a novel Fourier transform incoherent broadband cavity-enhanced absorption spectrometer (FT-IBBCEAS). All recorded spectra were found to contain regions that are only weakly perturbed. The possible combinations of fundamental modes and their overtone bands corresponding to selected regions in the measured spectra are tabulated. Two interesting spectral regions were identified as 5900-6400 cm(-1) and 8100-8230 cm(-1). No significant spectral interference due to presence of water vapor was observed suggesting the suitability of these spectral signatures for spectroscopic in situ detection of DX. The technique employed here is much more sensitive than standard Fourier transform spectrometer measurements on account of long effective path length achieved. Hence significant enhancement of weaker absorption lines above the noise level was observed as demonstrated by comparison with an available measurement from database. PMID:26474242

  18. Absolute molecular transition frequencies measured by three cavity-enhanced spectroscopy techniques

    NASA Astrophysics Data System (ADS)

    Cygan, A.; Wójtewicz, S.; Kowzan, G.; Zaborowski, M.; Wcisło, P.; Nawrocki, J.; Krehlik, P.; Śliwczyński, Ł.; Lipiński, M.; Masłowski, P.; Ciuryło, R.; Lisak, D.

    2016-06-01

    Absolute frequencies of unperturbed 12C16O transitions from the near-infrared (3-0) band were measured with uncertainties five-fold lower than previously available data. The frequency axis of spectra was linked to the primary frequency standard. Three different cavity enhanced absorption and dispersion spectroscopic methods and various approaches to data analysis were used to estimate potential systematic instrumental errors. Except for a well established frequency-stabilized cavity ring-down spectroscopy, we applied the cavity mode-width spectroscopy and the one-dimensional cavity mode-dispersion spectroscopy for measurement of absorption and dispersion spectra, respectively. We demonstrated the highest quality of the dispersion line shape measured in optical spectroscopy so far. We obtained line positions of the Doppler-broadened R24 and R28 transitions with relative uncertainties at the level of 10-10. The pressure shifting coefficients were measured and the influence of the line asymmetry on unperturbed line positions was analyzed. Our dispersion spectra are the first demonstration of molecular spectroscopy with both axes of the spectra directly linked to the primary frequency standard, which is particularly desirable for the future reference-grade measurements of molecular spectra.

  19. Measurements of Iodine Monoxide Levels During the CAST Campaign Using Broadband Cavity Enhanced Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Harris, N. R. P.; Popoola, O. A.; McLeod, M.; Ouyang, B.; Jones, R. L.

    2014-12-01

    Iodine monoxide (IO) has been regarded as an important radical involved in the ozone destruction in the remote marine boundary layer. Here we presented the first in situ aircraft measurements of IO using broadband cavity enhanced absorption spectroscopy with 1s -sensitivity of ~1.5 ppt Hz-1/2 on the surface level during the Coordinated Airborne Studies in the Tropics (CAST) campaign between January - February 2014. IO was retrieved from analysis of absorption spectrum recorded between 415 nm - 452.5 nm. Instrument baseline corresponding to the "zero" signal of IO was obtained by injection of ~20 ppb of nitric oxide (NO) into the sample air at chosen frequency and period. No clear absorption feature was observable from the spectra by eye with up to 100 seconds averaging, pointing to very low mixing ratios (<~0.5 ppt) of IO over the sampled area. A small positive bias (~0.3 ppt) of IO (against the baseline signal during NO titration) was obtained in the statistical histogram of retrieved IO from average of each straight and level run, but little altitude dependence was noted. In summary, our observation appears to support the existence of IO in the remote marine boundary above the Pacific Ocean at sub ppt levels, but the limited sensitivity precludes us from quantifying spatial gradients more accurately.

  20. Broadband cavity-enhanced detection of magnetic field effects in chemical models of a cryptochrome magnetoreceptor.

    PubMed

    Neil, Simon R T; Li, Jing; Sheppard, Dean M W; Storey, Jonathan; Maeda, Kiminori; Henbest, Kevin B; Hore, P J; Timmel, Christiane R; Mackenzie, Stuart R

    2014-04-17

    Broadband cavity-enhanced absorption spectroscopy (BBCEAS) is shown to be a sensitive method for the detection of magnetic field effects (MFEs) in two flavin-based chemical reactions which are simple models for cryptochrome magnetoreceptors. The advantages of optical cavity-based detection and (pseudo-white-light) supercontinuum radiation have been combined to provide full spectral coverage across the whole of the visible spectrum (425 < λ < 700 nm). This region covers the absorbance spectra of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) as well as their photogenerated radicals. To illustrate the power of this technique, BBCEAS has been used to record the spectral dependence of MFEs for photoinduced radical pairs formed in the intermolecular reaction of FMN with lysozyme and the intramolecular photochemistry of FAD. These reactions have been chosen for their photochemical similarities to cryptochrome proteins which have been proposed as key to the magnetic compass sense of many animals including birds. In experiments performed using low protein concentrations (10 μM) and 1 mm optical path-lengths, absorbance changes as small as 1 × 10(-7) (representing <0.1% MFEs) have been detected with good signal-to-noise offering the prospect of sensitive MFE detection in cryptochrome. PMID:24655160

  1. Interfacing whispering-gallery microresonators and free space light with cavity enhanced Rayleigh scattering

    NASA Astrophysics Data System (ADS)

    Zhu, Jiangang; Özdemir, Şahin K.; Yilmaz, Huzeyfe; Peng, Bo; Dong, Mark; Tomes, Matthew; Carmon, Tal; Yang, Lan

    2014-09-01

    Whispering gallery mode resonators (WGMRs) take advantage of strong light confinement and long photon lifetime for applications in sensing, optomechanics, microlasers and quantum optics. However, their rotational symmetry and low radiation loss impede energy exchange between WGMs and the surrounding. As a result, free-space coupling of light into and from WGMRs is very challenging. In previous schemes, resonators are intentionally deformed to break circular symmetry to enable free-space coupling of carefully aligned focused light, which comes with bulky size and alignment issues that hinder the realization of compact WGMR applications. Here, we report a new class of nanocouplers based on cavity enhanced Rayleigh scattering from nano-scatterer(s) on resonator surface, and demonstrate whispering gallery microlaser by free-space optical pumping of an Ytterbium doped silica microtoroid via the scatterers. This new scheme will not only expand the range of applications enabled by WGMRs, but also provide a possible route to integrate them into solar powered green photonics.

  2. QCL - Optical-Feedback Cavity Enhanced Absorption Spectroscopy For The Analysis Of Atmospheric 13CO2/12CO2 In Ice-Core Gas Bubbles

    NASA Astrophysics Data System (ADS)

    Gorrotxategi Carbajo, Paula; Romanini, Daniele; Maisons, Gregory; Carras, Mathieu; Chappellaz, Jerome; Kerstel, Erik

    2013-04-01

    In the context of a globally warming climate it is crucial to study the climate variability in the past and to understand the underlying mechanisms. The composition of gas stored in bubbles in polar ice presents a paleo-climate archive that provides a powerful means to study the exact mechanisms involved in the ~40% increase in the atmospheric CO2 concentration between glacial and interglacial climates. It is particularly important to understand such natural coupling between climate and the carbon cycle, as it will partly determine what natural feedback can be expected on the atmospheric CO2 concentration in a future warmer world. The source of the CO2 released into the atmosphere during previous deglaciations can be constrained from isotopic measurements by the fact that the different CO2 reservoirs (terrestrial biosphere, oceans) and associated mechanisms (biological or physical) have different isotopic signatures. Unfortunately, such isotope studies have been seriously hampered by the experimental difficulty of extracting the CO2 without contamination or fractionation, and measuring the isotope signal off-line on an isotope ratio mass spectrometer (IRMS). Here we present an alternative method that leverages the extreme sensitivity afforded by Optical Feedback Cavity Enhanced Absorption Spectroscopy (OF-CEAS) in the Mid-Infrared [1]. This region of the spectrum is accessed by a custom-developed Quantum Cascade Laser operating near 4.35 µm. The feedback to the laser of light that has been spectrally filtered by a high-finesse, V-shaped enhancement cavity has the effect of spectrally narrowing the laser emission and to auto-lock the laser frequency to one of the cavity's longitudinal modes, with clear advantages in terms of acquisition time and signal-to-noise ratio of the measurement. The line strengths in this region are about 5 orders of magnitude higher than in the more easily accessible NIR region near 1.6 µm and about 1000 times higher than at 2 µm. The

  3. Noise-immune cavity-enhanced analytical atomic spectrometry - NICE-AAS - A technique for detection of elements down to zeptogram amounts

    NASA Astrophysics Data System (ADS)

    Axner, Ove; Ehlers, Patrick; Hausmaninger, Thomas; Silander, Isak; Ma, Weiguang

    2014-10-01

    Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) is a powerful technique for detection of molecular compounds in gas phase that is based on a combination of two important concepts: frequency modulation spectroscopy (FMS) for reduction of noise, and cavity enhancement, for prolongation of the interaction length between the light and the sample. Due to its unique properties, it has demonstrated unparalleled detection sensitivity when it comes to detection of molecular constituents in the gas phase. However, despite these, it has so far not been used for detection of atoms, i.e. for elemental analysis. The present work presents an assessment of the expected performance of Doppler-broadened (Db) NICE-OHMS for analytical atomic spectrometry, then referred to as noise-immune cavity-enhanced analytical atomic spectrometry (NICE-AAS). After a description of the basic principles of Db-NICE-OHMS, the modulation and detection conditions for optimum performance are identified. Based on a previous demonstrated detection sensitivity of Db-NICE-OHMS of 5 × 10- 12 cm- 1 Hz- 1/2 (corresponding to a single-pass absorbance of 7 × 10- 11 over 10 s), the expected limits of detection (LODs) of Hg and Na by NICE-AAS are estimated. Hg is assumed to be detected in gas phase directly while Na is considered to be atomized in a graphite furnace (GF) prior to detection. It is shown that in the absence of spectral interferences, contaminated sample compartments, and optical saturation, it should be feasible to detect Hg down to 10 zg/cm3 (10 fg/m3 or 10- 5 ng/m3), which corresponds to 25 atoms/cm3, and Na down to 0.5 zg (zg = zeptogram = 10- 21 g), representing 50 zg/mL (parts-per-sextillion, pps, 1:1021) in liquid solution (assuming a sample of 10 μL) or solely 15 atoms injected into the GF, respectively. These LODs are several orders of magnitude lower (better) than any previous laser-based absorption technique previously demonstrated under atmospheric

  4. Cavity-enhanced rotational Raman scattering in gases using a 20  mW near-infrared fiber laser.

    PubMed

    Friss, Adam J; Limbach, Christopher M; Yalin, Azer P

    2016-07-15

    A novel cavity-enhanced laser diagnostic has been developed to perform point measurements of spontaneous rotational Raman scattering. A narrow linewidth fiber laser source (1064 nm) is frequency locked to a high-finesse cavity containing the sample gas. Intracavity powers of 22 W are generated from 3.7 mW of incident laser power, corresponding to a buildup factor of 5900. A triple monochromator and a photomultiplier tube in counting mode are used to disperse and measure the scattering spectra. The system is demonstrated with rotational Raman spectra of nitrogen, oxygen, and carbon dioxide at atmospheric pressure. The approach will allow temporally and spatially resolved Raman measurements for combustion diagnostics and, by extending to higher power, Thomson scattering for diagnostics of low-density plasmas. PMID:27420493

  5. Understanding the sensitivity of cavity-enhanced absorption spectroscopy: pathlength enhancement versus noise suppression

    NASA Astrophysics Data System (ADS)

    Ouyang, B.; Jones, R. L.

    2012-12-01

    Cavity-enhanced absorption spectroscopy is now widely used as an ultrasensitive technique in observing weak spectroscopic absorptions. Photons inside the cavity are reflected back and forth between the mirrors with reflectivities R close to one and thus (on average) exploit an absorption pathlength L that is 1/(1 - R) longer than a single pass measurement. As suggested by the Beer-Lambert law, this increase in L results in enhanced absorbance A (given by αL with α being the absorption coefficient) which in turn favours the detection of weak absorptions. At the same time, however, only (1 - R) of the incident light can enter the cavity [assuming that mirror transmission T is equal to (1 - R)], so that the reduction in transmitted light intensity Δ I caused by molecular absorption equates to that would be obtained if in fact no cavity were present. The enhancement in A = Δ I/ I, where I is the total transmitted light intensity, achievable from CEAS therefore comes not from an increase in Δ I, but a sharp decrease in I. In this paper, we calculate the magnitudes of these two terms before and after a cavity is introduced, and aim at interpreting the sensitivity improvement offered by cavity-enhanced absorption spectroscopy from this observable-oriented (i.e. Δ I and I) perspective. It is first shown that photon energy stored in the cavity is at best as intense as the input light source, implying that any absorbing sample within the cavity is exposed to the same or even lower light intensity after the cavity is formed. As a consequence, the intensity of the light absorbed or scattered by the sample, which corresponds to the Δ I term aforementioned, is never greater than would be the case in a single pass measurement. It is then shown that while this "numerator" term is not improved, the "denominator" term, I, is reduced considerably; therefore, the increase in contrast ratio Δ I/ I is solely contributed by the attenuation of transmitted background light I and is

  6. Sensitive and Instantaneous Molecular Detection from Broadband Cavity-Enhanced Dual Comb Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bernhardt, B.; Ozawa, A.; Jacquey, M.; Jacquet, P.; Guelachvili, G.; Udem, T.; Holzwarth, R.; Kobayashi, Y.; Hänsch, T. W.; Picqué, N.

    2010-06-01

    Recent experiments have demonstrated that the precisely spaced spectral lines of a laser frequency comb can be harnessed for new techniques of multi-heterodyne Fourier transform spectroscopy (also called dual-comb spectroscopy) of molecules. In one such experiment, an absorbing molecular gas was placed inside an optical cavity that is matched to the laser resonator so that it is resonant for each comb line. The sensitivity for weak absorption is much enhanced, as in cavity ring-down spectroscopy. The light transmitted by the cavity is superimposed on a second frequency comb with slightly different repetition frequency. A single fast photodetector then produces an output signal with a comb of radio frequencies due to interference between pairs of optical comb lines. The optical spectrum is thus effectively mapped into the radio frequency regime, where it becomes accessible to fast digital signal processing. Experimental proof-of-principle is carried out in the near-infrared 1 μm region. An Yb-doped fiber frequency comb is coherently coupled to a passive resonator with a finesse of 1200, resulting in an effective interaction length between the light and the gas enhanced to 880m. The weak 3ν1 band of ammonia is rotationally resolved for the first time to our knowledge. Recording times of 18 μs are enough to span 220 cm-1 with a resolution of 0.15 cm-1. The signal to noise ratio of 380 leads to a minimum-detectable-absorption coefficient αmin of 3×10-8 cm-1 . B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T.W. Hänsch, N. Picqué, Cavity-enhanced dual-comb spectroscopy, Nature Photonics 4, 55-57 (2010),

  7. Broadband down-conversion based near infrared quantum cutting in Eu{sup 2+}–Yb{sup 3+} co-doped SrAl{sub 2}O{sub 4} for crystalline silicon solar cells

    SciTech Connect

    Tai, Yuping; Zheng, Guojun; Wang, Hui; Bai, Jintao

    2015-03-15

    Near infrared (NIR) quantum cutting involving the down conversion of an absorbed visible photon to emission of two NIR photons was achieved in SrAl{sub 2}O{sub 4}:0.01Eu{sup 2+}, xYb{sup 3+} (x=0, 1, 2, 5, 10, 20, 30 mol%) samples. The photoluminescence properties of samples in visible and NIR regions were measured to verify the energy transfer (ET) from Eu{sup 2+} to Yb{sup 3+}. The results demonstrated that Eu{sup 2+} was an efficient sensitizer for Yb{sup 3+} in the SrAl{sub 2}O{sub 4} host lattice. According to Gaussian fitting analysis and temperature-dependent luminescence experiments, the conclusion was drawn that the cooperative energy transfer (CET) process dominated the ET process and the influence of charge transfer state (CTS) of Yb{sup 3+} could be negligible. As a result, the high energy transfer efficiency (ETE) and quantum yield (QY) have been acquired, the maximum value approached 73.68% and 147.36%, respectively. Therefore, this down-conversion material has potential application in crystalline silicon solar cells to improve conversion efficiency. - Graphical abstract: Near infrared quantum cutting was achieved in Eu{sup 2+}–Yb{sup 3+} co-doped SrAl{sub 2}O{sub 4} samples. The cooperative energy transfer process dominated energy transfer process and high energy transfer efficiency was acquired. - Highlights: • The absorption spectrum of Eu{sup 2+} ion is strong in intensity and broad in bandwidth. • The spectra of Eu{sup 2+} in SrAl{sub 2}O{sub 4} lies in the strongest region of solar spectrum. • The cooperative energy transfer (CET) dominated the energy transfer process. • The domination of CET is confirmed by experimental analysis. • SrAl{sub 2}O{sub 4}:Eu{sup 2+},Yb{sup 3+} show high energy transfer efficiency and long lifetime.

  8. Rapid monitoring of intermediate states and mass balance of nitrogen during denitrification by means of cavity enhanced Raman multi-gas sensing.

    PubMed

    Keiner, Robert; Herrmann, Martina; Küsel, Kirsten; Popp, Jürgen; Frosch, Torsten

    2015-03-15

    The comprehensive investigation of changes in N cycling has been challenging so far due to difficulties with measuring gases such as N2 and N2O simultaneously. In this study we introduce cavity enhanced Raman gas spectroscopy as a new analytical methodology for tracing the stepwise reduction of (15)N-labelled nitrate by the denitrifying bacteria Pseudomonas stutzeri. The unique capabilities of Raman multi-gas analysis enabled real-time, continuous, and non-consumptive quantification of the relevant gases ((14)N2, (14)N2O, O2, and CO2) and to trace the fate of (15)N-labeled nitrate substrate ((15)N2, (15)N2O) added to a P. stutzeri culture with one single measurement. Using this new methodology, we could quantify the kinetics of the formation and degradation for all gaseous compounds (educts and products) and thus study the reaction orders. The gas quantification was complemented with the analysis of nitrate and nitrite concentrations for the online monitoring of the total nitrogen element budget. The simultaneous quantification of all gases also enabled the contactless and sterile online acquisition of the pH changes in the P. stutzeri culture by the stoichiometry of the redox reactions during denitrification and the CO2-bicarbonate equilibrium. Continuous pH monitoring - without the need to insert an electrode into solution - elucidated e.g. an increase in the slope of the pH value coinciding with an accumulation of nitrite, which in turn led to a temporary accumulation of N2O, due to an inhibition of nitrous oxide reductase. Cavity enhanced Raman gas spectroscopy has a high potential for the assessment of denitrification processes and can contribute substantially to our understanding of nitrogen cycling in both natural and agricultural systems. PMID:25732425

  9. Cavity-enhanced AlGaAs/GaAs resonant tunneling photodetectors for telecommunication wavelength light detection at 1.3 μm

    NASA Astrophysics Data System (ADS)

    Pfenning, Andreas; Hartmann, Fabian; Langer, Fabian; Kamp, Martin; Höfling, Sven; Worschech, Lukas

    2015-09-01

    We demonstrate a cavity-enhanced photodetector at the telecommunication wavelength of λ = 1.3 μm based on a resonant tunneling diode (RTD). The cavity-enhanced RTD photodetector consists of three integral parts: First, a Ga0.89In0.11N0.04As0.96 absorption layer that can be grown lattice-matched on GaAs and which is light-active in the near infrared spectral region due to its reduced bandgap energy. Second, an Al0.6Ga0.4As/GaAs double barrier resonant tunneling structure (RTS) that serves as high gain internal amplifier of weak electric signals caused by photogenerated electron-hole pairs within the GaInNAs absorption layer. Third, an optical distributed Bragg reflector (DBR) cavity consisting of five top and seven bottom alternating GaAs/AlAs mirror pairs, which provides an enhanced quantum efficiency at the resonance wavelength. The samples were grown by molecular beam epitaxy. Electro-optical properties of the RTDs were studied at room temperature. From the reflection-spectrum the optical resonance at λ = 1.29 μm was extracted. The current-voltage characteristics were studied in the dark and under illumination and a wellpronounced photo-response was found and is attributed to accumulation of photogenerated holes in the vicinity of the RTS. The maximum photocurrent was found at the optical resonance of 1.29 μm. At resonance, a sensitivity of S = 3.97 × 104 A/W was observed. From the sensitivity, a noise equivalent power of NEP = 1.18 × 10-16 W/Hz1/2, and a specific detectivity of D∗ ≅ 6.74 × 1012 cm Hz1/2/W were calculated. For a single absorbed photon a photocurrent of ISP = 50 pA was determined.

  10. ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS: Time Evolution and Squeezing of Degenerate and Non-degenerate Coupled Parametric Down-Conversion with Driving Term

    NASA Astrophysics Data System (ADS)

    Li, Jiang-Fan; Fang, Jia-Yuan; Xiao, Fu-Liang; Liu, Xin-Hai; Wang, Cheng-Zhi

    2009-03-01

    By properly selecting the time-dependent unitary transformation for the linear combination of the number operators, we construct a time-dependent invariant and derive the corresponding auxiliary equations for the degenerate and non-degenerate coupled parametric down-conversion system with driving term. By means of this invariant and the Lewis-Riesenfeld quantum invariant theory, we obtain closed formulae of the quantum state and the evolution operator of the system. We show that the time evolution of the quantum system directly leads to production of various generalized one- and two-mode combination squeezed states, and the squeezed effect is independent of the driving term of the Hamiltonian. In some special cases, the current solution can reduce to the results of the previous works.

  11. Single-Mode Parametric-Down-Conversion States with 50 Photons as a Source for Mesoscopic Quantum Optics

    NASA Astrophysics Data System (ADS)

    Harder, Georg; Bartley, Tim J.; Lita, Adriana E.; Nam, Sae Woo; Gerrits, Thomas; Silberhorn, Christine

    2016-04-01

    We generate pulsed, two-mode squeezed states in a single spatiotemporal mode with mean photon numbers up to 20. We directly measure photon-number correlations between the two modes with transition edge sensors up to 80 photons per mode. This corresponds roughly to a state dimensionality of 6400. We achieve detection efficiencies of 64% in the technologically crucial telecom regime and demonstrate the high quality of our measurements by heralded nonclassical distributions up to 50 photons per pulse and calculated correlation functions up to 40th order.

  12. Single-Mode Parametric-Down-Conversion States with 50 Photons as a Source for Mesoscopic Quantum Optics.

    PubMed

    Harder, Georg; Bartley, Tim J; Lita, Adriana E; Nam, Sae Woo; Gerrits, Thomas; Silberhorn, Christine

    2016-04-01

    We generate pulsed, two-mode squeezed states in a single spatiotemporal mode with mean photon numbers up to 20. We directly measure photon-number correlations between the two modes with transition edge sensors up to 80 photons per mode. This corresponds roughly to a state dimensionality of 6400. We achieve detection efficiencies of 64% in the technologically crucial telecom regime and demonstrate the high quality of our measurements by heralded nonclassical distributions up to 50 photons per pulse and calculated correlation functions up to 40th order. PMID:27104708

  13. Theory of filtered type-II parametric down-conversion in the continuous-variable domain: Quantifying the impacts of filtering

    NASA Astrophysics Data System (ADS)

    Christ, Andreas; Lupo, Cosmo; Reichelt, Matthias; Meier, Torsten; Silberhorn, Christine

    2014-08-01

    Parametric down-conversion (PDC) forms one of the basic building blocks for quantum optical experiments. However, the intrinsic multimode spectral-temporal structure of pulsed PDC often poses a severe hindrance for the direct implementation of the heralding of pure single-photon states or, for example, continuous-variable entanglement distillation experiments. To get rid of multimode effects narrowband frequency filtering is frequently applied to achieve a single-mode behavior. A rigorous theoretical description to accurately describe the effects of filtering on PDC, however, is still missing. To date, the theoretical models of filtered PDC are rooted in the discrete-variable domain and only account for filtering in the low-gain regime, where only a few photon pairs are emitted at any single point in time. In this paper we extend these theoretical descriptions and put forward a simple model, which is able to accurately describe the effects of filtering on PDC in the continuous-variable domain. This developed straightforward theoretical framework enables us to accurately quantify the tradeoff between suppression of higher-order modes, reduced purity, and lowered Einstein-Podolsky-Rosen entanglement, when narrowband filters are applied to multimode type-II PDC.

  14. Progress towards practical device-independent quantum key distribution with spontaneous parametric down-conversion sources, on-off photodetectors, and entanglement swapping

    NASA Astrophysics Data System (ADS)

    Seshadreesan, Kaushik P.; Takeoka, Masahiro; Sasaki, Masahide

    2016-04-01

    Device-independent quantum key distribution (DIQKD) guarantees unconditional security of a secret key without making assumptions about the internal workings of the devices used for distribution. It does so using the loophole-free violation of a Bell's inequality. The primary challenge in realizing DIQKD in practice is the detection loophole problem that is inherent to photonic tests of Bell' s inequalities over lossy channels. We revisit the proposal of Curty and Moroder [Phys. Rev. A 84, 010304(R) (2011), 10.1103/PhysRevA.84.010304] to use a linear optics-based entanglement-swapping relay (ESR) to counter this problem. We consider realistic models for the entanglement sources and photodetectors: more precisely, (a) polarization-entangled states based on pulsed spontaneous parametric down-conversion sources with infinitely higher-order multiphoton components and multimode spectral structure, and (b) on-off photodetectors with nonunit efficiencies and nonzero dark-count probabilities. We show that the ESR-based scheme is robust against the above imperfections and enables positive key rates at distances much larger than what is possible otherwise.

  15. Synthesis and down-conversion luminescence properties of Er3+/Yb3+ co-doped AlF3-PbF2-CaF2 powders

    NASA Astrophysics Data System (ADS)

    Liu, Fangchao; Han, Qun; Liu, Tiegen; Chen, Yaofei; Du, Yang; Yao, Yunzhi

    2015-08-01

    Er3+/Yb3+ co-doped oxy-fluoride powders with varying Er/Yb concentration were prepared by a melt quenching method at various sintering temperature. The effect of the Er/Yb doped concentration and sintering temperature were analyzed by using optical absorption and emission techniques. The Judd-Ofelt theory has been used to evaluate the three intensity parameters (Ωλ, where λ = 2, 4 and 6) and calculate the oscillator strengths (fc). Ultraviolet-to-visible emissions were observed under the excitation of a 325 nm CW laser. It was found that the down-conversion fluorescence intensity changes with the sintering temperature and Er/Yb content ratio, the results were explained with the level transitions in Er3+/Yb3+ co-doped systems. The intensity ratios (intensity of 437 nm as reference) of the luminescence spectra that the samples sintered at various temperature are relevant to Ω6 parameter which indicates the vibration amplitude of the Er-O distance. The sintering temperature also has an influence on the intensity ratios via affecting the thermalization of the excited 4I15/2 level.

  16. Improved Shock Tube Measurement of the CH4 + Ar = CH3 + H + Ar Rate Constant using UV Cavity-Enhanced Absorption Spectroscopy of CH3.

    PubMed

    Wang, Shengkai; Davidson, David F; Hanson, Ronald K

    2016-07-21

    We report an improved measurement for the rate constant of methane dissociation in argon (CH4 + Ar = CH3 + H + Ar) behind reflected shock waves. The experiment was conducted using a sub-parts per million sensitivity CH3 diagnostic recently developed in our laboratory based on ultraviolet cavity-enhanced absorption spectroscopy. The high sensitivity of this diagnostic allowed for measurements of quantitatively resolved CH3 time histories during the initial stage of CH4 pyrolysis, where the reaction system is clean and free from influences of secondary reactions and temperature change. This high sensitivity also allowed extension of our measurement range to much lower temperatures (<1500 K). The current-reflected shock measurements were performed at temperatures between 1487 and 1866 K and pressures near 1.7 atm, resulting in the following Arrhenius rate constant expression for the title reaction: k(1.7 atm) = 3.7 × 10(16) exp(-42 200 K/T) cm(3)/mol·s, with a 2σ uncertainty factor of 1.25. The current data are in good consensus with various theoretical and review studies, but at the low temperature end they suggest a slightly higher (up to 35%) rate constant compared to these previous results. A re-evaluation of previous and current experimental data in the falloff region was also performed, yielding updated expressions for both the low-pressure limit and the high-pressure limit rate constants and improved agreement with all existing data. PMID:27380878

  17. Bromine Explosions In Smog Chamber Experiments: A comparison of Cavity-Enhanced (CE) and White-cell DOAS

    NASA Astrophysics Data System (ADS)

    Buxmann, J.; Hoch, D. J.; Sihler, H.; Pöhler, D.; Platt, U.; Bleicher, S.; Balzer, N.; Zetzsch, C.

    2011-12-01

    Reactive halogen species (RHS), such as Cl, Br or BrO, can significantly influence chemical processes in the troposphere, including the destruction of ozone, change in the chemical balance of hydrogen radicals (OH, HO2), increased deposition of toxic compounds (like mercury) with potential consequences for the global climate. Previous studies have shown that salt lakes can be significant sources for gaseous RHS. Environmental conditions such as salt composition, relative humidity (RH), pH, and temperature (T) can strongly influence reactive bromine levels, but are difficult to quantify in the field. Therefore, we conducted laboratory experiments by exposing NaCl salt containing 0.33% (by weight) NaBr to simulated sunlight in a Teflon smog-chamber under various conditions of RH and ozone concentrations. BrO levels were observed by a Differential-Optical-Absorption-Spectrometer (DOAS) in combination with a multi-reflection cell (White-cell). The concentrations of OH- and Cl- radicals were quantified by the radical clock method. We present the first direct observation of BrO from the "Bromine Explosion" (auto catalytic release of reactive bromine from salt surfaces - key to ozone destruction) in the laboratory above a simulated salt pan. The maximum BrO mixing ratio of 6419±71 ppt at 60% RH was observed to be one order of magnitude higher than at 37% RH and 2% RH. The release of RHS from the salt pan is possibly controlled by the thickness of the quasi liquid layer, covering the reactive surface of the halide crystals, as the layer thickness strongly depends on RH. Furthermore, a new cavity enhanced DOAS (CE-DOAS) instrument was designed and successfully used in chamber experiments. For the first time, such an instrument uses a spectral interval in the UV - wavelength range (325-365 nm) to identify BrO. We show a comparison of the CE-DOAS and White-cell DOAS instrument in a series of experiments, where e.g. a peak BrO mixing ratio up to 380 ppt within the first

  18. SPECIES: a versatile spectrometer based on optical-feedback cavity-enhanced absorption for in situ balloon-borne and airborne measurements

    NASA Astrophysics Data System (ADS)

    Jacquet, Patrick; Catoire, Valery; Robert, Claude; Chartier, Michel; Huret, Nathalie; Desbois, Thibault; Marocco, Nicola; Kassi, Samir; Kerstel, Eric; Romanini, Daniele

    2015-04-01

    Over the last twenty years, thanks to significant technological advances in measurement techniques, our understanding of the chemistry and dynamics of the upper troposphere and stratosphere has progressed significantly. However some key questions remain unsolved, and new ones arise in the changing climate context. The full recovery of the ozone layer and the delay of recovery, the impact of the climate change on the stratosphere and the role of this one as a feedback are almost unknown. To address these challenges, one needs instruments able to measure a wide variety of trace gas species simultaneously with a wide vertical range. In this context, LPC2E and LIPHY are developing a new balloon-borne and airborne instrument: SPECIES (SPECtromètre Infrarouge à lasErs in Situ, i.e. in-Situ Infrared lasEr SPECtrometer). Based on the Optical Feedback Cavity Enhanced Spectroscopy technique, combined with mid-infrared quantum cascade lasers, this instrument will offer unprecedented performances in terms of the vertical extent of the measurements, from ground to the middle stratosphere, and the number of molecular species simultaneously measured with sub-ppb detection limits (among others: NO, N2O, HNO3, H2O2, HCl, HOCl, CH3Cl, COF2, HCHO, HCOOH, O3, NH3 NO2, H2O, OCS, SO2). Due to high frequency measurement (>0.5 Hz) it shall offer very high spatial resolution (a few meters).

  19. An off Axis Cavity Enhanced Absorption Spectrometer and a Rapid Scan Spectrometer with a Room-Temperature External Cavity Quantum Cascade Laser

    NASA Astrophysics Data System (ADS)

    Liu, Xunchen; Kang, Cheolhwa; Xu, Yunjie

    2009-06-01

    Quantum cascade laser (QCL) is a new type of mid-infrared tunable diode lasers with superior output power and mode quality. Recent developments, such as room temperature operation, wide frequency tunability, and narrow line width, make QCLs an ideal light source for high resolution spectroscopy. Two slit jet infrared spectrometers, namely an off-axis cavity enhanced absorption (CEA) spectrometer and a rapid scan spectrometer with an astigmatic multi-pass cell assembly, have been coupled with a newly purchased room temperature tunable mod-hop-free QCL with a frequency coverage from 1592 cm^{-1} to 1698 cm^{-1} and a scan rate of 0.1 cm^{-1}/ms. Our aim is to utilize these two sensitive spectrometers, that are equipped with a molecular jet expansion, to investigate the chiral molecules-(water)_n clusters. To demonstrate the resolution and sensitivity achieved, the rovibrational transitions of the static N_2O gas and the bending rovibrational transitions of the Ar-water complex, a test system, at 1634 cm^{-1} have been measured. D. Hofstetter and J. Faist in High performance quantum cascade lasers and their applications, Vol.89 Springer-Verlag Berlin & Heidelberg, 2003, pp. 61-98. Y. Xu, X. Liu, Z. Su, R. M. Kulkarni, W. S. Tam, C. Kang, I. Leonov and L. D'Agostino, Proc. Spie, 2009, 722208 (1-11). M. J. Weida and D. J. Nesbitt, J. Chem. Phys. 1997, 106, 3078-3089.

  20. Characterization of the frequency stability of an optical frequency standard at 1.39 µm based upon noise-immune cavity-enhanced optical heterodyne molecular spectroscopy.

    PubMed

    Dinesan, H; Fasci, E; D'Addio, A; Castrillo, A; Gianfrani, L

    2015-01-26

    Frequency fluctuations of an optical frequency standard at 1.39 µm have been measured by means of a highly-sensitive optical frequency discriminator based on the fringe-side transmission of a high finesse optical resonator. Built on a Zerodur spacer, the optical resonator exhibits a finesse of 5500 and a cavity-mode width of about 120 kHz. The optical frequency standard consists of an extended-cavity diode laser that is tightly stabilized against the center of a sub-Doppler H(2) (18)O line, this latter being detected by means of noise-immune cavity-enhanced optical heterodyne molecular spectroscopy. The emission linewidth has been carefully determined from the frequency-noise power spectral density by using a rather simple approximation, known as β-line approach, as well as the exact method based on the autocorrelation function of the laser light field. It turns out that the linewidth of the optical frequency standard amounts to about 7 kHz (full width at half maximum) for an observation time of 1 ms. Compared to the free-running laser, the measured width corresponds to a line narrowing by a factor of ~220. PMID:25835931

  1. Enhanced up/down-conversion luminescence and heat: Simultaneously achieving in one single core-shell structure for multimodal imaging guided therapy.

    PubMed

    He, Fei; Feng, Lili; Yang, Piaoping; Liu, Bin; Gai, Shili; Yang, Guixin; Dai, Yunlu; Lin, Jun

    2016-10-01

    Upon near-infrared (NIR) light irradiation, the Nd(3+) doping derived down-conversion luminescence (DCL) in NIR region and thermal effect are extremely fascinating in bio-imaging and photothermal therapy (PTT) fields. However, the concentration quenching induced opposite changing trend of the two properties makes it difficult to get desired DCL and thermal effect together in one single particle. In this study, we firstly designed a unique NaGdF4:0.3%Nd@NaGdF4@NaGdF4:10%Yb/1%Er@NaGdF4:10%Yb @NaNdF4:10%Yb multiple core-shell structure. Here the inert two layers (NaGdF4 and NaGdF4:10%Yb) can substantially eliminate the quenching effects, thus achieving markedly enhanced NIR-to-NIR DCL, NIR-to-Vis up-conversion luminescence (UCL), and thermal effect under a single 808 nm light excitation simultaneously. The UCL excites the attached photosensitive drug (Au25 nanoclusters) to generate singlet oxygen ((1)O2) for photodynamic therapy (PDT), while DCL with strong NIR emission serves as probe for sensitive deep-tissue imaging. The in vitro and in vivo experimental results demonstrate the excellent cancer inhibition efficacy of this platform due to a synergistic effect arising from the combined PTT and PDT. Furthermore, multimodal imaging including fluorescence imaging (FI), photothermal imaging (PTI), and photoacoustic imaging (PAI) has been obtained, which is used to monitor the drug delivery process, internal structure of tumor and photo-therapeutic process, thus achieving the target of imaging-guided cancer therapy. PMID:27512942

  2. Core-shell-like Y2O3:[(Tb3+-Yb3+), Li+]/CdZnS heterostructure synthesized by super-close-space sublimation for broadband down-conversion

    NASA Astrophysics Data System (ADS)

    Wu, Xiaojie; Zhang, Zhenzhong; Meng, Fanzhi; Yu, Yingning; Han, Lin; Liu, Xiaojuan; Meng, Jian

    2014-04-01

    Combination with semiconductors is a promising approach to the realization of broadband excitation of light conversion materials based on rare earth compounds, to boost the energy efficiency of silicon solar cells. Cd1-xZnxS is a wide bandgap semiconductor with large exciton binding energy. By changing its composition, the bandgap of Cd1-xZnxS can be tuned to match the absorption of trivalent lanthanide (Ln) ions, which makes it a competent energy donor for the Ln3+-Yb3+ couple. In this work, we designed a clean route to a broadband down-converter based on a core-shell-like Y2O3:[(Tb3+-Yb3+), Li+]/Cd0.81Zn0.19S (CdZnS) heterostructure. By hot-pressing and subsequent annealing of a Y2O3:[(Tb3+-Yb3+), Li+]/CdZnS mixture, highly pure CdZnS was sublimated and deposited on the Y2O3:[(Tb3+-Yb3+), Li+] grains while maintaining the original composition of the precursor. The CdZnS shell acted as a light absorber and energy donor for the Tb3+-Yb3+ quantum cutting couple. Because the use of solvents was avoided during the formation of the heterostructures, few impurities were incorporated into the samples, and the non-radiative transition was therefore markedly suppressed. The Y2O3:[(Tb3+-Yb3+), Li+]/CdZnS heterostructures possess strong near-infrared (NIR) luminescence from Yb3+. Broadband down-conversion to the Yb3+ NIR emission was obtained in a wide range of 250-650 nm.

  3. Application of Cavity Enhanced Absorption Spectroscopy to the Detection of Nitric Oxide, Carbonyl Sulphide, and Ethane--Breath Biomarkers of Serious Diseases.

    PubMed

    Wojtas, Jacek

    2015-01-01

    The paper presents one of the laser absorption spectroscopy techniques as an effective tool for sensitive analysis of trace gas species in human breath. Characterization of nitric oxide, carbonyl sulphide and ethane, and the selection of their absorption lines are described. Experiments with some biomarkers showed that detection of pathogenic changes at the molecular level is possible using this technique. Thanks to cavity enhanced spectroscopy application, detection limits at the ppb-level and short measurements time (<3 s) were achieved. Absorption lines of reference samples of the selected volatile biomarkers were probed using a distributed feedback quantum cascade laser and a tunable laser system consisting of an optical parametric oscillator and difference frequency generator. Setup using the first source provided a detection limit of 30 ppb for nitric oxide and 250 ppb for carbonyl sulphide. During experiments employing a second laser, detection limits of 0.9 ppb and 0.3 ppb were obtained for carbonyl sulphide and ethane, respectively. The conducted experiments show that this type of diagnosis would significantly increase chances for effective therapy of some diseases. Additionally, it offers non-invasive and real time measurements, high sensitivity and selectivity as well as minimizing discomfort for patients. For that reason, such sensors can be used in screening for early detection of serious diseases. PMID:26091398

  4. Validation and application of cavity-enhanced, near-infrared tunable diode laser absorption spectrometry for measurements of methane carbon isotopes at ambient concentrations.

    PubMed

    Mortazavi, Behzad; Wilson, Benjamin J; Dong, Feng; Gupta, Manish; Baer, Doug

    2013-10-15

    Methane is an effective greenhouse gas but has a short residence time in the atmosphere, and therefore, reductions in emissions can alleviate its greenhouse gas warming effect within a decadal time frame. Continuous and high temporal resolution measurements of methane concentrations and carbon isotopic ratios (δ(13)CH4) can inform on mechanisms of formation, provide constraints on emissions sources, and guide future mitigation efforts. We describe the development, validation, and deployment of a cavity-enhanced, near-infrared tunable diode laser absorption spectrometry system capable of quantifying δ(13)CH4 at ambient methane concentrations. Laboratory validation and testing show that the instrument is capable of operating over a wide dynamic range of methane concentration and provides a measurement precision for δ(13)CH4 of better than ± 0.5 ‰ (1σ) over 1000 s of data averaging at ambient methane concentrations. The analyzer is accurate to better than ± 0.5 ‰, as demonstrated by measurements of characterized methane/air samples with minimal dependence (<1 ‰) of measured carbon isotope ratio on methane concentration. Deployment of the instrument at a marsh over multiple days demonstrated how methane fluxes varied by an order of magnitude over 2 day deployment periods, and showed a 17 ‰ variability in δ(13)CH4 of the emitted methane during the growing season. PMID:24025121

  5. Dilute nitride resonant cavity enhanced photodetector with internal gain for the λ ∼ 1.3 μm optical communications window

    NASA Astrophysics Data System (ADS)

    Balkan, N.; Erol, A.; Sarcan, F.; Al-Ghuraibawi, L. F. F.; Nordin, M. S.

    2015-10-01

    We report on a novel dilute nitride-based resonant cavity enhanced photodetector (RCEPD) operating at 1.286 μm. The RCEPD was fabricated using 21 pairs top and 24 pairs bottom GaAs/AlGaAs distributed Bragg reflectors for mirrors and 7 nm thick nine GaAs/Ga0.65In0.35N0.02 As0.98 quantum wells as the absorption region. For a 15 μm diameter window, the photocurrent at 1.286 μm is 27 μA and 42 μA, at V = 0 and -1 V, respectively, whereas the dark current is as low as 1.7 nA at -1 V. At the operating wavelength, an excellent wavelength selectivity with a full width at half maximum (FWHM) of 5 nm, and a high quantum efficiency of 43% are demonstrated. The device exhibits significant internal gain at very small reverse bias voltages of V ⩾ -2 V with an overall quantum efficiency of 67%. These are the best ever recorded values for a dilute nitride RCEPD.

  6. Following interfacial kinetics in real time using broadband evanescent wave cavity-enhanced absorption spectroscopy: a comparison of light-emitting diodes and supercontinuum sources.

    PubMed

    van der Sneppen, Lineke; Hancock, Gus; Kaminski, Clemens; Laurila, Toni; Mackenzie, Stuart R; Neil, Simon R T; Peverall, Robert; Ritchie, Grant A D; Schnippering, Mathias; Unwin, Patrick R

    2010-01-01

    A white light-emitting diode (LED) with emission between 420 and 700 nm and a supercontinuum (SC) source with emission between 450 and 2500 nm have been compared for use in evanescent wave broadband cavity-enhanced absorption spectroscopy (EW-BB-CEAS). The method is calibrated using a dye with known absorbance. While the LED is more economic as an excitation source, the SC source is superior both in terms of baseline noise (noise equivalent absorbances lower than 10(-5) compared to 10(-4) absorbance units (a.u.)) and accuracy of the measurement; these baseline noise levels are comparable to evanescent wave cavity ringdown spectroscopy (EW-CRDS) studies while the accessible spectral region of EW-BB-CEAS is much larger (420-750 nm in this study, compared to several tens of nanometres for EW-CRDS). The improvements afforded by the use of an SC source in combination with a high sensitivity detector are demonstrated in the broadband detection of electrogenerated Ir(IV) complexes in a thin-layer electrochemical cell arrangement. Excellent signal to noise is achieved with 10 micros signal accumulation times at a repetition rate of 600 Hz, easily fast enough to follow, in real time, solution kinetics and interfacial processes. PMID:20024193

  7. Application of Cavity Enhanced Absorption Spectroscopy to the Detection of Nitric Oxide, Carbonyl Sulphide, and Ethane—Breath Biomarkers of Serious Diseases

    PubMed Central

    Wojtas, Jacek

    2015-01-01

    The paper presents one of the laser absorption spectroscopy techniques as an effective tool for sensitive analysis of trace gas species in human breath. Characterization of nitric oxide, carbonyl sulphide and ethane, and the selection of their absorption lines are described. Experiments with some biomarkers showed that detection of pathogenic changes at the molecular level is possible using this technique. Thanks to cavity enhanced spectroscopy application, detection limits at the ppb-level and short measurements time (<3 s) were achieved. Absorption lines of reference samples of the selected volatile biomarkers were probed using a distributed feedback quantum cascade laser and a tunable laser system consisting of an optical parametric oscillator and difference frequency generator. Setup using the first source provided a detection limit of 30 ppb for nitric oxide and 250 ppb for carbonyl sulphide. During experiments employing a second laser, detection limits of 0.9 ppb and 0.3 ppb were obtained for carbonyl sulphide and ethane, respectively. The conducted experiments show that this type of diagnosis would significantly increase chances for effective therapy of some diseases. Additionally, it offers non-invasive and real time measurements, high sensitivity and selectivity as well as minimizing discomfort for patients. For that reason, such sensors can be used in screening for early detection of serious diseases. PMID:26091398

  8. Intrinsic limitation of cavity-enhanced Faraday detection of spin noise in quantum wells and quantum dots

    NASA Astrophysics Data System (ADS)

    Scalbert, D.

    2016-04-01

    Spin noise spectroscopy is a quite attractive experimental tool for studying unperturbed spin dynamics and magnetic resonance in semiconductor nanostructures. However in some cases its practical interest maybe severely limited by the weakness of the spin noise signal to be detected. In this paper we examine by how much the detection of spin noise of magnetic atoms or of nuclei, in quantum wells or quantum dots, can be improved by making use of cavity-enhanced Faraday rotation. The conditions for optimized cavities are first determined. In reflection geometry it corresponds to tune the cavity to the critical point of impedance matching. It is shown that even for optimized cavities the enhancement in spin noise detection is intrinsically limited by absorption. It turns out that the cavity effect improves the spin noise detection only when the inhomogeneous broadening of the involved optical resonance is large compared to its radiative broadening.

  9. A broadband cavity-enhanced spectrometer for measuring the extinction of aerosols at blue and near-UV wavelengths

    NASA Astrophysics Data System (ADS)

    Venables, Dean; Fullam, Donovan; Hoa Le, Phuoc; Chen, Jun; Böge, Olaf; Herrmann, Hartmut

    2016-04-01

    We describe a new broadband cavity-enhanced absorption spectrometer for sensitive extinction measurements of aerosols. The instrument is distinguished by its broad and continuous spectral coverage from the near-UV to blue wavelengths (ca. 320 to 450 nm). The short wavelength region has been little explored compared to visible wavelengths, but is important because (1) brown carbon (BrC) absorbs strongly in this wavelength region, and (2) absorption of near-UV radiation in the atmosphere alters the photolysis rate of the key atmospheric species O3, NO2, and HONO, with implications for air quality and atmospheric oxidation capacity. The instrument performance and the effect of a switchable in-line filter are characterised. Early results using the instrument in the TROPOS atmospheric simulation chamber are presented. These experiments include studies of secondary organic aerosol formation (SOA), and biomass burning experiments of rice and wheat straw, followed by experiments simulating particle aging under daytime and nighttime conditions.

  10. Rapid, online quantification of H2S in JP-8 fuel reformate using near-infrared cavity-enhanced laser absorption spectroscopy.

    PubMed

    Dong, Feng; Junaedi, Christian; Roychoudhury, Subir; Gupta, Manish

    2011-06-01

    One of the key challenges in reforming military fuels for use with fuel cells is their high sulfur content, which can poison the fuel cell anodes. Sulfur-tolerant fuel reformers can convert this sulfur into H(2)S and then use a desulfurizing bed to remove it prior to the fuel cell. In order to optimize and verify this desulfurization process, a gas-phase sulfur analyzer is required to measure H(2)S at low concentrations (<1 ppm(v)) in the presence of other reforming gases (e.g., 25-30% H(2), 10-15% H(2)O, 15% CO, 5% CO(2), 35-40% N(2), and trace amounts of light hydrocarbons). In this work, we utilize near-infrared cavity-enhanced optical absorption spectroscopy (off-axis ICOS) to quantify H(2)S in a JP-8 fuel reformer product stream. The sensor provides rapid (2 s), highly precise (±0.1 ppm(v)) measurements of H(2)S in reformate gases over a wide dynamic range (0-1000 ppm(v)) with a low detection limit (3σ = ±0.09 ppm(v) in 1 s) and minimal cross-interferences from other present species. It simultaneously quantifies CO(2) (±0.2%), CH(4) (±150 ppm(v)), C(2)H(4) (±30 ppm(v)), and H(2)O (±300 ppm(v)) in the reformed gas for a better characterization of the fuel reforming process. Other potential applications of this technology include measurement of coal syngas and H(2)S in natural gas. By including additional near-infrared, distributive feedback diode lasers, the instrument can also be extended to other reformate species, including CO and H(2). PMID:21486070

  11. Tunable cavity-enhanced photon pairs source in Hermite-Gaussian mode

    NASA Astrophysics Data System (ADS)

    Zhou, Zhi-Yuan; Li, Yan; Ding, Dong-Sheng; Zhang, Wei; Shi, Shuai; Shi, Bao-Sen; Guo, Guang-Can

    2016-02-01

    The spatial modes of light have grasped great research interests because of its great potentials in optical communications, optical manipulation and trapping, optical metrology and quantum information processing. Here we report on generating of photon pairs in Hermite-Gaussian (HG) mode in a type-I optical parametric oscillator operated far below threshold. The bandwidths of the photon pairs are 11.4 MHz and 20.8MHz for two different HG modes respectively, therefore the photons can be stored in cold Rubidium atomic ensembles. The non-classical properties of HG modes are clearly verified by the violation of Cauchy-Schwarz inequality. Our study provides an effective way to generate photon pairs with narrow bandwidth in high order spatial modes for high dimensional quantum communication.

  12. Fast Carbon Isotope Analysis of CO2 Using Cavity Enhanced Laser Absorption: Water Effects and Extended Dynamic Range

    NASA Astrophysics Data System (ADS)

    McAlexander, W. I.; Fellers, R.; Owano, T. G.; Baer, D. S.

    2010-12-01

    Fast, precise, and accurate measurement of δ13C (13C / 12C in CO2) of carbon dioxide is desirable for a number of applications including atmospheric chemistry and carbon sequestering. Recent advances in laser absorption spectroscopy, such as cavity enhanced techniques, have enabled field portable instruments which have a number of advantages over traditional, laboratory-based mass spectroscopy systems. We report on the continued development of an analyzer, based on a patented laser absorption technique (off-axis integrated cavity output spectroscopy or Off-Axis ICOS), which measures CO2 concentration, δ13C, and H2O concentration. The analyzer operates at 1Hz and achieves an isotope precision of 0.25‰ (standard deviation) for δ13C with less than one minute of averaging. In addition, recent advances have allowed for the simultaneous measurement of water during the carbon isotope measurement. The instrument reports a dry mole fraction for CO2 and compensates for water broadening in the spectroscopic measurement of δ13C. A multi-point calibration routine has been developed to allow the instrument to fully realize an operational range of 300ppmV to 10% CO2 with a minimal number of reference gases. Details concerning these advances will be discussed.

  13. REAL TIME CONTINUOUS MEASUREMENTS OF [CO2] AND δ13C AT MULTIPLE LOCATIONS USING CAVITY ENHANCED LASER ABSORPTION

    NASA Astrophysics Data System (ADS)

    McAlexander, W. I.; Rau, G. H.; Dobeck, L.; Spangler, L.

    2009-12-01

    A commercial instrument (Los Gatos Research, model 908-0003) utilizing Cavity Enhanced Laser Absorption Spectroscopy was deployed in 2009 at the ZERT carbon release site (Bozeman, MT) for real time measurement of above-ground CO2 concentration and isotope ratio (δ13C). An automated switching system sampled 13 different locations in the field, as well as two known references, over an 8 day period. Real-time Keeling plots were constructed showing distinct signatures of soil (-27.0 ‰) and fossil (-56.0 ‰) sources compared to background air (-8.2 ‰). Instrument performance gave 0.2 ‰ precision with only 100 seconds of averaging per inlet. Sequential sampling of the various inlets gave a temporal and physical mapping of the CO2 release plume that is difficult to obtain using more conventional techniques. The figures show the nature and quality of the data from one of the locations. Details concerning instrument performance, systematics, calibration, and data processing will be discussed. Fig1: Time chart of CO2 concentration and isotope ratio δ13C from one of 13 sample inlet locations at ZERT release field, July, 2009. Fig2: Keeling plot of data from Fig1 illustrating the two source mixing of soil (-27 ‰) and fossil (-56 ‰) CO2 with background air.

  14. Optical feedback cavity-enhanced absorption spectroscopy with a 3.24 μm interband cascade laser

    SciTech Connect

    Manfred, K. M.; Ritchie, G. A. D.; Lang, N.; Röpcke, J.; Helden, J. H. van

    2015-06-01

    The development of interband cascade lasers (ICLs) has made the strong C-H transitions in the 3 μm spectral region increasingly accessible. We present the demonstration of a single mode distributed feedback ICL coupled to a V-shaped optical cavity in an optical feedback cavity-enhanced absorption spectroscopy (OF-CEAS) experiment. We achieved a minimum detectable absorption coefficient, α{sub min}, of (7.1±0.2)×10{sup −8} cm{sup −1} for a spectrum of CH{sub 4} at 3.24 μm with a two second acquisition time (100 scans averaged). This corresponds to a detection limit of 3 ppb CH{sub 4} at atmospheric pressure, which is comparable to previously reported OF-CEAS instruments with diode lasers or quantum cascade lasers. The ability to frequency lock an ICL source in the important 3 μm region to an optical cavity holds great promise for future spectroscopic applications.

  15. Cavity-enhanced quantum-cascade laser-based instrument for carbon monoxide measurements.

    PubMed

    Provencal, Robert; Gupta, Manish; Owano, Thomas G; Baer, Douglas S; Ricci, Kenneth N; O'Keefe, Anthony; Podolske, James R

    2005-11-01

    An autonomous instrument based on off-axis integrated cavity output spectroscopy has been developed and successfully deployed for measurements of carbon monoxide in the troposphere and tropopause onboard a NASA DC-8 aircraft. The instrument (Carbon Monoxide Gas Analyzer) consists of a measurement cell comprised of two high-reflectivity mirrors, a continuous-wave quantum-cascade laser, gas sampling system, control and data-acquisition electronics, and data-analysis software. CO measurements were determined from high-resolution CO absorption line shapes obtained by tuning the laser wavelength over the R(7) transition of the fundamental vibration band near 2172.8 cm(-1). The instrument reports CO mixing ratio (mole fraction) at a 1-Hz rate based on measured absorption, gas temperature, and pressure using Beer's Law. During several flights in May-June 2004 and January 2005 that reached altitudes of 41,000 ft (12.5 km), the instrument recorded CO values with a precision of 0.2 ppbv (1-s averaging time) and an accuracy limited by the reference CO gas cylinder (uncertainty < 1.0%). Despite moderate turbulence and measurements of particulate-laden airflows, the instrument operated consistently and did not require any maintenance, mirror cleaning, or optical realignment during the flights. PMID:16270560

  16. Long wave infrared cavity-enhanced sensors using quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Taubman, Matthew S.; Scott, David C.; Myers, Tanya L.; Cannon, Bret D.

    2005-11-01

    Quantum cascade lasers (QCLs) are becoming well known as convenient and stable semiconductor laser sources operating in the mid- to long-wave infrared, and are able to be fabricated to operate virtually anywhere in the 3.5 to 25 micron region. This makes them an ideal choice for infrared chemical sensing, a topic of great interest at present, spanning at least three critical areas: national security, environmental monitoring and protection, and the early diagnosis of disease through breath analysis. There are many different laser-based spectroscopic chemical sensor architectures in use today, from simple direct detection through to more complex and highly sensitive systems. Many current sensor needs can be met by combining QCLs and appropriate sensor architectures, those needs ranging from UAV-mounted surveillance systems, through to larger ultra-sensitive systems for airport security. In this paper we provide an overview of various laser-based spectroscopic sensing techniques, pointing out advantages and disadvantages of each. As part of this process, we include our own results and observations for techniques under development at PNNL. We also present the latest performance of our ultra-quiet QCL control electronics now being commercialized, and explore how using optimized supporting electronics enables increased sensor performance and decreased sensor footprint for given applications.

  17. Long wave infrared cavity-enhanced sensors using quantum cascade lasers

    SciTech Connect

    Taubman, Matthew S.; Scott, David C.; Myers, Tanya L.; Cannon, Bret D.

    2005-12-30

    Quantum cascade lasers (QCLs) are becoming well known as convenient and stable semiconductor laser sources operating in the mid- to long-wave infrared, and are able to be fabricated to operate virtually anywhere in the 3.5 to 25 micron region. This makes them an ideal choice for infrared chemical sensing, a topic of great interest at present, spanning at least three critical areas: national security, environmental monitoring and protection, and the early diagnosis of disease through breath analysis. There are many different laser-based spectroscopic chemical sensor architectures in use today, from simple direct detection through to more complex and highly sensitive systems. Many current sensor needs can be met by combining QCLs and appropriate sensor architectures, those needs ranging from UAV-mounted surveillance systems, through to larger ultra-sensitive systems for airport security. In this paper we provide an overview of various laser-based spectroscopic sensing techniques, pointing out advantages and disadvantages of each. As part of this process, we include our own results and observations for techniques under development at PNNL. We also present the latest performance of our ultra-quiet QCL control electronics now being commercialized, and explore how using optimized supporting electronics enables increased sensor performance and decreased sensor footprint for given applications.

  18. Time-resolved in situ detection of CO in a shock tube using cavity-enhanced absorption spectroscopy with a quantum-cascade laser near 4.6 µm.

    PubMed

    Sun, Kai; Wang, Shengkai; Sur, Ritobrata; Chao, Xing; Jeffries, Jay B; Hanson, Ronald K

    2014-10-01

    Cavity-enhanced absorption spectroscopy (CEAS) using a mid-infrared DFB quantum-cascade laser is reported for sensitive time-resolved (10 μs) in situ CO measurements in a shock tube. Off-axis alignment and fast scanning of the laser wavelength were used to minimize coupling noise in a low-finesse cavity. An absorption gain factor of 91 was demonstrated, which enabled sub-ppm detection sensitivity for gas temperatures of 1000-2100K in a 15 cm diameter shock tube. This substantial improvement in detection sensitivity compared to conventional single-pass absorption measurements, shows great potential for the study of reaction pathways of high-temperature combustion kinetics mechanisms in shock tubes. PMID:25322031

  19. Molecular frequency reference at 1.56  μm using a 12C16O overtone transition with the noise-immune cavity-enhanced optical heterodyne molecular spectroscopy method.

    PubMed

    Saraf, Shailendhar; Berceau, Paul; Stochino, Alberto; Byer, Robert; Lipa, John

    2016-05-15

    We report on a molecular clock based on the interrogation of the 3ν rotational-vibrational combination band at 1563 nm of carbon monoxide C1612O. The laser stabilization scheme is based on the noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) technique in frequency modulation (FM) saturation spectroscopy. We use a high-finesse ultra-low expansion (ULE) glass optical cavity with CO as the molecular reference for long-term stabilization of the cavity resonance. We report an Allan deviation of 1.8×10-12 at 1 s that improves to ∼3.5×10-14 with 1000 s of averaging. PMID:27176959

  20. Using a fourth-generation cavity enhanced spectrometer to isotopically investigate nitrous oxide emissions from biochar amended soils.

    NASA Astrophysics Data System (ADS)

    Grabenhofer, Jutta; Dercon, Gerd; Heiling, Maria; Mayr, Leo; Resch, Christian; Hood-Nowotny, Rebecca

    2016-04-01

    Research into the impacts of biochar on key processes in the nitrogen cycle is important to understand biochar's potential role in sustainable agriculture. There is conflicting evidence that biochar can reduce globally significant greenhouse gas emissions, especially N2O, one of the most important greenhouse gases in agriculture. However to date there is little information on the mechanisms involved. The source of N2O is dependent on the physical, chemical and biological status of the soil at a microbial scale and we need to understand how biochar influences it. Using the 15N2O gas flux method combined with gross rate measurements of nitrification and modelling, it should be possible to determine the parameters which drive N2O emissions and to evaluate the specific impact of biochar on these important N loss processes. To date the scope of isotopic studies on nitrous oxide emissions have been limited, due in part to technical and infrastructural access to complex and expensive mass spectrometry. With the advent of laser based systems these logistical and analytical constraints could be overcome and allow for a deeper and geographically more representative, understanding and assessment of the role of biochar in reducing nitrous oxide emissions from soil. In this study we have developed a simple method for investigated nitrous oxide emissions from soils amended with biochar, employing state of the art stable isotope techniques, using a fourth-generation cavity enhanced absorption technique a variant of conventional Cavity Ringdown Spectroscopy (CRDS) for measurement of isotopes of nitrous oxide. We will present methodologies used and results from these experiments, techniques that should path the way for a greater global understand nitrous oxide emissions from soils.

  1. Walk-Off-Induced Modulation Instability, Temporal Pattern Formation, and Frequency Comb Generation in Cavity-Enhanced Second-Harmonic Generation

    NASA Astrophysics Data System (ADS)

    Leo, F.; Hansson, T.; Ricciardi, I.; De Rosa, M.; Coen, S.; Wabnitz, S.; Erkintalo, M.

    2016-01-01

    We derive a time-domain mean-field equation to model the full temporal and spectral dynamics of light in singly resonant cavity-enhanced second-harmonic generation systems. We show that the temporal walk-off between the fundamental and the second-harmonic fields plays a decisive role under realistic conditions, giving rise to rich, previously unidentified nonlinear behavior. Through linear stability analysis and numerical simulations, we discover a new kind of quadratic modulation instability which leads to the formation of optical frequency combs and associated time-domain dissipative structures. Our numerical simulations show excellent agreement with recent experimental observations of frequency combs in quadratic nonlinear media [Phys. Rev. A 91, 063839 (2015)]. Thus, in addition to unveiling a new, experimentally accessible regime of nonlinear dynamics, our work enables predictive modeling of frequency comb generation in cavity-enhanced second-harmonic generation systems. We expect our findings to have wide impact on the study of temporal and spectral dynamics in a diverse range of dispersive, quadratically nonlinear resonators.

  2. Light emitting diode cavity enhanced differential optical absorption spectroscopy (LED-CE-DOAS): a novel technique for monitoring atmospheric trace gases

    NASA Astrophysics Data System (ADS)

    Thalman, Ryan M.; Volkamer, Rainer M.

    2009-08-01

    The combination of Cavity Enhanced Absorption Spectroscopy (CEAS) with broad-band light sources (e.g. Light- Emitting Diodes, LEDs) lends itself to the application of cavity enhanced DOAS (CE-DOAS) to perform sensitive and selective point measurements of multiple trace gases with a single instrument. In contrast to other broad-band CEAS techniques, CE-DOAS relies only on the measurement of relative intensity changes, i.e., does not require knowledge of the light intensity in the absence of trace gases and aerosols (I0). We have built a prototype LED-CE-DOAS instrument in the blue spectral range (420-490nm) to measure nitrogen dioxide (NO2), glyoxal (CHOCHO), iodine monoxide (IO), water (H2O) and oxygen dimers (O4). Aerosol extinction is retrieved at two wavelengths by means of observing water and O4 and measuring pressure, temperature and relative humidity independently. The instrument components are presented, and the approach to measure aerosol extinction is demonstrated by means of a set of experiments where laboratory generated monodisperse aerosols are added to the cavity. The aerosol extinction cross section agrees well with Mie calculations, demonstrating that our setup enables measurements of the above gases in open cavity mode.

  3. Optical rectification and down-conversion of fs pulses into mid-IR and THz range in GaSe1-xSx

    NASA Astrophysics Data System (ADS)

    Andreev, Yu. M.; Lanskii, G. V.; Kokh, K. A.; Svetlichnyi, V. A.

    2015-12-01

    Design of top S-doped GaSe growth technology is completed. New methods for characterization of high optical quality crystals are proposed that allowed selection optimally doped crystals. Frequency conversion of fs pulses into 6.5-35 μm and into 0.2-4.5 THz is realized. S-doped crystals demonstrated advantages from 50-70% in the first experiments up to 8.5-15 times in the following experiments depending on experimental conditions.

  4. Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals

    NASA Astrophysics Data System (ADS)

    Petrov, Valentin

    2015-07-01

    The development of parametric devices down-converting the laser frequency to the mid-infrared (3-30 μm) based on non-oxide nonlinear optical crystals is reviewed. Such devices, pumped by solid-state laser systems operating in the near-infrared, fill in this spectral gap where no such lasers exist, on practically all time scales, from continuous-wave to femtosecond regime. All important results obtained so far with difference-frequency generation, optical parametric oscillation, generation and amplification are presented in a comparative manner, illustrating examples of recent achievements are given in more detail, and some special issues such as continuum and frequency comb generation or pulse shaping are also discussed. The vital element in any frequency-conversion process is the nonlinear optical crystal and this represents one of the major limitations for achieving high energies and average powers in the mid-infrared although the broad spectral tunability seems not to be a problem. Hence, an overview of the available non-oxide nonlinear optical materials, emphasizing new developments such as wide band-gap, engineered (mixed), and quasi-phase-matched crystals, is also included.

  5. Controllable synthesis and down-conversion properties of flower-like NaY(MoO{sub 4}){sub 2} microcrystals via polyvinylpyrrolidone-mediated

    SciTech Connect

    Lin, Han; Yan, Xiaohong; Wang, Xiangfu

    2013-08-15

    Double alkaline rare-earth molybdates NaY(MoO{sub 4}){sub 2} with multilayered flower-like architectures have been successfully synthesized via hydrothermal method in polyvinylpyrrolidone (PVP)-modified processes. The crystal structure and morphology of the obtained products were characterized by X-ray diffraction, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It was found that reaction time and the amount of PVP have crucial influences on the morphology of the resulting novel microstructures. Under 450 nm excitation, Ho{sup 3+}/Yb{sup 3+} co-doped NaY(MoO{sub 4}){sub 2} samples exhibit 539 nm green emission and 960–1200 nm broadband near-infrared emission, corresponding to the characteristic lines of Ho{sup 3+} and Yb{sup 3+}, respectively. Moreover, increasing Yb{sup 3+} doping enhances the energy transfer efficiency from Ho{sup 3+} to Yb{sup 3+}. - Graphical abstract: Low and high-magnification SEM images demonstrate the perfect flower-like NaY(MoO{sub 4}){sub 2} prepared in the presence of PVP; Detailed TEM and HRTEM images further manifest the single-crystalline feature. Highlights: • NaY(MoO{sub 4}){sub 2} flower-like microstructures were synthesized by hydrothermal method using polyvinylpyrrolidone. • Polyvinylpyrrolidone induces the growth of the NaY(MoO{sub 4}){sub 2} to form multilayered architectures. • Flowerlike NaY(MoO{sub 4}){sub 2}: Ho{sup 3+}, Yb{sup 3+} phosphors were investigated as a downconversion layer candidate.

  6. The down-conversion and up-conversion photoluminescence properties of Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}:Yb{sup 3+}/Pr{sup 3+} ceramics

    SciTech Connect

    Huang, Yinpeng; Luo, Laihui Wang, Jia; Zuo, Qianghui; Yao, Yongjie; Li, Weiping

    2015-07-28

    Na{sub 0.5}Bi{sub 0.5−x−y}Yb{sub x}Pr{sub y}TiO{sub 3} (NBT:xYb/yPr) ceramics with different Yb and Pr contents are prepared. Both the down-conversion (DC) and up-conversion (UC) photoluminescence (PL) of the ceramics via 453 and 980 nm excitation, respectively, are investigated. The effect of Yb{sup 3+} and Pr{sup 3+} doping contents on the DC and UC PL is significantly different from each other. Furthermore, the UC PL of the ceramics as a function of temperatures is measured to investigate the UC process in detail. Based on energy level diagram of Pr{sup 3+} and Yb{sup 3+} ions and the DC and UC PL spectra, the DC and UC PL mechanisms of Pr{sup 3+} and Yb{sup 3+} ions are discussed. Especially, the UC PL mechanism is clarified, which is different from the previously reported literature. Also, the temperature sensing properties of the ceramics are studied based on the photoluminescence ratio technique, using the thermal coupling energy levels of Pr{sup 3+}.

  7. High purity bright single photon source.

    PubMed

    Neergaard-Nielsen, J S; Nielsen, B M; Takahashi, H; Vistnes, A I; Polzik, E S

    2007-06-25

    Using cavity-enhanced non-degenerate parametric down-conversion, we have built a frequency tunable source of heralded single photons with a narrow bandwidth of 8 MHz, making it compatible with atomic quantum memories. The photon state is 70% pure single photon as characterized by a tomographic measurement and reconstruction of the quantum state, revealing a clearly negative Wigner function. Furthermore, it has a spectral brightness of ~1,500 photons/s per MHz bandwidth, making it one of the brightest single photon sources available. We also investigate the correlation function of the down-converted fields using a combination of two very distinct detection methods; photon counting and homodyne measurement. PMID:19547121

  8. Ultrasensitive, real-time analysis of biomarkers in breath using tunable external cavity laser and off-axis cavity-enhanced absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Bayrakli, Ismail; Akman, Hatice

    2015-03-01

    A robust biomedical sensor for ultrasensitive detection of biomarkers in breath based on a tunable external cavity laser (ECL) and an off-axis cavity-enhanced absorption spectroscopy (OA-CEAS) using an amplitude stabilizer is developed. A single-mode, narrow-linewidth, tunable ECL is demonstrated. A broadly coarse wavelength tuning range of 720 cm-1 for the spectral range between 6890 and 6170 cm-1 is achieved by rotating the diffraction grating forming a Littrow-type external-cavity configuration. A mode-hop-free tuning range of 1.85 cm-1 is obtained. The linewidths below 140 kHz are recorded. The ECL is combined with an OA-CEAS to perform laser chemical sensing. Our system is able to detect any molecule in breath at concentrations to the ppbv range that have absorption lines in the spectral range between 1450 and 1620 nm. Ammonia is selected as target molecule to evaluate the performance of the sensor. Using the absorption line of ammonia at 6528.76 cm-1, a minimum detectable absorption coefficient of approximately 1×10-8 cm-1 is demonstrated for 256 averages. This is achieved for a 1.4-km absorption path length and a 2-s data-acquisition time. These results yield a detection sensitivity of approximately 8.6×10-10 cm-1 Hz-1/2. Ammonia in exhaled breath is analyzed and found in a concentration of 870 ppb for our example.

  9. Mid-infrared concentration-modulated noise-immune cavity-enhanced optical heterodyne molecular spectroscopy of a continuous supersonic expansion discharge source

    NASA Astrophysics Data System (ADS)

    Talicska, Courtney N.; Porambo, Michael W.; Perry, Adam J.; McCall, Benjamin J.

    2016-06-01

    Concentration-modulated noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) is implemented for the first time on a continuous gas-flow pinhole supersonic expansion discharge source for the study of cooled molecular ions. The instrument utilizes a continuous-wave optical parametric oscillator easily tunable from 2.5 to 3.9 μm and demonstrates a noise equivalent absorption of ˜1 × 10-9 cm-1. The effectiveness of concentration-modulated NICE-OHMS is tested through the acquisition of transitions in the ν1 fundamental band of HN2+ centered near 3234 cm-1, with a signal-to-noise of ˜40 obtained for the strongest transitions. The technique is used to characterize the cooling abilities of the supersonic expansion discharge source itself, and a Boltzmann analysis determines a rotational temperature of ˜29 K for low rotational states of HN2+. Further improvements are discussed that will enable concentration-modulated NICE-OHMS to reach its full potential for the detection of molecular ions formed in supersonic expansion discharges.

  10. Development of an airborne three-channel LED-based broadband cavity enhanced absorption spectrometer: towards an improved understanding of nighttime chemistry of NO3 and N2O5 in northwest Europe

    NASA Astrophysics Data System (ADS)

    Ouyang, Bin

    2015-04-01

    A three-channel cavity-enhanced absorption spectrometer capable of covering a broad UV-vis spectrum range has been developed in Cambridge for deployment on board the UK FAAM BAe-146 atmospheric research aircraft for measuring in situ concentrations of important atmospheric absorbers such as NO3, N2O5, NO2, IO and H2O and also aerosol extinction. So far this instrument has been deployed in two aircraft campaigns (the ROle of Nighttime chemistry in controlling the Oxidative Capacity of the atmOsphere, RONOCO, during July 2010 and January 2011; and the Coordinated Airborne Studies in the Tropics, CAST, during February 2014) with focuses on measuring NO2/NO3/N2O5 (for RONOCO) and IO (for CAST). In this talk, I will start by briefly presenting the working principle, design consideration, sensitivity test as well as intercomparison results of this novel aircraft instrument. I will then move on to present recent results from the analysis of the RONOCO campaign data, to illustrate the spatial and temporal variability of nighttime chemistry processes revealed by the high-resolution NO3 and N2O5 data collected. Significant improvements were made towards a better understanding of the oxidation of reactive VOCs by NO3 and O3 and the contribution of peroxy radicals (HO2 and RO2, of which only HO2 was successfully measured) to NO3 direct losses, and towards determining factors (organics and nitrate components of the aerosol particles, and relative humidity) that greatly influence the rate of N2O5 uptake by aerosol particles as well as directly probing the role of cloud, rain and ice scavenging in removing N2O5, in this typical northwest European environment.

  11. Adsorption of cytochrome c to silica surfaces studied using evanescent wave broadband cavity-enhanced absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Moore, L. J.; van der Sneppen, L.; Peverall, R.; Hancock, G.; Ritchie, G. A. D.

    2010-08-01

    The adsorption of cytochrome c (cyt c) to a silica surface has been studied by use of evanescent wave broadband cavityenhanced absorption spectroscopy (EW-BBCEAS). Visible radiation from a supercontinuum source is coupled into an optical cavity consisting of a pair of broadband high reflectivity mirrors, and a total internal reflection (TIR) event at the prism/water interface. Aqueous solutions of cyt c are placed onto the TIR footprint on the prism surface and the subsequent protein adsorption is probed by the resulting evanescent wave. The time integrated cavity output is directed into a spectrometer, where it is dispersed and analysed. The high spectral brilliance of the SC affords a baseline noise comparable to evanescent wave cavity ring-down spectroscopy (EW-CRDS), and the broadband nature of the source allows observation of a wide spectral range (ca 250 nm in the visible). The system is calibrated by measuring the absorption spectra of dyes of a known absorbance. Absorption spectra of cyt c are obtained for both S and P polarized radiation, allowing information about the orientation of the adsorbed protein to be extracted.

  12. Online investigation of respiratory quotients in Pinus sylvestris and Picea abies during drought and shading by means of cavity-enhanced Raman multi-gas spectrometry.

    PubMed

    Hanf, Stefan; Fischer, Sarah; Hartmann, Henrik; Keiner, Robert; Trumbore, Susan; Popp, Jürgen; Frosch, Torsten

    2015-07-01

    Photosynthesis and respiration are major components of the plant carbon balance. During stress, like drought, carbohydrate supply from photosynthesis is reduced and the Krebs cycle respiration must be fueled with other stored carbon compounds. However, the dynamics of storage use are still unknown. The respiratory quotient (RQ, CO2 released per O2 consumed during respiration) is an excellent indicator of the nature of the respiration substrate. In plant science, however, online RQ measurements have been challenging or even impossible so far due to very small gas exchange fluxes during respiration. Here we apply cavity-enhanced multi-gas Raman spectrometry (CERS) for online in situ RQ measurements in drought-tolerant pine (Pinus sylvestris [L.]) and drought-intolerant spruce (Picea abies [L. H. Karst]). Two different treatments, drought and shading, were applied to reduce photosynthesis and force dependency on stored substrates. Changes in respiration rates and RQ values were continuously monitored over periods of several days with low levels of variance. The results show that both species switched from COH-dominated respiration (RQ = 1.0) to a mixture of substrates during shading (RQ = 0.77-0.81), while during drought only pine did so (RQ = 0.75). The gas phase measurements were complemented by concentration measurements of non-structural carbohydrates and lipids. These first results suggest a physiological explanation for greater drought tolerance in pine. CERS was proven as powerful technique for non-consumptive and precise real-time monitoring of respiration rates and respirational quotients for the investigation of plant metabolism under drought stress conditions that are predicted to increase with future climate change. PMID:26016682

  13. Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445-480 nm.

    PubMed

    Zhao, Weixiong; Dong, Meili; Chen, Weidong; Gu, Xuejun; Hu, Changjin; Gao, Xiaoming; Huang, Wei; Zhang, Weijun

    2013-02-19

    Despite the significant progress in the measurements of aerosol extinction and absorption using spectroscopy approaches such as cavity ring-down spectroscopy (CRDS) and photoacoustic spectroscopy (PAS), the widely used single-wavelength instruments may suffer from the interferences of gases absorption present in the real environment. A second instrument for simultaneous measurement of absorbing gases is required to characterize the effect of light extinction resulted from gases absorption. We present in this paper the development of a blue light-emitting diode (LED)-based incoherent broad-band cavity-enhanced spectroscopy (IBBCEAS) approach for broad-band measurements of wavelength-resolved aerosol extinction over the spectral range of 445-480 nm. This method also allows for simultaneous measurement of trace gases absorption present in the air sample using the same instrument. On the basis of the measured wavelength-dependent aerosol extinction cross section, the real part of the refractive index (RI) can be directly retrieved in a case where the RI does not vary strongly with the wavelength over the relevant spectral region. Laboratory-generated monodispersed aerosols, polystyrene latex spheres (PSL) and ammonium sulfate (AS), were employed for validation of the RI determination by IBBCEAS measurements. On the basis of a Mie scattering model, the real parts of the aerosol RI were retrieved from the measured wavelength-resolved extinction cross sections for both aerosol samples, which are in good agreement with the reported values. The developed IBBCEAS instrument was deployed for simultaneous measurements of aerosol extinction coefficient and NO(2) concentration in ambient air in a suburban site during two representative days. PMID:23320530

  14. Feasibility Study of Using Breath Ammonia Analysis Based on Off-Axis Cavity-Enhanced Absorption Spectroscopy with External Cavity Diode Laser for Noninvasive Real-Time Diagnosis of Helicobacter Pylori.

    PubMed

    Bayrakli, Ismail; Turkmen, Aysenur; Cem Kockar, Muhammet

    2016-08-01

    The purpose of this study is to assess the feasibility of using breath ammonia analysis based on off-axis cavity-enhanced absorption spectroscopy (OA-CEAS) with an external-cavity diode laser (ECL) for noninvasive, real-time diagnosis of Helicobacter pylori (HP) infection. Analyses are performed for the breath of 15 healthy volunteers, and eight children and 19 adults with HP infection. The range of ammonia levels for healthy participants is determined to be between 178 and 610 ppb, whereas the ranges for child and adult patients with HP infection are measured to be 457-2470 ppb and 450-2990 ppb, respectively. The ammonia concentrations for patients with HP infection are significantly higher than the concentrations for healthy volunteers. However, no sharp boundary between the ammonia concentrations in the breath of patients with HP infection and healthy volunteers is observed. No correlation between breath ammonia and either body mass index (BMI) or age is found. The reported results suggest that our breath ammonia measurement system has the potential for future use in easy, noninvasive diagnosis of HP infection. PMID:27296306

  15. Frequency-feedback cavity enhanced spectrometer

    DOEpatents

    Hovde, David Christian; Gomez, Anthony

    2015-08-18

    A spectrometer comprising an optical cavity, a light source capable of producing light at one or more wavelengths transmitted by the cavity and with the light directed at the cavity, a detector and optics positioned to collect light transmitted by the cavity, feedback electronics causing oscillation of amplitude of the optical signal on the detector at a frequency that depends on cavity losses, and a sensor measuring the oscillation frequency to determine the cavity losses.

  16. Nonlocality of high-dimensional two-photon orbital angular momentum states

    SciTech Connect

    Aiello, A.; Oemrawsingh, S. S. R.; Eliel, E. R.; Woerdman, J. P.

    2005-11-15

    We propose an interferometric method to investigate the nonlocality of high-dimensional two-photon orbital angular momentum states generated by spontaneous parametric down conversion. We incorporate two half-integer spiral phase plates and a variable-reflectivity output beam splitter into a Mach-Zehnder interferometer to build an orbital angular momentum analyzer. This setup enables testing the nonlocality of high-dimensional two-photon states by repeated use of the Clauser-Horne-Shimony-Holt inequality.

  17. Hyperfine-resolved 3.4-{mu}m spectroscopy of CH{sub 3}I with a widely tunable difference frequency generation source and a cavity-enhanced cell: A case study of a local Coriolis interaction between the v{sub 1}=1 and (v{sub 2},v{sub 6}{sup l})=(1,2{sup 2}) states

    SciTech Connect

    Okubo, Sho; Nakayama, Hirotaka; Sasada, Hiroyuki

    2011-01-15

    Saturated absorption spectra of the {nu}{sub 1} fundamental band of CH{sub 3}I are recorded with a cavity-enhanced cell and a tunable difference frequency generation source having an 86-cm{sup -1} range. The recorded spectral lines are 250 kHz wide, and most of them are resolved into the individual hyperfine components. The Coriolis interaction between the v{sub 1}=1 and (v{sub 2},v{sub 6}{sup l})=(1,2{sup 2}) states locally perturbing the hyperfine structures is analyzed to yield the Coriolis and hyperfine coupling constants with uncertainties similar to those in typical microwave spectroscopy. The spectrometer has demonstrated the potential for precisely determining the energy structure in the vibrational excited states.

  18. High resolution BPMS with integrated gain correction system

    SciTech Connect

    Wendt, M.; Briegel, C.; Eddy, N.; Fellenz, B.; Gianfelice, E.; Prieto, P.; Rechenmacher, R.; Voy, D.; Terunuma, N.; Urakawa, J.; /KEK, Tsukuba

    2009-08-01

    High resolution beam position monitors (BPM) are an essential tool to achieve and reproduce a low vertical beam emittance at the KEK Accelerator Test Facility (ATF) damping ring. The ATF damping ring (DR) BPMs are currently upgraded with new high resolution read-out electronics. Based on analog and digital down-conversion techniques, the upgrade includes an automatic gain calibration system to correct for slow drift effects and ensure high reproducible beam position readings. The concept and its technical realization, as well as preliminary results of beam studies are presented.

  19. Cavity-Enhanced Second-Order Nonlinear Photonic Logic Circuits

    NASA Astrophysics Data System (ADS)

    Trivedi, Rahul; Khankhoje, Uday K.; Majumdar, Arka

    2016-05-01

    A large obstacle for realizing photonic logic is the weak optical nonlinearity of available materials, which results in large power consumption. In this paper, we present the theoretical design of all-optical logic with second-order (χ(2 )) nonlinear bimodal cavities and their networks. Using semiclassical models derived from the Wigner quasiprobability distribution function, we analyze the power consumption and signal-to-noise ratio (SNR) of networks implementing an optical and gate and an optical latch. A comparison between the second- and third-order (χ(3 )) optical logic reveals that, while the χ(3 ) design outperforms the χ(2 ) design in terms of the SNR for the same input power, employing the χ(3 ) nonlinearity necessitates the use of cavities with ultrahigh-quality factors (Q ˜106) to achieve a gate power consumption comparable to that of the χ(2 ) design at significantly smaller quality factors (Q ˜104). Using realistic estimates of the χ(2 ) and χ(3 ) nonlinear susceptibilities of available materials, we show that, at achievable quality factors (Q ˜104), the χ(2 ) design is an order of magnitude more energy efficient than the corresponding χ(3 ) design.

  20. Cavity-Enhanced Measurements of Defect Spins in Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Calusine, Greg; Politi, Alberto; Awschalom, David D.

    2016-07-01

    The identification of new solid-state defect-qubit candidates in widely used semiconductors has the potential to enable the use of nanofabricated devices for enhanced qubit measurement and control operations. In particular, the recent discovery of optically active spin states in silicon carbide thin films offers a scalable route for incorporating defect qubits into on-chip photonic devices. Here, we demonstrate the use of 3C silicon carbide photonic crystal cavities for enhanced excitation of color-center defect spin ensembles in order to increase measured photoluminescence signal count rates, optically detected magnetic-resonance signal intensities, and optical spin initialization rates. We observe an up to a factor of 30 increase in the photoluminescence and optically detected magnetic-resonance signals from Ky5 color centers excited by cavity-resonant excitation and increase the rate of ground-state spin initialization by approximately a factor of 2. Furthermore, we show that the 705-fold reduction in excitation mode volume and enhanced excitation and collection efficiencies provided by the structures can be used to overcome inhomogenous broadening in order to facilitate the study of defect-qubit subensemble properties. These results highlight some of the benefits that nanofabricated devices offer for engineering the local photonic environment of color-center defect qubits to enable applications in quantum information and sensing.

  1. Cavity-enhanced coherent light scattering from a quantum dot

    PubMed Central

    Bennett, Anthony J.; Lee, James P.; Ellis, David J. P.; Meany, Thomas; Murray, Eoin; Floether, Frederik F.; Griffths, Jonathan P.; Farrer, Ian; Ritchie, David A.; Shields, Andrew J.

    2016-01-01

    The generation of coherent and indistinguishable single photons is a critical step for photonic quantum technologies in information processing and metrology. A promising system is the resonant optical excitation of solid-state emitters embedded in wavelength-scale three-dimensional cavities. However, the challenge here is to reject the unwanted excitation to a level below the quantum signal. We demonstrate this using coherent photon scattering from a quantum dot in a micropillar. The cavity is shown to enhance the fraction of light that is resonantly scattered toward unity, generating antibunched indistinguishable photons that are 16 times narrower than the time-bandwidth limit, even when the transition is near saturation. Finally, deterministic excitation is used to create two-photon N00N states with which we make superresolving phase measurements in a photonic circuit. PMID:27152337

  2. Cavity-enhanced coherent light scattering from a quantum dot.

    PubMed

    Bennett, Anthony J; Lee, James P; Ellis, David J P; Meany, Thomas; Murray, Eoin; Floether, Frederik F; Griffths, Jonathan P; Farrer, Ian; Ritchie, David A; Shields, Andrew J

    2016-04-01

    The generation of coherent and indistinguishable single photons is a critical step for photonic quantum technologies in information processing and metrology. A promising system is the resonant optical excitation of solid-state emitters embedded in wavelength-scale three-dimensional cavities. However, the challenge here is to reject the unwanted excitation to a level below the quantum signal. We demonstrate this using coherent photon scattering from a quantum dot in a micropillar. The cavity is shown to enhance the fraction of light that is resonantly scattered toward unity, generating antibunched indistinguishable photons that are 16 times narrower than the time-bandwidth limit, even when the transition is near saturation. Finally, deterministic excitation is used to create two-photon N00N states with which we make superresolving phase measurements in a photonic circuit. PMID:27152337

  3. Isotopic gas analysis through Purcell cavity enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Petrak, B.; Cooper, J.; Konthasinghe, K.; Peiris, M.; Djeu, N.; Hopkins, A. J.; Muller, A.

    2016-02-01

    Purcell enhanced Raman scattering (PERS) by means of a doubly resonant Fabry-Perot microcavity (mode volume ≈ 100 μm3 and finesse ≈ 30 000) has been investigated as a technique for isotopic ratio gas analysis. At the pump frequency, the resonant cavity supports a buildup of circulating power while simultaneously enabling Purcell spontaneous emission rate enhancement at the resonant Stokes frequency. The three most common isotopologues of CO2 gas were quantified, and a signal was obtained from 13C16O2 down to a partial pressure of 2 Torr. Due to its small size and low pump power needed (˜10 mW) PERS lends itself to miniaturization. Furthermore, since the cavity is resonant with the emission frequency, future improvements could allow it to serve as its own spectral analyzer and no separate spectroscopic device would be needed.

  4. Artificial cavities enhance breeding bird densities in managed cottonwood forests

    USGS Publications Warehouse

    Twedt, D.J.; Henne-Kerr, J.L.

    2001-01-01

    The paucity of natural cavities within short-rotation hardwood agroforests restricts occupancy by cavity-nesting birds. However, providing 1.6 artificial nesting cavities (nest boxes)/ha within 3- to 10-year-old managed cottonwood forests in the Mississippi Alluvial Valley increased territory density of cavity-nesting birds. Differences in territory densities between forests with and without nest boxes increased as stands aged. Seven bird species initiated 38 nests in 173 boxes during 1997 and 39 nests in 172 boxes during 1998. Prothonotary warblers (Protonotaria citrea) and eastern bluebirds (Sialia sialis) accounted for 67% of nests; nearly all warbler nests were in 1.8-L, plastic-coated cardboard (paper) boxes, whereas bluebird nests were divided between paper boxes and 3.5-L wooden boxes. Larger-volume (16.5-L) wooden nest boxes were used by eastern screech owls (Otus asio) and great crested flycatchers (Myiarchus crinitus), but this box type often was usurped by honey bees (Apis mellifera). To enhance territory densities of cavity-nesting birds in cottonwood agroforests, we recommend placement of plastic-coated paper nest boxes, at a density of 0.5/ha, after trees are >4 years old but at least 2 years before anticipated timber harvest.

  5. Experimental demonstration of high two-photon time-energy entanglement

    SciTech Connect

    Ali Khan, Irfan; Howell, John C.

    2006-03-15

    We report on the experimental demonstration of high energy-time entanglement in two-photon states created in the process of spontaneous parametric down-conversion. We show that the classical variance product, which we violate by three orders of magnitude, actually represents a lower bound estimate of the number of information eigenmodes K. Explicit measurements estimate K to be greater than 100, with theoretical estimates predicting a value of as high as 1x10{sup 6}. These results provide incentive for the practical feasibility of large bandwidth quantum information processing, particularly in cryptography over large distances.

  6. Qutrits and ququarts in spontaneous parametric down-conversion, correlations and entanglement

    SciTech Connect

    Fedorov, M. V. Volkov, P. A.; Milhailova, J. M.

    2012-07-15

    We investigate features of biphoton qutrits and ququarts with the symmetry of biphoton wavefunctions fully taken into account. Entanglement quantifiers of such states are found as functions of qutrit and ququart parameters. For biphoton qutrits, a general relation between degrees of entanglement and polarization is established. In the case of biphoton ququarts, photon frequencies are considered as variables independent of polarization variables, with both polarization and frequency degrees of freedom equally contributing to the total ququart entanglement. Averaging over one of these two degrees of freedom is shown to reduce pure ququart states to mixed two-qubit states. The degree of polarization and degrees of correlations in mixed polarization states are investigated.

  7. Tunable frequency-up/down conversion in gas-filled hollow-core photonic crystal fibers.

    PubMed

    Saleh, Mohammed F; Biancalana, Fabio

    2015-09-15

    Based on the interplay between photoionization and Raman effects in gas-filled photonic crystal fibers, we propose a new optical device to control frequency conversion of ultrashort pulses. By tuning the input-pulse energy, the output spectrum can be either down-converted, up-converted, or even frequency-shift compensated. For low input energies, the Raman effect is dominant and leads to a redshift that increases linearly during propagation. For larger pulse energies, photoionization starts to take over the frequency-conversion process and induces a strong blueshift. The fiber-output pressure can be used as an additional degree of freedom to control the spectrum shift. PMID:26371900

  8. High speed readout electronics development for frequency-multiplexed kinetic inductance detector design optimization

    NASA Astrophysics Data System (ADS)

    Bourrion, O.; Vescovi, C.; Catalano, A.; Calvo, M.; D'Addabbo, A.; Goupy, J.; Boudou, N.; Macias-Perez, J. F.; Monfardini, A.

    2013-12-01

    Microwave Kinetic Inductance Detectors (MKID) are a promising solution for space-borne mm-wave astronomy. To optimize their design and make them insensitive to the ballistic phonons created by cosmic-ray interactions in the substrate, the phonon propagation in silicon must be studied. A dedicated fast readout electronics, using channelized Digital Down Conversion for monitoring up to 12 MKIDs over a 100 MHz bandwidth was developed. Thanks to the fast ADC sampling and steep digital filtering, In-phase and Quadrature samples, having a high dynamic range, are provided at ~ 2 Msps. This paper describes the technical solution chosen and the results obtained.

  9. Method to generate high efficient devices which emit high quality light for illumination

    DOEpatents

    Krummacher, Benjamin C.; Mathai, Mathew; Choong, Vi-En; Choulis, Stelios A.

    2009-06-30

    An electroluminescent apparatus includes an OLED device emitting light in the blue and green spectrums, and at least one down conversion layer. The down conversion layer absorbs at least part of the green spectrum light and emits light in at least one of the orange spectra and red spectra.

  10. Generation of high spectral purity photon-pairs with MgO-doped periodically poled lithium niobate

    NASA Astrophysics Data System (ADS)

    Zhan, Mengying; Sun, Qichao; Xiang, Tong; Chen, Xianfeng

    2015-12-01

    We study the spectral correlation of photon pairs generated via type-II spontaneous parametric down conversion in periodically poled lithium niobate crystals. By performing Schmidt decomposition on the two-photon wavefunction, we calculate the spectral purity of the two-photon state under various pump laser characteristics and doping concentrations of MgO in lithium niobate crystals. Our results show that periodically poled 5% MgO doped lithium niobate is a good candidate to generate photon-pairs with high spectral purity at telecom wavelength.