Science.gov

Sample records for cba brookhaven colliding beam accelerator

  1. Colliding-beam-accelerator lattice

    SciTech Connect

    Claus, J.; Cornacchia, M.; Courant, E.D.; Parzen, G.

    1983-01-01

    We describe the lattice of the Colliding Beam Accelerator, a 400 x 400 GeV pp facility proposed for construction at Brookhaven National Laboratory. The structure adopted is very versatile, in part in consequence of its desirable behavior as function of momentum deviation and as function of the betatron tunes. Each of the six insertions can be arranged to meet specific requirements at the crossing points as illustrated by a discussion of the tuneable low-beta insertions. The luminosity in these low-beta insertions (2 x 10/sup 33/ cm/sup -2/ sec/sup -1/) would be an order of magnitude larger than the standard insertions.

  2. Studies of the chromatic properties and dynamic aperture of the BNL colliding-beam accelerator. [PATRICIA particle tracking code

    SciTech Connect

    Dell, G.F.

    1983-01-01

    The PATRICIA particle tracking program has been used to study chromatic effects in the Brookhaven CBA (Colliding Beam Accelerator). The short term behavior of particles in the CBA has been followed for particle histories of 300 turns. Contributions from magnet multipoles characteristic of superconducting magnets and closed orbit errors have been included in determining the dynamic aperture of the CBA for on and off momentum particles. The width of the third integer stopband produced by the temperature dependence of magnetization induced sextupoles in the CBA cable dipoles is evaluated for helium distribution systems having periodicity of one and six. The stopband width at a tune of 68/3 is naturally zero for the system having a periodicity of six and is approx. 10/sup -4/ for the system having a periodicity of one. Results from theory are compared with results obtained with PATRICIA; the results agree within a factor of slightly more than two.

  3. A DSP based data acquisition module for colliding beam accelerators

    SciTech Connect

    Mead, J.A.; Shea, T.J.

    1995-10-01

    In 1999, the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory will accelerate and store two beams of gold ions. The ions will then collide head on at a total energy of nearly 40 trillion electron volts. Attaining these conditions necessitates real-time monitoring of beam parameters and for this purpose a flexible data acquisition platform has been developed. By incorporating a floating point digital signal processor (DSP) and standard input/output modules, this system can acquire and process data from a variety of beam diagnostic devices. The DSP performs real time corrections, filtering, and data buffering to greatly reduce control system computation and bandwidth requirements. We will describe the existing hardware and software while emphasizing the compromises required to achieve a flexible yet cost effective system. Applications in several instrumentation systems currently construction will also be presented.

  4. Beam-beam interaction in P-P colliding accelerators

    SciTech Connect

    Parzen, G.

    1982-08-01

    One model for beam growth due to the beam-beam interaction in P-P colliding accelerators is that it is due to the presence of non-linear forces generated by the fields produced by the beam plus some radomizing effect like noise, or a tune modulation. According to this model, to limit beam-beam effects, one should try to limit the size of the non-linear forces and the sources of noise or tune modulation. This model can also be used to compare the severity of beam-beam effects in two situations by comparing the size of the non-linear forces. In this paper, this approach will be used to study three problems: to compare the effects of beam-beam non-linear resonances in the ISR with those in ISABELLE; to estimate the strength of a spectrometer magnet that may be placed at one of the beam crossing points, without appreciably increasing the beam-beam effects; and to compare the beam-beam interaction for colliding beam accelerators with different crossing-angles and different ..beta../sub x/ and ..beta../sub y/ at the crossing points.

  5. The Relativistic Heavy Ion Collider at Brookhaven

    SciTech Connect

    Hahn, H.

    1989-01-01

    The conceptual design of a collider capable of accelerating and colliding heavy ions and to be constructed in the existing 3.8 km tunnel at Brookhaven has been developed. The collider has been designed to provide collisions of gold ions at six intersection points with a luminosity of about 2 /times/ 10/sup 26/ cm/sup /minus/2/sec/sup /minus/1/ at an energy per nucleon of 100 GeV in each beam. Collisions with different ion species, including protons, will be possible. The salient design features and the reasons for major design choices of the proposed machine are discussed in this paper. 28 refs., 2 figs., 1 tab.

  6. RF beam control system for the Brookhaven Relativistic Heavy Ion Collider, RHIC

    SciTech Connect

    Brennan, J.M.; Campbell, A.; DeLong, J.; Hayes, T.; Onillon, E.; Rose, J.; Vetter, K.

    1998-08-01

    The Relativistic Heavy Ion Collider, RHIC, is two counter-rotating rings with six interaction points. The RF Beam Control system for each ring will control two 28 MHz cavities for acceleration, and five 197 MHz cavities for preserving the 5 ns bunch length during 10 hour beam stores. Digital technology is used extensively in: Direct Digital Synthesis of rf signals and Digital Signal Processing for, the realization of state-variable feedback loops, real-time calculation of rf frequency, and bunch-by-bunch phase measurement of the 120 bunches. DSP technology enables programming the parameters of the feedback loops in order to obtain closed-loop dynamics that are independent of synchrotron frequency.

  7. RF BEAM CONTROL SYSTEM FOR THE BROOKHAVEN RELATIVISTIC HEAVY ION COLLIDER, RHIC

    SciTech Connect

    BRENNAN,J.M.; CAMPBELL,A.; DELONG,J.; HAYES,T.; ONILLON,E.; ROSE,J.; VETTER,K.

    1998-06-22

    The Relativistic Heavy Ion Collider, RHIC, is two counter-rotating rings with six interaction points. The RF Beam Control system for each ring will control two 28 MHz cavities for acceleration, and five 197 MHz cavities for preserving the 5 ns bunch length during 10 hour beam stores. Digital technology is used extensively in: Direct Digital Synthesis of rf signals and Digital Signal Processing for, the realization of state-variable feedback loops, real-time calculation of rf frequency, and bunch-by-bunch phase measurement of the 120 bunches. DSP technology enables programming the parameters of the feedback loops in order to obtain closed-loop dynamics that are independent of synchrotron frequency.

  8. The Relativistic Heavy Ion Collider at Brookhaven

    SciTech Connect

    Hahn, H.

    1988-01-01

    The conceptual design of a Relativistic Heavy Ion Collider (RACK) to be constructed in the existing 3.8 km tunnel at Brookhaven has been developed. The collider has been designed to provide collisions of gold ions at six intersection points with a luminosity of about 5 /times/ 10/sup 26/cm/sup /minus/2/sec/sup /minus/1/ at an energy of 100 GeV/u in each beam. Collisions with different ion species, including protons, will be possible. The collider consists of two interlaced, but otherwise separate, superconducting magnet rings. The 9.7 m long dipoles will operate at 3.5 T. Their 8 cm aperture was determined by the dimensions of gold ion beams taking into account diffusion due to intrabeam scattering. Heavy ion beams will be available from the Tandem Van de Graaff/Booster/AGS complex. The salient design features and the reasons for major design choices of the proposed machine are discussed in this paper. 24 refs., 7 figs., 2 tabs.

  9. Excitation of Accelerating Plasma Waves by Counter-propagating Laser Beams

    SciTech Connect

    Gennady Shvets; Nathaniel J. Fisch; and Alexander Pukhov

    2001-08-30

    Generation of accelerating plasma waves using two counter-propagating laser beams is considered. Colliding-beam accelerator requires two laser pulses: the long pump and the short timing beam. We emphasize the similarities and differences between the conventional laser wakefield accelerator and the colliding-beam accelerator (CBA). The highly nonlinear nature of the wake excitation is explained using both nonlinear optics and plasma physics concepts. Two regimes of CBA are considered: (i) the short-pulse regime, where the timing beam is shorter than the plasma period, and (ii) the parametric excitation regime, where the timing beam is longer than the plasma period. Possible future experiments are also outlined.

  10. High energy accelerator and colliding beam user group

    SciTech Connect

    Not Available

    1989-09-01

    This report discusses the following topics: OPAL experiment at LEP; Deep inelastic muon interactions at TeV II; D{phi} experiment; Physics with the CLEO detector at CESR; CYGNUS experiment; {nu}{sub e}e elastic scattering experiment; Further results from JADE; Theory of polarization in electron storage rings; and Rare kaon decay experiments at Brookhaven National Laboratory.

  11. High Energy Accelerator and Colliding Beam User Group

    SciTech Connect

    Snow, G.A.; Skuja, A.

    1992-05-01

    This report discusses research in the following areas: the study of e{sup +}e{sup {minus}} interactions; Hadron collider physics at Fermilab; fixed target physics and particle physics of general interest; and, the solenoidal detector collaboration at SSCL.

  12. Optics measurement and correction during beam acceleration in the Relativistic Heavy Ion Collider

    SciTech Connect

    Liu, C.; Marusic, A.; Minty, M.

    2014-09-09

    To minimize operational complexities, setup of collisions in high energy circular colliders typically involves acceleration with near constant β-functions followed by application of strong focusing quadrupoles at the interaction points (IPs) for the final beta-squeeze. At the Relativistic Heavy Ion Collider (RHIC) beam acceleration and optics squeeze are performed simultaneously. In the past, beam optics correction at RHIC has taken place at injection and at final energy with some interpolation of corrections into the acceleration cycle. Recent measurements of the beam optics during acceleration and squeeze have evidenced significant beta-beats which if corrected could minimize undesirable emittance dilutions and maximize the spin polarization of polarized proton beams by avoidance of higher-order multipole fields sampled by particles within the bunch. In this report the methodology now operational at RHIC for beam optics corrections during acceleration with simultaneous beta-squeeze will be presented together with measurements which conclusively demonstrate the superior beam control. As a valuable by-product, the corrections have minimized the beta-beat at the profile monitors so reducing the dominant error in and providing more precise measurements of the evolution of the beam emittances during acceleration.

  13. High Energy Accelerator and Colliding Beam User Group: Progress report, March 1, 1988--February 28, 1989

    SciTech Connect

    Not Available

    1988-09-01

    This report discusses work carried out by the High Energy Accelerator and Colliding Beam User Group at the University of Maryland. Particular topics discussed are: OPAL experiment at LEP; deep inelastic muon interactions; B physics with the CLEO detector at CESR; further results from JADE; and search for ''small'' violation of the Pauli principle. (LSP)

  14. Online beam energy measurement of Beijing electron positron collider II linear accelerator.

    PubMed

    Wang, S; Iqbal, M; Liu, R; Chi, Y

    2016-02-01

    This paper describes online beam energy measurement of Beijing Electron Positron Collider upgraded version II linear accelerator (linac) adequately. It presents the calculation formula, gives the error analysis in detail, discusses the realization in practice, and makes some verification. The method mentioned here measures the beam energy by acquiring the horizontal beam position with three beam position monitors (BPMs), which eliminates the effect of orbit fluctuation, and is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in this paper. PMID:26931839

  15. Online beam energy measurement of Beijing electron positron collider II linear accelerator

    NASA Astrophysics Data System (ADS)

    Wang, S.; Iqbal, M.; Liu, R.; Chi, Y.

    2016-02-01

    This paper describes online beam energy measurement of Beijing Electron Positron Collider upgraded version II linear accelerator (linac) adequately. It presents the calculation formula, gives the error analysis in detail, discusses the realization in practice, and makes some verification. The method mentioned here measures the beam energy by acquiring the horizontal beam position with three beam position monitors (BPMs), which eliminates the effect of orbit fluctuation, and is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in this paper.

  16. High energy accelerator and colliding beam user group

    SciTech Connect

    Not Available

    1990-09-01

    This report discusses the following topics: OPAL experiment at LEP; D{phi} experiment at Fermilab; deep inelastic muon interactions at TEV II; CYGNUS experiment; final results from {nu}{sub e}{sup {minus}e} elastic scattering; physics with CLEO detector at CESR; results from JADE at PETRA; rare kaon-decay experiment at BNL; search for top quark; and super conducting super collider activities.

  17. Possibilities for relativistic heavy ion collisions at Brookhaven

    SciTech Connect

    Barton, M.O.; Hahn, H.

    1983-01-01

    Since 1980 there has been considerable interest at Brookhaven in exploiting the existence of the Colliding Beam Accelerator, CBA, earlier referred to as Isabelle, for the generation of heavy ion collisions at very high energies. The only requirement for a heavy ion collider would have been for an energy booster for the Tandem accelerator and a tunnel and magnet transport system to the AGS. For a few million dollars heavy ions up to nearly 200 GeV/amu could be collided with luminosities of 10/sup 27/ to 10/sup 28//cm/sup 2/ sec in experimental halls with ideal facilities for heavy ion physics studies. Although the CBA project has been stopped, it is still true that Brookhaven has in place enormous advantages for constructing a heavy ion collider. This paper describes a design that exploits those advantages. It uses the tunnel and other civil construction, the refrigerator, vacuum equipment, injection line components, and the magnet design for which there is expertise and a production facility in place. The result is a machine that appears quite different than would a machine designed from first principles without access to these resources but one which is of high performance and of very attractive cost.

  18. Relativistic-Klystron two-beam accelerator as a power source for future linear colliders

    SciTech Connect

    Lidia, S. M.; Anderson, D. E.; Eylon, S.; Henestroza, E.; Vanecek, D. L.; Yu, S. S.; Houck, T. L.; Westenskow, G. A.

    1999-05-07

    The technical challenge for making two-beam accelerators into realizable power sources for high-energy colliders lies in the creation of the drive beam and in its propagation over long distances through multiple extraction sections. This year we have been constructing a 1.2-kA, 1-MeV, induction gun for a prototype relativistic klystron two-beam accelerator (RK-TBA). The electron source will be a 8.9 cm diameter, thermionic, flat-surface cathode with a maximum shroud field stress of approximately 165 kV/cm. Additional design parameters for the injector include a pulse length of over 150-ns flat top (1% energy variation), and a normalized edge emittance of less than 300 pi-mm-mr. The prototype accelerator will be used to study, physics, engineering, and costing issues involved in the application of the RK-TBA concept to linear colliders. We have also been studying optimization parameters, such as frequency, for the application of the RK-TBA concept to multi-TeV linear colliders. As an rf power source the RK-TBA scales favorably up to frequencies around 35 GHz. An overview of this work with details of the design and performance of the prototype injector, beam line, and diagnostics will be presented.

  19. Relativistic-Klystron two-beam accelerator as a power source for future linear colliders

    SciTech Connect

    Lidia, S.M.; Anderson, D.E.; Eylon, S.; Henestroza, E.; Vanecek, D.L.; Yu, S.S.; Westenskow, G.A.

    1999-05-01

    The technical challenge for making two-beam accelerators into realizable power sources for high-energy colliders lies in the creation of the drive beam and in its propagation over long distances through multiple extraction sections. This year we have been constructing a 1.2-kA, 1-MeV, induction gun for a prototype relativistic klystron two-beam accelerator (RK-TBA). The electron source will be a 8.9 cm diameter, thermionic, flat-surface cathode with a maximum shroud field stress of approximately 165 kV/cm. Additional design parameters for the injector include a pulse length of over 150-ns flat top (1{percent} energy variation), and a normalized edge emittance of less than 300 pi-mm-mr. The prototype accelerator will be used to study, physics, engineering, and costing issues involved in the application of the RK-TBA concept to linear colliders. We have also been studying optimization parameters, such as frequency, for the application of the RK-TBA concept to multi-TeV linear colliders. As an rf power source the RK-TBA scales favorably up to frequencies around 35 GHz. An overview of this work with details of the design and performance of the prototype injector, beam line, and diagnostics will be presented. {copyright} {ital 1999 American Institute of Physics.}

  20. Relativistic-klystron two-beam accelerator as a power source for future linear colliders

    SciTech Connect

    Anderson, D E; Eylon, S; Henestroza, E; Houck, T L; Lidia, M; Vanecek, D L; Westenskow, G A; Yu, S S

    1998-10-05

    The technical challenge for making two-beam accelerators into realizable power sources for high-energy colliders lies in the creation of the drive beam and in its propagation over long distances through multiple extraction sections. This year we have been constructing a 1.2&A, l-MeV, induction gun for a prototype relativistic klystron two-beam accelerator (RK-TBA). The electron source will be a 8.9 cm diameter, thermionic, flat-surface cathode with a maximum shroud field stress of approximately 165 kV/cm. Additional design parameters for the injector include a pulse length of over 150-ns flat top (1% energy variation), and a normalized edge emittance of less than 300 pi-mm-n-n. The prototype accelerator will be used to study physics, engineering, and costing issues involved in the application of the RK-TBA concept to linear colliders. We have also been studying optimization parameters, such as frequency, for the application of the RK-TBA concept to multi-TeV linear colliders. As an rf power source the RK-TBA scales favorably up to frequencies around 35 GHz. An overview of this work with details of the design and performance of the prototype injector, beam line, and diagnostics will be presented.

  1. Operational experience on the Brookhaven National Laboratory Accelerator Test Facility

    SciTech Connect

    Batchelor, K.; Babzien, M.; Ben-Zvi, I.

    1994-09-01

    Brookhaven National Laboratory Accelerator Test Facility is a laser-electron linear accelerator complex designed to provide high brightness beams for testing of advanced acceleration concepts and high power pulsed photon sources. Results of electron beam parameters attained during the commissioning of the nominally 45 MeV energy machine are presented.

  2. The generation and acceleration of low emittance flat beams for future linear colliders

    SciTech Connect

    Raubenheimer, T.O.

    1991-11-01

    Many future linear collider designs call for electron and positron beams with normalized rms horizontal and vertical emittances of {gamma}{epsilon}{sub x} = 3{times}10{sup {minus}6} m-rad and {gamma}{epsilon}{sub y} = 3{times}10{sup {minus}8} m-rad; these are a factor of 10 to 100 below those observed in the Stanford Linear Collider. In this dissertation, we examine the feasibility of achieving beams with these very small vertical emittances. We examine the limitations encountered during both the generation and the subsequent acceleration of such low emittance beams. We consider collective limitations, such as wakefields, space charge effects, scattering processes, and ion trapping; and also how intensity limitations, such as anomalous dispersion, betatron coupling, and pulse-to-pulse beam jitter. In general, the minimum emittance in both the generation and the acceleration stages is limited by the transverse misalignments of the accelerator components. We describe a few techniques of correcting the effect of these errors, thereby easing the alignment tolerances by over an order of magnitude. Finally, we also calculate ``fundamental`` limitations on the minimum vertical emittance; these do not constrain the current designs but may prove important in the future.

  3. The generation and acceleration of low emittance flat beams for future linear colliders

    SciTech Connect

    Raubenheimer, T.O.

    1991-11-01

    Many future linear collider designs call for electron and positron beams with normalized rms horizontal and vertical emittances of {gamma}{epsilon}{sub x} = 3{times}10{sup {minus}6} m-rad and {gamma}{epsilon}{sub y} = 3{times}10{sup {minus}8} m-rad; these are a factor of 10 to 100 below those observed in the Stanford Linear Collider. In this dissertation, we examine the feasibility of achieving beams with these very small vertical emittances. We examine the limitations encountered during both the generation and the subsequent acceleration of such low emittance beams. We consider collective limitations, such as wakefields, space charge effects, scattering processes, and ion trapping; and also how intensity limitations, such as anomalous dispersion, betatron coupling, and pulse-to-pulse beam jitter. In general, the minimum emittance in both the generation and the acceleration stages is limited by the transverse misalignments of the accelerator components. We describe a few techniques of correcting the effect of these errors, thereby easing the alignment tolerances by over an order of magnitude. Finally, we also calculate fundamental'' limitations on the minimum vertical emittance; these do not constrain the current designs but may prove important in the future.

  4. Muon Collider Progress: Accelerators

    SciTech Connect

    Zisman, Michael S.

    2011-09-10

    A muon collider would be a powerful tool for exploring the energy-frontier with leptons, and would complement the studies now under way at the LHC. Such a device would offer several important benefits. Muons, like electrons, are point particles so the full center-of-mass energy is available for particle production. Moreover, on account of their higher mass, muons give rise to very little synchrotron radiation and produce very little beamstrahlung. The first feature permits the use of a circular collider that can make efficient use of the expensive rf system and whose footprint is compatible with an existing laboratory site. The second feature leads to a relatively narrow energy spread at the collision point. Designing an accelerator complex for a muon collider is a challenging task. Firstly, the muons are produced as a tertiary beam, so a high-power proton beam and a target that can withstand it are needed to provide the required luminosity of ~1 × 10{sup 34} cm{sup –2}s{sup –1}. Secondly, the beam is initially produced with a large 6D phase space, which necessitates a scheme for reducing the muon beam emittance (“cooling”). Finally, the muon has a short lifetime so all beam manipulations must be done very rapidly. The Muon Accelerator Program, led by Fermilab and including a number of U.S. national laboratories and universities, has undertaken design and R&D activities aimed toward the eventual construction of a muon collider. Design features of such a facility and the supporting R&D program are described.

  5. Beam Dynamics Considerations in Electron Ion Colliders

    NASA Astrophysics Data System (ADS)

    Krafft, Geoffrey

    2015-04-01

    The nuclear physics community is converging on the idea that the next large project after FRIB should be an electron-ion collider. Both Brookhaven National Lab and Thomas Jefferson National Accelerator Facility have developed accelerator designs, both of which need novel solutions to accelerator physics problems. In this talk we discuss some of the problems that must be solved and their solutions. Examples in novel beam optics systems, beam cooling, and beam polarization control will be presented. Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purposes.

  6. Conceptual magnet design for an iron-free colliding beam accelerator

    SciTech Connect

    Taylor, C.; Meuser, R.B.

    1983-03-01

    Superconducting accelerator magnets usually have magnetic iron yokes to obtain maximum magnetic field and to limit stray field. However, the iron is expensive and heavy. The smaller size and weight of an iron-free magnet can result in lower magnet and refrigeration costs. However in a colliding beam accelerator the stray field from one ring produces aberrations in the field in the other. A way to eliminate this mutual interference is to surround each magnet with a coil that exactly cancels the field from the other ring magnet. That is expensive in terms of superconductor requirements. However, the cancellation of the external dipole field component is unnecessary. Only a small amount of superconductor is required for cancellation of the higher-order field-aberration components. Parameters for the iron-free magnet concept are investigated, and a preliminary conceptual design for an accelerator is presented.

  7. GEANT4 simulations for beam emittance in a linear collider based on plasma wakefield acceleration

    SciTech Connect

    Mete, O. Xia, G.; Hanahoe, K.; Labiche, M.

    2015-08-15

    Alternative acceleration technologies are currently under development for cost-effective, robust, compact, and efficient solutions. One such technology is plasma wakefield acceleration, driven by either a charged particle or laser beam. However, the potential issues must be studied in detail. In this paper, the emittance evolution of a witness beam through elastic scattering from gaseous media and under transverse focusing wakefields is studied.

  8. Design study of beam dynamics issues for 1 TeV next linear collider based upon the relativistic-klystron two-beam accelerator

    SciTech Connect

    Li, H.; Goffeney, N.; Henestroza, E.; Sessler, A.; Yu, S.; Houck, T.; Westenskow, G.

    1994-11-01

    A design study has recently been conducted for exploring the feasibility of a relativistic-klystron two-beam accelerator (RK-TBA) system as a rf power source for a 1 TeV linear collider. The author present, in this paper, the beam dynamics part of this study. They have achieved in their design study acceptable transverse and longitudinal beam stability properties for the resulting high efficiency and low cost RK-TBA.

  9. Simulations of an acceleration scheme for producing high intensity and low emittance antiproton beam for Fermilab collider operation

    SciTech Connect

    Wu, Vincent; Bhat, C.M.; MacLachlan, J.A.; /Fermilab

    2005-05-01

    During Fermilab collider operation, the Main Injector (MI) provides high intensity and low emittance proton and antiproton beams for the Tevatron. The present coalescing scheme for antiprotons in the Main Injector yields about a factor of two increase in the longitudinal emittance and a factor of 5% to 20% decrease in intensity before injection to the Tevatron. In order to maximize the integrated luminosity delivered to the collider experiments, it is important to minimize the emittance growth and maximize the intensity of the MI beam. To this end, a new scheme using a combination of 2.5 MHz and 53 MHz accelerations has been developed and tested. This paper describes the full simulation of the new acceleration scheme, taking account of space charge, 2.5 MHz and 53 MHz beam loading, and the effect of residual 53 MHz rf voltage during 2.5 MHz acceleration and rf manipulations. The simulations show the longitudinal emittance growth at the 10% level with no beam loss. The experimental test of the new scheme is reported in another PAC05 paper.

  10. Beam Collimation at Hadron Colliders

    NASA Astrophysics Data System (ADS)

    Mokhov, N. V.

    2003-12-01

    Operational and accidental beam losses in hadron colliders can have a serious impact on machine and detector performance, resulting in effects ranging from minor to catastrophic. Principles and realization are described for a reliable beam collimation system required to sustain favorable background conditions in the collider detectors, provide quench stability of superconducting magnets, minimize irradiation of accelerator equipment, maintain operational reliability over the life of the machine, and reduce the impact of radiation on personnel and the environment. Based on detailed Monte-Carlo simulations, such a system has been designed and incorporated in the Tevatron collider. Its performance, comparison to measurements and possible ways to further improve the collimation efficiency are described in detail. Specifics of the collimation systems designed for the SSC, LHC, VLHC, and HERA colliders are discussed.

  11. Beam-based measurements of long-range transverse wakefields in the Compact Linear Collider main-linac accelerating structure

    NASA Astrophysics Data System (ADS)

    Zha, Hao; Latina, Andrea; Grudiev, Alexej; De Michele, Giovanni; Solodko, Anastasiya; Wuensch, Walter; Schulte, Daniel; Adli, Erik; Lipkowitz, Nate; Yocky, Gerald S.

    2016-01-01

    The baseline design of CLIC (Compact Linear Collider) uses X-band accelerating structures for its main linacs. In order to maintain beam stability in multibunch operation, long-range transverse wakefields must be suppressed by 2 orders of magnitude between successive bunches, which are separated in time by 0.5 ns. Such strong wakefield suppression is achieved by equipping every accelerating structure cell with four damping waveguides terminated with individual rf loads. A beam-based experiment to directly measure the effectiveness of this long-range transverse wakefield and benchmark simulations was made in the FACET test facility at SLAC using a prototype CLIC accelerating structure. The experiment showed good agreement with the simulations and a strong suppression of the wakefields with an unprecedented minimum resolution of 0.1 V /(pC mm m ) .

  12. Colliding Crystalline Beams

    SciTech Connect

    Wei, Jie; Sessler, A.M.

    1998-06-01

    The understanding of crystalline beams has advanced to the point where one can now, with reasonable confidence, undertake an analysis of the luminosity of colliding crystalline beams. Such a study is reported here. It is necessary to observe the criteria, previously stated, for the creation and stability of crystalline beams. This requires, firstly, the proper design of a lattice. Secondly, a crystal must be formed, and this can usually be done at various densities. Thirdly, the crystals in a colliding-beam machine are brought into collision. We study all of these processes using the molecular dynamics (MD) method. The work parallels what was done previously, but the new part is to study the crystal-crystal interaction in collision. We initially study the zero-temperature situation. If the beam-beam force (or equivalent tune shift) is too large then over-lapping crystals can not be created (rather two spatially separated crystals are formed). However, if the beam-beam force is less than but comparable to that of the space-charge forces between the particles, we find that overlapping crystals can be formed and the beam-beam tune shift can be of the order of unity. Operating at low but non-zero temperature can increase the luminosity by several orders of magnitude over that of a usual collider. The construction of an appropriate lattice, and the development of adequately strong coding, although theoretically achievable, is a challenge in practice.

  13. COLLIDING CRYSTALLINE BEAMS.

    SciTech Connect

    WEI, J.

    1998-06-26

    The understanding of crystalline beams has advanced to the point where one can now, with reasonable confidence, undertake an analysis of the luminosity of colliding crystalline beams. Such a study is reported here. It is necessary to observe the criteria, previously stated, for the creation and stability of crystalline beams. This requires, firstly, the proper design of a lattice. Secondly, a crystal must be formed, and this can usually be done at various densities. Thirdly, the crystals in a colliding-beam machine are brought into collision. We study all of these processes using the molecular dynamics (MD) method. The work parallels what was done previously, but the new part is to study the crystal-crystal interaction in collision. We initially study the zero-temperature situation. If the beam-beam force (or equivalent tune shift) is too large then overlapping crystals can not be created (rather two spatially separated crystals are formed). However, if the beam-beam force is less than but comparable to that of the space-charge forces between the particles, we find that overlapping crystals can be formed and the beam-beam tune shift can be of the order of unity. Operating at low but non-zero temperature can increase the luminosity by several orders of magnitude over that of a usual collider. The construction of an appropriate lattice, and the development of adequately strong cooling, although theoretically achievable, is a challenge in practice.

  14. The Brookhaven National Laboratory (BNL) Accelerator Test Facility

    SciTech Connect

    Batchelor, K.

    1990-01-01

    The design of the Brookhaven National Laboratory Accelerator Test Facility is presented including the design goals and computational results. The heart of the system is a radiofrequency electron gun utilizing a photo-excited metal cathode followed by a conventional electron linac. The Nd:YAG laser used to drive the cathode with 6 ps long pulses can be synchronized to a high peak power CO{sub 2} laser in order to study laser acceleration of electrons. Current operational status of the project will be presented along with early beam tests.

  15. RHIC and quark matter: proposal for a relativistic heavy ion collider at Brookhaven National Laboratory

    SciTech Connect

    Not Available

    1984-08-01

    This document describes the Brookhaven National Laboratory Proposal for the construction of a Relativistic Heavy Ion Collider (RHIC). The construction of this facility represents the natural continuation of the laboratory's role as a center for nuclear and high-energy physics research and extends and uses the existing AGS, Tandem Van de Graaff and CBA facilities at BNL in a very cost effective manner. The Administration and Congress have approved a project which will provide a link between the Tandem Van de Graaf and the AGS. Completion of this project in 1986 will provide fixed target capabilities at the AGS for heavy ions of about 14 GeV/amu with masses up to approx. 30 (sulfur). The addition of an AGS booster would extend the mass range to the heaviest ions (A approx. 200, e.g., gold); its construction could start in 1986 and be completed in three years. These two new AGS experimental facilities can be combined with the proposed Relativistic Heavy Ion Collider to extend the energy range to 100 x 100 GeV/amu for the heaviest ions. BNL proposes to start construction of RHIC in FY 86 with completion in FY 90 at a total cost of 134 M$.

  16. Doing More with Less: Cost-effective, Compact Particle Accelerators (489th Brookhaven Lecture)

    SciTech Connect

    Trbojevic, Dejan

    2013-10-22

    Replace a 135-ton magnet used for cancer-fighting particle therapies with a magnet that weighs only two tons? Such a swap is becoming possible thanks to new particle accelerator advances being developed by researchers at Brookhaven Lab. With an approach that combines techniques used by synchrotron accelerators with the ability to accept more energy, these new technologies could be used for more than fighting cancer. They could also decrease the lifecycle of byproducts from nuclear power plants and reduce costs for eRHIC—a proposed electron-ion collider for Brookhaven Lab that researchers from around the world would use to explore the glue that holds together the universe’s most basic building blocks and explore the proton-spin puzzle. During this lecture, Dr. Trbojevic provides an overview of accelerator technologies and techniques—particularly a non-scaling, fixed-focused alternating gradient—to focus particle beams using fewer, smaller magnets. He discusses how these technologies will benefit eRHIC and other applications, including particle therapies being developed to combat cancer.

  17. Recombinant Science: The Birth of the Relativistic Heavy Ion Collider (431st Brookhaven Lecture)

    SciTech Connect

    Crease, Robert P

    2007-12-12

    As part of the celebration of Brookhaven Lab's 60th anniversary, Robert P. Crease, the Chair of the Philosophy Department at Stony Brook University and BNL's historian, will present the second of two talks on the Lab's history. In "Recombinant Science: The Birth of the Relativistic Heavy Ion Collider," Dr. Crease will focus on the creation of the world's most powerful colliding accelerator for nuclear physics. Known as RHIC, the collider, as Dr. Crease will recount, was formally proposed in 1984, received initial construction funding from the U.S. Department of Energy in 1991, and started operating in 2000. In 2005, the discovery at RHIC of the world's most perfect liquid, a state of matter that last existed just moments after the Big Bang, was announced, and, since then, this perfect liquid of quarks and gluons has been the subject of intense study.

  18. Relativistic Heavy Ion Collider

    SciTech Connect

    Willen, E.H.

    1986-01-01

    The Relativistic Heavy Ion Collider (RHIC) is a proposed research facility at Brookhaven National Laboratory to study the collision of beams of heavy ions, up to gold in mass and at beam energies up to 100 GeV/nucleon. The physics to be explored by this collider is an overlap between the traditional disciplines of nuclear physics and high energy physics and is a continuation of the planned program of light and heavy ion physics at BNL. The machine is to be constructed in the now-empty tunnel built for the former CBA project. Various other facilities to support the collider are either in place or under construction at BNL. The collider itself, including the magnets, is in an advanced state of design, and a construction start is anticipated in the next several years.

  19. High Energy Accelerator and Colliding Beam User Group. Progress report, March 1, 1992--October 31, 1992

    SciTech Connect

    Snow, G.A.; Skuja, A.

    1992-05-01

    This report discusses research in the following areas: the study of e{sup +}e{sup {minus}} interactions; Hadron collider physics at Fermilab; fixed target physics and particle physics of general interest; and, the solenoidal detector collaboration at SSCL.

  20. The Brookhaven ATF low-emittance beam line

    SciTech Connect

    Wang, X.J. . Center for Advanced Accelerators Physics); Kirk, H.G. )

    1991-01-01

    One component of the experimental program at the Brookhaven Accelerator Test Facility (ATF) consists of a class of experiments which will study the acceleration of electrons through micron-size structures which are exposed in coincidence to a 100 GW CO{sub 2} laser beam. These experiments require the development and control of an electron beam with geometric emittances on the order of 10{sup {minus}10} m-rad and intensities on the order of 10{sup 6} electrons. In this paper, we describe the strategies for producing such beams and the effects of high-order aberrations. Particle tracking results are presented for the final-focus system. 9 refs., 6 figs., 2 tabs.

  1. Beam-beam observations in the Relativistic Heavy Ion Collider

    SciTech Connect

    Luo, Y.; Fischer, W.; White, S.

    2015-06-24

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been operating since 2000. Over the past decade, thanks to the continuously increased bunch intensity and reduced β*s at the interaction points, the maximum peak luminosity in the polarized proton operation has been increased by more than two orders of magnitude. In this article, we first present the beam-beam observations in the previous RHIC polarized proton runs. Then we analyze the mechanisms for the beam loss and emittance growth in the presence of beam-beam interaction. The operational challenges and limitations imposed by beam-beam interaction and their remedies are also presented. In the end, we briefly introduce head-on beam-beam compensation with electron lenses in RHIC.

  2. Reactor operations Brookhaven medical research reactor, Brookhaven high flux beam reactor informal monthly report

    SciTech Connect

    Hauptman, H.M.; Petro, J.N.; Jacobi, O.

    1995-04-01

    This document is the April 1995 summary report on reactor operations at the Brookhaven Medical Research Reactor and the Brookhaven High Flux Beam Reactor. Ongoing experiments/irradiations in each are listed, and other significant operations functions are also noted. The HFBR surveillance testing schedule is also listed.

  3. Relativistic-klystron two-beam-accelerator as a power source for a 1 TeV next linear collider: A systems study

    SciTech Connect

    Yu, S.; Goffeney, N.; Deadrick, F.

    1994-10-01

    A physics, engineering, and costing study has been conducted to explore the feasibility of a relativistic-klystron two-beam-accelerator system as a power source candidate for a 1 TeV linear collider. We present a point design example which has acceptable transverse and longitudinal beam stability properties. Preliminary ``bottom-up`` cost estimate yields the full power source system at less than 1 billion dollars. The overall efficiency for rf production is estimated to be 36%.

  4. Next linear collider test accelerator injector upgrade

    SciTech Connect

    Yeremian, A.D.; Miller, R.H.

    1995-12-31

    The Next Linear Collider Test Accelerator (NLCTA) is being constructed at SLAC to demonstrate multibunch beam loading compensation, suppression of higher order deflecting modes and measure transverse components of the accelerating fields in X-band accelerating structures. Currently a simple injector which provides the average current necessary for the beam loading compensations studies is under construction. An injector upgrade is planned to produce bunch trains similar to that of the NLC with microbunch intensity, separation and energy spread, identical to that of NLC. We discuss the design of the NLCTA injector upgrade.

  5. Beam Rounders for Circular Colliders

    SciTech Connect

    A. Burov; S. Nagaitsev; Ya. Derbenev

    2001-07-01

    By means of linear optics, an arbitrary uncoupled beam can be locally transformed into a round (rotation-invariant) state and then back. This provides an efficient way to round beams in the interaction region of circular colliders.

  6. High energy accelerator and colliding beam user group. Progress report, March 1, 1983-February 29, 1984

    SciTech Connect

    Not Available

    1983-01-01

    Topics covered in this research summary include: status of the OPAL collaboration at LEP, CERN; two-photon physics at PLUTO; search for new particles at JADE; neutrinoless double beta decay at DESY; Fermilab jet experiment; neutrino deuterium experiment in the 15 foot bubble chamber at Fermilab; deep inelastic muon experiment at Fermilab; new experiments at the proton-antiproton collider; neutrino-electron scattering at Los Alamos; parity violation in proton-proton scattering; an upgrade of laboratory and computer facilities; and a study of bismuth germanate as a durable scintillation crystal. (GHT)

  7. Colliding Beam Fusion Reactors

    NASA Astrophysics Data System (ADS)

    Rostoker, Norman; Qerushi, Artan; Binderbauer, Michl

    2003-06-01

    The recirculating power for virtually all types of fusion reactors has previously been calculated [1] with the Fokker-Planck equation. The reactors involve non-Maxwellian plasmas. The calculations are generic in that they do not relate to specific confinement devices. In all cases except for a Tokamak with D-T fuel the recirculating power was found to exceed the fusion power by a large factor. In this paper we criticize the generality claimed for this calculation. The ratio of circulating power to fusion power is calculated for the Colliding Beam Reactor with fuels D-T, D-He3 and p-B11. The results are respectively, 0.070, 0.141 and 0.493.

  8. CLASHING BEAM PARTICLE ACCELERATOR

    DOEpatents

    Burleigh, R.J.

    1961-04-11

    A charged-particle accelerator of the proton synchrotron class having means for simultaneously accelerating two separate contra-rotating particle beams within a single annular magnet structure is reported. The magnet provides two concentric circular field regions of opposite magnetic polarity with one field region being of slightly less diameter than the other. The accelerator includes a deflector means straddling the two particle orbits and acting to collide the two particle beams after each has been accelerated to a desired energy. The deflector has the further property of returning particles which do not undergo collision to the regular orbits whereby the particles recirculate with the possibility of colliding upon subsequent passages through the deflector.

  9. Early operating experience with the Brookhaven National Laboratory radio frequency quadrupole accelerator

    SciTech Connect

    Brown, H.; Clifford, T.; Giordano, S.; Khiari, F.; McKenzie-Wilson, R.; Puglisi, M.; Warner, P.

    1984-05-01

    The Brookhaven National Laboratory polarized H/sup -/ injection program for the AGS utilizes a Radio Frequency Quadrupole (RFQ) for acceleration between the polarized H/sup -/ source and the Alvarez Linac. The RFQ accelerator is now in operation with low beam currents. The results of low and high power rf testing will be reported together with initial results of operation in the polarized H/sup -/ beam line.

  10. Magic Lenses for RHIC: Compensating Beam-beam Interaction (488th Brookhaven Lecture)

    SciTech Connect

    Luo, Yun

    2013-07-17

    Scientists at Brookhaven Lab’s Relativistic Heavy Ion Collider (RHIC) smash atomic particles together to understand more about why the physical world works the way it does. Increasing rates of particle collisions, or luminosity, at RHIC is no small challenge, but the results—more data for better clues—are crucial for scientists trying answer big questions about the origins of matter and mass. When scientists at RHIC collide protons, they don’t hope for a head-on crash by focusing only two particles roaring toward each other from opposite directions. For all intents and purposes, that would be impossible. The scientists can smash protons because they significantly increase the likelihood of collisions by steering hundreds of billions clumped into bunches, which at RHIC are about 3.5 meters long and less than 1 millimeter tall. The particles of these bunches are all positively charged, so when they interact, they repel outwardly—think how magnets repel when their same poles are pushed together. Although this decreases the density of each bunch, reducing luminosity, scientists in Brookhaven Lab’s Collider-Accelerator Department (C-AD) have a solution. After more than seven years of development, the scientists have designed an electron-lens system that uses electrons’ negative charges to attract positively charged proton bunches and minimize their repelling tendencies. Combined with other upgrades to the RHIC accelerator complex, these lenses are important components in efforts towards the major task of doubling the luminosity for proton-proton collisions.

  11. FFAG Designs for Muon Collider Acceleration

    SciTech Connect

    Berg, J. Scott

    2014-01-13

    I estimate FFAG parameters for a muon collider with a 70mm longitudinal emittance. I do not discuss the lower emittance beam for a Higgs factory. I produce some example designs, giving only parameters relevant to estimating cost and performance. The designs would not track well, but the parameters of a good design will be close to those described. I compare these cost estimates to those for a fast-ramping synchrotron and a recirculating linear accelerator. I conclude that FFAGs do not appear to be cost-effective for the large longitudinal emittance in a high-energy muon collider.

  12. Proton-proton colliding beam facility ISABELLE

    SciTech Connect

    Hahn, H

    1980-01-01

    This paper attempts to present the status of the ISABELLE construction project, which has the objective of building a 400 + 400 GeV proton colliding beam facility. The major technical features of the superconducting accelerators with their projected performance are described. Progress made so far, difficulties encountered, and the program until completion in 1986 is briefly reviewed.

  13. Polarized proton acceleration at the Brookhaven AGS

    SciTech Connect

    Ahrens, L.A.

    1986-01-01

    At the conclusion of polarized proton commissioning in February 1986, protons with an average polarization of 45%, momentum of 21.7 GeV/c, and intensity of 2 x 10/sup 10/ protons per pulse, were extracted to an external polarimeter at the Brookhaven AGS. In order to maintain this polarization, five intrinsic and nearly forty imperfection depolarizing resonances had to be corrected. An apparent interaction between imperfection and intrinsic resonances occurring at very nearly the same energy was observed and the correction of imperfection resonances using ''beat'' magnetic harmonics discovered in the previous AGS commissioning run was further confirmed.

  14. Introduction to colliding beams at Fermilab

    SciTech Connect

    Thompson, J.

    1994-10-01

    The Fermi National Accelerator Laboratory is currently the site of the world`s highest center-of-mass energy proton-antiproton colliding beam accelerator, the Tevatron. The CDF and D{O} detectors each envelop one of two luminous regions in the collider, and are thus wholly dependent on the accelerator for their success. The Tevatron`s high operating energy, reliability, and record setting integrated luminosity have allowed both experiments to make world-class measurements and defined the region of physics that each can explore. The following sections are an overview of the highlights of the accelerator operation and are compiled from many sources. The major sources for each section are listed at the beginning of that section.

  15. Beam-beam issues in asymmetric colliders

    SciTech Connect

    Furman, M.A.

    1992-07-01

    We discuss generic beam-beam issues for proposed asymmetric e{sup +}- e{sup -} colliders. We illustrate the issues by choosing, as examples, the proposals by Cornell University (CESR-B), KEK, and SLAC/LBL/LLNL (PEP-II).

  16. Preliminary design report of a relativistic-Klystron two-beam-accelerator based power source for a 1 TeV center-of-mass next linear collider

    SciTech Connect

    Yu, S.; Goffeney, N.; Henestroza, E.

    1995-02-22

    A preliminary point design for an 11.4 GHz power source for a 1 TeV center-of-mass Next Linear Collider (NLC) based on the Relativistic-Klystron Two-Beam-Accelerator (RK-TBA) concept is presented. The present report is the result of a joint LBL-LLNL systems study. consisting of three major thrust areas: physics, engineering, and costing. The new RK-TBA point design, together with our findings in each of these areas, are reported.

  17. The Brookhaven National Laboratory electron beam ion source for RHICa)

    NASA Astrophysics Data System (ADS)

    Alessi, J. G.; Barton, D.; Beebe, E.; Bellavia, S.; Gould, O.; Kponou, A.; Lambiase, R.; Lockey, R.; McNerney, A.; Mapes, M.; Marneris, Y.; Okamura, M.; Phillips, D.; Pikin, A. I.; Raparia, D.; Ritter, J.; Snydstrup, L.; Theisen, C.; Wilinski, M.

    2010-02-01

    As part of a new heavy ion preinjector that will supply beams for the Relativistic Heavy Ion Collider and the National Aeronautics and Space Administration Space Radiation Laboratory, construction of a new electron beam ion source (EBIS) is now being completed. This source, based on the successful prototype Brookhaven National Laboratory Test EBIS, is designed to produce milliampere level currents of all ion species, with q/m=(1/6)-(1/2). Among the major components of this source are a 5 T, 2-m-long, 204 mm diameter warm bore superconducting solenoid, an electron gun designed to operate at a nominal current of 10 A, and an electron collector designed to dissipate ˜300 kW of peak power. Careful attention has been paid to the design of the vacuum system, since a pressure of 10-10 Torr is required in the trap region. The source includes several differential pumping stages, the trap can be baked to 400 C, and there are non-evaporable getter strips in the trap region. Power supplies include a 15 A, 15 kV electron collector power supply, and fast switchable power supplies for most of the 16 electrodes used for varying the trap potential distribution for ion injection, confinement, and extraction. The EBIS source and all EBIS power supplies sit on an isolated platform, which is pulsed up to a maximum of 100 kV during ion extraction. The EBIS is now fully assembled, and operation will be beginning following final vacuum and power supply tests. Details of the EBIS components are presented.

  18. Two-beam accelerator

    SciTech Connect

    Selph, F.B.

    1984-09-01

    In the two-beam accelerator (TBA) concept, an electron linear accelerator structure is established in which two beams propagate. One is an intense low energy beam that is made to undergo free electron lasing to produce microwaves. These microwaves are then coupled to another part of the structure where they act to produce a high longitudinal electric gradient that is used to accelerate a second relatively low intensity electron beam to very high energies. The TBA was originally suggested by Sessler as a possible means for economically achieving linear collider energies of 100 GeV and above. Although still in a conceptual stage, the TBA is an inherently plausible concept that combines the free electron laser (FEL) with several well-known technologies - high current induction linacs, microwave waveguides, and traveling-wave linac structures - in a novel and interesting way. Two characteristics of the TBA that make it a particularly suitable candidate for achieving high energies are its ability to operate at higher frequencies than typical present-day linacs (say 30 GHz as compared with 3 GHz), and to be an efficient means for delivering power to a hitherto unattainable high-gradient structure (say 250 MV/m) that the higher frequency makes possible. These high accelerating gradients will permit much shorter linac structures for a given energy.

  19. Accelerator R&D toward Muon Collider and Neutrino Factory

    SciTech Connect

    Shiltsev, Vladimir; /Fermilab

    2009-10-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture, accelerate and collide high intensity beams of muons. At present, a high-luminosity multi-TeV muon collider presents a viable option for the next generation lepton-lepton collider, which is believed to be needed to fully explore high energy physics in the era following LHC discoveries. Such a collider can offer superb energy resolution, smaller size, and potentially cost and power consumption compared to multi-TeV e{sup +}e{sup -} linear colliders. This article briefly reviews the motivation, design and status of accelerator R&D for Muon Collider and Neutrino Factory.

  20. Accelerator R&D toward Muon Collider and Neutrino Factory

    NASA Astrophysics Data System (ADS)

    Shiltsev, V.

    2010-12-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture, accelerate and collide high intensity beams of muons. At present, a high-luminosity multi-TeV muon collider presents a viable option for the next generation lepton-lepton collider, which is believed to be needed to fully explore high energy physics in the era following LHC discoveries. Such a collider can offer superb energy resolution, smaller size, and potentially cost and power consumption compared to multi-TeV e + e - linear colliders. This article briefly reviews the motivation, design and status of accelerator R&D for Muon Collider and Neutrino Factory.

  1. Beam dynamics issues in linear colliders

    SciTech Connect

    Seeman, J.T.

    1989-06-01

    The primary goal of present and future linear colliders is to maximize the integrated luminosity for the experimental program. Beam dynamics plays a central role in the maximization of integrated luminosity. It is the major issue in the production of small beam sizes and low experimental backgrounds and is also an important factor in the production of particle numbers, in the acceleration process, and in the number of bunches. The beam dynamics effects on bunches which are extracted from the damping rings, accelerated in the linac, collimated, momentum analyzed, and finally delivered to the final focus are reviewed. The effects of bunch compression, transverse and longitudinal wakefields, BNS damping, energy definition, dispersion, emittance, bunch aspect ratio, feedback, and stability are all important. 11 refs., 1 tab.

  2. PROTON BEAM REQUIREMENTS FOR A NEUTRINO FACTORY AND MUON COLLIDER

    SciTech Connect

    Zisman, Michael S.

    2009-12-11

    Both a Neutrino Factory and a Muon Collider place stringent demands on the proton beam used to generate the desired beam of muons. Here we discuss the advantages and challenges of muon accelerators and the rationale behind the requirements on proton beam energy, intensity, bunch length, and repetition rate. Example proton driver configurations that have been considered in recent years are also briefly indicated.

  3. Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion source.

    PubMed

    Kondo, K; Yamamoto, T; Sekine, M; Okamura, M

    2012-02-01

    The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (∼100 μA) with high charge (∼10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline. PMID:22380298

  4. Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion sourcea)

    NASA Astrophysics Data System (ADS)

    Kondo, K.; Yamamoto, T.; Sekine, M.; Okamura, M.

    2012-02-01

    The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (˜100 μA) with high charge (˜10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline.

  5. Staging optics considerations for a plasma wakefield acceleration linear collider

    NASA Astrophysics Data System (ADS)

    Lindstrøm, C. A.; Adli, E.; Allen, J. M.; Delahaye, J. P.; Hogan, M. J.; Joshi, C.; Muggli, P.; Raubenheimer, T. O.; Yakimenko, V.

    2016-09-01

    Plasma wakefield acceleration offers acceleration gradients of several GeV/m, ideal for a next-generation linear collider. The beam optics requirements between plasma cells include injection and extraction of drive beams, matching the main beam beta functions into the next cell, canceling dispersion as well as constraining bunch lengthening and chromaticity. To maintain a high effective acceleration gradient, this must be accomplished in the shortest distance possible. A working example is presented, using novel methods to correct chromaticity, as well as scaling laws for a high energy regime.

  6. ACCELERATION FOR A HIGH ENERGY MUON COLLIDER

    SciTech Connect

    BERG,J.S

    2000-04-07

    The authors describe a method for designing the acceleration systems for a muon collider, with particular application and examples for a high energy muon collider. This paper primarily concentrates on design considerations coming from longitudinal motion, but some transverse issues are briefly discussed.

  7. Linear accelerators for TeV colliders

    SciTech Connect

    Wilson, P.B.

    1985-05-01

    This paper summarizes four tutorial lectures on linear electron accelerators: Electron Linacs for TeV Colliders, Emittance and Damping Rings, Wake Fields: Basic Concepts, and Wake Field Effects in Linacs.

  8. High frequency planar accelerating structures for future linear colliders

    SciTech Connect

    Yu, D.; Ben-Menahem, S.; Wilson, P.; Miller, R.; Ruth, R.; Nassiri, A.

    1994-12-31

    Modern microfabrication techniques based on deep etch x-ray lithography, e.g., LIGA, can be used to produce large-aspect-ratio, metallic or dielectric, planar structures suitable for high-frequency RF acceleration of charged particle beams. Specifically, these techniques offer significant advantages over conventional manufacturing methods for future linear colliders (beyond NLC, the Next Linear Collider) because of several unique systems requirements. First, to have the required ac wall plug power within reasonable limits, such future linear colliders (5 TeV) must operate at high frequency (30 GHz). Secondly, luminosity requirements suggest the use of multi-bunch acceleration of electrons and positrons in the linear collider. Thirdly, in order to clearly discriminate physics events in the final interaction point at which electrons and positrons collide, it is required that secondary particle production from beamstrahlung be minimized. Flat electron and positron beams with a large aspect ratio will be beneficial in reducing beamstrahlung in the final focus region, but cause the beam to be more sensitive to wakefields in the vertical dimension. In principle, a flat beam can be accelerated in a planar structure with reduced wakefield in the vertical direction for the entire length of the accelerator. The LIGA process is particularly suitable for manufacturing miniaturized, planar, asymmetric cavities at high frequency. The main advantages of the LIGA process are fabrication of structures with high aspect ratio, small dimensional tolerances, and arbitrary mask shape (cross-section). Other advantages include mass-production with excellent repeatability and precision of up to an entire section of an accelerating structure consisting of a number of cells. It eliminates the need of tedious machining and brazing, for example, of individual disks and cups in conventional disk-loaded structures. Also, planar input/output couplers for the accelerating structure can be easily

  9. Colliding Laser Pulses for Laser-Plasma Accelerator Injection Control

    SciTech Connect

    Plateau, G. R.; Geddes, C. G. R.; Matlis, N. H.; Mittelberger, D. E.; Nakamura, K.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.; Cormier-Michel, E.

    2010-11-04

    Decoupling injection from acceleration is a key challenge to achieve compact, reliable, tunable laser-plasma accelerators (LPA). In colliding pulse injection the beat between multiple laser pulses can be used to control energy, energy spread, and emittance of the electron beam by injecting electrons in momentum and phase into the accelerating phase of the wake trailing the driver laser pulse. At LBNL, using automated control of spatiotemporal overlap of laser pulses, two-pulse experiments showed stable operation and reproducibility over hours of operation. Arrival time of the colliding beam was scanned, and the measured timing window and density of optimal operation agree with simulations. The accelerator length was mapped by scanning the collision point.

  10. Colliding Laser Pulses for Laser-Plasma Accelerator Injection Control

    NASA Astrophysics Data System (ADS)

    Plateau, G. R.; Geddes, C. G. R.; Matlis, N. H.; Cormier-Michel, E.; Mittelberger, D. E.; Nakamura, K.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2010-11-01

    Decoupling injection from acceleration is a key challenge to achieve compact, reliable, tunable laser-plasma accelerators (LPA) [1, 2]. In colliding pulse injection the beat between multiple laser pulses can be used to control energy, energy spread, and emittance of the electron beam by injecting electrons in momentum and phase into the accelerating phase of the wake trailing the driver laser pulse [3, 4, 5, 6, 7]. At LBNL, using automated control of spatiotemporal overlap of laser pulses, two-pulse experiments showed stable operation and reproducibility over hours of operation. Arrival time of the colliding beam was scanned, and the measured timing window and density of optimal operation agree with simulations [8]. The accelerator length was mapped by scanning the collision point.

  11. The High Flux Beam Reactor at Brookhaven National Laboratory

    SciTech Connect

    Shapiro, S.M.

    1994-12-31

    Brookhaven National Laboratory`s High Flux Beam Reactor (HFBR) was built because of the need of the scientist to always want `more`. In the mid-50`s the Brookhaven Graphite reactor was churning away producing a number of new results when the current generation of scientists, led by Donald Hughes, realized the need for a high flux reactor and started down the political, scientific and engineering path that led to the BFBR. The effort was joined by a number of engineers and scientists among them, Chemick, Hastings, Kouts, and Hendrie, who came up with the novel design of the HFBR. The two innovative features that have been incorporated in nearly all other research reactors built since are: (i) an under moderated core arrangement which enables the thermal flux to peak outside the core region where beam tubes can be placed, and (ii) beam tubes that are tangential to the core which decrease the fast neutron background without affecting the thermal beam intensity. Construction began in the fall of 1961 and four years later, at a cost of $12 Million, criticality was achieved on Halloween Night, 1965. Thus began 30 years of scientific accomplishments.

  12. Accelerator physics in ERL based polarized electron ion collider

    SciTech Connect

    Hao, Yue

    2015-05-03

    This talk will present the current accelerator physics challenges and solutions in designing ERL-based polarized electron-hadron colliders, and illustrate them with examples from eRHIC and LHeC designs. These challenges include multi-pass ERL design, highly HOM-damped SRF linacs, cost effective FFAG arcs, suppression of kink instability due to beam-beam effect, and control of ion accumulation and fast ion instabilities.

  13. Accelerator considerations of large circular colliders

    NASA Astrophysics Data System (ADS)

    Chao, Alex

    2016-07-01

    As we consider the tremendous physics reaches of the big future circular electron-positron and proton-proton colliders, it might be advisable to keep a close track of what accelerator challenges they face. Good progresses are being made, and yet it is reported here that substantial investments in funding, manpower, as well as a long sustained time to the R&D efforts will be required in preparation to realize these dream colliders.

  14. Excitation of Accelerating Plasma Waves by Counter-Propagating Laser Beams

    SciTech Connect

    Shvets, Gennady; Fisch, Nathaniel J; Pukhov, Alexander

    2002-04-05

    The conventional approach to exciting high phase velocity waves in plasmas is to employ a laser pulse moving in the direction of the desired particle acceleration. Photon downshifting then causes momentum transfer to the plasma and wave excitation. Novel approaches to plasma wake excitation, colliding-beam accelerator (CBA), which involve photon exchange between the long and short counter-propagating laser beams, are described. Depending on the frequency detuning Dw between beams and duration tL of the short pulse, there are two approaches to CBA. The first approach assumes tL ª 2/wp. Photons exchanged between the beams deposit their recoil momentum in the plasma driving the plasma wake. Frequency detuning between the beams determines the direction of the photon exchange, thereby controlling the phase of the plasma wake. This phase control can be used for reversing the slippage of the accelerated particles with respect to the wake. A variation on the same theme, super-beatwave accelerator, is also described. In the second approach, a short pulse with tL >> 2/wp1 detuned by Dw ~ 2wp from the counter-propagating beam is employed. While parametric excitation of plasma waves by the electromagnetic beatwave at 2wp of two co-propagating lasers was first predicted by Rosenbluth and Liu [M.N. Rosenbluth, C.S. Liu, Phys. Rev. Lett. 29 (1972) 701], it is demonstrated that the two excitation beams can be counter-propagating. The advantages of using this geometry (higher instability growth rate, insensitivity to plasma inhomogeneity) are explained, and supporting numerical simulations presented.

  15. Beam dynamics verification in linacs of linear colliders

    SciTech Connect

    Seeman, J.T.

    1989-01-01

    The SLAC two-mile linac has been upgraded to accelerate high current, low emittance electron and positron beams to be used in the SLAC Linear Collider (SLC). After the upgrade was completed, extensive beam studies were made to verify that the design criteria have been met. These tests involved the measurement of emittance, beam phase space orientation, energy dispersion, trajectory oscillations, bunch length, energy spectrum and wakefields. The methods, the systems and the data cross checks are compared for the various measurements. Implications for the next linear collider are discussed. 12 refs., 13 figs., 2 tabs.

  16. Future Accelerators, Muon Colliders, and Neutrino Factories

    SciTech Connect

    Richard A Carrigan, Jr.

    2001-12-19

    Particle physics is driven by five great topics. Neutrino oscillations and masses are now at the fore. The standard model with extensions to supersymmetry and a Higgs to generate mass explains much of the field. The origins of CP violation are not understood. The possibility of extra dimensions has raised tantalizing new questions. A fifth topic lurking in the background is the possibility of something totally different. Many of the questions raised by these topics require powerful new accelerators. It is not an overstatement to say that for some of the issues, the accelerator is almost the experiment. Indeed some of the questions require machines beyond our present capability. As this volume attests, there are parts of the particle physics program that have been significantly advanced without the use of accelerators such as the subject of neutrino oscillations and many aspects of the particle-cosmology interface. At this stage in the development of physics, both approaches are needed and important. This chapter first reviews the status of the great accelerator facilities now in operation or coming on within the decade. Next, midrange possibilities are discussed including linear colliders with the adjunct possibility of gamma-gamma colliders, muon colliders, with precursor neutrino factories, and very large hadron colliders. Finally visionary possibilities are considered including plasma and laser accelerators.

  17. THE RELATIVISTIC HEAVY ION COLLIDER (RHIC) REFRIGERATOR SYSTEM AT BROOKHAVEN NATIONAL LABORATORY: SYSTEM PERFORMANCE AND OPERATIONS UPGRADES FOR 2003.

    SciTech Connect

    SIDI-YEKHLEF,A.TUOZOLO,J.NICOLETTI,A.WOZNIAK,T.WARKENTIEN,A.DEJONG,W.TALLERICO,T.ZANTOPP,D.

    2004-03-30

    The main function of the RHIC cryogenic system is to maintain the superconducting magnets in the two rings of the new collider-accelerator at Brookhaven National Laboratory at or below 4.5K. The main feature in the RHIC cryogenic system is the helium refrigerator. A new process control philosophy was implemented that allows this system to track the actual load from the accelerator rings and lets it respond accordingly. The refrigerator capacity decreases as the load decreases and increases as the load increases. This has resulted in the following improvements in the operation of the system: (1) Higher reliability because the rotating equipment does not have to run at full load continuously. (2) Greater stability because the system tracks the load continuously and responds quickly to any transients such as a quench. (3) Reduced power consumption because the discharge pressure of the system is adjusted continuously to match the load; therefore, the compressors draw less power when the load fi-om the accelerator rings decreases. This paper also addresses other modifications introduced that added to the efficiency, stability, and reliability of the system. As a result of this upgrade the Carnot efficiency of the refrigerator system has increased to 15% from around 10%.

  18. High intensity proton acceleration at the Brookhaven AGS -- An update

    SciTech Connect

    Ahrens, L.; Alessi, J.; Blaskiewicz, M.

    1997-07-01

    The AGS accelerator complex is into its third year of 60+ {times} 10{sup 12} (teraproton = Tp) per cycle operation. The hardware making up the complex as configured in 1997 is briefly mentioned. The present level of accelerator performance is discussed. This includes beam transfer efficiencies at each step in the acceleration process, i.e. losses; which are a serious issue at this intensity level. Progress made in understanding beam behavior at the Linac-to-Booster (LtB) injection, at the Booster-to-AGS (BtA) transfer as well as across the 450 ms AGS accumulation porch is presented. The state of transition crossing, with the gamma-tr jump is described. Coherent effects including those driven by space charge are important at all of these steps.

  19. Beam dynamics issues for linear colliders

    SciTech Connect

    Ruth, R.D.

    1987-09-01

    In this paper we discuss various beam dynamics issues for linear colliders. The emphasis is to explore beam dynamics effects which lead to an effective dilution of the emittance of the beam and thus to a loss of luminosity. These considerations lead to various tolerances which are evaluated for a particular parameter set.

  20. Rebuilding the Brookhaven high flux beam reactor: A feasibility study

    SciTech Connect

    Brynda, W.J.; Passell, L.; Rorer, D.C.

    1995-01-01

    After nearly thirty years of operation, Brookhaven`s High Flux Beam Reactor (HFBR) is still one of the world`s premier steady-state neutron sources. A major center for condensed matter studies, it currently supports fifteen separate beamlines conducting research in fields as diverse as crystallography, solid-state, nuclear and surface physics, polymer physics and structural biology and will very likely be able to do so for perhaps another decade. But beyond that point the HFBR will be running on borrowed time. Unless appropriate remedial action is taken, progressive radiation-induced embrittlement problems will eventually shut it down. Recognizing the HFBR`s value as a national scientific resource, members of the Laboratory`s scientific and reactor operations staffs began earlier this year to consider what could be done both to extend its useful life and to assure that it continues to provide state-of-the-art research facilities for the scientific community. This report summarizes the findings of that study. It addresses two basic issues: (i) identification and replacement of lifetime-limiting components and (ii) modifications and additions that could expand and enhance the reactor`s research capabilities.

  1. GPU-optimized Code for Long-term Simulations of Beam-beam Effects in Colliders

    SciTech Connect

    Roblin, Yves; Morozov, Vasiliy; Terzic, Balsa; Aturban, Mohamed A.; Ranjan, D.; Zubair, Mohammed

    2013-06-01

    We report on the development of the new code for long-term simulation of beam-beam effects in particle colliders. The underlying physical model relies on a matrix-based arbitrary-order symplectic particle tracking for beam transport and the Bassetti-Erskine approximation for beam-beam interaction. The computations are accelerated through a parallel implementation on a hybrid GPU/CPU platform. With the new code, a previously computationally prohibitive long-term simulations become tractable. We use the new code to model the proposed medium-energy electron-ion collider (MEIC) at Jefferson Lab.

  2. Accelerator Test Facility for Muon Collider and Neutrino Factory R&d

    NASA Astrophysics Data System (ADS)

    Shiltsev, Vladimir

    2010-06-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture, accelerate and collide high intensity beams of muons. At present, a high-luminosity multi-TeV muon collider presents a viable option for the next generation lepton-lepton collider, which is believed to be needed to fully explore high energy physics in the era following LHC discoveries. This article briefly reviews the needs and possibilities for a Muon Collider beam test facility to carry out the R&D program on the collider front-end and 6D cooling demonstration experiment.

  3. Collider and detector protection at beam accidents

    SciTech Connect

    I. L. Rakhno; N. V. Mokhov; A. I. Drozhdin

    2003-12-10

    Dealing with beam loss due to abort kicker prefire is considered for hadron colliders. The prefires occurred at Tevatron (Fermilab) during Run I and Run II are analyzed and a protection system implemented is described. The effect of accidental beam loss in the Large Hadron Collider (LHC) at CERN on machine and detector components is studied via realistic Monte Carlo calculations. The simulations show that beam loss at an unsynchronized beam abort would result in severe heating of conventional and superconducting magnets and possible damage to the collider detector elements. A proposed set of collimators would reduce energy deposition effects to acceptable levels. Special attention is paid to reducing peak temperature rise within the septum magnet and minimizing quench region length downstream of the LHC beam abort straight section.

  4. LASER-PLASMA-ACCELERATOR-BASED GAMMA GAMMA COLLIDERS

    SciTech Connect

    Schroeder, C. B.; Esarey, E.; Toth, Cs.; Geddes, C. G. R.; Leemans, W. P.

    2009-05-04

    Design considerations for a next-generation linear collider based on laser-plasma-accelerators are discussed, and a laser-plasma-accelerator-based gamma-gamma collider is considered. An example of the parameters for a 0.5 TeV laser-plasma-accelerator gamma gamma collider is presented.

  5. Advances in beam physics and technology: Colliders of the future

    SciTech Connect

    Chattopadhyay, S.

    1994-11-01

    Beams may be viewed as directed and focussed flow of energy and information, carried by particles and electromagnetic radiation fields (ie, photons). Often, they interact with each other (eg, in high energy colliders) or with other forms of matter (eg, in fixed targets, sychrotron radiation, neutron scattering, laser chemistry/physics, medical therapy, etc.). The whole art and science of beams revolve around the fundamental quest for, and ultimate implementation of, mechanisms of production, storage, control and observation of beams -- always directed towards studies of the basic structures and processes of the natural world and various practical applications. Tremendous progress has been made in all aspects of beam physics and technology in the last decades -- nonlinear dynamics, superconducting magnets and rf cavities, beam instrumentation and control, novel concepts and collider praradigms, to name a few. We illustrate this progress with a few examples and remark on the emergence of new collider scenarios where some of these progress might come to use -- the Gamma-Gamma Collider, the Muon Collider, laser acceleration, etc. We close with an outline of future oppotunities and outlook.

  6. The Relativistic Heavy Ion Collider (RHIC) cryogenic system at Brookhaven National Laboratory: Review of the modifications and upgrades since 2002 and planned improvements.

    SciTech Connect

    Than, R.; Tuozzolo, Joseph; Sidi-Yekhlef, Ahmed; Ganni, Venkatarao; Knudsen, Peter; Arenius, Dana

    2008-03-01

    Brookhaven National Laboratory continues its multi-year program to improve the operational efficiency, reliability, and stability of the cryogenic system, which also resulted in an improved beam availability of the Relativistic Heavy Ion Collider (RHIC). This paper summarizes the work and changes made after each phase over the past four years to the present, as well as proposed future improvements. Power usage dropped from an initial 9.4 MW to the present 5.1 MW and is expected to drop below 5 MW after the completion of the remaining proposed improvements. The work proceeded in phases, balancing the Collider's schedule of operation, time required for the modifications and budget constraints. The main changes include process control, compressor oil removal and management, elimination of the use of cold compressors and two liquid-helium storage tanks, insulation of the third liquid-helium storage tank, compressor-bypass flow reduction and the addition of a load turbine (Joule-Thomson ex

  7. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, Graeme (Inventor)

    1984-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids (16, 18) with multiple pairs of aligned holes positioned to direct a group of beamlets (20) along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam (14). An accelerator electrode device (22) downstream from the extraction grids, is at a much lower potential than the grids to accelerate the combined beam.

  8. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, G. (Inventor)

    1981-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids with multiple pairs of aligned holes positioned to direct a group of beamlets along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam. An accelerator electrode device downstream from the extraction grids is at a much lower potential than the grids to accelerate the combined beam. The application of the system to ion implantation is mentioned.

  9. Advances in beam physics and technology: Colliders of the future

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Swapan

    1996-02-01

    Beams may be viewed as directed and focussed flow of energy and information, carried by particles and electromagnetic radiation fields (i.e. photons). Often, they are brought into interaction with each other (e.g. in high energy colliders) or with other forms of matter (e.g. in fixed target physics, synchrotron radiation sciences, neutron scattering experiments, laser chemistry and physics, medical therapy, etc.). The whole art and science of beams revolve around the fundamental quest for, and ultimate implementation of, mechanisms of production, storage, control and observation of beams—always directed towards studies of the basic structures and processes of the natural world and various practical applications. Tremendous progress has been made in all aspects of beam physics and technology in the last decades—nonlinear dynamics, superconducting magnets and radio frequency cavities, beam instrumentation and control, novel concepts and collider paradigms, to name a few. We will illustrate this progress via a few examples and remark on the emergence of new collider scenarios where some of these progress might come to use—the Gamma-Gamma Collider, the Muon Collider, laser acceleration, etc. We will close with an outline of future opportunities and outlook.

  10. End fields of CBA superconducting magnets

    SciTech Connect

    Kirk, H.G.; Herrera, J.; Willen, E.

    1983-01-01

    Measurements of the two dimensional harmonic content of the end fields generated by the Brookhaven CBA dipole and quadrupole superconducting magnets are presented. Both the local longitudinal structure and the integrated end effects are examined.

  11. Beam trajectory acquisition system for the arcs of the Stanford Linear Collider

    SciTech Connect

    Pellegrin, J.L.; Ross, M.C.; Scott, B.D.; Wilson, D.S.

    1987-02-01

    This report describes the beam position monitoring system of the collider arcs at the Stanford Linear Collider. This beam position monitoring system is different from others at SLAC in its large amount of hardware and its use of ungated, self-triggered electronics. All of the processing electronics are installed in the accelerator tunnel. (JDH)

  12. Beam instrumentation for the Tevatron Collider

    SciTech Connect

    Moore, Ronald S.; Jansson, Andreas; Shiltsev, Vladimir; /Fermilab

    2009-10-01

    The Tevatron in Collider Run II (2001-present) is operating with six times more bunches and many times higher beam intensities and luminosities than in Run I (1992-1995). Beam diagnostics were crucial for the machine start-up and the never-ending luminosity upgrade campaign. We present the overall picture of the Tevatron diagnostics development for Run II, outline machine needs for new instrumentation, present several notable examples that led to Tevatron performance improvements, and discuss the lessons for future colliders.

  13. Photon Collider Physics with Real Photon Beams

    SciTech Connect

    Gronberg, J; Asztalos, S

    2005-11-03

    Photon-photon interactions have been an important probe into fundamental particle physics. Until recently, the only way to produce photon-photon collisions was parasitically in the collision of charged particles. Recent advances in short-pulse laser technology have made it possible to consider producing high intensity, tightly focused beams of real photons through Compton scattering. A linear e{sup +}e{sup -} collider could thus be transformed into a photon-photon collider with the addition of high power lasers. In this paper they show that it is possible to make a competitive photon-photon collider experiment using the currently mothballed Stanford Linear Collider. This would produce photon-photon collisions in the GeV energy range which would allow the discovery and study of exotic heavy mesons with spin states of zero and two.

  14. Simulations of high disruption colliding beams

    SciTech Connect

    Boyce, J.R.; Heifets, S.; Krafft, G.A.

    1990-09-01

    Recent B-factory proposals that use a linac beam colliding with the beam from a storage ring to achieve high luminosities (L > 10{sup 34} cm{sup {minus}2}sec{sup {minus}1}) result in very high disruption of the linac beam. The effects of such high disruption have been studied using the relativistic, 3-D code SWARM. We discuss the assumptions, parameters, and results of a series of runs that model such collisions. Regimes of high beam loss and methods to avoid them are also discussed. 5 refs., 4 figs.

  15. Polarized muon beams for muon collider

    NASA Astrophysics Data System (ADS)

    Skrinsky, A. N.

    1996-11-01

    An option for the production of intense and highly polarized muon beams, suitable for a high-luminosity muon collider, is described briefly. It is based on a multi-channel pion-collection system, narrow-band pion-to-muon decay channels, proper muon spin gymnastics, and ionization cooling to combine all of the muon beams into a single bunch of ultimately low emittance.

  16. Long-Term Dietary Folate Deficiency Accelerates Progressive Hearing Loss on CBA/Ca Mice

    PubMed Central

    Martínez-Vega, Raquel; Murillo-Cuesta, Silvia; Partearroyo, Teresa; Varela-Moreiras, Gregorio; Varela-Nieto, Isabel; Pajares, María A.

    2016-01-01

    Dietary folic acid deficiency induced early hearing loss in C57BL/6J mice after 2-months, corroborates the epidemiological association previously described between vitamin deficiency and this sensory impairment. However, this strain is prone to early hearing loss, and hence we decided to analyze whether the effects exerted by folate deprivation follow the same pattern in a mouse strain such as CBA/Ca, which is resistant to hearing impairment. Here, we show results of a long-term study on hearing carried out on CBA/Ca mice subjected to dietary folate deprivation. Systemic changes included decreased serum folate levels, hyperhomocysteinemia and signs of anemia in the group fed with folate-deficient (FD) diet. Initial signs of hearing loss were detected in this strain after 8-months of vitamin deficiency, and correlated with histological damage in the cochleae. In conclusion, the data presented reinforce the importance of adequate folic acid levels for the auditory system and suggest that the impact of dietary deficiencies may depend on the genetic background.

  17. Beam Instrumentation Challenges at the International Linear Collider

    SciTech Connect

    Tenenbaum, Peter; /SLAC

    2006-05-16

    The International Linear Collider (ILC) is a proposed facility for the study of high energy physics through electron-positron collisions at center-of-mass energies up to 500 GeV and luminosities up to 2 x 10{sup 34} cm{sup -2} sec{sup -1}. Meeting the ILC's goals will require an extremely sophisticated suite of beam instruments for the preservation of beam emittance, the diagnosis of optical errors and mismatches, the determination of beam properties required for particle physics purposes, and machine protection. The instrumentation foreseen for the ILC is qualitatively similar to equipment in use at other accelerator facilities in the world, but in many cases the precision, accuracy, stability, or dynamic range required by the ILC exceed what is typically available in today's accelerators. In this paper we survey the beam instrumentation requirements of the ILC and describe the system components which are expected to meet those requirements.

  18. Beam Induced Hydrodynamic Tunneling in the Future Circular Collider Components

    NASA Astrophysics Data System (ADS)

    Tahir, N. A.; Burkart, F.; Schmidt, R.; Shutov, A.; Wollmann, D.; Piriz, A. R.

    2016-08-01

    A future circular collider (FCC) has been proposed as a post-Large Hadron Collider accelerator, to explore particle physics in unprecedented energy ranges. The FCC is a circular collider in a tunnel with a circumference of 80-100 km. The FCC study puts an emphasis on proton-proton high-energy and electron-positron high-intensity frontier machines. A proton-electron interaction scenario is also examined. According to the nominal FCC parameters, each of the 50 TeV proton beams will carry an amount of 8.5 GJ energy that is equivalent to the kinetic energy of an Airbus A380 (560 t) at a typical speed of 850 km /h . Safety of operation with such extremely energetic beams is an important issue, as off-nominal beam loss can cause serious damage to the accelerator and detector components with a severe impact on the accelerator environment. In order to estimate the consequences of an accident with the full beam accidently deflected into equipment, we have carried out numerical simulations of interaction of a FCC beam with a solid copper target using an energy-deposition code (fluka) and a 2D hydrodynamic code (big2) iteratively. These simulations show that, although the penetration length of a single FCC proton and its shower in solid copper is about 1.5 m, the full FCC beam will penetrate up to about 350 m into the target because of the "hydrodynamic tunneling." These simulations also show that a significant part of the target is converted into high-energy-density matter. We also discuss this interesting aspect of this study.

  19. Status and results from the next linear collider test accelerator

    SciTech Connect

    Ruth, R.D.; Adolphsen, C.; Allison, S.

    1996-08-01

    The design for the Next Linear Collider (NLC) at SLAC is based on two 11.4 GHz linacs operating at an unloaded acceleration gradient of 50 MV/m increasing to 85 MV/m as the energy is increased from {1/2} TeV to 1 TeV in the center of mass. During the past several years there has been tremendous progress on the development of 11.4 GHz (X-band) RF systems. These developments include klystrons which operate at the required power and pulse length, pulse compression systems that achieve a factor of four power multiplication and structures that are specially designed to reduce long-range wakefields. Together with these developments, we have constructed a {1/2} GeV test accelerator, the NLC Test Accelerator (NLCTA). The NLCTA will serve as a test bed as the design of the NLC is refined. In addition to testing the RF system, the NLCTA is designed to address many questions related to the dynamics of the beam during acceleration, in particular the study of multibunch beam loading compensation and transverse beam break-up. In this paper we present the status of the NLCTA and the results of initial commissioning.

  20. Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    SciTech Connect

    Siemann, R.H.; /SLAC

    2011-10-24

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  1. RF properties of periodic accelerating structures for linear colliders

    SciTech Connect

    Wang, J.W.

    1989-07-01

    With the advent of the SLAC electron-positron linear collider (SLC) in the 100 GeV center-of-mass energy range, research and development work on even higher energy machines of this type has started in several laboratories in the United States, Europe, the Soviet Union and Japan. These linear colliders appear to provide the only promising approach to studying e/sup /plus//e/sup /minus// physics at center-of-mass energies approaching 1 TeV. This thesis concerns itself with the study of radio frequency properties of periodic accelerating structures for linear colliders and their interaction with bunched beams. The topics that have been investigated are: experimental measurements of the energy loss of single bunches to longitudinal modes in two types of structures, using an equivalent signal on a coaxial wire to simulate the beam; a method of canceling the energy spread created within a single bunch by longitudinal wakefields, through appropriate shaping of the longitudinal charge distribution of the bunch; derivation of the complete transient beam-loading equation for a train of bunches passing through a constant-gradient accelerator section, with application to the calculation and minimization of multi-bunch energy spread; detailed study of field emission and radio frequency breakdown in disk-loaded structures at S-, C- and X-band frequencies under extremely high-gradient conditions, with special attention to thermal effects, radiation, sparking, emission of gases, surface damage through explosive emission and its possible control through RF-gas processing. 53 refs., 49 figs., 9 tabs.

  2. Aerogel Cherenkov detectors in colliding beam experiments

    NASA Astrophysics Data System (ADS)

    Danilyuk, A. F.; Kononov, S. A.; Kravchenko, E. A.; Onuchin, A. P.

    2015-05-01

    This review discusses the application of aerogel Cherenkov detectors in colliding beam experiments. Such detectors are used for charged particle identification at velocities at which other methods are ineffective. The paper examines aerogel production technology and how the aerogel optical parameters are measured. Data on threshold Cherenkov counters with direct light collection and on those using wavelength shifters are evaluated. Also presented are data on Ring Image Cherenkov detectors with single and multilayer focusing aerogel radiators.

  3. Reply to ``Comment on `Beamstrahlung considerations in laser-plasma-accelerator-based linear colliders' ''

    NASA Astrophysics Data System (ADS)

    Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2013-10-01

    We reply to Lebedev and Nagaitsev’s foregoing Comment [Phys. Rev. ST Accel. Beams 16, 108001 (2013)PRABFM1098-4402]. We disagree with the conclusion of the Comment that scattering imposes a fundamental limitation on plasma-based accelerator technology. Laser-plasma accelerators are compatible with high-luminosity collider concepts.

  4. Accelerator physics and technology challenges of very high energy hadron colliders

    DOE PAGESBeta

    Shiltsev, Vladimir D.

    2015-08-20

    High energy hadron colliders have been in the forefront of particle physics for more than three decades. At present, international particle physics community considers several options for a 100 TeV proton–proton collider as a possible post-LHC energy frontier facility. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. This article briefly reviews the accelerator physics and technology challenges of the future very high energy colliders and outlines the areas of required research and development towards their technical and financial feasibility.

  5. Accelerator physics and technology challenges of very high energy hadron colliders

    NASA Astrophysics Data System (ADS)

    Shiltsev, Vladimir D.

    2015-08-01

    High energy hadron colliders have been in the forefront of particle physics for more than three decades. At present, international particle physics community considers several options for a 100 TeV proton-proton collider as a possible post-LHC energy frontier facility. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. This paper briefly reviews the accelerator physics and technology challenges of the future very high energy colliders and outlines the areas of required research and development towards their technical and financial feasibility.

  6. Accelerating and storing polarized hadron beams

    SciTech Connect

    Teng, L.C.

    1990-10-01

    Polarization hadron experiments at high energies continue to generate surprises. Many questions remain unanswered or unanswerable within the frame work of QCD. These include such basic questions as to why at high energies the polarization analyzing power in pp elastic scattering remains high, why hyperons are produced with high polarizations etc. It is, therefore, interesting to investigate the possibilities of accelerating and storing polarized beams in high energy colliders. On the technical side the recent understanding and confirmation of the actions of partial and multiple Siberian snakes made it possible to contemplate accelerating and storing polarized hadron beams to multi-TeV energies. In this paper, we will examine the equipment, the operation and the procedure required to obtain colliding beams of polarized protons at TeV energies.

  7. STATUS AND RECENT PERFORMANCE OF THE ACCELERATORS THAT SERVE AS GOLD INJECTOR FOR RHIC.

    SciTech Connect

    AHRENS,L.; ALESSI,J.; VAN ASSELT,W.; BENJAMIN,J.; BLASKIEWICZ,M.; BRENNAN,J.M.; BROWN,K.A.; CARLSON,C.; DELONG,J.; GARDNER,C.J.; GLENN,J.W.; HAYES,T.; ROSER,T.; SMITH,K.S.; STESKI,D.; TSOUPAS,N.; ZENO,K.; ZHANG,S.Y.

    2001-06-18

    The recent successful commissioning and operation [1] of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) requires the injection of gold ions of specified energy and intensity with longitudinal and transverse emittances small enough to meet the luminosity requirements of the collider. Ion beams with the desired characteristics are provided by a series of three accelerators, the Tandem, Booster and AGS. The current status and recent performance of these accelerators are reviewed in this paper.

  8. Beam commissioning of the RFQ for the RHIC-EBIS project

    SciTech Connect

    Okamura,M.; Alessi, J.; Beebe, E.; Lodestro, V.; Pikin, A.; Ritter, J.; Tamura, J.; Kanesue, T.; Schempp, A.; Schmidt, J.; Vossberg, M.

    2009-05-04

    Beam commissioning of a new 4 rod RFQ has started at Brookhaven National Laboratory (BNL). The RFQ will accelerate intense heavy ion beams provided by an Electron Beam ion Source (EBIS) up to 300 keV/u. The RFQ will accelerate a range of Q/M from 1 to 1/6, and the accelerated beam will be finally delivered to the Relativistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory (NSRL). The first beam was successfully accelerated and the bunch structures of He{sup +} and Cu{sup 10+} beams were measured. The further beam tests are in progress.

  9. MEQALAC development at Brookhaven

    SciTech Connect

    Gammel, G.; Brodowski, J.; Keane, J.; Maschke, A.; Meier, E.; Mobley, R.; Sanders, R.

    1981-01-01

    A novel method of transporting and accelerating high brightness ion beams, called MEQALAC, has been developed at Brookhaven. The concept and its motivation will be described first, with reference to other sources for detail, and then the performance of two operating MEQALAC's will be presented.

  10. Field quality aspects of CBA superconducting magnets

    SciTech Connect

    Kahn, S.; Engelmann, R.; Fernow, R.; Greene, A.F.; Herrera, J.; Kirk, H.; Skaritka, J.; Wanderer, P.; Willen, E.

    1983-01-01

    A series of superconducting dipole magnets for the BNL Colliding Beam Accelerator which were manufactured to have the proper field quality characteristics has been tested. This report presents the analysis of the field harmonics of these magnets.

  11. SAFETY ENGINEERING FOR THE RELATIVISTIC HEAVY ION COLLIDER AT THE BROOKHAVEN NATIONAL LABORATORY.

    SciTech Connect

    MUSOLINO,S.V.

    1999-11-14

    THERE ARE ONLY A FEW OTHER HIGH ENERGY PARTICLE ACCELERATORS LIKE RHIC IN THE WORLD. THEREFORE, THE DESIGNERS OF THE MACHINE DO NOT ALWAYS HAVE CONSENSUS DESIGN STANDARDS AND REGULATORY GUIDANCE AVAILABLE TO ESTABLISH THE ENGINEERING PARAMETERS FOR SAFETY. SOME OF THE AREAS WHERE STANDARDS ARE NOT AVAILABLE RELATE TO THE CRYOGENIC SYSTEM, CONTAINMENT OF LARGE VOLUMES OF FLAMMABLE GAS IN FRAGILE VESSELS IN THE EXPERIMENTAL APPARATUS AND MITIGATION OF A DESIGN BASIS ACCIDENT WITH A STORED PARTICLE BEAM. UNIQUE BUT EQUIVALENT SAFETY ENGINEERING MUST BE DETERMINED. SPECIAL DESIGN CRITERIA FOR PROMPT RADIATION WERE DEVELOPED TO PROVIDE GUIDANCE FOR THE DESIGN OF RADIATION SHIELDING.

  12. SciDAC advances in beam dynamics simulation: from light sources to colliders

    SciTech Connect

    Qiang, J.; Borland, M.; Kabel, A.; Li, Rui; Ryne, Robert; Stern, E.; Wang, Y.; Wasserman, H.; Zhang, Y.

    2008-08-01

    In this paper, we report on progress that has been made in beam dynamics simulation, from light sources to colliders, during the first year of the SciDAC-2 accelerator project 'Community Petascale Project for Accelerator Science and Simulation (ComPASS).' Several parallel computational tools for beam dynamics simulation are described. Also presented are number of applications in current and future accelerator facilities (e.g., LCLS, RHIC, Tevatron, LHC, and ELIC).

  13. SciDAC advances in beam dynamics simulation: from light sources to colliders

    SciTech Connect

    Qiang, Ji; Qiang, J.; Borland, M.; Kabel, A.; Li, R.; Ryne, R.; Stern, E.; Wang, Y.; Wasserman, H.; Zhang, Y.

    2008-06-16

    In this paper, we report on progress that has been made in beam dynamics simulation, from light sources to colliders, during the first year of SciDAC-II accelerator project,"Community Petascale Project for Accelerator Science and Simulation (ComPASS)." Several parallel computational tools for beam dynamics simulation will be described. A number of applications in current and future accelerator facilities, e.g., LCLS, RHIC, Tevatron, LHC, ELIC, are presented.

  14. Calculating Beam Breakup in Superconducting Linear Accelerators

    SciTech Connect

    Geoffrey Krafft; Joseph Bisognano; Sharon Laubach

    1990-02-09

    As the intensity of a particle beam passing through a linear accelerator is raised, interactions between particles play an increasingly prominent role in determining the overall dynamics of the beam. These many body effects, known collectively as beam breakup, tend to degrade the quality of the transported beam, and hence they must be calculated to accurately predict the evolution of the beam as it traverses the accelerator. Several codes which compute various collective effects have been developed and used to simulate the dynamics of beams passing through superconducting accelerator structures. All the codes use the same basic algorithm: the beam is tracked through elements giving the focusing forces on the particles, and at the appropriate locations in the linac, localized forces are impressed on the particles which model the electromagnetic interactions. Here, a difficulty is that the usual ''Coulomb'' interaction between particles is changed by the electromagnetic environment of the accelerator. By such calculations it has been shown that recirculating linear accelerators such as the one being built at the Continuous Electron Beam Accelerator Facility (CEBAF) should remain stable against multipass beam breakup instability as long as the average current does not exceed about 20 mA, that the beam quality at CEBAF will be degraded when the single bunch charge approaches 10{sup 9} electrons, and that the beam quality of superconducting linacs that are optimized for high current transport begins to decrease at around 10{sup 10} electrons per bunch. The latter result is of interest to individuals who would use superconducting linacs as beam sources for free electron lasers or for superconducting colliders for high energy physics research.

  15. FUTURE LEPTON COLLIDERS AND LASER ACCELERATION

    SciTech Connect

    PARSA,Z.

    2000-05-30

    Future high energy colliders along with their physics potential, and relationship to new laser technology are discussed. Experimental approaches and requirements for New Physics exploration are also described.

  16. Evaluation of CBA first string full cell vacuum system

    SciTech Connect

    Foerster, C.L.; Briggs, J.; Christianson, C.; Stattel, P.

    1983-01-01

    The CBA (Colliding Beam Accelerator, formerly known as ISABELLE) Full Cell Magnet System consisting of six superconducting dipole magnets and two superconducting quadrupole magnets requires two separate vacuum systems. One, known as beam vacuum operates below 3 x 10/sup -11/ Torr and the other, known as insulating vacuum, operates at less than 10/sup -7/ Torr to isolate cryo circuits from atmosphere and from the uhv beam tubes. The uhv bore tube is isolated from the 4.0/sup 0/K magnet by thirty-six (36) layers of superinsulation and insulating vacuum. Heat load measurements on the bore tube have been completed and found to agree with data obtained in smaller controlled experiments. Measurements of helium, accumulated on cryogenic pumped charcoal panels over many weeks, have verified sensitive helium mass spectrometer leak detection methods for vacuum integrity, providing sound design of the welded complex. The Full Cell was assembled and operated under conditions that would exist in the completed machine. Pressures below 2 x 10/sup -11/ Torr beam vacuum requirement and below 2 x 10/sup -7/ Torr insulating vacuum, were routinely achieved during all phases of the Full Cell operation and support systems testing.

  17. Emergency Procedure Training for Reactor Operators at the High Flux Beam Reactor for Brookhaven National Laboratory.

    ERIC Educational Resources Information Center

    Reyer, Ronald

    A project was conducted to analyze, design, develop, implement, and evaluate an instructional unit intended to improve the diagnostic skills of operating personnel in responding to abnormal and emergency conditions at the High Flux Beam Reactor at Brookhaven National Laboratory. Research was conducted on the occurrence of emergencies at similar…

  18. Fast cooling, muon acceleration and the prospect of muon colliders

    NASA Astrophysics Data System (ADS)

    Palmer, Mark

    Facilities based on stored muons offer unique potential for future high-energy physics capabilities. Three key characteristics of the muon make this possible: * The muon is a lepton; * The muon is roughly 200 times as massive as the electron; * The muon decays to an electron and two neutrinos. As the next heavier members of the lepton family with respect to the electron and positron, μ+ and μ-. beams can be collided to provide a precision lepton probe of the electroweak couplings. This makes a muon collider a suitable option for a lepton collider companion to a hadron collider discovery machine...

  19. Status and future directions for advanced accelerator research - conventional and non-conventional collider concepts

    SciTech Connect

    Siemann, R.H.

    1997-01-01

    The relationship between advanced accelerator research and future directions for particle physics is discussed. Comments are made about accelerator research trends in hadron colliders, muon colliders, and e{sup +}3{sup {minus}} linear colliders.

  20. Colliding beam fusion reactor space propulsion system

    NASA Astrophysics Data System (ADS)

    Wessel, Frank J.; Binderbauer, Michl W.; Rostoker, Norman; Rahman, Hafiz Ur; O'Toole, Joseph

    2000-01-01

    We describe a space propulsion system based on the Colliding Beam Fusion Reactor (CBFR). The CBFR is a high-beta, field-reversed, magnetic configuration with ion energies in the range of hundreds of keV. Repetitively-pulsed ion beams sustain the plasma distribution and provide current drive. The confinement physics is based on the Vlasov-Maxwell equation, including a Fokker Planck collision operator and all sources and sinks for energy and particle flow. The mean azimuthal velocities and temperatures of the fuel ion species are equal and the plasma current is unneutralized by the electrons. The resulting distribution functions are thermal in a moving frame of reference. The ion gyro-orbit radius is comparable to the dimensions of the confinement system, hence classical transport of the particles and energy is expected and the device is scaleable. We have analyzed the design over a range of 106-109 Watts of output power (0.15-150 Newtons thrust) with a specific impulse of, Isp~106 sec. A 50 MW propulsion system might involve the following parameters: 4-meters diameter×10-meters length, magnetic field ~7 Tesla, ion beam current ~10 A, and fuels of either D-He3,P-B11,P-Li6,D-Li6, etc. .

  1. Colliding Beam Fusion Reactor Space Propulsion System

    NASA Astrophysics Data System (ADS)

    Cheung, A.; Binderbauer, M.; Liu, F.; Qerushi, A.; Rostoker, N.; Wessel, F. J.

    2004-02-01

    The Colliding Beam Fusion Reactor Space Propulsion System, CBFR-SPS, is an aneutronic, magnetic-field-reversed configuration, fueled by an energetic-ion mixture of hydrogen and boron11 (H-B11). Particle confinement and transport in the CBFR-SPS are classical, hence the system is scaleable. Fusion products are helium ions, α-particles, expelled axially out of the system. α-particles flowing in one direction are decelerated and their energy recovered to ``power'' the system; particles expelled in the opposite direction provide thrust. Since the fusion products are charged particles, the system does not require the use of a massive-radiation shield. This paper describes a 100 MW CBFR-SPS design, including estimates for the propulsion-system parameters and masses. Specific emphasis is placed on the design of a closed-cycle, Brayton-heat engine, consisting of heat-exchangers, turbo-alternator, compressor, and finned radiators.

  2. Ion Accelerator Merges Several Beams

    NASA Technical Reports Server (NTRS)

    Aston, G.

    1984-01-01

    Intense ion beam formed by merging multiple ion beamlets into one concentrated beam. Beamlet holes in graphite screen and focusing grids arranged in hexagonal pattern. Merged beam passes through single hole in each of aluminum accelerator and decelerator grids. Ion extraction efficiency, beam intensity, and focusing improved.

  3. When will we know a muon collider is feasible? Status and directions of muon accelerator R&D

    SciTech Connect

    Shiltsev, Vladimir; /Fermilab

    2010-03-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture, accelerate and collide high intensity beams of muons. At present, a high-luminosity multi-TeV muon collider presents a viable option for the next generation of lepton-lepton collider, which is believed to be needed to fully explore high energy physics in the era following the LHC discoveries. This paper briefly reviews the status of the accelerator R&D, addresses the question of the feasibility of a Muon Collider, what needs to be done to prove it and presents projected timeline of the project.

  4. Physics potential of the CBA: a summary

    SciTech Connect

    Baggett, N.; Gibbard, B.; Gordon, H.; Paige, F.; Trueman, T.L.

    1983-03-09

    The purpose of this summary is to bring to the attention of the high energy physics community the wide variety of new physics experiments that the high luminosity and high energy of CBA will make possible. These examples are intended to illustrate the power and flexibility of the machine. It will provide the facilities for a very large number of experimentalists to pursue a broad range of physics. The high luminosity allows not only the study of rare processes but also the use of small, special purpose detectors. The six interaction regions can be arranged in different configurations, so, for example, one can be at very high luminosity for a ..mu../sup +/..mu../sup -/ experiment, another can have a small diamond for use with a vertex detector, and so on. There is the possibility of polarized protons, heavy ions and variable energies in the two rings. The machine will be dedicated solely to colliding beam physics. There is a great deal of very important physics that will clearly be done if CBA is built: detailed studies of the W and its interactions, extensive studies of the properties of the b-quark, systematic studies of QCD and proton structure through the Drell-Yan and high p/sub T/ processes, new flavor searches in a significant mass range. In the more speculative area, supersymmetry, technicolor, composite models and alternatives to the standard electroweak theory have been considered, not so much as tests of these theories as tests of the capabilities of the machine. These examples should demonstrate the power of the CBA to probe deeply into nature's secrets and to move nearer an understanding of the fundamental theory, whatever it may be. The CBA would provide the world's high energy physics community with a unique and valuable resource.

  5. Laser cooling of electron beams for linear colliders

    SciTech Connect

    Telnov, V.

    1996-10-01

    A novel method of electron beam cooling is considered which can be used for linear colliders. The electron beam is cooled during collision with focused powerful laser pulse. With reasonable laser parameters (laser flash energy about 10 J) one can decrease transverse beam emittances by a factor about 10 per one stage. The ultimate transverse emittances are much below that given by other methods. Depolarization of a beam during the cooling is about 5--15% for one stage. This method is especially useful for photon colliders and open new possibilities for e{sup +}e{sup {minus}} colliders and x-ray FEL based on high energy linacs.

  6. Beam dynamics problems for a {mu}{sup +}-{mu}{sup -} collider

    SciTech Connect

    Neuffer, D.

    1997-06-01

    A {mu}{sup +}-{mu}{sup -} collider requires a high-intensity proton source for {pi}-production, a high-acceptance {pi}-{mu} decay channel, a {mu}-cooling system, a rapid acceleration system, and a high-luminosity collider ring for the collision of short, intense {mu}{sup +}-{mu}{sup -} bunches. Significant beam-dynamics problems exist in each of these systems. These problems and some paths to solutions are discussed in this paper.

  7. Brookhaven highlights

    SciTech Connect

    Rowe, M.S.; Cohen, A.; Greenberg, D.; Seubert, L.

    1992-01-01

    This publication provides a broad overview of the research programs and efforts being conducted, built, designed, and planned at Brookhaven National Laboratory. This work covers a broad range of scientific disciplines. Major facilities include the Alternating Gradient Synchrotron (AGS), with its newly completed booster, the National Synchrotron Light Source (NSLS), the High Flux Beam Reactor (HFBR), and the RHIC, which is under construction. Departments within the laboratory include the AGS department, accelerator development, physics, chemistry, biology, NSLS, medical, nuclear energy, and interdepartmental research efforts. Research ranges from the pure sciences, in nuclear physics and high energy physics as one example, to environmental work in applied science to study climatic effects, from efforts in biology which are a component of the human genome project to the study, production, and characterization of new materials. The paper provides an overview of the laboratory operations during 1992, including staffing, research, honors, funding, and general laboratory plans for the future.

  8. Experimental demonstration of colliding beam lifetime improvement by electron lenses

    SciTech Connect

    Shiltsev, Vladimir; Alexahin, Yuri; Kamerdzhiev, Vsevolod; Kuznetsov, Gennady; Zhang, Xiao-Long; Bishofberger, Kip; /Los Alamos

    2007-10-01

    We report successful application of space-charge forces of a low-energy electron beam for improvement of particle lifetime determined by beam-beam interaction in high-energy collider. In our experiments, an electron lens, a novel instrument developed for the beam-beam compensation, was set on a 980-GeV proton bunch in the Tevatron proton-antiproton collider. The proton bunch losses due to its interaction with antiproton beam were reduced by a factor of 2 when the electron lens was operating. We describe the principle of electron lens operation and present experimental results.

  9. Design study of primary ion provider for relativistic heavy ion collider electron beam ion source.

    PubMed

    Kondo, K; Kanesue, T; Tamura, J; Okamura, M

    2010-02-01

    Brookhaven National Laboratory has developed the new preinjector system, electron beam ion source (EBIS) for relativistic heavy ion collider (RHIC) and National Aeronautics and Space Administration Space Radiation Laboratory. Design of primary ion provider is an essential problem since it is required to supply beams with different ion species to multiple users simultaneously. The laser ion source with a defocused laser can provide a low charge state and low emittance ion beam, and is a candidate for the primary ion source for RHIC-EBIS. We show a suitable design with appropriate drift length and solenoid, which helps to keep sufficient total charge number with longer pulse length. The whole design of primary ion source, as well as optics arrangement, solid targets configuration and heating about target, is presented. PMID:20192366

  10. SciDAC Advances in Beam Dynamics Simulation: From Light Sources to Colliders

    SciTech Connect

    Qiang, J.; Borland, M.; Kabel, A.; Li, R.; Ryne, R.; Stern, E.; Wang, Y.; Wasserman, H.; Zhang, Y.; /SLAC

    2011-11-14

    In this paper, we report on progress that has been made in beam dynamics simulation, from light sources to colliders, during the first year of the SciDAC-2 accelerator project 'Community Petascale Project for Accelerator Science and Simulation (ComPASS).' Several parallel computational tools for beam dynamics simulation are described. Also presented are number of applications in current and future accelerator facilities (e.g., LCLS, RHIC, Tevatron, LHC, and ELIC). Particle accelerators are some of most important tools of scientific discovery. They are widely used in high-energy physics, nuclear physics, and other basic and applied sciences to study the interaction of elementary particles, to probe the internal structure of matter, and to generate high-brightness radiation for research in materials science, chemistry, biology, and other fields. Modern accelerators are complex and expensive devices that may be several kilometers long and may consist of thousands of beamline elements. An accelerator may transport trillions of charged particles that interact electromagnetically among themselves, that interact with fields produced by the accelerator components, and that interact with beam-induced fields. Large-scale beam dynamics simulations on massively parallel computers can help provide understanding of these complex physical phenomena, help minimize design cost, and help optimize machine operation. In this paper, we report on beam dynamics simulations in a variety of accelerators ranging from next generation light sources to high-energy ring colliders that have been studied during the first year of the SciDAC-2 accelerator project.

  11. Transformer ratio improvement for beam based plasma accelerators

    SciTech Connect

    O'Shea, Brendan; Rosenzweig, James; Barber, Samuel; Fukasawa, Atsushi; Williams, Oliver; Muggli, Patric; Yakimenko, Vitaly; Kusche, Karl

    2012-12-21

    Increasing the transformer ratio of wakefield accelerating systems improves the viability of present novel accelerating schemes. The use of asymmetric bunches to improve the transformer ratio of beam based plasma systems has been proposed for some time[1, 2] but suffered from lack appropriate beam creation systems. Recently these impediments have been overcome [3, 4] and the ability now exists to create bunches with current profiles shaped to overcome the symmetric beam limit of R {<=} 2. We present here work towards experiments designed to measure the transformer ratio of such beams, including theoretical models and simulations using VORPAL (a 3D capable PIC code) [5]. Specifically we discuss projects to be carried out in the quasi-nonlinear regime [6] at the UCLA Neptune Laboratory and the Accelerator Test Facility at Brookhaven National Lab.

  12. Structural biology facilities at Brookhaven National Laboratory`s high flux beam reactor

    SciTech Connect

    Korszun, Z.R.; Saxena, A.M.; Schneider, D.K.

    1994-12-31

    The techniques for determining the structure of biological molecules and larger biological assemblies depend on the extent of order in the particular system. At the High Flux Beam Reactor at the Brookhaven National Laboratory, the Biology Department operates three beam lines dedicated to biological structure studies. These beam lines span the resolution range from approximately 700{Angstrom} to approximately 1.5{Angstrom} and are designed to perform structural studies on a wide range of biological systems. Beam line H3A is dedicated to single crystal diffraction studies of macromolecules, while beam line H3B is designed to study diffraction from partially ordered systems such as biological membranes. Beam line H9B is located on the cold source and is designed for small angle scattering experiments on oligomeric biological systems.

  13. A high intensity positron beam at the Brookhaven reactor

    SciTech Connect

    Weber, M.; Lynn, K.G.; Roellig, L.O.; Mills, A.P. Jr.; Moodenbaugh, A.R.

    1987-01-01

    We describe a high intensity, low energy positron beam utilizing high specific activity /sup 64/Cu sources (870 Ci/g) produced in a reactor with high thermal neutron flux. Fast-to-slow moderation can be performed in a self moderation mode or with a transmission moderator. Slow positron rates up to 1.6 x 10/sup 8/ e/sup +//s with a half life of 12.8 h are calculated. Up to 1.0 x 10/sup 8/ e/sup +//s have been observed. New developments including a Ne moderator and an on-line isotope separation process are discussed. 21 refs., 9 figs.

  14. Beam-induced energy deposition issues in the Very Large Hadron Collider

    SciTech Connect

    Nikolai V. Mokhov; Alexandr I. Drozhdin; G. William Foster

    2001-06-26

    Energy deposition issues are extremely important in the Very Large Hadron Collider (VLHC) with huge energy stored in its 20 TeV (Stage-1) and 87.5 TeV (Stage-2) beams. The status of the VLHC design on these topics, and possible solutions of the problems are discussed. Protective measures are determined based on the operational and accidental beam loss limits for the prompt radiation dose at the surface, residual radiation dose, ground water activation, accelerator components radiation damage and quench stability. The beam abort and beam collimation systems are designed to protect accelerator from accidental and operational beam losses, IP region quadrupoles from irradiation by the products of beam-beam collisions, and to reduce the accelerator-induced backgrounds in the detectors.

  15. INTRA-BEAM SCATTERING SCALING FOR VERY LARGE HADRON COLLIDERS.

    SciTech Connect

    WEI,J.; PARZEN,G.

    2001-06-18

    For Very Large Hadron Colliders (VLHC), flat hadron beams [2] with their vertical emittance much smaller than their horizontal emittance are proposed to maximize the design luminosity. Emittance growth caused by intra-beam scattering (IBS) is a concern on the realization of such flat-beam conditions. Based on existing IBS formalism on beams of Gaussian distribution, we analytically derive [6] the IBS growth rate and determine the IBS limit on the aspect ratio for a flat beam.

  16. Laser triggered injection of electrons in a laser wakefield accelerator with the colliding pulse method

    SciTech Connect

    Nakamura, K.; Fubiani, G.; Geddes, C.G.R.; Michel, P.; van Tilborg, J.; Toth, C.; Esarey, E.; Schroeder, C.B.; Leemans, W.P.

    2004-10-22

    An injection scheme for a laser wakefield accelerator that employs a counter propagating laser (colliding with the drive laser pulse, used to generate a plasma wake) is discussed. The threshold laser intensity for electron injection into the wakefield was analyzed using a heuristic model based on phase-space island overlap. Analysis shows that the injection can be performed using modest counter propagating laser intensity a{sub 1} < 0.5 for a drive laser intensity of a{sub 0} = 1.0. Preliminary experiments were preformed using a drive beam and colliding beam. Charge enhancement by the colliding pulse was observed. Increasing the signal-to-noise ratio by means of a preformed plasma channel is discussed.

  17. Precision measurements of the SLC (Stanford Linear Collider) beam energy

    SciTech Connect

    Kent, J.; King, M.; Von Zanthier, C.; Watson, S.; Levi, M.; Rouse, F.; Bambade, P.; Erickson, R.; Jung, C.K.; Nash, J.

    1989-03-01

    A method of precisely determining the beam energy in high energy linear colliders has been developed using dipole spectrometers and synchrotron radiation detectors. Beam lines implementing this method have been installed on the Stanford Linear Collider. An absolute energy measurement with an accuracy of better than deltaE/E = 5 /times/ 10/sup /minus/4/ can be achieved on a pulse-to-pulse basis. The operation of this system will be described. 4 refs., 3 figs., 1 tab.

  18. Beam-based alignment technique for the SLC (Stanford Linear Collider) linac

    SciTech Connect

    Adolphsen, C.E.; Lavine, T.L.; Atwood, W.B.; Himel, T.M.; Lee, M.J.; Mattison, T.S.; Pitthan, R.; Seeman, J.T.; Williams, S.H.; Trilling, G.H.

    1989-03-01

    Misalignment of quadrupole magnets and beam position monitors (BPMs) in the linac of the SLAC Linear Collider (SLC) cause the electron and positron beams to be steered off-center in the disk-loaded waveguide accelerator structures. Off-center beams produce wakefields which limit the SLC performance at high beam intensities by causing emittance growth. Here, we present a general method for simultaneously determining quadrupole magnet and BPM offsets using beam trajectory measurements. Results from the application of the method to the SLC linac are described. The alignment precision achieved is approximately 100 ..mu..m, which is significantly better than that obtained using optical surveying techniques. 2 refs., 4 figs.

  19. Beam dump experiment at future electron-positron colliders

    NASA Astrophysics Data System (ADS)

    Kanemura, Shinya; Moroi, Takeo; Tanabe, Tomohiko

    2015-12-01

    We propose a new beam dump experiment at future colliders with electron (e-) and positron (e+) beams, BDee, which will provide a new possibility to search for hidden particles, like hidden photon. If a particle detector is installed behind the beam dump, it can detect the signal of in-flight decay of the hidden particles produced by the scatterings of e± beams off materials for dumping. We show that, compared to past experiments, BDee (in particular BDee at e+e- linear collider) significantly enlarges the parameter region where the signal of the hidden particle can be discovered.

  20. Tests of the FONT3 Linear Collider Intra-Train Beam Feedback System at the ATF

    SciTech Connect

    Burrows, P.N.; Christian, G.; Clarke, C.; Hartin, A.; Dabiri Khah, H.; Molloy, S.; White, G.R.; Frisch, J.C.; Markiewicz, T.W.; McCormick, D.J.; Ross, M.C.; Smith, S.; Smith, T.J.; Kalinin, A.; Perry, C.; /Oxford Instruments

    2006-03-14

    We report preliminary results of beam tests of the FONT3 Linear Collider intra-train position feedback system prototype at the Accelerator Test Facility at KEK. The feedback system incorporates a novel beam position monitor (BPM) processor with a latency below 5 nanoseconds, and a kicker driver amplifier with similar low latency. The 56 nanosecond-long bunchtrain in the ATF extraction line was used to test the prototype BPM processor. The achieved latency will allow a demonstration of intra-train feedback on timescales relevant even for the CLIC Linear Collider design.

  1. 62-TeV center of mass hadron collider with superbunch beams

    SciTech Connect

    Ryuji Yamada et al.

    2001-11-05

    The scheme of a 62-TeV center of mass p-p collider with superbunch beams at Fermilab is proposed as a practical and realistically achievable future project. It will be built in two stages, using the same tunnel, first with a 2 Tesla low field magnet collider ring and later with a 10 Tesla high field magnet collider ring. Both low and high field magnets have twin bore aperture and will be installed in the tunnel with the circumference of 87.25 km. In each bore a proton beam is accelerated, using induction cavities to increase luminosity. In the first stage they install a 7 TeV accelerator ring with operating field of 2 Tesla, based on the superferric transmission-line design. This ring will be operated at a 14-TeV center of mass collider. This will have the same energy as the LHC, but it will have 15 times higher luminosity, namely 1.5 x 10{sup 35}/cm{sup 2}/sec. The estimated synchrotron radiation is negligible with this machine. The existing Fermilab accelerator system, including the 150 GeV main injector, will be used as the injector system. Its rough cost estimation and schedule for this first stage are presented. In the second stage proton beams are accelerated, also using induction cavities up to 31 TeV with the 10 Tesla dipole magnets. The counter circulating beams will collide with the 62-TeV center of mass energy. With the superbunch beams they can expect the luminosity can be increased about 15 times more than the conventional method with RF cavities. It will be 10{sup 35}/cm{sup 2}/sec. In the second stage, the synchrotron radiation power will be about 12 W/m, and they need an elaborated beam screen.

  2. Proposal of the Next Incarnation of Accelerator Test Facility at KEK for the International Linear Collider

    SciTech Connect

    Araki, S.; Hayano, H.; Higashi, Y.; Honda, Y.; Kanazawa, K.; Kubo, K.; Kume, T.; Kuriki, M.; Kuroda, S.; Masuzawa, M.; Naito, T.; Okugi, T.; Sugahara, R.; Takahashi, T.; Tauchi, T.; Terunuma, N.; Toge, N.; Urakawa, J.; Vogel, V.; Yamaoka, H.; Yokoya, K.; /KEK, Tsukuba /Beijing, Inst. High Energy Phys. /Novosibirsk, IYF /Daresbury /CERN /Hiroshima U. /Orsay, LAL /LLNL, Livermore /North Carolina A-T State U. /Oxford U. /Pohang Accelerator Lab. /Queen Mary, U. of London /Royal Holloway, U. of London /DESY /SLAC /University Coll. London /Oregon U. /Tokyo U.

    2005-05-27

    To reach design luminosity, the International Linear Collider (ILC) must be able to create and reliably maintain nanometer size beams. The ATF damping ring is the unique facility where ILC emittances are possible. In this paper we present and evaluate the proposal to create a final focus facility at the ATF which, using compact final focus optics and an ILC-like bunch train, would be capable of achieving 37 nm beam size. Such a facility would enable the development of beam diagnostics and tuning methods, as well as the training of young accelerator physicists.

  3. A Concept of Plasma Wake Field Acceleration Linear Collider (PWFA-LC)

    SciTech Connect

    Seryi, Andrei; Hogan, Mark; Pei, Shilun; Raubenheimer, Tor; Tenenbaum, Peter; Katsouleas, Tom; Huang, Chengkun; Joshi, Chan; Mori, Warren; Muggli, Patric; /Southern California U.

    2009-10-30

    Plasma Wake-Field Acceleration (PWFA) has demonstrated acceleration gradients above 50 GeV/m. Simulations have shown drive/witness bunch configurations that yield small energy spreads in the accelerated witness bunch and high energy transfer efficiency from the drive bunch to the witness bunch, ranging from 30% for a Gaussian drive bunch to 95% for a shaped longitudinal profile. These results open the opportunity for a linear collider that could be compact, efficient and more cost effective that the present microwave technologies. A concept of a PWFA-based Linear Collider (PWFA-LC) has been developed and is described in this paper. The drive beam generation and distribution, requirements on the plasma cells, and optimization of the interaction region parameters are described in detail. The R&D steps needed for further development of the concept are also outlined.

  4. Seismic hazard studies for the High Flux Beam Reactor at Brookhaven National Laboratory

    SciTech Connect

    Costantino, C.J.; Heymsfield, E. . Dept. of Civil Engineering); Park, Y.J.; Hofmayer, C.H. )

    1991-01-01

    This paper presents the results of a calculation to determine the site specific seismic hazard appropriate for the deep soil site at Brookhaven National Laboratory (BNL) which is to be used in the risk assessment studies being conducted for the High Flux Beam Reactor (HFBR). The calculations use as input the seismic hazard defined for the bedrock outcrop by a study conducted at Lawrence Livermore National Laboratory (LLNL). Variability in site soil properties were included in the calculations to obtain the seismic hazard at the ground surface and compare these results with those using the generic amplification factors from the LLNL study. 9 refs., 8 figs.

  5. Injection of electrons by colliding laser pulses in a laser wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Hansson, M.; Aurand, B.; Ekerfelt, H.; Persson, A.; Lundh, O.

    2016-09-01

    To improve the stability and reproducibility of laser wakefield accelerators and to allow for future applications, controlling the injection of electrons is of great importance. This allows us to control the amount of charge in the beams of accelerated electrons and final energy of the electrons. Results are presented from a recent experiment on controlled injection using the scheme of colliding pulses and performed using the Lund multi-terawatt laser. Each laser pulse is split into two parts close to the interaction point. The main pulse is focused on a 2 mm diameter gas jet to drive a nonlinear plasma wave below threshold for self-trapping. The second pulse, containing only a fraction of the total laser energy, is focused to collide with the main pulse in the gas jet under an angle of 150°. Beams of accelerated electrons with low divergence and small energy spread are produced using this set-up. Control over the amount of accelerated charge is achieved by rotating the plane of polarization of the second pulse in relation to the main pulse. Furthermore, the peak energy of the electrons in the beams is controlled by moving the collision point along the optical axis of the main pulse, and thereby changing the acceleration length in the plasma.

  6. Controlled laser plasma wakefield acceleration of electrons via colliding pulse injection in non-collinear geometry

    NASA Astrophysics Data System (ADS)

    Toth, Csaba; Nakamura, Kei; Geddes, Cameron; Panasenko, Dmitriy; Plateau, Guillaume; Matlis, Nicholas; Schroeder, Carl; Esarey, Eric; Leemans, Wim

    2007-11-01

    Colliding laser pulses [1] have been proposed as a method for controlling injection of electrons into a laser wakefield accelerator (LWFA) and hence producing high quality electron beams with energy spread below 1% and normalized emittances < 1 micron. The. One pulse excites a plasma wake, and a collinear pulse following behind it collides with a counterpropagating pulse forming a beat pattern that boosts background electrons into accelerating phase. A variation of the original method uses only two laser pulses [2] which may be non-collinear. The first pulse drives the wake, and beating of the trailing edge of this pulse with the colliding pulse injects electrons. Non-collinear injection avoids optical elements on the electron beam path (avoiding emittance growth). We report on progress of non-collinear experiments at LBNL, using the Ti:Sapphire laser at the LOASIS facility of LBNL. New results indicate that the electron beam properties are affected by the presence of the second beam. [1] E. Esarey, et al, Phys. Rev. Lett 79, 2682 (1997) [2] G. Fubiani, Phys. Rev. E 70, 016402 (2004)

  7. Radio frequency systems for present and future accelerators

    SciTech Connect

    Raka, E.C.

    1987-01-01

    Rf systems are described for the FNAL Main Ring and Tevatron Ring, CERN SPS and LEP, and HERA proton acceleration system, CERN PS e/sup +/e/sup minus/ acceleration system, and CERN EPA monochromatic cavity. Low impedance rf systems in CERN ISR, the Brookhaven CBA, and SSC are also discussed.

  8. Summary Report of Working Group 5: Electron Beam Driven Plasma Accelerators

    SciTech Connect

    Hogan, Mark J.; Conde, Manoel E.

    2009-01-22

    Electron beam driven plasma accelerators have seen rapid progress over the last decade. Recent efforts have built on this success by constructing a concept for a plasma wakefield accelerator based linear collider. The needs for any future collider to deliver both energy and luminosity have substantial implications for interpreting current experiments and setting priorities for the future. This working group reviewed current experiments and ideas in the context of the demands of a future collider. The many discussions and presentations are summarized here.

  9. A new method for RF power generation for two-beam linear colliders

    SciTech Connect

    Braun, H.; Corsini, R.; DAmico, T.; Delahaye, J.P.; Guignard, G.; Johnson, C.; Millich, A.; Pearce, P.; Rinolfi, L.; Riche, A.; Schulte, D.; Thorndahl, L.; Valentini, M.; Wilson, I.; Ruth, R.D.

    1999-05-01

    In this paper we discuss a new approach to two-beam acceleration. The energy for RF production is initially stored in a long-pulse electron beam which is efficiently accelerated to about 1.2 GeV by a fully loaded, conventional, low frequency ({approximately}1 GHz) linac. The beam pulse length is twice the length of the high-gradient linac. Segments of this long pulse beam are compressed using combiner rings to create a sequence of higher peak power drive beams with gaps in between. This train of drive beams is distributed from the end of the linac against the main beam direction down a common transport line so that each drive beam can power a section of the main linac. After a 180-degree turn, each high-current, low-energy drive beam is decelerated in low-impedance decelerator structures, and the resulting power is used to accelerate the low-current, high-energy beam in the main linac. The method discussed here seems relatively inexpensive, is very flexible and can be used to accelerate beams for linear colliders over the entire frequency and energy range. {copyright} {ital 1999 American Institute of Physics.}

  10. A new method for RF power generation for two-beam linear colliders

    SciTech Connect

    Braun, H.; Corsini, R.; D'Amico, T.; Delahaye, J. P.; Guignard, G.; Johnson, C.; Millich, A.; Pearce, P.; Rinolfi, L.; Riche, A.; Schulte, D.; Thorndahl, L.; Valentini, M.; Wilson, I.; Ruth, R. D.

    1999-05-07

    In this paper we discuss a new approach to two-beam acceleration. The energy for RF production is initially stored in a long-pulse electron beam which is efficiently accelerated to about 1.2 GeV by a fully loaded, conventional, low frequency ({approx}1 GHz) linac. The beam pulse length is twice the length of the high-gradient linac. Segments of this long pulse beam are compressed using combiner rings to create a sequence of higher peak power drive beams with gaps in between. This train of drive beams is distributed from the end of the linac against the main beam direction down a common transport line so that each drive beam can power a section of the main linac. After a 180-degree turn, each high-current, low-energy drive beam is decelerated in low-impedance decelerator structures, and the resulting power is used to accelerate the low-current, high-energy beam in the main linac. The method discussed here seems relatively inexpensive, is very flexible and can be used to accelerate beams for linear colliders over the entire frequency and energy range.

  11. Compensating tune spread induced by space charge in bunched beams

    SciTech Connect

    Litvinenko, V.; Wang, G.

    2015-05-03

    The effects of space charge play a significant role in modern-day accelerators, frequently constraining the beam parameters attainable in an accelerator or in an accelerator chain. They also can limit the luminosity of hadron colliders operating either at low energies or with sub-TeV high-brightness hadron beams. The latter is applied for strongly cooled proton and ion beams in eRHIC – the proposed future electron-ion collider at Brookhaven National Laboratory. Using an appropriate electron beam would compensate both the tune shift and the tune spread in the hadron beam in a coasting beam. But these methods cannot compensate space charge tune spread in a bunched hadron beam. In this paper we propose and evaluate a novel idea of using a co-propagating electron bunch with mismatched longitudinal velocity to compensate the space charge induced tune-shift and tune spread.

  12. An MCNPX accelerator beam source

    SciTech Connect

    Durkee, Joe W.; Elson, Jay S.; Jason, Andrew; Johns, Russell C.; Waters, Laurie S.

    2009-06-04

    MCNPX is a powerful Monte Carlo code that can be used to conduct sophisticated radiation-transport simulations involving complex physics and geometry. Although MCNPX possesses a wide assortment of standardized modeling tools, there are instances in which a user's needs can eclipse existing code capabilities. Fortunately, although it may not be widely known, MCNPX can accommodate many customization needs. In this article, we demonstrate source-customization capability for a new SOURCE subroutine as part of our development to enable simulations involving accelerator beams for active-interrogation studies. Simulation results for a muon beam are presented to illustrate the new accelerator-source capability.

  13. Optimization of parameters for the inline-injection system at Brookhaven Accelerator Test Facility

    SciTech Connect

    Parsa, Z.; Ko, S.K.

    1995-10-01

    We present some of our parameter optimization results utilizing code PARMLEA, for the ATF Inline-Injection System. The new solenoid-Gun-Solenoid -- Drift-Linac Scheme would improve the beam quality needed for FEL and other experiments at ATF as compared to the beam quality of the original design injection system. To optimize the gain in the beam quality we have considered various parameters including the accelerating field gradient on the photoathode, the Solenoid field strengths, separation between the gun and entrance to the linac as well as the (type size) initial charge distributions. The effect of the changes in the parameters on the beam emittance is also given.

  14. Effect of 3D Polarization profiles on polarization measurements and colliding beam experiments

    SciTech Connect

    Fischer, W.; Bazilevsky, A.

    2011-08-18

    The development of polarization profiles are the primary reason for the loss of average polarization. Polarization profiles have been parametrized with a Gaussian distribution. We derive the effect of 3-dimensional polarization profiles on the measured polarization in polarimeters, as well as the observed polarization and the figure of merit in single and double spin experiments. Examples from RHIC are provided. The Relativistic Heavy Ion Collider (RHIC) is the only collider of spin polarized protons. During beam acceleration and storage profiles of the polarization P develop, which affect the polarization measured in a polarimeter, and the polarization and figure of merit (FOM) in colliding beam experiments. We calculate these for profiles in all dimensions, and give examples for RHIC. Like in RHIC we call the two colliding beams Blue and Yellow. We use the overbar to designate intensity-weighted averages in polarimeters (e.g. {bar P}), and angle brackets to designate luminosity-weighted averages in colliding beam experiments (e.g.

    ).

  15. Linear accelerators for TeV colliders. Revision

    SciTech Connect

    Wilson, P.B.

    1985-10-01

    The basic scaling relations for important linear collider design parameters are introduced. Some of the basic concepts concerning the design of accelerating structures are presented, and breakdown limitations are discussed. Rf power sources are considered. Some of the key concepts of wakefield accelerators are discussed, and some examples of wake fields for typical linac structures are presented. Some general concepts concerning emittance, and the limitations on the emittance that can be obtained from linac guns and damping rings are discussed. 49 refs., 15 figs. (LEW)

  16. ACCELERATION OF POLARIZED BEAMS USING MULTIPLE STRONG PARTIAL SIBERIAN SNAKES.

    SciTech Connect

    ROSER,T.AHRENS,L.BAI,M.ET AL.

    2004-07-05

    Acceleration of polarized protons in the energy range of 5 to 25 GeV is particularly difficult since depolarizing spin resonances are strong enough to cause significant depolarization but full Siberian snakes cause intolerably large orbit excursions. Using a 20-30% partial Siberian snake both imperfection and intrinsic resonances can be overcome. Such a strong partial Siberian snake was designed for the Brookhaven AGS using a dual pitch helical superconducting dipole. Multiple strong partial snakes are also discussed for spin matching at beam injection and extraction.

  17. Fundamental beam-beam limit from head-on interaction in the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Ohmi, Kazuhito; Zimmermann, Frank

    2015-12-01

    The beam-beam limit at hadron colliders manifests itself in the form of degraded luminosity lifetime and/or reduced beam lifetime. In particular, for increasing beam intensity, the nonlinear beam-beam force causes incoherent emittance growth, while the (linear) coupling force between the two colliding beams can result in coherent beam-beam instabilities. These phenomena may be enhanced (or suppressed) by lattice errors, external noise, and other perturbations. We investigate the luminosity degradation caused both by incoherent emittance growth and by coherent beam-beam instability. The resulting beam-beam limit for an ideal machine and the of question how it is affected by some of the aforementioned errors are discussed in theory and simulation.

  18. eP physics at the CBA

    SciTech Connect

    Wiss, J.E.; White, D.H.; Morse, W.M.

    1982-01-01

    In this report we have tried to demonstrate how a 20 x 400 GeV eP facility at the CBA will complement the future physics of high energy e+e/sup -/ and hadron-hadron colliders. By offering the first glimpse of the physics of 17 TeV muon and neutrino beams, an eP collider will extend tests of the standard model by about an order of magnitude in spacelike momentum transfer, and thus close the final kinematic gap of knowledge about electro-weak processes. It will be especially interesting to test whether the lefthanded nature of the charged current observed at low spacelike momentum transfers persists to large, spacelike momentum transfers. A high energy eP collider also enables unique tests of QCD such as a study of high Q/sup 2/ scale breaking and the high P/sub t/ QCD Compton process. In addition to probing small distance behavior in kinematic regions orthogonal to other collider facilities, an eP facility will generate data useful to understanding the physics of e+e/sup -/ and hadron-hadron collisions. The current jet produced in the high energy eP neutral current process is produced against a single electron which can be used to predict the momentum of the quark which gives rise to the jet. Hence the central problem in jet physics of deducing the kinematics of a quark by measurement of its hadronization jet can be studied under uniquely controlled circumstances. Finally the high Q/sup 2/ structure functions of the proton which are essential in understanding hard process in hadron-hadron scattering can only be cleanly measured in an eP collider.

  19. Advances in Beam Cooling for Muon Colliders

    SciTech Connect

    R.P. Johnson, Y.S. Derbenev

    2006-09-01

    A six-dimensional (6D) ionization cooling channel based on helical magnets surrounding RF cavities filled with dense hydrogen gas is the basis for the latest plans for muon colliders. This helical cooling channel (HCC) has solenoidal, helical dipole, and helical quadrupole magnetic fields, where emittance exchange is achieved by using a continuous homogeneous absorber. Momentum-dependent path length differences in the dense hydrogen energy absorber provide the required correlation between momentum and ionization loss to accomplish longitudinal cooling. Recent studies of an 800 MHz RF cavity pressurized with hydrogen, as would be used in this application, show that the maximum gradient is not limited by a large external magnetic field, unlike vacuum cavities. Two new cooling ideas, Parametric-resonance Ionization Cooling and Reverse Emittance Exchange, will be employed to further reduce transverse emittances to a few mm-mr, which allows high luminosity with fewer muons than previously imagined. We describe these new ideas as well as a new precooling idea based on a HCC with z dependent fields that is being developed for an exceptional 6D cooling demonstration experiment. The status of the designs, simulations, and tests of the cooling components for a high luminosity, low emittance muon collider will be reviewed.

  20. Enhancement of the epithermal neutron beam at the Brookhaven Medical Research Reactor

    SciTech Connect

    Liu, Hungyuan B.; Brugger, R.M.; Rorer, D.C.

    1992-12-31

    Improvements for the Brookhaven Medical Research Reactor (BMRR) epithermal neutron beam have been evaluated by MCNP calculations and measurements. Different dosimetric measurements have been made after one fuel element was in place of the graphite stringer in the core. Measurements show an 18% increase of beam intensity without reducing the beam quality. These results are consistent with the predictions of an MCNP calculation. Major changes to enhance the beam include rearranging the fuel elements in the core, placing aluminum pellets in the moderator tank C, redesigning the moderator assembly, replacing the outer bismuth by lead plus 0.05% atomic number density of {sup 6}Li, and modifying the irradiation port to accommodate an air indentation. The MCNP calculated values for the present and new designs were compared to demonstrate the improvements. The results show that the epithermal flux can be increased by 80% at the irradiation port. The neutron dose per epithermal neutron can be reduced by 30%. The beam directionality can be improved by 7%.

  1. Enhancement of the epithermal neutron beam at the Brookhaven Medical Research Reactor

    SciTech Connect

    Liu, Hungyuan B.; Brugger, R.M.; Rorer, D.C.

    1992-01-01

    Improvements for the Brookhaven Medical Research Reactor (BMRR) epithermal neutron beam have been evaluated by MCNP calculations and measurements. Different dosimetric measurements have been made after one fuel element was in place of the graphite stringer in the core. Measurements show an 18% increase of beam intensity without reducing the beam quality. These results are consistent with the predictions of an MCNP calculation. Major changes to enhance the beam include rearranging the fuel elements in the core, placing aluminum pellets in the moderator tank C, redesigning the moderator assembly, replacing the outer bismuth by lead plus 0.05% atomic number density of [sup 6]Li, and modifying the irradiation port to accommodate an air indentation. The MCNP calculated values for the present and new designs were compared to demonstrate the improvements. The results show that the epithermal flux can be increased by 80% at the irradiation port. The neutron dose per epithermal neutron can be reduced by 30%. The beam directionality can be improved by 7%.

  2. Effect of Beam-Beam Interactions on Stability of Coherent Oscillations in a Muon Collider

    SciTech Connect

    Alexahin, Y.; Ohmi, K.; /KEK, Tsukuba

    2012-05-01

    In order to achieve peak luminosity of a muon collider in the 10{sup 34}/cm{sup 2}/s range the number of muons per bunch should be of the order of a few units of 10{sup 12} rendering the beam-beam parameter as high as 0.1 per IP. Such strong beam-beam interaction can be a source of instability if the working point is chosen close to a coherent beam-beam resonance. On the other hand, the beam-beam tunespread can provide a mechanism of suppression of the beam-wall driven instabilities. In this report the coherent instabilities driven by beam-beam and beam-wall interactions are studied with the help of BBSS code for the case of 1.5 TeV c.o.m muon collider.

  3. Catalogue of particle-accelerating colliding-wind binaries

    NASA Astrophysics Data System (ADS)

    De Becker, M.; Raucq, F.

    2013-10-01

    Massive systems made of two or more stars are known to be the site for interesting physical processes - including at least in some cases - particle acceleration. Over the past decade, this topic motivated a particular effort to unveil the properties of these systems and characterize the circumstances responsible for the acceleration of particles and the potential role of pre-supernova massive stars in the production of high energy particles in our Galaxy. Although previous studies on this topic were mostly devoted to processes in general, or to a few individual objects in particular, a unified target-oriented census of particle-accelerating colliding-wind binaries (hereafter PACWBs) does not exist yet. This paper aims at making a general and unified census of these systems, emphasizing their main properties. A general discussion includes energetic considerations along with wind properties in relation with non-thermal emission processes that are likely at work in colliding-wind binaries. Finally, some guidelines for future observational and theoretical studies are drawn.

  4. Commissioning of the EBIS-based heavy ion preinjector at Brookhaven

    SciTech Connect

    Alessi, J.; Beebe, E.; Binello, S.; Hoff, L.; Kondo, K.; Lambiase, R.; LoDestro, V.; Mapes, M.; McNerney, A.; Morris, J.; Okamura, M.; Pikin, A.I.; Raparia, D.; Ritter, J.; Smart, L.; Snydstrup, L.; Wilinski, M.; Zaltsman, A.; Schempp, A.; Ratzinger, U.; Kanesue, T.

    2010-09-12

    The status is presented of the commissioning of a new heavy ion preinjector at Brookhaven National Laboratory. This preinjector uses an Electron Beam Ion Source (EBIS), and an RFQ and IH Linac, both operating at 100.625 MHz, to produce 2 MeV/u ions of any species for use, after further acceleration, at the Relativistic Heavy Ion Collider (RHIC) and the NASA Space Radiation Laboratory (NSRL). Among the increased capabilities provided by this preinjector are the ability to produce ions of any species, and the ability to switch between multiple species in 1 second, to simultaneously meet the needs of both science programs. For initial setup, helium beam from EBIS was injected and circulated in the Booster synchrotron. Following this, accelerated Au{sup 32+} and Fe{sup 20+} beams were transported to the Booster injection point, fulfilling DOE requirements for project completion.

  5. New fast beam profile monitor for electron-positron colliders.

    PubMed

    Bogomyagkov, A V; Gurko, V F; Zhuravlev, A N; Zubarev, P V; Kiselev, V A; Meshkov, O I; Muchnoi, N Yu; Selivanov, A N; Smaluk, V V; Khilchenko, A D

    2007-04-01

    A new fast beam profile monitor has been developed at the Budker Institute of Nuclear Physics. This monitor is based on the Hamamatsu multianode photomultiplier with 16 anode strips and provides turn-by-turn measurement of the transverse beam profile. The device is equipped with an internal memory, which has enough capacity to store 131,072 samples of the beam profile. The dynamic range of the beam profile monitor allows us to study turn-by-turn beam dynamics within the bunch charge range from 1 pC up to 10 nC. Using this instrument, we have investigated at the VEPP-4M electron-positron collider a number of beam dynamics effects which cannot be observed by other beam diagnostics tools. PMID:17477653

  6. Electron Injection into Laser Wakefields by the Two-Beam Colliding Pulse Scheme

    NASA Astrophysics Data System (ADS)

    Nakamura, K.; Michel, P.; Toth, C. S.; Geddes, C. G. R.; van Tilborg, J.; Fubiani, G.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.; Cary, J. R.; Giacone, R.; Bruhwiler, D.

    2004-11-01

    Laser driven acceleration in plasmas has succeeded in producing electron beams containing considerable amount of charge (> 100 pC) at energies in excess of 100 MeV. Control of the trapping process is needed to generate monoenergetic electron beams in a reproducible manner. We report on experimental progress of laser triggered injection of electrons into laser wakefields with a two-pulse colliding laser scheme[1]. The experiments use the multi-beam, multi-terawatt Ti:Al_2O3 laser at the l'OASIS facility of LBNL. In the experiments, two counter propagating beams 30^rc angle are focused onto a high density ( ˜10^19/cm^3) gas jet. Preliminary results indicate that electron beam properties are affected by the second beam. Details of the experiments will be shown as well as comparisons with simulations. [1] G. Fubiani, et., al, Phys. Rev. E 70, 016402 (2004).

  7. Scraping beam halo in {mu} {sup +} {mu} {sup minus} colliders

    SciTech Connect

    Drozhdin, A.; Mokhov, N.; Johnstone, C.; Wan, W.; Garren, A.

    1998-01-01

    Beam halo scraping schemes have been explored in the 50 x 50 GeV and 2 x 2 TeV {mu}{sup +}{mu}{sup -} colliders using both absorbers and electrostatic deflectors. Utility sections have been specially designed into the rings for scraping. Results of realistic STRUCT- MARS Monte-Carlo simulations show that for the low-energy machine a scheme with a 5 m long steel absorber suppresses losses in the interaction region by three orders of magnitude. The same scraping efficiency at 2 TeV is achieved only by complete extraction of beam halo from the machine. The effect of beam-induced power dissipation in the collider superconducting magnets and detector backgrounds is shown both for the first few turns after injection and for the rest of the cycle.

  8. Wakefield Damping in a Pair of X-Band Accelerators for Linear Colliders

    SciTech Connect

    Jones, R.M.; Adolphsen, C.E.; Wang, J.W.; Li, Z.; /SLAC

    2006-12-18

    We consider means to damp the wake-field left behind ultra-relativistic charges. In particular, we focus on a pair of travelling wave accelerators operating at an X-band frequency of 11.424 GHz. In order to maximize the efficiency of acceleration, in the context of a linear collider, multiple bunches of charged particles are accelerated within a given pulse of the electromagnetic field. The wake-field left behind successive bunches, if left unchecked, can seriously disturb the progress of trailing bunches and can lead to an appreciable dilution in the emittance of the beam. We report on a method to minimize the influence of the wake-field on trailing bunches. This method entails detuning the characteristic mode frequencies which make-up the electromagnetic field, damping the wake-field, and interleaving the frequencies of adjacent accelerating structures. Theoretical predictions of the wake-field and modes, based on a circuit model, are compared with experimental measurements of the wake-field conducted within the ASSET facility at SLAC. Very good agreement is obtained between theory and experiment and this allows us to have some confidence in designing the damping of wake-fields in a future linear collider consisting of several thousand of these accelerating structures.

  9. The Neutral Beam Test Facility and Radiation Effects Facility at Brookhaven National Laboratory

    SciTech Connect

    McKenzie-Wilson, R.B.

    1990-01-01

    As part of the Strategic Defense Initiative (SDI) Brookhaven National Laboratory (BNL) has constructed a Neutral Beam Test Facility (NBTF) and a Radiation Effects Facility (REF). These two facilities use the surplus capacity of the 200-MeV Linac injector for the Alternating Gradient Synchrotron (AGS). The REF can be used to simulate radiation damage effects in space from both natural and man made radiation sources. The H{sup {minus}} beam energy, current and dimensions can be varied over a wide range leading to a broad field of application. The NBTF has been designed to carry out high precision experiments and contains an absolute reference target system for the on-line calibration of measurements carried out in the experimental hall. The H{sup {minus}} beam energy, current and dimensions can also be varied over a wide range but with tradeoffs depending on the required accuracy. Both facilities are fully operational and will be described together with details of the associated experimental programs.

  10. Multi-beam linear accelerator EVT

    NASA Astrophysics Data System (ADS)

    Teryaev, Vladimir E.; Kazakov, Sergey Yu.; Hirshfield, Jay L.

    2016-09-01

    A novel electron multi-beam accelerator is presented. The accelerator, short-named EVT (Electron Voltage Transformer) belongs to the class of two-beam accelerators. It combines an RF generator and essentially an accelerator within the same vacuum envelope. Drive beam-lets and an accelerated beam are modulated in RF modulators and then bunches pass into an accelerating structure, comprising uncoupled with each other and inductive tuned cavities, where the energy transfer from the drive beams to the accelerated beam occurs. A phasing of bunches is solved by choice correspond distances between gaps of the adjacent cavities. Preliminary results of numerical simulations and the initial specification of EVT operating in S-band, with a 60 kV gun and generating a 2.7 A, 1.1 MV beam at its output is presented. A relatively high efficiency of 67% and high design average power suggest that EVT can find its use in industrial applications.

  11. 423rd Brookhaven Lecture

    ScienceCinema

    Mei Bai

    2010-09-01

    Among other things, scientists at BNL's Relativistic Heavy Ion Collider (RHIC) are studying a fundamental question of particle physics: What is responsible for proton "spin"? Physicist Mei Bai discusses this topic at the 423rd Brookhaven Lecture, "RHIC: The Worlds First High-Energy, Polarized-Proton Collider."

  12. Charge neutralized low energy beam transport at Brookhaven 200 MeV linac

    NASA Astrophysics Data System (ADS)

    Raparia, D.; Alessi, J.; Atoian, G.; Zelenski, A.

    2016-02-01

    The H- magnetron source provides about 100 mA H- beam to be match into the radio-frequency quadrupole accelerator. As H- beam traverses through low energy transport, it ionizes the residual gas and electrons are repelled and positive ions are trapped in the beam, due to negative potential of the beam, providing charge neutralization for the H- beam. The neutralization time for the critical density depends upon the background gas and its pressure. Critical density for xenon gas at 35 keV is about 43 times smaller than that of hydrogen and stripping cross section is only 5 times than that of hydrogen gas. We are using xenon gas to reduce neutralization time and to improve transmission through the 200 MeV linac. We are also using pulse nitrogen gas to improve transmission and stability of polarized H- beam from optically pumped polarized ion source.

  13. Charge neutralized low energy beam transport at Brookhaven 200 MeV linac.

    PubMed

    Raparia, D; Alessi, J; Atoian, G; Zelenski, A

    2016-02-01

    The H(-) magnetron source provides about 100 mA H(-) beam to be match into the radio-frequency quadrupole accelerator. As H(-) beam traverses through low energy transport, it ionizes the residual gas and electrons are repelled and positive ions are trapped in the beam, due to negative potential of the beam, providing charge neutralization for the H(-) beam. The neutralization time for the critical density depends upon the background gas and its pressure. Critical density for xenon gas at 35 keV is about 43 times smaller than that of hydrogen and stripping cross section is only 5 times than that of hydrogen gas. We are using xenon gas to reduce neutralization time and to improve transmission through the 200 MeV linac. We are also using pulse nitrogen gas to improve transmission and stability of polarized H(-) beam from optically pumped polarized ion source. PMID:26932107

  14. Accelerator Based Neutron Beams for Neutron Capture Therapy

    SciTech Connect

    Yanch, Jacquelyn C.

    2003-04-11

    compared the RBE characteristics of the MIT Reactor M67 clinical beam, The Brookhaven Medical Research Reactor clinical beam (both of which were used in Phase I/II clinical trials of BNCT) and the MIT LABA BNCS beam. Additional research initiated under this program involved an investigation of the potential of BNCT for the prevention of restenosis and the development of accelerator-based fast neutron brachytherapy. A total of 10 student research theses (2 Undergraduate, 4 Masters, and 4 Doctoral) were completed as part of this research program.

  15. Interplay of space-charge and beam-beam effects in a collider

    SciTech Connect

    Fedotov, A.V.; Blaskiewicz, M.; Fischer, W.; Satogata, T.; Tepikian, S.

    2010-09-27

    Operation of a collider at low energy or use of cooling techniques to increase beam density may result in luminosity limitation due to the space-charge effects. Understanding of such limitation became important for Low-Energy RHIC physics program with heavy ions at the center of mass energies of 5-20 GeV/nucleon. For a collider, we are interested in a long beam lifetime, which limits the allowable space-charge tune shift. An additional complication comes from the fact that ion beams are colliding, which requires careful consideration of the interplay of direct space-charge and beam-beam effects. This paper summarizes the initial observations during experimental studies in RHIC at low energies.

  16. Annular beam-driven high-gradient accelerators

    SciTech Connect

    Keinigs, R.; Jones, M.E.

    1988-01-01

    During the past several years there has been an increasing interest in using wakefield acceleration techniques as a means for achieving TeV energies with the next generation of linear colliders. The principal design goals for a wakefield accelerator that is to be sued in this context are high accelerating gradients and large transformer ratios. Fundamentally any slow wave structure can function as a wakefield accelerator, and several interesting concepts have been proposed. In this paper we consider for the slow wave structure a dielectrically loaded waveguide. The Dielectric Wakefield Accelerator is a very simple device. The geometry consists of a gapless cavity filled with a dielectric. The dielectric may fill all or just part of the cavity. Here we investigate driving the system with an intense annular beam, so the dielectric is separated from the wall by a vacuum region in which this beam is propagated. The primary advantage of driving with an annular beam is that larger currents can be achieved, and thus larger accelerating gradients can be generated. The drive beam is stabilized by a strong, axial magnetic field. The wall is coated with a dielectric liner to provide for better coupling. A small hole is drilled in the center of the dielectric to allow for the passage of a low current, witness beam.

  17. Renormalization theory of beam-beam interaction in electron-positron colliders

    SciTech Connect

    Chin, Y.H.

    1989-07-01

    This note is devoted to explaining the essence of the renormalization theory of beam-beam interaction for carrying out analytical calculations of equilibrium particle distributions in electron-positron colliding beam storage rings. Some new numerical examples are presented such as for betatron tune dependence of the rms beam size. The theory shows reasonably good agreements with the results of computer simulations. 5 refs., 6 figs.

  18. Essay: Accelerators, Beams and Physical Review Special Topics - Accelerators and Beams

    NASA Astrophysics Data System (ADS)

    Siemann, Robert H.

    2008-05-01

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  19. Colliding pulse injection experiments in non-collinear geometry for controlled laser plasma wakefield acceleration of electrons

    NASA Astrophysics Data System (ADS)

    Toth, Csaba; Nakamura, K.; Geddes, C.; Michel, P.; Schroeder, C.; Esarey, E.; Leemans, W.

    2006-10-01

    A method for controlled injection of electrons into a plasma wakefield relying on colliding laser pulses [1] has been proposed a decade ago to produce high quality relativistic electron beams with energy spread below 1% and normalized emittances < 1 micron from a laser wakefield accelerator (LWFA). The original idea uses three pulses in which one pulse excites the plasma wake and a trailing laser pulse collides with a counterpropagating one to form a beat pattern that boosts background electrons to catch the plasma wave. Another, two-beam off-axis injection method [2] with crossing angles varying from 180 to 90 degrees avoids having optical elements on the path of the electron beam and has been studied at the LOASIS facility of LBNL as a viable method for laser triggered injection. It allows low dark current operation with controllable final beam energy and low energy spread. Here, we report on progress of electron optical injection via the two-beam non-collinear colliding pulse scheme using multi-terawatt Ti:Sapphire laser beams (45 fs, 100s of mJ) focused onto a Hydrogen gas plume. Experimental results indicate that electron beam properties are affected by the second beam. *This work is supported by DoE under contract DE-AC02-05CH11231. [1] E. Esarey, et al, Phys. Rev. Lett 79, 2682 (1997) [2] G. Fubiani, Phys. Rev. E 70, 016402 (2004)

  20. Decommissioning of the High Flux Beam Reactor at Brookhaven National Laboratory.

    PubMed

    Hu, Jih-Perng; Reciniello, Richard N; Holden, Norman E

    2012-08-01

    The High Flux Beam Reactor (HFBR) at the Brookhaven National Laboratory was a heavy-water cooled and moderated reactor that achieved criticality on 31 October 1965. It operated at a power level of 40 mega-watts. An equipment upgrade in 1982 allowed operations at 60 mega-watts. After a 1989 reactor shutdown to reanalyze safety impact of a hypothetical loss of coolant accident, the reactor was restarted in 1991 at 30 mega-watts. The HFBR was shut down in December 1996 for routine maintenance and refueling. At that time, a leak of tritiated water was identified by routine sampling of ground water from wells located adjacent to the reactor's spent fuel pool. The reactor remained shut down for almost 3 y for safety and environmental reviews. In November 1999, the United States Department of Energy decided to permanently shut down the HFBR. The decontamination and decommissioning of the HFBR complex, consisting of multiple structures and systems to operate and maintain the reactor, were complete in 2009 after removing and shipping off all the control rod blades. The emptied and cleaned HFBR dome, which still contains the irradiated reactor vessel is presently under 24/7 surveillance for safety. Details of the HFBR's cleanup performed during 1999-2009, to allow the BNL facilities to be re-accessed by the public, will be described in the paper. PMID:22739969

  1. Polarized beams at RHIC

    SciTech Connect

    Roser, T.

    1995-11-01

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven allows for the unique possibility of colliding two 250 GeV polarized proton beams at luminosities of up to 2 {times} 10{sup 32} cm{sup {minus}2} s{sup {minus}1}. A partial Siberian Snake in the AGS has recently been successfully tested and full Siberian Snakes, spin rotators, and polarimeters for RHIC are being developed to make the acceleration of polarized beams to 250 GeV possible. High energy polarized beam collisions will open up the unique physics opportunities of studying spin effects in hard processes, which will allow the study of the spin structure of the proton and also the verification of the many well documented expectations of spin effects in perturbative QCD and parity violation in W and Z production.

  2. Optical beam profile monitor and residual gas fluorescence at the relativistic heavy ion collider polarized hydrogen jet.

    PubMed

    Tsang, T; Bellavia, S; Connolly, R; Gassner, D; Makdisi, Y; Russo, T; Thieberger, P; Trbojevic, D; Zelenski, A

    2008-10-01

    A gas fluorescence beam profile monitor has been implemented at the relativistic heavy ion collider (RHIC) using the polarized atomic hydrogen gas jet, which is part of the polarized proton polarimeter. RHIC proton beam profiles in the vertical plane of the accelerator are obtained as well as measurements of the width of the gas jet in the beam direction. For gold ion beams, the fluorescence cross section is sufficiently large so that profiles can be obtained from the residual gas alone, albeit with long light integration times. We estimate the fluorescence cross sections that were not known in this ultrarelativistic regime and calculate the beam emittance to provide an independent measurement of the RHIC beam. This optical beam diagnostic technique, utilizing the beam induced fluorescence from injected or residual gas, offers a noninvasive particle beam characterization and provides visual observation of proton and heavy ion beams. PMID:19044742

  3. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOEpatents

    Birx, D.L.; Reginato, L.L.

    1984-03-22

    An electron beam accelerator is described comprising an electron beam generator-injector to produce a focused beam of greater than or equal to .1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electron by about .1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .1-1 MeV maximum energy over a time duration of less than or equal to 1 ..mu..sec.

  4. Proposing a Laser Based Beam Size Monitor for the Future Linear Collider

    SciTech Connect

    Ross, Marc C

    2001-12-10

    Compton scattering techniques for the measurement of the transverse beam size of particle beams at future linear colliders (FLC) are proposed. At several locations of the beam delivery system (BDS) of the FLC, beam spot sizes ranging from several hundreds to a few micrometers have to be measured. This is necessary to verify beam optics, to obtain the transverse beam emittance, and to achieve the highest possible luminosity. The large demagnification of the beam in the BDS and the high beam power puts extreme conditions on any measuring device. With conventional techniques at their operational limit in FLC scenarios, new methods for the detection of the transverse beam size have to be developed. For this laser based techniques are proposed capable of measuring high power beams with sizes in the micrometer range. In this paper general aspects and critical issues of a generic device are outlined and specific solutions proposed. Plans to install a laser wire experiment at an accelerator test facility are presented.

  5. Colliding pulse injection experiments in non-collinear geometryfor controlled laser plasma wakefield acceleration of electrons

    SciTech Connect

    Toth, Carl B.; Esarey, Eric H.; Geddes, Cameron G.R.; Leemans,Wim P.; Nakamura, Kei; Panasenko, Dmitriy; Schroeder, Carl B.; Bruhwiler,D.; Cary, J.R.

    2007-06-25

    An optical injection scheme for a laser-plasma basedaccelerator which employs a non-collinear counter-propagating laser beamto push background electrons in the focusing and acceleration phase viaponderomotive beat with the trailing part of the wakefield driver pulseis discussed. Preliminary experiments were performed using a drive beamof a_0 = 2.6 and colliding beam of a_1 = 0.8 both focused on the middleof a 200 mu m slit jet backed with 20 bar, which provided ~; 260 mu mlong gas plume. The enhancement in the total charge by the collidingpulse was observed with sharp dependence on the delay time of thecolliding beam. Enhancement of the neutron yield was also measured, whichsuggests a generation of electrons above 10 MeV.

  6. Beam tube vacuum in future superconducting proton colliders

    NASA Astrophysics Data System (ADS)

    Turner, William C.

    1995-02-01

    The beam tube vacuum requirements in future superconducting proton colliders that have been proposed or discussed in the literature—SSC, LHC, and ELN—are reviewed. The main beam tube vacuum problem encountered in these machines is how to deal with the magnitude of gas desorption and power deposition by synchrotron radiation while satisfying resistivity, impedance, and space constraints in the cryogenic environment of superconducting magnets. A beam tube vacuum model is developed that treats photodesorption of tightly bound H, C, and O, photodesorption of physisorbed molecules, and the isotherm vapor pressure of H2. Experimental data on cold tube photodesorption experiments are reviewed and applied to model calculations of beam tube vacuum performance for simple cold beam tube and liner configurations. Particular emphasis is placed on the modeling and interpretation of beam tube photodesorption experiments at electron synchrotron light sources. The paper also includes discussion of the constraints imposed by beam image current heating, the growth rate of the resistive wall instability, and single-bunch instability impedance limits.

  7. Beam tube vacuum in future superconducting proton colliders

    SciTech Connect

    Turner, W.

    1994-10-01

    The beam tube vacuum requirements in future superconducting proton colliders that have been proposed or discussed in the literature -- SSC, LHC, and ELN -- are reviewed. The main beam tube vacuum problem encountered in these machines is how to deal with the magnitude of gas desorption and power deposition by synchrotron radiation while satisfying resistivity, impedance, and space constraints in the cryogenic environment of superconducting magnets. A beam tube vacuum model is developed that treats photodesorption of tightly bound H, C, and 0, photodesorption of physisorbed molecules, and the isotherm vapor pressure of H{sub 2}. Experimental data on cold tube photodesorption experiments are reviewed and applied to model calculations of beam tube vacuum performance for simple cold beam tube and liner configurations. Particular emphasis is placed on the modeling and interpretation of beam tube photodesorpiion experiments at electron synchrotron light sources. The paper also includes discussion of the constraints imposed by beam image current heating, the growth rate of the resistive wall instability, and single-bunch instability impedance limits.

  8. Beam diagnostics for high intensity hadron accelerators

    NASA Astrophysics Data System (ADS)

    Ausset, Patrick; Gardès, Daniel

    2007-07-01

    High intensity hadron beam accelerators have been recently proposed and developed either for the production of high intensity secondary beams for Nuclear and Particle Physics research (EURISOL, SPIRAL2, FAIR), or Applied Physics in the field of Accelerator Driven System and waste transmutation (EUROTRANS). For these applications, high power Linear Accelerator (LINAC) are planned to produce and accelerate hadron beams up to 1 GeV. Both commissioning and operation of these accelerators require dedicated beam instrumentation able to monitor and characterize on line as completely as possible the produced beams having a power in the range of 1 MW. Beam current, transverse beam centroı¨d position and profiles and beam energy are the most important characteristics that have to be measured. Due to the high average power of the beam, nondestructive or at least minimally intercepting beam sensors are required. Beam instrumentation for IPHI (CEA/DSM and CNRS/IN2P3 collaboration) which is a high intensity proton (3 MeV, 100 mA, CW operation) injector initially designed to be a possible front end for this kind of LINAC is under realization. Beam diagnostics already under operation, developments in progress will be described and will introduce a more general description of high power beam instrumentation.

  9. Thermomechanical response of Large Hadron Collider collimators to proton and ion beam impacts

    NASA Astrophysics Data System (ADS)

    Cauchi, Marija; Assmann, R. W.; Bertarelli, A.; Carra, F.; Cerutti, F.; Lari, L.; Redaelli, S.; Mollicone, P.; Sammut, N.

    2015-04-01

    The CERN Large Hadron Collider (LHC) is designed to accelerate and bring into collision high-energy protons as well as heavy ions. Accidents involving direct beam impacts on collimators can happen in both cases. The LHC collimation system is designed to handle the demanding requirements of high-intensity proton beams. Although proton beams have 100 times higher beam power than the nominal LHC lead ion beams, specific problems might arise in case of ion losses due to different particle-collimator interaction mechanisms when compared to protons. This paper investigates and compares direct ion and proton beam impacts on collimators, in particular tertiary collimators (TCTs), made of the tungsten heavy alloy INERMET® 180. Recent measurements of the mechanical behavior of this alloy under static and dynamic loading conditions at different temperatures have been done and used for realistic estimates of the collimator response to beam impact. Using these new measurements, a numerical finite element method (FEM) approach is presented in this paper. Sequential fast-transient thermostructural analyses are performed in the elastic-plastic domain in order to evaluate and compare the thermomechanical response of TCTs in case of critical beam load cases involving proton and heavy ion beam impacts.

  10. Method for determining the position, angle and other injection parameters of a short pulsed beam in the Brookhaven AGS

    SciTech Connect

    Gardner, C.; Ahrens, L.

    1985-01-01

    As part of the effort to improve the monitoring of the injection process at the Brookhaven Alternating Gradient Synchrotron (AGS), we have developed a beam diagnostics package which processes the signals from the plates of a pick-up electrode (PUE) located near the injection region of the AGS and provides measurements of the position and angle (with respect to the equilibrium orbit) of the injected beam at the stripping foil where the incident H/sup -/ beam is converted into protons. In addition the package provides measurements of the tune and chromaticity of the AGS at injection, and a measurement of the momentum spread of the injected beam. Since these parameters are obtained for a short-pulsed beam at injection we shall refer to the diagnostics package as PIP which stands for Pulsed Injection Parameters.

  11. The Next Generation of Heavy Ion Sources (447th Brookhaven Lecture)

    SciTech Connect

    Okamura, Masahiro

    2009-03-04

    Imagine if, by staying in your lane when driving on the expressway, you could help fight cancer or provide a new, clean energy source. You would clench the steering wheel with both hands and stay in your lane, right? Unlike driving on the expressway where you intentionally avoid hitting other cars, scientists sometimes work to steer particle beams into head-on collisions with other oncoming particle beams. However, the particles must be kept "in their lanes" for cleaner, more frequent collisions. Some scientists propose starting the whole process by using lasers to heat a fixed target as a way to get particles with higher charge, which are more steerable. These scientists believe the new methods could be used to develop particle beams for killing cancer cells or creating usable energy from fusion. Join Masahiro Okamura of Brookhaven's Collider-Accelerator Department for the 447th Brookhaven Lecture, titled "The Next Generation of Heavy Ion Sources." Okamura will explain how lasers can be used to create plasma, neutral mixtures of positive ions and negative electrons, from different materials, and how using this plasma leads to beams with higher charge states and currents. He will also discuss how this efficient, simpler method of producing particle beams might be used for cancer therapy, to develop new energy sources, or in synchrotrons.

  12. Simulation Studies of Beam-Beam Effects of a Ring-Ring Electron-Ion Collider Based on CEBAF

    SciTech Connect

    Yuhong Zhang,Ji Qiang

    2009-05-01

    The collective beam-beam effect can potentially cause a rapid growth of beam sizes and reduce the luminosity of a collider to an unacceptably low level. The ELIC, a proposed ultra high luminosity electron-ion collider based on CEBAF, employs high repetition rate crab crossing colliding beams with very small bunch transverse sizes and very short bunch lengths, and collides them at up to 4 interaction points with strong final focusing. All of these features can make the beam-beam effect challenging. In this paper, we present simulation studies of the beam-beam effect in ELIC using a self-consistent strong-strong beam-beam simulation code developed at Lawrence Berkeley National Laboratory. This simulation study is used for validating the ELIC design and for searching for an optimal parameter set.

  13. The first terawatt picosecond CO{sub 2} laser for advanced accelerator studies at the Brookhaven ATF

    SciTech Connect

    Pogorelsky, I.V.; Ben-Zvi, I.; Skaritka, J.

    1996-10-01

    The first terawatt picosecond C0{sub 2} laser system is under development at the Brookhaven Accelerator Test Facility. Presently operational 1 Joule 100-ps ATF laser will be upgraded with a 10 atm amplifier capable of delivery {approximately} 15 Joules of laser energy in a 3 ps pulse. We describe the design of the x-ray preionized 10 atm amplifier of a 10 liter active volume energized by a 1 MV, 200 kA transverse electric discharge. The amplifier, equipped with internal optics, permits the accommodation of a regenerative stage and a multi-pass booster in a relatively compact single discharge volume. The ATF terawatt C0{sub 2} laser shall become operational in 1997 to serve for laser acceleration, x-ray generation and other strong-field physics experiments.

  14. SimTrack: A compact c++ library for particle orbit and spin tracking in accelerators

    SciTech Connect

    Luo, Yun

    2015-06-24

    SimTrack is a compact c++ library of 6-d symplectic element-by-element particle tracking in accelerators originally designed for head-on beam-beam compensation simulation studies in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. It provides a 6-d symplectic orbit tracking with the 4th order symplectic integration for magnet elements and the 6-d symplectic synchro-beam map for beam-beam interaction. Since its inception in 2009, SimTrack has been intensively used for dynamic aperture calculations with beam-beam interaction for RHIC. Recently, proton spin tracking and electron energy loss due to synchrotron radiation were added. In this article, I will present the code architecture, physics models, and some selected examples of its applications to RHIC and a future electron-ion collider design eRHIC.

  15. To study the emittance dilution in Superconducting Linear Accelerator Design for International Linear Collider (ILC)

    NASA Astrophysics Data System (ADS)

    Ranjan, Kirti; Solyak, Nikolay; Tenenbaum, Peter

    2005-04-01

    Recently the particle physics community has chosen a single technology for the new accelerator, opening the way for the world community to unite and concentrate resources on the design of an International Linear collider (ILC) using superconducting technology. One of the key operational issues in the design of the ILC will be the preservation of the small beam emittances during passage through the main linear accelerator (linac). Sources of emittance dilution include incoherent misalignments of the quadrupole magnets and rf-structure misalignments. In this work, the study of emittance dilution for the 500-GeV center of mass energy main linac of the Superconducting Linear Accelerator design, based on adaptation of the TESLA TDR design is performed using LIAR simulation program. Based on the tolerances of the present design, effect of two important Beam-Based steering algorithms, Flat Steering and Dispersion Free Steering, are compared with respect to the emittance dilution in the main linac. We also investigated the effect of various misalignments on the emittance dilution for these two steering algorithms.

  16. Applications of electron lenses: scraping of high-power beams, beam-beam compensation, and nonlinear optics

    SciTech Connect

    Stancari, Giulio

    2014-09-11

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). Hollow electron beam collimation and halo control were studied as an option to complement the collimation system for the upgrades of the Large Hadron Collider (LHC) at CERN; a conceptual design was recently completed. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles. At Fermilab, we are planning to install an electron lens in the Integrable Optics Test Accelerator (IOTA, a 40-m ring for 150-MeV electrons) as one of the proof-of-principle implementations of nonlinear integrable optics to achieve large tune spreads and more stable beams without loss of dynamic aperture.

  17. Review of linear collider beam-beam interaction

    SciTech Connect

    Chen, P.

    1989-01-01

    Three major effects from the interaction of e/sup +/e/sup /minus// beams---disruption, beamstrahlung, and electron-positron pair creation---are reviewed. For the disruption effects we discuss the luminosity enhancement factor, the maximum and rms disruption angles, and the ''kink instability''. All the results are obtained from computer simulations. Scaling laws for the numerical results and theoretical explanations of the computer acquired phenomena are offered wherever possible. For the beamstrahlung effects we concentrate only on the final electron energy spectrum resulting from multiple photon radiation process, and the deflection angle associated with low energy particles. For the effects from electron-positron pair creation, both coherent and incoherent processes of beamstrahlung pair creation are discussed. In addition to the estimation on total number of such pairs, we also look into the energy spectrum and the deflection angle. 17 refs., 23 figs., 1 tab.

  18. SETUP AND PERFORMANCE OF THE RHIC INJECTOR ACCELERATORS FOR THE 2007 RUN WITH GOLD IONS

    SciTech Connect

    GARDNER,C.; AHRENS, L.; ALESSI, J.; BENJAMIN, J.; BLASKIEWICZ, M.; ET AL.

    2007-06-25

    Gold ions for the 2007 run of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) are accelerated in the Tandem, Booster and AGS prior to injection into RHIC. The setup and performance of this chain of accelerators is reviewed with a focus on improvements in the quality of beam delivered to RHIC. In particular, more uniform stripping foils between Booster and AGS7 and a new bunch merging scheme in AGS have provided beam bunches with reduced longitudinal emittance for RHIC.

  19. Demonstration of two-beam acceleration and 30 GHz power production in the CLIC Test Facility

    SciTech Connect

    Bossart, R.; Braun, H. H.; Carron, G.; Chanudet, M.; Chautard, F.; Delahaye, J. P.; Godot, J. C.; Hutchins, S.; Martinez, C.; Suberlucq, G.; Tenenbaum, P.; Thorndahl, L.; Trautner, H.; Valentini, M.; Wilson, I.; Wuensch, W.

    1999-05-07

    The Compact Linear Collider (CLIC) Test Facility (CTF II) at CERN has recently demonstrated Two-Beam power production and acceleration at 30 GHz. With 41 MW of 30 GHz power produced in 14 ns pulses at a repetition rate of 5 Hz, the main beam has been accelerated by 28 MeV. The 30 GHz RF power is extracted in low impedance decelerating structures from a low-energy, high-current 'drive beam' which runs parallel to the main beam. The average current in the drive-beam train is 25 A, while the peak current exceeds 2 kA. Crosschecks between measured drive-beam charge, 30 GHz power and main-beam energy gain are in good agreement. In this paper, some relevant experimental and technical issues on drive-beam generation, two-beam power production and acceleration are presented.

  20. Acceleration of high charge density electron beams in the SLAC linac

    SciTech Connect

    Sheppard, J.C.; Clendenin, J.E.; Jobe, R.K.; Lueth, V.G.; Millich, A.; Ross, M.C.; Seeman, J.T.; Stiening, R.F.

    1984-01-01

    The SLAC Linear Collider (SLC) will require both electron and positron beams of very high charge density and low emittance to be accelerated to about 50 GeV in the SLAC 3-km linac. The linac is in the process of being improved to meet this requirement. The program to accelerate an electron beam of high charge density through the first third of the SLC linac is described and the experimental results are discussed. 7 references, 5 figures.

  1. Ion colliders

    SciTech Connect

    Fischer, W.

    2011-12-01

    Ion colliders are research tools for high-energy nuclear physics, and are used to test the theory of Quantum Chromo Dynamics (QCD). The collisions of fully stripped high-energy ions create matter of a temperature and density that existed only microseconds after the Big Bang. Ion colliders can reach higher densities and temperatures than fixed target experiments although at a much lower luminosity. The first ion collider was the CERN Intersecting Storage Ring (ISR), which collided light ions [77Asb1, 81Bou1]. The BNL Relativistic Heavy Ion Collider (RHIC) is in operation since 2000 and has collided a number of species at numerous energies. The CERN Large Hadron Collider (LHC) started the heavy ion program in 2010. Table 1 shows all previous and the currently planned running modes for ISR, RHIC, and LHC. All three machines also collide protons, which are spin-polarized in RHIC. Ion colliders differ from proton or antiproton colliders in a number of ways: the preparation of the ions in the source and the pre-injector chain is limited by other effects than for protons; frequent changes in the collision energy and particle species, including asymmetric species, are typical; and the interaction of ions with each other and accelerator components is different from protons, which has implications for collision products, collimation, the beam dump, and intercepting instrumentation devices such a profile monitors. In the preparation for the collider use the charge state Z of the ions is successively increased to minimize the effects of space charge, intrabeam scattering (IBS), charge change effects (electron capture and stripping), and ion-impact desorption after beam loss. Low charge states reduce space charge, intrabeam scattering, and electron capture effects. High charge states reduce electron stripping, and make bending and acceleration more effective. Electron stripping at higher energies is generally more efficient. Table 2 shows the charge states and energies in the

  2. High brightness, high current injector design for the ATF upgrade at Brookhaven National Laboratory

    NASA Astrophysics Data System (ADS)

    Stratakis, Diktys

    2015-04-01

    Brookhaven National Accelerator Test Facility (BNL ATF) is in the process of moving to a new place and upgrading its major capabilities: The electron beam energy and CO2 laser power. Specifically, the maximum electron beam energy will be first projected to 100-150 MeV and then upgraded to 500 MeV while at the same time the laser power will increase 100 fold, thus making the new ATF a powerful tool in advanced accelerator concept research. The bright electron bunch produced by the new state-of-the-art photocathode rf gun will be accelerated and optionally delivered to multiple beamlines. The injector is a key element of this accelerator upgrade. It must deliver a high average current beam with very small transverse and longitudinal emittances, at a sufficiently high energy that space charge effects are under control. We review here the detailed injector design and present first results from beam dynamics simulations. We give emphasis in the production of compressed flat beams which have important applications in novel light-source concepts and could possibly alleviate the need for damping rings in lepton colliders. We present a theoretical model and with the aid of simulation examine the influence of space charge, bunch compression and suggest a operating regime with minimal phase space dilutions.

  3. Effects of Collisional Dissipation on the "Colliding Beam Fusion Reactor "

    NASA Astrophysics Data System (ADS)

    Lampe, Martin; Manheimer, Wallace M.

    1998-11-01

    Rostoker, Binderbauer and Monkhorst have recently proposed a "colliding beam fusion reactor" (CBFR) for use with the p-B11 reaction. We have examined the various dissipative processes resulting from Coulomb collisions, and have concluded that the CBFR equilibrium cannot be sustained for long enough to permit net fusion gain. There are many collisional processes which occur considerably faster than fusion, and result in particle loss, energy loss, or detuning of the resonant energy for the p-B reaction. Pitch-angle scattering of protons off the boron beam, which occurs 100 times faster than fusion, isotropizes the proton beam and results in proton loss. Energy exchange between protons and boron, which is 20 times faster than fusion, detunes the resonance. Proton-proton scattering, which is faster than fusion for all CBFR scenarios, Maxwellianizes the protons and thus detunes the resonance. Ion-electron collisions lead indirectly to a friction between the two ion beams, which is typically fast compared to the fusion process. Results of Fokker-Planck analyses of each process will be shown.

  4. The Smallest Drops of the Hottest Matter? New Investigations at the Relativistic Heavy Ion Collider (493rd Brookhaven Lecture)

    SciTech Connect

    Sickles, Anne

    2014-03-19

    Pool sharks at the billiards hall know that sometimes you aim to rocket the cue ball for a head-on collision, and other times, a mere glance will do. Physicists need to know more than a thing or two about collision geometry too, as they sift through data from the billions of ions that smash together at the Relativistic Heavy Ion Collider (RHIC). Determining whether ions crash head-on or just glance is crucial for the physicists analyzing data to study quark-gluon plasma—the ultra-hot, "perfect" liquid of quarks and gluons that existed more than 13 billion years ago, before the first protons and neutrons formed. For these physicists, collision geometry data provides insights about quark-gluon plasma's extremely low viscosity and other unusual properties, which are essential for understanding more about the "strong force" that holds together the nucleus, protons, and neutrons of every atom in the universe. Dr. Sickles explains how physicists use data collected at house-sized detectors like PHENIX and STAR to determine what happens before, during, and after individual particle collisions among billions at RHIC. She also explains how the ability to collide different "species" of nuclei at RHIC—including protons and gold ions today and possibly more with a proposed future electron-ion collider upgrade (eRHIC)—enables physicists to probe deeper into the mysteries of quark-gluon plasma and the strong force.

  5. HOM-Free Linear Accelerating Structure for e+ e- Linear Collider at C-Band

    SciTech Connect

    Kubo, Kiyoshi

    2003-07-07

    HOM-free linear acceleration structure using the choke mode cavity (damped cavity) is now under design for e{sup +}e{sup -} linear collider project at C-band frequency (5712 MHz). Since this structure shows powerful damping effect on most of all HOMs, there is no multibunch problem due to long range wakefields. The structure will be equipped with the microwave absorbers in each cells and also the in-line dummy load in the last few cells. The straightness tolerance for 1.8 m long structure is closer than 30 {micro}m for 25% emittance dilution limit, which can be achieved by standard machining and braising techniques. Since it has good vacuum pumping conductance through annular gaps in each cell, instabilities due to the interaction of beam with the residual-gas and ions can be minimized.

  6. Simulations and measurements of beam loss patterns at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Bruce, R.; Assmann, R. W.; Boccone, V.; Bracco, C.; Brugger, M.; Cauchi, M.; Cerutti, F.; Deboy, D.; Ferrari, A.; Lari, L.; Marsili, A.; Mereghetti, A.; Mirarchi, D.; Quaranta, E.; Redaelli, S.; Robert-Demolaize, G.; Rossi, A.; Salvachua, B.; Skordis, E.; Tambasco, C.; Valentino, G.; Weiler, T.; Vlachoudis, V.; Wollmann, D.

    2014-08-01

    The CERN Large Hadron Collider (LHC) is designed to collide proton beams of unprecedented energy, in order to extend the frontiers of high-energy particle physics. During the first very successful running period in 2010-2013, the LHC was routinely storing protons at 3.5-4 TeV with a total beam energy of up to 146 MJ, and even higher stored energies are foreseen in the future. This puts extraordinary demands on the control of beam losses. An uncontrolled loss of even a tiny fraction of the beam could cause a superconducting magnet to undergo a transition into a normal-conducting state, or in the worst case cause material damage. Hence a multistage collimation system has been installed in order to safely intercept high-amplitude beam protons before they are lost elsewhere. To guarantee adequate protection from the collimators, a detailed theoretical understanding is needed. This article presents results of numerical simulations of the distribution of beam losses around the LHC that have leaked out of the collimation system. The studies include tracking of protons through the fields of more than 5000 magnets in the 27 km LHC ring over hundreds of revolutions, and Monte Carlo simulations of particle-matter interactions both in collimators and machine elements being hit by escaping particles. The simulation results agree typically within a factor 2 with measurements of beam loss distributions from the previous LHC run. Considering the complex simulation, which must account for a very large number of unknown imperfections, and in view of the total losses around the ring spanning over 7 orders of magnitude, we consider this an excellent agreement. Our results give confidence in the simulation tools, which are used also for the design of future accelerators.

  7. The Electron Beam Ion Source (EBIS)

    ScienceCinema

    Brookhaven Lab

    2010-01-08

    Brookhaven National Lab has successfully developed a new pre-injector system, called the Electron Beam Ion Source, for the Relativistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory science programs. The first of several planned improvemen

  8. The Electron Beam Ion Source (EBIS)

    SciTech Connect

    Brookhaven Lab

    2009-06-09

    Brookhaven National Lab has successfully developed a new pre-injector system, called the Electron Beam Ion Source, for the Relativistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory science programs. The first of several planned improvemen

  9. Beam Breakup Effects in Dielectric Based Accelerators

    SciTech Connect

    Schoessow, P.; Kanareykin, A.; Jing, C.; Kustov, A.; Altmark, A.; Power, J. G.; Gai, W.

    2009-01-22

    The dynamics of the beam in structure-based wakefield accelerators leads to beam stability issues not ordinarily found in other machines. In particular, the high current drive beam in an efficient wakefield accelerator loses a large fraction of its energy in the decelerator structure, resulting in physical emittance growth, increased energy spread, and the possibility of head-tail instability for an off axis beam, all of which can lead to severe reduction of beam intensity. Beam breakup (BBU) effects resulting from parasitic wakefields provide a potentially serious limitation to the performance of dielectric structure based wakefield accelerators as well. We report on experimental and numerical investigation of BBU and its mitigation. The experimental program focuses on BBU measurements at the AWA facility in a number of high gradient and high transformer ratio wakefield devices. New pickup-based beam diagnostics will provide methods for studying parasitic wakefields that are currently unavailable. The numerical part of this research is based on a particle-Green's function beam breakup code we are developing that allows rapid, efficient simulation of beam breakup effects in advanced linear accelerators. The goal of this work is to be able to compare the results of detailed experimental measurements with the accurate numerical results and to design an external FODO channel for the control of the beam in the presence of strong transverse wakefields.

  10. 431st Brookhaven Lecture

    SciTech Connect

    Robert Crease

    2007-12-12

    Crease presents "Recombinant Science: The Birth of the Relativistic Heavy Ion Collider," a lecture that follows on the 429th Brookhaven Lecture, in which Crease talked about the early history of BNL. Both lectures are part of the ongoing celebration of BNL's 60th anniversary year.

  11. 431st Brookhaven Lecture

    ScienceCinema

    Robert Crease

    2010-09-01

    Crease presents "Recombinant Science: The Birth of the Relativistic Heavy Ion Collider," a lecture that follows on the 429th Brookhaven Lecture, in which Crease talked about the early history of BNL. Both lectures are part of the ongoing celebration of BNL's 60th anniversary year.

  12. Research and Development of Future Muon Collider

    SciTech Connect

    Yonehara, K.; /Fermilab

    2012-05-01

    Muon collider is a considerable candidate of the next generation high-energy lepton collider machine. A novel accelerator technology must be developed to overcome several intrinsic issues of muon acceleration. Recent research and development of critical beam elements for a muon accelerator, especially muon beam phase space ionization cooling channel, are reviewed in this paper.

  13. Thermomechanical assessment of the effects of a jaw-beam angle during beam impact on Large Hadron Collider collimators

    NASA Astrophysics Data System (ADS)

    Cauchi, Marija; Assmann, R. W.; Bertarelli, A.; Carra, F.; Lari, L.; Rossi, A.; Mollicone, P.; Sammut, N.

    2015-02-01

    The correct functioning of a collimation system is crucial to safely and successfully operate high-energy particle accelerators, such as the Large Hadron Collider (LHC). However, the requirements to handle high-intensity beams can be demanding, and accident scenarios must be well studied in order to assess if the collimator design is robust against possible error scenarios. One of the catastrophic, though not very probable, accident scenarios identified within the LHC is an asynchronous beam dump. In this case, one (or more) of the 15 precharged kicker circuits fires out of time with the abort gap, spraying beam pulses onto LHC machine elements before the machine protection system can fire the remaining kicker circuits and bring the beam to the dump. If a proton bunch directly hits a collimator during such an event, severe beam-induced damage such as magnet quenches and other equipment damage might result, with consequent downtime for the machine. This study investigates a number of newly defined jaw error cases, which include angular misalignment errors of the collimator jaw. A numerical finite element method approach is presented in order to precisely evaluate the thermomechanical response of tertiary collimators to beam impact. We identify the most critical and interesting cases, and show that a tilt of the jaw can actually mitigate the effect of an asynchronous dump on the collimators. Relevant collimator damage limits are taken into account, with the aim to identify optimal operational conditions for the LHC.

  14. OPTIMIZATION OF THE EPITHERMAL NEUTRON BEAM FOR BORON NEUTRON CAPTURE THERAPY AT THE BROOKHAVEN MEDICAL RESEARCH REACTOR.

    SciTech Connect

    HU,J.P.; RORER,D.C.; RECINIELLO,R.N.; HOLDEN,N.E.

    2002-08-18

    Clinical trials of Boron Neutron Capture Therapy for patients with malignant brain tumor had been carried out for half a decade, using an epithermal neutron beam at the Brookhaven's Medical Reactor. The decision to permanently close this reactor in 2000 cut short the efforts to implement a new conceptual design to optimize this beam in preparation for use with possible new protocols. Details of the conceptual design to produce a higher intensity, more forward-directed neutron beam with less contamination from gamma rays, fast and thermal neutrons are presented here for their potential applicability to other reactor facilities. Monte Carlo calculations were used to predict the flux and absorbed dose produced by the proposed design. The results were benchmarked by the dose rate and flux measurements taken at the facility then in use.

  15. Optimization of the Epithermal Neutron Beam for Boron Neutron Capture Therapy at the Brookhaven Medical Research Reactor

    SciTech Connect

    Hu, J.P.; Reciniello, R.N.; Holden, N.E.

    2004-05-01

    Clinical trials of Boron Neutron Capture Therapy for patients with malignant brain tumor had been carried out for half a decade, using an epithermal neutron beam at the Brookhaven Medical Reactor. The decision to permanently close this reactor in 2000 cut short the efforts to implement a new conceptual design to optimize this beam in preparation for use with possible new protocols. Details of the conceptual design to produce a higher intensity, more forward-directed neutron beam with less contamination from gamma rays, fast and thermal neutrons are presented here for their potential applicability to other reactor facilities. Monte Carlo calculations were used to predict the flux and absorbed dose produced by the proposed design. The results were benchmarked by the dose rate and flux measurements taken at the facility then in use.

  16. Microwave accelerator E-beam pumped laser

    DOEpatents

    Brau, Charles A.; Stein, William E.; Rockwood, Stephen D.

    1980-01-01

    A device and method for pumping gaseous lasers by means of a microwave accelerator. The microwave accelerator produces a relativistic electron beam which is applied along the longitudinal axis of the laser through an electron beam window. The incident points of the electron beam on the electron beam window are varied by deflection coils to enhance the cooling characteristics of the foil. A thyratron is used to reliably modulate the microwave accelerator to produce electron beam pulses which excite the laser medium to produce laser pulse repetition frequencies not previously obtainable. An aerodynamic window is also disclosed which eliminates foil heating problems, as well as a magnetic bottle for reducing laser cavity length and pressures while maintaining efficient energy deposition.

  17. A nonlinear particle dynamics map of wakefield acceleration in a linear collider

    SciTech Connect

    Tajima, T.; Cheshkov, S.; Horton, W.; Yokoya, K.

    1998-08-01

    The performance of a wakefield accelerator in a high energy collider application is analyzed. In order to carry out this task, it is necessary to construct a strawman design system (no matter how preliminary) and build a code of the systems approach. A nonlinear dynamics map built on a simple theoretical model of the wakefield generated by the laser pulse (or whatever other method) is obtained and they employ this as a base for building a system with multi-stages (and components) as a high energy collider. The crucial figures of merit for such a system other than the final energy include the emittance (that determines the luminosity). The more complex the system is, the more opportunities the system has to degrade the emittance (or entropy of the beam). Thus the map gu ides one to identify where the crucial elements lie that affect the emittance. They find that a strong focusing force of the wakefield coupled with a possible jitter of the axis (or laser aiming) of each stage and a spread in the betatron frequencies arising from different phase space positions for individual particles leads to a phase space mixing. This sensitively controls the emittance degradation. They show that in the case of a uniform plasma the effect of emittance growth is large and may cause serious problems. They discuss possibilities to avoid it and control the situation.

  18. THE RELATIVISTIC HEAVY ION COLLIDER (RHIC) REFRIGERATOR SYSTEM AT BROOKHAVEN NATIONAL LABORATORY: PHASE III OF THE SYSTEM PERFORMANCE AND OPERATIONS UPGRADES FOR 2003

    SciTech Connect

    SIDI-YEKHLEF,A.; TUOZZOLO,J.; THAN, R.; KNUDSEN, P.; ARENIUS, D.

    2005-08-29

    An ongoing program at Brookhaven National Laboratory (BNL) consists of improving the efficiency of the Relativistic Heavy Ion Collider (RHIC) cryogenic system and reducing its power consumption. Phase I and I1 of the program addressed plant operational improvements and modifications that resulted in substantial operational cost reduction and improved system reliability and stability, and a compressor input power reduction of 2 MW has been demonstrated. Phase 111, now under way, consists of plans for further increasing the efficiency of the plant by adding a load ''wet'' turbo-expander and its associated heat exchangers at the low temperature end of the plant. This additional stage of cooling at the coldest level will further reduce the required compressor flow and therefore compressor power input. This paper presents the results of the plant characterization, as it is operating presently, as well as the results of the plant simulations of the various planned upgrades for, the plant. The immediate upgrade includes the changes associated with the load expander. The subsequent upgrade will involve the resizing of expander 5 and 6 to increase their efficiencies. The paper summarizes the expected improvement in the plant efficiency and the overall reduction in the compressor power.

  19. The Relativistic Heavy Ion Collider (RHIC) Refrigerator System at Brookhaven National Laboratory: Phase III of the System Performance and Operations Upgrades for 2006

    SciTech Connect

    A. Sidi-Yekhlef; R. Than; J. Tuozzolo; V. Ganni; P. Knudsen; D. Arenius

    2006-05-01

    An ongoing program at Brookhaven National Laboratory (BNL) consists of improving the efficiency of the Relativistic Heavy Ion Collider (RHIC) cryogenic system and reducing its power consumption. Phase I and II of the program addressed plant operational improvements and modifications that resulted in substantial operational cost reduction and improved system reliability and stability, and a compressor input power reduction of 2 MW has been demonstrated. Phase III, now under way, consists of plans for further increasing the efficiency of the plant by adding a load ''wet'' turbo-expander and its associated heat exchangers at the low temperature end of the plant. This additional stage of cooling at the coldest level will further reduce the required compressor flow and therefore compressor power input. This paper presents the results of the plant characterization, as it is operating presently, as well as the results of the plant simulations of the various planned upgrades for the plant. The immediate upgrade includes the changes associated with the load expander. The subsequent upgrade will involve the resizing of expander 5 and 6 to increase their efficiencies. The paper summarizes the expected improvement in the plant efficiency and the overall reduction in the compressor power.

  20. Impact of 7-TeV/c large hadron collider proton beam on a copper target

    NASA Astrophysics Data System (ADS)

    Tahir, N. A.; Goddard, B.; Kain, V.; Schmidt, R.; Shutov, A.; Lomonosov, I. V.; Piriz, A. R.; Temporal, M.; Hoffmann, D. H. H.; Fortov, V. E.

    2005-04-01

    The large hadron collider (LHC) will allow for collision between two 7TeV/c proton beams, each comprising 2808 bunches with 1.1×1011 protons per bunch, traveling in opposite direction. The bunch length is 0.5ns and two neighboring bunches are separated by 25ns so that the duration of the entire beam is about 89μs. The beam power profile in the transverse direction is a Gaussian with a standard deviation of 0.2mm. The energy stored in each beam is about 350MJ that is sufficient to melt 500kg of copper. In case of a failure in the machine protection systems, the entire beam could impact directly onto an accelerator equipment. A first estimate of the scale of damage resulting from such a failure has been assessed for a solid copper target hit by the beam by carrying out three-dimensional energy deposition calculations and two-dimensional numerical simulations of the hydrodynamic and thermodynamic response of the target. This work has shown that the penetration depth of the LHC protons will be between 10 and 40m in solid copper. These calculations show that material conditions obtained in the target are similar to those planned for beam impact at dedicated accelerators designed to study the physics of high-energy-density states of matter, for example, the Facility for Antiprotons and Ion Research at the Gesellschaft für Schwerionenforschung, Darmstadt [W. F. Henning, Nucl. Instrum Methods Phys. Res. B 214, 211 (2004)].

  1. Tests of an environmental and personnel safe cleaning process for Brookhaven National Laboratory accelerator and storage ring components

    SciTech Connect

    Foerster, C.L.; Lanni, C.; Lee, R.; Mitchell, G.; Quade, W.

    1997-05-01

    A large measure of the successful operation of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL) for over a decade can be attributed to the cleaning of its ultrahigh vacuum (UHV) components during and after construction. A new UHV cleaning process, which has to be environmentally and personnel safe, is needed to replace the harsh, unfriendly process which is still in use. Dow Advanced Cleaning Systems was contracted to develop a replacement process without the use of harsh chemicals and which must clean vacuum surfaces as well as the existing process. Acceptance of the replacement process was primarily based on photon stimulated desorption (PSD) measurements of beam tube samples run on NSLS beam line U10B. One meter long beam tube samples were fabricated from aluminum, 304 stainless steel, and oxygen-free copper. Initially, coupon samples were cleaned and passed preliminary testing for the proposed process. Next, beam tube samples of each material were cleaned, and the PSD measured on beam line U10B using white light with a critical energy of 487 eV. Prior to cleaning, the samples were contaminated with a mixture of cutting oils, lubricants, vacuum oils, and vacuum grease. The contaminated samples were then baked. Samples of each material were also cleaned with the existing process after the same preparation. Beam tube samples were exposed to between 10{sup 22} and 10{sup 23} photons per meter for a PSD measurement. Desorption yields for H{sub 2}, CO, CO{sub 2}, CH{sub 4}, and H{sub 2}O are reported for both the existing cleaning and for the replacement cleaning process. Preliminary data, residual gas scans, and PSD results are given and discussed. The new process is also compared with new cleaning methods developed in other laboratories. After modification, the new UHV cleaning process was accepted by BNL.

  2. International Linear Collider Accelerator Physics R&D

    SciTech Connect

    George D. Gollin; Michael Davidsaver; Michael J. Haney; Michael Kasten; Jason Chang; Perry Chodash; Will Dluger; Alex Lang; Yehan Liu

    2008-09-03

    ILC work at Illinois has concentrated primarily on technical issues relating to the design of the accelerator. Because many of the problems to be resolved require a working knowledge of classical mechanics and electrodynamics, most of our research projects lend themselves well to the participation of undergraduate research assistants. The undergraduates in the group are scientists, not technicians, and find solutions to problems that, for example, have stumped PhD-level staff elsewhere. The ILC Reference Design Report calls for 6.7 km circumference damping rings (which prepare the beams for focusing) using “conventional” stripline kickers driven by fast HV pulsers. Our primary goal was to determine the suitability of the 16 MeV electron beam in the AØ region at Fermilab for precision kicker studies.We found that the low beam energy and lack of redundancy in the beam position monitor system complicated the analysis of our data. In spite of these issues we concluded that the precision we could obtain was adequate to measure the performance and stability of a production module of an ILC kicker, namely 0.5%. We concluded that the kicker was stable to an accuracy of ~2.0% and that we could measure this precision to an accuracy of ~0.5%. As a result, a low energy beam like that at AØ could be used as a rapid-turnaround facility for testing ILC production kicker modules. The ILC timing precision for arrival of bunches at the collision point is required to be 0.1 picosecond or better. We studied the bunch-to-bunch timing accuracy of a “phase detector” installed in AØ in order to determine its suitability as an ILC bunch timing device. A phase detector is an RF structure excited by the passage of a bunch. Its signal is fed through a 1240 MHz high-Q resonant circuit and then down-mixed with the AØ 1300 MHz accelerator RF. We used a kind of autocorrelation technique to compare the phase detector signal with a reference signal obtained from the phase detector

  3. Beam Control for Ion Induction Accelerators

    SciTech Connect

    Sangster, T.C.; Ahle, L.

    2000-02-17

    Coordinated bending and acceleration of an intense space-charge-dominated ion beam has been achieved for the first time. This required the development of a variable waveform, precision, bi-polar high voltage pulser and a precision, high repetition rate induction core modulator. Waveforms applied to the induction cores accelerate the beam as the bi-polar high voltage pulser delivers a voltage ramp to electrostatic dipoles which bend the beam through a 90 degree permanent magnet quadrupole lattice. Further work on emittance minimization is also reported.

  4. Generalized radially self-accelerating helicon beams.

    PubMed

    Vetter, Christian; Eichelkraut, Toni; Ornigotti, Marco; Szameit, Alexander

    2014-10-31

    We report, in theory and experiment, on a new class of optical beams that are radially self-accelerating and nondiffracting. These beams continuously evolve on spiraling trajectories while maintaining their amplitude and phase distribution in their rotating rest frame. We provide a detailed insight into the theoretical origin and characteristics of radial self-acceleration and prove our findings experimentally. As radially self-accelerating beams are nonparaxial and a solution to the full scalar Helmholtz equation, they can be implemented in many linear wave systems beyond optics, from acoustic and elastic waves to surface waves in fluids and soft matter. Our work generalized the study of classical helicon beams to a complete set of solutions for rotating complex fields. PMID:25396370

  5. Operational plasma density and laser parameters for future colliders based on laser-plasma accelerators

    SciTech Connect

    Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2012-12-21

    The operational plasma density and laser parameters for future colliders based on laser-plasma accelerators are discussed. Beamstrahlung limits the charge per bunch at low plasma densities. Reduced laser intensity is examined to improve accelerator efficiency in the beamstrahlung-limited regime.

  6. ACCELERATED SITE TECHNOLOGY DEPLOYMENT COST AND PERFORMANCE REPORT COMPARABILITY OF ISOCS INSTRUMENT IN RADIONUCLIDE CHARACTERICATION AT BROOKHAVEN NATIONAL LABORATORY

    SciTech Connect

    KALB,P.; LUCKETT,L.; MILLER,K.; GOGOLAK,C.; MILIAN,L.

    2001-03-01

    This report describes a DOE Accelerated Site Technology Deployment project being conducted at Brookhaven National Laboratory to deploy innovative, radiological, in situ analytical techniques. The technologies are being deployed in support of efforts to characterize the Brookhaven Graphite Research Reactor (BGRR) facility, which is currently undergoing decontamination and decommissioning. This report focuses on the deployment of the Canberra Industries In Situ Object Counting System (ISOCS) and assesses its data comparability to baseline methods of sampling and laboratory analysis. The battery-operated, field deployable gamma spectrometer provides traditional spectra of counts as a function of gamma energy. The spectra are then converted to radionuclide concentration by applying innovative efficiency calculations using monte carlo statistical methods and pre-defined geometry templates in the analysis software. Measurement of gamma emitting radionuclides has been accomplished during characterization of several BGRR components including the Pile Fan Sump, Above Ground Ducts, contaminated cooling fans, and graphite pile internals. Cs-137 is the predominant gamma-emitting radionuclide identified, with smaller quantities of Co-60 and Am-241 detected. The Project used the Multi-Agency Radiation Survey and Site Investigation Manual guidance and the Data Quality Objectives process to provide direction for survey planning and data quality assessment. Analytical results have been used to calculate data quality indicators (DQI) for the ISOCS measurements. Among the DQIs assessed in the report are sensitivity, accuracy, precision, bias, and minimum detectable concentration. The assessment of the in situ data quality using the DQIs demonstrates that the ISOCS data quality can be comparable to definitive level laboratory analysis when the field instrument is supported by an appropriate Quality Assurance Project Plan. A discussion of the results obtained by ISOCS analysis of

  7. Design of a high-flux epithermal neutron beam using 235U fission plates at the Brookhaven Medical Research Reactor.

    PubMed

    Liu, H B; Brugger, R M; Rorer, D C; Tichler, P R; Hu, J P

    1994-10-01

    Beams of epithermal neutrons are being used in the development of boron neutron capture therapy for cancer. This report describes a design study in which 235U fission plates and moderators are used to produce an epithermal neutron beam with higher intensity and better quality than the beam currently in use at the Brookhaven Medical Research Reactor (BMRR). Monte Carlo calculations are used to predict the neutron and gamma fluxes and absorbed doses produced by the proposed design. Neutron flux measurements at the present epithermal treatment facility (ETF) were made to verify and compare with the computed results where feasible. The calculations indicate that an epithermal neutron beam produced by a fission-plate converter could have an epithermal neutron intensity of 1.2 x 10(10) n/cm2.s and a fast neutron dose per epithermal neutron of 2.8 x 10(-11) cGy.cm2/nepi plus being forward directed. This beam would be built into the beam shutter of the ETF at the BMRR. The feasibility of remodeling the facility is discussed. PMID:7869995

  8. Distinguishing new physics scenarios at a linear collider with polarized beams

    SciTech Connect

    Pankov, A.A.; Tsytrinov, A.V.; Paver, N.

    2006-06-01

    Numerous nonstandard dynamics dominated by very high mass exchanges are described at current and future accelerator energies by appropriate contactlike effective interactions among the standard model particles. Correspondingly, they can manifest themselves only through deviations of the cross sections from the standard model predictions. If one such deviation were observed, it would be important to definitely identify, to a given confidence level, the actual source among the various possible nonstandard interactions that, in principle, can explain it. Here we estimate the identification reach on different new physics effective interactions, obtainable from angular distributions of lepton pair production processes at the planned electron-positron International Linear Collider with polarized beams. For each nonstandard model, such an identification reach defines the range in the relevant heavy mass scale parameter where it can be unambiguously distinguished from the other nonstandard models as the source of corrections to the standard model cross sections, in case these are observed. The effective interactions for which we estimate the expected identification reach are the interactions based on gravity in large extra dimensions, in TeV{sup -1} extra dimensions and the compositeness-inspired four-fermion contact interactions. The availability of both beams polarized at the International Linear Collider turns out, in many cases, to dramatically enhance the identification sensitivity.

  9. Beam acceleration through proton radio frequency quadrupole accelerator in BARC

    NASA Astrophysics Data System (ADS)

    Bhagwat, P. V.; Krishnagopal, S.; Mathew, J. V.; Singh, S. K.; Jain, P.; Rao, S. V. L. S.; Pande, M.; Kumar, R.; Roychowdhury, P.; Kelwani, H.; Rama Rao, B. V.; Gupta, S. K.; Agarwal, A.; Kukreti, B. M.; Singh, P.

    2016-05-01

    A 3 MeV proton Radio Frequency Quadrupole (RFQ) accelerator has been designed at the Bhabha Atomic Research Centre, Mumbai, India, for the Low Energy High Intensity Proton Accelerator (LEHIPA) programme. The 352 MHz RFQ is built in 4 segments and in the first phase two segments of the LEHIPA RFQ were commissioned, accelerating a 50 keV, 1 mA pulsed proton beam from the ion source, to an energy of 1.24 MeV. The successful operation of the RFQ gave confidence in the physics understanding and technology development that have been achieved, and indicate that the road forward can now be traversed rather more quickly.

  10. PHENIX Conceptual Design Report. An experiment to be performed at the Brookhaven National Laboratory Relativistic Heavy Ion Collider

    SciTech Connect

    Nagamiya, Shoji; Aronson, Samuel H.; Young, Glenn R.; Paffrath, Leo

    1993-01-29

    The PHENIX Conceptual Design Report (CDR) describes the detector design of the PHENIX experiment for Day-1 operation at the Relativistic Heavy Ion Collider (RHIC). The CDR presents the physics capabilities, technical details, cost estimate, construction schedule, funding profile, management structure, and possible upgrade paths of the PHENIX experiment. The primary goals of the PHENIX experiment are to detect the quark-gluon plasma (QGP) and to measure its properties. Many of the potential signatures for the QGP are measured as a function of a well-defined common variable to see if any or all of these signatures show a simultaneous anomaly due to the formation of the QGP. In addition, basic quantum chromodynamics phenomena, collision dynamics, and thermodynamic features of the initial states of the collision are studied. To achieve these goals, the PHENIX experiment measures lepton pairs (dielectrons and dimuons) to study various properties of vector mesons, such as the mass, the width, and the degree of yield suppression due to the formation of the QGP. The effect of thermal radiation on the continuum is studied in different regions of rapidity and mass. The e{mu} coincidence is measured to study charm production, and aids in understanding the shape of the continuum dilepton spectrum. Photons are measured to study direct emission of single photons and to study {pi}{sup 0} and {eta} production. Charged hadrons are identified to study the spectrum shape, production of antinuclei, the {phi} meson (via K{sup +}K{sup {minus}} decay), jets, and two-boson correlations. The measurements are made down to small cross sections to allow the study of high p{sub T} spectra, and J/{psi} and {Upsilon} production. The PHENIX collaboration consists of over 300 scientists, engineers, and graduate students from 43 institutions in 10 countries. This large international collaboration is supported by US resources and significant foreign resources.

  11. Single crystal niobium tubes for particle colliders accelerator cavities

    SciTech Connect

    Murphy, James E

    2013-02-28

    The objective of this research project is to produce single crystal niobium (Nb) tubes for use as particle accelerator cavities for the Fermi laboratory’s International Linear Collider project. Single crystal Nb tubes may have superior performance compared to a polycrystalline tubes because the absence of grain boundaries may permit the use of higher accelerating voltages. In addition, Nb tubes that are subjected to the high temperature, high vacuum crystallization process are very pure and well annealed. Any impurity with a significantly higher vapor pressure than Nb should be decreased by the relatively long exposure at high temperature to the high vacuum environment. After application of the single crystal process, the surfaces of the Nb tubes are bright and shiny, and the tube resembles an electro polished Nb tube. For these reasons, there is interest in single crystal Nb tubes and in a process that will produce single crystal tubes. To convert a polycrystalline niobium tube into a single crystal, the tube is heated to within a few hundred °C of the melting temperature of niobium, which is 2477 °C. RF heating is used to rapidly heat the tube in a narrow zone and after reaching the operating temperature, the hot zone is slowly passed along the length of the tube. For crystallization tests with Nb tubes, the traverse rate was in the range of 1-10 cm per hour. All the crystallization tests in this study were performed in a water-cooled, stainless steel chamber under a vacuum of 5 x10-6 torr or better. In earliest tests of the single crystal growth process, the Nb tubes had an OD of 1.9 cm and a wall thickness of 0.15 mm. With these relatively small Nb tubes, the single crystal process was always successful in producing single crystal tubes. In these early tests, the operating temperature was normally maintained at 2200 °C, and the traverse rate was 5 cm per hour. In the next test series, the Nb tube size was increased to 3.8 cm OD and the wall thickness was

  12. Pulsed power accelerators for particle beam fusion

    SciTech Connect

    Martin, T.H.; Barr, G.W.; VanDevender, J.P.; White, R.A.; Johnson, D.L.

    1980-01-01

    Sandia National Laboratories is completing the construction phase of the Particle Beam Fusion Accelerator-I (PBFA-I). Testing of the 36 module, 30 TW, 1 MJ output accelerator is in the initial stages. The 4 MJ, PBFA Marx generator has provided 3.6 MA into water-copper sulfate load resistors with a spread from first to last Marx firing between 15 to 25 ns and an output power of 5.7 TW. This accelerator is a modular, lower voltage, pulsed power device that is capable of scaling to power levels exceeding 100 TW. The elements of the PBFA technology and their integration into an accelerator system for particle beam fusion will be discussed.

  13. Explore the possibility of accelerating polarized He-3 beam in RHIC

    SciTech Connect

    Bai M.; Courant, E.; Fischer, W.; Ptitsyn, V.; Roser, T.

    2012-05-20

    As the world's first high energy polarized proton collider, RHIC has made significant progresses in measuring the proton spin structure in the past decade. In order to have better understanding of the contribution of up quarks and down quarks to the proton spin structure, collisions of high energy polarized neutron beams are required. Polarized He-3 beams offer an effectiveway to provide polarized neutron beams. In this paper, we present studies of accelerating polarized He-3 in RHIC with the current dual snake configuration. Possibilities of adding two more pairs of snakes for accelerating polarized He-3 were explored. Results of six snake configuration in RHIC are also reported in the paper.

  14. Ion acceleration mechanism in electron beams

    SciTech Connect

    Popov, A.F.

    1982-07-01

    Analysis of experimental data reveals that several processes observed in diodes and during the transport of intense electron beams in a neutral gas result from polarization of a plasma in an electric field. Under certain conditions this effect gives rise to a high-field region at the boundary of a plasma column. The electron beam is strongly focused in this region. As a result, a two-dimensional potential well forms at the crossover point of a strongly focused beam. The electric field at this well can reach several megavolts per centimeter. The crossover point moves as a result of expansion of the plasma cloud. The ions trapped in the potential well are accelerated. There is effective acceleration over a distance of the order of a few times the beam radius. A new physical model gives a satisfactory explanation of the experimental results.

  15. Discrete beam acceleration in uniform waveguide arrays

    SciTech Connect

    El-Ganainy, Ramy; Makris, Konstantinos G.; Miri, Mohammad Ali; Christodoulides, Demetrios N.; Chen Zhigang

    2011-08-15

    Within the framework of the tight-binding model we demonstrate that Wannier-Stark states can freely accelerate in uniform optical lattices. As opposed to accelerating Airy wave packets in free space, our analysis reveals that in this case the beam main intensity features self-bend along two opposite hyperbolic trajectories. Two-dimensional geometries are also considered and an asymptotic connection between these Wannier-Stark ladders and Airy profiles is presented.

  16. 10-GW CO{sub 2} laser system at the Brookhaven Accelerator Test Facility

    SciTech Connect

    Pogorelsky, I.; Fischer, J.; Fisher, A.S.

    1993-12-31

    Design and performance of a high peak-power CO{sub 2} laser system to produce subnanosecond IR pulses for electron acceleration experiment are presented. We discuss theoretical aspects of the picosecond laser pulse propagation in a molecular amplifier and a design approach towards compact Terawatt CO{sub 2} laser systems.

  17. Radio Frequency Station - Beam Dynamics Interaction in Circular Accelerators

    SciTech Connect

    Mastoridis, Themistoklis

    2010-08-01

    The longitudinal beam dynamics in circular accelerators is mainly defined by the interaction of the beam current with the accelerating Radio Frequency (RF) stations. For stable operation, Low Level RF (LLRF) feedback systems are employed to reduce coherent instabilities and regulate the accelerating voltage. The LLRF system design has implications for the dynamics and stability of the closed-loop RF systems as well as for the particle beam, and is very sensitive to the operating range of accelerator currents and energies. Stability of the RF loop and the beam are necessary conditions for reliable machine operation. This dissertation describes theoretical formalisms and models that determine the longitudinal beam dynamics based on the LLRF implementation, time domain simulations that capture the dynamic behavior of the RF station-beam interaction, and measurements from the Positron-Electron Project (PEP-II) and the Large Hadron Collider (LHC) that validate the models and simulations. These models and simulations are structured to capture the technical characteristics of the system (noise contributions, non-linear elements, and more). As such, they provide useful results and insight for the development and design of future LLRF feedback systems. They also provide the opportunity to study diverse longitudinal beam dynamics effects such as coupled-bunch impedance driven instabilities and single bunch longitudinal emittance growth. Coupled-bunch instabilities and RF station power were the performance limiting effects for PEP-II. The sensitivity of the instabilities to individual LLRF parameters, the effectiveness of alternative operational algorithms, and the possible tradeoffs between RF loop and beam stability were studied. New algorithms were implemented, with significant performance improvement leading to a world record current during the last PEP-II run of 3212 mA for the Low Energy Ring. Longitudinal beam emittance growth due to RF noise is a major concern for LHC

  18. A Performance-Based Training Qualification Guide/Checklist Developed for Reactor Operators at the High Flux Beam Reactor at Brookhaven National Laboratory.

    ERIC Educational Resources Information Center

    McNair, Robert C.

    A Performance-Based Training (PBT) Qualification Guide/Checklist was developed that would enable a trainee to attain the skills, knowledge, and attitude required to operate the High Flux Beam Reactor at Brookhaven National Laboratory. Design of this guide/checklist was based on the Instructional System Design Model. The needs analysis identified…

  19. Summary Report of Working Group 4: e-Beam Driven Accelerators

    SciTech Connect

    Yakimenko, V.; Ischebeck, R.

    2006-11-27

    The working group considered high transformer ration schemes for an afterburner based on the design of a future linear collider. The main linac produces high charge beams of 100 GeV. A multiple stage plasma based accelerator would accelerate a portion of this beam to 500 GeV. The length of each plasma stage is expected to be of the order of a few meters while the isochronous beam transport required for multiple stages would occupy about a kilometer. Discussions in the working group were centered on issues to be addressed: ion motion in the plasma channel, positron side of accelerator ... The state of present e-beam driven plasma and dielectric Wakefield accelerators is very mature and closely resembles parameters of the afterburner for ILC. The main result of this working group is a multistage afterburner scheme of an afterburner for ILC and discussion of the experimental program to address main issues.

  20. Summary Report of Working Group 4: e-Beam Driven Accelerators

    NASA Astrophysics Data System (ADS)

    Yakimenko, V.; Ischebeck, R.

    2006-11-01

    The working group considered high transformer ration schemes for an afterburner based on the design of a future linear collider. The main linac produces high charge beams of 100 GeV. A multiple stage plasma based accelerator would accelerate a portion of this beam to 500 GeV. The length of each plasma stage is expected to be of the order of a few meters while the isochronous beam transport required for multiple stages would occupy about a kilometer. Discussions in the working group were centered on issues to be addressed: ion motion in the plasma channel, positron side of accelerator … The state of present e-beam driven plasma and dielectric Wakefield accelerators is very mature and closely resembles parameters of the afterburner for ILC. The main result of this working group is a multistage afterburner scheme of an afterburner for ILC and discussion of the experimental program to address main issues.

  1. Issues and experience with controlling beam loss at the Tevatron collider

    SciTech Connect

    Annala, Gerald; /Fermilab

    2007-07-01

    Controlling beam loss in the Tevatron collider is of great importance because of the delicate nature of the cryogenic magnet system and the collider detectors. Maximizing the physics potential requires optimized performance as well as protection of all equipment. The operating history of the Tevatron has significantly influenced the way losses are managed. The development of beam loss management in the Tevatron will be presented.

  2. Theories of statistical equilibrium in electron-positron colliding-beam storage rings

    SciTech Connect

    Schonfeld, J.F.

    1985-01-01

    In this lecture I introduce you to some recent theoretical work that represents a significant and long overdue departure from the mainstream of ideas on the physics of colliding- beam storage rings. The goal of the work in question is to understand analytically - without recourse to computer simulation - the role that dissipation and noise play in the observed colliding-beam behavior of electron-positron storage rings.

  3. SimTrack: A compact c++ code for particle orbit and spin tracking in accelerators

    SciTech Connect

    Luo, Yun

    2015-08-29

    SimTrack is a compact c++ code of 6-d symplectic element-by-element particle tracking in accelerators originally designed for head-on beam–beam compensation simulation studies in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. It provides a 6-d symplectic orbit tracking with the 4th order symplectic integration for magnet elements and the 6-d symplectic synchro-beam map for beam–beam interaction. Since its inception in 2009, SimTrack has been intensively used for dynamic aperture calculations with beam–beam interaction for RHIC. Recently, proton spin tracking and electron energy loss due to synchrotron radiation were added. In this article, I will present the code architecture, physics models, and some selected examples of its applications to RHIC and a future electron-ion collider design eRHIC.

  4. SimTrack: A compact c++ code for particle orbit and spin tracking in accelerators

    DOE PAGESBeta

    Luo, Yun

    2015-08-29

    SimTrack is a compact c++ code of 6-d symplectic element-by-element particle tracking in accelerators originally designed for head-on beam–beam compensation simulation studies in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. It provides a 6-d symplectic orbit tracking with the 4th order symplectic integration for magnet elements and the 6-d symplectic synchro-beam map for beam–beam interaction. Since its inception in 2009, SimTrack has been intensively used for dynamic aperture calculations with beam–beam interaction for RHIC. Recently, proton spin tracking and electron energy loss due to synchrotron radiation were added. In this article, I will present the code architecture,more » physics models, and some selected examples of its applications to RHIC and a future electron-ion collider design eRHIC.« less

  5. Generation and Analysis of Subpicosecond Double Electron Bunch at the Brookhaven Accelerator Test Facility

    SciTech Connect

    Babzien, M.; Kusche, K.; Yakimenko, V.; Zhou, F.; Kimura, Wayne D.; Cline, D.B.; Ding, X.P.; /UCLA

    2011-08-09

    Two compressed electron beam bunches from a single 60-MeV bunch have been generated in a reproducible manner during compression in the magnetic chicane - 'dog leg' arrangement at ATF. Measurements indicate they have comparable bunch lengths ({approx}100-200 fs) and are separated in energy by {approx}1.8 MeV with the higher-energy bunch preceding the lower-energy bunch by 0.5-1 ps. Some simulation results for analyzing the double-bunch formation process are also presented.

  6. Distribution of computer functionality for accelerator control at the Brookhaven AGS

    SciTech Connect

    Stevens, A.; Clifford, T.; Frankel, R.

    1985-01-01

    A set of physical and functional system components and their interconnection protocols have been established for all controls work at the AGS. Portions of these designs were tested as part of enhanced operation of the AGS as a source of polarized protons and additional segments will be implemented during the continuing construction efforts which are adding heavy ion capability to our facility. Included in our efforts are the following computer and control system elements: a broad band local area network, which embodies MODEMS; transmission systems and branch interface units; a hierarchical layer, which performs certain data base and watchdog/alarm functions; a group of work station processors (Apollo's) which perform the function of traditional minicomputer host(s) and a layer, which provides both real time control and standardization functions for accelerator devices and instrumentation. Data base and other accelerator functionality is assigned to the most correct level within our network for both real time performance, long-term utility, and orderly growth.

  7. Distribution of computer functionality for accelerator control at the Brookhaven AGS

    SciTech Connect

    Stevens, A.; Clifford, T.; Frankel, R.

    1985-10-01

    A set of physical and functional system components and their interconnection protocols have been established for all controls work at the AGS. Portions of these designs were tested as part of enhanced operation of the AGS as a source of polarized protons and additional segments will be implemented during the continuing construction efforts which are adding heavy ion capability to our facility. Included in our efforts are the following computer and control system elements: a broad band local area network, which embodies MODEMS; transmission systems and branch interface units; a hierarchical layer, which performs certain data base and watchdog/alarm functions; a group of work station processors (Apollo's) which perform the function of traditional minicomputer host(s) and a layer, which provides both real time control and standardization functions for accelerator devices and instrumentation. Data base and other accelerator functionality is assigned to the most correct level within our network for both real time performance, long-term utility, and orderly growth.

  8. High-efficiency acceleration of an electron beam in a plasma wakefield accelerator.

    PubMed

    Litos, M; Adli, E; An, W; Clarke, C I; Clayton, C E; Corde, S; Delahaye, J P; England, R J; Fisher, A S; Frederico, J; Gessner, S; Green, S Z; Hogan, M J; Joshi, C; Lu, W; Marsh, K A; Mori, W B; Muggli, P; Vafaei-Najafabadi, N; Walz, D; White, G; Wu, Z; Yakimenko, V; Yocky, G

    2014-11-01

    High-efficiency acceleration of charged particle beams at high gradients of energy gain per unit length is necessary to achieve an affordable and compact high-energy collider. The plasma wakefield accelerator is one concept being developed for this purpose. In plasma wakefield acceleration, a charge-density wake with high accelerating fields is driven by the passage of an ultra-relativistic bunch of charged particles (the drive bunch) through a plasma. If a second bunch of relativistic electrons (the trailing bunch) with sufficient charge follows in the wake of the drive bunch at an appropriate distance, it can be efficiently accelerated to high energy. Previous experiments using just a single 42-gigaelectronvolt drive bunch have accelerated electrons with a continuous energy spectrum and a maximum energy of up to 85 gigaelectronvolts from the tail of the same bunch in less than a metre of plasma. However, the total charge of these accelerated electrons was insufficient to extract a substantial amount of energy from the wake. Here we report high-efficiency acceleration of a discrete trailing bunch of electrons that contains sufficient charge to extract a substantial amount of energy from the high-gradient, nonlinear plasma wakefield accelerator. Specifically, we show the acceleration of about 74 picocoulombs of charge contained in the core of the trailing bunch in an accelerating gradient of about 4.4 gigavolts per metre. These core particles gain about 1.6 gigaelectronvolts of energy per particle, with a final energy spread as low as 0.7 per cent (2.0 per cent on average), and an energy-transfer efficiency from the wake to the bunch that can exceed 30 per cent (17.7 per cent on average). This acceleration of a distinct bunch of electrons containing a substantial charge and having a small energy spread with both a high accelerating gradient and a high energy-transfer efficiency represents a milestone in the development of plasma wakefield acceleration into a

  9. ICFA Beam Dynamics Newsletter

    SciTech Connect

    Ben-Zvi I.; Kuczewski A.; Altinbas, Z.; Beavis, D.; Belomestnykh,; Dai, J. et al

    2012-07-01

    The Collider-Accelerator Department at Brookhaven National Laboratory is building a high-brightness 500 mA capable Energy Recovery Linac (ERL) as one of its main R&D thrusts towards eRHIC, the polarized electron - hadron collider as an upgrade of the operating RHIC facility. The ERL is in final assembly stages, with injection commisioning starting in October 2012. The objective of this ERL is to serve as a platform for R&D into high current ERL, in particular issues of halo generation and control, Higher-Order Mode (HOM) issues, coherent emissions for the beam and high-brightness, high-power beam generation and preservation. The R&D ERL features a superconducting laser-photocathode RF gun with a high quantum efficiency photoccathode served with a load-lock cathode delivery system, a highly damped 5-cell accelerating cavity, a highly flexible single-pass loop and a comprehensive system of beam instrumentation. In this ICFA Beam Dynamics Newsletter article we will describe the ERL in a degree of detail that is not usually found in regular publications. We will discuss the various systems of the ERL, following the electrons from the photocathode to the beam dump, cover the control system, machine protection etc and summarize with the status of the ERL systems.

  10. A parallel particle-in-cell model for beam-beam interaction in high energy ring colliders

    NASA Astrophysics Data System (ADS)

    Qiang, Ji; Furman, Miguel A.; Ryne, Robert D.

    2004-07-01

    In this paper we present a self-consistent simulation model of colliding beams in high energy ring colliders. The model, which is based on a particle-in-cell method, uses a new developed shifted effective Green function algorithm for the efficient calculation of the beam-beam interaction with arbitrary separation and large aspect ratio. The model uses transfer maps to treat the external focusing elements and a stochastic map to treat radiation damping and quantum excitation of the beams. In the parallel implementation we studied various strategies to deal with the particular nature of the colliding beam system - a system in which there can be significant particle movement between beam-beam collisions. We chose a particle-field decomposition approach instead of the conventional domain decomposition or particle decomposition approach. The particle-field approach leads to good load balance, reduced communication cost, and shows the best scalability on an IBM SP3 among the three parallel implementations we studied. A performance test of the beam-beam model on a Cray T3E, IBM SP3, and a PC cluster is presented. As an application, we studied the flip-flop instability in an electron-positron collider.