Science.gov

Sample records for cd-induced proximal tubule

  1. Expression of kidney injury molecule-1 (Kim-1) in relation to necrosis and apoptosis during the early stages of Cd-induced proximal tubule injury

    SciTech Connect

    Prozialeck, Walter C. Edwards, Joshua R.; Lamar, Peter C.; Liu, Jie; Vaidya, Vishal S.; Bonventre, Joseph V.

    2009-08-01

    Cadmium (Cd) is a nephrotoxic industrial and environmental pollutant that causes a generalized dysfunction of the proximal tubule. Kim-1 is a transmembrane glycoprotein that is normally not detectable in non-injured kidney, but is up-regulated and shed into the urine during the early stages of Cd-induced proximal tubule injury. The objective of the present study was to examine the relationship between the Cd-induced increase in Kim-1 expression and the onset of necrotic and apoptotic cell death in the proximal tubule. Adult male Sprague-Dawley rats were treated with 0.6 mg (5.36 {mu}mol) Cd/kg, subcutaneously, 5 days per week for up to 12 weeks. Urine samples were analyzed for levels of Kim-1 and the enzymatic markers of cell death, lactate dehydrogenase (LDH) and alpha-glutathione-S-transferase ({alpha}-GST). In addition, necrotic cells were specifically labeled by perfusing the kidneys in situ with ethidium homodimer using a procedure that has been recently developed and validated in the Prozialeck laboratory. Cryosections of the kidneys were also processed for the immunofluorescent visualization of Kim-1 and the identification of apoptotic cells by TUNEL labeling. Results showed that significant levels of Kim-1 began to appear in the urine after 6 weeks of Cd treatment, whereas the levels of total protein, {alpha}-GST and LDH were not increased until 8-12 weeks. Results of immunofluorescence labeling studies showed that after 6 weeks and 12 weeks, Kim-1 was expressed in the epithelial cells of the proximal tubule, but that there was no increase in the number of necrotic cells, and only a modest increase in the number of apoptotic cells at 12 weeks. These results indicate that the Cd-induced increase in Kim-1 expression occurs before the onset of necrosis and at a point where there is only a modest level of apoptosis in the proximal tubule.

  2. Renin expression in renal proximal tubule.

    PubMed Central

    Moe, O W; Ujiie, K; Star, R A; Miller, R T; Widell, J; Alpern, R J; Henrich, W L

    1993-01-01

    Angiotensinogen, angiotensin-converting enzyme, and renin constitute the components of the renin-angiotensin system. The mammalian renal proximal tubule contains angiotensinogen, angiotensin-converting enzyme, and angiotensin receptors. Previous immunohistochemical studies describing the presence of renin in the proximal tubule could not distinguish synthesized renin from renin trapped from the glomerular filtrate. In the present study, we examined the presence of renin activity and mRNA in rabbit proximal tubule cells in primary culture and renin mRNA in microdissected proximal tubules. Renin activity was present in lysates of proximal tubule cells in primary culture. Cellular renin content in cultured proximal tubule cells was increased by incubation with 10(-5) M isoproterenol and 10(-5) M forskolin by 150 and 110%, respectively. In addition, renin transcripts were detected in poly(A)+ RNA from cultured proximal tubule cells by RNA blots under high stringency conditions. In microdissected tubules from normal rats, renin mRNA was not detectable with reverse transcription and polymerase chain reaction. However, in tubules from rats administered the angiotensinogen-converting-enzyme inhibitor, enalapril, renin was easily detected in the S2 segment of the proximal tubule. We postulate the existence of a local renin-angiotensin system that enables the proximal tubule to generate angiotensin II, thereby providing an autocrine system that could locally modulate NaHCO3 and NaCl absorption. Images PMID:7680667

  3. Severity and Frequency of Proximal Tubule Injury Determines Renal Prognosis.

    PubMed

    Takaori, Koji; Nakamura, Jin; Yamamoto, Shinya; Nakata, Hirosuke; Sato, Yuki; Takase, Masayuki; Nameta, Masaaki; Yamamoto, Tadashi; Economides, Aris N; Kohno, Kenji; Haga, Hironori; Sharma, Kumar; Yanagita, Motoko

    2016-08-01

    AKI increases the risk of developing CKD, but the mechanisms linking AKI to CKD remain unclear. Because proximal tubule injury is the mainstay of AKI, we postulated that proximal tubule injury triggers features of CKD. We generated a novel mouse model to induce proximal tubule-specific adjustable injury by inducing the expression of diphtheria toxin (DT) receptor with variable prevalence in proximal tubules. Administration of high-dose DT in mice expressing the DT receptor consistently caused severe proximal tubule-specific injury associated with interstitial fibrosis and reduction of erythropoietin production. Mild proximal tubule injury from a single injection of low-dose DT triggered reversible fibrosis, whereas repeated mild injuries caused sustained interstitial fibrosis, inflammation, glomerulosclerosis, and atubular glomeruli. DT-induced proximal tubule-specific injury also triggered distal tubule injury. Furthermore, injured tubular cells cocultured with fibroblasts stimulated induction of extracellular matrix and inflammatory genes. These results support the existence of proximal-distal tubule crosstalk and crosstalk between tubular cells and fibroblasts. Overall, our data provide evidence that proximal tubule injury triggers several features of CKD and that the severity and frequency of proximal tubule injury determines the progression to CKD. PMID:26701981

  4. Rheogenic transport in the renal proximal tubule

    PubMed Central

    1983-01-01

    The electrophysiology of the renal Na-K ATPase was studied in isolated perfused amphibian proximal tubules during alterations in bath (serosal) potassium. Intracellular and extracellular ionic activity measurements permitted continuous evaluation of the Nernst potentials for Na+, K+, and Cl- across the basolateral membrane. The cell membrane and transepithelial potential differences and resistances were also determined. Return of K to the basal (serosal) solution after a 20-min incubation in K-free solution hyperpolarized the basolateral membrane to an electrical potential that was more negative than the Nernst potential for either Na, Cl, or K. This constitutes strong evidence that at least under stimulated conditions the Na-K ATPase located at the basolateral membrane of the renal proximal tubule mediates a rheogenic process which directly transfers net charge across the cell membrane. Interpretation of these data in terms of an electrical equivalent circuit permitted calculation of both the rheogenic current and the Na/K coupling ratio of the basolateral pump. During the period between 1 and 3 min after pump reactivation by return of bath K, the basolateral rheogenic current was directly proportional to the intracellular Na activity, and the pump stoichiometry transiently exceeded the coupling ratio of 3Na to 2K reported in other preparations. PMID:6319539

  5. Coupled water transport by rat proximal tubule.

    PubMed

    Green, R; Giebisch, G; Unwin, R; Weinstein, A M

    1991-12-01

    Simultaneous microperfusion of proximal tubules and peritubular capillaries in kidneys of rats anesthetized with Inactin was used to examine water reabsorption by this epithelium. Osmolality of the luminal solution was varied with changes in NaCl concentration and by the addition of raffinose. Capillary perfusates contained either low (2 g/dl) or high (16 g/dl) concentrations of albumin. We used low-bicarbonate perfusates for both lumen and capillary so that we might apply the nonequilibrium thermodynamic model of transport for a single solute (NaCl) to interpret our observations. Linear regression with the volume flux equation Jv = -Lp delta II - Lp sigma delta C + Jav (where Jv is volume flux, Lp is hydraulic conductance, delta II is oncotic force, sigma is osmotic reflection coefficient, delta C is salt concentration difference, and Jav is the component of Jv not attributed to transepithelial hydrostatic or osmotic forces) revealed a tubule water permeability (Pf = 0.11 +/- 0.01 cm/s) and a sigma (0.74 +/- 0.08) in agreement with previous determinations. These transport parameters were unaffected by changes in peritubular protein. We also found that Jav was substantial, approximately three-fourths of the rate of isotonic transport under these perfusion conditions. Further, this component of water transport nearly doubled with the transition from low- to high-protein peritubular capillary perfusion. When expressed as a capacity for water reabsorption against an osmotic gradient, the salt concentration differences required to null volume flux were 13.2 +/- 2.4 and 29.4 +/- 4.0 mosmol/kgH2O under low and high peritubular protein. Our data suggest that this protein effect is, most likely, an increase in solute transport by the tubule epithelial cells. PMID:1750518

  6. Human proximal tubule cells form functional microtissues.

    PubMed

    Prange, Jenny A; Bieri, Manuela; Segerer, Stephan; Burger, Charlotte; Kaech, Andres; Moritz, Wolfgang; Devuyst, Olivier

    2016-04-01

    The epithelial cells lining the proximal tubules of the kidney mediate complex transport processes and are particularly vulnerable to drug toxicity. Drug toxicity studies are classically based on two-dimensional cultures of immortalized proximal tubular cells. Such immortalized cells are dedifferentiated, and lose transport properties (including saturable endocytic uptake) encountered in vivo. Generating differentiated, organotypic human microtissues would potentially alleviate these limitations and facilitate drug toxicity studies. Here, we describe the generation and characterization of kidney microtissues from immortalized (HK-2) and primary (HRPTEpiC) human renal proximal tubular epithelial cells under well-defined conditions. Microtissue cultures were done in hanging drop GravityPLUS™ culture plates and were characterized for morphology, proliferation and differentiation markers, and by monitoring the endocytic uptake of albumin. Kidney microtissues were successfully obtained by co-culturing HK-2 or HRPTEpiC cells with fibroblasts. The HK-2 microtissues formed highly proliferative, but dedifferentiated microtissues within 10 days of culture, while co-culture with fibroblasts yielded spherical structures already after 2 days. Low passage HRPTEpiC microtissues (mono- and co-culture) were less proliferative and expressed tissue-specific differentiation markers. Electron microscopy evidenced epithelial differentiation markers including microvilli, tight junctions, endosomes, and lysosomes in the co-cultured HRPTEpiC microtissues. The co-cultured HRPTEpiC microtissues showed specific uptake of albumin that could be inhibited by cadmium and gentamycin. In conclusion, we established a reliable hanging drop protocol to obtain functional kidney microtissues with proximal tubular epithelial cell lines. These microtissues could be used for high-throughput drug and toxicology screenings, with endocytosis as a functional readout. PMID:26676951

  7. Differentiated kidney epithelial cells repair injured proximal tubule.

    PubMed

    Kusaba, Tetsuro; Lalli, Matthew; Kramann, Rafael; Kobayashi, Akio; Humphreys, Benjamin D

    2014-01-28

    Whether kidney proximal tubule harbors a scattered population of epithelial stem cells is a major unsolved question. Lineage-tracing studies, histologic characterization, and ex vivo functional analysis results conflict. To address this controversy, we analyzed the lineage and clonal behavior of fully differentiated proximal tubule epithelial cells after injury. A CreER(T2) cassette was knocked into the sodium-dependent inorganic phosphate transporter SLC34a1 locus, which is expressed only in differentiated proximal tubule. Tamoxifen-dependent recombination was absolutely specific to proximal tubule. Clonal analysis after injury and repair showed that the bulk of labeled cells proliferate after injury with increased clone size after severe compared with mild injury. Injury to labeled proximal tubule epithelia induced expression of CD24, CD133, vimentin, and kidney-injury molecule-1, markers of putative epithelial stem cells in the human kidney. Similar results were observed in cultured proximal tubules, in which labeled clones proliferated and expressed dedifferentiation and injury markers. When mice with completely labeled kidneys were subject to injury and repair there was no dilution of fate marker despite substantial proliferation, indicating that unlabeled progenitors do not contribute to kidney repair. During nephrogenesis and early kidney growth, single proximal tubule clones expanded, suggesting that differentiated cells also contribute to tubule elongation. These findings provide no evidence for an intratubular stem-cell population, but rather indicate that terminally differentiated epithelia reexpress apparent stem-cell markers during injury-induced dedifferentiation and repair. PMID:24127583

  8. Driving change: kidney proximal tubule CSF-1 polarizes macrophages

    PubMed Central

    Perry, Heather M.; Okusa, Mark D.

    2016-01-01

    Macrophage colony-stimulating factor (CSF-1 or M-CSF) is important for kidney repair after acute kidney injury (AKI). CSF-1 is upregulated in tubule epithelial cells in response to kidney injury stimuli and binds to its sole receptor, CSF1R, in an autocrine and paracrine manner. Wang and colleagues used a genetic approach to constitutively delete Csf1 in proximal tubules to establish that proximal tubule production of CSF-1 is important for polarizing and skewing macrophages toward an M2 phenotype, and for recovery from AKI. PMID:26649657

  9. Luminal Na+/H+ exchange in the proximal tubule

    PubMed Central

    Bobulescu, I. Alexandru

    2010-01-01

    The proximal tubule is critical for whole-organism volume and acid–base homeostasis by reabsorbing filtered water, NaCl, bicarbonate, and citrate, as well as by excreting acid in the form of hydrogen and ammonium ions and producing new bicarbonate in the process. Filtered organic solutes such as amino acids, oligopeptides, and proteins are also retrieved by the proximal tubule. Luminal membrane Na+/H+ exchangers either directly mediate or indirectly contribute to each of these processes. Na+/H+ exchangers are a family of secondary active transporters with diverse tissue and subcellular distributions. Two isoforms, NHE3 and NHE8, are expressed at the luminal membrane of the proximal tubule. NHE3 is the prevalent isoform in adults, is the most extensively studied, and is tightly regulated by a large number of agonists and physiological conditions acting via partially defined molecular mechanisms. Comparatively little is known about NHE8, which is highly expressed at the lumen of the neonatal proximal tubule and is mostly intracellular in adults. This article discusses the physiology of proximal Na+/H+ exchange, the multiple mechanisms of NHE3 regulation, and the reciprocal relationship between NHE3 and NHE8 at the lumen of the proximal tubule. PMID:18853182

  10. Degradation and transport of AVP by proximal tubule

    SciTech Connect

    Carone, F.A.; Christensen, E.I.; Flouret, G. Univ. of Aarhus )

    1987-12-01

    High-performance liquid chromatography (HPLC) analysis revealed that (3,4,5-{sup 3}H-Phe{sup 3},Arg{sup 8})vasopressin (({sup 3}H)AVP) was not degraded by isolated renal brush-border membranes or by a cortical lysosomal fraction in vitro; however, in the presence of 1 mM reduced glutathione, ({sup 3}H)AVP was degraded by both preparations. Renal cortical homogenates in vitro and luminal peptidases of proximal tubule in vivo degraded ({sup 3}H)AVP and in both instances yielded phenylalanine, hexapeptide AVP 1-6, heptapeptide AVP 1-7, octapeptide AVP 1-8, and two uncharacterized products X and Y. These data suggest that filtered AVP is reduced in the proximal tubule by a reduced glutathione-dependent transhydrogenase and subsequently cleaved to ({sup 3}H)Phe by tubular aminopeptidases. Following microinfusion of ({sup 3}H)AVP into proximal tubules, 15.7% of the label was absorbed. Five and fifteen minutes after infusion of ({sup 3}H)AVP, sequestration of total label in proximal tubules was 4.5 and 2.1%, respectively, and quantitative electron microscope autoradiography revealed accumulation of grains over apical endocytic vacuoles and lysosomes consistent with endocytic uptake and rapid lysosomal degradation of AVP and/or a large metabolite. Thus, enzymatic cleavage of AVP by luminal and lysosomal peptidases in proximal tubules could involve disulfide bond, C-terminal, and N-terminal loci.

  11. Accelerated reabsorption in the proximal tubule produced by volume depletion

    PubMed Central

    Weiner, Michael W.; Weinman, Edward J.; Kashgarian, Michael; Hayslett, John P.

    1971-01-01

    The renal response to chronic depletion of extracellular volume was examined using the techniques of micropuncture. Depletion of salt and water was produced by administration of furosemide to rats maintained on a sodium-free diet. There was a marked fall in body weight, plasma volume, and glomerular filtration rate. The intrinsic reabsorptive capacity of the proximal tubule, measured by the split-droplet technique, was greatly enhanced. The acceleration of proximal fluid reabsorption could not be accounted for by changes in filtration rate, tubular geometry, or aldosterone secretion. The half-time of droplet reabsorption in the distal tubule was not altered by sodium depletion. An increase in the reabsorption of fluid in the proximal tubule, as demonstrated directly in the present experiments, provides an explanation for a variety of clinical phenomena associated with volume depletion. Images PMID:5090054

  12. Innervation of the renal proximal convoluted tubule of the rat

    SciTech Connect

    Barajas, L.; Powers, K. )

    1989-12-01

    Experimental data suggest the proximal tubule as a major site of neurogenic influence on tubular function. The functional and anatomical axial heterogeneity of the proximal tubule prompted this study of the distribution of innervation sites along the early, mid, and late proximal convoluted tubule (PCT) of the rat. Serial section autoradiograms, with tritiated norepinephrine serving as a marker for monoaminergic nerves, were used in this study. Freehand clay models and graphic reconstructions of proximal tubules permitted a rough estimation of the location of the innervation sites along the PCT. In the subcapsular nephrons, the early PCT (first third) was devoid of innervation sites with most of the innervation occurring in the mid (middle third) and in the late (last third) PCT. Innervation sites were found in the early PCT in nephrons located deeper in the cortex. In juxtamedullary nephrons, innervation sites could be observed on the PCT as it left the glomerulus. This gradient of PCT innervation can be explained by the different tubulovascular relationships of nephrons at different levels of the cortex. The absence of innervation sites in the early PCT of subcapsular nephrons suggests that any influence of the renal nerves on the early PCT might be due to an effect of neurotransmitter released from renal nerves reaching the early PCT via the interstitium and/or capillaries.

  13. Mesoscale Nanoparticles Selectively Target the Renal Proximal Tubule Epithelium

    PubMed Central

    Williams, Ryan M.; Shah, Janki; Ng, Brandon D.; Minton, Denise R.; Gudas, Lorraine J.; Park, Christopher Y.; Heller, Daniel A.

    2015-01-01

    We synthesized “mesoscale” nanoparticles, approximately 400 nm in diameter, which unexpectedly localized selectively in renal proximal tubules and up to 7 times more efficiently in the kidney than other organs. Although nanoparticles typically localize in the liver and spleen, modulating their size and opsonization potential allowed for stable targeting of the kidneys through a new proposed uptake mechanism. Applying this kidney targeting strategy, we anticipate use in the treatment of renal disease and the study of renal physiology. PMID:25811353

  14. Mechanosensory function of microvilli of the kidney proximal tubule

    PubMed Central

    Du, Zhaopeng; Duan, Yi; Yan, QingShang; Weinstein, Alan M.; Weinbaum, Sheldon; Wang, Tong

    2004-01-01

    Normal variations in glomerular filtration induce proportional changes in proximal tubule Na+ reabsorption. This “glomerulotubular balance” derives from flow dependence of Na+ uptake across luminal cell membranes; however, the underlying physical mechanism is unknown. Our hypothesis is that flow-dependent reabsorption is an autoregulatory mechanism that is independent of neural and hormonal systems. It is signaled by the hydrodynamic torque (bending moment) on epithelial microvilli. Such signals need to be transmitted to the terminal web to modulate Na+-H+-exchange activity. To investigate this hypothesis, we examined Na+ transport and tubular diameter in response to different flow rates during the microperfusion of isolated S2 proximal tubules from mouse kidneys. The data were analyzed by using a mathematical model to estimate the microvillous torque as function of flow. In this model, increases in luminal diameter have the effect of blunting the impact of flow velocity on microvillous shear stress and, thus, microvillous torque. We found that variations in microvillous torque produce nearly identical fractional changes in Na+ reabsorption. Furthermore, the flow-dependent Na+ transport is increased by increasing luminal fluid viscosity, diminished in Na+-H+ exchanger isoform 3 knockout mice, and abolished by nontoxic disruption of the actin cytoskeleton. These data support our hypothesis that the “brush-border” microvilli serve a mechanosensory function in which fluid dynamic torque is transmitted to the actin cytoskeleton and modulates Na+ absorption in kidney proximal tubules. PMID:15319475

  15. Adenosine, type 1 receptors: role in proximal tubule Na+ reabsorption.

    PubMed

    Welch, W J

    2015-01-01

    Adenosine type 1 receptor (A1 -AR) antagonists induce diuresis and natriuresis in experimental animals and humans. Much of this effect is due to inhibition of A1 -ARs in the proximal tubule, which is responsible for 60-70% of the reabsorption of filtered Na(+) and fluid. Intratubular application of receptor antagonists indicates that A1 -AR mediates a portion of Na(+) uptake in PT and PT cells, via multiple transport systems, including Na(+) /H(+) exchanger-3 (NHE3), Na(+) /PO4(-) co-transporter and Na(+) -dependent glucose transporter, SGLT. Renal microperfusion and recollection studies have shown that fluid reabsorption is reduced by A1 -AR antagonists and is lower in A1 -AR KO mice, compared to WT mice. Absolute proximal reabsorption (APR) measured by free-flow micropuncture is equivocal, with studies that show either lower APR or similar APR in A1 -AR KO mice, compared to WT mice. Inhibition of A1 -ARs lowers elevated blood pressure in models of salt-sensitive hypertension, partially due to their effects in the proximal tubule. PMID:25345761

  16. SGLT2 Mediates Glucose Reabsorption in the Early Proximal Tubule

    PubMed Central

    Platt, Kenneth A.; Cunard, Robyn; Schroth, Jana; Whaley, Jean; Thomson, Scott C.; Koepsell, Hermann; Rieg, Timo

    2011-01-01

    Mutations in the gene encoding for the Na+-glucose co-transporter SGLT2 (SLC5A2) associate with familial renal glucosuria, but the role of SGLT2 in the kidney is incompletely understood. Here, we determined the localization of SGLT2 in the mouse kidney and generated and characterized SGLT2-deficient mice. In wild-type (WT) mice, immunohistochemistry localized SGLT2 to the brush border membrane of the early proximal tubule. Sglt2−/− mice had glucosuria, polyuria, and increased food and fluid intake without differences in plasma glucose concentrations, GFR, or urinary excretion of other proximal tubular substrates (including amino acids) compared with WT mice. SGLT2 deficiency did not associate with volume depletion, suggested by similar body weight, BP, and hematocrit; however, plasma renin concentrations were modestly higher and plasma aldosterone levels were lower in Sglt2−/− mice. Whole-kidney clearance studies showed that fractional glucose reabsorption was significantly lower in Sglt2−/− mice compared with WT mice and varied in Sglt2−/− mice between 10 and 60%, inversely with the amount of filtered glucose. Free-flow micropuncture revealed that for early proximal collections, 78 ± 6% of the filtered glucose was reabsorbed in WT mice compared with no reabsorption in Sglt2−/− mice. For late proximal collections, fractional glucose reabsorption was 93 ± 1% in WT and 21 ± 6% in Sglt2−/− mice, respectively. These results demonstrate that SGLT2 mediates glucose reabsorption in the early proximal tubule and most of the glucose reabsorption by the kidney, overall. This mouse model mimics and explains the glucosuric phenotype of individuals carrying SLC5A2 mutations. PMID:20616166

  17. MODELING PROXIMAL TUBULE CELL HOMEOSTASIS: TRACKING CHANGES IN LUMINAL FLOW

    PubMed Central

    Weinstein, Alan M.; Sontag, Eduardo D.

    2009-01-01

    During normal kidney function, there are are routinely wide swings in proximal tubule fluid flow and proportional changes in Na+ reabsorption across tubule epithelial cells. This "glomerulotubular balance" occurs in the absence of any substantial change in cell volume, and is thus a challenge to coordinate luminal membrane solute entry with peritubular membrane solute exit. In this work, linear optimal control theory is applied to generate a configuration of regulated transporters that could achieve this result. A previously developed model of rat proximal tubule epithelium is linearized about a physiologic reference condition; the approximate linear system is recast as a dynamical system; and a Riccati equation is solved to yield the optimal linear feedback that stabilizes Na+ flux, cell volume, and cell pH. The first observation is that optimal feedback control is largely consigned to three physiologic variables, cell volume, cell electrical potential, and lateral intercellular hydrostatic pressure. Parameter modulation by cell volume stabilizes cell volume; parameter modulation by electrical potential or interspace pressure act to stabilize Na+ flux and cell pH. This feedback control is utilized in a tracking problem, in which reabsorptive Na+ flux varies over a factor of two. The resulting control parameters consist of two terms, an autonomous term and a feedback term, and both terms include transporters on both luminal and peritubular cell membranes. Overall, the increase in Na+ flux is achieved with upregulation of luminal Na+/H+ exchange and Na+-glucose cotransport, with increased peritubular Na+−3HCO3− and K+ − Cl− cotransport, and with increased Na+, K+-ATPase activity. The configuration of activated transporters emerges as testable hypothesis of the molecular basis for glomerulotubular balance. It is suggested that the autonomous control component at each cell membrane could represent the cytoskeletal effects of luminal flow. PMID:19280266

  18. Acid-base transport by the renal proximal tubule

    PubMed Central

    Skelton, Lara A.; Boron, Walter F.; Zhou, Yuehan

    2015-01-01

    Each day, the kidneys filter 180 L of blood plasma, equating to some 4,300 mmol of the major blood buffer, bicarbonate (HCO3−). The glomerular filtrate enters the lumen of the proximal tubule (PT), and the majority of filtered HCO3− is reclaimed along the early (S1) and convoluted (S2) portions of the PT in a manner coupled to the secretion of H+ into the lumen. The PT also uses the secreted H+ to titrate non-HCO3− buffers in the lumen, in the process creating “new HCO3−” for transport into the blood. Thus, the PT – along with more distal renal segments – is largely responsible for regulating plasma [HCO3−]. In this review we first focus on the milestone discoveries over the past 50+ years that define the mechanism and regulation of acid-base transport by the proximal tubule. Further on in the review, we will summarize research still in progress from our laboratory, work that addresses the problem of how the PT is able to finely adapt to acid–base disturbances by rapidly sensing changes in basolateral levels of HCO3− and CO2 (but not pH), and thereby to exert tight control over the acid–base composition of the blood plasma. PMID:21170887

  19. Cell osmotic water permeability of isolated rabbit proximal convoluted tubules.

    PubMed

    Carpi-Medina, P; González, E; Whittembury, G

    1983-05-01

    Cell osmotic water permeability, Pcos, of the peritubular aspect of the proximal convoluted tubule (PCT) was measured from the time course of cell volume changes subsequent to the sudden imposition of an osmotic gradient, delta Cio, across the cell membrane of PCT that had been dissected and mounted in a chamber. The possibilities of artifact were minimized. The bath was vigorously stirred, the solutions could be 95% changed within 0.1 s, and small osmotic gradients (10-20 mosM) were used. Thus, the osmotically induced water flow was a linear function of delta Cio and the effect of the 70-microns-thick unstirred layers was negligible. In addition, data were extrapolated to delta Cio = 0. Pcos for PCT was 41.6 (+/- 3.5) X 10(-4) cm3 X s-1 X osM-1 per cm2 of peritubular basal area. The standing gradient osmotic theory for transcellular osmosis is incompatible with this value. Published values for Pcos of PST are 25.1 X 10(-4), and for the transepithelial permeability Peos values are 64 X 10(-4) for PCT and 94 X 10(-4) for PST, in the same units. These results indicate that there is room for paracellular water flow in both nephron segments and that the magnitude of the transcellular and paracellular water flows may vary from one segment of the proximal tubule to another. PMID:6846543

  20. Discerning the role of mechanosensors in regulating proximal tubule function.

    PubMed

    Raghavan, Venkatesan; Weisz, Ora A

    2016-01-01

    All cells in the body experience external mechanical forces such as shear stress and stretch. These forces are sensed by specialized structures in the cell known as mechanosensors. Cells lining the proximal tubule (PT) of the kidney are continuously exposed to variations in flow rates of the glomerular ultrafiltrate, which manifest as changes in axial shear stress and radial stretch. Studies suggest that these cells respond acutely to variations in flow by modulating their ion transport and endocytic functions to maintain glomerulotubular balance. Conceptually, changes in the axial shear stress in the PT could be sensed by three known structures, namely, the microvilli, the glycocalyx, and primary cilia. The orthogonal component of the force produced by flow exhibits as radial stretch and can cause expansion of the tubule. Forces of stretch are transduced by integrins, by stretch-activated channels, and by cell-cell contacts. This review summarizes our current understanding of flow sensing in PT epithelia, discusses challenges in dissecting the role of individual flow sensors in the mechanosensitive responses, and identifies potential areas of opportunity for new study. PMID:26662200

  1. Cadmium transport and toxicity in isolated perfused renal proximal tubules

    SciTech Connect

    Robinson, M.E.K.

    1991-01-01

    Cadmium is a potent toxicant preferentially accumulated in the renal cortex of humans and other animals. To assess the renal toxicity of inorganic cadmium, isolated segments (S1, S2, and S3) of rabbit renal proximal tubules were perfused with various concentrations of unlabeled cadmium chloride (CdCl[sub 2]) and a vital dye (FD C green). The tubular epithelial cells were observed under the light microscope for cellular injury and necrosis. Cellular swelling, luminal membrane blebbing, and cellular vacuolization were indicators of cellular injury, and dye uptake was indicative of cellular necrosis. To determine lumen-to-bath transport rates for cadmium, the segments were perfused with a mixture of [sup 109]CdCl[sub 2] and [sup 3]H-L-glucose; unlabeled CdCl[sub 2] was added when necessary to vary the total cadmium concentration from 1.5 [mu]M to 2000 [mu]M. Immediately after perfusion the tubules were extracted with 3% trichoroacetic acid (TCA) or with a modified Ringer's buffer of reduced osmolality to determine the fate of the cadmium removed from the lumen. Based on the toxicant indicators, increased dye uptake, increased luminal membrane blebbing, and increased vacuole formation, as the cadmium concentration was increased, cadmium was found to show toxicity to renal tubular cells at concentrations greater than 500 [mu]M. In transport experiments, increasing the cadmium concentration causes an increase in the leak of L-glucose, also indicating toxicity. A clear imbalance exists between the rate of disappearance of cadmium from the lumen and the rate of appearance in the bath for all three tubular segments. Cadmium appears to bind cellular membrane proteins, but it is extractable with 3% TCA. Cadmium, like mercury, is taken up at the luminal membrane, but very little is transported through the basolateral membrane.

  2. Ultrastructural changes in renal proximal tubules after tetraethyllead intoxication

    SciTech Connect

    Chang, L.W.; Wade, P.R.; Reuhl, K.R.; Olson, M.J.

    1980-10-01

    Tetraethyllead (TEL) has been shown to be both an occupational and an environmental hazard to human health. The present study investigates pathological changes in the kidney as a result of TEL poisoning. Rabbits were injected (ip) with 100 to 200 mg TEL, and controls were injected with an equal volume of normal saline solution. Animals were sacrificed upon onset of toxic symptoms (hyperirritation, tremor, and convulsion). Animals were perfused with 2.5% glutaraldehyde. Tissue samples from the renal cortex were obtained for electron microscopy. Pathological changes were not remarkable at the light microscopic level; however, electron microscopic examination revealed marked cytological changes in the epithelial cells of the proximal tubules (PT) of animals treated with TEL. Enlargement of apical vacuoles and accumulation of lysosomes and microbodies were prominent findings in many PT epithelial cells. Many lysosomes appeared to be atypical in nature, displaying a high degree of pleomorphism in size, shape, and density. Giant lysosomes measuring 8 to 10 ..mu..m in diameter and crystalloid bodies within lysosomes were also observed. Configurational changes (increased convolution, branching, vesiculation, and degranulation) of the rough endoplasmic reticulum leading to the formation of honeycomb-like bodies were also found in many PT epithelial cells. The formation of the honeycomb-like bodies may represent a hyperplastic, hypoactive form of the rough endoplasmic reticulum and denotes a disruption of protein synthesis in these cells by TEL.

  3. Regulation of proximal tubule vacuolar H+-ATPase by PKA and AMP-activated protein kinase

    PubMed Central

    Al-bataineh, Mohammad M.; Gong, Fan; Marciszyn, Allison L.; Myerburg, Michael M.

    2014-01-01

    The vacuolar H+-ATPase (V-ATPase) mediates ATP-driven H+ transport across membranes. This pump is present at the apical membrane of kidney proximal tubule cells and intercalated cells. Defects in the V-ATPase and in proximal tubule function can cause renal tubular acidosis. We examined the role of protein kinase A (PKA) and AMP-activated protein kinase (AMPK) in the regulation of the V-ATPase in the proximal tubule as these two kinases coregulate the V-ATPase in the collecting duct. As the proximal tubule V-ATPases have different subunit compositions from other nephron segments, we postulated that V-ATPase regulation in the proximal tubule could differ from other kidney tubule segments. Immunofluorescence labeling of rat ex vivo kidney slices revealed that the V-ATPase was present in the proximal tubule both at the apical pole, colocalizing with the brush-border marker wheat germ agglutinin, and in the cytosol when slices were incubated in buffer alone. When slices were incubated with a cAMP analog and a phosphodiesterase inhibitor, the V-ATPase accumulated at the apical pole of S3 segment cells. These PKA activators also increased V-ATPase apical membrane expression as well as the rate of V-ATPase-dependent extracellular acidification in S3 cell monolayers relative to untreated cells. However, the AMPK activator AICAR decreased PKA-induced V-ATPase apical accumulation in proximal tubules of kidney slices and decreased V-ATPase activity in S3 cell monolayers. Our results suggest that in proximal tubule the V-ATPase subcellular localization and activity are acutely coregulated via PKA downstream of hormonal signals and via AMPK downstream of metabolic stress. PMID:24553431

  4. Aldosterone and angiotensin II induce protein aggregation in renal proximal tubules

    PubMed Central

    Cheema, Muhammad U; Poulsen, Ebbe T; Enghild, Jan J; Hoorn, Ewout; Fenton, Robert A; Praetorius, Jeppe

    2013-01-01

    Renal tubules are highly active transporting epithelia and are at risk of protein aggregation due to high protein turnover and/or oxidative stress. We hypothesized that the risk of aggregation was increased upon hormone stimulation and assessed the state of the intracellular protein degradation systems in the kidney from control rats and rats receiving aldosterone or angiotensin II treatment for 7 days. Control rats formed both aggresomes and autophagosomes specifically in the proximal tubules, indicating a need for these structures even under baseline conditions. Fluorescence sorted aggresomes contained various rat keratins known to be expressed in renal tubules as assessed by protein mass spectrometry. Aldosterone administration increased the abundance of the proximal tubular aggresomal protein keratin 5, the ribosomal protein RPL27, ataxin-3, and the chaperone heat shock protein 70-4 with no apparent change in the aggresome–autophagosome markers. Angiotensin II induced aggregation of RPL27 specifically in proximal tubules, again without apparent change in antiaggregating proteins or the aggresome–autophagosome markers. Albumin endocytosis was unaffected by the hormone administration. Taken together, we find that the renal proximal tubules display aggresome formation and autophagy. Despite an increase in aggregation-prone protein load in these tubules during hormone treatment, renal proximal tubules seem to have sufficient capacity for removing protein aggregates from the cells. PMID:24303148

  5. Release of renal dipeptidase from rabbit renal proximal tubules and its inhibition by gentamicin.

    PubMed

    Kang, B Y; We, J S; Choi, K; Lee, H B; Han, H J; Park, H S

    1999-08-01

    Effects of several drugs on rabbit renal proximal tubules were examined for the applicability of renal dipeptidase (RDPase, EC 3. 4. 13. 11) release as a model system to study nephrotoxicity. The proximal tubule prepared by the method of Taub (1990) released RDPase spontaneously in the control experiment which was confirmed by Western blotting. RDPase was also released from cisplatin, lipopolysaccharide (LPS), and indomethacin-treated tubules. Gentamicin inhibited RDPase release in a concentration-dependent manner. This RDPase release system may not be a general model to screen nephrotoxicity but could be a useful source of RDPase purification in a simple and inexpensive way. PMID:10489875

  6. Fluid Secretion in Isolated Proximal Straight Renal Tubules EFFECT OF HUMAN UREMIC SERUM

    PubMed Central

    Grantham, Jared J.; Irwin, Richard L.; Qualizza, Patti B.; Tucker, Donald R.; Whittier, Frederick C.

    1973-01-01

    We have examined the effect of normal and uremic human sera on the transtubular flow of fluid in isolated perfused segments of rabbit proximal convoluted and straight renal tubules. Proximal convoluted and straight tubules absorbed fluid from the lumen when the external bath was normal rabbit serum. Normal human sera in the bath depressed net fluid absorption in both tubular segments, but more importantly, uremic human serum caused proximal straight tubules to secrete fluid into the lumen. Fluid secretion was also demonstrated indirectly by observing in nonperfused proximal straight, but not proximal convoluted tubules, that the normally collapsed lumens opened widely in uremic serum. Nonperfused proximal straight tubules developed expanded lumens even after a 25-fold dilution of human uremic serum with normal rabbit serum, whereas lumen expansion occurred only in undiluted normal human serum, on the average. Serum from acutely uremic rabbits possessed secretory activity but normal rabbit serum did not. The secretory effect of uremic sera in proximal straight tubules was inhibited by cooling and ouabain and probenecid. The secretory activity of uremic sera was removed by dialysis, but not by freezing or boiling. Para-aminohippurate and benzoate caused fluid secretion in proximal straight tubules but urea, creatinine, guanidinosuccinate, and urate did not. On the basis of these results, we suggest that the secretory factor in serum may be a substance or group of substances possibly related to the hippurate class of organic molecules that are accumulated to relatively high concentrations in renal failure. The secretory material in the serum of uremic patients may significantly influence the transport of salt and water in relatively intact residual nephrons. Images PMID:4738063

  7. Impaired endocytosis in proximal tubule from subchronic exposure to cadmium involves angiotensin II type 1 and cubilin receptors

    PubMed Central

    2013-01-01

    Background Chronic exposure to low cadmium (Cd) levels produces urinary excretion of low molecular weight proteins, which is considered the critical effect of Cd exposure. However, the mechanisms involved in Cd-induced proteinuria are not entirely clear. Therefore, the present study was designed to evaluate the possible role of megalin and cubilin (important endocytic receptors in proximal tubule cells) and angiotensin II type 1 (AT1) receptor on Cd-induced microalbuminuria. Methods Four groups of female Wistar rats were studied. Control (CT) group, vehicle-treated rats; LOS group, rats treated with losartan (an AT1 antagonist) from weeks 5 to 8 (10 mg/kg/day by gavage); Cd group, rats subchronically exposed to Cd (3 mg/kg/day by gavage) during 8 weeks, and Cd + LOS group, rats treated with Cd for 8 weeks and LOS from weeks 5–8. Kidney Cd content, glomerular function (evaluated by creatinine clearance and plasma creatinine), kidney injury and tubular function (evaluated by Kim-1 expression, urinary excretion of N-acetyl-β-D-glucosaminidase (NAG) and glucose, and microalbuminuria), oxidative stress (measured by lipid peroxidation and NAD(P)H oxidase activity), mRNA levels of megalin, expressions of megalin and cubilin (by confocal microscopy) and AT1 receptor (by Western blot), were measured in the different experimental groups. Data were analyzed by one-way ANOVA or Kruskal-Wallis test using GraphPad Prism 5 software (Version 5.00). P < 0.05 was considered statistically significant. Results Administration of Cd (Cd and Cd + LOS groups) increased renal Cd content. LOS-treatment decreased Cd-induced microalbuminuria without changes in: plasma creatinine, creatinine clearance, urinary NAG and glucose, oxidative stress, mRNA levels of megalin and cubilin, neither protein expression of megalin nor AT1 receptor, in the different experimental groups studied. However, Cd exposure did induce the expression of the tubular injury marker Kim-1 and decreased

  8. Importance of adenosine triphosphate in phospholipase A2-induced rabbit renal proximal tubule cell injury.

    PubMed Central

    Nguyen, V D; Cieslinski, D A; Humes, H D

    1988-01-01

    The pathogenesis of ischemic renal tubular cell injury involves a complex interaction of different processes, including membrane phospholipid alterations and depletion of high-energy phosphate stores. To assess the role of membrane phospholipid changes due to activation of phospholipases in renal tubule cell injury, suspensions enriched in rabbit renal proximal tubule segments were incubated with exogenous phospholipase A2 (PLA2). Exogenous PLA2 did not produce any significant change in various metabolic parameters reflective of cell injury in control nonhypoxic preparations despite a significant decrease in phosphatidylethanolamine (PE) and moderate increases in lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE). In contrast, exogenous PLA2 treatment of hypoxic tubules resulted in a severe degree of cell injury, as demonstrated by marked declines in tubule K+ and ATP contents and significant decreases in tubule uncoupled respiratory rates, and was associated with significant phospholipid alterations, including marked declines in phosphatidylcholine (PC) and PE and significant rises in LPC, LPE, and free fatty acids (FFA). The injurious metabolic effects of exogenous PLA2 on hypoxic tubules were reversed by addition of ATP-MgCl2 to the tubules. The protective effect of ATP-MgCl2 was associated with increases in tubule PC and PE contents and declines in LPC, LPE, and FFA contents. These experiments thus indicate that an increase in exogenous PLA2 activity produces renal proximal tubule cell injury when cell ATP levels decline, at which point phospholipid resynthesis cannot keep pace with phospholipid degradation with resulting depletion of phospholipids and accumulation of lipid by-products. High-energy phosphate store depletion appears to be an important condition for exogenous PLA2 activity to induce renal tubule cell injury. PMID:3417866

  9. Evidence for role of cytosolic free calcium in hypoxia-induced proximal tubule injury.

    PubMed Central

    Kribben, A; Wieder, E D; Wetzels, J F; Yu, L; Gengaro, P E; Burke, T J; Schrier, R W

    1994-01-01

    The role of cytosolic free Ca2+ ([Ca2+]i) in hypoxic injury was investigated in rat proximal tubules. [Ca2+]i was measured using fura-2 and cell injury was estimated with propidium iodide (PI) in individual tubules using video imaging fluorescence microscopy. [Ca2+]i increased from approximately 170 to approximately 390 nM during 5 min of hypoxia. This increase preceded detectable cell injury as assessed by PI and was reversible with reoxygenation. 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA; 100 microM) reduced [Ca2+]i under basal conditions (approximately 80 nM) and during hypoxia (approximately 120 nM) and significantly attenuated hypoxic injury. When [Ca2+]i and hypoxic cell injury were studied concurrently in the same individual tubules, the 10 min [Ca2+]i rise correlated significantly with subsequent cell damage observed at 20 min. 2 mM glycine did not block the rise in [Ca2+]i, yet protected the tubules from hypoxic injury. These results indicate that in rat proximal tubules, hypoxia induces an increase of [Ca2+]i which occurs before cell damage. The protective effect of BAPTA supports a role for [Ca2+]i in the initiation of hypoxic proximal tubule injury. The glycine results, however, implicate calcium-independent mechanisms of injury and/or blockade of calcium-mediated processes of injury such as activation of phospholipases or proteases. Images PMID:8182125

  10. Effect of Changes in Hydrostatic Pressure in Peritubular Capillaries on the Permeability of the Proximal Tubule

    PubMed Central

    Hayslett, John P.

    1973-01-01

    The effect of increased hydrostatic pressure in the peritubular vessels on net sodium reabsorption from the proximal tubule was examined in the Necturus. An increase in the pressure gradient of 2.0 cm H2O across the wall of the proximal tubule, produced by ligation of the postcaval vein was associated with a marked reduction in net reabsorption and an increased back flux of water and electrolytes. This change was accompanied by a slight, but significant drop in the transepithelial electrical potential but not by an alteration in the steady-state chemical gradient. These studies highlight the importance of changes in the permeability characteristics of the proximal tubule on net sodium transport. Images PMID:4703221

  11. A mathematical model of rat proximal tubule and loop of Henle.

    PubMed

    Weinstein, Alan M

    2015-05-15

    Proximal tubule and loop of Henle function are coupled, with proximal transport determining loop fluid composition, and loop transport modulating glomerular filtration via tubuloglomerular feedback (TGF). To examine this interaction, we begin with published models of the superficial rat proximal convoluted tubule (PCT; including flow-dependent transport in a compliant tubule), and the rat thick ascending Henle limb (AHL). Transport parameters for this PCT are scaled down to represent the proximal straight tubule (PST), which is connected to the thick AHL via a short descending limb. Transport parameters for superficial PCT and PST are scaled up for a juxtamedullary nephron, and connected to AHL via outer and inner medullary descending limbs, and inner medullary thin AHL. Medullary interstitial solute concentrations are specified. End-AHL hydrostatic pressure is determined by distal nephron flow resistance, and the TGF signal is represented as a linear function of end-AHL cytosolic Cl concentration. These two distal conditions required iterative solution of the model. Model calculations capture inner medullary countercurrent flux of urea, and also suggest the presence of an outer medullary countercurrent flux of ammonia, with reabsorption in AHL and secretion in PST. For a realistically strong TGF signal, there is the expected homeostatic impact on distal flows, and in addition, a homeostatic effect on proximal tubule pressure. The model glycosuria threshold is compatible with rat data, and predicted glucose excretion with selective 1Na(+):1glucose cotransporter (SGLT2) inhibition comports with observations in the mouse. Model calculations suggest that enhanced proximal tubule Na(+) reabsorption during hyperglycemia is sufficient to activate TGF and contribute to diabetic hyperfiltration. PMID:25694479

  12. Micropuncture study of hypertonic mannitol diuresis in the proximal and distal tubule of the dog kidney

    PubMed Central

    Seely, John F.; Dirks, John H.

    1969-01-01

    Fractional reabsorption of water, sodium, and potassium at proximal and distal tubular sites within the nephron was studied by recollection-micropuncture experiments on dogs undergoing hypertonic mannitol diuresis. After an initial control hydropenic phase, 16% mannitol in modified Ringer's solution was administered intravenously, resulting in marked increases in fractional excretion of water (28.7%), sodium (12.6%), and potassium (63.9%). Inulin clearance decreased significantly from 35.1 to 25.2 ml/min. Analysis of paired micropuncture data revealed a significant decrease in tubule fluid to plasma (TF:P) inulin ratios in both the proximal tubule (1.63-1.45) and distal tubule (5.38-1.94). There was also a significant decrease in proximal TF:P sodium ratios (0.99-0.93) and potassium ratios (1.05-0.98). Distal TF:P sodium ratios, in contrast, rose significantly (0.38-0.59), while TF:P potassium ratios tended towards unity whether initially greater or less than one. Fractional reabsorption of sodium and water decreased by 5% and 10% respectively in the proximal tubule, but to a lesser extent than the resulting increases in fractional urinary excretion. The nonreabsorbed fraction, however, had increased sharply at the point of distal puncture for water (32%), sodium (26%), and potassium (26%), indicating a large inhibitory effect within the loop of Henle in addition to the smaller proximal effects. PMID:5355344

  13. Cellular localization of uranium in the renal proximal tubules during acute renal uranium toxicity.

    PubMed

    Homma-Takeda, Shino; Kitahara, Keisuke; Suzuki, Kyoko; Blyth, Benjamin J; Suya, Noriyoshi; Konishi, Teruaki; Terada, Yasuko; Shimada, Yoshiya

    2015-12-01

    Renal toxicity is a hallmark of uranium exposure, with uranium accumulating specifically in the S3 segment of the proximal tubules causing tubular damage. As the distribution, concentration and dynamics of accumulated uranium at the cellular level is not well understood, here, we report on high-resolution quantitative in situ measurements by high-energy synchrotron radiation X-ray fluorescence analysis in renal sections from a rat model of uranium-induced acute renal toxicity. One day after subcutaneous administration of uranium acetate to male Wistar rats at a dose of 0.5 mg uranium kg(-1) body weight, uranium concentration in the S3 segment of the proximal tubules was 64.9 ± 18.2 µg g(-1) , sevenfold higher than the mean renal uranium concentration (9.7 ± 2.4 µg g(-1) ). Uranium distributed into the epithelium of the S3 segment of the proximal tubules and highly concentrated uranium (50-fold above mean renal concentration) in micro-regions was found near the nuclei. These uranium levels were maintained up to 8 days post-administration, despite more rapid reductions in mean renal concentration. Two weeks after uranium administration, damaged areas were filled with regenerating tubules and morphological signs of tissue recovery, but areas of high uranium concentration (100-fold above mean renal concentration) were still found in the epithelium of regenerating tubules. These data indicate that site-specific accumulation of uranium in micro-regions of the S3 segment of the proximal tubules and retention of uranium in concentrated areas during recovery are characteristics of uranium behavior in the kidney. PMID:25772475

  14. Grouper tshβ Promoter-Driven Transgenic Zebrafish Marks Proximal Kidney Tubule Development

    PubMed Central

    Wang, Yang; Sun, Zhi-Hui; Zhou, Li; Li, Zhi; Gui, Jian-Fang

    2014-01-01

    Kidney tubule plays a critical role in recovering or secreting solutes, but the detailed morphogenesis remains unclear. Our previous studies have found that grouper tshβ (gtshβ) is also expressed in kidney, however, the distribution significance is still unknown. To understand the gtshβ role and kidney tubule morphogenesis, here, we have generated a transgenic zebrafish line Tg(gtshβ:GFP) with green fluorescent protein driven by the gtshβ promoter. Similar to the endogenous tshβ in zebrafish or in grouper, the gtshβ promoter-driven GFP is expressed in pituitary and kidney, and the developing details of proximal kidney tubule are marked in the transgenic zebrafish line. The gfp initially transcribes at 16 hours post fertilization (hpf) above the dorsal mesentery, and partially co-localizes with pronephric tubular markers slc20a1a and cdh17. Significantly, the GFP specifically localizes in proximal pronephric segments during embryogenesis and resides at kidney duct epithelium in adult fish. To test whether the gtshβ promoter-driven GFP may serve as a readout signal of the tubular development, we have treated the embryos with retinoic acid signaing (RA) reagents, in which exogenous RA addition results in a distal extension of the proximal segments, while RA inhibition induces a weakness and shortness of the proximal segments. Therefore, this transgenic line provides a useful tool for genetic or chemical analysis of kidney tubule. PMID:24905828

  15. SGLT2 Inhibitors: Glucotoxicity and Tumorigenesis Downstream the Renal Proximal Tubule?

    PubMed

    Bertinat, Romina; Nualart, Francisco; Yáñez, Alejandro J

    2016-08-01

    At present, diabetes mellitus is the main cause of end-stage renal disease. Effective glycaemic management is the most powerful tool to delay the establishment of diabetic complications, such as diabetic kidney disease. Together with reducing blood glucose levels, new anti-diabetic agents are expected not only to control the progression but also to restore known defects of the diabetic kidney. Sodium-glucose co-transporter 2 (SGLT2) inhibitors are promising anti-diabetic agents that reduce hyperglycaemia by impairing glucose reabsorption in proximal tubule of the kidney and increasing glucosuria. SGLT2 inhibitors have shown to reduce glucotoxicity in isolated proximal tubule cells and also to attenuate expression of markers of overall kidney damage in experimental animal models of diabetes, but the actual renoprotective effect for downstream nephron segments is still unknown and deserves further attention. Here, we briefly discuss possible undesired effects of enhanced glucosuria and albuminuria in nephron segments beyond the proximal tubule after SGLT2 inhibitor treatment, offering new lines of research to further understand the renoprotective action of these anti-diabetic agents. Strategies blocking glucose reabsorption by renal proximal tubule epithelial cells (RPTEC) may be protective for RPTEC, but downstream nephron segments will still be exposed to high glucose and albumin levels through the luminal face. The actual effect of constant enhanced glucosuria over distal nephron segments remains to be established. J. Cell. Physiol. 231: 1635-1637, 2016. © 2015 Wiley Periodicals, Inc. PMID:26661279

  16. Mechanisms of adaptation to chronic respiratory acidosis in the rabbit proximal tubule.

    PubMed Central

    Krapf, R

    1989-01-01

    The hyperbicarbonatemia of chronic respiratory acidosis is maintained by enhanced bicarbonate reabsorption in the proximal tubule. To investigate the cellular mechanisms involved in this adaptation, cell and luminal pH were measured microfluorometrically using (2",7')-bis(carboxyethyl)-(5,6)-carboxyfluorescein in isolated, microperfused S2 proximal convoluted tubules from control and acidotic rabbits. Chronic respiratory acidosis was induced by exposure to 10% CO2 for 52-56 h. Tubules from acidotic rabbits had a significantly lower luminal pH after 1-mm perfused length (7.03 +/- 0.09 vs. 7.26 +/- 0.06 in controls, perfusion rate = 10 nl/min). Chronic respiratory acidosis increased the initial rate of cell acidification (dpHi/dt) in response to luminal sodium removal by 63% and in response to lowering luminal pH (7.4-6.8) by 69%. Chronic respiratory acidosis also increased dpHi/dt in response to peritubular sodium removal by 63% and in response to lowering peritubular pH by 73%. In conclusion, chronic respiratory acidosis induces a parallel increase in the rates of the luminal Na/H antiporter and the basolateral Na/(HCO3)3 cotransporter. Therefore, the enhanced proximal tubule reabsorption of bicarbonate in chronic respiratory acidosis may be, at least in part, mediated by a parallel adaptation of these transporters. PMID:2537851

  17. Recent Updates on the Proximal Tubule Renin-Angiotensin System in Angiotensin II-Dependent Hypertension.

    PubMed

    Li, Xiao C; Zhuo, Jia L

    2016-08-01

    It is well recognized that the renin-angiotensin system (RAS) exists not only as circulating, paracrine (cell to cell), but also intracrine (intracellular) system. In the kidney, however, it is difficult to dissect the respective contributions of circulating RAS versus intrarenal RAS to the physiological regulation of proximal tubular Na(+) reabsorption and hypertension. Here, we review recent studies to provide an update in this research field with a focus on the proximal tubular RAS in angiotensin II (ANG II)-induced hypertension. Careful analysis of available evidence supports the hypothesis that both local synthesis or formation and AT1 (AT1a) receptor- and/or megalin-mediated uptake of angiotensinogen (AGT), ANG I and ANG II contribute to high levels of ANG II in the proximal tubules of the kidney. Under physiological conditions, nearly all major components of the RAS including AGT, prorenin, renin, ANG I, and ANG II would be filtered by the glomerulus and taken up by the proximal tubules. In ANG II-dependent hypertension, the expression of AGT, prorenin, and (pro)renin receptors, and angiotensin-converting enzyme (ACE) is upregulated rather than downregulated in the kidney. Furthermore, hypertension damages the glomerular filtration barrier, which augments the filtration of circulating AGT, prorenin, renin, ANG I, and ANG II and their uptake in the proximal tubules. Together, increased local ANG II formation and augmented uptake of circulating ANG II in the proximal tubules, via activation of AT1 (AT1a) receptors and Na(+)/H(+) exchanger 3, may provide a powerful feedforward mechanism for promoting Na(+) retention and the development of ANG II-induced hypertension. PMID:27372447

  18. Early effects of uranyl nitrate on respiration and K sup + transport in rabbit proximal tubule

    SciTech Connect

    Brady, H.R.; Kone, B.C.; Brenner, R.M.; Gullans, S.R. )

    1989-07-01

    The mechanisms by which uranyl nitrate (UN) is toxic to the proximal tubule are incompletely understood. To define these further we studied potassium (K+) transport and oxygen consumption (QO2) in rabbit proximal tubule suspensions in vitro immediately after exposure to UN using extracellular O2- and K+-sensitive electrodes. UN caused a cumulative dose-dependent inhibition of proximal tubule QO2, with a threshold concentration of 5 x 10(-5) M. Kinetic analysis suggested two patterns of cell injury: a higher affinity inhibition of QO2 with a Ki of 5 x 10(-4) M, and a lower affinity inhibition of QO2 with a Ki of 10 mM. QO2 was studied in detail in the presence of these Ki concentrations of UN to define the initial cellular events. The results indicated that different cellular processes displayed different sensitivities to UN. At submillimolar concentrations UN caused progressive selective inhibition of ouabain-insensitive QO2 (15% inhibition at 2 minutes). Ouabain-sensitive QO2 and nystatin-stimulated QO2 were not affected, suggesting that Na+,K+-ATPase activity and its coupling to mitochondrial ATP synthesis were intact. Direct measurement of proximal tubule net K+ flux confirmed that Na+,K+-ATPase activity was unchanged. Similarly, UN did not inhibit basal (state 4) or ADP-stimulated (state 3) mitochondrial QO2 in digitonin-permeabilized tubules, confirming that the mitochondria were intact. In contrast, higher concentrations of UN (greater than or equal to 1 mM) caused rapid inhibition of QO2 and net K+ efflux, due to inhibition of Na+,K+-ATPase activity and mitochondrial injury.

  19. Modeling oxygen consumption in the proximal tubule: effects of NHE and SGLT2 inhibition.

    PubMed

    Layton, Anita T; Vallon, Volker; Edwards, Aurélie

    2015-06-15

    The objective of this study was to investigate how physiological, pharmacological, and pathological conditions that alter sodium reabsorption (TNa) in the proximal tubule affect oxygen consumption (QO2 ) and Na(+) transport efficiency (TNa/QO2 ). To do so, we expanded a mathematical model of solute transport in the proximal tubule of the rat kidney. The model represents compliant S1, S2, and S3 segments and accounts for their specific apical and basolateral transporters. Sodium is reabsorbed transcellularly, via apical Na(+)/H(+) exchangers (NHE) and Na(+)-glucose (SGLT) cotransporters, and paracellularly. Our results suggest that TNa/QO2 is 80% higher in S3 than in S1-S2 segments, due to the greater contribution of the passive paracellular pathway to TNa in the former segment. Inhibition of NHE or Na-K-ATPase reduced TNa and QO2 , as well as Na(+) transport efficiency. SGLT2 inhibition also reduced proximal tubular TNa but increased QO2 ; these effects were relatively more pronounced in the S3 vs. the S1-S2 segments. Diabetes increased TNa and QO2 and reduced TNa/QO2 , owing mostly to hyperfiltration. Since SGLT2 inhibition lowers diabetic hyperfiltration, the net effect on TNa, QO2 , and Na(+) transport efficiency in the proximal tubule will largely depend on the individual extent to which glomerular filtration rate is lowered. PMID:25855513

  20. Proximal tubule PPARα attenuates renal fibrosis and inflammation caused by unilateral ureteral obstruction

    PubMed Central

    Li, Shenyang; Mariappan, Nithya; Megyesi, Judit; Shank, Brian; Kannan, Krishnaswamy; Theus, Sue; Price, Peter M.; Duffield, Jeremy S.

    2013-01-01

    We examined the effects of increased expression of proximal tubule peroxisome proliferator-activated receptor (PPAR)α in a mouse model of renal fibrosis. After 5 days of unilateral ureteral obstruction (UUO), PPARα expression was significantly reduced in kidney tissue of wild-type mice but this downregulation was attenuated in proximal tubules of PPARα transgenic (Tg) mice. When compared with wild-type mice subjected to UUO, PPARα Tg mice had reduced mRNA and protein expression of proximal tubule transforming growth factor (TGF)-β1, with reduced production of extracellular matrix proteins including collagen 1, fibronectin, α-smooth muscle actin, and reduced tubulointerstitial fibrosis. UUO-mediated increased expression of microRNA 21 in kidney tissue was also reduced in PPARα Tg mice. Overexpression of PPARα in cultured proximal tubular cells by adenoviral transduction reduced aristolochic acid-mediated increased production of TGF-β, demonstrating PPARα signaling reduces epithelial TGF-β production. Flow cytometry studies of dissociated whole kidneys demonstrated reduced macrophage infiltration to kidney tissue in PPARα Tg mice after UUO. Increased expression of proinflammatory cytokines including IL-1β, IL-6, and TNF-α in wild-type mice was also significantly reduced in kidney tissue of PPARα Tg mice. In contrast, the expression of anti-inflammatory cytokines IL-10 and arginase-1 was significantly increased in kidney tissue of PPARα Tg mice when compared with wild-type mice subjected to UUO. Our studies demonstrate several mechanisms by which preserved expression of proximal tubule PPARα reduces tubulointerstitial fibrosis and inflammation associated with obstructive uropathy. PMID:23804447

  1. Poly(ADP-ribose) polymerase regulates glycolytic activity in kidney proximal tubule epithelial cells

    PubMed Central

    Song, Hana; Yoon, Sang Pil

    2016-01-01

    After renal injury, selective damage occurs in the proximal tubules as a result of inhibition of glycolysis. The molecular mechanism of damage is not known. Poly(ADP-ribose) polymerase (PARP) activation plays a critical role of proximal tubular cell death in several renal disorders. Here, we studied the role of PARP on glycolytic flux in pig kidney proximal tubule epithelial LLC-PK1 cells using XFp extracellular flux analysis. Poly(ADP-ribosyl)ation by PARP activation was increased approximately 2-fold by incubation of the cells in 10 mM glucose for 30 minutes, but treatment with the PARP inhibitor 3-aminobenzamide (3-AB) does-dependently prevented the glucose-induced PARP activation (approximately 14.4% decrease in 0.1 mM 3-AB–treated group and 36.7% decrease in 1 mM 3-AB–treated group). Treatment with 1 mM 3-AB significantly enhanced the glucose-mediated increase in the extracellular acidification rate (61.1±4.3 mpH/min vs. 126.8±6.2 mpH/min or approximately 2-fold) compared with treatment with vehicle, indicating that PARP inhibition increases only glycolytic activity during glycolytic flux including basal glycolysis, glycolytic activity, and glycolytic capacity in kidney proximal tubule epithelial cells. Glucose increased the activities of glycolytic enzymes including hexokinase, phosphoglucose isomerase, phosphofructokinase-1, glyceraldehyde-3-phosphate dehydrogenase, enolase, and pyruvate kinase in LLC-PK1 cells. Furthermore, PARP inhibition selectively augmented the activities of hexokinase (approximately 1.4-fold over vehicle group), phosphofructokinase-1 (approximately 1.6-fold over vehicle group), and glyceraldehyde-3-phosphate dehydrogenase (approximately 2.2-fold over vehicle group). In conclusion, these data suggest that PARP activation may regulate glycolytic activity via poly(ADP-ribosyl)ation of hexokinase, phosphofructokinase-1, and glyceraldehyde-3-phosphate dehydrogenase in kidney proximal tubule epithelial cells. PMID:27382509

  2. Membrane stress causes inhibition of water channels in brush border membrane vesicles from kidney proximal tubule.

    PubMed

    Soveral, G; Macey, R I; Moura, T F

    1997-08-01

    Brush border membrane vesicles (BBMV) from rabbit kidney proximal tubule cells, prepared with different internal solute concentrations (cellobiose buffer 13, 18 or 85 mosM) developed an hydrostatic pressure difference across the membrane of 18.7 mosM, that causes a membrane tension close to 5 x 10(-5) N cm-1. When subjected to several hypertonic osmotic shocks an initial delay of osmotic shrinkage (a lag time), corresponding to a very small change in initial volume was apparent. This initial osmotic response, which is significantly retarded, was correlated with the initial period of elevated membrane tension, suggesting that the water permeability coefficient is inhibited by membrane stress. We speculate that this inhibition may serve to regulate cell volume in the proximal tubule. PMID:9468597

  3. Angiotensin II Stimulation of DPP4 Activity Regulates Megalin in the Proximal Tubules.

    PubMed

    Aroor, Annayya; Zuberek, Marcin; Duta, Cornel; Meuth, Alex; Sowers, James R; Whaley-Connell, Adam; Nistala, Ravi

    2016-01-01

    Proteinuria is a marker of incipient kidney injury in many disorders, including obesity. Previously, we demonstrated that megalin, a receptor endocytotic protein in the proximal tubule, is downregulated in obese mice, which was prevented by inhibition of dipeptidyl protease 4 (DPP4). Obesity is thought to be associated with upregulation of intra-renal angiotensin II (Ang II) signaling via the Ang II Type 1 receptor (AT₁R) and Ang II suppresses megalin expression in proximal tubule cells in vitro. Therefore, we tested the hypothesis that Ang II will suppress megalin protein via activation of DPP4. We used Ang II (200 ng/kg/min) infusion in mice and Ang II (10(-8) M) treatment of T35OK-AT₁R proximal tubule cells to test our hypothesis. Ang II-infused mouse kidneys displayed increases in DPP4 activity and decreases in megalin. In proximal tubule cells, Ang II stimulated DPP4 activity concurrent with suppression of megalin. MK0626, a DPP4 inhibitor, partially restored megalin expression similar to U0126, a mitogen activated protein kinase (MAPK)/extracellular regulated kinase (ERK) kinase kinase (MEK) 1/2 inhibitor and AG1478, an epidermal growth factor receptor (EGFR) inhibitor. Similarly, Ang II-induced ERK phosphorylation was suppressed with MK0626 and Ang II-induced DPP4 activity was suppressed by U0126. Therefore, our study reveals a cross talk between AT₁R signaling and DPP4 activation in the regulation of megalin and underscores the significance of targeting DPP4 in the prevention of obesity related kidney injury progression. PMID:27213360

  4. Proximal tubule-targeted heme oxygenase-1 in cisplatin-induced acute kidney injury.

    PubMed

    Bolisetty, Subhashini; Traylor, Amie; Joseph, Reny; Zarjou, Abolfazl; Agarwal, Anupam

    2016-03-01

    Heme oxygenase-1 (HO-1) is a cytoprotective enzyme that catalyzes the breakdown of heme to biliverdin, carbon monoxide, and iron. The beneficial effects of HO-1 expression are not merely due to degradation of the pro-oxidant heme but are also credited to the by-products that have potent, protective effects, including antioxidant, anti-inflammatory, and prosurvival properties. This is well reflected in the preclinical animal models of injury in both renal and nonrenal settings. However, excessive accumulation of the by-products can be deleterious and lead to mitochondrial toxicity and oxidative stress. Therefore, use of the HO system in alleviating injury merits a targeted approach. Based on the higher susceptibility of the proximal tubule segment of the nephron to injury, we generated transgenic mice using cre-lox technology to enable manipulation of HO-1 (deletion or overexpression) in a cell-specific manner. We demonstrate the validity and feasibility of these mice by breeding them with proximal tubule-specific Cre transgenic mice. Similar to previous reports using chemical modulators and global transgenic mice, we demonstrate that whereas deletion of HO-1, specifically in the proximal tubules, aggravates structural and functional damage during cisplatin nephrotoxicity, selective overexpression of HO-1 in proximal tubules is protective. At the cellular level, cleaved caspase-3 expression, a marker of apoptosis, and p38 signaling were modulated by HO-1. Use of these transgenic mice will aid in the evaluation of the effects of cell-specific HO-1 expression in response to injury and assist in the generation of targeted approaches that will enhance recovery with reduced, unwarranted adverse effects. PMID:26672618

  5. Angiotensin II Stimulation of DPP4 Activity Regulates Megalin in the Proximal Tubules

    PubMed Central

    Aroor, Annayya; Zuberek, Marcin; Duta, Cornel; Meuth, Alex; Sowers, James R.; Whaley-Connell, Adam; Nistala, Ravi

    2016-01-01

    Proteinuria is a marker of incipient kidney injury in many disorders, including obesity. Previously, we demonstrated that megalin, a receptor endocytotic protein in the proximal tubule, is downregulated in obese mice, which was prevented by inhibition of dipeptidyl protease 4 (DPP4). Obesity is thought to be associated with upregulation of intra-renal angiotensin II (Ang II) signaling via the Ang II Type 1 receptor (AT1R) and Ang II suppresses megalin expression in proximal tubule cells in vitro. Therefore, we tested the hypothesis that Ang II will suppress megalin protein via activation of DPP4. We used Ang II (200 ng/kg/min) infusion in mice and Ang II (10−8 M) treatment of T35OK-AT1R proximal tubule cells to test our hypothesis. Ang II-infused mouse kidneys displayed increases in DPP4 activity and decreases in megalin. In proximal tubule cells, Ang II stimulated DPP4 activity concurrent with suppression of megalin. MK0626, a DPP4 inhibitor, partially restored megalin expression similar to U0126, a mitogen activated protein kinase (MAPK)/extracellular regulated kinase (ERK) kinase kinase (MEK) 1/2 inhibitor and AG1478, an epidermal growth factor receptor (EGFR) inhibitor. Similarly, Ang II-induced ERK phosphorylation was suppressed with MK0626 and Ang II-induced DPP4 activity was suppressed by U0126. Therefore, our study reveals a cross talk between AT1R signaling and DPP4 activation in the regulation of megalin and underscores the significance of targeting DPP4 in the prevention of obesity related kidney injury progression. PMID:27213360

  6. Reduced proximal tubule angiotensin II receptor expression in streptozotocin-induced diabetes mellitus.

    PubMed

    Cheng, H F; Burns, K D; Harris, R C

    1994-12-01

    Diabetes mellitus is characterized by alterations in the intrarenal renin-angiotensin system, including decreases in glomerular angiotensin II (Ang II) receptor density. Since Ang II regulates proximal tubule transport function, the present studies examined whether diabetes altered expression of proximal tubule receptors. In basolateral membranes from 14 day streptozotocin-induced diabetic rats, specific binding of 125I Ang II was decreased to 53 +/- 8% of control (3.2 +/- 0.5 vs. 1.5 +/- 0.2 fmol/mg protein; N = 7; P < 0.02). Similarly, in proximal tubule brush border membranes from diabetic animals, specific binding was decreased to 63 +/- 11% of control (1.1 +/- 0.2 vs 0.6 +/- 0.1 fmol/mg protein; N = 9; P < 0.05). Concomitant insulin treatment reversed the decrease in specific binding of 125I Ang II to basolateral membranes (109 +/- 26% of control; N = 3) and to brush border membranes (85 +/- 17% of control; N = 6). In order to determine if changes in expression of type-1 Ang II receptors (AT1R) accompanied the changes in binding, quantitative polymerase chain reaction of AT1R mRNA was performed and expressed as the ratio of the amplified AT1R to that of an Msc1/Msc1 internal deletion mutant and normalized to that of beta-actin. In total RNA from proximal tubule suspensions of diabetic animals, AT1R mRNA expression decreased by 38% (21 +/- 3 vs. 13 +/- 2 cpm AT1R/cpm deletion mutant/cpm beta actin/10(6); N = 4; P < 0.0025). Insulin treatment reverted AT1R mRNA expression to control levels (22 +/- 3 cpm AT1R/cpm deletion mutant/cpm beta actin/10(6); P < 0.001 compared to the untreated group).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7700017

  7. Effects of glucose on water and sodium reabsorption in the proximal convoluted tubule of rat kidney.

    PubMed Central

    Bishop, J H; Green, R; Thomas, S

    1978-01-01

    1. The effects of glucose on sodium and water reabsorption by rat renal proximal tubules was investigated by in situ microperfusion of segments of proximal tubules with solutions containing glucose or no glucose, with and without phlorizin. 2. Absence of glucose did not significantly alter net water flux. Sodium flux was reduced by about 10% but this was not statistically significant. 3. In the absence of glucose in the perfusion fluid net secretion of glucose occurred. 4. Phlorizin reduced either net reabsorption or net secretion of glucose; and net water flux. 5. The data suggest that in later parts of the proximal convoluted tubule some sodium may be co-transported with glucose, but that this represents only a small fraction of the total sodium reabsorption. 6. It is suggested that the glucose carrier is reversible and in appropriate circumstances could cause glucose secretion. 7. Although phlorizin alters net water flux the underlying mechanisms are not clear. 8. The calculated osmolality of the reabsorbate was significantly greater than the perfusate osmolality and greater than plasma osmolality although this was not quite significant statistically. PMID:633143

  8. Stress initiated during isolation of rat renal proximal tubules limits in vitro survival.

    PubMed

    Green, C E; Dabbs, J E; Tyson, C A; Rauckman, E J

    1990-01-01

    The effects of oxidative damage were assessed in rat proximal tubule fragments (isolated by collagenase perfusion) by monitoring lactate dehydrogenase release (LDH-R) to measure cell viability and thiobarbituric acid (TBA) reactive material to follow oxidative damage. Increasing the oxygen content in the incubation atmosphere from 10 to 95% significantly increased LDH-R and TBA reactants. Addition of butylated hydroxytoluene or deferoxamine (DF) to the medium prevented these changes, but ascorbic acid or mannitol had no positive effect. Lima bean trypsin inhibitor also reduced LDH leakage significantly when added to the medium, but not when added to the perfusion buffers. In contrast, adding DF to the perfusate during tubule isolation produced the most pronounced benefit; net LDH-R after 4 hr was about 10% in tubules prepared this way compared to 20% when DF was omitted. Basal oxygen consumption declined to approximately the same extent as LDH-R increased. Maintenance of nystatin-stimulated respiration, ATP/ADP, GSH content and total adenine nucleotides indicated good cell function. These results suggest that oxidative damage initiated during the tubule isolation procedure limits cell survival but this effect can be counteracted substantially by the addition of DF to the perfusion buffer. PMID:1962872

  9. alpha. - and. beta. -adrenergic receptors in proximal tubules of rat kidney

    SciTech Connect

    Sundaresan, P.R.; Fortin, T.L.; Kelvie, S.L. )

    1987-11-01

    Proximal tubules were isolated from the rat kidney by collagenase digestion of the cortical tissue followed by Percoll gradient centrifugation. Microscopic and hormone-stimulated adenylate cyclase activity studies proved the purity of the preparation. ({sup 3}H)Prazosin, ({sup 3}H)rauwolscine, and ({sup 125}I)iodocyanopindolol were used to identify and quantitate respectively the {alpha}{sub 1}-, {alpha}{sub 2}- and {beta}-adrenergic receptors. Proximal tubular (F{sub 4}) particulate fraction was compared against other cortical nephron segment (F{sub 1},F{sub 2}) fractions and the total collagenase-digested cortex particulate suspension (F{sub t}). Proximal tubules were enriched in {alpha}{sub 1}- and {alpha}{sub 2}-adrenergic receptors compared with. The fractions enriched in glomeruli and distal tubular segments had relatively low concentrations of {alpha}{sub 1}- and {alpha}{sub 2}-adrenergic receptors. Isoproterenol-stimulated adenylate cyclase activities in the different fractions corroborated well with the pattern suggested by the ({sup 125}I)iodocyanopindolol binding studies. The results suggest that whole-cortex preparation radioligand binding studies may reflect proximal tubular {alpha}{sub 1}- and {alpha}{sub 2}-adrenergic receptor changes quite well. They may, however, miss or give erroneous impressions about {beta}-adrenergic receptor changes occurring in different cortical nephron segments.

  10. Proximal tubule NHE3 activity is inhibited by beta-arrestin-biased angiotensin II type 1 receptor signaling.

    PubMed

    Carneiro de Morais, Carla P; Polidoro, Juliano Z; Ralph, Donna L; Pessoa, Thaissa D; Oliveira-Souza, Maria; Barauna, Valério G; Rebouças, Nancy A; Malnic, Gerhard; McDonough, Alicia A; Girardi, Adriana C C

    2015-10-15

    Physiological concentrations of angiotensin II (ANG II) upregulate the activity of Na(+)/H(+) exchanger isoform 3 (NHE3) in the renal proximal tubule through activation of the ANG II type I (AT1) receptor/G protein-coupled signaling. This effect is key for maintenance of extracellular fluid volume homeostasis and blood pressure. Recent findings have shown that selective activation of the beta-arrestin-biased AT1 receptor signaling pathway induces diuresis and natriuresis independent of G protein-mediated signaling. This study tested the hypothesis that activation of this AT1 receptor/beta-arrestin signaling inhibits NHE3 activity in proximal tubule. To this end, we determined the effects of the compound TRV120023, which binds to the AT1R, blocks G-protein coupling, and stimulates beta-arrestin signaling on NHE3 function in vivo and in vitro. NHE3 activity was measured in both native proximal tubules, by stationary microperfusion, and in opossum proximal tubule (OKP) cells, by Na(+)-dependent intracellular pH recovery. We found that 10(-7) M TRV120023 remarkably inhibited proximal tubule NHE3 activity both in vivo and in vitro. Additionally, stimulation of NHE3 by ANG II was completely suppressed by TRV120023 both in vivo as well as in vitro. Inhibition of NHE3 activity by TRV120023 was associated with a decrease in NHE3 surface expression in OKP cells and with a redistribution from the body to the base of the microvilli in the rat proximal tubule. These findings indicate that biased signaling of the beta-arrestin pathway through the AT1 receptor inhibits NHE3 activity in the proximal tubule at least in part due to changes in NHE3 subcellular localization. PMID:26246427

  11. Functional integrity of proximal tubule cells: effects of temperature and preservation solutions.

    PubMed

    You, Y; Hirsch, D J; Morgunov, N S

    1993-06-01

    Electrophysiologic and morphologic changes during cooling and perfusion with preservation solutions in isolated perfused proximal straight tubules from Swiss white mice were investigated. In standard Ringer-substrate solution, cooling from 37 degrees C to 22 and 4 degrees C depolarized both transepithelial potential and basolateral cell membrane potential. Basolateral k+ transference number and cell membrane conductances were also significantly reduced. An increase in intracellular Na+ activity was observed only during cooling from 37 to 4 degrees C. No cell swelling was detected when tubules were perfused with Ringer-substrate solution at all three temperatures up to 1 h. Perfusion with Euro-Collins' (EC) solution at 37 degrees C resulted in rapid cell swelling, associated with rapid deterioration of transepithelial potential. Substitution of glucose with mannitol abolished the damaging effect of EC solution at 37 degrees C. EC perfusion at 22 degrees C also led to cell swelling and deterioration of transepithelial potential, but after a 10-min delay. In comparison, perfusion with University of Wisconsin (UW) solution at 22 or 37 degrees C had no effect on cell volume. Less damage to transepithelial potential was observed after the UW perfusion. It was concluded that EC solution is more damaging than UW solution to kidney tubules at 22 and 37 degrees C. The presence of EC solution in the renal interstitium during the rewarming phase may contribute significantly to reperfusion injuries in kidney transplantation. PMID:8338922

  12. Passive permeability of salicylic acid in renal proximal S2 and S3 tubules

    SciTech Connect

    Chatton, J.Y.; Roch-Ramel, F. )

    1991-03-01

    The role of nonionic diffusion in the transport of salicylic acid across rabbit proximal S2 and S3 segments was investigated using the in vitro isolated perfused tubule technique. The ({sup 14}C) salicylic acid apparent reabsorptive permeability (P'I-b, 10(-5) cm/s) was measured at 19 degrees C with luminal solutions kept at different pH and bath maintained at pH 7.4. In S2 tubules, P'I-b was 25.0 +/- 3.5 when luminal pH was 6.0; P'I-b decreased to 8.1 +/- 1.4 and to 4.4 +/- 1.2 at a luminal pH of 6.5 and 7.0, respectively. In S3 tubules, P'I-b was 17.6 +/- 2.4, 5.3 +/- 1.1 and 3.4 +/- 1.1 at a luminal pH of 6.0, 6.5 and 7.0, respectively. There was a close correlation between P'I-b and the calculated proportion of nonionized salicylic acid present at each pH, indicating that only the nonionized molecule could diffuse in our conditions. We calculated the apparent permeability of nonionic salicylic acid and found 0.248 +/- 0.032 cm/s for S2 and 0.176 +/- 0.022 cm/s for S3 tubules. These calculated permeabilities were independent of pH.

  13. Urinary and proximal tubule acidification during reduction of renal blood flow in the rat.

    PubMed Central

    Jaramillo-Juárez, F; Aires, M M; Malnic, G

    1990-01-01

    1. The effects of reduction in renal blood flow (RBF) on urinary acidification and proximal tubule H+ ion secretion were studied after partial aortic clamping in rats. 2. Acute reduction of the renal perfusion pressure (from 109 +/- 3.88 to 77.4 +/- 1.05 mmHg) decreased both inulin and PAH (p-aminohippurate) clearances to about one-third of their control values. Absolute levels of urinary sodium excretion also decreased markedly, but fractional sodium excretion did not change significantly. 3. Urine pH and bicarbonate levels were not affected, but titratable acidity increased significantly from 0.12 +/- 0.011 to 0.25 +/- 0.042 muequiv min-1 ml-1 glomerular filtration rate (GFR). During aortic clamping, cortical PCO2 as determined by means of Severinghaus microelectrodes was reduced by a mean value of 7.0 +/- 1.5 mmHg. 4. Proximal tubule acidification kinetics were studied by stationary microperfusion techniques in which the time course of pH changes was monitored by pH microelectrodes. Steady-state pH fell from a mean control value of 6.77 +/- 0.03 to 6.65 +/- 0.02, and stationary bicarbonate concentrations from 4.70 +/- 0.27 to 2.84 +/- 0.18 mM. Acidification half-time decreased from 5.07 +/- 0.30 to 4.39 +/- 0.19 s, and net bicarbonate reabsorption increased from 1.63 +/- 0.14 to 1.99 +/- 0.12 nmol cm-2 s-1, these changes being statistically significant. 5. The experiments demonstrate that both overall acid excretion and proximal acid secretion are not compromised by a large decrease of RBF to about one-third of the control value; titratable acid excretion and proximal net bicarbonate reabsorption were even moderately increased under these conditions. PMID:2348400

  14. Osmotic diuresis in a mathematical model of the rat proximal tubule.

    PubMed

    Weinstein, A M

    1986-05-01

    Solute reabsorption in the presence of an osmotic load has been examined in a model of the rat proximal convoluted tubule. The model is a computer simulation of a 0.5-cm segment of tubule comprised of compliant cellular and paracellular compartments, which tracks the luminal profiles of Na, K, Cl, HCO3, phosphate, glucose, and urea. In one series of calculations, the peritubular and initial luminal glucose concentrations are varied from 1.0 to 50 mmol/liter. The resulting proximal reabsorption of glucose increases monotonically to 1.5 nmol X s-1 X cm-2. Sodium reabsorption increases with glucose perfusion concentrations between 1.0 and 10 mmol/liter and then declines with greater glucose loads. Above 10 mmol/liter glucose, there is progressive decline in mean luminal Na concentration so that diffusive paracellular backflux, as well as decreased convective reabsorption, are responsible for the natriuresis. Diuresis per se blunts reabsorption of species requiring the development of lumen-to-bath concentration gradients (i.e., K, Cl, and urea). Diminished bicarbonate reabsorption is also predicted with large glucose loads due to intraepithelial alkalinization. This derives both from cellular depolarization and bicarbonate trapping (interspace closure). It is also observed that when interspace closure occurs, a region of intraepithelial K depletion may be formed, promoting diffusive reabsorption of potassium across the tight junction. Thus a 'middle compartment model' for potassium may provide a means of achieving tubule fluid-to-plasma K ratios less than 1.0, in the absence of specific cellular uptake mechanisms. PMID:3706538

  15. Regulation of glomerulotubular balance. III. Implication of cytosolic calcium in flow-dependent proximal tubule transport.

    PubMed

    Du, Zhaopeng; Weinbaum, Sheldon; Weinstein, Alan M; Wang, Tong

    2015-04-15

    In the proximal tubule, axial flow (drag on brush-border microvilli) stimulates Na(+) and HCO3 (-) reabsorption by modulating both Na/H exchanger 3 (NHE3) and H-ATPase activity, a process critical to glomerulotubular balance. We have also demonstrated that blocking the angiotensin II receptor decreases baseline transport, but preserves the flow effect; dopamine leaves baseline fluxes intact, but abrogates the flow effect. In the current work, we provide evidence implicating cytosolic calcium in flow-dependent transport. Mouse proximal tubules were microperfused in vitro at perfusion rates of 5 and 20 nl/min, and reabsorption of fluid (Jv) and HCO3 (-) (JHCO3) were measured. We examined the effect of high luminal Ca(2+) (5 mM), 0 mM Ca(2+), the Ca(2+) chelator BAPTA-AM, the inositol 1,4,5-trisphosphate (IP3) receptor antagonist 2-aminoethoxydiphenyl borate (2-APB), and the Ca-ATPase inhibitor thapsigargin. In control tubules, increasing perfusion rate from 5 to 20 nl/min increased Jv by 62% and JHCO3 by 104%. With respect to Na(+) reabsorption, high luminal Ca(2+) decreased transport at low flow, but preserved the flow-induced increase; low luminal Ca(2+) had little impact; both BAPTA and 2-APB had no effect on baseline flux, but abrogated the flow effect; thapsigargin decreased baseline flow, leaving the flow effect intact. With respect to HCO3 (-) reabsorption, high luminal Ca(2+) decreased transport at low flow and mildly diminished the flow-induced increase; low luminal Ca(2+) had little impact; both BAPTA and 2-APB had no effect on baseline flux, but abrogated the flow effect. These data implicate IP3 receptor-mediated intracellular Ca(2+) signaling as a critical step in transduction of microvillous drag to modulate Na(+) and HCO3 (-) transport. PMID:25651568

  16. Mercury induces the externalization of phosphatidyl-serine in human renal proximal tubule (HK-2) cells.

    PubMed

    Sutton, Dwayne J; Tchounwou, Paul B

    2007-06-01

    The underlying mechanism for the biological activity of inorganic mercury is believed to be the high affinity binding of divalent mercuric cations to thiols of sulfhydryl groups of proteins. A comprehensive analysis of published data indicates that inorganic mercury is one of the most environmentally abundant toxic metals, is a potent and selective nephrotoxicant that preferentially accumulates in the kidneys, and is known to produce cellular injury in the kidneys. Binding sites are present in the proximal tubules, and it is in the epithelial cells of these tubules that toxicants such as inorganic mercury are reabsorbed. This can affect the enzymatic activity and the structure of various proteins. Mercury may alter protein and membrane structure and function in the epithelial cells and this alteration may result in long term residual effects. This research was therefore designed to evaluate the dose-response relationship in human renal proximal tubule (HK-2) cells following exposure to inorganic mercury. Cytotoxicity was evaluated using the MTT assay for cell viability. The Annexin-V assay was performed by flow cytometry to determine the extent of phosphatidylserine externalization. Cells were exposed to mercury for 24 hours at doses of 0, 1, 2, 3, 4, 5, and 6 microg/mL. Cytotoxicity experiments yielded a LD50 value of 4.65 +/- 0.6 microg/mL indicating that mercury is highly toxic. The percentages of cells undergoing early apoptosis were 0.70 +/- 0.03%, 10.0 +/- 0.02%, 11.70 +/- 0.03%, 15.20 +/- 0.02%, 16.70 +/- 0.03%, 24.20 +/-0.02%, and 25.60 +/- 0.04% at treatments of 0, 1, 2, 3, 4, 5, and 6 microg/mL of mercury respectively. This indicates a dose-response relationship with regard to mercury-induced cytotoxicity and the externalization of phosphatidylserine in HK-2 cells. PMID:17617677

  17. Primary cultures of rabbit renal proximal tubule cells: I. Growth and biochemical characteristics.

    PubMed

    Aleo, M D; Taub, M L; Nickerson, P A; Kostyniak, P J

    1989-09-01

    Before the usefulness of a new in vitro model can be ascertained, the model must be properly defined and characterized. This study presents the growth rate and biochemical characteristics of rabbit renal proximal tubule cells in primary culture over a 2-wk culture period. When grown in a hormonally defined, antibiotic-free medium these cells form confluent monolayer cultures within 7 d after plating. Multicellular dome formation, an indicator of transepithelial solute transport, was expressed after confluent cultures were formed. The activity of the cytosolic enzyme, lactate dehydrogenase, and the lysosomal enzyme, N-acetyl-glucosaminidase, increased 14- and 2-fold during the first 8 d of culture, respectively. In contrast, the activity of a brush border enzyme, alkaline phosphatase, decreased 85% within the first 8 d of culture. Release of these enzyme markers into the culture medium, which are routinely used to measure cytotoxicity, stabilized after 8 d in culture. The ratio of cellular protein to DNA changed according to the state of cellular growth. Values rose from 0.035 mg protein/micrograms DNA in preconfluent cultures to 0.059 mg protein/micrograms DNA in confluent cultures. These results document the characteristics of a primary proximal tubule cell culture system for future studies in in vitro toxicology. PMID:2793776

  18. Megalin and cubilin in proximal tubule protein reabsorption: from experimental models to human disease.

    PubMed

    Nielsen, Rikke; Christensen, Erik Ilsø; Birn, Henrik

    2016-01-01

    Proximal tubule protein uptake is mediated by 2 receptors, megalin and cubilin. These receptors rescue a variety of filtered ligands, including biomarkers, essential vitamins, and hormones. Receptor gene knockout animal models have identified important functions of the receptors and have established their essential role in modulating urinary protein excretion. Rare genetic syndromes associated with dysfunction of these receptors have been identified and characterized, providing additional information on the importance of these receptors in humans. Using various disease models in combination with receptor gene knockout, the implications of receptor dysfunction in acute and chronic kidney injury have been explored and have pointed to potential new roles of these receptors. Based on data from animal models, this paper will review current knowledge on proximal tubule endocytic receptor function and regulation, and their role in renal development, protein reabsorption, albumin uptake, and normal renal physiology. These findings have implications for the pathophysiology and diagnosis of proteinuric renal diseases. We will examine the limitations of the different models and compare the findings to phenotypic observations in inherited human disorders associated with receptor dysfunction. Furthermore, evidence from receptor knockout mouse models as well as human observations suggesting a role of protein receptors for renal disease will be discussed in light of conditions such as chronic kidney disease, diabetes, and hypertension. PMID:26759048

  19. Receptor-mediated endocytosis of lysozyme in renal proximal tubules of the frog Rana temporaria.

    PubMed

    Seliverstova, E V; Prutskova, N P

    2015-01-01

    The mechanism of protein reabsorption in the kidney of lower vertebrates remains insufficiently investigated in spite of raising interest to the amphibian and fish kidneys as a useful model for physiological and pathophysiological examinations. In the present study, we examined the renal tubular uptake and the internalization rote of lysozyme after its intravenous injection in the wintering frog Rana temporaria using immunohisto- and immunocytochemistry and specific markers for some endocytic compartments. The distinct expression of megalin and cubilin in the proximal tubule cells of lysozyme-injected frogs was revealed whereas kidney tissue of control animals showed no positive immunoreactivity. Lysozyme was detected in the apical endocytic compartment of the tubular cells and colocalized with clathrin 10 min after injection. After 20 min, lysozyme was located in the subapical compartment negative to clathrin (endosomes), and intracellular trafficking of lysozyme was coincided with the distribution of megalin and cubilin. However, internalized protein was retained in the endosomes and did not reach lysosomes within 30 min after treatment that may indicate the inhibition of intracellular trafficking in hibernating frogs. For the first time, we provided the evidence that lysozyme is filtered through the glomeruli and absorbed by receptor-mediated clathrin-dependent endocytosis in the frog proximal tubule cells. Thus, the protein uptake in the amphibian mesonephros is mediated by megalin and cubilin that confirms a critical role of endocytic receptors in the renal reabsorption of proteins in amphibians as in mammals. PMID:26150156

  20. Receptor-Mediated Endocytosis of Lysozyme in Renal Proximal Tubules of the Frog Rana Temporaria

    PubMed Central

    Seliverstova, E.V.

    2015-01-01

    The mechanism of protein reabsorption in the kidney of lower vertebrates remains insufficiently investigated in spite of raising interest to the amphibian and fish kidneys as a useful model for physiological and pathophysiological examinations. In the present study, we examined the renal tubular uptake and the internalization rote of lysozyme after its intravenous injection in the wintering frog Rana temporaria using immunohisto- and immunocytochemistry and specific markers for some endocytic compartments. The distinct expression of megalin and cubilin in the proximal tubule cells of lysozyme-injected frogs was revealed whereas kidney tissue of control animals showed no positive immunoreactivity. Lysozyme was detected in the apical endocytic compartment of the tubular cells and colocalized with clathrin 10 min after injection. After 20 min, lysozyme was located in the subapical compartment negative to clathrin (endo-somes), and intracellular trafficking of lysozyme was coincided with the distribution of megalin and cubilin. However, internalized protein was retained in the endosomes and did not reach lysosomes within 30 min after treatment that may indicate the inhibition of intra-cellular trafficking in hibernating frogs. For the first time, we provided the evidence that lysozyme is filtered through the glomeruli and absorbed by receptor-mediated clathrin-dependent endocytosis in the frog proximal tubule cells. Thus, the protein uptake in the amphibian mesonephros is mediated by megalin and cubilin that confirms a critical role of endocytic receptors in the renal reabsorption of proteins in amphibians as in mammals. PMID:26150156

  1. Mechanism of increased clearance of glycated albumin by proximal tubule cells.

    PubMed

    Wagner, Mark C; Myslinski, Jered; Pratap, Shiv; Flores, Brittany; Rhodes, George; Campos-Bilderback, Silvia B; Sandoval, Ruben M; Kumar, Sudhanshu; Patel, Monika; Ashish; Molitoris, Bruce A

    2016-05-01

    Serum albumin is the most abundant plasma protein and has a long half-life due to neonatal Fc receptor (FcRn)-mediated transcytosis by many cell types, including proximal tubule cells of the kidney. Albumin also interacts with, and is modified by, many small and large molecules. Therefore, the focus of the present study was to address the impact of specific known biological albumin modifications on albumin-FcRn binding and cellular handling. Binding at pH 6.0 and 7.4 was performed since FcRn binds albumin strongly at acidic pH and releases it after transcytosis at physiological pH. Equilibrium dissociation constants were measured using microscale thermophoresis. Since studies have shown that glycated albumin is excreted in the urine at a higher rate than unmodified albumin, we studied glucose and methylgloxal modified albumins (21 days). All had reduced affinity to FcRn at pH 6.0, suggesting these albumins would not be returned to the circulation via the transcytotic pathway. To address why modified albumin has reduced affinity, we analyzed the structure of the modified albumins using small-angle X-ray scattering. This analysis showed significant structural changes occurring to albumin with glycation, particularly in the FcRn-binding region, which could explain the reduced affinity to FcRn. These results offer an explanation for enhanced proximal tubule-mediated sorting and clearance of abnormal albumins. PMID:26887834

  2. Short-term functional adaptation of aquaporin-1 surface expression in the proximal tubule, a component of glomerulotubular balance.

    PubMed

    Pohl, Marcus; Shan, Qixian; Petsch, Thomas; Styp-Rekowska, Beata; Matthey, Patricia; Bleich, Markus; Bachmann, Sebastian; Theilig, Franziska

    2015-06-01

    Transepithelial water flow across the renal proximal tubule is mediated predominantly by aquaporin-1 (AQP1). Along this nephron segment, luminal delivery and transepithelial reabsorption are directly coupled, a phenomenon called glomerulotubular balance. We hypothesized that the surface expression of AQP1 is regulated by fluid shear stress, contributing to this effect. Consistent with this finding, we found that the abundance of AQP1 in brush border apical and basolateral membranes was augmented >2-fold by increasing luminal perfusion rates in isolated, microperfused proximal tubules for 15 minutes. Mouse kidneys with diminished endocytosis caused by a conditional deletion of megalin or the chloride channel ClC-5 had constitutively enhanced AQP1 abundance in the proximal tubule brush border membrane. In AQP1-transfected, cultured proximal tubule cells, fluid shear stress or the addition of cyclic nucleotides enhanced AQP1 surface expression and concomitantly diminished its ubiquitination. These effects were also associated with an elevated osmotic water permeability. In sum, we have shown that luminal surface expression of AQP1 in the proximal tubule brush border membrane is regulated in response to flow. Cellular trafficking, endocytosis, an intact endosomal compartment, and controlled protein stability are the likely prerequisites for AQP1 activation by enhanced tubular fluid shear stress, serving to maintain glomerulotubular balance. PMID:25270072

  3. Lipotoxic disruption of NHE1 interaction with PI(4,5)P2 expedites proximal tubule apoptosis

    PubMed Central

    Khan, Shenaz; Abu Jawdeh, Bassam G.; Goel, Monu; Schilling, William P.; Parker, Mark D.; Puchowicz, Michelle A.; Yadav, Satya P.; Harris, Raymond C.; El-Meanawy, Ashraf; Hoshi, Malcolm; Shinlapawittayatorn, Krekwit; Deschênes, Isabelle; Ficker, Eckhard; Schelling, Jeffrey R.

    2014-01-01

    Chronic kidney disease progression can be predicted based on the degree of tubular atrophy, which is the result of proximal tubule apoptosis. The Na+/H+ exchanger NHE1 regulates proximal tubule cell survival through interaction with phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], but pathophysiologic triggers for NHE1 inactivation are unknown. Because glomerular injury permits proximal tubule luminal exposure and reabsorption of fatty acid/albumin complexes, we hypothesized that accumulation of amphipathic, long-chain acyl-CoA (LC-CoA) metabolites stimulates lipoapoptosis by competing with the structurally similar PI(4,5)P2 for NHE1 binding. Kidneys from mouse models of progressive, albuminuric kidney disease exhibited increased fatty acids, LC-CoAs, and caspase-2–dependent proximal tubule lipoapoptosis. LC-CoAs and the cytosolic domain of NHE1 directly interacted, with an affinity comparable to that of the PI(4,5)P2-NHE1 interaction, and competing LC-CoAs disrupted binding of the NHE1 cytosolic tail to PI(4,5)P2. Inhibition of LC-CoA catabolism reduced NHE1 activity and enhanced apoptosis, whereas inhibition of proximal tubule LC-CoA generation preserved NHE1 activity and protected against apoptosis. Our data indicate that albuminuria/lipiduria enhances lipotoxin delivery to the proximal tubule and accumulation of LC-CoAs contributes to tubular atrophy by severing the NHE1-PI(4,5)P2 interaction, thereby lowering the apoptotic threshold. Furthermore, these data suggest that NHE1 functions as a metabolic sensor for lipotoxicity. PMID:24531551

  4. Bicarbonate absorption stimulates active calcium absorption in the rat proximal tubule.

    PubMed Central

    Bomsztyk, K; Calalb, M B

    1988-01-01

    To evaluate the effect of luminal bicarbonate on calcium reabsorption, rat proximal tubules were perfused in vivo. Perfusion solution contained mannitol to reduce water flux to zero. Total Ca concentration was measured by atomic absorption spectrometry, Ca ion concentration in the tubule lumen (CaL2+) and the peritubular capillary (CaP2+), and luminal pH (pHL) with ion-selective microelectrodes and transepithelial voltage (VTE) with conventional microelectrodes. When tubules were perfused with buffer-free Cl-containing solution, net Ca absorption (JCa) averaged 3.33 pmol/min. Even though VTE was 1.64 mV lumen-positive, CaL2+, 1.05 mM, did not fall below the concentration in the capillary blood, 1.07 mM. When 27 mM of Cl was replaced with HCO3, there was luminal fluid acidification. Despite a decrease in VTE and CaL2+, JCa increased to 7.13 pmol/min, indicating that the enhanced JCa could not be accounted for by the reduced electrochemical gradient, delta CCa. When acetazolamide or an analogue of amiloride was added to the HCO3 solution, JCa was not different from the buffer-free solution, suggesting that HCO3-stimulated JCa may be linked to acidification. To further test this hypothesis, we used 27 mM Hepes as the luminal buffer. With Hepes there was luminal fluid acidification and JCa was not different from the buffer-free solution but delta CCa was significantly reduced, indicating enhanced active calcium transport. We conclude from the results of the present study that HCO3 stimulates active Ca absorption, a process that may be linked to acidification-mediated HCO3 absorption. PMID:3366902

  5. Mechanism of cisplatin proximal tubule toxicity revealed by integrating transcriptomics, proteomics, metabolomics and biokinetics.

    PubMed

    Wilmes, Anja; Bielow, Chris; Ranninger, Christina; Bellwon, Patricia; Aschauer, Lydia; Limonciel, Alice; Chassaigne, Hubert; Kristl, Theresa; Aiche, Stephan; Huber, Christian G; Guillou, Claude; Hewitt, Philipp; Leonard, Martin O; Dekant, Wolfgang; Bois, Frederic; Jennings, Paul

    2015-12-25

    Cisplatin is one of the most widely used chemotherapeutic agents for the treatment of solid tumours. The major dose-limiting factor is nephrotoxicity, in particular in the proximal tubule. Here, we use an integrated omics approach, including transcriptomics, proteomics and metabolomics coupled to biokinetics to identify cell stress response pathways induced by cisplatin. The human renal proximal tubular cell line RPTEC/TERT1 was treated with sub-cytotoxic concentrations of cisplatin (0.5 and 2 μM) in a daily repeat dose treating regime for up to 14 days. Biokinetic analysis showed that cisplatin was taken up from the basolateral compartment, transported to the apical compartment, and accumulated in cells over time. This is in line with basolateral uptake of cisplatin via organic cation transporter 2 and bioactivation via gamma-glutamyl transpeptidase located on the apical side of proximal tubular cells. Cisplatin affected several pathways including, p53 signalling, Nrf2 mediated oxidative stress response, mitochondrial processes, mTOR and AMPK signalling. In addition, we identified novel pathways changed by cisplatin, including eIF2 signalling, actin nucleation via the ARP/WASP complex and regulation of cell polarization. In conclusion, using an integrated omic approach together with biokinetics we have identified both novel and established mechanisms of cisplatin toxicity. PMID:25450742

  6. A histological study of the effect of exogenous melatonin on gentamicin induced structural alterations of proximal tubules in rats

    PubMed Central

    Kapić, Dina; Mornjaković, Zakira; Ćosović, Esad; Šahinović, Maida

    2014-01-01

    The aim of this research was to assess the reactive changes of rat proximal tubules caused by gentamicin and the effect of relatively low doses of melatonin. 48 adult male Wistar rats were distributed into six groups of equal size which all received one of the following daily intraperitoneal injections: vehicle (5% ethanol in Ringer solution) during 11 days (C); gentamicin (80 mg/kg) during 8 days (G), two groups which concomitantly received gentamicin (80 mg/kg) during 8 days and melatonin in two different test doses (5 or 20 mg/kg) during 11 days (GM1, GM2) and two groups treated only with melatonin in two different doses (5 or 20 mg/kg) during 11 days (M1, M2). Histological analysis included qualitative and semi-quantitative light microscopy analysis of proximal tubules. Exogenous melatonin had no significant effect on the microstructure, independently of dosis. The changes of proximal tubules microstructure induced by gentamicin were expressed in the form of granulovacuolar degeneration, necrosis and desquamation. The grade of proximal tubular changes was smaller in animals who besides gentamicin received melatonin. Melatonin has a dose dependent protective effect on the structural alterations of proximal tubules of the kidney induced by gentamicin. PMID:24579968

  7. Localization of the calcium-regulated citrate transport process in proximal tubule cells.

    PubMed

    Hering-Smith, Kathleen S; Mao, Weibo; Schiro, Faith R; Coleman-Barnett, Joycelynn; Pajor, Ana M; Hamm, L Lee

    2014-06-01

    Urinary citrate is an important inhibitor of calcium-stone formation. Most of the citrate reabsorption in the proximal tubule is thought to occur via a dicarboxylate transporter NaDC1 located in the apical membrane. OK cells, an established opossum kidney proximal tubule cell line, transport citrate but the characteristics change with extracellular calcium such that low calcium solutions stimulate total citrate transport as well as increase the apparent affinity for transport. The present studies address several fundamental properties of this novel process: the polarity of the transport process, the location of the calcium-sensitivity and whether NaDC1 is present in OK cells. OK cells grown on permeable supports exhibited apical >basolateral citrate transport. Apical transport of both citrate and succinate was sensitive to extracellular calcium whereas basolateral transport was not. Apical calcium, rather than basolateral, was the predominant determinant of changes in transport. Also 2,3-dimethylsuccinate, previously identified as an inhibitor of basolateral dicarboxylate transport, inhibited apical citrate uptake. Although the calcium-sensitive transport process in OK cells is functionally not typical NaDC1, NaDC1 is present in OK cells by Western blot and PCR. By immunolocalization studies, NaDC1 was predominantly located in discrete apical membrane or subapical areas. However, by biotinylation, apical NaDC1 decreases in the apical membrane with lowering calcium. In sum, OK cells express a calcium-sensitive/regulated dicarboxylate process at the apical membrane which responds to variations in apical calcium. Despite the functional differences of this process compared to NaDC1, NaDC1 is present in these cells, but predominantly in subapical vesicles. PMID:24652587

  8. Akt Links Insulin Signaling to Albumin Endocytosis in Proximal Tubule Epithelial Cells

    PubMed Central

    Coffey, Sam; Costacou, Tina; Orchard, Trevor; Erkan, Elif

    2015-01-01

    Diabetes mellitus (DM) has become an epidemic, causing a significant decline in quality of life of individuals due to its multisystem involvement. Kidney is an important target organ in DM accounting for the majority of patients requiring renal replacement therapy at dialysis units. Microalbuminuria (MA) has been a valuable tool to predict end-organ damage in DM but its low sensitivity has driven research efforts to seek other alternatives. Albumin is taken up by albumin receptors, megalin and cubilin in the proximal tubule epithelial cells. We demonstrated that insulin at physiological concentrations induce albumin endocytosis through activation of protein kinase B (Akt) in proximal tubule epithelial cells. Inhibition of Akt by a phosphorylation deficient construct abrogated insulin induced albumin endocytosis suggesting a role for Akt in insulin-induced albumin endocytosis. Furthermore we demonstrated a novel interaction between Akt substrate 160kDa (AS160) and cytoplasmic tail of megalin. Mice with type 1 DM (T1D) displayed decreased Akt, megalin, cubilin and AS160 expression in their kidneys in association with urinary cubilin shedding preceding significant MA. Patients with T1D who have developed MA in the EDC (The Pittsburgh Epidemiology of Diabetes Complications) study demonstrated urinary cubilin shedding prior to development of MA. We hypothesize that perturbed insulin-Akt cascade in DM leads to alterations in trafficking of megalin and cubilin, which results in urinary cubilin shedding as a prelude to MA in early diabetic nephropathy. We propose that utilization of urinary cubilin shedding, as a urinary biomarker, will allow us to detect and intervene in diabetic nephropathy (DN) at an earlier stage. PMID:26465605

  9. Akt Links Insulin Signaling to Albumin Endocytosis in Proximal Tubule Epithelial Cells.

    PubMed

    Coffey, Sam; Costacou, Tina; Orchard, Trevor; Erkan, Elif

    2015-01-01

    Diabetes mellitus (DM) has become an epidemic, causing a significant decline in quality of life of individuals due to its multisystem involvement. Kidney is an important target organ in DM accounting for the majority of patients requiring renal replacement therapy at dialysis units. Microalbuminuria (MA) has been a valuable tool to predict end-organ damage in DM but its low sensitivity has driven research efforts to seek other alternatives. Albumin is taken up by albumin receptors, megalin and cubilin in the proximal tubule epithelial cells. We demonstrated that insulin at physiological concentrations induce albumin endocytosis through activation of protein kinase B (Akt) in proximal tubule epithelial cells. Inhibition of Akt by a phosphorylation deficient construct abrogated insulin induced albumin endocytosis suggesting a role for Akt in insulin-induced albumin endocytosis. Furthermore we demonstrated a novel interaction between Akt substrate 160kDa (AS160) and cytoplasmic tail of megalin. Mice with type 1 DM (T1D) displayed decreased Akt, megalin, cubilin and AS160 expression in their kidneys in association with urinary cubilin shedding preceding significant MA. Patients with T1D who have developed MA in the EDC (The Pittsburgh Epidemiology of Diabetes Complications) study demonstrated urinary cubilin shedding prior to development of MA. We hypothesize that perturbed insulin-Akt cascade in DM leads to alterations in trafficking of megalin and cubilin, which results in urinary cubilin shedding as a prelude to MA in early diabetic nephropathy. We propose that utilization of urinary cubilin shedding, as a urinary biomarker, will allow us to detect and intervene in diabetic nephropathy (DN) at an earlier stage. PMID:26465605

  10. Prostaglandin E2 increases proximal tubule fluid reabsorption, and modulates cultured proximal tubule cell responses via EP1 and EP4 receptors.

    PubMed

    Nasrallah, Rania; Hassouneh, Ramzi; Zimpelmann, Joseph; Karam, Andrew J; Thibodeau, Jean-Francois; Burger, Dylan; Burns, Kevin D; Kennedy, Chris Rj; Hébert, Richard L

    2015-09-01

    Renal prostaglandin (PG) E2 regulates salt and water transport, and affects disease processes via EP1-4 receptors, but its role in the proximal tubule (PT) is unknown. Our study investigates the effects of PGE2 on mouse PT fluid reabsorption, and its role in growth, sodium transporter expression, fibrosis, and oxidative stress in a mouse PT cell line (MCT). To determine which PGE2 EP receptors are expressed in MCT, qPCR for EP1-4 was performed on cells stimulated for 24 h with PGE2 or transforming growth factor beta (TGFβ), a known mediator of PT injury in kidney disease. EP1 and EP4 were detected in MCT, but EP2 and EP3 are not expressed. EP1 was increased by PGE2 and TGFβ, but EP4 was unchanged. To confirm the involvement of EP1 and EP4, sulprostone (SLP, EP1/3 agonist), ONO8711 (EP1 antagonist), and EP1 and EP4 siRNA were used. We first show that PGE2, SLP, and TGFβ reduced H(3)-thymidine and H(3)-leucine incorporation. The effects on cell-cycle regulators were examined by western blot. PGE2 increased p27 via EP1 and EP4, but TGFβ increased p21; PGE2-induced p27 was attenuated by TGFβ. PGE2 and SLP reduced cyclinE, while TGFβ increased cyclinD1, an effect attenuated by PGE2 administration. Na-K-ATPase α1 (NaK) was increased by PGE2 via EP1 and EP4. TGFβ had no effect on NaK. Additionally, PGE2 and TGFβ increased fibronectin levels, reaching 12-fold upon co-stimulation. EP1 siRNA abrogated PGE2-fibronectin. PGE2 also increased ROS generation, and ONO-8711 blocked PGE2-ROS. Finally, PGE2 significantly increased fluid reabsorption by 31 and 46% in isolated perfused mouse PT from C57BL/6 and FVB mice, respectively, and this was attenuated in FVB-EP1 null mice. Altogether PGE2 acting on EP1 and EP4 receptors may prove to be important mediators of PT injury, and salt and water transport. PMID:26121313

  11. A Model of Peritubular Capillary Control of Isotonic Fluid Reabsorption by the Renal Proximal Tubule

    PubMed Central

    Deen, W. M.; Robertson, C. R.; Brenner, B. M.

    1973-01-01

    A mathematical model of peritubular transcapillary fluid exchange has been developed to investigate the role of the peritubular environment in the regulation of net isotonic fluid transport across the mammalian renal proximal tubule. The model, derived from conservation of mass and the Starling transcapillary driving forces, has been used to examine the quantitative effects on proximal reabsorption of changes in efferent arteriolar protein concentration and plasma flow rate. Under normal physiological conditions, relatively small perturbations in protein concentration are predicted to influence reabsorption more than even large variations in plasma flow, a prediction in close accord with recent experimental observations in the rat and dog. Changes either in protein concentration or plasma flow have their most pronounced effects when the opposing transcapillary hydrostatic and osmotic pressure differences are closest to equilibrium. Comparison of these theoretical results with variations in reabsorption observed in micropuncture studies makes it possible to place upper and lower bounds on the difference between interstitial oncotic and hydrostatic pressures in the renal cortex of the rat. PMID:4696761

  12. Axial heterogeneity of intracellular pH in rat proximal convoluted tubule.

    PubMed Central

    Pastoriza-Munoz, E; Harrington, R M; Graber, M L

    1987-01-01

    In the proximal convoluted tubule (PT), the HCO3- reabsorptive rate is higher in early (EPS) compared with late proximal segments (LPS). To examine the mechanism of this HCO3- reabsorption profile, intracellular pH (pHi) was measured along the superficial PT of the rat under free-flow and stationary microperfusion using the pH-sensitive fluorescence of 4-methylumbelliferone (4MU). With 4MU superfusion, pHi was found to decline along the PT. Observation with 365-nm excitation revealed that EPS were brightly fluorescent and always emerged away from their star vessel. Midproximal segments were darker and closer to the star vessel which was surrounded by the darkest LPS. Decreasing luminal HCO3- from 15 to 0 mM lowered pHi in both EPS and LPS, but pHi remained more alkaline in EPS with both perfusates. Thus the axial decline in pHi along the PT is due to both luminal factors and intrinsic differences in luminal H+ extrusion in PT cells. PMID:3036912

  13. Tubular proteinuria in patients with HNF1α mutations: HNF1α drives endocytosis in the proximal tubule.

    PubMed

    Terryn, Sara; Tanaka, Karo; Lengelé, Jean-Philippe; Olinger, Eric; Dubois-Laforgue, Danièle; Garbay, Serge; Kozyraki, Renata; Van Der Smissen, Patrick; Christensen, Erik I; Courtoy, Pierre J; Bellanné-Chantelot, Christine; Timsit, José; Pontoglio, Marco; Devuyst, Olivier

    2016-05-01

    Hepatocyte nuclear factor 1α (HNF1α) is a transcription factor expressed in the liver, pancreas, and proximal tubule of the kidney. Mutations of HNF1α cause an autosomal dominant form of diabetes mellitus (MODY-HNF1A) and tubular dysfunction. To gain insights into the role of HNF1α in the proximal tubule, we analyzed Hnf1a-deficient mice. Compared with wild-type littermates, Hnf1a knockout mice showed low-molecular-weight proteinuria and a 70% decrease in the uptake of β2-microglobulin, indicating a major endocytic defect due to decreased expression of megalin/cubilin receptors. We identified several binding sites for HNF1α in promoters of Lrp2 and Cubn genes encoding megalin and cubilin, respectively. The functional interaction of HNF1α with these promoters was shown in C33 epithelial cells lacking endogenous HNF1α. Defective receptor-mediated endocytosis was confirmed in proximal tubule cells from these knockout mice and could be rescued by transfection of wild-type but not mutant HNF1α. Transfection of human proximal tubule HK2 cells with HNF1α was able to upregulate megalin and cubilin expression and to increase endocytosis of albumin. Low-molecular-weight proteinuria was consistently detected in individuals with HNF1A mutations compared with healthy controls and patients with non-MODY-HNF1A diabetes mellitus. Thus, HNF1α plays a key role in the constitutive expression of megalin and cubilin, hence regulating endocytosis in the proximal tubule of the kidney. These findings provide new insight into the renal phenotype of individuals with mutations of HNF1A. PMID:27083284

  14. Short-term nonpressor angiotensin II infusion stimulates sodium transporters in proximal tubule and distal nephron

    PubMed Central

    Nguyen, Mien T X; Han, Jiyang; Ralph, Donna L; Veiras, Luciana C; McDonough, Alicia A

    2015-01-01

    In Sprague Dawley rats, 2-week angiotensin II (AngII) infusion increases Na+ transporter abundance and activation from cortical thick ascending loop of Henle (TALH) to medullary collecting duct (CD) and raises blood pressure associated with a pressure natriuresis, accompanied by depressed Na+ transporter abundance and activation from proximal tubule (PT) through medullary TALH. This study tests the hypothesis that early during AngII infusion, before blood pressure raises, Na+ transporters’ abundance and activation increase all along the nephron. Male Sprague Dawley rats were infused via osmotic minipumps with a subpressor dose of AngII (200 ng/kg/min) or vehicle for 3 days. Overnight urine was collected in metabolic cages and sodium transporters’ abundance and phosphorylation were determined by immunoblotting homogenates of renal cortex and medulla. There were no significant differences in body weight gain, overnight urine volume, urinary Na+ and K+ excretion, or rate of excretion of a saline challenge between AngII and vehicle infused rats. The 3-day nonpressor AngII infusion significantly increased the abundance of PT Na+/H+ exchanger 3 (NHE3), cortical TALH Na-K-2Cl cotransporter 2 (NKCC2), distal convoluted tubule (DCT) Na-Cl cotransporter (NCC), and cortical CD ENaC subunits. Additionally, phosphorylation of cortical NKCC2, NCC, and STE20/SPS1-related proline–alanine-rich kinase (SPAK) were increased; medullary NKCC2 and SPAK were not altered. In conclusion, 3-day AngII infusion provokes PT NHE3 accumulation as well as NKCC2, NCC, and SPAK accumulation and activation in a prehypertensive phase before evidence for intrarenal angiotensinogen accumulation. PMID:26347505

  15. Albumin absorption and catabolism by isolated perfused proximal convoluted tubules of the rabbit.

    PubMed Central

    Park, C H; Maack, T

    1984-01-01

    Overall characteristics and kinetics of tubular absorption of albumin (Alb) were studied in isolated perfused proximal convoluted tubules of the rabbit. The fate of absorbed Alb was determined in tubules perfused with low [Alb]. Alb was labeled with tritium by reductive methylation ( [3H3C]Alb). At [Alb] = 0.03 mg/ml, approximately 80% of the absorbed [3H3C]Alb was released to the peritubular bathing solution as catabolic products. Transcellular transport of intact [3H3C]Alb was negligible. Iodoacetate (IAA, 4 mM) inhibited albumin absorption (JAlb) by greater than 95% and fluid reabsorption (JV) by 55%. At [Alb] = 0.1 mg/ml the absorption rate of a derivatized cationic Alb (pI = 8.4) was fivefold greater (P less than 0.01) than that of anionic Alb. Higher cationic [Alb] had deleterious effects on tubular functions. Overall Alb absorption was of high capacity and low affinity (JmaxAlb = 3.7 ng/min per mm tubule length, apparent Michaelis constant (Km) = 1.2 mg/ml). A low capacity system that saturates at near physiological loads was also detected (JmaxAlb = 0.064 ng/min per mm, apparent Km = 0.031 mg/ml). High [Alb] did not alter the rate of endocytic vesicle formation as determined by the tubular uptake of [14C]inulin. Results show that Alb absorption is a saturable process that is inhibited by high IAA concentrations and is affected by the charge of the protein. Absorbed Alb is hydrolyzed by tubular cells and catabolic products are readily released to the peritubular side. The dual kinetics of Alb absorption may be due to a combination of adsorptive endocytosis (low capacity system) and fluid endocytosis of albumin aggregates (high capacity system). Results indicate that albuminuria occurs much before albumin absorption is saturated. The kinetic characteristics of the process of tubular absorption of albumin helps to explain the concomitance of albuminuria, increased renal catabolic rates of albumin, and renal cell deposition of protein absorption droplets in

  16. The proximal tubule is the primary target of injury and progression of kidney disease: role of the glomerulotubular junction.

    PubMed

    Chevalier, Robert L

    2016-07-01

    There is an alarming global increase in the incidence of end-stage kidney disease, for which early biomarkers and effective treatment options are lacking. Largely based on the histology of the end-stage kidney and on the model of unilateral ureteral obstruction, current investigation is focused on the pathogenesis of renal interstitial fibrosis as a central mechanism in the progression of chronic kidney disease (CKD). It is now recognized that cumulative episodes of acute kidney injury (AKI) can lead to CKD, and, conversely, CKD is a risk factor for AKI. Based on recent and historic studies, this review shifts attention from the glomerulus and interstitium to the proximal tubule as the primary sensor and effector in the progression of CKD as well as AKI. Packed with mitochondria and dependent on oxidative phosphorylation, the proximal tubule is particularly vulnerable to injury (obstructive, ischemic, hypoxic, oxidative, metabolic), resulting in cell death and ultimately in the formation of atubular glomeruli. Animal models of human glomerular and tubular disorders have provided evidence for a broad repertoire of morphological and functional responses of the proximal tubule, revealing processes of degeneration and repair that may lead to new therapeutic strategies. Most promising are studies that encompass the entire life cycle from fetus to senescence, recognizing epigenetic factors. The application of techniques in molecular characterization of tubule segments and the development of human kidney organoids may provide new insights into the mammalian kidney subjected to stress or injury, leading to biomarkers of early CKD and new therapies. PMID:27194714

  17. Osmotic gradient dependence of osmotic water permeability in rabbit proximal convoluted tubule.

    PubMed

    Berry, C A; Verkman, A S

    1988-10-01

    To assess steady-state transepithelial osmotic water permeability (Pf), rabbit proximal convoluted tubules were perfused in vitro with the impermeant salt, sodium isethionate at 26 degrees C. Osmotic gradients (delta pi) were established by varying the bath concentration of the impermeant solute, raffinose. When lumen osmolality was 300 mOsm and bath osmolality was 320, 360 and 400 mOsm, apparent Pf decreased from 0.5 to 0.10 to 0.08 cm/sec, respectively. Similar data were obtained when lumen osmolality was 400 mOsm. Five possible causes of the delta pi dependence of apparent Pf were considered experimentally and/or theoretically: (1) external unstirred layer (USL); (2) cytoplasmic USL; (3) change in surface area; (4) saturation of water transport; (5) down-regulation of Pf. Apparent Pf was inhibited 83% by p-chloromercuribenzene sulfonate (pCMBS) at 20 mOsm, but not at 60 mOsm delta pi, suggesting presence of a serial barrier resistance to water transport. Increases in perfusate or bath solution flow rate and viscosity did not alter apparent Pf, ruling out an external USL. A simple cytoplasmic USL, described by a constant USL thickness and solute diffusion coefficient, could not account for the delta pi dependence of apparent Pf according to a mathematical model. The activation energy (Ea) for apparent Pf increased from 7.0 to 12.5 kcal/mol when delta pi was increased from 20 to 60 mOsm, not consistent with a simple USL or a change in membrane surface area with transepithelial water flow. These findings are most consistent with a complex cytoplasmic USL, where the average solute diffusion coefficient and/or the area available for osmosis decrease with increasing delta pi. These results (1) indicate that true Pf (at physiologically low delta pi) is very high (greater than 0.5 cm/sec) in the rabbit proximal tubule; (2) provide an explanation for the wide variation in Pf values reported in the literature using different delta pi, and (3) suggest the presence of a

  18. Oxidative stress limits vitamin D metabolism by bovine proximal tubule cells in vitro.

    PubMed

    Crivello, J F

    1988-05-01

    When bovine proximal tubule cells are placed in primary culture, they are subject to elevated oxidative stress which acts to limit the expression of mitochondrial vitamin D3 1 alpha- and 24-hydroxylase activities. This increased oxidative stress was demonstrated by increased production of cell and mitochondrial membrane lipid hyperperoxides (LOOH). This increased production was prevented by the addition of the antioxidants butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT). Cell and mitochondrial membrane LOOH increased from 1 to 2 pmol/mg protein on the day of plating to 70-90 pmol/mg protein after 6 days in culture. Pretreatment of cultures with BHA and BHT resulted in membrane LOOH of 15-20 pmol/mg protein after 6 days. Mitochondrial LOOH production was greater than total cell LOOH after 6 days. The increase in cellular oxidative stress was paralleled by decreases in both 1 alpha- and 24-hydroxylase activities toward 25-OH D3. Mitochondrial hydroxylase activities were inversely proportional to the increase in mitochondrial membrane LOOH production. Mitochondrial cytochrome P-450 content, determined spectrophotometrically, was decreased over time in culture. Mitochondrial cytochrome P-450 content determined by a specific polyclonal antibody in an enzyme-linked immunosorbant assay also decreased over time in culture. Specificity of polyclonal antibodies, raised against rat liver microsomal cytochrome P-450 RLM5, was demonstrated by the immunosequestration of both 1 alpha- and 24-hydroxylase activities from a partially purified preparation of renal mitochondrial cytochrome P-450. BHA showed the loss of 1 alpha- and 24-hydroxylase activities and mitochondrial P-450 content measured by all criteria. These experiments indicate that oxidative stress-mediated changes in hydroxylase activities are mediated directly by changes in hydroxylase content and not at distal sites. A partially purified preparation of bovine proximal tubule mitochondrial cytochrome

  19. Gluconeogenesis from glutamine and lactate in the isolated human renal proximal tubule: longitudinal heterogeneity and lack of response to adrenaline.

    PubMed Central

    Conjard, A; Martin, M; Guitton, J; Baverel, G; Ferrier, B

    2001-01-01

    Recent studies in vivo have suggested that, in humans in the postabsorptive state, the kidneys contribute a significant fraction of systemic gluconeogenesis, and that the stimulation of renal gluconeogenesis may fully explain the increase in systemic gluconeogenesis during adrenaline infusion. Given the potential importance of human renal gluconeogenesis in various physiological and pathophysiological situations, we have conducted a study in vitro to further characterize this metabolic process and its regulation. For this, successive segments (S1, S2 and S3) of human proximal tubules were dissected and incubated with physiological concentrations of glutamine or lactate, two potential gluconeogenic substrates that are taken up by the human kidney in vivo, and glucose production was measured. The effects of adrenaline, noradrenaline and cAMP, a well established stimulator of gluconeogenesis in animal kidney tubules, were also studied in suspensions of human renal proximal tubules. The results indicate that the three successive segments have about the same capacity to synthesize glucose from glutamine; by contrast, the S2 and S3 segments synthesize more glucose from lactate than the S1 segment. In the S2 and S3 segments, lactate appears to be a better gluconeogenic precursor than glutamine. The addition of cAMP, but not of adrenaline or noradrenaline, led to the stimulation of gluconeogenesis from lactate and glutamine by human proximal tubules. These results indicate that, in the human kidney in vivo, lactate might be the main gluconeogenic precursor, and that the stimulation of renal gluconeogenesis observed in vivo upon adrenaline infusion may result from an indirect action on the renal proximal tubule. PMID:11716765

  20. Proximal tubule-specific glutamine synthetase deletion alters basal and acidosis-stimulated ammonia metabolism.

    PubMed

    Lee, Hyun-Wook; Osis, Gunars; Handlogten, Mary E; Lamers, Wouter H; Chaudhry, Farrukh A; Verlander, Jill W; Weiner, I David

    2016-06-01

    Glutamine synthetase (GS) catalyzes the recycling of NH4 (+) with glutamate to form glutamine. GS is highly expressed in the renal proximal tubule (PT), suggesting ammonia recycling via GS could decrease net ammoniagenesis and thereby limit ammonia available for net acid excretion. The purpose of the present study was to determine the role of PT GS in ammonia metabolism under basal conditions and during metabolic acidosis. We generated mice with PT-specific GS deletion (PT-GS-KO) using Cre-loxP techniques. Under basal conditions, PT-GS-KO increased urinary ammonia excretion significantly. Increased ammonia excretion occurred despite decreased expression of key proteins involved in renal ammonia generation. After the induction of metabolic acidosis, the ability to increase ammonia excretion was impaired significantly by PT-GS-KO. The blunted increase in ammonia excretion occurred despite greater expression of multiple components of ammonia generation, including SN1 (Slc38a3), phosphate-dependent glutaminase, phosphoenolpyruvate carboxykinase, and Na(+)-coupled electrogenic bicarbonate cotransporter. We conclude that 1) GS-mediated ammonia recycling in the PT contributes to both basal and acidosis-stimulated ammonia metabolism and 2) adaptive changes in other proteins involved in ammonia metabolism occur in response to PT-GS-KO and cause an underestimation of the role of PT GS expression. PMID:27009341

  1. Human proximal tubule epithelial cells cultured on hollow fibers: living membranes that actively transport organic cations.

    PubMed

    Jansen, J; De Napoli, I E; Fedecostante, M; Schophuizen, C M S; Chevtchik, N V; Wilmer, M J; van Asbeck, A H; Croes, H J; Pertijs, J C; Wetzels, J F M; Hilbrands, L B; van den Heuvel, L P; Hoenderop, J G; Stamatialis, D; Masereeuw, R

    2015-01-01

    The bioartificial kidney (BAK) aims at improving dialysis by developing 'living membranes' for cells-aided removal of uremic metabolites. Here, unique human conditionally immortalized proximal tubule epithelial cell (ciPTEC) monolayers were cultured on biofunctionalized MicroPES (polyethersulfone) hollow fiber membranes (HFM) and functionally tested using microfluidics. Tight monolayer formation was demonstrated by abundant zonula occludens-1 (ZO-1) protein expression along the tight junctions of matured ciPTEC on HFM. A clear barrier function of the monolayer was confirmed by limited diffusion of FITC-inulin. The activity of the organic cation transporter 2 (OCT2) in ciPTEC was evaluated in real-time using a perfusion system by confocal microscopy using 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide (ASP(+)) as a fluorescent substrate. Initial ASP(+) uptake was inhibited by a cationic uremic metabolites mixture and by the histamine H2-receptor antagonist, cimetidine. In conclusion, a 'living membrane' of renal epithelial cells on MicroPES HFM with demonstrated active organic cation transport was successfully established as a first step in BAK engineering. PMID:26567716

  2. In vitro safety assessment of food ingredients in canine renal proximal tubule cells.

    PubMed

    Koči, J; Jeffery, B; Riviere, J E; Monteiro-Riviere, N A

    2015-03-01

    In vitro models are useful tools to initially assess the toxicological safety hazards of food ingredients. Toxicities of cinnamaldehyde (CINA), cinnamon bark oil, lemongrass oil (LGO), thymol, thyme oil (TO), clove leaf oil, eugenol, ginger root extract (GRE), citric acid, guanosine monophosphate, inosine monophosphate and sorbose (SORB) were assessed in canine renal proximal tubule cells (CPTC) using viability assay and renal injury markers. At LC50, CINA was the most toxic (0.012mg/ml), while SORB the least toxic (>100mg/ml). Toxicities (LC50) of positive controls were as follows: 4-aminophenol (0.15mg/ml in CPTC and 0.083mg/ml in human PTC), neomycin (28.6mg/ml in CPTC and 27.1mg/ml in human PTC). XYL displayed lowest cytotoxic potency (LC50=82.7mg/ml in CPTC). In vivo renal injury markers in CPTC were not significantly different from controls. The LGO toxicity mechanism was analyzed using qPCR and electron microscopy. Out of 370 genes, 57 genes (15.4%) were significantly up (34, 9.1%) or down (23, 6.2%) regulated, with the most upregulated gene gsta3 (∼200-fold) and the most affected pathway being oxidative stress. LGO induced damage of mitochondria, phospholipid accumulation and lack of a brush border. Viability assays along with mechanistic studies in the CPTC model may serve as a valuable in vitro toxicity screening tool. PMID:25458622

  3. Handling of Drugs, Metabolites, and Uremic Toxins by Kidney Proximal Tubule Drug Transporters

    PubMed Central

    Wu, Wei; Bush, Kevin T.; Hoenig, Melanie P.; Blantz, Roland C.; Bhatnagar, Vibha

    2015-01-01

    The proximal tubule of the kidney plays a crucial role in the renal handling of drugs (e.g., diuretics), uremic toxins (e.g., indoxyl sulfate), environmental toxins (e.g., mercury, aristolochic acid), metabolites (e.g., uric acid), dietary compounds, and signaling molecules. This process is dependent on many multispecific transporters of the solute carrier (SLC) superfamily, including organic anion transporter (OAT) and organic cation transporter (OCT) subfamilies, and the ATP-binding cassette (ABC) superfamily. We review the basic physiology of these SLC and ABC transporters, many of which are often called drug transporters. With an emphasis on OAT1 (SLC22A6), the closely related OAT3 (SLC22A8), and OCT2 (SLC22A2), we explore the implications of recent in vitro, in vivo, and clinical data pertinent to the kidney. The analysis of murine knockouts has revealed a key role for these transporters in the renal handling not only of drugs and toxins but also of gut microbiome products, as well as liver-derived phase 1 and phase 2 metabolites, including putative uremic toxins (among other molecules of metabolic and clinical importance). Functional activity of these transporters (and polymorphisms affecting it) plays a key role in drug handling and nephrotoxicity. These transporters may also play a role in remote sensing and signaling, as part of a versatile small molecule communication network operative throughout the body in normal and diseased states, such as AKI and CKD. PMID:26490509

  4. The Endocytic Receptor Megalin and its Associated Proteins in Proximal Tubule Epithelial Cells

    PubMed Central

    De, Shankhajit; Kuwahara, Shoji; Saito, Akihiko

    2014-01-01

    Receptor-mediated endocytosis in renal proximal tubule epithelial cells (PTECs) is important for the reabsorption and metabolization of proteins and other substances, including carrier-bound vitamins and trace elements, in glomerular filtrates. Impairment of this endocytic process results in the loss of such substances and development of proteinuria, which is an important clinical indicator of kidney diseases and is also a risk marker for cardiovascular disease. Megalin, a member of the low-density lipoprotein receptor gene family, is a multiligand receptor expressed in the apical membrane of PTECs and plays a central role in the endocytic process. Megalin interacts with various intracellular adaptor proteins for intracellular trafficking and cooperatively functions with other membrane molecules, including the cubilin-amnionless complex. Evidence suggests that megalin and the cubilin-amnionless complex are involved in the uptake of toxic substances into PTECs, which leads to the development of kidney disease. Studies of megalin and its associated molecules will be useful for future development of novel strategies for the diagnosis and treatment of kidney diseases. PMID:25019425

  5. Human proximal tubule epithelial cells cultured on hollow fibers: living membranes that actively transport organic cations

    PubMed Central

    Jansen, J.; De Napoli, I. E; Fedecostante, M.; Schophuizen, C. M. S.; Chevtchik, N. V.; Wilmer, M. J.; van Asbeck, A. H.; Croes, H. J.; Pertijs, J. C.; Wetzels, J. F. M.; Hilbrands, L. B.; van den Heuvel, L. P.; Hoenderop, J. G.; Stamatialis, D.; Masereeuw, R.

    2015-01-01

    The bioartificial kidney (BAK) aims at improving dialysis by developing ‘living membranes’ for cells-aided removal of uremic metabolites. Here, unique human conditionally immortalized proximal tubule epithelial cell (ciPTEC) monolayers were cultured on biofunctionalized MicroPES (polyethersulfone) hollow fiber membranes (HFM) and functionally tested using microfluidics. Tight monolayer formation was demonstrated by abundant zonula occludens-1 (ZO-1) protein expression along the tight junctions of matured ciPTEC on HFM. A clear barrier function of the monolayer was confirmed by limited diffusion of FITC-inulin. The activity of the organic cation transporter 2 (OCT2) in ciPTEC was evaluated in real-time using a perfusion system by confocal microscopy using 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide (ASP+) as a fluorescent substrate. Initial ASP+ uptake was inhibited by a cationic uremic metabolites mixture and by the histamine H2-receptor antagonist, cimetidine. In conclusion, a ‘living membrane’ of renal epithelial cells on MicroPES HFM with demonstrated active organic cation transport was successfully established as a first step in BAK engineering. PMID:26567716

  6. Handling of Drugs, Metabolites, and Uremic Toxins by Kidney Proximal Tubule Drug Transporters.

    PubMed

    Nigam, Sanjay K; Wu, Wei; Bush, Kevin T; Hoenig, Melanie P; Blantz, Roland C; Bhatnagar, Vibha

    2015-11-01

    The proximal tubule of the kidney plays a crucial role in the renal handling of drugs (e.g., diuretics), uremic toxins (e.g., indoxyl sulfate), environmental toxins (e.g., mercury, aristolochic acid), metabolites (e.g., uric acid), dietary compounds, and signaling molecules. This process is dependent on many multispecific transporters of the solute carrier (SLC) superfamily, including organic anion transporter (OAT) and organic cation transporter (OCT) subfamilies, and the ATP-binding cassette (ABC) superfamily. We review the basic physiology of these SLC and ABC transporters, many of which are often called drug transporters. With an emphasis on OAT1 (SLC22A6), the closely related OAT3 (SLC22A8), and OCT2 (SLC22A2), we explore the implications of recent in vitro, in vivo, and clinical data pertinent to the kidney. The analysis of murine knockouts has revealed a key role for these transporters in the renal handling not only of drugs and toxins but also of gut microbiome products, as well as liver-derived phase 1 and phase 2 metabolites, including putative uremic toxins (among other molecules of metabolic and clinical importance). Functional activity of these transporters (and polymorphisms affecting it) plays a key role in drug handling and nephrotoxicity. These transporters may also play a role in remote sensing and signaling, as part of a versatile small molecule communication network operative throughout the body in normal and diseased states, such as AKI and CKD. PMID:26490509

  7. Effects of D-amino acid substituents on degradation of LHRH analogues by proximal tubule

    SciTech Connect

    Flouret, G.; Majewski, T.; Peterson, D.R.; Kenny, A.J.; Carone, F.A.

    1987-03-01

    The luteinizing hormone-releasing hormone, LHRH, is degraded in renal proximal tubules (PT) in vivo (rat) and in vitro (rabbit) to < Glu-His (2), < Glu-His-Trp (3), and < Glu-His-Trp-Ser (4). LHRH may be cleaved by endopeptidases simultaneously at multiple bonds, or initially at Ser/sup 4/-Try/sup 5/ followed by carboxypeptidase hydrolysis of 4 to 3 and then 2. To distinguish between these mechanisms, (/sup 3/H)LHRH analogues were incubated with rabbit renal brush-border membranes (BBM), microinfused into PT in vivo or in vitro, and products were analyzed by HPLC. (D-Ser/sup 4/)LHRH was not cleaved at D-Ser/sup 4/-Try/sup 5/ but yielded < Glu-His-Trp-D-Ser-Tyr-Gly as the major metabolite plus 2 and 3. (D-Trp/sup 6/)LHRH was cleaved by BBM and PT to 2 and 3, but not to 4. (D-Ser/sup 4/, D-Trp/sup 6/)LHRH was not cleaved by BBM, but was degraded to 2 by PT in vivo. Thus, D-amino acid substituents altered the expected cleavage pattern of these analogues. Thus, normally LHRH may be cleaved in PT by endopeptidase-24.11 to 2 and 4, and by angiotensin I-converting enzyme to 3, its know cleavage site.

  8. Micropuncture study of the effect of furosemide on proximal and distal tubules of the rat nephron.

    PubMed

    Romano, G; Favret, G; Bartoli, E

    1995-01-01

    's loop, where it blocks Na+ transport. The urine flow rate rises during furosemide because water abstraction along the distal tubule is reduced by the isotonicity of ED TF, and along the collecting ducts by the isotonicity of the medullary and papillary interstitium caused by the diuretic. We conclude that under the conditions of the present study, furosemide has no proximal effect. PMID:7481072

  9. Enhanced cadmium-induced testicular necrosis and renal proximal tubule damage caused by gene-dose increase in a Slc39a8-transgenic mouse line.

    PubMed

    Wang, Bin; Schneider, Scott N; Dragin, Nadine; Girijashanker, Kuppuswami; Dalton, Timothy P; He, Lei; Miller, Marian L; Stringer, Keith F; Soleimani, Manoocher; Richardson, Douglas D; Nebert, Daniel W

    2007-04-01

    Resistance to cadmium (Cd)-induced testicular necrosis is an autosomal recessive trait defined as the Cdm locus. Using positional cloning, we previously identified the Slc39a8 (encoding an apical-surface ZIP8 transporter protein) as the gene most likely responsible for the phenotype. In situ hybridization revealed that endothelial cells of the testis vasculature express high ZIP8 levels in two sensitive inbred mouse strains and negligible amounts in two resistant strains. In the present study, we isolated a 168.7-kb bacterial artificial chromosome (BAC), carrying only the Slc39a8 gene, from a Cd-sensitive 129/SvJ BAC library and generated BAC-transgenic mice. The BTZIP8-3 line, having three copies of the 129/SvJ Slc39a8 gene inserted into the Cd-resistant C57BL/6J genome (having its normal two copies of the Slc39a8 gene), showed tissue-specific ZIP8 mRNA expression similar to wild-type mice, mainly in lung, testis, and kidney. The approximately 2.5-fold greater expression paralleled the fact that the BTZIP8-3 line has five copies, whereas wild-type mice have two copies, of the Slc39a8 gene. The ZIP8 mRNA and protein localized especially to endothelial cells of the testis vasculature in BTZIP8-3 mice. Cd treatment reversed Cd resistance (seen in nontransgenic littermates) to Cd sensitivity in BTZIP8-3 mice; reversal of the testicular necrosis phenotype confirms that Slc39a8 is unequivocally the Cdm locus. ZIP8 also localized specifically to the apical surface of proximal tubule cells in the BTZIP8-3 kidney. Cd treatment caused acute renal failure and signs of proximal tubular damage in the BTZIP8-3 but not nontransgenic littermates. BTZIP8-3 mice should be a useful model for studying Cd-induced disease in kidney. PMID:17108009

  10. Poor lysosomal membrane integrity in proximal tubule cells of haptoglobin 2-2 genotype mice with diabetes mellitus

    PubMed Central

    Asleh, Rabea; Nakhoul, Farid M.; Miller-Lotan, Rachel; Awad, Hoda; Farbstein, Dan; Levy, Nina S.; Nakhoul, Nakhoul; Iancu, Theodore C.; Manov, Irena; Laue, Michael; Traber, Maret G.; Lebold, Katie M.; Levy, Andrew P.

    2013-01-01

    The haptoglobin (Hp) genotype is a major determinant of progression of nephropathy in individuals with diabetes mellitus (DM). The major function of the Hp protein is to bind and modulate the fate of extracorpuscular hemoglobin and its iron cargo. We have previously demonstrated an interaction between the Hp genotype and the DM on the accumulation of iron in renal proximal tubule cells. The primary objective of this study was to determine the intracellular localization of this iron in the proximal tubule cell and to assess its potential toxicity. Transmission electron microscopy demonstrated a marked accumulation of electron-dense deposits in the lysosomes of proximal tubules cells in Hp 2-2 DM mice. Energy-dispersive X-ray spectroscopy and electron energy loss spectroscopy were used to perform elemental analysis of these deposits and demonstrated that these deposits were iron rich. These deposits were associated with lysosomal membrane lipid peroxidation and loss of lysosomal membrane integrity. Vitamin E administration to Hp 2-2 DM mice resulted in a significant decrease in both intralysosomal iron-induced oxidation and lysosomal destabilization. Iron-induced renal tubular injury may play a major role in the development of diabetic nephropathy and may be a target for slowing the progression of renal disease. PMID:22749805

  11. Targeted deletion of p53 in the proximal tubule prevents ischemic renal injury.

    PubMed

    Ying, Yuan; Kim, Jinu; Westphal, Sherry N; Long, Kelly E; Padanilam, Babu J

    2014-12-01

    The contribution of p53 to kidney dysfunction, inflammation, and tubular cell death, hallmark features of ischemic renal injury (IRI), remains undefined. Here, we studied the role of proximal tubule cell (PTC)-specific p53 activation on the short- and long-term consequences of renal ischemia/reperfusion injury in mice. After IRI, mice with PTC-specific deletion of p53 (p53 knockout [KO]) had diminished whole-kidney expression levels of p53 and its target genes, improved renal function, which was shown by decreased plasma levels of creatinine and BUN, and attenuated renal histologic damage, oxidative stress, and infiltration of neutrophils and macrophages compared with wild-type mice. Notably, necrotic cell death was attenuated in p53 KO ischemic kidneys as well as oxidant-injured p53-deficient primary PTCs and pifithrin-α-treated PTC lines. Reduced oxidative stress and diminished expression of PARP1 and Bax in p53 KO ischemic kidneys may account for the decreased necrosis. Apoptosis and expression of proapoptotic p53 targets, including Bid and Siva, were also significantly reduced, and cell cycle arrest at the G2/M phase was attenuated in p53 KO ischemic kidneys. Furthermore, IRI-induced activation of TGF-β and the long-term development of inflammation and interstitial fibrosis were significantly reduced in p53 KO mice. In conclusion, specific deletion of p53 in the PTC protects kidneys from functional and histologic deterioration after IRI by decreasing necrosis, apoptosis, and inflammation and modulates the long-term sequelae of IRI by preventing interstitial fibrogenesis. PMID:24854277

  12. Effect of stevioside on PAH transport by isolated perfused rabbit renal proximal tubule.

    PubMed

    Jutabha, P; Toskulkao, C; Chatsudthipong, V

    2000-09-01

    Stevioside, a non-caloric sweetening agent, is used as a sugar substitute. An influence of stevioside on renal function has been suggested, but little is known about its effect on tubular function. Therefore, the present study was designed to explore the direct effect of stevioside on transepithelial transport of p-aminohippurate (PAH) in isolated S2 segments of rabbit proximal renal tubules using in vitro microperfusion. Addition of stevioside at a concentration of 0.45 mM to either the tubular lumen, bathing medium, or both at the same time had no effect on transepithelial transport of PAH. Similarly, a concentration of 0.70 mM (maximum solubility in the buffer) when present in the lumen, had no effect on PAH transport. However, this concentration in the bathing medium inhibited PAH transport significantly by about 25-35%. The inhibitory effect of stevioside was gradually abolished after it was removed from the bath. Addition of 0.70 mM stevioside to both lumen and bathing medium at the same time produced no added inhibitory effect. Stevioside at this concentration has no effect on Na+/K+-ATPase activity as well as cell ATP content. These findings suggest that stevioside, at a pharmacological concentration of 0.70 mM, inhibits transepithelial transport of PAH by interfering with the basolateral entry step, the rate-limiting step for transepithelial transport. The lack of effect of stevioside on transepithelial transport of PAH on the luminal side and its reversible inhibitory effect on the basolateral side indicate that stevioside does not permanently change PAH transport and should not harm renal tubular function at normal human intake levels. PMID:11007537

  13. Mechanisms of proximal tubule sodium transport regulation that link extracellular fluid volume and blood pressure.

    PubMed

    McDonough, Alicia A

    2010-04-01

    One-hundred years ago, Starling articulated the interdependence of renal control of circulating blood volume and effective cardiac performance. During the past 25 years, the molecular mechanisms responsible for the interdependence of blood pressure (BP), extracellular fluid volume (ECFV), the renin-angiotensin system (RAS), and sympathetic nervous system (SNS) have begun to be revealed. These variables all converge on regulation of renal proximal tubule (PT) sodium transport. The PT reabsorbs two-thirds of the filtered Na(+) and volume at baseline. This fraction is decreased when BP or perfusion pressure is increased, during a high-salt diet (elevated ECFV), and during inhibition of the production of ANG II; conversely, this fraction is increased by ANG II, SNS activation, and a low-salt diet. These variables all regulate the distribution of the Na(+)/H(+) exchanger isoform 3 (NHE3) and the Na(+)-phosphate cotransporter (NaPi2), along the apical microvilli of the PT. Natriuretic stimuli provoke the dynamic redistribution of these transporters along with associated regulators, molecular motors, and cytoskeleton-associated proteins to the base of the microvilli. The lipid raft-associated NHE3 remains at the base, and the nonraft-associated NaPi2 is endocytosed, culminating in decreased Na(+) transport and increased PT flow rate. Antinatriuretic stimuli return the same transporters and regulators to the body of the microvilli associated with an increase in transport activity and decrease in PT flow rate. In summary, ECFV and BP homeostasis are, at least in part, maintained by continuous and acute redistribution of transporter complexes up and down the PT microvilli, which affect regulation of PT sodium reabsorption in response to fluctuations in ECFV, BP, SNS, and RAS. PMID:20106993

  14. Uric Acid Promotes Apoptosis in Human Proximal Tubule Cells by Oxidative Stress and the Activation of NADPH Oxidase NOX 4

    PubMed Central

    Verzola, Daniela; Ratto, Elena; Villaggio, Barbara; Parodi, Emanuele Luigi; Pontremoli, Roberto; Garibotto, Giacomo; Viazzi, Francesca

    2014-01-01

    Mild hyperuricemia has been linked to the development and progression of tubulointerstitial renal damage. However the mechanisms by which uric acid may cause these effects are poorly explored. We investigated the effect of uric acid on apoptosis and the underlying mechanisms in a human proximal tubule cell line (HK-2). Increased uric acid concentration decreased tubule cell viability and increased apoptotic cells in a dose dependent manner (up to a 7-fold increase, p<0.0001). Uric acid up-regulated Bax (+60% with respect to Ctrl; p<0.05) and down regulated X-linked inhibitor of apoptosis protein. Apoptosis was blunted by Caspase-9 but not Caspase-8 inhibition. Uric acid induced changes in the mitochondrial membrane, elevations in reactive oxygen species and a pronounced up-regulation of NOX 4 mRNA and protein (p<0.05). In addition, both reactive oxygen species production and apoptosis was prevented by the NADPH oxidase inhibitor DPI as well as by Nox 4 knockdown. URAT 1 transport inhibition by probenecid and losartan and its knock down by specific siRNA, blunted apoptosis, suggesting a URAT 1 dependent cell death. In summary, our data show that uric acid increases the permissiveness of proximal tubule kidney cells to apoptosis by triggering a pathway involving NADPH oxidase signalling and URAT 1 transport. These results might explain the chronic tubulointerstitial damage observed in hyperuricaemic states and suggest that uric acid transport in tubular cells is necessary for urate-induced effects. PMID:25514209

  15. Conditional Deletion of Fgfr1 in the Proximal and Distal Tubule Identifies Distinct Roles in Phosphate and Calcium Transport

    PubMed Central

    Han, Xiaobin; Yang, Jiancheng; Li, Linqiang; Huang, Jinsong; King, Gwendalyn; Quarles, L. Darryl

    2016-01-01

    A postnatal role of fibroblast growth factor receptor-1 (FGFR1) in the kidney is suggested by its binding to α-Klotho to form an obligate receptor for the hormone fibroblast growth factor-23 (FGF-23). FGFR1 is expressed in both the proximal and distal renal tubular segments, but its tubular specific functions are unclear. In this study, we crossed Fgfr1flox/flox mice with either gamma-glutamyltransferase-Cre (γGT-Cre) or kidney specific-Cre (Ksp-Cre) mice to selectively create proximal tubule (PT) and distal tubule (DT) Fgfr1 conditional knockout mice (designated Fgfr1PT-cKO and Fgfr1DT-cKO, respectively). Fgfr1PT-cKO mice exhibited an increase in sodium-dependent phosphate co-transporter expression, hyperphosphatemia, and refractoriness to the phosphaturic actions of FGF-23, consistent with a direct role of FGFR1 in mediating the proximal tubular phosphate responses to FGF-23. In contrast, Fgfr1DT-cKO mice unexpectedly developed hypercalciuria, secondary elevations of parathyroid hormone (PTH), hypophosphatemia and enhanced urinary phosphate excretion. Fgfr1PT-cKO mice also developed a curly tail/spina bifida-like skeletal phenotype, whereas Fgfr1DT-cKO mice developed renal tubular micro-calcifications and reductions in cortical bone thickness. Thus, FGFR1 has dual functions to directly regulate proximal and distal tubule phosphate and calcium reabsorption, indicating a physiological role of FGFR1 signaling in both phosphate and calcium homeostasis. PMID:26839958

  16. Early enhancement of fluid transport in rabbit proximal straight tubules after loss of contralateral renal excretory function.

    PubMed Central

    Tabei, K; Levenson, D J; Brenner, B M

    1983-01-01

    To assess the renal functional adaptation to reduced excretory capacity, we studied whole kidney and single nephron function in anesthetized volume-replete rabbits after unilateral (left kidney) nephrectomy (UNX), ureteral obstruction (UO), or ureteroperitoneostomy (UP). At 24 h, despite the absence of measurable hypertrophy of the contralateral (right) kidney, these procedures significantly increased p-aminohippurate clearance (45-54%) and inulin clearance (CIN) (64-110%) compared with sham-operated control animals. In each group, whole kidney sodium reabsorption increased in proportion to the rise in CIN. To determine whether the intrinsic transport capacity of proximal tubule segments is altered by these maneuvers, we measured fluid volume reabsorption rate (Jv) in isolated superficial proximal straight tubule (PST) segments perfused in vitro, comparing each control tubule (obtained by biopsy of the left kidney immediately before an experimental maneuver) with a corresponding tubule segment obtained 24 h or 7 d later from the contralateral kidney. Control tubule Jv in sham-24 h animals averaged 0.48 +/- 0.04 nl/(min X mm). Jv did not change significantly at 24 h or 7 d after sham maneuvers but increased significantly at 24 h after UNX [delta Jv = 0.13 +/- 0.03 nl/(min X mm)], UO [delta Jv = 0.10 +/- 0.04 nl/(min X mm)], and UP [delta Jv = 0.13 +/- 0.04 nl/(min X mm)]. Jv remained increased by similar amounts at 7 d after UNX and UO. To evaluate whether an increase in glomerular filtration rate (GFR) might be the stimulus to this augmentation in Jv values, methylprednisolone (MP) (15 mg/kg per d) was administered daily to sham-operated animals, a maneuver which induced a 73% rise in CIN by day 5. This procedure also produced a significant increase in Jv in PST at 5 d [delta Jv = 0.16 +/- 0.05 nl/(min X mm)]. The increase in Jv evident in each group at 5 or 7 d was paralleled by an equivalent change in tubule cell volume and apparent tubule luminal surface area in

  17. Diquat induces renal proximal tubule injury in glutathione reductase-deficient mice

    SciTech Connect

    Rogers, Lynette K. . E-mail: rogersl@ccri.net; Bates, Carlton M.; Welty, Stephen E.; Smith, Charles V.

    2006-12-15

    Reactive oxygen species (ROS) have been associated with many human diseases, and glutathione (GSH)-dependent processes are pivotal in limiting tissue damage. To test the hypothesis that Gr1{sup a1Neu} (Neu) mice, which do not express glutathione reductase (GR), would be more susceptible than are wild-type mice to ROS-mediated injury, we studied the effects of diquat, a redox cycling toxicant. Neu mice exhibited modest, dose- and time-dependent elevations in plasma alanine aminotransferase (ALT) activities, 126 {+-} 36 U/l at 2 h after 5 {mu}mol/kg of diquat, but no ALT elevations were observed in diquat-treated C3H/HeN mice for up to 6 h after 50 {mu}mol/kg of diquat. Histology indicated little or no hepatic necrosis in diquat-treated mice of either strain, but substantial renal injury was observed in diquat-treated Neu mice, characterized by brush border sloughing in the proximal tubules by 1 h and tubular necrosis by 2 h after doses of 7.5 {mu}mol/kg. Decreases in renal GSH levels were observed in the Neu mice by 2 h post dose (3.4 {+-} 0.4 vs 0.2 {+-} 0.0 {mu}mol/g tissue at 0 and 50 {mu}mol/kg, respectively), and increases in renal GSSG levels were observed in the Neu mice as early as 0.5 h after 7.5 {mu}mol/kg (105.5 {+-} 44.1 vs 27.9 {+-} 4.8 nmol/g tissue). Blood urea nitrogen levels were elevated by 2 h in Neu mice after doses of 7.5 {mu}mol/kg (Neu vs C3H, 32.8 {+-} 4.1 vs 17.9 {+-} 0.3 mg/dl). Diquat-induced renal injury in the GR-deficient Neu mice offers a useful model for studies of ROS-induced renal necrosis and of the contributions of GR in defense against oxidant-mediated injuries in vivo.

  18. Fluorescence-Based Transport Assays Revisited in a Human Renal Proximal Tubule Cell Line.

    PubMed

    Caetano-Pinto, Pedro; Janssen, Manoe J; Gijzen, Linda; Verscheijden, Laurens; Wilmer, Martijn J G; Masereeuw, Rosalinde

    2016-03-01

    Apical transport is key in renal function, and the activity of efflux transporters and receptor-mediated endocytosis is pivotal in this process. The conditionally immortalized proximal tubule epithelial cell line (ciPTEC) endogenously expresses these systems. Here, we used ciPTEC to investigate the activity of three major efflux transporters, viz., breast cancer resistance protein (BCRP), multidrug resistance protein 4 (MRP4), and P-glycoprotein (P-gp), as well as protein uptake through receptor-mediated endocytosis, using a fluorescence-based setup for transport assays. To this end, cells were exposed to Hoechst33342, chloromethylfluorescein-diacetate (CMFDA), and calcein-AM in the presence or absence of model inhibitors for BCRP (KO143), P-gp (PSC833), or MRPs (MK571). Overexpression cell lines MDCKII-BCRP and MDCKII-P-gp were used as positive controls, and membrane vesicles overexpressing one transporter were used to determine substrate and inhibitor specificities. Receptor-mediated endocytosis was investigated by determining the intracellular accumulation of fluorescently labeled receptor-associated protein (RAP-GST). In ciPTEC, BCRP and P-gp showed similar expressions and activities, whereas MRP4 was more abundantly expressed. Hoechst33342, GS-MF, and calcein are retained in the presence of KO143, MK571, and PSC833, showing clearly redundancy between the transporters. Noteworthy is the fact that both KO143 and MK571 can block BCRP, P-gp, and MRPs, whereas PSC833 appears to be a potent inhibitor for BCRP and P-gp but not the MRPs. Furthermore, ciPTEC accumulates RAP-GST in intracellular vesicles in a dose- and time-dependent manner, which was reduced in megalin-deficient cells. In conclusion, fluorescent-probe-based assays are fast and reproducible in determining apical transport mechanisms, in vitro. We demonstrate that typical substrates and inhibitors are not specific for the designated transporters, reflecting the complex interactions that can take place in

  19. Transport of leucine, isoleucine and valine by luminal membrane vesicles from rabbit proximal tubule.

    PubMed

    Jørgensen, K E; Kragh-Hansen, U; Sheikh, M I

    1990-03-01

    1. Transport of L- and D-isomers of leucine, isoleucine and valine by luminal membrane vesicles prepared from either the convoluted part (pars convoluta) or the straight part (pars recta) of rabbit proximal tubule was studied by a rapid filtration technique and by a spectrophotometric method using a potential-sensitive carbocyanine dye. 2. Both types of renal membrane vesicle take up the amino acids in a Na(+)-dependent, H(+)-independent and electrogenic manner. The L-isomers are transported with higher affinities than their corresponding D-forms, of which only D-leucine is taken up to a significant extent. 3. Membrane vesicles prepared from pars convoluta take up the L-amino acids by a single and common system. Filtration studies showed that the Km values for L-leucine and L-valine transport are, on average, 0.23 and 0.83 mM, respectively. The values of KA (the concentration of amino acid producing a half-maximal optical response) are comparable to those of Km, namely 0.18 mM for L-leucine and 0.60 mM for L-valine. KA for L-isoleucine transport was found to be 0.19 mM. D-Leucine is taken up by the same system but with a much lower affinity (KA = 7.2 mM). 4. Membrane vesicles prepared from pars recta possess two, and probably common, transport systems for the L-isomers of the amino acids. The average Michaelis-Menten constants were as follows: L-leucine, K1m = 0.17 mM, K2m = 6.5 mM; L-valine, K1m = 0.19 mM, K2m = 11.5 mM. The KA values were: L-leucine, K1A = 0.12 mM, K2A = 7.4 mM; L-valine, K1A = 0.18 mM, K2A = 10.0 mM; L-isoleucine, K1A = 0.17 mM, K2A = 9.0 mM. D-Leucine is taken up by a low-affinity system only (KA = 6.5 mM), which seems to be the same as the low-affinity system transporting the L-forms of the amino acids. PMID:2352186

  20. NaCl reflection coefficients in proximal tubule apical and basolateral membrane vesicles. Measurement by induced osmosis and solvent drag.

    PubMed

    Pearce, D; Verkman, A S

    1989-06-01

    Two independent methods, induced osmosis and solvent drag, were used to determine the reflection coefficients for NaCl (sigma NaCl) in brush border and basolateral membrane vesicles isolated from rabbit proximal tubule. In the induced osmosis method, vesicles loaded with sucrose were subjected to varying inward NaCl gradients in a stopped-flow apparatus. sigma NaCl was determined from the osmolality of the NaCl solution required to cause no initial osmotic water flux as measured by light scattering (null point). By this method sigma NaCl was greater than 0.92 for both apical and basolateral membranes with best estimates of 1.0. sigma NaCl was determined by the solvent drag method using the Cl-sensitive fluorescent indicator, 6-methoxy-N-[3-sulfopropyl]quinolinium (SPQ), to detect the drag of Cl into vesicles by inward osmotic water movement caused by an outward osmotic gradient. sigma NaCl was determined by comparing experimental data with theoretical curves generated using the coupled flux equations of Kedem and Katchalsky. By this method we found that sigma NaCl was greater than 0.96 for apical and greater than 0.98 for basolateral membrane vesicles, with best estimates of 1.0 for both membranes. These results demonstrate that sigma NaCl for proximal tubule apical and basolateral membranes are near unity. Taken together with previous results, these data suggest that proximal tubule water channels are long narrow pores that exclude NaCl. PMID:2765660

  1. Effects of advanced glycation end products on ezrin-dependent functions in LLC-PK1 proximal tubule cells.

    PubMed

    Bach, Leon A; Gallicchio, Marisa A; McRobert, E Anne; Tikoo, Anjali; Cooper, Mark E

    2005-06-01

    We have recently shown that advanced glycation products (AGEs) bind to the ERM (ezrin, radixin, moesin) family of proteins. ERM proteins act as cross-linkers between cell membrane proteins and the actin cytoskeleton. They are also involved in signal transduction pathways. They therefore have a critical role in normal cell processes, including modulation of cell shape, adhesion, and motility. We postulate that AGEs may contribute to diabetic complications by disrupting ERM function. In support of this hypothesis, AGEs inhibit ezrin-dependent tubulogenesis of proximal tubule cells. Phosphorylation is an important activating mechanism for ERM proteins, and AGEs inhibit ezrin phosphorylation mediated by the epidermal growth factor receptor. PMID:16037284

  2. Data on Na,K-ATPase in primary cultures of renal proximal tubule cells treated with catecholamines

    PubMed Central

    Taub, Mary; Cutuli, Facundo

    2015-01-01

    This data article is concerned with chronic regulation of Na,K-ATPase by catecholamines. After a chronic treatment, inhibition of Na,K-ATPase activity was observed in cultures with dopamine, while a stimulation was observed in cultures treated with norepinephrine. Following a chronic incubation with guanabenz, an α adrenergic agonist, an increase in Na,K-ATPase α and β subunit mRNAs was observed. This data supports the research article entitled, “Renal proximal tubule Na, K-ATPase is controlled by CREB regulated transcriptional coactivators as well as salt inducible kinase 1” (Taub et al. 2015) [1]. PMID:26866051

  3. Fluid reabsorption in proximal convoluted tubules of mice with gene deletions of claudin-2 and/or aquaporin1

    PubMed Central

    Huang, Yuning; Mizel, Diane

    2013-01-01

    Deletions of claudin-2 (Cldn2) and aquaporin1 (AQP1) reduce proximal fluid reabsorption (PFR) by about 30% and 50%, respectively. Experiments were done to replicate these observations and to determine in AQP1/claudin-2 double knockout mice (DKO) if the effects of deletions of these established water pores are additive. PFR was determined in inactin/ketamine-anesthetized mice by free-flow micropuncture using single-nephron I125-iothalamate (io) clearance. Animal means of PFR [% of glomerular filtration rate (GFR)] derived from TF/Piothalamate ratios in 12 mice in each of four groups [wild type (WT), Cldn2−/−, AQP1−/−, and DKO) were 45.8 ± 0.85 (51 tubules), 35.4 ± 1 (54 tubules; P < 0.01 vs. WT), 36.8 ± 1 (63 tubules; P < 0.05 vs. WT), and 33.9 ± 1.4 (69 tubules; P < 0.01 vs. WT). Kidney and single-nephron GFRs (SNGFR) were significantly reduced in all mutant strains. The direct relationship between PFR and SNGFR was maintained in mutant mice, but the slope of this relationship was reduced in the absence of Cldn2 and/or AQP1. Transtubular osmotic pressure differences were not different between WT and Cldn2−/− mice, but markedly increased in DKO. In conclusion, the deletion of Cldn2, AQP1, or of both Cldn2 and AQP1 reduces PFR by 22.7%, 19.6%, and 26%, respectively. Our data are consistent with an up to 25% paracellular contribution to PFR. The reduced osmotic water permeability caused by absence of AQP1 augments luminal hypotonicity. Aided by a fall in filtered load, the capacity of non-AQP1-dependent transcellular reabsorption is sufficient to maintain PFR without AQP1 and claudin-2 at 75% of control. PMID:24049145

  4. The role of renal proximal tubule P450 enzymes in chloroform-induced nephrotoxicity: Utility of renal specific P450 reductase knockout mouse models

    SciTech Connect

    Liu, Senyan; Yao, Yunyi; Lu, Shijun; Aldous, Kenneth; Ding, Xinxin; Mei, Changlin; Gu, Jun

    2013-10-01

    The kidney is a primary target for numerous toxic compounds. Cytochrome P450 enzymes (P450) are responsible for the metabolic activation of various chemical compounds, and in the kidney are predominantly expressed in proximal tubules. The aim of this study was to test the hypothesis that renal proximal tubular P450s are critical for nephrotoxicity caused by chemicals such as chloroform. We developed two new mouse models, one having proximal tubule-specific deletion of the cytochrome P450 reductase (Cpr) gene (the enzyme required for all microsomal P450 activities), designated proximal tubule-Cpr-null (PTCN), and the other having proximal tubule-specific rescue of CPR activity with the global suppression of CPR activity in all extra-proximal tubular tissues, designated extra-proximal tubule-Cpr-low (XPT-CL). The PTCN, XPT-CL, Cpr-low (CL), and wild-type (WT) mice were treated with a single oral dose of chloroform at 200 mg/kg. Blood, liver and kidney samples were obtained at 24 h after the treatment. Renal toxicity was assessed by measuring BUN and creatinine levels, and by pathological examination. The blood and tissue levels of chloroform were determined. The severity of toxicity was less in PTCN and CL mice, compared with that of WT and XPT-CL mice. There were no significant differences in chloroform levels in the blood, liver, or kidney, between PTCN and WT mice, or between XPT-CL and CL mice. These findings indicate that local P450-dependent activities play an important role in the nephrotoxicity induced by chloroform. Our results also demonstrate the usefulness of these novel mouse models for studies of chemical-induced kidney toxicity. - Highlights: • New mouse models were developed with varying P450 activities in the proximal tubule. • These mouse models were treated with chloroform, a nephrotoxicant. • Studies showed the importance of local P450s in chloroform-induced nephrotoxicity.

  5. Mis-regulation of Mammalian Target of Rapamycin (mTOR) Complexes Induced by Albuminuria in Proximal Tubules*

    PubMed Central

    Peruchetti, Diogo B.; Cheng, Jie; Caruso-Neves, Celso; Guggino, William B.

    2014-01-01

    High albumin concentrations in the proximal tubule of the kidney causes tubulointerstitial injury, but how this process occurs is not completely known. To address the signal transduction pathways mis-regulated in renal injury, we studied the modulation of mammalian target of rapamycin (mTOR) complexes by physiologic and pathophysiologic albumin concentrations in proximal tubule cells. Physiologic albumin concentrations activated the PI3K/mTORC2/PKB/mTORC1/S6 kinase (S6K) pathway, but pathophysiologically high albumin concentrations overactivated mTORC1 and inhibited mTORC2 activity. This control process involved the activation of ERK1/2, which promoted the inhibition of TSC2 and activation of S6K. Furthermore, S6K was crucial to promoting the over activation of mTORC1 and inhibition of mTORC2. Megalin expression at the luminal membrane is reduced by high concentrations of albumin. In addition, knockdown of megalin mimicked all the effects of pathophysiologic albumin concentrations, which disrupt normal signal transduction pathways and lead to an overactivation of mTORC1 and inhibition of mTORC2. These data provide new perspectives for understanding the molecular mechanisms behind the effects of albumin on the progression of renal disease. PMID:24790108

  6. Urinary loss of glucose, phosphate, and protein by diffusion into proximal straight tubules injured by D-serine and maleic acid

    SciTech Connect

    Carone, F.A.; Nakamura, S.; Goldman, B.

    1985-06-01

    In several models of acute renal failure leakage of glomerular filtrate out of the tubule is an important pathogenetic mechanism; however, bidirectional diffusion of solute to account for certain pathophysiologic features of acute renal failure has received meager attention. Using micropuncture and clearance methods, the authors assessed sequentially leakage of solutes and inulin across proximal straight tubules (PST) injured by two nephrotoxins. In d-serine-treated rats with extensive necrosis of PST, the basis for glucosuria and tubular leakage of inulin was studied. Glucose absorption by the proximal convoluted tubule and glucose delivery to the PST were normal, but glucose delivery to the distal tubule was increased nearly 8-fold, indicating diffusion of glucose from interstitial to tubular luminal fluid across the necrotic PST. Total kidney inulin clearance was greatly reduced, but single nephron glomerular filtration rate, based on proximal convoluted tubule samples, was normal, indicating tubular loss of inulin. Urinary recovery of (/sup 14/C)inulin infused into tubular lumina revealed that proximal convoluted tubule and distal tubule were impermeable to inulin and that inulin diffused out of the necrotic PST. The progressive return over 6 days of tubular impermeability for inulin correlated with relining of PST with new cells. In maleic acid-treated rats the site and extent of tubular necrosis and the nature of urinary loss of solutes were studied. Microdissection revealed that maleic acid caused limited necrosis of PST which averaged 7.4% of total proximal tubular length. Increased urinary excretion of protein, phosphate, and glucose and increased tubular permeability to microinfused (/sup 14/C)inulin occurred with the onset of PST necrosis, and return of these abnormalities to normal correlated with the degree of cellular repair of the PST.

  7. Time-dependent dysregulation of autophagy: Implications in aging and mitochondrial homeostasis in the kidney proximal tubule.

    PubMed

    Yamamoto, Takeshi; Takabatake, Yoshitsugu; Kimura, Tomonori; Takahashi, Atsushi; Namba, Tomoko; Matsuda, Jun; Minami, Satoshi; Kaimori, Jun-Ya; Matsui, Isao; Kitamura, Harumi; Matsusaka, Taiji; Niimura, Fumio; Yanagita, Motoko; Isaka, Yoshitaka; Rakugi, Hiromi

    2016-05-01

    Autophagy plays an essential role in cellular homeostasis through the quality control of proteins and organelles. Although a time-dependent decline in autophagic activity is believed to be involved in the aging process, the issue remains controversial. We previously demonstrated that autophagy maintains proximal tubular cell homeostasis and protects against kidney injury. Here, we extend that study and examine how autophagy is involved in kidney aging. Unexpectedly, the basal autophagic activity was higher in the aged kidney than that in young kidney; short-term cessation of autophagy in tamoxifen-inducible proximal tubule-specific autophagy-deficient mice increased the accumulation of SQSTM1/p62- and ubiquitin-positive aggregates in the aged kidney. By contrast, autophagic flux in response to metabolic stress was blunted with aging, as demonstrated by the observation that transgenic mice expressing a green fluorescent protein (GFP)-microtubule-associated protein 1 light chain 3B fusion construct, showed a drastic increase of GFP-positive puncta in response to starvation in young mice compared to a slight increase observed in aged mice. Finally, proximal tubule-specific autophagy-deficient mice at 24 mo of age exhibited a significant deterioration in kidney function and fibrosis concomitant with mitochondrial dysfunction as well as mitochondrial DNA abnormalities and nuclear DNA damage, all of which are hallmark characteristics of cellular senescence. These results suggest that age-dependent high basal autophagy plays a crucial role in counteracting kidney aging through mitochondrial quality control. Furthermore, a reduced capacity for upregulation of autophagic flux in response to metabolic stress may be associated with age-related kidney diseases. PMID:26986194

  8. Conversion of a rabbit proximal convoluted tubule (PCT) into a cell monolayer: ultrastructural study of cell dedifferentiation and redifferentiation.

    PubMed

    Koechlin, N; Pisam, M; Poujeol, P; Tauc, M; Rambourg, A

    1991-04-01

    The evolution of a primary culture of kidney proximal convoluted tubule (PCT) cells was followed step by step from the plating time of an isolated tubule to the 39th day of culture. During the first 48 h, the structural remodeling of PCT, leading to the formation of a cell monolayer without cell division, is accompanied by intracytoplasmic changes indicating cell dedifferentiation. Numerous autophagic vacuoles are observed inside the cells, and the ultrastructural features characteristic of in situ PCT cells are progressively lost. Despite these drastic modifications, cell polarity, as observed by immunocytochemical detection of the leucine aminopeptidase, remains unaltered. Starting at 48 h, the peripheral cells divide, and the culture proliferates in a centrifugal direction while newly formed cells differentiate. From 6 days onwards, glycogen granules, never encountered in in situ PCT cells, appear in cultured cells and progressively accumulate. At the optimal stage of the culture (12-17 days old), cells somewhat resemble PCT cells, but their apical brush borders remain rudimentary, and basal cytoplasmic interdigitations surrounding densely packed mitochondria are poorly developed. Subsequently, the cells become overloaded with glycogen and lipid inclusions and resemble degenerating cells. PMID:1879437

  9. Bicarbonate-water interactions in the rat proximal convoluted tubule. An effect of volume flux on active proton secretion

    PubMed Central

    1984-01-01

    The effect of volume absorption on bicarbonate absorption was examined in the in vivo perfused rat proximal convoluted tubule. Volume absorption was inhibited by isosmotic replacement of luminal NaCl with raffinose. In tubules perfused with 25 mM bicarbonate, as raffinose was increased from 0 to 55 to 63 mM, volume absorption decreased from 2.18 +/- 0.10 to 0.30 +/- 0.18 to -0.66 +/- 0.30 nl/mm X min, respectively, and bicarbonate absorption decreased from 131 +/- 5 to 106 +/- 8 to 91 +/- 13 pmol/mm X min, respectively. This bicarbonate-water interaction could not be attributed to dilutional changes in luminal or peritubular bulk phase bicarbonate concentrations. Inhibition of active proton secretion by acetazolamide abolished the effect of volume flow on bicarbonate absorption, which implies that the bicarbonate reflection coefficient is close to 1 and eliminates the possibility of solvent drag across the tight junction. When the luminal bicarbonate concentration was varied, the magnitude of the bicarbonate-water interaction increased with increasing luminal bicarbonate concentration. The largest interaction occurred at high luminal bicarbonate concentrations, where the rate of proton secretion has been previously shown to be independent of luminal bicarbonate concentration and pH. The results thus suggest that a peritubular and/or cellular compartment exists that limits bicarbonate diffusion, and where pH changes secondary to bicarbonate-water interactions (solute polarization) alter the rate of active proton secretion. PMID:6096481

  10. Avian renal proximal tubule urate secretion is inhibited by cellular stress-induced AMP-activated protein kinase.

    PubMed

    Bataille, Amy M; Maffeo, Carla L; Renfro, J Larry

    2011-06-01

    Urate is a potent antioxidant at high concentrations but it has also been associated with a wide variety of health risks. Plasma urate concentration is determined by ingestion, production, and urinary excretion; however, factors that regulate urate excretion remain uncertain. The objective of this study was to determine whether cellular stress, which has been shown to affect other renal transport properties, modulates urate secretion in the avian renal proximal tubule. Chick kidney proximal tubule epithelial cell primary culture monolayers were used to study the transepithelial transport of radiolabeled urate. This model allowed examination of the processes, such as multidrug resistance protein 4 (Mrp4, Abcc4), which subserve urate secretion in a functional, intact, homologous system. Our results show that the recently implicated urate efflux transporter, breast cancer resistance protein (ABCG2), does not significantly contribute to urate secretion in this system. Exposure to a high concentration of zinc for 6 h induced a cellular stress response and a striking decrease in transepithelial urate secretion. Acute exposure to zinc had no effect on transepithelial urate secretion or isolated membrane vesicle urate transport, suggesting involvement of a cellular stress adaptation. Activation of AMP-activated protein kinase (AMPK), a candidate modulator of ATP-dependent urate efflux, by 5'-aminoimidazole-4-carboxamide 1-β-d-ribo-furanoside caused a decrease in urate secretion similar to that seen with zinc-induced cellular stress. This effect was prevented with the AMPK inhibitor compound C. Notably, the decrease in urate secretion seen with zinc-induced cellular stress was also prevented by compound C, implicating AMPK in regulation of renal uric acid excretion. PMID:21429974

  11. ATP in equilibrium with 32Pi exchange catalyzed by plasma membrane Ca(2+)-ATPase from kidney proximal tubules

    SciTech Connect

    Vieyra, A.; Caruso-Neves, C.; Meyer-Fernandes, J.R. )

    1991-06-05

    The Ca(2+)-stimulated adenosine 5{prime}-triphosphate-orthophosphate (ATP in equilibrium with 32Pi) exchange reaction was studied using a vesicular preparation derived from plasma membrane of kidney proximal tubules. With native inside-out vesicles, ATP in equilibrium with 32Pi was stimulated by micromolar Ca2+ concentrations. Treatment of the vesicles with the Ca2+ ionophore A23187 that abolished Ca2+ accumulation, strongly inhibited ATP in equilibrium with 32Pi. When Ca(2+)-ATPase was solubilized with the nonionic detergent octaethylene glycol mono n-dodecyl ether, maximal activation of ATP in equilibrium with 32Pi required millimolar Ca2+ concentrations. These Ca2+ concentrations inhibited ATP hydrolysis. ATP in equilibrium with 32Pi exhibited a Michaelian dependence on Pi and Mg2+, was stimulated by ATP, and depended on the ATP/ADP ratio. ATP in equilibrium with 32Pi was modified by the osmolytes urea, trimethylamine-N-oxide, and sucrose, which are representative of the methylamines and polyols that normally accumulate in renal tissue. These compounds did not modify the apparent affinity for Pi; they affected the response to ADP in the same fashion as the overall rate of ATP in equilibrium 32Pi, and their effects depended on medium pH. These data show that the Ca(2+)-ATPase from plasma membrane kidney proximal tubules can operate simultaneously in forward and backward directions. They also show that ATP in equilibrium with 32Pi is modulated by the ligands Ca2+, ATP, ADP, Pi, Mg2+, and H+, and by organic solutes found in renal tissue.

  12. Proximal tubule sphingosine kinase-1 has a critical role in A1 adenosine receptor-mediated renal protection from ischemia

    PubMed Central

    Park, Sang Won; Kim, Mihwa; Kim, Joo Yun; Brown, Kevin M.; Haase, Volker H.; D’Agati, Vivette D.; Lee, H. Thomas

    2012-01-01

    Renal ischemia reperfusion injury is a major cause of acute kidney injury. We previously found that renal A1 adenosine receptor (A1AR) activation attenuated multiple cell death pathways including necrosis, apoptosis and inflammation. Here, we tested whether induction of cytoprotective sphingosine kinase (SK)-1 and sphingosine-1 phosphate (S1P) synthesis might be the mechanism of protection. A selective A1AR agonist (CCPA) increased the synthesis of S1P and selectively induced SK-1 in mouse kidney and HK-2 cells. This agonist failed to protect SK1-knockout but protected SK2-knockout mice against renal ischemia reperfusion injury indicating a critical role of SK1 in A1AR-mediated renal protection. Inhibition of SK prevented A1AR-mediated defense against necrosis and apoptosis in HK-2 cells. A selective S1P1R antagonist (W146) and global in vivo gene knockdown of S1P1Rs with small interfering RNA completely abolished the renal protection provided by CCPA. Mice selectively deficient in renal proximal tubule S1P1Rs (S1P1Rflox/flox PEPCKCre/−) were not protected against renal ischemia reperfusion injury by CCPA. Mechanistically, CCPA increased nuclear translocation of hypoxia inducible factor-1α in HK-2 cells and selective hypoxia inducible factor-1α inhibition blocked A1AR-mediated induction of SK1. Thus, proximal tubule SK-1 has a critical role in A1AR-mediated protection against renal ischemia reperfusion injury. PMID:22695326

  13. Kinetic transport model for cellular regulation of pH and solute concentration in the renal proximal tubule.

    PubMed Central

    Verkman, A S; Alpern, R J

    1987-01-01

    An open circuit kinetic model was developed to calculate the time course of proximal tubule cell pH, solute concentrations, and volume in response to induced perturbations in luminal or peritubular fluid composition. Solute fluxes were calculated from electrokinetic equations containing terms for known carrier saturabilities, allosteric dependences, and ion coupling ratios. Apical and basolateral membrane potentials were determined iteratively from the requirements of cell electroneutrality and equal opposing transcellular and paracellular currents. The model converged to membrane potentials accurate to 0.05% in one to four iterations. Model variables included cell concentrations of Na, K, HCO3, glucose, pH (uniform CO2), volume, and apical and basolateral membrane potentials. The basic model contained passive apical membrane transport of Na/H, Na/glucose, H and K, basolateral transport of Na/3HCO3, K, H, and glucose, and paracellular transport of Na, K, Cl, and HCO3; apical H and basolateral 3Na/2K-ATPases were present. Apical Na/H and basolateral K transport were regulated allosterically by pH. Apical Na/H transport, basolateral Na/3HCO3 transport, and the 3Na/2K-ATPase were saturable. Model parameters were chosen from data in the rat proximal tubule. Model predictions for the magnitude and time course of cell pH, Na, and membrane potential in response to rapid changes in apical and peritubular Na and HCO3 were in excellent agreement with experiment. In addition, the model requires that there exist an apical H-ATPase, basolateral Na/3HCO3 transport saturable with HCO3, and electroneutral basolateral K transport. PMID:3580482

  14. Transcriptional regulation of NHE3 and SGLT1 by the circadian clock protein Per1 in proximal tubule cells.

    PubMed

    Solocinski, Kristen; Richards, Jacob; All, Sean; Cheng, Kit-Yan; Khundmiri, Syed J; Gumz, Michelle L

    2015-12-01

    We have previously demonstrated that the circadian clock protein period (Per)1 coordinately regulates multiple genes involved in Na(+) reabsorption in renal collecting duct cells. Consistent with these results, Per1 knockout mice exhibit dramatically lower blood pressure than wild-type mice. The proximal tubule is responsible for a majority of Na(+) reabsorption. Previous work has demonstrated that expression of Na(+)/H(+) exchanger 3 (NHE3) oscillates with a circadian pattern and Na(+)-glucose cotransporter (SGLT)1 has been demonstrated to be a circadian target in the colon, but whether these target genes are regulated by Per1 has not been investigated in the kidney. The goal of the present study was to determine if Per1 regulates the expression of NHE3, SGLT1, and SGLT2 in the kidney. Pharmacological blockade of nuclear Per1 entry resulted in decreased mRNA expression of SGLT1 and NHE3 but not SGLT2 in the renal cortex of mice. Per1 small interfering RNA and pharmacological blockade of Per1 nuclear entry in human proximal tubule HK-2 cells yielded the same results. Examination of heterogeneous nuclear RNA suggested that the effects of Per1 on NHE3 and SGLT1 expression occurred at the level of transcription. Per1 and the circadian protein CLOCK were detected at promoters of NHE3 and SGLT1. Importantly, both membrane and intracellular protein levels of NHE3 and SGLT1 were decreased after blockade of nuclear Per1 entry. This effect was associated with reduced activity of Na(+)-K(+)-ATPase. These data demonstrate a role for Per1 in the transcriptional regulation of NHE3 and SGLT1 in the kidney. PMID:26377793

  15. Evidence for neutral transcellular NaCl transport and neutral basolateral chloride exit in the rabbit proximal convoluted tubule.

    PubMed Central

    Baum, M; Berry, C A

    1984-01-01

    The electrical nature of active NaCl transport and the significance of a basolateral membrane chloride conductance were examined in isolated perfused rabbit proximal convoluted tubules (PCT). PCT were perfused with a high chloride solution that simulated late proximal tubular fluid and were bathed in an albumin solution that simulated rabbit serum in the control and recovery periods. The electrical nature of NaCl transport was examined by bathing the tubules in a high chloride albumin solution where there were no anion gradients. Volume reabsorption (Jv) during the control and recovery period was 0.56 and 0.51 nl/mm X min, respectively, and 0.45 nl/mm X min when the tubules were bathed in a high chloride bath. The transepithelial potential difference (PD) during the control and recovery periods averaged 2.3 mV, but decreased to 0.0 mV in the absence of anion gradients, which indicated that NaCl transport is electroneutral. Further evidence that NaCl transport is electroneutral was obtained by examining the effect of addition of 0.01 mM ouabain in PCT perfused and bathed with high chloride solutions. The Jv was 0.54 nl/mm X min in the control period and not statistically different from zero after inhibition of active transport. The PD was not different from zero in both periods. Two groups of studies examined the role of basolateral membrane Cl- conductance in NaCl transport. First, depolarizing the basolateral membrane with 2 mM bath Ba++ did not significantly affect Jv or PD. Second, the effect of the presumptive Cl- conductance inhibitor anthracene-9-CO2H was examined. Anthracene-9-CO2H did not significantly affect Jv or PD. In conclusion, these data show that NaCl transport in the PCT is electroneutral and transcellular and provide evidence against a significant role for basolateral membrane chloride conductance in the rabbit PCT. PMID:6736248

  16. Receptor-mediated endocytosis of albumin by kidney proximal tubule cells is regulated by phosphatidylinositide 3-kinase.

    PubMed

    Brunskill, N J; Stuart, J; Tobin, A B; Walls, J; Nahorski, S

    1998-05-15

    Receptor-mediated endocytosis of albumin is an important function of the kidney proximal tubule epithelium. We have measured endocytosis of [125I]-albumin in opossum kidney cells and examined the regulation of this process by phosphatidylinositide 3-kinase (PI 3-kinase). Albumin endocytosis was inhibited by both wortmannin (IC50 6.9 nM) and LY294002 (IC50 6.5 microM) at concentrations that suggested the involvement of PI 3-kinase in its regulation. Recycling rates were unaffected. We transfected OK cells with either a wild-type p85 subunit of PI 3-kinase, or a dominant negative form of the p85 subunit (Deltap85) using the LacSwitch expression system. Transfects were screened by immunoblotting with anti-PI 3-kinase antibodies. Under basal conditions, transfects demonstrated no expression of p85 or Deltap85, but expression was briskly induced by treatment of the cells with IPTG (EC50 13.7 microM). Inhibition of PI 3-kinase activity by Deltap85 was confirmed by in vitro kinase assay of anti-phosphotyrosine immunoprecipitates from transfected cells stimulated with insulin. Expression of Deltap85 resulted in marked inhibition of albumin endocytosis, predominantly as a result of reduction of the Vmax of the transport process. Expression of p85 had no significant effect on albumin uptake. The results demonstrate that PI 3-kinase regulates an early step in the receptor-mediated endocytosis of albumin by kidney proximal tubular cells. PMID:9593770

  17. Activation of mitogenic pathways by albumin in kidney proximal tubule epithelial cells: implications for the pathophysiology of proteinuric states.

    PubMed

    Dixon, R; Brunskill, N J

    1999-07-01

    Albumin is filtered into the proximal tubule in large quantities in nephrotic states. It has been proposed that this protein may have a toxic effect on tubular epithelial cells and may be responsible for the initiation of interstitial inflammation and scarring. The mitogenic effect of recombinant human albumin in wild-type opossum kidney cells and in similar cells transfected with a dominant negative p85 subunit (deltap85) of phopshatidylinositide 3-kinase (PI 3-kinase) has been studied. This study demonstrates that recombinant human albumin stimulates proliferation of opossum kidney cells in culture. This effect is mediated via PI 3-kinase, and is inhibited by wortmannin and deltap85 expression. Albumin stimulates PI 3-kinase activity in opossum kidney cells as determined by three different experimental procedures. Recombinant albumin also stimulates pp70(s6) kinase activity in a kinase cascade downstream of PI 3-kinase. Activity of pp70(s6) kinase is essential for albumin-induced proliferation of opossum kidney cells. It is proposed that this mitogenic pathway may have a critical role in proximal tubular homeostasis and pathophysiology of proteinuric states. PMID:10405204

  18. 5-Lypoxygenase Products Are Involved in Renal Tubulointerstitial Injury Induced by Albumin Overload in Proximal Tubules in Mice

    PubMed Central

    Landgraf, Sharon Schilling; Silva, Leandro Souza; Peruchetti, Diogo Barros; Sirtoli, Gabriela Modenesi; Moraes-Santos, Felipe; Portella, Viviane Gomes; Silva-Filho, João Luiz; Pinheiro, Carla Silva; Abreu, Thiago Pereira; Takiya, Christina Maeda; Benjamin, Claudia Farias; Pinheiro, Ana Acacia Sá; Canetti, Claudio; Caruso-Neves, Celso

    2014-01-01

    The role of albumin overload in proximal tubules (PT) in the development of tubulointerstitial injury and, consequently, in the progression of renal disease has become more relevant in recent years. Despite the importance of leukotrienes (LTs) in renal disease, little is known about their role in tubulointerstitial injury. The aim of the present work was to investigate the possible role of LTs on tubulointerstitial injury induced by albumin overload. An animal model of tubulointerstitial injury challenged by bovine serum albumin was developed in SV129 mice (wild-type) and 5-lipoxygenase-deficient mice (5-LO–/–). The changes in glomerular morphology and nestin expression observed in wild-type mice subjected to kidney insult were also observed in 5-LO–/– mice. The levels of urinary protein observed in the 5-LO–/– mice subjected or not to kidney insult were lower than those observed in respective wild-type mice. Furthermore, the increase in lactate dehydrogenase activity, a marker of tubule damage, observed in wild-type mice subjected to kidney insult did not occur in 5-LO–/– mice. LTB4 and LTD4, 5-LO products, decreased the uptake of albumin in LLC-PK1 cells, a well-characterized porcine PT cell line. This effect correlated with activation of protein kinase C and inhibition of protein kinase B. The level of proinflammatory cytokines, tumor necrosis factor-α and interleukin (IL)-6, increased in mice subjected to kidney insult but this effect was not modified in 5-LO–/– mice. However, 5-LO–/– mice subjected to kidney insult presented lower macrophage infiltration and higher levels of IL-10 than wild-type mice. Our results reveal that LTs have an important role in tubulointerstitial disease induced by albumin overload. PMID:25302946

  19. Interactive toxicity of inorganic mercury and trichloroethylene in rat and human proximal tubules: Effects on apoptosis, necrosis, and glutathione status

    SciTech Connect

    Lash, Lawrence H. . E-mail: l.h.lash@wayne.edu; Putt, David A.; Hueni, Sarah E.; Payton, Scott G.; Zwickl, Joshua

    2007-06-15

    Simultaneous or prior exposure to one chemical may alter the concurrent or subsequent response to another chemical, often in unexpected ways. This is particularly true when the two chemicals share common mechanisms of action. The present study uses the paradigm of prior exposure to study the interactive toxicity between inorganic mercury (Hg{sup 2+}) and trichloroethylene (TRI) or its metabolite S-(1,2-dichlorovinyl)-L-cysteine (DCVC) in rat and human proximal tubule. Pretreatment of rats with a subtoxic dose of Hg{sup 2+} increased expression of glutathione S-transferase-{alpha}1 (GST{alpha}1) but decreased expression of GST{alpha}2, increased activities of several GSH-dependent enzymes, and increased GSH conjugation of TRI. Primary cultures of rat proximal tubular (rPT) cells exhibited both necrosis and apoptosis after incubation with Hg{sup 2+}. Pretreatment of human proximal tubular (hPT) cells with Hg{sup 2+} caused little or no changes in GST expression or activities of GSH-dependent enzymes, decreased apoptosis induced by TRI or DCVC, but increased necrosis induced by DCVC. In contrast, pretreatment of hPT cells with TRI or DCVC protected from Hg{sup 2+} by decreasing necrosis and increasing apoptosis. Thus, whereas pretreatment of hPT cells with Hg{sup 2+} exacerbated cellular injury due to TRI or DCVC by shifting the response from apoptosis to necrosis, pretreatment of hPT cells with either TRI or DCVC protected from Hg{sup 2+}-induced cytotoxicity by shifting the response from necrosis to apoptosis. These results demonstrate that by altering processes related to GSH status, susceptibilities of rPT and hPT cells to acute injury from Hg{sup 2+}, TRI, or DCVC are markedly altered by prior exposures.

  20. A pharmacologically-based array to identify targets of cyclosporine A-induced toxicity in cultured renal proximal tubule cells

    SciTech Connect

    Sarró, Eduard; Jacobs-Cachá, Conxita; Itarte, Emilio; Meseguer, Anna

    2012-01-15

    Mechanisms of cyclosporine A (CsA)-induced nephrotoxicity were generally thought to be hemodynamic in origin; however, there is now accumulating evidence of a direct tubular effect. Although genomic and proteomic experiments by our group and others provided overall information on genes and proteins up- or down-regulated by CsA in proximal tubule cells (PTC), a comprehensive view of events occurring after CsA exposure remains to be described. For this purpose, we applied a pharmacologic approach based on the use of known activities of a large panel of potentially protective compounds and evaluated their efficacy in preventing CsA toxicity in cultured mouse PTC. Our results show that compounds that blocked protein synthesis and apoptosis, together with the CK2 inhibitor DMAT and the PI3K inhibitor apigenin, were the most efficient in preventing CsA toxicity. We also identified GSK3, MMPs and PKC pathways as potential targets to prevent CsA damage. Additionally, heparinase-I and MAPK inhibitors afforded partial but significant protection. Interestingly, antioxidants and calcium metabolism-related compounds were unable to ameliorate CsA-induced cytotoxicity. Subsequent experiments allowed us to clarify the hierarchical relationship of targeted pathways after CsA treatment, with ER stress identified as an early effector of CsA toxicity, which leads to ROS generation, phenotypical changes and cell death. In summary, this work presents a novel experimental approach to characterizing cellular responses to cytotoxics while pointing to new targets to prevent CsA-induced toxicity in proximal tubule cells. Highlights: ► We used a novel pharmacological approach to elucidate cyclosporine (CsA) toxicity. ► The ability of a broad range of compounds to prevent CsA toxicity was evaluated. ► CsA toxicity was monitored using LDH release assay and PARP cleavage. ► Protein synthesis, PI3K, GSK3, MMP, PKC and caspase inhibitors prevented CsA toxicity. ► We also identified ER

  1. Phosphorylation of rat kidney Na-K pump at Ser938 is required for rapid angiotensin II-dependent stimulation of activity and trafficking in proximal tubule cells.

    PubMed

    Massey, Katherine J; Li, Quanwen; Rossi, Noreen F; Keezer, Susan M; Mattingly, Raymond R; Yingst, Douglas R

    2016-02-01

    How angiotensin (ANG) II acutely stimulates the Na-K pump in proximal tubules is only partially understood, limiting insight into how ANG II increases blood pressure. First, we tested whether ANG II increases the number of pumps in plasma membranes of native rat proximal tubules under conditions of rapid activation. We found that exposure to 100 pM ANG II for 2 min, which was previously shown to increase affinity of the Na-K pump for Na and stimulate activity threefold, increased the amount of the Na-K pump in plasma membranes of native tubules by 33%. Second, we tested whether previously observed increases in phosphorylation of the Na-K pump at Ser(938) were part of the stimulatory mechanism. These experiments were carried out in opossum kidney cells, cultured proximal tubules stably coexpressing the ANG type 1 (AT1) receptor, and either wild-type or a S938A mutant of rat kidney Na-K pump under conditions found by others to stimulate activity. We found that 10 min of incubation in 10 pM ANG II stimulated activity of wild-type pumps from 2.3 to 3.5 nmol K · mg protein(-1) · min(-1) and increased the amount of the pump in the plasma membrane by 80% but had no effect on cells expressing the S938A mutant. We conclude that acute stimulation of Na-K pump activity in native rat proximal tubules includes increased trafficking to the plasma membrane and that phosphorylation at Ser(938) is part of the mechanism by which ANG II directly stimulates activity and trafficking of the rat kidney Na-K pump in opossum kidney cells. PMID:26582472

  2. Mode of Proximal Tubule Damage: Differential Cause for the Release of TFF3?

    PubMed Central

    Zwaini, Zinah; Alammari, Dalia; Byrne, Simon; Stover, Cordula

    2016-01-01

    Proximal tubular epithelial cells are particularly sensitive to damage. In search of a biomarker, this study evaluated the potential of different cell activation models (hypoxia/replenishment and protein overload) to lead to a release of trefoil factor 3 (TFF3). Surprisingly, we found disparity in the ability of the different stimuli to enhance the intracellular abundance of TFF3 and its release: while conditions of nutrient starvation and damage associated with replenishment lead to intracellular abundance of TFF3 in the absence of TFF3 release, stimulation with an excess amount of albumin did not yield accumulation of TFF3. By contrast, incubation of cells with a purified λ light chain preparation from a patient with multiple myeloma provoked the presence of TFF3 in the cell supernatant. We, therefore, propose that elevations of TFF3 in renal disease might be more revelatory for the cause of restitution than previously thought. PMID:27066010

  3. Caveolin- and clathrin-independent entry of BKPyV into primary human proximal tubule epithelial cells.

    PubMed

    Zhao, Linbo; Marciano, Anthony T; Rivet, Courtney R; Imperiale, Michael J

    2016-05-01

    BK polyomavirus (BKPyV) is a human pathogen that causes polyomavirus-associated nephropathy and hemorrhagic cystitis in transplant patients. Gangliosides and caveolin proteins have previously been reported to be required for BKPyV infection in animal cell models. Recent studies from our lab and others, however, have indicated that the identity of the cells used for infection studies can greatly influence the behavior of the virus. We therefore wished to re-examine BKPyV entry in a physiologically relevant primary cell culture model, human renal proximal tubule epithelial cells. Using siRNA knockdowns, we interfered with expression of UDP-glucose ceramide glucosyltransferase (UGCG), and the endocytic vesicle coat proteins caveolin 1, caveolin 2, and clathrin heavy chain. The results demonstrate that while BKPyV does require gangliosides for efficient infection, it can enter its natural host cells via a caveolin- and clathrin-independent pathway. The results emphasize the importance of studying viruses in a relevant cell culture model. PMID:26901486

  4. Electrical and freeze-fracture analysis of the effects of ionic cadmium on cell membranes of human proximal tubule cells.

    PubMed Central

    Hazen-Martin, D J; Todd, J H; Sens, M A; Khan, W; Bylander, J E; Smyth, B J; Sens, D A

    1993-01-01

    We previously reported that cell cultures of human proximal tubule (HPT) cells respond to ionic cadmium in a manner consistent with well-defined Cd(2+)-elicited responses reported for in vivo systems. However, one unique finding was that the transepithelial electrical resistance and tight junction sealing strands were altered as a result of Cd2+ exposure at micromolar concentrations. These alterations are reexamined in detail in the present report to determine whether the Cd(2+)-induced alterations are specific alterations in the tight junction structure or reflect a general alteration in the cell membrane. Exhaustive analysis of tight junction sealing strands demonstrated no significant alterations due to Cd2+ exposure, even at the concentration that elicited a significant reduction in transepithelial resistance. Further analysis of intramembrane particle distribution demonstrated a significant increase in apical intramembrane particles, indicating that Cd2+ exposure altered the characteristics of the apical cell membrane. Overall, the results were consistent with evidence of Cd(2+)-induced alteration in the apical cell membrane of the HPT cell. Images Figure 1. Figure 2. Figure 3. a Figure 3. b Figure 3. c Figure 3. d Figure 4. Figure 5. PMID:8137780

  5. Defective dopamine-1 receptor adenylate cyclase coupling in the proximal convoluted tubule from the spontaneously hypertensive rat.

    PubMed Central

    Kinoshita, S; Sidhu, A; Felder, R A

    1989-01-01

    The natriuretic effect of DA-1 agonists is less in the spontaneously hypertensive rat (SHR) than its normotensive control, the Wistar-Kyoto rat (WKY). To determine a mechanism of the decreased effect of DA-1 agonists on sodium transport, DA-1 receptors in renal proximal convoluted tubule (PCT) were studied by radioligand binding and by adenylate cyclase (AC) determinations. Specific binding of 125I-SCH 23982 (defined by 10 microM SCH 23390, a DA-1 antagonist) was concentration dependent, saturable, and stereoselective. The dissociation constant, maximum receptor density, and DA-1 antagonist inhibition constant were similar in SHR and WKY. The apparent molecular weight of the DA-1 receptor determined by the photoaffinity D1 probe 125I-MAB was also similar in WKY and SHR. However, DA-1 agonists competed more effectively for specific 125I-SCH 23982 binding sites in WKY than in SHR. Basal as well as forskolin, parathyroid hormone, GTP and Gpp(NH)p-stimulated-AC activities were similar. In contrast DA-1 agonists (fenoldopam, SKF 38393, SND 911C12) stimulated AC activity to a lesser extent in SHR. GTP and Gpp(NH)p enhanced the ability of DA-1 agonists to stimulate AC activity in WKY but not in SHR. These data suggest a defect in the DA-1 receptor-second messenger coupling mechanism in the PCT of the SHR. Images PMID:2574187

  6. Novel cystine transporter in renal proximal tubule identified as a missing partner of cystinuria-related plasma membrane protein rBAT/SLC3A1

    PubMed Central

    Nagamori, Shushi; Wiriyasermkul, Pattama; Guarch, Meritxell Espino; Okuyama, Hirohisa; Nakagomi, Saya; Tadagaki, Kenjiro; Nishinaka, Yumiko; Bodoy, Susanna; Takafuji, Kazuaki; Okuda, Suguru; Kurokawa, Junko; Ohgaki, Ryuichi; Nunes, Virginia; Palacín, Manuel; Kanai, Yoshikatsu

    2016-01-01

    Heterodimeric amino acid transporters play crucial roles in epithelial transport, as well as in cellular nutrition. Among them, the heterodimer of a membrane protein b0,+AT/SLC7A9 and its auxiliary subunit rBAT/SLC3A1 is responsible for cystine reabsorption in renal proximal tubules. The mutations in either subunit cause cystinuria, an inherited amino aciduria with impaired renal reabsorption of cystine and dibasic amino acids. However, an unsolved paradox is that rBAT is highly expressed in the S3 segment, the late proximal tubules, whereas b0,+AT expression is highest in the S1 segment, the early proximal tubules, so that the presence of an unknown partner of rBAT in the S3 segment has been proposed. In this study, by means of coimmunoprecipitation followed by mass spectrometry, we have found that a membrane protein AGT1/SLC7A13 is the second partner of rBAT. AGT1 is localized in the apical membrane of the S3 segment, where it forms a heterodimer with rBAT. Depletion of rBAT in mice eliminates the expression of AGT1 in the renal apical membrane. We have reconstituted the purified AGT1-rBAT heterodimer into proteoliposomes and showed that AGT1 transports cystine, aspartate, and glutamate. In the apical membrane of the S3 segment, AGT1 is suggested to locate itself in close proximity to sodium-dependent acidic amino acid transporter EAAC1 for efficient functional coupling. EAAC1 is proposed to take up aspartate and glutamate released into luminal fluid by AGT1 due to its countertransport so that preventing the urinary loss of aspartate and glutamate. Taken all together, AGT1 is the long-postulated second cystine transporter in the S3 segment of proximal tubules and a possible candidate to be involved in isolated cystinuria. PMID:26739563

  7. A 2D model of axial symmetry for proximal tubule of an average human nephron: indicative results of diffusion, convection and absorption processes

    NASA Astrophysics Data System (ADS)

    Insfrán, J. F.; Ubal, S.; Di Paolo, y. J.

    2016-04-01

    A simplified model of a proximal convoluted tubule of an average human nephron is presented. The model considers the 2D axisymmetric flow of the luminal solution exchanging matter with the tubule walls and the peritubular fluid by means of 0D models for the epithelial cells. The tubule radius is considered to vary along the conduit due to the trans-epithelial pressure difference. The fate of more than ten typical solutes is tracked down by the model. The Navier-Stokes and Reaction-Diffusion-Advection equations (considering the electro-neutrality principle) are solved in the lumen, giving a detailed picture of the velocity, pressure and concentration fields, along with trans-membrane fluxes and tubule deformation, via coupling with the 0D model for the tubule wall. The calculations are carried out numerically by means of the finite element method. The results obtained show good agreement with those published by other authors using models that ignore the diffusive transport and disregard a detailed calculation of velocity, pressure and concentrations. This work should be seen as a first approach towards the development of a more comprehensive model of the filtration process taking place in the kidneys, which ultimately helps in devising a device that can mimic/complement the renal function.

  8. KAP Degradation by Calpain Is Associated with CK2 Phosphorylation and Provides a Novel Mechanism for Cyclosporine A-Induced Proximal Tubule Injury

    PubMed Central

    Pascual, Gloria; Bardaji, Beatriz; Montero, M. Angeles; Salcedo, M. Teresa; Plana, Maria; López-Hellin, Joan; Itarte, Emilio; Meseguer, Anna

    2011-01-01

    The use of cyclosporine A (CsA) is limited by its severe nephrotoxicity that includes reversible vasoconstrictor effects and proximal tubule cell injury, the latter associated whith chronic kidney disease progression. The mechanisms of CsA-induced tubular injury, mainly on the S3 segment, have not been completely elucidated. Kidney androgen-regulated protein (KAP) is exclusively expressed in kidney proximal tubule cells, interacts with the CsA-binding protein cyclophilin B and its expression diminishes in kidneys of CsA-treated mice. Since we reported that KAP protects against CsA toxicity in cultured proximal tubule cells, we hypothesized that low KAP levels found in kidneys of CsA-treated mice might correlate with proximal tubule cell injury. To test this hypothesis, we used KAP Tg mice developed in our laboratory and showed that these mice are more resistant to CsA-induced tubular injury than control littermates. Furthermore, we found that calpain, which was activated by CsA in cell cultures and kidney, is involved in KAP degradation and observed that phosphorylation of serine and threonine residues found in KAP PEST sequences by protein kinase CK2 enhances KAP degradation by calpain. Moreover, we also observed that CK2 inhibition protected against CsA-induced cytotoxicity. These findings point to a novel mechanism for CsA-induced kidney toxicity that might be useful in developing therapeutic strategies aimed at preventing tubular cell damage while maintaining the immunosuppressive effects of CsA. PMID:21980535

  9. De novo expression of sodium-glucose cotransporter SGLT2 in Bowman's capsule coincides with replacement of parietal epithelial cell layer with proximal tubule-like epithelium.

    PubMed

    Tabatabai, Niloofar M; North, Paula E; Regner, Kevin R; Kumar, Suresh N; Duris, Christine B; Blodgett, Amy B

    2014-08-01

    In kidney nephron, parietal epithelial cells line the Bowman's capsule and function as a permeability barrier for the glomerular filtrate. Bowman's capsule cells with proximal tubule epithelial morphology have been found. However, the effects of tubular metaplasia in Bowman's capsule on kidney function remain poorly understood. Sodium-glucose cotransporter 2 (SGLT2) plays a major role in reabsorption of glucose in the kidney and is expressed on brush border membrane (BBM) of epithelial cells in the early segment of the proximal tubule. We hypothesized that SGLT2 is expressed in tubularized Bowman's capsule and used our novel antibody to test this hypothesis. Immunohistochemical analysis was performed with our SGLT2 antibody on C57BL/6 mouse kidney prone to have tubularized Bowman's capsules. Cell membrane was examined with periodic acid-Schiff (PAS) stain. The results showed that SGLT2 was localized on BBM of the proximal tubules in young and adult mice. Bowman's capsules were lined mostly with normal brush border-less parietal epithelial cells in young mice, while they were almost completely covered with proximal tubule-like cells in adult mice. Regardless of age, SGLT2 was expressed on BBM of the tubularized Bowman's capsule but did not co-localize with nephrin in the glomerulus. SGLT2-expressing tubular cells expanded from the urinary pole toward the vascular pole of the Bowman's capsule. This study identified the localization of SGLT2 in the Bowman's capsule. Bowman's capsules with tubular metaplasia may acquire roles in reabsorption of filtered glucose and sodium. PMID:24906870

  10. Interaction of chloride and bicarbonate transport across the basolateral membrane of rabbit proximal straight tubule. Evidence for sodium coupled chloride/bicarbonate exchange.

    PubMed Central

    Sasaki, S; Yoshiyama, N

    1988-01-01

    The existence of chloride/bicarbonate exchange across the basolateral membrane and its physiologic significance were examined in rabbit proximal tubules. S2 segments of the proximal straight tubule were perfused in vitro and changes in intracellular pH (pHi) and chloride activity (aCli) were monitored by double-barreled microelectrodes. Total peritubular chloride replacement with gluconate increased pHi by 0.8, and this change was inhibited by a pretreatment with an anion transport inhibitor, SITS. Peritubular bicarbonate reduction increased aCli, and most of this increase was lost when ambient sodium was totally removed. The reduction rates of pHi induced by a peritubular bicarbonate reduction or sodium removal were attenuated by 20% by withdrawal of ambient chloride. SITS application to the bath in the control condition quickly increased pHi, but did not change aCli. However, the aCli slightly decreased in response to SITS when the basolateral bicarbonate efflux was increased by reducing peritubular bicarbonate concentration. It is concluded that sodium coupled chloride/bicarbonate exchange is present in parallel with sodium-bicarbonate cotransport in the basolateral membrane of the rabbit proximal tubule, and it contributes to the basolateral bicarbonate and chloride transport. PMID:2450891

  11. Expression of VHL Causes Three-Dimensional Morphological Changes in Renal Cells Indicative of Proximal Tubule Differentiation

    PubMed Central

    Chiatar, Shivannah S; Eze, Ogechukwu P; Schoenfeld, Alan R

    2013-01-01

    Mutations in the von Hippel-Lindau (VHL) tumor suppressor gene are responsible for the VHL hereditary cancer syndrome, and are associated with the majority of clear cell renal cell carcinomas. In this study, scanning electron microscopy of VHL-negative renal carcinoma cells was utilized to examine the effects of VHL re-expression on the morphology of these cells. Significant differences were observed between the morphology of VHL-negative control cells and those with reintroduced VHL, with VHL expression mediating an apical surface that mounded upward, as opposed to the flat surfaces seen with VHL-negative cells. In long term cultures, rounded VHL-expressing cells grew in clusters on top the monolayer, and microvilli were observed on the apical face of these cells, in a manner suggestive of proximal tubule differentiation. In contrast, VHL-negative cells remained flat and did not develop microvilli in long-term cultures. Since VHL is a key member of an ubiquitin E3 ligase complex whose best known target is hypoxia-inducible factor alpha (HIF-α), we looked at the effects of HIF-α expression on cell morphology. Knockdown of HIF-2α in cells that only express this isoform had no effect on the morphology of the cells. These results indicate that VHL expression directs three dimensional morphological changes in renal cells indicative of differentiation, and while dysregulation of HIF-α may be necessary for tumorigenesis following VHL loss, it is not the major determinant of these VHL-mediated morphological changes. PMID:24308012

  12. CHBPR: SINGLE NUCLEOTIDE POLYMORPHISMS OF THE DOPAMINE D2 RECEPTOR INCREASE INFLAMMATION AND FIBROSIS IN HUMAN RENAL PROXIMAL TUBULE CELLS

    PubMed Central

    Jiang, Xiaoliang; Konkalmatt, Prasad; Yang, Yu; Gildea, John; Jones, John E.; Cuevas, Santiago; Felder, Robin A.; Jose, Pedro A.; Armando, Ines

    2014-01-01

    The dopamine D2 receptor (D2R) negatively regulates inflammation in mouse renal proximal tubule cells (RPTCs) and lack or downregulation of the receptor in mice increases the vulnerability to renal inflammation independent of blood pressure. Some common single nucleotide polymorphisms (SNPs; rs 6276, 6277, and 1800497) in the human (h) DRD2 gene are associated with decreased D2R expression and function, as well as high blood pressure. We tested the hypothesis that human RPTCs expressing these SNPs have increased expression of inflammatory and injury markers. We studied immortalized hRPTCs carrying D2R SNPs and compared them with cells carrying no D2R SNPs. RPTCs with D2R SNPs had decreased D2R expression and function. The expressions of the pro-inflammatory TNFα and the pro-fibrotic TGFβ1 and its signaling targets Smad3 and Snail1 were increased in hRPTC with D2R SNPs. These cells also showed induction of epithelial mesenchymal transition and production of extracellular matrix proteins, assessed by increased vimentin, fibronectin -1, and Col 1a. To test the specificity of these D2R SNP effects, hRPTC with D2R SNPs were transfected with a plasmid encoding wild-type DRD2. D2R expression was increased and those of TGFβ1, Smad3, Snail1, vimentin, fibronecti-1 and Col 1a were decreased in hRPTC with D2R SNPs transfected with wild-type DRD2 compared to hRPTC-D2R SNP transfected with empty vector. These data support the hypothesis that D2R function has protective effects in human RPTCs and suggest that carriers of these SNPs may be prone to chronic renal disease and high blood pressure. PMID:24379187

  13. Intracellular sodium modulates the state of protein kinase C phosphorylation of rat proximal tubule Na+,K+-ATPase.

    PubMed

    Ibarra, F R; Cheng, S X Jun; Agrén, M; Svensson, L-B; Aizman, O; Aperia, A

    2002-06-01

    The natriuretic hormone dopamine and the antinatriuretic hormone noradrenaline, acting on alpha-adrenergic receptors, have been shown to bidirectionally modulate the activity of renal tubular Na+,K+-adenosine triphosphate (ATPase). Here we have examined whether intracellular sodium concentration influences the effects of these bidirectional forces on the state of phosphorylation of Na+,K+-ATPase. Proximal tubules dissected from rat kidney were incubated with dopamine or the alpha-adrenergic agonist, oxymetazoline, and transiently permeabilized in a medium where sodium concentration ranged between 5 and 70 mM. The variations of sodium concentration in the medium had a proportional effect on intracellular sodium. Dopamine and protein kinase C (PKC) phosphorylate the catalytic subunit of rat Na+,K+-ATPase on the Ser23 residue. The level of PKC induced Na+,K+-ATPase phosphorylation was determined using an antibody that only recognizes Na+,K+-ATPase, which is not phosphorylated on its PKC site. Under basal conditions Na+,K+-ATPase was predominantly in its phosphorylated state. When intracellular sodium was increased, Na+,K+-ATPase was predominantly in its dephosphorylated state. Phosphorylation of Na+,K+-ATPase by dopamine was most pronounced when intracellular sodium was high, and dephosphorylation by oxymetazoline was most pronounced when intracellular sodium was low. The oxymetazoline effect was mimicked by the calcium ionophore A23187. An inhibitor of the calcium-dependent protein phosphatase, calcineurin, increased the state of Na+,K+-ATPase phosphorylation. The results imply that phosphorylation of renal Na+,K+-ATPase activity is modulated by the level of intracellular sodium and that this effect involves PKC and calcium signalling pathways. The findings may have implication for the regulation of salt excretion and sodium homeostasis. PMID:12028137

  14. The Regulation of TGFβ1 Induced Fibronectin EDA Exon Alternative Splicing in Human Renal Proximal Tubule Epithelial Cells.

    PubMed

    Phanish, Mysore Keshavmurthy; Heidebrecht, Felicia; Nabi, Mohammad E; Shah, Nileshkumar; Niculescu-Duvaz, Ioana; Dockrell, Mark Edward Carl

    2015-02-01

    The EDA+ splice variant of fibronectin (Fn) is an early and important component of the extracellular matrix in renal fibrosis. In this work, we investigate cellular mechanisms of EDA+Fn production in human primary proximal tubule epithelial cells (PTECs). TGFβ1-induced EDA+Fn production was assessed by immunocytochemistry, PCR, and Western blotting. SRp40 knockdown was achieved by siRNA. The role of the PI3 kinase-AKT signalling and splicing regulatory protein SRp40 in the production of EDA+Fn was studied by using the chemical inhibitor LY294002 and siRNA targeted to SRp40 respectively. Interaction between PI3 kinase-AKT signalling and SRp40 were assessed by immunofluorescence and immunoprecipitation. To assess the specificity of SRp40 in regulating the splicing of EDA+ exon, we studied the effect of SRp40 knockdown on TGFβ1 induced splicing of FGF receptor 2. Primary human PTECs expressed EDA+ and EDA- Fn. TGFβ1 treatment resulted in increases in the production and deposition of EDA+ Fn as well as an increase in the ratio of EDA+/EDA- Fn mRNA. The TGFβ1 induced EDA+ production was dependent on PI3 kinase-AKT signalling and SRp40 expression. Immunoprecipitation experiments demonstrated direct binding between AKT and SRp40 with an increase in the amount of SRp40 bound to AKT upon TGFβ1 treatment. TGFβ1 treatment resulted in reduction in the FGF receptor2 IIIb splice variant which was unaffected by SRp40 knockdown. In this work, we have presented the first evidence for the regulation of Fn pre-mRNA splicing by PI3 kinase-AKT signalling and SRp40 in human PTECs. Targeting the splicing of Fn pre-mRNA to skip the EDA exon is an attractive option to combat fibrosis. PMID:24962218

  15. Antenatal glucocorticoid treatment alters Na+ uptake in renal proximal tubule cells from adult offspring in a sex-specific manner

    PubMed Central

    Su, Yixin; Bi, Jianli; Figueroa, Jorge; Chappell, Mark; Rose, James C.

    2015-01-01

    We have shown a sex-specific effect of fetal programming on Na+ excretion in adult sheep. The site of this effect in the kidney is unknown. Therefore, we tested the hypothesis that renal proximal tubule cells (RPTCs) from adult male sheep exposed to betamethasone (Beta) before birth have greater Na+ uptake than do RPTCs from vehicle-exposed male sheep and that RPTCs from female sheep similarly exposed are not influenced by antenatal Beta. In isolated RPTCs from 1- to 1.5-yr-old male and female sheep, we measured Na+ uptake under basal conditions and after stimulation with ANG II. To gain insight into the mechanisms involved, we also measured nitric oxide (NO) levels, ANG II receptor mRNA levels, and expression of Na+/H+ exchanger 3. Basal Na+ uptake increased more in cells from Beta-exposed male sheep than in cells from vehicle-exposed male sheep (400% vs. 300%, P < 0.00001). ANG II-stimulated Na+ uptake was also greater in cells from Beta-exposed males. Beta exposure did not increase Na+ uptake by RPTCs from female sheep. NO production was suppressed more by ANG II in RPTCs from Beta-exposed males than in RPTCs from either vehicle-exposed male or female sheep. Our data suggest that one site of the sex-specific effect of Beta-induced fetal programming in the kidney is the RPTC and that the enhanced Na+ uptake induced by antenatal Beta in male RPTCs may be related to the suppression of NO in these cells. PMID:25834069

  16. Short and long term gene expression variation and networking in human proximal tubule cells when exposed to cadmium

    PubMed Central

    2013-01-01

    Cadmium (Cd2+) is a known nephrotoxin causing tubular necrosis during acute exposure and potentially contributing to renal failure in chronic long-term exposure. To investigate changes in global gene expression elicited by cadmium, an in-vitro exposure system was developed from cultures of human renal epithelial cells derived from cortical tissue obtained from nephrectomies. These cultures exhibit many of the qualities of proximal tubule cells. Using these cells, a study was performed to determine the cadmium-induced global gene expression changes after short-term (1 day, 9, 27, and 45 μM) and long-term cadmium exposure (13 days, 4.5, 9, and 27 μM). These studies revealed fundamental differences in the types of genes expressed during each of these time points. The obtained data was further analyzed using regression to identify cadmium toxicity responsive genes. Regression analysis showed 403 genes were induced and 522 genes were repressed by Cd2+ within 1 day, and 366 and 517 genes were induced and repressed, respectively, after 13 days. We developed a gene set enrichment analysis method to identify the cadmium induced pathways that are unique in comparison to traditional approaches. The perturbation of global gene expression by various Cd2+ concentrations and multiple time points enabled us to study the transcriptional dynamics and gene interaction using a mutual information-based network model. The most prominent network module consisted of INHBA, KIF20A, DNAJA4, AKAP12, ZFAND2A, AKR1B10, SCL7A11, and AKR1C1. PMID:23369406

  17. Lack of effect of peritubular protein on passive NaCl transport in the rabbit proximal tubule.

    PubMed Central

    Berry, C A

    1983-01-01

    The effect of peritubular protein removal on passive NaCl transport was examined in the isolated rabbit proximal convoluted tubule (PCT). Three modes of passive NaCl transport were tested: (a) paracellular backflux of NaCl, (b) convective flow of NaCl through junctional complexes, and (c) anion gradient-dependent NaCl transport. The effect of peritubular protein removal on the paracellular permeability to NaCl was examined using transepithelial specific resistance. Eight PCT were perfused with ultrafiltrate (UF) and bathed in either serum or UF. Transepithelial specific resistance averaged 14.5 +/- 1.9 in the presence and 13.7 +/- 1.7 omega cm2 in the absence of peritubular protein. The effect of peritubular protein removal on the convective flow of a NaCl solution across functional complexes was examined in the absence of active transport by using colloid osmotic pressure (COP) gradients. 12 PCT were perfused with simple salt solutions in Donnan equilibrium with and without protein at 20 degrees C. A COP gradient of 60.1 and -60.1 mmHg drove only 0.06 and -0.23 nl/min, respectively. These values are approximately 10% of the value predicted for an effect of peritubular protein on NaCl solution flow (1.98 nl/min) and are approximately equal to the value predicted for pure water equilibration for the small osmotic pressure difference between solutions in Donnan equilibrium (0.17-0.18 nl/min). The effect of peritubular protein removal on the passive absorption of NaCl driven by anion concentration gradients was examined in seven PCT perfused with a high chloride solution simulating late proximal tubular fluid and bathed in either serum or UF at 20 degrees C. Volume absorption averaged 0.34 +/- 0.20 in the presence and 0.39 +/- 0.20 nl/mm min in the absence of peritubular protein. In conclusion, peritubular protein removal did not significantly affect any of the three distinct modes of passive NaCl transport tested. The lack of effect of peritubular protein removal on

  18. The C-Terminal Fragment of Agrin (CAF), a Novel Marker of Renal Function, Is Filtered by the Kidney and Reabsorbed by the Proximal Tubule

    PubMed Central

    Daryadel, Arezoo; Haubitz, Monika; Figueiredo, Marta; Steubl, Dominik; Roos, Marcel; Mäder, Armin; Hettwer, Stefan

    2016-01-01

    Agrin, a multidomain proteoglycan and neurotrypsin, a neuronal serine protease, are important for forming (neuromuscular) synapses. Proteolytical activity of neurotrypsin produces a C-terminal fragment of agrin, termed CAF, of approximately 22 kDA molecular size which also circulates in blood. The presence of CAF in urine suggests either glomerular filtration or secretion into urine. Blood levels of CAF have been identified as a potential novel marker of kidney function. Here we describe that several nephron segments in the mouse kidney express agrin and neutrotrypsin in addition to the localization of both protein in the glomerulum. Agrin mRNA and protein was detected in almost all nephron segments and mRNA abundance was highest in the inner medullary collecting duct. Neurotrypsin mRNA was mostly detected in the thick ascending limb of the loop of Henle, the distal convoluted tubule, and the inner medullary collecting duct. Moreover, we show that the proximal tubule absorbs injected recombinant CAF by a process shared with receptor-mediated and fluid phase endocytosis. Co-injection of CAF with recombinant human transferrin, a substrate of the receptor-mediated endocytic pathway as well as with FITC-labelled dextran (10 kDa), a marker of fluid phase endocytosis, showed partial colocalization of CAF with both markers. Further colocalization of CAF with the lysosomal marker cathepsin B suggested degradation of CAF by the lysosome in the proximal tubule. Thus, the murine kidney expresses agrin and neurotrypsin in nephron segments beyond the glomerulum. CAF is filtered by the glomerulum and is reabsorbed by endocytosis by the proximal tubule. Thus, impaired kidney function could impair glomerular clearance of CAF and thereby increase circulating CAF levels. PMID:27380275

  19. In vitro studies with renal proximal tubule cells show direct cytotoxicity of Androctonus australis hector scorpion venom triggered by oxidative stress, caspase activation and apoptosis.

    PubMed

    Saidani, Chanez; Hammoudi-Triki, Djelila; Laraba-Djebari, Fatima; Taub, Mary

    2016-09-15

    Scorpion envenomation injures a number of organs, including the kidney. Mechanisms proposed to explain the renal tubule injury include direct effects of venom on tubule epithelial cells, as well as indirect effects of the autonomic nervous system, and inflammation. Here, we report direct effects of Androctonus australis hector (Aah) scorpion venom on the viability of Renal Proximal Tubule (RPT) cells in vitro, unlike distal tubule and collecting duct cells. Extensive NucGreen nuclear staining was observed in immortalized rabbit RPT cells following treatment with Aah venom, consistent with cytotoxicity. The involvement of oxidative stress is supported by the observations that 1) anti-oxidants mitigated the Aah venom-induced decrease in the number of viable RPT cells, and 2) Aah venom-treated RPT cells were intensively stained with the CellROX(®) Deep Red reagent, an indicator of Reactive Oxygen Species (ROS). Relevance to normal RPT cells is supported by the red fluorescence observed in Aah venom treated primary rabbit RPT cell cultures following their incubation with the Flica reagent (indicative of caspase activation and apoptosis), and the green fluorescence of Sytox Green (indicative of dead cells). PMID:27470530

  20. Lack of luminal or basolateral uptake and transepithelial transport of mercury in isolated perfused proximal tubules exposed to mercury-metallothionein

    SciTech Connect

    Zalups, R.K.; Cherian, M.G.; Barfuss, D.W.

    1995-08-01

    The lumen-to-bath and bath-to-lumen transport, cellular uptake, and toxicity of inorganic mercury bound to metallothionein ({sup 203}Hg-MT) were studied in isolated perfused S1, S2, and S3 segments of the renal proximal tubule of rabbits. Evidence of very mild toxicity was displayed in some of the segments perfused through the lumen with 18.4 {mu}M inorganic mercury in the form of Hg-MT. The toxic response was restricted primarily to mild swelling of the epithelial cells localized at the end of the tubular segments where the perfusion pipette was inserted into the lumen. The cells in the proximal portions of perfused S2 segments appeared to be most severely affected in that a few blebs would on occasion come off the epithelial cells. Mild cellular swelling was also observed in some S2 and S3 segments that were exposed to 18.4 {mu}M inorganic mercury in the form of Hg-MT in the bath. The swelling was more generalized, involving all the epithelial cells along the perfused segment. Very little, or no, measurable lumen-to-bath or bath-to-lumen transport of Hg as Hg-MT could be detected in any of the 3 perfused segments of the proximal tubule during 40-45 min of perfusion. The complex of Hg-MT appeared to behave in a manner similar to that of the volume marker [{sup 3}H]-L-glucose. The lack of tubular transport of Hg as Hg-MT was confirmed by little or no measurable uptake and accumulation of inorganic mercury in the tubular epithelial cells. Thus, our findings indicate that the Hg-MT complex is not taken up avidly in isolated perfused S1, S2, or S3 segments of the proximal tubule. 16 refs., 3 tabs.

  1. Novel Hg2+-Induced Nephropathy in Rats and Mice Lacking Mrp2: Evidence of Axial Heterogeneity in the Handling of Hg2+ Along the Proximal Tubule

    PubMed Central

    Zalups, Rudolfs K.; Joshee, Lucy; Bridges, Christy C.

    2014-01-01

    The role of the multi-resistance protein 2 (Mrp2) in the nephropathy induced by inorganic mercuric mercury (Hg2+) was studied in rats (TR−) and mice (Mrp2−/−), which lack functional Mrp2, and control animals. Animals were exposed to nephrotoxic doses of HgCl2. Forty-eight or 24 hours after exposure, tissues were harvested and analyzed for Hg content and markers of injury. Histological analyses revealed that the proximal tubular segments affected pathologically by Hg2+ were significantly different between Mrp2-deficient animals and controls. In the absence of Mrp2, cellular injury localized almost exclusively in proximal tubular segments in the subcapsular (S1) to midcortical regions (early S2) of the kidney. In control animals, cellular death occurred mainly in the proximal tubular segments in the inner cortex (late S2) and outer stripe of the outer medulla (S3). These differences in renal pathology indicate that axial heterogeneity exists along the proximal tubule with respect to how mercuric ions are handled. Total renal and hepatic accumulation of mercury was also greater in animals lacking Mrp2 than in controls, indicating that Mrp2 normally plays a significant role in eliminating mercuric ions from within proximal tubular cells and hepatocytes. Analyses of plasma creatinine, BUN, and renal expression of Kim-1 and Ngal tend to support the severity of the nephropathies detected histologically. Collectively, our findings indicate that a fraction of mercuric ions is normally secreted by Mrp2 in early portions of proximal tubules into the lumen and then is absorbed downstream in straight portions, where mercuric species typically induce toxic effects. PMID:25145654

  2. Novel Hg2+-induced nephropathy in rats and mice lacking Mrp2: evidence of axial heterogeneity in the handling of Hg2+ along the proximal tubule.

    PubMed

    Zalups, Rudolfs K; Joshee, Lucy; Bridges, Christy C

    2014-11-01

    The role of the multi-resistance protein 2 (Mrp2) in the nephropathy induced by inorganic mercuric mercury (Hg(2+)) was studied in rats (TR(-)) and mice (Mrp2(-/-)), which lack functional Mrp2, and control animals. Animals were exposed to nephrotoxic doses of HgCl2. Forty-eight or 24 hours after exposure, tissues were harvested and analyzed for Hg content and markers of injury. Histological analyses revealed that the proximal tubular segments affected pathologically by Hg(2+) were significantly different between Mrp2-deficient animals and controls. In the absence of Mrp2, cellular injury localized almost exclusively in proximal tubular segments in the subcapsular (S1) to midcortical regions (early S2) of the kidney. In control animals, cellular death occurred mainly in the proximal tubular segments in the inner cortex (late S2) and outer stripe of the outer medulla (S3). These differences in renal pathology indicate that axial heterogeneity exists along the proximal tubule with respect to how mercuric ions are handled. Total renal and hepatic accumulation of mercury was also greater in animals lacking Mrp2 than in controls, indicating that Mrp2 normally plays a significant role in eliminating mercuric ions from within proximal tubular cells and hepatocytes. Analyses of plasma creatinine, BUN, and renal expression of Kim-1 and Ngal tend to support the severity of the nephropathies detected histologically. Collectively, our findings indicate that a fraction of mercuric ions is normally secreted by Mrp2 in early portions of proximal tubules into the lumen and then is absorbed downstream in straight portions, where mercuric species typically induce toxic effects. PMID:25145654

  3. Kidney Injury Molecule-1 Is Specifically Expressed in Cystically-Transformed Proximal Tubules of the PKD/Mhm (cy/+) Rat Model of Polycystic Kidney Disease

    PubMed Central

    Gauer, Stefan; Urbschat, Anja; Gretz, Norbert; Hoffmann, Sigrid C.; Kränzlin, Bettina; Geiger, Helmut; Obermüller, Nicholas

    2016-01-01

    Expression of kidney injury molecule-1 (Kim-1) is rapidly upregulated following tubular injury, constituting a biomarker for acute kidney damage. We examined the renal localization of Kim-1 expression in PKD/Mhm (polycystic kidney disease, Mannheim) (cy/+) rats (cy: mutated allel, +: wild type allel), an established model for autosomal dominant polycystic kidney disease, with chronic, mainly proximal tubulointerstitial alterations. For immunohistochemistry or Western blot analysis, kidneys of male adult heterozygously-affected (cy/+) and unaffected (+/+) littermates were perfusion-fixed or directly removed. Kim-1 expression was determined using peroxidase- or fluorescence-linked immunohistochemistry (alone or in combination with markers for tubule segments or differentiation). Compared to (+/+), only in (cy/+) kidneys, a chronic expression of Kim-1 could be detected by Western blot analysis, which was histologically confined to an apical cellular localization in areas of cystically-transformed proximal tubules with varying size and morphology, but not in distal tubular segments. Kim-1 was expressed by cystic epithelia exhibiting varying extents of dedifferentiation, as shown by double labeling with aquaporin-1, vimentin or osteopontin, yielding partial cellular coexpression. In this model, in contrast to other known molecules indicating renal injury and/or repair mechanisms, the chronic renal expression of Kim-1 is strictly confined to proximal cysts. Its exact role in interfering with tubulo-interstitial alterations in polycystic kidney disease warrants future investigations. PMID:27231899

  4. Kidney Injury Molecule-1 Is Specifically Expressed in Cystically-Transformed Proximal Tubules of the PKD/Mhm (cy/+) Rat Model of Polycystic Kidney Disease.

    PubMed

    Gauer, Stefan; Urbschat, Anja; Gretz, Norbert; Hoffmann, Sigrid C; Kränzlin, Bettina; Geiger, Helmut; Obermüller, Nicholas

    2016-01-01

    Expression of kidney injury molecule-1 (Kim-1) is rapidly upregulated following tubular injury, constituting a biomarker for acute kidney damage. We examined the renal localization of Kim-1 expression in PKD/Mhm (polycystic kidney disease, Mannheim) (cy/+) rats (cy: mutated allel, +: wild type allel), an established model for autosomal dominant polycystic kidney disease, with chronic, mainly proximal tubulointerstitial alterations. For immunohistochemistry or Western blot analysis, kidneys of male adult heterozygously-affected (cy/+) and unaffected (+/+) littermates were perfusion-fixed or directly removed. Kim-1 expression was determined using peroxidase- or fluorescence-linked immunohistochemistry (alone or in combination with markers for tubule segments or differentiation). Compared to (+/+), only in (cy/+) kidneys, a chronic expression of Kim-1 could be detected by Western blot analysis, which was histologically confined to an apical cellular localization in areas of cystically-transformed proximal tubules with varying size and morphology, but not in distal tubular segments. Kim-1 was expressed by cystic epithelia exhibiting varying extents of dedifferentiation, as shown by double labeling with aquaporin-1, vimentin or osteopontin, yielding partial cellular coexpression. In this model, in contrast to other known molecules indicating renal injury and/or repair mechanisms, the chronic renal expression of Kim-1 is strictly confined to proximal cysts. Its exact role in interfering with tubulo-interstitial alterations in polycystic kidney disease warrants future investigations. PMID:27231899

  5. The stress response of human proximal tubule cells to cadmium involves up-regulation of haemoxygenase 1 and metallothionein but not cytochrome P450 enzymes.

    PubMed

    Boonprasert, Kanyarat; Satarug, Soisungwan; Morais, Christudas; Gobe, Glenda C; Johnson, David W; Na-Bangchang, Kesara; Vesey, David A

    2016-05-13

    Enzymes of the cytochrome P450 (CYP) super-family are implicated in cadmium (Cd) -induced nephrotoxicity, however, direct evidence is lacking. This study investigated the endogenous expression of various CYP proteins together with the stress-response proteins, heme oxygenase-1 (HO-1) and metallothionein (MT) in human kidney sections and in cadmium-exposed primary cultures of human proximal tubular epithelial cells (PTC). By immunohistochemistry, the CYP members 2B6, 4A11 and 4F2 were prominently expressed in the cortical proximal tubular cells and to a lesser extent in distal tubular cells. Low levels of CYPs 2E1 and 3A4 were also detected. In PTC, in the absence of Cd, CYP2E1, CYP3A4, CYP4F2 and MT were expressed, but HO-1, CYP2B6 and CYP4A11 were not detected. A range of cadmium concentrations (0-100μM) were utilized to induce stress conditions. MT protein was further induced by as little as 0.5μM cadmium, reaching a 6-fold induction at 20μM, whereas for HO-1, a 5μM cadmium concentration was required for initial induction and at 20μM cadmium reached a 15-fold induction. The expression of CYP2E1, CYP3A4, and CYP4F2 were not altered by any cadmium concentrations tested at 48h. Cadmium caused a reduction in cell viability at concentrations above 10μM. In conclusion although cultured PTC, do express CYP proteins, (CYP2E1, CYP3A4, and CYP4F2), Cd-induced cell stress as indicted by induction of HO-1 and MT does not alter expression of these CYP proteins at 48h. PMID:27005776

  6. A mouse model for distal renal tubular acidosis reveals a previously unrecognized role of the V-ATPase a4 subunit in the proximal tubule

    PubMed Central

    Hennings, J Christopher; Picard, Nicolas; Huebner, Antje K; Stauber, Tobias; Maier, Hannes; Brown, Dennis; Jentsch, Thomas J; Vargas-Poussou, Rosa; Eladari, Dominique; Hübner, Christian A

    2012-01-01

    The V-ATPase is a multisubunit complex that transports protons across membranes. Mutations of its B1 or a4 subunit are associated with distal renal tubular acidosis and deafness. In the kidney, the a4 subunit is expressed in intercalated cells of the distal nephron, where the V-ATPase controls acid/base secretion, and in proximal tubule cells, where its role is less clear. Here, we report that a4 KO mice suffer not only from severe acidosis but also from proximal tubule dysfunction with defective endocytic trafficking, proteinuria, phosphaturia and accumulation of lysosomal material and we provide evidence that these findings may be also relevant in patients. In the inner ear, the a4 subunit co-localized with pendrin at the apical side of epithelial cells lining the endolymphatic sac. As a4 KO mice were profoundly deaf and displayed enlarged endolymphatic fluid compartments mirroring the alterations in pendrin KO mice, we propose that pendrin and the proton pump co-operate in endolymph homeostasis. Thus, our mouse model gives new insights into the divergent functions of the V-ATPase and the pathophysiology of a4-related symptoms. PMID:22933323

  7. Uromodulin Retention in Thick Ascending Limb of Henle's Loop Affects SCD1 in Neighboring Proximal Tubule: Renal Transcriptome Studies in Mouse Models of Uromodulin-Associated Kidney Disease

    PubMed Central

    Horsch, Marion; Beckers, Johannes; Fuchs, Helmut; Gailus-Durner, Valérie; Hrabě de Angelis, Martin; Rathkolb, Birgit; Wolf, Eckhard; Aigner, Bernhard; Kemter, Elisabeth

    2014-01-01

    Uromodulin-associated kidney disease (UAKD) is a hereditary progressive renal disease which can lead to renal failure and requires renal replacement therapy. UAKD belongs to the endoplasmic reticulum storage diseases due to maturation defect of mutant uromodulin and its retention in the enlarged endoplasmic reticulum in the cells of the thick ascending limb of Henle's loop (TALH). Dysfunction of TALH represents the key pathogenic mechanism of UAKD causing the clinical symptoms of this disease. However, the molecular alterations underlying UAKD are not well understood. In this study, transcriptome profiling of whole kidneys of two mouse models of UAKD, UmodA227T and UmodC93F, was performed. Genes differentially abundant in UAKD affected kidneys of both Umod mutant lines at different disease stages were identified and verified by RT-qPCR. Additionally, differential protein abundances of SCD1 and ANGPTL7 were validated by immunohistochemistry and Western blot analysis. ANGPTL7 expression was down-regulated in TALH cells of Umod mutant mice which is the site of the mutant uromodulin maturation defect. SCD1 was expressed selectively in the S3 segment of proximal tubule cells, and SCD1 abundance was increased in UAKD affected kidneys. This finding demonstrates that a cross talk between two functionally distinct tubular segments of the kidney, the TALH segment and the S3 segment of proximal tubule, exists. PMID:25409434

  8. Uranyl nitrate inhibits lactate gluconeogenesis in isolated human and mouse renal proximal tubules: A {sup 13}C-NMR study

    SciTech Connect

    Renault, Sophie; Faiz, Hassan; Gadet, Rudy; Ferrier, Bernard; Martin, Guy; Baverel, Gabriel; Conjard-Duplany, Agnes

    2010-01-01

    As part of a study on uranium nephrotoxicity, we investigated the effect of uranyl nitrate in isolated human and mouse kidney cortex tubules metabolizing the physiological substrate lactate. In the millimolar range, uranyl nitrate reduced lactate removal and gluconeogenesis and the cellular ATP level in a dose-dependent fashion. After incubation in phosphate-free Krebs-Henseleit medium with 5 mM L-[1-{sup 13}C]-, or L-[2-{sup 13}C]-, or L-[3-{sup 13}C]lactate, substrate utilization and product formation were measured by enzymatic and NMR spectroscopic methods. In the presence of 3 mM uranyl nitrate, glucose production and the intracellular ATP content were significantly reduced in both human and mouse tubules. Combination of enzymatic and NMR measurements with a mathematical model of lactate metabolism revealed an inhibition of fluxes through lactate dehydrogenase and the gluconeogenic enzymes in the presence of 3 mM uranyl nitrate; in human and mouse tubules, fluxes were lowered by 20% and 14% (lactate dehydrogenase), 27% and 32% (pyruvate carboxylase), 35% and 36% (phosphoenolpyruvate carboxykinase), and 39% and 45% (glucose-6-phosphatase), respectively. These results indicate that natural uranium is an inhibitor of renal lactate gluconeogenesis in both humans and mice.

  9. Experimental type II diabetes and related models of impaired glucose metabolism differentially regulate glucose transporters at the proximal tubule brush border membrane.

    PubMed

    Chichger, Havovi; Cleasby, Mark E; Srai, Surjit K; Unwin, Robert J; Debnam, Edward S; Marks, Joanne

    2016-06-01

    What is the central question of this study? Although SGLT2 inhibitors represent a promising treatment for patients suffering from diabetic nephropathy, the influence of metabolic disruption on the expression and function of glucose transporters is largely unknown. What is the main finding and its importance? In vivo models of metabolic disruption (Goto-Kakizaki type II diabetic rat and junk-food diet) demonstrate increased expression of SGLT1, SGLT2 and GLUT2 in the proximal tubule brush border. In the type II diabetic model, this is accompanied by increased SGLT- and GLUT-mediated glucose uptake. A fasted model of metabolic disruption (high-fat diet) demonstrated increased GLUT2 expression only. The differential alterations of glucose transporters in response to varying metabolic stress offer insight into the therapeutic value of inhibitors. SGLT2 inhibitors are now in clinical use to reduce hyperglycaemia in type II diabetes. However, renal glucose reabsorption across the brush border membrane (BBM) is not completely understood in diabetes. Increased consumption of a Western diet is strongly linked to type II diabetes. This study aimed to investigate the adaptations that occur in renal glucose transporters in response to experimental models of diet-induced insulin resistance. The study used Goto-Kakizaki type II diabetic rats and normal rats rendered insulin resistant using junk-food or high-fat diets. Levels of protein kinase C-βI (PKC-βI), GLUT2, SGLT1 and SGLT2 were determined by Western blotting of purified renal BBM. GLUT- and SGLT-mediated d-[(3) H]glucose uptake by BBM vesicles was measured in the presence and absence of the SGLT inhibitor phlorizin. GLUT- and SGLT-mediated glucose transport was elevated in type II diabetic rats, accompanied by increased expression of GLUT2, its upstream regulator PKC-βI and SGLT1 protein. Junk-food and high-fat diet feeding also caused higher membrane expression of GLUT2 and its upstream regulator PKC

  10. The pro-oxidant gene p66shc increases nicotine exposure-induced lipotoxic oxidative stress in renal proximal tubule cells.

    PubMed

    Arany, Istvan; Hall, Samuel; Reed, Dustin K; Dixit, Mehul

    2016-09-01

    Nicotine (NIC) exposure augments free fatty acid (FFA) deposition and oxidative stress, with a concomitant increase in the expression of the pro-oxidant p66shc. In addition, a decrease in the antioxidant manganese superoxide dismutase (MnSOD) has been observed in the kidneys of mice fed a high‑fat diet. The present study aimed to determine whether the pro‑oxidant p66shc mediates NIC‑dependent increases in renal oxidative stress by augmenting the production of reactive oxygen species (ROS) and suppressing the FFA‑induced antioxidant response in cultured NRK52E renal proximal tubule cells. Briefly, NRK52E renal proximal tubule cells were treated with 200 µM NIC, 100 µM oleic acid (OA), or a combination of NIC and OA. The expression levels of p66shc and MnSOD were modulated according to genetic methods. ROS production and cell injury, in the form of lactate dehydrogenase release, were subsequently detected. Promoter activity of p66shc and MnSOD, as well as forkhead box (FOXO)‑dependent transcription, was investigated using reporter luciferase assays. The results demonstrated that NIC exacerbated OA‑mediated intracellular ROS production and cell injury through the transcriptional activation of p66shc. NIC also suppressed OA‑mediated induction of the antioxidant MnSOD promoter activity through p66shc‑dependent inactivation of FOXO activity. Overexpression of p66shc and knockdown of MnSOD had the same effect as treatment with NIC on OA‑mediated lipotoxicity. These data may be used to generate a therapeutic means to ameliorate renal lipotoxicity in obese smokers. PMID:27486058

  11. Cadherin Expression, Vectorial Active Transport, and Metallothionein Isoform 3 Mediated EMT/MET Responses in Cultured Primary and Immortalized Human Proximal Tubule Cells

    PubMed Central

    Slusser, Andrea; Bathula, Chandra S.; Sens, Donald A.; Somji, Seema; Sens, Mary Ann; Zhou, Xu Dong; Garrett, Scott H.

    2015-01-01

    Background Cultures of human proximal tubule cells have been widely utilized to study the role of EMT in renal disease. The goal of this study was to define the role of growth media composition on classic EMT responses, define the expression of E- and N-cadherin, and define the functional epitope of MT-3 that mediates MET in HK-2 cells. Methods Immunohistochemistry, microdissection, real-time PCR, western blotting, and ELISA were used to define the expression of E- and N-cadherin mRNA and protein in HK-2 and HPT cell cultures. Site-directed mutagenesis, stable transfection, measurement of transepithelial resistance and dome formation were used to define the unique amino acid sequence of MT-3 associated with MET in HK-2 cells. Results It was shown that both E- and N-cadherin mRNA and protein are expressed in the human renal proximal tubule. It was shown, based on the pattern of cadherin expression, connexin expression, vectorial active transport, and transepithelial resistance, that the HK-2 cell line has already undergone many of the early features associated with EMT. It was shown that the unique, six amino acid, C-terminal sequence of MT-3 is required for MT-3 to induce MET in HK-2 cells. Conclusions The results show that the HK-2 cell line can be an effective model to study later stages in the conversion of the renal epithelial cell to a mesenchymal cell. The HK-2 cell line, transfected with MT-3, may be an effective model to study the process of MET. The study implicates the unique C-terminal sequence of MT-3 in the conversion of HK-2 cells to display an enhanced epithelial phenotype. PMID:25803827

  12. Ochratoxin A activates opposing c-MET/PI3K/Akt and MAPK/ERK 1-2 pathways in human proximal tubule HK-2 cells.

    PubMed

    Özcan, Zeynep; Gül, Gizem; Yaman, Ibrahim

    2015-08-01

    Ochratoxin A (OTA) is a mycotoxin produced as a secondary metabolite by filamentous fungi, such as Aspergillus and Penicillium. Because OTA is a common contaminant of food and feeds, humans and animals are frequently exposed to OTA in daily life. It has been classified as a carcinogen in rodents and a possible carcinogen in humans. OTA has been shown to deregulate a variety of different signal transduction pathways in a cell type- and dosage-depending manner resulting in contrasting physiological effects, such as survival or cell death. While the ERK1-2 and JNK/SAPK MAPK pathways are major targets, knowledge about their role in OTA-mediated cell survival and death is fragmented. Similarly, the contribution of the PI3K/Akt pathway to the carcinogenic effect of OTA in proximal tubule cells has not been elucidated in detail. In this study, we demonstrated that OTA induced sustained activation of the PI3K/Akt and MEK/ERK1-2 signaling pathways in a dose- and time-dependent manner in HK-2 cells. Chemical inhibition of ERK1-2 activation or overexpression of dominant-negative and kinase-dead MEK1 leads to increased cell viability and decreased apoptosis in OTA-treated cells. Blockage of PI3K/Akt with Wortmannin aggravated the negative effect of OTA on cell viability and increased the levels of apoptosis. Moreover, we identified the c-MET proto-oncogene as an upstream receptor tyrosine kinase responsible for OTA-induced activation of PI3K/Akt signaling in HK-2 cells. Our data suggest that OTA may potentiate carcinogenesis by sustained activation of c-MET/PI3K/Akt signaling through suppression of apoptosis induced by MEK/ERK1-2 activation in damaged renal proximal tubule epithelial cells. PMID:25002221

  13. Targeting of the rasT24 oncogene to the proximal convoluted tubules in transgenic mice results in hyperplasia and polycystic kidneys.

    PubMed Central

    Schaffner, D. L.; Barrios, R.; Massey, C.; Bañez, E. I.; Ou, C. N.; Rajagopalan, S.; Aguilar-Cordova, E.; Lebovitz, R. M.; Overbeek, P. A.; Lieberman, M. W.

    1993-01-01

    Five families of transgenic mice were derived from one-cell-stage embryos injected with gamma GT-rasT24, a fusion gene consisting of the gamma-glutamyl transpeptidase (gamma GT) 5' flanking region containing promoter I linked to a mutated (codon 12) human H-ras oncogene. The transgene was expressed selectively in the kidneys, eyes, and brains of all families as determined by reverse transcription-polymerase chain reaction, nuclease protection assays, and in situ hybridization. In two of five families, kidney lesions consisting of proximal tubular hyperplasia, renal cysts, and microadenomas developed in male animals; males also expressed higher levels of gamma GT/rasT24 RNA. Early lesions consisted of proximal tubular hyperplasia as defined by alkaline phosphatase histochemistry, gamma GT immunohistochemistry, and electron microscopy and could be correlated with the presence of rasT24 RNA within the cystic proximal tubular epithelium by in situ hybridization. Advanced lesions also involved other segments of the nephron and consisted of cysts lined by a flattened unicellular layer of attenuated epithelium. No rasT24 could be identified within cystic lesions of the distal nephron and collecting tubules by in situ hybridization, and they most likely arise by external compression. Animals from the two transgenic strains exhibiting cystic lesions die of renal failure beginning at 8 months of age. No difference in cell-cycle parameters or DNA ploidy between transgenic and control kidneys was identified by flow cytometric analysis. No renal carcinomas developed. The primary renal effects of the H-rasT24 oncogene in this model system consist of proximal tubular hyperplasia and polycystic kidneys. This model appears to provide a useful in vivo system for the study of ras oncogene function and control of renal cell proliferation. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8097368

  14. Functional role of glucose metabolism, osmotic stress, and sodium-glucose cotransporter isoform-mediated transport on Na+/H+ exchanger isoform 3 activity in the renal proximal tubule.

    PubMed

    Pessoa, Thaissa Dantas; Campos, Luciene Cristina Gastalho; Carraro-Lacroix, Luciene; Girardi, Adriana C C; Malnic, Gerhard

    2014-09-01

    Na(+)-glucose cotransporter 1 (SGLT1)-mediated glucose uptake leads to activation of Na(+)-H(+) exchanger 3 (NHE3) in the intestine by a process that is not dependent on glucose metabolism. This coactivation may be important for postprandial nutrient uptake. However, it remains to be determined whether SGLT-mediated glucose uptake regulates NHE3-mediated NaHCO3 reabsorption in the renal proximal tubule. Considering that this nephron segment also expresses SGLT2 and that the kidneys and intestine show significant variations in daily glucose availability, the goal of this study was to determine the effect of SGLT-mediated glucose uptake on NHE3 activity in the renal proximal tubule. Stationary in vivo microperfusion experiments showed that luminal perfusion with 5 mM glucose stimulates NHE3-mediated bicarbonate reabsorption. This stimulatory effect was mediated by glycolytic metabolism but not through ATP production. Conversely, luminal perfusion with 40 mM glucose inhibited NHE3 because of cell swelling. Notably, pharmacologic inhibition of SGLT activity by Phlorizin produced a marked inhibition of NHE3, even in the absence of glucose. Furthermore, immunofluorescence experiments showed that NHE3 colocalizes with SGLT2 but not SGLT1 in the rat renal proximal tubule. Collectively, these findings show that glucose exerts a bimodal effect on NHE3. The physiologic metabolism of glucose stimulates NHE3 transport activity, whereas, supraphysiologic glucose concentrations inhibit this exchanger. Additionally, Phlorizin-sensitive SGLT transporters and NHE3 interact functionally in the proximal tubule. PMID:24652792

  15. The pathogenic antigen of Heymann nephritis is a membrane glycoprotein of the renal proximal tubule brush border.

    PubMed Central

    Kerjaschki, D; Farquhar, M G

    1982-01-01

    Purified brush border fractions prepared from rat kidneys were solubilized in detergent, iodinated, and subjected to immunoprecipitation to identify the pathogenic antigen present in brush border membranes that is responsible for the production of Heymann nephritis (HN). Purified IgG prepared from the sera of rabbits or rats immunized with a crude cortical preparation, known as Fx1A, precipitated multiple peptides, whereas IgG eluted from glomeruli of rats with active or passive HN specifically immunoprecipitated a single large glycoprotein (Mr = 330,000). This protein (gp330) was subsequently purified by gel filtration and lentil lectin affinity chromatography from detergent-solubilized brush border membranes. When rats were immunized with purified gp330, they developed anti-brush border antibodies and active HN. IgG prepared from the serum of rats with active HN caused passive HN when injected into normal recipients. Rats immunized against brush border membrane proteins depleted of gp330 developed anti-brush border antibodies but did not develop HN. Further analysis of gp330 indicated that it is solubilized by detergent treatment of isolated brush border microvilli, and its antigenic component is released from intact microvilli by trypsin. By immunoperoxidase staining it was localized to the luminal side of the brush border membranes. These results indicate that (i) gp330 is the pathogenic antigen of HN; (ii) the antigen is a glycoprotein of the brush border membrane; and (iii) it is disposed with its pathogenic domain(s) facing the tubule lumen. Images PMID:6752952

  16. Nephron proximal tubule patterning and corpuscles of Stannius formation are regulated by the sim1a transcription factor and retinoic acid in zebrafish.

    PubMed

    Cheng, Christina N; Wingert, Rebecca A

    2015-03-01

    The mechanisms that establish nephron segments are poorly understood. The zebrafish embryonic kidney, or pronephros, is a simplified yet conserved genetic model to study this renal development process because its nephrons contain segments akin to other vertebrates, including the proximal convoluted and straight tubules (PCT, PST). The zebrafish pronephros is also associated with the corpuscles of Stannius (CS), endocrine glands that regulate calcium and phosphate homeostasis, but whose ontogeny from renal progenitors is largely mysterious. Initial patterning of zebrafish renal progenitors in the intermediate mesoderm (IM) involves the formation of rostral and caudal domains, the former being reliant on retinoic acid (RA) signaling, and the latter being repressed by elevated RA levels. Here, using expression profiling to gain new insights into nephrogenesis, we discovered that the gene single minded family bHLH transcription factor 1a (sim1a) is dynamically expressed in the renal progenitors-first marking the caudal domain, then becoming restricted to the proximal segments, and finally exhibiting specific CS expression. In loss of function studies, sim1a knockdown expanded the PCT and abrogated both the PST and CS populations. Conversely, overexpression of sim1a modestly expanded the PST and CS, while it reduced the PCT. These results show that sim1a activity is necessary and partially sufficient to induce PST and CS fates, and suggest that sim1a may inhibit PCT fate and/or negotiate the PCT/PST boundary. Interestingly, the sim1a expression domain in renal progenitors is responsive to altered levels of RA, suggesting that RA regulates sim1a, directly or indirectly, during nephrogenesis. sim1a deficient embryos treated with exogenous RA formed nephrons that were predominantly composed of PCT segments, but lacked the enlarged PST observed in RA treated wild-types, indicating that RA is not sufficient to rescue the PST in the absence of sim1a expression. Alternately

  17. Nephron proximal tubule patterning and corpuscles of Stannius formation are regulated by the sim1a transcription factor and retinoic acid in zebrafish

    PubMed Central

    Cheng, Christina N.; Wingert, Rebecca A.

    2014-01-01

    The mechanisms that establish nephron segments are poorly understood. The zebrafish embryonic kidney, or pronephros, is a simplified yet conserved genetic model to study this renal development process because its nephrons contain segments akin to other vertebrates, including the proximal convoluted and straight tubules (PCT, PST). The zebrafish pronephros is also associated with the corpuscles of Stannius (CS), endocrine glands that regulate calcium and phosphate homeostasis, but whose ontogeny from renal progenitors is largely mysterious. Initial patterning of zebrafish renal progenitors in the intermediate mesoderm (IM) involves the formation of rostral and caudal domains, the former being reliant on retinoic acid (RA) signaling, and the latter being repressed by elevated RA levels. Here, using expression profiling to gain new insights into nephrogenesis, we discovered that the gene single minded family bHLH transcription factor 1a (sim1a) is dynamically expressed in the renal progenitors—first marking the caudal domain, then becoming restricted to the proximal segments, and finally exhibiting specific CS expression. In loss of function studies, sim1a knockdown expanded the PCT and abrogated both the PST and CS populations. Conversely, overexpression of sim1a modestly expanded the PST and CS, while it reduced the PCT. These results show that sim1a activity is necessary and partially sufficient to induce PST and CS fates, and suggest that sim1a may inhibit PCT fate and/or negotiate the PCT/PST boundary. Interestingly, the sim1a expression domain in renal progenitors is responsive to altered levels of RA, suggesting that RA regulates sim1a, directly or indirectly, during nephrogenesis. sim1a deficient embryos treated with exogenous RA formed nephrons that were predominantly composed of PCT segments, but lacked the enlarged PST observed in RA treated wild-types, indicating that RA is not sufficient to rescue the PST in the absence of sim1a expression. Alternately

  18. Characterization of the Mouse and Human Monoacylglycerol O-Acyltransferase 1 (Mogat1) Promoter in Human Kidney Proximal Tubule and Rat Liver Cells.

    PubMed

    Sankella, Shireesha; Garg, Abhimanyu; Agarwal, Anil K

    2016-01-01

    Monoacylglycerol acyltransferase 1 (Mogat1) catalyzes the conversion of monoacylglycerols (MAG) to diacylglycerols (DAG), the precursor of several physiologically important lipids such as phosphatidylcholine, phosphatidylethanolamine and triacylglycerol (TAG). Expression of Mogat1 is tissue restricted and it is highly expressed in the kidney, stomach and adipose tissue but minimally in the normal adult liver. To understand the transcriptional regulation of Mogat1, we characterized the mouse and human Mogat1 promoters in human kidney proximal tubule-2 (HK-2) cells. In-silico analysis revealed several peroxisome proliferator response element (PPRE) binding sites in the promoters of both human and mouse Mogat1. These sites responded to all three peroxisome proliferator activated receptor (PPAR) isoforms such that their respective agonist or antagonist activated or inhibited the expression of Mogat1. PPRE site mutagenesis revealed that sites located at -592 and -2518 are very effective in decreasing luciferase reporter gene activity. Chromatin immunoprecipitation (ChIP) assay using PPARα antibody further confirmed the occupancy of these sites by PPARα. While these assays revealed the core promoter elements necessary for Mogat1 expression, there are additional elements required to regulate its tissue specific expression. Chromosome conformation capture (3C) assay revealed additional cis-elements located ~10-15 kb upstream which interact with the core promoter. These chromosomal regions are responsive to both PPARα agonist and antagonist. PMID:27611931

  19. Electron microscopic study on the lipid content of intramitochondrial granules in proximal convoluted tubule of guinea pig kidney and their ability to accumulate calcium ions.

    PubMed

    Erkoçak, A

    1977-01-01

    The intramitochondrial dense granules of the kidney proximal tubule fixed with OsO4 are osmiophilic since they are bleached by H2O2 treatment and they disappear after glutaraldehyde fixation alone. Following ethanol extraction and subsequent osmification these granules become invisible but pure aceton treatment does not greatly alter their osmiophilia. The findings suggests that the osmiophilic intramitochondrial granules are rich in phospholipids. When the kidney cortex is incubated in the presence of calcium of acetate, calcium accumulates on the intramitochondrial granules increasing their size and number. The intramitochondrial granules are found more frequently in tissues where the transport of water or ions is big. They contribute to the sodium transport (RIEDEL, BUCHER and ERKOCAK 1968). They are composed mainly of neutral lipids (SANZONE, SWARTZENDRUBER and SNYDER 1970) and phospholipids (WENDEL and BARNARD 1974). They are formed by the precipitation of calcium and other ions (GREENAWALT, ROSSI and LEHNINGER 1964; Peachey 1964). in this present work the structure of dense intramitochondrial granules has been studied regarding electron opaque materials. This way on one hand the lipids and the nucleic acids have been investigated, on the other hand the intramitochondrial granules have been loaded with calcium, a cation showing density in precipitated form and found in great amount into the cell. PMID:409048

  20. Gastrin decreases Na+,K+-ATPase activity via a PI 3-kinase- and PKC-dependent pathway in human renal proximal tubule cells.

    PubMed

    Liu, Tianbing; Konkalmatt, Prasad R; Yang, Yu; Jose, Pedro A

    2016-04-01

    The natriuretic effect of gastrin suggests a role in the coordinated regulation of sodium balance by the gastrointestinal tract and the kidney. The renal molecular targets and signal transduction pathways for such an effect of gastrin are largely unknown. Recently, we reported that gastrin induces NHE3 phosphorylation and internalization via phosphatidylinositol (PI) 3-kinase and PKCα. In this study, we show that gastrin induced the phosphorylation of human Na(+),K(+)-ATPase at serine 16, resulting in its endocytosis via Rab5 and Rab7 endosomes. The gastrin-stimulated phosphorylation of Na(+),K(+)-ATPase was dependent on PI 3-kinase because the phosphorylation was blocked by the PI 3-kinase inhibitor wortmannin. The phosphorylation of Na(+),K(+)-ATPase was also blocked by chelerythrine, a pan-PKC inhibitor, Gö-6976, a conventional PKC (cPKC) inhibitor, and BAPTA-AM, an intracellular calcium chelator, suggesting the importance of cPKC and intracellular calcium in the gastrin signaling pathway. The gastrin-mediated phosphorylation of Na(+),K(+)-ATPase was also inhibited by U-73122, a phospholipase C (PLC) inhibitor. These results suggest that gastrin regulates sodium hydrogen exchanger and pump in renal proximal tubule cells at the apical and basolateral membranes. PMID:26786777

  1. Dietary fat composition influences glomerular and proximal convoluted tubule cell structure and autophagic processes in kidneys from calorie-restricted mice.

    PubMed

    Calvo-Rubio, Miguel; Burón, M Isabel; López-Lluch, Guillermo; Navas, Plácido; de Cabo, Rafael; Ramsey, Jon J; Villalba, José M; González-Reyes, José A

    2016-06-01

    Calorie restriction (CR) has been repeatedly shown to prevent cancer, diabetes, hypertension, and other age-related diseases in a wide range of animals, including non-human primates and humans. In rodents, CR also increases lifespan and is a powerful tool for studying the aging process. Recently, it has been reported in mice that dietary fat plays an important role in determining lifespan extension with 40% CR. In these conditions, animals fed lard as dietary fat showed an increased longevity compared with mice fed soybean or fish oils. In this paper, we study the effect of these dietary fats on structural and physiological parameters of kidney from mice maintained on 40% CR for 6 and 18 months. Analyses were performed using quantitative electron microcopy techniques and protein expression in Western blots. CR mitigated most of the analyzed age-related parameters in kidney, such as glomerular basement membrane thickness, mitochondrial mass in convoluted proximal tubules and autophagic markers in renal homogenates. The lard group showed improved preservation of several renal structures with aging when compared to the other CR diet groups. These results indicate that dietary fat modulates renal structure and function in CR mice and plays an essential role in the determination of health span in rodents. PMID:26853994

  2. Transcriptional gene silencing of dopamine D3 receptor caused by let-7d mimics in immortalized renal proximal tubule cells of rats.

    PubMed

    Zhang, Ye; Cheng, Caiyu; He, Duofen; Shi, Weibin; Fu, Chunjiang; Wang, Xukai; Zeng, Chunyu

    2016-04-15

    Transcriptional gene silencing (TGS) induced by synthetic exogenous short interfering RNAs (siRNAs) that are fully complementary to gene promoters has been demonstrated in mammalian cells. However, it remains unclear whether microRNAs (miRNAs), which are endogenous small regulatory RNAs, can also silence gene transcription. We investigated the regulation mechanism of let-7d on dopamine D3 receptor (DRD3) in immortalized renal proximal tubule (RPT) cells of rats, where let-7d has a predicted homologous target site within DRD3 promoter. We found that let-7d mimics repressed DRD3 expression at the transcription level in RPT cells. Let-7d induced DRD3 inhibition via DNA-methyltransferase 1 (DNMT1) and DNA-methyltransferase 3b (DNMT3b) dependent DNA methylation and the inhibition could be abolished by 5'-aza-2'-deoxycytidine (5-aza-dc), a DNA methylation inhibitor. Let-7d induced DRD3 repression was associated with the recruitment of Argonaute 2 (AGO2) protein. Histone 3 lysine 9 dimethylation (H3K9me2) was involved in the let-7d induced DRD3 TGS, indicating the chromatin-level silencing. In conclusion, our results demonstrated that let-7d may induce DRD3 repression in a transcriptional manner by means of DNMTs dependent DNA methylation and histone modification. It is suggested that miRNAs may act as a transcriptional gene regulator via the recognition of the homologous target site within the gene promoter. PMID:26802971

  3. The multidrug transporter MATE1 sequesters OCs within an intracellular compartment that has no influence on OC secretion in renal proximal tubules.

    PubMed

    Martínez-Guerrero, L J; Evans, K K; Dantzler, W H; Wright, S H

    2016-01-01

    Secretion of organic cations (OCs) across renal proximal tubules (RPTs) involves basolateral OC transporter (OCT)2-mediated uptake from the blood followed by apical multidrug and toxin extruder (MATE)1/2-mediated efflux into the tubule filtrate. Whereas OCT2 supports electrogenic OC uniport, MATE is an OC/H(+) exchanger. As assessed by epifluorescence microscopy, cultured Chinese hamster ovary (CHO) cells that stably expressed human MATE1 accumulated the fluorescent OC N,N,N-trimethyl-2-[methyl(7-nitrobenzo[c][l,2,5]oxadiazol-4-yl)amino]ethanaminium (NBD-MTMA) in the cytoplasm and in a smaller, punctate compartment; accumulation in human OCT2-expressing cells was largely restricted to the cytoplasm. A second intracellular compartment was also evident in the multicompartmental kinetics of efflux of the prototypic OC [(3)H]1-methyl-4-phenylpyridinium (MPP) from MATE1-expressing CHO cells. Punctate accumulation of NBD-MTMA was markedly reduced by coexposure of MATE1-expressing cells with 5 μM bafilomycin (BAF), an inhibitor of V-type H(+)-ATPase, and accumulation of [(3)H]MPP and [(3)H]NBD-MTMA was reduced by >30% by coexposure with 5 μM BAF. BAF had no effect on the initial rate of MATE1-mediated uptake of NBD-MTMA, suggesting that the influence of BAF was a secondary effect involving inhibition of V-type H(+)-ATPase. The accumulation of [(3)H]MPP by isolated single nonperfused rabbit RPTs was also reduced >30% by coexposure to 5 μM BAF, suggesting that the native expression in RPTs of MATE protein within endosomes can increase steady-state OC accumulation. However, the rate of [(3)H]MPP secretion by isolated single perfused rabbit RPTs was not affected by 5 μM BAF, suggesting that vesicles loaded with OCs(+) are not likely to recycle into the apical plasma membrane at a rate sufficient to provide a parallel pathway for OC secretion. PMID:26538438

  4. In Vitro Cytotoxicity and Mitochondrial Toxicity of Tenofovir Alone and in Combination with Other Antiretrovirals in Human Renal Proximal Tubule Cells▿

    PubMed Central

    Vidal, Francesc; Domingo, Joan Carles; Guallar, Jordi; Saumoy, Maria; Cordobilla, Begoña; Sánchez de la Rosa, Rainel; Giralt, Marta; Álvarez, Maria Luisa; López-Dupla, Miguel; Torres, Ferran; Villarroya, Francesc; Cihlar, Tomas; Domingo, Pere

    2006-01-01

    We assessed the in vitro toxicity of tenofovir (TFV) and compared it with those of zidovudine (AZT), didanosine (ddI), ritonavir (RTV), and lopinavir (LPV) alone and in combination in human renal proximal tubule epithelial cells (RPTECs). The cells were treated with various concentrations and combinations of the tested antiretrovirals for up to 22 days, and cytotoxicity was determined. In addition, we assessed the levels of mitochondrial DNA (mtDNA) and cytochrome oxidase II (COII) mRNA in RPTECs treated with reverse transcriptase inhibitors. TFV alone was not associated with significant cytotoxicity. ddI showed pronounced cytotoxicity that was greater than those of AZT (P = 0.002) and TFV (P = 0.0001). The combination of 10 μM RTV and 40 μM LPV significantly reduced RPTEC viability (P < 0.0001), and TFV tended to partially reduce this effect. TFV alone affected neither mtDNA nor COII mRNA levels, whereas ddI caused a profound depletion of mtDNA and a parallel reduction in COII mRNA expression. The effects of ddI, but not those of AZT, on mtDNA and COII mRNA were further enhanced in the presence of TFV, a finding consistent with the inhibition of ddI clearance by TFV. The addition of TFV to ddI or AZT appeared to slightly increase the COII mRNA/mtDNA ratio relative to that in cells treated with ddI or AZT alone. Together, these in vitro results indicate that combination with other antiretrovirals does not significantly increase the toxic potential of TFV in RPTECs. PMID:16940060

  5. Effect of acute acid-base disturbances on ErbB1/2 tyrosine phosphorylation in rabbit renal proximal tubules

    PubMed Central

    Skelton, Lara A.

    2013-01-01

    The renal proximal tubule (PT) is a major site for maintaining whole body pH homeostasis and is responsible for reabsorbing ∼80% of filtered HCO3−, the major plasma buffer, into the blood. The PT adapts its rate of HCO3− reabsorption (JHCO3−) in response to acute acid-base disturbances. Our laboratory previously showed that single isolated perfused PTs adapt JHCO3− in response to isolated changes in basolateral (i.e., blood side) CO2 and HCO3− concentrations but, surprisingly, not to pH. The response to CO2 concentration can be blocked by the ErbB family tyrosine kinase inhibitor PD-168393. In the present study, we exposed enriched rabbit PT suspensions to five acute acid-base disturbances for 5 and 20 min using a panel of phosphotyrosine (pY)-specific antibodies to determine the influence of each disturbance on pan-pY, ErbB1-specific pY (four sites), and ErbB2-specific pY (two sites). We found that each acid-base treatment generated a distinct temporal pY pattern. For example, the summated responses of the individual ErbB1/2-pY sites to each disturbance showed that metabolic acidosis (normal CO2 concentration and reduced HCO3− concentration) produced a transient summated pY decrease (5 vs. 20 min), whereas metabolic alkalosis produced a transient increase. Respiratory acidosis (normal HCO3− concentration and elevated CO2 concentration) had little effect on summated pY at 5 min but produced an elevation at 20 min, whereas respiratory alkalosis produced a reduction at 20 min. Our data show that ErbB1 and ErbB2 in the PT respond to acute acid-base disturbances, consistent with the hypothesis that they are part of the signaling cascade. PMID:24133121

  6. Toxin pharmacology of the large-conductance Ca(2+)-activated K+ channel in the apical membrane of rabbit proximal convoluted tubule in primary culture.

    PubMed

    Tauc, M; Congar, P; Poncet, V; Merot, J; Vita, C; Poujeol, P

    1993-10-01

    The patch-clamp technique was used to study the toxin pharmacology of the large-conductance Ca(2+)-activated K+ channel (BKCa) present in the apical membrane of rabbit proximal convoluted tubules (PCT) in primary culture. Experiments were performed with the inside-out configuration. This channel was very selective for K+ against Na+ and had a conductance of 180 pS with 140 mmol/l in the pipette and the bath. The action of toxins was studied on the extracellular side of the channel by using the pipette perfusion technique. Experimental conditions were 140 mmol/l KCl in the pipette and 140 mmol/l NaCl in the bath. Pipette potential was maintained at 0 mV. Perfusion of crude venom from Leiurus quinquestriatus hebraeus inhibited reversibly the open probability (Po) in a concentration-dependent fashion (IC50 = 0.8 mg/l; n = 3). The following synthetic or purified toxins were tested: synthetic charybdotoxin (ChTX) IC50 = 7.3 x 10(-9) M (n = 5); iberiotoxin (IbTX) IC50 = 5.5 x 10(-7) mol/l (n = 3); and kaliotoxin (KTX) IC50 = 4.8 x 10(-7) mol/l (n = 3). The suppression of the six first N-terminal amino-acids slightly reduced the affinity of ChTX (IC50 = 1.2 x 10(-8) mol/l, n = 4). Neither Dendroaspis polylepis venom nor purified alpha dendrotoxin modified Po even at high concentrations (20 mg/l and 10(-6) mol/l respectively). Apamin, which blocked the small-conductance K+ channel in cultured PCT, did not act on BKCa. These results indicate that ChTX is the most efficient known toxin against the epithelial BKCa in primary cultures of PCT.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7505914

  7. The differential role of Smad2 and Smad3 in the regulation of pro-fibrotic TGFβ1 responses in human proximal-tubule epithelial cells

    PubMed Central

    Phanish, Mysore K.; Wahab, Nadia A.; Colville-Nash, Paul; Hendry, Bruce M.; Dockrell, Mark E. C.

    2005-01-01

    In chronic renal diseases, progressive loss of renal function correlates with advancing tubulo-interstitial fibrosis. TGFβ1-Smad (transforming growth factor-β1–Sma and Mad protein) signalling plays an important role in the development of renal tubulo-interstitial fibrosis. Secretion of CTGF (connective-tissue growth factor; CCN2) by PTECs (proximal-tubule epithelial cells) and EMT (epithelial–mesenchymal transdifferentiation) of PTECs to myofibroblasts in response to TGFβ are critical Smad-dependent events in the development of tubulo-interstitial fibrosis. In the present study we have investigated the distinct contributions of Smad2 and Smad3 to expression of CTGF, E-cadherin, α-SMA (α-smooth-muscle actin) and MMP-2 (matrix-metalloproteinase-2) in response to TGFβ1 treatment in an in vitro culture model of HKC-8 (transformed human PTECs). RNA interference was used to achieve selective and specific knockdown of Smad2 and Smad3. Cellular E-cadherin, α-SMA as well as secreted CTGF and MMP-2 were assessed by Western immunoblotting. TGFβ1 treatment induced a fibrotic phenotype with increased expression of CTGF, MMP-2 and α-SMA, and decreased expression of E-cadherin. TGFβ1-induced increases in CTGF and decreases in E-cadherin expression were Smad3-dependent, whereas increases in MMP-2 expression were Smad2-dependent. Increases in α-SMA expression were dependent on both Smad2 and Smad3 and were abolished by combined knockdown of both Smad2 and Smad3. In conclusion, we have demonstrated distinct roles for Smad2 and Smad3 in TGFβ1-induced CTGF expression and markers of EMT in human PTECs. This can be of therapeutic value in designing targeted anti-fibrotic therapies for tubulo-interstitial fibrosis. PMID:16253118

  8. Role of ARF6 in internalization of metal-binding proteins, metallothionein and transferrin, and cadmium-metallothionein toxicity in kidney proximal tubule cells

    SciTech Connect

    Wolff, Natascha A.; Lee, Wing-Kee; Abouhamed, Marouan

    2008-07-01

    Filtered metal-protein complexes, such as cadmium-metallothionein-1 (CdMT-1) or transferrin (Tf) are apically endocytosed partly via megalin/cubilin by kidney proximal tubule (PT) cells where CdMT-1 internalization causes apoptosis. Small GTPase ARF (ADP-ribosylation factor) proteins regulate endocytosis and vesicular trafficking. We investigated roles of ARF6, which has been shown to be involved in internalization of ligands and endocytic trafficking in PT cells, following MT-1/CdMT-1 and Tf uptake by PT cells. WKPT-0293 Cl.2 cells derived from rat PT S1 segment were transfected with hemagglutinin-tagged wild-type (ARF6-WT) or dominant negative (ARF6-T27N) forms of ARF6. Using immunofluorescence, endogenous ARF6 was associated with the plasma membrane (PM) as well as juxtanuclear and co-localized with Rab5a and Rab11 involved in early and recycling endosomal trafficking. Immunofluorescence staining of megalin showed reduced surface labelling in ARF6 dominant negative (ARF6-DN) cells. Intracellular Alexa Fluor 546-conjugated MT-1 uptake was reduced in ARF6-DN cells and CdMT-1 (14.8 {mu}M for 24 h) toxicity was significantly attenuated from 27.3 {+-} 3.9% in ARF6-WT to 11.1 {+-} 4.0% in ARF6-DN cells (n = 6, P < 0.02). Moreover, reduced Alexa Fluor 546-conjugated Tf uptake was observed in ARF-DN cells (75.0 {+-} 4.6% versus 3.9 {+-} 3.9% of ARF6-WT cells, n = 3, P < 0.01) and/or remained near the PM (89.3 {+-} 5. 6% versus 45.2 {+-} 14.3% of ARF6-WT cells, n = 3, P < 0.05). In conclusion, the data support roles for ARF6 in receptor-mediated endocytosis and trafficking of MT-1/Tf to endosomes/lysosomes and CdMT-1 toxicity of PT cells.

  9. Glucosamine-induced Sp1 O-GlcNAcylation ameliorates hypoxia-induced SGLT dysfunction in primary cultured renal proximal tubule cells.

    PubMed

    Suh, Han Na; Lee, Yu Jin; Kim, Mi Ok; Ryu, Jung Min; Han, Ho Jae

    2014-10-01

    The aim of this study is to determine whether GlcN could recover the endoplasmic reticulum (ER) stress-induced dysfunction of Na(+) /glucose cotransporter (SGLT) in renal proximal tubule cells (PTCs) under hypoxia. With the rabbit model, the renal ischemia induced tubulointerstitial abnormalities and decreased SGLTs expression in tubular brush-border, which were recovered by GlcN. Thus, the protective mechanism of GlcN against renal ischemia was being examined by using PTCs. Hypoxia decreased the level of protein O-GlcNAc and the expression of O-GlcNAc transferase (OGT) while increased O-GlcNAcase (OGA) and these were reversed by GlcN. Hypoxia also decreased the expression of SGLTs (SGLT1 and 2) and [(14) C]-α-methyl-D-glucopyranoside (α-MG) uptake which were recovered by GlcN and PUGNAc (OGA inhibitor). Hypoxia enhanced reactive oxygen species (ROS) and then ER stress proteins, glucose-regulated protein 78 (GRP78), and C/EBP-homologous protein (CHOP). However, the expression of GRP78 increased till 6 h and then decreased whereas CHOP increased gradually. Moreover, decreased GRP78 and increased CHOP were reversed by NAC (antioxidant) and GlcN. GlcN ameliorated hypoxia-induced decrease of O-GlcNAc modification of Sp1 but OGT or Sp1 siRNAs blocked the recovery effect of GlcN on SGLT expression and α-MG uptake. In addition, hypoxia-decreased GRP78 and HIF-1α expression was reversed by GlcN but OGT siRNA or Sp1 siRNA ameliorated the effect of GlcN. When PTCs were transfected with GRP78 siRNA or HIF-1α siRNA, SGLT expression and α-MG uptake was decreased. Taken together, these data suggest that GlcN-induced O-GlcNAc modified Sp1 with stimulating GRP78 and HIF-1α activity ameliorate hypoxia-induced SGLT dysfunction in renal PTCs. J. Cell. Physiol. 229: 1557-1568, 2014. © 2014 Wiley Periodicals, Inc. PMID:24591095

  10. Proximal Nephron

    PubMed Central

    Zhuo, Jia L.; Li, Xiao C.

    2013-01-01

    The kidney plays a fundamental role in maintaining body salt and fluid balance and blood pressure homeostasis through the actions of its proximal and distal tubular segments of nephrons. However, proximal tubules are well recognized to exert a more prominent role than distal counterparts. Proximal tubules are responsible for reabsorbing approximately 65% of filtered load and most, if not all, of filtered amino acids, glucose, solutes, and low molecular weight proteins. Proximal tubules also play a key role in regulating acid-base balance by reabsorbing approximately 80% of filtered bicarbonate. The purpose of this review article is to provide a comprehensive overview of new insights and perspectives into current understanding of proximal tubules of nephrons, with an emphasis on the ultrastructure, molecular biology, cellular and integrative physiology, and the underlying signaling transduction mechanisms. The review is divided into three closely related sections. The first section focuses on the classification of nephrons and recent perspectives on the potential role of nephron numbers in human health and diseases. The second section reviews recent research on the structural and biochemical basis of proximal tubular function. The final section provides a comprehensive overview of new insights and perspectives in the physiological regulation of proximal tubular transport by vasoactive hormones. In the latter section, attention is particularly paid to new insights and perspectives learnt from recent cloning of transporters, development of transgenic animals with knockout or knockin of a particular gene of interest, and mapping of signaling pathways using microarrays and/or physiological proteomic approaches. PMID:23897681

  11. Changes in gene expression in human renal proximal tubule cells exposed to low concentrations of S-(1,2-dichlorovinyl)-L-cysteine, a metabolite of trichloroethylene

    SciTech Connect

    Lock, Edward A. . E-mail: e.lock@ljmu.ac.uk; Barth, Jeremy L.; Argraves, Scott W.; Schnellmann, Rick G.

    2006-10-15

    Epidemiology studies suggest that there may be a weak association between high level exposure to trichloroethylene (TCE) and renal tubule cell carcinoma. Laboratory animal studies have shown an increased incidence of renal tubule carcinoma in male rats but not mice. TCE can undergo metabolism via glutathione (GSH) conjugation to form metabolites that are known to be nephrotoxic. The GSH conjugate, S-(1,2-dichlorovinyl)glutathione (DCVG), is processed further to the cysteine conjugate, S-(1,2-dichlorovinyl)-L-cysteine (DCVC), which is the penultimate nephrotoxic species. We have cultured human renal tubule cells (HRPTC) in serum-free medium under a variety of different culture conditions and observed growth, respiratory control and glucose transport over a 20 day period in medium containing low glucose. Cell death was time- and concentration-dependent, with the EC{sub 5} for DCVG being about 3 {mu}M and for DCVC about 7.5 {mu}M over 10 days. Exposure of HRPTC to sub-cytotoxic doses of DCVC (0.1 {mu}M and 1 {mu}M for 10 days) led to a small number of changes in gene expression, as determined by transcript profiling with Affymetrix human genome chips. Using the criterion of a mean 2-fold change over control for the four samples examined, 3 genes at 0.1 {mu}M DCVC increased, namely, adenosine kinase, zinc finger protein X-linked and an enzyme with lyase activity. At 1 {mu}M DCVC, two genes showed a >2-fold decrease, N-acetyltransferase 8 and complement factor H. At a lower stringency (1.5-fold change), a total of 63 probe sets were altered at 0.1 {mu}M DCVC and 45 at 1 {mu}M DCVC. Genes associated with stress, apoptosis, cell proliferation and repair and DCVC metabolism were altered, as were a small number of genes that did not appear to be associated with the known mode of action of DCVC. Some of these genes may serve as molecular markers of TCE exposure and effects in the human kidney.

  12. Metabolic alkalosis transition in renal proximal tubule cells facilitates an increase in CYP27B1, while blunting responsiveness to PTH

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Parathyroid hormone (PTH) is the central activator of renal proximal 1-alpha-hydroxylase (CYP27B1), the enzyme responsible for synthesis of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). Past studies have documented a disruption of CYP27B1 activity in chronic metabolic acidosis in vivo, while simulated ac...

  13. Who regenerates the kidney tubule?

    PubMed

    Kramann, Rafael; Kusaba, Tetsuro; Humphreys, Benjamin D

    2015-06-01

    The kidney possesses profound regenerative potential and in some cases can recover completely 'restitutio at integrum' following an acute kidney injury (AKI). Emerging evidence strongly suggests that sometimes repair is incomplete, however, and, in this situation, an episode of AKI leads to future chronic kidney disease (CKD). Understanding the tubular response after AKI will shed light on the relationship between incomplete repair and future risk of CKD. The first repair phase after AKI is characterized by robust proliferation of epithelial cells in the proximal tubule. The exact source of these proliferating cells has been a source of controversy for the last decade. While nearly everyone now agrees that reparative cells arise within the proximal tubule, there is disagreement about whether all surviving cells possess an equivalent repair capacity through dedifferentiation, or alternatively whether a pre-existing intratubular stem cell population [so-called scattered tubular cells (STC)] is responsible for repair. This review will summarize the evidence on both sides of this issue and will discuss very recent genetic fate-tracing data that strongly points against the existence of intratubular stem cells but rather indicates that terminally differentiated proximal tubule epithelial cells undergo dedifferentiation upon injury to replace lost neighboring tubular epithelial cells through proliferative self-duplication. This new evidence includes data clearly indicating that STC are not committed tubular stem cells but instead represent individual dedifferentiated tubular epithelial cells that transiently express putative stem cell markers. PMID:25155054

  14. Angiotensin II Type 2 Receptor Decreases Transforming Growth Factor-β Type II Receptor Expression and Function in Human Renal Proximal Tubule Cells

    PubMed Central

    Guo, Hui-Lin; Liao, Xiao-Hui; Liu, Qi; Zhang, Ling

    2016-01-01

    Transforming growth factor-β (TGF-β), via its receptors, induces epithelial-mesenchymal transition (EMT) and plays an important role in the development of renal tubulointersitial fibrosis. Angiotensin II type 2 receptor (AT2R), which mediates beneficial renal physiological functions, has received attention as a prospective therapeutic target for renoprotection. In this study, we investigated the effect and underlying mechanism of AT2R on the TGF-β receptor II (TGF-βRII) expression and function in human proximal tubular cells (HK-2). Here, we show that the AT2R agonist CGP42112A decreased TGF-βRII protein expression in a concentration- and time-dependent manner in HK-2 cells. The inhibitory effect of the AT2R on TGF-βRII expression was blocked by the AT2R antagonists PD123319 or PD123177. Stimulation with TGF-β1 enhanced EMT in HK-2 cells, which was prevented by pre-treatment with CGP42112A. One of mechanisms in this regulation is associated with the increased TGF-βRII degradation after activation of AT2R. Furthermore, laser confocal immunofluorescence microscopy showed that AT2R and TGF-βRII colocalized in HK-2 cells. AT2R and TGF-βRII coimmunoprecipitated and this interaction was increased after AT2R agonist stimulation for 30 min. The inhibitory effect of the AT2R on TGF-βRII expression was also blocked by the nitric oxide synthase inhibitor L-NAME, indicating that nitric oxide is involved in the signaling pathway. Taken together, our study indicates that the renal AT2R regulates TGF-βRII expression and function via the nitric oxide pathway, which may be important in the control of renal tubulointerstitial fibrosis. PMID:26867007

  15. Sulfate transporters involved in sulfate secretion in the kidney are localized in the renal proximal tubule II of the elephant fish (Callorhinchus milii).

    PubMed

    Hasegawa, Kumi; Kato, Akira; Watanabe, Taro; Takagi, Wataru; Romero, Michael F; Bell, Justin D; Toop, Tes; Donald, John A; Hyodo, Susumu

    2016-07-01

    Most vertebrates, including cartilaginous fishes, maintain their plasma SO4 (2-) concentration ([SO4 (2-)]) within a narrow range of 0.2-1 mM. As seawater has a [SO4 (2-)] about 40 times higher than that of the plasma, SO4 (2-) excretion is the major role of kidneys in marine teleost fishes. It has been suggested that cartilaginous fishes also excrete excess SO4 (2-) via the kidney. However, little is known about the underlying mechanisms for SO4 (2-) transport in cartilaginous fish, largely due to the extraordinarily elaborate four-loop configuration of the nephron, which consists of at least 10 morphologically distinguishable segments. In the present study, we determined cDNA sequences from the kidney of holocephalan elephant fish (Callorhinchus milii) that encoded solute carrier family 26 member 1 (Slc26a1) and member 6 (Slc26a6), which are SO4 (2-) transporters that are expressed in mammalian and teleost kidneys. Elephant fish Slc26a1 (cmSlc26a1) and cmSlc26a6 mRNAs were coexpressed in the proximal II (PII) segment of the nephron, which comprises the second loop in the sinus zone. Functional analyses using Xenopus oocytes and the results of immunohistochemistry revealed that cmSlc26a1 is a basolaterally located electroneutral SO4 (2-) transporter, while cmSlc26a6 is an apically located, electrogenic Cl(-)/SO4 (2-) exchanger. In addition, we found that both cmSlc26a1 and cmSlc26a6 were abundantly expressed in the kidney of embryos; SO4 (2-) was concentrated in a bladder-like structure of elephant fish embryos. Our results demonstrated that the PII segment of the nephron contributes to the secretion of excess SO4 (2-) by the kidney of elephant fish. Possible mechanisms for SO4 (2-) secretion in the PII segment are discussed. PMID:27122370

  16. Distal Convoluted Tubule

    PubMed Central

    Ellison, David H.

    2014-01-01

    The distal convoluted tubule is the nephron segment that lies immediately downstream of the macula densa. Although short in length, the distal convoluted tubule plays a critical role in sodium, potassium, and divalent cation homeostasis. Recent genetic and physiologic studies have greatly expanded our understanding of how the distal convoluted tubule regulates these processes at the molecular level. This article provides an update on the distal convoluted tubule, highlighting concepts and pathophysiology relevant to clinical practice. PMID:24855283

  17. Resveratrol alleviates the cytotoxicity induced by the radiocontrast agent, ioxitalamate, by reducing the production of reactive oxygen species in HK-2 human renal proximal tubule epithelial cells in vitro

    PubMed Central

    HUANG, YEN TA; CHEN, YI YA; LAI, YU HSIEN; CHENG, CHUAN CHU; LIN, TZU CHUN; SU, YING SHIH; LIU, CHIN HUNG; LAI, PEI CHUN

    2016-01-01

    Radiocontrast-induced nephropathy (RIN) is one of the leading causes of hospital-acquired acute kidney injury (AKI). The clinical strategies currently available for the prevention of RIN are insufficient. In this study, we aimed to determine whether resveratrol, a polyphenol phytoalexin, can be used to prevent RIN. For this purpose, in vitro experiments were performed using a human renal proximal tubule epithelial cell line (HK-2 cells). Following treatment for 48 h, the highly toxic radiocontrast agent, ioxitalamate, exerted cytotoxic effects on the HK-2 cells in a concentration-dependent manner, as shown by MTT assay. The half maximal inhibitory concentration (IC50) was found to be approximately 30 mg/ml. Flow cytometry also revealed a marked increase in the number of apoptotic cells following exposure to ioxitalamate. In addition, the number of necrotic, but not necroptotic cells was increased. However, treatment with resveratrol (12.5 μM) for 48 h significantly alleviated ioxitalamate (30 mg/ml)-induced cytotoxicity, by reducing cytosolic DNA fragmentation, increasing the expression of the anti-apoptotic protein, Bcl-2 (B-cell lymphoma 2), and survivin, activating caspase-3, preventing autophagic death and suppressing the production of reactive oxygen species (ROS). Resveratrol also suppressed the ioxitalamate-induced formation of 8-hydroxy-2′-deoxyguanosine (8-OHdG), a biomarker of oxidative DNA damage. N-acetylcysteine (NAC), a ROS scavenger commonly used to prevent RIN, also reduced ioxitalamate-induced cytotoxicity, but at a high concentration of 1 mM. Sirtuin (SIRT)1 and SIRT3 were not found to play a role in these effects. Overall, our findings suggest that resveratrol may prove to be an effective adjuvant therapy for the prevention of RIN. PMID:26573558

  18. Detection and measurement of tubulitis in renal allograft rejection

    NASA Astrophysics Data System (ADS)

    Hiller, John B.; Chen, Qi; Jin, Jesse S.; Wang, Yung; Yong, James L. C.

    1997-04-01

    Tubulitis is one of the most reliable signs of acute renal allograft rejection. It occurs when mononuclear cells are localized between the lining tubular epithelial cells with or without disruption of the tubular basement membrane. It has been found that tubulitis takes place predominantly in the regions of the distal convoluted tubules and the cortical collecting system. The image processing tasks are to find the tubule boundaries and to find the relative location of the lymphocytes and epithelial cells and tubule boundaries. The requirement for accuracy applies to determining the relative locations of the lymphocytes and the tubule boundaries. This paper will show how the different sizes and grey values of the lymphocytes and epithelial cells simplify their identification and location. Difficulties in finding the tubule boundaries image processing will be illustrated. It will be shown how proximate location of epithelial cells and the tubule boundary leads to distortion in determination of the calculated boundary. However, in tubulitis the lymphocytes and the tubule boundaries are proximate.In these cases the tubule boundary is adequately resolved and the image processing is satisfactory to determining relativity in location. An adaptive non-linear anisotropic diffusion process is presented for image filtering and segmentation. Multi-layer analysis is used to extract lymphocytes and tubulitis from images. This paper will discuss grading of tissue using the Banff system. The ability to use computer to use computer processing will be argued as obviating problems of reproducability of values for this classification. This paper will also feature discussion of alternative approaches to image processing and provide an assessment of their capability for improving the identification of the tubule boundaries.

  19. Ablation of the Stimulatory G Protein α-Subunit in Renal Proximal Tubules Leads to Parathyroid Hormone-Resistance With Increased Renal Cyp24a1 mRNA Abundance and Reduced Serum 1,25-Dihydroxyvitamin D.

    PubMed

    Zhu, Yan; He, Qing; Aydin, Cumhur; Rubera, Isabelle; Tauc, Michel; Chen, Min; Weinstein, Lee S; Marshansky, Vladimir; Jüppner, Harald; Bastepe, Murat

    2016-02-01

    PTH regulates serum calcium, phosphate, and 1,25-dihydroxyvitamin D (1,25(OH)2D) levels by acting on bone and kidney. In renal proximal tubules (PTs), PTH inhibits reabsorption of phosphate and stimulates the synthesis of 1,25(OH)2D. The PTH receptor couples to multiple G proteins. We here ablated the α-subunit of the stimulatory G protein (Gsα) in mouse PTs by using Cre recombinase driven by the promoter of type-2 sodium-glucose cotransporter (Gsα(Sglt2KO) mice). Gsα(Sglt2KO) mice were normophosphatemic but displayed, relative to controls, hypocalcemia (1.19 ±0.01 vs 1.23 ±0.01 mmol/L; P < .05), reduced serum 1,25(OH)2D (59.3 ±7.0 vs 102.5 ±12.2 pmol/L; P < .05), and elevated serum PTH (834 ±133 vs 438 ±59 pg/mL; P < .05). PTH-induced elevation in urinary cAMP excretion was blunted in Gsα(Sglt2KO) mice (2- vs 4-fold over baseline in controls; P < .05). Relative to baseline in controls, PTH-induced reduction in serum phosphate tended to be blunted in Gsα(Sglt2KO) mice (-0.39 ±0.33 vs -1.34 ±0.36 mg/dL; P = .07). Gsα(Sglt2KO) mice showed elevated renal vitamin D 24-hydroxylase and bone fibroblast growth factor-23 (FGF23) mRNA abundance (∼3.4- and ∼11-fold over controls, respectively; P < .05) and tended to have elevated serum FGF23 (829 ±76 vs 632 ±60 pg/mL in controls; P = .07). Heterozygous mice having constitutive ablation of the maternal Gsα allele (E1(m-/+)) (model of pseudohypoparathyroidism type-Ia), in which Gsα levels in PT are reduced, also exhibited elevated serum FGF23 (474 ±20 vs 374 ±27 pg/mL in controls; P < .05). Our findings indicate that Gsα is required in PTs for suppressing renal vitamin D 24-hydroxylase mRNA levels and for maintaining normal serum 1,25(OH)2D. PMID:26671181

  20. Nanocapillarity in fullerene tubules

    NASA Astrophysics Data System (ADS)

    Pederson, Mark R.; Broughton, Jeremy Q.

    1992-11-01

    Fullerene tubules are shown to be highly polarizable ``molecular straws'' capable of ingesting dipolar molecules. Local-density-functional calculations on HF molecules within a finite-length tubule, of size 144 atoms, demonstrate this effect. The energy of incarceration is several times the thermal ambient at room temperature. These calculations, now feasible on desktop workstations, open the way to the study of nanoscale capillarity and to, perhaps, precise control over shielding of specific ``guest'' compounds from external electric and magnetic fields.

  1. Bioengineered kidney tubules efficiently excrete uremic toxins

    PubMed Central

    Jansen, J.; Fedecostante, M.; Wilmer, M. J.; Peters, J. G.; Kreuser, U. M.; van den Broek, P. H.; Mensink, R. A.; Boltje, T. J.; Stamatialis, D.; Wetzels, J. F.; van den Heuvel, L. P.; Hoenderop, J. G.; Masereeuw, R.

    2016-01-01

    The development of a biotechnological platform for the removal of waste products (e.g. uremic toxins), often bound to proteins in plasma, is a prerequisite to improve current treatment modalities for patients suffering from end stage renal disease (ESRD). Here, we present a newly designed bioengineered renal tubule capable of active uremic toxin secretion through the concerted action of essential renal transporters, viz. organic anion transporter-1 (OAT1), breast cancer resistance protein (BCRP) and multidrug resistance protein-4 (MRP4). Three-dimensional cell monolayer formation of human conditionally immortalized proximal tubule epithelial cells (ciPTEC) on biofunctionalized hollow fibers with maintained barrier function was demonstrated. Using a tailor made flow system, the secretory clearance of human serum albumin-bound uremic toxins, indoxyl sulfate and kynurenic acid, as well as albumin reabsorption across the renal tubule was confirmed. These functional bioengineered renal tubules are promising entities in renal replacement therapies and regenerative medicine, as well as in drug development programs. PMID:27242131

  2. Expression of Bcl-2 and Bax in Mouse Renal Tubules during Kidney Development

    PubMed Central

    Song, Xiao-Feng; Ren, Hao; Andreasen, Arne; Thomsen, Jesper Skovhus; Zhai, Xiao-Yue

    2012-01-01

    Bcl-2 and Bax play an important role in apoptosis regulation, as well as in cell adhesion and migration during kidney morphogenesis, which is structurally and functionally related to mitochondria. In order to elucidate the role of Bcl-2 and Bax during kidney development, it is essential to establish the exact location of their expression in the kidney. The present study localized their expression during kidney development. Kidneys from embryonic (E) 16-, 17-, 18-day-old mouse fetuses, and postnatal (P) 1-, 3-, 5-, 7-, 14-, 21-day-old pups were embedded in Epon. Semi-thin serial sections from two E17 kidneys underwent computer assisted 3D tubule tracing. The tracing was combined with a newly developed immunohistochemical technique, which enables immunohistochemistry on glutaraldehyde fixated plastic embedded sections. Thereby, the microstructure could be described in detail, and the immunochemistry can be performed using exactly the same sections. The study showed that Bcl-2 and Bax were strongly expressed in mature proximal convoluted tubules at all time points, less strongly expressed in proximal straight tubules, and only weakly in immature proximal tubules and distal tubules. No expression was detected in ureteric bud and other earlier developing structures, such as comma bodies, S shaped bodies, glomeruli, etc. Tubules expressing Bcl-2 only were occasionally observed. The present study showed that, during kidney development, Bcl-2 and Bax are expressed differently in the proximal and distal tubules, although these two tubule segments are almost equally equipped with mitochondria. The functional significance of the different expression of Bcl-2 and Bax in proximal and distal tubules is unknown. However, the findings of the present study suggest that the mitochondrial function differs between mature proximal tubules and in the rest of the tubules. The function of Bcl-2 and Bax during tubulogenesis still needs to be investigated. PMID:22389723

  3. Tissue engineering of a bioartificial renal tubule.

    PubMed

    MacKay, S M; Funke, A J; Buffington, D A; Humes, H D

    1998-01-01

    Development of a bioartificial renal tubule with a confluent monolayer of renal epithelial cells supported on a permeable synthetic surface may be the first step to further optimization of renal substitution therapy currently used with hemodialysis or hemofiltration. Madin-Darby canine kidney cells, a permanent renal epithelial cell line, were seeded into the lumen of single hollow fibers. Functional confluence of the cells was demonstrated by the recovery of intraluminally perfused 14C-inulin that averaged >98.9% in the cell lined units vs <7.4% in the control noncell hollow fibers during identical pressure and flow conditions. The baseline absolute fluid transport rate averaged 1.4+/-0.4 microl/30 min. To test the dependency of fluid flux with oncotic and osmotic pressure differences across the bioartificial tubule, albumin was added to the extracapillary space, followed by the addition of ouabain, an inhibitor of Na+K+ adenosine triphosphatase, the enzyme responsible for active transport across the renal epithelium. Addition of albumin resulted in a significant increase in volume transport to 4.5+/-1.0 microl/30 min. Addition of ouabain inhibited transport back to baseline levels of 2.1+/-0.4 microl/30 min. These results are the first demonstration that renal epithelial cells have been grown successfully as a confluent monolayer along a hollow fiber, and exhibit functional transport capabilities. The next steps in constructing a bioartificial renal tubule successfully are to develop a multi-fiber bioreactor with primary renal proximal tubule cells that maintain not only transport properties but also differentiated metabolic and endocrine functions, including glucose and ammonia production, and the conversion of vitamin D3 to a more active derivative. A renal tubule device may add critical renal functional components not currently substituted for, thereby improving the treatment regimens for patients with acute and chronic renal failure. PMID:9617948

  4. Lipid tubule growth by osmotic pressure

    PubMed Central

    Rangamani, Padmini; Zhang, Di; Oster, George; Shen, Amy Q.

    2013-01-01

    We present here a procedure for growing lipid tubules in vitro. This method allows us to grow tubules of consistent shape and structure, and thus can be a useful tool for nano-engineering applications. There are three stages during the tubule growth process: initiation, elongation and termination. Balancing the forces that act on the tubule head shows that the growth of tubules during the elongation phase depends on the balance between osmotic pressure and the viscous drag exerted on the membrane from the substrate and the external fluid. Using a combination of mathematical modelling and experiment, we identify the key forces that control tubule growth during the elongation phase. PMID:24004559

  5. Kinesin 1 Drives Autolysosome Tubulation.

    PubMed

    Du, Wanqing; Su, Qian Peter; Chen, Yang; Zhu, Yueyao; Jiang, Dong; Rong, Yueguang; Zhang, Senyan; Zhang, Yixiao; Ren, He; Zhang, Chuanmao; Wang, Xinquan; Gao, Ning; Wang, Yanfeng; Sun, Lingfei; Sun, Yujie; Yu, Li

    2016-05-23

    Autophagic lysosome reformation (ALR) plays an important role in maintaining lysosome homeostasis. During ALR, lysosomes are reformed by recycling lysosomal components from autolysosomes. The most noticeable step of ALR is autolysosome tubulation, but it is currently unknown how the process is regulated. Here, using an approach combining in vivo studies and in vitro reconstitution, we found that the kinesin motor protein KIF5B is required for autolysosome tubulation and that KIF5B drives autolysosome tubulation by pulling on the autolysosomal membrane. Furthermore, we show that KIF5B directly interacts with PtdIns(4,5)P2. Kinesin motors are recruited and clustered on autolysosomes via interaction with PtdIns(4,5)P2 in a clathrin-dependent manner. Finally, we demonstrate that clathrin promotes formation of PtdIns(4,5)P2-enriched microdomains, which are required for clustering of KIF5B. Our study reveals a mechanism by which autolysosome tubulation was generated. PMID:27219061

  6. Molecular interactions between albumin and proximal tubular cells.

    PubMed

    Brunskill, N J

    1998-01-01

    In glomerular diseases the filtration of excess proteins into the proximal tubule, together with their subsequent reabsorption may represent an important pathological mechanism underlying progressive renal scarring. The most prominent protein in glomerular filtrate, albumin, is reabsorbed by receptor-mediated endocytosis by proximal tubular cells. It binds both to scavenger-type receptors and to megalin in the proximal tubule. Some of these receptors appear to be shared with other cell types, particularly endothelial cells. The endocytic uptake of albumin is subjected to complex hormonal and enzymatic regulation. In addition to being reabsorbed in the proximal tubule, albumin may act as a signalling molecule in these cells, and may induce the expression of numerous pro-inflammatory genes. Modulation of the interaction of albumin with proximal tubular cells may eventually prove to be of therapeutic importance in the treatment of renal diseases. PMID:9807019

  7. Segment-specific Ca(2+) transport by isolated Malpighian tubules of Drosophila melanogaster: A comparison of larval and adult stages.

    PubMed

    Browne, Austin; O'Donnell, Michael J

    2016-04-01

    Haemolymph calcium homeostasis in insects is achieved through the regulation of calcium excretion by Malpighian tubules in two ways: (1) sequestration of calcium within biomineralized granules and (2) secretion of calcium in soluble form within the primary urine. Using the scanning ion-selective electrode technique (SIET), basolateral Ca(2+) transport was measured at the distal, transitional, main and proximal tubular segments of anterior tubules isolated from both 3rd instar larvae and adults of the fruit fly Drosophila melanogaster. Basolateral Ca(2+) transport exceeded transepithelial secretion by 800-fold and 11-fold in anterior tubules of larvae and adults, respectively. The magnitude of Ca(2+) fluxes across the distal tubule of larvae and adults were larger than fluxes across the downstream segments by 10 and 40 times, respectively, indicating a dominant role for the distal segment in whole animal Ca(2+) regulation. Basolateral Ca(2+) transport across distal tubules of Drosophila varied throughout the life cycle; Ca(2+) was released by distal tubules of larvae, taken up by distal tubules of young adults and was released once again by tubules of adults ⩾ 168 h post-eclosion. In adults and larvae, SIET measurements revealed sites of both Ca(2+) uptake and Ca(2+) release across the basolateral surface of the distal segment of the same tubule, indicating that Ca(2+) transport is bidirectional. Ca(2+) uptake across the distal segment of tubules of young adults and Ca(2+) release across the distal segment of tubules of older adults was also suggestive of reversible Ca(2+) storage. Our results suggest that the distal tubules of D. melanogaster are dynamic calcium stores which allow efficient haemolymph calcium regulation through active Ca(2+) sequestration during periods of high dietary calcium intake and passive Ca(2+) release during periods of calcium deficiency. PMID:26802560

  8. Dysferlin and Myoferlin Regulate Transverse Tubule Formation and Glycerol Sensitivity

    PubMed Central

    Demonbreun, Alexis R.; Rossi, Ann E.; Alvarez, Manuel G.; Swanson, Kaitlin E.; Deveaux, H. Kieran; Earley, Judy U.; Hadhazy, Michele; Vohra, Ravneet; Walter, Glenn A.; Pytel, Peter; McNally, Elizabeth M.

    2015-01-01

    Dysferlin is a membrane-associated protein implicated in muscular dystrophy and vesicle movement and function in muscles. The precise role of dysferlin has been debated, partly because of the mild phenotype in dysferlin-null mice (Dysf). We bred Dysf mice to mice lacking myoferlin (MKO) to generate mice lacking both myoferlin and dysferlin (FER). FER animals displayed progressive muscle damage with myofiber necrosis, internalized nuclei, and, at older ages, chronic remodeling and increasing creatine kinase levels. These changes were most prominent in proximal limb and trunk muscles and were more severe than in Dysf mice. Consistently, FER animals had reduced ad libitum activity. Ultrastructural studies uncovered progressive dilation of the sarcoplasmic reticulum and ectopic and misaligned transverse tubules in FER skeletal muscle. FER muscle, and Dysf- and MKO-null muscle, exuded lipid, and serum glycerol levels were elevated in FER and Dysf mice. Glycerol injection into muscle is known to induce myopathy, and glycerol exposure promotes detachment of transverse tubules from the sarcoplasmic reticulum. Dysf, MKO, and FER muscles were highly susceptible to glycerol exposure in vitro, demonstrating a dysfunctional sarcotubule system, and in vivo glycerol exposure induced severe muscular dystrophy, especially in FER muscle. Together, these findings demonstrate the importance of dysferlin and myoferlin for transverse tubule function and in the genesis of muscular dystrophy. PMID:24177035

  9. Mitochondrial and Metabolic Dysfunction in Renal Convoluted Tubules of Obese Mice: Protective Role of Melatonin

    PubMed Central

    Giugno, Lorena; Lavazza, Antonio; Reiter, Russel J.; Rodella, Luigi Fabrizio; Rezzani, Rita

    2014-01-01

    Obesity is a common and complex health problem, which impacts crucial organs; it is also considered an independent risk factor for chronic kidney disease. Few studies have analyzed the consequence of obesity in the renal proximal convoluted tubules, which are the major tubules involved in reabsorptive processes. For optimal performance of the kidney, energy is primarily provided by mitochondria. Melatonin, an indoleamine and antioxidant, has been identified in mitochondria, and there is considerable evidence regarding its essential role in the prevention of oxidative mitochondrial damage. In this study we evaluated the mechanism(s) of mitochondrial alterations in an animal model of obesity (ob/ob mice) and describe the beneficial effects of melatonin treatment on mitochondrial morphology and dynamics as influenced by mitofusin-2 and the intrinsic apoptotic cascade. Melatonin dissolved in 1% ethanol was added to the drinking water from postnatal week 5–13; the calculated dose of melatonin intake was 100 mg/kg body weight/day. Compared to control mice, obesity-related morphological alterations were apparent in the proximal tubules which contained round mitochondria with irregular, short cristae and cells with elevated apoptotic index. Melatonin supplementation in obese mice changed mitochondria shape and cristae organization of proximal tubules, enhanced mitofusin-2 expression, which in turn modulated the progression of the mitochondria-driven intrinsic apoptotic pathway. These changes possibly aid in reducing renal failure. The melatonin-mediated changes indicate its potential protective use against renal morphological damage and dysfunction associated with obesity and metabolic disease. PMID:25347680

  10. [Micromorphology of the malpighian tubules in the louse Pediculus humanus corporis (Anoplura)].

    PubMed

    Chaĭka, S Iu

    1985-01-01

    The ultrastructure of the Malpighian tubes in human louse Pediculus humanus corporis has been studied. The cells of the Malpighian tubules have the uniform structure: the apical surface is covered with microvilli, the basal plasmatic membrana forms relatively small invaginations. The microvilli are most developed in cells of the proximal department of the Malpighian tubules. Microvilli of the apical surface of the cells do not contain mitochondria which are localized mainly in supranuclear part of the cell. Cells are lined with a homogenous basal membrane. PMID:3986247

  11. Assessing Cd-induced stress from plant spectral response

    NASA Astrophysics Data System (ADS)

    Kancheva, Rumiana; Georgiev, Georgi

    2014-10-01

    Remote sensing plays a significant role in local, regional and global monitoring of land covers. Ecological concerns worldwide determine the importance of remote sensing applications for the assessment of soil conditions, vegetation health and identification of stress-induced changes. The extensive industrial growth and intensive agricultural land-use arise the serious ecological problem of environmental pollution associated with the increasing anthropogenic pressure on the environment. Soil contamination is a reason for degradation processes and temporary or permanent decrease of the productive capacity of land. Heavy metals are among the most dangerous pollutants because of their toxicity, persistent nature, easy up-take by plants and long biological half-life. This paper takes as its focus the study of crop species spectral response to Cd pollution. Ground-based experiments were performed, using alfalfa, spring barley and pea grown in Cd contaminated soils and in different hydroponic systems under varying concentrations of the heavy metal. Cd toxicity manifested itself by inhibition of plant growth and synthesis of photosynthetic pigments. Multispectral reflectance, absorbance and transmittance, as well as red and far red fluorescence were measured and examined for their suitability to detect differences in plant condition. Statistical analysis was performed and empirical relationships were established between Cd concentration, plant growth variables and spectral response Various spectral properties proved to be indicators of plant performance and quantitative estimators of the degree of the Cd-induced stress.

  12. [Effects of sex hormone on the dilatation of urinary tubule and acidophil body in NON mice].

    PubMed

    Sahata, H; Suzuki, S; Ago, A; Mifune, H; Sakamoto, H

    1994-10-01

    The influences of sex hormones on the dilatation of the urinary tubules and acidophil bodies were histologically investigated in NON (Non-Obese Non-diabetic) mice. Although the dilatation of the proximal tubules and acidophil bodies in NON mice were observed only in female but not in male, a slight dilatation and a few bodies were also observed in castrated male NON mice. Moreover, in ovariectomized female NON mice the dilatation and bodies were less compared with intact female NON mice. Estradiol administration induced prominent dilatation and numerous acidophil bodies, while the administration of testosterone showed a complete preventive effect. Therefore, it is suggested that the dilatation of the tubules and the acidophil bodies can be profoundly influenced by sex hormones. PMID:7805803

  13. Mechanisms of albumin uptake by proximal tubular cells.

    PubMed

    Brunskill, N

    2001-01-01

    The likely role of albumin in the induction tubulo-interstitial injury in proteinuria has stimulated considerable interest in the entry of albumin into the proximal tubule and its subsequent uptake by proximal tubular cells. Currently, there is considerable controversy over the degree of glomerular permeability to albumin. After filtration, however, albumin binds to megalin and cubulin, two giant receptors in the apical membrane of proximal tubular cells. Albumin is subsequently re-absorbed by proximal tubular cells by receptor-mediated endocytosis, a process subject to complex regulation. The interaction of albumin with proximal tubule cells also leads to the generation of intracellular signals. The understanding of these pathways may provide important insights into the pathogenesis of renal scarring in proteinuria. PMID:11158855

  14. Calcium Oxalate Accumulation in Malpighian Tubules of Silkworm (Bombyx mori)

    NASA Astrophysics Data System (ADS)

    Wyman, Aaron J.; Webb, Mary Alice

    2007-04-01

    Silkworm provides an ideal model system for study of calcium oxalate crystallization in kidney-like organs, called Malpighian tubules. During their growth and development, silkworm larvae accumulate massive amounts of calcium oxalate crystals in their Malpighian tubules with no apparent harm to the organism. This manuscript reports studies of crystal structure in the tubules along with analyses identifying molecular constituents of tubule exudate.

  15. Triacylglycerol metabolism in isolated rat kidney cortex tubules.

    PubMed

    Wirthensohn, G; Guder, W G

    1980-01-15

    Triacylglycerol metabolism has been studied in kidney cortex tubules from starved rats, prepared by collagenase treatment. Triacylglycerol was determined by a newly developed fully enzymic method. Incubation of tubules in the absence of fatty acids led to a decrease of endogenous triacylglycerol by about 50% in 1h. Addition of albuminbound oleate or palmitate resulted in a steady increase of tissue triacylglycerol over 2h. The rate of triacylglycerol synthesis was linearly dependent on oleate concentration up to 0.8mm, reaching a saturation at higher concentrations. Triacylglycerol formation from palmitate was less than that from oleate. This difference was qualitatively the same when net synthesis was compared with incorporation of labelled fatty acids. Quantitatively, however, the difference was less with the incorporation technique. Gluconeogenic substrates, which by themselves had no effect on triacylglycerol concentrations, stimulated neutral lipid formation from fatty acids. Glucose and lysine did not have such a stimulatory effect. Inhibition of gluconeogenesis from lactate by mercaptopicolinic acid likewise inhibited triacylglycerol formation. This inhibitory effect was seen with oleate as well as with oleate plus lactate. When [2-(14)C]lactate was used the incorporation of label into triacylglycerol was found in the glycerol moiety exclusively. Addition of dl-beta-hydroxybutyrate (5mm) to the incubation medium in the presence of oleate or oleate plus lactate led to a significant increase in triacylglycerol formation. In contrast with the gluconeogenic substrates, dl-beta-hydroxybutyrate had no stimulatory effect on fatty acid uptake. The results suggest that renal triacylglycerol formation is a quantitatively important metabolic process. The finding that gluconeogenic substrates, but not glucose, increase lipid formation, indicates that the glycerol moiety is formed by glyceroneogenesis in the proximal tubules. The effect of ketone bodies seems to be

  16. ROS-dependent HMGA2 upregulation mediates Cd-induced proliferation in MRC-5 cells.

    PubMed

    Xie, Huaying; Wang, Jiayue; Jiang, Liping; Geng, Chengyan; Li, Qiujuan; Mei, Dan; Zhao, Lian; Cao, Jun

    2016-08-01

    Cadmium (Cd) is a heavy metal widely found in a number of environmental matrices, and the exposure to Cd is increasing nowadays. In this study, the role of high mobility group A2 (HMGA2) in Cd-induced proliferation was investigated in MRC-5 cells. Exposure to Cd (2μM) for 48h significantly enhanced the growth of MRC-5 cells, increased reactive oxygen species (ROS) production, and induced both mRNA and protein expression of HMGA2. Evidence for Cd-induced reduction of the number of G0/G1 phase cells and an increase in the number of cells in S phase and G2/M phase was sought by flow cytometric analysis. Western blot analysis showed that cyclin D1, cyclin B1, and cyclin E were upregulated in Cd-treated cells. Further study revealed that N-acetyl cysteine (NAC) markedly prevented Cd-induced proliferation of MRC-5 cells, ROS generation, and the increasing protein level of HMGA2. Silencing of HMGA2 gene by siRNA blocked Cd-induced cyclin D1, cyclin B1, and cyclin E expression and reduction of the number of G0/G1 phase cells. Combining, our data showed that Cd-induced ROS formation provoked HMGA2 upregulation, caused cell cycle changes, and led to cell proliferation. This suggests that HMGA2 might be an important biomarker in Cd-induced cell proliferation. PMID:27071802

  17. Invasion of dentinal tubules by oral bacteria.

    PubMed

    Love, R M; Jenkinson, H F

    2002-01-01

    Bacterial invasion of dentinal tubules commonly occurs when dentin is exposed following a breach in the integrity of the overlying enamel or cementum. Bacterial products diffuse through the dentinal tubule toward the pulp and evoke inflammatory changes in the pulpo-dentin complex. These may eliminate the bacterial insult and block the route of infection. Unchecked, invasion results in pulpitis and pulp necrosis, infection of the root canal system, and periapical disease. While several hundred bacterial species are known to inhabit the oral cavity, a relatively small and select group of bacteria is involved in the invasion of dentinal tubules and subsequent infection of the root canal space. Gram-positive organisms dominate the tubule microflora in both carious and non-carious dentin. The relatively high numbers of obligate anaerobes present-such as Eubacterium spp., Propionibacterium spp., Bifidobacterium spp., Peptostreptococcus micros, and Veillonella spp.-suggest that the environment favors growth of these bacteria. Gram-negative obligate anaerobic rods, e.g., Porphyromonas spp., are less frequently recovered. Streptococci are among the most commonly identified bacteria that invade dentin. Recent evidence suggests that streptococci may recognize components present within dentinal tubules, such as collagen type I, which stimulate bacterial adhesion and intra-tubular growth. Specific interactions of other oral bacteria with invading streptococci may then facilitate the invasion of dentin by select bacterial groupings. An understanding the mechanisms involved in dentinal tubule invasion by bacteria should allow for the development of new control strategies, such as inhibitory compounds incorporated into oral health care products or dental materials, which would assist in the practice of endodontics. PMID:12097359

  18. Mammalian Target of Rapamycin Mediates Kidney Injury Molecule 1-Dependent Tubule Injury in a Surrogate Model.

    PubMed

    Yin, Wenqing; Naini, Said Movahedi; Chen, Guochun; Hentschel, Dirk M; Humphreys, Benjamin D; Bonventre, Joseph V

    2016-07-01

    Kidney injury molecule 1 (KIM-1), an epithelial phagocytic receptor, is markedly upregulated in the proximal tubule in various forms of acute and chronic kidney injury in humans and many other species. Whereas acute expression of KIM-1 has adaptive anti-inflammatory effects, chronic expression may be maladaptive in mice. Here, we characterized the zebrafish Kim family, consisting of Kim-1, Kim-3, and Kim-4. Kim-1 was markedly upregulated in kidney after gentamicin-induced injury and had conserved phagocytic activity in zebrafish. Both constitutive and tamoxifen-induced expression of Kim-1 in zebrafish kidney tubules resulted in loss of the tubule brush border, reduced GFR, pericardial edema, and increased mortality. Kim-1-induced kidney injury was associated with reduction of growth of adult fish. Kim-1 expression led to activation of the mammalian target of rapamycin (mTOR) pathway, and inhibition of this pathway with rapamycin increased survival. mTOR pathway inhibition in KIM-1-overexpressing transgenic mice also significantly ameliorated serum creatinine level, proteinuria, tubular injury, and kidney inflammation. In conclusion, persistent Kim-1 expression results in chronic kidney damage in zebrafish through a mechanism involving mTOR. This observation predicted the role of the mTOR pathway and the therapeutic efficacy of mTOR-targeted agents in KIM-1-mediated kidney injury and fibrosis in mice, demonstrating the utility of the Kim-1 renal tubule zebrafish models. PMID:26538632

  19. High Yield Synthesis of Bucky Tubules and Bucky Onions

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoping; Wang, Youwen; Li, Wenzhu; Wenzhou, Li

    1994-04-01

    The bucky tubules and bucky onions are synthesized in macroscopic quantity with high yield by modified Kratschmer-Lamb-Fostiropoulos-Huffman method. Besides ordinary concentric bucky tubules, also are observed abnormal nonconcentric multilayer graphitic tubules with varying layer spacings. The curved graphitic tubules are observed, showing the tendency to form torus. Under appropriate helium pressure, about half of the synthesized product is the multi-shell bucky onions, polyhedral in shape in accord with the theoretical calculation.

  20. Update on nerve repair by biological tubulization

    PubMed Central

    2014-01-01

    Many surgical techniques are available for bridging peripheral nerve defects. Autologous nerve grafts are the current gold standard for most clinical conditions. In selected cases, alternative types of conduits can be used. Although most efforts are today directed towards the development of artificial synthetic nerve guides, the use of non-nervous autologous tissue-based conduits (biological tubulization) can still be considered a valuable alternative to nerve autografts. In this paper we will overview the advancements in biological tubulization of nerve defects, with either mono-component or multiple-component autotransplants, with a special focus on the use of a vein segment filled with skeletal muscle fibers, a technique that has been widely investigated in our laboratory and that has already been successfully introduced in the clinical practice. PMID:24606921

  1. Update on nerve repair by biological tubulization.

    PubMed

    Geuna, Stefano; Tos, Pierluigi; Titolo, Paolo; Ciclamini, Davide; Beningo, Teresa; Battiston, Bruno

    2014-01-01

    Many surgical techniques are available for bridging peripheral nerve defects. Autologous nerve grafts are the current gold standard for most clinical conditions. In selected cases, alternative types of conduits can be used. Although most efforts are today directed towards the development of artificial synthetic nerve guides, the use of non-nervous autologous tissue-based conduits (biological tubulization) can still be considered a valuable alternative to nerve autografts. In this paper we will overview the advancements in biological tubulization of nerve defects, with either mono-component or multiple-component autotransplants, with a special focus on the use of a vein segment filled with skeletal muscle fibers, a technique that has been widely investigated in our laboratory and that has already been successfully introduced in the clinical practice. PMID:24606921

  2. Morphological instability of whiskers, pores, and tubules

    NASA Astrophysics Data System (ADS)

    Kirill, Dimitri Jay

    1999-11-01

    A thin, stressed solid cylinder, a whisker, is subject to mass transport by curvature and elastic-stress-driven surface diffusion. The stability of the cylindrical surface is examined using linear stability theory. It is found that the applied stress leads to a greater range of unstable wavenumbers, and hence is destabilizing. The presence of elastic strains can excite non-axisymmetric modes, which, under certain conditions, are preferred and can give rise to helical surfaces. In addition, asymptotic formulas for growth rate in the limit of long and short wavelengths are found. A possible experiment is proposed which, if undertaken, should reveal the helical instability. The linear stability analysis is then extended to the case of cylindrical pore channels and hollow cylindrical tubules. In both cases, results similar to the whisker are found---increased applied stress leads to a greater range of unstable wavenumbers. For both the pore and tubule geometries, the dominant modes are axisymmetric for any value of applied stress; this contrasts with the solid whisker results. Since the tubule geometry consists of an inner and outer surface, there is a phase relationship between the two surface perturbations. The most dangerous eigenmode can exhibit either in-phase (sinuous) or 180° out-of-phase (varicose) perturbations, depending on the value of applied stress. Furthermore, there is a critical value of applied stress below which the most dangerous mode is varicose, and above which it is sinuous. Lastly, asymptotic formulas for growth rate are obtained in the limit of a thin-walled tubule. These results compare favorably to work done on stressed lamellar composites.

  3. BIN1 regulates dynamic t-tubule membrane.

    PubMed

    Fu, Ying; Hong, TingTing

    2016-07-01

    Cardiac transverse tubules (t-tubules) are specific membrane organelles critical in calcium signaling and excitation-contraction coupling required for beat-to-beat heart contraction. T-tubules are highly branched and form an interconnected network that penetrates the myocyte interior to form junctions with the sarcoplasmic reticulum. T-tubules are selectively enriched with specific ion channels and proteins crucial in calcium transient development necessary in excitation-contraction coupling, thus t-tubules are a key component of cardiac myocyte function. In this review, we focus primarily on two proteins concentrated within the t-tubular network, the L-type calcium channel (LTCC) and associated membrane anchor protein, bridging integrator 1 (BIN1). Here, we provide an overview of current knowledge in t-tubule morphology, composition, microdomains, as well as the dynamics of the t-tubule network. Secondly, we highlight multiple aspects of BIN1-dependent t-tubule function, which includes forward trafficking of LTCCs to t-tubules, LTCC clustering at t-tubule surface, microdomain organization and regulation at t-tubule membrane, and the formation of a slow diffusion barrier within t-tubules. Lastly, we describe progress in characterizing how acquired human heart failure can be attributed to abnormal BIN1 transcription and associated t-tubule remodeling. Understanding BIN1-regulated cardiac t-tubule biology in human heart failure management has the dual benefit of promoting progress in both biomarker development and therapeutic target identification. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel. PMID:26578114

  4. Hazard evaluation of chemicals that cause accumulation of alpha 2u-globulin, hyaline droplet nephropathy, and tubule neoplasia in the kidneys of male rats.

    PubMed Central

    Hard, G C; Rodgers, I S; Baetcke, K P; Richards, W L; McGaughy, R E; Valcovic, L R

    1993-01-01

    This review paper examines the relationship between chemicals inducing excessive accumulation of alpha 2u-globulin (alpha 2u-g) (CIGA) in hyaline droplets in male rat kidneys and the subsequent development of nephrotoxicity and renal tubule neoplasia in the male rat. This dose-responsive hyaline droplet accumulation distinguishes CIGA carcinogens from classical renal carcinogens. CIGA carcinogens also do not appear to react with DNA and are generally negative in short-term tests for genotoxicity, CIGA or their metabolites bind specifically, but reversibly, to male rat alpha 2u-g. The resulting complex appears to be more resistant to hydrolytic degradation in the proximal tubule than native, unbound alpha 2u-g. Single cell necrosis of the tubule epithelium, with associated granular cast formation and papillary mineralization, is followed by sustained regenerative tubule cell proliferation, foci of tubule hyperplasia in the convoluted proximal tubules, and renal tubule tumors. Although structurally similar proteins have been detected in other species, including humans, renal lesions characteristic of alpha 2u-g nephropathy have not been observed. Epidemiologic investigation has not specifically examined the CIGA hypothesis for humans. Based on cancer bioassays, hormone manipulation studies, investigations in an alpha 2u-g-deficient strain of rat, and other laboratory data, an increased proliferative response caused by chemically induced cytotoxicity appears to play a role in the development of renal tubule tumors in male rats. Thus, it is reasonable to suggest that the renal effects induced in male rats by chemicals causing alpha 2u-g accumulation are unlikely to occur in humans. Images FIGURE 1. FIGURE 2. FIGURE 3. FIGURE 4. FIGURE 5. FIGURE 6. FIGURE 7. FIGURE 8. FIGURE 9. FIGURE 10. FIGURE 11. FIGURE 12. FIGURE 13. PMID:7686485

  5. Proximity fuze

    DOEpatents

    Harrison, Thomas R.

    1989-08-22

    A proximity fuze system includes an optical ranging apparatus, a detonation circuit controlled by the optical ranging apparatus, and an explosive charge detonated by the detonation cirtcuit. The optical ranging apparatus includes a pulsed laser light source for generating target ranging light pulses and optical reference light pulses. A single lens directs ranging pulses to a target and collects reflected light from the target. An optical fiber bundle is used for delaying the optical reference pulses to correspond to a predetermined distance from the target. The optical ranging apparatus includes circuitry for providing a first signal depending upon the light pulses reflected from the target, a second signal depending upon the light pulses from the optical delay fiber bundle, and an output signal when the first and second signals coincide with each other. The output signal occurs when the distance from the target is equal to the predetermined distance form the target. Additional circuitry distinguishes pulses reflected from the target from background solar radiation.

  6. Proximity fuze

    DOEpatents

    Harrison, T.R.

    1987-07-10

    A proximity fuze system includes an optical ranging apparatus, a detonation circuit controlled by the optical ranging apparatus, and an explosive charge detonated by the detonation circuit. The optical ranging apparatus includes a pulsed laser light source for generating target ranging light pulses and optical reference light pulses. A single lens directs ranging pulses to a target and collects reflected light from the target. An optical fiber bundle is used for delaying the optical reference pulses to correspond to a predetermined distance from the target. The optical ranging apparatus includes circuitry for providing a first signal depending upon the light pulses reflected from the target, a second signal depending upon the light pulses from the optical delay fiber bundle, and an output signal when the first and second signals coincide with each other. The output signal occurs when the distance from the target is equal to the predetermined distance from the target. Additional circuitry distinguishes pulses reflected from the target from background solar radiation. 3 figs.

  7. Proximal renal tubular acidosis

    MedlinePlus

    Renal tubular acidosis - proximal; Type II RTA; RTA - proximal; Renal tubular acidosis type II ... by alkaline substances, mainly bicarbonate. Proximal renal tubular acidosis (Type II RTA) occurs when bicarbonate is not ...

  8. Role of the paracellular pathway in isotonic fluid movement across the renal tubule.

    PubMed

    Boulpaep, E L; Sackin, H

    1977-01-01

    Evidence for a highly permeable paracellular shunt in the proximal tubule is reviewed. The paracellular pathway is described as a crucial site for the regulation of net absorption and for solute-solvent interaction. Available models for the coupling of salt and water transport are assessed with respect to the problem of isotonic water movement. Two new models are proposed taking into account that the tight junctions are permeable to salt and water and that active transport sites for sodium are distributed uniformly along the lateral cell membrane. The first model (continuous model) is a modification of Diamond and Bossert's proposal using different assumptions and boundary conditions. No appreciable standing gradients are predicted by this model. The second model (compartmental model) is an expansion of Curran's double membrane model by including additional compartments and driving forces. Both models predict a reabsorbate which is not isosmotic. For the particular case of the proximal tubule it is shown that in the presence of a leaky epithelium these deviations from isotonicity might have escaped experimental observation. PMID:331692

  9. Shape transitions in anisotropic multicomponent lipid tubules

    NASA Astrophysics Data System (ADS)

    Atherton, Tim

    2016-05-01

    Abstract Ternary mixtures of saturated and unsaturated lipids together with cholesterol can be induced to phase separate by photo-peroxidation into lipid-ordered Lo and lipid-disordered Ld domains. Because these have different mechanical properties, the phase separation is accompanied by dramatic changes in morphology. This work considers a tubule composed of Ld phase with Lo phase inclusions that possess greater rigidity; this system has been shown experimentally by Yuan and coworkers to spontaneously adopt either banded or disc configurations following phase separation. The static behaviour of inter-domain interactions is analyzed in each of these geometries by solving the linearized shape equations. These calculations suggest a possible mechanism by which the two structures form.

  10. Golgi protein FAPP2 tubulates membranes

    PubMed Central

    Cao, Xinwang; Coskun, Ünal; Rössle, Manfred; Buschhorn, Sabine B.; Grzybek, Michal; Dafforn, Timothy R.; Lenoir, Marc; Overduin, Michael; Simons, Kai

    2009-01-01

    The Golgi-associated four-phosphate adaptor protein 2 (FAPP2) has been shown to possess transfer activity for glucosylceramide both in vitro and in cells. We have previously shown that FAPP2 is involved in apical transport from the Golgi complex in epithelial MDCK cells. In this paper we assign an unknown activity for the protein as well as providing structural insight into protein assembly and a low-resolution envelope structure. By applying analytical ultracentrifugation and small-angle x-ray scattering, we show that FAPP2 is a dimeric protein in solution, having a curved shape 30 nm in length. The purified FAPP2 protein has the capability to form tubules from membrane sheets in vitro. This activity is dependent on the phosphoinositide-binding activity of the PH domain of FAPP2. These data suggest that FAPP2 functions directly in the formation of apical carriers in the trans-Golgi network. PMID:19940249

  11. Dentinal tubules revealed with X-ray tensor tomography.

    PubMed

    Jud, Christoph; Schaff, Florian; Zanette, Irene; Wolf, Johannes; Fehringer, Andreas; Pfeiffer, Franz

    2016-09-01

    Dentin is a mineralized material making up most of the tooth bulk. A system of microtubules, so called dentinal tubules, transverses it radially from the pulp chamber to the outside. This highly oriented structure leads to anisotropic mechanical properties directly connected to the tubules orientation and density: the ultimate tensile strength as well as the fracture toughness and the shear strength are largest perpendicular to dentinal tubules. Consequently, the fatigue strength depends on the direction of dentinal tubules, too. However, none of the existing techniques used to investigate teeth provide access to orientation and density of dentinal tubules for an entire specimen in a non-destructive way. In this paper, we measure a third molar human tooth both with conventional micro-CT and X-ray tensor tomography (XTT). While the achievable resolution in micro-CT is too low to directly resolve the dentinal tubules, we provide strong evidence that the direction and density of dentinal tubules can be indirectly measured by XTT, which exploits small-angle X-ray scattering to retrieve a 3D map of scattering tensors. We show that the mean directions of scattering structures correlate to the orientation of dentinal tubules and that the mean effective scattering strength provides an estimation of the relative density of dentinal tubules. Thus, this method could be applied to investigate the connection between tubule orientation and fatigue or tensile properties of teeth for a full sample without cutting one, non-representative peace of tooth out of the full sample. PMID:27424269

  12. Incorporating domain knowledge for tubule detection in breast histopathology using O'Callaghan neighborhoods

    NASA Astrophysics Data System (ADS)

    Basavanhally, Ajay; Yu, Elaine; Xu, Jun; Ganesan, Shridar; Feldman, Michael; Tomaszewski, John; Madabhushi, Anant

    2011-03-01

    An important criterion for identifying complicated objects with multiple attributes is the use of domain knowledge which reflects the precise spatial linking of the constituent attributes. Hence, simply detecting the presence of the low-level attributes that constitute the object, even in cases where these attributes might be detected in spatial proximity to each other is usually not a robust strategy. The O'Callaghan neighborhood is an ideal vehicle for characterizing objects comprised of multiple attributes spatially connected to each other in a precise fashion because it allows for modeling and imposing spatial distance and directional constraints on the object attributes. In this work we apply the O'Callaghan neighborhood to the problem of tubule identification on hematoxylin and eosin (H & E) stained breast cancer (BCa) histopathology, where a tubule is characterized by a central lumen surrounded by cytoplasm and a ring of nuclei around the cytoplasm. The detection of tubules is important because tubular density is an important predictor in cancer grade determination. In the context of ER+ BCa, grade has been shown to be strongly linked to disease aggressiveness and patient outcome. The more standard pattern recognition approaches to detection of complex objects typically involve training classifiers for low-level attributes individually. For tubule detection, the spatial proximity of lumen, cytoplasm, and nuclei might suggest the presence of a tubule. However such an approach could also suffer from false positive errors due to the presence of fat, stroma, and other lumen-like areas that could be mistaken for tubules. In this work, tubules are identified by imposing spatial and distance constraints using O'Callaghan neighborhoods between the ring of nuclei around each lumen. In this work, cancer nuclei in each image are found via a color deconvolution scheme, which isolates the hematoxylin stain, thereby enabling automated detection of individual cell nuclei

  13. Proximal tubular NHEs: sodium, protons and calcium?

    PubMed Central

    Alexander, R. Todd; Dimke, Henrik; Cordat, Emmanuelle

    2016-01-01

    Na+/H+ exchange activity in the apical membrane of the proximal tubule is fundamental to the reabsorption of Na+ and water from the filtrate. The role of this exchange process in bicarbonate reclamation and, consequently, the maintenance of acid-base homeostasis has been appreciated for at least half a century and remains a pillar of renal tubular physiology. More recently, apical Na+/H+ exchange, mediated by Na+/H+ exchanger isoform 3 (NHE3), has been implicated in proximal tubular reabsorption of Ca2+ and Ca2+ homeostasis in general. Overexpression of NHE3 increased paracellular Ca2+ flux in a proximal tubular cell model. Consistent with this observation, mice with genetic deletion of Nhe3 have a noticable renal Ca2+ leak. These mice also display decreased intestinal Ca2+ uptake and osteopenia. This review highlights the traditional roles of proximal tubular Na+/H+ exchange and summarizes recent novel findings implicating the predominant isoform, NHE3, in Ca2+ homeostasis. PMID:23761670

  14. Proximal tubule proliferation is insufficient to induce rapid cyst formation after cilia disruption.

    PubMed

    Sharma, Neeraj; Malarkey, Erik B; Berbari, Nicolas F; O'Connor, Amber K; Vanden Heuvel, Gregory B; Mrug, Michal; Yoder, Bradley K

    2013-02-01

    Disrupting the function of cilia in mouse kidneys results in rapid or slow progression of cystic disease depending on whether the animals are juveniles or adults, respectively. Renal injury can also markedly accelerate the renal cyst formation that occurs after disruption of cilia in adult mice. Rates of cell proliferation are markedly higher in juvenile than adult kidneys and increase after renal injury, suggesting that cell proliferation may enhance the development of cysts. Here, we induced cilia loss in the kidneys of adult mice in the presence or absence of a Cux-1 transgene, which maintains cell proliferation. By using this model, we were able to avoid additional factors such as inflammation and dedifferentiation, which associate with renal injury and may also influence the rate of cystogenesis. After induction of cilia loss, cystic disease was not more pronounced in adult mice with the Cux-1 transgene compared with those without the transgene. In conclusion, these data suggest that proliferation is unlikely to be the sole mechanism underlying the rapid cystogenesis observed after injury in mice that lose cilia function in adulthood. PMID:23411784

  15. Stimulation of proximal tubular cell apoptosis by albumin-bound fatty acids mediated by peroxisome proliferator activated receptor-gamma.

    PubMed

    Arici, Mustafa; Chana, Ravinder; Lewington, Andrew; Brown, Jez; Brunskill, Nigel John

    2003-01-01

    In nephrotic syndrome, large quantities of albumin enter the kidney tubule. This albumin carries with it a heavy load of fatty acids to which the proximal tubule cells are exposed at high concentration. It is postulated that exposure to fatty acids in this way is injurious to proximal tubule cells. This study has examined the ability of fatty acids to interact with peroxisome proliferator-activated receptors (PPAR) in primary cultures of human proximal tubule cells. Luciferase reporter assays in transiently transfected human proximal tubule cells were used to show that albumin bound fatty acids and other agonists activate PPARgamma in a dose-dependent manner. One of the consequences of this activation is apoptosis of the cells as determined by changes in cell morphology, evidence of PARP cleavage, and appearance of DNA laddering. Overexpression of PPARgamma in these cells also results in enhanced apoptosis. Both fatty acid-induced PPAR activation and apoptosis in these cells can be blocked by PPAR response element decoy oligonucleotides. Activation of PPARgamma by the specific agonist PGJ(2) is associated with inhibition of cell proliferation, whereas activation by albumin bound fatty acids is accompanied by increased proliferation. However, the net balance of apoptosis/proliferation favors deletion of cells. These results implicate albumin-bound fatty acids as important mediators of tubular injury in nephrosis and provide fresh impetus for pursuit of lipid-lowering strategies in proteinuric renal disease. PMID:12506134

  16. Heterogeneity of T-Tubules in Pig Hearts

    PubMed Central

    Gadeberg, Hanne C.; Bond, Richard C.; Kong, Cherrie H. T.; Chanoit, Guillaume P.; Ascione, Raimondo; Cannell, Mark B.; James, Andrew F.

    2016-01-01

    Background T-tubules are invaginations of the sarcolemma that play a key role in excitation-contraction coupling in mammalian cardiac myocytes. Although t-tubules were generally considered to be effectively absent in atrial myocytes, recent studies on atrial cells from larger mammals suggest that t-tubules may be more numerous than previously supposed. However, the degree of heterogeneity between cardiomyocytes in the extent of the t-tubule network remains unclear. The aim of the present study was to investigate the t-tubule network of pig atrial myocytes in comparison with ventricular tissue. Methods Cardiac tissue was obtained from young female Landrace White pigs (45–75 kg, 5–6 months old). Cardiomyocytes were isolated by arterial perfusion with a collagenase-containing solution. Ca2+ transients were examined in field-stimulated isolated cells loaded with fluo-4-AM. Membranes of isolated cells were visualized using di-8-ANEPPS. T-tubules were visualized in fixed-frozen tissue sections stained with Alexa-Fluor 488-conjugated WGA. Binary images were obtained by application of a threshold and t-tubule density (TTD) calculated. A distance mapping approach was used to calculate half-distance to nearest t-tubule (HDTT). Results & Conclusion The spatio-temporal properties of the Ca2+ transient appeared to be consistent with the absence of functional t-tubules in isolated atrial myocytes. However, t-tubules could be identified in a sub-population of atrial cells in frozen sections. While all ventricular myocytes had TTD >3% (mean TTD = 6.94±0.395%, n = 24), this was true of just 5/22 atrial cells. Mean atrial TTD (2.35±0.457%, n = 22) was lower than ventricular TTD (P<0.0001). TTD correlated with cell-width (r = 0.7756, n = 46, P<0.0001). HDTT was significantly greater in the atrial cells with TTD ≤3% (2.29±0.16 μm, n = 17) than in either ventricular cells (1.33±0.05 μm, n = 24, P<0.0001) or in atrial cells with TTD >3% (1.65±0.06 μm, n = 5, P<0.05). These

  17. Proximal Tibial Bone Graft

    MedlinePlus

    ... Complications Potential problems after a PTBG include infection, fracture of the proximal tibia and pain related to the procedure. Frequently Asked Questions If proximal tibial bone graft is taken from my knee, will this prevent me from being able to ...

  18. Cooperation of phosphoinositides and BAR domain proteins in endosomal tubulation.

    PubMed

    Shinozaki-Narikawa, Naeko; Kodama, Tatsuhiko; Shibasaki, Yoshikazu

    2006-11-01

    Phosphorylated derivatives of phosphatidylinositol (PtdIns) regulate many intracellular events, including vesicular trafficking and actin remodeling, by recruiting proteins to their sites of function. PtdIns(4,5)-bisphosphate [PI(4,5)P2] and related phosphoinositides are mainly synthesized by type I PtdIns-4-phosphate 5-kinases (PIP5Ks). We found that PIP5K induces endosomal tubules in COS-7 cells. ADP-ribosylation factor (ARF) 6 has been shown to act upstream of PIP5K and regulate endocytic transport and tubulation. ARF GAP with coiled-coil, ankyrin repeat, and pleckstrin homology domains 1 (ACAP1) has guanosine triphosphatase-activating protein (GAP) activity for ARF6. While there were few tubules induced by the expression of ACAP1 alone, numerous endosomal tubules were induced by coexpression of PIP5K and ACAP1. ACAP1 has a pleckstrin homology (PH) domain known to bind phosphoinositide and a Bin/amphiphysin/Rvs (BAR) domain that has been reported to detect membrane curvature. Truncated and point mutations in the ACAP1 BAR and PH domains revealed that both BAR and PH domains are required for tubulation. These results suggest that two ARF6 downstream molecules, PIP5K and ACAP1, function together in endosomal tubulation and that phosphoinositide levels may regulate endosomal dynamics. PMID:17010122

  19. Function-informed transcriptome analysis of Drosophila renal tubule

    PubMed Central

    Wang, Jing; Kean, Laura; Yang, Jingli; Allan, Adrian K; Davies, Shireen A; Herzyk, Pawel; Dow, Julian AT

    2004-01-01

    Background Comprehensive, tissue-specific, microarray analysis is a potent tool for the identification of tightly defined expression patterns that might be missed in whole-organism scans. We applied such an analysis to Drosophila melanogaster Malpighian (renal) tubule, a defined differentiated tissue. Results The transcriptome of the D. melanogaster Malpighian tubule is highly reproducible and significantly different from that obtained from whole-organism arrays. More than 200 genes are more than 10-fold enriched and over 1,000 are significantly enriched. Of the top 200 genes, only 18 have previously been named, and only 45% have even estimates of function. In addition, 30 transcription factors, not previously implicated in tubule development, are shown to be enriched in adult tubule, and their expression patterns respect precisely the domains and cell types previously identified by enhancer trapping. Of Drosophila genes with close human disease homologs, 50 are enriched threefold or more, and eight enriched 10-fold or more, in tubule. Intriguingly, several of these diseases have human renal phenotypes, implying close conservation of renal function across 400 million years of divergent evolution. Conclusions From those genes that are identifiable, a radically new view of the function of the tubule, emphasizing solute transport rather than fluid secretion, can be obtained. The results illustrate the phenotype gap: historically, the effort expended on a model organism has tended to concentrate on a relatively small set of processes, rather than on the spread of genes in the genome. PMID:15345053

  20. Immunodissection and culture of rabbit cortical collecting tubule cells

    SciTech Connect

    Spielman, W.S.; Sonnenburg, W.K.; Allen, M.L.; Arend, L.J.; Gerozissis, K.; Smith, W.L.

    1986-08-01

    A mouse monoclonal antibody designated IgG3 (rct-30) has been prepared that reacts specifically with an antigen on the surface of all cells comprising the cortical and medullary rabbit renal collecting tubule including the arcades. Plastic culture dishes coated with IgG3 (rct-30) were used to isolate collecting tubule cells from collagenase dispersions of rabbit renal cortical cells by immunoadsorption. Typically, 10W rabbit cortical collecting tubule (RCCT) cells were obtained from 5 g of renal cortex (2 kidneys). Between 20 and 30% of the RCCT cells were reactive with peanut lectin suggesting that RCCT cells are a mixture of principal and intercalated cells. Approximately 10X RCCT cells were obtained after 4 to 5 days in primary culture. Moreover, RCCT cells continued to proliferate after passaging with a doubling time of approx.32 h. RCCT cells passaged once and then cultured 4-5 days were found 1) to synthesize cAMP in response to arginine vasopressin (AVP), prostaglandin E2 (PGE2), isoproterenol, and parathyroid hormone, but not calcitonin, prostaglandin D2, or prostaglandin I, and 2) to release PGE2 in response to bradykinin but not arginine vasopressin or isoproterenol. The results indicate that cultured RCCT cells retain many of the hormonal, histochemical, and morphological properties expected for a mixture of principal and intercalated rabbit cortical collecting tubule epithelia. RCCT cells should prove useful both for studying hormonal interactions in the cortical collecting tubule and as a starting population for isolating intercalated collecting tubule epithelia.

  1. From single molecule to single tubules

    NASA Astrophysics Data System (ADS)

    Guo, Chin-Lin

    2012-02-01

    Biological systems often make decisions upon conformational changes and assembly of single molecules. In vivo, epithelial cells (such as the mammary gland cells) can respond to extracellular matrix (ECM) molecules, type I collagen (COL), and switch their morphology from a lobular lumen (100-200 micron) to a tubular lumen (1mm-1cm). However, how cells make such a morphogenetic decision through interactions with each other and with COL is unclear. Using a temporal control of cell-ECM interaction, we find that epithelial cells, in response to a fine-tuned percentage of type I collagen (COL) in ECM, develop various linear patterns. Remarkably, these patterns allow cells to self-assemble into a tubule of length ˜ 1cm and diameter ˜ 400 micron in the liquid phase (i.e., scaffold-free conditions). In contrast with conventional thought, the linear patterns arise through bi-directional transmission of traction force, but not through diffusible biochemical factors secreted by cells. In turn, the transmission of force evokes a long-range (˜ 600 micron) intercellular mechanical interaction. A feedback effect is encountered when the mechanical interaction modifies cell positioning and COL alignment. Micro-patterning experiments further reveal that such a feedback is a novel cell-number-dependent, rich-get-richer process, which allows cells to integrate mechanical interactions into long-range (> 1mm) linear coordination. Our results suggest a mechanism cells can use to form and coordinate long-range tubular patterns, independent of those controlled by diffusible biochemical factors, and provide a new strategy to engineer/regenerate epithelial organs using scaffold-free self-assembly methods.

  2. A Bioartificial Renal Tubule Device Embedding Human Renal Stem/Progenitor Cells

    PubMed Central

    Sciancalepore, Anna Giovanna; Sallustio, Fabio; Girardo, Salvatore; Gioia Passione, Laura; Camposeo, Andrea; Mele, Elisa; Di Lorenzo, Mirella; Costantino, Vincenzo; Schena, Francesco Paolo; Pisignano, Dario

    2014-01-01

    We present a bio-inspired renal microdevice that resembles the in vivo structure of a kidney proximal tubule. For the first time, a population of tubular adult renal stem/progenitor cells (ARPCs) was embedded into a microsystem to create a bioengineered renal tubule. These cells have both multipotent differentiation abilities and an extraordinary capacity for injured renal cell regeneration. Therefore, ARPCs may be considered a promising tool for promoting regenerative processes in the kidney to treat acute and chronic renal injury. Here ARPCs were grown to confluence and exposed to a laminar fluid shear stress into the chip, in order to induce a functional cell polarization. Exposing ARPCs to fluid shear stress in the chip led the aquaporin-2 transporter to localize at their apical region and the Na+K+ATPase pump at their basolateral portion, in contrast to statically cultured ARPCs. A recovery of urea and creatinine of (20±5)% and (13±5)%, respectively, was obtained by the device. The microengineered biochip here-proposed might be an innovative “lab-on-a-chip” platform to investigate in vitro ARPCs behaviour or to test drugs for therapeutic and toxicological responses. PMID:24498117

  3. High dietborne Cu and Cd induced genotoxicity of Nile tilapia (Oreochromis niloticus).

    PubMed

    El-Serafy, Sabry S; Zowail, Mohammed E; Abdel-Hameid, Nassr-Allah H; Awwad, Mohammed H; Nafie, Ebtessam H O

    2015-05-01

    In this study, the effects of fish diet contaminated with Cu, Cd and Cu+Cd on Nile tilapia, was demonstrated by evaluating its bioaccumulation in the muscle and by testing the cytogenetic profile. Fish exposed to diet contaminated with Cu, Cd or their mixture had a significant increase in the number of chromosomal abnormalities and an inhibition of the mitotic index. Our study revealed high muscle Cu or Cd content in fish fed with diet contaminated with high dietborne Cu, Cd, Cu and Cd. It also revealed that the chromosomal abnormalities were higher for fish fed diet Cd contaminated and Cu+Cd contaminated diets than those fed diet Cu contaminated diet. Thus, maybe fish diets contaminated with Cu, Cd, Cu+Cd induced genotoxicity and mutation. Also, maybe high concentrations of Cu and Cd in fish tissue resulted from feeding on Cu and Cd contaminated diets, are dangerous for human consumption. PMID:25917432

  4. Glutamatergic Signaling Maintains the Epithelial Phenotype of Proximal Tubular Cells

    PubMed Central

    Bozic, Milica; de Rooij, Johan; Parisi, Eva; Ortega, Marta Ruiz; Fernandez, Elvira

    2011-01-01

    Epithelial–mesenchymal transition (EMT) contributes to the progression of renal tubulointerstitial fibrosis. The N-methyl-d-aspartate receptor (NMDAR), which is present in proximal tubular epithelium, is a glutamate receptor that acts as a calcium channel. Activation of NMDAR induces actin rearrangement in cells of the central nervous system, but whether it helps maintain the epithelial phenotype of the proximal tubule is unknown. Here, knockdown of NMDAR1 in a proximal tubule cell line (HK-2) induced changes in cell morphology, reduced E-cadherin expression, and increased α-SMA expression. Induction of EMT with TGF-β1 led to downregulation of both E-cadherin and membrane-associated β-catenin, reorganization of F-actin, expression of mesenchymal markers de novo, upregulation of Snail1, and increased cell migration; co-treatment with NMDA attenuated all of these changes. Furthermore, NMDA reduced TGF-β1–induced phosphorylation of Erk1/2 and Akt and the activation of Ras, suggesting that NMDA antagonizes TGF-β1–induced EMT by inhibiting the Ras-MEK pathway. In the unilateral ureteral obstruction model, treatment with NMDA blunted obstruction-induced upregulation of α-SMA, FSP1, and collagen I and downregulation of E-cadherin. Taken together, these results suggest that NMDAR plays a critical role in preserving the normal epithelial phenotype and modulating tubular EMT. PMID:21597037

  5. Polyunsaturated Fatty Acids in Lipid Bilayers and Tubules

    NASA Astrophysics Data System (ADS)

    Hirst, Linda S.; Yuan, Jing; Pramudya, Yohannes; Nguyen, Lam T.

    2007-03-01

    Omega-3 polyunsaturated fatty acids (PUFAs) are found in a variety of biological membranes and have been implicated with lipid raft formation and possible function, typical molecules include DHA (Docosahexanoic Acid) and AA (Alphalinoleic Acid) which have been the focus of considerable attention in recent years. We are interested in the phase behavior of these molecules in the lipid bilayer. The addition of lipid molecules with polyunsaturated chains has a clear effect on the fluidity and curvature of the membrane and we investigate the effects the addition of polyunsaturated lipids on bilayer structure and tubule formation. Self-assembled cylindrical lipid tubules have attracted considerable attention because of their interesting structures and potential technological applications. Using x-ray diffraction techniques, Atomic Force Microscopy and confocal fluorescence imaging, both symmetric and mixed chain lipids were incorporated into model membranes and the effects on bilayer structure and tubule formation investigated.

  6. Apical potassium channels in the rat connecting tubule.

    PubMed

    Frindt, Gustavo; Palmer, Lawrence G

    2004-11-01

    Apical membrane K channels in the rat connecting tubule (CNT) were studied using the patch-clamp technique. Tubules were isolated from the cortical labyrinth of the kidney and split open to provide access to the apical membrane. Cell-attached patches were formed on presumed principal and/or connecting tubule cells. The major channel type observed had a single-channel conductance of 52 pS, high open probability and kinetics that were only weakly dependent on voltage. These correspond closely to the "SK"-type channels in the cortical collecting duct, identified with the ROMK (Kir1.1) gene product. A second channel type, which was less frequently observed, mediated larger currents and was strongly activated by depolarization of the apical membrane voltage. These were identified as BK or maxi-K channels. The density of active SK channels revealed a high degree of clustering. Although heterogeneity of tubules or of cell types within a tubule could not be excluded, the major factor underlying the distribution appeared to be the presence of channel clusters on the membrane of individual cells. The overall density of channels was higher than that previously found in the cortical collecting tubule (CCT). In contrast to results in the CCT, we did not detect an increase in the overall density of SK channels in the apical membrane after feeding the animals a high-K diet. However, the activity of amiloride-sensitive Na channels was undetectable under control conditions but was increased after both 1 day (90 +/- 24 pA/cell) or 7 days (385 +/- 82 pA/cell) of K loading. Thus one important factor leading to an increased K secretion in the CNT in response to increased dietary K is an increased apical Na conductance, leading to depolarization of the apical membrane voltage and an increased driving force for K movement out into the tubular lumen. PMID:15280155

  7. Sex differences in proximal and distal nephron function contribute to the mechanism of idiopathic hypercalcuria in calcium stone formers.

    PubMed

    Ko, Benjamin; Bergsland, Kristin; Gillen, Daniel L; Evan, Andrew P; Clark, Daniel L; Baylock, Jaime; Coe, Fredric L; Worcester, Elaine M

    2015-07-01

    Idiopathic hypercalciuria (IH) is a common familial trait among patients with calcium nephrolithiasis. Previously, we have demonstrated that hypercalciuria is primarily due to reduced renal proximal and distal tubule calcium reabsorption. Here, using measurements of the clearances of sodium, calcium, and endogenous lithium taken from the General Clinical Research Center, we test the hypothesis that patterns of segmental nephron tubule calcium reabsorption differ between the sexes in IH and normal subjects. When the sexes are compared, we reconfirm the reduced proximal and distal calcium reabsorption. In IH women, distal nephron calcium reabsorption is decreased compared to normal women. In IH men, proximal tubule calcium reabsorption falls significantly, with a more modest reduction in distal calcium reabsorption compared to normal men. Additionally, we demonstrate that male IH patients have lower systolic blood pressures than normal males. We conclude that women and men differ in the way they produce the hypercalciuria of IH, with females reducing distal reabsorption and males primarily reducing proximal tubule function. PMID:25947170

  8. Insights into the Malpighian tubule from functional genomics.

    PubMed

    Dow, Julian A T

    2009-02-01

    Classical physiological study of the Malpighian tubule has led to a detailed understanding of fluid transport and its control across several species. With the sequencing of the Drosophila genome, and the concurrent development of post-genomic technologies such as microarrays, proteomics, metabolomics and systems biology, completely unexpected roles for the insect Malpighian tubule have emerged. As the insect body plan is simpler than that of mammals, tasks analogous to those performed by multiple mammalian organ systems must be shared out among insect tissues. As well as the classical roles in osmoregulation, the Malpighian tubule is highly specialized for organic solute transport, and for metabolism and detoxification. In Drosophila, the adult Malpighian tubule is the key tissue for defence against insecticides such as DDT; and it can also detect and mount an autonomous defence against bacterial invasion. While it is vital to continue to set insights obtained in Drosophila into the context of work in other species, the combination of post-genomic technologies and physiological validation can provide insights that might not otherwise have been apparent for many years. PMID:19151219

  9. TRANSCRIPT PROFILING IN TURKEY SPERM STORAGE TUBULES USING SAGE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sperm storage tubules (SST) are unique epithelial structures within the avian oviduct that provide for prolonged storage of fertile sperm following natural mating or artificial insemination (AI). In turkeys, spermatozoa can remain fertile after being stored in the SST for upwards of 70 days. We...

  10. Dynamic tubulation of mitochondria drives mitochondrial network formation

    PubMed Central

    Wang, Chong; Du, Wanqing; Su, Qian Peter; Zhu, Mingli; Feng, Peiyuan; Li, Ying; Zhou, Yichen; Mi, Na; Zhu, Yueyao; Jiang, Dong; Zhang, Senyan; Zhang, Zerui; Sun, Yujie; Yu, Li

    2015-01-01

    Mitochondria form networks. Formation of mitochondrial networks is important for maintaining mitochondrial DNA integrity and interchanging mitochondrial material, whereas disruption of the mitochondrial network affects mitochondrial functions. According to the current view, mitochondrial networks are formed by fusion of individual mitochondria. Here, we report a new mechanism for formation of mitochondrial networks through KIF5B-mediated dynamic tubulation of mitochondria. We found that KIF5B pulls thin, highly dynamic tubules out of mitochondria. Fusion of these dynamic tubules, which is mediated by mitofusins, gives rise to the mitochondrial network. We further demonstrated that dynamic tubulation and fusion is sufficient for mitochondrial network formation, by reconstituting mitochondrial networks in vitro using purified fusion-competent mitochondria, recombinant KIF5B, and polymerized microtubules. Interestingly, KIF5B only controls network formation in the peripheral zone of the cell, indicating that the mitochondrial network is divided into subzones, which may be constructed by different mechanisms. Our data not only uncover an essential mechanism for mitochondrial network formation, but also reveal that different parts of the mitochondrial network are formed by different mechanisms. PMID:26206315

  11. High yield synthesis and HREM study of fullerene tubules and fullerene onions

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoping; Wang, Youwen; Li, Wenzhou

    1994-01-01

    The fullerene tubules and fullerene onions are synthesized in macroscopic quantity with high yield by modified Kratschmer et. al. method. Besides ordinary concentric fullerene tubules, also are observed abnormal nonconcentric multilayer glaphitic tubules with varying layer spacings. The curved graphitic tubules are observed, showing the tendency to form torus. Under appropriate helium pressure, about half of the synthesized product is the multi-shell fullerene onions, polyhedral in shape in accord with the theoretical calculation. [11

  12. DIGESTIVE TUBULE ATROPHY IN EASTERN OYSTERS, CRASSOSTREA VIRGINICA (GMELI, 1791), EXPOSED TO SALINITY AND STARVATION STRESS

    EPA Science Inventory

    Oysters sampled in February 1992, from a low salinity site (3 ppt) in Apalachicola Bay, Florida, showed digestive tubule atrophy when salinity site (18 ppt) 16 kilometers away. xperiments designed to induce tubule atrophy in the and two salinity stress tests. o quantify tubule co...

  13. CD36 mediates proximal tubular binding and uptake of albumin and is upregulated in proteinuric nephropathies.

    PubMed

    Baines, Richard J; Chana, Ravinder S; Hall, Matthew; Febbraio, Maria; Kennedy, David; Brunskill, Nigel J

    2012-10-01

    Dysregulation of renal tubular protein handling in proteinuria contributes to the development of chronic kidney disease. We investigated the role of CD36 as a novel candidate mediator of albumin binding and endocytosis in the kidney proximal tubule using both in vitro and in vivo approaches, and in nephrotic patient renal biopsy samples. In CD36-transfected opossum kidney proximal tubular cells, both binding and uptake of albumin were substantially enhanced. A specific CD36 inhibitor abrogated this effect, but receptor-associated protein, which blocks megalin-mediated endocytosis of albumin, did not. Mouse proximal tubular cells expressed CD36 and this was absent in CD36 null animals, whereas expression of megalin was equal in these animals. Compared with wild-type mice, CD36 null mice demonstrated a significantly increased urinary protein-to-creatinine ratio and albumin-to-creatinine ratio. Proximal tubular cells expressed increased CD36 when exposed to elevated albumin concentrations in culture medium. Expression of CD36 was studied in renal biopsy tissue obtained from adult patients with heavy proteinuria due to minimal change disease, membranous nephropathy, or focal segmental glomerulosclerosis. Proximal tubular CD36 expression was markedly increased in proteinuric individuals. We conclude that CD36 is a novel mediator influencing binding and uptake of albumin in the proximal tubule that is upregulated in proteinuric renal diseases. CD36 may represent a potential therapeutic target in proteinuric nephropathy. PMID:22791331

  14. Proximal tibiofibular synostosis.

    PubMed

    Wong, K; Weiner, D S

    1978-09-01

    The occurrence of a proximal tibiofibular synostosis is indeed a rare condition with only 2 cases unassociated with other diseases reported to our knowledge to date. Two skeletally immature patients presented with a synostosis of the proximal tibiofibular region associated with shortening of the limb in the affected segments. Although the shortening and the synostosis seem interrelated no explanation of their relationship is evident from these 2 cases. PMID:709951

  15. Accelerated recovery of renal mitochondrial and tubule homeostasis with SIRT1/PGC-1α activation following ischemia–reperfusion injury

    SciTech Connect

    Funk, Jason A.; Schnellmann, Rick G.

    2013-12-01

    Kidney ischemia–reperfusion (I/R) injury elicits cellular injury in the proximal tubule, and mitochondrial dysfunction is a pathological consequence of I/R. Promoting mitochondrial biogenesis (MB) as a repair mechanism after injury may offer a unique strategy to restore both mitochondrial and organ function. Rats subjected to bilateral renal pedicle ligation for 22 min were treated once daily with the SIRT1 activator SRT1720 (5 mg/kg) starting 24 h after reperfusion until 72 h–144 h. SIRT1 expression was elevated in the renal cortex of rats after I/R + vehicle treatment (IRV), but was associated with less nuclear localization. SIRT1 expression was even further augmented and nuclear localization was restored in the kidneys of rats after I/R + SRT1720 treatment (IRS). PGC-1α was elevated at 72 h–144 h in IRV and IRS kidneys; however, SRT1720 treatment induced deacetylation of PGC-1α, a marker of activation. Mitochondrial proteins ATP synthase β, COX I, and NDUFB8, as well as mitochondrial respiration, were diminished 24 h–144 h in IRV rats, but were partially or fully restored in IRS rats. Urinary kidney injury molecule-1 (KIM-1) was persistently elevated in both IRV and IRS rats; however, KIM-1 tissue expression was attenuated in IRS rats. Additionally, sustained loss of Na{sup +},K{sup +}–ATPase expression and basolateral localization and elevated vimentin in IRV rats was normalized in IRS rats, suggesting restoration of a differentiated, polarized tubule epithelium. The results suggest that SRT1720 treatment expedited recovery of mitochondrial protein expression and function by enhancing MB, which was associated with faster proximal tubule repair. Targeting MB may offer unique therapeutic strategy following ischemic injury. - Highlights: • We examined recovery of mitochondrial and renal function after ischemia–reperfusion. • SRT1720 treatment after I/R induced mitochondrial biogenesis via SIRT1/PGC-1α. • Recovery of mitochondrial function was

  16. Tip cells act as dynamic cellular anchors in the morphogenesis of looped renal tubules in Drosophila.

    PubMed

    Weavers, Helen; Skaer, Helen

    2013-11-11

    Tissue morphogenesis involves both the sculpting of tissue shape and the positioning of tissues relative to one another in the body. Using the renal tubules of Drosophila, we show that a specific distal tubule cell regulates both tissue architecture and position in the body cavity. Focusing on the anterior tubules, we demonstrate that tip cells make transient contacts with alary muscles at abdominal segment boundaries, moving progressively forward as convergent extension movements lengthen the tubule. Tip cell anchorage antagonizes forward-directed, TGF-β-guided tubule elongation, thereby ensuring the looped morphology characteristic of renal tubules from worms to humans. Distinctive tip cell exploratory behavior, adhesion, and basement membrane clearing underlie target recognition and dynamic interactions. Defects in these features obliterate tip cell anchorage, producing misshapen and misplaced tubules with impaired physiological function. PMID:24229645

  17. WPH-6112A thermal expansion test of PRESS tubulation

    SciTech Connect

    Kautz, D.D.; Sites, R.L.; Cobb, W.R.

    1994-05-26

    We recently performed the WPH-6112A thermal expansion test of the lower portion of the PRESS program tubulation. The objective of the test was to determine whether the tubulation welds could withstand typical stresses from a 1200 C thermal cycle. Test components failed in two areas: (1) the friction welded Monel to Vanadium tube fitting at the dissimilar metal interface and fell against the outer vanadium tube wall causing it to fail and (2) the thin-walled, outer stainless steel tubing failed by cracking at the weld. Both failures were due to irregular occurences for this system. We feel that the strength of all weldments is adequate to withstand the normal thermal stresses from a 1200 C cycle without failing prematurely.

  18. WPH-6112A thermal expansion test of PRESS tubulation

    NASA Astrophysics Data System (ADS)

    Kautz, D. D.; Sites, R. L.; Cobb, W. R.

    1994-05-01

    We recently performed the WPH-6112A thermal expansion test of the lower portion of the PRESS program tubulation. The objective of the test was to determine whether the tubulation welds could withstand typical stresses from a 1200 C thermal cycle. Test components failed in two areas: (1) the friction welded Monel to Vanadium tube fitting at the dissimilar metal interface and fell against the outer vanadium tube wall causing it to fail, and (2) the thin-walled, outer stainless steel tubing failed by cracking at the weld. Both failures were due to irregular occurrences for this system. We feel that the strength of all weldments is adequate to withstand the normal thermal stresses from a 1200 C cycle without failing prematurely.

  19. Malpighian tubule development in the red flour beetle (Tribolium castaneum).

    PubMed

    King, Benedict; Denholm, Barry

    2014-11-01

    Malpighian tubules (MpTs) are the major organ for excretion and osmoregulation in most insects. MpT development is characterised for Drosophila melanogaster, but not other species. We therefore do not know the extent to which the MpT developmental programme is conserved across insects. To redress this we provide a comprehensive description of MpT development in the beetle Tribolium castaneum (Coleoptera), a species separated from Drosophila by >315 million years. We identify similarities with Drosophila MpT development including: 1) the onset of morphological development, beginning when tubules bud from the gut and proliferate to increase organ size. 2) the tubule is shaped by convergent-extension movements and oriented cell divisions. 3) differentiated tip cells activate EGF-signalling in distal MpT cells through the ligand Spitz. 4) MpTs contain two main cell types - principal and stellate cells, differing in morphology and gene expression. We also describe development of the beetle cryptonephridial system, an adaptation for water conservation, which represents a major modification of the MpT ground plan characterised by intimate association between MpTs and rectum. This work establishes a new model to compare MpT development across insects, and provides a framework to help understand how an evolutionary novelty - the cryptonephridial system - arose during organ evolution. PMID:25242057

  20. Capacitive proximity sensor

    DOEpatents

    Kronberg, James W.

    1994-01-01

    A proximity sensor based on a closed field circuit. The circuit comprises a ring oscillator using a symmetrical array of plates that creates an oscillating displacement current. The displacement current varies as a function of the proximity of objects to the plate array. Preferably the plates are in the form of a group of three pair of symmetric plates having a common center, arranged in a hexagonal pattern with opposing plates linked as a pair. The sensor produces logic level pulses suitable for interfacing with a computer or process controller. The proximity sensor can be incorporated into a load cell, a differential pressure gauge, or a device for measuring the consistency of a characteristic of a material where a variation in the consistency causes the dielectric constant of the material to change.

  1. Capacitive proximity sensor

    DOEpatents

    Kronberg, J.W.

    1994-05-31

    A proximity sensor based on a closed field circuit is disclosed. The circuit comprises a ring oscillator using a symmetrical array of plates that creates an oscillating displacement current. The displacement current varies as a function of the proximity of objects to the plate array. Preferably the plates are in the form of a group of three pair of symmetric plates having a common center, arranged in a hexagonal pattern with opposing plates linked as a pair. The sensor produces logic level pulses suitable for interfacing with a computer or process controller. The proximity sensor can be incorporated into a load cell, a differential pressure gauge, or a device for measuring the consistency of a characteristic of a material where a variation in the consistency causes the dielectric constant of the material to change. 14 figs.

  2. Unusual proximal tibiofibular synostosis.

    PubMed

    Takai, S; Yoshino, N; Hirasawa, Y

    1999-01-01

    Proximal tibiofibular synostosis without multiple hereditary exostosis is extremely rare and only 7 cases have been reported in the literature. All of the previously reported cases accompanied deformities such as distal positioning of the proximal tibiofibular joint, leg length discrepancy, bowing of the fibula, and valgus deformity of the knee. The present case of a 24-year-old man had neither a history of trauma nor deformity around the knee. Therefore, it was suggested that this type of synostosis occurred after epiphyseal plate closure. PMID:10741527

  3. Close proximity gunshot residues.

    PubMed

    Thornton, J I

    1986-04-01

    Intuitively, a hand held in close proximity to a firearm at the instant of discharge will intercept a significant amount of gunshot residue, even though the hand did not actually come into contact with the weapon. There is, however, little information specifically described in the forensic science literature concerning the residue levels which might be encountered in such an instance. The present work confirms that antimony levels consistent with an individual having fired or handled a firearm may be intercepted by a hand held in close proximity. PMID:3711843

  4. The metabolic fate of lactate in renal cortical tubules

    PubMed Central

    Janssens, Peter; Hems, Reg; Ross, Brian

    1980-01-01

    1. Isolated kidney cortex tubules prepared from fed rats and incubated with near-physiological concentrations of [14C]lactate decrease the specific radioactivity of the added lactate. This effect may be attributable to at least two mechanisms; formation of lactate from endogenous precursors, or entry of unlabelled carbon into the lactate pool as a result of substrate cycling, via phosphoenolpyruvate, pyruvate and oxaloacetate, together with equilibration of the oxaloacetate pool with malate and fumarate. Such substrate cycling could occur within a single cell, or between two populations of different cells, one glycolytic and the other gluconeogenic. These possibilities have been investigated by using metabolic inhibitors or alternative metabolic substrates. 2. Tubules from fed rats produced a fall in specific radioactivity of 14.4% when incubated for 40min with 2mm-lactate alone. A mathematical treatment of this result is presented, which allows the rate of fall in specific radioactivity to be expressed as the addition of unlabelled lactate to the pool. This corresponds to a rate of formation of unlabelled lactate of 121±22μmol/h per g dry wt., a rate close to that of gluconeogenesis. In tubules from fasting rats, there was no reduction of the specific radioactivity of lactate, indicating that fasting for 24h suppresses production of unlabelled-lactate carbon. 3. Addition of 2mm-fumarate resulted in a significantly greater decrease in the specific radioactivity of lactate, but aspartate (2mm), malate (2mm) and glucose (5mm) were without effect. Total inhibition of gluconeogenesis with 3-mercaptopicolinate did not prevent the fall in specific radioactivity of lactate observed in tubules from fed-rat kidney, thereby excluding significant activity of the substrate cycle pyruvate→oxaloacetate→phosphoenolpyruvate→pyruvate. 4. The capacity of pyruvate kinase under the test conditions in tubules prepared from kidneys of fed or starved rats was at least ten times

  5. XQL and Proximal Nodes.

    ERIC Educational Resources Information Center

    Baeza-Yates, Ricardo; Navarro, Gonzalo

    2002-01-01

    Discussion of models that have been developed to structure text documents for information retrieval focuses on XML and its proposed query language XQL. Considers efficiency of the query engine and shows that an already existing model, Proximal Nodes, can be used as an efficient query engine behind an XQL front-end. (Author/LRW)

  6. Proximal tibiofibular synostosis.

    PubMed

    Gamble, J G

    1984-03-01

    A case of proximal tibiofibular synostosis with a 10-year follow-up is presented. The lesion was documented roentgenographically when the patient was 3 years of age and when she became symptomatic at 13 years of age after vigorous running. The symptoms were successfully treated with custom-molded shoe orthotics. PMID:6699166

  7. Proximate Analysis of Coal

    ERIC Educational Resources Information Center

    Donahue, Craig J.; Rais, Elizabeth A.

    2009-01-01

    This lab experiment illustrates the use of thermogravimetric analysis (TGA) to perform proximate analysis on a series of coal samples of different rank. Peat and coke are also examined. A total of four exercises are described. These are dry exercises as students interpret previously recorded scans. The weight percent moisture, volatile matter,…

  8. Steerable Capacitive Proximity Sensor

    NASA Technical Reports Server (NTRS)

    Jenstrom, Del T.; Mcconnell, Robert L.

    1994-01-01

    Steerable capacitive proximity sensor of "capaciflector" type based partly on sensing units described in GSC-13377 and GSC-13475. Position of maximum sensitivity adjusted without moving sensor. Voltage of each driven shield adjusted separately to concentrate sensing electric field more toward one side or other.

  9. Subacute diabetic proximal neuropathy

    NASA Technical Reports Server (NTRS)

    Pascoe, M. K.; Low, P. A.; Windebank, A. J.; Litchy, W. J.

    1997-01-01

    OBJECTIVE: To evaluate the clinical, electrophysiologic, autonomic, and neuropathologic characteristics and the natural history of subacute diabetic proximal neuropathy and its response to immunotherapy. MATERIAL AND METHODS: For the 12-year period from 1983 to 1995, we conducted a retrospective review of medical records of Mayo Clinic patients with diabetes who had subacute onset and progression of proximal weakness. The responses of treated versus untreated patients were compared statistically. RESULTS: During the designated study period, 44 patients with subacute diabetic proximal neuropathy were encountered. Most patients were middle-aged or elderly, and no sex preponderance was noted. The proximal muscle weakness often was associated with reduced or absent lower extremity reflexes. Associated weight loss was a common finding. Frequently, patients had some evidence of demyelination on nerve conduction studies, but it invariably was accompanied by concomitant axonal degeneration. The cerebrospinal fluid protein concentration was usually increased. Diffuse and substantial autonomic failure was generally present. In most cases, a sural nerve biopsy specimen suggested demyelination, although evidence of an inflammatory infiltrate was less common. Of 12 patients who received treatment (with prednisone, intravenous immune globulin, or plasma exchange), 9 had improvement of their conditions, but 17 of 29 untreated patients (59%) with follow-up also eventually had improvement, albeit at a much slower rate. Improvement was usually incomplete. CONCLUSION: We suggest that the entity of subacute diabetic proximal neuropathy is an extensive and severe variant of bilateral lumbosacral radiculoplexopathy, with some features suggestive of an immune-mediated cause. It differs from chronic inflammatory demyelinating polyradiculoneuropathy in that most cases have a more restricted distribution and seem to be monophasic and self-limiting. The efficacy of immunotherapy is unproved

  10. Complexity of glutamine metabolism in kidney tubules from fed and fasted rats.

    PubMed Central

    Vercoutère, Barbara; Durozard, Daniel; Baverel, Gabriel; Martin, Guy

    2004-01-01

    Glutamine is an important renal glucose precursor and energy provider. In order to advance our understanding of the underlying metabolic processes, we studied the metabolism of variously labelled [13C]glutamine and [14C]glutamine molecules and the effects of fasting in isolated rat renal proximal tubules. Absolute fluxes through the enzymes involved, including enzymes of four different cycles operating concomitantly, were assessed by combining mainly the 13C NMR data with an appropriate model of glutamine metabolism. In both nutritional states, unidirectional glutamine removal by glutaminase was partially masked by the concomitant operation of glutamine synthetase; fasting accelerated glutamine removal by increasing flux solely through glutaminase, without changing that through glutamine synthetase. Fasting stimulated net glutamate degradation only by decreasing flux through glutamate dehydrogenase in the reductive amination direction, but surprisingly did not significantly alter complete oxidation of the glutamine carbon skeleton. Finally, gluconeogenesis from glutamine involved not only substantial recycling through the tricarboxylic acid cycle, but also an important anaplerotic flux through pyruvate carboxylase that was accelerated dramatically by fasting. Thus renal glutamine metabolism follows an unexpectedly complex route that is precisely regulated during fasting. PMID:14616091

  11. How much can the tubule regenerate and who does it? An open question

    PubMed Central

    Lombardi, Duccio; Becherucci, Francesca; Romagnani, Paola

    2016-01-01

    The tubular compartment of the kidney is the primary site of a wide range of insults that can result in acute kidney injury (AKI), a condition associated with high mortality and an increased risk to develop end-stage renal disease. Nevertheless, kidney function is often quickly recovered after tubular injury. How this happens has only partially been unveiled. Indeed, although it has clearly been demonstrated that regenerated epithelial cells arise from survived intratubular cells, the true entity, as well as the cellular source of this regenerative process, remains mostly unknown. Is whichever proximal tubular epithelial cell able to dedifferentiate and divide to replace neighboring lost tubular cells, thus suggesting an extreme regenerative ability of residual tubular epithelium, or is the regenerative potential of tubular epithelium limited, and mostly related to a preexisting population of intratubular scattered progenitor cells which are more resistant to death? Gaining insights on how this process takes place is essential for developing new therapeutic strategies to prevent AKI, as well as AKI-related chronic kidney disease. The aim of this review is to discuss why the answers to these questions are still open, and how further investigations are needed to understand which is the true regenerative potential of the tubule and who are the players that allow functional recovery after AKI. PMID:26175143

  12. Proteomic analysis of the plasma membrane-movement tubule complex of cowpea mosaic virus.

    PubMed

    den Hollander, Paulus W; de Sousa Geraldino Duarte, Priscilla; Bloksma, Hanke; Boeren, Sjef; van Lent, Jan W M

    2016-05-01

    Cowpea mosaic virus forms tubules constructed from the movement protein (MP) in plasmodesmata (PD) to achieve cell-to-cell movement of its virions. Similar tubules, delineated by the plasma membrane (PM), are formed protruding from the surface of infected protoplasts. These PM-tubule complexes were isolated from protoplasts by immunoprecipitation and analysed for their protein content by tandem mass spectrometry to identify host proteins with affinity for the movement tubule. Seven host proteins were abundantly present in the PM-tubule complex, including molecular chaperonins and an AAA protein. Members of both protein families have been implicated in establishment of systemic infection. The potential role of these proteins in tubule-guided cell-cell transport is discussed. PMID:26780773

  13. Hemocyte-Secreted Type IV Collagen Enhances BMP Signaling to Guide Renal Tubule Morphogenesis in Drosophila

    PubMed Central

    Bunt, Stephanie; Hooley, Clare; Hu, Nan; Scahill, Catherine; Weavers, Helen; Skaer, Helen

    2010-01-01

    Summary Details of the mechanisms that determine the shape and positioning of organs in the body cavity remain largely obscure. We show that stereotypic positioning of outgrowing Drosophila renal tubules depends on signaling in a subset of tubule cells and results from enhanced sensitivity to guidance signals by targeted matrix deposition. VEGF/PDGF ligands from the tubules attract hemocytes, which secrete components of the basement membrane to ensheath them. Collagen IV sensitizes tubule cells to localized BMP guidance cues. Signaling results in pathway activation in a subset of tubule cells that lead outgrowth through the body cavity. Failure of hemocyte migration, loss of collagen IV, or abrogation of BMP signaling results in tubule misrouting and defective organ shape and positioning. Such regulated interplay between cell-cell and cell-matrix interactions is likely to have wide relevance in organogenesis and congenital disease. PMID:20708591

  14. Recycling endosome tubule morphogenesis from sorting endosomes requires the kinesin motor KIF13A

    PubMed Central

    Delevoye, Cédric; Miserey-Lenkei, Stéphanie; Montagnac, Guillaume; Gilles-Marsens, Floriane; Paul-Gilloteaux, Perrine; Giordano, Francesca; Waharte, François; Marks, Michael S.; Goud, Bruno; Raposo, Graça

    2014-01-01

    Summary Early endosomes consist of vacuolar sorting and tubular recycling domains that segregate components fated for degradation in lysosomes or reuse by recycling to the plasma membrane or Golgi. The tubular transport intermediates that constitute recycling endosomes function in cell polarity, migration and cytokinesis. Endosomal tubulation and fission require both actin and intact microtubules, but while factors that stabilize recycling endosomal tubules have been identified, those required for tubule generation from vacuolar sorting endosomes remain unknown. We show that the microtubule motor KIF13A associates with recycling endosome tubules and controls their morphogenesis. Interfering with KIF13A function impairs the formation of endosomal tubules from sorting endosomes with consequent defects in endosome homeostasis and cargo recycling. Moreover, KIF13A interacts and cooperates with RAB11 to generate endosomal tubules. Our data illustrate how a microtubule motor couples early endosome morphogenesis to its motility and function. PMID:24462287

  15. Pronephric tubule morphogenesis in zebrafish depends on Mnx mediated repression of irx1b within the intermediate mesoderm.

    PubMed

    Ott, Elisabeth; Wendik, Björn; Srivastava, Monika; Pacho, Frederic; Töchterle, Sonja; Salvenmoser, Willi; Meyer, Dirk

    2016-03-01

    Mutations in the homeobox transcription factor MNX1 are the major cause of dominantly inherited sacral agenesis. Studies in model organisms revealed conserved mnx gene requirements in neuronal and pancreatic development while Mnx activities that could explain the caudal mesoderm specific agenesis phenotype remain elusive. Here we use the zebrafish pronephros as a simple yet genetically conserved model for kidney formation to uncover a novel role of Mnx factors in nephron morphogenesis. Pronephros formation can formally be divided in four stages, the specification of nephric mesoderm from the intermediate mesoderm (IM), growth and epithelialisation, segmentation and formation of the glomerular capillary tuft. Two of the three mnx genes in zebrafish are dynamically transcribed in caudal IM in a time window that proceeds segmentation. We show that expression of one mnx gene, mnx2b, is restricted to the pronephric lineage and that mnx2b knock-down causes proximal pronephric tubule dilation and impaired pronephric excretion. Using expression profiling of embryos transgenic for conditional activation and repression of Mnx regulated genes, we further identified irx1b as a direct target of Mnx factors. Consistent with a repression of irx1b by Mnx factors, the transcripts of irx1b and mnx genes are found in mutual exclusive regions in the IM, and blocking of Mnx functions results in a caudal expansion of the IM-specific irx1b expression. Finally, we find that knock-down of irx1b is sufficient to rescue proximal pronephric tubule dilation and impaired nephron function in mnx-morpholino injected embryos. Our data revealed a first caudal mesoderm specific requirement of Mnx factors in a non-human system and they demonstrate that Mnx-dependent restriction of IM-specific irx1b activation is required for the morphogenesis and function of the zebrafish pronephros. PMID:26472045

  16. Voltage clamping single cells in intact malpighian tubules of mosquitoes.

    PubMed

    Masia, R; Aneshansley, D; Nagel, W; Nachman, R J; Beyenbach, K W

    2000-10-01

    Principal cells of the Malpighian tubule of the yellow fever mosquito were studied with the methods of two-electrode voltage clamp (TEVC). Intracellular voltage (V(pc)) was -86.7 mV, and input resistance (R(pc)) was 388.5 kOmega (n = 49 cells). In six cells, Ba(2+) (15 mM) had negligible effects on V(pc), but it increased R(pc) from 325.3 to 684.5 kOmega (P < 0.001). In the presence of Ba(2+), leucokinin-VIII (1 microM) increased V(pc) to -101.8 mV (P < 0.001) and reduced R(pc) to 340.2 kOmega (P < 0.002). Circuit analysis yields the following: basolateral membrane resistance, 652. 0 kOmega; apical membrane resistance, 340.2 kOmega; shunt resistance (R(sh)), 344.3 kOmega; transcellular resistance, 992.2 kOmega. The fractional resistance of the apical membrane (0.35) and the ratio of transcellular resistance and R(sh) (3.53) agree closely with values obtained by cable analysis in isolated perfused tubules and confirm the usefulness of TEVC methods in single principal cells of the intact Malpighian tubule. Dinitrophenol (0.1 mM) reversibly depolarized V(pc) from -94.3 to -10.7 mV (P < 0.001) and reversibly increased R(pc) from 412 to 2,879 kOmega (P < 0.001), effects that were duplicated by cyanide (0.3 mM). Significant effects of metabolic inhibition on voltage and resistance suggest a role of ATP in electrogenesis and the maintenance of conductive transport pathways. PMID:10997925

  17. Impaired leaf CO2 diffusion mediates Cd-induced inhibition of photosynthesis in the Zn/Cd hyperaccumulator Picris divaricata.

    PubMed

    Tang, Lu; Ying, Rong-Rong; Jiang, Dan; Zeng, Xiao-Wen; Morel, Jean-Louis; Tang, Ye-Tao; Qiu, Rong-Liang

    2013-12-01

    Mechanisms of cadmium (Cd)-induced inhibition of photosynthesis in the Zn/Cd hyperaccumulator Picris divaricata were investigated using photosynthesis limitation analysis. P. divaricata seedlings were grown in nutrient solution containing 0, 5, 10, 25, 50, or 75 μM Cd for 2 weeks. Total limitations to photosynthesis (TL) increased from 0% at 5 μM Cd to 68.8% at 75 μM Cd. CO2 diffusional limitation (DL) made the largest contribution to TL, accounting for 93-98% of TL in the three highest Cd treatments, compared to just 2-7% of TL attributable to biochemical limitation (BL). Microscopic imaging revealed significantly decreased stomatal density and mesophyll thickness in the three highest Cd treatments. Chlorophyll fluorescence parameters related to photosynthetic biochemistry (Fv/Fm, NPQ, ΦPSII, and qP) were not significantly decreased by increased Cd supply. Our results suggest that increased DL in leaves is the main cause of Cd-induced inhibition of photosynthesis in P. divaricata, possibly due to suppressed function of mesophyll and stomata. Analysis of chlorophyll fluorescence showed that Cd supply had little effect on photochemistry parameters, suggesting that the PSII reaction centers are not a main target of Cd inhibition of photosynthesis in P. divaricata. PMID:24077231

  18. The influence of neuropeptides on Malpighian tubule writhing and its significance for excretion.

    PubMed

    Coast, G M

    1998-01-01

    Diuretic peptides (locustakinin and Locusta-DH) increase the spontaneous contractile activity of visceral muscle fibers associated with Malpighian tubules from the migratory locust (Locusta migratoria) at concentrations that increase urine production. Muscle activity is shown to assist the flow of material in the tubule lumen, but is not essential for diuresis. Tubule writhing also serves to reduce unstirred layers (USLs) at the basolateral surface of the epithelium and thereby facilitates the excretion of solutes entering the lumen by passive diffusion. PMID:9533634

  19. Variable t-tubule organization and Ca2+ homeostasis across the atria.

    PubMed

    Frisk, Michael; Koivumäki, Jussi T; Norseng, Per A; Maleckar, Mary M; Sejersted, Ole M; Louch, William E

    2014-08-15

    Although t-tubules have traditionally been thought to be absent in atrial cardiomyocytes, recent studies have suggested that t-tubules exist in the atria of large mammals. However, it is unclear whether regional differences in t-tubule organization exist that define cardiomyocyte function across the atria. We sought to investigate regional t-tubule density in pig and rat atria and the consequences for cardiomyocyte Ca(2+) homeostasis. We observed t-tubules in approximately one-third of rat atrial cardiomyocytes, in both tissue cryosections and isolated cardiomyocytes. In a minority (≈10%) of atrial cardiomyocytes, the t-tubular network was well organized, with a transverse structure resembling that of ventricular cardiomyocytes. In both rat and pig atrial tissue, we observed higher t-tubule density in the epicardium than in the endocardium. Consistent with high variability in the distribution of t-tubules and Ca(2+) channels among cells, L-type Ca(2+) current amplitude was also highly variable and steeply dependent on capacitance and t-tubule density. Accordingly, Ca(2+) transients showed great variability in Ca(2+) release synchrony. Simultaneous imaging of the cell membrane and Ca(2+) transients confirmed t-tubule functionality. Results from mathematical modeling indicated that a transmural gradient in t-tubule organization and Ca(2+) release kinetics supports synchronization of contraction across the atrial wall and may underlie transmural differences in the refractory period. In conclusion, our results indicate that t-tubule density is highly variable across the atria. We propose that higher t-tubule density in cells localized in the epicardium may promote synchronization of contraction across the atrial wall. PMID:24951751

  20. Proximity Networks and Epidemics

    NASA Astrophysics Data System (ADS)

    Guclu, Hasan; Toroczkai, Zoltán

    2007-03-01

    We presented the basis of a framework to account for the dynamics of contacts in epidemic processes, through the notion of dynamic proximity graphs. By varying the integration time-parameter T, which is the period of infectivity one can give a simple account for some of the differences in the observed contact networks for different diseases, such as smallpox, or AIDS. Our simplistic model also seems to shed some light on the shape of the degree distribution of the measured people-people contact network from the EPISIM data. We certainly do not claim that the simplistic graph integration model above is a good model for dynamic contact graphs. It only contains the essential ingredients for such processes to produce a qualitative agreement with some observations. We expect that further refinements and extensions to this picture, in particular deriving the link-probabilities in the dynamic proximity graph from more realistic contact dynamics should improve the agreement between models and data.

  1. Proximal Point Methods Revisited

    NASA Astrophysics Data System (ADS)

    Boikanyo, Oganeditse A.; Moroşanu, Gheorghe

    2011-09-01

    The proximal point methods have been widely used in the last decades to approximate the solutions of nonlinear equations associated with monotone operators. Inspired by the iterative procedure defined by B. Martinet (1970), R.T. Rockafellar introduced in 1976 the so-called proximal point algorithm (PPA) for a general maximal monotone operator. The sequence generated by this iterative method is weakly convergent under appropriate conditions, but not necessarily strongly convergent, as proved by O. Güler (1991). This fact explains the introduction of different modified versions of the PPA which generate strongly convergent sequences under appropriate conditions, including the contraction-PPA defined by H.K. Xu in 2002. Here we discuss Xu's modified PPA as well as some of its generalizations. Special attention is paid to the computational errors, in particular the original Rockafellar summability assumption is replaced by the condition that the error sequence converges to zero strongly.

  2. Distributed proximity sensor system

    NASA Technical Reports Server (NTRS)

    Lee, Sukhan (Inventor)

    1988-01-01

    The invention relates to sensors embedded on the surface of a robot hand, or other moving member. By distributing proximity sensors capable of detecting distances and angles to points on the surface of an object, information is obtained for achieving noncontacting shape and distance perception, i.e., for automatic determination of the object's shape, direction, and distance, as well as the orientation of the object relative to the robot hand or other moving member.

  3. Use of Poly (Amidoamine) Dendrimer for Dentinal Tubule Occlusion: A Preliminary Study

    PubMed Central

    Wang, Tianda; Yang, Sheng; Wang, Lei; Feng, Hailan

    2015-01-01

    The occlusion of dentinal tubules is an effective method to alleviate the symptoms caused by dentin hypersensitivity, a significant health problem in dentistry and daily life. The in situ mineralization within dentinal tubules is a promising treatment for dentin hypersensitivity as it induces the formation of mineral on the sensitive regions and occludes the dentinal tubules. This study was carried out to evaluate the in vitro effect of a whole generation poly(amidoamine) (PAMAM) dendrimer (G3.0) on dentinal tubule occlusion by inducing mineralization within dentinal tubules. Dentin discs were treated with PAMAM dendrimers using two methods, followed by the in vitro characterization using Attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM) and Energy-Dispersive X-ray Spectroscopy (EDS). These results showed that G3.0 PAMAM dendrimers coated on dentin surface and infiltrated in dentinal tubules could induce hydroxyapatite formation and resulted in effective dentinal tubule occlusion. Moreover, crosslinked PAMAM dendrimers could induce the remineralization of demineralized dentin and thus had the potential in dentinal tubule occlusion. In this in vitro study, dentinal tubules occlusion could be achieved by using PAMAM dendrimers. This could lead to the development of a new therapeutic technique for the treatment of dentin hypersensitivity. PMID:25885090

  4. Use of poly (amidoamine) dendrimer for dentinal tubule occlusion: a preliminary study.

    PubMed

    Wang, Tianda; Yang, Sheng; Wang, Lei; Feng, Hailan

    2015-01-01

    The occlusion of dentinal tubules is an effective method to alleviate the symptoms caused by dentin hypersensitivity, a significant health problem in dentistry and daily life. The in situ mineralization within dentinal tubules is a promising treatment for dentin hypersensitivity as it induces the formation of mineral on the sensitive regions and occludes the dentinal tubules. This study was carried out to evaluate the in vitro effect of a whole generation poly(amidoamine) (PAMAM) dendrimer (G3.0) on dentinal tubule occlusion by inducing mineralization within dentinal tubules. Dentin discs were treated with PAMAM dendrimers using two methods, followed by the in vitro characterization using Attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM) and Energy-Dispersive X-ray Spectroscopy (EDS). These results showed that G3.0 PAMAM dendrimers coated on dentin surface and infiltrated in dentinal tubules could induce hydroxyapatite formation and resulted in effective dentinal tubule occlusion. Moreover, crosslinked PAMAM dendrimers could induce the remineralization of demineralized dentin and thus had the potential in dentinal tubule occlusion. In this in vitro study, dentinal tubules occlusion could be achieved by using PAMAM dendrimers. This could lead to the development of a new therapeutic technique for the treatment of dentin hypersensitivity. PMID:25885090

  5. A critical synopsis: Continuous growth of proximal tubular kidney epithelial cells in hormone-supplemented serum-free medium

    NASA Technical Reports Server (NTRS)

    Chuman, L. M.; FINE; COHEN; Saier, M. H.

    1985-01-01

    The kidney forms urine and reabsorbs electrolytes and water. Kidney cell lines and hormone supplemented serum free medium were used for growth. The hormones were insulin, transferrin, vasopressin, cholesterol, prostaglandins, hydrocortisone, and triidothyronine. Epithelial cell lines are polar and form hemicysts. The Madin-Darby canine kidney(MDCK) cell line used is distal tubulelike. LLC-PK sub 1 cells are derived from pig kidneys and have the properties of different kidney segments. The LLC-PK sub 1 cells with proximal tubule properties were maintained in hormone-supplemented serum free medium. Seven factors (the aforementioned homrones and selenium) were needed for growth. Hormone-defined medium supported LLC-PK sub 1 cell growth, allowed transport (as seen by hemicyst formation), and influenced cell morphology. Vasopressin (used for growth and morphology) could be partially replaced by isobutylmethylxanthine or dibutyryl cAMP. The defined medium was used to isolate rabbit proximal tubule kidney epithelial cells free of fibroblasts.

  6. Species Diversity Regarding the Presence of Proximal Tubular Progenitor Cells of the Kidney

    PubMed Central

    Hansson, J.; Ericsson, A.E.; Axelson, H.; Johansson, M.E.

    2016-01-01

    The cellular source for tubular regeneration following kidney injury is a matter of dispute, with reports suggesting a stem or progenitor cells as the regeneration source while linage tracing studies in mice seemingly favor the classical theory, where regeneration is performed by randomly surviving cells. We, and others have previously described a scattered cell population localized to the tubules of human kidney, which increases in number following injury. Here we have characterized the species distribution of these proximal tubular progenitor cells (PTPCs) in kidney tissue from chimpanzee, pig, rat and mouse using a set of human PTPC markers. We detected PTPCs in chimpanzee and pig kidneys, but not in mouse tissue. Also, subjecting mice to the unilateral urethral obstruction model, caused clear signs of tubular injury, but failed to induce the PTPC phenotype in renal tubules. PMID:26972712

  7. Effect of endophyte-infection on growth parameters and Cd-induced phytotoxicity of Cd-hyperaccumulator Solanum nigrum L.

    PubMed

    Wan, Yong; Luo, Shenglian; Chen, Jueliang; Xiao, Xiao; Chen, Liang; Zeng, Guangming; Liu, Chengbin; He, Yejuan

    2012-10-01

    The aim of this work was to evaluate effects of endophytic bacterium inoculation on plant growth and assess the possible mechanism of endophyte in heavy metal phytoremediation. Seeds of Solanum nigrum L. were inoculated with endophyte Serratia nematodiphila LRE07 and were subjected to Cd in the growing medium. Cd produced a significant inhibition on plant growth and a reduction in the content of photosynthetic pigments. The inoculation of endophytic bacterium alleviated the Cd-induced changes, resulting in more biomass production and higher photosynthetic pigments content of leaves compared with non-symbiotic ones. The beneficial effect was more obvious at relatively low Cd concentration (10 μM). Based on the alteration of nutrient uptake and activated oxygen metabolism in infected plants, the possible mechanisms of endophytic bacterium in Cd phytotoxicity reduction can be concluded as uptake enhancement of essential mineral nutrition and improvement in the antioxidative enzymes activities in infected plant. PMID:22858258

  8. Echosonography with proximity sensors

    NASA Astrophysics Data System (ADS)

    Thaisiam, W.; Laithong, T.; Meekhun, S.; Chaiwathyothin, N.; Thanlarp, P.; Danworaphong, S.

    2013-03-01

    We propose the use of a commercial ultrasonic proximity sensor kit for profiling an altitude-varying surface by employing echosonography. The proximity sensor kit, two identical transducers together with its dedicated operating circuit, is used as a profiler for the construction of an image. Ultrasonic pulses are emitted from one of the transducers and received by the other. The time duration between the pulses allows us to determine the traveling distance of each pulse. In the experiment, the circuit is used with the addition of two copper wires for directing the outgoing and incoming signals to an oscilloscope. The time of flight of ultrasonic pulses can thus be determined. Square grids of 5 × 5 cm2 are made from fishing lines, forming pixels in the image. The grids are designed to hold the detection unit in place, about 30 cm above a flat surface. The surface to be imaged is constructed to be height varying and placed on the flat surface underneath the grids. Our result shows that an image of the profiled surface can be created by varying the location of the detection unit along the grid. We also investigate the deviation in relation to the time of flight of the ultrasonic pulse. Such an experiment should be valuable for conveying the concept of ultrasonic imaging to physical and medical science undergraduate students. Due to its simplicity, the setup could be made in any undergraduate laboratory relatively inexpensively and it requires no complex parts. The results illustrate the concept of echosonography.

  9. Proximity networks and epidemics

    NASA Astrophysics Data System (ADS)

    Toroczkai, Zoltán; Guclu, Hasan

    2007-05-01

    Disease spread in most biological populations requires the proximity of agents. In populations where the individuals have spatial mobility, the contact graph is generated by the “collision dynamics” of the agents, and thus the evolution of epidemics couples directly to the spatial dynamics of the population. We first briefly review the properties and the methodology of an agent-based simulation (EPISIMS) to model disease spread in realistic urban dynamic contact networks. Using the data generated by this simulation, we introduce the notion of dynamic proximity networks which takes into account the relevant time-scales for disease spread: contact duration, infectivity period, and rate of contact creation. This approach promises to be a good candidate for a unified treatment of epidemic types that are driven by agent collision dynamics. In particular, using a simple model, we show that it can account for the observed qualitative differences between the degree distributions of contact graphs of diseases with short infectivity period (such as air-transmitted diseases) or long infectivity periods (such as HIV).

  10. Cardiac BIN1 folds T-tubule membrane, controlling ion flux and limiting arrhythmia.

    PubMed

    Hong, TingTing; Yang, Huanghe; Zhang, Shan-Shan; Cho, Hee Cheol; Kalashnikova, Mariya; Sun, Baiming; Zhang, Hao; Bhargava, Anamika; Grabe, Michael; Olgin, Jeffrey; Gorelik, Julia; Marbán, Eduardo; Jan, Lily Y; Shaw, Robin M

    2014-06-01

    Cardiomyocyte T tubules are important for regulating ion flux. Bridging integrator 1 (BIN1) is a T-tubule protein associated with calcium channel trafficking that is downregulated in failing hearts. Here we find that cardiac T tubules normally contain dense protective inner membrane folds that are formed by a cardiac isoform of BIN1. In mice with cardiac Bin1 deletion, T-tubule folding is decreased, which does not change overall cardiomyocyte morphology but leads to free diffusion of local extracellular calcium and potassium ions, prolonging action-potential duration and increasing susceptibility to ventricular arrhythmias. We also found that T-tubule inner folds are rescued by expression of the BIN1 isoform BIN1+13+17, which promotes N-WASP-dependent actin polymerization to stabilize the T-tubule membrane at cardiac Z discs. BIN1+13+17 recruits actin to fold the T-tubule membrane, creating a 'fuzzy space' that protectively restricts ion flux. When the amount of the BIN1+13+17 isoform is decreased, as occurs in acquired cardiomyopathy, T-tubule morphology is altered, and arrhythmia can result. PMID:24836577

  11. Mathematical study on robust tissue pattern formation in growing epididymal tubule.

    PubMed

    Hirashima, Tsuyoshi

    2016-10-21

    Tissue pattern formation during development is a reproducible morphogenetic process organized by a series of kinetic cellular activities, leading to the building of functional and stable organs. Recent studies focusing on mechanical aspects have revealed physical mechanisms on how the cellular activities contribute to the formation of reproducible tissue patterns; however, the understanding for what factors achieve the reproducibility of such patterning and how it occurs is far from complete. Here, I focus on a tube pattern formation during murine epididymal development, and show that two factors influencing physical design for the patterning, the proliferative zone within the tubule and the viscosity of tissues surrounding to the tubule, control the reproducibility of epididymal tubule pattern, using a mathematical model based on experimental data. Extensive numerical simulation of the simple mathematical model revealed that a spatially localized proliferative zone within the tubule, observed in experiments, results in more reproducible tubule pattern. Moreover, I found that the viscosity of tissues surrounding to the tubule imposes a trade-off regarding pattern reproducibility and spatial accuracy relating to the region where the tubule pattern is formed. This indicates an existence of optimality in material properties of tissues for the robust patterning of epididymal tubule. The results obtained by numerical analysis based on experimental observations provide a general insight on how physical design realizes robust tissue pattern formation. PMID:27396360

  12. Cardiac Spliced BIN1 Folds T-tubule Membrane, Controlling Ion Flux and Limiting Arrhythmia

    PubMed Central

    Hong, TingTing; Yang, Huanghe; Zhang, Shan-Shan; Cho, Hee Cheol; Kalashnikova, Mariya; Sun, Baiming; Zhang, Hao; Bhargava, Anamika; Grabe, Michael; Olgin, Jeffrey; Gorelik, Julia; Marbán, Eduardo; Jan, Lily Y.; Shaw, Robin M.

    2014-01-01

    Cardiomyocyte T-tubules are important for regulating ionic flux. Bridging Integrator 1 (BIN1) is a T-tubule protein associated with calcium channel trafficking that is down-regulated in failing hearts. Here we find that cardiac T-tubules normally contain dense protective inner membrane folds that are formed by a cardiac spliced isoform of BIN1. In mice with cardiac Bin1 deletion, T-tubule folding is decreased which does not change overall cardiomyocyte morphology, but frees diffusion of local extracellular calcium and potassium ions, prolonging action potential duration, and increasing susceptibility to ventricular arrhythmias. We also find that T-tubule inner folds are rescued only by the BIN1 isoform BIN1+13+17, which promotes N-WASP dependent actin polymerization to stabilize T-tubule membrane at cardiac Z-discs. In conclusion, BIN1+13+17 recruits actin to fold T-tubule membrane, creating a fuzzy space that protectively restricts ionic flux. When BIN1+13+17 is decreased, as occurs in acquired cardiomyopathy, T-tubule morphology is altered and arrhythmias can result. PMID:24836577

  13. Modulation of albumin-induced endoplasmic reticulum stress in renal proximal tubule cells by upregulation of mapk phosphatase-1.

    PubMed

    Gorostizaga, Alejandra; Mori Sequeiros García, Maria Mercedes; Acquier, Andrea; Gomez, Natalia V; Maloberti, Paula M; Mendez, Carlos F; Paz, Cristina

    2013-10-25

    High amounts of albumin in urine cause tubulointerstitial damage that leads to a rapid deterioration of the renal function. Albumin exerts its injurious effects on renal cells through a process named endoplasmic reticulum (ER) stress due to the accumulation of unfolded proteins in the ER lumen. In addition, albumin promotes phosphorylation and consequent activation of MAPKs such as ERK1/2. Since ERK1/2 activation promoted by albumin is a transient event, the aims of the present work were to identify the phosphatase involved in their dephosphorylation in albumin-exposed cells and to analyze the putative regulation of this phosphatase by albumin. We also sought to determine the role played by the phospho/dephosphorylation of ERK1/2 in the cellular response to albumin-induced ER stress. MAP kinase phosphatase-1, MKP-1, is a nuclear enzyme involved in rapid MAPK dephosphorylation. Here we present evidence supporting the notion that this phosphatase is responsible for ERK1/2 dephosphorylation after albumin exposure in OK cells. Moreover, we demonstrate that exposure of OK cells to albumin transiently increases MKP-1 protein levels. The increase was evident after 15 min of exposure, peaked at 1 h (6-fold) and declined thereafter. In cells overexpressing flag-MKP-1, albumin caused the accumulation of this chimera, promoting MKP-1 stabilization by a posttranslational mechanism. Albumin also promoted a transient increase in MKP-1 mRNA levels (3-fold at 1 h) through the activation of gene transcription. In addition, we also show that albumin increased mRNA levels of GRP78, a key marker of ER stress, through an ERK-dependent pathway. In line with this finding, our studies demonstrate that flag-MKP-1 overexpression blunted albumin-induced GRP78 upregulation. Thus, our work demonstrates that albumin overload not only triggers MAPK activation but also tightly upregulates MKP-1 expression, which might modulate ER stress response to albumin overload. PMID:23994741

  14. Tacrolimus Modulates TGF-β Signaling to Induce Epithelial-Mesenchymal Transition in Human Renal Proximal Tubule Epithelial Cells.

    PubMed

    Bennett, Jason; Cassidy, Hilary; Slattery, Craig; Ryan, Michael P; McMorrow, Tara

    2016-01-01

    Epithelial-mesenchymal transition (EMT), a process which describes the trans-differentiation of epithelial cells into motile mesenchymal cells, is pivotal in stem cell behavior, development and wound healing, as well as contributing to disease processes including fibrosis and cancer progression. Maintenance immunosuppression with calcineurin inhibitors (CNIs) has become routine management for renal transplant patient, but unfortunately the nephrotoxicity of these drugs has been well documented. HK-2 cells were exposed to Tacrolimus (FK506) and EMT markers were assessed by RT PCR and western blot. FK506 effects on TGF-β mRNA were assessed by RT PCR and TGF-β secretion was measured by ELISA. The impact of increased TGF-β secretion on Smad signaling pathways was investigated. The impact of inhibition of TGF-β signaling on EMT processes was assessed by scratch-wound assay. The results presented in this study suggest that FK506 initiates EMT processes in the HK-2 cell line, with altered expression of epithelial and myofibroblast markers evident. Additionally, the study demonstrates that FK506 activation of the TGF-β/ SMAD pathways is an essential step in the EMT process. Overall the results demonstrate that EMT is heavily involved in renal fibrosis associated with CNI nephrotoxicity. PMID:27128949

  15. Nickel (II)-induced cytotoxicity and apoptosis in human proximal tubule cells through a ROS- and mitochondria-mediated pathway

    SciTech Connect

    Wang, Yi-Fen; Shyu, Huey-Wen; Chang, Yi-Chuang; Tseng, Wei-Chang; Huang, Yeou-Lih; Lin, Kuan-Hua; Chou, Miao-Chen; Liu, Heng-Ling; Chen, Chang-Yu

    2012-03-01

    Nickel compounds are known to be toxic and carcinogenic in kidney and lung. In this present study, we investigated the roles of reactive oxygen species (ROS) and mitochondria in nickel (II) acetate-induced cytotoxicity and apoptosis in the HK-2 human renal cell line. The results showed that the cytotoxic effects of nickel (II) involved significant cell death and DNA damage. Nickel (II) increased the generation of ROS and induced a noticeable reduction of mitochondrial membrane potential (MMP). Analysis of the sub-G1 phase showed a significant increase in apoptosis in HK-2 cells after nickel (II) treatment. Pretreatment with N-acetylcysteine (NAC) not only inhibited nickel (II)-induced cell death and DNA damage, but also significantly prevented nickel (II)-induced loss of MMP and apoptosis. Cell apoptosis triggered by nickel (II) was characterized by the reduced protein expression of Bcl-2 and Bcl-xL and the induced the protein expression of Bad, Bcl-Xs, Bax, cytochrome c and caspases 9, 3 and 6. The regulation of the expression of Bcl-2-family proteins, the release of cytochrome c and the activation of caspases 9, 3 and 6 were inhibited in the presence of NAC. These results suggest that nickel (II) induces cytotoxicity and apoptosis in HK-2 cells via ROS generation and that the mitochondria-mediated apoptotic signaling pathway may be involved in the positive regulation of nickel (II)-induced renal cytotoxicity.

  16. Tacrolimus Modulates TGF-β Signaling to Induce Epithelial-Mesenchymal Transition in Human Renal Proximal Tubule Epithelial Cells

    PubMed Central

    Bennett, Jason; Cassidy, Hilary; Slattery, Craig; Ryan, Michael P.; McMorrow, Tara

    2016-01-01

    Epithelial-mesenchymal transition (EMT), a process which describes the trans-differentiation of epithelial cells into motile mesenchymal cells, is pivotal in stem cell behavior, development and wound healing, as well as contributing to disease processes including fibrosis and cancer progression. Maintenance immunosuppression with calcineurin inhibitors (CNIs) has become routine management for renal transplant patient, but unfortunately the nephrotoxicity of these drugs has been well documented. HK-2 cells were exposed to Tacrolimus (FK506) and EMT markers were assessed by RT PCR and western blot. FK506 effects on TGF-β mRNA were assessed by RT PCR and TGF-β secretion was measured by ELISA. The impact of increased TGF-β secretion on Smad signaling pathways was investigated. The impact of inhibition of TGF-β signaling on EMT processes was assessed by scratch-wound assay. The results presented in this study suggest that FK506 initiates EMT processes in the HK-2 cell line, with altered expression of epithelial and myofibroblast markers evident. Additionally, the study demonstrates that FK506 activation of the TGF-β/ SMAD pathways is an essential step in the EMT process. Overall the results demonstrate that EMT is heavily involved in renal fibrosis associated with CNI nephrotoxicity. PMID:27128949

  17. Kidney Injury Molecule-1 Enhances Endocytosis of Albumin in Renal Proximal Tubular Cells.

    PubMed

    Zhao, Xueying; Jiang, Chen; Olufade, Rebecca; Liu, Dong; Emmett, Nerimiah

    2016-04-01

    Receptor-mediated endocytosis plays an important role in albumin reabsorption by renal proximal tubule epithelial cells. Kidney injury molecule-1 (KIM-1) is a scavenger receptor that is upregulated on the apical membrane of proximal tubules in proteinuric kidney disease. In this study, we examined the cellular localization and functional role of KIM-1 in cultured renal tubule epithelial cells (TECs). Confocal immunofluorescence microscopy reveals intracellular and cell surface localization of KIM-1 in primary renal TECs. Albumin stimulation resulted in a redistribution of KIM-1 and tight junction protein zonula occludens-1 in primary TEC monolayer. An increase in albumin internalization was observed in both primary TECs expressing endogenous KIM-1 and rat kidney cell line (NRK-52E) overexpressing exogenous KIM-1. KIM-1-induced albumin accumulation was abolished by its specific antibody. Moreover, endocytosed KIM-1 and its cargo proteins were delivered from endosomes to lysosomes for degradation in a clathrin-dependent pathway. Supportive evidence includes (1) detection of KIM-1 in Rab5-positive early endosomes, Rab7-positive late endosomes/multivesicular bodies, and LAMP1-positive lysosomes, (2) colocalization of KIM-1 and clathrin in the intracellular vesicles, and (3) blockade of KIM-1-mediated albumin internalization by chlorpromazine, an inhibitor of clathrin-dependent endocytosis. KIM-1 expression was upregulated by albumin but downregulated by transforming growth factor-β1. Taken together, our data indicate that KIM-1 increases albumin endocytosis in renal tubule epithelial cells, at least partially via a clathrin-dependent mechanism. J. Cell. Physiol. 231: 896-907, 2016. © 2015 Wiley Periodicals, Inc. PMID:26332568

  18. A second form of infectious bursal disease virus-associated tubule contains VP4.

    PubMed Central

    Granzow, H; Birghan, C; Mettenleiter, T C; Beyer, J; Köllner, B; Mundt, E

    1997-01-01

    Preparations of density gradient-purified infectious bursal disease virus (IBDV) were found to contain full and empty icosahedral virions, type I tubules with a diameter of about 60 nm, and type II tubules 24 to 26 nm in diameter. By immunoelectron microscopy we demonstrate that virions and both types of tubular structures specifically react with anti-IBDV serum. In infected cells intracytoplasmic and intranuclear type II tubules reacted exclusively with an anti-VP4 monoclonal antibody, as did type II tubules in virion preparations. The immunofluorescence pattern with the anti-VP4 antibody correlated with electron microscopical findings. Neither purified extracellular nor intracellular virions were labeled with the anti-VP4 MAb. Our data show that the type II tubules contain VP4 and suggest that VP4 is not part of the virus particle. PMID:9343252

  19. Methods for analyzing the role of phospholipase A2 enzymes in endosome membrane tubule formation

    PubMed Central

    Kalkofen, Danielle N.; de Figueiredo, Paul; Brown, William J.

    2016-01-01

    Cargo export from mammalian endosomal compartments often involves membrane tubules, into which soluble and membrane-bound cargos are segregated for subsequent intracellular transport. These membrane tubules are highly dynamic and their formation is mediated by a variety of endosome-associated proteins. However, little is known about how these membrane tubules are temporally or spatially regulated, so other tubule-associated proteins are likely to be discovered and analyzed. Therefore, methods to examine the biogenesis and regulation of endosome membrane tubules will prove to be valuable for cell biologists. In this chapter, we describe methods for studying this process using both cell-free, in vitro reconstitution assays, and in vivo image analysis tools. PMID:26360034

  20. The structure and function of cardiac t-tubules in health and disease.

    PubMed

    Ibrahim, Michael; Gorelik, Julia; Yacoub, Magdi H; Terracciano, Cesare M

    2011-09-22

    The transverse tubules (t-tubules) are invaginations of the cell membrane rich in several ion channels and other proteins devoted to the critical task of excitation-contraction coupling in cardiac muscle cells (cardiomyocytes). They are thought to promote the synchronous activation of the whole depth of the cell despite the fact that the signal to contract is relayed across the external membrane. However, recent work has shown that t-tubule structure and function are complex and tightly regulated in healthy cardiomyocytes. In this review, we outline the rapidly accumulating knowledge of its novel roles and discuss the emerging evidence of t-tubule dysfunction in cardiac disease, especially heart failure. Controversy surrounds the t-tubules' regulatory elements, and we draw attention to work that is defining these elements from the genetic and the physiological levels. More generally, this field illustrates the challenges in the dissection of the complex relationship between cellular structure and function. PMID:21697171

  1. The molecular correlates of organ loss: the case of insect Malpighian tubules

    PubMed Central

    Jing, Xiangfeng; White, Thomas A.; Yang, Xiaowei; Douglas, Angela E.

    2015-01-01

    Malpighian tubules play an essential role in excretion, osmoregulation and immunity of most insects. Exceptionally, aphids lack Malpighian tubules, providing the opportunity to investigate the fate of genes expressed in an organ that has undergone evolutionary reduction and loss. Making use of the sequenced genomes of Drosophila melanogaster and the pea aphid Acyrthosiphon pisum, we demonstrated that more than 50% of Drosophila genes expressed specifically in the Malpighian tubules had orthologues in the pea aphid genome and that most of the pea aphid orthologues with detectable expression were identified in the gut transcriptome. Relative to the whole genome, genes functioning in amino acid metabolism are significantly over-represented among the pea aphid orthologues of Malpighian tubule genes, likely reflecting the central importance of amino acid acquisition and metabolism in aphids. This study demonstrates that the evolutionary loss of a key insect organ, the Malpighian tubules, has not been associated with the coupled loss of molecular functions. PMID:25972400

  2. Fine structure of the sperm storage tubules in the box turtle oviduct.

    PubMed

    Gist, D H; Fischer, E N

    1993-03-01

    The sperm storage tubules of the box turtle (Terrapene carolina) were examined by transmission electron microscopy. Tubules containing spermatozoa were surrounded by 6-8 secretory cells, each of which contains numerous membrane-bound vesicles presumably containing precursors to egg white proteins. The apical membranes of these cells contain microvilli, and the apical lateral membranes possess prominent junctional complexes. Cells comprising the spermatozoa-containing tubules cannot be differentiated from those devoid of spermatozoa. Various quantities of spermatozoa reside free in the lumina of the secretory tubules, and are not in contact with host cells. Only the presence of ducts communicating with the oviduct lumen serve to differentiate the spermatozoa-containing tubules. PMID:8501716

  3. Do t-tubules play a role in arrhythmogenesis in cardiac ventricular myocytes?

    PubMed

    Orchard, C H; Bryant, S M; James, A F

    2013-09-01

    The transverse (t-) tubules of mammalian ventricular myocytes are invaginations of the surface membrane. The function of many of the key proteins involved in excitation-contraction coupling is located predominantly at the t-tubules, which thus form a Ca(2+)-handling micro-environment that is central to the normal rapid activation and relaxation of the ventricular myocyte. Although cellular arrhythmogenesis shares many ion flux pathways with normal excitation-contraction coupling, the role of the t-tubules in such arrhythmogenesis has not previously been considered. In this brief review we consider how the location and co-location of proteins at the t-tubules may contribute to the generation of arrhythmogenic delayed and early afterdepolarisations, and how the loss of t-tubules that occurs during heart failure may alter the generation of such arrhythmias, as well as contributing to other types of arrhythmia as a result of changes of electrical heterogeneity within the whole heart. PMID:23652596

  4. A new look at electrolyte transport in the distal tubule.

    PubMed

    Eladari, Dominique; Chambrey, Régine; Peti-Peterdi, Janos

    2012-01-01

    The distal nephron plays a critical role in the renal control of homeostasis. Until very recently most studies focused on the control of Na(+), K(+), and water balance by principal cells of the collecting duct and the regulation of solute and water by hormones from the renin-angiotensin-aldosterone system and by antidiuretic hormone. However, recent studies have revealed the unexpected importance of renal intercalated cells, a subtype of cells present in the connecting tubule and collecting ducts. Such cells were thought initially to be involved exclusively in acid-base regulation. However, it is clear now that intercalated cells absorb NaCl and K(+) and hence may participate in the regulation of blood pressure and potassium balance. The second paradigm-challenging concept we highlight is the emerging importance of local paracrine factors that play a critical role in the renal control of water and electrolyte balance. PMID:21888509

  5. A New Look at Electrolyte Transport in the Distal Tubule

    PubMed Central

    Eladari, Dominique; Chambrey, Régine; Peti-Peterdi, Janos

    2015-01-01

    The distal nephron plays a critical role in the renal control of homeostasis. Until very recently most studies focused on the control of Na+, K+, and water balance by principal cells of the collecting duct and the regulation of solute and water by hormones from the renin-angiotensin-aldosterone system and by antidiuretic hormone. However, recent studies have revealed the unexpected importance of renal intercalated cells, a subtype of cells present in the connecting tubule and collecting ducts. Such cells were thought initially to be involved exclusively in acid-base regulation. However, it is clear now that intercalated cells absorb NaCl and K+ and hence may participate in the regulation of blood pressure and potassium balance. The second paradigm-challenging concept we highlight is the emerging importance of local paracrine factors that play a critical role in the renal control of water and electrolyte balance. PMID:21888509

  6. Regional variation in root dentinal tubule infection by Streptococcus gordonii.

    PubMed

    Love, R M

    1996-06-01

    The purpose of this study was to investigate the pattern of bacterial invasion of dentinal tubules at different regions in human roots. Specimens were obtained from single-rooted teeth that had their root canals prepared in a standard manner. Roots were then sectioned longitudinally through the canals and the resulting specimens chemically treated to remove the smear layers. Specimens were immersed in a suspension of Streptococcus gordonii for 3 weeks and then prepared for histological analysis. Sections from the cervical, midroot, and apical areas were examined. The pattern of bacterial infection of the cervical and midroot areas was similar, characterized as a heavy infection with bacteria penetrating as deep as 200 microns. Invasion of the apical dentin was significantly different, with a mild infection and maximum penetration of 60 microns. PMID:8934987

  7. Some Properties of Fuzzy Soft Proximity Spaces

    PubMed Central

    Demir, İzzettin; Özbakır, Oya Bedre

    2015-01-01

    We study the fuzzy soft proximity spaces in Katsaras's sense. First, we show how a fuzzy soft topology is derived from a fuzzy soft proximity. Also, we define the notion of fuzzy soft δ-neighborhood in the fuzzy soft proximity space which offers an alternative approach to the study of fuzzy soft proximity spaces. Later, we obtain the initial fuzzy soft proximity determined by a family of fuzzy soft proximities. Finally, we investigate relationship between fuzzy soft proximities and proximities. PMID:25793224

  8. Lysophosphatidic acid-induced calcium mobilization and proliferation in kidney proximal tubular cells.

    PubMed

    Dixon, R J; Young, K; Brunskill, N J

    1999-02-01

    Patients with proteinuria tend to develop progressive renal disease with proximal tubular cell atrophy and interstitial scarring. It has been suggested that the nephrotoxicity of albuminuric states may be due to the protein molecule itself or by lipids, such as lysophosphatidic acid (LPA), that albumin carries. LPA was found to cause a transient increase in intracytoplasmic free Ca2+ ([Ca2+]i) in opossum kidney proximal tubule cells (OK) that was maximal at 100 microM LPA and was dose dependent with an EC50 of 2.6 x 10(-6) M. This Ca2+ mobilization was from both internal stores and across the plasma membrane and was pertussis toxin (PTX) insensitive. Treatment of OK cells with 100 microM LPA for 5 min was found to cause a twofold increase in [3H]thymidine incorporation and a three- to fivefold increase over control after 24 h. This was highly PTX sensitive and insensitive to pretreatment with the tyrosine kinase inhibitors genistein and herbimycin A. These findings may be of significance in the progression of renal disease and indicate the potential importance of lipids in modulating proximal tubule cell function and growth. PMID:9950949

  9. A Non-sulfated Chondroitin Stabilizes Membrane Tubulation in Cnidarian Organelles*

    PubMed Central

    Adamczyk, Patrizia; Zenkert, Claudia; Balasubramanian, Prakash G.; Yamada, Shuhei; Murakoshi, Saori; Sugahara, Kazuyuki; Hwang, Jung Shan; Gojobori, Takashi; Holstein, Thomas W.; Özbek, Suat

    2010-01-01

    Membrane tubulation is generally associated with rearrangements of the cytoskeleton and other cytoplasmic factors. Little is known about the contribution of extracellular matrix components to this process. Here, we demonstrate an essential role of proteoglycans in the tubulation of the cnidarian nematocyst vesicle. The morphogenesis of this extrusive organelle takes place inside a giant post-Golgi vesicle, which topologically represents extracellular space. This process includes the formation of a complex collagenous capsule structure that elongates into a long tubule, which invaginates after its completion. We show that a non-sulfated chondroitin appears as a scaffold in early morphogenesis of all nematocyst types in Hydra and Nematostella. It accompanies the tubulation of the vesicle membrane forming a provisional tubule structure, which after invagination matures by collagen incorporation. Inhibition of chondroitin synthesis by β-xylosides arrests nematocyst morphogenesis at different stages of tubule outgrowth resulting in retention of tubule material and a depletion of mature capsules in the tentacles of hydra. Our data suggest a conserved role of proteoglycans in the stabilization of a membrane protrusion as an essential step in organelle morphogenesis. PMID:20538610

  10. In vivo model for microbial invasion of tooth root dentinal tubules

    PubMed Central

    BRITTAN, Jane L; SPRAGUE, Susan V; MACDONALD, Emma L; LOVE, Robert M; JENKINSON, Howard F; WEST, Nicola X

    2016-01-01

    ABSTRACT Objective Bacterial penetration of dentinal tubules via exposed dentine can lead to root caries and promote infections of the pulp and root canal system. The aim of this work was to develop a new experimental model for studying bacterial invasion of dentinal tubules within the human oral cavity. Material and Methods Sections of human root dentine were mounted into lower oral appliances that were worn by four human subjects for 15 d. Roots were then fixed, sectioned, stained and examined microscopically for evidence of bacterial invasion. Levels of invasion were expressed as Tubule Invasion Factor (TIF). DNA was extracted from root samples, subjected to polymerase chain reaction amplification of 16S rRNA genes, and invading bacteria were identified by comparison of sequences with GenBank database. Results All root dentine samples with patent tubules showed evidence of bacterial cell invasion (TIF value range from 5.7 to 9.0) to depths of 200 mm or more. A spectrum of Gram-positive and Gram-negative cell morphotypes were visualized, and molecular typing identified species of Granulicatella, Streptococcus, Klebsiella, Enterobacter, Acinetobacter, and Pseudomonas as dentinal tubule residents. Conclusion A novel in vivo model is described, which provides for human root dentine to be efficiently infected by oral microorganisms. A range of bacteria were able to initially invade dentinal tubules within exposed dentine. The model will be useful for testing the effectiveness of antiseptics, irrigants, and potential tubule occluding agents in preventing bacterial invasion of dentine. PMID:27119760

  11. In vivo model for microbial invasion of tooth root dentinal tubules.

    PubMed

    Brittan, Jane L; Sprague, Susan V; Macdonald, Emma L; Love, Robert M; Jenkinson, Howard F; West, Nicola X

    2016-04-01

    Objective Bacterial penetration of dentinal tubules via exposed dentine can lead to root caries and promote infections of the pulp and root canal system. The aim of this work was to develop a new experimental model for studying bacterial invasion of dentinal tubules within the human oral cavity. Material and Methods Sections of human root dentine were mounted into lower oral appliances that were worn by four human subjects for 15 d. Roots were then fixed, sectioned, stained and examined microscopically for evidence of bacterial invasion. Levels of invasion were expressed as Tubule Invasion Factor (TIF). DNA was extracted from root samples, subjected to polymerase chain reaction amplification of 16S rRNA genes, and invading bacteria were identified by comparison of sequences with GenBank database. Results All root dentine samples with patent tubules showed evidence of bacterial cell invasion (TIF value range from 5.7 to 9.0) to depths of 200 mm or more. A spectrum of Gram-positive and Gram-negative cell morphotypes were visualized, and molecular typing identified species of Granulicatella, Streptococcus, Klebsiella, Enterobacter, Acinetobacter, and Pseudomonas as dentinal tubule residents. Conclusion A novel in vivo model is described, which provides for human root dentine to be efficiently infected by oral microorganisms. A range of bacteria were able to initially invade dentinal tubules within exposed dentine. The model will be useful for testing the effectiveness of antiseptics, irrigants, and potential tubule occluding agents in preventing bacterial invasion of dentine. PMID:27119760

  12. Microorganism penetration in dentinal tubules of instrumented and retreated root canal walls. In vitro SEM study

    PubMed Central

    Al-Sulaiman, Alaa; Al-Rasheed, Fellwa; Alnajjar, Fatimah; Al-Abdulwahab, Bander; Al-Badah, Abdulhakeem

    2014-01-01

    Objectives This in vitro study aimed to investigate the ability of Candida albicans (C. albicans) and Enterococcus faecalis (E. faecalis) to penetrate dentinal tubules of instrumented and retreated root canal surface of split human teeth. Materials and Methods Sixty intact extracted human single-rooted teeth were divided into 4 groups, negative control, positive control without canal instrumentation, instrumented, and retreated. Root canals in the instrumented group were enlarged with endodontic instruments, while root canals in the retreated group were enlarged, filled, and then removed the canal filling materials. The teeth were split longitudinally after canal preparation in 3 groups except the negative control group. The teeth were inoculated with both microorganisms separately and in combination. Teeth specimens were examined by scanning electron microscopy (SEM), and the depth of penetration into the dentinal tubules was assessed using the SMILE view software (JEOL Ltd). Results Penetration of C. albicans and E. faecalis into the dentinal tubules was observed in all 3 groups, although penetration was partially restricted by dentin debris of tubules in the instrumented group and remnants of canal filling materials in the retreated group. In all 3 groups, E. faecalis penetrated deeper into the dentinal tubules by way of cell division than C. albicans which built colonies and penetrated by means of hyphae. Conclusions Microorganisms can easily penetrate dentinal tubules of root canals with different appearance based on the microorganism size and status of dentinal tubules. PMID:25383343

  13. A structural study of the rat proximal and distal nephron: effect of peptide and thyroid hormones.

    PubMed

    Koechlin, N; Elalouf, J M; Kaissling, B; Roinel, N; de Rouffignac, C

    1989-05-01

    The effects of the absence of various hormones (antidiuretic hormone, thyroid hormone, parathyroid hormone, and calcitonin) on proximal and distal structures were studied in diabetes insipidus (DI) Brattleboro rats. The cross-sectional area of the first segment of proximal convoluted tubules (S1) was significantly reduced in thyroparathyroidectomized (TPTX) DI rats compared with Long-Evans rats (the strain of origin of DI rats) and untreated DI rats. Administration of triiodothyronine (T3, 10 micrograms/day for 7 days) to TPTX-DI rats restored the proximal tubule structure. In the distal convoluted tubule (DCT) the cross-sectional area of the epithelium and the number of nuclei per cross-sectional area were significantly greater in untreated ADH-deficient DI rats than in the control Long-Evans rats. Daily administration of 1-desamino-8-D-arginine vasopressin (dDAVP, 500 ng/day for 3 wk) significantly reduced the size and the number of DCT cells in DI rats. Cortical micropuncture data indicated that the Na+ concentration in the fluid delivered to the DCT and the absolute amount of Na+ reabsorbed along the DCT were higher in DI than in dDAVP-treated DI rats. It is concluded that functional changes in the PCT, subsequent to chronic TPTX, are accompanied by marked alteration of the cell anatomy of this nephron segment, and that the processes that modify the Na load delivered to the DCT and the Na transport in the DCT are accompanied by structural modifications of this segment. PMID:2719159

  14. Recurrent Light Chain Proximal Tubulopathy in a Kidney Allograft.

    PubMed

    Angioi, Andrea; Amer, Hatem; Fervenza, Fernando C; Sethi, Sanjeev

    2016-09-01

    We describe a rare case of light chain proximal tubulopathy developing in a kidney transplant 12 months following transplantation. The patient was known to have a monoclonal gammopathy of undetermined significance (MGUS) for more than 15 years. A kidney biopsy done to determine the cause of decline in kidney transplant function showed light chain proximal tubulopathy characterized by numerous eosinophilic and fuchsinophilic granules in proximal tubular epithelial cells, which stained for κ light chains on pronase-based immunofluorescence studies. Electron microscopy confirmed the diagnosis and showed numerous amorphous and geometrically shaped inclusions in proximal tubular epithelial cells. Evaluation of free light chains revealed markedly elevated κ light chains and bone marrow biopsy showed 5% to 10% κ light chain-restricted plasma cells. Retrospective evaluation of the native kidney biopsy performed 15 years earlier also showed numerous fuchsinophilic granules in proximal tubules that stained brightly for κ light chains on pronase-based immunofluorescence studies. The patient was treated with a regimen of bortezomib and dexamethasone with good partial hematologic response and improvement of kidney function. To summarize, we describe a case of recurrent light chain proximal tubulopathy in the transplant, which is an unusual but important cause of decreased kidney function in the setting of a monoclonal gammopathy. PMID:27321964

  15. Cd-induced oxidative stress and lignification in the roots of two Vicia sativa L. varieties with different Cd tolerances.

    PubMed

    Rui, Haiyun; Chen, Chen; Zhang, Xingxing; Shen, Zhenguo; Zhang, Fenqin

    2016-01-15

    We examined the effects of Cd on growth, lipid peroxidation, reactive oxygen species (ROS) accumulation, antioxidant enzymatic activity, and lignin content in the roots of two varieties of Vicia sativa. Treatment with Cd decreased plant growth and increased ROS and lipid peroxidation levels to a greater extent in the Cd-sensitive variety ZM than in the Cd-tolerant variety L3. Most hydrogen peroxide (H2O2) and superoxide anion (O2(•-)) were accumulated in the cell walls and extracellular spaces in response to Cd treatments. Chemical assays and experiments using inhibitors showed that larger increases in H2O2 and O2(•-) production in ZM than in L3 were probably attributed to elevated Cd-induced nicotinamide adenine dinucleotide-peroxidase (NADH-POD) activity. Cd treatment increased the accumulation of lignin and the guaiacol peroxidase (GPOD) activities in the apoplast more significantly in ZM root than in L3. Howerver, root laccase activity was higher in L3 than in ZM. Thus Cd toxicity induced significant lignification in the roots of V. sativa, and increases in H2O2 accumulation and apoplastic GPOD activity were likely responsible for this effect. PMID:26372696

  16. A Role for Phospholipase A2 Activity in Membrane Tubule Formation and TGN Trafficking

    PubMed Central

    Schmidt, John A.; Kalkofen, Danielle N.; Donovan, Kirk W.; Brown, William J.

    2015-01-01

    We have investigated the role of phospholipase A2 (PLA2) enzymes in generating membrane tubules at the trans-Golgi network (TGN). Constitutive TGN membrane tubules and those induced by over-expressing kinase dead protein kinase D were inhibited by the PLA2 inhibitors ONO-RS-082 (ONO) and bromoenol lactone. These antagonists also inhibited secretory delivery of both soluble and transmembrane cargoes. Finally, use of the reversible antagonist ONO and time-lapse imaging revealed for the first time that PLA2 antagonists inhibit the initiation of membrane tubule formation at the TGN. Thus, PLA2 enzymes appear to have an important role in the earliest steps of membrane tubule formation at the TGN, which are utilized for membrane trafficking. PMID:20874826

  17. The Directional Observation of Highly Dynamic Membrane Tubule Formation Induced by Engulfed Liposomes

    PubMed Central

    Zhang, Xiaoming; Dai, Luru; Wang, Anhe; Wölk, Christian; Dobner, Bodo; Brezesinski, Gerald; Tang, Yunqing; Wang, Xianyou; Li, Junbai

    2015-01-01

    Highly dynamic tubular structures in cells are responsible for exchanges between organelles. Compared with bacterial invasion, the most affordable and least toxic lipids were found in this study to be gentle and safe exogenous stimuli for the triggering of membrane tubules. A specific lipid system was internalized by NIH3T3 cells. Following cellular uptake, the constructed liposomes traveled towards the nucleus in aggregations and were gradually distributed into moving vesicles and tubules in the cytosol. The triggered tubules proceeded, retreated or fluctuated along the cytoskeleton and were highly dynamic, moving quickly (up to several microns per second), and breaking and fusing frequently. These elongated tubules could also fuse with one another, giving rise to polygonal membrane networks. These lipid systems, with the novel property of accelerating intracellular transport, provide a new paradigm for investigating cellular dynamics. PMID:26548331

  18. Length Is Associated with Pain: Jellyfish with Painful Sting Have Longer Nematocyst Tubules than Harmless Jellyfish.

    PubMed

    Kitatani, Ryuju; Yamada, Mayu; Kamio, Michiya; Nagai, Hiroshi

    2015-01-01

    A large number of humans are stung by jellyfish all over the world. The stings cause acute pain followed by persistent pain and local inflammation. Harmful jellyfish species typically cause strong pain, whereas harmless jellyfish cause subtle or no pain. Jellyfish sting humans by injecting a tubule, contained in the nematocyst, the stinging organ of jellyfish. The tubule penetrates into the skin leading to venom injection. The detailed morphology of the nematocyst tubule and molecular structure of the venom in the nematocyst has been reported; however, the mechanism responsible for the difference in pain that is caused by harmful and harmless jellyfish sting has not yet been explored or explained. Therefore, we hypothesized that differences in the length of the nematocyst tubule leads to different degrees of epithelial damage. The initial acute pain might be generated by penetration of the tubule, which stimulates pain receptor neurons, whilst persistent pain might be caused by injection of venom into the epithelium. To test this hypothesis we compared the lengths of discharged nematocyst tubules from harmful and harmless jellyfish species and evaluated their ability to penetrate human skin. The results showed that the harmful jellyfish species, Chrysaora pacifica, Carybdea brevipedalia, and Chironex yamaguchii, causing moderate to severe pain, have nematocyst tubules longer than 200 μm, compared with a jellyfish species that cause little or no pain, Aurelia aurita. The majority of the tubules of harmful jellyfishes, C. yamaguchii and C. brevipedalia, were sufficiently long to penetrate the human epidermis and physically stimulate the free nerve endings of Aδ pain receptor fibers around plexuses to cause acute pain and inject the venom into the human skin epithelium to cause persistent pain and inflammation. PMID:26309256

  19. Length Is Associated with Pain: Jellyfish with Painful Sting Have Longer Nematocyst Tubules than Harmless Jellyfish

    PubMed Central

    Kitatani, Ryuju; Yamada, Mayu; Kamio, Michiya; Nagai, Hiroshi

    2015-01-01

    A large number of humans are stung by jellyfish all over the world. The stings cause acute pain followed by persistent pain and local inflammation. Harmful jellyfish species typically cause strong pain, whereas harmless jellyfish cause subtle or no pain. Jellyfish sting humans by injecting a tubule, contained in the nematocyst, the stinging organ of jellyfish. The tubule penetrates into the skin leading to venom injection. The detailed morphology of the nematocyst tubule and molecular structure of the venom in the nematocyst has been reported; however, the mechanism responsible for the difference in pain that is caused by harmful and harmless jellyfish sting has not yet been explored or explained. Therefore, we hypothesized that differences in the length of the nematocyst tubule leads to different degrees of epithelial damage. The initial acute pain might be generated by penetration of the tubule, which stimulates pain receptor neurons, whilst persistent pain might be caused by injection of venom into the epithelium. To test this hypothesis we compared the lengths of discharged nematocyst tubules from harmful and harmless jellyfish species and evaluated their ability to penetrate human skin. The results showed that the harmful jellyfish species, Chrysaora pacifica, Carybdea brevipedalia, and Chironex yamaguchii, causing moderate to severe pain, have nematocyst tubules longer than 200 μm, compared with a jellyfish species that cause little or no pain, Aurelia aurita. The majority of the tubules of harmful jellyfishes, C. yamaguchii and C. brevipedalia, were sufficiently long to penetrate the human epidermis and physically stimulate the free nerve endings of Aδ pain receptor fibers around plexuses to cause acute pain and inject the venom into the human skin epithelium to cause persistent pain and inflammation. PMID:26309256

  20. Automatic glandular and tubule region segmentation in histological grading of breast cancer

    NASA Astrophysics Data System (ADS)

    Nguyen, Kien; Barnes, Michael; Srinivas, Chukka; Chefd'hotel, Christophe

    2015-03-01

    In the popular Nottingham histologic score system for breast cancer grading, the pathologist analyzes the H and E tissue slides and assigns a score, in the range of 1-3, for tubule formation, nuclear pleomorphism and mitotic activity in the tumor regions. The scores from these three factors are added to give a final score, ranging from 3-9 to grade the cancer. Tubule score (TS), which reflects tubular formation, is a value in 1-3 given by manually estimating the percentage of glandular regions in the tumor that form tubules. In this paper, given an H and E tissue image representing a tumor region, we propose an automated algorithm to detect glandular regions and detect the presence of tubules in these regions. The algorithm first detects all nuclei and lumen candidates in the input image, followed by identifying tumor nuclei from the detected nuclei and identifying true lumina from the lumen candidates using a random forest classifier. Finally, it forms the glandular regions by grouping the closely located tumor nuclei and lumina using a graph-cut-based method. The glandular regions containing true lumina are considered as the ones that form tubules (tubule regions). To evaluate the proposed method, we calculate the tubule percentage (TP), i.e., the ratio of the tubule area to the total glandular area for 353 H and E images of the three TSs, and plot the distribution of these TP values. This plot shows the clear separation among these three scores, suggesting that the proposed algorithm is useful in distinguishing images of these TSs.

  1. Instantaneous adhesion of Cuvierian tubules in the sea cucumber Holothuria forskali.

    PubMed

    Demeuldre, Mélanie; Chinh Ngo, Thi; Hennebert, Elise; Wattiez, Ruddy; Leclère, Philippe; Flammang, Patrick

    2014-06-01

    The peculiar Cuvierian tubules of sea cucumbers function as a defense mechanism. They thwart attacks by creating a sticky network composed of elongated tubules within which the potential predator is entangled in a matter of seconds and thus immobilized. Cuvierian tubules are typical instantaneous adhesive organs in which tissue integrity is destroyed during the release of the adhesive secretion. However, very little information is available about this adhesion process. The adhesive epithelium-the mesothelium-and the sticky material it produces were studied in the species Holothuria forskali using different microscopy techniques (light microscopy, transmission electron microscopy, scanning electron microscopy, and atomic force microscopy). The mesothelium consists of two cell types-peritoneocytes and granular cells-organized in superimposed layers. In tubules before expulsion, peritoneocytes form an outer protective cell layer preventing adhesion when not needed. After expulsion, the elongation process removes this protective layer and allows granular cells to unfold and to become exposed at the tubule surface. At this stage, Cuvierian tubules are still not sticky. Upon contact with a surface, however, granular cells release their granule contents. Once released, this material changes in aspect, swells, and spreads readily on any type of substrate where it forms a thin homogeneous layer. After tubule peeling, this layer remains on the surface but is often contaminated with collagen fibers. Atomic force microscopy demonstrated the adhesive layer to be made up of globular nanostructures measuring about 70 nm in diameter and to be more adhesive than the collagen fibers left on it. The morphological organization of Cuvierian tubules therefore allows contact-dependent deposition of an adhesive material presenting a high affinity for various surfaces. It is certainly an adaptive advantage for a defense organ to be able to entangle different types of predators. PMID

  2. Gβ1γ2 activates phospholipase A2-dependent Golgi membrane tubule formation

    PubMed Central

    Bechler, Marie E.; Brown, William J.

    2014-01-01

    Heterotrimeric G proteins transduce the ligand binding of transmembrane G protein coupled receptors into a variety of intracellular signaling pathways. Recently, heterotrimeric Gβγ subunit signaling at the Golgi complex has been shown to regulate the formation of vesicular transport carriers that deliver cargo from the Golgi to the plasma membrane. In addition to vesicles, membrane tubules have also been shown to mediate export from the Golgi complex, which requires the activity of cytoplasmic phospholipase A2 (PLA2) enzyme activity. Through the use of an in vitro reconstitution assay with isolated Golgi complexes, we provide evidence that Gβ1γ2 signaling also stimulates Golgi membrane tubule formation. In addition, we show that an inhibitor of Gβγ activation of PLA2 enzymes inhibits in vitro Golgi membrane tubule formation. Additionally, purified Gβγ protein stimulates membrane tubules in the presence of low (sub-threshold) cytosol concentrations. Importantly, this Gβγ stimulation of Golgi membrane tubule formation was inhibited by treatment with the PLA2 antagonist ONO-RS-082. These studies indicate that Gβ1γ2 signaling activates PLA2 enzymes required for Golgi membrane tubule formation, thus establishing a new layer of regulation for this process. PMID:25019068

  3. Membrane tubule formation by banana-shaped proteins with or without transient network structure.

    PubMed

    Noguchi, Hiroshi

    2016-01-01

    In living cells, membrane morphology is regulated by various proteins. Many membrane reshaping proteins contain a Bin/Amphiphysin/Rvs (BAR) domain, which consists of a banana-shaped rod. The BAR domain bends the biomembrane along the rod axis and the features of this anisotropic bending have recently been studied. Here, we report on the role of the BAR protein rods in inducing membrane tubulation, using large-scale coarse-grained simulations. We reveal that a small spontaneous side curvature perpendicular to the rod can drastically alter the tubulation dynamics at high protein density, whereas no significant difference is obtained at low density. A percolated network is intermediately formed depending on the side curvature. This network suppresses tubule protrusion, leading to the slow formation of fewer tubules. Thus, the side curvature, which is generated by protein-protein and membrane-protein interactions, plays a significant role in tubulation dynamics. We also find that positive surface tensions and the vesicle membrane curvature can stabilize this network structure by suppressing the tubulation. PMID:26863901

  4. Membrane tubule formation by banana-shaped proteins with or without transient network structure

    NASA Astrophysics Data System (ADS)

    Noguchi, Hiroshi

    2016-02-01

    In living cells, membrane morphology is regulated by various proteins. Many membrane reshaping proteins contain a Bin/Amphiphysin/Rvs (BAR) domain, which consists of a banana-shaped rod. The BAR domain bends the biomembrane along the rod axis and the features of this anisotropic bending have recently been studied. Here, we report on the role of the BAR protein rods in inducing membrane tubulation, using large-scale coarse-grained simulations. We reveal that a small spontaneous side curvature perpendicular to the rod can drastically alter the tubulation dynamics at high protein density, whereas no significant difference is obtained at low density. A percolated network is intermediately formed depending on the side curvature. This network suppresses tubule protrusion, leading to the slow formation of fewer tubules. Thus, the side curvature, which is generated by protein-protein and membrane-protein interactions, plays a significant role in tubulation dynamics. We also find that positive surface tensions and the vesicle membrane curvature can stabilize this network structure by suppressing the tubulation.

  5. mTORC2 regulates renal tubule sodium uptake by promoting ENaC activity.

    PubMed

    Gleason, Catherine E; Frindt, Gustavo; Cheng, Chih-Jen; Ng, Michael; Kidwai, Atif; Rashmi, Priyanka; Lang, Florian; Baum, Michel; Palmer, Lawrence G; Pearce, David

    2015-01-01

    The epithelial Na+ channel (ENaC) is essential for Na+ homeostasis, and dysregulation of this channel underlies many forms of hypertension. Recent studies suggest that mTOR regulates phosphorylation and activation of serum/glucocorticoid regulated kinase 1 (SGK1), which is known to inhibit ENaC internalization and degradation; however, it is not clear whether mTOR contributes to the regulation of renal tubule ion transport. Here, we evaluated the effect of selective mTOR inhibitors on kidney tubule Na+ and K+ transport in WT and Sgk1-/- mice, as well as in isolated collecting tubules. We found that 2 structurally distinct competitive inhibitors (PP242 and AZD8055), both of which prevent all mTOR-dependent phosphorylation, including that of SGK1, caused substantial natriuresis, but not kaliuresis, in WT mice, which indicates that mTOR preferentially influences ENaC function. PP242 also substantially inhibited Na+ currents in isolated perfused cortical collecting tubules. Accordingly, patch clamp studies on cortical tubule apical membranes revealed that mTOR inhibition markedly reduces ENaC activity, but does not alter activity of K+ inwardly rectifying channels (ROMK channels). Together, these results demonstrate that mTOR regulates kidney tubule ion handling and suggest that mTOR regulates Na+ homeostasis through SGK1-dependent modulation of ENaC activity. PMID:25415435

  6. PI3Ks Maintain the Structural Integrity of T-Tubules in Cardiac Myocytes

    PubMed Central

    Wu, Chia-Yen C.; Jia, Zhiheng; Wang, Wei; Ballou, Lisa M.; Jiang, Ya-Ping; Chen, Biyi; Mathias, Richard T.; Cohen, Ira S.; Song, Long-Sheng; Entcheva, Emilia; Lin, Richard Z.

    2011-01-01

    Background Phosphoinositide 3-kinases (PI3Ks) regulate numerous physiological processes including some aspects of cardiac function. Although regulation of cardiac contraction by individual PI3K isoforms has been studied, little is known about the cardiac consequences of downregulating multiple PI3Ks concurrently. Methods and Results Genetic ablation of both p110α and p110β in cardiac myocytes throughout development or in adult mice caused heart failure and death. Ventricular myocytes from double knockout animals showed transverse tubule (T-tubule) loss and disorganization, misalignment of L-type Ca2+ channels in the T-tubules with ryanodine receptors in the sarcoplasmic reticulum, and reduced Ca2+ transients and contractility. Junctophilin-2, which is thought to tether T-tubules to the sarcoplasmic reticulum, was mislocalized in the double PI3K-null myocytes without a change in expression level. Conclusions PI3K p110α and p110β are required to maintain the organized network of T-tubules that is vital for efficient Ca2+-induced Ca2+ release and ventricular contraction. PI3Ks maintain T-tubule organization by regulating junctophilin-2 localization. These results could have important medical implications because several PI3K inhibitors that target both isoforms are being used to treat cancer patients in clinical trials. PMID:21912691

  7. Membrane tubule formation by banana-shaped proteins with or without transient network structure

    PubMed Central

    Noguchi, Hiroshi

    2016-01-01

    In living cells, membrane morphology is regulated by various proteins. Many membrane reshaping proteins contain a Bin/Amphiphysin/Rvs (BAR) domain, which consists of a banana-shaped rod. The BAR domain bends the biomembrane along the rod axis and the features of this anisotropic bending have recently been studied. Here, we report on the role of the BAR protein rods in inducing membrane tubulation, using large-scale coarse-grained simulations. We reveal that a small spontaneous side curvature perpendicular to the rod can drastically alter the tubulation dynamics at high protein density, whereas no significant difference is obtained at low density. A percolated network is intermediately formed depending on the side curvature. This network suppresses tubule protrusion, leading to the slow formation of fewer tubules. Thus, the side curvature, which is generated by protein–protein and membrane–protein interactions, plays a significant role in tubulation dynamics. We also find that positive surface tensions and the vesicle membrane curvature can stabilize this network structure by suppressing the tubulation. PMID:26863901

  8. Eps 15 Homology Domain (EHD)-1 Remodels Transverse Tubules in Skeletal Muscle

    PubMed Central

    Demonbreun, Alexis R.; Swanson, Kaitlin E.; Rossi, Ann E.; Deveaux, H. Kieran; Earley, Judy U.; Allen, Madison V.; Arya, Priyanka; Bhattacharyya, Sohinee; Band, Hamid; Pytel, Peter; McNally, Elizabeth M.

    2015-01-01

    We previously showed that Eps15 homology domain-containing 1 (EHD1) interacts with ferlin proteins to regulate endocytic recycling. Myoblasts from Ehd1-null mice were found to have defective recycling, myoblast fusion, and consequently smaller muscles. When expressed in C2C12 cells, an ATPase dead-EHD1 was found to interfere with BIN1/amphiphysin 2. We now extended those findings by examining Ehd1-heterozygous mice since these mice survive to maturity in normal Mendelian numbers and provide a ready source of mature muscle. We found that heterozygosity of EHD1 was sufficient to produce ectopic and excessive T-tubules, including large intracellular aggregates that contained BIN1. The disorganized T-tubule structures in Ehd1-heterozygous muscle were accompanied by marked elevation of the T-tubule-associated protein DHPR and reduction of the triad linker protein junctophilin 2, reflecting defective triads. Consistent with this, Ehd1-heterozygous muscle had reduced force production. Introduction of ATPase dead-EHD1 into mature muscle fibers was sufficient to induce ectopic T-tubule formation, seen as large BIN1 positive structures throughout the muscle. Ehd1-heterozygous mice were found to have strikingly elevated serum creatine kinase and smaller myofibers, but did not display findings of muscular dystrophy. These data indicate that EHD1 regulates the maintenance of T-tubules through its interaction with BIN1 and links T-tubules defects with elevated creatine kinase and myopathy. PMID:26325203

  9. Requirement of ERα and basal activities of EGFR and Src kinase in Cd-induced activation of MAPK/ERK pathway in human breast cancer MCF-7 cells

    SciTech Connect

    Song, Xiulong Wei, Zhengxi; Shaikh, Zahir A.

    2015-08-15

    Cadmium (Cd) is a common environmental toxicant and an established carcinogen. Epidemiological studies implicate Cd with human breast cancer. Low micromolar concentrations of Cd promote proliferation of human breast cancer cells in vitro. The growth promotion of breast cancer cells is associated with the activation of MAPK/ERK pathway. This study explores the mechanism of Cd-induced activation of MAPK/ERK pathway. Specifically, the role of cell surface receptors ERα, EGFR, and Src kinase was evaluated in human breast cancer MCF-7 cells treated with 1–3 μM Cd. The activation of ERK was studied using a serum response element (SRE) luciferase reporter assay. Receptor phosphorylation was detected by Western blot analyses. Cd treatment increased both the SRE reporter activity and ERK1/2 phosphorylation in a concentration-dependent manner. Cd treatment had no effect on reactive oxygen species (ROS) generation. Also, blocking the entry of Cd into the cells with manganese did not diminish Cd-induced activation of MAPK/ERK. These results suggest that the effect of Cd was likely not caused by intracellular ROS generation, but through interaction with the membrane receptors. While Cd did not appear to activate either EGFR or Src kinase, their inhibition completely blocked the Cd-induced activation of ERK as well as cell proliferation. Similarly, silencing ERα with siRNA or use of ERα antagonist blocked the effects of Cd. Based on these results, it is concluded that not only ERα, but also basal activities of EGFR and Src kinase are essential for Cd-induced signal transduction and activation of MAPK/ERK pathway for breast cancer cell proliferation. - Highlights: • Low micromolar concentrations of Cd rapidly activate ERK1/2 in MCF-7 cells. • Signal transduction and resulting cell proliferation require EGFR, ERα, and Src. • These findings implicate Cd in promotion of breast cancer.

  10. Treatment of dentinal tubules by Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Chmelíčkova, Hana; Zapletalova, Zdeňka; Peřina, Jan, Jr.; Novotný, Radko; Kubínek, Roman; Stranyánek, Martin

    2005-08-01

    Symptom of cervical dentine hypersensitivity attacks from 10% to 15% of population and causes an uncomfortable pain during contact with any matter. Sealing of open dentinal tubules is one of the methods to reach insensibility. Laser as a source of coherent radiation is used to melt dentine surface layers. Melted dentine turns to hard mass with a smooth, non-porous surface. Simulation of this therapy was made in vitro by means of LASAG Nd:YAG pulsed laser system KLS 246-102. Eighty human extracted teeth were cut horizontally to obtain samples from 2 mm to 3 mm thick. First experiments were done on cross section surfaces to find an optimal range of laser parameters. A wide range of energies from 30 mJ to 210 mJ embedded in 0,3 ms long pulse was tested. Motion in X and Y axes was ensured by a CNC driven table and the pulse frequency 15 Hz was chosen to have a suitable overlap of laser spots. Some color agents were examined with the aim to improve surface absorption. Scanning Electron Microscopy was used to evaluate all samples and provided optimal values of energies around 50 J.cm-2. Next experiments were done with the beam oriented perpendicularly to a root surface, close to the real situation. Optical fibers with the diameter of 0,6 mm and 0,2 mm were used to guide a laser beam to teeth surfaces. Laser processing heads with lens F = 100 mm and F = 50 mm were used. The best samples were investigated by means of the Atomic Force Microscopy.

  11. Tools for proximal soil sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proximal soil sensing (i.e. near-surface geophysical methods) are used to study soil phenomena across spatial scales. Geophysical methods exploit contrasts in physical properties (dielectric permittivity, apparent electrical conductivity or resistivity, magnetic susceptibility) to indirectly measur...

  12. Hirayama Disease with Proximal Involvement.

    PubMed

    Kim, Jinil; Kim, Yuntae; Kim, Sooa; Oh, Kiyoung

    2016-10-01

    Hirayama disease is a slowly progressing benign motor neuron disease that affects the distal upper limb. A 29-year-old man visited the hospital with a 1-year history of weakened left proximal upper limb. He was diagnosed with Hirayama disease 9 years ago, while there was no further progression of the muscle weakness afterward. Atrophy and weakness was detected in proximal upper limb muscles. Magnetic resonance imaging and somatosensory evoked potentials were normal. Needle electromyography showed abnormal findings in proximal upper limb muscles. Our patient had Hirayama disease involving the proximal portion through secondary progression. Clinical manifestation and accurate electromyography may be useful for diagnosis. Rare cases with progression patterns as described here are helpful and have clinical meaning for clinicians. PMID:27550499

  13. Near tubule and intertubular bovine detin mapped at the 250 nm level.

    SciTech Connect

    Stock, S.R.; Veis, A.; Telser, A.; Cai, Z.

    2011-11-01

    In this study, simultaneous diffraction and fluorescence mapping with a (250 nm){sup 2}, 10.1 keV synchrotron X-ray beam investigated the spatial distribution of carbonated apatite (cAp) mineral and elemental Ca (and other cations including Zn) around dentin tubules. In 1 {mu}m thick sections of near-pulp root dentin, where peritubular dentin (PTD) is newly forming, high concentrations of Zn, relative to those in intertubular dentin (ITD), were observed adjacent to and surrounding the tubule lumens. Some but not all tubules exhibited hypercalcified collars (high Ca signal relative to the surrounding ITD), and, when present, the zone of high Ca did not extend around the tubule. Diffraction rings from cAp 00.2 and 11.2 + 21.1 + 30.0 reflections were observed, and cAp was the only crystal phase detected. Profiles of Ca, Zn and cAp diffracted intensities showed the same transitions from solid to tubule lumen, indicating the same cAp content and organization in ITD far from the tubules and adjacent to them. Further, the matching Ca and diffraction profiles demonstrated that all of the Ca is in cAp or that any noncrystalline Ca was uniformly distributed throughout the dentin. Variation of 00.2 and 11.2 + 21.1 + 30.0 diffracted intensity was consistent with the expected biaxial crystallographic texture. Extension of X-ray mapping from near 1 {mu}m resolution to the 250 nm level, performed here for dentin and its tubules, will provide new understanding of other mineralized tissues.

  14. ImageJ analysis of dentin tubule distribution in human teeth.

    PubMed

    Williams, Casia; Wu, Yiching; Bowers, Doria F

    2015-08-01

    Mapping the distribution of dentin tubules is vital to understanding the structure-function relationship of dentin, an important indicator of tooth stability. This study compared the distances between and density of tubules in the external dentin located in the crown region of an adult human incisor and molar to determine if analysis could be conducted using light-level microscopy. Teeth were processed for routine histology, cut in cross-section, images captured using Advanced SPOT Program, and microstructure was analyzed using ImageJ (NIH). Intratubular (peritubular) dentin with or without odontoblast processes were observed and although incisor and molar images appeared visually similar, plot profile graphs differed. Distance-intervals between tubules in the incisor (5.45-7.67 μm) had an overall range of 2.22 μm and in the molar (7.43-8.42 μm) an overall range of 0.99 μm. While molar tubule distribution displayed a tighter overall range, there was a smaller distance between most incisor tubules. The average densities observed in incisors were 15,500 tubules/mm(2), compared with 20,100 tubules/mm(2) in molars. ImageJ analysis of prepared histology microscopic slides provides researchers with a rapid, inexpensive assessment tool when compared with advanced/ultrastructural methodologies. By combining routine histological processing and light microscopic observations followed by ImageJ analysis, tooth structure can be converted into numerical data and easily mastered by laboratory personnel. PMID:26150311

  15. Near tubule and intertubular bovine dentin mapped at the 250 nm level

    PubMed Central

    Stock, S. R.; Veis, A.; Telser, A.; Cai, Z.

    2011-01-01

    In this study, simultaneous diffraction and fluorescence mapping with a (250 nm)2, 10.1 keV synchrotron x-ray beam investigated the spatial distribution of carbonated apatite (cAp) mineral and elemental Ca (and other cations including Zn) around dentin tubules. In 1 μm thick sections of near-pulp root dentin, where peritubular dentin (PTD) is newly forming, high concentrations of Zn, relative to those in intertubular dentin (ITD), were observed adjacent to and surrounding the tubule lumens. Some but not all tubules exhibited hypercalcified collars (high Ca signal relative to the surrounding ITD), and, when present, the zone of high Ca did not extend around the tubule. Diffraction rings from cAp 00.2 and 11.2+21.1+30.0 reflections were observed, and cAp was the only crystal phase detected. Profiles of Ca, Zn and cAp diffracted intensities showed the same transitions from solid to tubule lumen, indicating the same cAp content and organization in ITD far from the tubules and adjacent to them. Further, the matching Ca and diffraction profiles demonstrated that all of the Ca is in cAp or that any noncrystalline Ca was uniformly distributed throughout the dentin. Variation of 00.2 and 11.2+21.1+30.0 diffracted intensity was consistent with the expected biaxial crystallographic texture. Extension of x-ray mapping from near 1 μm resolution to the 250 nm level, performed here for dentin and its tubules, will provide new understanding of other mineralized tissues. PMID:21821132

  16. Isolation and characterization of distinct domains of sarcolemma and T-tubules from rat skeletal muscle.

    PubMed Central

    Muñoz, P; Rosemblatt, M; Testar, X; Palacín, M; Zorzano, A

    1995-01-01

    1. Several cell-surface domains of sarcolemma and T-tubule from skeletal-muscle fibre were isolated and characterized. 2. A protocol of subcellular fractionation was set up that involved the sequential low- and high-speed homogenization of rat skeletal muscle followed by KCl washing, Ca2+ loading and sucrose-density-gradient centrifugation. This protocol led to the separation of cell-surface membranes from membranes enriched in sarcoplasmic reticulum and intracellular GLUT4-containing vesicles. 3. Agglutination of cell-surface membranes using wheat-germ agglutinin allowed the isolation of three distinct cell-surface membrane domains: sarcolemmal fraction 1 (SM1), sarcolemmal fraction 2 (SM2) and a T-tubule fraction enriched in protein tt28 and the alpha 2-component of dihydropyridine receptor. 4. Fractions SM1 and SM2 represented distinct sarcolemmal subcompartments based on different compositions of biochemical markers: SM2 was characterized by high levels of beta 1-integrin and dystrophin, and SM1 was enriched in beta 1-integrin but lacked dystrophin. 5. The caveolae-associated molecule caveolin was very abundant in SM1, SM2 and T-tubules, suggesting the presence of caveolae or caveolin-rich domains in these cell-surface membrane domains. In contrast, clathrin heavy chain was abundant in SM1 and T-tubules, but only trace levels were detected in SM2. 6. Immunoadsorption of T-tubule vesicles with antibodies against protein tt28 and against GLUT4 revealed the presence of GLUT4 in T-tubules under basal conditions and it also allowed the identification of two distinct pools of T-tubules showing different contents of tt28 and dihydropyridine receptors. 7. Our data on distribution of clathrin and dystrophin reveal the existence of subcompartments in sarcolemma from muscle fibre, featuring selective mutually exclusive components. T-tubules contain caveolin and clathrin suggesting that they contain caveolin- and clathrin-rich domains. Furthermore, evidence for the

  17. Identification of distinct steps during tubule formation by the movement protein of Cowpea mosaic virus.

    PubMed

    Pouwels, Jeroen; Kornet, Noortje; van Bers, Nikkie; Guighelaar, Teun; van Lent, Jan; Bisseling, Ton; Wellink, Joan

    2003-12-01

    The movement protein (MP) of Cowpea mosaic virus (CPMV) forms tubules through plasmodesmata in infected plants thus enabling virus particles to move from cell to cell. Localization studies of mutant MPs fused to GFP in protoplasts and plants identified several functional domains within the MP that are involved in distinct steps during tubule formation. Coinoculation experiments and the observation that one of the C-terminal deletion mutants accumulated uniformly in the plasma membrane suggest that dimeric or multimeric MP is first targeted to the plasma membrane. At the plasma membrane the MP quickly accumulates in peripheral punctuate spots, from which tubule formation is initiated. One of the mutant MPs formed tubules containing virus particles on protoplasts, but could not support cell-to-cell movement in plants. The observations that this mutant MP accumulated to a higher level in the cell than wt MP and did not accumulate in the cell wall opposite infected cells suggest that breakdown or disassembly of tubules in neighbouring, uninfected cells is required for cell-to-cell movement. PMID:14645930

  18. Nephrotoxicity of aminophenols: effects of 4-dimethylaminophenol on isolated rat kidney tubules.

    PubMed

    Szinicz, L; Weger, N; Schneiderhan, W; Kiese, M

    1979-04-23

    In isolated rat kidney tubules DMAP was found to inhibit the gluconeogenesis from lactate, pyruvate, or dihydroxyacetone. The ratio DMAP/protein rather than the calculated concentration of DMAP determined the strength of the effect, 20--25 nmoles DMAP/mg protein inhibiting the rate of gluconeogenesis by about 50%. The inhibition was not reversible. Phenacetin, 4-aminophenol and 4-acetamidophenol were much less effective than DMAP in inhibiting gluconeogenesis in isolated rat kidney tubules. DMAP 14C-labeled in the ring was quickly bound to proteins in kidney tubules. A portion of DMAP which did not exceed about 4 nmoles/mg protein, was bound in compounds soluble in perchloric acid. From this portion tris-GS-DMAP was isolated. DMAP diminished the glutathione content of isolated rat kidney tubules. Reduced glutathione added before DMAP prevented the inhibition of gluconeogenesis and diminished the binding of DMAP to proteins. The binding of DMAP required oxygen and was inhibited by carbon monoxide or cyanide. Several enzymes from isolated kidney tubules were found to be inhibited by DMAP doses which inhibited gluconeogenesis. Large DMAP doses also diminished the sums of ATP + ADP + AMP as well as NAD + NADH and NADP + NADPH. This effect corresponded to an increase in nucleotide degradation products and to increased activity of extracellular LDH. The results indicate that the inhibition of gluconeogenesis by DMAP is not due to a specific effect on one enzyme or on membranes but to unspecific reactions with many substances. PMID:454186

  19. Failed Tubule Recovery, AKI-CKD Transition, and Kidney Disease Progression

    PubMed Central

    Weinberg, Joel M.; Kriz, Wilhelm; Bidani, Anil K.

    2015-01-01

    The transition of AKI to CKD has major clinical significance. As reviewed here, recent studies show that a subpopulation of dedifferentiated, proliferating tubules recovering from AKI undergo pathologic growth arrest, fail to redifferentiate, and become atrophic. These abnormal tubules exhibit persistent, unregulated, and progressively increasing profibrotic signaling along multiple pathways. Paracrine products derived therefrom perturb normal interactions between peritubular capillary endothelium and pericyte-like fibroblasts, leading to myofibroblast transformation, proliferation, and fibrosis as well as capillary disintegration and rarefaction. Although signals from injured endothelium and inflammatory/immune cells also contribute, tubule injury alone is sufficient to produce the interstitial pathology required for fibrosis. Localized hypoxia produced by microvascular pathology may also prevent tubule recovery. However, fibrosis is not intrinsically progressive, and microvascular pathology develops strictly around damaged tubules; thus, additional deterioration of kidney structure after the transition of AKI to CKD requires new acute injury or other mechanisms of progression. Indeed, experiments using an acute-on-chronic injury model suggest that additional loss of parenchyma caused by failed repair of AKI in kidneys with prior renal mass reduction triggers hemodynamically mediated processes that damage glomeruli to cause progression. Continued investigation of these pathologic mechanisms should reveal options for preventing renal disease progression after AKI. PMID:25810494

  20. Quantitative mass spectrometry of diabetic kidney tubules identifies GRAP as a novel regulator of TGFβ signaling

    PubMed Central

    Cummins, Timothy D.; Barati, Michelle T.; Coventry, Susan C.; Salyer, Sarah A.; Klein, Jon B.; Powell, David W.

    2009-01-01

    The aim of this study was to define novel mediators of tubule injury in diabetic kidney disease. For this, we used state-of-the-art proteomic methods combined with a label-free quantitative strategy to define protein expression differences in kidney tubules from transgenic OVE26 type 1 diabetic and control mice. The analysis was performed with diabetic samples that displayed a pro-fibrotic phenotype. We have identified 476 differentially expressed proteins. Bioinformatic analysis indicated several clusters of regulated proteins in relevant functional groups such as TGF-β signaling, tight junction maintenance, oxidative stress, and glucose metabolism. Mass spectrometry detected expression changes of four physiologically relevant proteins were confirmed by immunoblot analysis. Of these, the Grb2-related adaptor protein (GRAP) was up-regulated in kidney tubules from diabetic mice and fibrotic kidneys from diabetic patients, and subsequently confirmed as a novel component of TGF-β signaling in cultured human renal tubule cells. Thus, indicating a potential novel role for GRAP in TGF-β-induced tubule injury in diabetic kidney disease. Although we targeted a specific disease, this approach offers a robust, high-sensitivity methodology that can be applied to the discovery of novel mediators for any experimental or disease condition. PMID:19836472

  1. Effects of sublethal doses of imidacloprid in Malpighian tubules of Africanized Apis mellifera (Hymenoptera, Apidae).

    PubMed

    Rossi, Caroline de Almeida; Roat, Thaisa Cristina; Tavares, Daiana Antonia; Cintra-Socolowski, Priscila; Malaspina, Osmar

    2013-05-01

    In Brazil, imidacloprid is a widely used insecticide on agriculture and can harm bees, which are important pollinators. The active ingredient imidacloprid has action on the nervous system of the insects. However, little has been studied about the actions of the insecticide on nontarget organs of insects, such as the Malpighian tubules that make up the excretory and osmoregulatory system. Hence, in this study, we evaluated the effects of chronic exposure to sublethal doses of imidacloprid in Malpighian tubules of Africanized Apis mellifera. In the tubules of treated bees, we found an increase in the number of cells with picnotic nuclei, the lost of part of the cell into the lumen, and a homogenization of coloring cytoplasm. Furthermore, we observed the presence of cytoplasmic vacuolization. We confirmed the increased occurrence of picnotic nuclei by using the Feulgan reaction, which showed the chromatin compaction was more intense in the tubules of bees exposed to the insecticide. We observed an intensification of the staining of the nucleus with Xylidine Ponceau, further verifying the cytoplasmic negative regions that may indicate autophagic activity. Additionally, immunocytochemistry experiments showed TUNEL positive nuclei in exposed bees, implicating increased cell apoptosis after chronic imidacloprid exposure. In conclusion, our results indicate that very low concentrations of imidacloprid lead to cytotoxic activity in the Malpighian tubules of exposed bees at all tested times for exposure and imply that this insecticide can alter honey bee physiology. PMID:23483717

  2. Golgi Tubule Traffic and the Effects of Brefeldin A Visualized in Living Cells

    PubMed Central

    Sciaky, Noah; Presley, John; Smith, Carolyn; Zaal, Kristien J.M.; Cole, Nelson; Moreira, Jorge E.; Terasaki, Mark; Siggia, Eric; Lippincott-Schwartz, Jennifer

    1997-01-01

    The Golgi complex is a dynamic organelle engaged in both secretory and retrograde membrane traffic. Here, we use green fluorescent protein–Golgi protein chimeras to study Golgi morphology in vivo. In untreated cells, membrane tubules were a ubiquitous, prominent feature of the Golgi complex, serving both to interconnect adjacent Golgi elements and to carry membrane outward along microtubules after detaching from stable Golgi structures. Brefeldin A treatment, which reversibly disassembles the Golgi complex, accentuated tubule formation without tubule detachment. A tubule network extending throughout the cytoplasm was quickly generated and persisted for 5–10 min until rapidly emptying Golgi contents into the ER within 15–30 s. Both lipid and protein emptied from the Golgi at similar rapid rates, leaving no Golgi structure behind, indicating that Golgi membranes do not simply mix but are absorbed into the ER in BFA-treated cells. The directionality of redistribution implied Golgi membranes are at a higher free energy state than ER membranes. Analysis of its kinetics suggested a mechanism that is analogous to wetting or adsorptive phenomena in which a tension-driven membrane flow supplements diffusive transfer of Golgi membrane into the ER. Such nonselective, flow-assisted transport of Golgi membranes into ER suggests that mechanisms that regulate retrograde tubule formation and detachment from the Golgi complex are integral to the existence and maintenance of this organelle. PMID:9382862

  3. Transformation of taxol-stabilized microtubules into inverted tubulin tubules triggered by a tubulin conformation switch

    NASA Astrophysics Data System (ADS)

    Ojeda-Lopez, Miguel A.; Needleman, Daniel J.; Song, Chaeyeon; Ginsburg, Avi; Kohl, Phillip A.; Li, Youli; Miller, Herbert P.; Wilson, Leslie; Raviv, Uri; Choi, Myung Chul; Safinya, Cyrus R.

    2014-02-01

    Bundles of taxol-stabilized microtubules (MTs)—hollow tubules comprised of assembled αβ-tubulin heterodimers—spontaneously assemble above a critical concentration of tetravalent spermine and are stable over long times at room temperature. Here we report that at concentrations of spermine several-fold higher the MT bundles (BMT) quickly become unstable and undergo a shape transformation to bundles of inverted tubulin tubules (BITT), the outside surface of which corresponds to the inner surface of the BMT tubules. Using transmission electron microscopy and synchrotron small-angle X-ray scattering, we quantitatively determined both the nature of the BMT-to-BITT transformation pathway, which results from a spermine-triggered conformation switch from straight to curved in the constituent taxol-stabilized tubulin oligomers, and the structure of the BITT phase, which is formed of tubules of helical tubulin oligomers. Inverted tubulin tubules provide a platform for studies requiring exposure and availability of the inside, luminal surface of MTs to MT-targeted drugs and MT-associated proteins.

  4. Proteomic changes in response to crystal formation in Drosophila Malpighian tubules.

    PubMed

    Chung, Vera Y; Konietzny, Rebecca; Charles, Philip; Kessler, Benedikt; Fischer, Roman; Turney, Benjamin W

    2016-04-01

    Kidney stone disease is a major health burden with a complex and poorly understood pathophysiology. Drosophila Malpighian tubules have been shown to resemble human renal tubules in their physiological function. Herein, we have used Drosophila as a model to study the proteomic response to crystal formation induced by dietary manipulation in Malpighian tubules. Wild-type male flies were reared in parallel groups on standard medium supplemented with lithogenic agents: control, Sodium Oxalate (NaOx) and Ethylene Glycol (EG). Malpighian tubules were dissected after 2 weeks to visualize crystals with polarized light microscopy. The parallel group was dissected for protein extraction. A new method of Gel Assisted Sample Preparation (GASP) was used for protein extraction. Differentially abundant proteins (p<0.05) were identified by label-free quantitative proteomic analysis in flies fed with NaOx and EG diet compared with control. Their molecular functions were further screened for transmembrane ion transporter, calcium or zinc ion binder. Among these, 11 candidate proteins were shortlisted in NaOx diet and 16 proteins in EG diet. We concluded that GASP is a proteomic sample preparation method that can be applied to individual Drosophila Malpighian tubules. Our results may further increase the understanding of the pathophysiology of human kidney stone disease. PMID:27064297

  5. Dysferlin stabilizes stress-induced Ca2+ signaling in the transverse tubule membrane

    PubMed Central

    Kerr, Jaclyn P.; Ziman, Andrew P.; Mueller, Amber L.; Muriel, Joaquin M.; Kleinhans-Welte, Emily; Gumerson, Jessica D.; Vogel, Steven S.; Ward, Christopher W.; Roche, Joseph A.; Bloch, Robert J.

    2013-01-01

    Dysferlinopathies, most commonly limb girdle muscular dystrophy 2B and Miyoshi myopathy, are degenerative myopathies caused by mutations in the DYSF gene encoding the protein dysferlin. Studies of dysferlin have focused on its role in the repair of the sarcolemma of skeletal muscle, but dysferlin’s association with calcium (Ca2+) signaling proteins in the transverse (t-) tubules suggests additional roles. Here, we reveal that dysferlin is enriched in the t-tubule membrane of mature skeletal muscle fibers. Following experimental membrane stress in vitro, dysferlin-deficient muscle fibers undergo extensive functional and structural disruption of the t-tubules that is ameliorated by reducing external [Ca2+] or blocking L-type Ca2+ channels with diltiazem. Furthermore, we demonstrate that diltiazem treatment of dysferlin-deficient mice significantly reduces eccentric contraction-induced t-tubule damage, inflammation, and necrosis, which resulted in a concomitant increase in postinjury functional recovery. Our discovery of dysferlin as a t-tubule protein that stabilizes stress-induced Ca2+ signaling offers a therapeutic avenue for limb girdle muscular dystrophy 2B and Miyoshi myopathy patients. PMID:24302765

  6. Cubesat Proximity Operations Demonstration (CPOD)

    NASA Technical Reports Server (NTRS)

    Villa, Marco; Martinez, Andres; Petro, Andrew

    2015-01-01

    The CubeSat Proximity Operations Demonstration (CPOD) project will demonstrate rendezvous, proximity operations and docking (RPOD) using two 3-unit (3U) CubeSats. Each CubeSat is a satellite with the dimensions 4 inches x 4 inches x 13 inches (10 centimeters x 10 centimeters x 33 centimeters) and weighing approximately 11 pounds (5 kilograms). This flight demonstration will validate and characterize many new miniature low-power proximity operations technologies applicable to future missions. This mission will advance the state of the art in nanosatellite attitude determination,navigation and control systems, in addition to demonstrating relative navigation capabilities.The two CPOD satellites are scheduled to be launched together to low-Earth orbit no earlier than Dec. 1, 2015.

  7. Effects of Bacillus thuringiensis kurstaki on Malpighian tubule cells of Thaumetopoea pityocampa (Lepidoptera: Thaumetopoeidae) larvae.

    PubMed

    Ogutchu, Ayşe; Suludere, Zekiye; Uzunhisarcikli, Meltem; Kalender, Yusuf

    2005-01-01

    In this study effects of Bacillus thuringiensis kurstaki (Btk) on Malpighian tubule cells of Thaumetopoea pityocampa (Lepidoptera: Thaumetopoeidae) larvae was investigated by electron microscopy. 3 mg/l Btk was given with food. After Btk administration, the Malpighian tubule cells were investigated and compared with a control group. 3 and 6 hrs after Btk administration swelling in Malpighian tubule cells was observed. Swelling of mitochondria and separation of their cristae was seen after 12 hrs. After 24 hrs dissolution of the basal cytoplasm, swelling and vacuolization of all mitochondria, partial dissolution of the nucleoplasm, and swelling and separation ofmicrovilli was documented. A membrane-body in the nucleus was seen after 48 hrs. The nucleoplasm was completely dissolved after 72 hrs and after 96 hrs large vacuoles appeared in the cytoplasm and shortening of microvilli was observed. PMID:16212102

  8. T-tubule biogenesis and triad formation in skeletal muscle and implication in human diseases

    PubMed Central

    2011-01-01

    In skeletal muscle, the excitation-contraction (EC) coupling machinery mediates the translation of the action potential transmitted by the nerve into intracellular calcium release and muscle contraction. EC coupling requires a highly specialized membranous structure, the triad, composed of a central T-tubule surrounded by two terminal cisternae from the sarcoplasmic reticulum. While several proteins located on these structures have been identified, mechanisms governing T-tubule biogenesis and triad formation remain largely unknown. Here, we provide a description of triad structure and plasticity and review the role of proteins that have been linked to T-tubule biogenesis and triad formation and/or maintenance specifically in skeletal muscle: caveolin 3, amphiphysin 2, dysferlin, mitsugumins, junctophilins, myotubularin, ryanodine receptor, and dihydhropyridine Receptor. The importance of these proteins in triad biogenesis and subsequently in muscle contraction is sustained by studies on animal models and by the direct implication of most of these proteins in human myopathies. PMID:21797990

  9. Microtubule Motors Power Plasma Membrane Tubulation in Clathrin-Independent Endocytosis

    PubMed Central

    Day, Charles A; Baetz, Nicholas W; Copeland, Courtney A; Kraft, Lewis J; Han, Bing; Tiwari, Ajit; Drake, Kimberly R; De Luca, Heidi; Chinnapen, Daniel J-F; Davidson, Michael W; Holmes, Randall K; Jobling, Michael G; Schroer, Trina A; Lencer, Wayne I; Kenworthy, Anne K

    2015-01-01

    How the plasma membrane is bent to accommodate clathrin-independent endocytosis remains uncertain. Recent studies suggest Shiga and cholera toxin induce membrane curvature required for their uptake into clathrin-independent carriers by binding and cross-linking multiple copies of their glycosphingolipid receptors on the plasma membrane. But it remains unclear if toxin-induced sphingolipid crosslinking provides sufficient mechanical force for deforming the plasma membrane, or if host cell factors also contribute to this process. To test this, we imaged the uptake of cholera toxin B-subunit into surface-derived tubular invaginations. We found that cholera toxin mutants that bind to only one glycosphingolipid receptor accumulated in tubules, and that toxin binding was entirely dispensable for membrane tubulations to form. Unexpectedly, the driving force for tubule extension was supplied by the combination of microtubules, dynein and dynactin, thus defining a novel mechanism for generating membrane curvature during clathrin-independent endocytosis. PMID:25690058

  10. Diffusion's Study of Free Ligands Between Vesicle and Tubules Within the Endosome

    NASA Astrophysics Data System (ADS)

    Dagdug, Leonardo

    2005-04-01

    In the mid 80's, Linderman and Lauffenburger suggested that the sorting process of receptors and ligands in the endosome could be explained in terms of pure diffusion. With a reasonable choice of parameters in their model, they were led to the prediction that by the sorting time most of the receptors are in the tubule while the ligands apparently equilibrate throughout the vesicle and tubule volumes. The fraction of receptor predicted by their model is in excellent agreement with experimental observations. To calculate the mean capture time for the ligands they studied the case when the entrance of the tubule is an absorbing boundary. They solved a Poisson's equation inside a sphere with mixed boundary conditions. This neglects the ligand return probability to the vesicle from the tubules, and vice versa. Under this assumptions they predict that by the sorting time around 70-60% of the ligands remain in the vesicle. In contrast with their prediction, the experimental observation is that most of the ligand molecules remain in the vesicle by the sorting time, typically degraded and routed to the lysosome. In this work we focus in ligand's diffusion within the vesicle. We extend Linderman and Lauffenburger's model including the effect of the presence of the tubules in the system, allowing the ligands to diffuse between the vesicle and the tubules. The principal biological implication of this extension, is that by the sorting time around 91% of the ligands remain in the vesicle. It means, that they can go many times from one chamber to the other before it is removed from the system. The validity of approximations was checked by simulations that indicated excellent agreement between analytical and numerical results.

  11. Geographic Proximity and Enrollment Competition.

    ERIC Educational Resources Information Center

    Zammuto, Raymond F.

    The use of a measure of geographic proximity to help explain enrollment competition among postsecondary institutions was investigated. The measure, the number of miles between institutions, was obtained by determining the longitude and latitude coordinates for about 99% of the schools in the Higher Education General Information System universe.…

  12. Driven shielding capacitive proximity sensor

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor); McConnell, Robert L. (Inventor)

    2000-01-01

    A capacitive proximity sensing element, backed by a reflector driven at the same voltage as and in phase with the sensor, is used to reflect the field lines away from a grounded robot arm towards an intruding object, thus dramatically increasing the sensor's range and sensitivity.

  13. Fiber-optic proximity sensor

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.; Hermann, W. A.; Primus, H. C.

    1980-01-01

    Proximity sensor for mechanical hand of remote manipulator incorporates fiber optics to conduct signals between light source and light detector. Fiber optics are not prone to noise from electromagnetic interference and radio-frequency interference as are sensors using long electrical cables.

  14. Impact of the auxin signaling inhibitor p-chlorophenoxyisobutyric acid on short-term Cd-induced hydrogen peroxide production and growth response in barley root tip.

    PubMed

    Tamás, Ladislav; Bočová, Beáta; Huttová, Jana; Liptáková, Ľubica; Mistrík, Igor; Valentovičová, Katarína; Zelinová, Veronika

    2012-09-15

    Short-term treatment (30 min) of barley roots with a low 10 μM Cd concentration induced significant H(2)O(2) production in the elongation and differentiation zone of the root tip 3h after treatment. This elevated H(2)O(2) production was accompanied by root growth inhibition and probably invoked root swelling in the elongation zone of the root tip. By contrast, a high 60 μM Cd concentration induced robust H(2)O(2) production in the elongation zone of the root tip already 1h after short-term treatment. This robust H(2)O(2) generation caused extensive cell death 6 h after short-term treatment. Similarly to low Cd concentration, exogenously applied H(2)O(2) caused marked root growth inhibition, which at lower H(2)O(2) concentration was accompanied by root swelling. The auxin signaling inhibitor p-chlorophenoxyisobutyric acid effectively inhibited 10 μM Cd-induced root growth inhibition, H(2)O(2) production and root swelling, but was ineffective in the alleviation of 60 μM Cd-induced root growth inhibition and H(2)O(2) production. Our results demonstrated that Cd-induced mild oxidative stress caused root growth inhibition, likely trough the rapid reorientation of cell growth in which a crucial role was played by IAA signaling in the root tip. Strong oxidative stress induced by high Cd concentration caused extensive cell death in the elongation zone of the root tip, resulting in the cessation of root growth or even in root death. PMID:22795748

  15. Mutual association of Broad bean wilt virus 2 VP37-derived tubules and plasmodesmata obtained from cytological observation

    PubMed Central

    Xie, Li; Shang, Weina; Liu, Chengke; Zhang, Qinfen; Sunter, Garry; Hong, Jian; Zhou, Xueping

    2016-01-01

    The movement protein VP37 of broad bean wilt virus 2 (BBWV 2) forms tubules in the plasmodesmata (PD) for the transport of virions between cells. This paper reports a mutual association between the BBWV 2 VP37-tubule complex and PD at the cytological level as determined by transmission electron microscopy. The generation of VP37-tubules within different PD leads to a different occurrence frequency as well as different morphology lines of virus-like particles. In addition, the frequency of VP37-tubules was different between PD found at different cellular interfaces, as well as between single-lined PD and branched PD. VP37-tubule generation also induced structural alterations of PD as well as modifications to the cell wall (CW) in the vicinity of the PD. A structural comparison using three-dimensional (3D) electron tomography (ET), determined that desmotubule structures found in the center of normal PD were absent in PD containing VP37-tubules. Using gold labeling, modification of the CW by callose deposition and cellulose reduction was observable on PD containing VP37-tubule. These cytological observations provide evidence of a mutual association of MP-derived tubules and PD in a natural host, improving our fundamental understanding of interactions between viral MP and PD that result in intercellular movement of virus particles. PMID:26903400

  16. Mutual association of Broad bean wilt virus 2 VP37-derived tubules and plasmodesmata obtained from cytological observation.

    PubMed

    Xie, Li; Shang, Weina; Liu, Chengke; Zhang, Qinfen; Sunter, Garry; Hong, Jian; Zhou, Xueping

    2016-01-01

    The movement protein VP37 of broad bean wilt virus 2 (BBWV 2) forms tubules in the plasmodesmata (PD) for the transport of virions between cells. This paper reports a mutual association between the BBWV 2 VP37-tubule complex and PD at the cytological level as determined by transmission electron microscopy. The generation of VP37-tubules within different PD leads to a different occurrence frequency as well as different morphology lines of virus-like particles. In addition, the frequency of VP37-tubules was different between PD found at different cellular interfaces, as well as between single-lined PD and branched PD. VP37-tubule generation also induced structural alterations of PD as well as modifications to the cell wall (CW) in the vicinity of the PD. A structural comparison using three-dimensional (3D) electron tomography (ET), determined that desmotubule structures found in the center of normal PD were absent in PD containing VP37-tubules. Using gold labeling, modification of the CW by callose deposition and cellulose reduction was observable on PD containing VP37-tubule. These cytological observations provide evidence of a mutual association of MP-derived tubules and PD in a natural host, improving our fundamental understanding of interactions between viral MP and PD that result in intercellular movement of virus particles. PMID:26903400

  17. Molecular Mechanism of Membrane Constriction and Tubulation Mediated by the F-BAR Protein Pacsin/Syndapin

    SciTech Connect

    Wang, Q.; Navarro, M; Peng, G; Molinelli, E; Lin, G; Judson, B; Rajashankar, K; Sondermann, H

    2009-01-01

    Peripheral membrane proteins of the Bin/amphiphysin/Rvs (BAR) and Fer-CIP4 homology-BAR (F-BAR) family participate in cellular membrane trafficking and have been shown to generate membrane tubules. The degree of membrane bending appears to be encoded in the structure and immanent curvature of the particular protein domains, with BAR and F-BAR domains inducing high- and low-curvature tubules, respectively. In addition, oligomerization and the formation of ordered arrays influences tubule stabilization. Here, the F-BAR domain-containing protein Pacsin was found to possess a unique activity, creating small tubules and tubule constrictions, in addition to the wide tubules characteristic for this subfamily. Based on crystal structures of the F-BAR domain of Pacsin and mutagenesis studies, vesiculation could be linked to the presence of unique structural features distinguishing it from other F-BAR proteins. Tubulation was suppressed in the context of the full-length protein, suggesting that Pacsin is autoinhibited in solution. The regulated deformation of membranes and promotion of tubule constrictions by Pacsin suggests a more versatile function of these proteins in vesiculation and endocytosis beyond their role as scaffold proteins.

  18. The role of plasmodesma-located proteins in tubule-guided virus transport is limited to the plasmodesmata.

    PubMed

    den Hollander, P W; Kieper, S N; Borst, J W; van Lent, J W M

    2016-09-01

    Intercellular spread of plant viruses involves passage of the viral genome or virion through a plasmodesma (PD). Some viruses severely modify the PD structure, as they assemble a virion carrying tubule composed of the viral movement protein (MP) inside the PD channel. Successful modulation of the host plant to allow infection requires an intimate interaction between viral proteins and both structural and regulatory host proteins. To date, however, very few host proteins are known to promote virus spread. Plasmodesmata-located proteins (PDLPs) localised in the PD have been shown to contribute to tubule formation in cauliflower mosaic virus and grapevine fanleaf virus infections. In this study, we have investigated the role of PDLPs in intercellular transport of another tubule-forming virus, cowpea mosaic virus. The MP of this virus was found to interact with PDLPs in the PD, as was shown for other tubule-forming viruses. Expression of PDLPs and MPs in protoplasts in the absence of a PD revealed that these proteins do not co-localise at the site of tubule initiation. Furthermore, we show that tubule assembly in protoplasts does not require an interaction with PDLPs at the base of the tubule, as has been observed in planta. These results suggest that a physical interaction between MPs and PDLPs is not required for assembly of the movement tubule and that the beneficial role of PDLPs in virus movement is confined to the structural context of the PD. PMID:27339685

  19. mTOR controls lysosome tubulation and antigen presentation in macrophages and dendritic cells

    PubMed Central

    Saric, Amra; Hipolito, Victoria E. B.; Kay, Jason G.; Canton, Johnathan; Antonescu, Costin N.; Botelho, Roberto J.

    2016-01-01

    Macrophages and dendritic cells exposed to lipopolysaccharide (LPS) convert their lysosomes from small, punctate organelles into a network of tubules. Tubular lysosomes have been implicated in phagosome maturation, retention of fluid phase, and antigen presentation. There is a growing appreciation that lysosomes act as sensors of stress and the metabolic state of the cell through the kinase mTOR. Here we show that LPS stimulates mTOR and that mTOR is required for LPS-induced lysosome tubulation and secretion of major histocompatibility complex II in macrophages and dendritic cells. Specifically, we show that the canonical phosphatidylinositol 3-kinase–Akt–mTOR signaling pathway regulates LPS-induced lysosome tubulation independently of IRAK1/4 and TBK. Of note, we find that LPS treatment augmented the levels of membrane-associated Arl8b, a lysosomal GTPase required for tubulation that promotes kinesin-dependent lysosome movement to the cell periphery, in an mTOR-dependent manner. This suggests that mTOR may interface with the Arl8b-kinesin machinery. To further support this notion, we show that mTOR antagonists can block outward movement of lysosomes in cells treated with acetate but have no effect in retrograde movement upon acetate removal. Overall our work provides tantalizing evidence that mTOR plays a role in controlling lysosome morphology and trafficking by modulating microtubule-based motor activity in leukocytes. PMID:26582390

  20. Multicopper oxidase-1 is required for iron homeostasis in Malpighian tubules of Helicoverpa armigera

    PubMed Central

    Liu, Xiaoming; Sun, Chengxian; Liu, Xiaoguang; Yin, Xinming; Wang, Baohai; Du, Mengfang; An, Shiheng

    2015-01-01

    Multicopper oxidases (MCOs) are enzymes that contain 10 conserved histidine residues and 1 cysteine residue. MCO1 has been extensively investigated in the midgut because this MCO is implicated in ascorbate oxidation, iron homeostasis and immune responses. However, information regarding the action of MCO1 in Malpighian tubules is limited. In this study, Helicoverpa armigera was used as a model to investigate the function of MCO1 in Malpighian tubules. Sequence analysis results revealed that HaMCO1 exhibits typical MCO characteristics, with 10 histidine and 1 cysteine residues for copper ion binding. HaMCO1 was also found to be highly abundant in Malpighian tubules. Temporal expression patterns indicated that HaMCO1 is mainly expressed during larval molting stages. Hormone treatments [the molting hormone 20-hydroxyecdysone (20E) and juvenile hormone (JH)] revealed that 20E inhibits HaMCO1 transcript expression via its heterodimer receptor, which consists of ecdysone receptor (EcR) and ultraspiracle (USP), and that JH counteracts the action of 20E to activate HaMCO1 transcript expression via its intracellular receptor methoprene-tolerant (Met). HaMCO1 knockdown caused a significant decrease in iron accumulation and also significantly reduced transferrin and ferritin transcript expression. Therefore, HaMCO1 is coordinately regulated by 20E and JH and is required for iron homeostasis in Malpighian tubules. PMID:26437857

  1. Revealing T-Tubules in Striated Muscle with New Optical Super-Resolution Microscopy Techniquess.

    PubMed

    Jayasinghe, Isuru D; Clowsley, Alexander H; Munro, Michelle; Hou, Yufeng; Crossman, David J; Soeller, Christian

    2015-01-01

    The t-tubular system plays a central role in the synchronisation of calcium signalling and excitation-contraction coupling in most striated muscle cells. Light microscopy has been used for imaging t-tubules for well over 100 years and together with electron microscopy (EM), has revealed the three-dimensional complexities of the t-system topology within cardiomyocytes and skeletal muscle fibres from a range of species. The emerging super-resolution single molecule localisation microscopy (SMLM) techniques are offering a near 10-fold improvement over the resolution of conventional fluorescence light microscopy methods, with the ability to spectrally resolve nanometre scale distributions of multiple molecular targets. In conjunction with the next generation of electron microscopy, SMLM has allowed the visualisation and quantification of intricate t-tubule morphologies within large areas of muscle cells at an unprecedented level of detail. In this paper, we review recent advancements in the t-tubule structural biology with the utility of various microscopy techniques. We outline the technical considerations in adapting SMLM to study t-tubules and its potential to further our understanding of the molecular processes that underlie the sub-micron scale structural alterations observed in a range of muscle pathologies. PMID:26913143

  2. mTOR controls lysosome tubulation and antigen presentation in macrophages and dendritic cells.

    PubMed

    Saric, Amra; Hipolito, Victoria E B; Kay, Jason G; Canton, Johnathan; Antonescu, Costin N; Botelho, Roberto J

    2016-01-15

    Macrophages and dendritic cells exposed to lipopolysaccharide (LPS) convert their lysosomes from small, punctate organelles into a network of tubules. Tubular lysosomes have been implicated in phagosome maturation, retention of fluid phase, and antigen presentation. There is a growing appreciation that lysosomes act as sensors of stress and the metabolic state of the cell through the kinase mTOR. Here we show that LPS stimulates mTOR and that mTOR is required for LPS-induced lysosome tubulation and secretion of major histocompatibility complex II in macrophages and dendritic cells. Specifically, we show that the canonical phosphatidylinositol 3-kinase-Akt-mTOR signaling pathway regulates LPS-induced lysosome tubulation independently of IRAK1/4 and TBK. Of note, we find that LPS treatment augmented the levels of membrane-associated Arl8b, a lysosomal GTPase required for tubulation that promotes kinesin-dependent lysosome movement to the cell periphery, in an mTOR-dependent manner. This suggests that mTOR may interface with the Arl8b-kinesin machinery. To further support this notion, we show that mTOR antagonists can block outward movement of lysosomes in cells treated with acetate but have no effect in retrograde movement upon acetate removal. Overall our work provides tantalizing evidence that mTOR plays a role in controlling lysosome morphology and trafficking by modulating microtubule-based motor activity in leukocytes. PMID:26582390

  3. Lipid phase of transverse tubule membranes from skeletal muscle. An electron paramagnetic resonance study.

    PubMed Central

    Hidalgo, C

    1985-01-01

    The lipid phase of transverse tubule membrane was probed with a variety of fatty acid spin labels. The motion of the probe increased as the distance between the spin label and polar head group increased, in agreement with results reported in other membranes. The value of the order parameter at 37 degrees C for a fatty acid spin label containing the label attached to its fifth carbon atom was closer to values reported for bacterial membranes than to the lower values reported for other mammalian membranes. Order parameters for spin labels containing the label nearer to the center of the bilayer were closer to the values reported in other mammalian membranes than to values reported for bacterial membranes. These results indicate that the lipid segments in the vicinity of the polar head group, and less so those near the center of the bilayer, are motionally more restricted in transverse tubules than in other mammalian membranes. In particular, the lipid phase of the transverse tubule membrane is less fluid than that of the sarcoplasmic reticulum membrane. A possible role of the high cholesterol content of transverse tubules in generating the lower fluidity of its lipid phase is discussed. PMID:2990585

  4. Current understanding ofI sperm-storage tubule (SST) function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unlike most mammals, birds do not need to synchronize copulation with ovulation. Hens are endowed with tubular structures, the sperm-storage tubules (SST), in their oviducts which the sperm enter and survive for weeks after mating or artificial insemination. Sperm are slowly but continually releas...

  5. Effect of epsilon toxin-GFP on MDCK cells and renal tubules in vivo.

    PubMed

    Soler-Jover, Alex; Blasi, Juan; Gómez de Aranda, Inma; Navarro, Piedad; Gibert, Maryse; Popoff, Michel R; Martín-Satué, Mireia

    2004-07-01

    Epsilon toxin (epsilon-toxin), produced by Clostridium perfringens types B and D, causes fatal enterotoxemia, also known as pulpy kidney disease, in livestock. Recombinant epsilon-toxin-green fluorescence protein (epsilon-toxin-GFP) and epsilon-prototoxin-GFP were successfully expressed in Escherichia coli. MTT assays on MDCK cells confirmed that recombinant epsilon-toxin-GFP retained the cytotoxicity of the native toxin. Direct fluorescence analysis of MDCK cells revealed a homogeneous peripheral pattern that was temperature sensitive and susceptible to detergent. epsilon-Toxin-GFP and epsilon-prototoxin-GFP bound to endothelia in various organs of injected mice, especially the brain. However, fluorescence mainly accumulated in kidneys. Mice injected with epsilon-toxin-GFP showed severe kidney alterations, including hemorrhagic medullae and selective degeneration of distal tubules. Moreover, experiments on kidney cryoslices demonstrated specific binding to distal tubule cells of a range of species. We demonstrate with new recombinant fluorescence tools that epsilon-toxin binds in vivo to endothelial cells and renal tubules, where it has a strong cytotoxic effect. Our binding experiments indicate that an epsilon-toxin receptor is expressed on renal distal tubules of mammalian species, including human. PMID:15208360

  6. Multicopper oxidase-1 is required for iron homeostasis in Malpighian tubules of Helicoverpa armigera.

    PubMed

    Liu, Xiaoming; Sun, Chengxian; Liu, Xiaoguang; Yin, Xinming; Wang, Baohai; Du, Mengfang; An, Shiheng

    2015-01-01

    Multicopper oxidases (MCOs) are enzymes that contain 10 conserved histidine residues and 1 cysteine residue. MCO1 has been extensively investigated in the midgut because this MCO is implicated in ascorbate oxidation, iron homeostasis and immune responses. However, information regarding the action of MCO1 in Malpighian tubules is limited. In this study, Helicoverpa armigera was used as a model to investigate the function of MCO1 in Malpighian tubules. Sequence analysis results revealed that HaMCO1 exhibits typical MCO characteristics, with 10 histidine and 1 cysteine residues for copper ion binding. HaMCO1 was also found to be highly abundant in Malpighian tubules. Temporal expression patterns indicated that HaMCO1 is mainly expressed during larval molting stages. Hormone treatments [the molting hormone 20-hydroxyecdysone (20E) and juvenile hormone (JH)] revealed that 20E inhibits HaMCO1 transcript expression via its heterodimer receptor, which consists of ecdysone receptor (EcR) and ultraspiracle (USP), and that JH counteracts the action of 20E to activate HaMCO1 transcript expression via its intracellular receptor methoprene-tolerant (Met). HaMCO1 knockdown caused a significant decrease in iron accumulation and also significantly reduced transferrin and ferritin transcript expression. Therefore, HaMCO1 is coordinately regulated by 20E and JH and is required for iron homeostasis in Malpighian tubules. PMID:26437857

  7. First transcriptional survey of the Malpighian tubules of giant mealworm, Zophobas morio (Coleoptera: Tenebrionidae).

    PubMed

    Silva, J R; Prado, R A; Amaral, D T; Viviani, V R

    2015-01-01

    The Malpighian tubules play a key role in insect osmoregulation. Although a transcriptional analysis has been done for the Malpighian tubules in Drosophila melanogaster (Diptera), no functional genomics analysis has yet been carried out for any Coleoptera species. Recently, we constructed a cDNA library from Malpighian tubules of larval Zophobas morio, a close relative of Tribolium castaneum, and cloned the cDNA for an AMP/CoA-ligase with luciferase-like enzyme properties. Using this cDNA library, we randomly isolated, partially sequenced and analyzed ca. 540 clones, obtaining the first transcriptional profile of the most representative expressed genes, and associated them with their possible biological functions. A high percentage of mitochondrial genes was found, which is consistent with the high metabolic activity required by this organ during the formation of primary urine. Common transcripts included those for enzymes involved in osmoregulation, such as solute transporters and ATPases, and in detoxification and excretion, such as cytochrome P450, glutathione S-transferase, alcohol dehydrogenase. The presence of AMP/CoA-ligases, which activate exogenous carboxylic acids such as firefly D-luciferin suggests their participation in important new xenobiotic excretion/detoxification roles in Malpighian tubule physiology. PMID:25729980

  8. Identification of proteins associated with adhesive prints from Holothuria dofleinii Cuvierian tubules.

    PubMed

    Peng, Yong Y; Glattauer, Veronica; Skewes, Timothy D; McDevitt, Andrew; Elvin, Christopher M; Werkmeister, Jerome A; Graham, Lloyd D; Ramshaw, John A M

    2014-12-01

    Cuvierian tubules are expelled as a defence mechanism against predators by various species within the family Holothuridae. When the tubules are expelled, they become sticky almost immediately and ensnare the predator. The mechanism of this rapid adhesion is not clear, but proteins on the surface of the expelled tubules are widely believed to be involved. This study has examined such proteins from Holothuria dofleinii, sourced from adhesive prints left on glass after the removal of adhered tubules. Gel electrophoresis showed that seven strongly staining protein bands were consistently present in all samples, with molecular masses ranging from 89 to 17 kDa. N-terminal sequence data was obtained from two bands, while others seemed blocked. Tandem mass spectrometry-based sequencing of tryptic peptides derived from individual protein bands indicated that the proteins were unlikely to be homopolymers. PCR primers designed using the peptide sequences enabled us to amplify, clone and sequence cDNA segments relating to four gel bands; for each, the predicted translation product contained other peptide sequences observed for that band that had not been used in primer design. Database searches using the peptide and cDNA-encoded sequences suggest that two of the seven proteins are novel and one is a C-type lectin, while-surprisingly-at least three of the other four are closely related to enzymes associated with the pentose phosphate cycle and glycolysis. We discuss precedents in which lectins and metabolic enzymes are involved in attachment and adhesion phenomena. PMID:25086572

  9. Antigens of the basement membranes of the seminiferous tubules induce autoimmunity in Wistar rats.

    PubMed

    Lustig, L; Satz, M L; Sztein, M B; Denduchis, B

    1982-05-01

    A preparation enriched in basement membranes from seminiferous tubules was isolated from rat testes (STBM) and injected with complete Freund's adjuvant into Wistar rats. In 60% of animals a mild multifocal orchitis was observed. In damaged areas, perivascular and peritubular mononuclear cell infiltrates and different degrees of cell sloughing of some seminiferous tubules were observed. Electron microscopy revealed focal thickenings and delamination of the basement membrane of the seminiferous tubules as well as vacuolization of Sertoli cell cytoplasm. Using immunofluorescence discontinuous linear deposits of IgG were detected along the seminiferous tubular wall. Moreover, the same pattern of immunofluorescence was observed when the IgG eluted from the testes of the immunized rats was layered on sections of normal rat testis. Circulating antibodies to STBM were detected using passive haemagglutination in approximately 45% of the immunized rats, with titers ranging from 1:20 to 1:80. Leukocyte migration was inhibited when the spleen cells of the immunized rats were incubated with antigens from the basement membrane of seminiferous tubules, whilst a negative reaction was obtained when the soluble fraction of testis homogenate was used. PMID:7050376

  10. Evaluation of the Diode laser (810nm,980nm) on dentin tubule diameter following internal bleaching

    PubMed Central

    Kiomarsi, Nazanin; Salim, Soheil; Sarraf, Pegah; Javad-Kharazifard, Mohammad

    2016-01-01

    Background The aim of this study was to evaluate the effect of diode laser irradiation and bleaching materials on the dentinal tubule diameter after laser bleaching. Material and Methods The dentin discs of 40 extracted third molar were used in this experiment. Each disc surface was divided into two halves by grooving. Half of samples were laser bleached at different wavelengths with two different concentrations of hydrogen peroxide. Other half of each disc with no laser bleaching remained as a negative control. Dentin discs were assigned randomly into four groups (n=10) with following hydrogen peroxide and diode laser wavelength specifications; Group 1 (30% - 810 nm), group 2 (30% - 980 nm), group 3 (46% - 810 nm) and group 4 (46% - 980 nm). All specimens were sent for scanning electron microscopic (SEM) analysis in order to measure tubular diameter in laser treated and control halves. Data were analyzed by ANOVA and Tukey test (p<0.05). Results A significant reduction in dentin tubule diameter was observed in groups 1, 2 and 4. There was no significant difference between groups 1 and 2 and between groups 3 and 4 after bleaching. Conclusions The SEM results showed that diode laser was able to reduce dentin tubule diameter and its effect on dentin was dependent on chemical action of bleaching material. Key words:Laser, diode, dentin, tubule, diameter. PMID:27398172

  11. Number and distribution of sperm-storage tubules in four strains of broiler breeders

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Restricted to the utero-vaginal junction (UVJ) in the hen's oviduct are tubular invaginations of the surface epithelium collectively referred to as the sperm-storage tubules (SSTs). One would expect that a larger number of SSTs would be positively correlated with longer, sustained fertility. However...

  12. ADH-PGE2 interactions in cortical collecting tubule. II. inhibition of Ca and P reabsorption.

    PubMed

    Holt, W F; Lechene, C

    1981-10-01

    In the absence of ADH, microperfused cortical collecting tubules of rabbits reabsorb calcium and phosphorus. Antidiuretic hormone (ADH) (200 microunits/ml Pitressin or synthetic arginine vasopressin) inhibits the reabsorption and may promote the secretion of calcium and phosphorus. At 5 min after incubation with ADH, there was a transitory increase in the potential difference and the reabsorption of sodium. The fluxes of calcium and phosphorus, however, showed no significant change from the control values. At 30-50 min after treatment with ADH, the reabsorption of calcium and phosphorus was inhibited and in some tubules calcium and phosphorus were secreted. The removal of vasopressin from the bath or the addition of 10(-5) M meclofenamate in vitro prevented ADH from inhibiting the reabsorption of calcium and phosphorus. Treatment of tubules with 10(-5) M prostaglandin E2 (PGE2) subsequent to incubation in a medium containing ADH and meclofenamate inhibited the reabsorption or even promoted the secretin of calcium and phosphorus, as did the prolonged incubation with ADH alone. We conclude that cortical collecting tubules reabsorb calcium and phosphorus in the absence of vasopressin and that ADH inhibits calcium and phosphorus reabsorption. Endogenous synthesis of PGE2 may mediate the inhibitory action of ADH, since meclofenamate (an inhibitor of the synthesis of prostaglandins) opposes and exogenous PGE2 mimics ADH. PMID:6947697

  13. Adaptive optics imaging of the outer retinal tubules in Bietti's crystalline dystrophy.

    PubMed

    Battu, R; Akkali, M C; Bhanushali, D; Srinivasan, P; Shetty, R; Berendschot, T T J M; Schouten, J S A G; Webers, C A

    2016-05-01

    PurposeTo study the outer retinal tubules using spectral domain optical coherence tomography and adaptive optics and in patients with Bietti's crystalline dystrophy.MethodsTen eyes of five subjects from five independent families with Bietti's crystalline Dystrophy (BCD) were characterized with best-corrected visual acuity (BCVA), full-field electroretinography, and fundus autofluorescence (FAF). High-resolution images were obtained with the spectral domain optical coherence tomography (SD-OCT) and adaptive optics (AO).ResultsSD-OCT showed prominent outer retinal layer loss and outer retinal tubulations at the margin of outer retinal loss. AO images displayed prominent macrotubules and microtubules with characteristic features in eight out of the 10 eyes. Crystals were present in all ten eyes. There was a reduction in the cone count in all eyes in the area outside the outer retinal tubules (ORT).ConclusionsThis study describes the morphology of the outer retinal tubules when imaged enface on the adaptive optics in patients with BCD. These findings provide insight into the macular structure of these patients. This may have prognostic implications and refine the study on the pathogenesis of BCD. PMID:26915747

  14. Altered distribution of ICa impairs Ca release at the t-tubules of ventricular myocytes from failing hearts

    PubMed Central

    Bryant, Simon M.; Kong, Cherrie H.T.; Watson, Judy; Cannell, Mark B.; James, Andrew F.; Orchard, Clive H.

    2015-01-01

    In mammalian cardiac ventricular myocytes, Ca influx and release occur predominantly at t-tubules, ensuring synchronous Ca release throughout the cell. Heart failure is associated with disrupted t-tubule structure, but its effect on t-tubule function is less clear. We therefore investigated Ca influx and release at the t-tubules of ventricular myocytes isolated from rat hearts ~ 18 weeks after coronary artery ligation (CAL) or corresponding Sham operation. L-type Ca current (ICa) was recorded using the whole-cell voltage-clamp technique in intact and detubulated myocytes; Ca release at t-tubules was monitored using confocal microscopy with voltage- and Ca-sensitive fluorophores. CAL was associated with cardiac and cellular hypertrophy, decreased ejection fraction, disruption of t-tubule structure and a smaller, slower Ca transient, but no change in ryanodine receptor distribution, L-type Ca channel expression, or ICa density. In Sham myocytes, ICa was located predominantly at the t-tubules, while in CAL myocytes, it was uniformly distributed between the t-tubule and surface membranes. Inhibition of protein kinase A with H-89 caused a greater decrease of t-tubular ICa in CAL than in Sham myocytes; in the presence of H-89, t-tubular ICa density was smaller in CAL than in Sham myocytes. The smaller t-tubular ICa in CAL myocytes was accompanied by increased latency and heterogeneity of SR Ca release at t-tubules, which could be mimicked by decreasing ICa using nifedipine. These data show that CAL decreases t-tubular ICa via a PKA-independent mechanism, thereby impairing Ca release at t-tubules and contributing to the altered excitation–contraction coupling observed in heart failure. PMID:26103619

  15. Secretion of Na(+), K(+) and fluid by the Malpighian (renal) tubule of the larval cabbage looper Trichoplusia ni (Lepidoptera: Noctuidae).

    PubMed

    Ruiz-Sanchez, Esau; O'Donnell, Michael J; Donini, Andrew

    2015-11-01

    The Malpighian (renal) tubules play important roles in ionic and osmotic homeostasis in insects. In Lepidoptera, the Malpighian tubules are structurally regionalized and the concentration of Na(+) and K(+) in the secreted fluid varies depending on the segment of tubule analyzed. In this work, we have characterized fluid and ion (Na(+), K(+), H(+)) transport by tubules of the larval stage of the cabbage looper Trichoplusia ni; we have also evaluated the effects of fluid secretion inhibitors and stimulants on fluid and ion transport. Ramsay assays showed that fluid was secreted by the iliac plexus but not by the yellow and white regions of the tubule. K(+) and Na(+) were secreted by the distal iliac plexus (DIP) and K(+) was reabsorbed in downstream regions. The fluid secretion rate decreased>50% after 25μM bafilomycin A1, 500μM amiloride or 50μM bumetanide was added to the bath. The concentration of K(+) in the secreted fluid did not change, whereas the concentration of Na(+) in the secreted fluid decreased significantly when tubules were exposed to bafilomycin A1 or amiloride. Addition of 500μM cAMP or 1μM 5-HT to the bath stimulated fluid secretion and resulted in a decrease in K(+) concentration in the secreted fluid. An increase in Na(+) concentration in the secreted fluid was observed only in cAMP-stimulated tubules. Secreted fluid pH and the transepithelial electrical potential (TEP) did not change when tubules were stimulated. Taken together, our results show that the secretion of fluid is carried out by the upper regions (DIP) in T. ni Malpighian tubules. Upper regions of the tubules secrete K(+), whereas lower regions reabsorb it. Stimulation of fluid secretion is correlated with a decrease in the K(+)/Na(+) ratio. PMID:26432549

  16. Altered distribution of ICa impairs Ca release at the t-tubules of ventricular myocytes from failing hearts.

    PubMed

    Bryant, Simon M; Kong, Cherrie H T; Watson, Judy; Cannell, Mark B; James, Andrew F; Orchard, Clive H

    2015-09-01

    In mammalian cardiac ventricular myocytes, Ca influx and release occur predominantly at t-tubules, ensuring synchronous Ca release throughout the cell. Heart failure is associated with disrupted t-tubule structure, but its effect on t-tubule function is less clear. We therefore investigated Ca influx and release at the t-tubules of ventricular myocytes isolated from rat hearts ~18weeks after coronary artery ligation (CAL) or corresponding Sham operation. L-type Ca current (ICa) was recorded using the whole-cell voltage-clamp technique in intact and detubulated myocytes; Ca release at t-tubules was monitored using confocal microscopy with voltage- and Ca-sensitive fluorophores. CAL was associated with cardiac and cellular hypertrophy, decreased ejection fraction, disruption of t-tubule structure and a smaller, slower Ca transient, but no change in ryanodine receptor distribution, L-type Ca channel expression, or ICa density. In Sham myocytes, ICa was located predominantly at the t-tubules, while in CAL myocytes, it was uniformly distributed between the t-tubule and surface membranes. Inhibition of protein kinase A with H-89 caused a greater decrease of t-tubular ICa in CAL than in Sham myocytes; in the presence of H-89, t-tubular ICa density was smaller in CAL than in Sham myocytes. The smaller t-tubular ICa in CAL myocytes was accompanied by increased latency and heterogeneity of SR Ca release at t-tubules, which could be mimicked by decreasing ICa using nifedipine. These data show that CAL decreases t-tubular ICa via a PKA-independent mechanism, thereby impairing Ca release at t-tubules and contributing to the altered excitation-contraction coupling observed in heart failure. PMID:26103619

  17. Micropower RF material proximity sensor

    DOEpatents

    McEwan, Thomas E.

    1998-01-01

    A level detector or proximity detector for materials capable of sensing through plastic container walls or encapsulating materials is of the sensor. Thus, it can be used in corrosive environments, as well as in a wide variety of applications. An antenna has a characteristic impedance which depends on the materials in proximity to the antenna. An RF oscillator, which includes the antenna and is based on a single transistor in a Colpitt's configuration, produces an oscillating signal. A detector is coupled to the oscillator which signals changes in the oscillating signal caused by changes in the materials in proximity to the antenna. The oscillator is turned on and off at a pulse repetition frequency with a low duty cycle to conserve power. The antenna consists of a straight monopole about one-quarter wavelength long at the nominal frequency of the oscillator. The antenna may be horizontally disposed on a container and very accurately detects the fill level within the container as the material inside the container reaches the level of the antenna.

  18. Micropower RF material proximity sensor

    DOEpatents

    McEwan, T.E.

    1998-11-10

    A level detector or proximity detector for materials capable of sensing through plastic container walls or encapsulating materials is disclosed. Thus, it can be used in corrosive environments, as well as in a wide variety of applications. An antenna has a characteristic impedance which depends on the materials in proximity to the antenna. An RF oscillator, which includes the antenna and is based on a single transistor in a Colpitt`s configuration, produces an oscillating signal. A detector is coupled to the oscillator which signals changes in the oscillating signal caused by changes in the materials in proximity to the antenna. The oscillator is turned on and off at a pulse repetition frequency with a low duty cycle to conserve power. The antenna consists of a straight monopole about one-quarter wavelength long at the nominal frequency of the oscillator. The antenna may be horizontally disposed on a container and very accurately detects the fill level within the container as the material inside the container reaches the level of the antenna. 5 figs.

  19. Plating of proximal humeral fractures.

    PubMed

    Martetschläger, Frank; Siebenlist, Sebastian; Weier, Michael; Sandmann, Gunther; Ahrens, Philipp; Braun, Karl; Elser, Florian; Stöckle, Ulrich; Freude, Thomas

    2012-11-01

    The optimal treatment for proximal humeral fractures is controversial. Few data exist concerning the influence of the surgical approach on the outcome. The purpose of this study was to evaluate the clinical and radiological outcomes of proximal humeral fractures treated with locking plate fixation through a deltopectoral vs an anterolateral deltoid-splitting approach. Of 86 patients who met the inclusion criteria, 70 were available for follow-up examination. Thirty-three patients were treated through a deltopectoral approach and 37 through an anterolateral deltoid-splitting approach. In all cases, open reduction and internal fixation with a PHILOS locking plate (Synthes, Umkirch, Germany) was performed. Clinical follow-up included evaluation of pain, shoulder mobility, and strength. Constant score and Disabilities of the Arm, Shoulder and Hand (DASH) score were assessed. A clinical neurological examination of the axillary nerve was also performed. Consolidation, reduction, and appearance of head necrosis were evaluated radiographically. After a mean follow-up of 33 months, Constant scores, DASH scores, and American Shoulder and Elbow Surgeons scores showed no significant differences between the groups. Clinical neurologic examination of the axillary nerve revealed no obvious damage to the nerve in either group. Deltopectoral and anterolateral detoid-splitting approaches for plate fixation of proximal humeral fractures are safe and provide similar clinical outcomes. The results of this study suggest that the approach can be chosen according to surgeon preference. PMID:23127451

  20. Ablation of proximal tubular suppressor of cytokine signaling 3 enhances tubular cell cycling and modifies macrophage phenotype during acute kidney injury.

    PubMed

    Susnik, Nathan; Sörensen-Zender, Inga; Rong, Song; von Vietinghoff, Sibylle; Lu, Xia; Rubera, Isabelle; Tauc, Michel; Falk, Christine S; Alexander, Warren S; Melk, Anette; Haller, Herrmann; Schmitt, Roland

    2014-06-01

    Suppressor of cytokine signaling 3 (SOCS-3) is an important intracellular negative regulator of several signaling pathways. We found that SOCS-3 is highly expressed in renal proximal tubules during acute kidney injury. To test the impact of this, conditional proximal tubular knockout mice (SOCS-3(sglt2Δ/sglt2Δ)) were created. These mice had better kidney function than their wild-type counterparts in aristolochic acid nephropathy and after ischemia/reperfusion injury. Kidneys of these knockout mice showed significantly more proximal tubular cell proliferation during the repair phase. A direct effect of SOCS-3 on tubular cell cycling was demonstrated by in vitro experiments showing a JAK/STAT pathway-dependent antimitotic effect of SOCS-3. Furthermore, acute damaged kidneys of the knockout mice contained increased numbers of F4/80(+) cells. Phenotypic analysis of these F4/80(+) cells indicated a polarization from classically activated to alternatively activated macrophages. In vitro, SOCS-3-overexpressing renal epithelial cells directly induced classical activation in cocultured macrophages, supporting the observed in vivo phenomenon. Thus, upregulation of SOCS-3 in stressed proximal tubules plays an important role during acute kidney injury by inhibition of reparative proliferation and by modulation of the macrophage phenotype. Antagonizing SOCS-3 could have therapeutic potential for acute kidney injury. PMID:24402091

  1. Protective effects of Ezrin on cold storage preservation injury in the pig kidney proximal tubular epithelial cell line [LLC-PK1

    PubMed Central

    Tian, Tao; Lindell, Susanne L.; Henderson, Scott C.; Mangino, Martin J.

    2009-01-01

    Background Renal damage caused by cold preservation and warm reperfusion has been well documented and involves tissue edema, cell swelling, ATP depletion, calcium toxicity, and oxidative stress. However, more common proximal mechanisms have not been identified, which may limit the development of effective clinical treatment strategies. Previous work indicates that many cytoskeletal structures are affected by cold preservation and reperfusion, including membrane rich ezrin associated complexes. The aim of this study was to investigate whether the sub-lamellar cytoskeletal protein ezrin is causally involved in cold preservation injury in renal tubule epithelial cells. Methods We created a stably transfected cell Line [LLC-EZ] using the pig kidney proximal tubular epithelial cell line [LLC-PK1], which constitutively over-expresses wild-type ezrin. These cells were cold stored in UW solution and reperfused in-vitro to model renal tubule preservation injury, which was assessed by biochemical, metabolic, functional, and structural end points. Results Over-expression of ezrin increased cell viability (LDH release), mitochondrial activity (ATP synthesis, dehydrogenase activity, and inner mitochondrial membrane potential), and protected the structure of cell membrane microvilli and mitochondria after cold storage preservation injury. Reperfusion-induced apoptosis was also significantly reduced in LLC-EZ cells over-expressing ezrin. Conclusions Enhanced ezrin expression protects tubule epithelial cells from cold storage preservation injury, possibly by membrane or mitochondrial mechanisms. PMID:19461485

  2. Proximate and polyphenolic characterization of cranberry pomace

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The proximate composition and identification and quantification of polyphenolic compounds in dried cranberry pomace were determined. Proximate analysis was conducted based on AOAC methods for moisture, protein, fat, and ash. Total carbohydrates were determined by the difference method. Polyphenolic ...

  3. Caveolin-1 Induces Formation of Membrane Tubules That Sense Actomyosin Tension and Are Inhibited by Polymerase I and Transcript Release Factor/Cavin-1

    PubMed Central

    Verma, Prakhar; Ostermeyer-Fay, Anne G.

    2010-01-01

    Caveolin-1 and caveolae are often lost in cancer. We found that levels of caveolin-1 and polymerase I and transcript release factor (PTRF)/cavin-1 correlated closely in a panel of cancer and normal cells. Caveolin-1 reexpression in cancer cells lacking both proteins induced formation of long membrane tubules rarely seen in normal cells. PTRF/cavin-1 inhibited tubule formation when coexpressed with caveolin-1 in these cells, whereas suppression of PTRF/cavin-1 expression in cells that normally expressed both genes stimulated tubule formation by endogenous caveolin-1. Caveolin-1 tubules shared several features with previously described Rab8 tubules. Coexpressed Rab8 and caveolin-1 labeled the same tubules (as did EHD proteins), and synergized to promote tubule formation, whereas a dominant-interfering Rab8 mutant inhibited caveolin-1 tubule formation. Both overexpression and inhibition of dynamin-2 reduced the abundance of caveolin-1 tubules. Caveolin-1 reexpression in SK-BR-3 breast cancer cells also induced formation of short membrane tubules close to cortical actin filaments, which required actin filaments but not microtubules. Actomyosin-induced tension destabilized both long and short tubules; they often snapped and resolved to small vesicles. Actin filament depolymerization or myosin II inhibition reduced tension and stabilized tubules. These data demonstrate a new function for PTRF/cavin-1, a new functional interaction between caveolin-1 and Rab8 and that actomyosin interactions can induce tension on caveolin-1-containing membranes. PMID:20427576

  4. Active Targets For Capacitive Proximity Sensors

    NASA Technical Reports Server (NTRS)

    Jenstrom, Del T.; Mcconnell, Robert L.

    1994-01-01

    Lightweight, low-power active targets devised for use with improved capacitive proximity sensors described in "Capacitive Proximity Sensor Has Longer Range" (GSC-13377), and "Capacitive Proximity Sensors With Additional Driven Shields" (GSC-13475). Active targets are short-distance electrostatic beacons; they generate known alternating electro-static fields used for alignment and/or to measure distances.

  5. Dentin hypersensitivity treatment by CO2 laser: the influence of the density of dentin tubules and laser-beam incidence

    NASA Astrophysics Data System (ADS)

    Colojoara, Carmen; Gabay, Shimon; van der Meulen, Freerk W.; van Gemert, Martin J. C.; Miron, Mariana I.; Mavrantoni, Androniki

    1997-12-01

    Dentin hypersensitivity is considered to be a consequence of the presence of open dentin tubules on the exposed dentin surface. Various methods and materials used in the treatment of this disease are directed to achieve a tubule's occlusion. The purpose of this study was to evaluate under scanning electron microscopy and clinical method the sealing effects of CO2 laser on dentin tubules of human teeth without any damages of the surrounding tissues. Samples of freshly extracted noncarious 3rd molars were used. The teeth were randomly divided in to two groups A and B. The samples of group A were exposed to laser beam in cervical area, directed parallel to their dentin tubules. The teeth of group B were sectioned through a hypothetical carious lesion and lased perpendicularly or obliquely of the dentin tubules. The CO2 laser, at 10.6 micrometers wavelength, was operated only in pulse mode and provided 6.25 - 350 mJ in a burst of 25 pulses each of 250 microsecond(s) time duration with a 2 ms time interval between successive pulses (repetition rate up to 500 mH). Melting of dentin surface and partial closure of exposed dentin tubules were found for all specimens at 6.25 to 31.25 mJ energy. Our results indicated that using CO2 laser in a parallel orientation of laser beam with dentin tubules, the dentin sensitivity can be reduced without any damages of pulp vitality.

  6. Sildenafil ameliorates left ventricular T-tubule remodeling in a pressure overload-induced murine heart failure model

    PubMed Central

    Huang, Chun-kai; Chen, Bi-yi; Guo, Ang; Chen, Rong; Zhu, Yan-qi; Kutschke, William; Hong, Jiang; Song, Long-sheng

    2016-01-01

    Aim: Sildenafil, a phosphodiesterase 5 (PDE5) inhibitor, has been shown to exert beneficial effects in heart failure. The purpose of this study was to test whether sildenafil suppressed transverse-tubule (T-tubule) remodeling in left ventricular (LV) failure and thereby providing the therapeutic benefits. Methods: A pressure overload-induced murine heart failure model was established in mice by thoracic aortic banding (TAB). One day after TAB, the mice received sildenafil (100 mg·kg−1·d−1, sc) or saline for 5 weeks. At the end of treatment, echocardiography was used to examine LV function. Then the intact hearts were dissected out and placed in Langendorff-perfusion chamber for in situ confocal imaging of T-tubule ultrastructure from epicardial myocytes. Results: TAB surgery resulted in heart failure accompanied by remarkable T-tubule remodeling. Sildenafil treatment significantly attenuated TAB-induced cardiac hypertrophy and congestive heart failure, improved LV contractile function, and preserved T-tubule integrity in LV cardiomyocytes. But sildenafil treatment did not significantly affect the chamber dilation. The integrity of LV T-tubule structure was correlated with cardiac hypertrophy (R2=0.74, P<0.01) and global LV function (R2=0.47, P<0.01). Conclusion: Sildenafil effectively ameliorates LV T-tubule remodeling in TAB mice, revealing a novel mechanism underlying the therapeutic benefits of sildenafil in heart failure. PMID:26972492

  7. Comparative evaluation of NovaMin desensitizer and Gluma desensitizer on dentinal tubule occlusion: a scanning electron microscopic study

    PubMed Central

    Joshi, Surabhi; Gowda, Ashwini Shivananje

    2013-01-01

    Purpose In this study, the effect of calcium sodium phosphosilicate (NovaMin) desensitizing agent, which is a powder-based system, and hydroxyethyl methacrylate and glutaraldehyde (Gluma desensitizer), which is liquid-based system, on dentinal tubule occlusion was analyzed by scanning electron microscope. The effects of the above two along with one control group were compared to determine the more effective method of sealing the dentinal tubules after initial application. Methods Twenty specimens were allocated to each of 3 groups: Control, Gluma desensitizer, and NovaMin. Two additional samples were also prepared and treated with Gluma and NovaMin; these samples were longitudinally fractured. The specimens were prepared from extracted sound human premolars and were stored in 10% formalin at room temperature. The teeth were cleaned of gross debris and then sectioned to provide one to two dentin specimens. The dentin specimens were etched with 6% citric acid for 2 minutes and rinsed in distilled water. Control discs were dried, and the test discs were treated with the desensitizing agents as per the manufacturer's instructions. The discs as well as longitudinal sections were later analyzed under the scanning electron microscope. The proportions of completely occluded, partially occluded, and open tubules within each group were calculated. The ratios of completely and partially occluded tubules to the total tubules for all the groups was determined, and the data was statistically analyzed using nonparametric tests and statistical significance was calculated. Results NovaMin showed more completely occluded tubules (0.545±0.051) while Gluma desensitizer showed more partially occluded tubules (0.532±0.075). The differences among all the groups were statistically significant (P≤ 0.05). Conclusion Both materials were effective in occluding dentinal tubules but NovaMin appeared more promising in occluding tubules completely after initial application. PMID:24455439

  8. Renal proximal tubular dysgenesis associated with severe neonatal hemosiderotic liver disease.

    PubMed

    Bale, P M; Kan, A E; Dorney, S F

    1994-01-01

    We report the necropsy findings for three infants with the unusual combination of proximal renal tubular dysgenesis and severe congenital liver disease with excessive iron in several organs resembling neonatal hemochromatosis. Two of the infants were caucasian siblings and one was an Australian aborigine. One died in utero at 35 weeks of gestation and two died at 7 days. The liveborn infants presented with anuria and liver failure. The livers all showed marked loss of hepatocytes and replacement by pseudotubules in the collapsed lobules. The liveborn infants also showed giant cell transformation of hepatocytes, small regenerative nodules, cholestasis, and normal bile ducts. Absence of proximal renal convolutions was confirmed by epithelial membrane antigen positivity in nearly all tubules. In each family there was another sibling with congenital liver disease, fatal in one case, but no renal tubular dysgenesis. No infection or metabolic disease was uncovered in any of our patients, and the cause of the hepatocyte destruction was not determined. The combination in three infants of two rare congenital diseases could be genetic or acquired in utero from the same etiological agent. Alternatively, the absence of proximal convolutions could be secondary to hypoperfusion, perhaps because of shock due to extensive necrosis of hepatocytes. PMID:8066004

  9. Proximal tubular renal dysfunction or damage in HIV-infected patients.

    PubMed

    Del Palacio, María; Romero, Sara; Casado, José L

    2012-01-01

    Antiretroviral-associated toxicity, especially in the case of tenofovir plus boosted protease inhibitors, could affect different functions of the proximal renal tubule. Considering the long-term use of antiretroviral therapy and the concomitant presence of other risk factors, several degrees of proximal tubular toxicity, from chronic subclinical renal dysfunction to Fanconi syndrome, could be observed in HIV-infected patients. However, the clinical significance of isolated tubular dysfunction, in the short and long term, remains unclear. In addition, primary tubular abnormalities, even severe, may be missed until they affect the glomerular function. Therefore, there is a need for new biomarkers, not only based in serum creatinine and estimated glomerular filtration rates, that might help to identify tubular cell toxicity and predict the clinical outcome in HIV-infected patients. Increased values of urinary beta-2-microglobulin and retinol-binding protein, observed in up to 70% of patients, have been associated to tenofovir-associated mitochondrial dysfunction. Together with other tubular parameters or in isolation, both biomarkers could be useful for diagnosing proximal tubular toxicity. Other molecules, such as urinary kidney injury molecule- 1, neutrophil gelatinase associated lipocalin, or N-acetyl-b-D-glucosaminidase, could help to distinguish between tubular cell damage and dysfunction. Here, we review the current knowledge on tubular toxicity in HIV-infected patients on antiretroviral therapy. PMID:22833061

  10. Characteristics of taurine transport in cultured renal epithelial cell lines: asymmetric polarity of proximal and distal cell lines.

    PubMed

    Jones, D P; Miller, L A; Budreau, A; Chesney, R W

    1992-01-01

    Taurine transport was determined in two continuous, renal epithelial cell lines: LLC-PK1 derived from the proximal tubule of the pig, and the Madin-Darby canine kidney cell (MDCK) from the distal tubule of the dog. In LLC-PK1, taurine transport is maximal at the apical surface, whereas in MDCK cells, transport is greatest at the basolateral surface. Transport is highly dependent on both sodium and chloride in the external medium, and is specific for beta-amino acids. The apical and basolateral surfaces of both cell lines show an adaptive response to extracellular taurine concentration, but only the basolateral surface of the MDCK cell responds to hyperosomolality by increased taurine accumulation. Thus, differential control of the beta-amino acid transport system by substrate and external tonicity exists. The role of the beta-amino acid transport system may differ according to the origin of the cell: in the proximal renal tubular cell, net transepithelial reabsorption of filtered taurine increases the body pool. By contrast, taurine accumulation by distal tubular cells may form a mechanism of cell volume regulation in response to osmotic stress. PMID:1509959

  11. Glucose-Induced Down Regulation of Thiamine Transporters in the Kidney Proximal Tubular Epithelium Produces Thiamine Insufficiency in Diabetes

    PubMed Central

    Larkin, James R.; Zhang, Fang; Godfrey, Lisa; Molostvov, Guerman; Zehnder, Daniel; Rabbani, Naila; Thornalley, Paul J.

    2012-01-01

    Increased renal clearance of thiamine (vitamin B1) occurs in experimental and clinical diabetes producing thiamine insufficiency mediated by impaired tubular re-uptake and linked to the development of diabetic nephropathy. We studied the mechanism of impaired renal re-uptake of thiamine in diabetes. Expression of thiamine transporter proteins THTR-1 and THTR-2 in normal human kidney sections examined by immunohistochemistry showed intense polarised staining of the apical, luminal membranes in proximal tubules for THTR-1 and THTR-2 of the cortex and uniform, diffuse staining throughout cells of the collecting duct for THTR-1 and THTR-2 of the medulla. Human primary proximal tubule epithelial cells were incubated with low and high glucose concentration, 5 and 26 mmol/l, respectively. In high glucose concentration there was decreased expression of THTR-1 and THTR-2 (transporter mRNA: −76% and −53% respectively, p<0.001; transporter protein −77% and −83% respectively, p<0.05), concomitant with decreased expression of transcription factor specificity protein-1. High glucose concentration also produced a 37% decrease in apical to basolateral transport of thiamine transport across cell monolayers. Intensification of glycemic control corrected increased fractional excretion of thiamine in experimental diabetes. We conclude that glucose-induced decreased expression of thiamine transporters in the tubular epithelium may mediate renal mishandling of thiamine in diabetes. This is a novel mechanism of thiamine insufficiency linked to diabetic nephropathy. PMID:23285265

  12. Proximal bodies in hypersonic flow

    SciTech Connect

    Deiterding, Ralf; Laurence, Stuart J; Hornung, Hans G

    2007-01-01

    Hypersonic flows involving two or more bodies travelling in close proximity to one another are encountered in several important situations, both natural and man-made. The present work seeks to investigate one aspect of the resulting flow problem by exploring the forces experienced by a secondary body when it is within the domain of influence of a primary body travelling at hypersonic speeds. An analytical methodology based on the blast wave analogy is developed and used to predict the secondary force coefficients for simple geometries in both two and three dimensions. When the secondary body is entirely inside the primary shocked region, the nature of the lateral force coefficient is found to depend strongly on the relative size of the two bodies. For two spheres, the methodology predicts that the secondary body will experience an exclusively attractive lateral force if the secondary diameter is larger than one-sixth the primary diameter. The analytical results are compared with those from numerical simulations and reasonable agreement is observed if an appropriate normalization for the lateral displacement is used. Results from a series of experiments in the T5 hypervelocity shock tunnel are also presented and compared with perfect-gas numerical simulations, with good agreement. A new force-measurement technique for short-duration hypersonic facilities, enabling the experimental simulation of the proximal bodies problem, is described. This technique provides two independent means of measurement, and the agreement observed between the two gives a further degree of confidence in the results obtained.

  13. Protein Neighbors and Proximity Proteomics*

    PubMed Central

    Rees, Johanna S.; Li, Xue-Wen; Perrett, Sarah; Lilley, Kathryn S.; Jackson, Antony P.

    2015-01-01

    Within cells, proteins can co-assemble into functionally integrated and spatially restricted multicomponent complexes. Often, the affinities between individual proteins are relatively weak, and proteins within such clusters may interact only indirectly with many of their other protein neighbors. This makes proteomic characterization difficult using methods such as immunoprecipitation or cross-linking. Recently, several groups have described the use of enzyme-catalyzed proximity labeling reagents that covalently tag the neighbors of a targeted protein with a small molecule such as fluorescein or biotin. The modified proteins can then be isolated by standard pulldown methods and identified by mass spectrometry. Here we will describe the techniques as well as their similarities and differences. We discuss their applications both to study protein assemblies and to provide a new way for characterizing organelle proteomes. We stress the importance of proteomic quantitation and independent target validation in such experiments. Furthermore, we suggest that there are biophysical and cell-biological principles that dictate the appropriateness of enzyme-catalyzed proximity labeling methods to address particular biological questions of interest. PMID:26355100

  14. Protein Neighbors and Proximity Proteomics.

    PubMed

    Rees, Johanna S; Li, Xue-Wen; Perrett, Sarah; Lilley, Kathryn S; Jackson, Antony P

    2015-11-01

    Within cells, proteins can co-assemble into functionally integrated and spatially restricted multicomponent complexes. Often, the affinities between individual proteins are relatively weak, and proteins within such clusters may interact only indirectly with many of their other protein neighbors. This makes proteomic characterization difficult using methods such as immunoprecipitation or cross-linking. Recently, several groups have described the use of enzyme-catalyzed proximity labeling reagents that covalently tag the neighbors of a targeted protein with a small molecule such as fluorescein or biotin. The modified proteins can then be isolated by standard pulldown methods and identified by mass spectrometry. Here we will describe the techniques as well as their similarities and differences. We discuss their applications both to study protein assemblies and to provide a new way for characterizing organelle proteomes. We stress the importance of proteomic quantitation and independent target validation in such experiments. Furthermore, we suggest that there are biophysical and cell-biological principles that dictate the appropriateness of enzyme-catalyzed proximity labeling methods to address particular biological questions of interest. PMID:26355100

  15. Ash Aggregates in Proximal Settings

    NASA Astrophysics Data System (ADS)

    Porritt, L. A.; Russell, K.

    2012-12-01

    Ash aggregates are thought to have formed within and been deposited by the eruption column and plume and dilute density currents and their associated ash clouds. Moist, turbulent ash clouds are considered critical to ash aggregate formation by facilitating both collision and adhesion of particles. Consequently, they are most commonly found in distal deposits. Proximal deposits containing ash aggregates are less commonly observed but do occur. Here we describe two occurrences of vent proximal ash aggregate-rich deposits; the first within a kimberlite pipe where coated ash pellets and accretionary lapilli are found within the intra-vent sequence; and the second in a glaciovolcanic setting where cored pellets (armoured lapilli) occur within <1 km of the vent. The deposits within the A418 pipe, Diavik Diamond Mine, Canada, are the residual deposits within the conduit and vent of the volcano and are characterised by an abundance of ash aggregates. Coated ash pellets are dominant but are followed in abundance by ash pellets, accretionary lapilli and rare cored pellets. The coated ash pellets typically range from 1 - 5 mm in diameter and have core to rim ratios of approximately 10:1. The formation and preservation of these aggregates elucidates the style and nature of the explosive phase of kimberlite eruption at A418 (and other pipes?). First, these pyroclasts dictate the intensity of the kimberlite eruption; it must be energetic enough to cause intense fragmentation of the kimberlite to produce a substantial volume of very fine ash (<62 μm). Secondly, the ash aggregates indicate the involvement of moisture coupled with the presence of dilute expanded eruption clouds. The structure and distribution of these deposits throughout the kimberlite conduit demand that aggregation and deposition operate entirely within the confines of the vent; this indicates that aggregation is a rapid process. Ash aggregates within glaciovolcanic sequences are also rarely documented. The

  16. Proximal HCO3- reabsorption and the determinants of tubular and capillary PCO2 in the rat.

    PubMed

    Maddox, D A; Atherton, L J; Deen, W M; Gennari, F J

    1984-07-01

    Studies were carried out in Munich-Wistar rats to define the CO2 partial pressure (PCO2) profile in the surface tubules and capillaries of the kidney and to relate these measurements to proximal tubular HCO3- reabsorption, renal blood flow, and O2 consumption. In euvolemic rats, PCO2 in Bowman's space (BS) was 12.5 mmHg higher than in arterial blood, indicating CO2 addition to the arterial tree as it traverses the cortex. PCO2 further rose by 3.9 mmHg between the efferent arteriole (EA) and the peritubular capillaries (PC) (P less than 0.01) and by 4.9 mmHg between BS and the early proximal tubule (EP) (P less than 0.01). In studies with paired measurements, PCO2 in EP was 1.8 mmHg higher than in the adjacent PC (P less than 0.05). HCO3- reabsorption in EP (first 0.4-1.25 mm) was 579 pmol X min-1 X mm-1 (34.3 +/- 4.6% of the filtered load). By use of a model of facilitated diffusion of CO2 across the cell, the trans-epithelial PCO2 gradient in EP can be accounted for by the CO2 generated from HCO3- reabsorption, assuming an intracellular pH of 7.3. In the vascular compartment, roughly half the rise in PCO2 between the afferent arteriole (estimated to equal BS PCO2) and PC can be accounted for by metabolic CO2 production and half by titration of blood buffers by reabsorbed HCO3-. PMID:6430105

  17. Immunohistochemical demonstration of exocytosis-regulating proteins within rat molar dentinal tubules.

    PubMed

    Norlin, T; Hilliges, M; Brodin, L

    1999-03-01

    No morphologically defined synaptic structures have so far been detected between nerve terminals and the dentine-producing odontoblasts. Recent studies of the molecular mechanisms in neuronal exocytosis have identified several proteins that participate in synaptic-vesicle exocytosis. By localizing these proteins with immunohistochemical methods, information about the capacity for synaptic exocytosis should be obtained. Here, antibodies directed against some of the exocytosis-related proteins were used to investigate whether they are present in nerve fibers within the dentinal tubules in rat molars. Antibodies against synaptosome-associated protein of 25 kDa, Rab 3, synaptotagmin and synapsin all produced a punctuate staining pattern, suggesting that the proteins are accumulated in bouton-like elements. The results demonstrate that a set of exocytosis-related proteins is accumulated in the dentinal tubules, most probably within the intradentinal nerves. This finding is consistent with the hypothesis that intradentinal nerves can mediate efferent signals. PMID:10217513

  18. Peutz-Jeghers syndrome with ovarian sex cord tumor with annular tubules and cervical adenoma malignum.

    PubMed

    Podczaski, E; Kaminski, P F; Pees, R C; Singapuri, K; Sorosky, J I

    1991-07-01

    A patient with Peutz-Jeghers syndrome, a sex cord tumor with annular tubules, and an initially unrecognized adenoma malignum of the cervix is described. The patient presented with a mucinous adenocarcinoma in the vaginal apex. Review of the hysterectomy slides demonstrated an adenoma malignum of the cervix. In addition to a microscopic sex cord tumor with annular tubules of the right ovary, the left ovary contained mucinous cystadenomas. Adenoma malignum remains a difficult diagnosis and is frequently made only after hysterectomy for a presumed benign indication; pathology frequently demonstrates a deeply invasive, unusually well-differentiated adenocarcinoma of the cervix. Patients with Peutz-Jeghers syndrome need careful clinical and cytologic follow-up to exclude such lesions. PMID:1916514

  19. Facilitation of Endosomal Recycling by an IRG Protein Homolog Maintains Apical Tubule Structure in Caenorhabditis elegans.

    PubMed

    Grussendorf, Kelly A; Trezza, Christopher J; Salem, Alexander T; Al-Hashimi, Hikmat; Mattingly, Brendan C; Kampmeyer, Drew E; Khan, Liakot A; Hall, David H; Göbel, Verena; Ackley, Brian D; Buechner, Matthew

    2016-08-01

    Determination of luminal diameter is critical to the function of small single-celled tubes. A series of EXC proteins, including EXC-1, prevent swelling of the tubular excretory canals in Caenorhabditis elegans In this study, cloning of exc-1 reveals it to encode a homolog of mammalian IRG proteins, which play roles in immune response and autophagy and are associated with Crohn's disease. Mutants in exc-1 accumulate early endosomes, lack recycling endosomes, and exhibit abnormal apical cytoskeletal structure in regions of enlarged tubules. EXC-1 interacts genetically with two other EXC proteins that also affect endosomal trafficking. In yeast two-hybrid assays, wild-type and putative constitutively active EXC-1 binds to the LIM-domain protein EXC-9, whose homolog, cysteine-rich intestinal protein, is enriched in mammalian intestine. These results suggest a model for IRG function in forming and maintaining apical tubule structure via regulation of endosomal recycling. PMID:27334269

  20. Tubulation by amphiphysin requires concentration-dependent switching from wedging to scaffolding

    PubMed Central

    Isas, J. Mario; Ambroso, Mark R.; Hegde, Prabhavati B.; Langen, Jennifer; Langen, Ralf

    2015-01-01

    Summary BAR proteins are involved in a variety of membrane remodeling events, but how they can mold membranes into different shapes remains poorly understood. Using EPR, we find that vesicle binding of the N-BAR protein amphiphysin is predominantly mediated by the shallow insertion of amphipathic N-terminal helices. In contrast, the interaction with tubes involves deeply inserted N-terminal helices together with the concave surface of the BAR domain, which acts as a scaffold. Combined with the observed concentration dependence of tubulation and BAR domain scaffolding, the data indicate that initial membrane deformations and vesicle binding are mediated by insertion of amphipathic helical wedges, while tubulation requires high protein densities at which oligomeric BAR domain scaffolds form. In addition, we identify a pocket of residues on the concave surface of the BAR domain that deeply insert into tube membrane. Interestingly, this pocket harbors a number of disease mutants in the homologous amphiphysin 2. PMID:25865245

  1. Changes of myoid and endothelial cells in the peritubular wall during contraction of the seminiferous tubule.

    PubMed

    Losinno, Antonella D; Sorrivas, Viviana; Ezquer, Marcelo; Ezquer, Fernando; López, Luis A; Morales, Alfonsina

    2016-08-01

    The wall of the seminiferous tubule in rodents consists of an inner layer of myoid cells covered by an outer layer of endothelial cells. Myoid cells are a type of smooth muscle cell containing α-actin filaments arranged in two independent layers that contract when stimulated by endothelin-1. The irregular surface relief of the tubular wall is often considered a hallmark of contraction induced by a variety of stimuli. We examine morphological changes of the rat seminiferous tubule wall during contraction by a combination of light, confocal, transmission and scanning electron microscopy. During ET-1-induced contraction, myoid cells changed from a flat to a conical shape, but their actin filaments remained in independent layers. As a consequence of myoid cell contraction, the basement membrane became wavy, orientation of collagen fibers in the extracellular matrix was altered and the endothelial cell layer became folded. To observe the basement of the myoid cell cone, the endothelial cell monolayer was removed by collagenase digestion prior to SEM study. In contracted tubules, it is possible to distinguish cell relief: myoid cells have large folds on the external surface oriented parallel to the tubular axis, whereas endothelial cells have numerous cytoplasmic projections facing the interstitium. The myoid cell cytoskeleton is unusual in that the actin filaments are arranged in two orthogonal layers, which adopt differing shapes during contraction with myoid cells becoming cone-shaped. This arrangement impacts on other components of the seminiferous tubule wall and affects the propulsion of the tubular contents to the rete testis. PMID:26987820

  2. Optical properties of human radicular dentin: ATR-FTIR characterization and dentine tubule direction influence on radicular post adhesion

    NASA Astrophysics Data System (ADS)

    Quinto, Jose; Zamataro, Claudia B.; Benetti, Carolina; Dias, Derly A.; Blay, Alberto; Zezell, Denise Maria

    2015-06-01

    Knowledge of dental structures is essential for understanding of laser interaction and its consequences during adhesion processes. Tubule density in dentin ranges from 4.900 to 90.000 per mm2, for diameters from 1 to 3 μm. Light propagation inside the tubules is associated with tubules orientation. To the best of our knowledge, there is no previous work in literature characterizing physical-chemical alterations in dentin. The dentin samples were irradiated with a Er,Cr:YSGG Laser at wavelength 2.78 μm, with an energy density of 9.46 J/cm2 , above the ablation threshold. ATRFTIR at wavenumbers 2000 to 700 cm-1 was used to evaluate the differences among third root region and tubules orientation.

  3. Progressive sheet-to-tubule transformation is a general mechanism for endoplasmic reticulum partitioning in dividing mammalian cells

    PubMed Central

    Puhka, Maija; Joensuu, Merja; Vihinen, Helena; Belevich, Ilya; Jokitalo, Eija

    2012-01-01

    The endoplasmic reticulum (ER) is both structurally and functionally complex, consisting of a dynamic network of interconnected sheets and tubules. To achieve a more comprehensive view of ER organization in interphase and mitotic cells and to address a discrepancy in the field (i.e., whether ER sheets persist, or are transformed to tubules, during mitosis), we analyzed the ER in four different mammalian cell lines using live-cell imaging, high-resolution electron microscopy, and three dimensional electron microscopy. In interphase cells, we found great variation in network organization and sheet structures among different cell lines. In mitotic cells, we show that the ER undergoes both spatial reorganization and structural transformation of sheets toward more fenestrated and tubular forms. However, the extent of spatial reorganization and sheet-to-tubule transformation varies among cell lines. Fenestration and tubulation of the ER correlates with a reduced number of membrane-bound ribosomes. PMID:22573885

  4. Visualizing the origins of selfish de novo mutations in individual seminiferous tubules of human testes.

    PubMed

    Maher, Geoffrey J; McGowan, Simon J; Giannoulatou, Eleni; Verrill, Clare; Goriely, Anne; Wilkie, Andrew O M

    2016-03-01

    De novo point mutations arise predominantly in the male germline and increase in frequency with age, but it has not previously been possible to locate specific, identifiable mutations directly within the seminiferous tubules of human testes. Using microdissection of tubules exhibiting altered expression of the spermatogonial markers MAGEA4, FGFR3, and phospho-AKT, whole genome amplification, and DNA sequencing, we establish an in situ strategy for discovery and analysis of pathogenic de novo mutations. In 14 testes from men aged 39-90 y, we identified 11 distinct gain-of-function mutations in five genes (fibroblast growth factor receptors FGFR2 and FGFR3, tyrosine phosphatase PTPN11, and RAS oncogene homologs HRAS and KRAS) from 16 of 22 tubules analyzed; all mutations have known associations with severe diseases, ranging from congenital or perinatal lethal disorders to somatically acquired cancers. These results support proposed selfish selection of spermatogonial mutations affecting growth factor receptor-RAS signaling, highlight its prevalence in older men, and enable direct visualization of the microscopic anatomy of elongated mutant clones. PMID:26858415

  5. 50 Years of renal physiology from one man and the perfused tubule: Maurice B. Burg.

    PubMed

    Hamilton, Kirk L; Moore, Antoni B

    2016-08-01

    Technical advancements in research techniques in science are made in slow increments. Even so, large advances from insight and hard work of an individual with a single technique can have astonishing ramifications. Here, we examine the impact of Dr. Maurice B. Burg and the isolated perfused renal tubule technique and celebrate the 50th anniversary of the publication by Dr. Burg and his colleagues of their landmark paper in the American Journal of Physiology in 1966. In this study, we have taken a scientific visualization approach to study the scientific contributions of Dr. Burg and the isolated perfused tubule preparation as determining research impact by the number of research students, postdoctoral fellows, visiting scientists, and national and international collaborators. Additionally, we have examined the research collaborations (first and second generation scientists), established the migrational visualization of the first generation scientists who worked directly with Dr. Burg, quantified the metrics indices, identified and quantified the network of coauthorship of the first generation scientists with their second generation links, and determined the citations analyses of outputs of Dr. Burg and/or his first generation collaborators as coauthors. We also review the major advances in kidney physiology that have been made with the isolated perfused tubule technique. Finally, we are all waiting for the discoveries that the isolated perfused preparation technique will bring during the next 50 years. PMID:27122544

  6. Purinergic regulation of glucose and glutamine synthesis in isolated rabbit kidney-cortex tubules.

    PubMed

    Jagielski, Adam K; Wohner, Dagmara; Lietz, Tadeusz; Jarzyna, Robert; Derlacz, Rafał A; Winiarska, Katarzyna; Bryła, Jadwiga

    2002-08-15

    The effects of extracellular purinergic agonists and their breakdown products on glucose and glutamine synthesis in rabbit kidney-cortex tubules incubated with aspartate + glycerol or alanine + glycerol + octanoate were investigated. A rapid extracellular degradation of ATP was accompanied by an accumulation of AMP, inosine, and hypoxanthine. Extracellular ATP and its breakdown products accelerated glucose synthesis in renal tubules, while ammonium released from adenine-containing compounds enhanced glutamine synthesis and diminished the degree of gluconeogenesis stimulation. In contrast to AMP and inosine, ATP evoked calcium signals, while both ATP and inosine decreased intracellular cAMP content and accelerated the flux through fructose-1,6-bisphosphatase as concluded from changes in gluconeogenic intermediates. Since (i) the activity of partially purified renal fructose-1,6-bisphosphatase was increased upon protein phosphatase-1 treatment and decreased following treatment of previously dephosphorylated enzyme with protein kinase A catalytic subunit and (ii) both 8-bromoadenosine 3',5'-cyclic monophosphate and 8-(4-chlorophenyltio)-cAMP inhibited renal glucose synthesis, it seems likely that in rabbit renal tubules ATP and inosine stimulate gluconeogenesis via cAMP decrease, which favors the appearance of a more active, dephosphorylated form of fructose-1,6-bisphosphatase, a key gluconeogenic enzyme. PMID:12147256

  7. The Lowe Syndrome Protein OCRL1 Is Required for Endocytosis in the Zebrafish Pronephric Tubule

    PubMed Central

    Oltrabella, Francesca; Pietka, Grzegorz; Ramirez, Irene Barinaga-Rementeria; Mironov, Aleksandr; Starborg, Toby; Drummond, Iain A.; Hinchliffe, Katherine A.; Lowe, Martin

    2015-01-01

    Lowe syndrome and Dent-2 disease are caused by mutation of the inositol 5-phosphatase OCRL1. Despite our increased understanding of the cellular functions of OCRL1, the underlying basis for the renal tubulopathy seen in both human disorders, of which a hallmark is low molecular weight proteinuria, is currently unknown. Here, we show that deficiency in OCRL1 causes a defect in endocytosis in the zebrafish pronephric tubule, a model for the mammalian renal tubule. This coincides with a reduction in levels of the scavenger receptor megalin and its accumulation in endocytic compartments, consistent with reduced recycling within the endocytic pathway. We also observe reduced numbers of early endocytic compartments and enlarged vacuolar endosomes in the sub-apical region of pronephric cells. Cell polarity within the pronephric tubule is unaffected in mutant embryos. The OCRL1-deficient embryos exhibit a mild ciliogenesis defect, but this cannot account for the observed impairment of endocytosis. Catalytic activity of OCRL1 is required for renal tubular endocytosis and the endocytic defect can be rescued by suppression of PIP5K. These results indicate for the first time that OCRL1 is required for endocytic trafficking in vivo, and strongly support the hypothesis that endocytic defects are responsible for the renal tubulopathy in Lowe syndrome and Dent-2 disease. Moreover, our results reveal PIP5K as a potential therapeutic target for Lowe syndrome and Dent-2 disease. PMID:25838181

  8. The cell adhesion molecule Fasciclin2 regulates brush border length and organization in Drosophila renal tubules.

    PubMed

    Halberg, Kenneth A; Rainey, Stephanie M; Veland, Iben R; Neuert, Helen; Dornan, Anthony J; Klämbt, Christian; Davies, Shireen-Anne; Dow, Julian A T

    2016-01-01

    Multicellular organisms rely on cell adhesion molecules to coordinate cell-cell interactions, and to provide navigational cues during tissue formation. In Drosophila, Fasciclin 2 (Fas2) has been intensively studied due to its role in nervous system development and maintenance; yet, Fas2 is most abundantly expressed in the adult renal (Malpighian) tubule rather than in neuronal tissues. The role Fas2 serves in this epithelium is unknown. Here we show that Fas2 is essential to brush border maintenance in renal tubules of Drosophila. Fas2 is dynamically expressed during tubule morphogenesis, localizing to the brush border whenever the tissue is transport competent. Genetic manipulations of Fas2 expression levels impact on both microvilli length and organization, which in turn dramatically affect stimulated rates of fluid secretion by the tissue. Consequently, we demonstrate a radically different role for this well-known cell adhesion molecule, and propose that Fas2-mediated intermicrovillar homophilic adhesion complexes help stabilize the brush border. PMID:27072072

  9. Piecewise-Constant-Model-Based Interior Tomography Applied to Dentin Tubules

    PubMed Central

    Wei, Biao; Wang, Steve; Stock, Stuart R.; Yu, Hengyong

    2013-01-01

    Dentin is a hierarchically structured biomineralized composite material, and dentin's tubules are difficult to study in situ. Nano-CT provides the requisite resolution, but the field of view typically contains only a few tubules. Using a plate-like specimen allows reconstruction of a volume containing specific tubules from a number of truncated projections typically collected over an angular range of about 140°, which is practically accessible. Classical computed tomography (CT) theory cannot exactly reconstruct an object only from truncated projections, needless to say a limited angular range. Recently, interior tomography was developed to reconstruct a region-of-interest (ROI) from truncated data in a theoretically exact fashion via the total variation (TV) minimization under the condition that the ROI is piecewise constant. In this paper, we employ a TV minimization interior tomography algorithm to reconstruct interior microstructures in dentin from truncated projections over a limited angular range. Compared to the filtered backprojection (FBP) reconstruction, our reconstruction method reduces noise and suppresses artifacts. Volume rendering confirms the merits of our method in terms of preserving the interior microstructure of the dentin specimen. PMID:23509603

  10. Piecewise-constant-model-based interior tomography applied to dentin tubules.

    PubMed

    He, Peng; Wei, Biao; Wang, Steve; Stock, Stuart R; Yu, Hengyong; Wang, Ge

    2013-01-01

    Dentin is a hierarchically structured biomineralized composite material, and dentin's tubules are difficult to study in situ. Nano-CT provides the requisite resolution, but the field of view typically contains only a few tubules. Using a plate-like specimen allows reconstruction of a volume containing specific tubules from a number of truncated projections typically collected over an angular range of about 140°, which is practically accessible. Classical computed tomography (CT) theory cannot exactly reconstruct an object only from truncated projections, needless to say a limited angular range. Recently, interior tomography was developed to reconstruct a region-of-interest (ROI) from truncated data in a theoretically exact fashion via the total variation (TV) minimization under the condition that the ROI is piecewise constant. In this paper, we employ a TV minimization interior tomography algorithm to reconstruct interior microstructures in dentin from truncated projections over a limited angular range. Compared to the filtered backprojection (FBP) reconstruction, our reconstruction method reduces noise and suppresses artifacts. Volume rendering confirms the merits of our method in terms of preserving the interior microstructure of the dentin specimen. PMID:23509603

  11. The cell adhesion molecule Fasciclin2 regulates brush border length and organization in Drosophila renal tubules

    PubMed Central

    Halberg, Kenneth A.; Rainey, Stephanie M.; Veland, Iben R.; Neuert, Helen; Dornan, Anthony J.; Klämbt, Christian; Davies, Shireen-Anne; Dow, Julian A. T.

    2016-01-01

    Multicellular organisms rely on cell adhesion molecules to coordinate cell–cell interactions, and to provide navigational cues during tissue formation. In Drosophila, Fasciclin 2 (Fas2) has been intensively studied due to its role in nervous system development and maintenance; yet, Fas2 is most abundantly expressed in the adult renal (Malpighian) tubule rather than in neuronal tissues. The role Fas2 serves in this epithelium is unknown. Here we show that Fas2 is essential to brush border maintenance in renal tubules of Drosophila. Fas2 is dynamically expressed during tubule morphogenesis, localizing to the brush border whenever the tissue is transport competent. Genetic manipulations of Fas2 expression levels impact on both microvilli length and organization, which in turn dramatically affect stimulated rates of fluid secretion by the tissue. Consequently, we demonstrate a radically different role for this well-known cell adhesion molecule, and propose that Fas2-mediated intermicrovillar homophilic adhesion complexes help stabilize the brush border. PMID:27072072

  12. Effects of bioactive glass with and without mesoporous structures on desensitization in dentinal tubule occlusion

    NASA Astrophysics Data System (ADS)

    Chen, Wen-Cheng; Kung, Jung-Chang; Chen, Cheng-Hwei; Hsiao, Yu-Cheng; Shih, Chi-Jen; Chien, Chi-Sheng

    2013-10-01

    Bioactive glass (BG) is a potential material for treating dentin hypersensitivity due to its high ability of dissolution. In this study, conventional BG and BG with well-ordered mesopore structures (MBG) were applied for dentinal tubule occlusion. We used X-ray diffractometer (XRD), scanning electronic microscope (SEM), and Fourier transform infrared (FTIR) to investigate the physiochemical properties and the dentinal tubule occlusion ability of BG and MBG groups. The results showed that the major crystallite phase of MBG and BG agents was monocalcium phosphate monohydrate. MBG pastes, mixed with 30 and 40 wt% phosphoric acid hardening solutions, had the ability to create a penetration depth greater than 50 μm. These results showed that BG with mesoporous structures turned the pastes mixed with suitable phosphoric acid solution into a material with great ability for occluding dentinal tubules; it has a short reaction time and good operability, and these agents have better potential for the treatment of dentin hypersensitivity than BG without mesoporous structures.

  13. Piecewise-Constant-Model-Based Interior Tomography Applied to Dentin Tubules

    DOE PAGESBeta

    He, Peng; Wei, Biao; Wang, Steve; Stock, Stuart R.; Yu, Hengyong; Wang, Ge

    2013-01-01

    Dentin is a hierarchically structured biomineralized composite material, and dentin’s tubules are difficult to study in situ. Nano-CT provides the requisite resolution, but the field of view typically contains only a few tubules. Using a plate-like specimen allows reconstruction of a volume containing specific tubules from a number of truncated projections typically collected over an angular range of about 140°, which is practically accessible. Classical computed tomography (CT) theory cannot exactly reconstruct an object only from truncated projections, needless to say a limited angular range. Recently, interior tomography was developed to reconstruct a region-of-interest (ROI) from truncated data in amore » theoretically exact fashion via the total variation (TV) minimization under the condition that the ROI is piecewise constant. In this paper, we employ a TV minimization interior tomography algorithm to reconstruct interior microstructures in dentin from truncated projections over a limited angular range. Compared to the filtered backprojection (FBP) reconstruction, our reconstruction method reduces noise and suppresses artifacts. Volume rendering confirms the merits of our method in terms of preserving the interior microstructure of the dentin specimen.« less

  14. Regulation of seminiferous tubule-associated stem Leydig cells in adult rat testes.

    PubMed

    Li, Xiaoheng; Wang, Zhao; Jiang, Zhenming; Guo, Jingjing; Zhang, Yuxi; Li, Chenhao; Chung, Jinyong; Folmer, Janet; Liu, June; Lian, Qingquan; Ge, Renshan; Zirkin, Barry R; Chen, Haolin

    2016-03-01

    Testicular Leydig cells are the primary source of testosterone in males. Adult Leydig cells have been shown to arise from stem cells present in the neonatal testis. Once established, adult Leydig cells turn over only slowly during adult life, but when these cells are eliminated experimentally from the adult testis, new Leydig cells rapidly reappear. As in the neonatal testis, stem cells in the adult testis are presumed to be the source of the new Leydig cells. As yet, the mechanisms involved in regulating the proliferation and differentiation of these stem cells remain unknown. We developed a unique in vitro system of cultured seminiferous tubules to assess the ability of factors from the seminiferous tubules to regulate the proliferation of the tubule-associated stem cells, and their subsequent entry into the Leydig cell lineage. The proliferation of the stem Leydig cells was stimulated by paracrine factors including Desert hedgehog (DHH), basic fibroblast growth factor (FGF2), platelet-derived growth factor (PDGF), and activin. Suppression of proliferation occurred with transforming growth factor β (TGF-β). The differentiation of the stem cells was regulated positively by DHH, lithium- induced signaling, and activin, and negatively by TGF-β, PDGFBB, and FGF2. DHH functioned as a commitment factor, inducing the transition of stem cells to the progenitor stage and thus into the Leydig cell lineage. Additionally, CD90 (Thy1) was found to be a unique stem cell surface marker that was used to obtain purified stem cells by flow cytometry. PMID:26929346

  15. Experimental orchitis induced in rats by passive transfer of an antiserum to seminiferous tubule basement membrane.

    PubMed

    Lustig, L; Denduchis, B; González, N N; Puig, R P

    1978-09-01

    A multifocal damage of the testis was obtained when rats were injected intravenously or under the tunica albuginea of the testis with a rabbit antiseminiferous tubule basement membrane serum. The damage was characterized by foci of perivascular and peritubular infiltrates of mononuclear round cells, infolding, thickening, and rupture of the seminiferous tubular wall and different degrees of injury of the germinal epithelium such as, cell disorganization, cell sloughing, and atrophy. Delamination and thickening of seminiferous tubule basement membrane and vacuolization of the Sertoli cell cytoplasm was often observed by electron microscopy. A linear deposit of rabbit gamma-globulin was detected by immunohistochemical techniques along the basement membranes of the seminiferous tubules and vessels. Testicular damage was not detected in rats injected with normal rabbit serum, used as control. In the kidneys of rats injected intravenously with the immune serum, a deposit of rabbit gamma-globulin was detected along glomerular basement membrane. Focal areas of mononuclear cell infiltrates, hypercellularity of glomeruli and thickening of glomerular capillary walls and Bowman's capsule were also observed. PMID:367304

  16. Visualizing the origins of selfish de novo mutations in individual seminiferous tubules of human testes

    PubMed Central

    Maher, Geoffrey J.; McGowan, Simon J.; Giannoulatou, Eleni; Verrill, Clare; Goriely, Anne; Wilkie, Andrew O. M.

    2016-01-01

    De novo point mutations arise predominantly in the male germline and increase in frequency with age, but it has not previously been possible to locate specific, identifiable mutations directly within the seminiferous tubules of human testes. Using microdissection of tubules exhibiting altered expression of the spermatogonial markers MAGEA4, FGFR3, and phospho-AKT, whole genome amplification, and DNA sequencing, we establish an in situ strategy for discovery and analysis of pathogenic de novo mutations. In 14 testes from men aged 39–90 y, we identified 11 distinct gain-of-function mutations in five genes (fibroblast growth factor receptors FGFR2 and FGFR3, tyrosine phosphatase PTPN11, and RAS oncogene homologs HRAS and KRAS) from 16 of 22 tubules analyzed; all mutations have known associations with severe diseases, ranging from congenital or perinatal lethal disorders to somatically acquired cancers. These results support proposed selfish selection of spermatogonial mutations affecting growth factor receptor-RAS signaling, highlight its prevalence in older men, and enable direct visualization of the microscopic anatomy of elongated mutant clones. PMID:26858415

  17. Element composition of tubule cells in the inner stripe of the renal outer medulla.

    PubMed

    Beck, F X; Dörge, A; Ring, T; Sauer, M

    1989-01-01

    To obtain further insight into renal medullary function, element concentrations were determined in individual tubule cells of the outer medulla in the rat kidney using electron microprobe analysis on freeze-dried cryosections. In the cells of the thick ascending limb of Henle's loop the Na, P, Cl, and K concentrations (means +/- SEM) were: 9.5 +/- 0.6, 158.4 +/- 6.2, 25.6 +/- 1.2, and 135.3 +/- 4.8 mmol/kg wet weight, respectively. While similar Na, P, and K concentrations were observed in light and dark cells of the medullary collecting duct, Cl was markedly higher--55.0 +/- 2.8 mmol/kg wet weight--in the dark cells. The electrolyte concentrations of the thick ascending limb cells seen in the present study are in good agreement with ion activities reported for the isolated perfused thick ascending limb. The low cell Na and Cl concentrations provide a favorable driving force for passive cell entry of Na, Cl, and K across the apical membrane via the Na-2Cl-K cotransporter even at low tubule fluid NaCl concentrations. Although in hydropenic rats interstitial tonicity of the inner stripe is above isotonicity, electrolyte concentrations of inner stripe cells did not differ from those obtained in cortical tubule cells. This finding suggests that, similar to papillary cells, osmoadaptation of outer medullary cells is, at least partially, accomplished by organic osmolytes. PMID:2725433

  18. Phospholipase Cβ1 induces membrane tubulation and is involved in caveolae formation.

    PubMed

    Inaba, Takehiko; Kishimoto, Takuma; Murate, Motohide; Tajima, Takuya; Sakai, Shota; Abe, Mitsuhiro; Makino, Asami; Tomishige, Nario; Ishitsuka, Reiko; Ikeda, Yasuo; Takeoka, Shinji; Kobayashi, Toshihide

    2016-07-12

    Lipid membrane curvature plays important roles in various physiological phenomena. Curvature-regulated dynamic membrane remodeling is achieved by the interaction between lipids and proteins. So far, several membrane sensing/sculpting proteins, such as Bin/amphiphysin/Rvs (BAR) proteins, are reported, but there remains the possibility of the existence of unidentified membrane-deforming proteins that have not been uncovered by sequence homology. To identify new lipid membrane deformation proteins, we applied liposome-based microscopic screening, using unbiased-darkfield microscopy. Using this method, we identified phospholipase Cβ1 (PLCβ1) as a new candidate. PLCβ1 is well characterized as an enzyme catalyzing the hydrolysis of phosphatidylinositol-4,5-bisphosphate (PIP2). In addition to lipase activity, our results indicate that PLCβ1 possessed the ability of membrane tubulation. Lipase domains and inositol phospholipids binding the pleckstrin homology (PH) domain of PLCβ1 were not involved, but the C-terminal sequence was responsible for this tubulation activity. Computational modeling revealed that the C terminus displays the structural homology to the BAR domains, which is well known as a membrane sensing/sculpting domain. Overexpression of PLCβ1 caused plasma membrane tubulation, whereas knockdown of the protein reduced the number of caveolae and induced the evagination of caveolin-rich membrane domains. Taken together, our results suggest a new function of PLCβ1: plasma membrane remodeling, and in particular, caveolae formation. PMID:27342861

  19. Efficient algorithms for proximity problems

    SciTech Connect

    Wee, Y.C.

    1989-01-01

    Computational geometry is currently a very active area of research in computer science because of its applications to VLSI design, database retrieval, robotics, pattern recognition, etc. The author studies a number of proximity problems which are fundamental in computational geometry. Optimal or improved sequential and parallel algorithms for these problems are presented. Along the way, some relations among the proximity problems are also established. Chapter 2 presents an O(N log{sup 2} N) time divide-and-conquer algorithm for solving the all pairs geographic nearest neighbors problem (GNN) for a set of N sites in the plane under any L{sub p} metric. Chapter 3 presents an O(N log N) divide-and-conquer algorithm for computing the angle restricted Voronoi diagram for a set of N sites in the plane. Chapter 4 introduces a new data structure for the dynamic version of GNN. Chapter 5 defines a new formalism called the quasi-valid range aggregation. This formalism leads to a new and simple method for reducing non-range query-like problems to range queries and often to orthogonal range queries, with immediate applications to the attracted neighbor and the planar all-pairs nearest neighbors problem. Chapter 6 introduces a new approach for the construction of the Voronoi diagram. Using this approach, we design an O(log N) time O (N) processor algorithm for constructing the Voronoi diagram with L{sub 1} and L. metrics on a CREW PRAM machine. Even though the GNN and the Delaunay triangulation (DT) do not have an inclusion relation, we show, using some range type queries, how to efficiently construct DT from the GNN relations over a constant number of angular ranges.

  20. T-tubule disorganization and reduced synchrony of Ca2+ release in murine cardiomyocytes following myocardial infarction.

    PubMed

    Louch, William E; Mørk, Halvor K; Sexton, Joseph; Strømme, Taevje A; Laake, Petter; Sjaastad, Ivar; Sejersted, Ole M

    2006-07-15

    In cardiac myocytes, initiation of excitation-contraction coupling is highly localized near the T-tubule network. Myocytes with a dense T-tubule network exhibit rapid and homogeneous sarcoplasmic reticulum (SR) Ca(2+) release throughout the cell. We examined whether progressive changes in T-tubule organization and Ca(2+) release synchrony occur in a murine model of congestive heart failure (CHF). Myocardial infarction (MI) was induced by ligation of the left coronary artery, and CHF was diagnosed by echocardiography (left atrial diameter >2.0 mm). CHF mice were killed at 1 or 3 weeks following MI (1-week CHF, 3-week CHF) and cardiomyocytes were isolated from viable regions of the septum, excluding the MI border zone. Septal myocytes from SHAM-operated mice served as controls. T-tubules were visualized by confocal microscopy in cells stained with di-8-ANEPPS. SHAM cells exhibited a regular striated T-tubule pattern. However, 1-week CHF cells showed slightly disorganized T-tubule structure, and more profound disorganization occurred in 3-week CHF with irregular gaps between adjacent T-tubules. Line-scan images of Ca(2+) transients (fluo-4 AM, 1 Hz) showed that regions of delayed Ca(2+) release occurred at these gaps. Three-week CHF cells exhibited an increased number of delayed release regions, and increased overall dyssynchrony of Ca(2+) release. A common pattern of Ca(2+) release in 3-week CHF was maintained between consecutive transients, and was not altered by forskolin application. Thus, progressive T-tubule disorganization during CHF promotes dyssynchrony of SR Ca(2+) release which may contribute to the slowing of SR Ca(2+) release in this condition. PMID:16709642

  1. Identification of nephrotoxic compounds with embryonic stem-cell-derived human renal proximal tubular-like cells.

    PubMed

    Li, Yao; Kandasamy, Karthikeyan; Chuah, Jacqueline Kai Chin; Lam, Yue Ning; Toh, Wei Seong; Oo, Zay Yar; Zink, Daniele

    2014-07-01

    The kidney is a major target for drug-induced toxicity, and the renal proximal tubule is frequently affected. Nephrotoxicity is typically detected only late during drug development, and the nephrotoxic potential of newly approved drugs is often underestimated. A central problem is the lack of preclinical models with high predictivity. Validated in vitro models for the prediction of nephrotoxicity are not available. Major problems are related to the identification of appropriate cell models and end points. As drug-induced kidney injury is associated with inflammatory reactions, we explored the expression of inflammatory markers as end point for renal in vitro models. In parallel, we developed a new cell model. Here, we combined these approaches and developed an in vitro model with embryonic stem-cell-derived human renal proximal tubular-like cells that uses the expression of interleukin (IL)-6 and IL-8 as end points. The predictivity of the model was evaluated with 41 well-characterized compounds. The results revealed that the model predicts proximal tubular toxicity in humans with high accuracy. In contrast, the predictivity was low when well-established standard in vitro assays were used. Together, the results show that high predictivity can be obtained with in vitro models employing pluripotent stem cell-derived human renal proximal tubular-like cells. PMID:24495215

  2. Range gated strip proximity sensor

    DOEpatents

    McEwan, T.E.

    1996-12-03

    A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance. 6 figs.

  3. Range gated strip proximity sensor

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance.

  4. Optical proximity sensors for manipulators

    NASA Technical Reports Server (NTRS)

    Johnson, A. R.

    1973-01-01

    A breadboard optical proximity sensor intended for application to remotely operated manipulators has been constructed and evaluated in the laboratory. The sensing head was 20 mm x 15 mm x 10 mm in size, and could be made considerably smaller. Several such devices could be conveniently mounted on a manipulator hand, for example, to align the hand with an object. Type 1 and Type 2 optical configurations are discussed, Type 1 having a sharply defined sensitive volume, Type 2 an extended one. The sensitive volume can be placed at any distance between 1 cm and approximately 1 m by choice of a replaceable prism. The Type 1 lateral resolution was 0.5 mm on one axis and 5 mm perpendicular to it for a unit focused at 7.5 cm. The corresponding resolution in the axial direction was 2.4 cm, but improvement to 0.5 cm is possible. The effect of surface reflectivity is discussed and possible modes of application are suggested.

  5. Proximal Priority Laser Therapy: PPLT

    NASA Astrophysics Data System (ADS)

    Ohshiro, Toshio

    2004-09-01

    The author has, in the past, classified treatment methods for pain geometrically as point, line, two-dimensional, three-dimensional treatment and has used these over the years. However as a practitioner of western medicine, the author originally treated pain only directed at the painful site, and encountered cases where local treatment did not suffice. The author proved with SPECT and the Rand Phantom that treating the neck which is the midpoint of the brain, the center of the nervous system and the heart, the center of circulation, increased cerebral blood flow and also that laser emitted to neck will reach the spinal chord no matter from where on the neck the laser is emitted. From such research and 25 years of clinical experience, the author has created an anatomy based, systemic treatment method called the Proximal Priority Laser Therapy (PPLT) where not only the cerebral cortex, spinal chord and peripheral nerves are treated but also the tracts of blood vessels and lymph ducts are treated as well. Treatment method and cases are presented herein.

  6. Reticle processing induced proximity effects

    NASA Astrophysics Data System (ADS)

    Janssen, Maurice; de Kruif, Robert; Kiers, Ton

    2002-08-01

    Minimising Across Retical Line width Variation is a continuous challenge for each resolution node. Having tight critical dimension (CD) uniformity for a large variety of pitches is even more challenging. The causes of the reticle errors originate mainly from writing reticles at the edge of the write-tool's capabilities, and from manufacturing at the edge of etching and processing capabilities. These various reticle errors will subsequently lead to non-uniformity effects on wafer level. The reticle errors can be compensated for using technologies similar to those used to correct for optical proximity effects at wafer level. The errors can be small effects in the nanometer range like write noise or larger effects of 10 nm to 100 nm on reticle level from etching. Many effects that we see on reticle will be made visible on the wafer after exposure on a Step & Scan system. To visualise system performance one can use specific techniques such as selection of lines that are on target. In addition, with extensive measurement these reticle errors can be subtracted and thus removed from the final wafer result. For the investigation use is made of a reticle, which has a variation of 35 pitches for four line widths of 100 nm, 130 nm, 150 nm, and 170 nm at 1X. The reticle underwent extensive measurements, and its characteristics are described from these measurements. In addition, some wafer results are shown.

  7. Protein Kinase C-δ Mediates Shedding of Angiotensin-Converting Enzyme 2 from Proximal Tubular Cells

    PubMed Central

    Xiao, Fengxia; Zimpelmann, Joseph; Burger, Dylan; Kennedy, Christopher; Hébert, Richard L.; Burns, Kevin D.

    2016-01-01

    Angiotensin-converting enzyme 2 (ACE2) degrades angiotensin (Ang) II to Ang-(1–7), and protects against diabetic renal injury. Soluble ACE2 fragments are shed from the proximal tubule, and appear at high levels in the urine with diabetes. High glucose-induced shedding of ACE2 from proximal tubular cells is mediated by the enzyme “a disintegrin and metalloproteinase-17″ (ADAM17). Here, we investigated the mechanism for constitutive shedding of ACE2. Mouse proximal tubular cells were cultured and ACE2 shedding into the media was assessed by enzyme activity assay and immunoblot analysis. Cells were incubated with pharmacologic inhibitors, or transfected with silencing (si) RNA. Incubation of proximal tubular cells with increasing concentrations of D-glucose stimulated ACE2 shedding, which peaked at 16 mM, while L-glucose (osmotic control) had no effect on shedding. In cells maintained in 7.8 mM D-glucose, ACE2 shedding was significantly inhibited by the pan-protein kinase C (PKC) competitive inhibitor sotrastaurin, but not by an inhibitor of ADAM17. Incubation of cells with the PKC-α and -β1-specific inhibitor Go6976, the PKC β1 and β2-specific inhibitor ruboxistaurin, inhibitors of matrix metalloproteinases-2,-8, and -9, or an inhibitor of ADAM10 (GI250423X) had no effect on basal ACE2 shedding. By contrast, the PKC-δ inhibitor rottlerin significantly inhibited both constitutive and high glucose-induced ACE2 shedding. Transfection of cells with siRNA directed against PKC-δ reduced ACE2 shedding by 20%, while knockdown of PKC-ε was without effect. These results indicate that constitutive shedding of ACE2 from proximal tubular cells is mediated by PKC-δ, which is also linked to high glucose-induced shedding. Targeting PKC-δ may preserve membrane-bound ACE2 in proximal tubule in disease states and diminish Ang II-stimulated adverse signaling. PMID:27313531

  8. Proximal Participation: A Pathway into Work

    ERIC Educational Resources Information Center

    Chan, Selena

    2013-01-01

    In a longitudinal case study of apprentices, the term proximal participation was coined to describe the entry process of young people, with unclear career destinations, into the trade of baking. This article unravels the significance of proximal participation in the decision-making processes of young people who enter a trade through initial…

  9. Proximate Sources of Collective Teacher Efficacy

    ERIC Educational Resources Information Center

    Adams, Curt M.; Forsyth, Patrick B.

    2006-01-01

    Purpose: Recent scholarship has augmented Bandura's theory underlying efficacy formation by pointing to more proximate sources of efficacy information involved in forming collective teacher efficacy. These proximate sources of efficacy information theoretically shape a teacher's perception of the teaching context, operationalizing the difficulty…

  10. Rapid development of vasopressin-induced hydroosmosis in kidney collecting tubules measured by a new fluorescence technique.

    PubMed Central

    Kuwahara, M.; Berry, C. A.; Verkman, A. S.

    1988-01-01

    The pre-steady-state kinetics of the vasopressin-induced increase in collecting tubule osmotic water permeability (Pf) has been measured by a new fluorescence technique. Isolated cortical collecting tubules (CCT) from rabbit kidney were perfused with physiological buffers containing the impermeant fluorophores fluorescein sulfonate (FS) and pyrenetetrasulfonic acid (PTSA). Tubules were subject to a 120 mOsm bath-to-lumen osmotic gradient in the presence and absence of 250 microU/ml vasopressin. The magnitude of transepithelial volume flow was determined from the self-quenching of FS, or from the ratio of PTSA/FS fluorescence, measured at 380 nm excitation and 420 +/- 10 nm (PTSA) and greater than 530 nm (FS) emission wavelengths. Pf was calculated from the magnitude of transepithelial volume flow, lumen and bath osmolarities, lumen perfusion rate, and tubule geometry. The instrument response time for a change in bath osmolality was less than 3 s. At 37 degrees C, CCT Pf was (in units of cm/s x 10(4] 13 +/- 2 (mean +/- SE, 16 tubules) before, and 227 +/- 10 after addition of vasopressin to the bath. CCT Pf began to increase in 23 +/- 3 s after vasopressin addition and was half-maximal after 186 +/- 20 s. At 23 degrees C, Pf was 9 +/- 1 (seven tubules) before, and 189 +/- 12 after vasopressin addition. Pf began to increase in 40 +/- 4 s and was half-maximal after 195 +/- 35 s. After vasopressin removal from the bath, Pf decreased to its baseline value with a half-time of 14 min. These results establish a direct fluorescence method to monitor instantaneous transepithelial Pf in perfused tubules and show a very fast stimulation of CCT Pf in response to vasopressin. Images FIGURE 2 PMID:3224145

  11. SIRT1 overexpression decreases cisplatin-induced acetylation of NF-{kappa}B p65 subunit and cytotoxicity in renal proximal tubule cells

    SciTech Connect

    Jung, Yu Jin; Lee, Jung Eun; Lee, Ae Sin; Kang, Kyung Pyo; Lee, Sik; Park, Sung Kwang; Lee, Sang Yong; Han, Myung Kwan; Kim, Duk Hoon; Kim, Won

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer Cisplatin increases acetylation of NF-{kappa}B p65 subunit in HK2 cells. Black-Right-Pointing-Pointer SIRT1 overexpression decreases cisplatin-induced p65 acetylation and -cytotoxicity. Black-Right-Pointing-Pointer Resveratrol decreased cisplatin-induced cell viability through deacetylation of p65. -- Abstract: As the increased acetylation of p65 is linked to nuclear factor-{kappa}B (NF-{kappa}B) activation, the regulation of p65 acetylation can be a potential target for the treatment of inflammatory injury. Cisplatin-induced nephrotoxicity is an important issue in chemotherapy of cancer patients. SIRT1, nicotinamide adenine dinucleotide (NAD{sup +})-dependent protein deacetylase, has been implicated in a variety of cellular processes such as inflammatory injury and the control of multidrug resistance in cancer. However, there is no report on the effect of SIRT1 overexpression on cisplatin-induced acetylation of p65 subunit of NF-{kappa}B and cell injury. To investigate the effect of SIRT1 in on cisplatin-induced acetylation of p65 subunit of NF-{kappa}B and cell injury, HK2 cells were exposed with SIRT1 overexpression, LacZ adenovirus or dominant negative adenovirus after treatment with cisplatin. While protein expression of SIRT1 was decreased by cisplatin treatment compared with control buffer treatment, acetylation of NF-{kappa}B p65 subunit was significantly increased after treatment with cisplatin. Overexpression of SIRT1 ameliorated the increased acetylation of p65 of NF-{kappa}B during cisplatin treatment and cisplatin-induced cytotoxicity. Further, treatment of cisplatin-treated HK2 cells with resveratrol, a SIRT1 activator, also decreased acetylation of NF-{kappa}B p65 subunit and cisplatin-induced increase of the cell viability in HK2 cells. Our findings suggests that the regulation of acetylation of p65 of NF-{kappa}B through SIRT1 can be a possible target to attenuate cisplatin-induced renal cell damage.

  12. Proteinases inhibit H(+)-ATPase and Na+/H+ exchange but not water transport in apical and endosomal membranes from rat proximal tubule.

    PubMed

    Sabolić, I; Shi, L B; Brown, D; Ausiello, D A; Verkman, A S

    1992-01-10

    A marked increase in water permeability can be induced in Xenopus oocytes by injection of mRNA from tissues that express water channels, suggesting that the water channel is a protein. In view of this and previous reports which showed that proteinases may interfere with mercurial inhibition of water transport in red blood cells (RBC), we examined the influence of trypsin, chymotrypsin, papain, pronase, subtilisin and thermolysin on water permeability as well as on ATPase activity, H(+)-pump, passive H+ conductance, and Na+/H+ exchange in apical brush-border vesicles (BBMV) and endosomal (EV) vesicles from rat renal cortex. H+ transport was measured by Acridine orange fluorescence quenching and water transport by stopped-flow light scattering. As measured by potential-driven H+ accumulation in BBMV and EV, proteinase treatment had little effect on vesicle integrity. In BBMV, ecto-ATPase activity was inhibited by 15-30%, Na+/H+ exchange by 20-55%, and H+ conductance was unchanged. Osmotic water permeability (Pf) was 570 microns/s and was inhibited 85-90% by 0.6 mM HgCl2; proteinase treatment did not affect Pf or the HgCl2 inhibition. In EV, NEM-sensitive H+ accumulation and ATPase activity were inhibited by greater than 95%. Pf (140 microns/s) and HgCl2 inhibition (75-85%) were not influenced by proteinase treatment. SDS-PAGE showed selective digestion of multiple polypeptides by proteinases. These results confirm the presence of water channels in BBMV and EV and demonstrate selective inhibition of ATPase function and Na+/H+ exchange by proteinase digestion. The lack of effect of proteinases on water transport by mercurials. We conclude that the water channel may be a small integral membrane protein which, unlike the H(+)-ATPase and Na+/H+ exchanger, has no functionally important membrane domains that are sensitive to proteolysis. PMID:1309658

  13. α3 Integrin of Cell-Cell Contact Mediates Kidney Fibrosis by Integrin-Linked Kinase in Proximal Tubular E-Cadherin Deficient Mice.

    PubMed

    Zheng, Guoping; Zhang, Jianlin; Zhao, Hong; Wang, Hailong; Pang, Min; Qiao, Xi; Lee, So R; Hsu, Tzu-Ting; Tan, Thian K; Lyons, J Guy; Zhao, Ye; Tian, Xinrui; Loebel, David A F; Rubera, Isabella; Tauc, Michel; Wang, Ya; Wang, Yiping; Wang, Yuan M; Cao, Qi; Wang, Changqi; Lee, Vincent W S; Alexander, Stephen I; Tam, Patrick P L; Harris, David C H

    2016-07-01

    Loss of E-cadherin marks a defect in epithelial integrity and polarity during tissue injury and fibrosis. Whether loss of E-cadherin plays a causal role in fibrosis is uncertain. α3β1 Integrin has been identified to complex with E-cadherin in cell-cell adhesion, but little is known about the details of their cross talk. Herein, E-cadherin gene (Cdh1) was selectively deleted from proximal tubules of murine kidney by Sglt2Cre. Ablation of E-cadherin up-regulated α3β1 integrin at cell-cell adhesion. E-cadherin-deficient proximal tubular epithelial cell displayed enhanced transforming growth factor-β1-induced α-smooth muscle actin (α-SMA) and vimentin expression, which was suppressed by siRNA silencing of α3 integrin, but not β1 integrin. Up-regulation of transforming growth factor-β1-induced α-SMA was mediated by an α3 integrin-dependent increase in integrin-linked kinase (ILK). Src phosphorylation of β-catenin and consequent p-β-catenin-Y654/p-Smad2 transcriptional complex underlies the transcriptional up-regulation of ILK. Kidney fibrosis after unilateral ureteric obstruction or ischemia reperfusion was increased in proximal tubule E-cadherin-deficient mice in comparison to that of E-cadherin intact control mice. The exacerbation of fibrosis was explained by the α3 integrin-dependent increase of ILK, β-catenin nuclear translocation, and α-SMA/proximal tubular-specific Cre double positive staining in proximal tubular epithelial cell. These studies delineate a nonconventional integrin/ILK signaling by α3 integrin-dependent Src/p-β-catenin-Y654/p-Smad2-mediated up-regulation of ILK through which loss of E-cadherin leads to kidney fibrosis. PMID:27182643

  14. Proximal bodies in hypersonic flow

    NASA Astrophysics Data System (ADS)

    Laurence, Stuart J.

    The problem of proximal bodies in hypersonic flow is encountered in several important situations, both natural and man-made. The present work seeks to investigate one aspect of this problem by exploring the forces experienced by a secondary body when some part of it is within the shocked region created by a primary body travelling at hypersonic speeds. An analytical methodology based on the blast wave analogy is developed and used to predict the secondary force coefficients for simple geometries in both two and three dimensions. When the secondary body is entirely inside the primary shocked region, the nature of the lateral coefficient is found to depend strongly on the relative size of the two bodies. For two spheres, the methodology predicts that the secondary body will experience an exclusively attractive lateral force if the secondary diameter is larger then one-sixth the primary diameter. The analytical results are compared with numerical simulations carried out using the AMROC software and good agreement is obtained if an appropriate normalization for the lateral displacement is used. Results from a series of experiments in the T5 hypervelocity shock tunnel are also presented and compared with perfect-gas numerical simulations, again with good agreement. In order to model this situation experimentally, a new force-measurement technique for short-duration hypersonic facilities has been developed, and results from the validation experiments are included. Finally, the analytical methodology is used to model two physical situations. First, the entry of a binary asteroid system into the Earth's atmosphere is simulated. Second, a model for a fragmenting meteoroid in a planetary atmosphere is developed, and simulations are carried out to determine whether the secondary scatter patterns in the Sikhote-Alin crater field may be attributed to aerodynamic interactions between fragments rather than to secondary fragmentation. It is found that while aerodynamic

  15. Cytotoxic effects of thiamethoxam in the midgut and malpighian tubules of Africanized Apis mellifera (Hymenoptera: Apidae).

    PubMed

    Catae, Aline Fernanda; Roat, Thaisa Cristina; De Oliveira, Regiane Alves; Nocelli, Roberta Cornélio Ferreira; Malaspina, Osmar

    2014-04-01

    Due to its expansion, agriculture has become increasingly dependent on the use of pesticides. However, the indiscriminate use of insecticides has had additional effects on the environment. These products have a broad spectrum of action, and therefore the insecticide affects not only the pests but also non-target insects such as bees, which are important pollinators of agricultural crops and natural environments. Among the most used pesticides, the neonicotinoids are particularly harmful. One of the neonicotinoids of specific concern is thiamethoxam, which is used on a wide variety of crops and is toxic to bees. Thus, this study aimed to analyze the effects of this insecticide in the midgut and Malpighian tubule cells of Africanized Apis mellifera. Newly emerged workers were exposed until 8 days to a diet containing a sublethal dose of thiamethoxam equal to 1/10 of LC₅₀ (0.0428 ng a.i./l L of diet). The bees were dissected and the organs were processed for transmission electron microscopy. The results showed that thiamethoxam is cytotoxic to midgut and Malpighian tubules. In the midgut, the damage was more evident in bees exposed to the insecticide on the first day. On the eighth day, the cells were ultrastructurally intact suggesting a recovery of this organ. The Malpighian tubules showed pronounced alterations on the eighth day of exposure of bees to the insecticide. This study demonstrates that the continuous exposure to a sublethal dose of thiamethoxam can impair organs that are used during the metabolism of the insecticide. PMID:24470251

  16. Correlated behavior implicates stromules in increasing the interactive surface between plastids and ER tubules

    PubMed Central

    Schattat, Martin; Barton, Kiah

    2011-01-01

    Stromules are extended by plastids but the underlying basis for their extension and retraction had not been understood until recently. Our live-imaging aided observations on coincident plastid stromule branching and ER tubule dynamics open out new areas of investigation relating to these rapid subcellular interactions. This addendum provides a testable hypothesis on the formation of stromules, which argues against the need for new membrane incorporation and suggests that stromal extensions might result from a remodeling of the plastid envelope membrane in an ER aided manner. PMID:21448009

  17. Design and ground verification of proximity operations

    NASA Astrophysics Data System (ADS)

    Tobias, A.; Ankersen, F.; Fehse, W.; Pauvert, C.; Pairot, J.

    This paper describes the approach to guidance, navigation, and control (GNC) design and verification for proximity operations. The most critical part of the rendezvous mission is the proximity operations phase when the distance between chaser and target is below approximately 20 m. Safety is the overriding consideration in the design of the GNC system. Requirements on the GNC system also stem from the allocation of performance between proximity operations and the mating process, docking, or capture for berthing. Whereas the design process follows a top down approach, the verification process goes bottom up in a stepwise way according to the development stage.

  18. A dynamic paracellular pathway serves diuresis in mosquito Malpighian (renal) tubules

    PubMed Central

    Beyenbach, Klaus W.

    2012-01-01

    Female mosquitoes gorge on vertebrate blood, a rich nutrient source for developing eggs. But gorging meals increase the risk of predation. Mosquitoes are quick to reduce the flight payload with a potent diuresis. Diuretic peptides of the insect kinin family induce a tenfold-reduction in the paracellular resistance of Malpighian tubules and increase the paracellular permeation of Cl−, the counterion of the transepithelial secretion of Na+ and K+. As a result, the transepithelial secretion of NaCl and KCl and water increases. Insect kinins signal to the opening of the paracellular pathway via G protein-coupled receptors and the elevation of intracellular [Ca2+], which leads to the reorganization of the cytoskeleton associated with the septate junction. The reorganization may affect the septate junctional proteins that control the barrier and permselectivity properties of the paracellular pathway. The proteins involved in the embryonic formation of the septate junction and in epithelial polarization are largely known for ectodermal epithelia, but the proteins that form and mediate the dynamic functions of the septate junction in Malpighian tubules remain to be determined. PMID:22731730

  19. Ability of three desensitizing agents in dentinal tubule obliteration and durability: An in vitro study

    PubMed Central

    Pathan, Azher Banu; Bolla, Nagesh; Kavuri, Sarath Raj; Sunil, Chukka Ram; Damaraju, Bhargavi; Pattan, Sadhiq Khan

    2016-01-01

    Aim: The purpose of this study was to evaluate the effectiveness of three desensitizing agents on dentinal tubule obliteration and their durability in use on the dentinal tubules. Materials and Methods: Sixty specimens were obtained from 30 extracted sound human maxillary first premolars. Each tooth was mesiodistally sectioned to obtain 30 buccal and 30 lingual surfaces, and enamel was removed in order to simulate hypersensitive dentin. Specimens were divided into four groups with 15 specimens each. Group 1 samples were immersed in artificial saliva, Group 2 samples were coated with Vivasens, Group 3 samples were coated with VOCO Admira Protect, and Group 4 samples were coated with Neo Active Apatite suspension. These specimens were examined under scanning electron microscope (SEM) to find out the occluding ability of the respective products. The specimens were brushed to find out their durability for 1 week and 1 month and were examined under SEM. Statistical Analysis: The results were statistically analyzed by analysis of variance (ANOVA) and Tukey's test. Results: Group 1 differed significantly from the Vivasens, Admira, and Neo Active Apatite groups at 5% level of significance (P < 0.05). The Vivasens group differed significantly from the Admira and Neo Active Apatite groups at 5% level of significance (P < 0.05). Conclusion: The Ormocer-based Admira Protect showed the best results. PMID:26957790

  20. Chloride secretagogues stimulate inositol phosphate formation in shark rectal gland tubules cultured in suspension

    SciTech Connect

    Ecay, T.W.; Valentich, J.D. )

    1991-03-01

    Neuroendocrine activation of transepithelial chloride secretion by shark rectal gland cells is associated with increases in cellular cAMP, cGMP, and free calcium concentrations. We report here on the effects of several chloride secretagogues on inositol phosphate formation in cultured rectal gland tubules. Vasoactive intestinal peptide (VIP), atriopeptin (AP), and ionomycin increase the total inositol phosphate levels of cultured tubules, as measured by ion exchange chromatography. Forskolin, a potent chloride secretagogue, has no effect on inositol phosphate formation. The uptake of {sup 3}H-myo-inositol into phospholipids is very slow, preventing the detection of increased levels of inositol trisphosphate. However, significant increases in inositol monophosphate (IP1) and inositol biphosphate (IP2) were measured. The time course of VIP- and AP-stimulated IP1 and IP2 formation is similar to the effects of these agents on the short-circuit current responses of rectal gland monolayer cultures. In addition, aluminum fluoride, an artificial activator of guanine nucleotide-binding proteins, stimulates IP1 and IP2 formation. We conclude that rectal gland cells contain VIP and AP receptors coupled to the activation of phospholipase C. Coupling may be mediated by G-proteins. Receptor-stimulated increases in inositol phospholipid metabolism is one mechanism leading to increased intracellular free calcium concentrations, an important regulatory event in the activation of transepithelial chloride secretion by shark rectal gland epithelial cells.

  1. Calcium-activated chloride currents in primary cultures of rabbit distal convoluted tubule.

    PubMed

    Bidet, M; Tauc, M; Rubera, I; de Renzis, G; Poujeol, C; Bohn, M T; Poujeol, P

    1996-10-01

    Chloride (Cl-) conductances were studied in primary cultures of rabbit distal convoluted tubule (very early distal "bright" convoluted tubule, DCTb) by the whole cell patch-clamp technique. We identified a Cl- current activated by 2 microM extracellular ionomycin. The kinetics of the macroscopic current were time dependent for depolarizing potentials with a slow developing component. The steady state current presented outward rectification, and the ion selectivity sequence was I- > Br- > > Cl > glutamate. The current was inhibited by 0.1 mM 5-nitro-2-(3-phenylpropyl-amino)benzoic acid, 1 mM 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid, and 1 mM diphenylamine-2-carboxylate. To identify the location of the Cl- conductance, 6-methoxy-N-(3-sulfopropyl)quinolinium fluorescence experiments were carried out in confluent cultures developed on collagen-coated permeable filters. Cl- removal from the apical solution induced a Cl- efflux that was stimulated by 10 microM forskolin. Forskolin had no effect on the basolateral Cl- permeability Cl- substitution in the basolateral solution induced an efflux stimulated by 2 microM ionomycin or 50 microM extracellular ATP Ionomycin had no effect on the apical Cl- fluxes. Thus cultured DCTb cells exhibit Ca(2+)-activated Cl- channels located in the basolateral membrane. This Cl- permeability was active at a resting membrane potential and could participate in the Cl- reabsorption across the DCTb in control conditions. PMID:8898026

  2. Potential role of cytoplasmic calcium ions in the regulation of sodium transport in renal tubules.

    PubMed

    Frindt, G; Lee, C O; Yang, J M; Windhager, E E

    1988-01-01

    Experimental maneuvers that increase intracellular calcium ion levels inhibit sodium transport by renal tubules. In the isolated perfused renal tubule, intracellular calcium ion activity (aiCa) changes in response to alterations in the magnitude of the electrochemical potential gradient for sodium ions across the basolateral cell membrane. However, a potassium-induced depolarization of this cell boundary does not cause a rise but rather a fall in intracellular calcium ion levels. Ionomycin raises aiCa without causing intracellular acidification. This observation does not support the view that high cytosolic calcium produces intracellular acidification. At least in the case of ionomycin, the inhibition of sodium transport appears to be due to ionophore-induced increases in aiCa. The changes in intracellular calcium ion concentration found in the different experimental conditions studied were consistent with the notion that cytosolic calcium ions may mediate a feedback mechanism that links the luminal entry to the peritubular extrusion of sodium ions. The mechanisms by which cytosolic calcium alters entry is not yet clear but recent experiments suggest an indirect effect on sodium channel activity. PMID:3279295

  3. A molecular mechanism to regulate lysosome motility for lysosome positioning and tubulation.

    PubMed

    Li, Xinran; Rydzewski, Nicholas; Hider, Ahmad; Zhang, Xiaoli; Yang, Junsheng; Wang, Wuyang; Gao, Qiong; Cheng, Xiping; Xu, Haoxing

    2016-04-01

    To mediate the degradation of biomacromolecules, lysosomes must traffic towards cargo-carrying vesicles for subsequent membrane fusion or fission. Mutations of the lysosomal Ca(2+) channel TRPML1 cause lysosomal storage disease (LSD) characterized by disordered lysosomal membrane trafficking in cells. Here we show that TRPML1 activity is required to promote Ca(2+)-dependent centripetal movement of lysosomes towards the perinuclear region (where autophagosomes accumulate) following autophagy induction. ALG-2, an EF-hand-containing protein, serves as a lysosomal Ca(2+) sensor that associates physically with the minus-end-directed dynactin-dynein motor, while PtdIns(3,5)P(2), a lysosome-localized phosphoinositide, acts upstream of TRPML1. Furthermore, the PtdIns(3,5)P(2)-TRPML1-ALG-2-dynein signalling is necessary for lysosome tubulation and reformation. In contrast, the TRPML1 pathway is not required for the perinuclear accumulation of lysosomes observed in many LSDs, which is instead likely to be caused by secondary cholesterol accumulation that constitutively activates Rab7-RILP-dependent retrograde transport. Ca(2+) release from lysosomes thus provides an on-demand mechanism regulating lysosome motility, positioning and tubulation. PMID:26950892

  4. Flagellar cells and ciliary cells in the renal tubule of elasmobranchs.

    PubMed

    Lacy, E R; Luciano, L; Reale, E

    1989-01-01

    Flagella or cilia are present on most epithelial cells in the renal tubule of elasmobranch fishes (little skate, spiny dogfish, smooth dogfish, Atlantic sharpnose, scalloped hammerhead, cow-nosed ray). Flagellar cells, those with numerous flagella ordered in one, two, or more rows on the luminal surface, are shown here for the first time in a vertebrate. The flagellar cells are intercalated among other epithelial cells, each bearing a single cilium, from Bowman's capsule to the third subdivision of the intermediate segment of the nephron. The flagella form undulated ribbons up to 55 microns long. In every ribbon the axis of the central pair of microtubules in the axoneme is oriented parallel to the long axis of the flagellar row. This suggests a beat perpendicular to these two axes. The arrangement of the flagella in ribbons most likely promotes movement of glomerular filtrate down the renal tubule. Cells bearing numerous cilia occur in the large collecting ducts of spiny dogfish but without apparent preferential orientation of the cilia. PMID:2575649

  5. In Vitro Ability of a Novel Nanohydroxyapatite Oral Rinse to Occlude Dentine Tubules

    PubMed Central

    Hill, Robert G.; Chen, Xiaohui; Gillam, David G.

    2015-01-01

    Objectives. The aim of the study was to investigate the ability of a novel nanohydroxyapatite (nHA) desensitizing oral rinse to occlude dentine tubules compared to selected commercially available desensitizing oral rinses. Methods. 25 caries-free extracted molars were sectioned into 1 mm thick dentine discs. The dentine discs (n = 25) were etched with 6% citric acid for 2 minutes and rinsed with distilled water, prior to a 30-second application of test and control oral rinses. Evaluation was by (1) Scanning Electron Microscopy (SEM) of the dentine surface and (2) fluid flow measurements through a dentine disc. Results. Most of the oral rinses failed to adequately cover the dentine surface apart from the nHa oral rinse. However the hydroxyapatite, 1.4% potassium oxalate, and arginine/PVM/MA copolymer oral rinses, appeared to be relatively more effective than the nHA test and negative control rinses (potassium nitrate) in relation to a reduction in fluid flow measurements. Conclusions. Although the novel nHA oral rinse demonstrated the ability to occlude the dentine tubules and reduce the fluid flow measurements, some of the other oral rinses appeared to demonstrate a statistically significant reduction in fluid flow through the dentine disc, in particular the arginine/PVM/MA copolymer oral rinse. PMID:26161093

  6. BLOC-2 targets recycling endosomal tubules to melanosomes for cargo delivery

    PubMed Central

    Dennis, Megan K.; Mantegazza, Adriana R.; Snir, Olivia L.; Tenza, Danièle; Acosta-Ruiz, Amanda; Delevoye, Cédric; Zorger, Richard; Sitaram, Anand; de Jesus-Rojas, Wilfredo; Ravichandran, Keerthana; Rux, John; Sviderskaya, Elena V.; Bennett, Dorothy C.; Raposo, Graça; Setty, Subba Rao Gangi

    2015-01-01

    Hermansky–Pudlak syndrome (HPS) is a group of disorders characterized by the malformation of lysosome-related organelles, such as pigment cell melanosomes. Three of nine characterized HPS subtypes result from mutations in subunits of BLOC-2, a protein complex with no known molecular function. In this paper, we exploit melanocytes from mouse HPS models to place BLOC-2 within a cargo transport pathway from recycling endosomal domains to maturing melanosomes. In BLOC-2–deficient melanocytes, the melanosomal protein TYRP1 was largely depleted from pigment granules and underwent accelerated recycling from endosomes to the plasma membrane and to the Golgi. By live-cell imaging, recycling endosomal tubules of wild-type melanocytes made frequent and prolonged contacts with maturing melanosomes; in contrast, tubules from BLOC-2–deficient cells were shorter in length and made fewer, more transient contacts with melanosomes. These results support a model in which BLOC-2 functions to direct recycling endosomal tubular transport intermediates to maturing melanosomes and thereby promote cargo delivery and optimal pigmentation. PMID:26008744

  7. A conserved amphipathic helix is required for membrane tubule formation by Yop1p

    PubMed Central

    Brady, Jacob P.; Claridge, Jolyon K.; Smith, Peter G.; Schnell, Jason R.

    2015-01-01

    The integral membrane proteins of the DP1 (deleted in polyposis) and reticulon families are responsible for maintaining the high membrane curvature required for both smooth endoplasmic reticulum (ER) tubules and the edges of ER sheets, and mutations in these proteins lead to motor neuron diseases, such as hereditary spastic paraplegia. Reticulon/DP1 proteins contain reticulon homology domains (RHDs) that have unusually long hydrophobic segments and are proposed to adopt intramembrane helical hairpins that stabilize membrane curvature. We have characterized the secondary structure and dynamics of the DP1 family protein produced from the YOP1 gene (Yop1p) and identified a C-terminal conserved amphipathic helix (APH) that, on its own, interacts strongly with negatively charged membranes and is necessary for membrane tubule formation. Analyses of DP1 and reticulon family members indicate that most, if not all, contain C-terminal sequences capable of forming APHs. Together, these results indicate that APHs play a previously unrecognized role in RHD membrane curvature stabilization. PMID:25646439

  8. Transport of Streptococcus pneumoniae Capsular Polysaccharide in MHC Class II Tubules

    PubMed Central

    Stephen, Tom Li; Fabri, Mario; Groneck, Laura; Röhn, Till A; Hafke, Helena; Robinson, Nirmal; Rietdorf, Jens; Schrama, David; Becker, Jürgen C; Plum, Georg; Krönke, Martin; Kropshofer, Harald; Kalka-Moll, Wiltrud M

    2007-01-01

    Bacterial capsular polysaccharides are virulence factors and are considered T cell–independent antigens. However, the capsular polysaccharide Sp1 from Streptococcus pneumoniae serotype 1 has been shown to activate CD4+ T cells in a major histocompatibility complex (MHC) class II–dependent manner. The mechanism of carbohydrate presentation to CD4+ T cells is unknown. We show in live murine dendritic cells (DCs) that Sp1 translocates from lysosomal compartments to the plasma membrane in MHCII-positive tubules. Sp1 cell surface presentation results in reduction of self-peptide presentation without alteration of the MHCII self peptide repertoire. In DM-deficient mice, retrograde transport of Sp1/MHCII complexes resulting in T cell–dependent immune responses to the polysaccharide in vitro and in vivo is significantly reduced. The results demonstrate the capacity of a bacterial capsular polysaccharide antigen to use DC tubules as a vehicle for its transport as an MHCII/saccharide complex to the cell surface for the induction of T cell activation. Furthermore, retrograde transport requires the functional role of DM in self peptide–carbohydrate exchange. These observations open new opportunities for the design of vaccines against microbial encapsulated pathogens. PMID:17367207

  9. Regulatory Forum Opinion Piece*: Dispelling Confusing Pathology Terminology: Recognition and Interpretation of Selected Rodent Renal Tubule Lesions.

    PubMed

    Seely, John Curtis; Frazier, Kendall S

    2015-06-01

    Renal tubule lesions often prove troublesome for toxicologic pathologists because of the diverse nature and interrelated cell types within the kidney and the presence of spontaneous lesions with overlapping morphologies similar to those induced by renal toxicants. Although there are a number of guidance documents available citing straightforward diagnostic criteria of tubule lesions for the pathologist to refer to, most are presented without further advice on the when to or to the why and the why not of diagnosing one lesion over another. Documents presenting diagnostic perspectives and recommendations derived from an author's experience are limited since guidance documents are generally based on descriptive observations. In this Regulatory Forum opinion piece, the authors attempt to dispel confusing renal tubule lesion terminology in laboratory animal species by suggesting histological advice on the recognition and interpretation of these complex entities. PMID:25869578

  10. Binding and degradation of /sup 125/I-insulin by renal glomeruli and tubules isolated from rats

    SciTech Connect

    Meezan, E.; Freychet, P.

    1982-04-01

    Isolated rat renal glomeruli and tubules were shown to exhibit specific binding of /sup 125/I-insulin and enzymatic degradation of the hormone. Binding to both renal fractions reached a plateau by 1 h at 22/sup 0/C and increased linearly with increasing protein concentrations. Binding was inhibited in both preparations by insulin and its analogues in the order of relative potency: insulin > despentapeptide insulin > proinsulin, but insulin was ten times more potent in inhibiting /sup 125/I-insulin binding to glomeruli than that to tubules, indicating a different affinity of receptors for the hormone in the two renal fractions (about 17 versus 210 ..mu..g unlabelled insulin/1 inhibiting 50% of the /sup 125/I-insulin binding to glomeruli and tubules, respectively). Bound /sup 125/I-insulin dissociated at a faster rate from tubules than from glomeruli; this release was accelerated by unlabelled insulin in both renal fractions, but to a greater extent in glomeruli than in tubules. Two-thirds of the total bound material released from glomeruli was found to be intact insulin as measured by trichloroacetic acid precipitation, whereas only one-third of the material released from tubules was intact. No direct relationship between binding and degradation of /sup 125/I-insulin in these renal fractions could be demonstrated, however, because of the release of proteolytic enzymes into the incubation medium resulting in almost all degradation being extracellular. Although differing in their affinity for /sup 125/I-insulin the high affinity glomerular insulin receptor and the lower affinity tubular insulin receptor have characteristics similar to those of insulin receptors in insulin responsive tissues.

  11. The PI 3-kinase and mTOR signaling pathways are important modulators of epithelial tubule formation.

    PubMed

    Walid, Shereaf; Eisen, Randi; Ratcliffe, Don R; Dai, Kezhi; Hussain, M Mahmood; Ojakian, George K

    2008-08-01

    Using MDCK cells as a model system, evidence is presented demonstrating that the signaling pathways mammalian target of rapamycin (mTOR) and phosphoinositide 3-kinase (PI 3-kinase) play important roles in the regulation of epithelial tubule formation. Incubation of cells with collagen gel overlays induced early (4-8 h) reorganization of cells (epithelial remodeling) into three-dimensional multicellular tubular structures over 24 h. An MDCK cell line stably expressing the PH domain of Akt, a PI 3-kinase downstream effector, coupled to green fluorescent protein (GFP-Akt-PH) was used to determine the distribution of phosphatidyl inositol-3,4,5-P(3) (PIP(3)), a product of PI 3-kinase. GFP-Akt-PH was associated with lateral membranes in control cells. After incubation with collagen gel overlays, GFP-Akt-PH redistributed into the lamellipodia of migrating cells suggesting that PIP(3) plays a role in epithelial remodeling. Using the small molecule inhibitor LY-294002 that inhibits both mTOR and PI 3-kinase, we demonstrated that kinase activity was required for epithelial remodeling, disruption of cell junctions and subsequent modulation of tubule formation. Since the mTOR signaling pathway is downstream of PI 3-kinase, the effects of rapamycin, a specific mTOR inhibitor, on tubule formation were assessed. Rapamycin did not affect epithelial remodeling or GFP-Akt-PH redistribution but inhibited elongated tubule formation that occurred later (24 h) in morphogenesis. These results were further supported by using RNA interference to down-regulate mTOR and inhibit tubule formation. Our studies demonstrate that PI 3-kinase regulates early epithelial remodeling stages while mTOR modulates latter stages of tubule development. PMID:18366086

  12. Deep-apical tubules: dynamic lipid-raft microdomains in the brush-border region of enterocytes.

    PubMed

    Hansen, Gert H; Pedersen, Jens; Niels-Christiansen, Lise-Lotte; Immerdal, Lissi; Danielsen, E Michael

    2003-07-01

    The brush border of small intestinal enterocytes is highly enriched in cholesterol- and glycosphingolipid-containing membrane microdomains, commonly termed as lipid 'rafts'. Functionally, transcytosis of IgA and exocytosis of newly made brush-border proteins in enterocytes occur through apical lipid raft-containing compartments, but little is otherwise known about these raft microdomains. We therefore studied in closer detail apical lipid-raft compartments in enterocytes by immunogold electron microscopy and biochemical analyses. Novel membrane structures, deep-apical tubules, were visualized by the non-permeable surface marker Ruthenium Red in the brush-border region of the cells. The surface-connected tubules were labelled by antibodies to caveolin-1 and the glycolipid asialo G(M1), and they were sensitive to cholesterol depletion by methyl-beta-cyclodextrin, indicating the presence of raft microdomains. Deep-apical tubules were positioned close to the actin rootlets of adjacent microvilli in the terminal web region, which had a diameter of 50-100 nm, and penetrated up to 1 microm into the cytoplasm. Markers for transcytosis, IgA and the polymeric immunoglobulin receptor, as well as the resident brush-border enzyme aminopeptidase N, were present in these deep-apical tubules. We propose that deep-apical tubules are a specialized lipid-raft microdomain in the brush-border region functioning as a hub in membrane trafficking at the brush border. In addition, the sensitivity to cholesterol depletion suggests that deep-apical tubules function as a cell-surface membrane reservoir for cholesterol and for rapid adaptive changes in the size of microvilli at the brush border. PMID:12689332

  13. Promoting proximal formative assessment with relational discourse

    NASA Astrophysics Data System (ADS)

    Scherr, Rachel E.; Close, Hunter G.; McKagan, Sarah B.

    2012-02-01

    The practice of proximal formative assessment - the continual, responsive attention to students' developing understanding as it is expressed in real time - depends on students' sharing their ideas with instructors and on teachers' attending to them. Rogerian psychology presents an account of the conditions under which proximal formative assessment may be promoted or inhibited: (1) Normal classroom conditions, characterized by evaluation and attention to learning targets, may present threats to students' sense of their own competence and value, causing them to conceal their ideas and reducing the potential for proximal formative assessment. (2) In contrast, discourse patterns characterized by positive anticipation and attention to learner ideas increase the potential for proximal formative assessment and promote self-directed learning. We present an analysis methodology based on these principles and demonstrate its utility for understanding episodes of university physics instruction.

  14. Microtubules Contribute to Tubule Elongation and Anchoring of Endoplasmic Reticulum, Resulting in High Network Complexity in Arabidopsis1[W][OPEN

    PubMed Central

    Hamada, Takahiro; Ueda, Haruko; Kawase, Takashi; Hara-Nishimura, Ikuko

    2014-01-01

    The endoplasmic reticulum (ER) is a network of tubules and sheet-like structures in eukaryotic cells. Some ER tubules dynamically change their morphology, and others form stable structures. In plants, it has been thought that the ER tubule extension is driven by the actin-myosin machinery. Here, we show that microtubules also contribute to the ER tubule extension with an almost 20-fold slower rate than the actin filament-based ER extension. Treatment with the actin-depolymerizing drug Latrunculin B made it possible to visualize the slow extension of the ER tubules in transgenic Arabidopsis (Arabidopsis thaliana) plants expressing ER-targeted green fluorescent protein. The ER tubules elongated along microtubules in both directions of microtubules, which have a distinct polarity. This feature is similar to the kinesin- or dynein-driven ER tubule extension in animal cells. In contrast to the animal case, ER tubules elongating with the growing microtubule ends were not observed in Arabidopsis. We also found the spots where microtubules are stably colocalized with the ER subdomains during long observations of 1,040 s, suggesting that cortical microtubules contribute to provide ER anchoring points. The anchoring points acted as the branching points of the ER tubules, resulting in the formation of multiway junctions. The density of the ER tubule junction positively correlated with the microtubule density in both elongating cells and mature cells of leaf epidermis, showing the requirement of microtubules for formation of the complex ER network. Taken together, our findings show that plants use microtubules for ER anchoring and ER tubule extension, which establish fine network structures of the ER within the cell. PMID:25367857

  15. The swan-neck lesion: proximal tubular adaptation to oxidative stress in nephropathic cystinosis.

    PubMed

    Galarreta, Carolina I; Forbes, Michael S; Thornhill, Barbara A; Antignac, Corinne; Gubler, Marie-Claire; Nevo, Nathalie; Murphy, Michael P; Chevalier, Robert L

    2015-05-15

    Cystinosis is an inherited disorder resulting from a mutation in the CTNS gene, causing progressive proximal tubular cell flattening, the so-called swan-neck lesion (SNL), and eventual renal failure. To determine the role of oxidative stress in cystinosis, histologic sections of kidneys from C57BL/6 Ctns(-/-) and wild-type mice were examined by immunohistochemistry and morphometry from 1 wk to 20 mo of age. Additional mice were treated from 1 to 6 mo with vehicle or mitoquinone (MitoQ), an antioxidant targeted to mitochondria. The leading edge of the SNL lost mitochondria and superoxide production, and became surrounded by a thickened tubular basement membrane. Progression of the SNL as determined by staining with lectin from Lotus tetragonolobus accelerated after 3 mo, but was delayed by treatment with MitoQ (38 ± 4% vs. 28 ± 1%, P < 0.01). Through 9 mo, glomeruli had retained renin staining and intact macula densa, whereas SNL expressed transgelin, an actin-binding protein, but neither kidney injury molecule-1 (KIM-1) nor cell death was observed. After 9 mo, clusters of proximal tubules exhibited localized oxidative stress (4-hydroxynonenal binding), expressed KIM-1, and underwent apoptosis, leading to the formation of atubular glomeruli and accumulation of interstitial collagen. We conclude that nephron integrity is initially maintained in the Ctns(-/-) mouse by adaptive flattening of cells of the SNL through loss of mitochondria, upregulation of transgelin, and thickened basement membrane. This adaptation ultimately fails in adulthood, with proximal tubular disruption, formation of atubular glomeruli, and renal failure. Antioxidant treatment targeted to mitochondria delays initiation of the SNL, and may provide therapeutic benefit in children with cystinosis. PMID:25694483

  16. [Proximity, intimacy and promiscuity in care].

    PubMed

    Flicourt, Nadia

    2015-04-01

    Lying at the heart of the intimacy of the other person, the nature of care supposes that the caregiver identifies the components resulting from the proximity and the invasion of the patient's personal space, where perceptions and representations give rise to reactive emotions and behaviour. Between modesty and nudity, proximity and promiscuity, caregivers have to adjust their approach of proper care, limiting the risks of intrusion. PMID:26043630

  17. An evaluation of proximal surface cleansing agents.

    PubMed

    Wolffe, G N

    1976-08-01

    The effectiveness of the Interspace brush, Inter-Dens, and waxed dental floss as proximal surface cleansing agents was compared in 35 subjects. Each subject used all three methods of cleansing in random order of selection. Statistical analysis of the results showed that there was no difference in the effectiveness of any one of these three agents. However, proximal surfaces of anterior teeth where cleaned more effectively than posterior teeth. The coronal half of the proximal surfaces was cleaned more effectively than the apical half and the facial half more effectively than the lingual half when Inter-Dens was used. Comparison of cleansing effectiveness between facial and lingual halves of proximal surfaces for the Interspace brush and waxed dental floss showed no significant difference. Mesial and distal proximal surfaces were cleaned with similar effectiveness. Plaque control was only satisfactory on approximately half of the proximal surfaces, though a wide variation occurred. Significantly lower plaque scores were found 1 week after the initial instruction session, irrespective of the agent used. The majority of subjects preferred Inter-Dens whilst waxed dental floss was the least-liked method of cleansing. PMID:1067276

  18. Proximity sensor system development. CRADA final report

    SciTech Connect

    Haley, D.C.; Pigoski, T.M.

    1998-01-01

    Lockheed Martin Energy Research Corporation (LMERC) and Merritt Systems, Inc. (MSI) entered into a Cooperative Research and Development Agreement (CRADA) for the development and demonstration of a compact, modular proximity sensing system suitable for application to a wide class of manipulator systems operated in support of environmental restoration and waste management activities. In teleoperated modes, proximity sensing provides the manipulator operator continuous information regarding the proximity of the manipulator to objects in the workspace. In teleoperated and robotic modes, proximity sensing provides added safety through the implementation of active whole arm collision avoidance capabilities. Oak Ridge National Laboratory (ORNL), managed by LMERC for the United States Department of Energy (DOE), has developed an application specific integrated circuit (ASIC) design for the electronics required to support a modular whole arm proximity sensing system based on the use of capacitive sensors developed at Sandia National Laboratories. The use of ASIC technology greatly reduces the size of the electronics required to support the selected sensor types allowing deployment of many small sensor nodes over a large area of the manipulator surface to provide maximum sensor coverage. The ASIC design also provides a communication interface to support sensor commands from and sensor data transmission to a distributed processing system which allows modular implementation and operation of the sensor system. MSI is a commercial small business specializing in proximity sensing systems based upon infrared and acoustic sensors.

  19. Functional dissection of the lck proximal promoter.

    PubMed Central

    Allen, J M; Forbush, K A; Perlmutter, R M

    1992-01-01

    The lck gene encodes a protein tyrosine kinase that participates in lymphocyte-specific signal transduction pathways. Previous studies have established that lck transcription is regulated by two distinct promoter elements termed proximal (or 3') and distal (or 5'). The proximal promoter is active almost exclusively in thymocytes and becomes inactive later during T-cell maturation. To dissect the mechanisms responsible for lck gene regulation, we generated transgenic animals bearing 5' truncations in the proximal promoter element. Sequences between -584 and +37 with respect to the proximal promoter transcription start site act to direct tissue-specific and temporally correct transcription of either a tagged version of the lck gene itself or a heterologous reporter sequence (lacZ). This region contains binding sites for at least five distinct nuclear proteins, of which one is found only in cells that support proximal lck promoter activity and a second appears only in nonexpressing cells. Interestingly, the transcribed region of the lck gene contains positive control elements that can substantially boost expression from minimal (-130 bp) proximal promoter constructs. These results provide a basis for the biochemical dissection of transcriptional regulators that act at defined points during T-cell development. Images PMID:1588967

  20. Reactive Oxygen Species Modulation of Na/K-ATPase Regulates Fibrosis and Renal Proximal Tubular Sodium Handling

    PubMed Central

    Liu, Jiang; Kennedy, David J.; Yan, Yanling; Shapiro, Joseph I.

    2012-01-01

    The Na/K-ATPase is the primary force regulating renal sodium handling and plays a key role in both ion homeostasis and blood pressure regulation. Recently, cardiotonic steroids (CTS)-mediated Na/K-ATPase signaling has been shown to regulate fibrosis, renal proximal tubule (RPT) sodium reabsorption, and experimental Dahl salt-sensitive hypertension in response to a high-salt diet. Reactive oxygen species (ROS) are an important modulator of nephron ion transport. As there is limited knowledge regarding the role of ROS-mediated fibrosis and RPT sodium reabsorption through the Na/K-ATPase, the focus of this review is to examine the possible role of ROS in the regulation of Na/K-ATPase activity, its signaling, fibrosis, and RPT sodium reabsorption. PMID:22518311

  1. Regulation of K transport in a mathematical model of the cortical collecting tubule.

    PubMed

    Strieter, J; Weinstein, A M; Giebisch, G; Stephenson, J L

    1992-12-01

    The effect of luminal flow rate and peritubular pH on Na and K transport is investigated in a mathematical model of the rabbit cortical collecting tubule. The model is used to simulate a 0.4-cm segment of tubule comprised of principal cell, alpha- and beta-intercalated cells, and lateral interspace. Calculations produce luminal profiles of Na, K, Cl, HCO3, and phosphate, as well as of electrical potential and pH. Parameter sets are developed that permit representation of both unstimulated and deoxycorticosterone acetate-stimulated tubules. A series of simulations is performed in which initial luminal flow rate is varied over the range of values between 0.1 and 30 nl/min. A marked flow-dependent enhancement of Na reabsorption and K secretion is seen, especially at lower flows, while Cl and HCO3 transport remain relatively constant. In experimental studies, it has been observed that metabolic alkalosis stimulates and metabolic acidosis inhibits K secretion, while leaving Na transport relatively unaffected [B. A. Stanton and G. Giebisch. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F544-F551, 1982; K. Tabei, S. Muto, Y. Ando, Y. Sakairi, and Y. Asano. J. Am. Soc. Nephrol. 1: 693, 1990; and K. Tabei, S. Muto, H. Furuya, and Y. Asano. J. Am. Soc. Nephrol. 2: 752, 1991]. Model calculations indicate that, when ion permeabilities are fixed and not dependent on pH, the impact of peritubular HCO3 on K secretion cannot be simulated. When junctional Cl permeability decreases with increasing interspace pH (E. M. Wright and J. M. Diamond. Biochim. Biophys. Acta 163: 57-74, 1968) in the model, there is a marked stimulation of K secretion with alkalosis and inhibition with acidosis. Furthermore, inclusion of a pH-dependent apical Na permeability [L. G. Palmer and G. Frindt. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F333-F339, 1987] that increases with increasing principal cell pH significantly reduces the change in Na+ reabsorption seen with the p

  2. The effect of dentine location and tubule orientation on the bond strengths between resin and dentine.

    PubMed

    Phrukkanon, S; Burrow, M F; Tyas, M J

    1999-05-01

    This study determined the influence of dentine structure on the micro-tensile bond strengths between resin and dentine of two different dentine adhesive systems (Single Bond, 3M Dental Products, St Paul, MN; MF-102 (experimental self-etching primer), GC Corporation, Tokyo, Japan). The study was separated into two main parts: bond strength measurement and investigation of the bonding interface. Twenty-two human premolars were used for the bond strength measurement. Each tooth was cut vertically, separating the tooth into mesio-distal halves. One half of the tooth was used to bond to a surface perpendicular to the dentinal tubules and other half to bond to a surface parallel to the tubules. For each half, six locations of dentine were bonded. Each material was used in accordance to the manufacturer's directions. Cylindrical hourglass-shaped specimens of 1.2 mm diameter at the bonded interface were manufactured. The bonds were stressed in tension at a crosshead speed of 1 mm/min. Mean bond strengths were compared using LSD, one-way ANOVA, and Student's t-test. The fractured surfaces were examined under a scanning electron microscope, and the frequency of fracture modes was compared using the Kruskal-Wallis and Mann-Whitney U tests. For the investigation of the bonded interface, four teeth were prepared by the same procedure used for the bond test specimens. The bonded interfaces were observed after an acid-base treatment or fracturing across the bonded interface, prior to investigation with a field-emission scanning electron microscope. For Single Bond, the bond strengths for mid-root dentine were significantly lower than for other locations (p < 0.05). For MF-102, there was no significant difference for all locations (p > 0.05). MF-102 bonded well to all locations of dentine while Single Bond showed a porous zone at the base of the hybrid layer. The bonds were not influenced by tubule orientation. The results indicate that the bond for Single Bond may be affected by

  3. The effects of simulated microgravity on the seminiferous tubules of rats

    NASA Astrophysics Data System (ADS)

    Forsman, Allan D.

    2012-02-01

    Space flight has been shown to have many adverse effects on various systems throughout the body. Because the opportunity to place research animals on board a Space Shuttle or the International Space Station is infrequent, various techniques have been designed to simulate the effects of microgravity in Earth based laboratories. A commonly used technique is known as antiorthostatic suspension, also often referred to as hind limb suspension. In this technique the hind portion of the animal is raised so that its hind limbs are non-weight bearing. This places the animal in roughly a 30° head down tilt position. This results in cephalic fluid shifts similar to those seen in actual space flight. This technique has also been shown to mimic other physiological parameters that are affected during space flight. This study examined testicular tissue from rats subjected to a 7 day antiorthostatic suspension. This tissue was acquired through a tissue sharing program and some of the experimental animals were injected with Interleukin 1 receptor antagonist (IL-1ra) which was hoped to ameliorate some of the effects of antiorthostatic suspension. The injection of IL-1ra was not expected to have any effect on testicular tissue, however this tissue was included in the morphological and statistical analysis to conduct a more complete study. All tissues were embedded in paraffin, sectioned, and stained using standard H&E staining. The tissue was then qualitatively ranked according to the "health" of the seminiferous tubules. Our findings indicate that 7 days of antiorthostatic suspension had adverse effects on the tissue that comprises the walls of the seminiferous tubules. It has long been known that antiorthostatic suspension has deleterious effects on testicular tissue, however this research indicates that these effects occur much faster than indicated by previous researchers. This is a significant finding because it indicates that meaningful earth based studies in this area can be

  4. Self-organization of engineered epithelial tubules by differential cellular motility

    SciTech Connect

    Mori, Hidetoshi; Gjorevski, Nikolce; Inman, Jamie L; Bissell, Mina J; Nelson, Celeste M

    2009-02-04

    Patterning of developing tissues arises from a number of mechanisms, including cell shape change, cell proliferation, and cell sorting from differential cohesion or tension. Here, we reveal that differences in cell motility can also lead to cell sorting within tissues. Using mosaic engineered mammary epithelial tubules, we found that cells sorted depending on their expression level of the membrane-anchored collagenase matrix metalloproteinase (MMP)-14. These rearrangements were independent of the catalytic activity of MMP14 but absolutely required the hemopexin domain. We describe a signaling cascade downstream of MMP14 through Rho kinase that allows cells to sort within the model tissues. Cell speed and persistence time were enhanced by MMP14 expression, but only the latter motility parameter was required for sorting. These results indicate that differential directional persistence can give rise to patterns within model developing tissues.

  5. Arabidopsis dynamin-related protein 1A polymers bind, but do not tubulate, liposomes

    SciTech Connect

    Backues, Steven K.; Bednarek, Sebastian Y.

    2010-03-19

    The Arabidopsis dynamin-related protein 1A (AtDRP1A) is involved in endocytosis and cell plate maturation in Arabidopsis. Unlike dynamin, AtDRP1A does not have any recognized membrane binding or protein-protein interaction domains. We report that GTPase active AtDRP1A purified from Escherichia coli as a fusion to maltose binding protein forms homopolymers visible by negative staining electron microscopy. These polymers interact with protein-free liposomes whose lipid composition mimics that of the inner leaflet of the Arabidopsis plasma membrane, suggesting that lipid-binding may play a role in AtDRP1A function. However, AtDRP1A polymers do not appear to assemble and disassemble in a dynamic fashion and do not have the ability to tubulate liposomes in vitro, suggesting that additional factors or modifications are necessary for AtDRP1A's in vivo function.

  6. Effect of nutritional substrate on sulfolipids metabolic turnover in isolated renal tubules from rat

    PubMed Central

    NAGAI, Ken-ichi; TADANO-ARITOMI, Keiko; NIIMURA, Yukio; ISHIZUKA, Ineo

    2008-01-01

    Effects of a glycolytic (glucose) and a gluconeogenic renal nutritional substrate (glutamine) on metabolic turnover of sulfolipids, determined as [35S]sulfate incorporation, were compared in renal tubules prepared from well-fed rats. The results showed that the effects of glucose and glutamine, at nearly physiological serum concentration, are quite contrary to each other. Glucose increased the turnover rates of relatively long chain ganglio-series sulfoglycolipids (Gg3Cer II3-sulfate and Gg4Cer II3,IV3-bis-sulfate) (1.7 to 2.4-fold), but not of cholesterol 3-sulfate (0.9-fold). In contrast, glutamine accelerated the turnover rates of relatively short chain sulfoglycolipids (glucosyl sulfatide, galactosyl sulfatide and lactosyl sulfatide) (1.3 to 2.7-fold), as well as cholesterol 3-sulfate (2.4-fold). The possible mechanism which causes these marked differences is also discussed. PMID:18941285

  7. An ancestral luciferase in the Malpighi tubules of a non-bioluminescent beetle!

    PubMed

    Viviani, V R; Prado, R A; Arnoldi, F C G; Abdalla, F C

    2009-01-01

    The evolutionary origin of beetle bioluminescence is enigmatic. Previously, weak luciferase activity was found in the non-bioluminescent larvae of Tenebrio molitor (Coleoptera: Tenebrionidae), but the detailed tissular origin and identity of the luciferase-like enzyme remained unknown. Using a closely related giant mealworm, Zophobas morio, here we show that the luciferase-like enzyme is located in the Malpighi tubules. cDNA cloning of this luciferase like enzyme, showed that it is a short AMP-ligase with weak luciferase activity which diverged long ago from beetle luciferases. The results indicate that the potential for bioluminescence in AMP-ligases is very ancient and provide a first reasonable protoluciferase model to investigate the origin and evolution of beetle luciferases. PMID:19247530

  8. Caulimoviridae tubule-guided transport is dictated by movement protein properties.

    PubMed

    Sánchez-Navarro, Jesús; Fajardo, Thor; Zicca, Stefania; Pallás, Vicente; Stavolone, Livia

    2010-04-01

    Plant viruses move through plasmodesmata (PD) either as nucleoprotein complexes (NPCs) or as tubule-guided encapsidated particles with the help of movement proteins (MPs). To explore how and why MPs specialize in one mechanism or the other, we tested the exchangeability of MPs encoded by DNA and RNA virus genomes by means of an engineered alfalfa mosaic virus (AMV) system. We show that Caulimoviridae (DNA genome virus) MPs are competent for RNA virus particle transport but are unable to mediate NPC movement, and we discuss this restriction in terms of the evolution of DNA virus MPs as a means of mediating DNA viral genome entry into the RNA-trafficking PD pathway. PMID:20130061

  9. Proteomic-Based Insight into Malpighian Tubules of Silkworm Bombyx mori

    PubMed Central

    Liu, Shi-ping; Yi, Qi-ying; Hu, Cui-mei; Wang, Chen; Xia, Qing-you; Zhao, Ping

    2013-01-01

    Malpighian tubules (MTs) are highly specific organs of arthropods (Insecta, Myriapoda and Arachnida) for excretion and osmoregulation. In order to highlight the important genes and pathways involved in multi-functions of MTs, we performed a systematic proteomic analysis of silkworm MTs in the present work. Totally, 1,367 proteins were identified by one-dimensional gel electrophoresis coupled with liquid chromatography-tandem mass spectrometry, and as well as by Trans Proteomic Pipeline (TPP) and Absolute protein expression (APEX) analyses. Forty-one proteins were further identified by two-dimensional gel electrophoresis. Some proteins were revealed to be significantly associated with various metabolic processes, organic solute transport, detoxification and innate immunity. Our results might lay a good foundation for future functional studies of MTs in silkworm and other lepidoptera. PMID:24098719

  10. Azilsartan Improves Salt Sensitivity by Modulating the Proximal Tubular Na+-H+ Exchanger-3 in Mice

    PubMed Central

    Hatanaka, Masaki; Kaimori, Jun-Ya; Yamamoto, Satoko; Matsui, Isao; Hamano, Takayuki; Takabatake, Yoshitsugu; Ecelbarger, Carolyn M.; Takahara, Shiro; Isaka, Yoshitaka; Rakugi, Hiromi

    2016-01-01

    A potent angiotensin II type-1 receptor blocker, azilsartan, has been reported to reduce blood pressure more effectively than candesartan. Interestingly, azilsartan can also restore the circadian rhythm of blood pressure. We hypothesized that azilsartan could also improve salt sensitivity; thus, we examined the effect of azilsartan on sodium handling in renal tubules. Subtotal nephrectomized C57BL/6 mice received azilsartan (1.0 mg/kg/day), candesartan (0.3 mg/kg/day), or vehicle via the oral route in conjunction with a normal- (0.3%) or high-salt (8.0%) diet. Two weeks later, the azilsartan group showed significantly lower blood pressure during the light period than the candesartan and vehicle groups (azilsartan: 103.1 ± 1.0; candesartan: 111.7 ± 2.7; vehicle: 125.5 ± 2.5 mmHg; P < 0.05; azilsartan or candesartan vs. vehicle). The azilsartan group also showed higher urinary fractional excretion of sodium during the dark period than the candesartan and vehicle groups (azilsartan: 21.37 ± 3.69%; candesartan: 14.17 ± 1.42%; vehicle: 13.85 ± 5.30%; P < 0.05 azilsartan vs. candesartan or vehicle). A pressure—natriuresis curve demonstrated that azilsartan treatment restored salt sensitivity. Immunofluorescence and western blotting showed lower levels of Na+-H+ exchanger-3 (NHE3) protein (the major sodium transporter in renal proximal tubules) in the azilsartan group, but not in the candesartan or vehicle groups. However, azilsartan did not affect NHE3 transcription levels. Interestingly, we did not observe increased expression of downstream sodium transporters, which would have compensated for the increased flow of sodium and water due to non-absorption by NHE3. We also confirmed the mechanism stated above using cultured opossum kidney proximal tubular cells. Results revealed that a proteasomal inhibitor (but not a lysosomal inhibitor) blocked the azilsartan-induced decrease in NHE3 protein expression, suggesting that azilsartan increases NHE3 ubiquitination. In

  11. Azilsartan Improves Salt Sensitivity by Modulating the Proximal Tubular Na+-H+ Exchanger-3 in Mice.

    PubMed

    Hatanaka, Masaki; Kaimori, Jun-Ya; Yamamoto, Satoko; Matsui, Isao; Hamano, Takayuki; Takabatake, Yoshitsugu; Ecelbarger, Carolyn M; Takahara, Shiro; Isaka, Yoshitaka; Rakugi, Hiromi

    2016-01-01

    A potent angiotensin II type-1 receptor blocker, azilsartan, has been reported to reduce blood pressure more effectively than candesartan. Interestingly, azilsartan can also restore the circadian rhythm of blood pressure. We hypothesized that azilsartan could also improve salt sensitivity; thus, we examined the effect of azilsartan on sodium handling in renal tubules. Subtotal nephrectomized C57BL/6 mice received azilsartan (1.0 mg/kg/day), candesartan (0.3 mg/kg/day), or vehicle via the oral route in conjunction with a normal- (0.3%) or high-salt (8.0%) diet. Two weeks later, the azilsartan group showed significantly lower blood pressure during the light period than the candesartan and vehicle groups (azilsartan: 103.1 ± 1.0; candesartan: 111.7 ± 2.7; vehicle: 125.5 ± 2.5 mmHg; P < 0.05; azilsartan or candesartan vs. vehicle). The azilsartan group also showed higher urinary fractional excretion of sodium during the dark period than the candesartan and vehicle groups (azilsartan: 21.37 ± 3.69%; candesartan: 14.17 ± 1.42%; vehicle: 13.85 ± 5.30%; P < 0.05 azilsartan vs. candesartan or vehicle). A pressure-natriuresis curve demonstrated that azilsartan treatment restored salt sensitivity. Immunofluorescence and western blotting showed lower levels of Na+-H+ exchanger-3 (NHE3) protein (the major sodium transporter in renal proximal tubules) in the azilsartan group, but not in the candesartan or vehicle groups. However, azilsartan did not affect NHE3 transcription levels. Interestingly, we did not observe increased expression of downstream sodium transporters, which would have compensated for the increased flow of sodium and water due to non-absorption by NHE3. We also confirmed the mechanism stated above using cultured opossum kidney proximal tubular cells. Results revealed that a proteasomal inhibitor (but not a lysosomal inhibitor) blocked the azilsartan-induced decrease in NHE3 protein expression, suggesting that azilsartan increases NHE3 ubiquitination. In

  12. A primary culture of distal convoluted tubules expressing functional thiazide-sensitive NaCl transport.

    PubMed

    Markadieu, Nicolas; San-Cristobal, Pedro; Nair, Anil V; Verkaart, Sjoerd; Lenssen, Ellen; Tudpor, Kukiat; van Zeeland, Femke; Loffing, Johannes; Bindels, René J M; Hoenderop, Joost G J

    2012-09-15

    Studying the molecular regulation of the thiazide-sensitive Na(+)-Cl(-) cotransporter (NCC) is important for understanding how the kidney contributes to blood pressure regulation. Until now, a native mammalian cell model to investigate this transporter remained unknown. Our aim here is to establish, for the first time, a primary distal convoluted tubule (DCT) cell culture exhibiting transcellular thiazide-sensitive Na(+) transport. Because parvalbumin (PV) is primarily expressed in the DCT, where it colocalizes with NCC, kidneys from mice expressing enhanced green-fluorescent protein (eGFP) under the PV gene promoter (PV-eGFP-mice) were employed. The Complex Object Parametric Analyzer and Sorter (COPAS) was used to sort fluorescent PV-positive tubules from these kidneys, which were then seeded onto permeable supports. After 6 days, DCT cell monolayers developed transepithelial resistance values of 630 ± 33 Ω·cm(2). The monolayers also established opposing transcellular concentration gradients of Na(+) and K(+). Radioactive (22)Na(+) flux experiments showed a net apical-to-basolateral thiazide-sensitive Na(+) transport across the monolayers. Both hypotonic low-chloride medium and 1 μM angiotensin II increased this (22)Na(+) transport significantly by four times, which could be totally blocked by 100 μM hydrochlorothiazide. Angiotensin II-stimulated (22)Na(+) transport was also inhibited by 1 μM losartan. Furthermore, NCC present in the DCT monolayers was detected by immunoblot and immunocytochemistry studies. In conclusion, a murine primary DCT culture was established which expresses functional thiazide-sensitive Na(+)-Cl(-) transport. PMID:22759396

  13. cAMP-binding proteins in medullary tubules from rat kidney: effect of ADH

    SciTech Connect

    Gapstur, S.M.; Homma, S.; Dousa, T.P.

    1988-08-01

    Little is known of the regulatory steps in the cellular action of vasopressin (AVP) on the renal epithelium, subsequent to the cAMP generation. We studied cAMP-binding proteins in the medullary collecting tubule (MCT) and the thick ascending limb of Henle's loop (MTAL) microdissected from the rat kidney by use of photoaffinity labeling. Microdissected tubules were homogenized and photoaffinity labeled by incubation with 1 microM 32P-labeled 8-azido-adenosine 3',5'-cyclic monophosphate (N3-8-(32P)-cAMP); the incorporated 32P was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Both in MCT and MTAL preparations, the analyses showed incorporation of N3-8-(32P)cAMP into two bands (Mr = 49,000 and Mr = 55,000) that comigrated with standards of the cAMP-dependent protein kinase regulatory subunits RI and RII. In MCT, most of the 32P (80%) was incorporated into RI, whereas in MTAL the 32P incorporated into RI and RII was equivalent. When freshly dissected MCT segments were incubated with 10(-12)-10(-6) M AVP, the subsequent photoaffinity labeling of RI with N3-8-(32P)cAMP was markedly diminished in a dose-dependent manner compared with controls. Our results suggest that cAMP binds in MCT and MTAL to regulatory subunits RI and RII of cAMP-dependent protein kinase. However, in MCT the dominant type of cAMP-dependent protein kinase appears to be type I. The outlined procedure is suitable to indirectly measure the occupancy of RI by endogenous cAMP generated in MCT cells in response to physiological levels (10(-12) M) of AVP.

  14. Vitrified canine testicular cells allow the formation of spermatogonial stem cells and seminiferous tubules following their xenotransplantation into nude mice

    PubMed Central

    Lee, Kyung Hoon; Lee, Won Young; Kim, Dong Hoon; Lee, Seung Hoon; Do, Jung Tae; Park, Chankyu; Kim, Jae Hwan; Choi, Young Suk; Song, Hyuk

    2016-01-01

    Belgian Malinois (BM), one of the excellent military dog breeds in South Korea, is usually castrated before sexual maturation. Therefore, the transfer of their genetic features to the next generation is difficult. To overcome this, testicular cells from 4-month-old BMs were frozen. Testicular cells were thawed after 3 months and cultured in StemPro-34 medium. Spermatogonial stem cell (SSC) characteristics were determined by the transplantation of the cultured germ cell-derived colonies (GDCs) into empty testes, containing only several endogenous SSCs and Sertoli cells, of immunodeficient mice, 4 weeks after busulfan treatment. Following the implantation, the transplanted cells localized in the basement membrane of the seminiferous tubules, and ultimately colonized the recipient testes. Xenotransplantation of GDCs together with testicular somatic cells conjugated with extracellular matrix (ECM), led to the formation of de novo seminiferous tubules. These seminiferous tubules were mostly composed of Sertoli cells. Some germ cells were localized in the basement membrane of seminiferous tubules. This study revealed that BM-derived SSCs, obtained from the castrated testes, might be a valuable tool for the transfer of BM genetic features to the next generation. PMID:26907750

  15. Identification of domains of the Tomato spotted wilt virus NSm protein involved in tubule formation, movement and symptomatology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Deletion and alanine-substitution mutants of the Tomato spotted wilt virus NSm protein were generated to identify domains involved in tubule formation, movement and symptomatology, using a heterologous expression system derived from Tobacco mosaic virus. Two regions of NSm were required for both tub...

  16. Protein Kinase A Activity Is Necessary for Fission and Fusion of Golgi to Endoplasmic Reticulum Retrograde Tubules

    PubMed Central

    Tenorio, María J.; Luchsinger, Charlotte; Mardones, Gonzalo A.

    2015-01-01

    It is becoming increasingly accepted that together with vesicles, tubules play a major role in the transfer of cargo between different cellular compartments. In contrast to our understanding of the molecular mechanisms of vesicular transport, little is known about tubular transport. How signal transduction molecules regulate these two modes of membrane transport processes is also poorly understood. In this study we investigated whether protein kinase A (PKA) activity regulates the retrograde, tubular transport of Golgi matrix proteins from the Golgi to the endoplasmic reticulum (ER). We found that Golgi-to-ER retrograde transport of the Golgi matrix proteins giantin, GM130, GRASP55, GRASP65, and p115 was impaired in the presence of PKA inhibitors. In addition, we unexpectedly found accumulation of tubules containing both Golgi matrix proteins and resident Golgi transmembrane proteins. These tubules were still attached to the Golgi and were highly dynamic. Our data suggest that both fission and fusion of retrograde tubules are mechanisms regulated by PKA activity. PMID:26258546

  17. Automated Tubule Nuclei Quantification and Correlation with Oncotype DX risk categories in ER+ Breast Cancer Whole Slide Images.

    PubMed

    Romo-Bucheli, David; Janowczyk, Andrew; Gilmore, Hannah; Romero, Eduardo; Madabhushi, Anant

    2016-01-01

    Early stage estrogen receptor positive (ER+) breast cancer (BCa) treatment is based on the presumed aggressiveness and likelihood of cancer recurrence. Oncotype DX (ODX) and other gene expression tests have allowed for distinguishing the more aggressive ER+ BCa requiring adjuvant chemotherapy from the less aggressive cancers benefiting from hormonal therapy alone. However these tests are expensive, tissue destructive and require specialized facilities. Interestingly BCa grade has been shown to be correlated with the ODX risk score. Unfortunately Bloom-Richardson (BR) grade determined by pathologists can be variable. A constituent category in BR grading is tubule formation. This study aims to develop a deep learning classifier to automatically identify tubule nuclei from whole slide images (WSI) of ER+ BCa, the hypothesis being that the ratio of tubule nuclei to overall number of nuclei (a tubule formation indicator - TFI) correlates with the corresponding ODX risk categories. This correlation was assessed in 7513 fields extracted from 174 WSI. The results suggests that low ODX/BR cases have a larger TFI than high ODX/BR cases (p < 0.01). The low ODX/BR cases also presented a larger TFI than that obtained for the rest of cases (p < 0.05). Finally, the high ODX/BR cases have a significantly smaller TFI than that obtained for the rest of cases (p < 0.01). PMID:27599752

  18. The control of Malpighian tubule secretion in a predacious hemipteran insect, the spined soldier bug Podisus maculiventris (Heteroptera, Pentatomidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spined soldier bugs, Podisus maculiventris, are heteropteran insects that feed voraciously on other insects, particular the soft bodied larval forms of Lepidoptera and Coleoptera. The response of P. maculiventris Malpighian tubules (MT) to serotonin and known diuretic and antidiuretic peptides has b...

  19. Interaction of resident sperm with sperm-storage tubule (SST) epithelial cell microvilli in the turkey hen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unlike most mammals, birds do not need to synchronize copulation with ovulation. Hens are endowed with tubular structures, the sperm-storage tubules (SST), in their oviducts which the sperm enter and survive for weeks after mating or artificial insemination. Sperm are slowly but continually releas...

  20. Vitrified canine testicular cells allow the formation of spermatogonial stem cells and seminiferous tubules following their xenotransplantation into nude mice.

    PubMed

    Lee, Kyung Hoon; Lee, Won Young; Kim, Dong Hoon; Lee, Seung Hoon; Do, Jung Tae; Park, Chankyu; Kim, Jae Hwan; Choi, Young Suk; Song, Hyuk

    2016-01-01

    Belgian Malinois (BM), one of the excellent military dog breeds in South Korea, is usually castrated before sexual maturation. Therefore, the transfer of their genetic features to the next generation is difficult. To overcome this, testicular cells from 4-month-old BMs were frozen. Testicular cells were thawed after 3 months and cultured in StemPro-34 medium. Spermatogonial stem cell (SSC) characteristics were determined by the transplantation of the cultured germ cell-derived colonies (GDCs) into empty testes, containing only several endogenous SSCs and Sertoli cells, of immunodeficient mice, 4 weeks after busulfan treatment. Following the implantation, the transplanted cells localized in the basement membrane of the seminiferous tubules, and ultimately colonized the recipient testes. Xenotransplantation of GDCs together with testicular somatic cells conjugated with extracellular matrix (ECM), led to the formation of de novo seminiferous tubules. These seminiferous tubules were mostly composed of Sertoli cells. Some germ cells were localized in the basement membrane of seminiferous tubules. This study revealed that BM-derived SSCs, obtained from the castrated testes, might be a valuable tool for the transfer of BM genetic features to the next generation. PMID:26907750

  1. Automated Tubule Nuclei Quantification and Correlation with Oncotype DX risk categories in ER+ Breast Cancer Whole Slide Images

    PubMed Central

    Romo-Bucheli, David; Janowczyk, Andrew; Gilmore, Hannah; Romero, Eduardo; Madabhushi, Anant

    2016-01-01

    Early stage estrogen receptor positive (ER+) breast cancer (BCa) treatment is based on the presumed aggressiveness and likelihood of cancer recurrence. Oncotype DX (ODX) and other gene expression tests have allowed for distinguishing the more aggressive ER+ BCa requiring adjuvant chemotherapy from the less aggressive cancers benefiting from hormonal therapy alone. However these tests are expensive, tissue destructive and require specialized facilities. Interestingly BCa grade has been shown to be correlated with the ODX risk score. Unfortunately Bloom-Richardson (BR) grade determined by pathologists can be variable. A constituent category in BR grading is tubule formation. This study aims to develop a deep learning classifier to automatically identify tubule nuclei from whole slide images (WSI) of ER+ BCa, the hypothesis being that the ratio of tubule nuclei to overall number of nuclei (a tubule formation indicator - TFI) correlates with the corresponding ODX risk categories. This correlation was assessed in 7513 fields extracted from 174 WSI. The results suggests that low ODX/BR cases have a larger TFI than high ODX/BR cases (p < 0.01). The low ODX/BR cases also presented a larger TFI than that obtained for the rest of cases (p < 0.05). Finally, the high ODX/BR cases have a significantly smaller TFI than that obtained for the rest of cases (p < 0.01). PMID:27599752

  2. The single kinin receptor signals to separate and independent physiological pathways in Malpighian tubules of the yellow fever mosquito

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the past we have used the leucokinins, the kinins of the cockroach Leucophaea, to evaluate the mechanism of diuretic action of kinin peptides in Malpighian tubules of the yellow fever mosquito Aedes aegypti. Now using aedeskinins, the kinins of Aedes, are available, we find that in isolated Aede...

  3. Differentiation of human umbilical cord mesenchymal stem cells into germ-like cells in mouse seminiferous tubules

    PubMed Central

    CHEN, HUI; TANG, QIU-LING; WU, XIAO-YING; XIE, LI-CHUN; LIN, LI-MIN; HO, GU-YU; MA, LIAN

    2015-01-01

    Our previous study demonstrated that human umbilical cord mesenchymal stem cells (HUMSCs) were capable of differentiation into germ cells in vitro. To assess this potential in vivo, HUMSCs were microinjected into the lumen of seminiferous tubules of immunocompetent mice, which were treated with busulfan to destroy endogenous spermatogenesis. Bromodeoxyuridine labeling studies demonstrated that HUMSCs survived in the tubule for at least 120 days, exhibited a round cell shape typical of proliferating or differentiating germ cells, migrated to the basement of the tubule, where proliferating spermatogonia reside and returned to the luminal compartment, where differentiating spermatids and spermatozoa reside. The migration pattern resembled that of germ cell development in vivo. Immunohistochemical and colocalization studies revealed that transplanted HUMSCs expressed the germ cell markers octamer-binding transcription factor 4, α6 integrin, C-kit and VASA, confirming the germ cell differentiation. In addition, it was observed that tubules transplanted with HUMSCs exhibited marked improvement in the histological features damaged by the chemotherapeutic busulfan, as judged by morphology and quantitative histology. Taken together, these data demonstrated the capacity of HUMSCs to form germ cells in the testes and to repair testicular tissue. These findings suggest a potential utility of HUMSCs to treat the infertility and testicular insufficiency caused by cancer therapeutics. PMID:25815600

  4. Interaction of resident sperm with sperm-storage tubule (SST) epithelial cell microvilli in the turkey breeder hen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interaction of resident sperm with sperm-storage tubule (SST) epithelial cell microvilli in the turkey breeder hen M.R. Bakst*1 and C. Murphy2, 1Animal Biosciences and Biotechnology Laboratory, 2Electron & Confocal Microscopy Unit, Beltsville Area, ARS, USDA, Beltsville MD Sustained fertilization o...

  5. Proximal Junctional Kyphosis: Diagnosis, Pathogenesis, and Treatment

    PubMed Central

    Lee, Jaewon

    2016-01-01

    Proximal junctional kyphosis (PJK) is a common radiographic finding after long spinal fusion. A number of studies on the causes, risk factors, prevention, and treatment of PJK have been conducted. However, no clear definition of PJK has been established. In this paper, we aimed to clarify the diagnosis, prevention, and treatment of PJK by reviewing relevant papers that have been published to date. A literature search was conducted on PubMed using "proximal junctional", "proximal junctional kyphosis", and "proximal junctional failure" as search keywords. Only studies that were published in English were included in this study. The incidence of PJK ranges from 5% to 46%, and it has been reported that 66% of cases occur 3 months after surgery and approximately 80% occur within 18 months. A number of studies have reported that there is no significantly different clinical outcome between PJK patients and non-PJK patients. One study showed that PJK patients expressed more pain than non-PJK patients. However, recent studies focused on proximal junctional failure (PJF), which is accepted as a severe form of PJK. PJF showed significant adverse impact in clinical aspect such as pain, neurologic deficit, ambulatory difficulties, and social isolation. Numerous previous studies have identified various risk factors and reported on the treatment and prevention of PJK. Based on these studies, we determined the clinical significance and impact of PJK. In addition, it is important to find a strategic approach to the proper treatment of PJK. PMID:27340542

  6. Proximity assays for sensitive quantification of proteins.

    PubMed

    Greenwood, Christina; Ruff, David; Kirvell, Sara; Johnson, Gemma; Dhillon, Harvinder S; Bustin, Stephen A

    2015-06-01

    Proximity assays are immunohistochemical tools that utilise two or more DNA-tagged aptamers or antibodies binding in close proximity to the same protein or protein complex. Amplification by PCR or isothermal methods and hybridisation of a labelled probe to its DNA target generates a signal that enables sensitive and robust detection of proteins, protein modifications or protein-protein interactions. Assays can be carried out in homogeneous or solid phase formats and in situ assays can visualise single protein molecules or complexes with high spatial accuracy. These properties highlight the potential of proximity assays in research, diagnostic, pharmacological and many other applications that require sensitive, specific and accurate assessments of protein expression. PMID:27077033

  7. Jet Diffusion in Proximity of a Wall

    NASA Technical Reports Server (NTRS)

    Kuechemann, D.

    1949-01-01

    When auxiliary jet engines are installed on airframes; as well as in some new designs, the jet engines are mounted in such a way that the jet stream exhausts in close proximity to the fuselage. This report deals with the behavior of the jet in close proximity to a two-dimensional surface. The experiments were made to find out whether the axially symmetric stream tends to approach the flat surface. This report is the last of a series of four partial test reports of the Goettingen program for the installation of jet engines, dated October 12, 1943. This report is the complement of the report on intake in close proximity to a wall.

  8. Proximity assays for sensitive quantification of proteins

    PubMed Central

    Greenwood, Christina; Ruff, David; Kirvell, Sara; Johnson, Gemma; Dhillon, Harvinder S.; Bustin, Stephen A.

    2015-01-01

    Proximity assays are immunohistochemical tools that utilise two or more DNA-tagged aptamers or antibodies binding in close proximity to the same protein or protein complex. Amplification by PCR or isothermal methods and hybridisation of a labelled probe to its DNA target generates a signal that enables sensitive and robust detection of proteins, protein modifications or protein–protein interactions. Assays can be carried out in homogeneous or solid phase formats and in situ assays can visualise single protein molecules or complexes with high spatial accuracy. These properties highlight the potential of proximity assays in research, diagnostic, pharmacological and many other applications that require sensitive, specific and accurate assessments of protein expression. PMID:27077033

  9. Drosophila Nedd4-long reduces Amphiphysin levels in muscles and leads to impaired T-tubule formation

    PubMed Central

    Safi, Frozan; Shteiman-Kotler, Alina; Zhong, Yunan; Iliadi, Konstantin G.; Boulianne, Gabrielle L.; Rotin, Daniela

    2016-01-01

    Drosophila Nedd4 (dNedd4) is a HECT ubiquitin ligase with two main splice isoforms: dNedd4-short (dNedd4S) and -long (dNedd4Lo). DNedd4Lo has a unique N-terminus containing a Pro-rich region. We previously showed that whereas dNedd4S promotes neuromuscular synaptogenesis, dNedd4Lo inhibits it and impairs larval locomotion. To delineate the cause of the impaired locomotion, we searched for binding partners to the N-terminal unique region of dNedd4Lo in larval lysates using mass spectrometry and identified Amphiphysin (dAmph). dAmph is a postsynaptic protein containing SH3-BAR domains and regulates muscle transverse tubule (T-tubule) formation in flies. We validated the interaction by coimmunoprecipitation and showed direct binding between dAmph-SH3 domain and dNedd4Lo N-terminus. Accordingly, dNedd4Lo was colocalized with dAmph postsynaptically and at muscle T-tubules. Moreover, expression of dNedd4Lo in muscle during embryonic development led to disappearance of dAmph and impaired T-tubule formation, phenocopying amph-null mutants. This effect was not seen in muscles expressing dNedd4S or a catalytically-inactive dNedd4Lo(C→A). We propose that dNedd4Lo destabilizes dAmph in muscles, leading to impaired T-tubule formation and muscle function. PMID:26823013

  10. Infrared-Proximity-Sensor Modules For Robot

    NASA Technical Reports Server (NTRS)

    Parton, William; Wegerif, Daniel; Rosinski, Douglas

    1995-01-01

    Collision-avoidance system for articulated robot manipulators uses infrared proximity sensors grouped together in array of sensor modules. Sensor modules, called "sensorCells," distributed processing board-level products for acquiring data from proximity-sensors strategically mounted on robot manipulators. Each sensorCell self-contained and consists of multiple sensing elements, discrete electronics, microcontroller and communications components. Modules connected to central control computer by redundant serial digital communication subsystem including both serial and a multi-drop bus. Detects objects made of various materials at distance of up to 50 cm. For some materials, such as thermal protection system tiles, detection range reduced to approximately 20 cm.

  11. Laparoscopic Proximal Gastrectomy With Gastric Tube Reconstruction

    PubMed Central

    Shiraishi, Norio; Toujigamori, Manabu; Shiroshita, Hidefumi; Etoh, Tsuyoshi; Inomata, Masafumi

    2016-01-01

    Background and Objectives: There is no standardized method of reconstruction in laparoscopic proximal gastrectomy (LPG). We present a novel technique of reconstruction with a long, narrow gastric tube in LPG for early gastric cancer (EGC). Methods: During the laparoscopic procedure, the upper part of the stomach is fully mobilized with perigastric and suprapancreatic lymphadenectomy, and then the abdominal esophagus is transected. After a minilaparotomy is created, the entire stomach is pulled outside. A long, narrow gastric tube (20 cm long, 3 cm wide) is created with a linear stapler. The proximal part of the gastric tube is formed into a cobra head shape for esophagogastric tube anastomosis, which is then performed with a 45-mm linear stapler under laparoscopic view. The end of the esophagus is fixed on the gastric tube to prevent postoperative esophageal reflux. Results: Thirteen patients with early proximal gastric cancer underwent the procedure. The mean operative time was 283 min, and median blood loss was 63 ml. There were no conversions to open surgery, and no intraoperative complications. Conclusion: This new technique of reconstruction after LPG is simple and feasible. The procedure has the potential of becoming a standard reconstruction technique after LPG for proximal EGC. PMID:27547027

  12. Current status of proximal gastric vagotomy.

    PubMed Central

    Schirmer, B D

    1989-01-01

    Proximal gastric vagotomy is nearing its twentieth year in clinical use as an operation for peptic ulcer disease. No other acid-reducing operation has undergone as much scrutiny or study. At this time, the evidence of such studies and long-term follow-up strongly supports the use of proximal gastric vagotomy as the treatment of choice for chronic duodenal ulcer in patients who have failed medical therapy. Its application in treating the complications of peptic ulcer disease, which recently have come to represent an increasingly greater percentage of all operations done for peptic ulcer disease, is well-tested. However, initial series suggest that it should probably occupy a prominent role in treating some of these complications, particularly in selected patients, in the future. The operation has the well-documented ability to reduce gastric acid production, not inhibit gastric bicarbonate production, and also minimally inhibit gastric motility. The combination of these physiologic results after proximal gastric vagotomy, along with preservation of the normal antropyloroduodenal mechanism of gastrointestinal control, serve to allow patients with proximal gastric vagotomy the improved benefits of significantly fewer severe gastrointestinal side effects than are seen after other operations for peptic ulcer disease. PMID:2644897

  13. Hybrid Repair of Proximal Subclavian Artery Aneurysm

    PubMed Central

    Morimoto, Kazuki; Fukuda, Tetsuya; Iba, Hiroshi; Tanaka, Hiroshi; Sasaki, Hiroaki; Minatoya, Kenji; Kobayashi, Junjiro

    2015-01-01

    Objective: Conventional open repair for proximal subclavian artery aneurysms (SCAAs) requires cardiopulmonary bypass. However, patients with proximal SCAA can be treated with hybrid repair. Methods: Between 2007 and 2012, we performed hybrid repair to treat six consecutive patients with proximal SCAA (three left SCAAs, one right aberrant SCAA, two right SCAAs). Their median age was 73.5 [70–87] years, and the size of their aneurysm was 33.5 [30–45] mm. Thoracic endovascular aneurysm repair (TEVAR) only was used for one patient with left SCAA, TEVAR and supra-aortic bypass for two with left SCAA and one with right aberrant SCAA, and endovascular repair with reconstruction of the vertebral artery using the saphenous vein graft (SVG) for two with right SCAA. Results: The follow-up duration was 3.7 [0.2–6.8] years. There was no 30-day mortality and only one early complication consisting of a minor stroke after TEVAR for shaggy aorta. Two late deaths occurred, one caused by cerebral infarction due to occlusion of SVG to the dominant vertebral artery 2 months after the operation and the other by aortic dissection 5 years postoperatively. Conclusions: Hybrid repair can be a less-invasive alternative for proximal SCAA. Revascularization of neck vessels and TEVAR should be performed very carefully to prevent neurologic complications. PMID:26131027

  14. Traumatic proximal tibiofibular dislocation with neurovascular injury

    PubMed Central

    Veerappa, Lokesh A; Gopalakrishna, Chetan

    2012-01-01

    23 years old male presented with inferolateral dislocation of proximal tibiofibular joint associated with popliteal artery and common peroneal nerve injury. The extension of the injury to involve the interosseus membrane up to the distal tibiofibular joint. The association of popliteal artery injury is not reported before to the best of our knowledge. PMID:23162155

  15. Goal-Proximity Decision-Making

    ERIC Educational Resources Information Center

    Veksler, Vladislav D.; Gray, Wayne D.; Schoelles, Michael J.

    2013-01-01

    Reinforcement learning (RL) models of decision-making cannot account for human decisions in the absence of prior reward or punishment. We propose a mechanism for choosing among available options based on goal-option association strengths, where association strengths between objects represent previously experienced object proximity. The proposed…

  16. Vortices in normal part of proximity system

    DOE PAGESBeta

    Kogan, V. G.

    2015-05-26

    It is shown that the order parameter Δ induced in the normal part of superconductor-normal-superconductor proximity system is modulated in the magnetic field differently from vortices in bulk superconductors. Whereas Δ turns zero at vortex centers, the magnetic structure of these vortices differs from that of Abrikosov's.

  17. Email Keypals in Zone of Proximal Development.

    ERIC Educational Resources Information Center

    Kaufman, Lionel M., Jr.

    This study analyzed the discourse of electronic mail (e-mail) exchanges between students of English as a second language (ESL) and other ESL learners from other cultures and at varying proficiency levels (keypals), focusing on what these exchanges may reveal about learners' progress through the "Zone of Proximal Development," a Vygotskian concept…

  18. The Zone of Proximal "Teacher" Development

    ERIC Educational Resources Information Center

    Warford, Mark K.

    2011-01-01

    Toward the end of his short life, Lev Vygotsky found himself teaching teachers in a remote part of the USSR. Though his influence as a developmental psychologist is well-established, little is known about his approach to teacher development. This article applies the researcher's core concept, the zone of proximal development to teacher education.…

  19. Proximal humerus fractures in children and adolescents.

    PubMed

    Lefèvre, Y; Journeau, P; Angelliaume, A; Bouty, A; Dobremez, E

    2014-02-01

    Proximal humerus fractures are rare in paediatric traumatology. Metaphyseal fractures account for about 70% of cases and epiphyseal separation for the remaining 30%. The development and anatomy of the proximal humerus explain the various fracture types, displacements, and potential complications; and also help in interpreting the radiographic findings, most notably in young children. Physicians should be alert to the possibility of an underlying lesion or pathological fracture requiring appropriate diagnostic investigations, and they should consider child abuse in very young paediatric patients. Although the management of proximal humerus fractures remains controversial, the extraordinary remodelling potential of the proximal humerus in skeletally immature patients often allows non-operative treatment without prior reduction. When the displacement exceeds the remodelling potential suggested by the extent of impaction, angulation, and patient age, retrograde elastic stable intramedullary nailing (ESIN) provides effective stabilisation. As a result, the thoraco-brachial abduction cast is less often used, although this method remains a valid option. Retrograde ESIN must be performed by a surgeon who is thoroughly c